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Preface

Since the development of structural equation models in the early 1970s,
there has been a steady growth in their use in educational, social, and
behavioral research. In the early period, two or three textbooks for
researchers with a relatively advanced statistical knowledge were avail-
able, but it was not until the early 1980s that a basic introductory textbook
(Saris & Stronkhorst 1983) became available. That volume, however, did
not tackle the full range of issues in the application of structural modeling
methods to the types of theories that most researchers work with in
applied settings. Thus, the Saris and Stronkhorst text is best viewed only
as a general introduction to the theory and methodology. There are also
several introductory articles and short monographs that outline the basic
methodology of structural modeling, but again they rarely describe in
detail the process of applying the methodology to an applied research
setting. '

This volume attempts to fill that gap by providing several extended
examples of the application of structural modeling to applied problems
and by contrasting its strengths and weaknesses with the more naive
methods that are still the mainstay of applied research in these disciplines.
These examples provide the reader with the rationale for, and a view of,
the operational decisions that have to be made as the researcher works
through an applied problem. In most publications, information is hidden
from the view of the reader, since the focus is, rightly, on substantive
issues rather than methodological issues.

This volume also reports a set of evaluations of the robustness of the
method written from the point of view of the applied researcher rather
than from the view of the statistician. The discussion is focused on the
issues that emanate from a substantive perspective of the data, measure-
ment, and modeling questions of most relevance to educational, social,
and behavioral research. It is suggested that, although the statistical
properties of estimators and of hypothesis testing are important, their
salience in applied research is dependent on the properties of measurement
and data generally available in these disciplines. Thus, the replication of

vii



viii Preface

findings, rather than a slavish adherence to hypothesis-testing method-
ologies, is given prominence as the basic means of evaluating the validity
of theories and of models based on them.

This does not mean, however, that hypothesis testing is in any sense
irrelevant, because the other fundamental component of structural model-
ing is the proposing of alternative models to explain the grid of
relationships among the observed variables in the data. Models that do
not adequately explain this pattern of relationships are rejected, and other
model formulations developed from the literature and other sources of
knowledge are put forward.

Although the volume does assume some basic familiarity with the
fundamentals of structural modeling, it attempts to discuss the process of
decision making as nontechnically as possible, although this is a tall order
given the vocabulary surrounding the development of this methodology.

The authors are indebted to many colleagues in the research community
for their generous contributions to the discussion of the issues that arose
in the planning and development of this volume. The chapters benefited
from the critical comments of colleagues too numerous to mention here,
and the overall development of the volume owes much to the invisible
college of researchers both in Edinburgh and in the international
community.

We are particularly grateful for the support provided by the Centre for
Educational Sociology at the University of Edinburgh. The program of
research on the effectiveness of schooling initiated there in the early 1980s
provided the impetus to reconsider the appropriateness of various
statistical modeling techniques and to survey the applied modeling
requirements of the wider social and behavioral science community. This
work has recently led to the consideration of models for modeling
multilevel processes, for which structural modeling, in its present stage of
development, is not suitable.

We acknowledge the assistance provided by the U.K. Economic and
Social Research Council through their support of workshops conducted
by the editors and fellowships held by them during the production of the
volume. The Centre for Educational Sociology at the University of
Edinburgh provided generous secretarial and administrative support.
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1
Introduction

PETER CUTTANCE AND RUSSELL ECOB

Structural modeling can be thought of as the marriage of two lines of
methodological and statistical development in the social and behavioral
sciences. These developments have their seminal roots in early attempts to
apply statistical methods to economics and psychology, although similar
developments can be observed in other disciplines also. The development
of methods for the interpretation of data from widespread mental testing
of adult populations in North America and Britain went hand in hand
with the development of theories of mental ability. In order to test the
efficacy of the various theories of mental ability put forward, the statistical
model known today as factor analysis was developed. Since it was evident
that a single test item could not tap the full extent of a person's ability in
any given area, several items were employed jointly to measure ability.
The variation that was common or shared among the items was inter-
preted as a measure of the underlying ability. Different sets of items were
designed as measures of each of the mental abilities hypothesized by the
alternative theories. The covariation among these underlying abilities
(which were called factors or constructs) was then interpreted in terms of
the evidence it provided for the alternative hierarchical and relational
models of human abilities put forward in the research.

One aspect of these early models that has been carried over to structural
modeling is the idea that a latent construct or factor can be measured by
the responses to a set of items on a test. In later work this idea was carried
forward as the concept of observable indicators for an unobservable
construct or, in another context, as multiple measures of a true score in
test score theory.

A second idea that has been carried forward into structural modeling is
that of the correlation between unobservable constructs. This gives rise to
the model of covariance structures among latent constructs in structural
modeling. The essential feature of covariance structure models is that they
deal not with the causal or predictive relationships between the substan-
tive constructs of a theory, but rather with the covariation among latent
constructs.

1



2 PETER CUTTANCE AND RUSSELL ECOB

In contrast, developments in economics focused on the analysis of
causal and predictive relationships between one set of variables (the
dependent variables) and another set of variables (the independent
variables). Economists were initially interested in simple single-equation
models, but before long their attention turned to the modeling of systems
of equations, representing several processes that theoretical models
argued were interlinked and operating simultaneously.

The birth of the methodology known today as structural modeling was
brought about by the recognition that many social and behavioral
processes could be thought of as causal processes operating among
unobserved constructs. This suggested the merging of the latent construct
model from psychology with the causal models found in economics.
Although the recognition of this model in the form of the path analysis
model was useful, it was soon realized that this solution was inadequate,
for two reasons. First, it did not allow the researcher to test how well the
model explained the covariation in the data, and second, the parameter
estimates for the model were apt to vary with the restrictions employed in
identifying the model. In general, the substantive models that path
models represented were often overidentified, because they posited that
several of the causal relationships were zero, and this meant that the
remaining relationships in the model could be estimated from different
combinations of the correlations among the observed variables. These
different combinations do not necessarily yield identical estimates of the
parameters in the model. Hence, some method of obtaining estimates of
parameters that in combination gave the best fit to the covariation among
the observed variables was required, given the causal relationship specified
by the model. This led to the development of maximum likelihood
estimation methods for estimating and testing the fit of structural like-
lihood estimation methods for estimating and testing the fit of struc-
tural models. Other methods that make less restrictive distributional
assumptions about the data have also been developed.

The major advance of structural modeling, then, has been that it has
provided a means of testing the capacity of alternative substantive models
to account for the pattern of covariation among the observed variables in
the data and to do this in terms of latent constructs that parallel the
underlying constructs of the substantive model.

Although this advance is in line with recent arguments about the nature
of the relationship between theory and the measurement of social and
behavioral phenomena, it obviously does not deal with the more radical
critiques of the relationship between theory and observation/meaning
emanating from phenomenological perspectives of the social world. It is
useful for the researcher who uses structural modeling methods to keep in
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mind that there are alternative views of the appropriate methodology for
studying social and behavioral phenomena, because it is unlikely that any
one perspective or methodology for investigating and understanding the
behavior under study will yield the true understanding of the behavior.

Chapter 2 provides an overview of structural modeling and presents the
formal mathematical and statistical model employed to represent the
substantive model the researcher wishes to investigate. Unless readers are
already familiar with the basic statistical framework for the LISREL
model, they are advised to acquaint themselves with the material in that
chapter before going on to the other chapters. Chapter 2 is not intended,
however, to be a detailed introduction to the model, for which the reader
is referred to the text by Saris and Stronkhorst (1984) or the other material
listed in the Reference section of Chapter 2.

Chapters 3-5 illustrate the application of structural modeling to
situations that conform to psychologists' models of covariation among the
latent constructs of a substantive model. In Chapter 3 Katharine Parkes
examines the relationship between constructs represented in two widely
used self-report inventories for measuring different aspects of neurotic
disorders. The analysis compares the structure of disorders between two
groups of subjects. The data had been analyzed previously by conven-
tional correlational methods, and the structure of the relationships among
the disorders found to differ between the two groups; however, the present
simultaneous analysis of the data suggests that this earlier conclusion was
unwarranted. The two main reasons for revising the conclusions are to be
found in the fact that the structural modeling approach takes account of
the fallibility of the measurement of the individual items in the model and
formally tests the hypothesis that the structures differ in the two groups.
The model that posits identical structures in the two groups can explain
the pattern of covariation among the variables observed in the data just as
well as the alternative model, which posits that the structure is different in
the two groups. Thus, structural modeling analysis leads to a conclusion
about the nature of neurotic disorders with respect to these groups that is
substantially different from that arrived at by the earlier naive analysis of
the data.

Chapter 4 by Lee Wolfle illustrates a model of the structure of responses
by high school seniors to a questionnaire inquiry about the level of
education and the occupation of their parents. These responses are
contrasted with those of the parents themselves. The social science survey
literature indicates different subgroups in the population may respond
with different degrees of accuracy and reliability on questionnaire items
relating to parental background characteristics. In this study Wolfle
models the responses of black and white children and their parents.
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Measures of covariation and of the strength of causal relationships are
attenuated by error introduced in the measurement of such characteristics,
and differential attenuation across subgroups in the data could lead one
astray when interpreting intergroup differences in such relationships. This
chapter again illustrates the interplay between the substantive, method-
ological, and statistical aspects of the specification and fitting of structural
models. The actual model presented is relatively simple, three factors
among six observed variables, but because of the clarity of the metho-
dology it yields significant information about the response reliability of
the subgroups studied.

In Chapter 5 Peter Hill presents a structural model to test Bloom et al.'s
(1956) taxonomy of cognitive learning structures. This taxonomy posits a
hierarchical relationship among various learning behaviors and is
modeled as an extension of Guttman's (1954) simplex design. This design
specifies a hierarchical structure through an ordered multiplicative rela-
tionship among the constructs. Since the model takes into account the
errors of measurement in each of the observed variables, the appropriate
version of the design is that known as a quasi simplex. The analysis
provides tests of certain specific substantive hypotheses that allow the
researcher to refine issues of uncertainty sequentially in this field of
empirical inquiry.

Chapters 6-8 illustrate how structural modeling can be applied in a
causal framework. Here the factor and construct methodology of the
psychologist is linked to the causal framework derived from that devel-
oped in economics. In Chapter 6 Leslie Hendrickson and Barnie Jones
specify and estimate a model of the relationships between pupil achieve-
ment in the third and fourth grades. They contrast the modeling of this
process in a causal framework with that of the usual gain score framework
and show that the latter model is likely to yield misleading results in the
presence of measurement error, because it omits relevant intervening
variables from the model. They illustrate the use of sensitivity analysis to
investigate key aspects of the specification of the model.

In Chapter 7 Robert Hauser and Peter Mossel model the relationship
between educational attainment and occupational status attainment
among siblings within families and among families. This allows them to
estimate the variance components associated with families and hence to
investigate the dynastic influences of families on the occupational careers
of their offspring. They work with a relatively simple model containing
only four observed variables, which again illustrates the point that one
does not necessarily require highly complex models containing a large
number of variables in order to make progress. Indeed, one of the lessons
to be learned from successful applications of structural modeling methods
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is that models that are poorly thought out in terms of the substantive
theory on which they are based rarely yield interpretable findings.

In Chapter 8 Russell Ecob employs a structural model to estimate and
fit a longitudinal model of the relationship between learning difficulties
and progress in learning to read. The model can be viewed as an extension
of the conventional cross-lagged correlation model, but by incorporating
it into a structural modeling framework he is able to take account of the
fallibility of the observed measures and to control for aspects of pupils'
social backgrounds that influence the process of learning. He shows that a
model that fails to take account of these two dimensions of the research
question is likely to provide a misleading account of the relationship
between learning difficulties and progress in learning to read.

Chapters 9 and 10 report two studies of the robustness of structural
modeling against the assumptions made in estimating and fitting the
model. In Chapter 9 Anne Boomsma presents findings from a large-scale
Monte Carlo study of the maximum likelihood method for estimating
model parameters and tests of the fit of a model. She investigates the
behavior of the method for a range of distributional features of data found
in the social and behavioral sciences. This study is the most extensive
investigation of the robustness of structural modeling conducted thus far
and provides several benchmarks for the use of the method in various
applied situations. In general, it suggests that the maximum likelihood
estimator is relatively robust against modest departures from the skewness
and kurtosis of the normal distribution for parameter estimates, but that
the standard errors, confidence intervals, and likelihood ratio test of fit are
somewhat more sensitive to such departures from the characteristics of the
normal distribution. Joan Gallini and Jim Casteel investigate the struc-
tural modeling analogue of the issue of influential observations in the
regression analysis model in Chapter 10. They compare estimates for a
model based on a data set trimmed of outliers with those for the full data
set. As in the regression analysis case, the influence of outliers is greatest in
models estimated from small samples. They authors suggest that the
effects of outlier observations on parameter estimates and standard errors
are minor in moderately large samples.

In Chapter 11 Willem Saris, J. den Ronden, and Alberto Satorra
present the statistical issues the researcher faces in assessing the fit of
models through the use of the likelihood ratio test statistc. They
demonstrate that many of the path models published in the literature do
not fit the data and that the failure to test the fit of a model has often led to
conclusions that are not warranted by the data. They argue that it is not
sufficient to assess the fit of a model solely on the basis of the likelihood
ratio test statistic, that the power of the test must also be taken into
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account before any conclusions about the adequacy of the model can be
drawn. They show that tests of hypotheses associated with the parameters
in a model are dependent both on sample size and on the structure and
magnitude of parameters in the model. Some models can yield a relatively
powerful test even if the samples are small, but others require much larger
samples if the hypothesis tests are to yield informative results. The authors
propose a formal testing procedure that also indicates the degree of power
of the test. This procedure is to be incorporated into the LISREL program
(version VII and later versions) so that it can be employed routinely in
structural modeling applications.

In Chapter 12 Henk Kelderman shows how constraints on the relation-
ships among the parameters in LISREL models can be incorporated into
more advanced applications of structural modeling. Other parametri-
zations of structural models such as EQS in BMDP (Bentler 1984) and
COS AN (McDonald 1985) deal with such constraints more directly
because they employ a different basic parametrization of the model. A
specific case of interest in many situations is the parametrization that can
be used in LISREL to ensure that all estimates of error variances are
positive, that is the avoidance of Heywood cases.

In the final chapter Peter Cuttance discusses a range of issues and
problems that bear on the robustness and validity of the estimates from
the various methods of estimation now available in structural modeling
programs. He argues that the confirmatory aspect of structural modeling
in conjunction with the replication of findings are at least as important in
assessing the evidence about the robustness and validity of findings as are
issues about the statistical robustness of the estimators and tests of model
fit.

The chapter examines the role of replication in social and behavioral
research before considering the methodological issues that influence the
statistical robustness of parameter estimates, hypothesis tests, and tests of
model fit. Given the imperfections of data collection, sample design, and
sample administration in most social and behavioral research, we must
evaluate the extent to which we emphasize the statistical robustness of the
testing procedures and parameter estimates and the extent to which we
focus on the replicability of the research findings. Structural modeling is,
after all, only an intermediary between the observations of real social and
behavioral processes and the theories or models through which we
interpret and understand those processes. Hence, considerations of
validity and interpretability require referents that are ultimately external
to the model testing and estimation procedures themselves. It is these
referents to which the methodology of replication and confirmation
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appeals for its veracity. The statistical robustness of models reduces the
opportunity for disagreement among models that are true representations
of the underlying processes when they are replicated using data collected
from independent studies.

The characteristics of measurement in social and behavioral science
underlie the basic concerns about the distributional properties of observed
variables, which directly influence the choice of and characteristics of
the measures employed to summarize the covariation in the data. The
robustness of alternative estimators is discussed in terms of their suscepti-
bility to departures from the distributional properties of the normal
distribution. The class of estimators based on the maximum likelihood
and generalized least squares estimation procedures are robust to moder-
ate departures from normality. The findings from the chapter by
Boomsma and from related studies provide a guide as to when more
sophisticated distribution-free estimators should be employed. The
distribution-free estimators are now more widely available, but they are
still too computationally expensive to be employed as front line estimators
to replace the maximum likelihood and generalized least squares proce-
dures in the routine estimation of models.

The Appendix lists the LISREL model specifications required to
estimate the main models in each of the chapters. It also illustrates the
relationship between the mathematical model in its equation and matrix
format, as well as the relationship between the latter and the LISREL
matrix formulation of the model. The details of the model specification
process shown in the Appendix should allow readers to check their own
formulation of the models presented in the chapters and to run the models
in order to check whether their estimates correspond to those presented in
the text. The data for the analyses are also listed in the Appendix, and we
suggest that readers make use of the material there to verify their
understanding of the methodology and models presented in the book.
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An overview of structural equation
modeling

RUSSELL ECOB AND PETER CUTTANCE

Introduction

As indicated in Chapter 1, structural equation modeling can be con-
veniently viewed as a product of the merging of two approaches to
model fitting: multiple regression and factor analysis. The multiple re-
gression approach expresses the relationship of a dependent variable to a
number of regressor variables, the partial relationship with each variable
being expressed by the regression coefficient corresponding to that
variable. In contrast, the factor analysis approach finds a number of
underlying or latent variables (or factors) that account for the common
relationship among a number of observed variables.

In this chapter we examine characteristics of the two approaches and
illustrate the differences between them. We then show how the method
of structural equation modeling arises from a merging of the two
approaches. Finally, we list and explain the general conditions, or
framework assumptions, of the models examined and the statistical
assumptions required to make the estimation of the models tractable.

The regression (or structural) model

The regression model has four basic characteristics. First, it comprises one
equation. Second, this equation specifies a directional relationship be-
tween two sets of variables, the dependent variable and a set of regressor
variables. The variation in the dependent variable is explained by a
weighted combination of the values of the regressor variables, the weights
being the regression coefficients.1 Third, the regressor variables are
assumed to be measured without error. Fourth, each regressor variable is
assumed to be linearly related to the dependent variable.

Of these four basic characteristics, only the second is fundamental to
the regression model. All the others can be relaxed within the so-called
general linear model. By considering more than one equation simulta-
neously, a variable that is a regressor variable in one equation can be
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Figure 2.1. Structural model.

specified as a dependent variable in another. This system of equations is
known to sociologists as path analysis and will be seen to represent the
structural aspect of some of the applications in this volume. It also
represents the basic form that many econometric models take.2

Unreliability, or measurement error, in the regressor variables, either
when known by independent means or when estimated from the sample,
can be dealt with in the regression approach. This is done by specifying the
proportion of variance in the observed variable that is attributable to
measurement error (Fuller & Hidiroglou 1978; Goldstein 1979).

Within the structural equation framework the regression model is
specified in the structural model, and the factor analysis model is specified
in the measurement model. Figure 2.1 shows a simplified version of the
model employed in Chapter 6, which we use to illustrate the LISREL
formulation of a structural model. We can think of the two latent
constructs denoted by ^ and t,2

 a s the regressor variables in the model
and the two latent constructs denoted by r\l and r|2 as the dependent
variables in the model. The relationships between the dependent and
regressor variables are then described by the following two equations:

n2 = p2ini ~

How is this system related to the characteristics of the regression model
introduced earlier?

There are now two equations, each involving a dependent variable. The
regressor variable set is different in the two equations. The first equation
includes the two constructs ^ and £2- The second equation includes, in
addition, r^. It is clear that a variable can serve in two roles, as a regressor
variable in one equation and as a dependent variable in another.

In order to accommodate this, variables that function only as regressor
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variables in all equations in a system of equations, and are thus
determined by factors outside the system, are called exogenous variables
and are denoted by £ (xi). The other variables are determined in part
by variables within the system of equations; these are called endogenous
variables and are denoted by r| (eta). The regression coefficients of the
endogenous variables on one another are denoted by P (beta), the
subscripts corresponding, in order, to the dependent and regressor part of
the relation. The regression coefficients relating the endogenous to the
exogenous variables are denoted by y (gamma). Since the dependent
variable must be specified as an endogenous variable in the system, there
are no regression relationships among exogenous variables (the £ vari-
ables) in the system.

In the example above, the variables, both exogenous and endogenous,
are measured according to a model specified by the measurement model.
In the case of the exogenous variables this is equivalent to a simple factor
analysis model, described in the next section.

The factor analysis (or measurement) model

Factor analysis has four basic characteristics.3 First, relationships among
observed variables are explained in terms of the relation of each observed
variable to a number of latent or unobserved variables or constructs and
in terms of the relations of the latent constructs to one another. The
number of latent constructs is fewer than the number of observed
variables. The factor analysis model should be distinguished from the
principal components analysis model.4 Second, all observed variables have
an equivalent status: No distinction is made, as in regression, between
dependent and regressor variables. Third, all variables and constructs are
assumed to be continuous. Fourth, all relationships are assumed to be
linear.

The first two characteristics are fundamental to the factor analysis
method. However, nonlinear relationships can occur either among the
latent constructs or between the latent constructs and observed variables.
Nonlinear relationships among latent constructs can be modeled in some
situations (Etezadi-Amoli & McDonald 1983), though such nonlinear
models are rarely employed in the social and behavioral sciences because
the theoretical formulation of most models is not sufficiently well
developed to make such an approach feasible.

Factor analysis has been extended to deal with noncontinuous or
categorical observed variables where the relationships with the latent
constructs cannot be modeled directly in a linear sense. A particular case is
that in which the observed variable is a binary variable, for example, a
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response to a questionnaire taking the values yes and no. In this case a
continuous variable is assumed to underie the binary observed variable
and is in turn linearly related to the latent construct.

Two common options for the creation of a proxy continuous variable
are the logit function and the probit function, each giving rise to a
continuous variable that can take any value. The logit function forms the
value log [p/(\ - p)] from the proportion/? in one category of the observed
variable. This is used by Bartholomew (1980) in his binary factor analysis
model. The probit function forms the value of <p~l(p), where cp"1 is the
value of a normally distributed variable whose cumulative probability is p.
This approach is employed by Muthen (1978). Both probit and logit
functions agree closely for values of p that are not extreme. Such models
extend to observed variables in the form of a number of categories
(polytomous variables) and to observed variables in which the categories
can be ordered.5

Ordered categorical variables can be accommodated within the linear
continuous framework of the LISREL model if they are represented as
approximate measures of an underlying continuous variable. Thresholds
are assigned to the values of this underlying variable corresponding to
each value taken by the ordered categorical variable. By assuming that
this variable has a normal distribution one obtains these thresholds from
the inverse of the normal distribution function.

For any two observed categorical variables the polychoric correlation is
calculated, representing the product-moment correlation between the
underlying continuous variables. When one of the variables is continuous
and the other is an ordered categorical variable, a polyserial correlation
coefficient is calculated representing the product-moment correlation
between the underlying and observed continuous variables. In this way,
the correlation matrix is generated for observed variables with a mixture
of scale types, which is then treated as equivalent to one generated by
observed continuous variables.6.

An alternative framework for incorporating categorical variables in the
linear continuous framework is provided by the simultaneous analysis of
multiple groups. The groups are defined by the values of the relevant
categorical variable (e.g., gender - male/female groups), and factor
models are estimated for each group. This allows for constraints to be
applied across groups. For example, the factor loadings can be con-
strained to be equal across groups, thus allowing for a test of invariance in
the factor structure across the groups. Chapters 3, 4, and 8 provide
illustrations of the use of multiple-group models in the context of
structural equation modeling.

An example of a factor analysis model is given in Figure 2.2. This forms
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Figure 2.2. Measurement model (factor analysis).

part of the measurement model in Chapter 6 and shows the two latent
constructs, or factors, denoted by ^ and £2- These are indicated, or
measured, by three observed variables Xx, X2, X3.

The latent constructs are related to these observed indicator variables
by the following equations:

X3 = §3

By convention, observed variables are denoted by Latin symbols and
latent variables by Greek symbols. These equations are similar in form
to the equations in the structural part of the model. In this case the
dependent variables are observed and the regressor variables are unob-
served or latent. The coefficients relating the two sets of variables are
called the loadings (of the indicator on the factor or latent construct).

It will be noted that some of the possible relationships between
indicators and latent constructs do not appear in the model. This
constraint is necessary in order that unique estimates for the loadings can
be provided (in other words, so that the model can be "identified"). The
particular relationships that do not appear, equivalent to constraining the
relationships to be zero, are part of the specification of the model; hence,
they derive from the theoretical model of which the mathematical model is
the formal representation.

In order to provide estimates of the parameters of such models, certain
distributional assumptions about the (indicator-specific) errors must be
made. They are usually assumed to be independently normally dis-
tributed. The model then provides estimates of the loadings relating the
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Figure 2.3. Measurement model (classical test score theory).

observed to the unobserved variables, the relationships (correlations,
covariances) among the unobserved variables, and the variances and
covariances for each of the errors.

A particular form of the factor analysis model occurs when there is only
one latent construct on which a number of indicators load. This is shown
in Figure 2.3. The models of classical test score theory are produced by
varying the restrictions as to the equality of the loadings and the error
variances. In Chapter 6, Hendrickson and Jones employ a particular form
of this model to represent the measurement of reading attainment, using
one indicator only on each occasion. For identification purposes it is
usually necessary to specify either the construct loading or the measure-
ment error variance when a construct is measured by only one observed
variable. However, certain parts of a model may also be identified without
the prior specification of one of these, as is the case for the endogenous
constructs in that model.

The structural equation model

The integration of the structural and measurement models in Figures 2.1
and 2.2 into a structural model is shown in Figure 2.4. The structural
model relates the latent constructs to one another, and the measurement
model relates the latent constructs to the observed variables.

The version of the structural equation model7 that we describe here is
generally known as the Joreskog-Keesling-Wiley model (Keesling 1972;
Joreskog 1973, 1981; Wiley 1973). Joreskog was instrumental in making
this model accessible to researchers through the computer program
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Figure 2.4. Structural equation model.

LISREL. Other versions, or parametrizations, of this model have been
produced by McDonald (1978, 1980), Bentler and Weeks (1979), and
McArdle and McDonald (1984). These have a number of attractive
features, in particular a simple and economical representation. However,
the LISREL version, with its separation of the measurement and struc-
tural aspects of the model, is convenient for researchers to conceptualize
and is the one used in this volume.

One feature of the LISREL version of the structural equation model is
the facility with which simple restrictions are imposed on the parameters.
These allow for tests of the theoretical specification of the model. Any
parameter in the model can be fixed either to zero or to another value, or
can be fixed to be equal to another parameter or set of parameters. For
example, constraining parameters in the structural part of the model to
zero allows for a test of the hypothesis that latent constructs vary
independently of one another.

Any two or more indicators can be constrained to have indicator-
specific errors with equal variance or to have the same loadings on a
common latent construct. Finally, in a multiple-group analysis, param-
eters can be constrained to be equal across groups in either the
measurement or structural model, allowing tests of whether one or more
parts of the model are equivalent across groups. One role for such
analyses lies in determining the extent to which a model can be generalized
across population groups, as in Chapters 3, 4, and 8.

The basic objective of structural modeling is to provide a means of
estimating the relationships among the underlying constructs of a hypoth-
esized substantive model. Here the method differs from others such as
regression analysis and contingency table analysis in that it focuses not on
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the relationships among the observed variables but on those among the
unobserved (latent) constructs of the substantive model. This requires a
means of linking the observed variables to the latent constructs, which is
specified in the measurement model. Thus, the observed variables are
specified, on an a priori basis, to be indicators of a particular latent
construct. Assuming linearity, the measurement model is written as

Y = A,TI + £

X = A^ + 8

where Y, X are, respectively, vectors of observed scores on the endogenous
and exogenous variables, x\ and £ are, respectively, vectors of endogenous
and exogenous latent constructs, Â  and \ x are, respectively, matrices of
construct loadings for r\ and £, and c and 5 are vectors of random
measurement errors.

The relationships among the latent constructs are specified in the
structural model, which, again assuming linearity, is written

n = Pn + r ; + 5
where the p (beta) is a matrix of structural parameters relating the
endogenous constructs to one another, T (gamma) is a matrix of
structural parameters relating the endogenous constructs to the exoge-
nous constructs, and £ (zeta) is a vector of disturbances representing the
unexplained variation in the endogenous constructs.

Framework assumptions

Two types of assumption are required to estimate the parameters of the
statistical model and to assess how well it accounts for the relationships
in a given set of data. The first can be referred to as the framework
assumptions, and they describe the general conditions embodied in the
specification of the statistical model. The second are referred to as the
statistical assumptions and are required in order to make the task of
estimating and testing the model tractable.

There are five framework assumptions:
Fl. The relationships among variables are linear.
F2. The effects of the latent explanatory variables on the latent outcome

variables are additive.
F3. The relationship between latent explanatory and latent outcome

variables is stochastic.
F4. The observed variables are continuous and measured on an interval

scale.
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F5. The data are represented by the means, variance, and covariances of
the observed variables.

The assumption that the relationships between variables are linear (Fl)
is not as restrictive as it may appear at first sight. Many nonlinear
relationships can also be approximated by or transformed into linear
relationships by transforming with logarithms, exponentials, powers (the
square or cube, square root, etc.) to give a relationship that is linear
in the transformed metric. However, the main reason the relation-
ships are often specified to be linear is that most social and behavioral
science theories are not sufficiently well developed to specify the relation-
ships among concepts in nonlinear forms. A linear form is thus assumed
for reasons of parsimony, unless there are indications that a particular
nonlinear form is more appropriate.

The assumption that the effects of variables are additive (F2) is also not
as restrictive as it first appears. Additive models imply that the effect of
each variable is independent of the values of other variables in the model.
If the effect of one variable depends on the values of another variable, we
say that there is an interaction between these variables. Two practical
solutions are available in structural modeling when interactions are
present. First, if the interaction involves a variable that takes few values
(e.g., gender), then since the interaction implies that the relationships in
the data differ for different subgroups (e.g., males and females) it makes
sense to estimate the model for each subgroup separately. By using the
facility to analyze several groups simultaneously in LISREL it is possible
to allow for differences in these relationships across groups for those
variables involved in the interactions. The second solution is to construct
a new variable that captures the interaction (usually specified as a
multiplicative composite of the variables) and to use this variable in
addition to the original variables in the analysis. This second solution
specifies an additive effect for the interaction, in addition to an additive
effect for each of the original variables. A drawback of this second
solution is that it may exacerbate the nonnormality of the multivariate
distribution for the data.

Assumption F3, that the relationship between latent explanatory and
latent outcome variables is stochastic, indicates that it is not fully
deterministic. That is, the model specifies that not all of the variation in
the latent outcome variables is accounted for ("explained") by the latent
explanatory variables. The unexplained portion of the latent outcome
variable is represented by a stochastic residual attached to each relation-
ship. This residual is assumed to have certain statistical properties, which
are introduced in the next section. The residual can be thought of as
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representing the net influence of potential explanatory variables, which
are omitted from the model specified, usually because no measures of
them are available in the data employed in the analysis. However, certain
writers have suggested that human behavior contains an inherently
random element; hence, it would be impossible in principle to account for
all variation in an outcome measure in terms of systematic influences only.
If this view is valid, the residual would also represent this random aspect
of behavior for the outcome studied.

Assumption F4, that the observed variables are measured on a
continuous scale with interval properties, implies that the underlying
concept is continuous as opposed to categorical and that the distance
between scale points is represented by their magnitude. We know that the
actual measurement scales employed in the behavioral and social sciences
often do not satisfy this assumption. In particular, they are often not
interval but ordered polytomous scales. The magnitudes attached to
points on the scales are assumed to reflect only approximately the
underlying epistemology of the scale. The assumption that the variable
could be represented by a continuous distribution is often less conten-
tious. Variables that cannot be represented by a continuous distribution
are referred to as categorical variables (e.g., gender, school identification
numbers, a list of countries). Such variables, however, can also be
represented as pseudocontinuous variables if each category is coded as a
dummy variable (Fox 1984).

Assumption F5 indicates that the data are described by the means,
variances, and covariances for the observed variables. This is satisfied if
the variables are normally distributed but is not fully met if they have
kurtosis or skewness that differs from that of the normal distribution.

Statistical assumptions

The statistical assumption made in order to estimate and test the model
can be stated as follows:

51. The disturbances in all equations have mean zero: E(Q = 0.
52. The disturbances are uncorrelated with the exogenous variables:

E(^) = 0.
53. The errors of measurement are uncorrelated with the constructs

such that E(zr\) = E(S® = 0.
54. The measurement errors and the disturbances are all mutually

uncorrelated: E(zd) = E(zQ = E(6Q = 0.
55. The joint distribution of the observed variables is multivariate

normal.
The first four assumptions are required for estimating the parameters of
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the model; the fifth is required to assess the fit of the model and to test
hypotheses about the parameters. Assumption SI is necessary, but not
sufficient, for the estimates of the model to be unbiased.

Assumption S2 requires that the stochastic disturbances be uncorre-
lated with all explanatory variables in the model. Thus, the net variation
of any potential explanatory variables that are omitted from the model is
assumed to be orthogonal to that of the explanatory variables formally
included. If this assumption is violated, the model is misspecified and the
estimates of the parameters are biased. This is described in the
econometrics literature under the rubric of specification bias.

Assumption S3 states that any errors of measurement in the observed
variables are not systematically related to the constructs underlying those
variables. The methodological impact of the assumption is to define the
relationships in the measurement models such that the latent constructs
are interpreted as measuring the common variation among the observed
indicators and the error terms contain both random measurement error
and variance that is unique to each indicator. Thus, the error terms in the
measurement models conflate true measurement error and any unique
variation in an observed indicator.

Assumption S4 is made in the LISREL specification of structural
models, although it is partially relaxed in some other specifications of
these models (e.g., McDonald 1978, 1980; Bentler & Weeks 1979). The
assumption of independence between the measurement errors for the
endogenous and exogenous variables [i.e., £(£8) = 0] can be circumvented
in the LISREL model by specifying all observed variables as Y variables
and all latent constructs as r\ constructs (see Chapter 8 for an example).
The assumption of independence between the measurement errors and the
equation residuals is employed as a means of identifying the parameters
of the model. In general, it is a relatively innocuous assumption in that it is
probably satisfied in most data. Violation of the assumption would
require that influences on the outcome variable due to variables omitted
from the model also influence the errors of measurement on the observed
variables, or that these omitted variables are correlated with the unique-
ness attributable to the observed variables included in the model. As it
turns out, only correlations between the errors on the explanatory
variables and the residuals [E(C,6) ^ 0] will result in biased estimates of
structural parameters. A nonzero correlation between the equation
residuals and errors on the observed outcome variables will result in a
confounding of these two sources of variation on the right (dependent
variable) side of the model but will not bias the estimates of the structural
parameters of the model. This confounding of variation on the right side
of the model will, however, affect the calculation of variance explained by
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the equations in the model. The assumption that E{zQ = 0 is required in
order to purge the latent construct representing outcomes of variance due
to measurement error in the indicators of the construct. The explained
variance of the equation is then calculated as the degree to which the
explanatory latent constructs account for variation in the latent construct
measuring outcomes.

Assumption S5, that the variables have a joint multivariate normal
distribution is required for the maximum likelihood method of estimating
the parameters in the model. This assumption is the statistical counterpart
to assumption F5, that the means, variances, and covariances among
variables fully describe the information in the data. The generalized least
squares method of estimation (Joreskog & Goldberger 1972; Browne
1982) allows the slightly weaker distributional assumption of nonnormal
kurtosis. However, since most data with any degree of skewness will
generally also have nonnormal kurtosis, this slightly weaker assumption is
unlikely to be satisfied much more often than that of multivariate
normality.

The assumption of multivariate normality is also required in order to
assess the likelihood ratio test statistic, which has a chi-square distribution
if the observed variables have a multivariate normal distribution. In the
concluding chapter we discuss alternative ways of measuring the fit of
models, but the likelihood ratio test statistic usually plays an important
role in this process. Other estimation methods that require weaker
distributional assumptions than those outlined are also discussed in the
final chapter.

Notes

1. The regression coefficients are estimated by forming a model in which the
dependent variable Y{ is expressed as a sum of products of the regressors Xt and
regression coefficients p, and, in addition, an error or disturbance term 8. Thus,
Y = LJLQP^ + 8. The estimates of the regression coefficients using ordinary
least squares are those that minimize the sum of squares of errors over the
observations. This method is an optimum one in the sense of producing
regression estimates that have minimum variance when the errors are indepen-
dent across observations and have constant variance for different regressor
values. Variation in the error variance with different regressor values is
explicitly taken into account by the generalized least squares method (GLS) and
the maximum likelihood method (ML). GLS and ML are the most efficient
estimation methods possible for large samples and are more efficient than
ordinary least squares when the errors are not independently and identically
distributed.

2. An introduction to regression models is given by Zeller and Carmines (1978)
and by Wonnacott and Wonnacott (1985). The extension to simultaneous
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estimation in systems of more than one equation is provided in econometrics
texts such as Wonnacott and Wonnacott (1979), and Van de Geer (1971)
provides a path-analysis-orientated approach.

3. Overviews of factor analysis are provided by Van de Geer (1971), Gorsuch
(1983), Long (1983), and McDonald (1985).

4. Factor analysis is distinguished from principal component analysis in the
following way. Principal component analysis aims to express a set of observed
variables in terms of a lower number of linear combinations so as to account for
the maximum variation among them. In contrast to factor analysis it does not
allow for unique variation in the observed variables other than that in-
corporated in their representation as linear combinations. Its statistical heritage
is different from that of factor analysis, hence also from that of structural
equation modeling. Comparisons are drawn between the two methods in
Joreskog and Wold (1981, chap. 12).

It is possible for structural equation methods to produce principal com-
ponent analyses by constraining all measurement errors to be equal to zero and
making the relations among the latent variables orthogonal by constraining the
correlation among them to be zero. Estimation in factor analysis is carried out
by maximizing the fit of the variance-covariance matrix of the observed
variables to that derived through their modeled relations to the latent
constructs, and of these to each other. The relationships between observed and
latent variables can either be taken as known (confirmatory factor analysis) or
estimated (exploratory factor analysis), the relationships among the latent
variables usually being estimated. However, known or assumed relationships
among these variables (e.g., that they vary independently of one another) can be
introduced. In practice, the knowledge of the relationship between observed
and latent variables may be partial, in that each observed variable is assumed to
be related to a subset only of the latent variables. The particular form of
relationship in this subset (in factor analysis terminology, the loadings on the
factors) is generally unknown.

5. Other related methods for continuous and categorical variables are available.
Wolfe (1970) describes model-based cluster analysis for continuous variables,
and Clogg (1981) and Aitkin, Anderson, and Hinde (1981) apply methods that
relate categorical latent constructs to ordered and unordered observed
variables.

6. This method differs from those of Bartholomew (1980) and of Muthen (1978) in
that the relationships between each pair of observed variables are summarized
in terms of a (bivariate) correlation before they are input to the estimation
procedures of structural modeling. The methods of Bartholomew and Muthen
retain all of the information on the bivariate distributions of the observed
categorical variables until the parameter estimation stage. This has the
advantage of allowing for a more relaxed set of distributional assumptions,
although at the expense of much more complex estimation procedures.

7. The term "covariance structure models" is used in the literature synonymously
with "structural equation models." See, for example, Bielby and Hauser (1977),
Bentler (1980), and Browne (1982).
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Field dependence and the
differentiation of neurotic syndromes

KATHARINE R. PARKES

Introduction

Self-report scales are widely used in the fields of psychology and
psychiatry to assess individual differences in personality and mental state.
In psychometric theory, the scores obtained on psychological measures
such as these are seen as the sum of two components. The first component
represents the individual's true score on the characteristic of interest, and
the second component is due to measurement error. True scores reflect
real characteristics of the individual but they cannot be directly assessed,
since observed scores are always to some extent contaminated by
measurement error. Furthermore, because measurement error has an
attenuating effect on measures of association, the magnitudes of the
correlations among true scores tend to be underestimated by observed-
score correlations. Structural modeling techniques, such as LISREL
(Joreskog & Sorbom 1981), provide a method of estimating correlations
among latent unobservable variables free of this attenuation. This chapter
illustrates the use of a LISREL measurement model to extend and refine a
previous analysis carried out by conventional correlational methods.

Background of the study: the issue of symptom differentiation

The use of self-report questionnaires to assess severity of neurotic
disturbance has been widely reported in the psychiatric literature (e.g.,
Howell & Crown 1971; Goldberg & Finnerty 1979; Haines, Imeson, &
Meade 1980; Weise et al. 1980). In such research, it is often desirable to
obtain separate scores for different neurotic syndromes. However, the aim
of developing subscales that discriminate different aspects of neurotic
disorder has not been fully achieved. In spite of extensive selection and
validation of items, moderate to high correlations (between .35 and .75)
have been consistently observed among scores on subscales that purport
to assess different types of neurotic symptoms (e.g., Hoffman & Overall
1978; Crown & Crisp 1979; Goldberg & Hillier 1979). Consistent with this,
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factor analyses of questionnaire responses reveal a large general factor
(typically accounting for 30 to 50% of the variance). Thus, subjects
appear to respond to symptom checklists not in a clear-cut manner
reflecting the symptom patterns perceived by psychiatrists as characteriz-
ing particular disorders, but in a more global and undifferentiated way. In
particular, anxiety and depression tend to show strongly overlapping
symptom configurations, leading to controversy as to whether they should
be regarded as two discrete disorders or variations within a single neurotic
syndrome.

The general problem of distinguishing different aspects of neurotic
disorder appears to be a common feature of all self-report symptom
checklists, and not simply a deficiency of particular instruments. However,
differences in discrimination do exist between different subject groups. For
instance, greater differentiation is shown by psychiatrists than by patients
(Leff 1978), and by patients of higher social class than by those of lower
social class (Derogatis et al. 1971). Individual differences in cognitive style
may also influence the extent to which subjects distinguish symptom
configurations. Of particular relevance is the dimension of field
dependence-independence (Witkin et al. 1974), which refers to the ability
of individuals to perceive and categorize elements of their environment,
whether internal or external, as discrete and separate from their contex-
tual background. Field-independent (FI) subjects are able to separate and
articulate their experience, whereas the perceptions of field-dependent
(FD) subjects tend to be global and generalized.

Parkes (1982) reported that scores on the four subscales of the General
Health Questionnaire (Goldberg & Hillier 1979), which assess anxiety,
depression, somatic symptoms, and social dysfunction, were more highly
correlated among FD subjects than among FI subjects. The differences
between corresponding correlation coefficients in the FI and FD groups
were statistically significant for all the subscale intercorrelations. The
LISREL analysis described in this chapter reexamines these findings in
the original data augmented by the addition of data from a further group
of subjects, using scores from two measures of each syndrome instead of
the single measures analyzed previously.

Use of LISREL modeling in the analysis of symptom
differentiation

The major limitation of the approach outlined in the preceding section
was that the analysis was based on correlations among observed scores
from a single checklist, and the effects of measurement errors were
disregarded, no information about the reliability of the measures being
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available at the time. Furthermore, the overall fit of the model to the data
was not tested, correlations between each pair of subscales being
examined independently. In the more sophisticated analysis presented
here, a LISREL measurement model is applied to subscale scores from
two symptom checklists, and the extent to which the responses of FD and
FI subjects discriminate among different neurotic syndromes is examined
by testing whether the correlations among the latent unobserved variables
are the same in both groups. It should be noted that this LISREL analysis
is based not on scores for individual questionnaire items, but on summed
scores for subscales developed to assess specific neurotic syndromes. Thus,
the analysis does not address the issue of the relationships of individual
items within a subscale to the underlying latent construct, but is concerned
rather with relationships of observed subscale scores to the corresponding
true score for each construct and with relationship across true scores in the
FI and FD groups.

This covariance structure analysis has several advantages over the
previous correlational analysis:

1. Since there are two observed scores for each of the four neurotic
syndromes, the reliabilities of the subscales concerned (i.e., the extent
to which they assess their respective underlying constructs) can be
estimated, and the correlations among the true scores disattentuated
from the effects of measurement error.

2. The extent to which the pairs of measures for each construct are
parallel across the two questionnaires, and across the FI and FD
groups, can be examined.

3. The possibility that errors might be correlated across measures (e.g.,
as a result of generalized response tendencies) rather than randomly
distributed can be taken into account.

4. The extent of symptom differentiation in FD and FI subject groups
can be examined in terms of true-score correlations, free of measure-
ment error distortions.

5. Specific hypotheses relating to symptom differentiation among FI
and FD subjects can be tested by comparing the goodness-of-fit of
competing models.

Method

Subjects

The data used in this study were collected from 221 female student nurses,
almost all of whom were between the ages of 18 and 26 years and were of
British or Irish nationality. The analyses reported here are based on data
from 218 subjects, data from three subjects being incomplete.
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Test materials

1. Middlesex Hospital Questionnaire (MHQ). [This was recently renamed
the Crown-Crisp Experiential Index (Crown & Crisp 1966, 1979).] A
modified form of this questionnaire, developed for use with nonclinical
groups (D. E. Broadbent & D. Gath, pers. commun.), was used.
Responses were scored on a three-point scale, 0-1-2, and separate
scores for three seven-item subscales, assessing respectively anxiety
(MHQ-ANX), depression (MHQ-DEP), and somatic symptoms
(MHQ-SOM), were calculated.

2. General Health Questionnaire (Goldberg 1972). The 60-item version of
this questionnaire was used, and it was scored on a four-point, 0-1-2-3,
scale. For the present analysis, subscale scores were calculated for three of
the four seven-item subscales derived by Goldberg and Hillier (1979).
These subscales assessed anxiety (GHQ-ANX), depression (GHQ-DEP),
and somatic symptoms (GHQ-SOM) and thus corresponded to the
measures obtained from the MHQ. Since the MHQ did not include a
measure of social dysfunction, the seven GHQ items that assessed this
aspect of disturbance were randomly divided into two sets (GHQ-SD1
and GHQ-SD2), and separate subscale scores (one based on four items
and one based on three items) calculated, so as to provide two measures of
this construct.

3. Hidden Figures Test (Health Sciences Department, University of
Toronto). This measure of field dependence is similar in concept to the
Group Embedded Figures Test (Witkin et al. 1971). Details of test
administration are given by Parkes (1982). Scores ranged from 0 to 16. A
median split was used to divide subjects into two groups, an FD group
with scores in the range 0-5 (N = 98), and an FI group with scores in the
range 6-16 (TV = 120).

Application of LISREL

Formulation of the LISREL model

The model that formed the basis of the LISREL analysis is shown in
Figure 3.1. The true scores for anxiety, depression, somatic symptoms,
and social dysfunction are represented by the four latent constructs. These
latent constructs are seen as causal factors underlying the observed scores
on each of the four pairs of MHQ and GHQ measures. It was assumed
that the measured indicators loaded only on their respective constructs. In
this diagram, the straight (single-arrow) lines represent the causal relation-
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GHQ-ANX

MHQ-ANX(*2)

GHQ-DEP

<54 • MHQ-DEP(*4)

GHQ-SOM

MHQ-SOM (X6)

GHQ-SD1 (X7)

GHQ-SD2 (Xs)

Equations relating the observed measures to the latent constructs:

Xx - XMf, + 6, X5 = A53f3 + <55

X2 = X21f, + 62 JT6 = A63f3 + 86

Figure 3.1. Measurement model for symptom diflferentiation analysis, model 3.7.

ships between the latent constructs and their observed indicators. The
curved (double-arrow) lines between the latent constructs represent the
intercorrelations of the true scores; correlations among errors are also
shown as curved lines. Errors were initially assumed to be random rather
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than systematically related. However, as discussed below, during the
model-fitting process this constraint was relaxed for the three error
correlations shown in Figure 3.1. The same pattern of eight observed
scores underlying four latent constructs applied to both the FI and FD
groups. The equations relating the observed measures to the latent
constructs are also shown in Figure 3.1.

Analysis procedure

The LISREL analysis was carried out in two stages. Four questions
were examined at the first stage:

1. Can the two observed indices (subscales) of each construct be
regarded as parallel measures; that is, do they relate in the same way
to the underlying construct and thus have equal construct loadings
and equal measurement error variances?

2. Are the measurement models for each construct the same in the two
groups?

3. Are the measurement models the same for all four constructs both
within and across groups; that is, are the four pairs of observed
measures equally reliable indicators of their respective underlying
constructs?

4. Are there correlated errors across measures within the two ques-
tionnaires; that is, do systematic, nonrandom sources of error
influence all measures derived from a particular questionnaire?

In specifying the LISREL models to address these questions, no con-
straints were placed on the intercorrelations among the latent constructs
(the elements of the <|> matrix); that is, they were allowed to take any value
and to vary between the FI and FD groups. The LISREL matrices
manipulated in this part of the analysis were the \ x matrix, for the
construct loadings, and the 0 5 matrix, for the measurement errors. Since
the units of measurement for the GHQ and MHQ scales are arbitrary, the
correlation matrices for the FI and FD groups (shown in Table 3.1) were
used as the input to the LISREL analyses. As a means of identifying the
measurement models, the variances of the latent constructs (the £,
variables) were set to 1.0 in both groups.

The second stage of the analysis examined the intercorrelations among
the four latent constructs in the two groups. These latent constructs
represent the "true" scores for the four syndromes, and the correlations
among them are a measure of the extent to which the syndromes are
interrelated after attenuation due to measurement error has been re-
moved. The hypothesis that the relationships among the latent constructs,



30 KATHARINE R. PARKES

Table 3.1 Correlation matrix of observed measures for FI and FD groups

1. GHQ-ANX
2. MHQ-ANX

3. GHQ-DEP
4. MHQ-DEP

5. GHQ-SOM
6. MHQ-SOM

7. GHQ-SDl
8. GHQ-SD2

1

^ 7 6 ^

.65

.64

.65

.59

.50

.40

2

.65

\
.63
.76

.56

.64

.52

.39

3

.48

.49

. 5 4 ^

.47

.51

.43

.41

4

.62

.71

.44

\ .
.42
.59

.46

.36

5

.38

.33

.27

.31

.55

.44

.38

6

.43

.56

.32

.52

.48

.49

.34

7

.30

.19

.18

.22

.23

.10

.59**"

8

.29

.22

.09

.25

.29

.21

.52

Note: The correlation values for the FI group are shown above the diagonal, and
the values for the FD group are shown below the diagonal.

specified in LISREL by the matrix of <|> values, would be different in the
FD and FI groups was examined by constraining the <|> parameters to be
the same in both groups. The goodness-of-fit of this constrained model
was then tested against the fit of the model without this constraint.1 In a
further analysis the <|> values in the FD group were constrained to be unity,
thus allowing a test of the hypothesis that in the FD group there was no
differentiation among the four syndromes. Other tests of specific <|>
parameters were also carried out.

Tests of model fit

The use of LISREL maximum likelihood techniques allows the sig-
nificance of changes in goodness-of-fit resulting from alterations in the
specification of model parameters to be assessed by calculating the sig-
nificance of the change in the chi-square statistic. The approach adopted
in the present work was to start by formulating a model with very few
parameter constraints and subsequently to estimate a systematic series of
models designed to test the effects of increasing or decreasing the
constraints imposed on the model in accordance with specified hypo-
theses. The statistical significance of improvement or deterioration in
goodness-of-fit resulting from changes in the extent to which the model
was constrained was determined by examining the change in the chi-
square statistic relative to the change in degrees of freedom. Models that
resulted in a significant improvement in goodness-of-fit were accepted;
models that resulted in a significant deterioration in goodness-of-fit were
rejected. When the difference in goodness-of-fit between two models was
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found to be nonsignificant, the model that provided the more parsimo-
nious solution, that is, the more constrained of the two models, was
accepted.

In addition to the chi-square statistic for assessing the effects of changes
in model fit, LISREL VI also provides other quantitative information that
can be used to examine the overall goodness-of-fit of the model. The
following two indices were used to assess the goodness-of-fit of the final
model in the present analysis:

1. the root mean square residual, a measure of the average magnitude of
the residual correlations, that is, an index of the extent to which the
"fitted" matrix fails to reproduce the original correlation matrix and
thus does not fully account for the observed data; and

2. the distribution of normalized residuals, which is output in the form
of a graphic quantile-quantile (Q-Q) plot, thereby providing a visual
representation of overall model fit.

Results

Estimation of measurement models

In the initial model to be tested the parameters shown in Figure 3.1 were
estimated independently in both groups. Correlations between error terms
were constrained to be zero; that is, uncorrelated errors were assumed.
The model was standardized by fixing the diagonals of the <|> matrix to 1.0,
thus constraining the variance of each of the four latent variables to unity.
The goodness-of-fit statistics for this model (Model 3.1) are shown in the
first line of Table 3.2 (chi-square = 37.43, d.f. = 28, p = .11). These
statistics indicated that the model was a sufficiently good fit to serve as a
baseline against which to assess further models formulated in accordance
with the hypotheses outlined above, although by conventional criteria . 11
would not be an acceptable level of probability for a final model.

Since the pairs of GHQ and MHQ measures had been developed from
clinical criteria to assess the same psychiatric disorder and had been
carefully refined in the light of empirical validation, the hypothesis that
the two measures within each pair related in the same way to the
underlying true-score construct was substantively plausible. Therefore,
the initial constraint imposed on Model 3.1 was to equate the construct
loadings and the error terms within each pair of observed measures. This
allowed a test of the hypothesis that the pairs of GHQ and MHQ
measures were parallel. Initially, it was not assumed that the measurement
models were identical across the FI and FD groups. The results for this
model (Model 3.2 in Table 3.2) showed that the goodness-of-fit was not



Table 3.2. Specification

Model specification

of successive measurement

Chi-square d.f. p

models: chi-square

Change in

Chi-square d.f.

tests

P

of goodness-offit

Decision

3.1 Unconstrained, except no
correlated errors

3.2 Corresponding MHQ and GHQ
measures constrained to be
parallel

3.3 As 3.2, plus parallel measures
equated across groups

3.4 As 3.3, plus all four
measurement models
constrained to be identical

3.5 As 3.3, plus MHQ errors
correlated in the FI group

3.6 As 3.5, plus MHQ errors
correlated within FI and FD
groups

3.7 As 3.6, plus correlated errors
equated across groups

37.43

59.44

65.56

28

44

.110

.060

52 .098

22.01 +16 >.10

6.12 +8 >.10

Initial measurement model

ACCEPT - more parsimonious
and not significantly worse fit
than 3.1
ACCEPT - more parsimonious
and not significantly worse fit
than 3.2

86.10

45.20

31.43

34.17

58

49

46

49

.010

.628

.950

.947

20.54

20.36

13.77

2.74

+ 6 <.01

- 3 <.001

- 3 <.01

+ 3 >.10

REJECT - significantly worse
fit than 3.3

ACCEPT - significantly better
fit than 3.3
ACCEPT - significantly better
fit than 3.5

ACCEPT - more parsimonious
and not significantly worse fit
than 3.6

Note: Tests were carried out hierarchically; each model was tested against the last accepted model.
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significantly worse than that of Model 3.1 (an increase in chi-square of
22.01 with 16 additional degrees of freedom, p > .10). Thus, the assump-
tion of parallel measures within groups could be accepted.

Model 3.3 reexamined the parallel-measures assumption with the
additional constraint that the measurement models were specified to be
identical over the two groups; that is, corresponding construct loadings
and measurement errors were equated over groups as well as within pairs
of measures, giving an additional eight degrees of freedom as compared
with the previous model. As shown in Table 3.2, the increase in chi-square
associated with these additional constraints was nonsignificant. Thus, the
assumption of parallel measures, and identical measurement models in the
two groups, could be accepted.

Since questionnaire measures of different types of disorders are unlikely
to be equally reliable indicators of the underlying true-score constructs, it
was substantively not very likely that the measurement model parameters
for the four constructs would be equal, that is, that the four pairs of
observed measures would be equally reliable indicators of their respective
underlying constructs. However, this possibility merited examination. To
test for equal reliabilities across the constructs, all eight construct loadings
were equated within and across groups, and all eight error terms similarly
equated (Model 3.4). It can be seen from Table 3.2 that these constraints
resulted in a significant increase in chi-square, indicating that the fit of the
model was significantly worsened by specifying all the measurement
models to be identical. This model was therefore rejected.

The models tested above assumed that measurement errors were
uncorrelated, that is, that there were no common response tendencies that
influenced the observed measures in a similar way within groups.
However, in psychometrics, data obtained from self-report questionnaires
are often liable to be systematically distorted by generalized response
biases (e.g., tendency to agree with items regardless of content; tendency
to respond consistently at either end of the scale rather than in the center
or, conversely, the tendency to respond in the center of the scale; tendency
to respond in a socially desirable manner; defensiveness, or tendency to
deny all psychological difficulties). Thus, the validity of the assumption of
uncorrelated errors was open to doubt.

Consistent with these psychometric arguments, examination of the
LISREL "modification indices" showed that the largest values occurred
among the off-diagonal elements of the measurement error (66) matrices,
which suggested that allowing some correlations among errors would result
in an improvement in model fit. The largest of the LISREL modification
indices estimates the improvement in model fit if the parameter concerned
were to be set free. Joreskog and Sorbom (1981) recommend that only one
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parameter be freed at a time on the basis of modification index value, since
a single change in the parameter specifications for the model changes all
the modification indices. Provided that it accords with substantive
considerations, the parameter with the largest index is usually chosen so as
to bring about the maximum improvement in model fit.

In the present case, the parameter with the largest modification index
(8.40) was that for element (6, 2) of the 86 matrix in the first group, that is,
the correlation among errors for the measures of somatic symptoms and
anxiety derived from the MHQ, in the FI group. This, therefore, was the
most appropriate parameter to free. However, on psychometric grounds a
single correlated error was implausible, since there were three MHQ
symptom scales and all showed relatively high modification indices for the
error correlations. All three 05 parameters representing correlations
among measurement error terms for the measures of anxiety, depression,
and somatic symptoms derived from the MHQ were therefore freed in the
FI group, and the goodness-of-fit of the model reexamined.

The statistics for this model, Model 3.5, are shown in Table 3.2. It can
be seen that Model 3.5 provides a good fit to the data and also represents a
significant improvement in fit over Model 3.3. However, examination of
the modification indices from Model 3.5 suggested that model fit could be
improved further if the same three correlated errors were allowed in the
FD group. Model 3.6, which specified these additional correlated errors,
resulted in a further significant improvement in goodness-of-fit relative to
Model 3.5. Model 3.7 tested the possibility that these correlated errors
could be equated over groups, that is, that generalized tendencies
influencing scores on the three MHQ symptom subscales were similar in
the FI and FD groups. This represented a more parsimonious model than
Model 3.6, and as is clear from Table 3.2, the goodness-of-fit did not
deteriorate significantly when this constraint was added to the model
specification. Model 3.7 was therefore accepted in preference to Model
3.6.

The same psychometric arguments underlying the rationale for allowing
correlated errors in the MHQ measures also applied in principle to the
GHQ measures. However, examination of the modification indices from
Model 3.7 indicated that allowing the GHQ errors to intercorrelate within
each group would not result in a further significant improvement in
goodness-of-fit. Thus, it was unnecessary to test a further model to
examine GHQ error intercorrelations. Indeed, since both the social
dysfunction measures derived from the GHQ, a complete test of the GHQ
correlated errors could not in any case be achieved by the method used
above to model the MHQ correlated errors.2 For present purposes,
Model 3.7 was accepted as the optimum parameter specification for the
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construct loadings and measurement errors. This pattern of fixed, free,
and equated parameters for the measurement model was kept constant in
the second part of the analysis described in the next section.

Correlations among latent variables

The second part of the analysis was concerned with relationships among
the four £ variables (the true-score constructs) in the FI and FD groups. In
LISREL, relationships among £ variables are represented by the <|> matrix.
In developing the measurement model above, the values of the <|> matrix
had not been equated across groups or constrained in any other way.
Thus, the relationships among the underlying true scores could take any
values and vary between groups. The analyses carried out in this second
stage were intended to test various hypotheses about relationships
between the true scores in the FI and FD groups, specified on the basis of
the substantive arguments outlined earlier. Several alternative models
were compared by specifying constraints on the intercorrelations among
the true scores, with the structure of the measurement model specified as
in Model 3.7, which represented the optimum specification of the Ax and
05 parameters with no constraints on the matrix of <|> values.

Tests of correlational structure across groups. In the first of these analyses,
the values of the <|> matrix were constrained to be equal across groups, that
is, this specification tested the assumption that the true scores had the
same correlational pattern in the FD and the FI groups. Table 3.3 shows
the goodness-of-fit statistics for this model (Model 3.8). Although Model
3.8 provides an acceptable fit to the data, comparison with Model 3.7
shows that constraining the £ variables to be equal across groups resulted
in an increase in chi-square of 12.60 with six degrees of freedom. This
represents a statistically significant (p < .05) deterioration in the
goodness-of-fit, and therefore Model 3.8 was rejected in favor of the
unconstrained model, Model 3.7. This finding implies that there is a
significant difference in the degree to which the responses of FI and FD
subjects to the GHQ and MHQ distinguish among different types of
disorder.

Examination of the values of the <|> matrix in each group indicated that
the responses of FD subjects differentiate neurotic syndromes less
clearly than those of FI subjects. For each pair of true scores, the
correlation in the FI group was lower than the corresponding correlation
in the FD group.

A significant difference between the FD and FI groups having been
demonstrated (the responses of the FD subjects showing less discrimina-



Table 3.3. Specification

Model specification

of the parameters

Chi-square d.f.

of the <;

P

j> matrix: chi-square

Change in

Chi-square d.f.

tests

P

of goodness-of-fit

Decision

3.7 Parallel measures, equated
across groups; MHQ errors
correlated within FI and FD
groups and equated across
groups; no constraints on §
parameters

3.8 As in 3.7, but <\> parameters
equated across groups

3.9 As in 3.7, but <|> parameters set
to 1.0 throughout in the FD
group

3.10 As in 3.7, but $ parameter for
anxiety - depression set to 1.0
in both FD and FI groups

3.1 f As in 3.10, but also with §
parameters for anxiety -
somatic and somatic -
depression correlations set to
1.0 in FD group only

3.12 As in 3.11, but with specified <fr
parameters set to 1.0 in FI and
FD groups

34.17 49 .947

46.77

62.11

35.78

40.92

55

55

51

53

mi

.238

.948

.887

12.60

27.94

1.61

5.14

+ 6

+ 6

+ 2

+ 2

<.05

<.00

< 10

61.97 55 .241

Initial structural model (from
Table 3.2)

REJECT - significantly worse
fit than 3.7

+ 6 < .001 REJECT - highly significantly
worse fit than 3.7

ACCEPT - more parsimonious
than 3.7 and not significantly
worse fit
BORDERLINE - goodness-of-
fit less than that of 3.10, but
difference only marginally
significant

21.05 +2 < .001 REJECT - highly significantly
worse fit than 3.11

Note: Each model was tested against the last accepted model. Model 3.12 was tested against Model 3.11.
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tion than those of the FI subjects), the further question arises as to
whether the FD subjects respond in a totally undifferentiated manner. In
LISREL, this question can be formulated as a test of whether, for the FD
group, the intercorrelations among the true scores represented in the <|>
matrix can be constrained to unity (implying complete identity among the
four latent constructs) without significantly impairing the goodness-of-fit
of the overall model. This possibility was tested in Model 3.9, in which all
the values in the <|> matrix were set to 1.0 for the FD group but left
unconstrained for the FI group. As shown in Table 3.3, this constraint
resulted in a highly significant deterioration in the goodness-of-fit of the
model, as compared with Model 3.7. Thus, the hypothesis that the FD
subjects failed to make any differentiation among the four types of
disorder is rejected.

In the models tested above the matrices of <\> values in the two groups
were specified in several different ways, but in each case all the <\>
parameters within each group were treated similarly; that is, they were all
free, equated across groups, or constrained to 1.0. However, it may not be
reasonable to assume that the extent of differentiation will be the same for
different types of disorder. It was therefore of interest to examine models
in which constraints were imposed selectively on some relationships
among true scores but not others.

Anxiety-depression. Since the extent to which anxiety and depression
are separate and distinguishable syndromes is an important and con-
troversial issue in psychiatry, the values of the $ matrix representing
relationships among the latent constructs for these two types of disorder
was investigated first. Examination of the LISREL estimates in Model 3.7
showed that the values of the <|> matrices representing the correlations
between anxiety and depression in the FI and FD groups were both close
to 1.0, whereas the other values of the <|> matrices were considerably lower
and differed between groups to a greater extent. This suggested the
possibility that the responses of both groups of subjects might fail to
differentiate between anxiety and depression, that is, that in practice these
two disorders, as assessed by the GHQ and MHQ measures, can be
regarded as a single entity. A further model (Model 3.10) was therefore
tested in which the <fr values for the anxiety-depression correlation in
both groups were set to 1.0, whereas other (|) values were unconstrained.
As shown in Table 3.3, this model resulted in a small and nonsignificant
increase in chi-square and was therefore accepted. This finding implies
that in both the FI and FD groups, anxiety and depression should be
regarded as a single construct, rather than as two syndromes with
distinguishable configurations of symptoms.
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Anxiety-depression-somatic symptoms. Once it was demonstrated
that anxiety and depression were not differentiated in the responses of
either FD or FI subjects, other interrelationships among the values of the
<|> matrix were examined to investigate further the extent of differentiation
in the FD and FI groups. The estimates of the (() values in Model 3.10
suggested that, for FD subjects, somatic symptoms (which are a common
element of many types of psychological disturbance) might also not be
reliably distinguished from either anxiety or depression. Both the relevant
values of <\> were relatively high in the FD group (.909 and .841), but were
considerably lower in the FI group. In Model 3.11 these paramaters were
constrained to equal 1.0 in the FD group only. The reduction in the
goodness-of-fit of the overall model was only of marginal significance
(p< .10). Thus, the evidence that FD subjects are able to distinguish
somatic disorders from anxiety or depression in their responses to the
GHQ and MHQ subscales is weak. For comparison purposes, a further
model was tested in which the same constraints were also imposed on the
FI group; that is, the values of the <|> matrix representing the intercorrela-
tions of anxiety, depression, and somatic symptoms were set to 1.0 in the
FI group in addition to the FD group. In this case (Model 3.12 in Table
3.3), a highly significant reduction in goodness-of-fit occurred, and this
model could be clearly rejected.

In the light of these results the decision was made to accept Model 3.10
as the final model, taking note of the fact that the intercorrelations among
the latent constructs for anxiety, depression, and somatics symptoms in
the FD group were close to unity. Depending on the precise level of
significance adopted for testing changes in the chi-square statistic, the
values of the <|> matrix for these three intercorrelations could be set to
unity, thereby implying complete identity among the three constructs
in the FD group, without substantially altering the fit of the model.
Thus, overall, these results show that anxiety and depression, as
measured by the GHQ and MHQ questionnaires, are not distinguished
as separate psychological constructs by either FI or FD subjects;
and the FD subjects' ability to distinguish either anxiety or depression
from somatic symptoms is questionable. It appears, therefore, that the
perceptions of FD subjects, as revealed by their responses to these
questionnaires, are predominantly global and undifferentiated, and
of the four syndromes assessed only social dysfunction is clearly
perceived as a separate psychological construct. In contrast, FI subjects
differentiate clearly among each of the four syndromes, with the
exception of anxiety and depression, which are not distinguished by
either the FD or the FI subjects.
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Examination of the parameter estimates

The LISREL estimates of the parameters of the \x9 05, and <|> matrices in
Model 3.10 were examined.

Measurement model parameters. The LISREL estimates for the param-
eters of the measurement model, as derived from Model 3.10, are shown in
Table 3.4. Since pairs of GHQ and MHQ measures were shown to be
parallel, the construct loadings and the measurement error variances are
equal within each pair. The measures of anxiety have the highest construct
loading and the lowest measurement error; thus, they have the highest
reliability (.692). Conversely, the pair of measures that assess depression
have the lowest construct loading and the highest measurement error and
therefore the lowest reliability (.489). The measures of somatic symptoms
and social dysfunction are intermediate in reliability. The total coefficient
of determination for the observed measures was .921. This coefficient
provides a generalized measure of the amount of variance in the observed
measures accounted for by the measurement model. In this case the
measurement model performs well, since it accounts for a high proportion
of the variation in the observed scores.

The standard errors and the /-values for the construct loadings and the
measurement errors were also examined. Significant /-values (>2.00) can
be regarded as indicative of parameter estimates significantly different
from zero.3 In the present case, the /-values for the construct loadings, the
measurement errors, and the measurement error intercorrelations were all
considerably greater than 2.0 and are thus statistically significant at better
than the p < .05 level. Thus, the observed MHQ and GHQ scores in this
sample were subject to measurement error, and the MHQ scores were also
affected by generalized response tendencies, which resulted in nonrandom
distributions of errors.

Intercorrelations of true-score estimates. The LISREL estimates for the
correlations between the true scores, represented by the ^-values, are
shown in Table 3.5 for the FI and the FD groups. In Model 3.10, from
which these data were obtained, the correlation between anxiety and
depression was set to 1.0 in both the FI and FD groups, whereas the other
intercorrelations were free to be estimated and not constrained to be equal
across groups. The estimated correlation values are consistently higher in
the FI group than in the FD group, as predicted, and all of the parameter
estimates are highly significant. For both FI and FD subjects, the
correlations of the true-score construct representing social dysfunction
with the remaining true scores are lower than the intercorrelations among



Table 3.4. Measurement model parameter values for Model 3.10

Construct loadings A Measurement error 06

Latent
construct

Anxiety

Depression

Somatic

Social dysfunction

Observed
measure

GHQ-ANX
MHQ-ANX

GHQ-DEP
MHQ-DEP

GHQ-SOM
MHQ-SOM

GHQ-SDl
GHQ-SD2

Loading

0.827

0.698

0.722

0.742

S.E.

0.048

0.050

0.052

0.052

/-value

17.066

14.025

13.976

14.323

Loading

0.308

0.511

0.476

0.444

S.E.

0.029

0.041

0.045

0.043

/-value

10.756

12.340

10.569

10.392

Estimate
of subscale
reliability

.692

.489

.524

.556
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Table 3.5. LISREL estimates of the </> parameters in the FI and FD
groups for Model 3.10

Anxiety

Depression

Somatic
symptoms

Social
dysfunction

FI
FD
FI
FD
FI

FD

FI

FD

Anxiety

1.00*
1.00*

1.00
1.00

0.690
(8.843)

0.909
(15.537)

0.430
(4.176)

0.682
(7.866)

Depression

1.00*
1.00*

0.687
(7.495)

0.841
(10.655)

0.423
(3.616)

0.746
(7.699)

Somatic
symptoms

1.00*

1.00*

0.405
(3.498)

0.719
(7.387)

Social
dysfunction

1.00*

1.00*

Note: The diagonals of the <|> matrix (asterisked) were set to 1.00 in both the FD
and the FI groups to standardize the model. The <\> values for the intercorrelations
of anxiety and depression were set to 1.00, because this constraint did not
significantly reduce the goodness-of-fit of the model. The /-value shown in
parentheses beneath each <\> parameter estimate assesses the statistical significance
of the correlation between the latent constructs.

the other true scores. Thus, social dysfunction appears to be a more clearly
distinguishable psychological construct tan anxiety, depression, or so-
matic symptoms.

For comparison, the disattenuated correlations shown in Table 3.5 and
the attentuated correlations shown in Table 3.1 are tabulated together in
Table 3.6. It can be seen that, in both the FI and FD groups, each of the
disattenuated correlations among true scores is larger than the four
corresponding attenuated correlations, representing intercorrelations of
the respective pairs of measured indicators. Thus, the observed-score
correlations substantially underestimate the disattenuated correlations
among the four constructs. This effect is greater for the more unreliable
measures. Therefore, observed-score correlations involving the depression
subscales (the least reliable measures) tend to be the most strongly
attenuated. In the particular case of the relationship between anxiety
and depression, for which the estimated true-score intercorrelation is
1.0 in both the FI and FD groups, it can be seen from Table 3.6 that two
of the observed-score intercorrelations are less then .50. Thus, failing
to take into account the effects of measurement error may give rise
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Table 3.6. Comparison of disattenuated and attenuated correlations
among neurotic syndromes

Anxiety
GHQ-ANX
MHQ-ANX

Depression
GHQ-DEP
MHQ-DEP

Somatic symptoms
GHQ-SOM
MHQ-SOM

Social dysfunction
GHQ-SD1
GHQ-SD2

Anxiety

GHQ- MHQ-
ANX ANX

\
1.0

.65/.63

.64/.76

.91
.65/.56
.59/.64

.68
.50/.52
.40/.39

Depression

GHQ- MHQ-
DEP DEP

1.0
.48/.62
.49/.71

\
.84

.47/.42

.51/.59

.75
.43/.46
.41/.36

Somatic
symptoms

GHQ- MHQ-
SOM SOM

.69
J8/.43
.33/.S6

.69
.27/.32
.31/.52

\
.72

.44/.49

.38/.34

Social
dysfunction

GHQ- GHQ-
SD1 SD2

.43
.30/.29
.19/.22

.42
.18/.09
.22/.25

.41
.23/.29
.10/.21

\

Note: The values for the FI group are shown above the diagonal, and the values for the FD
group are shown below the diagonal. The values of the disattenuated correlations among
true scores are shown in bold type above the four values for the corresponding attenuated
correlations between pairs of observed measures.

to serious distortions in the interpretation of MHQ and GHQ subscale
scores.

Assessment of goodness-of-fit of Model 3.10

The root means square residual, which assesses the extent to which the
estimated model fails to reproduce the original correlation matrix, was
.051 for the FI group and d.050 for the FD group, both acceptably low
values. The "Q-Q plot" shows the actual distribution of normalized
residuals relative to the theoretical distribution of residuals with a mean of
zero and a standard deviation of 1.0; this theoretical distribution is
represented by the diagonal line in the Q-Q plot. The Q-Q plots for the
FD and FI groups for Model 3.10 are shown in Figure 3.2. It can be seen
that in both cases the line through the plotted points has a slope greater
than the diagonal. This represents a good fit, in that it implies that most of
the normalized residuals cluster closely around zero. However, Q-Q plot
slope greater than the diagonal may be indicative of an "overfitted"
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Figure 3.2. The Q-Q plots of normalized residuals in FI and FD groups.
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model, that is, one in which the overall goodness-of-fit of the model is due
partly to fitting chance variations in the data. In the present case, however,
the slopes of the Q-Q plots are not markedly steeper than the diagonal,
and the model can therefore be accepted. Thus, for this sample, both the
root mean square residual and the Q-Q plot confirm the good fit of the
estimated model to the data, but replication of the findings in other
samples would clearly be desirable.

Discussion

The central issue addressed in this chapter, whether FD and FI subjects
differ in the extent to which they distinguish among different neurotic
syndromes in their responses to self-report scales such as the GHQ and the
MHQ, is of both practical and theoretical relevance to psychiatry.
Investigation of this question requires examination of the extent to which
scores representing different neurotic syndromes, such as anxiety, de-
pression, and somatic complaints, are intercorrelated in FD and FI
groups of subjects. As discussed in the Introduction, conventional
correlational techniques, based on observed subscale scores, do not
provide an adequate methodology for this analysis. The results described
above illustrate how the use of LISREL allows a more sophisticated
approach in which intercorrelations among estimated true scores are
examined (thus overcoming the limitations of observed-score analyses)
and the goodness-of-fit of different models representing specific
hypotheses about the correlational structure in the two groups are
compared.

The first step of the LISREL analysis was concerned with determining
the characteristics of the measuring instruments. The measurement model
analyses demonstrated the parallel nature of the pairs of GHQ and
MHQ measures, showed the important influence of generalized response
tendencies on the MHQ subscale scores (but not those of the GHQ),
and provided information about the reliability of the subscale measures,
both individually and jointly, as measuring instruments for the under-
lying constructs. In all these respects, the LISREL analysis rep-
resented a methodological advance over the previous correlational
analysis.

In addition to providing a basis for examining the intercorrelations of
the true-score constructs, the measurement model provided some findings
of substantive interest. In particular, it showed that the pairs of MHQ and
GHQ subscales assessing anxiety, depression, and somatic symptoms and
the two GHQ scales assessing social dysfunction could be regarded as
parallel measures. Thus, although there are a number of differences
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in the content, wording, and initial instructions in the GHQ and the
MHQ, corresponding subscale scores relate in the same way to the
underlying true-score construct; that is, they have equal loadings and
equal reliabilities. The parameters of the measurement model were also
found to be identical across the FD and FI groups. The coefficient of
determination for the measurement model as a whole showed that the
observed measures performed well as indicators of the underlying
constructs.

The measurement model was also of interest in that it provided
information about the role of response bias in measurement errors. The
problem of response bias is generally disregarded when scales such as the
GHQ and MHQ are used in clinical settings, but the present findings
suggest that, although both the GHQ and MHQ measures are equally
reliable, they differ in the extent to which subscale scores are influenced
by generalized response tendencies. Responses to the MHQ question-
naire were found to be correlated across measures, which indicates
that the errors are not random but systematically related. Thus, the
MHQ appears to be influenced by generalized tendencies that affect all
subscales in a similar way, whereas the GHQ is apparently not affected
in this manner. The reason for this difference between the GHQ and
the MHQ is not entirely clear, but it may be related to the greater
variation in the wording of responses to different items in the GHQ
as compared with those in the MHQ, the great majority of which are
identically worded.

After the measurement model had been specified, the main part of the
analysis was concerned with testing various hypotheses about relation-
ships among the underlying true-score constructs in the FD and FI
groups. In these analyses, the advantage of using LISREL was not only
that the intercorrelations of true scores rather than observed scores could
be examined, but also that it allowed the intercorrelations to be compared
across FI and FD groups in the context of the entire model rather than for
each syndrome separately, as in the previous analysis of these data. The
following were points clear from the LISREL analysis:

1. The hypothesis that there was no difference in the extent to which the
responses of FD and FI subjects discriminated among the four
neurotic syndromes could be rejected.

2. Overall, the FI subjects showed better discrimination than the FD
subjects.

3. In both the FD and FI groups, the anxiety and depression subscales
did not differentiate between separate underlying constructs of
anxiety and depression.

4. The responses of FD subjects (but not those of FI subjects)



46 KATHARINE R. PARKES

distinguished somatic complaints from either anxiety or depression
only to a marginal degree.

These findings raise two issues: First, to what extent does the more
sophisticated analysis reported here produce findings in agreement with
those of the previous correlational analysis (Parkes 1982)? Second, what
are the substantive implications of the present findings?

The major difference between the results of the LISREL analysis and
the previous correlational analysis is related to the discrimination of anxi-
ety and depression. In the correlational analysis, the results showed that
among FI subjects the intercorrelation of anxiety and depression (as
assessed by the GHQ) was significantly lower than among FD subjects,
although both values were moderately large (.43 and .64, respectively).
In contrast, the LISREL analysis demonstrated that in both groups
the correlation between the true-score constructs for anxiety and depres-
sion (derived from GHQ and MHQ measures) was unity. Thus, the
GHQ and MHQ anxiety and depression subscales measure a common
underlying construct. This difference in results illustrates the effect of
failing to consider measurement errors in the previous analysis and the
consequent attenuation of correlation values obtained. In other respects
the results of the LISREL analysis were consistent with those of the
correlational analysis, in that the responses of FD subjects differentiated
less clearly between constructs (other than anxiety and depression) than
did those of the FI subjects. However, as noted above, evidence that
the responses of the FD group distinguished anxiety and depression
from somatic symptoms was weak in that the true-score intercorrela-
tions for these constructs were close to unity, and only a marginal
reduction in goodness-of-fit occurred when they were set to 1.0. Again,
these findings illustrate the potentially distorting effects of using
observed scores without taking into account attenuation due to
measurement error.

Substantively, the findings of the LISREL analysis provide support for
the unitary model of anxiety and depression, that is, the view that these
two aspects of neurotic disturbance represent a single syndrome rather
than two distinct disorders. The fact that correlations among observed
scores indicate that the symptom configurations are not identical can be
attributed to measurement error effects rather than to a real distinction in
the way the symptom patterns are perceived and reported. Whereas the
previous correlational analysis suggested that the unitary model applied
more closely to FD subjects, the results reported here imply that the
unitary model is applicable to both groups. This result is in agreement
with clinical findings that patients in various diagnostic categories
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covering anxiety and depressive disorders show extensive overlap in
symptoms, and consequently a considerable proportion cannot be reliably
assigned to their diagnostic groups on the basis of responses to symptom
checklists (Prusoff & Klerman 1974; Snaith, Bridge, & Hamilton, 1976;
Crisp, Jones, & Slater 1978). However, it should be noted that the
conclusions of the present study are related to results obtained from two
self-report checklists, specifically the GHQ and the MHQ, and do not
necessarily imply that other diagnostic techniques (e.g, psychiatric inter-
view ratings) would produce similar results. For instance, Roth et al.
(1972) found that anxiety and depression were differentiated by symptom
patterns when details of the symptoms were elicited by psychiatrists rather
than self-reported.

Less research attention has been given to the differentiation of neurotic
syndromes other than anxiety and depression. The present results imply
that in this respect there are differences between the responses of FD and
FI subjects to self-report symptom checklists. These differences are
consistent with findings that FI subjects perceive the characteristic
symptom configurations associated with different affective states to be
more highly differentiated than do the FD group, whose perceptions are
predominantly global and generalized (Parkes 1981). Thus, with the
exception of the findings relating to anxiety and depression, the results of
the present study are consistent with the view that perceptual style (as
assessed by the measure of field dependence) may be an important
underlying variable influencing the extent to which individuals are able to
perceive and report discrete symptom patterns within a general context of
affective disturbance.

Notes

Strictly speaking, this analysis tests the hypothesis that the matrix of § values is
the same for each group against the hypothesis that the (\> values are different in
the two groups. However, as shown in Table 3.5, all the correlations are larger
in the FD group than in the FI group.
In the LISREL analysis above, correlations between error terms were modeled
by freeing the appropriate elements of the matrix. For the three MHQ measures
this allowed a complete representation of the correlated error terms; that is,
each MHQ error term could be allowed to correlate with each other MHQ error
term. However, if there are more than three measures (as in the case of the
GHQ), a generalized response tendency is correctly modeled by nonzero error
correlations, which obey certain functional relationships. In the present case,
freeing all error correlations would result in a model with too few constraints.



48 KATHARINE R. PARKES

There was the further complication that both the observed measures for the
social dysfunction construct were derived from the GHQ, and therefore any
correlation between error terms for these two measures was subsumed in the
underlying construct and could not be modeled by allowing correlated error
terms. In circumstances such as these, an alternative approach to modeling
correlated errors, outlined below, could be adopted.

The alternative approach requires an additional latent construct to represent
the generalized response tendencies. Thus, the model is based on five latent
constructs, including the four true-score constructs for which the pattern of Ax

and 0S loadings remained unchanged from the previous model. The additional
latent construct represents the generalized response tendencies for the GHQ
measures and is modeled as an underlying cause of the observed GHQ scores.
This additional latent construct is constrained to be orthogonal to each of the
four true-score constructs. All the GHQ measures load on the additional latent
construct, and the loadings for the two social dysfunction subscales are
constrained to be equal. This model allows a complete representation of GHQ
correlated errors, while also taking into account the fact that the GHQ social
dysfunction measures cannot be allowed to correlate directly. Corresponding
loadings are equated across groups, and MHQ errors are allowed to correlate
as previously by freeing the appropriate elements. Thus, the model is similar to
Model 3.7 in Table 3.2 but allows the GHQ errors to intercorrelate by including
an additional latent construct.

Chi-square for this model was 29.82 with 45 degrees of freedom. As tested
against Model 3.7 (which allowed no GHQ correlated errors) the alternative
model produced a decrease in chi-square of 4.35 with 4 degrees of freedom
(.30 <p< .50). Overall, therefore, the result of this approach to modeling the
GHQ errors is consistent with the conclusion drawn previously; that is, no
significant improvement in the fit of the model is obtained by allowing GHQ
errors to intercorrelate.

3. The f-values producetl in LISREL and most similar programs hold strictly
only in the analysis of a covariance matrix. Their distribution properties do
not conform to the normal distribution when a correlation matrix is analyzed
(see Chapter 9, by Boomsma, this volume). However, /-values can be used
as an approximate guide if the criterion value is set higher than that for
the corresponding level of statistical significance in the normal distribution.
For example, as a rule of thumb, the/? < .05 level of significance, corresponding
to t = 1.96 in the normal distribution, can be approximated by a /-value
of 2.00.
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High school seniors' reports of
parental socioeconomic status:

black-white differences
LEE M. WOLFLE

Introduction

Measurement error is insidious. It creeps into data collection and analysis
in various ways, and its effect on substantive conclusions is more
dangerous than is usually appreciated. This chapter investigates one
aspect of measurement error - the structure of errors in high school
seniors' reports of parental socioeconomic status - and compares the
pattern of these reporting errors between blacks and whites.

Models of educational achievement often include measures of socioe-
conomic background in order to control for socioeconomic differences in
assessing the effects of educational treatments. If, however, these back-
ground variables have been measured with substantial error, one's
substantive conclusions will be affected. For example, if the background
variables contain substantial random measurement error, the least squares
estimates of their effects on measures of educational outcomes will be less
than their true effects, and any assessment of the influence of educational
treatments may be correspondingly inflated (Mason et al. 1976). The
effects of intervening educational treatments will also be inflated in least
squares analyses if the errors of measurement of socioeconomic back-
ground variables are correlated across different variables (Bowles 1972).
As a result, the correlation among measured background variables will be
artificially inflated, and the educational treatment variable will explain
more of the variation in the outcome variable than warranted in actuality.

Moreover, when the effects of treatments are estimated across groups,
such as blacks and whites, differential amounts and kinds of measurement
error among background variables will have differential effects on esti-
mates of the effects of both the background variables and the treatment.
As a result, one could be led to the conclusion that an educational
treatment worked differently for blacks and whites, not because it truly
did, but because of different patterns of measurement error within these
groups.

Many investigators of educational outcomes have collected data on the

51
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socioeconomic characteristics of parents from students, not from the
parents themselves. Nevertheless, students are often fallible informants of
parental status. In the face of uncertainty, students may guess or reconcile
their uncertainty by substituting known information about one parent for
unknown information about the other.

A few studies have addressed the problem of students' reporting errors
of parental status, but none have adequately compared the measurement
properties of status variables as reported separately by students and
parents using a common framework for estimating models for whites and
blacks simultaneously. Mason et al. (1976) found that both white and
black twelfth grade students reported parental status characteristics as
accurately as did their parents but that neither black students nor their
parents were as accurate in their reports as were whites. Unfortunately,
the analysis was deficient to the extent that the authors estimated models
independently for each group. Mare and Mason (1980) corrected this
deficiency in their examination of students' reports in the sixth, ninth, and
twelfth grades, but they restricted their analysis to the white subpopu-
lation and did not compare whites and blacks with the more adequate
methodology.

Wolfle and Robertshaw (1983) applied this methodology, Joreskog's
(1971) general framework for simultaneous covariance structure analyses
of multiple populations, to a national sample of black and white high
school seniors. They found that whites and blacks have an invariant
construct pattern; that is, unit increases in true status characteristics led to
the same increase in manifest measures tor blacks as for whites. However,
they also found that reliability estimates for whites were significantly
higher than for blacks, owing to differences in true-score variances and
error variances. Their study, however, was restricted to multiple measures
of parental status as reported by students, and they did not compare
students' reports with those of the parents.

This chapter explores racial differences in high school seniors' reports of
parental socioeconomic traits using a multiple-group measurement model
suggested by Joreskog (1971). The analysis begins by estimating the
accuracy of reports of parental traits across races, for both parent and
student reports. Next we consider the extent to which the students' reports
matched those of their parents. Finally, and more restrictively, we
compare the reliabilities of black and white parents and students.

Method

Data for this investigation were taken from "High School and Beyond"
(HSB), a longitudinal study of U.S. high school sophomores and seniors1
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sponsored by the National Center for Education Statistics. The data are
described in a user's guide prepared by the National Opinion Research
Center (1980). In particular, these analyses are based on a sample of 3,197
HSB parents matched to their senior high school children. Both parents
and children were asked to report the educational attainment of the
mother and father, as well as the father's occupation. The analysis
reported here was restricted to 1,502 white and 99 black respondents with
complete records for the six variables included in the measurement model.

The questions used in the original survey, which are available in the
user's guide (National Opinion Research Center, 1980), are summarized
here. The seniors were first asked to categorize the job most recently held
by their father by choosing one of 17 categories (clerical, craftsmen,
farmer, etc.). These responses were then recoded to their Duncan (1961)
Socio-Economic Index2 equivalent scores as given in Levinsohn et al.
(1978, App. O, p. 11). The seniors were next asked to indicate the highest
level of education completed by their father. A similar question was asked
about their mother's education. These responses were then recoded such
that the categories reported by the parents and students were equivalent;
the resulting scale ranged from 1 to 8, representing categories from less
than high school (= 1) to the receipt of a Ph.D., M.D., or other advanced
degree ( = 8).

After the collection of the HSB base-year data from the high school
students, 3,197 parents of the HSB seniors were contacted and additional
data collected, which concentrated primarily on the parents' plans for
financing their children's higher education. Included in the questionnaire,
however, were items dealing with parental socioeconomic characteristics.
In about 60 percent of the cases, it was the student's mother who
completed the questionnaire; in the remaining cases, the student's father
completed the questionnaire. (Students who had some other adult
complete the questionnaire, such as an aunt or grandfather, were excluded
from the analyses.) Parents completing the questionnaire were asked to
report their occupation, their spouse's occupation, their education, and
their spouse's education. These were recoded as appropriate to obtain a
report of the father's education (as reported either by himself or by his
spouse) and mother's education. Both education variables were recoded
such that the scale used by students was equivalent to that used in the
parents' reports. The occupation question in the parents' survey was
coded according to the U.S. Census Bureau's detailed occupation code. In
order to match these responses with the scale used by the high school
seniors, the detailed occupational codes were collapsed into the identical
categories used by the students and assigned the same Duncan (1961)
Socio-Economic Index scores. The correlations among these six variables,
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Table 4.1. Correlations,a means, and standard deviations for measurement
model of parental socioeconomic status

x2
x>
x4
X5

x6
Mean
Blacks
Whites

.710

.580

.572

.411

.415

38.630
45.260

Standard deviation
Blacks
Whites

22.592
22.499

x2

.678

.617

.614

.440

.452

40.167
43.916

24.328
22.009

X3

.669

.625

.909

.604

.592

3.162
3.626

2.142
2.207

XA

.559

.576

.830

.586

.599

3.192
3.558

2.198
2.263

X5

.440

.434

.635

.560

.874

3.071
3.073

1.831
1.760

x6

.451

.405

.593

.615

.828

3.212
3.073

2.037
1.856

a Correlations for blacks are reported above the diagonal; correlations for whites
are reported below the diagonal. The variable labels are defined as follows:

Xx = parent's report of father's occupation
X2 = student's report of father's occupation
X3 = parent's report of father's education
X4 = student's report of father's education
Xs = parent's report of mother's eduction
X6 = student's report of mother's education

Source: National Opinion Research Center (1980).

plus their means and standard deviations, are shown in Table 4.1 for both
blacks and whites.

For each race, the basic measurement model used in these analyses can
be described by a set of six equations in which both the parents' reports of
their status and the children's reports of their parents' status are seen to be
caused by the parents' true status (an unmeasured latent construct). That
is, both the parent's report and the student's report of the father's
occupation are considered to be dependent on the father's true occupa-
tional status. Similarly, for both the mother's and father's education, the
parent's report and the student's report are considered to be dependent on
the true underlying educational factor of the respective parent. The three
true-score constructs are allowed to covary and are not necessarily
constrained to have the same parameter estimates across racial groups
(although this is a constraint to be applied in later models). Covariances
among response errors were initially set at zero on the assumption that
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MOED$(*6)

Figure 4.1. Measurement model of report of parental socioeconomic status,
variables are described in Table 4.1.

response errors were random, but were subsequently allowed to covary on
the assumption that specific components of measurement error in the
measured variables exist and are correlated.

These equations are depicted in Figure 4.1. The straight, single-headed
arrows represent assumed causal relationships among the latent con-
structs (shown in ellipses) and their measured indicators. The curved,
double-headed arrows represent covariances; the covariation shown
between response errors was not a part of the initial model specification,
but was added during the analysis. The six equations represented in Figure
4.1 are, for each race,

= ^32^2 + 83

= ^53^3 + §5
= ^63^3 + §6

where Xx is the parent's report of father's occupation, X2 the student's
report of father's occupation, X3 the parent's report of father's education,
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X4 the student's report of father's education, X5 the parent's report of
mother's education, and X6 the student's report of mother's education; Xtj

are construct loadings from they'th latent construct to the /th measured
variable; £,y are latent constructs; and the 8, are response errors.

The statistical strategy employed in selecting a best-fitting model
consisted of (1) estimating a model in which certain parameters are
constrained to be equal, sometimes within one racial group and sometimes
across groups; and (2) estimating a less constrained version of the same
model. The test of model fit consisted of assessing the statistical sig-
nificance of the improvement in fit between the constrained and the less
constrained model. Such model-fitting techniques can be implemented in
LISREL (Joreskog and Sorbom 1981), which was used to estimate the
parameters in the models being analyzed here.

In addition to the purely statistical criteria, substantive criteria were
applied in the search for a best-fitting model. In particular, no model was
accepted that implied children reported their parental socioeconomic
characteristics with less error than the parents themselves. In the one case
where this occurred the model was respecified such that the estimated
parameters for parents and children were set equal to each other.

Results

This section presents a series of distinct hierarchical measurement models.
The summary goodness-of-fit statistics are presented for these models,
followed by a discussion of the parameter and reliability estimates for the
model deemed to be best fitting for these data. In examining these
estimates for blacks and whites, keep in mind that the sample size for
blacks is quite small. Accordingly, misspecifications in the model for
blacks are less likely to be detected than would statistically significant
misspecifications of the same magnitude for whites.

In these analyses, the models for both blacks and whites were analyzed
simultaneously, but in the initial model no constraints on the coefficients
were imposed across groups. Model 4.1 contains 15 parameters to be
estimated within each racial group. These parameters consisted of three
true-score variances, three covariances among true scores, six error
variances (one for each of the six measured variables), and three construct
loadings that related one of the members of each pair of measured
indicators to each latent construct. For each latent construct, one
construct loading was set a priori to unity (i.e., XX1 = X32 = X53 = 1.0) in
order to provide a metric for the latent construct and to identify the
model. The goodness-of-fit chi-square statistic for this model (Model 4.1)
is shown in Table 4.2. The chi-square statistic for Model 4.1 was 35.52
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Table 4.2. Goodness-of-fit statistics for measurement models of parental
socioeconomic status

Chi-square
Model statistic d.f. p Ax2 d.f. p

4.1 No error covariances 35.52 12 .000
4.2 Model 1 plus covariance

among errors of father's
and mother's education
for white and black
children 9.08 10 .524 26.44 2 .000

4.3 Model 2 plus equal X
coefficients for whites
and blacks 11.39 13 .578 2.31 3 .511

4.4 Model 3 plus equal X
coefficients for whites
and blacks, parents and
children 17.18 16 .374 5.79 3 .122

4.5 Model 4 plus equal true-
score variance-
covariance matrix, error
variances equal for black
and white parents, and
for whites equal error
variance for father's
occupation for parents
and children 29.58 26 .285 12.40 10 .259

with 12 degrees of freedom (/?= .0004), indicating that the model as
initially specified did not adequately reproduce the observed covariance
matrices.

Model 4.1 implicitly assumed that the reporting errors for parents and
their children were randomly distributed and hence uncorrelated. Since
the model did not provide an adequate fit to the data, it is necessary to
consider an alternative model specification. For example, the reporting
errors may have been nonrandom. Nonrandom errors in reporting would
result in nonzero error covariances; for example, if a child knew one
parent's education but not the other, he or she might guess the unknown
with reference to the known.

The modification indices in the LISREL program provide a powerful
tool for detecting misspecification within the general form of the model
specified. In particular, they indicate which of the formal restrictions
would improve the fit of a model if they were relaxed. An examination of
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Table 4.3. Model 4.2 parameter estimates

True-score Error Construct
Socioeconomic variance variance loading
characteristic Informant <\> Og X

Father's White parent ~~, ~~
occupation White child

Black parent ~65 4 8

Black child
Father's White parent A <•,

education White child
Black parent A ~8

Black child 4 J 5

Mother's White parent ~ ~,
education White child

Black parent ^ 95
Black child

True-score covarianceb

169.82
116.77
144.91
212.08

0.36
0.56
0.20
1.34 (
0.35
0.48
0.41
0.92

1.00°
1.04
1.00°
1.02
1.00°
1.01
1.00°
).89

1.00°
1.04
1.00°
1.04

1. Father's occupation — 32.17 18.85
2. Father's education 28.82 — 2.49
3. Mother's education 16.54 2.33 —

Covariance between errors in children's report of mother's and father's education
Whites 0.093
Blacks 0.414

a Fixed parameter.
* Blacks above diagonal; whites below.

the modification indices for Model 4.1 indicated that the parameter for the
error covariance between the children's reports of mother's and father's
education should be relaxed (i.e., in this case, allowed to take on a nonzero
value). Model 4.2 allowed this single error covariance to be a free,
estimable parameter for both whites and blacks. The results are shown in
Table 4.2. The difference in chi-square coefficients for Models 4.1 and 4.2
is itself distributed as chi-square. This value was 26.44 with 2 degrees of
freedom and indicates that allowing these error terms to covary resulted in
a significant improvement in the fit of the model. An examination of the
modification indices for Model 4.2 indicated that the error covariance for
the parent's report of mother's and father's education may also be
nonzero, but when this restriction was relaxed the improvement in fit was
not statistically significant. As a result, Model 4.2, with a chi-square
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statistic of 9.08 with 10 degrees of freedom (p = .524), was accepted on
statistical grounds as producing a good fit for these data.

Nevertheless, Model 4.2 may not be the most parsimonious model for
the data. An examination of the parameter estimates in Model 4.2, shown
in Table 4.3, indicates that several of the construct loadings (k coefficients)
are nearly equal in value. This suggests that the construct pattern for
whites may be the same as that for blacks. This hypothesis, if true, would
indicate that unit increases in true scores led to the same increments in
measured variables for blacks as for whites. This hypothesis was tested by
constraining the construct loadings for whites and blacks to be equal; if
these constraints do not significantly erode the fit of the model to the data,
one may conclude that whites and blacks have a common construct
pattern for these variables. The chi-square statistic for this model (Model
4.3 in Table 4.2) was 11.39 (d.f. = 13, p = .578), which can be compared
with the chi-square statistic for Model 4.2. The difference in the chi-square
statistics is 2.31 with three degrees of freedom (p = .511); thus, the
additional restrictions do not lead to a significant deterioration in the fit of
the model. We may conclude that black and white parents and high school
senior children have a common construct pattern in their reports of
parental status characteristics.

Having established that whites and blacks have a common construct
pattern, we may now determine whether high school seniors report their
parents' status characteristics as accurately as their parents do. To
accomplish this, an additional set of constraints was added to the model;
the construct loadings for the children's report of each status character-
istic were constrained to be equal to those of the parents. This constraint
implies that the construct loadings that relate the manifest measures to the
latent true score for parents and children are equal. The chi-square
statistic for this model (Model 4.4 in Table 4.2) was 17.18. The difference
in the chi-square statistics between this model and that for Model 4.3 is
5.79 with three degrees of freedom (p = .122). We conclude that the
construct loadings that relate the parents' reports to their socioeconomic
characteristics are equal within the bounds of sampling error (at the .05
level) to the construct loadings that relate the children's reports to their
parents' socioeconomic characteristics.

Although the construct loadings that relate manifest measures of
background socioeconomic variables to their true scores are apparently
the same for parents and their children, and apparently the same for
blacks and whites, there may remain additional forms of invariance in the
general measurement model. In particular, it is of substantive interest to
examine whether the variances of the measurement errors are the same
across racial groups and, within groups, whether they are the same for the
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reports of parents and children. We do not prsent all of the intermediate
models that led to Model 4.5. The omitted models specified that, within
each racial group and within each socioeconomic trait, the error variances
are constrained to be equal for parents and children. After each successive
constraint, the fit of the model was tested; if the fit did not deteriorate
significantly, the constraint was retained; if the fit did deteriorate signifi-
cantly, the constraint was rejected. Constraints were also placed across
groups, in which the error variances for white parents were set equal to the
error variances for black parents, and then those of white children were set
equal to those of black children. One exception to these procedures
developed when the error variance for the white parent's report of father's
occupation was found to be significantly greater than that of the child.
This result was substantively implausible, and the model was reestimated
with the specification that these error variances are equal. Since the two
variables concerned load on the same construct, setting their error
variances equal implies that the reliability of the parent's report of the
father's occupation was equal to the reliability of the child's report.

The parameter estimates for Model 4.5 are shown in Table 4.4.
Comparing these coefficients with those in Table 4.3 reveals the differences
in the specification between Model 4.2 and this final model. First, the true-
score variances and covariances are equal for whites and blacks. Second,
all X coefficients in the model are found, within sampling error limits,
equal to one another. Third, the error variances for white parents and
black parents are equal.

The estimates of the reliabilities for thse variables are also shown in
Table 4.4. The reliability of a variable is defined as the ratio of the true-
score variance to the observed-score variance (Greene and Carmines
1980). In LISREL this is estimated by

where ru is the estimated reliability of the /th measured variable, Xtj the
construct loading from the /th latent construct to the /th measured
variable, ^ the variance of the /th latent construct, and 0|7 the error
variance for the /th variable. Because all of the construct loadings in the
present model are unity, this equation reduces to

^ = bAhj + e,)
The reliability estimates shown in Table 4.4 indicate that both black and
white parents report their eductional achievements with nearly equal
reliability. The father's occupation is not reported as reliably as education,
but both black and white parents report occupational status with equal
reliability.
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Table 4.4. Model 4.5 parameter estimates

Socioeconomic
characteristic Informant

True-score Error
variance variance

4> Q,

Construct
loading"

X
Reliability

e8)
Father's

occupation

Father's
education

Mother's
education

White parent
White child
Black parent
Black child

White parent
White child
Black parent
Black child

White parent
White child
Black parent
Black child

352.84

4.50

2.86

143.72
143.72

208.97

0.35
0.57
0.35
1.23

0.29
0.54

1.03

.71

.71

.71

.63

.93

.89

.93

.79

.91

.84

.91

.74

True-score covarianceh

1. Father's occupation
2. Father's education
3. Mother's education

29.62
17.21

29.62

2.37

17.21
2.37

Covariance between errors in children's report of mother's and father's education
Whites 0.100
Blacks 0.398

a All fixed parameters.
b Blacks above diagonal; whites below.

The finding of equal error variances among parents does not extend to
the reports of high school seniors; the errors with which black high school
seniors report their parents' socioeconomic characteristics were consis-
tently larger than those of white high school seniors. Correspondingly,
the estimated reliability coefficients for black children are lower than those
for whites. Moreover, save for the white children reporting their father's
occupation, children reported their parents' socioeconomic traits with
greater error than their parents, and hence their reliability coefficients
were lower.

Conclusion

Models of educational achievement usually include measures of socio-
economic background. Manifest measures of these variables are often
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obtained retrospectively from children, and not from the parents them-
selves. If, however, the children report these variables with substantial
error, substantive conclusions about the effects of such variables will be
affected.

Previous investigations indicated for the most part that children report
parental status almost as accurately as parents do. Bielby, Hauser, and
Featherman (1977) found that men reported their own status as reliably as
they reported their father's education and occupation. Corcoran (1980)
reached the same conclusion about the reports of women. Mason et al.
(1976) concluded for both whites and blacks that the reports of twelfth
grade children were as reliable as the reports of their parents, and Mare
and Mason (1980) concluded that for whites the reports of parents and
twelfth grade children were equally reliable.

The findings of the present investigation vary somewhat from those of
the previous studies. First, although the construct loadings that relate
manifest measures to their true scores are the same for parents and
children, the residual error variances are not equal for parents' and
children's reports. Hence, in the present investigation the reliability of
reports by children are significantly lower than that of reports by parents.

Second, whereas previous studies have, in general, not found significant
covariances among reporting errors of background variables, the present
investigation found a relatively large covariance between children's
reporting errors of mother's and father's education. In the HSB survey the
high school seniors may thus have reported their parents' educational
attainment with a common bias. Wolfle and Robertshaw (1983) also
found correlated errors in high school seniors' reports of parental
eduction but attributed the correlation to the parallel-form question used
in the National Longitudinal Study questionnaire (see Levinsohn et al.,
1978). Moreover, Mare and Mason (1980) reported correlated errors
between mother's and father's education for sixth and ninth graders, but
not for twelfth graders; and Bielby et al. (1977) reported correlated errors
for blacks between father's education and respondent's education. The
evidence therefore seems to suggest that students tend to report the
education of their parents with a common bias. Judging by the means
shown in Table 4.1, students tend to overestimate the amount of schooling
received by their parents.

The present investigation also found that parental education was
reported more reliably than the father's occupation. This result parallels
similar findings by Bielby et al. (1977) and Wolfle and Robertshaw (1983)
but disagrees with the results of Mason et al. (1976) and Mare and
Mason (1980), who found that father's education, mother's education,
and father's occupation were reported with equal reliability.
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Bowles (1972) argued that using respondents' reports of parental
socioeconomic status underestimates to a serious degree the influence of
origin variables. In contrast, Jencks et al. (1972) argued that random
measurement error is of relatively little importance. It would seem, in
conclusion, that neither of these positions is correct. Random measure-
ment error among children's reports of parental status is neither trivial
nor as serious as some have believed. Yet caution is indeed warranted, for
the usual assumption about measurement error is that it is random; but
significant covariances were found here between reporting errors of
father's and mother's education.

Notes

An earlier version of this chapter was delivered at the annual meetings of the
American Educational Research Association, Montreal, April 11-15, 1983. I am
indebted to Bunty Ethington for comments and discussions in the course of
preparing the chapter.
1. High school seniors in the United States are in their twelfth year of school; their

modal age is 18.
2. The Socio-Economic Index was constructed to predict the prestige rating of

U.S. occupations (Duncan 1961, p. 145). There is substantial evidence that the
structure of the index is fundamentally socioeconomic (see Hauser & Feather-
man 1977); for example, Duncan (1961, p. 124) reports that 83% of the
variation in the prestige of 90 occupational titles can be explained by income
and education.
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Modeling the hierarchical structure
of learning
PETER W. HILL

Introduction

In the social and behavioral sciences, theories abound that view phenom-
ena as hierarchically organized and decomposable into entities that can
be ordered in terms of their complexity. For example, learning has
frequently been conceptualized as a hierarchy of processes or outcomes of
increasing complexity. Of particular importance to educators because of
the impact they have had on curriculum and test development are a
number of educational taxonomies - taxonomies being, of course, a type
of theory - that embody the notion of a hierarchy of processes or
outcomes (Bloom et al. 1956; Gagne 1975; Ausubel & Robinson 1969;
Merrill 1971; Biggs & Collis 1981).

This chapter illustrates how theories involving the notion of a hierarchy
of variables of increasing complexity can be expressed in mathematical
form as a series of structural models and how the analysis of empirical
data using these models can be employed to reformulate the original
theories.

Modeling hierarchical structure: the Guttman simplex model

One of the most significant attempts to express the concept of a hierarchy
of variables of increasing complexity in mathematical form was that of
Guttman (1954), who proposed a theory to explain the pattern of
intercorrelations to be observed among mental test scores. Guttman
proposed (pp. 260-1) that, if content is held constant, a set of tests will
differ only in terms of their complexity and are said to belong to a
"simplex," since they can be arranged in rank order from least to most
complex.

In translating the concept of the simplex into mathematical terms,
Guttman considered the case of continuous variables. Furthermore, he
expressed his theory not in terms of the "difficulties" or means of the
variables - these he considered arbitrary - but in terms of the pattern of

65
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Table 5.1. Hypothetical correlation matrix exhibiting a perfect simplex
structure

x2
*3

1.000
.900
.630
.504

1.000
.700
.560

1.000
.800 1.000

r21r32 = .9 x .7 = .63
= .7 x .8 = .56
= .9 x .7 x .8 = .504

correlations among variables. According to Guttman, a perfect simplex
structure is indicated when the correlation between two variables (/ and j)
is equal to the product of the correlations between all adjacent pairs of
intervening variables:

fij = (ru+l) (r /+l i l.+2) . . . (rj_Uj), i< j (5.1)

This implies that the partial correlation between any two variables i - 1
and /+ 1 on either side of a third variable / is equal to zero when the third
variable is controlled:

>V,,m, = 0 (5.2)

The perfect simplex pattern is illustrated by the hypothetical correlations
of Table 5.1. As this table illustrates, when a simplex structure applies, the
correlations of largest magnitude will be adjacent to the main diagonal;
the magnitude of correlations will decrease with distance from the main
diagonal, and the correlations of smallest magnitude will be in the lower
left and upper right corners. Interpreting the Guttman simplex model in
terms of various stochastic processes, Joreskog (1970a,b) has shown how
the estimation and testing of simplexes incorporating various assumptions
concerning errors of measurement can be carried out in the context of
structural equation modeling with latent variables. Joreskog's (1973)
LISREL model and its computer program implementation (Joreskog
& Sorbom 1981) considerably extend the flexibility and scope of this
approach.

Examples of the application of LISREL to the analysis of simplex
models are given by Werts, Linn, and Joreskog (1977, 1978); more complex
models are considered by Joreskog and Sorbom (1977). In fact, the data
used in these applications are longitudinal growth data rather than data
for variables ordered in terms of their complexity. Although several
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Figure 5.1. Four-variable quasi-simplex model.

writers have drawn attention to the applicability of LISREL to the
analysis of hierarchical test data (Keesling 1972; Kerlinger 1977; Bergan
1980), for actual examples the reader is referred to Hill and McGaw (1981)
and Hill (1982).

Figure 5.1 depicts a four-variable "quasi-" (or nonperfect) Guttman
simplex model. A perfect simplex is indicated when the score r], on any
variable / is related to the score on the preceding variable /— 1 by the linear
regression equation

Tl/ = Pi-Tl/-, (5.3)

With disturbances to allow for lack of fit, the structural model can then be
expressed as

Tl,- = P/T1/-1 + & (5.4)

Further, this model can be expressed in terms of true scores by specifying
the relation between true score r], and observed score yt as

y> = Tl, + e, (5.5)

For example, suppose that measures are obtained on four variables, yt to
j>4, which are taken to be indicators of four latent variables r\1 to r|4,
where r\1 is the least complex variable and r|4 the most complex variable.

As a set of equations, the measurement model can be written as

(5.6)
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and the structural model as

T\l = ' S i

Tl3 = " P 3 2 T1 2 + £ ( 5 J )

In addition to the specification in (5.6) and (5.7) we make the further
assumption that the errors of measurement e, are uncorrelated with one
another and with all the latent variables r|,. It is also assumed that £,-+, is
uncorrelated with ^(i = 2, 3). As a LISREL model, this model has 11
parameters (s1? . . . , £4, p 2 i , p3 2 , P43, Ci> • • •> C4) an<i 1S n o t identified.
This is apparent from the fact that there are only 10 unique elements in the
covariance matrix for y1 to y4. Joreskog and Sdrbom (1977, pp. 302-3)
show that there are indeterminacies associated with the outer variables yx

and y4. A convenient way of eliminating these indeterminacies is to fix 8x

= 84 = 0. This reduces to nine the number of independent parameters,
and the model can then be shown to be identified with 10 - 9 = 1 degree
of freedom.

The quasi-simplex model of (5.6) and (5.7) provides a test of the
hypothesis of hierarchical ordering among the four latent variables
ordered in terms of their complexity. Other more complex models
incorporating multiple indicators of the latent variables are possible. In
addition, such models can be fitted simultaneously to data from several
groups and any degree of invariance of the parameters for each group can
be tested.

Illustration

The Kropp and Stoker data

The notion of a hierarchy of variables ordered by complexity is at the
heart of what has been one of the most influential ideas in education,
namely, that detailed in the Taxonomy of Educational Objectives, Hand-
book 1: Cognitive Domain of Bloom et al. (1956). The Bloom taxonomy
arranges cognitive behaviors in terms of their complexity into six major
classes: Knowledge, Comprehension, Application, Analysis, Synthesis,
and Evaluation. The taxonomy is both hierarchical and cumulative. It is
hierarchical in that each successive class of behaviors is considered to be
more complex than preceding classes, the most complex class being
Evaluation. It is cumulative in that each successive class of behaviors
contains those of preceding classes, with Evaluation including all the
behaviors represented by Knowledge, Comprehension, Application, Anal-
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Table 5.2. Observed subtest correlations for "Atomic Structure":
combined grades (N = 5,057)

Kn Co Ap An Sy Ev

Knowledge (Kn) 1.000
Comprehension (Co) .514 1.000
Application (Ap) .496 .712 1.000
Analysis (An) .358 .648 .632 1.000
Synthesis (Sy) .412 .415 .450 .371 1.000
Evaluation (Ev) .386 .355 .348 .294 .426 1.000

ysis, and Synthesis, in addition to a unique component with respect to the
behaviors in the lower classes. Another feature of the taxonomy is that the
behaviors of the various classes are assumed to apply irrespective of
subject matter, age, or type of instruction.

To investigate the validity of the claimed psychological properties of the
Bloom taxonomy, Kropp & Stoker (1966) designed four tests in two
content areas (science and social studies). Each test involved a reading
passage of 600 to 900 words. The passages were entitled "Atomic
Structure," "Glaciers," "Lisbon Earthquake," and "Stages of Economic
Growth." The four tests contained six subtests, one for each of the major
classes of the taxonomy, and were administered to large samples of
students in grades 9-12 in 10 Florida schools.

The data reported by Kropp and Stoker include the four 24-variable
correlation matrices formed by intercorrelating subtest scores over all four
tests each of the four grades and a fifth 24-variable combined-grades
matrix.

Single-variable simplex models

To illustrate how structural modeling can be used to test the hypothesis of
a cumulative hierarchy of variables, we begin by considering part of the
24-variable combined-grades matrix. Table 5.2 gives the correlation
matrix for the six subtests comprising the first of the four taxonomic tests,
entitled "Atomic Structure."

It is evident from a visual inspection that the matrix does not exhibit the
perfect simplex form. Not all of the largest correlations are adjacent to the
main diagonal, and not all correlations decrease steadily as one moves out
to the lower left corner. It therefore remains to be seen whether a quasi-
simplex model fits these data within the bounds of sampling error.

Table 5.3 indicates the sequence of hypotheses investigated in testing
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Table 5.3. Goodness-of-fit for six models: "Atomic Structure/' combined
grades (N = 5,057)

Model d.f. Critical N

5.1.1
5.2.1
5.2.2
5.3.1
5.4.1
5.4.2

One-factor
Quasi-simplex
5.2.2 with p51 free
One-factor
Quasi-simplex
5.4.1 with var£3 = 0

725.25
380.35
124.77
405.02

23.10
29.17

9
6
5
5
3
4

117
165
439
136

1,654
1,620

the final model. Given the positive correlations of Table 5.2, the most
parsimonious explanation of the data is not that they conform to a
simplex structure, but rather that they can be accounted for by a single
underlying factor. We therefore begin by fitting a one-factor model of the
form

(5.8)

to the data. This model (Model 5.1.1), which is shown diagrammatically
in Figure 5.2, serves as a null model with which to compare various
hypothesized models.1 Model 5.1.1 yields %2(9) = 725.24, p < .05,
indicating, from a statistical point of view, poor fit to the data. Actually,
with a sample size in excess of 5,000 cases, the likelihood ratio chi-square
statistic is likely to reject almost any hypothesized model, so we turn to
another indicator of fit, Hoelter's (1983) "critical TV" (CN), to decide
whether to reject the one-factor model as an adequate explanation of the
data of Table 5.2. Critical N is an estimate of the size that a sample must
reach in order to accept the fit of a given model on a statistical basis. The
index is most conveniently computed as

ye

= 3

4
m +

" E 1

e4

Jl _

_
CN

(zcr i l

- G) + G (5.9)

where zcri, is the critical value of the normal variate z for a selected
probability level and G the number of groups analyzed simultaneously.
Hoelter proposes that values exceeding 200G may be taken as indicating
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that a particular model adequately reproduces an observed covariance
structure. Thus, for Model 5.1.1

CN =
(1.65 + V(2 x 9) - I)2

(2 x 725.25)/(5,057 - 1)
+ 1 = 117

indicating a lack of fit between the estimated correlation matrix £ and the
observed correlation matrix S.

The next step is to fit our hypothesized quasi-simplex model (Model
5.2.1) to the data. We therefore specify a quasi-simplex model in which the
measurement model is

(5.10)

v
j 2

^ 3

^ 4
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0
0
0
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0
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0
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0
0
0
P43
0
0
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0
1
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0
0
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*15
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>

(5.11)

This model is shown diagrammatically in Figure 5.2.
Note that, because there are no X variables in the model, the full

LISREL model, T] = Br| + T^ + £ is reduced to r| = Br| + £ in (5.11). As
noted earlier, the model of (5.10) and (5.11) is not identified since there are
indeterminacies associated with the "outer" variables yx and y6. Follow-
ing Joreskog and Sorbom (1977, p. 303), we eliminate these indeter-
minacies by fixing ex = e6 = 0; that is, we treat r^ and r|6 as though they
were perfectly measured. Model 5.2.1 results in %2{6) = 380.35,/? < .05,
and CN — 165. Although Model 5.2.1 is statistically a better fitting model
than our one-factor null model, with the difference in %2(9 - 6) =
(725.25 - 380.34), p < .05, as indicated by critical N, it is still an ill-
fitting model.

Inspection of the modification indices suggests that fit can be improved
by postulating a path (p51) between Knowledge and Synthesis. We incor-
porate this link into Model 5.2.2 (Figure 5.2) by freeing p5 1 and obtain



Model 5.1.1. %2(9) = 725.25, CN = 117

Model 5.2.1. x2(6) = 380.35, CN = 165

fti

Model 5.2.2. x2(5) = 124.77, CN = 439

Figure 5.2 Models 5.1.1, 5.2.1, and 5.2.2 as fitted to the Kropp and Stoker data
for atomic structure. Kn, Knowledge; Co, Comprehension; Ap. Application; An,
Analysis; Sy, Synthesis; Ev, Evaluation.
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Table 5.4. Normalized residuals for Model 5.2.2: "Atomic Structure"
(N = 5,057)

Knowledge (Kn)
Comprehension (Co)
Application (Ap)
Analysis (An)
Synthesis (Sy)
Evaluation (Ev)

Kn

0.000
0.000
1.908

-3.489
-0.942

1.305

Co

0.000
0.348
0.911

-0.676
-0.703

Ap

0.000
-0.245

2.219
-0.648

An

0.000
-0.084
-1.755

Sy

-0.015
-0.017

Ev

-0.011

an improvement of 255.57 in the value of chi-square for the loss of one
degree of freedom. In addition, critical TV is now 439 and well above the
critical value of 200, suggesting that we might accept Model 5.2.2 as
providing an adequate fit to the data.

Before accepting Model 5.2.2, however, it is important to probe further.
The chi-square statistic and critical JV index are overall indicators of fit
that do not reveal localized problems within a model. A more detailed
assessment of fit can be obtained by direct inspection of the matrix of
residuals S = Z or, more conveniently, of normalized residuals (residuals
divided by their standard deviation). Normalized residuals larger than
2 are indicative of specification errors in the model.

The matrix of normalized residuals for Model 5.2.2 is given in Table 5.4.
Two of the elements of this matrix exceed 2 in value. Inspection of Table
5.4 and of the modification indices for the B matrix suggests a further
modification incorporating an additional path between Knowledge and
Analysis. It is now evident that the fit of our models to these data is highly
dependent on paths linking Knowledge and the more complex classes of
behaviors in the taxonomy. That is, Knowledge does not appear to be
hierarchically related to the other five variables.

We therefore consider the effects of deleting Knowledge from the
hierarchical structure of the taxonomy, beginning again with a one-factor
null model fitted to the five variables Comprehension, Application,
Analysis, Synthesis, and Evaluation. As can be seen from Table 5.3, this
model (Model 5.3.1) does not fit the data. Next, we fit our hypothesized
model, Model 5.4.1, which is a quasi-simplex model for a five-variable
simplex. This results in a very good fit to the data considering the very
large sample size (N = 5,057), with x4(3) = 23,10, p < .05, and this is
reflected in CN = 1,654. The maximum likelihood estimates for all
identified parameters in Model 5.4.1 are given in the left side of Table
5.5 and standard errors are shown in parentheses.2 Unstandardized
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Table 5.5. Maximum likelihood estimates and standard errors0 for all
identified parameters in Models 5.4.1 and 5.4.2: "Atomic Structure"

(N = 5,507)

Parameter

X2

K
p32
P43
Ps4
var^3

var^4

var^2

var^3
var£4

Model

Unsealed
solution

0.902 (.016)
0.676 (.020)
0.810 (.029)

-0.031 (.012)
0.277 (.019)
0.292 (.010)
0.455 (.015)
0.474 (0.20)

5.4.1

Standardized
solution

0.841
0.738
0.725
1.028
0.688
0.588

-0.056
0.526

Model

Unsealed
solution

0.896 (.106)
0.672 (.020)
0.809 (.029)
0.000*
0.269 (.018)
0.291 (.010)
0.430 (.011)
0.474 (.020)

5.4.2

Standardized
solution

0.842
0.755
0.726
1.000
0.699
0.587
0.000
0.512

a Standard errors in parentheses.
b Fixed parameter.

coefficients are all greater than twice their respective standard errors.
All is not well with Model 5.4.1, however: An examination of the

parameter estimates of Table 5.5 indicates that a "Heywood case" has
been obtained. The estimate for the residual variance (var£3) for Analysis
has a negative value. The notion of a negative variance clearly is
meaningless, and so we are unable to accept such an estimate. To
eliminate this problem, we modify the model and reestimate it with var^3

fixed at zero to provide an estimate that is logically interpretable (i.e., a
"proper" solution). Because the magnitude of the negative variance
estimate is small, the new parameter estimates, which are given in the right
side of Table 5.5, closely resemble those shown in the left side of the table.
Referring back to Table 5.3, it will be seen that the fit of our final model
(Model 5.4.2), in which we fix var£3 to zero to deal with the Heywood
case, is little different from that of Model 5.4.1.

Now the fixing of var£3 to zero in Model 5.4.2 is more than simply a
convenient way of overcoming the problem of a negative variance
estimate. The interpretation changes as well, since var £3 = 0 implies that
the standardized path (p32) linking Application and Analysis is unity,
indicating a perfect correlation between these two latent variables. In fact,
Model 5.4.2 can be reparametrized as a four-factor quasi-simplex model
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fc {3 £4 fc

Figure 5.3. Reparametrization of Model 5.4.2 as a four-factor quasi-simplex
model. Co, Comprehension; Ap, Application; An, Analysis; Sy, Synthesis; Ev,
Evaluation.

with the observed variables for Application and Analysis measuring a
single latent construct, as indicated in Figure 5.3.

In choosing between a five- or four-factor interpretation, the issue is
whether we regard Application and Analysis as a single process or as two
processes that are indistinguishable as measured by the Kropp and Stoker
tests. In other words, our model fitting may have exposed conceptual or
theoretical problems with the taxonomy, or it may have revealed technical
problems with the measures used.

The problems of retaining the variable Knowledge in the taxonomic
flow are of a similar kind. In a paper that reported a preliminary LISREL
reanalysis of the Kropp and Stoker data to test the simplex assumption in
Bloom's taxonomy, Hill and McGaw (1981) discussed the misplacement
of the Knowledge category from a theoretical viewpoint. They noted that
the authors of the Bloom taxonomy had themselves been aware of
difficulties with the Knowledge category, distinguishing it from the other
categories they referred to collectively as "arts and skills." They further
noted that others had found it necessary to make a similar distinction.
Ryle's (1949) classic attack on the intellectualist doctrine of "the ghost in
the machine" in his chapter "Knowing How and Knowing That" was
quoted as a good example. There are clear parallels between Ryle's
propositional knowledge and Bloom's Knowledge category, and Ryle's
procedural knowledge and Bloom's higher-order categories. On the basis
of this parallelism, it was suggested that although no hierarchical
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"Atomic
Structure"

(Kn)

"Glaciers"

(Kn)

1
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Earthquake'1

(Kn)

"Economic
Growth"

(Kn)

Figure 5.4. One-factor model for Knowledge (Kn).

relationship exists between the two forms of knowing, there is a hierarch-
ical structure among the five higher-order categories.

Multivariable simplex models

It will be recalled that Kropp and Stoker designed not one but four
taxonomic tests, two in science and two in social studies. We now illustrate
how structural models can be used to test the hypothesis of a cumulative
hierarchy of variables making use of all the data contained in the 24-
variable combined-grades matrix referred to earlier.

The first step is to determine whether the four tests do in fact belong to
two distinct content areas (science and social studies). Expressing this in
terms of a structural model, the question is whether, at each level of the
taxonomy, the relationships among the four tests can be explained in
terms of a two-factor model.

We investigate this empirically by considering the six variables (Knowl-
edge through Evaluation) separetely and fitting a one-factor null model
to each of the six four-variable submatrices for each latent variable. Thus,
beginning with the variable Knowledge, we fit the model shown diagram-
matically in Figure 5.4 to the correlations among the Knowledge sub tests
of the four Kropp and Stoker taxonomic tests and proceed to fit a similar
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Table 5.6. Goodness-of-fit for one-factor model: combined grades
(N = 3,850)

Variable %2(2) Critical N

Knowledge 40.22° 448
Comprehension 4.32 5,097
Application 23.05" 956
Analysis 4.50 4,893
Synthesis 6.73° 3,272
Evaluation 4.35 5,061

a p < .05.

model to the other five four-variable submatrices (Comprehension
through Evaluation). The results are given in Table 5.6. Clearly a one-
factor model fits these data very well indeed as judged by critical N (CN =
448 - 5,097).

In Table 5.7, the first two columns present parameter estimates
obtained from fitting a one-factor model to the six four-variable sub-
matrices for each latent variable. In the third column are the factor model
reliability coefficients for the observed variables in measuring the six latent
variables and analogous reliability coefficients reported by Kropp and
Stoker (1966, p. 71). The reliability coefficients computed from the factor
model are simply the squares of the factor loadings given in the first
column of Table 5.7. The reliabilities reported by Kropp and Stoker are
Kuder-Richardson 20-item analysis internal consistency coefficients for
Knowledge through Analysis and inter judge reliability coefficients for
Synthesis and Evaluation. In every case the coefficients reported by Kropp
and Stoker are considerably larger than the corresponding factor model
estimates.

These results point to two conclusions. First, the good fit of the one-
factor model to the data indicates that the hypothesis of two content
factors should be rejected. Had the two science tests ("Atomic Structure"
and "Glaciers") and the two social studies tests ("Lisbon Earthquake"
and "Stages of Economic Growth") defined two content areas, the one-
factor model would have been rejected and the matrix of residuals would
have revealed significant residual correlations between pairs of subtests at
each level of the taxonomy. This, however, is not the case. Second, the
discrepancies between the Kropp and Stoker internal consistency esti-
mates and the factor model estimates of reliability suggest that each
subtest is associated with a significant amount of test-specific variance.
The relatively higher values of KR-20 are due to test-specific variance,
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Table 5.7. Parameter estimates and reliabilities: combined grades
(N = 3,850)

Variable/test

Knowledge
"Atomic Structure"
"Glaciers"
"Lisbon Earthquake"
"Economic Growth"

Comprehension
"Atomic Structure"
"Glaciers"
"Lisbon Earthquake"
"Economic Growth"

Application
"Atomic Structure"
"Glaciers"
"Lisbon Earthquake"
"Economic Growth"

Analysis
"Atomic Structure"
"Glaciers"
"Lisbon Earthquake"
"Economic Growth"

Synthesis

"Atomic Structure"
"Glaciers"
"Lisbon Earthquake"
"Economic Growth"

Evaluation
"Atomic Structure"
"Glaciers"
"Lisbon Earthquake"
"Economic Growth"

A.,

0.741
0.811
0.718
0.734

0.668
0.770
0.753
0.793

0.670
0.785
0.758
0.766

0.599
0.598
0.706
0.718

0.678
0.502
0.792
0.685

0.653
0.702
0.649
0.591

var 8,

0.451
0.343
0.485
0.461

0.553
0.407
0.432
0.372

0.551
0.384
0.426
0.413

0.641
0.642
0.501
0.485

0.540
0.748
0.372
0.531

0.574
0.507
0.579
0.651

Factor model
reliability
estimates

.549

.658

.516

.539

.446

.593

.557

.629

.449

.616

.575

.587

.359

.358

.498

.516

.460

.252

.627

.469

.426

.493

.421

.349

Reliabilities
reported by

Kropp & Stoker

KR-20

.810

.816

.758

.824

.693

.677

.743

.745

.694

.731

.689

.731

.632

.539

.684

.614

Interjudge

.89

.72

.71

.79

.83

.75

.81

.72
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Figure 5.5. Model 5.5.1 as fitted to the Kropp and Stoker combined-grades data.
A, "Atomic Structure"; G, "Glaciers"; L, "Lisbon Earthquake'; E, "Economic
Growth"; Kn, Knowledge; Co, Comprehension; Ap, Application; An, Analysis;
Sy, Synthesis; Ev, Evaluation; •+>, fixed parameter.

which in the factor model is treated as a component of error variance. This
test-specific variance could reflect detailed content differences between
subtests as well as other differences, such as time of testing or other
sources of variance peculiar to each subtest. Because of the difficulty of
ascribing any meaningful interpretation to the notion of distinct content
differences among the four subtests at each level of the taxonomy, we take
the view that this test-specific variance should be regarded as measure-
ment error only.

From this decision, we proceed to fit various quasi-simplex models to
the full 24-variable correlation matrix on the assumption that at each level
of the taxonomy all four of the Kropp and Stoker taxonomic tests
measure a single latent variable. The first model to be fitted (Model 5.5.1)
is shown diagrammatically in Figure 5.5. A second model (Model 5.6.1) is
essentially the same model applied to the 20-variable correlation matrix
for all subtests after deleting those relating to Knowledge. In both Models
5.5.1 and 5.6.1, the values of Xt and vare, are fixed equal to the parameter
estimates obtained from first fitting a one-factor model to the subtests
measuring each of the six latent variables. These are the values shown in
the first two columns of Table 5.7. By fixing the measurement model
component of the full structural model represented by Figure 5.5, a
considerable saving in computer processing time is obtained, but more
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Table 5.8. Goodness-of-fit for five models: combined grades
(N = 3,850)

Model

5.5.1
5.6.1

5.5.2
5.6.2

5.7.1

X2

6692.30°
5064.15

1280.57
659.44

662.14

d.f.

289
201

229
161

146

Critical N

190
178

798
1,118

1,018

a p < .05 for all values in this column.

important, the possibility of "interpretational confounding" of the latent
variables is avoided.3

As is evident from the high chi-squares and the low critical N of Table
5.8, both Models 5.5.1 and 5.6.1 result in a poor fit to the observed data.
Inspection of the matrices of normalized residuals revealed that this was
due to correlated errors of measurement between subtests within tests.
This is not surprising: As noted earlier, each of the four taxonomic tests is
based on a single topic and involves an extended reading passage. We may
therefore anticipate a significant amount of common factor variance
among subtests within tests. Thus, we modify Models 5.5.1 and 5.6.1 to
allow correlations among the errors for all subtests with each test by
specifying the covariance matrix of the errors of measurement 8 as

0e 0

o o o L L eepE

in which 9EAA to 9E£Eare submatrices of correlations among errors, and the
subscripts A, G, L, and E refer to the four tests ("Atomic Structure,"
"Glaciers," "Lisbon Earthquake," and "Economic Growth," respec-
tively). Tests of fit for these modified models (Models 5.5.2 and 5.6.2) are
given in Table 5.8, and parameter estimates for the structural component
of the modified models are shown in Table 5.9.

Tables 5.8 and 5.9 also give results for a third model (Model 5.7.1),
which is fitted to the 20-variable matrix in order to investigate and
illustrate an alternative approach to modeling these data. In Model 5.7.1,
which is shown diagrammatically in Figure 5.6, the values of Xf and vare,
are allowed to be free, and the correlations among errors of measurement

0
0
Q

0
0
0
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Table 5.9. Standardized parameter estimates for three models: combined
grades (N = 3,850)

Parameter

PK,CO(P 2 I )

Pco.Ap(P3 2)

PAp.An(P43)

PAn.Sy(P54)

Psy.Ev(P65)
var^i)
var^Co((;2)

var5Apft3)
var^W
var^5)
var^Ev((;6)

5.5.2

0.798
0.996
0.988
0.866
0.849
1.000
0.363
0.008
0.025
0.251
0.279

Model

5.6.2

—
0.997
0.992
0.854
0.846

—
1.000
0.006
0.016
0.272
0.284

5.7.1

—
0.997
0.993
0.858
0.868

—
1.000
0.006
0.013
0.264
0.246

within tests are assumed to be accounted for by four test-specific factors.
Both the fit and the parameter estimates for the structural component of
this model closely resemble those of Model 5.6.2.

As can be seen from Table 5.8, the modified models (5.5.2, 5.6.2, and
5.7.1) fit the data much better than do the initial models (5.5.1 and 5.6.1),
and judging by the values for critical TV all three of the modified models
can be regarded as providing a good fit to the data. Two important
features of the modified models are that they result in "proper" solutions
(i.e., positive estimates of residual variances) and have all their structural
parameters uniquely identified. These two features tend to favor the
present models over the single-variable quasi-simplex models described
earlier. A further critical feature of the results for the modified models is
the relatively small improvement in fit resulting from deleting the
Knowledge subtests from the analysis. Whereas a dramatic improvement
in fit is achieved between Models 5.2.1 and 5.4.1 (or 5.4.2), only a modest
improvement is obtained between Models 5.5.2 and 5.6.2 (or 5.7.1).
Although the critical TV fit index for Model 5.2 suggests that Knowledge
could be retained in the model, it should nevertheless be noted that the
path coefficient Kn -> Co has the smallest value of the path coefficients
linking the five process factors. We therefore conclude that our structural
analyses of the Kropp and Stoker data generally support the psycho-
logical assumptions underlying Bloom's taxonomy, although on both
theoretical and empirical grounds doubts remain regarding the status of
Knowledge in the taxonomic flow and also regarding Application and
Analysis as separate processes.
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Figure 5.6. Model 5.7.1 as fitted to the Kropp and Stoker combined-grades data.
For abbreviations, see begins to Figure 5.5.

This is not to say that a quasi-simplex model is the most parsimonious
explanation of the Kropp and Stoker data. Indeed, the parameter
estimates are strongly suggestive of a two-factor model. However, the goal
of the theory-confirming process in structural modeling is not to identify
the most parsimonious model, but to test an a priori theoretical structure.
Therefore, in view of the degree of support for the initially hypothesized
structure, we resist the temptation to pursue other models with fewer
parameters and better fit, but for which there may be little or no
theoretical support.

In stating that our results generally support the Bloom assumptions, we
must make a further qualification. The models have been estimated with
the maximum likelihood procedures in LISREL, which assume that the
observed variables have a multinormal distribution. Multinormal data
represent an ideal that is seldom, if ever, realized in practice and is
particularly unlikely in the case of taxonomic test data. Furthermore, if
subtest means follow the hypothesized ordering of the corresponding
taxonomic categories, higher-order subtests are likely to exhibit positive
skewness and lower-order tests are likely to be associated with negative
skewness. Such score distributions will result in estimated intercorrela-
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tions of reduced magnitude, which, though not necessarily producing a
simplex structure, may nevertheless reinforce and exaggerate any tendency
toward such a structure. It would seem possible that aspects of the
distribution of the observed variables may in part be responsible for the
observed pattern of intercorrelations among the Kropp and Stoker tests,
although the available data published as a correlation matrix do not allow
an investigation of their effects. In the absence of such information it is
necessary to acknowledge that a degree of uncertainty is associated with
the analyses and interpretation of results presented above.

For a more detailed analysis of the Kropp and Stoker data and
discussion of the influence of distribution factors in taxonomic test data,
the reader is referred to Hill (1982).

Conclusion

Our analyses of Kropp and Stoker's data for Bloom's taxonomy illustrate
the power and flexibility of a structural modeling approach to the testing
of theories involving a hierarchy of variables of increasing complexity. By
making successive adjustments to obtain models that accord with the
observed data, we are able to identify possible problems with the original
theory or with the measurement of variables in the models and to obtain
clues as to the directions further empirical research might take.

Notes

This study is based on work done as part of the author's doctoral studies at
Murdoch University under the supervision of Professor Barry McGaw, for whose
support the author is especially grateful.
1. For a discussion of indices for comparing the fit of a hypothesized model with a

zero- or one-factor null model, the reader is referred to Tucker and Lewis
(1973) and Bentler and Bonett (1980).

2. Strictly speaking, standard errors in LISREL are applicable only to analyses
based on covariance matrices. The analysis of correlation matrices is justified in
the present instance on the basis of their greater interpretability and because the
variables in the data have no inherent metric; thus, a standardized covariance
(correlation) matrix is as meaningful as any other arbitrary scaling.

3. The problem of "interpretational confounding" is explained by Burt (1973) as
follows: "Because the confirmatory factor-analytic model of estimation will
consider all . . . observed variables simultaneously, it will take advantage of the
covariance of the indicants of separate concepts to improve the fit of the model
to the data set by allowing the covariance of the indicants of different concepts
to influence the extraction of the unobserved variables.. . . What this means to
the theorist is that the unobserved variables will not only be a function of the
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covariance of their constituent indicants, but will also be a function of their
constituent indicants with the indicants of other unobserved variables in a
proposed structure. In this fashion, the confirmatory factor model can
confound the interpretability of the unobserved variables it extracts" (p. 159).
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6
A study of longitudinal causal
models comparing gain score

analysis with structural equation
approaches

LESLIE HENDRICKSON AND BARNIE JONES

Introduction

Current trends in applied research have witnessed the widespread adapta-
tion of multiple regression techniques to research projects and program
evaluations. Although regression analysis is a powerful technique, it owes
much of its power to highly restrictive and often unrealistic assumptions.
The interpretation of regression results, especially the assessment of the
relative impact or importance of independent variables, can be difficult.

This chapter compares methodological procedures for analyzing longi-
tudinal data. It critically compares regression analysis of gain scores with
structural equation approaches. The analytic techniques discussed here
are applicable to any longitudinal analysis. These general techniques are
exemplified by the secondary analysis of data from the What Works in
Reading? study conducted by the School District of Philadelphia (Kean et
al. 1979a,b).

Following an introduction to the data, the analysis proceeds in three
steps. First, specification of the dependent variable is examined. The
original report (Kean et al. 1979a) treated reading improvement as a net
change or gain score. Gain scores are widely used in American schools.
Results of using the gain score as a dependent variable are compared with
results obtained when reading at time 1 (7\) and reading time 2 (T2) are
treated as separate dependent variables in a longitudinal model (see
Models 1 and 2 in Figures 6.1 and 6.2, respectively). Second, the model is
reformulated as a latent variable structural model to relieve problems due
to collinearity among the independent variables. Third, the latent variable
model is subjected to a sensitivity analysis (Land & Felson 1978) with
regard to random measurement error in the dependent variables and to
specification error due to the omission of theoretically important inde-
pendent variables. This analysis demonstrates how small changes in model
specification and residual assumptions can modify results.

86
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Sample and data collection

The original sample consisted of 1,800 fourth grade students in 25 schools
drawn from a population of 190 schools. Schools were stratified on the
basis of average scores in 1974 and 1975, for grades 1-4, on reading
portions of the California Achievement Test (CAT). The sample excluded
schools that showed major shifts in average reading score level from 1974
to 1975, selecting 10 with high, 10 with low, and 5 with medium scores in
both years. Schools were selected from all eight administrative subdistricts
of the city. The resulting sample is representative of the range of average
school achievement levels in the district, but it purposely screens out
schools in which the average ability level is changing. Student-level data
were gathered from school records. In all, data on 245 variables were
gathered and analyzed.

Selection of variables

Using regression analysis, the researchers (Kean et al. 1979a,b) narrowed
the field from 245 to 18 variables that had statistically significant
regression coefficients when predicting change in reading achievement.
The selection process by which these variables were identified was
evidently statistical significance alone.1 Our secondary analysis began
with these 18 variables. Seven were quickly eliminated because they
accounted for less than 1 percent of the variance in the dependent variable
and appeared to contribute nothing to the analysis.

Table 6.1 lists definitions, means, and standard deviations for 11 of the
independent variables and for the 3 dependent variables: the gain score
and the third and fourth grade reading scores. The 11 independent
variables include measures of student, teacher, and school organization.
These variables were selected because the Philadelphia researchers found
that they had a statistically significant |3 weight in predicting the gain
score.

Table 6.2 shows the correlation matrix of the variables listed in Table
6.1. The impression obtained from Table 6.2 is that the matrix is thin. Of
the 90 correlations in it, only 19 percent are greater than .15, and only 13
percent are greater than .25. Among pairs of the 11 independent variables
only 9 percent of the correlations are greater than .25. The highest
correlation of any variable with CATGAIN, the gain score, is .08.

Gain score model

The regression analysis used the difference between the third and fourth
grade reading achievement scores as a single dependent variable. The use
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Table 6.1. Code names, definitions, means, and standard deviations for
11 independent variables and 3 dependent variables

Code name Definitions Mean S.D.

Xx Days students were present in grade 4 130.51 10.41
X2 Student attended kindergarten, 1 = NO, 2 = 1.80 0.40

YES
X3 Number of nonteaching support staff per —a 11.02

school, grade 4
X4 Percentage of students scoring above 84th 0.20 0.13

percentile in California Achievement Test 1976
- Total Reading, measured at grade 4; the
grade 3 proportion is assumed to be similar to
grade 4

Xs Percentage of classroom teachers with less 0.20 0.14
than two years of experience; measured at
grade 4; the grade 3 proportion is assumed to
be similar to grade 4

X6 Number of teacher pay periods with no
absence

Xn Teacher attends outside professional
conference meetings, 1 = NO, 2 = YES

X8 First year teaching grade 4, 1 = NO, 2 =
YES

X9 Minutes per week of individual independent
reading

Xlo Teacher would select the same reading
program again

Xx 1 Times per week aide in room during reading
7\ - T2 Difference between grade 3 and grade 4 scale

score
T1 California Achievement Test - Reading

Comprehension Scale Score for grade 3, 1975
T2 California Achievement Test - Reading

Comprehension Scale Score for grade 4, 1976

a The mean for X3 was not shown in the November 1979 technical report of What
Works in Reading? (Kean et al. 1979b). If not indicated, variable is measured at
grade 4.

of "difference," "change," or "gain" scores has been thoroughly examined
(Thorndike & Hagen 1955; McNemar 1958; Thorndike 1966; Bohrnstedt
1969; Cronbach & Furby 1970; Alwin & Sullivan 1975; Kim & Mueller
1976; Kessler 1977; Pendleton, Warren & Chang 1979). As a result of
these examinations the use of gain scores has been discouraged, because
the difference between the two measures has lower reliability than the

13.89

1.17

1.17

73.35

1.54

2.55
28.43

385.06

412.50

3.79

0.39

0.35

60.31

0.50

2.31
52.50

67.74

72.56



Table 6.2. Correlation matrix for 14 variables in Philadelphia achievement study (N = 1,363)

Xx

x2
x3XA

X5

x6Xn

xax9
x
X\i
T2~
7\
T2

Days
stud.

present

x,
1.000
.115

-.134
.134

-.056
-.017
-.033
-.061

.086
-.029
-.116

T, .074
.161
.197

Stud.
attended

x2

1.000
-.145

.141
-.095
-.006

.004

.013

.034
-.006
-.110

.020

.123

.129

No. of non-
teaching
support

staff
* 3

1.000
-.626

.327

.135
-.027

.104
-.143
-.142

.527
-.004
-.290
-.273

% Studs.
above 84th
percentile

CAT - 1976
XA

1.000
-.154
-.040
-.082

.007

.113

.030
-.427
-.051

.386

.382

% Classrm.
teachers
with less

than 2 yr.
exper.

Xs

1.000
.078
.118
.021
.005

-.033
.074
.071

-.118
-.065

No. of teacher
pay periods

with no
absence

x6

1.000
.005
.021

-.004
.080
.010
.042
.076
.101

Teacher
attends
outside
conf.
X,

1.000
.021

-.125
.023
.254

-.037
-.112
-.132

1st yr.
teaching

gr.4
X6

1.000
.021

-.011
-.012
-.002
-.139
-.132

Min./wk.
individ.

independ.
reading

X9

1.000
-.119
-.069

.083

.090

.144

Teacher
select
same

reading
program

X\Q

1.000
-.106
-.007

.187

.169

Aide time
during
reading

each
wk.

1.000
.004

-.362
.335

Diff.
betw. gr. 3

& gr. 4 scale
score

T2 - 7\

1.000
-.292
N.A.

CAT - Read.
Comp.

Scale Score,
gr. 3-1975

Tx

1.000
.722

CAT - Read.
Comp. Scale

Score,
gr. 4-1976

T2

1.000
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measures considered separately. Consequently, their use requires low
error variance and high reliability of measurement. Also, calculations of
the gain score reliability tend to be untrustworthy because the calculations
depend on five estimates: three correlations and two variances. Finally,
the analysis of gain scores is complicated by the effects of regression
toward the mean.

However, in addition to the problem of poor reliability, there is
another, perhaps more serious problem with the gain score model. To
illustrate, consider the following two models:

T2 = P7\ + mxt + ex (6.1)
T2- 7\ = ZMO + e2 (6.2)

Equation (6.1), which we call the conditional model, is derived from
Figure 6.2. Equation (6.2) represents the gain score model described in
Figure 6.1. If 7\ is added to both sides of (6.2), the result is

T2 = Tx + £MG + e2 (6.3)

Comparing (6.3) with (6.1), it can be concluded that, unless P = 1,

One could say that the gain score model produces biased estimates of the
effects of the independent variables by unnecessarily constraining P to
equal 1.

A structural equation model

Model 6.1, a gain score model, is shown in Figure 6.1. All independent
variables are assumed to influence the gain score and are assumed to be
measured without error. One alternative to the gain score analysis is one
that uses data from both time points rather than the difference score. The
analyses reported in this chapter used the maximum likelihood ex-
ploratory factor analysis (EFAP) and structural equation programs
(LISREL V) of Joreskog and Sorbom (1981).

Figure 6.2 shows one alternative model (Model 6.2) for analyzing the
Philadelphia data using both dependent variables, Tx and T2, together
instead of analyzing their difference. Two structural equations were
estimated using the 11 variables; first the third grade achievement variable
was used as the dependent variable, then the fourth grade variable was
used. Three of the 11 variables are hypothesized to influence both the third
and fourth grade scores, whereas the other eight are hypothesized to
influence only the fourth grade score. The three variables influencing
scores at both times were the student's attendance in kindergarten (X2),



Student's attendance
at school

Student went to kindergarten

Ratio of nonteaching staff
to students

Proportion of high-achieving
students in school

Proportion of new teachers
in school

Number of absences of
fourth grade teacher

Attendance of fourth grade
teachers at outside

conferences

Experience of fourth
grade teachers

Number of minutes students
spend reading independently

Teacher would select same
reading program again

Gain Score
(fourth grade score

minus third
grade score)

Hours per week of classroom
reading aide support x,,

Figure 6.1. Model 6.1: a gain score model. No time assumptions are made; all
independent variables are assumed to affect a single dependent variable. All error
terms are assumed to be zero.



Student's attendance
at school

Student went to kindergarten

Ratio of nonteaching staff
to students

Proportion of high-achieving
students in school

Proportion of new teachers
in school

Number of absences of
fourth grade teacher

Attendance of fourth grade
teachers at outside

conferences

Experience of fourth
grade teachers

Number of minutes students
spend reading independently

Teacher would select same
reading program again

Third Grade
Score

Fourth Grade
Score

Hours per week of classroom
reading aide support

Figure 6.2. Model 6.2: a longitudinal model. Three independent variables are
assumed to affect T2, the third grade score. All variables and the third grade score
are assumed to affect T2, the fourth grade score. All error terms are assumed to be
zero.
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the proportion of students in the school scoring well on the achievement
test (XO, and the proportion of new teachers (Xs).

This model is recursive in that the fourth grade score is assumed to have
no effect on the third grade score. The identification of recursive models is
usually obtained by making particular assumptions about error terms. A
common procedure for identifying Model 6.2 is to assume that the
disturbance terms (residuals) are uncorrelated and that the independent
variables are measured without error. Two additional modeling strategies
might be proposed. One is simply to include 7\ among the Xt in the
following single-equation model:

T2 = EPm^+i + e3 (6.5)

The difficulty here is that autocorrelation in the residuals of the serially
measured variables 7\ and T2 will affect all the estimates of the b(.

Bornstedt (1969) has proposed a method using residualized scores that
avoids this problem. The first step is to calculate the regression of 7\ on
T2, as in (6.6):

T2 =P7\ + e4 (6.6)

Although estimates of P and e4 may be inefficient because of autocorre-
lation, they are unbiased (Johnston 1972, p. 246; Neter & Wasserman
1974, p. 352). Estimates for the remaining independent variables are then
obtained by solving for P in (6.7):

+ e5 (6.7)

However, rearranging (6.6), we see that

e* = T2 - P7\ (6.8)

And substituting for e4 in (6.7) it is evident that (6.9) and (6.10) are
formally equivalent to (6.1); that is, the longitudinal model is formally
equivalent to Bornstedt's (1969, p. 118) model for residualized scores:

T2 ~ p7\ = £P/*/ + e5 (6.9)

T2 = P7\ + £P/*/ + e5 (6.10)

This method does not resolve doubts about estimates of P when autocor-
relation is present. However, it does isolate P so that more satisfactory
estimates of the other slope coefficients in the equation can be obtained.
To a limited extent, additional steps are taken to address autocorrelation
in the sensitivity analysis presented later in this chapter.
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Table 6.3. Estimates of Model 6.1 and Model 6.2°

Independent
variable

x1
x2
x3
x4xs
x6xnX8

x9X\o
X\i
Ti

R2

X2/dS.

Gain Score Model

T2 ~

0.373*
2.587

-0.407*
-44.753*

31.111*
0.635

-3.829
1.803
0.062*

-0.625
0.010

.03

(0.074)
(0.020)
(-0.085)
(-0.111)
(0.081)
(0.046)
(0.028)
(0.012)
(0.071)
(-0.006)
(0.000)

10.445*

190.846*
-24.782*

.20

Longitudinal Model

(.062)

(.366)
(-.050)

T

0.579*
4.183
0.434*

63.114*
3.733
1.064*

-4.075
14.180*
0.123*

12.267*
-3.642*

0.653*

.47
278/8

2

(0.083)
(0.024)
(0.066)
(0.113)
(0.007)
(0.056)
(-0.022)
(-0.068)
(0.102)
(0.085)
(-0.116)
(0.610)

a Asterisked values are significant at less than .05; values in parentheses are
standardized estimates.

Analysis of Models 6.1 and 6.2

Estimates were obtained for all 11 independent variables. These estimates
are presented in Table 6.3. The gain score model yields quite a different
picture than the longitudinal model. First, P = 0.65 in the conditional
model; we demonstrated earlier that in order for the gain score model to
be unbiased it is necessary for P to equal unity. This suggests substantial
misspecification in the gain score model. The variables X2 and Xn are not
significant in Model 6.1 or in equation (6.2) of Model 6.2. Teacher's
attendance at outside conferences, Xl9 is an ambiguous measure. It may
measure level of professional interest and awareness, but it may also
measure teacher absence from the classroom or a desire for upward
professional mobility, that is, to get out of the classroom.

Student attendence at kindergarten, X2, is an interesting variable since
it is insignificant in Model 6.1 and in the equation involving dependent
variable T2 of Model 6.2, but significant in the equation involving
dependent variable T2 in Model 6.2. Kindergarten experience has an
indirect effect on achievement, which is omitted in the specification of the
gain score model.

The variable for teacher experience, X5, is significant in Model 6.1 but
not in Model 6.2. This suggests that students of experienced teachers show



Gain score vs. structural equation approaches 95

more improvement than students of inexperienced teachers, but when we
control for reading competence at Tl9 teacher experience makes no
difference in reading competence at T2. The effect found in Model 6.1
could represent a difference in assignment, since Model 6.2 suggests that
the assumption that experienced teachers are more effective is false.

Four teacher and classroom variables, X6, X8, Xl0, and I n , are non-
significant in Model 6.1 but are significant in Model 6.2. Again this may
reflect patterns of assigning pupils with low achievement to classrooms
with more available resources.

Three remaining variables, Xl9 X4, and X9, are significant in both
models. However, X4 changes sign. It is interesting that Xx and X9, along
with X2, are the only independent variables measured at the student level.
All others are observed at the classroom and school levels. The interpreta-
tion of Xl9 student attendance, and X9, time in the classroom spent
reading independently, is straightforward. Students who come to school
more often and spend more time reading while at school can read better at
the end of the year.

The variables X3 and X4, supplementary staff and proportion of high-
achieving students, have a positive sign in Model 6.2 and a negative sign in
Model 6.1. Model 6.2 provides more plausible results, indicating that
supplemental staff contribute to, rather than detract from, a student's
ability to read.

This is a complex association. The variables X3 and X4 are highly
correlated negatively, —.626. Considering just Model 6.2, they have
opposite signed correlations with the dependent variable, but their effects
in Model 6.2 have the same sign. Substantively, it seems that X* is
measuring the level of general reading achievement in the school. It is also
possible that what is being measured is the socioeconomic level of the
school. Middle- and upper-middle-class students tend to have higher
levels of scholastic success than working and lower-class students.2

In either case, Model 6.2 suggests that since supplemental staff persons
are assigned on the basis of need, schools with low general levels of
competence will receive more staffing resources, accounting for the high
negative correlation between X3 and X4. Consequently, X3 has a negative
correlation with T2, because of this allocation effect; but when X3 and X±
are entered in the same equation, the partial effect of X3 is positive,
suggesting that, when the allocation effect of staffing is controlled, the
effect of supplement staffing on reading levels is positive.

In Model 6.1 the effects of both X4 and X3 on the gain score are nega-
tive, which has led users of the earlier study to conclude that supplemen-
tary staffing has a detrimental influence (Rankin 1980). However, it is likely
that this is due instead to the negative association between gain and initial
competence level. Low-achieving students make higher gains, perhaps
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because there is more room for improvement and perhaps also because of
supplementary staff, that is, more concentrated instruction.

The foregoing interpretation seems satisfactory except that it is con-
tradicted by the behavior of I n (classroom aide time) in the model.
Support staff (X3) and aide time (Xxx) are positively correlated (.527), and
it should be reasonable to expect each to measure the same underlying
attribute. However, the effect of Xx x on reading achievement is negative.
One or both of the following may account for this apparent anomaly.
First, since X3 and Xx x are correlated at a moderately high level, the effect
of each may be distorted when both are included in the same equation.
Second, since Xx x is measured at the classroom level and X3 at the school
level, Xxx may be sensitive to within-school effects that are not picked up
by X3. It seems reasonable to assume that similar considerations that lead
to allocation of more staff to low-achieving schools will lead to a similar
allocation among classrooms within a school. Once again, however,
whatever compensatory results aides may accomplish, these may be offset
by the circumstances that led to their assignment in the first place.

In any case, it seems quite clear that three correlated variables X3, X4,
and Xx x have both common and unique effects on reading achievement. In
the next section we describe a measurement model that is intended to
simplify this complex structure.

In summary, Model 6.2 tends to produce a pattern of effects that comes
closer than the pattern of Model 6.1 to matching reasonable expectations
about reading achievement. Reversals in signs of effects suggest that the
performance of a particular student depends largely on that student's
achievement at Tx. When a student's initial achievement level is taken into
account, a clearer picture of the factors contributing to his or her
progress is obtained.

Model 6.2 accounts for approximately 20 percent of the Tx variance and
45 percent of the T2 variance. This is a substantial improvement over the
small (2.5%) amount of gain score variance accounted for by Model 6.1.
At the same time it must be emphasized that effects are small in both
models and, although statistically significant, may be substantively
trivial. For example, Model 6.2 indicates that each day of absence from
the classroom results in an expected loss of half a point on the CAT -
Total Reading when the mean and standard deviation of that test are
412.50 and 72.56, respectively. Model 6.2 also indicates that each
additional hour per week spent reading independently results in an
increase of 6.12 points on the CAT, perhaps a small return for the increase
in effort.

These findings must be viewed in the context of model specification. We
have seen how readily the sign and magnitude of effects can be altered
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when new information is added. The addition of other variables would
probably alter the estimates, because the low percentage of variance
explained suggests that there are other major influences on reading
abilities that have not been taken into consideration.

The results demonstrate the principal advantage of a two-equation
longitudinal model over the more conventional gain score model. The gain
score model incorporates the assumption that the third grade score has no
effect on achievement, except to define a starting point relative to which
gain is measured. We have argued that decisions about the use of
educational resources are based partly on the child's past performance.
Consequently, the effect of past achievement on present and future
achievement is much more complex than what the gain score assumes,
and it is therefore advisable to estimate the effect of past on present
achievement directly from data. We have shown that differences in
estimates that were found between the gain score and longitudinal models
could plausibly be accounted for in terms of decisions to allocate
resources, based on a child's past performance and current needs, and that
the gain score model presents a remarkably distorted view of the effects of
school resources on reading achievement.

A measurement model with correlated errors

Model 6.2 leaves the issue of the effects of X4 and Xxl unresolved. Along
with X3, which we temporarily treat as a proxy measure of staff allocation,
these two variables were analyzed using confirmatory factor analysis to
explore a range of factor structures. The two-factor structure shown in
Model 6.3 (Figure 6.3) produced the most satisfactory fit.

The measurement model was identified by fixing X33 at 1. The final fit
was very good (x2 = 20.79 with 15 degrees of freedom and p = .143).
Substantial improvement in the indicators of goodness-of-fit were ob-
tained by allowing the indicated error terms to be correlated.

Note that variables specified to have errors correlated to that of X4 are
variables relating to the teacher's training, confidence, and experience. We
suggest that these correlations may indicate that teachers in schools that
have been identified as low-achieving schools may feel more pressure to
exaggerate their qualifications. Not having participated in the data
collection process, we undertake this discussion of measurement error
with some hesitation, but we venture to say that this would not be the first
time that subjects in an evaluation study felt threatened.

The Model 3 structure suggests that X3 and Xlx have different but
overlapping structures with X4. The correlation between the two factors is
— .75. If the lack of similarity of effects of X3 and Xx x had been due to a



98 LESLIE HENDRICKSON AND BARNIE JONES

Figure 6.3. Model 6.3: independent measurement model, showing detail of factor
structure. Estimates have been standardized.
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distortion from collinearity, it should have been possible to load all three
variables on one factor. That a single-factor structure did not fit is
empirical evidence that the effect of Xx x is indeed partly different from that
of X3.

A modified structural model

Model 6.4, shown in Figure 6.4, includes Model 6.3, the measurement
model. To simplify presentation, links among the factors shown in Model
6.3 are not shown in Model 6.4. The full model links the measurement
model for the independent variables to that for the dependent variables.

Model 6.4 is like Model 6.2 except that it incorporates a measurement
model (Model 6.3) on the independent side. In Model 6.2, Z 4 is
hypothesized to influence both 7\ T2, but X3 and Xxl influence only T2.
This results in a dilemma concerning the place of the two factors that
replace these three variables in Model 6.4. Empirical underidentification is
a possible problem here (Rindskopf 1984). Since X± loads on both factors,
it was decided that both factors should be allowed to influence Tx.

As mentioned %2 for the fit of the measurement model was low (20.79
with 15 d.f.). For the full structural model, the fit was not as good (%2 =
212.34 with 74 d.f.). The fit improved when six F parameter estimates,
T n , F 1 6 , F 1 7 , F 1 8 , F 1 9 , F 1 0 , were freed (x2 = 43.73 with 80 d.f.).
However, it is not theoretically sensible to free these F elements, because
they represent events in 1976, which can have no causal impact on a 1975
test score.

Comparison of Models 6.2 and 6.4

Table 6.4 compares estimates obtained from Model 6.2 with those
obtained from Model 6.4. The more complex factor structure has
increased the proportion of variance explained in the 7\ and T2 variables,
Tx from .20 to .31, T2 from .47 to .55. Of major interest are the effects of
the two factors associated with X3, X4, and XX1. Factor 3, which is
influenced by X3 but not Xx x, has a positive effect greater than the effect of
either X3 or X4 in Model 6.2. Factor 4, influenced by Xx x but not X3, has a
very large effect, which is considerably larger than the negative effect of
X1X in Model 6.2. Recalling that Xxl (aide time) loads negatively (— .698)
on Factor 4, it appears that specification of a latent structure did not
eliminate the negative effect of aide time on reading achievement. Indeed,
that negative effect is stronger and more evident.

There are other notable changes in estimates. Teacher attendance, X6,
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Figure 6.4. Model 6.4: the full model, detailing effects between independent
factors omitted for clarity. See Model 6.3 for details.

has a small but significant effect in Model 6.2 but an insignificant effect in
Model 6.4. Teacher attendance at outside conferences, X-j, is not signifi-
cant in Model 2 but has a small significant effect in Model 6.4. Teacher
approval of the reading program, X10, is significant in Model 6.2 but not
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Table 6.4. Comparison of Model 6.2 with Model 6Aa

Independent
variable

x3

Factor 3

XA

Factor 4

* 5

x6

xn

x9

R2

X2/d.f.

Model 6.2

10.45*
(0.06)

190.85*
(0.37)

-24.78
(-0.05)

.20
277/8

T2

0.58*
(0.08)

4.183
(0.02)

0.43*
(0.07)

63.11*
(0.11)

-3.64*
(0.12)

3.77
(0.01)

1.06*
(0.06)

4.07
(0.02)

14.18*
(0.07)

0.12*
(0.10)

12.27*
(0.09)

0.65*
(0.61)

.47

Model 6.4

3.81*
(0.02)

1.91*
(0.31)

-30.94*
(0.74)

-63.19*
(-0.13)

.31

T2

0.30*
(0.04)

2.13
(0.01)

1.46*
(0.22)

-17.81*
(0.40)

-6.50
(-0.01)

0.38
(0.02)

12.80*
(0.06)

-9.18*
(-0.04)

0.13*
(0.11)

3.72
(0.02)

0.59*
(0.55)

.55
212/18

a Asterisked values are significant at less than .05; values in parentheses are
standardized estimates.

in Model 6.4. Since the magnitude of these eflFects is of minor substantive
importance, one hesitates to draw conclusions, but they are consistent
with the suggestion that a teacher's performance is related to his or her
eflFectiveness in the use of aides. The process of separating out the eflFect of
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a possible overreliance on aides caused the effects of other teacher and
classroom variables to shift.

The analysis of measurement and specification error

To this point we have considered three different models. Regardless of
which is considered best, our modifications have resulted in changes in the
magnitudes of estimated effects, leading to changes in interpretation as
well. However, investigation need not, and often should not, end with a
model with an acceptable fit. Variables in education and social science
research are usually measured with more than negligible error. Also, it is
never possible to be sure that all relevant variables have been included in a
given model.

Given strong theory and excellent research design, it is sometimes
possible to obtain direct estimates of error by constructing a measurement
model based on multiple indicators, as suggested by Hauser and Gold-
berger (1971). However, although we have neither strong theory nor a
particularly good design, all is not lost. Sensitivity analysis (Land &
Felson 1978; Kim 1984) is a general method by which specific estimates
obtained from a particular model can be scrutinized in terms of "sensitiv-
ity" to alterations of assumptions.

The sensitivity analysis described here uses alternative combinations of
fixed values and compares their results. This procedure is discussed by
Kim (1984, pp. 276). The LISREL framework makes it very convenient to
perform sensitivity analysis. To specify assumed error in a dependent
variable, for example, one need only specify a fixed value for the
appropriate error term. To specify errors in equations, appropriate values
are entered as fixed parameters in the *F matrix and, for errors in the
measurement of variables, in the 9 matrix.

Thirty-six alternative models were specified. Each of the two dependent
variables was assumed to contain zero, 5 or 10 percent measurement error,
resulting in nine possible combinations. In addition, for each combination
of measurement assumptions, fqur levels of specification error in equa-
tions were tested (0%, 5%, 10%, 15%).

The level of specification error was to reflect variables not in the model,
which should be expected to have some impact on both r\l and r)2.
Specification error may also be reflected in a correlation between the
residuals (£i,e2) f ° r e a c r i equation explaining r|x and r|2, respectively. A
correlation between E1 and e2 reflects influences on both equations, which
can be attributed to omitted variables. In Model 6.4, there are no
measures of student background characteristics, and we would expect this
omission to be reflected in such a correlation. Thus, the direct effect of r]1

and r\2 and ((32i) may be spuriously high.
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The error assumptions investigated are, even in the worst case, fairly
optimistic about Model 6.4, assuming that the test scores (dependent
variables) are 90 percent reliable and that all relevant unmeasured
independent variables would explain only 15 percent of additional
variance in r|2.

Results of the sensitivity analysis are presented in Table 6.5. Several
expected but interesting conclusions can be drawn from this analysis.
First, p2i is not sensitive to error in Y2.

3 Unstandardized slope estimates
will be affected only when measurement error is in the independent
variable. Of more interest is the impact of specification error \|/2i, which
has a dramatic impact on the magnitude of p21 and its standard error.
Note that, as P21 decreases, its standard error increases. One of the
insidious aspects of this kind of autocorrelation is this double bias toward
rejection of a true null hypothesis with respect to p2 1 because of
underestimation of mean squared error (Neter & Wasserman 1974).4

Concluding comments

The original report (Kean et al. 1979a) bases conclusions on methodolog-
ical practices that may be inappropriate. Among these are the procedure
by which 18 "significant" independent variables (out of 245) were selected,
the uncritical use of gain scores, and disregard for problems of measure-
ment error.

Important methodological lessons can be drawn from the secondary
analysis described in this chapter. The procedure by which independent
variables were selected reflected a lack of theoretical guidance about the
substantive model of interest, although this is essential in multivariate
analysis. With a large number of variables, statistical significance is not a
particularly useful criterion. With 245 variables, 12 correlations can be
expected to be "significant" by chance (at the .05 level), to say nothing of
the even larger number of partial regression coefficients that can be
expected to be significant.

The secondary analysis reported here entailed successive refinements.
This is not to say that other approaches would not be equally appropriate.
For example, the gain score model could also be refined by "residualizing"
the gain score variable, as recommended by Bohrnstedt (1969).

The gain score model (Model 6.1) yields results that are virtually
uninterpretable. Effects contradict long-standing principles of educational
practice. The longitudinal model (Model 6.2) results in large changes in
the magnitude and sign of effects compared with findings in Model 6.1.
Effects in Model 6.2 are also more in agreement with expectations (see
Rankin 1980). Subsequent refinements, including the introduction of
a measurement model among the independent variables (Model 6.3), and



Table 6.5. Resulting parameter estimates given error assumptions in Ylf Y2, and v|/2i

Percentage of
1

Yl

0
0
0
0

0
0
0
0

0
0
0
0

error

Y2

0
0
0
0

5
5
5
5

10
10
10
10

in:

*l>21

0
5

10
15

0
5

10
15

0
5

10
15

Estimates0

P21

0.592
0.515
0.437
0.359

0.593
0.516
0.440
0.364

0.592
0.519
0.445
0.371

0.029
0.029
0.031
0.032

0.029
0.030
0.031
0.033

0.030
0.031
0.032
0.034

of:

R2

.581

.577

.566

.548

.611

.608

.597

.579

.645

.642

.631

.613

Percentage of

Y1

5
5
5
5

5
5
5
5

5
5
5
5

error

Y2

0
0
0
0

5
5
5
5

10
10
10
10

in:

^ 2 1

0
5

10
15

0
5

10
15

0
5

10
15

Estimates

P21

0.639
0.557
0.476
0.393

0.639
0.559
0.479
0.399

0.639
0.561
0.483
0.405

0.029
0.030
0.031
0.033

0.030
0.031
0.032
0.034

0.031
0.032
0.033
0.035

of:

R2

.597

.594

.582

.564

.629

.625

.614

.595

.664

.660

.649

.630

Percentage of
error i

Yx

10
10
10
10

10
10
10
10

10
10
10
10

Y2

0
0
0
0

5
5
5
5

10
10
10
10

in:

+21

0
5

10
15

0
5

10
15

0
5

10
15

Estimates

P21

0.694
0.607
0.520
0.434

0.694
0.609
0.524
0.440

0.694
0.611
0.529
0.447

0.031
0.031
0.032
0.034

0.032
0.032
0.033
0.035

0.032
0.033
0.034
0.036

of:

R2

.617

.613

.601

.582

.649

.645

.634

.615

.685

.681

.670

.651

is the standard error of p2
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an analysis of the sensitivity of the estimates to measurement error
(Model 6.4), do not suggest large shifts in parameter estimates from the
unrefined model, but they do illustrate techniques that can be applied
as new generations of software make them not only practical but
accessible.

Notes

1. This kind of analysis may clearly capitalize on chance, and if the analysis was in
fact conducted as we have suggested, by an undisciplined romp through a
correlation matrix, it might be said that there is no point in further considera-
tion of variables selected in this manner. However, our point of view is that, like
too much policy research, its methodological limitations have not hindered the
adoption of the study's recommendations by practitioners in education who
may lack sophistication in research methodology.

We did not have the option of going back and replicating the analysis.
Instead, we chose to make those refinements in method that were available
to us. In this way, we showed that, by introducing a more appropriate
specification of the model, support for some of the more important and
controversial policy recommendations of the original study disappeared or was
reversed.

2. This variable, it might be logically concluded, should have been based on data
from 1975 (7\) instead of 1976 (T2). However, data from 1975 were not
available. Conversations with School District of Philadelphia staff indicated
that year-to-year changes in such school wide measures of achievement could
be assumed to be negligible. Also, the sampling method described above (see
also Kean et al. 1979a,b) helps to ensure that 1975-6 changes in schoolwide
reading achievement are trivial.

3. Changes in p21
 o v^r levels of error in Y2 occur whenever \J/2i > 0. Parameter

v|/2i is specified as a percentage of r\21, whereas e2 is specified to be a percentage
of Y2. When e2 changes, so does r\2

 a n d, therefore, the quantity (v|/21)(r|2). The
changes in (32 x result from this level of specification error.

4. It is tempting to be reassured by the observation that / = p/Sp is relatively
constant, but in a multivariate model it is possible to have upward bias in one or
more (321 estimates with downward bias in corresponding standard errors,
resulting from poor reliability of one or more variables. It is only in the
bivariate case that measurement error can be relied on to result only in simple
attenuation (Won, 1982).
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7
Some structural equation models of
sibling resemblance in educational
attainment and occupational status

ROBERT M. HAUSER AND PETER A. MOSSEL

Introduction

Sociologists and economists have long recognized the importance of
measuring the effects of schooling. Its influence on such measures of
success as occupational status and earnings serves, on the one hand, as an
indicator of the role of educational institutions in fostering (or hampering)
social mobility and, on the other hand, as an indicator of the productivity
of personal and public investments in schooling. At the same time, it is
well known that social and economic success may depend directly on
personal characteristics and conditions of upbringing that also affect the
length and quality of schooling.1 For these reasons, it is by no means
obvious that an association of schooling with social or economic success
can be interpreted in causal terms, and many studies have attempted to
determine the degree to which such causal inferences are warranted.

The effects of background, broadly conceived, on achievement can be
taken into account by modeling the similarity of siblings. That is, a
research design based on sibling pairs (or w-tuples) permits a statistical
decomposition of variances and of covariances into "between-family" and
"within-family" components. If fraternal differences in schooling lead to
differences in adult success, we can be confident that the association of
schooling with success is not merely an artifact of the tendency of school
success to run in families that are also economically successful. This has
helped to motivate a number of studies of the stratification process that
are based on samples of siblings, rather than of the general population,
perhaps most notably in the two major studies by Jencks and associates
(1972, 1979).

Griliches (1977, 1979) noted a potentially significant methodological
twist in the use of sibling-based research designs. In a regression, say, of
occupational status on schooling, random response error (unreliability of
measurement) in schooling will lead to more (downward) bias in the
within-family estimator than in a naive regression that ignores family
effects. This occurs because response error will affect the validity of

108
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individual responses, but not of family effects, when the latter have been
specified as latent variables. Consequently, a given component of unreli-
able variance in schooling is larger relative to within-family variance than
to total variance. The biases attributable to omitted background variables
and to response error are probably opposite in effect, and it is necessary to
correct both at the same time.

In the late 1960s, little was known about the sensitivity of estimated
parameters to response error in models of the stratification process. Since
then, there have been a number of efforts to measure the reliability and
validity of survey reports of socioeconomic variables, and contrary to
some expectations (Bowles 1972), they have not led to massive downward
revisions in estimates of the effects of schooling on occupational or
economic success (Hauser, Tsai, & Sewell 1983). At the same time,
Griliches's (1977, 1979) argument shows that it is important to correct for
response error in within-family regressions of adult success on schooling.
Jencks et al. (1972, App. B) and Olneck (1976; pp. 166-98) made
pioneering efforts to do this.

The present analysis uses multiple measurements of educational attain-
ment and occupational status for 518 male, Wisconsin high school
graduates and a random sample of their brothers to develop and interpret
skeletal models of the regression of occupational status on schooling that
correct for response error and incorporate a family variance component
structure. Hauser (1984) cross-validated our findings in Wisconsin sister
pairs and sister-brother pairs and in Olneck's (1976) Kalamazoo brother
sample. We call our models "skeletal" because they do not include explicit
socioeconomic background variables, mental ability and other social
psychological variables, or outcomes of schooling other than occupational
status. Methodological complications arise because the sample consists of
sibling pairs; primary respondents rather than families are the sampling
units; and primary respondents served in some cases as informants about
their brothers.

The methodological issues addressed here occur also in larger models
and are closely paralleled in other areas of social scientific research. For
example, in analyses of neighborhood effects (Bielby 1981), husband-wife
interaction (Thomson & Williams 1982), fertility (Clarridge 1983), polit-
ical identification (Jennings & Niemi 1981, Chap. 4), and, more generally,
in the analysis of change over time (Joreskog & Sorbom 1977, Kenny
1979, Kessler & Greenberg 1981). It could even be argued that models of
the present form should supplant the analysis of covariance as the
standard model for analyses of contextual effects (Boyd & Iversen 1979);
one practical advantage is that many models are identified with only two
observations per family, organization, or other unit of aggregation.
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Following a brief description of the Wisconsin data, the first part of the
analysis compares the simple regressions of occupational status on
schooling between brothers without correcting for response error. Next,
we specify a structural model with separate regressions of occupational
status on schooling for families, primary respondents, and brothers, but
without any correction for response error. Following this, we develop a
measurement model for the regressions of status on schooling and
compare the corrected regressions of primary respondents and their
brothers. We combine the measurement model with the family
variance component structure and compare within- and between-family
structural regressions. We then compare these estimates with the naive
estimates that fail to compensate for response error or for family effects.
Finally, we briefly discuss models with cross-sibling effects and close with
a discussion of some possible extensions of this work.

The Wisconsin sibling data

The Wisconsin Longitudinal Study has followed a random sample of
more than ten thousand men and women who were seniors in the state's
public, private, and parochial high schools in 1957 (Sewell & Hauser
1980). Late in the senior year, detailed information was collected on the
social origins, the academic ability and performance, and the educational
aspirations of the students. There were successful follow-up surveys of
the total sample (with ~90% response rates) in 1964 and in 1975. The
first follow-up, a mail survey of the parents of the primary respon-
dents, yielded education histories and reports of marital status, occupa-
tion, and military service. The 1975 telephone survey yielded additional
firsthand reports of social background, educational and occupational
experiences, marital and fertility histories, and formal and informal social
participation.

From the 1975 survey we obtained a roster of the siblings of the primary
respondent, including date of birth, sex, and educational attainment. For
a randomly selected sibling, current address and occupation were as-
certained. In 1977, telephone interviews were conducted with a stratified
sample of the selected siblings. Of 879 brothers of male primary respon-
dents in this sample, telephone interviews were completed with 749, a
response rate of 85.2 percent (Hauser, Sewell, & Clarridge 1982, pp.
7-13). For the present analysis, we further restricted the sample to those
518 pairs of brothers aged 20 to 50 for whom the nine variables listed in
Table 7.1 had been ascertained. Only 19 pairs were lost because of the age
restriction, but an additional 212 pairs were dropped because they lacked
complete data. In many cases the missing data were due to school
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Table 7.1. Names and descriptions of variables: 518 brother pairs in the
Wisconsin sample with complete data

Variable Label Description (source, date of survey)

Respondent's years of schooling (R, 1975)
Respondent's years of schooling (P, 1964)
Brother's years of schooling (B, 1977)
Brother's years of schooling (R, 1975)
Respondent's current occupation (R, 1975)
Respondent's 1970 occupation (R, 1975)
Brother's current occupation (B, 1977)
Brother's 1975 occupation (R, 1975)
Brother's 1970 occupation (B, 1977)

Note: Educational attainment is scaled in years of schooling. Occupational status
is scaled on Duncan's Socio-Economic Index. R, Respondent; P, Parent; B,
brother.

enrollment or absence from the labor force rather than to item
nonresponse.

As shown in Table 7.1, there are two indicators of the educational
attainment of the primary respondent (EDEQYR, EDAT64) and of his
brother (XEDEQYR, SSBED). The first member of each pair is a self-
report and the second is a proxy report. In the case of the primary
respondent, the proxy report (EDAT64) was coded from the educational
history in the 1964 follow-up, and in that of the brother, the proxy report
(SSBED) was given by the primary respondent in the 1975 survey. In both
cases there is some slippage in time between the self-report and proxy
report, and consequently some true educational mobility may appear as
response variability in later models. To minimize this problem, as well as
that of classifying postgraduate education in years, we followed the U.S.
Census Bureau practice of collapsing schooling at or beyond 17 years.

All of the occupation reports have been classified using materials
from the U.S. Census Bureau and coded in the Duncan Socio-Economic
Index (Duncan 1961; Hauser & Featherman 1977, App. B). There are
self-reports of the primary respondent's occupational status in 1970
(OCSX70) and in 1975 (OCSXCR), there are self-reports of the brother's
occupational status in 1970 (XOCSX70) and in 1977 (XOCSXCR), and
there is a proxy report (by the primary respondent) of the brother's
occupational status in 1975 (OCSSIB).

As in the case of educational attainment, there is some spread in the
temporal referents of these measurements, and some true status mobility
may appear to be response variability. There are two reasons for our
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decision to treat the indicators for each brother as measures of the same
occupational status construct. First, even over a period of several years,
unreliability looms large relative to mobility as a component of observed
change in occupational status (Bielby, Hauser, & Featherman 1977).
Second, our intention is not to depict the true status of the individual at an
instant in time, but to highlight a relatively stable feature of his placement
in the occupational hierarchy. Thus, our concept of response variability in
occupational status is inclusive of true short-run changes in status.

Table 7.2 reports the means and standard deviations of the nine status
variables and their intercorrelations. Note that brothers have slightly less
schooling than primary respondents but are more variable in schooling.
There is a similar pattern in the case of occupational status. This reflects
basic differences between the populations of primary respondents and of
brothers. There is a floor on the schooling of primary respondents but not
of their brothers; because they were selected as high school seniors, none
of the former obtained less than 12 years of regular schooling. Moreover,
nearly all of the primary respondents were born in 1939, whereas the ages
of their brothers varied widely over the range from 20 to 50. These cohort
and age differences between the primary respondents and their brothers
may also have affected the joint distributions of educational attainment
and occupational status.

In modeling sibling resemblance, the usual procedure is to treat the
members of a given sibling pair as unordered or indistinguishable (Jencks
et al. 1972, 1979; Olneck 1977; Olneck & Bills 1980). Common family
factors affect each member of the pair in the same way, so there is only one
within-family regression. Families, rather than individuals, are the units of
analysis. This greatly simplifies data analysis. In particular, regressions of
intrapair differences yield unbiased estimates of within-family regressions,
regardless of the pattern of common (family) causation. Because the
Wisconsin brothers are sampled through a narrowly defined cohort of
primary respondents, symmetry between brothers in the joint distri-
butions of variables cannot be assumed, but must be demonstrated
empirically.

Simple regressions of status on schooling

The first step in our analysis is to estimate and compare the simple
regressions of occupational status on schooling for primary respondents
and their brothers without correcting for response error. We anticipate
that there may be differences between the regressions for primary
respondents and their brothers because there is a floor on the schooling of
primary respondents and because the brothers (but not the primary



Table 7.2. Product-moment correlation coefficients, means, and standard deviations: Wisconsin brothers (N = 518)

Variable

Yi
Y2

Y3

Y4
Y5

Y6

Yn

Ys
Y9

Mean
S.D.

Label

EDEQYR
EDAT64

XEDEQYR
SSBED

OCSXCR
OCSX70

XOCSXCR
OCSSIB

XOCSX70

Yx

1.000
.906
.404
.419
.552
.590
.217
.217
.228

13.60
2.09

Y2

1.000
.437
.450
.525
.562
.243
.245
.257

13.38
1.83

Y*

1.000
.926
.251
.300
.622
.627
.628

13.37
2.27

1.000
.252
.295
.568
.593
.575

13.29
2.22

1.000
.818
.264
.265
.247

4.91
2.44

Y6

1.000
.315
.307
.275

4.88
2.41

Yn

1.000
.815
.819

4.80
2.57

YB

1.000
.780

4.72
2.51

Y9

1.000

4.49
2.54

Note: Correlations are based on 518 pairs of brothers for whom complete data were available. For an explanation of labels, see Table
7.1. For convenience in the scaling of coefficients, values of the Duncan Socio-Economic Index have been divided by 10.
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Table 7.3. Least squares regressions of occupational status on
educational attainment for primary respondents and their brothers:

Wisconsin brothers (N = 518)

Dependent
variable

OCSXCR
OCSXCR
OCSX70
OCSX70
XOCSXCR
XOCSXCR
OCSSIB
OCSSIB
XOCSX70
XOCSX70

Independent
variable

EDEQYR
EDAT64

EDEQYR
EDAT64

XEDEQYR
SSBED

XEDEQYR
SSBED

XEDEQYR
SSBED

Parameter

v|/5i

^ 5 2

* 6 1

V|/62

V|>73

*l>74

* 8 3

*l>84
v|>93

*|>94

Estimate

.643

.701

.678

.739

.702

.656

.691

.669

.701

.657

Standard
error

.058

.066

.059

.066

.058

.058

.057

.058

.058

.058

Note: Duncan Socio-Economic Index scale values have been divided by a factor of
10. Standard errors are estimated to take account of the clustering of observations
within families and persons. Parameters v|/,y are labeled as in Figure 7.1.

respondents) vary widely in age. Table 7.3 displays the 10 zero-order
regressions of own occupational status on won schooling, four among
primary respondents and six among their brothers. Considering the
heterogeneity of populations, informants, and temporal referents, these
regressions are remarkably similar. The two extreme estimates, both
pertaining to the primary respondent, are .643 and .739, and the
remaining estimates cluster in the range from .65 to .70.

To establish a baseline for later comparisons, we want to obtain pooled
estimates of the zero-order regressions for primary respondents, for their
brothers, and for all persons regardless of response status. We want to
know whether these several estimates are significantly different from one
another. Furthermore, we want to learn the sources of differences, if any,
among the estimates. These appear to be straightforward problems, but
they are complicated by two facts: (1) There are two measurements of
educational attainment for each brother, and (2) the brother's equation
and the primary respondent's equation are not independent of one
another because of the family linkage.

The general form of the regression is

YR = P l^R + 8R (7.1)
^s = P2AR + es (7.2)
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where YR and Ys are measurements of socioeconomic status of respondent
and sibling, respectively, XR and Xs are the respective measurements of
educational attainment, and eR and es are disturbances cov(eR,es) ^ 0.
Furthermore, there may also be cross-sibling covariances c o v ^ , es) # 0
and cov(Ar

s,cR) # 0. The first complication is that we have multiple
observations of XR and Xs, but we want a single estimate of px and a single
estimate of p2. The second complication is related to the fact that

cov(7R, Fs) = p1p2cov(XR,Ar
s) + cov(eR,es)

es) + P2cov(JJfs, eR) (7.3)

where COV^YR,^) is, in general, not equal to zero. The implication of
cov(7R, Ys) T* 0 is thus that px and p2 have to be estimated jointly subject
to cov(eR, es) / 0, cov(XR, es) 7̂  0, and cov(Xs, 8R) / 0.

A simple rescaling model permits us to specify several hypotheses about
Px and p2 and, at the same time, allows multiple measures of XR and Xs.
Figure 7.1 is a symbolic representation of this model in the LISREL
notation (Joreskog & Sorbom 1978). To illustrate this model, we present
the simple regression of status on schooling among primary respondents.
Let YR be measured by OCSXCR = r|5 and XR by EDEQYR = X ^ ,
and note that c o v ^ , ^ ) = \|/51 by construction. Then by the definition
of the zero-order regression coefficient,

_ ft _ cov(EDEQYR, OCSXCR)
^OCSXCR, EDEQYR " P i var(EDEQYR)

= cov^r i i^sVvar tEDEQYR) = ^\|/51/var(EDEQYR)

It follows that, if we choose X2 = var (EDEQYR), the variances cancel in
the numerator and denominator of (7.4) and $x = \ j / 5 1 . More generally,
under the following choice of scalar transformations, namely,

X, = var(EDEQYR) (7.5)
X2 = var(EDAT64) (7.6)
X3 = var(XEDEQYR) (7.7)
X4 = var(SSBED) (7.8)

the covariances (elements of *F) between the four education indicators and
the five indicators of occupational status are rescaled as zero-order
regression coefficients, and it becomes possible to test the desired equality
restrictions on the P's by imposing them on corresponding v|/'s in the
LISREL model.

Table 7.4 shows goodness-of-fit and restricted estimates of slopes under
four versions of the model of Figure 7.1. In Model 7.1.1 the four
regressions pertaining to primary respondents have been restricted to be
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EDEQYR

EDAT64

XEDEQYR

SSBED

XOCSXCR

XOCSX70

Figure 7.1. Structural equation model for testing homogeneity within and
between siblings in regressions of occupational status on educational attainment.
The model includes all covariances among r\l . . . r|9, but only those subject to
constraints are shown and labeled. See text for explanation.

equal, yielding a pooled slope estimate of .662. Under this specification,
the inequalities among slopes are not statistically significant at the .05
level; that is, the fit of the model is acceptable. In Model 7.1.2, the six
regressions pertaining to brothers of primary respondents have been
pooled, yielding a common slope estimate of .690; again, heterogeneity is
not statistically significant. In Model 7.1.3, the two preceding sets of
constraints are imposed simultaneously; that is, there is one pooled slope
for primary respondents and another slope for their brothers. Here,
heterogeneity is of borderline statistical significance (p = .03), and the
common slope estimates are .666 for primary respondents and .679 for
brothers. In Model 7.1.4, a single common slope across alternate measures



Structural models of sibling resemblance 117

Table 7.4. Constrained estimates of the regression of occupational status
on educational attainment for primary respondents and their brothers:

Wisconsin brothers (N = 518)

Model of homogeneity

7.1.1. Primary respondents

7.1.2. Brothers

7.1.3. Within siblings

7.1.4. Complete

L2

7.71

8.93

16.73

16.76

d.f.

3

5

8

9

P

.052

.112

.033

.053

Slope
(standard error)

Respondent

.662
(.057)

—

.666
(.057)
.673

(.042)

Brother

.690
(.055)
.679

(.054)
.673

(.042)

Note: Line numbers refer to alternative specifications of the model of Figure 7.1.

and across primary respondents and their brothers is estimated to be .673,
and the fit is negligibly worse than that of Model 7.1.3.

We conclude that there is very little evidence of heterogeneity in the
zero-order regressions of occupational status on schooling between
primary respondents and their brothers; indeed, there is more evidence of
heterogeneity in the estimates for the same brother than between brothers.
We take the common slope estimates of Model 7.1.3 and Model 7.1.4 as
the desired bases for comparison with estimates under models with
response error and/or a common family factor.

Within- and between-family regressions

Figure 7.2 shows a simple path model of sibling resemblance in educa-
tional attainment and occupational status. Here X1 and X2 are measures
of the educational attainment of the primary respondent and his brother,
respectively; Yx and Y2 are the corresponding measures of occupational
status. Both Xx and X2 load on a between-family education factor £2, and
each also loads on a unique, within-family component of education ^
or £3,

Xi = ki + Si (7.9)
X2 = XS2$2 + S3 (7.10)
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7n

(primary respondent)

722

(family)

733

(brother)
Educational Occupational
attainment status

Figure 7.2. Structural equation model of sibling resemblance in educational
attainment and occupational status.

where cov[^,, ^ ] = tytj = 0 for / # j . Similar equations define between- and
within-family components of occupational status:

Y1 = r\2 + ri! (7.11)
2 = ^22^2 "r ^3 U-^)

Last, the model specifies regressions of occupational status on educational
attainment for primary respondents, families, and brothers, respectively,

+ Si (7.13)
Tl2 = 722^2 + 2̂ (7-14)
Tl3 = Y33^3 + $3 (7-15)

where qt is defined as the disturbance of r],, and cov^-,^-] = cov[^,<;,] =
covfe,?,] = Ofori # y .

The path diagram in Figure 7.2 gives the appearance that each of the
parameters of the model may differ between the primary respondent and
his brother. In fact, we cannot make this assumption because the model
would not be identified. As shown, the model has 11 parameters: 3
variances of £'s (in <I>), 3 variances of disturbances in r)'s (in H*), 3
structural regressions (y's), and 2 scale factors (kx

22 and Xx
22). However,
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there are only 10 sample moments: 4 variances and 6 covariances among
the 4 observable indicators. In order to identify the model, it is necessary
to impose at least one restriction on the parameters. We chose to impose
two restrictions Xx

22 = A£2
 = U this implies that both pairs of within-

family variables are in the same metric as the family factors, which justifies
comparisons of slopes among the three regressions.

We experimented with other identifying restrictions, for example, tylx

= \|/33, which says that disturbance variances are equal in the two within-
family regressions. However, this restriction does not equate the metrics of
the two within-family slopes. It is interesting that in this one-population
model, where observations are clustered within families, we find exactly
the same problem of normalizing the metrics of unobserved variables that
is usually discussed in connection with interpopulation comparisons.
Fortunately, to anticipate our empirical findings, the data for primary
respondents and their brothers are so nearly symmetric that in retrospect
the choice of initial identifying restrictions does not seem as serious a
matter as we first thought.

The model of Figure 7.2 differs from some other models of sibling
resemblance in its expression of the within-family regressions (Olneck
1976, pp. 139-49, 1977; Corcoran & Datcher 1981, pp. 195-7). That is, in
the present model, the within-family regressions are written in dis-
turbances of the family factor model, and in the alternative model, the
within-family regressions are written directly in the individual educational
and occupational variables. Critics have suggested either that the alterna-
tive is superior to our model or that the two models are equivalent. Hauser
(1988) has compared the two models and shown that they are algebra-
ically equivalent when the two within-family regressions are homogeneous.
Otherwise, they are not equivalent, and the alternative model has
undesirable logical implications. Moreover, when the within- and
between-family regressions are nearly homogeneous in slope, as we have
found in the present case (Hauser 1984), the second model exhibits
symptoms of "empirical underidentification."

Table 7.5 shows goodness-of-fit and selected parameter estimates for
one version of the model of Figure 7.2. The model uses only one indicator
of educational attainment and of occupational status for each member of
the fraternal pair, and we have selected the self-reports of educational
attainment and occupational status at the survey dates. We begin with a
model that imposes equivalent scales on all of the variables, and we then
test whether the parameters for primary respondents, their brothers, and
families are similar in other respects. In line 7.2.1 the baseline model yields
seemingly disparate slope estimates for primary respondents, brothers,
and families. Indeed, the within-family slope estimate for primary



Table 7.5. Maximum likelihood estimates of models of sibling resemblance in educational attainment and occupational
status with latent family variables but no correction for response variability: Wisconsin brothers (N = 518)

Model

7.2.1. Xx
22 = W22 = 1

7.2.2. Add Yn = Y33

7.2.3. Add y n = y22 = Y33

7.2.4. Add \|/X1 = \|/33

7.2.5. Add <t>n = <t>33

Note: Estimates are based on self-reports of education and current occupation (EDEQYR, OCSXCR, XEDEQYR, XOCSXCR). Line
numbers refer to alternative specifications of the model of Figure 7.2.

Respondent

.620
(.074)

.691
(.047)

.676
(.029)

.676
(.029)

.676
(.029)

Slope
(standard error)

Brother

.735
(.059)

.691
(.047)

.676
(.029)

.676
(.029)

.676
(.029)

Family

.659
(.074)

.650
(.074)

.676
(.029)

.676
(.029)

.676
(.029)

L2

0.73

2.28

2.44

2.52

6.65

d.f.

1

2

3

4

5

P

.39

.32

.49

.64

.25
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respondents is quite low, whereas the estimate for brothers exceeds that
for families. We shall see that this initial, equivocal finding on bias in the
schooling-occupation relationship recurs throughout the analysis.

The within-family slope estimates for primary respondents and their
brothers do not differ significantly.2 The common, within-family slope
estimate shown in line 7.2.2 of Table 7.5, yxl = y33 = .691, is actually
larger than the common slope that we estimated without correction for
measurement error or family bias (P = .673). Again, there is little evidence
that the omission of common family variables significantly affects these
estimates.

Because of the common influence of families on schooling and occu-
pation, we expected to find steeper between-family than within-family
regressions of occupational status on schooling, but this proved not to be
the case. In the model of line 2.2, the within-family slope estimate is larger
than the between-family slope. Moreover, as shown in line 7.2.3 of Table
7.5, there is virtually no deterioration in the fit of the model when all three
regressions are constrained to share a common slope. Sociologically, this
is a remarkable finding, for it says that there is no family bias in the
relationship between educational attainment and occupational success;
that relationship is just what we would expect from the differential
rewards of schooling across individuals. Again, the common slope
estimate is virtually the same as that estimated under the model of Figure
7.1 (.676 vs. .673).

In lines 7.2.4 and 7.2.5 of Table 7.5, two more restrictions are added to
the model; neither affects the slope estimates or their standard errors.
First, we specify that \|/x x = \|/33; this says that the unexplained variance in
the two within-family regressions, that is, for primary respondents and for
brothers, is the same. Under this additional restriction, there is virtually
no change in fit. Second, we specify that (t>n = 4>33; this says that the
within-family variances in educational attainment are the same for
primary respondents and their brothers. Congruent with our observations
about selection into the sample, the data do not meet the latter restric-
tion.3 Thus, with this one exception, the data do not depart significantly
from the usual assumption of symmetry between siblings.

Measurement models

Figure 7.3 shows a LISREL model that corrects the regressions of
occupational status on schooling for response error. In the structural
portion of the model, there is a corrected regression for each brother,

ri3 = PaiTh + qi (7.16)
TU = P42TI2 + $4 (7.17)



122 ROBERT M. HAUSER AND PETER A. MOSSEL

Educational Occupational
attainment status

Figure 7.3. Structural equation model of distinct fraternal regressions of occupa-
tional status on educational attainment with errors in variables but no family
factors. See Table 7.6 for specification of error covariances.

and the four cross-sibling covariances (v|/12, v|/14, \|/23, and v|/34) are free
parameters. The measurement model incorporates response error in each
of the indicators of educational attainment (Yl9 . . . , F4) and occupational
status (T5, . . . , 79).4 We specify the scale of the latent constructs by fixing
the loadings (k's) of the self-reports of educational attainment (Yx and Y3)
on the education constructs (r\l and T)2) and the loadings of the self-
reports of current occupational status (Y5 and Yn) on the occupational
status constructs (r|3 and r)4) at 1.0 for primary respondents and brothers,
respectively. This implies that the constructs are in the metrics of the
reference indicators and that the variances of the constructs are the true
variances of the respective indicators. This is a convenient normalizing
constraint, because each of the reference indicators is a self-report and
because the same methods were used to ascertain and to code these
variables for the primary respondent and his brother.

The measurement model also includes selected covariances among
response errors, which are not shown in Figure 7.3. The initial specifica-
tion of these error covariances is shown in Table 7.6. Covariances were
permitted between the errors in any pair of variables that had been
ascertained on the same occasion or from the same informant. Thus, the
model permits all possible error covariances among reports by primary
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Table 7.6. Specification of nonzero error covariances in the model of
Figure 7.3

Variable 1 2 3 4 5 6 7 8 9

l . E D E Q Y R Gti
2. EDAT64 — 9f 2

3. X E D E Q Y R — — 9e
33

4. SSBED 94* — — 9 4 4

5. OCSXCR 9e
51 — — 9f4 9e

55

6. OCSX70 9e
61 — — 96/4 9 | 5 9e

66

7. XOCSXCR — — 9e
73 — — — 9e

77

8. OCSSIB 9|j — — 9|4 9|5 9|6 — 9|8
9. XOCSX70 — — 9|3 — — — 9|7 — 9|9

Note: 9|5 is not separately identified and is estimated by 9|5 = 9|7. Covariances
marked with an asterisk were not statistically significant in the baseline model of
Table 7.7 and were dropped from all subsequent models.

respondents and among reports by their brothers, but it permits no error
covariances between reports by primary respondents and brothers, by
primary respondents and parents, or by brothers and parents.5

Table 7.7 shows measures of fit and estimates of the corrected
regressions of occupational status on educational attainment in several
versions of the model of Figure 7.3. The rows of Table 7.7 described
various restrictions on the measurement model. For each version of the
measurement model, panel A (left) pertains to a model with distinct
regressions for each brother (p31 and p42), whereas panel B (right)
pertains to an otherwise similar model, but with a common slope for the
two brothers (P31 = P42). Under every measurement model in Table 7.7,
the two regressions are homogeneous; the contrast between p31 and p42

yields test statistics of the order of 0.5 with one degree of freedom. Thus,
our discussion focuses on comparisons among the rows of the table, which
are virtually unaffected by the slope restriction anyway, and for the most
part we ignore the distinction between versions A and B of each model.

The baseline, Model 7.3.1, incorporates all of the error covariances in
Table 7.6, and it specifies only normalizing restrictions on the loadings of
indicators on constructs.6 That model fits well, but it is possible to specify
a more parsimonious (and statistically more powerful) model by restrict-
ing selected parameters. In the baseline model, six error covariances were
statistically insignificant, and these were dropped from Model 7.3.2: 054,
0|>4> 0! i> 015> and 016. Interestingly, these exhaust the possible terms



Table 7.7. Selected models of the regression of brothers' occupational status on educational attainment with errors in
variables: Wisconsin brothers (N = 518)

Model

7.3.1. Baseline model

7 1 >-\ A6 ne ne AG r\e AG
.J.Z. W41 — W8 1 — U 5 4 — « 6 4 — U 8 5 — U 8 6 —

7.3.3. o f 5 = o f 6 = ee
37 = ee

39

7.3.4. 3.3 plus all ^ = 1

7.3.5. 3 . 3 p l u s Xy
42 = Xy

63 = Xy
84 = Xy

94r = 1

7.3.6. 3.5 plus 9 u = 633, 955
 = 977, 9gg = 9QQ

7.3.7. 3.5 plus Of x = 9G
33, 9

G
55 = 9e

77

7.3.8. 3.7 plus \|/33 = \|/44

7.3.9. 3.8 plus v|/n = \|/22

Note: Line numbers and parameter restrictions refer to alternative specifications of the model of Figure 7.3 and Table 7.6. Parenthetic
entries are standard errors.

P31

.672
(.047)

.672
(.047)

.672
(.047)

.703
(.044)

.698
(.043)

.687
(.042)

.689
(.042)

.689
(.042)

.685
(.040)

A. Distinct

P42

.708
(.041)

.709
(.040)

.709
(.040)

.719
(.036)

.719
(.036)

.720
(.036)

.720
(.036)

.720
(.037)

.720
(.038)

L2

10.51

11.72

11.83

24.51

19.86

29.58

24.39

24.44

29.28

slopes

d.f.

9

15

18

23

22

25

24

25

26

P

.31

.70

.86

.38

.59

.24

.44

.49

.30

B. Common

P31 ~ P42

.693
(.032)

.694
(.032)

.694
(.032)

.713
(.029)

.710
(.029)

.706
(.029)

.707
(.029)

.707
(.029)

.705
(.029)

slope (

L2

10.88

12.13

12.23

24.60

20.02

29.96

24.72

24.77

29.73

P31 = 1

d.f.

10

16

19

24

23

26

25

26

27

P42)

P

.37

.74

.88

.43

.64

.27

.48

.53

.33
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pertaining to confounding between the primary respondent's reports of
his own and of his brother's status characteristics. All of the remaining,
statistically significant error covariances occur between reports about the
same person. There is little difference in fit between Model 7.3.1 and
Model 7.3.2. The preceding models yielded similar estimates of the four
covariances between errors in self-reports of educational attainment and
of occupational status. In Model 7.3.3 these parameters were constrained
to be equal with no significant deterioration in fit.

In Model 7.3.4 all of the loadings of observables on constructs were
fixed at unity. This says that the true variance in every indicator of the
same construct is equal; that is, every indicator of the same construct can
serve equivalently to normalize the scale of the construct. Fit deteriorates
under this specification.7 We determined that the violation of these scale
restrictions was due primarily to differences in the scales of the two reports
of education of the primary respondent, EDEQYR and EDAT64. Thus,
in Model 7.3.5 we relaxed the equivalence between the scales of these two
indicators while retaining the other four scale restrictions.8

To the restrictions of Model 7.3.5, Model 7.3.6 adds three equalities
between error variances in pairs of indicators that were similar in content,
that were self-reported, and that were ascertained and coded in the same
way: EDEQYR and XEDEQYR, OCSXCR and XOCSXCR, and
OCSX70 and XOCSX70. Not all of these restrictions fit the data.9 The
estimation of common error variances for reports of 1970 occupation
accounted for the significant lack of fit, and in Model 7.3.7 we dropped
this constraint.10

Model 7.3.8 adds to Model 7.3.7 the restriction that the variances of the
disturbances are the same in the regressions for the primary respondent
and his brother. There is virtually no change in fit under this restriction.
However, Model 7.3.9 adds the restriction that the variances in educa-
tional constructs are equal for primary respondents and brothers, and this
leads to a statistically significant deterioration in fit.11

It is instructive to compare the slope estimates (P31 and (342) in Models
7.3.7A and 7.3.7B with the common slope estimates in the naive
regressions, reported in lines 7.1.3 and 7.1.4 of Table 7.4. The corrected
estimate for primary respondents (Px = .689) is only 3.5 percent larger
than the common, uncorrected estimate (.666); the corrected estimate for
brothers (p2 = .720) is only 6.0 percent larger than the common,
uncorrected estimate (.679). The corrected, common estimate for primary
respondents and brothers (3 = .707) is only 5.1 percent larger than the
common, uncorrected estimate (.673). Because all of the indicators of
educational attainment are highly reliable, these corrections in slope are
minimal. Table 7.8 reports the reliabilities of the indicators and the
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Table 7.8. Reliabilities and error correlations in a measurement model of
sibling resemblance in educational attainment and occupational status

Variable

1. EDEQYR
2. EDAT64
3. XEDEQYR
4. SSBED
5. OCSXCR
6. OCSX70
7. XOCSXCR
8. OCSSIB
9. XOCSX70

1

.887
—
—
—

.304

.327
—
—
—

2

.929
—
—
—
—
—
—
—

3

—
.904
—
—
—

.304
—

.289

4

—
—
.948
—
—
—

-.284
—

5

.093
—
—
—

.746

.267
—
—
—

6

.088
—
—
—

.078

.775
—
—
—

7

—
.073
—
—
—

.770
—

.235

8

—
—

-0.44
—
—
—

.835
—

9

—
.073
—
—
—

.070
—

.741

Note: Estimates are from Model 7.3.8B in Table 7.7. Entries on the main diagonal
are reliabilities. Entries below the main diagonal are correlations between errors in
variables. Entries above the main diagonal are error covariances, expressed as
proportions of the respective observed covariances. All of the error covariances
are significantly different from zero at the .05 level.

correlations between response errors under Model 7.3.8B. The reliabilities
of the indicators of educational attainment range from .89 to .95; since
slope corrections are inverse to the square root of reliability, the
corrections are quite small.

The reliabilities of the indicators of occupational status are lower than
those of educational attainment, but unreliability in indicators of the
ultimate endogenous variable (occupational status) has no eflFect on the
slope estimates. Four of the five estimates are close to .75, and only
the reliability of OCSSIB is as large as .84. The lower reliabilities of the
indicators of occupational status may reflect temporal spread as well as
errors in reporting and processing the data. Of course, the unreliabilities in
all of the indicators affect the estimated correlations between status
variables. The observed correlations between educational attainment and
occupational status range from .525 to .590 for primary respondents and
from .568 to .628 for brothers. In Model 3.8B the correlation between true
educational attainment and true occupational status is .653 for primary
respondents and .689 for their brothers.

Correlated errors of measurement also affect the regressions and
correlations between the educational and occupational constructs. The
entries below the main diagonal of Table 7.8 are correlations between
errors in Model 7.3.8B. There are positive correlations of approximately
.3 between errors in self-reports of educational attainment and of
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occupational status. These tend to compensate for random response error
by increasing the regressions (and correlations) between observed in-
dicators of schooling and occupational status. At the same time, there is a
negative correlation of about the same size between errors in the primary
respondent's reports of his brother's educational attainment and occu-
pational status, and this adds to the effect of random response error by
decreasing the observed correlation between those two variables. Last,
there are positive correlations of approximately .25 between response
errors in the various self-reports of occupational status; these positive,
within-construct error correlations add to the effect of random response
error by decreasing the observed correlations between educational and
occupational indicators.

As a practical matter, none of the correlated errors has a very large
effect on slope estimates in the model. The error correlations are relatively
large because the response error variances are relatively small. The entries
above the main diagonal of Table 7.8 express the estimated error
covariances as proportions of the respective observed covariances, and
none of these is as large as 10 percent of an observed covariance.

A family factor model with response variability

Figure 7.4 displays a structural equation model of fraternal resemblance
that combines the latent family structure of Figure 7.2 with the measure-
ment model of Figure 7.3. The structural model of Figure 7.4 is identical,
except for changes in notation, to the model in Figure 7.2, whereas the
measurement model of Figure 7.4 is identical to that in Figure 7.3. Table
7.9 shows goodness-of-fit statistics and slope estimates for several versions
of the model in Figure 7.4.12 Again, the unrestricted slope estimate for
primary respondents is less than that for families, which is in turn less than
that for the brothers. Model 4.2 adds the restriction of equal, within-
family slopes for primary respondents and brothers, and this does not
significantly affect fit. As in the uncorrected model, the common, within-
family slope estimate (Yx = y2 = .728) is actually larger than the between-
family slope estimate (y3 = .678). Moreover, the common, within-family
slope estimate under Model 7.4.2 is also larger than the total slope (P =
.707) estimated for primary respondents and brothers in the constrained
measurement model (line 7.3.7B in Table 7.7).

Model 7.4.3 adds the restriction that all three slopes are homogeneous;
again, there is no deterioration in fit. The common slope estimate yx = y2

= y3 = .708 is virtually the same here as in the measurement model
without the family factors, p = .707 (see Model 7.3.7B of Table 7.7). The
common slope estimate in Model 7.4.3 is only 4.7 percent larger than the
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Figure 7.4. Structural equation model of sibling resemblance in educational
attainment and occupational status with errors in variables and latent family
factors.

uncorrected common slope in Model 7.2.3 of Table 7.5 (y = .676); it is
1.051 times larger than the common slope estimate in the naive regressions
(^ = .673). We are left with the strong impression that neither family
factors nor response error have substantial effects on our estimates of the
occupational effects of schooling.13

Model 7.4.4 of Table 7.9 adds the constraint that disturbance variances
are the same in the within-family regression of primary respondents and
brothers (\|/66 = \|/77), and the fit is virtually unaffected by this. However,
the data are not consistent with the addition of the restriction in Model
7.4.5 that true within-family variances in educational attainment are equal
for primary respondents and their brothers (v|/66 = v|/77); L

2 = 4.97 with
1 degree of freedom. Model 7.4.4 is our preferred measurement and
structural model, and Table 7.10 gives additional structural parameters of
that model.



Table 7.9. Maximum likelihood estimates of models of sibling resemblance in educational attainment and occupational
status with errors in variables and latent family factors: Wisconsin brothers (N = 518)

Model Respondent

.674
(.081)

.728
(.047)

.708
(.029)

.708
(.029)

.708
(.029)

Slope
(standard error)

Brother

.756
(.057)

.728
(.047)

.708
(.029)

.708
(.029)

.708
(.029)

Family

.684
(.062)

.678
(.062)

.708
(.029)

.708
(.029)

.708
(.029)

L2 d.f.

7.4.1. y31 = p51 = 1

7.4.2. Add y62 = y73

7.4.3. Add Y62 = Y73 = Yn

7.4.4. Add \|/66 = i|/77

7.4.5. Add <t>22 = 4>33

26.07

26.74

27.03

27.07

32.04

25

26

27

28

29

.40

.42

.46

.51

.32

Note: Line numbers refer to alternative specifications of the model of Figure 7.4. These results are based on the measurement model of
line 7.3.4A in Table 7.7.
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Table 7.10. Estimates of structural parameters in a model of sibling
resemblance in educational attainment and occupational status with errors

in variables and latent family factors: Wisconsin brothers (N = 518)

Parameter Estimate Standard error

Y62 = ?73 = Yll 0.708
1.823
0.793
1.991
1.885
2.730

0.029
0.169
0.147
0.217
0.234
0.256

Note: Estimates are based on Figure 7.4 and Model 7.4.4 in Table 7.9.

If regressions of occupational status on schooling are homogeneous
across persons and families, this by no means denies the importance and
visibility of families in the stratification process. For example, for primary
respondents, 51.4 percent of the variance in schooling lies between
families, and for their brothers 42.2 percent of the variance in schooling
lies between families. Thus, there is just about as much variance in
schooling between as within families.14

Of the total variance in occupational status, whether or not it is
attributable to differences in schooling, 39.3 percent lies between families
in the case of primary respondents, and 35.9 percent lies between families
in the case of their brothers. Similarly, there is much less unexplained
variance in occupational status between than within families: 30.3 percent
occurs between families, and the remaining 69.7 percent lies between
individuals within families. Thus, the unexplained within-family and
between-family variances in occupational status are by no means equal.15

The within- and between-family variances of schooling are not very
different from one another, and the slopes of occupational status on
schooling are also homogeneous across families and persons; thus, the low
unexplained between-family variance in occupational status implies that
the correlation between occupational status and schooling will be larger
between than within families. Under Model 7.4.4 of Table 7.9, the within-
family correlations are .584 for primary respondents and .655 for their
brothers; the between-family correlation is .746.

An extension: cross-sibling effects

Siblings' achievements may be similar by virtue of modeling, tutoring,
financing, or other directly facilitating roles and activities, as well as
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common upbringing. Nonetheless, most models of sibling resemblance
have specified common factor causation and neglected intersibling
influences. In other cases, age or ordinal position of siblings has been
invoked to specify the direction of causality (from older to younger), thus
sidestepping the issue of reciprocal influence (Benin & Johnson 1984). For
example, Olneck (1976, pp. 198-214) showed that, with one minor
exception, intersibling differences in achievement among Kalamazoo
brothers were not related to age differences between them; he concluded
that models of common family causation were at least as plausible as any
of his own efforts to specify effects of older upon younger brothers. Where
age differentials in sibling resemblance have been observed, these have
alternatively, and in statistically equivalent ways, been explained by
variations in the strength of common factor causation (Jencks et al. 1979,
pp. 68-70) or in the influence of older upon younger siblings (Benin &
Johnson 1984). Whatever the theoretical basis of the assumption that
older siblings affect younger siblings, we are doubtful about its wholesale
application in studies of sibling resemblance that extend throughout the
life cycle. Successful younger as well as older siblings may serve as role
models, tutors, or social contacts. Even in the case of schooling, it is not
clear whether age is a valid indicator of temporal or causal precedence,
and there is even less reason to invoke it in the cases of occupational or
economic standing.

Cross-sibling effects are not identified when families are the sampling
units (so the data are symmetric), and there is a common factor for each
pair of observations on siblings (Olneck 1976), Benin & Johnson 1984). In
the structural portion of the model of Figure 7.4, this corresponds to the
specification that A,31 = p5 1 = 1.0, y62 = y13,y\f66 = v|/77, and<t)22 = 4>33>
where p67 and/or p76 are the cross-sibling effects that we want to esti-
mate.

Nonetheless, some of the models developed here may be modified to
include direct unidirectional or reciprocal effects of the characteristics of
one sibling on the other. We offer an illustrative, but by no means
exhaustive list of these possibilities. In the model just described, either of
the specifications Yn = Ye2 = Y73 o r ^11 = 0 is sufficient to identify
P76 or p67 = p76 is identified without further restrictions. That is, one
regressions or specification of a single family factor identifies equal cross-
sib effects. In the baseline structural model of line 4.1 in Table 7.9, p67,
P76, or p67 = p7 6 are identified without further restrictions. That is, one
may postulate an effect of the primary respondent on the brother or vice
versa, but not of each on the other, unless the reciprocal effects are
equated. Since the baseline model postulates no equality restriction
between the two within-family regressions, the equality restriction on
cross-brother effects appears unattractive in this case.
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In the model of line 4.2 in Table 7.9, where the constraint of equal
within-family regressions (y62

 = Y73) *s added to the baseline model, equal
across-brother effects (P67 = (376) are also identified. Also, in the baseline
model of line 4.1 in Table 7.9, the specification that \|/n = 0 , that is, that
there is a single family factor, identifies distinct cross-brother effects (p67

7̂  P76). In fact, a good fit and plausible parameter estimates are obtained
with the present data when both of these identifying restrictions are
imposed simultaneously, that is, y62 = y73 and v|/n = 0. Under this
specification, the likelihood ratio statistic of the model is L2 = 25.17 with
26 degrees of freedom. The cross-brother effects of occupational status are
$67 = P76 = 140 with a standard error of .024, and the within-family
regressions of occupational status on schooling are Yi = Y2 = .823 with a
standard error of .051. Thus, the within-family regressions are actually
larger here than in the two-factor models without cross-brother effects.

Discussion

We have expressed a model of sibling resemblance in the LISREL
framework, thus facilitating the process of model specification, esti-
mation, and testing. A useful innovation in this model has been our
specification of distinct within- and between-family regressions. Conven-
tionally, the latter have not been made explicit (Olneck 1976, pp. 139-49,
1977; Corcoran & Datcher 1981, pp. 195-7). We believe that the between-
family slopes and, especially, their contrasts with the within-family slopes
are of real sociological importance. They show whether families enter the
stratification system as relatively homogeneous, but neutral aggregates of
persons or whether they affect returns to the attributes and resources of
their members (see Chamberlain & Griliches 1977, p. 111). Furthermore,
we have incorporated random (and certain types of correlated) response
errors in the model by obtaining multiple measurements of schooling and
occupational status.

Within this framework, we have estimated regressions of occupational
status on educational attainment among primary respondents and among
their brothers, with and without response error and common family
factors. Paralleling Chamberlain and Griliches's (1975, pp. 428-32)
analyses of schooling and income in the Gorse-line data, we find little
evidence that the omission of common family variables leads to bias in our
estimates of the effect of schooling on occupational status. The between-
family variance in schooling is about as large as the within-family
variance, and there is substantial between-family variance in occupational
status as well. Nonetheless, the regression of occupational status on
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schooling is homogeneous within and between families in the simple
models we have estimated.

This does not at all imply an absence of omitted-variable bias in the
relationship between schooling and occupational status. As shown by
Sewell & Hauser (1975), Sewell, Hauser, and Wolf (1980), and Hauser et
al. (1983), among others, the bias is substantial, but our finding suggests
that intrafamily differences in such variables as ability and motivation
are its sources, rather than common family influences. The relationship
between schooling and occupational status across families is just what we
would expect from the differential rewards of schooling across individuals.

The present model lends itself to elaboration in a number of ways. First,
it is possible to add more variables that have been observed (possibly with
error) for respondent and sibling and to specify their corresponding
within- and between-family components and regressions. Perhaps the two
most obvious constructs to be added in this fashion are mental ability and
earnings, of which the former is an antecedent of schooling and the latter
is a consequence of schooling and occupational status. Second, it is
possible to add constructs to the model that are common to primary
respondents and their brothers and that have no "within-family" compo-
nents. Here the most obvious variables are shared characteristics of the
family or community of orientation: parents' education, occupations, and
earnings; family size, ethnicity, and religious preference; community size
and location. In most cases these variables will be specified as antecedent
to other "between-family" variables. Third, other elaborations of the
model may exploit the multiple-group feature of LISREL (Hauser 1984).
For example, the full Wisconsin sibling sample is based on a design that
crosses sex by response status, so primary respondents of each sex are
paired with randomly selected siblings of each sex. Thus, we can increase
the statistical power of our analyses by fitting models within the multiple-
group framework and pooling estimates where similar populations occur
in different pairings, for example, male primary respondents paired with
sisters as well as with brothers. Moreover, within this framework it will be
possible to contrast parameters of the model between men and women.
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Robert D. Mare, Christopher S. Jencks, Michael R. Olneck, and William H.
Sewell for helpful advice. The opinions expressed herein are those of the authors.
1. For example, Sewell & Hauser (1975, pp. 72, 81, 93, 98) and Sewell et al. (1980,

pp. 571, 581) have found substantial biases in effects of postsecondary
schooling on the occupational success of Wisconsin youth when such factors
are omitted from the model. However, Jencks et al. (1979, pp. 169-75) and
Olneck (1976, 1977) have found much smaller biases in effects of postsecond-
ary schooling than in effects of primary or secondary schooling.

2. When this equality restriction is imposed, the fit deteriorates by only L2 =
2.28 - 0.73 = 1.55 with 1 d.f.

3. The fit of the model deteriorates significantly (L2 = 4.13 with 1 d.f.).
4. Because of the hypothesized pattern of correlation between errors in in-

dicators, we have specified that all of the observed variables are Ts in the
LISREL model.

5. One potential error covariance was not identified within the model, that
between errors in the respondent's reports of his current occupation
(OCSXCR) and his occupation in 1970 (OCSX70). We specified that error
covariance to be equal to the corresponding error covariance for brothers,
between XOCSXCR and XOCSX70, which is identified.

6. One critic has proposed that we start with a model without correlated error
and add error covariances to it as needed. We chose to be as generous as
possible to published suggestions that correlated errors are pervasive in
reports of socioeconomic variables. In fact, correlated errors are of little
importance here.

7. For example, in the contrast between Model 7.3.4A and Model 7.3.3A, L2 =
12.68 with 5 d.f., which is statistically significant with p = .027.

8. There is a significant difference in fit between Model 7.3.5A and Model 7.3.4A
(L2 = 4.65 with 1 d.f., p = .031), but not between Model 7.3.5A and Model
7.3.3A (L2 = 8.03 with 4 d.f.,/? = .091).

9. For example, the contrast between Models 7.3.6A and 7.3.5A yields L2 = 9.72
with 3 d.f., which is statistically significant with p - .021.

10. The fit of Model 7.3.7A is significantly better than that of Model 7.3.6A (L2 =
5.19 with 1 d.f.), but it is not significantly worse than the fit of Model 7.3.5A
(L2 = 4.53 with 2 d.f.).

11. The contrast between Model 7.3.9A and Model 7.3.8A yields L2 = 4.84 with
1 d.f., p = .028.

12. Whereas Figure 7.4 shows distinct, nonunit loadings for five of the observable
variables, Table 7.9 pertains to models in which the measurement constraints
of Model 1.3.1 A in Table 7.7 have been imposed. Also, whereas the path
diagram in Figure 7.4 shows distinct scale factors, y31 and P51, for the effects
of the family factors on the true educational attainment and occupational
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status of the brothers, Table 7.9 pertains to models in which these two
coefficients have been fixed at unity in order to identify the model and
normalize slope estimates. For this reason, Model 7.4.1 of Table 7.9 incorpo-
rates one more restriction than Model 7.3.7A of Table 7.7, but the fit is not
significantly affected.

13. This finding was quite unexpected, and at the suggestion of Christopher
Jencks, Hauser (1984) validated it in other, larger subsamples of siblings
drawn from the Wisconsin Longitudinal Study and in comparisons with the
Kalamazoo study. The evidence of family bias in these samples was weak, and
observed biases disappeared when corrections were made for response error in
schooling. All of these findings apply mainly to high school graduates, and it is
important to test them again in populations that are more variable in levels of
completed schooling.

14. In a contrast with Model 7.4.4 of Table 7.9, there is no significant difference
between the family variance component of schooling C4>ii) a n d the within-
family variance component (^22) f° r primary respondents (L2 = 0.13 with
1 d.f.). For brothers, the corresponding contrast (between fyu and §33) is
marginally significant (L2 = 4.2 with 1 d.f., p = .04).

15. If we add the restriction v|/n = \|/66 = \|/77 to Model 4.4 of Table 7.9, the test
statistic increases significantly by L2 = 15.98 with 1 d.f.
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8
Applications of structural equation

modeling to longitudinal educational
data

RUSSELL ECOB

Introduction

My objectives in this chapter are the following:
1. To analyze data on learning difficulties and reading collected over a

period of two years using the so-called two-wave model (Rogosa
1979; Plewis 1985) and to test a number of hypotheses concerning the
relation of learning difficulties to progress in reading the relation of
reading attainment to changes in learning difficulties from one year
to the next.

2. To investigate the effect of different estimates of the reliability (or,
equivalently, measurement error variance) of the reading test, given
in the first year, on the relationships between reading and learning
difficulties over time.

3. To analyze data collected during a three-year period by means of a
"three-wave" model to investigate systematically the stability over
the years of the measurement properties of the scales and of the
structural aspects of the model, as well as to test various forms of
restrictions on the model that are determined by particular substan-
tive questions.

4. To examine the influence of the child's gender and of the father's
social class on the relationships in the two-wave model. Both gender
and social class have been shown to be important determinants of
learning difficulties, both in these data and in other studies.

In the multiple-group model of LISREL the influences of the child's
gender and father's social class, which are exogenous variables in the
model, are partialed out in order to ensure that the relationship between
attainment and learning difficulties is not an artifact of their common
dependence on gender and social class. In addition, I test whether the
relationships in the model are the same within each combination of gender
and social class categories. If the relationships are found to be the same
within each category, the explanatory power of the model is strengthened.
Coefficients in the multiple-group model can be compared with those in

138
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the original two-wave model, which does not control for these exogenous
variables.

My general aim in this chapter is to show how the structural equation
framework allows a modeling of the following aspects of the data: the
longitudinal structure, the multidirectional relationships,1 the relation-
ships between indicator or test-specific errors over occasions of measure-
ment, and, finally, the variation in relationships between the endogenous
variables in the model according to the values of additional exogenous
variables.

The conceptualization of models in terms of latent constructs makes it
possible to examine theories independently of the indicators used. Within
the confirmatory framework, models can be tested against one another in
a predetermined sequence in order to arrive at the most concise model,
within a given specification of alternatives, that is consistent with the data.

A conceptual framework for examining relationships between
attainments and behavior

Research on children's behavior in school has tended to view the behavior
of the child as dependent on other school-based variables. For example,
Rutter et al. (1979), using observation measures of behavior at class level,
found behavior to be dependent on the social class balance of intake
to the secondary school. Similarly, Hughes, Pinkerton, & Plewis (1979)
found teacher ratings of individual children to be dependent on the date of
entry to infant school and in particular to the proportion of children in the
class who entered school in the January after the September start of the
school year.

The child's behavior in school, and in particular the child's learning
difficulties with which this chapter is concerned, are dependent on gender
and socioeconomic variables, such as parent's social class, and education.
However, behavior has rarely been viewed as mediating the relationships
between these variables and particular cognitive attainments. I investigate
this issue here.

An alternative conceptual framework views learning difficulties as the
product of low attainment. From this view, interest lies in the conditions
required for a reduction in learning difficulties over time. Two possible
conditions that I investigate are the reading attainment at the first occa-
sion and the improvement in reading attainment between occasions. An
interesting parallel to the relationship between learning difficulties and
attainment is the relationship between self-concept and attainment (Calsyn
& Kenny 1977; Shavelson & Bolus 1982). Here the self-enhancement
model (Shavelson & Bolus 1982) predicts that evaluation of others
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Table 8.1. "Child-at-school" teacher-rated behavior schedule: items
measuring learning difficulties

1 2 3 4 5

Cannot concentrate on Can concentrate on any
any particular task; task; not easily
easily distracted _ _ _ _ _ distracted
Eager to learn; curious Shows little interest,
and inquiring curiosity, or motivation

- - - - - in learning
Perseveres in the face of Lacks perseverance; is
difficult or challenging impatient with difficult
work - - - - - or challenging work

Note: The first item is reversed in the analysis.

influences self-concept, which in turn influences academic attainment. In
contrast, a skill development model (Calsyn & Kenny 1977) supposes that
academic attainment influences both self-concept and perceived evalua-
tion of others. The two sets of authors come to contrary conclusions.2

The data

A cohort of children was followed through junior school3 from year 1 to
year 3. This includes all children in one year group in a random sample of
49 schools in Inner London Education Authority (Mortimore et al. 1986).
The following variables are examined in this chapter:

1. Reading attainment. Scores on the Edinburgh Reading Test (Stage 1
in years 1-2 and Stage 2 in year 3) were used as measures of reading
attainment. Testing was carried out by the class teacher near the beginning
of the school year, in the autumn term.

2. Learning difficulties. Every child's learning difficulties were rated by
the class teacher each year (at a time close to the corresponding reading
test) on three 5-point scales assessing, respectively, concentration on
work, keenness to learn new things, and perseverance with work. A high
score on each of these scales represents a high degree of difficulty. These
scales, shown in Table 8.1, comprise part of a more general assessment of
behavior in the classroom (Kysel et al., 1983).

3. Social class. Information about father's social class was collected at
the beginning of the junior school. Using the registrar general's measure of
father's social class (Office of Population Censuses and Surveys 1980),
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these data were grouped into the following four categories: Nonmanual
(registrar general's classes I, II, III nonmanual), Manual (registrar
general's classes III manual, IV, V), Other (long-term unemployed,
economically inactive, father absent), and, finally, No information/
Nonresponse.

Eight groups formed by combinations of the two gender and the four
social class categories constituted the groups in the multiple-group
analyses. All analyses were then carried out on the covariance matrix. For
multiple-group analyses, in particular, the use of the covariance matrix
with unstandardized coefficients avoids some of the problems of interpre-
tation of standardized coefficients (Kim & Ferree 1981). There are number
of alternative methods of standardizing the data in multiple-group
analyses. Either the whole sample or any one of the subgroups can be used
as a reference point. Here the pooled sample is standarized to a unit
variance; as a result, within each subgroup the variances of the observed
variables are generally less than 1 owing to the degree of clustering within
subgroups.

For the two-wave analyses, data from the first two years were used. All
observations, 1,487, that had nonmissing values for all the learning
difficulties indicators and reading test scores were included. The sample
containing information on all variables in all 3 years was smaller, having
1,317 observations. This was used for the three-wave analyses.

Two-wave analyses: three models for the relationship between
reading attainment and learning difficulties over occasions

These models relate reading attainment and learning difficulties over the
first two years. Gender and social class are not represented in these
models. Four hypotheses are tested over the whole sample. The first two
hypotheses are concerned, respectively, with the relation of progress in
reading over a year to the assessment of the extent of learning difficulties
at the beginning of the year and to the change in the assessment of learning
difficulties over the year.

Hypothesis 1 is concerned with children who have a high degree of
learning difficulty in relation to their reading test score and concerns their
relative progress in reading over the year. It takes the following form:

(HI) Learning difficulties in year 1 influence reading attainment in
year 2, given reading attainment in year 1.

Hypothesis 2 tests whether a change in learning difficulties causes a
change, with a time lag, in reading. The time lag is assumed to have an
unknown period of less than a year. This hypothesis takes the following
form:
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(H2) Learning difficulties in year 2 influence reading attainment in
year 2, given learning difficulties and reading attainment in year 1.

The third and fourth hypotheses are the mirror images of the first two
and reverse the explanatory roles of reading attainment and learning
difficulties. They are concerned with causes or explanations of change in
learning difficulties over the year and examine, respectively, the depen-
dency on the reading attainment at the beginning of the year and the
extent of progress in reading over the year. Hypothesis 3 takes the
following form:

(H3) Reading attainment in year 1 influences learning difficulties in
year 2, given learning difficulties in year 1.

Hypothesis 4 investigates the realtionship between progress in reading
attainment over a year and the change in learning difficulties over the year.
It tests whether progress in reading causes, with an unknown time lag of
less than a year, a change in learning difficulties. It takes the following
form:

(H4) Reading attainment in year 2 influences learning difficulties in
year 2, given reading attainment and learning difficulties in year 1.

The four hypotheses are illustrated in Figure 8.1, which shows the
structural part of the models used as tests. Let us consider why paths
L2R2 and R2L2 are the appropriate ones for testing hypotheses 2 and 4,
respectively, and consider hypothesis 4 first. For these purposes, we
measure progress in reading by the expression RP = R2 — y(i?l), where y
is an unknown parameter (estimated by a regression coefficient) that
measures the degree of relationship between reading scores on each
occasion and takes account of any differences in scale between the two
tests. Regressing learning difficulties at the end of the year (L2) on learning
difficulties at the beginning of the year (LI), progress in reading over the
year (RP), and reading at the beginning of the year (R\), we obtain the
following equations:

L2 = oc + PXL1 + p2CK2 - yR\) + p3/*l + E1 (8.1)
L2 = a + pxLl + p2i?2 + (p3 - p2y)/*l + e2 (8.2)

In (8.1), the parameter p2 represents the relation of progress in reading
to learning difficulties at the end of the year, and from (8.2) it can be seen
that this represents the path R2L2 in the bottom right diagram in Figure
8.1. It is independent of the unknown scaling parameter y. A similar
argument applies to hypothesis 2. These models include no further
explanatory variables. Later, I will examine models that allow for the
influence of further variables in the model.

I now construct a LISREL model (Model 8.1) to provide tests of
hypotheses 1 and 3. This is shown in Figure 8.2. Hypothesis 1 is specified
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Figure 8.1. Structural models for two-wave analysis for investigation of hypoth-
eses: LI, learning difficulties, Year 1; L2, learning difficulties, year 2; R\, reading
attainment, year 1; R2, reading attainment, year 2. The dashed and solid lines
represent the paths in the model, each bold line representing the path that tests the
hypothesis.

via the path p i 4 and hypothesis 3 via path (323. In this model the
measurement errors for the observed measures of learning difficulties are
allowed to covary over occasions (represented by curved lines in Figure
8.2). Empirically, this has been found to be a common feature of such
models (Wheaton et al. 1977) and probably arises from the fact that each
indicator has some indicator-specific variation4 as well as measurement
error. The former, and possibly the latter, is likely to be correlated over
occasions. This model was arrived at after testing against the more
restrictive model, which assumed that the measurement errors in the
observed measures were independent over occasions. A reduction of chi-
square of 70.37 with 3 degrees of freedom led to acceptance of the model
that allows correlated errors. For this model the variance of the measure-
ment error of the (now standardized) reading test was fixed at .054,
corresponding to a reliability of .946 given in the test manual (Carroll
1977).5
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Figure 8.2. Two-wave anaylsis: testing hypotheses 1 and 3 (Model 8.1). Asterisk
indicates fixed parameter value.

The regression coefficients within the structural part of Model 8.1 are
shown in Table 8.2. Both (}14 and p23 are highly significantly different
from zero and so provide support for both hypotheses 1 and 3.6 The signs
of the coefficients lead me to conclude that, after controlling for the
assessment of learning difficulties at the beginning of the year, low reading
attainment results in a higher assessment of learning difficulties at the end
of the year. Similarly, after controlling for reading attainment at the
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Table 8.2. Estimates of regression coefficients among latent constructs for
three models of the relationship between reading and behavior in years

1 and 2

Parameter

P.2
P21
Pl3
P24
Pl4
P23

Goodness-of-fit
index (x?3)

Model 8.1"

—
0.80 (.02)
0.50 (.03)

-0.12 (.03)
-0.19 (.02)

86.16

Model 8.2

-0.19 (.04)
0.80 (.02)
0.49 (.03)

-0.12 (.03)
-0.02 (.04)

86.16

Model 8.3

-0.13 (.03/

0.78 (.02)
0.52 (.03)

-0.05 (.03)
-0.17 (.02)

86.16

Note: All models show the same statistically significant lack of fit to the data.
However, the sample size (N = 1,487) is so large as to render the significance of the
chi-square of test of fit of little value as a diagnostic of goodness-of-fit. A better
diagnostic is the normed fit index of Bentler and Bonnet (1980), which takes the
value of .958 in comparison with the null model, chosen as the one-factor model
with the same measurement properties as Model 8.1. This is within the range
considered acceptable by Bentler and Bonnet and is higher than that found in any
of the examples given in that paper.
a Standard errors are given in parentheses.
b Model 8.1 includes the parameter v(/12, the covariance between errors in the two
equations. This has to be fixed to zero in Models 8.2 and 8.3.

beginning of the year, higher assessment of learning difficulties leads to
lower reading attainment at the end of the year.

The LISREL model used to test hypothesis 4 is shown in Figure 8.3.
The structural coefficient (321 provides a test of this hypothesis.7 Hypo-
thesis 2 is tested with a similar model, which reverses the structural
coefficient p2i to (312. The estimates of these coefficients are given in Table
8.2. They provide support for both hypotheses.

The strengths of these relationships are assessed by the absolute values
of the coefficients, which represent the relation of a unit change in one
variable to change in another. Thus, reading in year 1 has a greater
influence on change in learning difficulties (b23 = -0.185) than do
learning difficulties in year 1 on progress in reading (614 = -0.119).
Moreover, the estimate of the coefficient relating change in reading to
change in learning difficulties is higher in absolute terms (b21 = -0.19)
than that of the coefficient expressing the opposite relationship (bl2 =
-0.13). The probability of rejecting the null hypothesis of zero relation-
ship is similar in both cases.
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Figure 8.3. Two-wave analysis: testing hypothesis 2 (Model 8.2). Asterisk indi-
cates fixed parameter value.

Two-wave analyses: sensitivity to the reliability of the reading test
in year 1

I now investigate the sensitivity of the parameter estimates in a particular
model (Model 8.1) to the reliability of the reading test in year 1. Five
values were chosen at equal intervals of .04 in range from 1.00 to .84,
respectively. Three of these values are lower than the test manual estimate
of .946. Only the reliability of the reading test in year 1 was allowed to
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Table 8.3. Effects of differing degrees of reliability of reading (year 1)
on the parameter estimates in the structural model

Parameter

Pl3
P24
Pl4
023
Ki

^ 2 3

1.00

0.74 (.02)
0.53 (.03)

-0.17 (.02)
-0.16 (.22)

0.99 (.03)
1.12 (.03)
0.95 (.03)
1.07 (.03)

.96

Reliability

.92 .88

Parameter estimates

0.78 (.02)
0.52 (.03)

-0.13 (.02)
-0.17 (.02)
0.99
1.12
0.95
1.07

0.84 (.02)
0.51 (.03)

-0 .10 (.03)
-0.18 (.03)
0.99
1.12
0.95
1.07

0.90 (.03)
0.50 (.03)

-0.05 (.03)
-0.19 (.03)
0.99
1.12
0.95
1.07

.84

0.97 (.03)
0.49 (.03)
0.00 (.03)

-0.21 (.03)
0.99
1.12
0.95
1.07

Note: Standard errors are given in parentheses. Standard errors of loadings
do not vary with the reliability and so are given only for the perfect reliability
condition.

vary, that of the reading test in year 2 being fixed at a common value of
.946 in all analyses.8

In the simple bivariate regression, unreliability in the explanatory
variable attenuates the regression coefficient. The disattenuated regression
coefficient, this being the coefficient relating to the true or underlying
scores, is obtained by dividing the estimated regression coefficient by the
reliability estimate. In a structural equation model the effect of changes in
the reliability of explanatory variables on the paths in the model is more
complex. This is in part due to the larger number of explanatory variables
and to the existence of measurement errors, or more generally indicator-
specific errors, in more than one explanatory variable.

Table 8.3 shows the effects on the paths in the two-wave model (Model
8.1) of different reliabilities of the reading test in year 1. The structural
coefficient P13 of reading attainment in year 1 on reading attainment in
year 2 increases with decreasing reliability for reading in year 1. The
structural coefficient P24 of learning difficulties in year 1 on learning
difficulties in year 2 decreases slightly with decreasing reliability of
reading. Table 8.4 shows the estimates under the two possible models,
the simple regression model (where the true regression coefficient is
obtained by dividing the observed regression coefficient by the reli-
ability estimate of reading in year 1) and the given structural model,
and shows that the degree of disattenuation in the structural model is
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Table 8.4. Comparison of the relationships among latent constructs in the
simple regression model for reading and the two-wave structural model

Reliability, reading year 1
Estimate of p i 3 by applying

simple disattenuation formula
Estimate of (313 in two-wave model
Increase of p13 in two-wave model

relative to simple disattenuation
prediction

1.00

0.74
0.74

—

.96

0.77
0.79

1.55

.92

0.80
0.84

1.60

.88

0.84
0.90

1.62

.84

0.88
0.97

1.67

greater at each level of reliability than is predicted from the simple
regression model.

The other structural coefficients are also substantially affected by
changes in the reliability of the test in year 1. From Table 8.3 it is seen
that, as reliability decreases, the size of the path p1 4 between learning
difficulties in year 1 and reading in year 2 is reduced and becomes zero at
the lowest value of reliability examined. In contrast, the structural
coefficient p2 3 between reading in year 1 and learning difficulties in year 2
increases with decreasing reliability. The estimated loadings of the
indicators of learning difficulties are unaffected by the reliability of the
tests.

Decreasing the reliability, assumed known, does not alter the total
information extracted from the model, because the number of free or
estimated parameters is not altered. It is convenient to view the incorpora-
tion of measurement error variance or unreliability in the year 1 reading
score as simply correcting the variance-covariance matrix of the observa-
tions by subtracting the variance of the measurement error from the
variance of the year 1 reading score. In this view, the models themselves
are not altered, only the data. All models, moreover, have the same
goodness-of-fit to the data as judged by the chi-square measure, although
with increases in measurement error the ^-values of all coefficients are
reduced. This is true even when the structural coefficient itself increases, as
in the relation of reading at the beginning of the year to learning
difficulties at the end of the year.

An important conclusion to draw from this sensitivity analysis is that,
once reading attainment in year 1 is controlled, the influence of learning
difficulties in year 1 on reading attainment in year 2 (tested in hypothesis
1) is crucially dependent on the reliability of the measure of reading
attainment in year 1.
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year 1 year 2 year 3

Figure 8.4. Three-wave analysis: basic structural model.

Three-wave analyses: testing restrictions on the model

The extension from two to three occasions allows, in particular, the
consistency of the relationships observed over occasions to be examined.
It also allows a test of whether the direct relationships between the first
and third occasions are zero, in other words whether, for both reading
attainment and learning diffculties, the measure in year 2 mediates all of
the influence of year 1 on year 3. For these analyses additional measure-
ments on all variables were obtained in the autumn term in the third
year of junior school. These and a number of other questions can
be investigated by successive modifications of the basic structural
model shown in Figure 8.4 by imposing restrictions on the parameter
matrix.

First, however, I ascertain the measurement properties of the model.9

These analyses show that, in almost every respect, the measurement
properties of the learning difficulties indicators are different across
occasions.
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The first restrictions on the structural model are concerned with the
disturbance terms £,-(/ = 1,2,3,4). Covariation among disturbance terms
indicates that variables omitted from the model may have a common effect
on more than one variable in the model. Table 8.5 shows four forms of
restrictions I examine on the basic model with the measurement properties
I have arrived at.

The first restriction is that the covariation among disturbance terms
across the second and third occasions is constrained to be zero. This
hypothesis results in a nonsignificant increase in chi-square and so is
accepted (Model 8.1). This implies that there are no variables exogenous
to the model that have common effects, independent of other variables in
the model, on endogenous variables at different occasions. The second
restriction tests whether the covariances among disturbances correspond-
ing to reading and behavior difficulties within the second and third
occasions are equal. This is accepted (Model 8.2). The third restriction
tests this common value against zero (Model 8.3). This is rejected. The
fourth restriction on the disturbance terms (Model 8.4) is that, for both
reading and learning difficulties separately, the variance of the disturbance
terms is the same in years 2 and 3. In conjunction with Model 8.2 this
means that the correlations among the disturbances at each occasion are
equal. This model is accepted.

The importance of imposing these last three restrictions is in producing
models with fewer parameters. They have no particular substantive
rationale.

The next series of restrictions operates on the structural part of the
model, the B matrix. I first examine the joint hypothesis that the structural
coefficients between reading in year 1 and learning difficulties in year 3 and
between learning difficulties in year 1 and reading in year 3 are zero. This
model (Model 8.5) is accepted, showing that the relationships between
these two variables have a lag period of at most one year.

Next I examine whether the lagged relationships over a one-year period
have the same values between year 1 and year 2 as between year 2 and year
3. This is accepted for relationships between learning difficulties and
reading attainment in both directions (Models 8.6 and 8.7), showing that
the relationships between the two constructs are constant and stable
across the two time periods.

The structural component of the final model, Model 8.7 is shown in
Figure 8.5. This model shows that, for both reading attainment and
learning difficulties, a child's score in year 3 is positively related to the
score in year 1 independently of the score in year 2 (i.e., p i 5 , P26 > 0). This
means that in predicting reading attainment a year ahead in junior school,
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Table 8.5. Goodness-of-fit of models with various restrictions on
structural parameters for three-wave data

Increase in chi-square Accept
Description of model Chi-square from the basic model model?

= 86.73 — —Basic model
Model 8.1: Disturbance
terms covary only within
occasion xh.._. = 86.73 xl = 0.00 Yes

Model 8.2: Covariance
between disturbances for
reading and learning
difficulties at occasions 2
and 3 are equal xh = 87.20 xl = 0.47 Yes

Model 8.3: Covariance
between disturbances for
reading and learning
difficulties at occasions 2
and 3 are zero x§9 = 120.73 xl = 33.53 No

Model 8.4: Variances of
disturbances are equal at
years 2 and 3 for reading
and learning difficulties xlo = 92.46 xl = 5.26 Yes

Model 8.5: Structural
coefficients from reading
year 1 to learning difficulties
year 3 and from learning
difficulties year 1 to reading
year 3 are zero xli = 94.75 xl = 2.29 Yes

Model 8.6: Structural
coefficients from reading
year 2 to learning difficulties
year 3 and from reading
year 1 to learning difficulties
year 2 are equal xh = 96.60 xl = 185 Yes
Model 8.7: Structural
coefficients from learning
difficulties year 2 to reading
year 3 and from learning
difficulties year 1 to reading
year 2 are equal xl* = 97.13 xl = 0.53 Yes
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.434

year 1 year 3

Figure 8.5. Three-wave analysis: final structural model, with structural coeffi-
cients among the latent variables.

account should be taken not only of the present reading attainment but
also of attainment in previous years. But another way, a child's potential
for progress in reading is related to the progress the child has made in the
previous year. For example, differential effectiveness of different teachers
may result in transitory relative gains or losses in the relation of reading
attainment at the end of the year to the child's potential progress over that
year.10

The changes between years in reading and learning difficulties are also
related, this being indicated by the correlation between the disturbance
terms for both variables, which takes the same nonzero value in both years
2 and 3. Such a result may be due to the common effect on both reading
attainment and learning difficulties of experience in the classroom over the
previous year, an effective teacher raising a child's reading attainment
while reducing the child's experience of learning difficulties.
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Table 8.6. Goodness-of-fit for multiple-group models for two-wave data

Accept
Description of model Chi-square Increase in chi-square model?

Basic model %\0Ar = 183.25 — —

Measurement error structure
and values identical between
groups X?67 = 221.99 %h = 38.74 Yes

Matrix of disturbance terms
identical between groups X209 = 283.26 xli = 61.27 No
Matrix of structural
coefficients identical between
groups X195 = 240.19 xis = 18.20 Yes

Multiple-group analyses on two waves: testing for differences
between groups defined by gender and father's social class

The combination of the four social class categories described earlier and
the two gender categories forms eight groups. In each of the two years,
reading attainment was found to be higher and learning difficulties lower
for girls than for boys and for nonmanual than for all other groupings of
social classes. Such differences may result in biased estimates in the
structural models so far examined, the relationship between reading
attainment and learning difficulties being in part a reflection of a common
dependance on these grouping variables. In order to test this hypothesis,
the two-occasion model (model 8.1, Figure 8.2) is fitted simultaneously
within each group.

The complete sequence of tests on the measurement and structural parts
of the multiple-group model is summarized in Table 8.6. A model having
identical measurement structure and parameter values in each group is
accepted. However, the disturbance terms are found to have different
variances and covariances in the different groups.

Finally, the matrix of structural coefficients, the structural part of the
model, is found to be identical across groups. This allows one to draw the
strong conclusion that the relationships between learning difficulties and
reading attainment over the two occasions are identical in each of the eight
groups and a fortiori are the same for each gender and for each social class
group.

However, I still wish to ascertain whether the relationships within the
groups are the same as those over the whole sample. This is illustrated in
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Table 8.7. Estimates of structural coefficients for the
multiple-group model for two-wave data:

comparison with single-group model

Multiple-group Single-group
Structural coefficient model model

p1 3 0.64 (.02) 0.80 (.02)
P24 0.53 (.03) 0.50 (.03)
P14 -0 .12 (.02) -0 .12 (.03)
p2 3 -0 .15 (.02) -0 .18 (.02)

Table 8.7, which compares the structural coefficients in the multiple-group
model with the comparable two-wave single-group model (Model 8.1,
Figure 8.2). Three conclusions emerge from these analyses:

1. The structural coefficient from reading in year 1 to learning dif-
ficulties in year 2 is lower, by 20.5 percent, in the multiple-group
model than in the single-group model. However, there is no change in
the structural coefficient from learning difficulties in year 1 to reading
in year 2.

2. The relationship between reading attainment over the two years is
lower in the multiple-group model, the relationship over years
between learning difficulties being little changed.

3. There is a tendency overall for the standard errors to be lower in
relation to the coefficients in the multiple-group model. This is a
reflection of the greater number of degrees of freedom obtained by
imposing the measurement and structural restrictions in the multiple-
group model. The fit of the multiple-group model to the data as
judged by the ratio of chi-square to the degrees of freedom is better
(1.24) than in the single-group model (6.62).

This comparison has shown that some of the relationships between
reading and learning difficulties, when considered within the groups
defined by gender and social class, differ from the relationships over the
whole sample. This, in turn, implies that the relationships between the
mean values of these variables between groups (shown in a between-group
model) are therefore different from the within-group relationships (shown
in a within-group or multiple-group model).

In summary, the main conclusions drawn from the single-group model,
of a lagged relationship between reading attainment and learning dif-
ficulties at a later occasion and between learning difficulties and reading
attainment at a later occasion, hold up when the common relationships to
social class and gender are controlled for.
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Discussion and conclusions

I have examined a number of structural models on a longitudinal
educational data set comprising two latent variables measured on three
occasions. I have illustrated how the values of the structural coefficients in
the models, particularly those between reading and learning difficulties on
different occasions, are in some cases crucially dependent on the estimated
reliability of the reading test at the earlier occasion.11 They are also
affected by conditioning on exogenous variables related to both reading
and learning difficulties.

A reasonable interpretation of the path in the multiple-group analysis
from learning difficulties in year 1 to reading attainment in year 2 is that
learning difficulties in year 1 (or indeed a combination of some other
variables related within gender and social class groups to learning
difficulties in year 1 independently of reading in year 1) is related to
progress in reading between years 1 and 2 in a similar way within each
gender and social class group. The educational importance of such a result
depends on whether learning difficulties are considered to be a variable
open to educational influence independently of reading attainment.

Conclusions from such analyses can be dependent on the choice of
variables analyzed or even collected and, in this example, on the particular
variables used to define the groups in the multiple-group analysis. For
a grouping variable to influence a regression coefficient between two
variables in the model it is necessary, though not sufficient, that it be
related to more than one variable in the model over one or more
occasions. The variables that form the groups in our analysis are those
that are most highly related in the data to both variables simultaneously.
However, in principle, the conclusions may be altered by conditioning on
other socioeconomic variables.

A further limitation on inferences that can be drawn arises from the
particular occasions at which the variables are measured. The absence of
paths between variables in years 1 and 3 provides evidence that no
causative link is operating with a lag period of more than one year.
However, the relationships found with a lag period of one year may be the
result of causative links having lag periods of less than one year and could,
for example, be generated by a process that distributes the lags con-
tinuously over a period of up to a maximum of one year.

Finally, the following caveats should be borne in mind when interpret-
ing the results of the models fitted in this chapter.

1. The teacher's rating of the child, being the outcome of a particular
relationship between the teacher and the child, is affected by the
characteristics of both parties. The teacher's characteristics - for
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example, personality, teaching methods, and perception of children
in general - will affect the rating of a particular child over and above
the child's characteristics.

2. If relationships among the endogenous variables in the model were
to vary across the groups defined by variables at a higher level
of aggregation (e.g., the social class and gender groups), further
modeling could relate the variation in these relationships between
groups to the values of the higher-level variables. Analyses of this
type cannot be performed with the structural equation models
described here, although they can be if multilevel models are used
(e.g., Goldstein 1986; Longford 1986). However, these models do not
at present allow for the use of latent constructs in structural
modeling.

3. The sample is a clustered sample at the pupil level, the data being
obtained from a whole year group of children from a random sample
of schools. The standard errors reported will therefore generally
underestimate the true standard errors.

Notes

This research was supported by the Inner London Education Authority. The
analyses and conclusions do not necessarily reflect the views or policies of this or
any other organization. The author thanks Pamela Sammons, Doug Willms,
Kathy Parkes, Peter Cuttance, and John Bynner for their comments on earlier
drafts of this chapter.

1. We are not confined to the dependent versus explanatory convention of
multiple regression: One of the endogenous variables may explain variation in
another and its variation in turn be explained by a third variable.

2. This may be in part due to their different methodologies, Shavelson and Bolus
using a structural equation model and Calsyn and Kenny using cross-lagged
correlations, a method with proved methodological deficiencies (see Rogosa
1979).

3. In the English education system, the junior school takes children for four
years, from age 7 to age 11. Compulsory schooling begins at age 5 at the infant
school.

4. Indicator-specific variation is variation in an indicator that is not shared by the
other indicators of the same latent construct.

5. The reliability estimates obtained from the test manual are not necessarily
appropriate for this sample. They are calculated on a different population,
assessed 8 years earlier on a population containing both urban and rural
elements, and in addition do not allow for the different ages of children in the
standardizing sample, which will inflate the variance of both the observed and
the true scores. Nor do they allow for the multifaceted nature of the reading
test. This test comprises five subtests measuring vocabulary, sequences, syntax,
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comprehension, and extraction of relevant details from text. I am at present
investigating methods of estimating reliability that take these factors into
account. This may modify the substantive conclusions presented here. (Later
in this chapter I investigate the sensitivity of the parameter estimates to
variations in the reliability estimates.) An empirical investigation (Ecob &
Goldstein 1983) has suggested that the Kuder-Richardson internal consis-
tency estimates probably suffer from unknown biases. In structural equation
modeling, a test with a given reliability or measurement error variance can be
modeled by fixing the variance of the measurement error in relation to the
variance of the observed variable. Alternatively, the loading of observed test
score on the true test score can be fixed at the value X = Jr, where r is
reliability.

6. There are two alternative methods for testing for a zero value of a parameter.
One method is to refit the model with the parameter constrained to be zero and
evaluate the increase in the chi-square measures of goodness-of-fit in relation
to one degree of freedom gained. This method is a special case of the general
method used when imposing any number of simultaneous constraints on a
model and is used elsewhere in this chapter, for example, when evaluating
constraints on the measurement models. In this case a more straightforward
method is to compare the parameter estimate with its standard error. The
parameter estimates are assumed to have normal sampling distributions. If the
parameter estimate is found not to be significantly different from zero, a
further run with the new constraint is then necessary to obtain correct
estimates for other parameters in the model.

7. This model differs from Model 8.1 both in the introduction of the extra
structural coefficient p2i and in the constraint that the disturbance terms are
uncorrelated, which is necessary for identification of the model. It has the same
degrees of freedom as Model 8.1 and will give the same goodness-of-fit to the
data, being simply a reparametrization of the model.

8. The coefficients in the model are also dependent on this value. However, we do
not investigate the relationship in this chapter, the value chosen being that in
the test manual.

9. A measurement model is first constructed in which covariance is allowed
between indicator-specific errors across occasions (as in the two-wave Model
8.1), but in which the loading of each indicator of learning difficulties on the
appropriate latent variable is the same on each occasion. (This restriction gives
a nonsignificant increase in the chi-square goodness-of-fit of the model to the
data and so is accepted.) Further restrictions are rejected. These are that the
indicator-specific variances are equal over all occasions, that the covariances
of all indicator-specific errors on a given occasion are equal, and that the
covariances of indicator-specific errors between any two occasions are equal.

10. Such a result could also arise from a heterogeneity of within-class regression
coefficients for reading attainment on reading attainment in the previous
years. To examine this question within a structural equation modeling
framework, it is necessary to consider each class as a group in a multiple-group
LISREL model. There is another possible explanation for the effect of the year
1 score on the year 3 score, given the year 2 score for learning difficulties. A
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child is usually rated by a different teacher in each year. The rating of the
child's learning difficulties by a given teacher is dependent to some extent on the
terms of reference, different teachers using different criteria. Such results could
arise if different teachers view a child in different ways, interpret the behavior
scales in different ways, or simply operate on different absolute standards
when judging behavior. This is not likely to apply to the reading attainments
because the tests were administered by the teacher under specific instructions
regarding the timing of the test and the use of practice items and the tests were
marked by external markers.

11. The range of values examined is within that commonly found in educational
practice, and I have obtained reliability estimates near the lower extreme of the
range when the possibility that different components of reading attainment are
assessed by the different subtests has been taken into account. In contrast, the
estimate from the test manual is near the upper extreme of the range. These
models can be alternatively estimated by dividing the test at each occasion into
a number of replicates. In this case the reliability of the test is estimated within
the model.
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The robustness of maximum
likelihood estimation in structural

equation models
ANNE BOOMSMA

1. Introduction

General methods for the analysis of covariance structures were introduced
by Joreskog (1970, 1973). Within the general theoretical framework it is
possible to estimate parameters and their corresponding standard errors
and to test the goodness-of-fit of a linear structural equation system by
means of maximum likelihood methods. Although other methods of
estimating such models (least squares procedures, instrumental variable
methods) are available, we do not discuss them here.

For an introduction to the general model the reader is referred to
Chapter 2 and for more detailed statistical discussions to Joreskog (1978,
1982a,b). The LISREL model considers a data matrix Z(N x k) of N
observations on h random variables. It is assumed that the rows of Z are
independently distributed, each having a multivariate normal distribution
with the same mean vector \i and the same covariance matrix L; that is,
each case in the data is independently sampled from the same population.
In a specified model there are s independent model parameters co, to be
estimated. For large samples the sampling distribution of the estimated
parameters d), and the sampling distribution of the likelihood ratio
estimate for goodness-of-fit are approximately known, provided that the
preceding assumptions hold. Under the same conditions the standard
errors of the estimated parameters se&. are also known asymptotically.
In the following, standardized parameter estimates are defined by
cb* = (GO, - (o,)/se&. For large samples the sampling distribution of 6* is
approximately standard normal, and the goodness-of-fit estimate has
an approximate chi-square distribution with k(k + l)/2 - s degrees of
freedom.

Since the distributional properties of maximum likelihood estimates are
based on asymptotic (large sample) statistical theory and on the assump-
tion of multivariate normality, it is of prime interest to know how the
estimates of parameters, standard errors, and goodness-of-fit behave
under specific violations of these assumptions.

160
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The importance of this issue should be evident from the fact that in the
social sciences and in economics the sample size is often small. Moreover,
in applications, the observed variables frequently have nonnormal univari-
ate distributional properties (e.g., discrete or categorical variables with
skewed and kurtotic distributions).

This chapter reports findings from a research project (Boomsma 1983)
in which the following two robustness questions were investigated: Using
maximum likelihood procedures, how robust is LISREL (1) against small
sample size and (2) against nonnormality?

The basic investigative tools were Monte Carlo procedures, employed to
produce sample covariance matrices S(k x k) of known properties, which
were then used as sample input for LISREL analyses. For the two
research problems addressed, these matrices are based on small samples
(with multivariate normality of the observed variables) and on samples of
size 400 from nonnormally distributed variables, respectively.

We present a summary of the results of the Monte Carlo study,
emphasizing what the regular user of LISREL can expect under specific
violations of assumptions and recommending ways to avoid making
incorrect statistical inferences.

2. Design of the study, Monte Carlo methods, and model choice

This section provides an overview of the most important aspects of the
design of the study (variations in sample size and nonnormality), the
Monte Carlo procedures, and the covariance models for which robustness
was studied. For illustrative purposes one of these models is presented in
detail in section 2F.

A. Sample size

The robustness against small samples was investigated for samples of
sizes 25, 50, 100, 200, and 400. However, in the study of nonnormally
distributed variables, sample size N was not varied. In order to avoid
interaction of sample size and nonnormality effects, it was kept at a
constant size of 400.

B. Number of replications

The number of replications NR (i.e., the number of Monte Carlo samples
S that were analyzed) is important for the accuracy of estimating the
sampling distributions of parameters, standard errors, and the goodness-
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of-fit statistic. For each model, 300 samples were analyzed. Thus, for all
violations of assumptions under study each conclusion is based on the
results obtained after analyzing 300 covariance matrices.

C. Monte Carlo procedures

(i) Models with normally distributed variables Given a LISREL popula-
tion model with a specified covariance structure E, N x k pseudorandom
"observations" were generated from a multivariate normal distribution
with covariance matrix E using IMSL subroutine GGNMS (International
Mathematical and Statistical libraries 1982). From these N vectors of k
"observations" a sample covariance matrix S(k x k) was computed. This
sampling process was performed a large number of times, after which
LISREL analyses of particular models were undertaken. (For our Monte
Carlo purposes an adapted version of LISREL III was used on a CDC
Cyber 74/18 and 170/760 computer.) The models were estimated for each
of the 300 replicated samples. Thus, 300 estimates of each parameter,
along with its standard error, and the chi-square goodness-of-fit statistic
for each model were computed. A statistical evaluation of robustness was
made by comparing the empirical sampling distributions of the estimates
based on these 300 replications with their theoretical (asymptotic)
distributions.
(ii) Models with nonnormally distributed variables Nonnormality was
defined by the skewness and the number of categories of the observed
variables, which were assumed to be discrete variables. Boomsma (1980)
presented a numerical solution for generating sample covariance matrices
S of such discrete and skew variables given their known population
covariance structure E. This sampling procedure is basically the same as
for the normal case, except that here samples are taken from a multivari-
ate normal distribution with a covariance matrix E* ^ E, followed by
specific transformations of the continuous pseudorandom "observations"
into categorical variables. The specific choice of E*, which depends on the
number of categories and the skewnesses, has the following effect: After
the transformations, the samples S of the nonnormal variables can be
regarded as samples from their nonnormal population with covariance
structure E. See Boomsma (1983, chap. 6) for further details.

D. Standardization

The statistical theory for analyzing covariance structures with maximum
likelihood methods assumes a Wishart distribution of the samples S.
Therefore, population covariance matrices E are employed as the basic
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population models for the study; in sample terminology this implies that
samples S are analyzed, while diag(£) ^ I. However, researchers often
analyze sample correlation matrices R = V"'/2SV'/2, where \v\k x A:) is a
diagonal matrix with the sample standard deviations of the observed
variables as elements (i.e., the variances of the observed variables are
standardized to 1); for most model specifications this implies that diag
(£) = I. For example, this is the case in many applications of factor
analysis models, where the units of measurement are often arbitrary and
where a strong tradition of standardization exists. Correlation samples R
do not have a Wishart distribution; thus, the decision to analyze sample
correlation matrices instead of covariance matrices is not without com-
plication. Therefore, we compare results from both approaches for some
models.

E. Model choice and design variations within models

The effects of small sample size and departures from normality were
investigated for specific structural equation models. Two substantive
models, extensively discussed in the literature, and a number of theoretical
factor analysis models were chosen for study. The substantive models are
a recursive one for the stability of alienation (Whpaton et al. 1977) and a
nonrecursive one for peer influence on aspiration (Duncan, Haller, &
Portes 1968). These models are discussed by Joreskog & Sorbom (1984) as
examples 5 and 7, respectively. The 12 theoretical factor analysis models
(each with two factors) studied are described in detail by Boomsma (1982,
1983). Also, a separate one-factor model with six observed variables
reported by Olsson (1979a, p. 493, second case) was studied under
nonnormality conditions. Figure 9.1 presents details of the four main
models referred to in this chapter: Model 9.1 (the stability of alienation),
Model 9.2 (peer influence on aspiration), Model 9.3 (an oblique factor
analysis model), and Model 9.4 (Olsson's one-factor model).

As indicated earlier, for the normal small-sample case, five sample sizes
were chosen: 25, 50, 100, 200, and 400. It is beyond the scope of this
chapter to give the variations in the number of categories and in
skewnesses for each of the models studied for nonnormality. Table 9.1
provides a summary of some of the characteristics of four main models,
from which it can be seen that in Models 9.2 and 9.3 the most extreme
deviations from nonnormality are about twice as large as in Models 9.1
and 9.4.

In studying the effects of nonnormality, symmetric (all k observed,
discrete variables having a skewness of zero) and nonsymmetric variations
of the models are constrasted (see Table 9.2 for an example). It should be
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Figure 9.1. Four models for covariance structure analysis:
(a) Model 9.1, the stability of alienation;
(b) Model 9.2, peer influence on aspiration;
(c) Model 9.3 factor analysis model with two correlated factors and four observed
variables for each factor;
(d) Model 9.4, Olsson's one-factor model.
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Table 9.1. Characteristics of models studied for nonnormality

No. of observed
variables k

No. of estimated
model
parameters

No. of
categories0

Absolute
skewness

Median of
absolute
skewness*

min

max
min

max
min

max

Model 9.1

6

17
2

5
0.00

2.00
0.63

1.25

Model 9.2

10

17
2

7
0.00

4.00
1.25

2.50

Model 9.3

8

17
2

5
0.00

4.00
0.56

2.25

Model 9.4

6

12
2

5
0.00

1.50
0.38

1.13

a The range of the number of categories and of the absolute skewness among the k
observed variables is calculated across all variations of a model, including the
symmetric ones.
b The range of median of the absolute skewnesses among the k observed variables
is calculated across all nonsymmetric variations.

stressed that, when the number of categories and the skewnesses of the
marginal discrete variables are varied, the kurtosis of these variables is
implicitly varied, as shown in the following section.

F. An example: Model 9.3

As an illustration of the type of models that were studied, a two-factor
measurement model is chosen, which is also used to exemplify some
characteristic results in later sections. In LISREL notation (see Figure 9.1)
the model is defined by X = A^ + 8, where X(8 x 1) is a vector of
observed variables, A(8 x 2) is a matrix of factor loadings (simple
structure) on the latent variables ^ and 2̂>

 a n d 8(8 x 1) is a vector of
measurement errors. The population covariance matrix can now be
written £ = AOA1 + 0 , where <P = E(£fc) is a (2 x 2) correlation matrix
of the latent factors and 0 = (88') an (8 x 8) diagonal matrix with the
variances of the measurement errors (uniquenesses) as elements. In the
population these elements are defined by 0 ; = 0f = 1 — X? (i= 1 , . . .,8),
which implies that the variances of the observed variables in the popula-
tion are equal to 1. In Model 9.3 the population values Xt were chosen as



c
5
2
3
2
5
2
3
2

SKO

0
0
0
0
0
0
0
0

Degree

SKI

0.375
0.750
0.500
0.250
1.000
0.375
1.000
0.750

of skewness

SK2

0.75
1.50
1.00
0.50
2.00
0.75
2.00
1.50

SK3

1.5
3.0
2.0
1.0
4.0
1.5
4.0
3.0
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Table 9.2. Number of categories C and variations in degrees of skewness
for the observed variables X, in the nonnormal robustness design for

Model 9.3

Variable

3

x4
X5

x6

follows: Xx = X2 = X5 = X6 = 0.6, and X3 = X4 = X,7 = X8 = 0.8; thus,
by definition 62 = 62 = 95 = 96 = 0.64 and 03 = 94 = 97 = 08 = 0.36.
The population correlation <\> between the two factors was chosen as .3.
For this model Figure 9.1 gives all population parameter values and their
corresponding standard errors for N = 50 and N = 400.

Model 9.5 (no picture shown; referred to in Tables 9.6 and 9.7 only) is
also a two-factor measurement model, but with only three observed
variables per factor. Its population factor loadings are specified as follows:
X#1 = X2 = X4 = X5 = 0.4 and X3 = X6 = 0.6. The size of the population
values of the uniquenessess are thus the same as in Model 9.3, and the
correlation c|) between the factors is again .3.

In studying nonnormality for Model 9.3 only the skewness of the eight
observed variables was varied; the number of categories was kept constant
across variations in degrees of skewness. Table 9.2 gives details of the
research design employed for this model. In variation SKO the univariate
distributions of the discrete variables are symmetric; in variation SK3
these distributions are extremely skewed. Figure 9.2 shows the population
distributions of variable Xx in Model 9.3: the symmetric case and three
positively skewed cases. It can be seen how the kurtosis of these discrete
variables varies with their skewness; note that the skewness and the
kurtosis of a variable having a standard normal distribution equal 0 and 3,
respectively. By comparing the results obtained in variation SKO with
those from the corresponding normal case (N = 400), a pure effect of
categorization can be measured; by comparing the same normal case and
variations SKO through SK3, the additional effect of varying skewness can
be assessed.
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SKO
skewness = 0
kurtosis = 2.50

.8

.7

.6

.4

.3

.2

.1

SKI
skewness = 0.375
kurtosis = 2.641

0 1 1 2 3 4

SK2
skewness = 0.75
kurtosis = 3.06

SK3
skewness = 1.50
kurtosis = 4.75

0 1 3 4 0 1 2 3 4
Xx Xx

Figure 9.2. Probability distribution of discrete variable Xl in Model 9.3, having
five categories and a skewness of 0, 0.375, 0.75, and 1.5, respectively.

3. Robustness against small sample sizes

A. Bias and variance

Generally, for N^ 100 there is little evidence of bias in estimating
parameters and standard errors, even when correlation matrices are
analyzed. Negative as well as positive biases occur in small samples. For
Af< 100 "outlier estimates" can be expected, which may have serious
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Table 9.3. Standard deviation of standardized parameter estimates0

Parameter

X2

K
x5K
X,

e2
e3
e4
e5
e6
e7e8

N =

S

.05
- . 0 0
- . 00

.03

.05
- . 0 2
- .03

.01

.17

.10

.05

.05

.03

.03

.15

.06

.01

100

R

- .19
- .23
- .38
- .35
- .21
- .25
- . 4 0
- .38

.17
- .07
- . 09

.09

.10
- .07
- . 10

.04

.10

N =

S

.06

.04

.10
- .01
- . 0 0
- . 0 0

.03
- . 0 0

.01
- . 0 0

.04
- .01

.07
- .01

.01

.06

.06

200

R

- . 2 0
- . 2 2
- . 35
- . 37
- . 2 4
- .23
- .35
- . 3 6

.01
- . 0 4
- . 0 6

.12

.10
- .11
- .11

.11

.09

N =

S

.01

.01

.08

.01
- . 05
- . 05

.05
- . 0 0

.03
- .05

.08

.04
- . 0 2

.01
- .01
- . 0 6
- . 0 2

400

R

- .21
- .21
- .35
- .43
- .25
- . 29
- . 4 0
- . 4 0

.03
- . 0 9
- . 1 0

.12
- . 0 2
- . 1 3
- .17

.04

.03

a The observed standard deviation of co* = («>/, — (o^/se^., minus the expected
(theoretical) value of 1. A value of .00 thus indicates no bias, whereas a positive
value indicates an underestimate and a negative value an overestimate of the
expected value of the standard deviation of G>*. Here S means analysis of
covariance matrices, R analysis of corresponding correlation matrices. Model 9.3
NR = 300.

effects on other results as well, for example, on confidence intervals for
parameters. Frequently such outlier estimates occur when variances
are estimated to be negative. In practice it is very difficult to recog-
nize "extreme" estimates in small samples without replication or
cross validation.

These outlier estimates provide a clue to why the observed variance of
the parameter estimates is regularly underestimated, compared with the
expected squared standard error sel. However, when correlation matrices
are analyzed, severe overestimation of these empirical variances occurs for
several parameters owing to the uncorrected estimation of standard
errors, as can be seen from Table 9.3. This finding merits special attention.

A decision to base an analysis on the correlation matrix rather than the
covariance matrix has implications for inference to the population model:
Using a correlation matrix means that diag(L) is standardized to an
identity matrix (see Section 2D for further discussion). This affects the
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accuracy of the estimation of the variances and covariances of the
parameter estimates and hence of the estimation of the standard errors
and the correlations among parameter estimates. This holds regardless of
whether a sample covariance matrix S or a correlation matrix R is used as
input for the analyses, since it depends on the matrix analyzed.

When correlation matrices are analyzed, LISREL overestimates the
standard errors for many parameters. Table 9.3 indicates that, when
covariance matrices S are analyzed, the observed standard deviations of
standardized parameter estimates co* = (&tj — co,)/^ (j = 1 , . . . , 300) are
close to the expected theoretical value of 1, whereas when correlation
matrices R are analyzed, the observed standard deviations of the es-
timated factor loadings are clearly smaller than 1. Apart from sampling
fluctuations such effects on the parameter covariances do not depend on
the sample size; even for much larger samples (e.g., N = 1,000) similar
differences between the analyses of S and R can be expected. These
findings have serious consequences for the estimated confidence intervals
for population parameters, which are discussed in the next section.

Lawley and Maxwell (1971) discuss the effects of standardization in
maximum likelihood factor analysis. They give (approximate) formulas
for the sampling (co)variances of the rescaled parameter estimates.
Browne (1982, p. 94) gives general (approximate) formulas for the
variances of such estimates. Under certain conditions of invariance,
standardization does not affect the chi-square estimate for goodness-of-fit
(cf. Krane & McDonald 1978; Browne 1982). Given the same sample of
observations, and apart from small "rounding errors," the goodness-of-fit
estimate is then the same for analyses based on either the covariance or
correlation matrix.

In summary, we conclude that in analyzing covariance matrices a
sample size of ^ 200 seems to offer a reasonable protection against bias
and unacceptable deviations in sampling variances. In analyzing corre-
lation matrices the LISREL program does not make the necessary
corrections for the (co)variances of parameter estimates.

B. Confidence intervals for parameters

For model parameters (oi9 approximate 95 percent two-sided confidence
intervals &(j ± l.96se&r were calculated, where se&.. is the standard error
estimated from replication j= 1,.. .,300. For N > 100 such intervals
were close to theoretical expectations when covariance matrices were
analyzed. For N < 100, the number of 95 percent intervals covering the
population values was often too high or too low, depending on the type of
parameter and the model under study.
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Table 9.4. Results from approximate 95% confidence intervals for
parameters (correlation matrices analyzed)11

Parameter

X2

* 3

X5

K
X,
Xs

e,
e2
e3
e4e5
e6e7
e8

25

3%
2
4
4
1
1
4
4

- 5
0

- 3
c

- 4
- 2
- 6
- 3
- 5

Sample size

50

3%
4
5
5
3
3
5
5

- 1
- 2

2
- 4
- 4

1
- 2

^

100

2%
5
5
5
3
4
5
5

- 3
1
1
1

- 1
1
1
0

- 2

200

3%
4
5
5
4
4
5
5
0
1
1

- 3
- 4

1
2

- 2
- 4

400

4%
3
5
5
5
4
5
5

- 2
1
0

- 4
1
3
3

- 1
- 1

Population
value of co,

0.60
0.60
0.80
0.80
0.60
0.60
0.80
0.80
0.30
0.64
0.64
0.36
0.36
0.64
0.64
0.36
0.36

a The percentage across 300 replications in which the population value co, is
included in the estimated interval coj + 1.96^.., minus the expected 95%. A
positive value indicates that the population value is included in the estimated 95%
confidence interval too often; a negative value indicates that it is excluded too
often. Model 9.3.

In analyzing correlation matrices the construction of such confidence
intervals is not recommended (nor are hypothesis tests for the param-
eters), because the intervals frequently cover too high a proportion of
the population values. For Model 9.3 this is illustrated by the results
presented in Table 9.4. For factor loadings Xh the percentage of confidence
intervals covering the population value co, systematically exceeded the
expected 95 percent.

For all parameters symmetric intervals were constructed. If, however, co;

is contained in some bounded range (e.g., variances > 0, absolute factor
loadings ^ 1) such a strategy can be criticized. An alternative procedure
would have been to construct confidence intervals for these parameters in
the model restricted by such bounds (see Browne 1982).

When the results for many independent confidence intervals are
considered, the correct estimates will usually be obtained in analyzing
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covariance matrices when TV ^ 200. For samples of ^ 100, however, there
is a substantial chance that estimates may vary considerably, which in
many instances may lead to incorrect inferences. This can be especially
serious for those model parameters that estimate variances.

Even if these variances are not the parameters of most interest to the
rsearcher, it must be realized that all parameters are estimated simulta-
neously and that they are not independent of one another. Therefore,
estimates of other parameters may also be affected by the estimates of
variances.

C. Estimating goodness-of-fit

In general, for N < 100 the chi-square statistic for goodness-of-fit cannot
be completely trusted. Depending on the model under study, the right tail
of its sampling distribution is either too heavy or too light. With increased
sample size the results did not always improve systematically, probably
owing to sampling fluctuations. For samples of 100, 200, or 400 there
appeared to be no striking differences in the observed chi-square statistic.
Therefore, the findings indicate that for N ^ 100 the estimated goodness-
of-fit statistic is reasonably well behaved.

Small-sample results for Model 9.3 are presented in Table 9.5. For
N = 25 it appears that the right tail of the observed sampling distribution
is too heavy: The observed percentage of chi-square values that are larger
than the theoretical 95th quantile of 30.1 is 17 percent instead of the
expected 5 percent. In practice this means that the true population model
is rejected too often.

For a number of factor analysis models Anderson and Gerbing (1984)
discuss effects of small sample size on three additional goodness-of-fit
indices.

D. Other effects of sample size

In this section a number of issues are mentioned that are affected by
sample size and hence may indirectly affect parameter bias, standard
errors, confidence intervals, and goodness-of-fit. Therefore, they are of
importance both for the interpretation of the results discussed so far and
for practical recommendations.

(i) Problems of convergence As is sometimes the case in applications of
structural modeling, a specific sample S may not give a convergent
maximum likelihood solution within 250 iterations for a particular model
specification. This frequently occurred with samples of ^50 , and with
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Table 9.5. Characteristics of the sampling distribution of the chi-square
statistics for goodness-of-fita

(a) Observed minus expected values of statistics from the chi-square sampling
distribution with 19 degrees of freedom

Observed minus expected value

Sample size

25
50

100
200
400

Mean

4.2
1.7
0.4
0.3

-0 .2

S.D.

.14
0.1
0.3

-0 .0
0.3

Skewness

- 0 . 2
- 0 . 0
-0 .1

0.2
- 0 . 0

Kurtosis °/c

- 0 . 4
-0 .5
-0 .9

0.7
- 0 . 2

• Xi,<30.1*

12
2
3
1
1

(b) Expected values of statistics from the chi-square distribution with 19 degrees
of freedom and the standard error of their observed values, given NR = 300

Mean S.D Skewness Kurtosis % %\9 < 30.1

Expected value 19.0 6.2 0.6 3.6 5

Standard error
of observed
value;
NE = 300 0.4 0.3 0.2 0.8 1

a Model 9.3; NR = 300.
b The value 30.1 is the theoretical 95th quantile of the distribution.

N = 25 up to half the replications failed to converge given the sample
covariance matrices and the particular model specification studied. As
sample size increased, thus giving smaller sampling fluctuations in the S
matrix, the frequency of nonconvergence diminished. The sample size
required to avoid problems of convergence depends strongly on the
population structure £ (Table 9.6).

In general, we conclude that, when the sample fluctuations of the
covariances are relatively large (i.e., when sample size is small), conver-
gence problems may well occur. In most circumstances a sample size of
200 will not lead to such difficulties.

It should be noted that it is always possible to restart the iteration
process by using the estimated parameter values attained after the first 250
iterations as starting values in a continued analysis. However, the failure
to converge within 250 iterations may indicate that there are fundamental
problems in the data with respect to the model being estimated. Indeed,
the discrepancy between the data and a specified model may be so large



9.1
9.2
9.3
9.5

22.1%
6.5
1.6

55.0

5.1%
0.7

35.3
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Table 9.6. Percentage of nonconverging solutions0

Sample size

Model 25 50 100 200 400

0.7%

16.4 2.9%

a The percentage is expressed as 100x/(300 + x), where x is the number of
nonconverging replication before the 300th convergent solution is found. A blank
means 0%.

that the convergence criterion will not be met; sometimes convergence
cannot be obtained even if no limit on the maximum number of iterations
is set.

(ii) Negative estimates of variances A serious problem in parameter
estimation is that of negative estimates of variances. In factor analysis,
such estimates are known as "Heywood cases," and they correspond to
estimates of the variances of measurement errors 9, that are nonpositive.
The LISREL algorithm does not automatically constrain estimates of
variances to be equal to or greater than zero. Lee (1980) suggests that
inequality constraints in estimating parameters can easily be implemented
in programs for covariance structure analysis. In Chapter 12 Kelderman
discusses how to handle the problem for LISREL models, as does
Rindskopf (1983, 1984). In our study, samples resulting in negative
estimates were included in the total set of 300 replications. (For a
comparison between the strategies of including and excluding replications
with improper variance estimates, see Boomsma 1983, 1985.)

It was found that the problem of negative variance estimates frequently
occurs when TV ^ 50. As sample size increases the percentage of improper
solutions diminishes (Table 9.7). The percentage depends on the model
under study: The closer the population value of an error variance to
zero, the higher is the chance of obtaining inadmissible estimates. For
example, in Model 9.3 with N = 25 the percentage of negative esti-
mates for 0j = 0.64 was very low, whereas for 93 = 0.36 it was about
8 percent.

The practice of fixing some or all of the negatively estimated variances
in a model to a positive value close to zero is disputable, particularly
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Table 9.7. Percentage of replications (NR = 3000) for which negative
estimates of variances occura

9.1
9.2
9.3
9.5

Model 25

64.0%
46.3
27.3
47.3

50

40.0%
8.7
1.0

32.7

Sample size

100

19.7%
0.3

18.3

200

4.3%

6.3

400

2.7%

a A blank means 0%.

because of the dependencies among parameters in the model. If more than
one parameter has a negative estimate, one strategy would be to fix the
single variance with the largest negative estimate and see what happens.
Another would be to make a decision after inspecting the correlations
among parameter estimates. Thus, if initially two negative variance
estimates were found to be positively correlated, it would make sense to fix
one of them to a positive value in subsequent analyses.

We conclude that using a sample of medium (say, N = 200) or large size
is probably the best way to avoid improper solutions and the problems
they pose for interpretation. Extensive results and discussion of both
nonconvergence and improper solutions are given in Boomsma (1985).

(Hi) Correlations among parameter estimates For N < 200 the Pearson
product-moment correlations among parameter estimates can substan-
tially deviate from their asymptotic values. The empirical correlations
p(ct)Iy, avy), / ^ /', based on 300 replications were often too large or too
small. In practice, inspection of the estimated correlations among the
parameter estimates may often be of assistance in understanding the
estimates.

When correlation matrices are analyzed in LISREL, the correlations
among parameter estimates are based on uncorrected estimates of
parameter (co)variances; hence, they should be ignored.

(iv) Correlations between parameters and standard errors It is well known
that there are interdependencies between parameter estimates and their
corresponding estimated standard errors, though there remains a lack of
theoretical knowledge because the distribution of the standard errors is
unknown. In our study it was found that the (Pearson product-moment)
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Table 9.8. Overview of categorization C and skewness SK effects on
assessment criteria (covariance matrices analyzed)0

Assessment criterion

1. Convergence
problems

2. Improper
solutions

3. Bias
ofcb^

4. Bias
of se&r

5. Variance of
©p or co*

6. Confidence
intervals for cb,

7. Normality
test for cb,-,

8. Correlations

9. Correlations
p(&ij,se&.)

10. Chi-square
goodness-of-fit

Model

C

0

0

0

0

0

0

0

0

0

0

9.1

SK

0

•

0

0

*

*

0

0

0

Model

C

0

0

0

0

•

0

*

0

*

9.2

0

0

0

0

**

***

•

0

***

Model

C

0

0

0

0

*

*

0

***

0

9.3

SK

0

0

0

0

***

***

***

***

***

Model

C

0

0

0

0

**

*

*

***

0

9.4

SA:

0

0

0

0

**

*

*

• • •

* * *

0

fl Effects: zero or minor (0), small (*), moderate (**), and strong (***). N = 400.

correlations between parameter estimates and their standard errors
p(cb(/, se&.) vary substantially with sample size and that they appear to
converge toward some unknown value as sample size increases.

E. Conclusions

The results of the small-sample study lead to the qualitative conclusion
that maximum likelihood estimation with LISREL is robust against small
samples ifN^ 200. Depending on the model under study it might even be
robust for N ^ 100. In general, samples of a size smaller than 100 have
clear effects on parameter estimates, on approximate confidence intervals,
and on estimates for goodness-of-fit.
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Table 9.9. Standard deviation of standardized parameter estimates
(covariance matrices analyzed)0

Parameter

K
x2

x$K
X,

x84>
e,
e2e3e*
e5e«
e7e8

Normal
case

.01

.06

.06

.06

.02

.04

.01

.00

.00

.05

.02
- .02

.08

.01

.02
- .01

.02

SKO

-0.04
-0.16
-0.07
-0.37
-0.01
-0.14
-0.12
-0.41

0.04
-0.03
-0.03

0.02
0.09

-0.04
0.00

-0.02
0.01

Nonnormal case
degree of skewness

SKI

0.00
-0.08
-0.01
-0.33

0.18
-0.15

0.05
-0.24

0.10
0.04
0.02
0.09
0.16
0.11
0.03
0.21
0.20

SK2

-0.01
0.11
0.08

-0.29
0.53

-0.08
0.39
0.13
0.16
0.03
0.10
0.17
0.20
0.63
0.23
0.57
0.49

SK3

0.32
0.73
0.50

-0.13
1.52
0.00
1.74
0.89
0.39
0.36
0.59
0.53
0.46
1.95
0.59
1.33
2.50

Population
value of co,

0.60
0.60
0.80
0.80
0.60
0.60
0.80
0.80
0.30
0.64
0.64
0.36
0.36
0.64
0.64
0.36
0.36

a The observed standard deviation of co* = (cb,y - (£>l)/se&.., minus the expected
(theoretical) value of 1. A value of 0.00 thus indicates no bias, whereas a positive
value indicates an underestimate and a negative value an overestimate of the
expected value of the standard deviation of co*. Model 9.3; NR = 300; TV = 400.

4. Robustness against nonnormality

Table 9.8 gives an overview of the eflFects of nonnormality for each of the
four main models discussed in section 1, all with TV = 400. The overview is
meant to be a rough quantification of the results. Because differences in
findings across models may be due either to dissimilarities in the model
structures or to differences in the degree of deviation from univariate
normality among the variables within those models, or both, Table 9.8
should be interpreted with care.

A. Bias and variance

No substantial bias in estimates of parameters or their standard errors was
found. This implies that on average, across repeated sampling, the user of
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0.401-

0 .32-

0.24 -

s

3.6 7.2 10.8

O.3

2.2

S 1.

0.0

-u

-2.2

-3-3 _
-11.0

N = 400
NR = 300

ME A = 0.04
S.D. = 2.74

SKW = -0.60
KTS = 4.06

-7.9 -4.8 -1.7 1.4

Observed quantiles

4.5 7.5
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LISREL is not too far off from the population values when univariate
distributions are of the form investigated here.

However, the standard deviation of these parameter estimates across
the 300 replications is not what would be expected on theoretical grounds.
The observed values may be either too small (mainly for variations with
zero or small skewnesses) or too large (variations with moderate and large
skewnesses). Here, small categorization and moderate to strong skewness
effects were observed. This finding also applies to the empirical standard
deviation of the standardized parameter estimates, defined as co* =
(&>ij - <ol)lse&jj. Results for Model 9.3 are presented in Table 9.9. Figure 9.3
shows the effect of the skewed univariate distributions in Model 9.3 on the
variance of a standardized parameter: It does not behave as it should if
normality assumptions were not violated. The histogram is "flatter" than
it should be, indicating more large deviations from the mean than one
would expect. As to the quantile-quantile (Q-Q) plot, if no distributional
distortions occurred the empirical (dotted curve) and theoretical (straight
line) distributions would coincide. Here, the Q-Q plot clearly shows that
there are more parameter estimates in the left and right tails than
expected. (For a more detailed discussion of Q-Q plots the reader is
referred to Gnanadesikan 1977.)

These results on the variance of (standardized) parameter estimates are
of practical importance. An enlarged variance of an almost unbiased
parameter estimate implies that its mean square error is overestimated; it
is underestimated when the estimated variance is too small. In practice,
this means that in a single sample the estimated parameters may be either
too far away from their expected values or too close to them. Because
estimates are often correlated, this result may hold for several parameters
in the same model. Such findings support the general proposition that the
cross validation of statistical inferences is an important aspect of any
research methodology that employs structural modeling methods.

Figure 9.3 (facingpage). Histogram (upper) and corresponding Q-Q plot (lower)
of the standardized parameter estimate A.7. The plotted curve in the upper graph is
the standard normal density function. In the lower graph this normal distribution
is drawn as a cumulative distribution (straight line); the dotted graph represents
the cumulative distribution of the parameter estimates across all 300 replications.
Model 9.3; nonnormal variation SK3. N denotes sample size; NR, number of
replications; MEA, S.D., SKW, and KUR indicate the mean, standard deviation,
skewness, and kurtosis, respectively, of the standardized parameter estimates
across 300 replications.
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Table 9.10. Results from approximate 95% confidence intervals for
parameters (covariance matrices analyzed)0

Parameter

K
x2

K
x5K

xl -e
-

6i

e2e3e4e5

e.
e8

Normal
case

0%
- 2

(
—

(

)

)

0
0

- 1
0
0

SKO

2%
4
1
5

- 1
3
4
5

- 1
1
1
1

- 4
2
1
0
0

Nonnormal case
degree of skewness

SKI

2%
1

- 1
5

- 5
3

- 2
4

- 3
- 1
- 2

2
- 2
- 3

0
- 5
- 5

SK2

0%
- 2
- 3

4
-16

2
-10
- 3
- 5

0
- 4
- 5
- 7

-18
- 7

-16
-13

SK3

- 9 %
-20
-14

2
-35

0
-41
-25
-11
-10
-17
-15
-11
-45
-16
-34
-40

Population
value of (o,

0.60
0.60
0.80
0.80
0.60
0.60
0.80
0.80
0.30
0.64
0.64
0.36
0.36
0.64
0.64
0.36
0.36

a The percentage across 300 replications in which the population value ©, is
included in the estimated interval (fy, ± 1.96.^.., minus the expected 95%. A
positive value indicates that the population value is included in the estimated 95%
confidence interval too often; a negative value indicates that it is excluded too
often. Model 9.3; N = 400.

B. Confidence intervals for parameters

As discussed in the previous section, the effect of an increased or decreased
variance on the approximate 95 percent confidence interval for param-
eters, (bjj ± l.96se&ij (see also Section 2B), is substantial. The population
value co, will be included in such intervals either too infrequently or too
often. The effect of skewness is particularly strong, whereas the categoriza-
tion effect is less clear. These effects are illustrated in Table 9.10, where it is
evident that for Model 3, with the largest degrees of skewness, the width of
the confidence intervals is severely overestimated.

If researchers employ such confidence intervals regularly in covariance
modeling, they should be careful not to overinterpret them when data are
substantially skewed. The findings above imply that the researcher would
conclude that the parameters fall within given intervals more often than
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Table 9.11. Characteristics of the sampling distribution of the chi-square
statistics for goodness-of-fita

(a) Observed minus expected values of statistics from the chi-square sampling
distribution with 19 degrees of freedom

Observed minus expected value

Normal case

Nonnormal
case1

SKO
SKI
SK2
SK3

Mean

0.4

0.6
1.3
4.9

15.4

S.D.

0.5

0.5
0.5
1.4
6.1

Skewness

0.3

- 0 . 0
0.4
0.1
0.1

Kurtosis °A

1.2

-0 .2
1.0
0.5
0.1

>X?9<30.1*

0

3
4

14
49

(b) Expected values of statistics from the chi-square distribution with 19 degrees
of freedom and the standard error of their observed values, given NR = 300

Mean S.D Skewness Kurtosis %Xi9<30.1

Expected value 19.0 6.2 0.6 3.6 5

Standard error
of observed
value;
NR = 300 0.4 0.3 0.2 0.8 1

a Model 3; NR = 300; N = 400.
b The value 30.1 is the theoretical 95th quantile of the distribution.
c SKO through SK3 indicate the degree of skewness; see Table 9.2.

they should. The researcher is urged to be aware of the uniqueness of a
one-sample result and to be very careful about generalizing to population
values when the data are clearly nonnormally distributed.

C. Estimating goodness-of-fit

With the chi-square statistic for goodness-of-fit we are dealing with one
outcome per replication; hence, its robustness can be summarized more
easily in quantitative terms. From Table 9.8 (line 10) it is evident that a
minor effect of categorization was found. For models with only a
moderate degree of skewness in variable distributions (Models 1 and 4,
where the median absolute value of skewness for the k observed variables
is ^ 1.25 and ^1.13, respectively) there were only minor deviations from
the asymptotic theory. However, in Models 9.2 and 9.3, which contain
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0.07r

0.05f-

0.04 h

42.7

36.51-

30.3 h

^ 24.0h

17.8 h

H.6h

69.5 83.4

21.4 33.9 46.3 58.7

Observed quantiles

71.2 83.6
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variables of more extreme skewness (in nonsymmetric variations, median
absolute skewness ^ 1.25; see Table 9.1), there was evidence that the
goodness-of-fit of the population model would be rejected too often if we
relied solely on assessing it against the chi-square distribution.

The results for Model 9.3 are summarized in Table 9.11, and the effects
for skewness variation SK3 are illustrated in Figure 9.4. We conclude that
the chi-square statistic is a poor guide for testing the hypothesis that a
particular model is the population model when the observed variables
have long-tailed, skewed distributions.

D. Other effects of nonnormality

(i) Convergence problems and improper solutions. With a sample size of
400 the models with discrete and skewed variables did not encounter
convergence problems. Also, only a few occurrences of negative estimates
of variances were found (Model 9.1).

(ii) Normality test for standardized parameter estimates. The distribution
of standardized parameter estimates co*was inspected by a scale-invariant
test proposed by Shapiro and Francia (1972). In our study it was generally
found that the shape of this distribution was not dramatically different
from a normal distribution, although a strong skewness effect for Model
9.3 was detected (see Table 9.8, line 7). Few systematic changes were
detected across different degrees of nonnormality. It should be noted that,
although we reported earlier that the standard deviation of parameter
estimates gave incorrect confidence intervals, we now find that the
distributions of the standardized parameter estimates do not depart
significantly from normality. This is not a contradiction of the earlier
finding: Standardized parameter estimates are expected to have a standard
normal distribution; however, for skewed data the variances of these
distributions are often too large, though their shape is still approximately
normal. Apart from a few very small values in the left tail of the observed
sampling distribution, this is also indicated by Figure 9.3.

(Hi) Correlations among estimates. Table 9.8 summarizes the effect of
categorization and skewness on the product-moment correlations among
parameter estimates (line 8) and on the correlations between parameter

Figure 9.4 {facing page). Histogram (upper) and corresponding Q-Q plot (lower)
of the chi-square estimate for goodness-of-fit. The plotted curve in the upper graph
is the chi-square density function with 19 degrees of freedom. In the lower graph
this chi-square distribution is drawn as a cumulative distribution (straight line);
the dotted graph represents the cumulative distribution of the estimated model fit
across all 300 replications. Model 9.3; nonnormal variation SK3. N denotes
sample size; NR, number of replications; d.f., degrees of freedom.
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estimates and their corresponding standard errors (line 9). Both sets of
estimates are substantially affected by nonnormality.

The findings suggest that, under conditions of nonnormality, the advice
given earlier that inspection of estimated correlations among parameters
be a standard rather than an optional practice, has to be followed
cautiously.

E. Conclusions

On the basis of all the nonnormality findings, our general qualitative
conclusion is that maximum likelihood estimation with LISREL is rather
robust against the categorization of symmetrically distributed observed
variables with normal kurtosis, but not against skewed (kurtotic) distri-
butions of those variables. More specifically, we do not recommend that
this estimation procedure be used when the median (or mean) absolute
skewness of the observed variables is larger than 1.0 (approximately),
because it can be expected to affect crucial elements of statistical
estimation and testing.

5. Discussion

One of the goals of science is to offer stable explanations for the relations
among empirical phenomena, with the ultimate aim of generalization and
prediction of results in future samples from the same domain of interest.
In line with this position we suggest that the estimation of structural
equation models by maximum likelihood methods be used only when
sample sizes are at least 200. Studies based on samples smaller than 100
may well lead to false inferences, and the models then have a high
probability of encountering problems of convergence and improper
solutions. The validity of findings based on small samples should always
be investigated by replication of the work.

In dealing with the effect of nonnormality, we emphasized the effect of
skewness because of the design of the study. In Section 2E, it was stressed
that skewness and kurtosis are linked: High skewness is always accom-
panied by high kurtosis (see, e.g., Figure 9.2). Therefore, it is difficult to
decide whether a distortion of distributional properties of the statistics
under consideration is due to skewness or to kurtosis. Asymptotic theory
(Browne 1982) shows, however, that the effect of kurtosis on the chi-
square likelihood ratio test statistic is O(N~l), whereas the effect of
skewness is o(N~l). This at least suggests that the effect of kurtosis is more
important than that of skewness, though it does not imply that skewness is
unimportant. The conclusions regarding symmetric distributions in the
preceding section are based on our findings that for the models under
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study kurtosis had no effect in symmetric distributions. (For these
distributions the kurtosis was in the range 0.00-2.67.) The effects of
kurtosis outside this range, in the absence of skewness, must be inves-
tigated further. It can be expected that distortions will increase with
kurtosis. The class of elliptical distributions serves as an example of
symmetric distributions that distort the distribution of the normal theory
likelihood ratio test statistic and lead to incorrect estimates of standard
errors for parameter estimators, purely because of kurtosis (Browne 1982,
1984). It seems plausible that distributions of variables that are both skew
and kurtotic will result in greater distortions of the distributions of
parameter estimates and of the chi-square test statistic than will distri-
butions with no skewness but high kurtosis. Given these considerations, it
is recommended that in practice one always examine both skewness and
kurtosis before deciding whether it seems appropriate to apply normal
theory procedures.

In discussing the effects of skewness we have employed the median
absolute value of skewnesses as an indicator of the degree of nonnormality
in a model, although we do not consider it to be the one and only guideline
in deciding to what extent departures from normality might affect the
inferences. For example, one or two extremely skewed variables among
several other variables having symmetric distributions may well lead to
nonrobust results.

The present study has considered skewed, discrete variables with two to
seven categories. It is plausible that maximum likelihood estimation is also
robust when variables have nonsymmetric but continuous distributions,
provided that the degree of skewness is approximately the same as or
smaller than that studied for Models 9.2 and 9.3.

With the latest versions of LISREL one can compute polychoric
(including tetrachoric) and polyserial correlations from the raw data and
analyze matrices of such sample correlations (see Olsson 1979b; Olsson,
Drasgow, & Dorans 1982). In principle, one can thus handle discrete
(ordinal) variables as well as continuous variables together. (Some of the
effects found in this study when analyzing correlation matrices might also
apply when these approaches are used, since they are correlations rather
than covariances.) The latent variable analysis of dichotomous, ordered
categorical, and continuous indicators with a generalized least squares
procedure, as developed by Muthen (1983,1984), also employs polychoric
and polyserial correlations. The use of both types of correlation coeffi-
cients assumes that the observed variables are discrete (ordered) realiza-
tions of latent variables that have normal distributions. In using these
methods the researcher must consider how realistic such assumptions
might be for the variables to be analyzed. At the same time more research
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is needed to determine the effect of analyzing polychoric and polyserial
correlations rather than analyzing raw covariance matrices.

Since stronger deviations from the asymptotic theory were found when
the observed variables had extreme skewnesses, we must consider what the
researcher might do in practice with such distributions. Before that, one
could ask how often such nonnormal distributions are encountered.
Bradley (1977) mentions some examples of long-tailed, skewed distri-
butions in the behavioral sciences and makes a general plea to study the
robustness of "nonfamiliar" distribution shapes. In four empirical data
sets from the social sciences, Boomsma (1983, chap. 5) found that the
degree of skewness was quite moderate and that kurtosis most often was
in the range 0.5-3.5.

However, the common practice of regrouping discrete categories with
few observations undoubtedly gives the impression that skew distri-
butions occur less often than they actually do. After such regrouping and
recoding, discrete variables have fewer categories and are usually more
symmetrically distributed. Whether such procedures should be used
routinely can be questioned. The researcher might be tempted to trans-
form discrete or continuous variables to approximately symmetric distri-
butions. From our Monte Carlo results it is clear that such procedures
would reduce the effects of skewness and would thus give statistical
estimates that were "closer to theory" than those obtained in a situation
where no transformations were employed. But is it possible to talk of the
same theoretical domain of a variable before and after transforming it?
And is it methodologically acceptable to transform the data after
inspection of the observations in the sample? One prediction can be safely
made: The sample covariances of the transformed variables will differ
from the covariances of the untransformed variables. Given the same
theoretical model under study, the researcher should consider the possi-
bility that the transformed variables could lead to inferences different than
those obtained from the raw variables.

We have two general recommendations. First, given the results of our
robustness study, the researcher should avoid analyzing covariance
structures by maximum likelihood methods when observed variables
are both discrete and strongly skewed. Second, rather than performing
transformations it might be useful to develop instruments of measurement
that have attractive distributional properties and are linked directly to a
substantive theory of what they are intended to measure.
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10
An inquiry into the effects of

outliers on estimates of a structural
equation model of basic skills

assessment
JOAN K. GALLINI AND JIM F. CASTEEL

Little is known about the behavior of LISREL estimates when distri-
butions are contaminated by outlying observations. Monte Carlo ap-
proaches have typically been used to investigate the robustness of
maximum likelihood techniques in factor analysis models (Fuller &
Hemmerle 1966; Olsson 1979; Gallini & Mandeville 1984; Boomsma,
Chapter 9 in this volume) or to examine departures from normality
(Andrews, Gnanadesikan, & Warner 1973; Gnanadesikan 1977). Such
studies have yielded important results concerning the robustness of
maximum likelihood estimates under various conditions. However, the
Monte Carlo approach is atypical of the situation faced by the practicing
researcher dealing with a data set in which the "true" structure in the
population is unknown.

In this chapter the influence of outliers on parameter estimates is
addressed in a real data set. The LISREL model is examined using real
data in which the relationships may be atypical owing to the influence of
outliers. A robust estimation technique (Tukey 1960) is employed to
identify outlying observations. The consequences for model fit in samples
of variable sizes are examined when these outliers are removed from the
sample. The major aim of the chapter is to provide the researcher with a
practical strategy for the detection of outliers in the context of structural
modeling and an indication of their effects on parameter estimates.

The model

In 1978 the South Carolina legislature established the Basic Skills
Assessment Program (BSAP). The BSAP tests of reading and mathema-
tics were field-tested in 1980 and administered statewide in the spring of
1981 (South Carolina Department of Education 1981). This study uses the
first grade BSAP test data from 1981 matched with the students' 1980
"readiness" test scores on the Cognitive Skills Assessment Battery (CSAB;
Boehm and Slater 1977) collected by the South Carolina Department of
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y2 Y> Y4

BSAP
math

Figure 10.1. Structural equation model for the BSAP.

Education. Information on sex, race, and free-lunch status was also
collected for all students.

A recursive structural equation model was formulated for the BSAP
(Figure 10.1). The causal ordering of variables in the model was deter-
mined by their time ordering. Demographic variables were specified to be
causally prior to achievement variables; variables measured in 1980 were
specified to be causally prior to those measured in 1981.

The model consists of two exogenous latent constructs, "home" and
"sex." The home construct has two indicators, "race" and "free-lunch
status" (free-lunch status is interpreted as an indicator of socioeconomic
status derived from eligibility for free, reduced, or full-cost school
lunches). The two endogenous constructs are "readiness for first grade"
and "basic skills acquired by the end of first grade." Readiness for first
grade was measured by the CSAB. A previous factor analysis of the CSAB
identified the four indicators shown in the model: "teacher perception"
(ATSO), "concept recognition/comprehension" (CRC), "language devel-
opment" (LD), and "auditory-visual memory/discrimination" (AVM)
(Gallini and Mappus 1981). Basic skills were measured by the test of the
South Carolina BSAP and had two indicators: "reading" and "math."
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Table 10.1. LISREL model specifications

MO NY = 6 NX = 3 NE = 2 NK = 2
LX = FU, FI LY = FU, FI TD = DI, FR TE = DI, FR
PH = SY, FR GA = FU, FR BE = FU, FI PS = DI, FR

LY (6, 2) BE (2, 1)Free
Fixed
VA
VA
VA
VA
VA
VA
ST

1.0
.0
.0
.0
.4
.05
.4

LX (2, 2)
PH (1, 1)
LX
LX
LY
LY
PH
TD
TD

(3,2)
(2, 1)
(6,1)
(4,2)

(M)
(1,1)
(2,2)

LY (2, 1)
TD(1
LX
LX
LY
BE

TD

l,D
(1,
(3,
(1,
0,

(3,

LY(3,

1)
1)
2)
1)

3)

LY
LX
LY
BE

1)

(1,
(1,
(2,
(2,

LY

1)
2)
2)
2)

(4,

LY
LY
LY
BE

1)

(5,
(5,
(3,
(1,

L'

2)
1)
2)
2)

Model specifications for the free and fixed elements are shown in Table
10.1 in LISREL notation (Joreskog & Sorbom 1981).

Method

A random sample of 4,976 first graders in South Carolina comprised the
total data set. Random samples of 100, 500, and 1,500 were selected for
the structural equation analysis to examine the effects of different sample
sizes. The smaller samples were nested within the total 4,976 but were
selected so as to be independent of one another.

The data were then systematically trimmed by a method commonly
used to "robustify" regression parameters so as to reduce the effects of
outlying observations. Huynh (1982) compared four such techniques and
found little practical differences among them; all four produced regression
coefficients that were significantly different from the ordinary least squares
solution but were not significantly different from one another. In addition,
after the removal of observations identified by the robust techniques as
outliers, the ordinary least squares regression on the remaining observa-
tions produced regression coefficients virtually identical to the robust
estimates. This study used biweight estimates, a technique proposed by
Tukey (1960; see Hogg 1979 for a list of references). The method divides
regression residuals by a scale "d" (similar to a in the normal error
model), and the resulting x is multiplied by the function \|/, which is
defined as

= 0, |JC| > k

where & is a tuning constant typically set at 5.0. An iterative weighted least



.362
12.357
0.104
0.620
0.190
0.031
0.242
0.026
0.191

.407
13.210
0.139
0.465
0.184
0.058
0.256
0.008
0.147
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Table 10.2. Comparison of regression estimates for math

Estimate Ols Tukey

R2

Intercept
1 (sex)
2 (race)
3 (free lunch)
4 (teacher)
5 (concept)
6 (language)
7 (memory)

Table 10.3. Comparison of regression estimates for reading

Estimate Ols Tukey

R2

Intercept
1 (sex)
2 (race)
3 (free lunch)
4 (teacher)
5 (concept)
6 (language)
7 (memory)

squares process must be employed, and a program in Statistical Analysis
Systems (1979; Casteel & Huynh 1982) was used. This process, based on
the magnitude of the residuals from the robust regression line, results in
weights in the range from 0 to 1, where 0 indicates an extreme outlier.

Regressions were run on the data set to compare ordinary least squares
(Ols) and robust estimates. Two regression models were examined: (1) the
regression of math on sex, race, free lunch, and the four factors of the
CSAB; and (2) the regression of reading on the same set of variables.
Tables 10.2 and 10.3 show the results of the regression comparing Ols and
the robust estimates. For both math and reading the robust method
produces an increase in the multiple correlation for the model.

Although any of a number of approaches might be used to reduce the
effect of outlying observations in the robust regressions, simply removing
the outliers has been shown to be essentially equivalent to other robusti-
fying techniques (Huynh 1982). In order to heavily trim outliers from the
comparison data for the purpose of this study (~20% of the observations
were removed) a .75 criterion weight was selected. Observations with

.439

.147
1.877
0.364
0.971
0.043
0.580
0.137
0.233

.524
-2.334

2.163
0.386
0.840
0.031
0.642
0.128
0.260
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weights less than .75 were assumed to be outliers and were removed from
each sample. This process was completed independently for math and
reading within the total sample and each of the subsamples, allowing each
subsample to approximate its own robust regression parameters. Con-
sequently, observations distant from either regression line, math or
reading, were removed. For the total sample, this procedure removed 224
observations (~4.5%) due to reading alone, 425 observations (~8.5%)
due to math alone, and another 290 observations (~5.8%) identified by
both math and reading. This resulted in a new total sample size of 4,037
(19% trimmed), whereas the subsamples were independently reduced to
sizes of 75 (25% trimmed), 405 (19% trimmed), and 1,189 (21% trimmed),
respectively.

Figures 10.2 and 10.3 show the residuals plotted against the predicted
values for both reading and math using the entire sample (N = 4,976).
The vertical lines represent the approximate boundaries beyond which
outliers were removed. This approach removes observations that may be
improperly measured or perhaps come from another population but that
are known to depart from a normal distribution around a multiple linear
regression. Thus, only the magnitude of the residuals from the multiple
regressions indicates outliers. It follows that observations that depart
from the regression line are not necessarily the most extreme points in the
distribution of the dependent variables, which, though large in absolute
value, may be quite close to the regression line. The purpose of this
chapter is to examine the robustness of parameter estimates in structural
equation models when the data contain outliers.

Results

The LISREL VI computer program was employed to estimate the
structural equation model for each original data set and each "robusti-
fied" data set (with the outliers removed). Table 10.4 presents the chi-
square tests for overall model fit. Whereas all the chi-squares are relatively
large, the robustifying technique resulted in significantly reduced chi-
squares in three of four cases. The chi-square fit statistic, however, is
dependent on sample size. The goodness-of-fit index (GFI) and adjusted
goodness-of-fit statistics (AGFI) (adjusted for degrees of freedom) are
independent of sample size. These are shown in Table 10.5. The goodness-
of-fit index is relatively high for both original and robust data sets of each
size considered (ranging from .859 to .979). They suggest that the outliers
did not have a major impact on the overall model fit; the differences
between the goodness-of-fit for the original and robustified data sets
ranged from .002 to .028. Table 10.5 also reports mean square residuals,
another measure of overall model fit. This index takes its metric from
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Table 10.4. Chi-square fit statistics for models

Data set

Original
Robustified

Original
Robustified
Original
Robustified

Original
Robustified

Table 10.5.

Data sets

Original

Robustified

Sample size

100
75

500
405

1,500
1,189

4,976
4,037

Goodness-of-fit

Sample
size

100
500

1,500
4,976

75
405

1,189
4,037

X2

77.25
48.75

64.10
55.39

140.04
97.24

550.63
485.56

d.f.

22
22

22
22

22
21

22
22

Difference

-28.50

-8.71

-42.80

-65.07

and root mean square residuals for models

d.f.

22
22
22
22

22
22
22
22

GFI

.859

.973

.979

.978

.887

.971

.974

.970

AGFI

.711

.945

.957

.955

.768

.940

.947

.938

Mean
square

residuals

1.158
0.471
0.342
0.429

0.526
0.377
0.277
0.375

comparing the observed variances and covariances; hence, it is not so
useful for models comparing different data sets. All of the fit statistics
could probably be improved by allowing for correlated errors in the
model. However, the primary focus of this study is the bias in parameter
estimates for a given model when estimated for data containing outliers.
The correlated errors were omitted in order to keep the model relatively
simple.

Further analysis involved an evaluation and comparison of the individ-
ual parameter estimates for the original versus the robust data sets. The
LISREL estimates for the model are given in Table 10.6 and their
respective standard errors in Table 10.7. A large decrease occurs from the
original to the robustified data sets for the estimates of the equation
residual variance (\|/22) fc>r the LISREL regressions of math achievement
(r)2) on the other variables in the model. This reduction is expected as a
direct result of removing error variance (1 — \|/22) in the robustifying
process.



Table 10.6. LISREL parameter estimates for original and robust data sets0

Parameter

^•3 1

x4\
^ 6 2

tf.

02.

Yu

Y21

Y12

Y22

<t>2.

<t>22

Tl 1

*l>22

tfi
022

833

e!L
e c

5 5

^ 2 2

ei,

W = 100
original

3.424

2.210

3.679

0.480

0.418

0.453

4.194

0.166

1.340

0.792

0.230

0.040*

0.729

0.828*

15.612

7.694

8.218

7.342

9.893

15.587

4.221

0.101

0.171*

N = 75
robust

3.109

1.343

2.453

0.378

0.387

0.540

3.000

0.240

3.085

1.116

1.442*

0.013*

0.630

1.156

0.086*

5.618

6.002

7.585

9.640

10.261

2.961

0.066

0.260

N = 500
original

2.663

1.454

2.773

0.538

0.652

0.461

3.001

0.959

1.072

1.122

1.056

0.998*

0.564

1.979

12.011

5.982

12.157

9.556

11.160

17.627

5.702

0.130

0.336

N = 405
robust

2.316

1.296

2.576

0.455

0.707

0.493

2.894

1.069

0.936

1.303

1.163

-0.017*

0.548

2.185

2.736

6.085

11.473

8.920

9.754

17.361

3.086

0.117

0.352

N = 1,500
original

2.401

1.412

2.399

0.482

0.707

0.413

2.943

0.398

0.213*

1.090

0.800

0.006*

0.702

2.242

12.294

5.946

9.689

9.311

11.378

13.512

5.207

0.130

0.198

N = 1,189
robust

2.386

1.401

2.306

0.431

0.707

0.405

3.140

0.369

0.292*

1.115

0.599

0.005*

0.716

2.205

1.736

5.756

8.873

9.906

10.634

11.291

2.832

0.133

0.184

N = 4,976
original

2.316

1.388

2.326

0490

0.707

0.412

2.676

0.434

0.747

1.095

1.066

0.006*

0.679

2.661

14.926

5.984

10.542

9.361

11.803

13.510

5.918

0.135

0.221

N = 4,037
robust

2.426

1.370

2.326

0.436

0.707

0.394

3.155

0.382

0.565

1.024

0.676

0.007*

0.710

2.301

3.400

5.890

8.553

9.735

11.661

12.647

3.258

0.140

0.190

' Asterisk denotes parameters that are less than twice their standard error.



Table 10.7. Standard errors for the original and robust data set estimates

Parameter

111

1*2 1

Yi i

7>i

Yu

Y-

<!>>.

*2t

*1>M

* 2 2

o'i,

e l
4 4

e'ss

e L
6 ( )

N = 100
original

0.952

0.641

1.024

0.060

0.051

0.078

1.335

0.232

1.142

0.265

0.954

0.077

0.166

0.463

4.821

1.125

1.722

1.222

2.034

4.539

1.094

0.026

O.I 11

N = 75
robust

0.694

0.372

0.584

0.048

0.058

0.084

0.799

0.328

0.895

0.323

0.887

0.086

0.160

0.546

2.716

0.966

1.744

1.325

1.776

2.867

0.589

0.025

0.089

N = 500
original

0.206

0.130

0.211

0.027

0.027

0.053

0.291

0.153

0.480

0.164

0.472

0.028

0.080

0.316

1.932

0.406

1.061

0.673

1.046

1.976

0.954

0.015

0.064

N = 405
robust

0.189

0.124

0.202

0.023

0.030

0.054

0.271

0.179

0.429

0.189

0.436

0.031

0.080

0.372

1.345

0.460

1.012

0.681

0.983

1.704

0.328

0.016

0.060

N = 1,500/V
orig.nal

0.107

0.074

0.109

0.014

0.016

0.025

0.156

0.082

0.241

0.086

0.227

0.017

0.049

0.201

1.128

0.237

0.515

0.400

0.565

1.058

0.289

0.008

0.038

= 1,189N = 4,976 W
robust

0.113

0.080

0.112

0.012

0.018

0.026

0.160

0.091

0.201

0.094

0.191

0.019

0.054

0.216

0.698

0.252

0.487

0.438

0.539

0.744

0.159

0.008

0.040

original

0.055

0.038

0.056

0.008

0.009

0.015

0.077

0.049

0.139

0.051

0.131

0.009

0.028

0.125

0.689

0.133

0.305

0.214

0.328

0.632

0.181

0.005

0.022

= 4,037
robust

0.063

0.044

0.063

0.007

0.010

0.015

0.090

0.050

0.118

0.052

0.109

0.010

0.032

0.124

0.441

0.141

0.270

0.235

0.321

0.466

0.101

0.005

0.025
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No particular directional changes in the parameter estimates can be
expected from a technique that simply reduces bias. However, for this set
of data some patterns were detected when bias was reduced in the original
data sets. As shown in Table 10.6, there are consistent but small decreases
in the factor loadings of the indicators on the latent constructs (k
parameters) from the original to the robust data sets at each sample size. A
similar pattern appears among the measurement error variances as-
sociated with those loadings (0E and 05 parameters).

Further interpretation of the impact on LISREL estimates of removing
outliers necessitates examination of the standard errors in Table 10.7. As
would be expected from large-sample theory, the standard errors decrease
as the sample size increases. The trend is consistent across the four original
data sets as well as across the four robustified data sets. Although this
observation is useful, it is not within the constraints of this study to
examine further the effect of sample size. Rather, emphasis is given to the
effect of the removal of outliers on improved estimates, that is, decreases
in standard errors from the original to the robustified data sets.

If observations were randomly removed from a data set, the standard
errors of the LISREL estimates would be expected to increase owing to
the reduction in sample size. However, if the process of removing selected
observations were not random but instead based on a procedure logically
related to the specification of the model and intended to improve
estimates, the standard errors would remain the same or decrease.
Although the parameter estimates might change, robustification would be
of little practical use if the standard errors remained the same, since this
would indicate no improvement in the precision of estimated values. The
standard errors reported in Table 10.7 show several trends. Of the 92
standard errors, 4 show no change, 45 decrease, and 43 increase when
outlying observations are removed. Although the increases and decreases
are almost evenly split, it must be noted that the average decrease is 0.216
whereas the average increase is only 0.017. In fact, overall there is an
average decrease in the standard errors of the LISREL estimates of 0.098
when the sample is trimmed by removing outliers. Examining only
changes greater than 0.01 in absolute value reveals 35 decreased standard
errors and only 14 increased standard errors as the data sets are
robustified; using a criterion of 10 percent change indicates 28 decreases
and 21 increases in standard errors.

Another trend in the standard errors may be observed in the interaction
between the sample size and the robustifying process. In small samples,
which naturally have larger standard errors, the robustifying process has
the greatest effect; the efficacy of removing outliers decreases as the sample
size increases. In fact, the average decreases in the standard errors of the
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LISREL estimates when the samples of 100, 500, 1,500, and 4,976 were
robustified were 0.264, 0.068, 0.020, and 0.039, respectively.

Conclusions

This chapter demonstrates the effects of outliers on parameter estimates in
a structural equation model using an empirical data set. The approach
described here involved a series of multiple regressions and robust
multiple regressions and the removal of outlying observations beyond a
criterion point based on the robust regressions.

The results suggest that careful consideration should be given to
robustifying elements in a sample matrix when the sample size is small,
before estimating structural equation models. If outliers are suspected,
whether due to improperly identified samples, incorrect measurement,
data contamination, or other factors, some approach to reducing the
effect of the outliers should be considered (Huber 1964, 1973).

The smaller effects found with the large data sets would presumably be
even smaller if different techniques were used for robustifying the data.
The method employed in this study removed a similar proportion of the
data in all samples. The use of a method based strictly on the definition of
outliers as influential observations would result in the removal of a smaller
percentage of observations from large data sets and would thus reduce the
effect.

As demonstrated by this study, an increase in R2 due to robust
regression provides initial evidence of outliers and may indicate whether
data should be robustified before LISREL analysis. The determination of
what constitutes a substantial change must be viewed in terms of the
specific situation. For example, in the present study, the changes in R2

may appear to be small in absolute value (from .362 to .407 and from .439
to .524); however, given the large sample size (N = 4,976) on which the
robust techniques were based, these increases seem sufficiently substantial
to warrant investigation. Such an increase in R2 may indicate the need to
robustify the data before the LISREL analysis. Consistent decreases in the
standard errors of the estimates as shown in the LISREL results of this
chapter provide further support for the utility of robustification of a given
data set containing outliers. If there is a lack of initial evidence of outliers,
the researcher should employ the original data set in the LISREL analysis.

As shown in this chapter, it is of greatest advantage to apply robust
methods to small samples; in all instances the parameter estimates and
their standard errors showed relatively larger decreases in the small data
sets when outliers were removed. Indeed, with sample sizes larger than 500,
robust methods probably produce only minimal changes and may be
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unnecessary; smaller samples, however, should be carefully examined for
outliers. Such findings are of particular practical significance, because
social science research typically employs small samples.
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Testing structural equation models
W. E. SARIS, J. DEN RONDEN, AND A. SATORRA

Introduction

An important use of structural modeling is the testing of theories. The
plausibility of hypotheses concerning causal mechanisms depends on the
empirical support they receive from data. Thus, any technique that
analyzes causal structures should include a means of assessing the
disagreement between the model and the data. However, even when a test
of the agreement between the data and the theoretical model is available,
we also require a means of assessing the probability that the results are due
to characteristics of the research design itself. There must be a reasonable
chance of rejecting incorrect theories independently of the research design.
The probability of rejecting an incorrect model is referred to as the "power
of the test." Structural modeling provides estimates of the model param-
eters and a formal test for deciding whether a theory should be rejected,
given the data. However, the standard use of the likelihood ratio test
statistic is not without problems. In the case of a large sample, the test very
often leads to rejection, whereas in the case of a small sample the test
rarely leads to the rejection of the model. Other indices of model fit have
been suggested (Wheaton et al. 1977; Bentler & Bonnet 1980; Fornell &
Larcker 1981; Hoelter 1983) that take into account the impact of the
sample size on the test; however, the efficacy of all of these indices depends
on the power of the test. Satorra and Saris (1982a,b) have developed a
procedure to determine the power of the likelihood ratio test in structural
models. Given the knowledge of its power for a particular model, a
criterion for the evaluation of structural equation models that takes Type
I and Type II errors into account can be formulated.

This chapter discusses the following:
1. problems that arise when the fit of structural equation models is not

formally assessed,
2. problems associated with the likelihood ratio test statistic when a

specific significance level (conventionally .05) is used,
3. problems of alternative testing procedures, and
4. a procedure for testing the fit of models that takes account of the

power of the test.

202
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AA

AA2

Figure 11.1. Clifton's model. Eth, Ethnicity (grade 9); SES, Socioeconomic Status
(gr. 9); IA, Intellectual Ability; AA1, Academic Achievement (gr. 9)- TE Teachers'
Expectations (gr. 10); PE, Parenting Expectations (gr. 10); PA, Peer Aspirations
(gr. 10); SA, Student Aspirations (gr. 10); AA2, Academic Achievement (gr. 11).

These issues are illustrated by a secondary analysis of data from articles
published during the period 1979-82. Fifteen articles that report the use of
path analysis and 24 that report LISREL analysis were selected for study
For the 15 studies that apply path analysis we illustrate the problems of
the path analytic approach by focusing on the way the data were analyzed.
For the 24 LISREL applications, we report and examine the means by
which the researcher tried to overcome the problems associated with the
likelihood ratio test statistic. Finally, we illustrate an alternative testing
procedure.

Implications of failing to test the fit of a model

The standard practice of applying structural modeling methods is illu-
strated by the example in Figure 11.1, taken from Clifton (1981). The
coefficients of the model were estimated by ordinary least squares
regression. This analysis is not a sufficient means of evaluating the
nonsaturated model postulated, because there are no criteria by which to
decide whether the model actually does or does not fit the data. In this
model some of the effects among intervening variables are hypothesized to
be zero, but no tests of these hypotheses were undertaken in the original
path analysis. This is a serious methodological omission, because it means
that there is no evaluation of the fit of the model to the data. The relaxing
of parameters formally constrained to zero may result in changes in the
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values of the other parameters if the hypothesized model is misspecified.
For instance, it seems plausible to argue not only that Parental Expec-
tations (PE) are determined by background variables but that they are
partly dependent on Teachers' Expectations (TE). When this relationship
is included in the model, not only is the direct effect of Teachers'
Expectations on Parental Expectations statistically significant, but the
change is accompanied by a substantial reduction in the direct effect of
Academic Achievement (AAI) on Parental Expectations and of Socio-
economic Status (SES) on Parental Expectations. Thus, the interpretation
of the results in models that do not formally test the fit of the model
against the data is suspect.

Problems with the .05 significance level

The general LISREL procedure provides a likelihood ratio test statistic
for assessing the agreement between the hypothesized causal structure and
the data, and this can be routinely used to test the fit of models. This test
statistic is based on a comparison of the value of the likelihood function
for the estimated model with that of a fully saturated model. The fully
saturated model (zero degrees of freedom) has a perfect fit and therefore
represents the minimum value possible for the likelihood function. If
the ratio of these values is represented by R, the test statistic
(T = —2 logR) has a chi-square distribution. However, this is true only if
the model is correct, the observed variables are normally distributed, and
the sample is large.1 The following decision rule is used for a test at the a
level of significance. If tdL < C(OL) the model is rejected, where t denotes the
observed value of the test statistic T, d.f. the number of degrees of
freedom, which is equal to the number of overidentifying restrictions, and
C(oc) the value for which P(t > C) = a. This value C(a) is obtained from a
table for the chi-square distribution. We applied this test to the path
analysis models that we examined to evaluate their fit to the data.

Table 11.1 shows that, in general, the models tested on a small data set
were accepted, whereas those tested on a large data set were rejected. In
total, 17 of the 29 models analyzed were rejected as having an unaccep-
table fit at oc ^ .05. Immediately we see one of the problems associated
with the use of the LISREL test statistic for assessing the fit of the model:
It is difficult to know whether the fit is due to the hypothesized structure or
to the sample size in small samples.

Alternative testing procedures used in practice

An awareness of this problem has led users of the LISREL program to
employ alternative procedures for deciding whether a model is tenable.



Testing structural equation models 205

Table 11.1. "Fit" of path models published in journals, 1979-82

Author

Rosa & Maswe (1980)

Morgan & Fitzgerald (1980)

Messner (1983)
Ammerman (1980)
Rosenstein (1981)

Perkins & Fawlkes (1980)

Clifton (1981)

Shover, Norland, & Thornton (1979)

Spitze & Spaeth (1979)
Ross & Duff (1983)
Baldassare & Protask (1982)
Speare Korbrin, & Kingskade (1983)
Robinson & Kelley (1979)
Strickland (1982)
Hanks (1982)

TV

15
15
18
18
17
17
20
20
50
72

125
209
286
286
315
579
394
394
492
492
411
422
604
808

1,120
2,414

10,245
10,245
10,245

t

0.7
2.6
1.6
1.8
1.1

19.3
1.5
2.9
5.1
4.6
6.5
4.5

35.1
32.1

316.1
345.3
53.8
45.0
91.5
90.5

138.5
64.7

218.2
12.8
21.9

545.2
1,155.0
1,155.1

153.7

d.f.

1
3
6
6
2
6
2
4
3
6
5
5
8
8
3
3
8
7
7
7

17
18
21
10
7

16
7
7
6

Decision0

A
A
A
A
A
R
A
A
A
A
A
A
R
R
R
R
R
R
R
R
R
R
R
A
R
R
R
R
R

a A, accept; R, reject.

When we examined the 24 LISREL applications selected from the
literature, we found that the most frequently used procedure for assessing
the fit of a model was the ratio of the value of the test statistic to the
degrees of freedom in the model. This index was used in half of the studies
examined, sometimes in combination with other decision criteria.2 A
second procedure for assessing the fit of a model is to compare nested
models3 using the test statistic D, which is the difference between tl and t2,
where tx refers to a more restricted model than t2. Four of the studies used
this procedure.

In our view, these procedures are not very helpful. The first procedure
was suggested by Wheaton et al. (1977) to deal with the effect of large
sample size on the test statistic, and on the basis of their experience from
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inspecting the sizes of the residuals that accompany variable chi-square
values, they suggested that a ratio of around 5 was reasonable when the
sample size is about 1,000. The main effect of this rule of thumb is to
increase the probability of accepting a model because the critical (cut off)
point in the chi-square distribution then corresponds not to the .05
significance level, but to some lower significance level. For example, with
d.f. = 10 and a ratio of the chi-square statistic Tto the degrees of freedom
equal to 5, the significance level is .027 x 10~5, which is considerably
smaller than .05. The R = 5 criterion thus corresponds to a probability for
the chi-square statistic somewhat below a = .05. The power of the test will
be reduced by this shift in the significance level; although it may still be
acceptable, there is no guarantee of this. Furthermore, R = 5 is a rather
arbitrary criterion, as can be seen from the various statements about the
criterion for rejection. Miller and Conaty (1982) state, "[F]or a sample of
given size, the lower the chi-square per degree of freedom the better the
model fits the data" without reference to a specific quantity, but Dalton
(1981) suggests that " . . . a 10:1 ratio of chi-square to degrees of freedom
is often considered as a good fit." Matsueda (1982) stated that " . . . the
chi-square is over 4 times the degrees of freedom indicating a poor fit"
(sample size = 1,140).

The utility of the procedure for comparing the fit of nested models is
also limited, because the impact of sample size is again not neutralized.
When the sample size is small, a restriction of any parameter in an
unrestricted model will in general be tenable. This can occur even when a
large effect is set equal to zero. On the other hand, when the sample size is
large, restricting a parameter, even one that has a small value, is quite
likely to yield a significant increase in the test statistic. Obviously, the
main weakness of these procedures is that the issue of the power of the test
is not adequately considered. Satorra and Saris (1982a,b) have developed
a procedure to evaluate the power of such tests in the context of LISREL
modeling. The main idea behind this procedure is explained in the next
section and applied in a subsequent section.

The power of a test of the model

Figures 11.2a and 11.2b present two different situations. In both figures
the curve on the left is the distribution of the test statistic when the model
is correct, with nine degrees of freedom. The curve to the right is the
distribution of the test statistic when the model is incorrect. In Figure 11.2
this distribution deviates considerably from the distribution for the
correct model, whereas in Figure 11.3 the distributions are approximately
the same.
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Figure 11.2. (a) Distribution.of the test statistic for a correct model (left curve)
and an incorrect model (right curve), which differ considerably,
(b) Distribution of the test statistic for a correct model (left curve) and an incorrect
model (right curve), with differ little. In both graphs, 7 is the test statistic; CP, the
criterion point. Shaded area is the probability of the modeling rejected if the model
is incorrect.
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If Figure 11.2a is the correct description of the situation and we test at
the .05 significance level, the test will lead to rejection in nearly all samples,
because the test statistic will almost always be larger than the critical value
at the .05 level (16.9 for d.f. = 9). If the shift in distribution presented in
Figure 11.2 is due to a substantial misspecification in the model, the test
would be very useful. However, if the misspecification is minor - for
example, if a standardized coefficient is not zero, as assumed but .01 - this
test would be very unattractive. In the case of a minor misspecification we
do not necessarily want to reject the model. However, if Figure 11.2b
presents the correct situation, the opposite problem arises. When the
specification error is very small the test used is acceptable, but when the
error is large the test is not acceptable, because it does not detect serious
misspecification. It would reject clearly incorrect models almost as often
as the correct model.

Both cases illustrate the importance of knowledge about the probability
that an incorrect model will be rejected, in other words the power of the
test. Satorra and Saris (1982a,b) have developed a procedure to determine
the power of the test based on the result that the distribution of the test
statistic in the case of an incorrect model approaches the noncentral chi-
square distribution with a noncentrality parameter X. This noncentrality
parameter specifies how far the distribution shifts to the right and can be
computed routinely using the LISREL program.4 As an illustration, it is
instructive to examine the computation of the power of the test for some
of the path models discussed earlier. Table 11.2 shows the probability of
rejecting the model at the .05 significance level when it is compared with
the alternative model in which one of the relationships originally specified
to be zero is .1, .2, .3, .4, .5, respectively, in the population.

This table clearly gives an explanation for the results reported in Table
11.1. When the sample size is small, the probability of rejecting the model
is small, even if there is a moderately large specification error. When the
sample size is large, however, the test statistic is particularly sensitive to
small specification errors, and the model is rejected most of the time. But
the sample size is not the only determinant of the power of the test. The
values of the other parameters of the model are also important. Therefore,
it is not enough to correct the .05 level test for the effect of sample size
alone (Bentler & Bonett 1980; Hoelter 1983). It is more appropriate to
take account of the power of the test directly, as discussed below.
Speaking of the power of the test is in fact a simplification, because the
power of the test differs according to the size of the specification error, the
value of the model parameters, and the sample size. Nevertheless, we use
the expression "the power of the test" to indicate the sensitivity of the test
in a particular situation for specification errors of specified size.
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Table 11.2. Power of path models at the .05 significance level

Author

Rosa & Masure (1980)
Morgan & Fitzgerald (1980)
Messner (1983)
Ammerman (1980)
Rosenstein (1981)
Perkins & Fawlkes (1980)
Shover et al. (1979)
Spitze & Spaeth (1979)
Ross & Duff (1983)
Clifton (1981)
Baldassare & Protask (1982)
Speare et al. (1983)
Robinson & Kellery (1979)
Strickland (1982)
Hanks (1982)

TV

15
17
50
72

209
286
394
411
422
579
604
808

1,120
2,414

10,245

(0.1)

.07

.06

.08

.07

.12

.35

.35

.20

.24

.28

.60

.34

.81

.97
1.0

(0.2)

.15

.12

.22

.16

.48

.95

.94

.80

.91

.87

.10

.97
1.0
1.0
1.0

Powera

(0.3)

.30

.64

.48

.36

.94

.99
1.0
1.0
1.0
1.0
.19

1.0
1.0
1.0
1.0

(0.4)

.55
b

.78

.67
1.0
1.0
1.0
1.0
1.0
1.0
.39

1.0
1.0
1.0
1.0

(0.5)

.75
b

.96

.92

1

1.0
1.0
1.0
1.0
1.0
1.0
.71

1.0
1.0
1.0
1.0

a Numbers in parentheses represent value of parameter in alternative specification
of the model.
b The matrix is not positive definite.

The proposed testing strategy

Four different decision situations should be distinguished in the testing of
models. These distinctions are made on the basis of the value of the test
statistic and the power of the test. Table 11.3 presents the four decision
situations.

Case I. The first case is characterized by a test statistic that is larger than
the critical value at the .05 level, and the power of the test is not too high;
hence, small misspecifications do not lead to a rejection of the model.5 In
such situations a test statistic that is larger than the critical value is likely
to be due to large misspecification in the model. Therefore, the model
should be rejected.

Case II. The test statistic is again larger than the critical value, but in this
case the power is also high. Therefore, it is not clear whether the model
contains large or small specification errors, because even smail specifica-
tion errors lead to high values of the test statistic in this case. Given this
unclear situation, it is necessary to adjust the test in order to make it more
decisive. These adjustments are discussed later.
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Table 11.3. Four decision situations

Power low Power high

t > C(.O5) I II
(reject null hypothesis) (adjust test)

t < C(.O5) III IV
(adjust test) (accept null hypothesis)

Case HI. The value of the test statistic is now smaller than the critical
value, but the power is again low. This means that even large specification
errors have a low probability of being detected. The situation is again
unclear and it is necessary to adjust the test by increasing the sample size.

Case IV. Here the decision is clear. The test statistic is lower than the
critical value at the .05 level, and the power is high. In this situation we
know that substantial specification errors would be detected. Therefore, a
test statistic that is smaller than the critical value suggests that the model
does not deviate substantially from the correct model.

There are two possibilities for adjusting the test in cases II and III. The
first involves an adjustment of the significance level. In Figure 11.2a we
presented the distribution of the test statistic for a correctly specified and
an incorrectly specified model. From this figure it can be seen that by
changing the significance level of the test it is possible to change the critical
value and also the power of the test. For instance, if the power is too low
(case III), we can increase it by increasing the significance level at which
the test is evaluated. In this way the critical value of the test moves to the
left with a consequent increase in power. If however, the power is too high
(case II), owing to a large sample, it can be reduced by a decrease in the
significance level at which the test is evaluated.

If the decision situation is like that presented in Figure 11.2b, there is no
way of adjusting the test by a shift in the level at which it is evaluated. In
such a case, an adjustment of the sample size is necessary. Since the value
of the noncentrality parameter X is a linear function ot the sample size, it
follows that the necessary sample size for a test with a fixed amount of
power can be determined in the following way:

required value of X x the sample size used . , , .
v a l u c o f ? i for the estimated model = required sample size

Finally, this testing strategy can be applied to comparisons of nested
models. There the test statistic D is used, which is equal to the difference
between the value tx of the test statistic 7\ for the more restrictive model
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and the value t2 of the test statistic T2 for the alternative, less restricted
model. The degrees of freedom for this test are equal to the difference in
the degrees of freedom between the models. Again, the test statistic D is
distributed asymptotically as a chi-square variable if the restrictions are
correct and as a noncentral chi-square variable if the restrictions are
incorrect.6 Again, we have to take account of the power of the test,
because the four cases detailed above may occur here as well. An example
of the application of these tests is now presented.

Applications

Taking Table 11.3 as a guide, we present one example for each decision
situation. Simultaneously, we illustrate briefly how the procedure can
serve as an alternative to the normal testing procedures.7

Case I: Rejection of a model on the basis of the standard chi-square test
when the power of the test is low.

Wheaton et al. (1977) present a model of the stability over time of
alienation and its relation to background variables such as education and
occupation. The analysis employs data measured at two points in time and
is also discussed in Joreskog and Sorbom (1981) and Bentler and Bonett
(1980). The model is shown in Figure 11.3.

From the chi-square statistic for the fit of the basic model (xi = 71.5)
one would conclude that the model is not compatible with the data at the
.05 level of significance. Following Wheaton et al. we inquire whether the
assumption of uncorrelated errors between the same measures at different
points in time (6^83 and e2,£4) accounts for the lack of fit. If we assume
that both of these correlations are equal to .1, the probability of rejecting
the model at the .05 significance level equals .09.8 Only if the correlated
errors are high will the test of the model fit have high power (e.g., when the
correlation is assumed to be .4, the power of the test is .98).

This corresponds to the first decision situation in Table 11.3, where the
lack of fit is not due merely to small errors of specification in the model.
To obtain an acceptable fit the model thus requires significant alteration.
Note that, in this case, the test statistic does produce a reliable indication
of the lack of fit, because rejection points to large misspecifications in the
model. Hence, assessing the fit by other criteria, as was done by Wheaton
et al. (1977) and by Bentler and Bonett (1980), is unnecessary.

Case II: Rejection of a model on the basis of the standard chi-square
test when the power of the test is high.

In order to illustrate the second possibility we discuss a study concerned
with the determinants of the choice of secondary school (Saris &
Stronkhorst 1984). The model, shown in Figure 11.4, does not have an
acceptable fit at the .05 significance level.
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Figure 11.3. Bentler and Bonnett's model. SES, Socioeconomic status; SEl,
Socio-Economic Index.
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Figure 11.4. Saris's model.

Proceeding in an exploratory way, we relax additional restrictions in
order to obtain a better-fitting model. The question is whether the changes
are really necessary or whether they merely capitalize on chance by fitting
the model to this particular data set. For this we require a test of the



Testing structural equation models 213

importance of the difference between the null model and the final model
derived through the exploratory fitting process. Obviously, such a test has
to be done on new data and not on the old data from which the
modifications derive. We reestimate the model from a second data set with
the same variables but for a different point in time, consisting of 1,738
cases. The formulation of the problem implies that we have to test the fit
of the null model against that of the modified model by examining the test
statistic D for the new data set. First, we evaluate the power of the
standard .05-level test of model fit. We test the hypothesis that y31 = y22
= Y4i = P32 = 0 against the alternative, that these parameters are all
equal to 0.1, that is, that the modifications are all minor. The power of this
test indicates that the probability of rejecting the null model, when the
additional parameters are all equal to 0.1, is 1.0 (k = 138.12). However,
we think that this test is too critical for the substantive nature of the
hypothesis; for example, if these parameters were as small as 0.04, the
probability of rejecting the model would still equal .95. Thus, the power of
the test of this hypothesis is high even when the original model contains
only minor misspecifications. Obviously, we may not wish to reject the
model in such a case and would prefer a test with somewhat less power.
We can obtain this by reducing the significance level of the test. However,
shifting the significance level will not always provide the user with a
reasonable test. For instance, in the present case, when the significance
level is set to .001, the power of the test is still equal to 1.0. Reducing the
significance level even further raises problems because the standard
statistical tables do not provide information for very low significance
levels. Therefore, we suggest an alternative way of assessing the appropri-
ateness of the model. If we want to test the hypothesis, that y31 = y32 =
Y41 = P32 = 0 against the alternative, that these parameters all equal 0.1,
we first choose the amount of power we want to have, say .8. Next we
obtain the critical point C, such that the noncentral chi-square distributed
test statistic T(k) exceeds the value C with probability .8. Since this
information is not readily available from published tables, we use the
result that the noncentral chi-square distribution can be approximated by
the standard normal distribution. In this way it is possible to determine C
(an approximation to C) by the formula

C = (d.f. + k) - Zp x ^ ( d . f . + 2k)

where Zp denotes the z value (from the table of the standard normal), such
that p(z < Zp) = power.

In our example, choosing the power to be .8, we calculate the critical
point
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Figure 11.5. Bagozzi's model. %u Achievement Motivation; £2> Task-Specific Self-
esteem; £3, Verbal Intelligence; r\1, Performance; rj2, Job Satisfaction.

C = (4 + 138.12) - .84 Jl(A + 2 x 138.12) = 122.23

Now, from the null model and the alternative model, we obtain

d = tl - t2 = 71.26 - 0.16 = 71.10

This value is smaller than C"; thus, the null hypothesis should not be
rejected. Therefore, for this data set we do not have to relax the four
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restrictions found to increase the fit of the model in the earlier exploratory
analysis.

Note that this conclusion would not have been reached by a comparison
of the nested models without taking into account the power of the test.
The use of the .05 level test of D would have led to rejection of the null
hypothesis.

Case III: Acceptance of a model on basis of the standard chi-square test
when the power of the test is low.

The third example involves a model presented by Bagozzi (1980) and is
depicted in Figure 11.5. The model is not rejected at the standard .05
significance level. As can be seen in the figure one of the restrictions is that
Achievement Motivation does not have a direct effect on Performance.
Assuming that we wish to test this hypothesis, we estimate the power and
find that the test is not very conclusive. For instance, if this direct effect
was 0.1, the probability of rejecting the model equals .07. If the effect was
0.3 the power of the model would be .38, and if it was 0.5 the power would
be .79. Hence, we see that in this case the model test is sensitive only to
large misspecifications.

No conclusion can be drawn from the .05 significance level test alone in
this model because the power is too low. Adjusting the significance level
criterion does not help very much.9 The only solution in this case,
therefore, is to do the research again, this time with a larger sample size.
The sample size needed to obtain a test with a power of .8 for a
misspecification error of 0.1 is (19/0.7914) x 122 = 2,929, rather than the
much smaller sample employed in the original study.

Tests in small samples can therefore be particularly misleading because
of the tendency to accept a model with little chance of being rejected by
the test. The evaluation of the power of the test can make us aware of this
problem.

Case IV: Acceptance of a model on the basis of the standard chi-square
test when the power of the test is high.

The final example is drawn from Bollen's (1980) model of the measure-
ment of political democracy (Figure 11.6). The main concern here is to
examine whether two theoretically distinct constructs of Political Democ-
racy are empirically separable in this small sample (N = 113). From a
comparison of nested models Bollen concludes that they are not separ-
able. However, as we have seen, one should be careful when drawing
conclusions from small samples. We evaluate whether the model would
have a reasonable chance of being rejected if the correlation between the
two constructs differed from 1.0 in the population. A strong test of this
would be to assess whether a deviation of .1 would be detected in the
model-testing procedure. Hence, the issue is whether the power would be
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= 1-00

T T T T T T
6, 62 63 64 65 66

Figure 11.6. Bollen's model. %u Political Liberty; 2̂> Popular Sovereignty.

high if the true relationship were .9 instead of 1.0. Although the sample
size is not very large, the power of the test is actually quite high (.85), and
the power would be .93 if the relationship were .89 rather than l.O.10

Bollen's test statistic indeed has a smaller value than the critical value of
the .05-level test. Therefore, on the basis of this additional evidence we
agree with the conclusion that the structures are not empirically separable,
although Bollen did not have sufficient evidence to draw this conclusion
on the basis of the chi-square test alone.

Conclusion

In our view the procedures for testing structural equation models have not
been sufficiently rigorous. The lack of a formalized criterion for testing a
model in path analysis affects the validity of the conclusions drawn. In the
LISREL context we find that the frequently used test procedures may be
inappropriate in some situations, for none of these procedures provides
any control over the power of the test. Furthermore, these procedures give
the researcher too much freedom to accept or to reject a model since they
are to a large extent arbitrary.11 We suggested an enhanced testing
strategy that takes into account the power of the test. This procedure
requires the researcher to specify an alternative model and to choose
specific values of parameters for which the power of the test is to be
evaluated. The researcher also has to determine how powerful the test
should be. We consider that a proper procedure for testing causal models
is essential for progress in the nonexperimental sciences, and this means
that researchers should evaluate the power of the test they use.
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Several of the decisions required in this enhanced testing procedure
seem to be rather arbitrary and dependent on the state of development in a
given field of research. For example, there is as yet no working rule of
thumb to indicate what is a generally acceptable level of power for an
appropriate test of model fit. However, this problem is analogous to the
choice of a probability level in significance testing, where the .05 level has
gained currency as an accepted working rule of thumb. We have
illustrated that even a somewhat arbitrary choice for the power of the test
is better than the usual approach, in which the power of the test is
completely ignored. The purpose of the examples was also to show that
the sample size is not the only important determining factor for the power
of the test. Even in small data sets tests can be very powerful. The true
magnitude of the parameters in a model is at least as important as sample
size. For a more detailed discussion we refer the reader to Saris and
Stronkhorst (1984).

Appendix

The value of the noncentrality parameter X can be computed by the
following procedure:

1. Choose an alternative model and the parameter values against which
to test the estimated model. The alternative parameter values chosen
should provide a substantively meaningful test of the model.

2. Compute the population variance-covariance matrix implied by the
alternative parameter values. This can be done with LISREL by
specifying fixed values for the parameters of the model or by hand,
using the equations for the relationships in the model.

3. Compute the parameter values for the original model using this
derived variance-covariance matrix as input to the analysis. The
sample size is specified to be the same as that in the original sample.

4. The test statistic for the fit of the model in this analysis provides an
approximation for the noncentrality parameter X. From the value of
X, the degrees of freedom, and the significance level of the test chosen,
the power of the test can be obtained from tables for the noncentral
chi-square distribution (Harter et al. 1970).

See Saris and Stronkhorst (1984) for a more detailed discussion of the
procedure, and for examples.

Notes

1. See Chapters 9 and 13 for a discussion of empirical findings relating to the
robustness of this measure.
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2. Some authors use this index in combination with other criteria, such as the size
of the first-order derivatives (Matsueda 1982), the absolute magnitude of the
residuals (Knoke 1979; Sullivan et al. 1979), or probability level (Portes,
Parker, & Cobas 1980).

3. One model is said to be nested within a second if the latter can be obtained by
adding parameters to the former. In this case, the difference between the values
of the test statistic, denoted D, is distributed as a chi-square variable, with
degrees of freedom equal to the difference between the degrees of freedom of
the two models. If D is statistically significant, the more relaxed (less restricted)
model provides a better fit to the data than the more restricted model.

4. For details of the computation see the Appendix of this chapter. Provision for
implementing this procedure is made in LISREL VII and later versions.

5. By "too high power" we mean that substantively uninteresting deviations
from the model would lead to the rejection of the model. In general we think
that a deviation of 0.1 should be detected with rather high (say, 0.8) power, but
the model should not be rejected in case of smaller deviations.

6. This result holds under the condition that the less restricted model has an
acceptable fit. Otherwise, the test statistic D may not be distributed as a chi-
square variable, even if the hypothesis that the restricted parameters are zero is
correct. If the initial model, in this case the less restrictive model, does not have
an acceptable fit, the test of a difference between the two models would be
rejected too frequently (Satorra & Saris 1982a,b).

7. For a more detailed illustration of the application of these procedures see Saris
and Stronkhorst (1984, pp. 201-14).

8. The reported power values are computed at the .05 significance level, unless
specified otherwise.

9. For instance, when the significance level is set to .2, the probability of detecting
an effect of 0.1 is only .25; the effect has to equal 0.4 before there is a
reasonable chance of rejecting the model (power = .8710).

10. Following Bollen (1980) we computed the power for the test statistic D with
the degrees of freedom specified to be 1.

11. Hoelter (1983) proposed another goodness-of-fit index to overcome the
problems associated with the power of the test, which focuses on the sample
size. In our view this index is not appropriate, because (1) the sample size is not
the only determinant of the power, and (2) most likely there will be no
consensus among researchers about the acceptance region.
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12
LISREL models for inequality

constraints in factor and regression
analysis

HENK KELDERMAN

Introduction

In the analysis of covariance structures using LISREL, models are
specified by restricting the parameters in the LISREL matrices to be equal
to a predetermined value (fixed parameters) or to be equal to one another
(Joreskog 1970, 1974, 1978; Joreskog & Sorbom 1978). In many applica-
tions, these restrictions lead to models that are either more restrictive or
more relaxed than what we have in mind. Often the analyst would like to
specify certain parameters to be larger than a predetermined value
(usually zero) or larger than another parameter.

Lee (1980) and McDonald (1980) have described methods for estimat-
ing parameters of covariance structure models subject to inequality
constraints: Lee uses a penalty function and McDonald a reparametriz-
ation method. Both methods are very general but require special al-
gorithms or some ad hoc programming. In this chapter, it is shown that
McDonald's reparametrization method can be formulated as a standard
LISREL model. The model can be used to put lower bounds on factor
loadings, regression weights, and error variances, as well as inequalities
between regression coefficients or factor loadings. Moreover, regression
coefficients or factor loadings can be specified to exceed one another by a
predetermined amount. Before developing a general LISREL model to
handle these constraints, I start with an example from multiple regression
analysis.

In Figure 12.1 a model is depicted for the regression of achieved
educational level y on intelligence xx and SES (socioeconomic status) x2,
where px and p2 are the regression coefficients corresponding to xx and x2.
In LISREL, the model can be specified by

r = [Yl y2]

and Ay = I and Be = 0, where Pi = Yi and P2 = y2 are the parameters to
be estimated. The structural equation system then becomes

221
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X,

Xz

y -4

Figure 12.1. Model for the regression of achieved educational level y on
intelligence x1 and SES x2.

y = Tx + e = [p, p2] + e = + p2x2 = e

In this model the P-weights are unrestricted; they may be either positive or
negative. Since negative coefficients for the regression of achieved
educational level on intelligence and SES are highly implausible from a
substantive point of view, the analyst might want to estimate a model in
which the values of px and p2 are restricted a priori to be nonnegative.

In LISREL such a model can be specified by

Av = X2] and r = 0 y2 2

with A,t = Yn = «i and X2 = y22
 = a2 a n d setting fixed x, B = 0 and

= 0. The LISREL system then becomes

r\ = T£, y = Ayi) + e, x = £

Substituting for £ and r| and writing e = 8 yields

y = AyTx + e

That is, the regression weights px and p2 are now estimated as the squares
oil and u.1, which are always nonnegative. Thus, a model with inequality
constraints can be formulated by using the additional A^ matrix. This
matrix was set equal to the identity matrix in the unrestricted case.

Furthermore, the analyst might hypothesize that a change of one unit
on xx might give a larger effect on y than a change of one unit on x2, that
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is, that P! is larger than p2 . This restriction can be imposed by setting y21

= oc2 in addition to the restriction above; that is,

r =

so that

y = AyTx = e

\ 0 1 fr.l

= (a?

so that the regression coefficient px = OL\ + a^ is specified to exceed the
regression coefficient p2 = aj4 by the positive amount a?.

This method (i.e., the use of the matrix product A^r to set inequality
constraints) can also be used to set inequality constraints on factor
loadings. If an observed variable is an indicator of an unmeasured
construct or factor, we almost always expect its loading to be nonnegative.
Usually, the loading is also expected to be larger than a certain value, say
0.30, to justify the claim that the observed variable is an indicator of the
factor. Specifying the loading as entirely free or fixed does not adequately
represent our hypothesis.

Another example is the analysis of measures constructed in a
multitrait-multimethod matrix (Campbell & Fiske 1959). Campbell and
Fiske state as a validity criterion that a variable must correlate higher with
a variable measuring the same trait by a different method than with a
variable measuring another trait by the same method. If the correlations
between the variables are explained by a confirmatory factor analysis
model with trait and method factors, this criterion essentially requires that
a variable's trait-factor loading is larger than its method-factor loading.

In factor analysis another problem that requires inequality constraints
is the occurrence of Heywood cases (i.e., nonpositive residual variances).
Heywood cases can be prevented by specifying the error term of each
variable as a factor and then specifying the factor loadings to be positive
by the method shown before. This chapter, however, describes a some-
what simpler method that avoids the use of the T matrix.

The next section describes the type of models with inequality con-
straints that can be formulated within the LISREL framework. Then
different cases of inequality constraints are discussed: lower bounds on
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residual variances and inequality constraints on regression coefficients or
factor loadings, both for one variable and for several independent
variables or factors. Two empirical examples are given: a confirmatory
factor analysis from the measurement of intelligence and an example from
educational sociology. The latter example shows that inequality con-
straints can also be used to specify regression analysis models with
predictors that have only ordinal-scale properties.

Scope of the model

In this chapter we consider the model

y = Dz + e (12.1)

where y' = (J>I,J>2, • • ->yP) *s a vector of observed dependent variables, z'
= (z1?z2, . . .,zr) is a vector of observed or unobserved independent
variables, e' = (el9e2, -. -,ep) is a vector of residuals, and D(p x r) is a
matrix of coefficients (regression coefficients, factor loadings). If the
variables in z are all unobserved, the model in (12.1) is the factor analysis
model and if z is observed, the model in (12.1) is the simultaneous
equations regression model. In general, z may contain both observed
variables and unobserved variables.

In the model represented by (12.1) it is assumed, without loss of
generality, that the population means of the variables y, z, and e are zero.
Denote the q observed independent variables by x' = (xx, x2, . . . , xq) and
the remaining r — q unobserved independent variables by co' =
(oh, ^2> • • .,wf_9) and let z' = (X',CD') and define a partitioned matrix
S(q x r) = [I 0] that picks the observed variables from z and ignores the
unobserved variables; that is,

x = Sz (12.2)

Assuming that the population covariances between the residuals and the
independent variables are zero, it follows from (12.1) and (12.2) that the
covariance matrix of the observed variables L has the structure

E = _ ^ 1 ^ = ~ ^ ( 1 2 3 )

LE,,IEJ LSCD' ,SCS'J
where 2 ^ , JLyx, and Hxx are the matrices of population covariances between
the y variables, between y and x variables, and between the x variables and

xy yx'

On the right side of (12.3) C is the population covariance matrix of the
independent variables z, and E2 is the covariance matrix of residuals e.
Throughout this chapter we assume that E2 is a diagonal matrix with
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residual variances on the diagonal, If there are no unobserved indepen-
dent variables, the matrix S is an identity matrix and C = JLXX. If there are
no observed independent variables, there are no Hyx, T,xy, and LXJC and we
have the factor analysis model.

The covariance matrix in (12.3) is a special case of the general LISREL
model, where Ay9 \x9 <D, and 8e are set equal to D, S, C, and E2,
respectively.

Special cases of (12.3) are obtained by setting parameters equal to a
predetermined (usually zero) value or equal to one another; that is, if px

and p2 are parameters, one can write

Pt = cx or p! = p2

McDonald (1980), however, also considers restrictions of the form

Pi = Ci + a? or p2 = pt + c2 + a2 (12.4)

where c1 and c2 are constants and ctl and oc2 are parameters to be
estimated: the derived parameters. If the derived parameters OLX and oc2 are
estimated instead of the original parameters px and p2, the latter satisfy
the inequality constraints

p! ^ cx and p2 ^ p! + c2

respectively. This is true because the squares af and a2, are nonnegative. In
this chapter, restrictions of type (12.4) are imposed on the matrix E2 of
residual variances and the coefficient matrix D of the model in (12.3) by
rewriting the matrices as

E2 = N • N + Q (12.5)

and

D = K • L + M (12.6)

where Q and M contain fixed constants and N, K, and L contain the
derived parameters to be estimated. To show how (12.5) and (12.6) can be
used to specify inequality constraints, and how (12.3) using (12.5) and
(12.6) can be specified as a LISREL model, I consider some special cases.
A simple case is (12.3) with lower bounds on the residual variances.

Lower bounds on residual variances

Lower bounds on the estimates of residual variances may be useful to
prevent nonpositive estimates (Heywood cases) (Joreskog 1967) or to
incorporate prior knowledge of the amount of measurement error in
the model. To impose lower bounds on residual variance estimates let
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Q = diag{^!,^2? --,qP} be a diagonal matrix of lower bounds and
N = diag{v1? v2, . . . , vp) a diagonal matrix of derived parameters to be
estimated. Using (12.5) we then have (for/? = 3)

E

N N

v3

v?
q2

and the residual variance estimates satisfy the inequality constraints

for all /.

LISREL specification

To specify the model in (12.3) with restrictions (12.5) as a LISREL model,
let

A, = [Dpxr N , X J , A, = [S,x r O,xp]

where Ay, \ x , and O are partitioned matrices. It is readily verified that this
yields

TDCD' + NN' + QiDCS'

A.OA; IJSCD' iSCS

which is equal to (12.3) with restrictions (12.5).
For example, Figure 12.2 shows a factor analysis model with one factor

co and three observed variables >>i, j>2 >
 a n d 73. Suppose yx, y2, and y3 have

variance equal to 1 and reliabilities 0.80, 0.78, and 0.85, respectively, so
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Figure 12.2. Factor analysis model.

that we do not expect the residual variances a£, a£, and aj3 to be lower
than 0.20, 0.22, and 0.15, respectively. To specify those lower bounds in
LISREL we write

A, =

0.20
0.22

0.15

Xu Xl2

X2\ X23

and

• =

so that the covariance matrix becomes

X\x + X\2 + 0.20
E = X21Xlx X\x +

XlxX2l

+ 0.22 X21X

x2
3l

21X31

x3lxlx x3lx2l x2
3l

with ol = X\2 + 0.20, which is larger than 0.20.

0.15

Inequality constraints on D: one independent variable

We now consider inequality constraints on the elements of the coefficient
matrix D in (12.1). The elements of D may be regression weights or factor
loadings, depending on whether the independent variables are observed or
unobserved. The method for imposing inequality constraints is the same
in both cases. Therefore, in the following treatment no distinction is made
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between them. In the following the word "coefficient" may refer to
regression coefficient or factor loading. If there is only one independent
variable (r = 1), the coefficient matrix D(/? x r) is a column vector. To
ensure that the coefficients D' = (51 ,82 , . . .,8p) are larger than M' =
(m b m 2 , . . . ,w.), equation (12.6) must have the form

K

a2

L

a2

M

m2
(12.7)

where p = 3, ktJ = 0 (i / 7), £„ = a,-, and /, = a,. It is easily verified that
this yields

5, = a2 + mt

that is, 8X ^ m, for all 1. The off-diagonal elements of K can be used to set
inequality constraints between coefficients. To specify 8, to be bounded
below by another coefficient S7, the element ktj of K must be set equal to a,.
For example, if p = 3,

D

V
82
83

=

=

K
a2

a2

+ a

L

a2

M

m2

m2

mi — m2

m2

restricts 81 to exceed 82 by at least the value m1 — m2 and puts lower
bounds m2 and m3 on 82 and 83, respectively. In similar fashion,
inequalities can be set between several coefficients. For example, consider

D
~5i"
82

_83_

=

K
ax a2

a2

oil a2 a 3

L
" a /
a2 +

af + a2 + mi
ai + m2

^2 4. ~2 _i_ ~:a! -t- a2 i- a:} + m3

m2

~8

8

2 + ai + m,
ai + m2

1 •+• a 3 + m 3

- m2

ml

(12.8)

which specifies 8X to exceed 82 by m1 — m2, 83 to exceed 8X by m3 - ml9

and 82 to be larger than or equal to m2.
In the specification of inequality constraints using (12.6), two rules must

be followed. First, all inequalities implied by the intended inequality



LISREL models for inequality constraints 229

constraints should be specified. For example, if 82 > 52 (i.e., k12 = oc2)
and 53 > 8X (i.e., k31 = a ^ [as in example (12.8)], the implied inequality
53 > 52 should be specified by k32 = a2. Second, a coefficient should not
be specified to be larger than or equal to two other coefficients at the same
time. For example, k12 = oc2 and kl3 = oc3 does not result in Sx > 82 and
5j > 53, but in bl > 82 + 53 , which is obviously not intended.

In (12.7) and (12.8) all coefficients 8, are bounded below. If necessary,
these lower bounds can be removed by setting the corresponding element
8, of L equal to 1 instead of a,. Furthermore, coefficients 8, can be set equal
to a predetermined value mt by setting the corresponding elements k(j and /,
equal to zero. Finally, if there is no inequality constraint between two or
more parameters, they can be set equal to one another by setting their
corresponding elements in K, L, and M equal to one another. For
example, in the model

D
81

82
83
84_

_

K
oti a2

a2

a2

0

a? + oc2 + mx

a2 + m2

a2 + m2

w4

I
a
1
1
0

1

~s2 +
82
82

m4

M
wx

m2

w2

_W4_

otj + Wj ~~ m2

the coefficient 84 is set equal to the fixed value m4, 82 and 83 are set equal
to each other, and 8X exceeds 82 by at least mx — m2.

It is important to note that in this example the fourth column of K and
the fourth row of L can be left out since they consist of zeros only.
Consequently, the number of columns of K and rows of L need not be
larger than the number of free and constrained parameters in D. This is of
great practical value, since it considerably reduces the memory storage
needed to run the program. Let us now generalize these results to the case
of several independent variables.

Inequality constraints on D: several independent variables

If there are r ( ^ 2) independent variables, the coefficient matrix D has r
columns, say D, (/ = 1, . . . ,r). To restrict each column to be equal to

D; = K, • L, + M,

where K,, L,, and M, have fixed, free, and constrained parameters in the
appropriate places, we must write the full coefficient matrix D as
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K L

L2

M

H- [Mi M2 . . . Mr]

= [K1-L1 + M1 K 2 L 2 + M2 . . . Kr-Lr + Mr]

For example, if there are p = 3 dependent variables and r = 2 in-
dependent variables we have

D K M

8
8
8

i i

21

31

8
8
8

12

22

32

= a21

m2

a|2

a21

a12

a22

"h
m2

(12.9)

where ku+u-l)p = atj and li+u-.l)pj = aiy (/ = 1,2,3;y = 1,2), and zero
otherwise, restricts each coefficient 8/7 to be larger than or equal to the
constant m^.

As before, the zero elements of K can be used to set inequality
constraints between coefficients of the same column of D. Moreover, the
zero elements in L can be used to set inequality constraints between
coefficients of the same row of D.

To set columnwise inequalities

^ 5/y 4- mn - mip

we must specify

And to set rowwise inequalities

8/7 ^ &„ + mif

we must specify

mij9 f

As an example of rowwise inequality constraints consider
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~5i, 8
821 8

_831 8

12

22

32

=

~~*#2 _|_ A/2 _l_Uti j ~T QCj 2 '

2 _L 2 _l_

=

8i2 "*

822 "*
832 ^

a n a12

a21 c

" afj 4~ wi\\ ~ rn^2 ot12r/

- a31 + m3l - m32 a32 -\

a n
a21

«12

ft
 

ft
to

 
to

a32 a3 2

m2l m22

m3l m32_

which specifies that the coefficients 8n on the first independent variable
(e.g., a trait factor) exceed the coefficients 5/2 on the second independent
variable (e.g., a method factor) by the amount mn — mi2. In addition, the
coefficients of the second independent variable are specified to be larger
than mi2.

Columnwise and rowwise inequalities may be specified in the same
model, but no coefficient should be subjected to both columnwise and
rowwise inequality constraints at the same time. This will not give the
desired results. Also, as with one independent variable, implied inequal-
ities must also be specified. For example, if 5 n ^ 812 and 812 ^ 813 is
specified, 8 n ^ 813 must also be specified. Furthermore, if a coefficient is
specified to exceed two parameters at the same time, an inequality should
be specified between these two parameters; that is, 81X ^ 812 and 8u ^
813 should not be specified unless either 8 1 2 ^ 8 1 3 o r 8 1 3 ^ 8 1 2 i s also
specified.

As before, lower bounds can be removed by setting elements of L equal
to 1; coefficients can be set equal to a predetermined value m by setting the
corresponding elements in K and L equal to zero; and coefficients can be
set equal to one another by setting the corresponding elements of K, L,
and M equal to one another. However, care should be taken to ensure that
the inequality and equality constraints are not specified for the same pairs
of coefficients. Let us now look at the LISREL specification of inequality
constraints on coefficients.

LISREL specification

To specify the model in (12.3) with restrictions (12.6), we distinguish
between two cases: a zero and a nonzero constant matrix M. If M is zero,
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the LISREL specification is simply

A^ = Kpx(p.r)9 T = L(p.r)Xr

O = Crxn Ax = SqXn 9£ = E2
pxp

where K, L, C, S, and E2 contain fixed, free, and constrained parameters
in the appropriate places. This LISREL specification gives the population
covariance matrix

_ r
~ L

KLCLK + E2|KLCS~|
(12.10)

SCLK iSCS J
i

which is equal to (12.3) with D = K • L.
If M is nonzero, however, the LISREL specification becomes more

complex. We must then specify

Ur J
(12.11)

O = Crxn Ax = Sqxn 6e = E2
pxp

where the LISREL matrices A, and T are partitioned matrices and K, L,
M, C, S, and E2 contain fixed, free, and constrained parameters in the
appropriate places. It can be shown that (12.10) with LISREL matrices
(12.11) yields

= [~(K-L + M)C(KL + M)'2 + E | ( K - L + M)CS' 1
|_ SC(KL + M)' ( SCS' J

i

which is equal to (12.3) with restrictions (12.6). A remark must be made
about the factor analysis case. If all independent variables are unobserved
variables, there are no x variables and no E v , E7JC, E^, and \ x . A technical
problem then is that LISREL does not permit the use of the matrix I \ To
overcome this, specify one dummy x variable with variance one and zero
correlations with the y variables; that is, extend the observed covariance
matrix with

Sxx = 1 and Sxy = Olxp

Now make the corresponding submatrices of Exx and E^ equal to this by
writing [see (12.10)]

A, = O l x r and 95 = 1
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Since the observed and the expected covariance matrices are extended with
the same elements, the fit of the model stays the same. We have only to
adjust the number of degrees of freedom. The number of degrees of
freedom is the number of possibly different (co)variances in S minus the
number of parameters to be estimated. By this trick we add p + 1
(co)variances to S. Since \ x and 85 are fixed, we add no parameters to be
estimated. Therefore, to obtain the correct degrees of freedom we have to
subtract p + 1 from the degrees of freedom in the LISREL output. In the
LISREL models above, the matrices Ay and T are large. As remarked
earlier, if both the ith column of A, and the ith row of T consist of zeros,
they can be deleted. This may considerably reduce the memory storage
requirements of the LISREL program.

Empirical example 1

Guilford's (1971) structure-of-intellect model is a taxonomy of basic
human abilities. In this model each ability is classified by three facets:
operation, content, and product. The operation facet refers to the subjects'
intellectual processing of information. Five types of operation are distin-
guished: cognition (C), memory (M), divergent production (D), conver-
gent production (P), and evaluation (E). The content facet refers to
the content of the information and has four categories: figural (F),
symbolic (S), semantic (M), and behavioral (B). Finally, the product
facet pertains to the form of the information and has six categories:
units (U), classes (C), relations (R), systems (S), transformations (T), and
implications (I).

In the Aptitude Research Project (Guilford 1971) tests were constructed
for specific combinations of operation, content, and product facets.
Guilford's hypothesis was that the performance of subjects on these tests
depends on latent ability factors defined by a specific combination of
operation, content, and product facets. An alternative hypothesis is that
the test performance depends on separate operation, content, and product
ability factors (Guttman 1965; Cronbach 1971). Both hypotheses can be
formulated as models for tests constructed in a facet design (Mulaik 1975;
Mellenbergh et al. 1979). To compare the fit of both models Kelderman,
Mellenbergh, and Elshout (1981) reanalyzed seven data sets from the
Aptitude Research Project by covariance structure analysis. Unfortu-
nately, for the alternative model the solution did not converge for six of
the seven analyses. Moreover, the intermediate estimates contained many
negative loadings and residual variances. Since there was no convergent
solution, it was not possible to compose parameter estimates and model fit
for the two competing hypotheses.

In Table 12.1 the results for a respecified model (Tenopyr, Guilford, &



Table 12.1. Parameter estimates of alternative model specifications for Guilford data

Test

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Problem
type

CSC
CSC
CSR
CSR
CSS
CSS
CBC
CBC
CBR
CBR
CBS
CBS
MSC
MSC
MSR
MSR
MSS
MSS

Operation

Cognition

0.13(0.14)
0.00(-0.09)
0.23(0.20)
0.37(0.46)
0.35(0.38)
0.19(0.22)
0.61(0.50)
0.40(0.30)
0.40(0.29)
0.53(0.46)
0.53(0.41)
0.37(0.31)

Memory

0.78(0.79)
0.59(0.56)
0.12(0.10)
0.10(0.11)
0.41(0.39)
0.29(0.25)

Content

Symbolic

0.61(0.62)
0.68(0.73)
0.55(0.57)
0.48(0.46)
0.26(0.26)
0.57(0.55)

0.52(0.53)
0.50(0.52)
0.72(0.73)
0.39(0.38)
0.42(0.44)
0.47(0.52)

Behavioral

0.06(0.29)
0.25(0.39)
0.34(0.43)
0.06(0.26)
0.35(0.49)
0.45(0.43)

Classes

0.15(0.05)
0.73(2.10)

0.06(0.06)
0.00(0.01)

0.00(0.00)
0.00(-0.01)

Product

Relation

0.03(0.01)
0.13(0.04)

0.00(-0.01)
0.09(0.02)

0.12(0.04)
0.00(3.19)

Systems

0.00(0.03)
0.00(0.17)

0.00(0.29)
0.00(0.04)

0.00(-0.17)
0.00(-0.35)

Residual
variance

0.52(0.54)
0.00(-3.88)
0.56(0.57)
0.50(0.45)
0.75(0.73)
0.57(0.54)
0.62(0.66)
0.78(0.76)
0.73(0.73)
0.70(0.72)
0.60(0.52)
0.66(0.72)
0.12(0.09)
0.40(0.42)
0.45(0.46)
0.00(-9.34)
0.65(0.63)
0.70(0.56)

Note: Omitted loadings were fixed at zero. Main coefficients pertain to the restricted model and coefficients in parentheses pertain to the
unconstrained model.
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Hoepfner 1966) are given. The model is an alternative specification with
uncorrelated factors in which all loadings and residual variances are
restricted to be nonnegative. The intermediate parameter values for the
unrestricted model after 184 iterations are indicated in parentheses. The
nonconvergent resolution for the unrestricted model is clearly unaccep-
table; there are two negative residual variances, two loadings larger than
1, and some negative loadings. The restricted model converged after 51
iterations and yielded a chi-square statistic of 244 with 99 degrees of
freedom; the model must clearly be rejected. The parameter estimates
show that variables 2 and 16 have zero residual variance and that the
product factors are not present (i.e., all their factor loadings are approxi-
mately zero). The latter is consistent with earlier results of Cronbach
(1971) and Merrifield (Cronbach & Snow 1977, p. 157), who found
support for an alternative hypothesis with only two facets: operations and
content. But even if the degrees of freedom of the product loadings are not
counted, the model in Table 12.1 must still be rejected (%2 = 244 with
DF = 99 + 18 = 117,/? < 0.001).

Empirical example 2

In the Netherlands every year, all 18-year-old boys are tested for national
service. Van Meerum and van Peet (1976) took a sample of the 1972 draft
to analyze the effect of environment and intelligence on achieved educa-
tional level. They converted completed grades and school types to a scale
from 0 to 100 describing the level of education achieved. Furthermore,
they registered, among other things, the number of children in the family
(1-8 or more) from which the draftee came and his score (0-04) on
Raven's Progressive Matrices Test - a nonverbal measure of general
intelligence (Raven 1938).

To illustrate the use of inequality constraints in (dummy) regression
analysis we start with Model 12.1:

y = \i + p^! + p2z2 + . . . + p7z7 + p8z8 + yx + e

where y is the education score, x is the intelligence score, and zl9 . . . ,z8

are dummy variables with the following values:

zx = 1 if there is one child in the family; 0 otherwise

z7 = 1 if there are seven children in the family; 0 otherwise
z8 = 1 if there are eight or more children in the family; 0 otherwise

The dummy variables zl9 . . . ,z8 and x are considered to be fixed.
There is an indeterminacy in this model; adding a constant c to |i and



Table

Model

12.1
12.2
12.3

12.2. Parameter

n
-9 .42
-9.48

-10.00

Pi

5.27
5.32
6.76

estimates,

P2

5.20
5.31
5.80

coefficients of determination, and

P3

4.89
4.99
4.83

P4

3.06
3.17
3.87

Parameter

Ps

0.88
1.31
2.90

1
1
1
1

X
.71
.31
.93

F-statistics of models for

P7

-0.21
0.05
0.97

Ps

0.00"
0.00"
0.00"

Y

1.61
1.61
1.61

army

R2

0.77
0.77
0.77

data (N

F

2,848.
2,848.

11,383.

—

24
24
78

6,889)

d.f.

(8,6891)
(8,6891)
(2,6897)

"Fixed at zero.
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subtracting c from each P, does not change the model - a standard
situation when dummy variables are used. To remove this indeterminacy
we set p8 equal to zero or, equivalently, remove z8 from the model.

Table 12.2 gives the LISREL estimates for Model 12.1. The estimates
were obtained by analyzing the matrix of moments about zero of the
variables y, zl9 . . . ,z7 , x, and a constant variable consisting of ones, to
estimate jx. From Table 12.2 it is seen that, for families of up to five
children, the P parameters tend to get smaller as the family becomes
larger.

In Model 12.2 we specify that draftees from larger families have a lower
level of education; that is, we set P, ^ p / + 1 or, equivalently,

ot, 2 ,

= a? + + a?

where the parameters a are estimated. This model allows us to specify that
the effect of increasing family size is ordinal. If we let the LISREL
variables y, x, and c be y = y9 x' = (1, z1? . . . , z7, x), and £ = e, Model
12.1 with the restrictions of Model 12.2 becomes in LISREL notation

with

and

y = A T x +

A; = (^a1,a2,a3,a4,a5,a6,a7,Y)

(12.12)

(12.13)

r =

1
0
0
0
0
0
0
0
0

so that

y = (ji,a? + ... +

and from Model 12.2

0
ai

a2
a3
a4
a5
a6
a7
0

a2
7,

0
0
a2
a3
a4
a5
a6
a7
0

a 2 i

0
0
0

a4
a5

a7
0

0
0
0
0
a4
a5
a6
a7
0

+

0
0
0
0
0
a5
a«
a7
0

a?,.

0
0
0
0
0
0
a
a
0

0
0
0
0
0
0

6 0

7 <*7

0

ai +

0
0
0
0
0
0
0
0
1

a?

(12.14)

y = (| i ,Pi,P2, . . . ,P7 ,Y)x + 8
y = \i + ^ z j + . . . + P7z7 + yx + e

In the LISREL input, the elements of A^ in the position of the letters \i,
a1? . . . , a 7 ,y are specified as free parameters, whereas elements of F in



238 HENK KELDERMAN

the position of the letters al5 .. .,a7 are set equal to the elements of Â
in the position of the same letter al9 .. .,a7. Furthermore, the matrix
<b(q x q) is specified as a free symmetric matrix that neutralizes Ax = I,
B = 0, ¥ = 0, 65 = 0. In Model 12.3 we additionally specify that the oc/s
(/ = 1, . . . , 7) are equal to one another:

P,= ft+I + <x2, i = 1,...,7

This allows us to specify the additional constraint that the effect of an
increase in family size of one unit has the same influence on educational
achievement for all family sizes; that is, i specifies that the relation between
educational achievement and the number of children in the family is linear.
Model 12.3 has the same LISREL specification as Model 12.2 except that
all X and y parameters corresponding to a in Â  and F are restricted to be
equal. From Table 12.2 it is seen that, although the estimates of the P
parameters are different, Model 12.2 and Model 12.3 predict educational
achievement as well as Model 12.1 does.

Concluding remarks

In this chapter it is shown that inequality constraints on factor loadings
and regression coefficients can be handled within the general LISREL
model. There are, however, some limitations on the imposition of
inequality constraints in LISREL.

First, parameters can be specified to be larger but not to be smaller than
a certain constant. Second, parameters can be specified to exceed another
parameter only if both parameters are in the same row or the same column
of the coefficient matrix. Third, parameters cannot be specified to exceed
two other parameters at the same time, unless there is an inequality
constraint between these parameters. The first two limitations do not exist
in McDonald's (1980) COS AN model for the analysis of co variance
structures. In COSAN, functional restraints between parameters can be
imposed by "scalar specification."

Another problem concerns the comparison of model fit. If Model A is
obtained by imposing inequality constraints on the parameters of Model
B, the set of covariance matrices consistent with Model A is a proper
subset of the set of covariance matrices consistent with Model B.
Consequently, Model A is a submodel of Model B. Their difference in fit,
however, cannot be compared by using their difference in chi-square
statistics, since their difference in degrees of freedom is zero. This is
because both Model A and Model B have the same number of parameters
to be estimated and thus the same number of degrees of freedom. The
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models should therefore be compared by comparing the right-tail proba-
bilities of their chi-square statistics or some other measure of fit.

In the examples we have not reported standard errors, since it is un-
clear how the standard errors of the parameters of interest (e.g., factor
loadings) can be calculated from the standard errors of the derived
parameters a. Furthermore, it was observed that the calculated standard
errors of derived parameters were very large if the parameter was equal to
zero, that is, if the corresponding model parameter was equal to its lower
bound. This can be explained by the fact that the likelihood is not
continuous at that point. The standard errors are then undefined, since
they are calculated from the second derivatives of the likelihood function.
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13
Issues and problems in the

application of structural equation
models

PETER CUTTANCE

Introduction

Although structural equation and covariance structure modeling has
become more widely used during the past few years, there have been
numerous suggestions that it may not be suitable for many of the models
and data found in the social and behavioral sciences. Several studies of the
behavior of structural modeling methods in conditions that approximate
those found in practice have now been completed. They provide a fairly
clear idea of when these methods are appropriate given particular model
and data conditions.

Chapter 2 in this volume sets out the statistical model in matrix
notation and specifies the assumptions required in order to estimate and
test its fit to data. In this chapter we discuss methodological and statistical
issues encountered in the application of structural modeling. Particular
attention is paid to the evaluation of the robustness of the method to
violation of the assumptions made in estimating the parameters of the
model and testing its fit to the data.

General methodological and statistical issues

In this section we discuss several methodological issues encountered in the
application of structural equation modeling. These include the specifica-
tion of alternative models, the choice of a statistic to represent the
relationship between noninterval measurement scales, the treatment of
interactions, the relationship between exploratory and confirmatory
modeling, and issues arising from the unit of analysis and sampling
method employed in the collection of nonexperimental data.

Exploratory and confirmatory methods

The basic difference between exploratory and confirmatory modeling is
related to the way that theory and data interact in the analysis. In an

241
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exploratory analysis the data are analyzed primarily on the basis of
statistical models (ranging from those based on simple descriptive sta-
tistics to the complex statistical models underlying such techniques as
factor analysis) and substantive theory is introduced post hoc at the point
where the researcher is trying to interpret the results of such analyses. In
contrast, a confirmatory analysis requires the researcher to put forward a
formal model based on substantive considerations at the outset. A
statistical model that parallels this substantive model is then constructed
and tested against the data. Put another way, exploratory analyses
attempt to glean statistical evidence from the data, which is then
interpreted in an extra statistical framework, whereas confirmatory
modeling constructs its models in an extra statistical framework and then
tests their efficacy in a statistical framework (Cuttance 1985a,b).

The analyses typically conducted with structural modeling methods
contain both exploratory and confirmatory elements. However, it is
important to recognize that, when the data are treated as a single sample
for analysis purposes, the confirmatory phase should precede the ex-
ploratory phase, a reversal of much social science practice. A researcher
using structural modeling techniques must first have a substantive model
from which to construct a mathematical representation of the social or
behavioral process of interest. The object of constructing the mathemat-
ical representation of the process is to provide a means of testing whether
the model accounts for the underlying grid of relationships in the data.
This amounts to an attempt to prove or "confirm" the null hypothesis
represented in the specification of the model, something that runs counter
to established scientific practice. The information gained from the at-
tempt, however, is employed as evidence that indicates whether the model
posited could explain the relationships in the data, within the bounds of
sampling error, in which case we say that the model fits the data.

The discovery that a particular model fits the data does not, however,
imply that it is necessarily a true representation of the real-world processes
that actually generated the data. Alternative models may fit the data
equally well (Toulmin 1953, pp. 113-15), and until all such models were
tested and tests designed to differentiate among the efficacy of each, we
could not say with certitude which model was the true model. Of course,
we can never know all such models; hence, progress rests on the idea of
accumulating evidence about competing models and making extrastatis-
tical assessments of the evidence in support of each.

Often the model posited does not fit the data satisfactorily. In this case
we can either reject the model and construct alternative models and test
them against the data, or move into an exploratory phase in the context of
the original model. Any subsequent changes made in the model then
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represent ad hoc adjustments of the substantive model originally posited.
In general, we are interested in whether relatively minor adjustments of
the model will accommodate the discrepancy between it and the data. If
major changes in the original model are required, it is clear that this model
is not capable of explaining the data; hence, the substantive model
underlying it does not describe the processes that generated the data. The
interpretation of a model that has undergone major change through a
series of adjustments of the data is clearly of an exploratory nature. As in
any interpretation of the findings from an exploratory analysis, caution
must be exercised because many alternative models, hence many different
substantive interpretations, could explain any given data structure.
MacCallum (1985) investigated the process of the exploratory fitting of
models in simulated data, that is, data for which the true model was
known. He found that only about half of the exploratory searches located
the true model, even when starting from a model that was misspecified by
only one or two parameters. He obtained this limited rate of success for
such models in samples of 300 observations, which were assumed to be
population data, and his success rate in smaller samples (N = 100) was
zero. However, we are usually working with sample rather than popula-
tion data, and the data structure analyzed represents the population data
structure with some degree of uncertainty. Hence, the probability of
locating the correct model by exploratory methods when sample data are
used is even less than the limited success rate obtained by MacCallum,
particularly so when it is further recognized that his models of the true
population structures are gross simplifications of the structure that we
investigate in social and behavioral research. An exploratory analysis of
data thus entails the risk of inducing an interpretation founded on the
idiosyncracies of individual samples. This explains why many highly
parametrized models that are developed by exploratory fitting procedures
in one sample often fail to fit the data from another sample. Any
parameters that fit the model to the specific sampling fluctuations
contained in the first sample cannot be expected to fit the particular
sampling fluctuations contained in the second sample.

Another point of relevance to estimates of parameters based on
exploratory analyses is related to the use of significance testing. The degree
of probability associated with a confirmatory test of the fit of a model that
has been constructed from an exploratory analysis of the same data tells
us nothing about the true parameter values in the population. The
exploratory analysis will have been based on an iterative process that
could, if taken to its logical conclusion, eventually describe all the
variation in the sample. Then the model would fit the data perfectly in an
analytic or descriptive sense, rather than in a probabilistic sense (Cliff
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1983; MacCallum 1985). Any model derived from an exploratory proce-
dure can be tested with respect to its capacity to describe the true
structures in the population only if tested against samples other than that
on which it was developed.

In contrast, a confirmatory analysis aims to test whether a given model
could have generated the structure of relationships in the data (as
represented by the means of and covariances among variables) within the
bounds of sampling error; hence, it tests whether the model could
represent the true model for the population. Cudeck and Browne (1983)
have argued that such a strategy is not strictly appropriate given the
under-developed state of most social and behavioral science theories.
They suggest that a more realistic objective would be to employ a cross-
validation strategy to develop models that will perform optimally in future
samples. Their cross-validation strategy for the development of models is
based on an exploratory analysis of a subsample of the data and its
subsequent replication in a second subsample of the data. They found that
a double cross validation, that is, exploratory fitting of models in each half
of the data with replication to the other half of the data, provided models
that, although often rejected by the chi-square test statistic in the
replication sample, did not differ very much substantively. Highly pa-
rametrized exploratory models, which thus fit the data well in the initial
subsample, did not necessarily replicate better than models with fewer
parameters. This reflects the nature of the exploratory fitting of models to
data: Many parameters in the model may be doing little more than fitting
the model to the sampling fluctuations in the (sample of) data analyzed.
These parameters are irrelevant to the true population model; hence, they
are of no substantive value when the model is cross-validated against
other samples drawn from the same population.

The problems of superfluous parameters associated with the idiosyn-
cracies of particular samples highlights the desirability of formally
specifying alternative models that could have generated the data.
Although the idea of specifying alternative models is often argued to be
impractical, it should be one of the explicit functions of a literature review.
Indeed, the methodology of confirmatory modeling can be viewed as one
in which the strategy of cross validation is writ large. Individual studies do
not exist in vacuo, but rather in the context of antecedent cognate research
and practical knowledge. One of the essential functions of research is to
formalize such knowledge by constructing conceptual models of the
process under investigation. When contradictory or incompatible formu-
lations of the evidence embodied in this extant knowledge are revealed,
they provide a basis for competing explanatory models. Confirmatory
modeling aimed at evaluating which of the alternative models formulated
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may best account for the relationships in the data can then be viewed as a
cross validation, or replication, of models derived from previous empirical
and theoretical work. If the data are made available to other researchers,
this process need not even require that a given study consider more than a
single model; that is, there is no necessity for competing models to be
evaluated within the confines of an individual research program. How-
ever, when a research program aims to make prescriptive recommenda-
tions to inform policy or practice, it is highly desirable that competing
models be entertained as a means of assessing the validity of any
conclusions reached on the basis of particular models.

There is a sense in which the form of cross validation embodied in a
confirmatory method as outlined above is more robust than cross
validation among subsamples within a study. When the cross validation is
based on models evaluated in separate studies employing different data,
the samples of data are truly independent, whereas subsamples within a
study share biases and other characteristics derived from their common
sampling frame and data collection procedures. Needless to say, this
assumes that the different studies draw their samples from the same
relevant universe of observations.

Measurement issues

Measurement issues in structural modeling include the following: (1) the
nature of measurement in the social and behavioral sciences, (2) the
selection of appropriate measurement scales to fit the framework and
statistical assumptions, and (3) the standardization problems arising out
of the need to interpret parameter estimates across samples, and sub-
groups, and to compare parameters within a model.

Epistemological problems arise in the process of measurement and its
relation to the substantive theoretical framework through which the
phenomena of interest are observed. In order to measure a social event it is
necessary first to formulate a theory of what that event is and how it fits
into the structure of the phenomena with which it is associated. The
divisions in the scale of a measurement instrument are used to locate an
observation of the event into a category that is meaningful in terms of the
substantive concepts of the theory employed to describe and explain the
phenomena under investigation.

The relevance of these issues lies in their salience in understanding the
relation of measurement models to structural models in structural model-
ing. Essentially, measurement models have meaning only in the context of
the theory that underlies the substantive relationships embodied in the
structural model. Thus, it makes sense to estimate the parameters for the
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structural and measurement models simultaneously. Those who argue for
a two-step procedure in which the measurement model parameters are
estimated in the first step independently of the structural model, and are
then held constant in the second stage while the parameters of the
structural model are estimated, implicitly deny the theory-laden nature of
measurement. Burt (1976), however, found that the parameter estimates
for models varied little regardless of whether they were estimated by such
a two-stage procedure or simultaneously. He did note, however, an
exception when the signs implied by variable loading across constructs
and the estimated correlations among constructs conflicted with the signs
for the observed correlations among variables. Burt's discussion does not
recognize the necessary logical relationship between measurement and
theory, and he discusses the relationship between measurement and
structural parameters as if they were epistemologically independent.

The choice of a measurement scale for a variable also involves a
decision about its interval or categorical nature. These issues were
discussed briefly in Chapter 1 dealing with framework assumptions for
structural modeling. However, measures of the degree to which variables
covary were not discussed.

An elementary expression of the degree to which two continuous
variables covary is the average of the cross products between them,

mean cross product = -Tr

where Xt and Yt are any two variables and / refers to the / = 1, . . ,,N
observations in the sample.

This measure is known as the moment about the origin, and it contains
information on the location of the means of the variables with respect to
the origin in addition to the covariation among the variables. The mean
cross-product matrix for all variables in a model is called the moment
matrix, and this matrix should be analyzed if the model contains
parameters estimating measures of location such as equation intercepts or
factor means.

If each variable is centered so about its mean is zero, information on the
native origin for the measuring scale is lost. The covariation among
continuous interval variables is known as their covariance. The covariance
is expressed as the mean cross product between the centered scores for the
variables:

TO = l£ (* ; - X){Yt - Y)

If the variables are standardized to have standard deviations of unity, in
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addition to being centered about their means, the measure of covariation
between them is known as the Pearson product-moment correlation
coefficient. The standardized variables are the original scores subtracted
from the mean and divided by their standard deviation:

X — Xstandardized variable = , ' _

The correlation coefficient is then expressed as

X , - X 1 f Y,-YIf
J

correlat ions, . , _ _ _ . . . . . . . . . . „ ^ _ ^

Now, the numerator times \/N is the same as the formula for the
covariance between X and Y, and the denominator reduces to the product
of the variances; thus,

, ,. cov(JT, Y)correlation r = X

Although the above measures of covariation are presented in many
basic statistics books, their direct implications as measures of covariation
in the types of data usually encountered in the social and behavioral
sciences are not always understood. The principal assumption invoked
when these measures are employed as measures of covariation is that the
measurement scales are interval in nature and that the relationships
among variables are linear.

When a weaker assumption of ordered polytomous measurement scales
is employed, the above measures capture only the linear component of any
covariation and fail to capture any nonlinear component; hence, the
estimates of total covariation among such variables may be attenuated.
This means that the estimates of covariation for data commonly encoun-
tered in social and behavioral research typically underestimate the
strength of the true relationship among variables. In the context of
regression analysis we can test for well-behaved nonlinear components of
the relationship between the dependent and independent variables by
specifying a polynomial function for the independent variables. However,
simple polynomial functions may not capture the all-nonlinearity in the
bivariate relationships.

The measures of covariation described above are also affected by
nonnormal skewness and kurtosis when employed as summary measures
of covariation in the data. Thus, there is a prima facie case for
investigating the robustness of linear measures of covariation to depar-
tures from linearity, skewness, and deviations from the kurtosis of the
normal distribution.1
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It is clear that the above measures of covariation depend on the scaling
of variables. If the scaling is interval in character, the interpretation of the
measures is invariant to a shift in location of the origin. This is due to the
fact that a fixed distance on an interval scale has the same interpretation
regardless of where on the scale it is located. However, if we relax this
assumption of an interval scale and assume only that the measurement
scale is an ordered polytomous scale, the interpretation of covariation in
terms of the measures outlined above will not be invariant to changes in
the value at which each category is located. For example, a scale with
assigned values of 1, 2, 3,4, 5 for its categories may provide quite different
estimates of covariation with other variables from those obtained by an
alternative assignment of the values of 1,4, 5,11, 37, respectively. In social
science research, measurement scales are often of an ordered polytomous
character. Hence, the robustness of measures of covariation to alternative
scalings (metric) of the measures is of considerable interest. Departures
from the assumption of interval-level scaling will generally attenuate the
estimate of covariation among variables.

One solution to the problem of calculating covariances for variables
with an ordered noninterval (ordinal) metric is to assume that each of the
variables has an underlying normal distribution in the population and to
rescale each to an interval-level variable on the basis of this underlying
distribution. New thresholds are calculated for the values at which
categories of the variables are defined on the scale on the basis of the
frequency of observations in each category for each variable. We refer to
this as normal scoring. Since the choice of a normal distribution is
arbitrary, the units of the scale are also calculated on this basis. The
product-moment correlation among these normally scored variables can
then be employed as a measure of covariation among them. Since the
normalized scores have an arbitrary metric, the measure of location
(mean) for the variable is also arbitrary and is usually set at zero. The
distribution of the variable is usually also arbitrarily defined to have unit
variance, in which case the resulting unit of measurement for the variable
is commonly referred to as a z-score.

Treating each variable distribution independently, however, may not be
the most effective way of summarizing the covariation between pairs of
variables. An alternative is to estimate the covariation between each pair
of variables from their joint distribution. Two approaches are available in
this case. The first is to calculate the canonical correlation between each
pair of variables (Kendall & Stuart 1961, pp. 568-73). The canonical
correlation calculates optimal score values for the two variables that
maximize their product-moment correlation, subject to the assumption
that each has mean zero and unit variance.
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The second approach is to assume that each variable corresponds to a
latent variable with a continuous distribution. New threshold values for
each category value are then calculated on the assumption that the joint
distribution between the pair of latent variables is normal (Joreskog &
Sorbom 1985). The polychoric correlation is estimated by maximum
likelihood methods as the correlation between pairs of these latent
variables.

One consequence of these approaches is that truncated or censored
distributions are simply a special case of the general distribution for an
ordinal variable. Censored distributions are relatively common in social
and behavioral science measurement (Maddala 1984). Examples are floor
and ceiling effects in cognitive tests, educational qualifications measured
in years of schooling, and employment status.

Although these measures provide a means by which alternative mea-
sures of covariation can be calculated, they presuppose that the respective
bivariate distributions are normal. If it is only our poor measurement
instruments that make it appear otherwise in many cases, these alternative
measures of covariation are to be preferred to any that are based on the
raw scores for observed variables. A measure of covariation based directly
on the raw score product-moment correlation coefficient is often severely
attenuated, and this may be one of the reasons that such estimates are
predominantly in the range .0-.5 for variables thought to be associated
from a theoretical perspective. Many conceptual variables could be
viewed as normally distributed in the general population, and even when
this is not the case it may be reasonable to approximate them as being
normally distributed, particularly if the metric in which they are measured
in most research is somewhat arbitrary. Alternative categories that
reflected a more normal distribution could be devised in many cases. The
conceptual variable of educational attainment is sometimes measured as
"years of schooling." This results in a distribution with an upper tail that
is thicker than that of a normal distribution and a lower tail that is
truncated. The conceptual variable, however, is continuous and extends
beyond the range captured in the observed variable. A more appropriate
measuring scale would extend the tails of the observed distribution and
match the distribution of the theoretical variable better. Such adjustments
would result in many variables with an observed distribution that is more
like the normal distribution. Conceptually, the normal scoring, canonical
correlation, and polychoric correlation coefficients all appeal to these
ideas for their validity as measures of covariation among observed
variables.

All the measures of covariation discussed above, with the exception of
the moments about the origin and the covariance between two variables,
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are standardized measures. That is, they have arbitrarily defined location
and variance parameters. Kim and Ferree (1981) provide a lucid dis-
cussion of standardization in social and behavioral science research. One
objective of standardization is to allow for comparison, either across
samples or across variables and constructs within a model. The methods
commonly employed to estimate structural models, however, are not all
suitable when standardized measures of covariation are employed as the
basic input to the analysis. This is because these estimators have been
developed for the normal theory properties of the covariance matrix. We
return to this issue later in the discussion of the various estimators
available.

Sampling issues

Since the mid-1970s, there has been a considerable volume of research on
the consequences of analyzing nonexperimental data based on sampling
schemes that are not of a simple random nature (e.g., cluster sampling)
when the model assumes that the data are drawn from a simple random
sample from the population (Holt, Smith, & Winter 1980, Scott & Holt
1982). The problem is closely related to the estimation problems as-
sociated with the "unit of analysis" issue discussed in educational and
sociological research. The unit of analysis issue concerns the appropriate
level of observation for modeling hierarchical phenomena. It has been
widely discussed under the rubric of "contextual analysis" and "ecological
analysis" (Boyd & Iversen 1979; Burstein 1980) and has recently been
reformulated as the multilevel statistical model (Mason, Wong, & En-
twistle 1985, Aitkin & Longford 1986; Goldstein 1986; Raudenbush &
Bryk 1986a,b).

Cluster sampling methods and observations on intact units with a
multilevel structure (e.g., pupils within schools) give rise to observations
that do not satisfy the independence assumption of linear models. That is,
the observations (on pupils) within clusters or observational units
(schools) are not independent of one another, but rather have some degree
of variation in common for all pupils within each school. Thus, pupils
sampled within schools show more similarity (less variation) than pupils
in a sample drawn randomly across schools. Hence, observations on
pupils within schools are correlated (nonindependence). This lack of
independence among observations is due to the fact that higher-level
(school-level) factors influence the score for all observations (pupils)
within each higher-level unit. The statistical implications of these issues
are discussed in a later section.
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Estimation

In this section we consider the role of assumptions outlined in earlier
sections for the estimation of model parameters. A range of estimators
and the assumptions on which they are based are discussed in order to
ascertain those features of estimators that might raise questions about
their application in certain situations. The estimation of parameters is
closely related to the problems of identification and testing.

Identification

A good general introductory exposition of the formal aspects of the
identification problem is available in Saris and Stronkhorst (1984); more
formal and advanced discussions are available in standard econometric
texts (e.g., Wonnacott & Wonnacott 1985; Pindyke & Rubinfeld 1981). A
model is said to be identified if its parameters are uniquely determined by
the variances and covariances among the observed variables in the model.
The statistical assumptions S1-S4 outlined in Chapter 2 go a long way
toward identifying the parameters of the model. They provide a math-
ematical framework for expressing the variances and covariances among
the observed variables as combinations of parameters in the model. This,
however, takes the form of a mathematical relationship between the
hypothesized population variances and covariances and the model pa-
rameters, and no considerations related to sampling from the population
formally enter into the problem. In consequence, the evaluation of the
identification status of a model cannot be assessed fully on the basis of an
empirical test of the model against sample data. Such data-based evalua-
tions of identification can be misleading (Krane & McDonald 1979). A
model may appear to be empirically identified in a sample when it is
actually underidentified in the population. Likewise, a model could be
judged to be underidentified in a sample even if it is identified in the
population. The reason for these perverse conclusions are to be found in
the random fluctuations that occur in data sampled from a population.
Large sample sizes are some insurance against the occurrence of such
phenomena, but they do not obviate the need to evaluate the identifiability
of model parameters more formally. The LISREL program performs an
empirical test of identifiability, but because it is based on the sample data
it may occasionally give a misleading diagnostic on the identifiability of a
model. Although Joreskog and Sorbom (1981) suggest that the empirical
test will "almost certainly" be correct, one is advised to be careful when
samples are small.
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Alternative estimators

Structural modeling methods employed in social and behavioral sciences
can be thought of as a merger of models developed in econometrics and
psychometrics (Goldberger 1971), the structural model relating to the
former and the measurement models relating to the latter. The factor
analysis model developed in psychometrics can be estimated by least
squares methods once sufficient restrictions have been placed on it for
identification purposes. However, it was clear early in the development of
simultaneous equation modeling methods in econometrics that inde-
pendence between disturbances and the "independent" variables in
equations would be unrealistic, especially since lagged time-dependent
variables were likely to appear in equations as both dependent variables
and independent variables. Most introductory econometrics textbooks
(Johnston 1972; Pindyke & Rubinfeld 1981) demonstrate that the method
of ordinary least squares (OLS) produces biased and inconsistent esti-
mates of the model parameters under such conditions.

The method of two-stage least squares (2SLS) was developed to deal
with problems caused by a lack of independence between the equation
disturbances and independent variables. More complex models consisting
of several equations require even more elaborate methods that simulta-
neously estimate all parameters in the model.2 Maximum likelihood (ML)
and generalized least squares (GLS) estimators have been developed for
estimating the parameters in complex multiequation models. LISREL (VI
and earlier versions) allows the user the option of selecting from four
different estimators: OLS, GLS, ML, and an instrumental variables
estimator (IV), which is similar to 2SLS. The program uses the OLS and
IV estimators as methods of obtaining initial estimates of the parameters.
These estimates are then employed as initial values for the iterative ML
and GLS estimators. In some models the OLS and IV estimators are
efficient unbiased estimators of the parameters - for example, for a single
regression equation with no lagged independent variables. For multiequa-
tion and more complex models, however, they are generally less efficient
than the GLS or ML estimates. For many models - for example, those with
lagged independent variables or reciprocal influences among dependent
variables, the OLS and IV estimators also produce biased estimates of the
parameters.

The basic principle of the OLS, IV, and GLS methods is to minimize the
discrepancy between the estimates of variances and covariances implied
by the parameter estimates £ and the estimated population variances and
covariances derived from the data in the sample S; that is, the estimator
minimizes a function of |S - £|. However, the estimates of the population
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variances and covariances are themselves not known exactly but subject to
sampling error. Estimates of parameters in a model will also be affected by
this characteristic of the basic input to the analysis. Information on this
sampling variation can be employed to derive more efficient estimates of
the model parameters. This is done by weighting the discrepancy function
to be minimized by the variances and covariances of the covariance matrix
fed into the model. Hence, a more advanced estimation method would
minimize a function of | W(S — £)|, where W is a weight matrix based on
the variances and covariances of the estimated covariance matrix for the
data. The OLS method ignores this refinement by setting W = I; that is,
all elements of the covariance matrix estimated from the data are assumed
to be estimated with equal precision. For this reason the OLS method is
commonly referred to as unweighted least squares (ULS). The GLS
method estimates W under the assumption that the data have a multivari-
ate normal distribution.

The ML method of estimation is based on an approach that is quite
different from that of the least squares estimators. It finds the combination
of parameter values that maximizes the likelihood of the sample cova-
riances. In order to do this it must assume that the probability density
function for the variables is known. This probability density function is
referred to as the prior distribution assumed for the variables in the
population. The prior must be specified a priori, if for no other reason
than that the data are assumed to be only a sample from the population
and hence the exact population distribution is not known. Various prior
distributions can be assumed in applications of the ML method, but the
one most commonly specified in ML estimators for structural models is
the multivariate normal distribution. Given the sample size, the observed
(sample) covariances, the prior distribution to be assumed for the
population, and the model specification, the method then employs a
numerical procedure to find the parameter values that maximize the
likelihood for the estimated covariances.

Three other estimators have also been developed for structural equation
models. The first of these is a modified GLS estimator that allows for the
relaxation of the strict assumption of multivariate normality by allowing
for skewness in the multivariate distribution (Browne 1982; Bentler
1983a,b). Browne showed that deviation from normal kurtosis rather than
skewness was likely to distort estimates for methods that assumed a
multivariate normal distribution. This estimator still requires that the
multivariate distribution of the variables have the same kurtotic charac-
teristics as the multivariate normal distribution. But skewness and
kurtosis are nearly always found to vary together; hence, it is unlikely in
practice that this assumption about the multivariate distribution for the
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variables will be satisfied in many cases where the assumption of
multivariate normality is not satisfied.

Browne (1984), however, has developed another more general estimator
that relaxes both the assumptions of normal skewness and normal
kurtosis, so that the assumption of multivariate normality can be
dispensed with. This is referred to as the asymptotically distribution-free
(ADF) best generalized least squares estimator. Both the modified GLS
estimator and the ADF estimator estimate the weight matrix W as a
complex function of the variances and covariances of the estimates of the
population covariances. The normal-theory (unmodified) GLS estimator
is implemented in LISREL VI (and the ML estimator can be shown to be
equivalent to it), and the ADF estimator is implemented in LISREL VII,
where it is called the WLS estimator.

Muthen (1978, 1984) developed another estimator that explicitly deals
with the categorical nature of variables. It is referred to as the categorical
variable methodology (CVM) estimator, and it avoids the use of Pearson
product-moment correlations and metric covariances among variables by
fitting the model directly to the estimated latent correlations underlying
the observed categorical variables. In essence, it assumes a multivariate
normal distribution for the latent continuous variables underlying the
observed categorical variables. This estimator can also be represented by
the discrepancy function for the GLS estimator with a specific form for
the weight matrix W. This estimator is not available in LISREL VI and
earlier versions, because the estimates that use the polychoric correlations
do not take into account the appropriate weight matrix and hence
are not asymptotically efficient. LISREL VII does, however, provide
an estimator similar to Muthen's CVM estimator. It requires that the
WLS estimator be employed with an input matrix of polychoric correla-
tions.

The ULS estimator is not scale-free, which means that a set of estimates
derived from the covariance matrix are not a simple linear transformation
of those based on the (standardized) correlation matrix or any other
rescaling of the variables. The other estimators and the CVM estimator
are scale-free; thus, the researcher does not have to be particularly
concerned about the scaling of variables in the sense that estimators for
different scalings relate to one another through a direct transformation
function. This is important because many variables in social and
behavioral science research are expressed on what is essentially an
arbitrary scale - for example, 18-83 for a scale of occupational prestige
in one study (Goldthorpe & Hope 1974) and a scale of 1 to 21 (Stewart,
Prandy, & Blackburn 1980) in another. Differences in scaling are also
inherent in scores for variables derived as a weighted sum of a set of items,
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such as test scores or scores for a measure of neuroticism or disability
measured by instruments that may contain different numbers of items in
different studies. Furthermore, as discussed earlier, the measures of
covariation available for ordinal variables usually entail an arbitrary
standardization of variable measurement scales.

The GLS and ML estimators are asymptotically unbiased and as-
ymptotically efficient under the assumption of multivariate normality.
This means that in large samples they provide unbiased estimates with
minimum sampling variation. The concept of a "large sample" derives
from the calculus of probability density functions for the variables and
corresponds to the statement that under integration these properties will
hold in the limit as the sample size tends toward infinity. Thus, we cannot
say a priori how many observations constitute a large sample, since it
depends on the probability density function for the particular population
from which the sample is drawn. Samples in the social and behavioral
sciences typically range in size from 50-100 in studies using intensive
interviews, through 100-1,000 in many social psychological studies, and
3,000-5,000 or more in large-scale sociological, educational, and medical
surveys. Although experience suggests that it is relatively safe to assume
asymptotic behavior for these estimators in samples of 1,000 or more
observations, it is not clear whether similar assumptions can be made in
samples as small as 100 observations. Evidence from simulation studies of
the types of structural models used in econometrics suggests that limited-
information estimators for parameters in one equation at a time (OLS, IV)
perform fairly well even in small samples of 30 to 50 observations
(Mosbaek & Wold 1970). So-called full-information estimators (those
that estimate the parameters in all equations simultaneously, such as ML,
GLS, ADF, and CVM) are generally found to be less stable in such small
samples. Since limited-information estimators are theoretically less effi-
cient than full-information estimates in many structural modeling
situations, there is a potential trade-off between sample size and the
performance of estimators. Whether this holds for structural models of
the type typically used in the social and behavioral sciences has been the
subject of various simulation studies, the most extensive of which is
reported in Chapter 9. In the section below on robustness, other research
in this area is discussed.

Assessment of fit and the evaluation of models

The assessment of model fit has probably received more attention in the
literature than any other aspect of structural modeling. Most discussion
has focused on the likelihood ratio test statistic for such models. This
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provides a test of model fit with desirable theoretical properties (it has an
asymptotic chi-square distribution) under certain conditions. Since it is
realized that the conditions required for this test of fit will be only
approximately satisfied, other measures of the fit of a model are also
important.

At the most general level, the validity of a model should be evaluated on
methodological criteria for the reasonableness of the parameter estimates.
For example, models that have estimates of correlations greater than unity
in absolute value or that have negative variances (Heywood cases) do not
satisfy basic methodological criteria. Various measures of the amount of
variance accounted for by a model and of the difference between the
observed covariances and those implied by the model have been
developed.

We use the phrase "test of the fit" of a model to refer to parametric
statistical tests, that is, those based on a particular statistical distribution,
and the phrase "evaluation of the model" to refer to measures of the
methodological validity of a model. These measures include various
indices of the fit of a model, but their distributional properties are
unknown: hence, they are not test statistics in the usual sense, but heuristic
indicators of how well a model performs.

Evaluation of the model

Methods for assessing the methodological validity of a model have been
somewhat neglected in the literature. It is assumed that every researcher
knows about them and employs them routinely in structural modeling.
However, we believe that their use deserves more prominence. First we
discuss general requirements for the estimates of model parameters to be
methodologically valid, and second we discuss various indices of model fit.

At the most fundamental level of evaluation of a model, one must ask,
"Are the parameter estimates plausible?" This entails an inspection of the
estimates to ascertain whether all estimated and implied correlations are
in the range |0-l| and whether all the estimated variances of latent
constructs, error, and residual terms are positive. Furthermore, all
estimates of squared multiple correlations for the observed variables and
coefficients of determination for the structural equations should be
positive. Other indicators that something might be amiss are large
standard errors and highly correlated parameter estimates. A message
indicating that a correlation or covariance matrix is not positive definite is
also indicative of weaknesses in the model, unless the constraints placed
on parameters (e.g., an error variance constrained to be zero) are the
reason for the matrix being nonpositive definite. If any of these criteria are
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not met, they indicate that the model estimates are not logically plausible.
The next level of evaluation involves an assessment of whether the

estimates of construct loadings are sufficiently high to justify the interpre-
tation of the constructs as measuring an underlying theoretical construct.
If, using a common rule of thumb, all standardized loadings for a
particular construct were less than 0.3, it would seem inappropriate to
interpret the construct as a measure of an underlying variable of
substantive importance in relation to its indicators. In essence, this
situation would suggest that the indicators had little validity vis-a-vis the
construct concerned. Indicators of greater validity will result in high
standardized construct loadings in the model. A model with weak
relationships between constructs and their indicators makes little substan-
tive or methodological sense. Fornell and Larcker (1981) have argued that
this is a weakness in structural modeling, but in reality it merely reflects
the fact that poor measurement cannot yield a substantively valid model.
The use of high-powered statistical tests cannot compensate for a lack of
theoretical substance in a model. Hence, the argument of Fornell and
Larcker that models with low correlations among observed variables lead
to estimates of strong relationships among constructs is somewhat
specious. It fails to take account of the fact that such a model would be
substantively invalid because the constructs themselves would fail to
capture a substantively meaningful portion of the variance shared by their
indicators. Statistically, low correlations among indicators of a construct
imply that there is little variance among them.

The squared multiple correlation for an observed variable indicates the
proportion of its variance that is accounted for by the latent construct.
Large multiple correlations indicate that a high proportion of the variance
in the observed variable is accounted for by the latent construct, hence that
it is a valid indicator of that construct. A low squared multiple correlation
indicates that the indicator is a weak or invalid measure of the construct
concerned.

The third level of evaluation concerns the amount of variance account-
ed for in each structural equation of the model. The squared multiple
correlation for each equation is the structural modeling analogue of the
squared multiple correlation R2 in regression analysis. High values
indicate that a large proportion of the variance in the "dependent" latent
construct in the equation is accounted for by the "independent" latent
constructs in the equation. Hence, the difference between the statistic for
regression models and for an equation in a structural model is related to
the fact that regression models are based on relationships among observed
variables, whereas structural models are based on relationships among
latent constructs. A summary measure of the multiple correlation across
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all structural equations is provided by the coefficient of determination for
the model. In addition, the LISREL program provides a coefficient of
determination for all observed variables jointly. This coefficient for the
observed variables is analogous to the squared multiple correlation for the
regression of the dependent observed variables on all other observed
variables in the model. Although it is rarely the objective of a model to
explain the variation in all the endogenous constructs, a model with low
squared multiple correlations for intervening endogenous constructs may
be considered to be an inadequate representation of the processes that
generated the data. Thus, a given model may be evaluated as being more
adequate for some relationships (equations in the model) than for others.
We will almost always wish to apply a test of adequacy to the model for its
capacity to explain the variation in the main dependent construct. This
is usually the final endogenous construct in a recursive model. In a
reciprocal effects model the focus is on more than a single construct, and
in a covariance structure model (e.g., a multimethod-multitrait or factor
analysis model) the focus is on several latent constructs jointly.

The fourth level of the evaluation of a model concerns its capacity to
reproduce the covariance structure among the observed variables. This is
known as assessing the fit of the model. We shall discuss measures of fit
that are not based on distributional assumptions initially and then move
on to measures based on test statistics for which statistical tests are
available.

Several measures of fit are employed in research published in the
literature, and we shall discuss each of these in turn. The object of
evaluating the fit of a model is to assess how well the structure of
relationships specified in the given model accounts for the variances and
covariances among the observed variables in the model. A completely
saturated model, that is, a model that is equivalent to a regression model
between the observed dependent and all observed independent variables,
exactly describes all of the covariation among the observed variables in
terms of the model parameters. Such a model has zero degrees of freedom.
Structural equation models, however, aim to describe the covariation
among the observed variables in terms of the model's parameters by
positing a simpler structure relating not the observed but the unobserved
variables (latent constructs) of the substantive model to one another. Such
a model usually specifies that certain paths are zero; that is, a latent
construct may be specified to influence a second latent construct but not to
influence a third latent construct. In terms of a path diagram, some paths
are thus omitted. This means that not all specifications of a model may
account for the covariation among the observed variables equally well. In
mathematical terms we calculate the fit of a model as a function of |S — E|
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representing the differences between the observed covariances and the
covariances implied by the model estimates for the particular model
specified.3

A first guide to the fit of a model can thus be gained from an inspection
of the residuals arising from the difference between the covariances and
variances for the observed data and those implied by the model estimates.
These are printed in the LISREL output as the "residuals," and their
average is represented by the root mean square residual. A problem in
interpreting these residuals is that their magnitude is dependent on the
magnitude of the variances and covariances in the model. Also, since the
covariances calculated from parameter estimates are subject to sampling
variation reflected in the standard errors of the parameter estimates, it
makes sense for comparative purposes to normalize these calculated
residuals by dividing them by their standard error. If we then make an
assumption that the normalized residuals have a normal distribution, we
can present them as a quantile-quantile (Q-Q) plot.4 The straight line
from the bottom left to the top right of a Q-Q plot represents the trace
line for the quantiles from a cumulative normal distribution. Hence, if the
normalized residuals represent purely random variation in the difference
between the observed and the fitted covariances, they will all fall along this
diagonal line. If the residuals in the Q-Q plot fall roughly along a line that
is steeper than the diagonal, they indicate that the model is overfitting the
data. In this case the spread of the residuals is less than that which would
be expected; that is, they are more closely bunched about zero (too few
points in the "tails," and too many in the center, of the distribution) than
they would be if they represented a random variable from a standard
normal distribution. The reverse case of a flatter slope than the diagonal
indicates residuals with a greater spread than that expected for a random
normal deviate. Any model for which the residuals follow roughly a
straight line can be considered adequate. Those with a flatter slope have a
poor fit, as do those with residuals that do not approximate a straight line
on the Q-Q plot. Models with a straight line that is considerably steeper
than the diagonal must be interpreted cautiously, since some of their
parameters may be modeling mere sampling fluctuations in the data rather
than real relationships that could be replicated in other data. Parameters
that mainly reflect sampling variation do not represent any feature of the
underlying population; hence, they have no substantive interpretation in
terms that generalize to the population of interest. Thus, Q-Q plots with a
steep slope indicate that the model is overfitting the real (substantive)
relationships in the data.

Those Q-Q plots that exhibit nonlinearities indicate that the model fits
some variances and covariances considerably better, or worse, than others
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and that the normalized residuals do not have a normal distribution. This
usually indicates that the model is poorly specified. An inspection of the
normalized residuals will usually indicate that some of the variances and
covariances are poorly fitted.

The LISREL program provides two summary measures of the fit of the
overall model in addition to the likelihood ratio test statistic. The two
summary measures are the goodness-of-fit index (GFI) and the adjusted
goodness-of-fit index (AGFI). Both of these indices generally have a range
of 0 to 1, although under some circumstances they can be negative. Values
close to 1 indicate that the model accounts for most of the joint variances
and covariances among observed variables in the model. The AGFI index
adjusts this value for the degrees of freedom in the model. The sampling
distributions for these measures are not known; thus, they cannot be
employed as test statistics to indicate whether the proportion of the
covariances and variances not accounted for are higher than would be
expected by chance alone. Their use is as a heuristic guide to the overall
adequacy of the model. Although no working rules of thumb have yet
been established, it would seem reasonable on the basis of experience
gained thus far to say that models with an AGFI of less than .8 are
inadequate and that most acceptable models would appear to have an
AGFI index of greater than .9.5 Bentler and Bonnet (1980) and Saris and
Stronkhorst (1984) have suggested alternative indices based on the
proportion of the variances and covariances among the observed variables
accounted for by a model. They differ somewhat from that produced by
the LISREL program and require the researcher to specify an alternative
null model to the fully saturated null model employed in calculating the fit
statistics in LISREL. Like the AGFI and GFI they cannot be interpreted
in the same way as squared multiple correlations since they are not
measures of proportional reduction in error. Although they provide useful
information about the fit of models in comparison with some prespecified
null model, the interpretation of this information depends on the null
model chosen as the base against which other models are compared.
Tanaka (1982) provides examples of the use of these alternative fit indices.

Parametric tests of the fit of models

The main measure employed in tests of the fit of models is that based on
the likelihood ratio test (LRT) statistic for the specified model against the
alternative of the unconstrained (saturated) null model. Under the
assumption of multivariate normality for the observed variables this test
statistic has an asymptotic chi-square distribution. Thus, in large samples
the fit of the model can be tested against that of the null model (which,
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since it is unconstrained, has perfect fit). If the specified model fits the
observed sample variances and covariances as well as the null model,
within the bounds of chance at some prespecified level (usually, a < .05),
the model is said to be a valid model for the population.

As is the case with most parametric statistical tests, the LRT statistic6 is
dependent on sample size. A practical consequence of this for the
relatively simple models employed in the social and behavioral sciences is
that fewer of them fit the data in large samples than in small samples.
Thus, for practical purposes Joreskog and Sorbom (1981) suggest that the
LRT statistic should be treated as a heuristic index of the goodness-of-fit,
along similar lines to the model evaluation measures already discussed,
rather than as a test statistic. They suggest that the LRT statistic is
sensitive to departures from the assumption of multivariate normality;
thus, it is unwise to interpret it strictly as a test statistic in most situations,
given the type of data available in the social and behavioral sciences.
However, it is widely employed as a test statistic in the published
literature. In the next section we assess findings of research on the
robustness of the LRT statistic to violation of the assumptions of the
model.

The LRT statistic is also used to test for differences in the fit of models
that form a nested hierarchy. A set of models are said to be nested within a
hierarchy if each can be formed from a subset of the parameters in the
model immediately above in the hierarchy. Differences in the value of the
LRT statistic among models that are related in a hierarchical structure
have an asymptotic chi-square distribution. For example, the decrease in
fit (increase in value of the LRT statistic) for a model formed by
constraining one additional parameter in a baseline model can be tested as
a chi-square statistic with one degree of freedom. As an approximate rule
of thumb, a change in the test statistic of about the same magnitude as or
larger than the difference in the degrees of freedom between the two
models indicates a deterioration in fit for the more constrained model.
That is, the deterioration in fit is greater than that expected by chance
alone. The exact probability of the change in the value of the test statistic
for a given difference in the degrees of freedom between two models can be
ascertained from statistical tables for the chi-square distribution.

Two heuristic indices of fit based on the value of the LRT statistic for a
model are (1) the test statistic divided by the degrees of freedom for the
model and (2) critical N. The issues involved in using each of these ad hoc
indices of model fit are discussed in Chapter 11. Dividing the test statistic
by the degrees of freedom for the model is now considered an unreliable
method of assessing the fit of a model. Critical N (Hoelter 1983; see also
Chapter 5) calculates the sample size that would be required for the
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difference in the test statistic for two models to be statistically significant
at some prespecified level (usually oc = .05). If the sample size so
calculated is considered sufficiently large, the model is assessed to be
adequate. Sample sizes required for model estimates to be reliable are
discussed below.

Robustness of estimation and testing procedures

The preceding sections and Chapter 2 outline the methodological and
statistical assumptions made in structural modeling. Some of these are
specific to the form of the statistical model on which LISREL is based, but
most are applicable to a wide range of related models. The models
developed and implemented in computer programs by Browne and
Cudeck (1983; BENWEE), Bentler (1984; EQS), McDonald (1985;
COSAN), and Muthen (personal communication; LISCOMP) are all
close relatives.

When we speak of robustness in the context of statistical modeling we
are referring to the degree to which the model will produce valid estimates
and inferences when the methodological and statistical assumptions are
not fully met. In general, we should expect that few of the assumptions will
be fully met, and most violated to a greater or lesser degree. However,
assumptions are not like an electronic switch, in which the current is either
on or off. Rather, they are more like traffic laws, more or less observed,
depending on the danger of violating them in particular circumstances.
The task of this section is to delineate the circumstances and conditions
under which structural modeling may lead us to the wrong answers. The
features of social and behavioral science data that lead to the violation of
the assumptions of structural modeling include distributional properties
that lead to violation of the assumption of multivariate normality -
skewness, leptokurtic (peaked) or platokurtic (flat) distributions, and
multimodality; categorization of measurement scales; outliers; non-
independent observations; and small samples. Studies of the robustness of
structural modeling have investigated the influence of all these conditions,
with one exception.

The exception is that of the nonindependence of observations discussed
earlier under sampling issues. The most likely source of the noninde-
pendence of observations is the multilevel and time-series nature of most
social and behavioral science phenomena and the use of clustered
sampling methods. It is probably true that a wide range of social and
behavioral science data do not meet the assumption of independence
among observations. Statistical methods for handling multilevel data are
now being developed (Mason et al. 1985; Aitkin & Longford 1986;
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Goldstein 1986; Raudenbush & Bryk 1986a,b), but there is no simple
adjustment of the structural modeling framework that can be made in
order to deal with nonindependent observations. We can, however, cope
with the problem of the structural modeling framework by modeling each
group (e.g., school) separately in a multigroup model, but this becomes
intractable with more than a few groups, and such models typically lack
power owing to the small number of observations in each higher-level
unit. Furthermore, the results of the Monte Carlo study presented in
Chapter 9 indicate that estimates of parameters and the test statistics are
unstable in complex models when samples are small. The main substantive
drawback of a strategy based on a multiple-group model, however, is that
it does not allow for the modeling of substantive relationships across
levels. Multilevel statistical models, however, cannot as yet deal with
relationships among latent variables. One possibility that may be feasible
is to use a multilevel statistical model to purge the covariance matrix of the
effects of the nonindependence among observations and then employ this
covariance matrix as input to structural modeling. The effect of ignoring
any dependency among the observations in multilevel data, or that
collected through clustered sampling methods, is an underestimation of
the variances of the estimated population covariances for the observed
variables.

Kish and Frankel (1974) have studied the consequences of clustering for
estimating population location parameters (e.g., means), and Pfeffermann
and Smith (1985), Scott and Holt (1982), and Holt et al. (1980), among
others, have studied its effects on estimates of population regression
parameters. Goldstein (1986), Aitkin and Longford (1986), Mason et al.
(1985), and Raudenbush and Bryk (1986) have studied the effects of a lack
of independence due to multilevel structures and have sought to deal with
the problem by modeling the structure of errors at each level. We are not
aware, however, of any attempts to consider the consequences of noninde-
pendence due to sampling schemes or the multilevel character of data in
the context of structural modeling.

Although there have not yet been any studies of the effect of varying
degrees of dependence among observations on estimates and inferences in
structural modeling, we can interpolate the findings from the effect in
simple linear models, where it gives rise to unbiased but inefficient
estimates. That is, the standard errors are underestimated - hence, the rule
of thumb that it is advisable to double standard errors in regression
models based on clustered samples. It would not be surprising if the
consequences for standard errors in structural modeling were similar to
those for regression models, but we should also expect that test statistics
for the fit of structural models would also be affected.
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The design of robustness studies

There have been two substantial investigations of the robustness of
structural modeling (Boomsma, Chapter 9 in this volume, and 1983;
Muthen & Kaplan 1985) and several smaller studies that have inves-
tigated particular aspects or robustness. There are essentially three modes
of investigating the robustness of statistical models to particular estima-
tion and testing procedures:

1. The most thorough, and expensive, method is to conduct a statistical
study in which the features of models and data thought to influence
the robustness of estimates and inferences are investigated in a
Monte Carlo simulation. This design broadly follows that of a
classical factorial experiment. In such a study artificial data of known
properties are simulated a large number of times to provide estimates
of the properties of estimators and test statistics under each specified
set of model and data conditions. The theoretical asymptotic (large
sample) estimates of the standard errors can also be derived from
statistical theory for these models.

2. The performance of estimators and test statistics is investigated in a
single sample of artificial data with known properties. A study of this
kind can be thought of as a case study of one sample. Again the
asymptotic standard errors can be derived theoretically for the
models.

3. The estimates and inferences from alternative estimators are inves-
tigated for specific models in real data. In this case the "true
structure" is not known, but the properties of the data and the
specification of the models are known; thus, the estimates and test
statistics for alternative estimators can be compared, given these.

The study by Boomsma and another by Joreskog and Sorbom (1985)
are the only ones to use a large-scale Monte Carlo design as outlined in
design 1 above. Even then, Boomsma's design is restricted to the study of
one estimator (ML) across a range of permutations of model and data
characteristics. At the time of Boomsma's study, ML was the only
estimator widely used. A similar study including ML, instrumental
variables estimates, and GLS is underway (Hagglund 1985). Boomsma's
study investigated a range of models under several distributional prop-
erties of the data and for various sample sizes. He conducted 300
replications of each experiment. The study by Muthen and Kaplan is a
much smaller Monte Carlo investigation of the performance of ML, GLS,
ADF, and CVM estimators in a single-factor model and is based on 25
replications of the experiment. The main feature of this study was its
investigation of the effects of skewness and kurtosis on the estimators
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considered. Tanaka (1984) also used a Monte Carlo design of 20
replications to study the behavior of the ML and ADF estimators for
variables with high positive kurtosis in a two-factor model. This investiga-
tion considered the effects for sample sizes of 100,500, and 1,500, whereas
the Muthen and Kaplan study considered only the one sample size of
1,000. Although the Muthen-Kaplan and Tanaka studies are based on
only a small number of replications of the experiments, they, in conjunc-
tion with Boomsma's study, provide more powerful evidence about the
robustness of estimators and test statistics th^n studies conducted under
designs 2 and 3 described above.

Joreskog and Sorbom (1985) reported a Monte Carlo study that
focused not on the parameters of the structural model, but rather on
alternative estimates of the covariation among variables. The objective
here was to ascertain the effects of nonnormal distributional properties of
variables on different measures of covariation. Since all current estimators
for structural models work from an estimate of the population covariation
among variables, this approach breaks the problem of robustness into two
components: the robustness of measures of covariation and the robustness
of the estimators themselves. If unbiased measures of the covariation
among variables could be found, these could be employed as the basic
input to the analysis.

Studies that have employed artificial data for which the true structure is
k»ow» bv>t have considered o»iy the o»e replication of the experiment
include those of Bentler (1983b), Olsson (1979), and Fuller and Hemmerle
(1966). Studies that have compared the performance of estimators and test
statistics in real data those of include Browne (1982), Huba and Bentler
(1983), Huba and Harlow (1983, 1985), Huba and Tanaka (1983), Huba,
Wingard, and Bentler (1981), and Joreskog and Goldberger (1972).

Together the studies to date tell us much about the performance of
alternative estimators and their associated test statistics under varying
model and data conditions. Below we review the findings for parameter
estimates and for inferential test statistics: standard errors, confidence
intervals, and the LRT statistic. The behavior of the model evaluation
indices discussed earlier has not been studied in the context of varying
model and data conditions. Since they represent empirical indices of
model performance based on estimated parameters, it is possible that they
also are not robust with respect to the true model that generated the data.
If the assumptions of the particular estimators are met, the parameter
estimates have the desirable theoretical properties of consistency and effici-
ency. Thus, they are unbiased and have the smallest possible standard errors
in large samples. We discuss the findings from the robustness studies
for estimators first and then consider the findings for the LRT statistic.
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Robustness of parameter estimates and standard errors

Joreskog and Sorbom's (1985) study of measures of covariation for
ordinal variables considered six alternative measures:

1. the product-moment correlation using raw scores,
2. the product-moment correlation using normal scores,
3. the polychoric correlation,
4. the canonical correlation,
5. Spearman's rank order correlation, and
6. Kendall's xb coefficient.

The study simulated two sets of ordinal variables with assigned integer
scores and a known population correlation coefficient of .60 300 times for
samples of 100, 400, and 1,000 observations. In one simulation the pair of
variables had three and four categories, and in the other they had five and
seven categories. In the first simulation, the variables had relatively
normal marginal distributions, and in the second, one had a U-shaped
distribution and the other a skewed distribution. The findings of this study
suggest that, although all estimators underestimated the true correlation,
the polychoric correlation is least biased and the most consistent.
Product-moment correlations based on normal scoring (bias < .06) and
the canonical correlation (bias < .06) also performed relatively well. The
bias for the polychoric correlation measure was less than .01 with variance
<.01 for all sample sizes. The bias for the normal scoring and canonical
correlation measures decreased as the number of categories in the variable
increased. The bias for the product-moment correlation estimates based
on raw scores was very large (>.50), representing an attenuation of the
true correlation of more than 80 percent. The attenuation of the
polychoric correlation, the canonical correlation, and the normal scoring
product-moment correlation was of the order of 1, 9, and 9 percent,
respectively. The attenuation factor for the Spearman and Kendall
measures was of a similar order to that of the raw score product-moment
correlation measure. Muthen and Kaplan (1985) reported that raw score
product-moment correlations in the range .35-.45 were attenuated
between 10 and 30 percent, depending on skewness and kurtosis. Browne
(1982) has shown that kurtosis rather than skewness was the major
theoretical threat to estimates of covariation based on raw scores. The
Muthen and Kaplan study found that zero skewness and high kurtosis
strongly attenuated estimates of correlations, but other cases with low
kurtosis combined with moderate skewness also resulted in significant
attenuation.

Joreskog and Sorbom (1985) also reported a case study of measures of
covariation for a mixture of interval and ordinal variables. The ordinal
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variables included one that was moderately skewed, with a U-shaped
distribution, and another that was dichotomized. The polychoric/
polyserial and canonical correlations were again the least biased and most
consistent estimates of the true covariation among the variables in the
data. For a two-factor model (Joreskog 1978) and a sample N = 200, the
model estimates based on these measures were also the least biased
and most consistent. They performed better than those for the
product-moment correlation calculated from either the raw scores or the
normal scores for the variables. All estimates underestimated the factor
loadings and overestimated the error variances in the model. None of the
other studies that we consider below have reported their findings at this
intermediate level at which the model summarizes the data as covariation
between variable pairs. The Joreskog and Sorbom (1985) study clearly
suggests that at this level the polychoric/polyserial correlation and the
canonical correlation measures are to be preferred to product-moment
correlations based on either raw scores or normal scores or to the
Spearman correlations or Kendall's xb measure as a summary measure of
the covariation between pairs of ordinal variables or mixtures of ordinal
and interval variables.

A general conclusion to be drawn from the studies of estimators of
model parameters is that all estimators (ML, GLS, ADF, CVM) appear to
produce relatively unbiased estimates when the distributional properties
of the data do not represent extreme departures from normality. Muthen
and Kaplan (1985) find no consistent bias in parameter estimates for any
of the estimators when research designs for varying skewness and kurtosis
are studied. They investigated a one-factor model with a skewness ranging
from - 0.3 to 2.9 in a sample of 1,000. This finding is in line with those of
Boomsma (Chapter 9, this volume) for parameter estimates based on the
ML estimator for a sample size of 400. He investigated models with
variables ranging from a normal distribution to one with variables with
skewness of up to 4.0 and a mean skewness of 2.5. The findings of Bentler
(1983a), Huba and Bentler (1983), Huba and Harlow (1983, 1985), and
Fuller and Hemmerle (1966) also suggest that ML and GLS parameter
estimates are relatively unbiased in data with skewness and kurtosis in the
range of most social and behavioral science data.7 Browne (1982),
however, found that the ML estimator consistently underestimated error
variances for a one-factor model and highly nonnormal data (mean
skewness = 4, mean kurtosis = 27). Further evidence that the ML
estimator may produce biased estimates in strongly skewed or highly
kurtotic data is provided by Olsson (1979) and Tanaka (1984). Olsson
found that the degree of bias was greater for models in which the true
factor loadings were highest.
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It would appear that ML and GLS parameter estimates are relatively
robust against skewness for a wide range of applications in the social and
behavioral sciences. However, when severely skewed or highly kurtotic
variables are present in a model, the ADF estimator should be used if
possible.

Most of the studies noted above also found little evidence of bias in the
estimated standard errors of parameters for the ML, GLS, and ADF
estimators, even when data are moderately skewed. Muthen and Kaplan
(1985) and Boomsma (Chapter 9), however, report that the standard
deviations of the empirical distributions of the parameter estimates depart
from expectation for ML and GLS when the data are skewed. They found
that the standard deviation of the estimated parameters often exceeds the
estimated standard deviation; hence, the estimated standard error is too
conservative, even though Boomsma found that the value of the estimate
itself over a large number of replications is unbiased. Thus, although both
ML parameter estimates and standard errors appear to be unbiased in
skewed data, we may sometimes be led into Type 1 errors (concluding that
a parameter differs from zero when its true value does not), if we accept
them at face value. Muthen and Kaplan obtained similar results for the
ML and GLS estimators, but the ADF estimator appeared to behave
appropriately even in the presence of quite strong skewness (all variables
in model had skewness = — 2.08) and kurtosis (all variables in model had
kurtosis = 4.113).

Boomsma investigated the robustness of the ML estimates and stan-
dard errors to variation in sample size, to the degree of discreteness of the
distributions of variables, and to estimation based on the correlation
matrix. With small samples (N ^ 100) there was a much greater chance of
improper solutions and of a failure to reach convergence, particularly
when N < 50. For N > 100 there was no evidence of any systematic bias
in parameter estimates or in estimated standard errors. Findings for
models based on the analysis of correlation rather than covariance
matrices mirrored these results when N > 200. However, these models
overestimated the variation in standardized parameter estimates, thus
leading to a conclusion that the parameter does not differ from zero more
often than expected. Generally there appears to be little effect on
parameter estimates and estimated standard errors related to variations in
the number of categories in the measuring scales of discrete variables.
Boomsma's investigation covered scales varying between two and five
categories.

Since ML and GLS parameter estimates and standard errors are robust
in the normal case, it would be convenient if the use of polychoric and
tetrachoric correlations would provide a ready solution in the case of
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skewed variables. However, the ML and GLS estimators were developed
for covariance structures, and polychoric and tetrachoric correlations, like
product-moment correlations, do not conform to the statistical theory on
which those estimators are based. The behavior of ML and GLS estimates
for models based on polychoric correlations has not been widely studied.
Joreskog's (1985) case study of a two-factor model found that the
parameter estimates using ML with polychoric/polyserial correlations as
input were less biased with lower mean square error than those using
product-moment correlations based on raw scores or normal scores or
those based on canonical correlations. Huba and Harlow (1985) provide
another indication of their likely behavior from a set of five case studies on
real data. An analysis of the parameter estimates for the initial specifica-
tion for each of their five models indicates that the correlation between the
ADF estimates and ML-polychoric or ML-tetrachoric estimates is about
.7-.9. The correlations between these estimates and the CVM estimates
are of a similar order. The corresponding estimates of standard errors for
ML-polychoric/tetrachoric and those for other estimators, however,
show much lower agreement. The number of parameter estimates on
which this comparison is based is not large (96), and the estimates are for
only one data set per model; thus, caution is counseled in their interpret-
ation. There appeared to be no clear pattern of over- or underestimation
for the ML-polychoric/tetrachoric parameter estimates when compared
with the ADF and CVM estimates. Huba and Harlow, however, con-
cluded that the former estimators were the most deviant of those they
studied. They found that improper solutions and outlier estimates were
more likely to occur with the estimators based on polychoric and
tetrachoric correlations than with the other estimators.

Muthen's (1984) CVM estimator fits the model to the estimated latent
correlations among the observed discrete variables directly rather than
fitting the model for the correlations among interval-level observed (raw
score) variables. Muthen and Kaplan (1985) report findings for a
moderately kurtotic (kurtosis = 2.9) and skewed (skewness = -2.0)
model involving dichotomous variables. The CVM estimator produced
unbiased parameter estimates but slightly overestimated the standard
errors. The ML, GLS, and ADF estimators based on raw score
product-moment correlations were generally found to be biased es-
timators of factor variance and errors but unbiased for factor loadings
in this model. The degree of bias across the range of models studied
increased with the extent of attenuation observed for the raw score
product-moment correlation estimates of the true covariation in the data.
In data with only moderate departures from normal kurtosis and
skewness (both <1.3), however, the bias in the estimates was not large
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enough (< 15%) to affect most substantive interpretations based directly
on the magnitude of the parameter estimates. In the models where either
skewness or kurtosis was >2, some parameter estimates for ML, GLS,
and ADF were biased by up to 30 percent.

Overall, it seems safe to conclude that ML and GLS parameter
estimates and estimated standard errors are robust against moderate
departures from the skewness and kurtosis of the normal distribution for a
range of factor analysis and structural equation models. This robustness is
relatively solid for samples with TV > 200, even if the model analyzes a
correlation matrix rather than a covariance matrix. Robustness in smaller
samples is somewhat more problematic, depending on the true population
structure, model complexity, and so on but may be reasonable in samples
as small as 100, and in some cases in even smaller samples. When the
skewness and kurtosis of variables are more substantial, it is advisable to
employ the ADF or the CVM estimator. A rule stipulating when to
employ these estimators is difficult to specify, but a reasonable rule of
thumb might be to use it in any situation when the skewness or kurtosis of
variables in the model exceeds 2.0.

Now that the ADF estimator is more readily available, it is possible to
check routinely whether the ML or GLS parameter estimates and
estimated standard errors differ to any significant degree from it, although
the ADF estimator may be too expensive to use as a frontline estimator.
An alternative solution when the data are highly skewed is to collapse
some categories in the measurement of the most skewed variables. Since
the number of categories was found to have little influence on estimates,
except that due to attenuation of covariances when the number of
categories was severely reduced, a modest collapsing of categories in the
tails of a distribution should have few deleterious effects. This, however, is
of little help when the distribution is strongly censored or truncated, or for
cases of perverse kurtosis. In such cases it would seem most appropriate to
rely on the ADF estimator or to employ polychoric and polyserial
correlations or canonical correlations as input to the analysis.

Robustness of the likelihood ratio test statistic

Most of the studies mentioned in the previous section have also inves-
tigated the robustness of the RT statistic. Again, however, most of the
information we have is based on the study by Boomsma reported in
Chapter 9, with other studies generally extending these findings to
alternative estimators. We expect the LRT statistic to deviate from its
expected chi-square distribution when the assumption of multivariate
normality is violated.
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Boomsma found that the robustness of the ML LRT statistic did not
appear to be substantially affected by sample size. It tended to have a light
tail with N < \00 and a somewhat heavy tail for larger samples, and
outlier values were often observed. No other investigators have systemati-
cally studied the behavior of the statistic by varying sample sizes for other
estimators. In several cases, however, the LRT statistic has been com-
pared across estimators in the same sample.

The ML LRT statistic was found to behave reasonably well asymptoti-
cally when skewness was slight but tended to be overestimated when the
skewness was moderate (mean skewness ^0.56) or stronger (Boomsma,
Chapter 9 in this volume). This results in rejection of the model too often
when the value of the statistic is compared with the chi-square distri-
bution. This finding is supported by those of Bentler (1983b), Huba and
Bentler (1983), Browne (1982), Huba and Harlow (1983, 1985), Tanaka
(1984), and Muthen and Kaplan (1985), who found that the ML LRT
statistic is almost always larger, sometimes substantially so, than that for
the ADF estimator. Huba and Harlow (1985) suggested that the ML
statistic may overestimate in leptokurtic (peaked) distributions and
underestimate in platokurtic (flat) distributions, but this is not borne out
by the findings of Muthen and Kaplan (1985), that both ML and GLS
consistently produce LRT statistics that are higher than that produced
by ADF for the same models and data, exhibiting variation in these
dimensions. Huba and Harlow (1983) had reported comparative results
for two models that had widely varying skewness and kurtosis among
their variable sets. Their skewness and kurtosis ranged from - 0.47 to 3.08
and from -0.23 to 10.39 in the first model and -0.67 to 2.69 and -0.90
to 7.17, respectively, in the second model. They found that, compared
with the ADF estimator, the ML estimator overestimated the LRT
statistic in both models but that the GLS estimator underestimated it in
the first model and overestimated it in the second model.

In the study by Muthen and Kaplan, which was based on a simple four-
variable single-factor model in a sample of 1,000, the ML LRT statistic
rejected the true model 8-12 percent of the time when the variables were
only moderately skewed (skewness <1.21) but 32 percent of the time
when stronger skewness (all variables; skewness = — 2.0) was present. A
similar pattern of rejection rates was found for the GLS estimator, but the
ADF estimator had a lower rate of 4 to 12 percent for moderately skewed
models and only 8 percent for the more strongly skewed model. The CVM
estimator was reported for only the most skewed model and was found to
have a zero rejection rate. These results should be compared with an
expected rejection rate of 5 percent at the p = .05 level.

Boomsma (Chaper 9 in this volume; 1983) reports that the ML LRT
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statistic appears to behave appropriately with respect to rejection rates for
models that have a maximum skewness of 1.0. In models with maximum
skewness of 2.0 and of 4.0 the rejection rates ranged from 6 to 19 percent
and from 40 to 54 percent, respectively, compared with an expected
rejection rate of 5 percent for the normal (zero-skewness) model. He
found, however, that a model in which the variables have offsetting
skewness (-1.5 to +1.5) behaves as expected, with 3 to 6 percent of
samples rejecting the model.

The findings of Huba and Harlow (1985) suggest that the ML LRT
statistic for models that employ tetrachoric and polychoric correlations as
their summary measures of the covariation in the data are considerably
larger than the LRT statistics for the estimators based on analyses of
product-moment correlations or for the CVM estimator. The clear
message of these findings is that the ML LRT statistic is not a reliable
guide to model fit when polychoric or tetrachoric correlations are used.
However, the provision in LISREL VII of a WLS-estimator-corrected
polychoric correlation matrix may substantially change this conclusion.

Overall we can conclude that the LRT statistic for the ML and GLS
estimators can probably be trusted in most models with an absolute
skewness of 1.0 or less but that they will generally reject the true model too
frequently when the skewness of any of the variables is greater than this.
There is some evidence that these statistics may be better behaved in
models where the skewness of variables offsets one another; that is, when
there is an equal preponderance of negative and positive skewness among
the variables - a relatively rare occurrence from our experience in real data.
When skewness is moderate, the LRT statistic for the ADF estimator also
tends to reject the model more often than expected, but it performs better
than the ML or GLS estimators in this situation. It has a slightly lower
rejection rate and a small variance about the mean estimate of the statistic
than the other two estimators. For more strongly skewed data the LRT
statistic based on both the ADF and CVM estimators performs well, with
few false rejections of the true model.

Other aspects of robustness

Finally we turn to two other aspects of robustness in the interpretation of
estimates in structural models. In Chapter 11 Saris, Sattora, and den
Ronden show that many of the interpretations of model estimates in
studies reported in the literature may not be robust because the power of
the test on which they were based is very low. In Chapter 10 Gallini and
Casteel investigate the influence of outlier observations on parameter
estimates.
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Saris et al. put forward a method for assessing the power of tests of the
parameters in a model. Their procedure involves testing one model against
the hypothesis contained in a specified alternative model. In particular,
one of the parameters is specified to take a different value in the alternative
model. This procedure thus formalizes the heuristic methods of sensitivity
analysis found in the literature (Land & Felson 1978; Kim 1984). The
most common test is of the null hypothesis that the parameter is zero in
the true population structure. Saris et al. show that the power of model
testing depends not only on sample size but also on characteristics of the
model, in particular the magnitude of the parameters in the true model,
and on the complexity of the model. The power of a test is defined as the
probability that an incorrect model will be rejected, that is, 1 - /?(Type II
error). This assessment of the power of hypothesis tests rests on estimates
of the LRT statistic in alternative models; hence, the preceding discussion
of the robustness of this statistic is of prime importance to their method.
Clearly, the LRT statistic should be estimated by a method that is robust
for the degree of nonnormality present in the data. Once the appropriate
estimator has been selected - if in doubt one should use an ADF or CVM
estimator - the power of a given hypothesis test can be assessed by the
method presented in Chapter 11. Only one parameter at a time can be
tested in this way. Hence, given limited resources it will be advantageous
to select only those parameters of most interest for investigation in this
way. Assessing the power of hypothesis tests is not in itself an issue
of robustness against nonnormal data, but rather one of robustness
in making inferences from samples about the true structure in the
population.

The findings from the study of the influence of outliers on structural
model estimates reported by Gallini and Casteel in Chapter 10 show that
the effects are greatest in small samples. Essentially, these findings parallel
those for regression models, the explanatory power of the model being
attenuated by outliers and standard errors being reduced by the removal
of outlier observations.

Discussion and concluding comments

Structural modeling employs assumptions of a methodological and a
statistical nature in modeling substantive theoretical perspectives of the
real world. In this context the grid of relationships in the observed data is
employed as a template against which to test competing theoretical
models of those relationships in the real world. Thus, the methodological
and statistical assumptions may be viewed as aids in linking the substan-
tive model to the data via a procedure for estimating the relationships in
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the model. The estimates of the relationships in a particular model are
then compared against those found in the observed data. If the model
adequately describes the data (fits the data), it is accepted as one possible
"explanation" of the processes in the population that could have gen-
erated the grid of relationships found in the observed data. The method-
ological and statistical assumptions are brought to bear in both the
parameter estimation stage and in the assessment of the fit of the model.
The assumptions made in a complex modeling method such as structural
equation modeling make relatively strong demands on the functional form
of the model and on the statistical properties of the data used to estimate
the model. Caveat emptor haunts the literature on applied structural
modeling, particularly with respect to the suspected sensitivity of the LRT
statistic to violations of these assumptions. The research on robustness
that is now available provides us with a fairly detailed map of the
sensitivity of various estimators to a range of such violations.

Test statistics and parameter estimates have been found to be robust to
moderate departures from normality in terms of the skewness (<2.0) and
kurtosis (<2.0) of the univariate distributions of variables in a range of
models. The LRT statistic appears to be more sensitive than parameter
estimates and estimated standard errors to departures from normality
when normal theory estimators (ML, GLS) are employed. The bias in the
LRT statistic is serious for models containing variables with more than
moderate skewness (> 1.0) and kurtosis (> 1.0). Recent developments in
ADF and CVM estimation methods, however, have provided estimators
that appear to be robust and that perform well in simulation studies.

The latter estimators are expensive, but the marginal cost of computer
processing time continues to decline by a factor of 2 or more every few
years. The LISREL program is now available for microcomputers, and
within five years we can expect them to be as powerful in this context as
the mainframes of the early eighties. The evaluation of the power of
hypothesis tests is also relatively computationally expensive. However,
both an ADF estimator and tests of power are now routinely available in
the LISREL program (VII and later versions), and ADF estimators are
available in other programs (EQS in BMDP, BENWEE). The CVM esti-
mator is available only in Muthen's program (LISCOMP) and in LISREL
VII. Both EQS and a preprocessor to LISREL (PRELIS) routinely
provide information on the degree of nonnormality of the univariate and
multivariate distributions in the data for a model. PRELIS also makes
some provision for transforming variables where necessary. However, its
major contribution is in making available the weight matrix for comput-
ing asymptotically efficient estimates of model parameters from a range of
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alternative summary measures (covariances, correlations, polychoric cor-
relations) of the covariation in the data. Finally, we stress that the
robustness of explanations of the processes that we wish to model are in
the end dependent on our ability to replicate them, particularly since we
are almost always working with sample data and our objective is to make
inferences to the population. Where we are involved in applied research
that aims to inform policy and practice, this process of replication can be
accomplished by evaluating and testing our own findings with those
available from similar studies elsewhere. The pursuit of intellectual theory,
however, may proceed on a less time-critical and practice-related path;
thus, true replication may be more feasible in that context. If theory is to
develop in a linear way, the process of synthesizing and testing models of
extant knowledge before embarking on the exploratory pursuit of new
explanations is essential to any social or behavioral science methodology.

Notes

1. The normal distribution has kurtosis = 0. Distributions that are more peaked
(leptokurtosic) have kurtosis values of greater than 0, and those that are flatter
(platokurtosic) have kurtosis values of less than 0.

2. See Fox (1984, p. 252) for a discussion of full-information and limited-
information estimators.

3. In structural equation modeling, the fit of a model is assessed by its capacity to
reproduce the pattern of variances and covariances among the observed
models. In regression models these variances and covariances are reproduced
exactly because of the just-identified (i.e., saturated) form of the relationships
among the observed variables. Because a given structural model imposes
constraints on the relationships among the observed variables, based on the
specification of the substantive model, it may reproduce the variances and
covariances among the observed variables more or less well, depending on
whether it is a good or poor explanation of the relationships among the
observed variables.

4. Chapters 3 and 6 in Chambers et al. (1983) provide a sound discussion of the
interpretation of Q-Q plots.

5. Research reported by Tanaka and Huba (1985) suggests promising lines of
inquiry that may yield more information on the behavior of such measures of
model fit.

6. This statistic is usually, inappropriately, referred to as the chi-square statistic.
Strictly it should be referred to as a likelihood ratio test statistic that has a chi-
square distribution, rather than as the chi-square statistic.

7. Boomsma (1983) presents information on the range of skewness typically found
in social and behavioral science data.
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Appendix

This appendix contains information on the input for the LISREL program for
selected models from Chapters 3 to 8. We assume a reasonable familiarity with the
LISREL manual for version V or later. A basic grounding in the relationship
between the path diagrams, model equations, matrix formulation of the model,
and the LISREL program input is provided in W. E. Saris and L. H. Stronkhorst,
Introduction to Causal Modeling in Non Experimental Research (Amsterdam:
Sociometric Research Foundation 1984). Other introductions are referenced in the
first and last chapters of this volume. The formulations of the models provided
below are for the LISREL variation of the statistical model underlying structural
modeling, and formulations in terms of other structural modeling programs such
as EQS and COS AN will vary somewhat, since their parametrization of the model
is different from that employed by LISREL.

For standardization purposes we employ the default representations of LISREL
matrices that were established in version V of the LISREL program. These
defaults are generally upwardly compatible with later versions of the program.

We indicate below the default values of the matrices. Items that may be omitted
from the program input are determined by two criteria: Either they are defaults
(indicated in bold), or they are not required to describe the parametrization of the
model under study. The notational brackets « )) indicate these items. Any or all
of the items within these brackets may be omitted without causing a program
error; for example, any single item or the whole group of items denoted as «LX =
FU, FI LY = FU, FI PH = SY, FR» may be omitted. Single < > brackets
deonote items that must be included but from which one of a set of parameters
must be chosen, for example, (KM or CM or MM or AM).

Program input

Title line: This line may contain any title statement that is less than 80 columns
long1

DAta2 «NGroups = #» NInput = # «NObservations = #» <MA = KM or
CM or MM or AM)

(RAwdata «XMissing = % MinValues = % UNit = % REwind FOrmat PP PT»
or the following line

(KM or CM or MM) <SY or FU) UN = % REwind FOrmat)
«LAbels FOrmat REwind UNit = #»

280
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[indicate format for reading variable labels on this line, if reading in free format
enclose labels between quotes]

[list of variable labels]
«SElection
[list variables in selection order, end list with a slash if not all variables selected))
MOdel «<NXvars = # or NYvars = #> <FIxed or <NKsi = % and/or NEta

« LX = FU, FI LY = FU, FI BE = ZE, FI GA = FU, FR
PH = SY, FR PS = SY, FR TD = DI, FR TE = DI, F R »

«Fixed list of parameters to be fixed to a particular value, zero or otherwise,
among matrices specified with a FRee parameter on MO card.

FRee list of parameters to be freed in the matrices that are specified with FI
parameter on the MO card.

EQual list of parameters to be constrained to be equal, within a group, or across
multiple groups»

VA x.x value to which Fixed parameter is to be constrained.
ST x.x starting value for a FRee or Fixed parameter.
OUtput <ML or IV or UL or TS or GL> « P T SE TV PC RS EF VA MR MI FS

FD SS TO AM MX = # »

DAta description:
NGroups
NInput
NObservations
MA

RAwdata input:
XMissing
MinValues (MV)

UNit
REwind

FOrmat

Key to mnemonic abbreviations

Number of groups in the model (default = 1 )
Number of variables to be read in the input data
Number of cases in the input data
Matrix of moments (sufficient statistics) to be analyzed
May be one of: KM correlation matrix

CM covariance matrix
MM moment matrix of cross products

(about origin)
AM moment matrix augmented with a

column of unit values (for estimation
of means and intercept values)

missing value indicator (must be the same for all variables)
minimum number of values for a variable to be treated as
continuous
unit (channel) from which data or other input file is to be read
rewind UNit to restart next read operation for this UNit at
beginning of file
indicates that format follows on the next line, otherwise it is
assumed to be a default (free) format, or the format appears as
the first line of the file read from UNit = #
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PP print information on polychoric correlations
PT print technical information on the estimation of polychoric correlations

Matrix data input:
KM read a correlation matrix
CM read a covariance matrix
MM read a matrix of moments about the origin
SY matrix to be read is symmetric; only diagonal and subdiagonal elements in

data
FU matrix to be read is full; elements both above and below diagonal, plus

diagonal, in data

SElection of variables from those input:
SE select variables by order specified (end with a slash if not all variables

selected)

MOdel card and model specification:
NX number of X variables in the model
NY number of Y variables in the model
Fixed ^variables are to be treated as fixed (i.e., they represent only those values

found in the data)
NKsi number of endogenous (xi, %) constructs in the model
NEta number of exogenous (eta, r|) constructs in the model
LX the lambda-A' (kx) matrix of loadings for the endogenous constructs
LY the lambda- Y (kY) matrix of loadings for the exogenous constructs
BE the beta (B) matrix of directional relationships between endogenous

constructs.
GA the gamma (F) matrix of directional (regression or causal) relationships

between exogenous and endogenous constructs
PH the phi (O) matrix of covariances between the endogenous constructs
PS the psi (H*) matrix of covariances and variances between residuals (the

latter representing the unexplained variance) among the endogenous
constructs in the model

TD the theta delta (08) matrix of error variances and covariances among the X
variables.

TE the theta epsilon (0E) matrix of error variances and covariances among the
Y variables

FU a matrix with elements above, along, and below the main diagonal
SY a matrix with elements symetric about the main diagonal
DI denotes that the matrix consists only of a main diagonal, all other

elements being zero
ID the identity matrix, all elements in the diagonal are unity (Is) and zero

elsewhere
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FI denotes that the parameters represented by the rows and columns of a
matrix are specified to be constrained to a particular value, usually zero

FR denotes that the parameters represented by the rows and columns of the
matrix are to be estimated by the model

EQ denotes elements of matrices that are to be constrained to be equal to
each other

OUtput listing from the run:
OUtput denotes the end of the model specification and specifies through a series

of optional parameters which statistics are to be output, the estimation
method to be used, and the format of the output3

ML specifies maximum likelihood estimation (the default)
IV specifies instrumental variables estimation
UL specifies unweighted least squares (otherwise known in most situations

as ordinary least squares) estimation
TS specifies two-stage least squares estimation
GL specifies generalized least squares estimation

Notes

1. See LISREL manual for displaying multiple-line titles and for continuation of commands
across lines.

2. Only the upper-case letters of each mnemonic are recognized by the program.
3. See the LISREL manual for the specification of the statistics available and their output

format.

Model specifications and program input for selected models from
Chapters 3-8

Here we present details of the specification of selected models from four chapters
that readers may use to check their understanding of the steps in the formulation
and specification of models in the LISREL format. From these chapters we have
chosen models that represent different aspects of modeling in the LISREL
framework. Those chosen from Chapters 3 and 4 show the application of LISREL
to factor and measurement models across multiple groups, and the model from
Chapter 8 is an application of a simple structural model for panel data. The
models chosen from Chapter 5 demonstrate the application of LISREL to the
testing of hypotheses about the hierarchical structure of a particular set of data.
Because this is a complex task based on a large number of variables, the reader is
referred to the details of the specification of the models presented in the text. The
LISREL input is presented here for the full sequence of models tested in the
chapter. We present the full specification for the complete set of models, the data,
and the LISREL input for each, only for Chapter 7. This enables the reader to
follow through and estimate the models for the complete analysis as it is presented
in that chapter.
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Model 3.7 (Figure A.I)

Specification of the model

6, • GHQ-ANX(*,)

MHQ-ANX(*2)

GHQ-DEP(*3)

64 • MHQ-DEP(A-4)

GHQ-SOM

MHQ-SOM(*6)

GHQ-SD1 (X7)

GHQ-SD2(*8)

Equations relating the observed measures to the latent constructs:

X2 = K2l(, + 62 A-6 = A63f3 + 66

Figure A.I. (Same as Figure 3.1.) Measurement model for symptom differentia-
tion analysis, Model 3.7.
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Equations for the model

x2 =

Kill

x8 =

Matrix format of the equations

xi

x2

xs

X = Av

LISREL matrices for the model

\x — LX =

O =PH =

LX 1 1
LX2 1

LX3 2
LX4 2

LX5 3
LX6 3

LX7 4
LX8 4

TD 1 1

S3

S4

S5

S6

s7
s«

TD2 2
TD3 3

TD 4 2 TD 4 4
TD5 5

TD 6 2 TD 6 4 TD 6 6

61
§2
83
84
85
86

87

88

TD 7 7 TD 8 8

PH 1 1
PH 2 1 PH 2 2
PH 3 1 PH 3 2 PH 3 3
PH 4 1 PH 4 2 PH 4 3 PH 4 4
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Data

Correlation matrix for field-independent group

1 .0000000
0.3407340
0.6505024
0.2543138
0.4803010
0.1549900
0.6195529
0.2676263
0.3772106
0.2983751
0.4324335
0.1723283
0.5748363
0.1784837
0. 4879859
0.0668136
0.3407340
1 .0000000
0.3001610
0.3384548
0.2947626
0.8566160

0.6505024
0.3001510
1 .0000000
0. 1934037
0.4855984
0. 1788728
0.7108634
0.2171977
0. 3259124
0.2314103
0.5590916
0.0931756
0.6 5 9400 3
0. 173^362
0.4973773
0.1195236
0.2343133
0.8834548
0.1934037
1.0000000
0.2173243
0 . 5 2 4 2 o 0 0

0.4303010
0.2947626
0.42559S4
0.2173248
1.0000000
0.0864 83 4
0.4445997
0.2523852
0.2727563
0.293457S
0.3213426
0.2 093713
0.4294155
0.1356230
0.3017452

-0.01040 5 2
0.1549900
0.S566160
0.1738723
0.5242600
0.0864834
1.0000000

0.6195529

0.7108634

0.H445997

1.0000000

0.3127527

0.5155949

0.O576406

0.5238570

0.2676268

0.2171977

0.2523352

0.3772106

0.3259124

0.2727568

0.3127527

1.0000000

0.4830425

0.2432570

0.1467286

0.2983751

0.2314103

0.2934578

0.4324335

0.5590916

0.3213426

0.5155949

0.4330425

1.0000000

0.49Q6247

0.3234648

0.1723288

0.0981756

0.2093713

0.5743863

0.6594003

0.4294155

0.6576406

0.2482570

0.4906247

1.0000000

0.5630236

0.1784837

0.1739362

0.4379359

0.4978773

0.3017452

0.5288570

0.1467285

0.3234643

0.5630236

1.0000000

0.0668136

0.11952?6

0.1356230-0.0104052

Correlation matrix for field-dependent group

1.0000000
0.5123923
0.7604058
0.5147620
0.64 71604
0.^727217
0.6396092
0.4634032
0.6461036
0.^625410
0.5386303
0.4720327
0.5082239
0.3366259
0.4964679
0.2395594
0.5123923
1 .0000000
0.5042514
0. 9179433
0.4001272
0.8646796

0.7604053
0.5042514
1 .00 30000
0. 51 77^31
0.6324543
0.4291029
0.7565407
0.4534156
0.5643*91
0.4364939
0. 641 U 4 0
0.4333905
0.6037713
0.2941223
0.5901142
0.2304612
0.5147620
0.9179433
0.5177431
1.0000000
0.3373404
0.5944605

0.O471604
0.4001272
0.6324643
0.3873404
1.0000000
0.4148707
0.5432632
0.3533641
0.4658157
0.3843683
0.5101629
0.3335014
0.3543079
0.3099194
0.4004101
0.2318121
0.^727217
0.S646796
0.4291029
0.5944605
•3. «• U S 70 7
1.0000000

0.

0.

0.

1.

0.

0.

0.

0.

0.

0.

0.

6396092

7555407

5432632

0000000

4161682

5947570

5 8 813 91

4637943

463^032

4534156

353S641

0.6461026

0.5643491

0.4653157

0.4161632

1.0000000

0.5507690

0.4418440

0.2964725

0.4625410

0.4364 98 9

0.3343633

0.5336803

0.6411440

0.5101629

0.5947570

0.5507690

1.0000000

0.3120730

0.3142238

0.4720827

0.4333903

0.3335014

0.5032239

0.6037713

0.3543079

0.5831391

0.4418440

0.3120730

1.0000000

0.5546625

0.3366259

0.29^1223

0.3099194

0.

0.

0.

0.

0.

0.

0.

1 .

0.

0.

0.

^964679

5901142

4004101

4687943

2964725

3142236

5546625

0000000

2395594

2 3 04612

2318121

Labels file

GQA
Y Y Y Y

MHQA

l l l l
GQO
G Q Y 1

MHQO
G Q Y 2

MQS

Model 3.1

LISREL input

LISREL 6 (LISTING = OUT 1, WORKSPACE = 500)
SYNDROME DIFFERENTIATION ANALYSIS - FI GROUP
DA NG = 2 NI = 11 NO = 120 MA = KM
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LA UN = 8 RE
KM FU UN = 11 FO
(8F10.7)
SE
1 2 3 4 5 6 10 11/
MO NX = 8 NK = 4 PH = SY, FR TD = SY, FI
FI PH (1,1) PH (2,2) PH (3,3) PH (4,4)
VA
FR
FR
FR
FR
FR
FR
FR
OU

1.0
LX
LX
LX
TD
TD
TD
TD
TV

PH
(1,1)
(7,4)
(5,3)

0,1)
(5,5)
(7,7)
(8,8)
MI

SYNDROME
DA
LA
KM

NO
UN
FU

(8F10.7)
SE
1 2
MO
FI
VA

3
PH

(1,1) PH (2,2) PH
LX (2,1) LX (3,2)
LX (8,4)
LX (6,3)
TD (2,2) TD (3,3)
TD (6,6)

RS
DIFFERENTIATION

= 98
= 8

UN = 12 FO

4 5 6 10 11/
= SP LX = SP TD =

PH (1,1)
1.0 PH

FI PH (4,4)
VA
OU

1.0
SE

Model 3.

PH
MI

7

PH (2,2) PH (3,3)
(1,1) PH (2,2) PH

(4,4)
RS

(3,3) PH (4,4)
LX (4,2)

TD (4,4)

ANALYSIS - FD GROUP

SP

(3,3)

LISREL 6 (LISTING = OUT 7, WORKSPACE = 500)
SYNDROME DIFFERENTIATION ANALYSIS - FI GROUP
DA NG = 2 NI = 11 NO = 120 MA = KM
LA UN = 8 RE
KM FU UN = 11 FO
(8F10.7)
SE
1 2 3 4 5 6 10 11/
MO NX = 8 NK = 4 PH = SY, FR TD = SY, FI
FI PH (1,1) PH (2,2) PH (3,3) PH (4,4)
VA 1.0 PH (1,1) PH (2,2) PH (3,3) PH (4,4)
FR LX (1,1) LX (2,1) LX (3,2) LX (4,2)
FR LX (7,4) LX (8,4)
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FR
EQ
EQ
EQ
EQ
FR
FR
FR
FR
EQ
EQ
EQ
EQ
FR
OU

LX
LX
LX
LX
LX
TD
TD
TD
TD
TD
TD
TD
TD
TD
TV

(5,
(1.
(4;

(5.
(7,
(1
(5
(7.
(8
(1
(3
(5-
(7.
(4

,3)
,0
.2)
.3)
,4)
,1)
,5)
,7)
,8)
,D
,3)
,5)
,7)
,2)

MI
SYNDROME I
DA
LA
KM

NO
UN
FU

(8F10.7)
SE
1 2
MO
FI
VA

3
PH

PH !
1.0

=
=

1

4
=

98
8

LJN

5
SF

1)
PH

FI PH (4,4)
VA
OU

1.0
SE

PH
MI

LX
LX
LX
LX
LX
TD
TD

TD
TD
TD
TD
TD

RS

(6,
(2,
(3,
(6,
(8,
(2
(6

(2
(4
(6
(8
(6

:3)
1)

• 2 )

.3)

.4)
,2) TD (3,3) TD (4,4)
,6)

,2)
,4)
,6)
,8)
,2) TD (6,4)

DIFFERENTIATION ANALYSIS -

= 12

6
» L>

PH

(M)

(4,4)
RS

10

(2,:

FO

11/
IN TD = IN

I) PH (3,3)
PH (2,2) PH (3,3)

Model 4.5 (Figure A.2)

Specification of the model

FD GROUP

Equations for the model

x1 = A,!!^ + 5i

X4 — ^42 S2 ~^~ " 4

•^5 = ^ 5 3 ^ 3 + S 5

•^6 ~ A-63S3 "̂ ~ ^6
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Figure A.2. (Same as Figure 4.1.) Measurement model of report of parental
socioeconomic status. Variables are described in Table 4.1

Matrix format of the equations

X = Av

I
5 , "

54
55

LISREL matrices for the model

Av = LX = LX 1 1
LX 2 1

LX 3 2
LX 4 2

LX 5 3
LX 6 3
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0 , = TD =

<D = PH =

TD 1 1

Appendix

TD 2 2
TD 3 3

TD 4 4
TD 5 5

TD 6 4 TD 6 6

PH 1 1
PH 2 1 PH 2 2
PH 3 1 PH 3 2 PH 3 3

LISREL input

Seniors' reports of parental status: whites (Model 4.5)

DA N(,=2 HI=6 N0=1502 MM = CM
LA
•PFASEP 'FASEI1 •PFAF.O1
KM SY
1*0000000
0./101643 1.0000000
0*5801628 0.617470a 1.U000000
0.5717937 0.6137355 0.^085463 1.0000000
0*4111465 0.4401737 0.6042968 0.5861159 1.0000000
0*4152458 0.4520826 0*5918648 u.5990632 0.6738597 1.0000000

SD
22.4990 22.0093 T ?.2067 2.2632 1.7599 1.8563

MO NX=6 NK=3 LX=FU»F1 TO=SY*Fl PH=SY*FR

•TRUEFAOC1 •TRUEFAED1 »TRULMAED»
Eij UX(5»3) LX<6*3)
FREE TO(1*D TD(3*3) TD(4*4) T0(5»5) T0(6,6)
IP- TOil»l) TD(2*2)

LX(2*1)
T LX(4.2)
1.0 LX<1*1> LX(3*2) LX(S*3)
" TV RS FD SS TO

REPORTS OF PARENTAL STATUS: SLACKS (MODEL 5)

•H>AEUI 'FAFD 1 'PMAtD1

HO
ST
OU

Q 099
LA
•PfASEl1 •FASEI1
KM SY
1.0000000
0*577b4b6 1.0000000
0.6693734 0.6250294
0 5 5 9 9 0 057642
0.693734 0.6250294 1.U00OO00
0*5590930 0.5760426 0.^302376
0*4396363 0.4342983 0.63*6900
0*^511116 0.4052264 0*i>933lPl
SD

22.5915 24.3283 2.141$
»40 NA = 6 NK = 3 LX = SS TO = SS PH=IN

•TRUEFAOC1 'TRUEFAED1 'TRUEMAEO'
fRtE TD(6*4)
EG LA ( 1 * 1 ) LX(2*1)
EO LX(3«2) LX<4»2)
EQ LX(5*3) LX(6*3)
FREE TD<2*?> TU(4*4)
£(J T0(l»3*3) TD(3*3)
Eu 1U <1•1•1) TD(1*1)
EQ^iD(l»5*5) Tl)(5*5)
FREt T0(6*6)
OU S£ TV RS FD SS TO

•0000000
,5595682
,6154144

2.1978

1,0000000
0.8277926 1.0000000

1.8309 2.0368
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Chapter 5 model LISREL inputs

Full details of the model specifications, plus the figures, are available in the text of
Chapter 5 and are not repeated here. We leave it as an exercise for the reader to
formulate the specification of the models in equation and matrix notation. The
LISREL inputs for the full sequence of tests presented in Tables 5.3 and 5.8 are
presented below.

Data for Models 5.1.1-5.4.2 reported in Table 5.3

'KN' 'CO' 'AP' 'AN' 'SY' l E V
1 .514 1 .496. .712 1 .358 .648 .632 1 .412 .415 .450
.371 1 .386 .355 .348. .294 .426 1

LISREL input for models reported in Table 5.3

Kropp and Stoker data for atomic structure: Model 5.1.1
DA NI = 6 MA = KM NO = 5057
LA UN = 8 RE
KM UN = 8 RE
MO NY = 6 NE = 1 LY = FU, FR TE = DI, FR
FI TE (1,1)
FI LY (1,1)
ST 1.0 LY (1,1)
OU

Kropp and Stoker data for atomic structure: Model 5.2.1
DA NI = 6 MA = KM NO = 5057
LA UN = 8 RE
KM UN = 8 RE
MO NY = 6 NE = 6 LY = ID BE = FU, FI TE = DI, FR
PS = DI, FR
FR BE (2,1) BE (3,2) BE (4,3) BE (5,4) BE (6,5)
FI TE (1) TE (6)
OU SE RS MI FD SS

Kropp and Stoker data for atomic structure: Model 5.2.2
DA NI = 6 MA = KM NO = 5057
LA UN = 8 RE
KM UN = 8 RE
MO NY = 6 NE = 6 LY = ID BE = FU, FI TE = DI, FR
PS = DI, FR
FR BE (2,1) BE (3,2) BE (4,3) BE (5,4) BE (6,5)
FR BE (5,1)
FI TE (1) TE (6)
OU SE RS MI FD SS
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Kropp and Stoker data for atomic structure: Model 5.3.1
DA NI = 6 MA = KM NO = 5057
LA UN = 8 RE
KM UN = 8 RE
SE
2,3,4,5,6/
MO NY = 5 NE = 1 LY = FU, FR TE = DI, FR
FI TE (1,1)
FI LY (1,1)
ST 1.0 LY (1,1)
OU

Kropp and Stoker data for atomic structure: Model 5.4.1
DA NI = 6 MA = KM NO = 5057
LA UN = 8 RE
KM UN = 8 RE
SE
2,3,4,5,6/
MO NY = 5 NE = 5 LY = ID BE = FU, FI TE = DI, FR
PS = DI, FR
FR BE (2,1) BE (3,2) BE (4,3) BE (5,4)
FI TE (1) TE (5)
OU SE RS MI FD SS

Kropp and Stoker data for atomic structure: Model 5.4.2
DA NI = 6 MA = KM NO = 5057
LA UN = 8 RE
KM UN = 8 RE
SE
2,3,4,5,6/
MO NY = 5 NE = 5 LY = ID BE = FU, FI TE = DI, FR
PS = DI, FR
FR BE (2,1) BE (3,2) BE (4,3) BE (5,4)
FI TE (1) TE (5) PS(3)
OU SE RS MI FD SS

Data for Models 5.5.1-5.7.1 reported in Table 5.8

'AKN' A CO1 AAP' A AN' A SY' 'AEV G KN' G CO' GAP' G AN' G SY'

GEV LKN' LCO' LAP' LAN' L SY' 'LEV 'S KN' 'SCO' SAP' 'SAN'
'SSY' 'SEV
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450
289
474
364
215
409
445
497
410
456
372
481
380
340
595
490
410
525
573
339
509
459
452
358
406

.514

.371

.331

.490

.294

.298

.382

.459

.586

.362

.463

.498

.483

.360

.379

.391

.537

.467

.444

.589

.283

.446

.342

.549

.378

.413

1
1
.317
.537
.227
.372
.394
.333
.583
.491
.479
.675
.365
.328
.369
.386
.557

.598

.404

.558

.350

.327

.377

.375

.377

.417

.496

.386
1
.432
.351
.411
.295
.284
.461
.574
.412
.684
.392
.390
.376
.235
.488
.588
.347
.510
.516
.337
.442
.385
.340
.449

.712

.355

.475

.396

.608

.331

.277

.364

.356

.602

.428
1
.420
.420
.453
.193
.417
.584
.495
.384
.525

.680

.418

.509

.400

.397

1
.348

.516

.323

.614
1
1
1
.389
.472
.359
.469
.486
.334
1.572
.384
.342

.522

.584

.508

.419

.619

.314

.497

.426

.353

.358

.294

.540

.513
1
.389
.531
.490
.577
.370
.436
.458
.551
.356
.353
.497
.479
.393
.587
.753
.283
1
.334
.425
.292
.472

.648

.426

.462

.698

.284

.368

.381

.493
1
.378
.533

.460

.562

.337

.355

.417

.605

.512

.459
1
.319
.369
.380
1
.263
.455

.632
1
.400
1
.301
.372
.377
.501
.501
.564
.546
.401
.558
.249
.261
.417
.603
1
.338
.348
.353
.401
.353
.358
.411
.397

1
.582

.311

.346

.324

.305

.285

.416

.481

.719

.430

.534
1
.234
.327

.385

.477

.494

.401

.475

.530

.419

.439

.383

.333

.409

.412

.381

.481

.404

.276

.373

.326

.395

.483
1
.340
.400
.379
.450
.329
.414
.338
.522
.472
.488
.504
.368
.436
.406

1

.415

.400
1
.436
.361
.467
.312
.336
.403

.448

.340

.437

.603

LISREL input for models reported in Table 5.8

Kropp and Stoker data, all tests: Model 5.5.1

DA NI=24 MA=KM NO=3850

LA UN-8 RE

KM-UN=8 RE

MO NY=24 NE=6 BE=FU,FI TE=DI,FI PS=DI,FR

FRBE(2,1) BE (3,2) BE(4,3) BE(5,4) BE(6,5)

MA LY
*

.741 6*0 .668 6*0 .670 6*0 .599 6*0 .678 6*0 .653

.811 6*0 .770 6*0 .785 6*0 .598 6*0 .502 6*0 .702

.718 6*0 .753 6*0 .758 6*0 .706 6*0 .792 6*0 .649

.734 6*0 .793 6*0 .766 6*0 .718 6*0 .685 6*0 .591

MA TE

*

.451 .553 .551 .641 .540 .574 .343 .407 .384 .642

.748 .507 .485 .432 .426 .501 .372 .579 .461 .372

.413 .485 .531 .651

OU SE RS MI FD SS
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Kropp and Stoker data, all tests: Model 5.5.2

DA NI*24 MA-KM NO=3850

LA UN«8 RE

KM UN-8 RE
MO NY=24 NE-6 BE«FU,FI TE=SY PS«DI,FR

FR BE(2,1) BE(3,2) BE(4,3) BE(5,4) BE(6,5)

PA TE

*

1

1 1

1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

o o o o o o o o o o o o o o o o o o i i
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

MA LY
*

.741 6*0 .668 6*0 .670 6*0 .599 6*0 .678 6*0 .653

.811 6*0 .770 6*0 .785 6*0 .598 6*0 .502 6*0 .702

.718 6*0 .753 6*0 .758 6*0 .706 6*0 .792 6*0 .649

.734 6*0 .793 6*0 .766 6*0 .718 6*0 .685 6*0 .591

MA IE

*

.451

0 .553

0 0 .551
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0 0 0 .641

0 0 0 0 .540

0 0 0 0 0 .574

0 0 0 0 0 0 .34 3

0 0 0 0 0 0 0 .407

0 0 0 0 0 0 0 0 .384

0 0 0 0 0 0 0 0 0 .642

0 0 0 0 0 0 0 0 0 0 .748

0 0 0 0 0 0 0 0 0 0 0 .507

0 0 0 0 0 0 0 0 0 0 0 0 .485

0 0 0 0 0 0 0 0 0 0 0 0 0 .432

0 0 0 0 0 0 0 0 0 0 0 0 0 0 .426

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .501

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .372

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .579

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .461

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .372

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .413

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .485

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .531

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .651

OU SE RS MI FD SS

Kropp and Stoker data, all tests: Model 5.6.1

DA NI*24 MA=KM NO=3850

LA UN-8 RE

KM UN=8 RE

SE

2,3,4,5,6,8,9,10,11,12,14,15,16,17,18,20,21,22,23,24/

MO NY=20 NE*5 BE=FU,FI TE»DI,FI PS«DI,FR

FR BE(2,1) BE(3,2) BE(4,3) BE(5,4)

MA LY
*

.668 5*0 .670 5*0 .599 5*0 .678 5*0 .653

.770 5*0 .785 5*0 .598 5*0 .502 5*0 .702

.753 5*0 .758 5*0 .706 5*0 .792 5*0 .649

.793 5*0 .766 5*0 .718 5*0 .685 5*0 .591

MA TE
*

.553 .551 .641 .540 .574 .407 .384 .642

.748 .507 .432 .426 .501 .372 .579 .372

.413 .485 .531 .651

OU SE RS MI FD SS
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Kropp and Stoker data, all tests: Model 5.6.2

DA NI-24 MA-KM NO*3850

SE

2,3,4,5,6,8,9,10,11,12,14,15,16,17,18,20,21,22,23,24/

MO NY-20 NE=5 BE=FU,FI TE=SY PS=DI,FR

FR BE(2,1) BE(3,2) BE(4,3) BE(5,4)

PA TE
*

1

1 1

1 1 1

1 1 1 1

1 1 1 1 1

0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0 0 0 1 1 1

0 0 0 0 0 1 1 1 1

0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

MA LY

*

.668 5*0 .670 5*0 .599 5*0 .678 5*0 .653

.770 5*0 .785 5*0 .598 5*0 .502 5*0 .702

.753 5*0 .758 5*0 .706 5*0 .792 5*0 .649

.793 5*0 .*766 5*0 .718 5*0 .685 5*0 .591

MA TE
*

.553

0 .551

0 0 .641

0 0 0 .540

0 0 0 0 .574

0 0 0 0 0 .407

0 0 0 0 0 0 .384

0 0 0 0 0 0 0 .642
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0 0 0 0 0 0 0 0 .748

0 0 0 0 0 0 0 0 0 .507

0 0 0 0 0 0 0 0 0 0 .432

0 0 0 0 0 0 0 0 0 0 0 .426

0 0 0 0 0 0 0 0 0 0 0 0 .501

0 0 0 0 0 0 0 0 0 0 0 0 0 .372

0 0 0 0 0 0 0 0 0 0 0 0 0 0 .579

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .372

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .413

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .485

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .531

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .651

OU SE RS MI FD SS

Kropp and Stoker data, all tests: Model 5.6.3

DA NI=24 MA-KM NO-3850

LA UN=8

KM UN=8

SE

2,3,4,5,6,8,9,10,11,12,14,15,16,17,18,20,21,22,23,24/

MO NY=20 NE*9 BE«FU,FI TE=DI,FR PS=DI,FI

FR BE(2,1) BE(3,2) BE(4,3) BE(5,4)

FR PS(1)-PS(5)

PA LY
*

0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0 0

0 0" 1 0 0 0 1 0 0

0 0 0 1 0 0 1 0 0

0 0 0 0 1 0 1 0 0

1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1 0

0 0 1 0 0 0 0 1 0

0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 1 0

1 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 1
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0 0 0 1 0 0 0 0 1

0 0 0 0 1 0 0 0 1

ST 1.0 LY(1,1) LY(2,2) LY(3,3) LY(4f4) LY(5f5)

ST 1.0 PS(6)-PS(9)
0U SE RS MI FD SS

Model 7.1 (Figure A.3)

Specification of the model

EDEQYR

EDAT64

XEDEQYR

SSBED

XOCSXCR

XOCSX70
V9

Figure A.3. (Same as Figure 7.1.) Structural equation model for testing homo-
geneity within and between siblings in regressions of occupational status on
educational attainment. The model includes all covariances among r^ . . . rj9, but
only those subject to constraints are shown and labeled.
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Equations for Model 7.1.1

3.35r|2
y, = 4.39n,
Y2 =
Y3 = 5.17H3

4.94TU

Y5 =

Y8 =

Matrix format of the equations for the model

• « /

•y/-

•»/•

• ! / •

*5

Y6
Y-i

Y8
Y9

=

4.39
0
0
0
0
0
0
0
0

0
3.35
0
0
0
0
0
0
0

0
0
5.17
0
0
0
0
0
0

0
0
0

4.94
0
0
0
0
0

0
0
0
0
1.0
0
0
0
0

0
0
0
0
0
1.0
0
0
0

0
0
0
0
0
0
1.0
0
0

0
0
0
0
0
0
0
1.0
0

0
0
0
0
0
0
0
0
1.0

Y =

+ e,
+ e2

+ S3

r\9

e8

e9

Til

LISREL matrices for the model

Ay = LY = 4.39 0 0
0 3.35 0
0 0 5.17
0 0 0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0 0
0 0
0 0
4.94 0
0 1.0
0
0
0
0

0
0
0
0
0

0 1.0
0
0
0

0
0
0
0
0
0

0 1.0 0
0 0 1.0
0 0

0
0
0
0
0
0
0
0

0 1.0

= PS = PS
PS
PS
PS
PS
PS
PS
PS
PS

1 1
2 1
3 1
4 1
5 1
5 1
7 1
8 1
9 1

PS 2 2
PS 3 2
PS 4 2
PS 5 1
PS
PS

5 1
7 2

PS 8 2
PS 9 2

PS 3 3
PS 4 3
PS 5 3
PS 6 3
PS 7 3
PS 8 3
PS 9 3

PS 4 4
PS 5 4
PS 6 4
PS 7 4
PS 8 4
PS 9 4

PS 5 5
PS 6 5
PS
PS 8
PS 9

7 5
5
5

PS 6 6
PS 7 6
PS 8 6
PS 9 6

PS 7 7
PS 8 7
PS 9 7

PS 8 8
PS 9 8 PS 9 9
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LISREL input for Models 7.1.1-7.1 .4

Regressions with equal reduced form slopes

DA NI«9 NOBS-518 MA-CM
LA

'XEDEQYR1 'SSBED* 'EDEQYR' 'EDAT64'
'OCSXCR' 'OCSX70'
CM
(4D20.13)
0.5 167008954243D+01
0.1949806949807D+01
0.3471849025041D+01
<7.il6621OS42348D+Ol
0.3302070018432D+01
0.6274622362490D+01

1194227627373D+01
1391681952781D+01
1651115593313D+01
1638921681630D+01
1941411027899D+01 0.1848463228034D
5787209952S62D+01

•OCSSIB' 'XOCSX70'

0
0
0
0
0
0

SE
3 4 1 2 8 9 5 6 7
MO N X - 0 N Y - 9 N E - 9 N K - 0
S T 1 . 0 L Y ( 5 , 5 ) L Y ( 6 , 6 )
S T 4 . 3 8 7 0 0 L Y ( 1 , 1 )
ST 3 . 3 4 5 9 1 L Y ( 2 , 2 )
S T 5 . 1 6 7 0 1 L Y ( 3 , 3 )
ST 4 . 9 3 8 0 7 L Y ( 4 , 4 )

. 5 P S ( l

0.4 6 7978 31265 92D+01
0 . 4 3869 96 5 57 209D+01
0.334 5914 5 7995 7D+01

11398750752S2D+01
1140821946633D+01
362174478033SD+01
5336248715763D+01
1364161548669D+01
1620192034477D+01
1S77077688878D+01

0.4 9 380708 4 2 326D+01
0. 181S46343248SD+01
0.3627641502926D+01
0.6582034415362D+01
0.1122999127123D+01
0. 32427350S2857D+01
0.4963113333139D+01
0.28 2 2630 6 47 34 6D+01
0.1532529966490D+01
0.2975257164254D+01
0.1678794058818D+01

BE-ZE TE=ZE PS-SY/FR LY-FU/FI TD-ZE
LY(7,7) LY(8/8) LY(9/9)

•1922921816539D+01
.1827S91614826D+01
.3238972071952D+01
.3S69933505328D+01
.5235668842959D+01
.1210572885314D+01
6446553035743D+01
•2344899377790D+01
.5951538627534D+01
2472673949769D+01
4802423584718D+01

ST 0
ST 2.0 PS<1
[E^ PS(5/1)
[EQ PS(7/3)
[EQ PS(6/2)

1) PS(2,2)" PS(3,3) PS(4,4) PS(5,5) PS(6,6) PS(7,7) PS(8,8) PS(9,
PS(6/1) PS(5/2) PS(6/2)]/ADD FOR MODELS 1.1/ 1.3, AND 1.4
PS(8,3) PS(9/3) PS(7,4) PS(8/4) PS(9,4)]/ADD FOR MODELS 1.2-1.4
PS(7/3)]/ADD FOR MODEL 1.4

OU SS ND-5 TO SE

Model 7.2 (Figure A.4)

Specification of the model

Equations for Model 7.2.1

Measurement model

Y2 = n2 +

£ +

Structural model



Appendix 301

1.0

7 u

(primary respondent)

; .

1.0
722

(family)

r>

Educational
attainment

733

(brother)

°
Occupational

status

Figure A.4. (Same as Figure 7.2.) Structural equation model of sibling resem-
blance in educational attainment and occupational status.

Matrix format of the equations for the model

1.0 1.0 0
0 1.0 1.0

Av

1.0 1.0 0
0 1.0 1.0

AY

Yn 0 0
0 y22 0
0 0 Y33

$ + 5
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LISREL matrices for the model

A> = LY = fl.O 1.0 0
0 1.0 1.0

A* = LX =

r = GA =

1.0 1.0 0
0 1.0 1.0

GA 1 1 0 0
0 GA 2 2 0

GA 3 30 0

O = PH = [PH 1 1 PH 2 2 PH 3 3]

Y = PS = [PS 1 1 PS 2 2 PS 3 3]

LISREL input for Models 7.2.1-7.2.5

Family model in observables

DA NI-9 NOBS-518 MA-CM
LA

•XEDEQYR' 'SSBED' 'EDEQYR' 'EDAT64' 'XOCSXCR' 'OCSSIB1 'XOCSX70*
•OCSXCR' 'OCSX701

CM
(4D20.13)
0.5167008954243D+01 0
0 .19 4 9806 9 4 980 701-01
0. 3471849025041D+01
0.1166210S42348D+01
O.3 30 20 7O0184 3 2D+01
0.6274622362490D+01
0.1194227627373D+01
0.1391681952781D+01
0.1651115593313D+01
0.163892168163004-01
0. 1941411027899D+01
0.5787209952562D+01

SE
8 5 3 1/
MO NX-2 NY-2 NE-3 NK-3 BE-2E GA-FU,FI TE-ZE PS-DI,FR LY«FU,FI TD-2E C
PH-DI,FR LX-FU/FI
FR GA(1,1) GA(2/2) GA(3,3)
ST .7 GA(1,1) GA(2/2) GA(3/3)
ST 2.0 PS(1,1) PS(2,2) PS(3,3)
ST 2.0 PH(1/1) PH(2/2) PH(3,3)
ST i.O LY(1/1) LY(1,2) LY(2/3) LY(2,2)
ST 1.0 LX(1,1) LX(l/2) LX(2/3) LX(2,2)
[EQ GA(1,1) GA(3/3)]/ADD FOR MODEL 2.2
[EQ GA(1/1) GA(2/2) GA(3,3)]/ADD FOR MODELS 2.3-2.5
[EQ PS(1,1) PS(3,3)]/ADD FOR MODELS 2.4-2.5
[EQ PH(1/1) PH(3,3)]/ADD FOR MODEL 2.5
OU SS ND-5 TO SE

4679783126592D+01 0.4938070842326D+01 0.1922921816539D+01
4386996SS7209D+01 0.1815463432485D+01 0.1827591614826D+01
3345914579957D+01 0.3627641502926D+01 0.3238972071952D+01
1139875075252D+01 0.6582034415362D+01 0 . 3569933505328D+01
1140821946633D+01 0.1122999127123D+01 0.5235668842959D+01
362174478O335D+O1 0.3242735052857D+01 0 . 1210572885314D+01
5336248715763D+01 0.4963113333139D+01 0.6446553035743D+01

0.28226306 4734 6D+01 0 . 2344899377790D+01
0.1532529966490D+01
0.2975257164254D+01

1848463228034D+01 0.1678794058818D+01

1364161S48669D+01
1620192034 4 77D+01
1577077688878D+01

0.5951538627534D+01
0.2472673949769D+01
0 . 4802423584718D+01
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EDEQYR ^ j 0 lQ^r OCSXCR <+ <<

flu '
rji ; ^ 773

. (primarv respondent) ^ -̂

EDAT64 X V ^ ' ,̂ fc 6 3 > OCSX70 ^ «*

XOCSX70 ^ «9

Educational Occupational
attainment status

Figure A.5. (Same as Figure 7.3.) Structural equation model of distinct fraternal
regressions of occupational status on educational attainment with errors in
variables but no family factors. See Table 7.6 for specifications of error
covariances.

Model 7.3 (Figure A.5)

Specification of the model

Equation for Model 7.3.1

Measurement model

Yx Th +8i

Y2 =
Y3 = rj2 +83
r4 = v42r[2 + e 4

Yl = TU + 8 7

Y8 = ^ 8 4 r j 4 + e 8

Structural model
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Matrix format of the equations for the model

^ 5

Y6

Y9_

Y

1.0

0
0
0
0
0
0
0

0
0
P31
0

0
0

1.0
/V42

0
0
0
0
0

0
0
0

0
0
0
0

1.0

0
0
0

0
0
0
0

0
0
0
0
0
0

1.0

^84

Til

T| 2

T|4

£3

84

8 9

Til

Tl2

Tl3

Tl4

+ ^2

^3

LISREL matrices for the model

My = LY =

B = BE

= PS =

1
LY

BE

PS
PS

PS

.0
2
0
0
0
0
0
0
0

0
0
3
0

1
2
0
4

2

1

1
1

1

1
LY

BE

PS
PS

0
0

.0
4
0
0
0
0
0

0
0
0
4

2
3
0

2

2

2
2

1
LY

0
0
0
0

PS
PS

0
0
0
0
.0
6 3
0
0
0

3 3
4 3

1
LY
LY

0
0
0
0

PS

0
0
0
0
0
0
0
8 4
9 4 _

- i

4 4
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0 = TE = TE

TE
TE
TE

TE

1
0
0
4
5
6
0
8
0

1

1
1
1

1

TE 2 2
0
0
0
0
0
0
0

TE

TE

TE

3
0
0
0
7
0
9

3

3

3

TE
TE
TE

TE

4
5
6
0
8
0

4
4
4

4

TE
TE

TE

5
6
0
8
0

5
5

5

TE 6 6
0

TE 8 6
0

TE 7 7
0 TE 8

TE 6 5 0 TE 9 9

LISREL input for Models 73.1-73.9

Measurement model in Y

'XOCSXCR' 'OCSSIB1 'XOCSX70*

0
0

0.1166210S42348D+01 0
0.3302070018432D+01 0

4386996557209D+01 0.
334S914579957D+01 0.
113987S075252D+01 0.
1140821946633D+01

.1922921816539D+01
•1827S91614826D+01
•3238972071952D+01
.3S6993350S328D+01

0.5235668842959D+01
0.1210S72885314D+01
.6446553035743D+01
•2344899377790D+01

DA NI-9 NOBS-518 MA-CM
LA

'XEDEQYR' 'SSBED1 'EDEQYR' 'EDAT641

'OCSXCR1 'OCSX70'
CM
(4D20.13)
0.5167008954243D+01 0.4679783126592D+01 0 . 4938070842326D+01
0.1949806949807D+01 0.4386996557209D+01 0.1815463432485D+01
0.3471849025041D+01 0.3345914579957D+01 0.3627641502926D+01

•6582034415362D+01 0.
•1122999127123D+01

0.6274622362490D+01 0.3621744780335D+01 0.3242735052857D+01
0.1194227627373D+01 0.5336248715763D+01 0.4963113333139D+01 0.
0 . 1391681952781D+O1 0.1364161548669D+01 0.2822630647346D+01 0.
0.1651115593313D+01 0.1620192034477D+01 0.1532529966490D+01 0.5951538627534D+01
0.1638921681630D+01 0.1S77077688878D+01 0.2975257164254D+01 0.2472673949769D+01
0. 1941411027899D+01 0.1848463228034D+01 0.1678794058818D+01 0.4802423584718D+01
0.5787209952562D+01

SE
3 4 1 2 8 9 5 6 7
MO NX-0 NY-9 NE-4 NK-0 BE-FU/FI TE-SY,FI PS-SY/FR LY-FU/FI TD-ZE
START 1.0 LY (1/1) LY(3/2) LY(5,3) LY(7/4)
FREE LY(2#1) LY (4/2) LY (6/3) LY(8/4) LY(9/4)
FREE TE(1/1) TE (2/2) TE(3/3) TE(4/4) TE(5/5) TE(6,6) TE(7/7)
FREE TE(8/8) TE(9,9)
FREE TE (5/1) TE (7/3) TE(3/9) TE(1,6) TE(4/8) TE(7/9) TE(5/6)
EQUAL TE(7/9) TE(5/6)
[FR TE(4/1) TE(8/1) TE(5/4) TE(6/4) TE(8/5) TE(8/6)]/ADD FOR MODEL 3.1
START .70 ALL
START .20 TE (5/1) TE(7/3) TE(3/9) TE(1/6) TE(7/9) TE(5,6)
START -.20 TE(4/8)
START 3.0 PS(1,1) PS(2/2) PS(3/3) PS(4,4)
FREE BE(3/1) BE(4/2)
(EQ BE(3/1) BE(4/2)]/ADD FOR MODELS 3.1B-3.9B
START 0.7 BE(3,1) BE(4/2)
FIX PS(3/1) PS(4/2)
ST 0 PS(3/1) PS(4/2)
[EQ TE(l/5) TE(l/6) TE(3/7) TE(3/9)]/ADD FOR MODELS 3.3-3.9
(FI LY(2/1) LY(4/2) LY(6/3) LY(8/4) LY(9,4)]/ADD FOR MODELS 3.4-3.9
[ST 1.0 LY(2/1) LY(4,2) LY(6/3) LY(8/4) LY(9/4)]/ADD FOR MODELS 3.4-3.9
[FR LY(2/1)]/ADD FOR MODELS 3.5-3.9
[EQ TE(1/1) TE(3/3)J/ADD FOR MODELS 3.6-3.9
[EQ TE(5/5) TE(7/7)]/ADD FOR MODELS 3.6-3.9
[EQ TE(6/6) TE(9,9)]/ADD FOR MODEL 3•6
[EQ PS(3/3) PS(4/4)]/ADD FOR MODELS 3.8-3.9
[EQ PS(1/1) PS(2/2)]/ADD FOR MODEL 3.9
OU SS ND-5 TO SE
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EDEQYR

EDAT64

•XEDEQYR

762

J.O
(primary respondent)

1.0 1.0

SSBED

1.0
731

1.0y

7n

(family)

773

(brother)

1.0.
OCSXCR

1.0

1.0

XOCSX70

XOCSXCR-
Yi

OCSS1B -«

1.0

Educational
attainment

ii

Occupational
status

Figure A.6. (Same as Figure 7.4.) Structural equation model of sibling resem-
blance in educational attainment and occupational status with errors in variables
and latent family factors.

Model 7.4 (Figure A.6)

Specification of the model

Equations for Model 7.4.1

Measurement model

Yx = y\2 + 8X

Y2 =

^ 5 =

Y =

Y* =

87

89
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Structural model

Matrix format of the equations for the model

+ Tl7

K,
Y2

Y3

Y4
Y5

Y*
K7

K8

=

0
0
0
0
0
0
0
0
0

1.0

x}
22

0
0
0
0
0
0
0

0
0
1.0
1.0
0
0
0
0
0

0
0
0
0
1.0
1.0
0
0
0

0
0
0
0
0
0
1.0
1.0
1.0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

I +
£ ,

E3

£ 4

£5

£7

£Q

Yn
1.0

1.0

0

0
0

0

0

1.0

0

0

0

762

0

0

0

1.0

0

0

0

773

C2

C3

+

L J

0

0

0

1.0

1.0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

1.0

0

0
0

0

0

0

0

1

0

0

n.
T12

r|3
r|4 +

0

0

0

0

Ca

LISREL matrices for the model

\y = LY

B = BE

0
0
0
0
0
0
0
0
0

1.0
LY 2 2

0
0
0
0
0
0
0

0
0
1.0
1.0
0
0
0
0
0

0
0
0
0
1.0
1.0
0
0
0

0
0
0
0
0
0
1.0
1.0
1.0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1.0 0 0 0 0 1.0 0
1.0 0 0 0 0 0 1.0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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r = GA = GA 1 1
1.0
1.0
0
0
0
0

0
1
0
0
0

GA 6
0

.0

2

0
0
1.
0
0
0

GA 7

0

3

O> = PH = [PH 1 1 PH 2 2 PH 3 3]

V = PS = [PS 1

0E = TE = TE

TE
TE

1

1
0
0
0
1
1
0
0
0

1

5
5

0 0

TE 2
0
0
0
0
0
0
0

0 0

2
TE

TE

TE

1
0
0
0
1
0
1

PS 6

1
TE

5
TE

5

6

4 4
0
0
0
8 4
0

PS 7

TE
TE

7]

5 5
6 5
0
0
0

TE 6 6
0
0
0

TE 5 5
0 TE 8

TE 6 5 0 TE 9 9

LISREL input for Models 7.4.1-7.4.9

Full sib model - Constrained measurement and just-identified structure

DA NI-9 NOBS-518 MA-CM
LA
*
•XEDEQYR' 'SSBED' 'EDEQYR* 'EDAT641 'XOCSXCR' 'OCSSIB1 "XOCSX70
•OCSXCR1 'OCSX70'
CM
(4D20.13)
0.5167008954243D+01 0.4679783126592D+01 0.4938070842326D+01 0.
0.1949806949807D+01 0.4386996557209D+01 0.
0. 3471849025041D+01 0.3345914579957D+01 0.
0. 1166210542348D+O1 0.11398750752S2D+01 0.6582034415362D+01 0.
0.3302070018432D+01 0.1140821946633D+01 0.1122999127123D+01 0.
0 .6274622362490D + 01 0 . 3621744780335D + 01 0
0.1194227627373D+01 0.5336248715763D+01 0

181S46343248SD+01 0.
3627641502926D+01 0.

. 3242735OS2857D+O1 0.
4963113333139D+01 0.

0.1391681952781D+01 0.13641615486690+01 0.282263O647346D+O1 0.
0.1651115593313D+01 0.1620192034477D+01 0.1532529966490D+01 0.
0.1638921681630D+01 0.1577077688878D+01 0

.1848463228034D+01 0
.2975257164254D+01 0.
-1678794058818D+01 0.0.1941411027899D+01 0

0.S78 7 20 99 5 256 2D+01
SE
3 4 1 2 8 9 5 6 7
MO NX»0 NY-9 NE-7 NK-3 BE-FU,FI TE-SY/FI PS-DI/FR LY«FU,FI TD-Z
GA-FU/FI PH-DI/FR LX-FU/FI
FR BE(5,1)
FR GA(1,1) GA (6,2) GA(7,3) GA(3,1)
ST 1.0 GA(2/1) GAC2/2) GA(3,3)
FREE LY(2,2) LY (4,3) LY (6,4) LY(8,5) LY(9,5)
FIX PS(2,2) PS(3,3) PS (4,4) PS (5,5)
ST 0 PS(2,2) PS (3,3) PS (4,4) PS (5,5)
FrtgE TE(1/1) TE (2,2) TE(3,3) TE(4,4) TE(5,5) TE(6,6) TE(7,7)
FREE TE(8,8) TE(9,9)
FREE TE (5,1) TE (7,3) TE(3,9) TE(1,6) TE(4,8) TE(7,9) TE(5,6)
EQUAL TE(7,9) TE(5,6)
START .70 ALL
START .20 TE (5,1) TE(7,3) TE(3,9) TE(1,6) TE(7,9) TE(5,6)
START -.20 TE(4,8)
START 1.0 BE(4,6) BE(4,1) BE(S,7)

1922921816539D+01
182759I614826D+01
3238972071952D+01
3569933505328O+01
5235668842959D+01
1210S72885314D+01
6446553035743D+01
2344899377790D+01
5951538627534D+01
2472673949769D+01
4802423584718D+01



Appendix 309

S T A R T 1 . 0 L Y ( 1 / 2 ) L Y ( 3 , 3 ) L Y ( 5 , 4 ) L Y ( 7 , 5 )

E Q T E ( l / 5 ) T E ( 1 , 6 ) T E ( 3 , 7 ) T E ( 3 / 9 )

F I L Y ( 4 , 3 ) L Y ( 6 , 4 ) L Y ( 8 / 5 ) L Y ( 9 , S )

S T 1 . 0 L Y ( 4 , 3 ) L Y ( 6 , 4 ) L Y ( 8 , 5 ) L Y ( 9 , 5 )

E Q T E ( 1 / 1 ) T E ( 3 / 3 )

E Q T E ( 5 , 5 ) T E ( 7 , 7 )

F I B E ( 5 / 1 )

S T 1 . 0 B E ( 5 , 1 )

F I G A ( 3 / 1 )

S T 1 . 0 G A ( 3 / 1 )

[ E Q G A ( 6 , 2 ) G A ( 7 , 3 ) ] / A D D F O R M O D E L 4 . 2

[ E Q G A ( 6 / 2 ) G A ( 7 , 3 ) G A ( 1 , 1 ) ] / A D D F O R M O D E L S 4 . 3 - 4 . 5

[ E Q ' P S ( 6 , 6 ) P S ( 7 / 7 ) ] / A D D F O R M O D E L S 4 . 4 - 4 . 5

[ E Q P H ( 2 , 2 ) P H ( 3 , 3 ) ] / A D D F O R M O D E L 4 . 5

O U T V S S N D - 5 T O MR S E

Chapter 8, final model (Figure A.7)

Specification of the model

Equations for the model

Measurement model

y\ = kiiTh
y2 =

•e 9

£10

£11

£12

Structural model

TI3 =

P13TI3

P23TI3

+ P15TI5

P35TI5

P45TI5

P26TI6

P46TI6
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year 1 year 2 year 3

Figure A.7. (Same as Figure 8.4.) Three-wave analysis: basic structural model.

Matrix format of the equations

y*

^10 6

^11 6

^12 6

Til

84

89

810

812

r\ + e
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Til

T| 2

TW

Tie

Tl

Pl3 Pl4 PlS
P23 P24 P 2 6

P3 5 P46
P45 P46

Til

LISREL input

Three-wave model (Final version)

DA NI = 12 NOBS =1317 MA = CM
LA
*
ERTRW3' 'YR3AITM4' 'YR3AITM5' 'YR3AITM6' 'ERTRW2' 'YR2AITM4'

'YR2AITM5' 'YR2AITM6' 'ERTRW 'YR1AITM4' 'YR1AITM5' 'YR1AITM6'
CM

1.000
-0.479
-0.441
-0.483

0.762
-0.472
- 0.462
-0.461

0.770
-0.478
-0.452
-0.495

1.000
0.664
0.772

-0.458
0.512
0.430
0.468

-0.449
0.490
0.406
0.462

1.000
0.697

-0.406
0.399
0.438
0.437

-0.402
0.405
0.394
0.407

1.000
-0.430

0.506
0.465
0.497

- 0.424
0.472
0.402
0.479

1.000
-0.461
-0.458
-0.452

0.815
-0.495
-0.468
-0.503

1.000
0.592
0.730

-0.453
0.516
0.424
0.497

1.000
0.723

- 0.440
0.440
0.464
0.439

1.000
-0.440

0.490
0.435
0.517

1.000
-0.508
-0.497
-0.509

1.000
0.660
0.755

1.000
0.714 1.000

MO NX = O NK = O NY=12 NE = 6 LX = FU, FI LY = FU, FI BE = SD, FI PS = SY, FI

TD = DI, FR TE = DI, FR
FR BE 1 3

BE 4 5
LY 3 2
TE 6 2
TE 12 4
PS 1 1
PS 6 6

BE 1 4
BE 4 6
LY 4 2
TE 7 3

PS 2 1

LY 7 4
TE 8 4

LY 8 4
TE 10 6

PS 3 3

LY 11 6
TE 11 7

PS 4 3

BE 2 6

LY 12 6
TE 12 8

PS 4 4

BE 3 5

TE 10 2

PS 5 5

BE 3 6

TE 11 3

PS 6 5

ST 1.0 LY 2 2 LY 6 4 LY 10 6 LY 1 1 LY 5 3 LY 9 5
ST 1.0 TE 2 2 TE 3 3 TE 4 4 TE 6 6 TE 7 7 TE 8 8

TE 10 10 TE 11 11 TE 12 12
ST 0.054 TE 5 5 TE 9 9
ST 0.039 TE 1 1

OU SE TV PC RS



Glossary

Attenuation Term referring to a relationship between two or more variables when
one or more of them is measured with error. In a regression model the estimate of
the regression coefficient is reduced or attenuated when an explanatory variable is
measured with error.

Chi-square statistic A statistic indicating the goodness-of-fit of a model to the data;
distributed asymptotically according to the chi-square distribution. Often em-
ployed to test hypotheses about the likelihood ratio statistic for model fit.

Common factor A latent construct that models the common variation between a
set of observed variables.

Correlation A measure of the degree of linear relationship between two variables,
taking a maximum value of 1 when the variables are perfectly related to each
other. A normalized measure of covariation.

Covariance A measure of the degree of linear association between two variables.
Related to the correlation coefficient by the following formula: correlation r
between two variables X & Y - covariance between X & ^/(square root of the
variance of X x square root of the variance of Y).

Degrees of freedom A measure of the degree of overidentification in a structural
model.

Distribution The variation among observations on a random variable. Many
estimation procedures assume that the distribution of the continuous variables in a
model is normal.

Distribution free A method of robust estimation that does not require particular
assumptions about the distributional form of the variables in the model.

Endogenous A term referring to variables or constructs whose variation is
modeled as determined wholely or in part by other variables in the model.

Errors of measurement Latent constructs are modeled by observed variables that
are assumed to measure the latent construct with some degree of error. Similarly,

312
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observed values of test scores typically contain some error of measurement,
defined as the difference between the true score and the observed score.

Exogenous A term referring to constructs whose variation is assumed to be
determined by variables external to the model.

Factor analysis A form of multivariate analysis in which the variation among
observed variables is modeled in terms of a lower number of factors that describes
the pattern of covariation between them. See also Latent construct.

First derivative The rate of change in the minimization function employed to
estimate the parameters of a model. In maximum likelihood estimation of
structural equation models, the first derivative of the likelihood function with
respect to a fixed parameter indicates the extent to which, if freed, the fit of the
model to the data would be improved - hence its use and implementation in
LISREL as a diagnostic indicator of the goodness of fit of individual elements of a
model to the data.

Fit (of model to data) A measure of the overall congruence between the observed
covariance matrix and that implied by the estimates of the model parameters. In
structural equation models, an assessment of the fit of a model to the data is made
from inspection of a range of indicators (see Chapter 12).

Fixed parameter A term used in LISREL to denote a parameter that takes a fixed
or given value. The value is usually zero, but in principle any value is possible. The
purpose of fixing parameters to a particular value varies according to the situation.
An example is the case in which the loading of one indicator on a latent construct
is set equal to a nonzero value (usually 1) in order to define the scale of
measurement for the construct. Parameters representing relationships between
latent constructs may be set to particular fixed values on the basis of theoretical
considerations or knowledge from other sources.

Free parameter A term used in LISREL to denote a parameter that is estimated
from the data for the model. See also Fixed parameter.

Generalized least squares A method of estimation that allows for heterogeneity of
variances and covariances. An option available for estimating models in LISREL;
it has theoretical large-sample properties that are similar to those of maximum
likelihood.

Goodness-of-fit See Fit.

Hierarchical models A set of models each of which is related to those immediately
above or below it in the hierarchy by the property that it can be transformed into
those models by the deletion or addition of a small number of parameters (often
one). The difference in fit between models related in this way can be tested by a
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comparison of their chi-squared goodness-of-fit test statistics. The difference
between the values of the chi-square fit statistic for any pair of models itself has a
chi-square distribution, with degrees of freedom equal to the difference in degrees
of freedom between the two models.

Identified A model is identified if unique estimates of parameter values can be
obtained. A model is overidentified if the values of one or more of the parameters
can be obtained from more than one unique combination of the variances and
covariances for the observed variables in the model. A just-identified model is one
in which the estimates of each parameter can be obtained from only one unique
combination of the variances and covariances. Such models have a perfect fit to
the data and include the set of models that do not involve latent constructs (e.g.,
regression models). An underidentified model is one in which some parameters are
not uniquely estimable from the variances and covariances. For such models the
goodness-of-fit of the model to the data is indeterminate.

Indicator An observed variable that measures or indicates a latent construct.

Latent construct (or latent variable) An unobserved or hypothetical variable that
is modeled as a linear combination of the observed variables plus parameters that
may allow for measurement error in these observed variables. Factors (in factor
analysis) and true scores (in test theory) are examples of latent constructs.

Leptokurtic A statistical term describing distributions that have longer tails (and
are more peaked) than the normal distribution.

LISREL An acronym for "linear structural relations," an implementation of
structural equation modeling or covariance structures due to Karl Joreskog and
Dag Sorbom.

Loading (of an indicator on a latent construct) A parameter that represents the
relationship of a latent construct to each of its constituent observed variables.

Maximum likelihood A method of estimation that maximizes the likelihood
function for the parameters of a particular model, given the data. Estimates of
parameters obtained from maximum likelihood may not be robust in small
samples (see Chapter 12).

Measurement error See Errors of measurement.

Measurement model That part of the structural equation model that relates the
observed variables to the latent constructs.

Model (modeling) A representation of the relationships between constructs and
variables. The specification of a model may derive from either theoretical or
empirical procedures. In structural modeling the term is used to refer to the specific
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path diagram and the set of equations relating variables and the constructs that
they imply.

Modification index A diagnostic indicator of the fit of individual parameters in a
structural model {see also First derivatives). Employed specifically to measure the
improvement in the chi-squared measure of goodness-of-fit statistic associated
with a. fixed parameter in a model.

Multiple-group analysis Within LISREL, a form of simultaneous analysis of a
number of variance-covariance matrices (or moment matrices), each correspond-
ing to a separate group of observations, allowing constraints to be imposed on the
parameters across groups.

Multivariate normality a distributional assumption of normality in the multivari-
ate space spanned by the parameters in a model.

Normalized residuals Residuals that are transformed to have unit variance.

Normality A distributional characteristic of an observed variable. Widely as-
sumed in the application of structural equation modeling through the use of a
variance-covariance matrix to summarize the information in the data.

Outlier An observation that may have come from a distribution that is different
from that of the remainder of the data. Such observations may be the product of
gross errors of measurement, data coding, etc., but they may also be genuine
observations from a distribution that is different from the other values in the
sample. If not recognized, they may exert undue influence on the determination of
the estimates of a model. Robust methods of estimation often seek to alleviate the
problems caused by the failure to notice outliers in the data.

Parallel measures Alternative forms of the same measure having the same
relationship (loading) to the latent construct that they jointly represent and the
same measurement error variance. The correlation between two parallel measures
is equal to the (common) reliability of the measures.

Parameter Each of the relationships in a model is represented by a parameter.
Parameters may also represent a characteristic of a single variable, such as a mean.

Path analysis A form of regression analysis between the observed variables in a
model.

Random variable A variable that is observed randomly with respect to its values.
For example, the social status of an individual is observed at random in a survey in
which sample members are chosen randomly. This is to be contrasted with the case
in which the observations on a variable are observed in accordance with some
pattern related to those values, say, the highest 5 percent of the known values in
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that population. Thus, the observations on a race variable are not random if the
survey is of one race only. But the values of other variables will be observed
randomly if the sample members are chosen at random. In more general terms, a
random variable is defined as a numerical quantity whose value is determined by
the outcome of a chance experiment.

Reliability A property of measurement. The capacity of a measure to provide the
same reading of a given event on many occasions. Variation in test scores, for
example, is composed of a component that is due to the true score and another that
is referred to as measurement error. The reliability of the test is then defined as the
ratio of the variance component due to the true score to the total variance of the
observed scores on the test.

Robust estimation A method of estimation that is not dependent on the distri-
butional form of the variables involved, and in particular one that is not heavily
influenced by the presence of outliers.

Skewness A measure of asymmetry in the distribution of the observations on a
variable.

Specification error An error in the specification of the relationships between the
variables in a model.

Standard deviation A measure of the dispersion of a random variable, equal to the
square root of its variance.

Standardized solution The estimates for a model in which all the latent constructs
are constrained to have unit variance.

Variance A measure of the dispersion or variability in a random variable. The
square of the standard deviation.

Variance-covariance matrix The set of variances of, and covariances between, a
number of variables.



Index

additive relationships, 16-17
aggregated data, 132
assumptions

factor model, 11-14
measurement, 16-17
normality, 16, 18-20
regression model, 9-11
structural equation models, 14-21
violation of, see robustness

asymptotic estimates, 186
autocorrelation, 93

BENWEE, 262
beta, 282
binary variables, 12

categorical variables, 12
chi square, see fit of models
classical test score theory, see

measurement model
confirmatory methods, see structural

modeling
constraints

inequality constraints, 221-39
restrictions, 221
see also fixed parameters

contextual effects models, 109
continuous variables, 12, 246
convergence problems, 172-3
correlation, 247
correlation matrix, 162-3, 169, 171
COSAN, 6, 238
covariance, 14, 246

see also covariation
covariation, 246-9

attenuation of measures of covariation,
248

canonical correlation, 248
censored distributions, 249
linearity, 16-17
polychoric correlation, 1, 249
robustness of measures, 266-8

tetrachoric correlation, 12
truncated distributions, 249

cross product, 246
cross validation, 244-5

degrees of freedom, 233
delta, 282
dependent variable, 9-10
disturbance terms, 150
disturbances, see residuals

empirical underidentification, 99
endogenous variables, 11
epsilon, 282
EQS, 6
error variance, 123-7

correlated errors, 80
negative estimates, 74, 81
see also Heywood cases

estimation
asymptotically distribution-free

estimator (ADF), 253
categorical variable method (CVM),

253-4
efficiency of estimation, 93
generalized least squares (GLS), 252-4
instrumental variables method (IV), 252
maximum likelihood (ML), 82, 160-86,

252-5
ordinary least squares (OLS), 252
two-stage least squares (2SLS), 252
unweighted least squares (ULS), 252
weighted least squares (WLS), 254

eta, 282
exploratory methods

significance tests, 243-4
see also structural modeling

fallible measurement, see measurement
error

fit of models, 30-4, 56, 70-81, 97-103,
115-32, 148, 172, 181-2, 189, 193,

317
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fit of models (cont.)
215, 238, 255-60

coefficient of determination, 257
critical N, 70-81, 261
critical value, 208
fit indexes, 193
Goodness-of-Fit Index (GFI), 260
inspection of residuals, 259
likelihood ratio test (LRT), 260-1
likelihood ratio test statistic, 204
modification indices, 33-4, 57, 71
multiple correlation, 256
normalized residuals, 73
overfitting, 259
plausibility of model, 256
Q-Q plots, 42-4, 259
residuals, 73
robustness of procedure, see robustness
strength of relationships, 256-7

fixed loading, 122
fixed parameters, 15, 143

gain score model, 4, 87-103
deficiencies of, 89-90
and reliability of measures, 88

gamma, 282
General Health Questionnaire, 25
goodness-of-fit, 56

see also fit of models
Greek symbols, 13, 282

Heywood cases, 174, 223-7, 233
Hidden Figures Test, 27
hierarchical data, 65-8
High School and Beyond study, 52
hypothesis testing

hierarchical hypothesis testing, 31-5
see also structural modeling

indentification, 13, 93, 118-19, 131, 251
constraints on parameters, 13

independent variable, 9-10
indicator variables, 16
interval measurement, 247

Joreskog-Keesling-Wiley model, 14

ksi, see xi
kurtosis, 247

see also normality

lambda, 282
latent construct, 16
Latin symbols, 13, 282
linearity, 238, 247
LISCOMP, 262

logistic function, 12
longitudinal models, 97, 139-56

measurement, 16
measurement error, 3-4, 33-5, 45, 51,

102-3, 108-26, 147
attenuation of estimates, 147
black/white differentials, 52
correlated errors, 114-15, 97-103,

122-3, 143, 212
differentials among groups, 51
KR-20, 77
parent's reporting errors, 52
reliability coefficients, 77
reliability, 126-8, 134, 138, 147-8
in social background measures, 51
student's reporting errors, 52
unreliability, see reliability
validity, 109
see also measurement model

measurement model, 10, 16, 31-5, 39,
54-6, 121-7

correlated errors, 80, 97-103, 114-15,
121-7, 143,212

parallel measures, 29
relationship to structural model, 245
response bias, 45
true scores, 35, 39-41

Middlesex Hospital Questionnaire, 27
misspecification, 94, 208
model testing, 150-2

see also structural modeling
moment about origin, 246
moment matrix, 237, 246
Monte Carlo method, 161-2
multiple group models, 12, 29-49, 133,

138-56
multitrait-multirnethod matrix, 223
multivariate normal distribution, see

normality

noncentrality parameter, 208
normality, 189

omitted variables, 109, 133
outlier observations, 5, 189-200

path analysis, 10, 203
phi, 282
polychoric correlation, 12

see also covariation
power of tests, 133, 202-17, 272-3

and sample size, 206
probit function, 12
psi, 282
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quasi-simplex model, see simplex model

reciprocal effects, 131
recursive models, 93
regression analysis, 112, 235-8
reliability, see measurement error
replication, see cross validation
residuals, 125

size of, 207
see also fit of model

robustness, 5-7, 160-86, 189
bias, 168, 199
categorical measures, 167
confidence intervals, 170
correlated parameter estimates, 175, 183
influence of outliers, 273
kurtosis of distributions, 166, 184-6
likelihood ratio test, 270-2
measures of covariation, 266-7
model fit, 270-5
nonnormal distributions, 166-7, 184-6
parameter estimates, 168, 199, 264-70
sample size, 161, 169, 176, 200
simulation studies, 264-5
skewness, 167, 184-6
standard errors, 199
standardization, 162-3

sampling effects
cluster sampling, 250
multilevel data structures, 262-3
nonrandom sampling, 250

secondary analysis, 86-7, 103
see also structural modeling

self-report scales/checklists, 24
sensitivity analysis, 102-3, 146-9
significance levels, 204
simplex model, 166-83
skewness, 247

see also normality
see also robustness

slope variation, 121
homogeneity, 127

specification, 96
see also misspecification

standard errors, 154
standardization, 250
statistical power, see power of tests
stochastic models, 16-19
structural coefficients, 148, 154
structural modeling

causal ordering, 190
correlational structure, 35
development of, 1-3
factor analysis, 9
hierarchical hypothesis testing, 56
methodology of, 3-7
parsimonious models, 82
regression analysis, 9
rejecting theories, 202
relationships among constructs, 16
simple models, 3-7
testing strategy, 209-11
theory-confirmation, 82

test-specific errors, 139
see also measurement model

tests of fit, see fit of model
theory testing, 202-17

see also structural modeling
theta, 282
theta-delta, 282
theta-epsilon, 282
three-wave model, 138, 149-52
trimming outliers, 191-3
two-wave model, 138, 141-8
type I & II errors, 202

unbiased estimates, 112
see also estimation
see also robustness

unobserved variables, 16
unreliability, see measurement error

variance, 14
decomposition of, 108-32
see also error variance

within- and between-unit variation, 109-32

xi, 282


