
D.P.F. Moeller

Mathematical and Computational Modeling and Simulation

Engineering
ONLINE L1BRARY

Springer-Verlag Berlin Heidelberg GmbH http://www.springer.de/engine/

Dietmar P. F. Moeller

Mathematical and Computational
Modeling and Simulation
Fundamentals and Case Studies

With 187 Figures

, Springer

Prof. Dr.-Ing. Dietmar P.F. Moeller

University of Hamburg
Faculty of Computer Science
Chair Computer Engineering (AB TIS)
Vogt-Kolln-Str. 30
22527 Hamburg / Germany

and

California State University, Chico
College of Engineering, Computer Science and Technology
O'Connei TechnoIogy Center
Chico, California 95929-0410

ISBN 978-3-540-40389-0 ISBN 978-3-642-18709-4 (eBook)
DOI 10.1007/978-3-642-18709-4

Cataloging-in-Publication Data applied for.
Bibliographic information published by Die Deutsche Bibliothek. Die Deutsche Bibliothek lists
this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in
the Internet at <http://dnb.ddb.de>.

This work is subject to copyright. AU rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication
ofthis publication or parts thereof is permitted only under the provisions ofthe German Copyright
Law of September 9, 1965, in its current version, and permission for use must always be obtained
from Springer-Verlag. Violations are liable to prosecution under German Copyright Law.

http://www.springer.de

© Springer-Verlag Berlin Heide1berg 2004
Originally published by Springer-Verlag Berlin Heidelberg New York in 2004

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.

Typesetting: Datenconversion by author
Cover-design: Medio, Berlin
Printed on acid-free paper 62/3020 hu - 5 4 3 2 1 O

Preface

The book addresses one of the most interesting topics in modem systems theory:
mathematical and computational modeling and simulation. A recent White House
report identified computational modeling and simulation as one of the key ena­
bling technologies of the 21st century. Its application is universal.

Some choices have been made in selecting the material of this book. First we
describe the fundamentals of modeling, as this represents the largest portion of
system analysis. In addition, the mathematical background describing real-world
systems is introduced on a basic level as well as on a more advanced one and its
correspondence with the respective modeling methodologies is described. Sec­
ondly, we present the most interesting simulation systems at the language and
logical level, and describe their use in several case study examples. However, a
textbook can not describe all available simulation systems in detail, for this reason
the reader is referred to the specific written material such as textbooks, reference
guides, user manuals, etc., as well as the web-based information addressed to the
several simulation languages. Thirdly, we present an algorithmic approach to ill­
defined and distributed systems based on the respective mathematical frameworks.

The purpose of this book is to expose undergraduate and graduate students to
the use of mathematical and computer modeling and simulation as a basis for de­
veloping an understanding of the response characteristics of a broad class of real­
world systems. Mathematical and computational modeling is based on systems
theory as a mathematical form of representation, while building models of real­
world systems. The simulation methodology behind this is used for a better under­
standing of the time-dependent transient behavior of the complex models devel­
oped. The subject matter of the book can be considered to form an introduction to
the methodology of mathematical and computational modeling of real-world sys­
tems, as well as into simulation languages, to gain experience, which results from
the different application domains introduced as case study examples in this book.

The nature of the material in the book can be more or less difficult, if the reader
is new to such an approach, which is also due to the fact that mathematical and
computational modeling and simulation is a multi-disciplinary domain, founded in
computer science, engineering, mathematics, physics, chemistry, biology, life sci­
ence, etc. The material may not be read and comprehended either quickly or eas­
ily. This is why specific case study examples, from the various disciplines , have
been embedded due to the related topics of system-theory representation of the
material, to master the material, at least for most individuals of the several scien­
tific disciplines. It is assumed that the reader has some previous background in
mathematics through calculus, differential equations, Laplace transforms, and ma-

IV Preface

trix fundamentals . The most common simulation software systems will be intro­
duced and their performance will be discussed based on several case study exam­
ples. But real-world systems often are ill defined and the important parameters
that should be known for modeling may not be known and/or not measurable , that
calls for parameter-identification methods to estimate unknown parameters. More­
over, virtual-reality and soft-computing methods have arisen recently that are now
added being as part of the methods used for modeling and simulating real-world
systems, which is shown for the respective case studies and examples .

This book can be used in courses in various ways. It contains more material
than could be covered in detail in a quarter-long (30-hour) or semester-long (45­
hours) course, leaving instructors with the possibility of selecting their own topics
and adding their own case study examples. Sections denoted with an asterisk in
the contents report on advanced topics and can be skipped in a first reading or in
undergraduate courses. The book can also be used for self-study or as a reference
for graduate engineers, scientists and computer scientists for training on the job or
in graduate schools.

It is noted, that this book was developed under a transatlantic grant from the
European Commission Directorate General for Education and Culture, Brussels,
with the University of Hamburg, Germany, as lead European University, and the
US Government Federal Institute of Post Secondary Education, Washington, with
the California State University, Chico, as lead US University for the USE-ME
Project (United States Europe Multicultural Alliance in Computer Science and
Engineering) . The material on modeling and simulation in this book was designed
for use in the respective classes and courses of the transatlantic USE-ME Project
partners home institutions .

Chapter I on Modeling Continuous-Time and Discrete-Time Systems contains
the introductory material on developing simulation models for real-world systems.
The developed models usually take the form of a set of assumptions concerning
the operation of real-world systems. These assumptions are expressed in mathe­
matical, logical, and symbolic relationships between the entities or objects of in­
terest of real-world systems. Once developed and verified, a model can be used to
investigate a wide variety of problems and questions about the real-world system,
which is shown in the respective case study examples for the several application
domains such as biology, business, chemistry, electrical engineering, mechanical
engineering, medicine, physics, etc.

Chapter 2 on Mathematical Description ofContinuous- Time Systems focusses
on the most important mathematical methods in the time domain and in the fre­
quency domain that are used for the mathematical description of real-world sys­
tems. These methods are based on ordinary differential equations (ODEs) of n-th
order, sets of n first-order ordinary different ial equations, partial differential equa­
tions (PDEs), the superposition integral, the convolution integral, Laplace trans­
forms, etc.

Chapter 3 on Mathematical Description ofDiscrete-Time Systems focusses on
the general principles modeling queuing systems, discrete event concepts, Petri
nets, and statistical models.

Preface V

Chapter 4 on Simulation Languages for Computational Modeling and Simula­
tion contains the introductory material on the most interesting simulation systems
at the language and logic level, such as ACSL, AnyLogic, B2Spice AID, CSMP,
FEMLAB, GPSS, GPSSIH, MATLAB, Modelica, ModelMaker, SIMULINK,
SIDAS, SIMAN V, SIMSCRIPT, SLX, PASION, and their application in the sev­
eral case study examples.

Chapter 5 on Parameter Identification of Dynamic Systems contains a mathe­
matical approach of ill-defined real-world systems for which the parameters of im­
portance are not known or not measurable . Based on identification these unknown
or unmeasurable parameter can be estimated, using the several methods such as
gradient methods, direct search methods, least square methods , etc.

Chapter 6 on Soft-Computing Methods focusses on fuzzy sets and neural net­
works in modeling and simulation to generate the basic insight that categories are
not absolutely clear cut, they belong to a lesser or greater degree to the respective
category. Soft-computing breaks with the tradition that real-world systems can be
precisely and unambiguously characterized, meaning divided into categories, for
manipulation these formalizations according to precise and formal rules.

Chapter 7 on Distributed Simulation contains the introductory material of real­
world systems that are distributed, and can be analyzed using the tie-breaking me­
thod, the critical time path method, and the High-Level-Architecture (HLA) con­
cept. The methods are introduced and used for real-world traffic problems.

Chapter 8 on Virtual Reality contains the introductory material of computer­
generated worlds that are based on real-time computer graphics, color displays,
and advanced simulation software, etc. The topics of virtual reality are used for
real-world applications in the medical and geological domains.

The textbook contains additional case study examples (see Appendix C).
I would like to thank my very good friend, Prof. Ralph Conrad Hilzer, Califor­

nia State University, Chico, for his constant help and generous support. Further­
more, I would like to thank Dr. Kenneth Derucher, Dean of the College of Engi­
neering, Computer Science and Technology, California State University, Chico,
for supporting my research work at California State University, Chico. I would
also like to thank Dr. Roland E. Haas, Managing Director DaimlerChrysler Re­
search Institute India, Bangalore, for his critical review of this book and his per­
sonal encouragement. Dr. Joachim Wittman, University of Hamburg, is also ac­
knowledged for a critical review of parts of the book and several of the examples.
I thank Dr. Dieter Merkle, Springer Publishing Inc., Heidelberg, for his help with
the organizational procedures between the publishing house and the author.

Finally, I would like to deeply thank my wife Angelika for her encouragement,
patience and understanding during writing of this book.

This book is dedicated to my parents Wilhelm Ch. and Hildegard Moller whose
hard work and belief in me made my dreams a reality.

Dietmar P. F. Moller
Professor, University ofHamburg, Germany
Adjunct Professor, California State University Chico, USA
Spring 2003

Contents

Preface••••.......•......•..•..•.....••••.....•••.......•••••...•••......•.••.....•.••.•..•.•••.•....••.......•••.•. III

Contents.....•••.•......•.......•.••.....•••......•••••.••..•••.•••..•••••....••••.•...•••••.•..•••••....•..•••....••• VII

List of Examples XI

List of Case Studies XV

1 Modeling Continuous-Time and Discrete-Time Systems 1
1.1 Introduction 1
1.2 Modeling Formalisms 12
1.3. System Elements and Models of Continuous-Time Systems 22

1.3.1 Electrical Elements 22
1.3.2 Particle Dynamics 27
1.3.3 Mechanical Elements 30
1.3.4 Fluid Mechanics 36
1.3.5 Diffusion Dynamics 39
1.3.6 Thermodynamics 40
1.3.7 Chemical Dynamics 42

1.4 Block Diagram-based Algebraic Representation of Systems .46
1.4.1 Introduction 46
1.4.2 Block Diagram Algebra 50

1.5 Basic Principles of Discrete-Time Systems 55
1.5.1 Introduction 55
1.5.2 Modeling Concept of Discrete-Time Systems 57
1.5.3 Simulation Concept 61

1.6 Model Validation 63
1.7 References and Further Reading 67
1.8 Exercises 67

2 Mathematical Description of Continuous-Time Systems 69
2.1 Introduction 69

2.1.1 Representation of System Differential Equations in Terms of Vector-
Matrix Notation 70
2.1.2 Existence and Uniqueness of Solutions of Differential Equations 76

2.2 Controllability, Observability, and Identifiability 77

VIII Contents

2.3 Time Domain Solution of the Linear State Equation System 84
2.4 Solution of the State Equation using the Laplace Transform 87
2.5 Eigenvalues of the Linear Vector-Equation Systems* 90
2.6 Stability Analysis* 93

2.6.1 Routh Hurwitz Criterion* 95
2.6.2 Nyquist Criterion* 98
2.6.3 Ljapunov Stability Theorem* 100

2.7 First-Order Linear State-Equation Models 102
2.8 Second-Order Linear State-Equation Models III
2.9 Higher-Order Linear State-Space Models* 123
2.10 Nonlinear State-Space Models* 130
2.11 References and Further Reading 132
2.12 Exercises 133

3 Mathematical Description of Discrete-Time Systems••....•..•.••.•..••••..•.••••.•.•• 135
3.1 Introduction 135
3.2 Statistical Models in Discrete-Time Systems 136

3.2.1 Random Variables 136
3.2.2 Distributions 137

3.3 Discrete-Event Simulation of Queuing systems 139
3.4 Petri-Nets 147
3.5 Discrete-Event Simulation of Parallel Systems 155

3.5.1 Introduction 155
3.5.2 Basic Tasks 156

3.6 References and Further Reading 159
3.7 Exercises 159

4 Simulation Sofware for Computational Modeling and Simulation.•.••.•..•..161
4.1 Introduction 161
4.2 Digital Simulation Systems 168
4.3 Simulation Software for Continuous-Time Systems 169

4.3.1 Block Oriented Simulation Software 170
4.3.2 Equation-Oriented Simulation Software 178
4.3.3 General-Purpose Simulation Software 183
4.3.4 Component-Based Simulation Software 190
4.3.5 High-Performance Simulation Software for Technical Computing. 203

4.4 Discrete-Time System Simulation Software* 214
4.5 Multi-Domain Simulation Software for Large-Scale Systems* 217
4.6 Simulation Software for Mixed-Mode Circuits* 231
4.7 Combined Simulation Software 234
4.8 Checklist for the Selection of Simulation Software 240
4.9 References and Further Reading 242
4.10 Exercises 243
4.11 Case Study Examples 244

4.11.1 FEMLAB 244
4.11.2 Modellvlaker 251

Content IX

5 Parameter Identification of Dynamic Systems 257
5.1 Introduction 257
5.2 Mathematical Notation of the Identification Task 260
5.3 Identification Task 262
5.4 Output-Error Least Squares Method* 266
5.5 Equation-Error Least Squares Method* 270
5.6 Consistency of the Parameter Estimates* 278
5.7 Consistency Modifications of the Equation-Error Method* 280
5.8 Identifiability* 287
5.9 System Input Properties* 293
5.10 Parameter Identification of the Cardiovascular System* 294
5.11 Error-Functional Minimization by Gradient Methods* 300
5.12 Error-Functional Minimization by Direct Search Methods* 302
5.13 Identifiability and the Output-Error Least Squares Method* 306
5.14 References and Further Reading 308
5.15 Exercises 309

6 Soft-Computing Methods..•.•.•.......•••......••••....••...•.....•••......•••......•••......••.•......311
6.1 Introduction 311
6.2 Fuzzy Logic 312

6.2.1 Pure Fuzzy-Logic Systems 316
6.2.2 Takagi and Sugeno fuzzy logic systems 317
6.2.3 Fuzzy-Logic Systems with Fuzzification and Defuzzification 318
6.2.4 Fuzzy Modeling of a Soccer Playing Mobile Robot... 318
6.2.5 Fuzzy Modeling ofa Wastewater Treatment Plant* 324
6.2.6 Fuzzy-Logic Control System* 327

6.3 Neural Nets* 331
6.4 References and Further Reading 338
6.5 Exercises 338

7 Distributed Simulation 339
7.1 Introduction 339
7.2 Distributed Simulation ofTraffic and Transportation 341

7.2.1 Introduction 341
7.2.2 Traffic-Simulation Model 342
7.2.3 Distributed Traffic-Simulation System 343
7.2.4 Description and Implementation of Road Networks 345
7.2.5 Implementation and Simulation 347
7.2.6 Distributed Transportation 350

7.3 Introduction into HLA* 352
7.3.1 HLA at the Very First* 352
7.3.2 Federation Rules* 353
7.3.3 Interface Specification* 354
7.3.4. Object Model Template (OMT)* 354
7.3.5 Suggested Steps at the Very First* ~ 355
7.3.6 Land-based Transportation* 356

X Contents

7.3.7 HLA Land-based Transportation Simulator* 356
7.3.8 HLA Description of Road Networks* 359

7.4 References and Further Reading 362
7.5 Exercises 362

8 Virtual Reality 363
8.1 Introduction 363
8.2 Virtual Reality applied to Medicine 369

8.2.1 Introduction 369
8.2.2 Morphing 370
8.2.3 Deformable Models* 373
8.2.4 Deformable Models for Surface Reconstruction in Medicine* 374

8.3 Virtual Reality in Geo Science* 380
8.3.1 Introduction* 380
8.3.2 Modeling and Simulation of Space and Time* 380
8.3.3 Combined Virtual Reality System CoRe* 382

8.4 DDSim Prototyping Tool for Autonomous Robots 384
8.5 References and Further Reading 390
8.6 Exercises 392

Appendix A ...•••••••.•.••••.•••••.•••••.•.••••••••.••••••••.••393
Numeric Integration : 393
Single-Step Formulae : 395
Multi-Step Formulae 398

Appendix B 399
Laplace Transform 399

Appendix C •••••••••••.•.••••.••••••••••••••.•••••.••.••••.•••••.•.••••..•.•.•.••••••••.•••••.••••.•••.•••.••••.•••407
Online Resources 407

Index .•..•.•.••.•.••••.•••••..•.•.••.••.•.•....••..••.••..•..•...•..•..••.•.....••..........•.........•.••.....••.•....• 409

List of Examples

Chapter 1
Example I. I Deterministic test signal
Example 1.2 Capacitance
Example 1.3 RCL network
Example 1.4 Particle dynamic
Example 1.5 Floppy disk inertia
Example 1.6 Planetary motion
Example 1.7 Soft-tissue deformation
Example 1.8 Liquid capacitance
Example 1.9 Water heating
Example 1.10 Chemical reaction
Example 1.11 Customers time event
Example 1.12 Customers state event
Example 1.13 Water tank level state event
Example 1.14 Customers at service station
Example 1.15 Single-server system

Chapter 2
Example 2.1 Van der Pol oscillator
Example 2.2 Transfer characteristic of a SISO system
Example 2.3 Uniqueness of solutions
Example 2.4 Controllability analysis in state space
Example 2.5 Controllability analysis in the Laplace domain
Example 2.6 Observability analysis in state space
Example 2.7 Observability analysis
Example 2.8 Eigenvalues analysis using Laplace transform
Example 2.9 Eigenvalues analysis
Example 2.10 Stability analysis using the Routh Hurwirz criterion
Example 2.1 I Stability analysis using the polynomial characteristic
Example 2.12 Stability analysis using the Nyquist criterion
Example 2.13 Stability analysis using the Ljapunov stability theorem
Example 2.14 RCL network analysis
Example 2.15 Artificial kidney systems analysis
Example 2.16 Second-order oscillatory system analysis
Example 2.I7 Second-order linear mechanical system analysis
Example 2.18 Automobile rear-end suspension system analysis

XII List of Examples

Chapter 3
Example 3.1 Binominal distribution
Example 3.2 Weibull distribution
Example 3.3 Single-channel telecommunication system
Example 3.4 Single-channel telecommunication queuing system
Example 3.5 Kendalls queuing system
Example 3.6 Inventory analysis
Example 3.7 Petri-Net analysis
Example 3.8 High-Level Petri-Net analysis of a conveyer belt of a motor assem­

bly line

Chapter 4
Example 4.1 Rule-based system
Example 4.2 Semantic nets
Example 4.3 Object-oriented system air battle simulation system
Example 4.4 Second-order differential equation system analysis using PSI
Example 4.5 Renal blood flow control system analysis using SIDAS
Example 4.6 Metabolism of a drug in a human being using CSMP
Example 4.7 Pendulum on a rigid rod using ACSL .
Example 4.8 Modeling of second-order dynamic systems using ModelMaker
Example 4.9 Simulation of second-order dynamic systems: Case study 1
Example 4.10 Simulation of second-order dynamic systems : Case study 2
Example 4.11 Simulation of second-order dynamic systems : Case study 3
Example 4.12 Simulation of second-order dynamic systems: Case study 4
Example 4.13 Collatz function proved using MATLAB
Example 4.14 First-order RC network analysis using MATLAB
Example 4.15 Simple SIMULINK model
Example 4.16 Wastewater treatment plant modeling and simulation using

MATLAB-SIMULINK
Example 4.17 Single-server queue simulation using GPSSIH
Example 4.18 Event handling
Example 4.19 Electrical resistor modeling using Modelica
Example 4.20 Industrial robot modeling using Modelica
Example 4.21 3D heat balance modeling and simulation using FEMLAB
Example 4.22 Modeling and simulation of a RTL inverter circuit using B2Spice

AID
Example 4.23 Modeling and simulation of a three-input AND function using

B2Sp iceAJD
Example 4.24 Modeling and simulating a fixed number of ants using AnyLogic
Example 4.25 Modeling and simulating urban dynamics using AnyLogic
Example 4.26 Model ing and simulating a multiple -call center using AnyLogic

List of Examples XIII

Chapter 6
Example 6.1 Fuzzy-set expression
Example 6.2 Universe of discourse of a fuzzy-set
Example 6.3 Mobile robot steering strategy
Example 6.4 Rule-based fuzzy-controlled robots
Example 6.5 Fuzzy control applied to the inverted pendulum
Example 6.6 XOR function
Example 6.7 Sensitized neural nets

Chapter 7
Example 7.1 Traffic-light control system
Example 7.2 Modeling and simulation of a fuzzy-set traffic-light control system
Example 7.3 Transportation analysis
Example 7.4 Initialization of the HLA RTI
Example 7.5 HLA-based description of road networks

Chapter 8
Example 8.1 Digital mock up (DMU)
Example 8.2 Surface reconstruction with NURBS
Example 8.3 Magnetic resonance imaging (MRI)
Example 8.4 Virtual-reality terrain model

List of Case Studies

Case Study 4.1 Forced and free convection heat transfer
Case Study 4.2 Thermo-electric heating in a bus bar
Case Study 4.3 2D radiator
Case Study 4.4 3D radiator
Case Study 4.5 Catalytic burner
Case Study 4.6 Coupled free and porous media flow
Case Study 4.7 Simulation of a fixed-bed reactor for catalytic hydrocarbon

oxidation
Case Study 4.8 Model of a cold crucible for molten metals
Case Study 4.9 Electromagnetic brake, exporting in Simulink
Case Study 4.10 Model of a monoconical RF antenna
Case Study 4.11 Stress-optical effects in a photonic waveguide
Case Study 4.12 Model of pressure vessel
Case Study 4.13 Model of a tank filled with water
Case Study 4.14 Model of a mass-damper-spring system
Case Study 4.15 Model of ingestion and subsequent metabolism of a drug
Case Study 4.16 Modeling and simulation ofa single and a double pendulum
Case Study 4.17 Modeling of the population growth and balance
Case Study 4.18 Modeling of the birth and death rate of a population
Case Study 4.19 Modeling the Lotka-Volterra equations
Case Study 4.20 Reference nets for habour-based workflow analysis of ship

transportation

1 Modeling Continuous-Time and Discrete-Time
Systems

1.1 Introduction

Engineering is concerned with understanding and controlling the materials and
forces of nature for the benefit of humankind. Therefore it is necessary for engi­
neers and scientists to analyze and improve the performance of complex systems,
when the components of which originate from different domains. Examples in­
clude either adapting existing systems to new demands and/or conditions, or de­
signing new applications such as those in mechatronics, automotive, avionics,
aerospace, robotics, traffic control, digital or microsystems, etc. These systems in­
clude components derived from many different engineering domains such as elec­
trical, mechanical, hydraulic, and control. In many cases, solutions to problems
have been found by applying appropriate mathematical models and computer
simulation to them.

Computational modeling and simulation has grown to where it now represents
one of the most powerful design tools available in industry, particularly when used
to analyze and control dynamic systems. This has been primarily due to remark­
able advances that have taken place in systems theory, computer science, and en­
gineering, as well as other human activities in engineering and science. A recent
White House report identifies computer modeling and simulation as one of the key
enabling technologies of the 21 st century. Its applications are virtually universal.

Modeling and simulation can be viewed as an iterative process consisting of
successive mathematical model building and computer-assisted simulation steps.
In this way, a dynamic system model can be manipulated in accordance with the
scope of the simulation study, i.e. by changing the model structure, parameters, in­
puts, and outputs to accurately match the real-world system behavior. In fact, a de­
rived model achieves its purpose when an optimal match is achieved between the
simulation results, based on the mathematical model, and data sets gathered
through real system measurements and experimentation.

The use of systems theory for solving problems that overlap several disciplines
of science and engineering has improved cooperation among these disciplines and
lowered previously rigid barriers between them. The most important step of sys­
tems theory, as applied to a particular dynamic system, is the translation of a real­
world system into the mathematical systems theory language, which is universal
while independent due to application and domain.

In order to develop suitable models of real-world systems and/or processes, a
thorough understanding of the dynamic system and its operating range is necessa-

D.P.F. Moeller, Mathematical and Computational Modeling and Simulation Fundamentals

and Case Studies © Springer-Verlag Berlin Heidelberg 2004

2 1 Modeling Continuous-Time and Discrete-Time Systems

ry. Consequently, a dynamic system can be defined using the respective mathe­
matical description, for which the mathematical model fulfills the following re­
quirements:

UI (t)=U2 (t) which show for all tE (to,tl), henceit followsthat:

v(tl' to, xo' u2 (.));

y(.) = r(O,xO,u(·)),

which may be stated as transformation in t,x, and u,

with Xo as the initial state of the system, u(.) as the input function of the system for
the time interval (to, tl) if tl > to, and y(.) as a p-dimensional output vector func­
tion.

The first equation characterizes the property of causality of a dynamic system,
the second is the general equation of a consistent dynamic system, the third repre­
sents the so-called half-group property of dynamic systems, and the last equation
is a transformation of a p-dimensional output vector of the dynamic system in t, x,
andu.

Using this mathematical notation, a causal system is said to be a dynamic sys­
tem if it holds for the expression UI (t) = U2(t).

More generally, a system is assumed to conform to this definition if it contains
the following objects:

• Elements
• Attributes
• Relations

Based on logical assumptions, these objects are part of the whole structure,
called a system. Elements can be components, parts, and so forth, while relations
are cooperatives, couplings, and so on, and attributes introduce properties, fea­
tures, signatures, and so on. Moreover, attributes provide connections between the
system and the system environment. An attribute that describes a system condition
is called a system state. Attributes that interact with each other are called system­
related internal descriptions.

Assuming that A is a nonempty set of attributes a and Bare nonempty sets of
relations, a system description P can be defined as

F: = (a E A, P E B). (1.1)

1.1 Introduction 3

The structural description of dynamic systems can be provided by matrix nota­
tion, which contains an:

• Input vector u
• Output vector y
• Operator matrix S.

In the following formula:

y=Sou (1.2)

the system operator matrix S. can be expressed as the state matrix K. shown in Fig.
1.1.

Fig. 1.1. Block diagram of a dynamic system

If a system represented by the state vector x(/l) is determined through the initial
state x(/o) and the input function uO over the time interval (10, II) for all II > to, it is
said to be a dynamic system. A dynamic system is of finite order if the state vector
x(/l) has a finite number of components.

The various methods used to build up a model of a dynamic system are usually
combined in a more general view, containing the following information sources:

• Defining goals and purpose
• Determining boundaries
• Identifying relevant components
• Determining the necessary level of detail
• Establishing a priori knowledge
• Gathering data sets through experimentation
• Measuring system inputs and outputs
• Estimating nonmeasurable data, and/or state-space variables

It should be noted that the scopes using models in the various disciplines, such
as science and engineering, can be different. In control-systems engineering they
are concerned with understanding and controlling segments of systems in order to
provide useful economic products for society. In engineering this way mostly
deals with system synthesis and optimization, while engineers are primarily inter­
ested in a mathematical model of the system operated under normal operating

4 I Modeling Continuous-Time and Discrete-Time Systems

conditions. Engineering scopes, while using models, will be to control systems op­
timally, or to keep systems at least in a relatively close vicinity of conditions that
avoid danger of a possible drifting of the system out of the margins of safe opera­
ting conditions. In contrast, in life science, biomedical scientists are not solely in­
terested in mathematical models of biomedical systems that are operated under
normal operating conditions. Life science scientists prefer to develop mathemati­
cal models, that adequately describe the system behavior outside the normal oper­
ating range, which can be interpreted, in medical terms, as a disease case notation.
This represents a dynamic system that is operated outside normal operating set
points.

With respect to the spectrum of available models, the variety of levels of con­
ceptual and mathematical representations is evident, which depend on the goals
and purposes for which the models usage was intended, the extent of a priori
knowledge available, data gathered through experimentation and measurements on
the dynamic system, estimates of system parameters as well as system states.
Hence a dynamic system can be seen as a system that is decomposed to a certain
level of detail. From a more general point of view the mathematical representation
of dynamic systems is based on the foundations of decomposed systems at any re­
quired level, which are the:

• Behavior level; at which one can describe the dynamic system as a black box,
in which we record measurements in a chronological manner, based on a set
of trajectories that characterize the behavior ofthe system. The behavior level
is of importance because experimentation with dynamic systems addresses
this level, due to the input-output relationship, which can be expressed for a
black-box system as:

y(t) = F(~,t) , (1.3)

with u(t) as input set, and y(t) as output set, and F as transfer function, for a
state-structure level; at which one can describe the dynamic system, taking
into account the system state structure that results, by iteration over time, in a
set of trajectories, called behavior. The internal state sets represent the state­
transition function that provides the rules for computing the future states, de­
pending on the current states,

y(t) = G(~(t),~(t),t) . (1.4)

A state of a dynamic system represents the smallest collection of numbers,
specified at time t = to, in order to be able to predict uniquely the behavior of
the system for any time t ;;:: to for any input belonging to the given input set,
provided that every element of the input set is known for t >;;:: to. Such num­
bers are called state variables.

1.1 Introduction 5

• Composite structure level; at which one can describe the dynamic system by
connecting elementary black boxes that can be introduced as a network de­
scription. The elementary black boxes are the components and each one must
be given by a system description at the state-structure level. Moreover each
component must have identified input and output variables as well as a speci­
fication determining the interconnection of the components, and interfacing
the input and output variables.

Difficulties in developing mathematical models may arise because dynamic
systems are, in general, extremely complex. In addition, sufficient amounts of op­
erating data are often not available. Hence constructing a mathematical model for
a given real-world system first requires the selection of a model structure and then
some form of parameter estimation to determine acceptable model parameter val­
ues if they are not available. For this reason sometimes it may be better to develop
simplified models that may eliminate intrinsic characteristics of the system, while
an overcomplicated mathematical model will cause mathematical difficulties.
From a more general point of view two major facts are important when developing
mathematical models of real-world systems:

1. A model is always a simplification of reality, but should never be so simple
that its answers are not true.

2. A model has to be simple enough to allow easy studying and working with it.

Hence a suitable model is a compromise between the mathematical difficulty
attached to complicated equations and the accuracy in the final result. The corre­
sponding relationships are shown in Fig. 1.2.

From Fig. 1.2 one can conclude that there is no reason to develop expensive
models because the increment of quality is less than the increase in cost. This
point is of importance because a mathematical model is a very compact way to
describe dynamic systems. But a complex model not only describes the relations
between the system inputs and outputs, it also allows detailed insights into the sys­
tem structure and internal relationships. This is due to the fact that the main rela­
tions between the variables of the real-world system to be modeled are mapped
into appropriate mathematical expressions. For instance, the relation between in­
put and output variables of a dynamic system can be described, depending on the
complexity of the dynamic system, and by a set of differential equations.

6 I Modeling Continuous-Time and Discrete-Time Systems

Modeling
Expenditure

I

I
I
I
I
I
I
I
I
I
I Maximal

Expenditure --UnvaITd-----T-----
Models I

I

Minimal
Quality

Expensive Models

Valid Models

Model - Quality

Fig. 1.2. Dependence ofthe modeling expenditure (costs) versus the degree of accuracy
(model quality)

In principle, there are two different approaches to obtain a mathematical model
of a real-world system: the deductive or theoretical approach, based on the deriva­
tion of the essential relations of the dynamic system. and the empirical one, based
on experiments on the dynamic system itself. It should be noted that practical ap­
proaches often use a combination of both, which might be the most advantageous
way. The two methods result in the

• Empirical method of experimental modeling; based on measures available on
the inputs and outputs of a real-world system. Based on these measurements,
the empirical model allows construction of a model for the given real-world
system, as shown in Fig. 1.3. The characteristic signal-flow sequence of the
experimental modeling process is used to determine the model structure for
the mathematical description, based on a priori knowledge, which has to fit
the used error criterion, which is chosen in the same way as the performance
criterion for the deductive modeling method.

• Deductive method of theoretical or axiomatic modeling; represents a bottom­
up approach starting at a high level of well-established a priori knowledge of
system elements, representing the mathematical model. In real-world situa­
tions, problems occur in assessing the range of applicability of these models,
the deductive-modeling methodology are supplemented by an empirical mo­
del validation proof step. Afterwards the model can be validated by compa­
ring the simulation results with the data known from the dynamic system
whether they match an error criterion or not. Let e be an error margin, which
depends on the difference between measures on the real-world system J::Rws
and data from the simulation of the mathematical modelJ::MM' as follows:

1.1 Introduction 7

e := e(y (t), y (t)) ,
-RWS _MM

(1.5)

the error criterion can be detennined by minimizing a perfonnance criterion

NO

t

J = fe2.dt ~Min •.
o

System under test
with its demands

' ..
Choice of the model type:

a priori knowledge
equation classes structure

...
Mathematical
model description
system model

...
Choice of the
coefficients and
initial conditions

1 ..
Choices of an

error criterion and
parameters to be optimized

...
Identification ~

~ satisfying

YES

Resulting optimized
system model

(structure, parameters)

Experimental
Investigation of the
system under test

I

Fig. 1.3. Block diagram of the empirical-modeling methodology

(1.6)

8 1 Modeling Continuous-Time and Discrete-Time Systems

System under test
with its demands

Preparation of the
modeling problem:

qualitative system-model

- - - - ..
Mathematical
model description
1. balance equations
2. phenomenology. Eq.

- - - - ..
Structure of the
system model

- - - - ..
Choice of the
coefficients and
initial conditions

Implementation of the
system model

(computer model,
simulation model)

.... r··
Abstraction

.L.
r

Model design

~o~p:telm~le~e~~tion

Model-reproduction t
simulation . _ . _ . _ . ~im~rion_ . _ .

•

Qualification

R~rOO"

verifirtion

Outcome Ex perimen~1 Experimental

Optimization

~NO

comparison fixe d solution,
based on an
error criterion

Outcome
satisfying

YES

Resulting optimized
system model
(structure, parameters)

e .g. data
investigation
of the system

under Text

Fig. 1.4. Block diagram of the empirical modeling expanded by the deductive­
modeling methodology

1.1 Introduction 9

The model fits the chosen performance criterion which depends on the specific
application, when the results obtained from the model by simulation are compared
with the results from data on the real-world system are within the error margin of
the error criterion. If the constructed model is unsatisfactory, a modification is
necessary at the different levels of the deductive modeling scheme, as shown in
Fig. 1.4, The result of the modification, a specific form of a model-validation pro­
cedure, is a model that fits within the boundaries of the intended application better
than the previous model.

It should be noted that a model of a real-world system not only describes the re­
lations between the system inputs and outputs - such as that for black box models
- it also gives insight into the real-world systems structure and into some systems
internal relationships for the respective levels of representation for non-black-box
models. This is due to the fact that the main relationships between the physical va­
riables of the dynamic system are mapped into appropriate mathematical expres­
sions. For instance, the relation between input and output variables of a dynamic
system can be described - depending on its complexity - by sets of ordinary dif­
ferential equations, called ODEs, or by sets of partial differential equations, called
PDEs, which represent the mathematical notation of the dynamic system.

To solve a systems-analysis problem it is necessary to understand the system to
be analyzed, as well as its environment and the respective requirements. Typically
this consists of the following steps:

• Abstraction
• Representation of the model, e.g. by mathematical notation
• Analysis, e.g. by simulation
• Design

which are shown in the block diagram representing the empirical-modeling meth­
odology in Fig. 1.3, and for the deductive methodology of the theoretical or axio­
matic-modeling methodology in Fig. 1.4.

The first step, abstraction, means searching for a model that resembles the dy­
namic system in its salient features but is easier to study. A dynamic system can
be assumed as a real-world object, but its precise description is often unknown.
We may, however, apply all kinds oftest signals in order to get a deeper insight
into the system, and from the measured data we are able to determine the descrip­
tion of the system. To study the system in an analytical manner, a model that re­
sembles the behavior has to be determined, which can be based on the characteris­
tics measured, obtained at least from the test signals, applied to the system inputs.

Applying test signals as system inputs, there are two types of deterministic test
signals used, the unit step and the ramp function, which are related through the ex­
pressions:

10 1 Modeling Continuous-Time and Discrete-Time Systems

Uus(t) =

for the unit step, and

for the ramp function.

o for t < to

for to < t < tl

for t > tl

o for t < to

t-t a __ O

tl -to

a for t > tl

(1.7)

(1.8)

The unit step and the ramp function, as well as many other functions, prove to
be particularly valuable in problems in which successive switching characteristics
may occur. As described in the equations above, it is possible to clearly specify
the order of the switching events. This will be the same in the case that the given
functions are delayed in time.

From a more general point of view the unit step (Uus (t)) and the impulse func­
tion (Uif(t)) can be written using the general mathematical expressions:

(1.9)

and

-I<><>

fUif . dl = Uus (I). (1.10)

It is these forms that lack precision in the mathematical operations involved.
Let a time functionj(/) be a regular continuous function with I:?: 0, but that is zero
for 1 ~ O. The notationj(/)·uus (I) may define this function. When there is a time de­
lay until 1 = Id, before the function is switched, we get

(1.11)

1.1 Introduction 11

With this notation one obtains the mathematical formalisms

<1>(1) = 0 for I::; 0 (1.12)

<I>(t) = J(t) for 0:: 0 (1.13)

Notation Uus (I - Id) characterizes that a unit step function is zero until I = Id, af­
ter which the magnitude is unity. In other words, the unit step function is applied
at time 1= Id. The form.f{1 - Id) is required to insure that the functionals are the
same function.f{/) but applied at time 1= Id.

The impulse function as a test signal can be introduced in a similar way for the
unit step test signal. Suppose that a function.f{/) is continuous at I = 0, we receive:

too

fJ(/). U/F(/)' dl = J(O). (1.14)

This result is heuristically evident while the impulse function is zero every­
where except at I = 0, with a contribution only at this value of I, where the area un­
der the unit impulse function is unity. Correspondingly, for the unit impulse, ap­
plied with a delay in time I = Id, we obtain:

too

fJ(/)' uif(1 -Id)' dl = J(td)' (1.15)

For the derivatives of this function we can write

d<I>(/) dJ(/) --= --. uus(t) + J(/) ,uif(/).
dl dl

(1.16)

It can be noted, that the derivative function contains an impulse at time 1=0.

Example 1.1
The sinusoidal time function cos(t) is started at time t = O. The function and its deriva­

tive are unknown. The solution is as follows

J(/) = COS(/) . uus (I) , (1.17)

with the derivative

dJ(/) = -sin(t). uus (I) + cos(t)· ~uus (t)
dl dl

(1.18)

12 1 Modeling Continuous-Time and Discrete-Time Systems

which can be rewritten as

df(/) = _ sin(/) . uus (I) + COS(/) . Uif (I) .
dl

(1.19)

The scope of the formalization introduced above is to show how functions used
for system-excitation purposes can be separated by applying the superposition me­
thod for the singular test function.

1.2 Modeling Formalisms

Models are used for many different purposes, to explain behavior and data, and to
provide a compact representation of data. Hence modeling is a simpler method of
solving complex problems in science, technology, economics, and other domains,
because the success in analyzing real-world systems depends upon whether or not
the model is properly chosen. In order to develop suitable system models, a thor­
ough understanding of the system and its operating conditions is of essential im­
portance. Since a model is an abstraction it will only capture some properties of
the real-world system. Therefore, it is often necessary to use many different mod­
els.

From a more general point of view we can introduce three types of modeling
concepts for dynamic systems that can be stated as general systems analysis con­
cepts. These concepts depend on the respective a priori knowledge based on

• Knowledge of inputs
• Knowledge of outputs
• Knowledge of system states

for the decision of the unknown, as shown in Fig. 1.5
After a system model structure is found for the dynamic system, the next step is

to find the model formalisms, which means the mathematical equations. These de­
scribe the dynamic system on a much more abstract level. Depending on the dif­
ferent types of systems to be modeled one may model from data as well as from
physics. The latter uses fundamental physical laws like Kirchhoffs circuit laws and
Newtons laws of motion, for example, to determine model structures and parame­
ter values. The equations obtained describing the systems behavior have many
forms like:

• Linear equations
• Non-linear equations
• Integral equations
• Difference equations
• Differential equations
• Petri-net equations ~

1.2 Modeling Formalisms 13

• Bond graph equations

• Stochastic equations

• Tuning band equations

• etc.

~ X P analysis I prediction

~ X? ~ synthesis I identification

-1 X ~ management I control

Fig. 1.5. Types of systems concepts that depend on a priori knowledge of the inputs, out­
puts, or system state

Mathematical models of physical systems, such as mechanical systems, can be
derived from consideration of the physical laws and basic relationships governing
the behavior of the system, such as the equation of motion, the dynamics of mo­
tion, linear springs, friction, levers and gears, as well as the existing boundary
conditions.

Let us consider the dynamics of a body moving with a varying velocity, v. If
the body moves an arbitrary distance x in a given time t, the average velocity of
the body can be simply expressed by the equation

x
v=-

t
(1.20)

While the body is moving linear, by the movement of the body could be exam­
ined over a small period of time LIt. While the velocity of the body has little possi­
bility to change within this period the equation

ax
v=-

At
(1.21)

is a very close approximation of the instantaneous velocity of the body when mov­
ing over small distances LIx. As we continue to reduce the size of the period we
find that, as At approaches zero, the above equation becomes an exact expression
of the instantaneous velocity of the body at any instant of time t, as follows:

14 1 Modeling Continuous-Time and Discrete-Time Systems

vet') = lim ~ 1/=1' '

Llt---70

which can be rewritten as follows

vet) = ~;t),

(1.22)

(1.23)

which means that both, velocity v and arbitrary distance x are functions of time t,
and that v is a measure of the instantaneous rate of change of the distance x with
respect to time t.

Let us now consider a change of velocity with respect to time, which is the case
when the body speeds up or slows down, and on these occasions the body is said
to accelerate or decelerate. Hence the motion can be described as follows:

aCt) = ~;t) , (1.24)

where aCt) is the acceleration, a function of time t. Substituting the equation of vet)
in this equation we obtain

d(~~))
a(t) = -..o..-d-t --<-

(1.25)

which is the second derivative of distance with respect to time.
As an example, in this sense the relationships of systems, which could be the

variables of biological, electrical, mechanical, physical systems, and so forth, can
be described by a set of ordinary differential equations (ODEs) representing the
mathematical system model. Hence a dynamic system can be described by the
differential equation

an . in) (t) + an_I' in-I) (I) + ... + a2 • y"(t) + a l . y'(t) + ao . yet) (1.26)

= bo • u(t);

where yet) is the system output variable and u(t) is the system input variable. Di­
viding this equation and shifting by an results in:

1.2 Modeling Formalisms 15

(1.27)

Rewriting this differential equation with, xo(t), XI(t), ... , xn(t) as substitution
variables, and y(t) as the output variable, we get n first order differential equations

Xo(t) := y(t)

XI (t):= x~(t) = y'(t)

x2(t):= x; (t) = y"(t)

Xn (1) := X~_l (1) = yen) (1)

which result in n differential equations of first order

(1.28)

, () ._ () _ a n- 1 () a n- 2 () a 1 (1.29) X n-l 1 ,-xn 1 ----·xn- 1 1 ---,xn- 2 1 - ... --'X1
an an an

This type of differential equation can be solved by evaluating the integral

t

x{t) = Xo + ff{x{r),u{r), r}dt (1.30)

for successive values t - tl within the calculation interval with numerical integrati­
on methods, such as Euler, Adams Bashfort, Runge Kutta, etc. In general, the dif­
ferent numerical-integration methods approximate the integral by summing. Accu­
racy of the numerical-integration approximation can be achieved when the integra­
tion step length is in between the range of small and large step lengths, which
means in between the region of decreased and increased step length, as shown in

16 I Modeling Continuous-Time and Discrete-Time Systems

Fig. 1.6. The step length chosen influences both the accuracy as well as the calcu­
lation time interval. For details see Appendix A.

Accuracy

approximation
error discretization error

Step length

approximation: expedient step length : integration method
error may . • may become unstable
become to large

Fig. 1.6. Influence ofthe step length on accuracy

The most important step of modeling is the translation of our understanding of
the dynamic system into the mathematical equations of systems theory that can be
introduced as an abstract form of a model. This expresses the characteristics of the
dynamic system in such a way that it selects a particular system from the set of all
systems. Systems theory has its roots in the mathematical representation of dy­
namic systems that was strongly inspired by mechanics. In any case, it is usual to
obtain a set of mathematical equations that describe the important physical vari­
ables of interest of the dynamic system. Describing a dynamic system, based on
the translation of systems knowledge of the system into the mathematical model
language, we are able to use the several possible descriptions, meaning the sets of
mathematical equations. In the case of a time invariant, time continuous system,
we can find a mathematical model MM,c based on ordinary differential equations
as a set of mathematical equations, of the form:

MM1C : (U,X,Y,j,g,T) (1.31)

with U E U: set of inputs, x EX: set of states, y E Y: set of outputs,J: rate of the
change function, g : output function, T: time domain, and

x' = f(x,u)

y = g(x,u)
(1.32)

It may be convenient to place these mathematical equations in a standard or
normal form; the important point here is to decide on variables, called state vari­
ables, which are essential in characterizing the dynamic system. Such a model for-

1.2 Modeling Formalisms 17

malism is a special case of a set structure. Let MM = L, then one can use the three
notations: input, output, and state. Correspondingly we have a state X, a set U of
input values, and a set Y of output values. A mathematical model of a system is
called a dynamic one, if it can be defined as a set structure L:

L:= (X,Y,U, v,t,a,b) , (1.33)

with state variable X, set of output values Y, set of input values U, set of admissib­
le controls v, time domain T, state transition map a, read-out map b.

Assuming a dynamic system with state vector x = [i, UJ, u2f representing an
electrical RCL network, the respective mathematical model equations of which
show the state variable X, set of input variables U as well as the system-parameter
matrix A. The electrical RCL network may be described as follows:

. 1 1
I =-u --u

L I L 2
(1.34)

(1.35)

(1.36)

The graphical representation is shown in Fig. 1.7. These equations can be sim­
plified by supposing that iin = iA = 0, and the resistance RA of the system is

(1.37)

The state variable of this linear time-continuous system can be described as

x'(t) =A'x(t), (1.38)

whereby the (n, n)-system matrix A is given by

18 I Modeling Continuous-Time and Discrete-Time Systems

0
1 -- (1.39)

L L

A= 0 0
C1

1
0 ----

C2 C2 ·RA

The variables i, Ut. U2, represent the state variables of the state variable X. In a
similar way, the values of L, C}, C2, and RA are the parameters of the state variable
model, which are delineated by the system matrix A, which is a (n,n)-matrix. The
electrical representation of the network is given in Fig. 1.7.

-----------,~
L

c, c,

Fig. 1.7. Electrical representation of the network model

In some cases it can be necessary to specify unmeasurable and/or random in­
puts. These system disturbances can be described as impacts of uncontrollability
and/or unobservablility of the ilynamic system being modeled, which can mathe­
matically be described by stochastic, continuous-time models, as follows:

with

MMsc " (u, v, w, X; T, f, g),

x '= f(x, u, W, t)

Y = g (x, v, t).

(1.40)

(1.41)

The vectors v and W are random model disturbances. In the case that v and ware
random or stochastic vector processes, meaning that the stochastic properties of
these vectors are not related to the model specification, then x and y will be the
same process.

In many cases and especially in management and operational research, the dy­
namic system can be thought of as being built up of a collection of events. Even

1.2 Modeling Fonnalisms 19

the state variables change at specific time instants. A mathematical description of
which can be based on the notation of a mathematical discrete event model, yields

(1.42)

with V: set of external events, S: sequence of states, Y: set of outputs, If. transition
function, ,1,: output function, To time function

Many dynamic systems have properties that vary continuously in space, which
can be described based on distributed models. The mathematical expression for
distributed models is based on partial differential equations, which result in the
following mathematical model description:

MMpDE : (U,e,Y,F,r,g,z,T) ,

with

oe
0= f(e,-,u,z,t)ZE Z; 0 = r(e,z,t)z domZ; y = g(e,z,t)ZE Z.

otoz

(1.43)

(1.44)

Apart from the independent variable t, the space coordinate z is introduced. e is
the vector of the dependent variables that can vary in space and time. The equa­
tion(s) hold(s) in a spatial domain Z while conditions given by r are provided on
the boundary of the domain domZ. There are input U and output y.

Dynamic systems may have different specific mathematical-modeling fonna­
lisms expressed in the several mathematical equations. Then finally applying sys­
tem theory on dynamic systems, we obtain sets of state variables that are the ma­
thematical model of the respective dynamic system. This can be interpreted as
translating the equations of the dynamic system variables into state-variable equa­
tions in the standard fonn, if possible, the latter equations are called state equati­
ons for the particular dynamic system. In conclusion, the modeling procedure con­
sists of defining a mathematical model of the dynamic system and translating it
into a set of descriptive state equations that can be expressed in the following
state-variable model description:

x '(t) = j{x(t), u(t), t)
y(t) = g (x(t), u(t), t), (l.45)

with x(t) as n-dimensional state vector, x'(t) as its derivative, y(t) as q-dimensional
output vector, u(t) as p-dimensional input vector, and f and g as nonlinear vector
functions. The state variables in (1.45) are said to be related by a nonlinear trans­
fonnation and hence they are called nonlinear state equations. The block diagram
of the nonlinear state variable model is shown in Fig. 1.8.

20 1 Modeling Continuous-Time and Discrete-Time Systems

u(t)

Fig. 1.8. Structural representation of the state-variable model of (1.45)

Hence we can rewrite {l.45) as a nonlinear system with small excitation L1x
around the initial state Xo

~(xo+ Ax) = f(xo, uo, t) + (df) Ax + (df) ..du.
~ ~o ~o

(1.46)

Simplification of (1.46) results in a linear state-variable model

x'(t) = A·x(t) + B· u(t)
(1.47)

y(t) = C· x(t) + D· u(t),

with x as n-dimensional state vector, u as p-dimensional input vector, and y as q­
dimensional output vector. A is a (n, n)-matrix, which is called the system matrix,
B is a (n,p)-matrix, which is called the input matrix, C is a (q, n)-matrix, which is
called the output matrix, and D is a (q, p)-matrix, which is called the transition
matrix. The matrixes A, B, C, and D are based on constant elements.

The state equations for systems with only one input and one output variable are
a special case of the state variable expression above, given in (1.47).

The state equations given in (1.47) are said to be related by a linear transforma­
tion. For given initial state values x\(O), ... , xn(O) and a given input function u(t)
defined for t> ° there exists a unique solution of the state equations x\(t), ... ,xn(t)
defined for all t> 0, i.e the functions x\(t), ... , xn(t) satisfy the state equations ex­
actly for all t> 0, and hence there exists a unique output functiony(t) defined for t
>0.

In the case that elements of the matrixes A, B, C, and D are time dependent, the
state variables given in (1.47) are said to describe a linear time-variant system.

Assuming that the influence of u(t) ony(t) is normally indirect, we may neglect
D, writing D == 0, which results in a structural diagram of a linear state-variable
model, as shown in Fig. 1.9.

1.2 Modeling Formalisms 21

~B

Fig. 1.9. Structural representation of the linear state-variable model with D;: 0

Once a mathematical description of a dynamic system is obtained, the next step
in studying the dynamic system involves the analysis - quantitative as well as qua­
litative - as a way of understanding the transient responses. Our interest in the ca­
se of a quantitative analysis is the response calculation ofthe system to certain ini­
tial input conditions. This part of the analysis can easily be achieved by computer
simulation using the various simulation software packages, as described in Chap.
4. For a qualitative analysis, our interests are the properties of the system under
test such as stability, controllability, observability, and others, which were intro­
duced by Kalman in the 1960s. These proofs of system characteristics are of im­
portance, while it is possible to obtain a better understanding of the system by the
respective proofs. For example, stability analysis illustrates that a system with an
equilibrium state is roughly stable if for any initial state close to the equilibrium
state the state response tends, in the limit as time increases, to go to the equilib­
rium state. In the same way, controllability and observability illustrate the dy­
namic properties of the system, which are examined in more detail in Chap. 2.

If the response of a modeled and simulated system are found to be unsatisfacto­
ry, the model of the system has to be improved or optimized. In some cases, the
response of the model of the system can be improved adjusting certain parameters
of the system model that can be successfully done by using parameter-estimation
techniques, which are examined in more detail in Chap. 5, as well as adjusting the
system model state itself. This can be done successfully by using state-estimation
methods. The basic principle of parameter estimation are the adjustment of the pa­
rameter vector fl of an identification model with the same structure as the true
model of the dynamic system in such a way that its output ~ = g(!!., J, fl, t) will co­
incide with the true model output ~ = g(!!., J, flTM' t), as shown in the principle dia­
gram of the parameter estimation scheme, in Fig. 1.10.

Input

Parameter Correction

Model
Error Parameter

Adjustment
Algorithm

Fig. 1.10. Structural representation ofthe parameter-estimation method

22 I Modeling Continuous-Time and Discrete-Time Systems

1.3. System Elements and Models of Continuous-Time
Systems

A number of systems are studied from a diverse range of scientific disciplines. As
mentioned above, one of the advantages of the systems-theory approach in mode­
ling and simulation is that systems theory is applicable to a wide range of complex
dynamic systems. Due to this fact the basic principles of the most important clas­
ses of physical systems that are used for modeling and simulation of systems, can
be introduced from a more general point of view. The most general are electrical
elements that are used in most tutorials of simulation systems like Modelica,
SIMULINK, and so forth. It should be noted that the complexity of model struc­
tures, as they are used for simulation studies, depends on the purpose for which
the models are developed.

1.3.1 Electrical Elements

An important class of systems are those that can be described based on electrical
elements like resistors, capacitors, inductors, and are expressed in terms of the
physical variables, voltage, charge, and current. Resistors, capacitors, and induc­
tors are the heart of any electrical circuit and/or network configuration, using the
standardized symbols as shown in Fig. 1.11.

R L

~~ ----resistor inductor capacitor

Fig. 1.11. Electrical representation of network components

In an ideal resistor the voltage drop V across a resistor R is related to the current
! through the resistor R, expressed by Ohms law, named after the German physi­
cist, born 1789 in Erlangen, Bavaria, as

VR =R·!, (1.48)

where R is a constant, called resistance, and depends on the physical material con­
stants X, p, length I, and cross-sectional area A, hence

1 1
R=-=p.-; n,

X·A A
(1.49)

with

1.3. System Elements and Models of Continuous-Time Systems 23

% = -l1e · Pe = -l1e(-n.e), (1.50)

where constant X represents the conductivity of the material, constant J1 is used for
the mobility of the electrons, n-e give the elementary charge, P is a constant char­
acterizing the density of electrons of the respective material, A is the cross-sectio­
nal area of the conductive material the current I passes through, and I is the length
of the (copper) wire the resistor is made from. A resistor has a linear response cha­
racteristic over frequency, which means the resistor is independent of frequency.

In an ideal capacitor the charge Q on a capacitor is related to the voltage drop V
across the capacitor C , given by the relationship

(1.51)

where C is a proportional constant, called capacitance. The capacitance is a geo­
metric factor given by the expression

c·A F C=---; ,
4·Jr·d

(1.52)

where c is the permittivity, called dielectric constant, of the material, A is the area
of the plates of the capacitor, and d is the space between these plates. In general £

= ~t{} where Eo = 1/36 1tl09 Flm, called free-space permittivity, and Er is called
relative permittivity. For the current through the capacitor the mathematical for­
mula is:

1= dQ = dV . C; A
dt dt

(1.53)

In cases such as the nonlinear one, C can be a complex relation between the en­
ergy stored in the electric field E of the capacitor, and the charge Q, given by a re­
lationship like

(1.54)

For a linear relationship, the voltage is proportional to the charge, that is Q '" E,
thus

I=C- dVe .
dt

(1.55)

24 1 Modeling Continuous-Time and Discrete-Time Systems

It should be noted that the response characteristic of a capacitor is nonlinear
against frequency.

Example 1.2
If the voltage across a capacitor changes by 1000 V in 20 ms when a current of 50 rnA

passes into it, what is the value of the capacitor? With

and after rearranging we obtain

C·V
J=-­

t
(1.56)

(1.57)

In an ideal inductor the voltage drop V across the inductor is related to the rate

of change of current through the inductor dJ by
dt

dJ
V =L·-

L dt '
(1.58)

where L is a constant, called inductance. Assuming a linear inductor, the inductan­
ce is related to the flux linkage If/= N¢, where N is assumed as a single inductor
circuit of N turns carrying a constant current J that is placed in a magnetic field
from fixed external sources. Owing to the mechanical force of magnetic origin
that acts on the system, we can imagine that the inductor is displaced from its ze­
ro- current position. Due the displacement of the inductor current there is a change
of flux linkages. This flux linkage is accompanied by an electromagnetic force be­
ing induced into it, which according to Faradays law of induction, named after the
English chemist and physicist Faraday, born 1791 in Surrey, England, is

d<P d'l'
E=-H·-=-

dt dt'
(1.59)

where dlf/ denotes the time required to effect the displacement. For a linear ('If,
dt

1) characteristic, '1'''''' J, the proportional constant is termed the inductance L

L='I'· H.
I'

(1.60)

1.3. System Elements and Models of Continuous-Time Systems 25

In order to describe the inductor L as a network element, we can use a relation
between current I and voltage V, which is given by

~ =dlf/ =L. dI . v.
L dt dt'

(1.61)

This is the fundamental relation for the linear inductor when I is the dependent
variable. The corresponding form, when VL is the dependent variable, is:

(1.62)

Since resistors, capacitors, and inductors are typically connected in networks
there are necessarily imposed relations between the physical variables; these elec­
trical relationships are referred to as Kichhoffs voltage law and Kirchhoffs current
law, discovered on 1854 by the German physicist Kirchhoff, born 1824 in Konigs­
berg, Germany.

Simply stated, the voltage law says that the sum of all the voltage rises and
voltage drops around a closed loop is equal to zero:

(1.63)

Kirchhoffs current law states that the sum of all the currents entering and leav­
ing a node is equal to zero:

(1.64)

These two laws are important as they form the very heart of any electrical cir­
cuit and/or network. In most cases, electrical networks includes voltage sources
and current sources.

Example 1.3
Application ofKirchhoffs circuital laws in an electrical network, see Fig. 1.12.

V, r :"1 ~ Cll]
Fig. 1.12. Electrical network

The electrical network has a resistor R, an inductance L and a capacitor C in series with
an electromotive force Vo. Applying Kirchhoffs circuital laws we find

26 1 Modeling Continuous-Time and Discrete-Time Systems

(1.65)

and

(1.66)

hence

(1.67)

where OJ = 2· Jrj With XR = R, XL = oL, and Xc = 11 tiC we find, due to the frequency de­
pendency in ro, that the inductance and the capacitance have a nonlinear characteristic, as
shown in Fig. 1.13.

~~~------------------~~---XR 

Fig. 1.13. Frequency dependency of XR, XL, andXc 

On the other hand, when applying Kirchhoffs circuit law, we may obtain 

d! Q 
L·-+R·!+-=V, 

dt C 0' 
(1.68) 

and since dQ = I, we may differentiate the equation above, and obtain (when Vo is as-
dt 

sumed to be a constant): 

d 2! d! 1 
L·-+R·-+-=O 

dt 2 dt C ' 
(1.69) 

which is a second-order linear homogeneous differential equation with the auxilliary equa­
tion 



1.3. System Elements and Models of Continuous-Time Systems 27 

2 R 1 x +x·_+--=O 
L C·L ' 

(1. 70) 

which has the roots 

-R±(R2 _4~)1/2 
x= C 

(1.71) 

2·L 

As Example 1.3 shows, real-world problems could easily be modeled based on 
the respective a priori knowledge (which can be given in physical laws), measure­
ments of the system inputs and outputs, phenomenological knowledge, and so 
forth. The simplicity of Example 1.3 has no influence on the general impact of the 
methodology on mathematical and computer modeling and simulation. It only 
shows how to proceed when solving problems related to an electrical network. It is 
clear that most of the real-world problems that are solved using modeling and si­
mulation are very complex ones, which means incorporate nonlinearities or vari­
ous time dependencies, and so forth. In these cases the only possibility to obtain a 
good enough solution will be simulation, while an analytical solution is not possi­
ble. 

1.3.2 Particle Dynamics 

Another important class of physical processes in modeling and simulation are tho­
se that can be described in terms of motion of (ideal) particles. The important 
physical variables for each particle are its position as measured from a fixed refe­
rence, its velocity, and its acceleration. Also of importance is the force acting on 
the respective particle. The basic relations that characterizes the motion of a parti­
cle are based on the laws of mechanics, which are known as Newtons first, second 
and third law of motion, named after the English mathematician Newton, born 
1643 in Woolsthorpe, Lincolnshire, England, which he was very secretive about; 

• A body continues in the state of rest or of uniform motion in a straight line 
unless it is compelled to change that state by forces impressed upon it. 

• The change of motion is proportional to the motive force impressed, and is in 
the direction of the straight line in which the force is impressed. 

• To every action there is always a reaction equal in magnitude and opposite in 
direction. 

• Two particles are attracted toward each other along a line connecting them 
with a force whose magnitude is directly proportional to the product of the 
masses and inversely proportional to the square of the distance between them. 

The force F on a particle and the acceleration a ofthe particle are related by 



28 1 Modeling Continuous-Time and Discrete-Time Systems 

F=m·a, (1.72) 

where the mass m of the particle is assumed constant. The acceleration of the par­
ticle is related to its velocity v by 

a 
dv 
dt ' 

and the velocity of the particle is related to its position H by 

v = dH 

dt 

(1.73) 

(1.74) 

Force, acceleration, velocity, and position can be considered as vector variables 
in the usual sense. In many situations it is desired to consider the motion of a col­
lection of particles; it is often convenient to examine free-body diagrams, which 
are used to indicate the various forces on each particle in the collection. The mo­
tion of rigid bodies, consisting of an infinite number of such particles, is often of 
interest. The relevant equations for a rigid body can be obtained by using the rela­
tions given above, and integration over the body scope. The resulting motion is 
described by equations as above in terms of the center of gravity of the body; the 
rotational motion of the body is described in terms of the angular position of the 
body as measured from a fixed reference, its angular velocity, and its angular ac­
celeration; the torque acting on the rigid body is also important. It can be shown 
that the torque Tacting on a rigid body and the angular acceleration a of the rigid 
body are related by 

T=I ·a, (1.75) 

where the moment of inertia I of the rigid body is assumed constant. The angular 
acceleration of the rigid body is related to its angular velocity OJ by 

dOJ 
a=­

dt ' 
(1. 76) 

and the angular velocity of the rigid body is related to its angular position B by 

dB 
OJ=-· 

dt 
(1.77) 



1.3. System Elements and Models of Continuous-Time Systems 29 

Torque, angular acceleration, angular velocity, and angular position may also 
be considered as vector variables. The above relationships are essential ingredients 
in describing the motion of particles and rigid bodies. 

The above is a very brief description of the basic elements in Newtonian me­
chanics. The principles of conservation of momentum and conservation of energy 
often lead to useful relationships for elastic collision between real objects. The 
simplest collision to model and simulate may involve two imaginary particles with 
mass and velocity, but no size. When such two particles collide, their new veloci­
ties are controlled, as mentioned, by the principle of the conservation of momen­
tum and the principle of relative motion. Supposing that the momentum of a par­
ticle is the product of its mass and velocity, and given two particles with mass ml 
and m2, and associated velocities VI and V2, 

(1.78) 

where const. represents a constant. 
The principle of relative motion states that the relative velocity after an impact 

equals the relative velocity before the impact, but multiplied by a coefficient of re­
striction r. Hence the respective velocities of the two particles after the collision 
are Viae and V2ae, which yields in 

(1.79) 

Example 1.4 
As an example of particle dynamics we may suppose two particles are positioned at CI 

and C2 at the time of impact. Their respective velocities are VI and V2, and angles al and az 
relative to the line connecting their two centers. The components of velocity perpendicular 
to lines CI and C2 are unaltered by the collision and are given by the relations VI"SinUI and 
v2·sinu2 respectively. The components of the velocity parallel to line CIC2 are subject to the 
conservation of momentum while the particular masses are accelerated. Hence: 

(1.80) 

and by Newtons law of relative motion we obtain 

(1.81 ) 

and substituting the last two equations we find 

(1.82) 



30 1 Modeling Continuous-Time and Discrete-Time Systems 

and 

(1.83) 

The final velocity of each particle, and its direction of motion, can be found from the 
perpendicular and parallel components. 

Assuming that the second particle is at rest, the final velocities may be calculated as fol­
lows: 

(m -r·m )·v ·cosa v - I 2 I I 
lac -

m1 +m2 

(1.84) 

1.3.3 Mechanical Elements 

Consider a source of kinetic energy Ek described by 

E ="!'-m.v2 • J, 
k 2 ' 

(1.85) 

with v as the velocity. When considered in terms of Newtons law of motion, the 
definition results from 

d 
j= d/m .v); N, (1.86) 

which states that the time rate of change of momentum is equal to the applied for­
ce, f, and is in the direction of the force. Under ordinary circumstances the velo­
city of motion is sufficiently small so that the mass m remains substantially con­
stant, and the above equation may be rewritten in the form 

dv d 2x 
j=m·-=m·--=m·a, 

dt dt 2 
(1.87) 

dv d 2 x 
where - = -- = a is the acceleration of the mass element. In this form m may 

dt dt 2 

be introduced as the proportionality factor between force and acceleration. 
Let us assume that a set of mechanical elements and rotational variables exist. 

In the rotational system, torque is the flow or through variable, and angular veloc­
i 



1.3. System Elements and Models of Continuous-Time Systems 31 

ity (or angular displacement, or angular acceleration) is the motional or across 
variable. The corresponding fundamental quantities are: 

OJ 

= polar moment of inertia, corresponds to mx in translation, 
= rotational damping, corresponds to d in translation, 
= rotational spring constant, corresponds to ks in translation, 
= torque, corresponds to f in translation, 

dCl> I I· d dx. I· = -, angu ar ve OClty, correspon s to v = - III trans atlOn. 
dt dt 

When introducing inertia we are usually referring to the inertial mass of an ob­
ject. For a body with a large amount of inertia it is difficult to start the body mov­
ing or to accelerate movement of the body and once the body is moving it is 
equally difficult to bring the body to rest again. Inertia in this sense means, the 
body could be moving in a straight line, could be rotating on a shaft, or could be a 
combination of both motions, as is realized in the wheel of cars, and so forth. 
However, for the moment of inertia of a rotating body, we refer to a specific prop­
erty of the body and its manner of rotation. While the moment of inertia is a 
measure of the body's ability to resist any attempt to change its speed or rotation, 
and is dependent not only upon the body mass, but also upon how that mass is dis­
tributed about the axis around which the body rotates, which results in the mo­
ments of inertia of body mass m, about the axis x, y, and z, respectively. Jx is re­
ferred to as the polar moment of inertia, which is quite different in magnitude 
from J y and Jz. 

The rotary force required to start or stop a body spinning is called torque T(t). 
Newtons second law of motion, when applied to rotating bodies, can be simply 
stated as a proportional relationship while the rate of change of angular momen­
tum of a body is directly proportional to the torque acting on the body, where J, is 
the proportionality between torque and angular acceleration, 

dO) 
T(t)=J .-. 

x dt 
(1.88) 

The polar moment of inertia Jx of a rotational body depends upon the body 
mass m and the square of a characteristic distance of the body, which may be in­
troduced as the radius of gyration, E, which can be expressed as follows 

(1.89) 

For a simple point mass rotating about an axis at a distance r from the center of 
mass, with E= r, we obtain 

(1.90) 



32 1 Modeling Continuous-Time and Discrete-Time Systems 

Example 1.5 
For a floppy disk of radius r, rotating about its center, with 

(1.91 ) 

we obtain the polar moment of the inertia as 

r;n2 2 
J x =m·(r· v2) =2·m·r . (1.92) 

Example 1.6 
Suppose a planet of mass mp is moving around the sun on a pathway with the position r 

= r(t). Assuming Newtons inverse square gravitational law, the equation of motion for the 
planet may be described by a second-order differential equation 

d 2r g·m·m m - S P e P'--2 -- 2 r' 
dt r 

(1.93) 

where g is the gravitational constant, ms is the body mass of the sun, and er is a unit vector 
in the direction of r. With T= g'ms, and assuming the motion is in a plane, with plane polar 
coordinates rand qJ, we obtain 

(1.94) 

with r = r'e" as illustrated in Fig. 1.14. 

Planet 

r 

Sun cp 

Fig. 1.14. Planetary motion around the Sun 

With the first-order differential equation 

dr. . 
-=r·e +r·rp·e 
dt r 'P 

(1.95) 

and the second-order differential equation 

(1.96) 



1.3. System Elements and Models of Continuous-Time Systems 33 

d2 

and substituting for -2 r in (1.94) results in 
dt 

( " '2} (2" "'In ( r ) r -r· rp er + . r .rp +r . rp hI' = - 2 . er .• 

r 
(1.97) 

Equating coefficients er and eq> we obtain the following equations: 

" ,2 (r) r -r·rp =--
r2 

(1.98) 

and 

2· r'·rp'+ r . rp"= 0 . (1.99) 

Equation (1.99) can be written as: 

(1.100) 

. h d (2 ') O· d . . Wit - r . rp = , an mtegratmg 
dt 

(1.101) 

where h is the angular momentum per unit of the body mass of the sun, substituting for qf 
in (1.98) results in 

(1.102) 

which is a nonlinear second-order differential equation for the position vector r as a func­
tion of time t. Solving this equation by using the substitution p = lIr, and solving the equa­
tion for p as a function of rp. Hence we receive, when using (1.1 0 1), 

1 
dp dp dt d r r' r 

drp = dt . drp dt· rp' = - r2. rp' -J; , (1.103) 

and, using (1.1 01) again, 

d2 P 1 d, 1 d , dt r" 2 r" 
--=--·-r=--·-r·-=---=-r .-. 
drp2 h drp h dt drp h· rp' h2 

(1.104) 

Thus we obtain for (1.1 02) 



34 1 Modeling Continuous-Time and Discrete-Time Systems 

(1.105) 

and 

(1.106) 

which is a linear second-order differential equation, with the complementary solution p = 

A·costp+ B·sintp, and the one particular solutionp = flh2. The axis can be chosen in such a 
way that B = 0, hence we can write the solution as 

r 
P =-+A·cos m h2 't', 

(1.107) 

and, with p = r-1, we obtain 

h2 

r - r 
- A·h2 

l+--·cosrp 
r 

(1.108) 

For most planets eccentricity of the respective elliptic orbit can be assumed to be small, 

and as a good enough approximation we may assume a circular orbit with r = ~. While A 
r 

= 0 in (1.108) we obtain with (1.101) 

d(jJ 

dt 

h 

Integrating around a complete orbit results in 

(1.109) 

(1.110) 

with Tthe periodic time ofthe planet. Hence the planetary model shows the behavior 

T _ 2·tr 3/2 
- r1l2 . r (1.111) 

Looking at the results by noting that the equation above can be written in a logarithmic 
form, we obtain 



1.3. System Elements and Models of Continuous-Time Systems 35 

InT =K+3.2lnr (1.112) 

with K as a constant, hence a log T - In r graph, which can be a straight line with slope ~, 
2 

the result of which is shown in Fig. 1.15 

'"}L 
In r 

Fig. 1.15. Kepler's third law 

Example 1.7 
Applications of mechanical systems are diverse. In this example it may be used for 

modeling and simulation of soft-tissue deformation. Modeling and simulation of tissue de­
formation is of importance when designing the optimal implant shape and position of soft­
tissue implants in order to achieve breast symmetry while using soft-tissue implants after a 
mastectomy in the case of breast cancer in women. Modeling may be done by using a mass 
damper spring model, which is a simple model type or using a more complex type of 
model, such as a finite element model. The mass damper spring model offers the possibility 
for computer simulation of tissue deformation under real-time constraints that can be de­
scribed according to Newtons law by second-order differential equation (see Sect. 2.1) 

d 2x dx 
M.·-=-D. ·--K.x+M.·g+ f(t). 

I dt2 I dt I I 
(1.113) 

Rearranging (1.1l3) by placing terms involving x and its derivatives on the left gives 

d 2x dx 
M. ·-2 +D. ·_+K.x+M··g=f(t), 

I dt I dt I I 
(1.114) 

with ~ the mass of the soft-tissue implant under the musculus pectoralis major, D j is the 
damping factor of the material of the soft-tissue implant, which can be silicone or saline fil­
led, Cj is the strength constant of the separated upper part of the musculus pectoralis major 
while embedding the soft-tissue implant, x is the contractility of the separated upper part of 
the musculus pectoralis major. 

Neglecting.f(t) at the right side of(1.114), which represents an external force, and due to 
the downward forces as a result of gravity onto the mass of the tissue implant, we can solve 
the equation for the static operating point Xsop, due to the gravitational force only, that is, 

d2xso'P dxso'P M . . --2-+ D . . --+ K.xso>n = M . . g . 
I dt I dt IT I 

(1.115) 



36 1 Modeling Continuous-Time and Discrete-Time Systems 

Since Xsop is a constant, which is proper to use while in a standing position, which show 
no movement of the breast, its derivatives are zero and (1.115) becomes 

(1.116) 

Therefore, the static equilibrium positionxsop of the soft-tissue implant is 

(1.117) 

If we define x as the sum of the constant Xsop resulting from Meg and a variation &- re­
sulting from the influence ofj(t), that is 

X=Xsop +& . (1.118) 

Using (l.118) in (l.117) yields the linear differential equation for the variation &- as 

M. d2 (&2 ) + D.· d(&) + K.(&) = f(t), 
I dt I dt I 

(1.119) 

which can be solved by using a simulation software package. 

1.3.4 Fluid Mechanics 

Some physical processes involve the motion of liquids and gases. Liquid systems 
are assemblies of liquid-filled tanks or vessels that are connected by pipes, tubes, 
orifices, and other flow-restricting devices. The analysis of such systems will pro­
ceed by using the fundamental laws that govern the flow of liquids. Assuming 
steady-flow conditions, the law states merely that accelerations, if they exist, will 
be small. To analyze flow phenomena, it is of importance to realize that two dif­
ferent types of flow exist, laminar flow and turbulent flow. A detailed study of 
fluid flow has yielded a criterion that allows an estimate of whether the flow is 
laminar or turbulent, called the Reynolds criterion: the flow is turbulent if the 
Reynolds number exceeds a certain figure, and is laminar if it is less than a some­
what smaller number. The Reynolds number, named after the physicist Reynolds, 
born 1842 in Manchester, England, which is deduced from dimensional analysis 
considerations, is a dimensionless quantity involving the important factors in­
volved in flow problems, and is given by the quantity 

Re = ..:..p_·_v_·_D_ 
17 

(1.120) 



1.3. System Elements and Models of Continuous-Time Systems 37 

where p is the density, V is the stream velocity, D is a characteristic dimension 
(equals the diameter, if the duct is cylindrical), and T1 is the absolute viscosity. 

The relationships that govern the macroscopic motions of fluids are conserva­
tion of mass and conservation of energy. It is usual to assume that liquids are in­
compressible, that is the volume of a liquid is a constant. Gases are usually con­
sidered to be compressible; the ideal gas law, called Boyle Mariottes law states 
that the pressure P of a gas multiplied by its volume V, divided by its absolute 
temperature T, is always constant 

V·p 
--=consf. 

T 
(1.121) 

The Irish chemist and physicist Boyle was born 1627 in Lismore Castele, Mun­
ster, Ireland. The French physicist Mariotte was born 1629 in Chazeuil, France. 

Example 1.8 
Concept of liquid capacitance 

~q; 
i---f------

H 

A 

R 

a 

Fig. 1.16. Concept ofliquid capacitance 

The concept of liquid capacitance is a simple one to understand; it is simply a measure 
of the capacity of a tank to store the liquid. The situation is illustrated in Fig. 1.16. Given is 
a tank with the cross sectional area A [m2], and the water height in the tank H [m]. Assum­
ing that the tank outlet qQ [m3/s] will be proportional to the tank inlet qi [m3/s], we may cal­
culate the liquid volume in the tank 

dV 
-=q-q' dt I 0 

(1.122) 

which simply relates the flow rate into the tank qi with the flow rate out of the tank qQ. The 
water height in the tank will be influenced by the flow resistance R. 

The state-variable equation as well as the output equation of the dynamic system has to 
be derived. The tank volume may be expressed as 



38 I Modeling Continuous-Time and Discrete-Time Systems 

V(t) = A· H(t). 

After differentiation we obtain: 

dV =A. dH 
dt dt ' 

which results in the first-order differential equation: 

dV dH 
-=A·-=q.-q. 
dt dt' 0 

The term qo depends on the flow resistance, which can be expressed as follows 

Hence we receive the first-order differential equation: 

dV dH I - = A·---;-q -_. H(t), 
dt dt'R 

which results in the state equation: 

dH I I -=_.q. --·H(t), 
dt A ' R·A 

and in the output equation 

1 
y(t) = - H(t). 

R 

The liquid capacitance is then defined by the relation 

c = dV. [2] 
dH' m . 

(1.123) 

(1.124) 

(1.125) 

(1.126) 

(1.127) 

(1.128) 

(1.129) 

(1.130) 

Several specific responses may now be determined, like the influence of the water level 
H in the tank due to the time needed to empty the tank, as shown in Fig. 1.17. 



1.3. System Elements and Models of Continuous-Time Systems 39 

H 

H, 
H, 
H, 
H. 

Fig. 1.17. Influence of the inflow-outflow relation on the water level H 

1.3.5 Diffusion Dynamics 

This is the inevitability of the transfer of mass from one region to another in ho­
mogeneous dynamic systems showing concentration gradients. The way in which 
the transfer of mass takes place can be assumed in the theoretical treatment of dif­
fusion. The fundamental assumption of diffusion, given by the German physiolo­
gist Fick, in 1855, who was born 1829 in Wiirzburg, Germany, which stated that 
the rate of diffusion across any plane at right angles to the direction of diffusion 
bears a simple linear relation (quantitatively defined by a constant, called the dif­
fusion constant) to the concentration gradient across the plane in the area investi­
gated. Stated in mathematical terms the so-called Ficks law is as follows 

or 

au 
dQ=-k·A·_·dt ax ' 

au 
dQ=-D·A·_·dt ax ' 

(1.131) 

(1.132) 

where dQ represents the amount of mass (or material) diffusing in the time dt (du­
ring which all conditions may be considered to remain constant) across the plane 
of area A at right angles to the direction of diffusion, the concentration gradient at 

au 
the plane being -. Instead of the symbol D in (1.132), Fick uses the symbol k ax 
assumed to be a constant for all values of u. Experimental work shows that this as­
sumption is justified at best only as a somewhat rough approximation; for this rea­
son the term diffusion coefficient is preferable. D evidently represents the amount 
of mass (or material) that in unit time and with unit concentration gradient would 
cross a plane of unit area at right angles to the direction of diffusion. 



40 1 Modeling Continuous-Time and Discrete-Time Systems 

The unit of concentration, u, may be defined as one unit of quantity in unit vol­
ume. For the latter, the cubic centimeter is used rather than the liter, and if, as is 
generally the case, concentrations in a given problem are originally expressed in 
mol per liter they must first be divided by 1000 before being introduced into Ficks 
equation. Since the unit in which Q is measured also enters into the definition of 
the unit of concentration, the same numerical value of D must obviously apply to 
all cases of diffusion regardless of whether measurements are made in terms of 
mol, grams, number of individual molecules, etc. 

Ficks equation contains four variables, Q, u, x and t. The number of these vari­
ables may be reduced to three, and a partial differential equation may be obtained 
whose solution for many popular problems may be much easier. The latter equa­
tion, sometimes known as Ficks second equation, may be introduced as the gen­
eral diffusion equation. 

1.3.6 Thermodynamics 

Another important class of physical processes are those that involve the transfer of 
heat from one substance to another, which is a complex topic. The basic principle 
of thermodynamics is the principle of conservation of energy. Heat can be trans­
ferred between two bodies in such a way that the heat transfer rate Q to a body is 

dT 
related to the rate of change of the temperature of the body - by the relation 

dt 

(1.133) 

where m is the body masss, and Cp is the specific body heat, T is the temperature, 
and Q as the heat flow is given by the Boltzmanns law for surface radiation, 
named after the Austrian mathematician and physicist Boltzmann, born 1844 in 
Vienna, which is 

(1.134) 

where O"is the Boltzmann constant, A is the surface area, lOis the emissivity of the 
surface (which can range between 0 and 1) and e is the temperature in Kelvin. If 
the heat transfer depends on convection then the heat transfer rate is directly pro­
portional to the temperature difference between the body and its surrounding. The 
temperature of a gas also depends on its volume and pressure. The above fourth 
power law, as compared with the square-root relation for turbulent fluid flow, and 
the linear relation for the electrical current, gives the radiation resistance as 

R _ _ dE>_~ ____ 1_---:;-
~ dQ - 4· A . 0" . £ . 8 3 

(1.135) 



1.3. System Elements and Models of Continuous-Time Systems 41 

where e a is the average of radiator and receiver temperatures. 
Hence the thermal capacitance, expressed by C, can be formulated as 

Example 1.9 

C=d8=Q. 
dt 

(1.136) 

Let a heated hot water tank, measuring 1 m3, store water at a temperature level of 65°C. 
The tank is covered on all sides with an isolation isoT of thickness 0.1 m. The thermal con­
ductivity k is assumed to be k = 0.5 KIm, with K as temperature in Kelvin. If the surface 
temperature level of the isolation is assumed to be 25°C, the heat transfer rate Q, which is 
in this case study the rate of heat loss through the isolation can be given by 

Q = k· A !18 = k· A (T _ T ). W, 
• • A 1$0' 

(1.137) 
ISOT ISOT 

where A is the total surface of the tank, calculated as A = 4·1·1 + 2·1 = 6 m2, which yields 
for (1.137) 

Q= 0.5·6·(65-25) =1200 w. 
01 

(1.138) 

The concept of water heating is based, from a general point of view, on the as­
sumptions that the heat is produced at a constant heat transfer rate Q for a time T 
so that the total heat supplied is given by 

h=Q-T. (1.139) 

Experiments show that the heat required to change the temperature of a mass m 

ofliquid by the temperature difference Lleis proportional to both m and Llei.e. 

(1.140) 

Thus 

(1.141) 

and the proportionality constant for the liquid, called specific heat capacity or 
thermal capacity C, which yields 

h = Q -T = C. m ·!18 . (1.142) 



42 1 Modeling Continuous-Time and Discrete-Time Systems 

For a much more realistic model we have to take into account the casing of the 
cylinder and the surroundings. If the casing is assumed to be at the temperature of 
the water that it is in contact with and m is the mass of that part of the casing sur­
rounding the heated water, then 

(1.143) 

where suffix w refers to the water and c to the casing, respectively, while C is the 
specific heat capacity of the casing. It should be noted that we have neglected heat 
lost to the surroundings in this model. 

1.3.7 Chemical Dynamics 

Another class of important processes in modeling and simulation are those that are 
characterized by chemical reactions. The chemical reaction can be described by 
the rate at which the reaction occurs, which can be quite complicated since the rate 
generally depends on the amount of reactants as well as the particular nature of the 
reactions. In general, chemical reactions can be described by using so called com­
partment models that are based on the rate exchange .at which the reaction is based 
on. From a more general point of view the general principles of chemical reactions 
are governed by the law of mass action, which states that the rate of a reaction is 
proportional to the active concentration of the reactants. If a molecule each of A 
and B combine reversibly to form C we can write 

k, '>. 

A+8 C 
<::::: k, 

where Xl, X2, and X3 are the concentrations of A, B, and C respectively, the law of 
mass action gives two nonlinear differential equations 

(1.144) 

(1.145) 

with k[, k2 the reaction rates. 



l.3. System Elements and Models of Continuous-Time Systems 43 

Example 1.1 0 
A chemical reaction can be described by 

k, _____ 

A +A A, 
------ k, 

Let us assume that x is the concentration of A, and y is the concentration of A2 we get 

dx 2 
-=2·k ·y-2·k ·x dt 2 I' 

which results in the arbitrary equations: 

and 

I dx 2 
y=--=(-+2·kl ·x ), 

2·k2 dt 

Substituting for y from (1.146) in (1.148) gives 

d dx 2 2 dx 2 
-(-+2·k ·x )=2·k ·k ·x -k (-+2·k ·x ), dtdt 1 21 2dt 1 

which can be written as 

d 2x dx 
-+-·(4·k ·x+k )=0. 
dt 2 dt 1 2 

(1.146) 

(1.147) 

(1.148) 

(1.149) 

(1.150) 

Equation (1.150) is a nonlinear second-order differential equation, but of a specific type 
since there is no direct time dependency. Solve this equation based on the substitution 

dx 
p= dt ' 

solving for p as a function of x, rather than t. We can now write 

d 2x _ dp _ dp . dx _ . dp 
dt2 - dt - dx dt - P dx' 

hence (1.150) can be written as 

(1.151) 

(1.152) 

(1.153) 



44 1 Modeling Continuous-Time and Discrete-Time Systems 

Assumingp *- 0 we obtain for (1.153) 

and, integrating 

dp 
--=-4·k ·x-k dX ' 2' 

dX 2 
P =- = -2·k,·x -k2 ·x+co· 

dt 

(1.154) 

(1.155) 

Equation (1.155) is a first-order differential equation that can be solved by separation of 
the variables with the result 

which can be written as 

where a" Oi] are the roots of 

which gives 

with a = (k22 + 8·co·kd'/2. 

k C 
X 2+_2_·X __ O_=0 

2·k, 2·k, ' 

-k +a a _--,2=--_ 
,- 4·k , 

(k2 + a) a = - -'-''----'-
2 4.k' 

1 

Partial fractioning the integrand results in 

with a, - a2 = _a_. Integrating results in 
2·k, 

1 x-a 
-log(--' ) = -t + c, 
a x-a2 

(1.156) 

(1.157) 

(1.158) 

(1.159) 

(1.160) 

(1.161) 

(1.162) 



1.3. System Elements and Models of Continuous-Time Systems 45 

and rearranging yields 

(1.163) 

where C2 = eQ
'\ Substituting (1.153) into (1.164) gives 

(1.164) 

hence, when the initial concentrations xo, and Yo are given, we get 

(1.165) 

for Co and C2' 

From (1.163) we obtain 

(1.166) 

We may now obtain the complete solution for x and y. Assuming that ( -7 0, we obtain 
from (1.163): 

(1.167) 

with Xe as the x-equilibrium point of the chemical reaction, and from (1.164) we obtain for 
(-70: 

(1.168) 

with Ye as the y-equilibrium point of the chemical reaction. Hence if time increases the reac­
tion tends to reach an equilibrium state, which can be illustmted by an x y graph as in Fig. 
1.18. 

y equilibrium point 

Y. 
initial point 

y, 

x, x, x 

Fig. 1.18. Transient state-space response of a chemical reaction 



46 1 Modeling Continuous-Time and Discrete-Time Systems 

1.4 Block Diagram-based Algebraic Representation of 
Systems 

1.4.1 Introduction 

There are numerous scientific areas where physical principles are well established 
and accepted in modeling and simulation. Such areas include topics like electro­
mechanical energy conservation, nuclear reactions, operations research, physiolo­
gy, population biology, economics, networking, and so forth. Certain principles 
have even been suggested in the fields of medicine, sociology, linguistics, anthro­
pology, and so forth, which might serve as a basis for the use of the systems the­
ory approach. However it should be noted that the correct understanding and ap­
plication of physical principles and/or systems theory in the several domains usu­
ally requires a great amount of knowledge about the particular domain. For this 
reason a specified method is necessary to describe systems from a more general 
point of view. As we know any engineering system and for that matter any bio­
logical, social, or economic system can be represented by a combination of blocks. 
Each block has a single line into it and a single line out. Within the block is a 
statement of its operation, that is, the block indicates what happens to the input in­
formation before that information is passed on as the output. From engineering we 
also know a composite system can consist of two or more subsystems, each being 
represented by a block. There are many forms of composite systems, however, 
mostly, they are built from the following basic structures: 

• Parallel 
• Sequential 
• Hybrid 
• Feedback 

The input output relationship of dynamic systems can be considered as a multi­
variable system (MVS), which can be described by: 

-1<>0 

r;(t) JG;(t,T),U;(,r)dT, (1.169) 

where Ui and Ii are the input and the output, and Gi is the impulse response matrix 
ofthe system MVS, which can be rewritten as follows: 

y 
G;(s) =; i = I, ... ,n, 

I 

(1.170) 



1.4 Block Diagram-based Algebraic Representation of Systems 47 

the algebraic notation of the input/output relationship of blocks, representing the 
subsystems of a dynamic system. The general structure of the equation above is 
shown in Fig. 1.19. 

Fig. 1.19. Block diagram structure of subsystems of a dynamic system 

Some elements that are often used as blocks for subsystems in dynamic systems 
are shown in Table 1.1, where K represents the proportional constant. 

Table 1.1. Classification scheme 

Block Mathematical Description Algebraic ()perator 
Proportional block Y(/) = KU(/) G(s)=K 

Integral block yet) = KtoUJ (t)dt K 
G(s)=-

to : initial time 
s 

t: time 
Differential block Y(/) = KU(/) G(s)=Ks 

Exponential block Y(/) = eX) G(s) = exp(U) 

The block diagram equations shown in Table 1.1 are often used to interconnect 
the individual terms of a proportional, integral, differential, and exponential 
blocks and thereby form a mathematical model. In Table 1.1 the algebraic operator 
represents the dynamic function such that variable G(s), the transfer function, is a 
function of the input variable U(/) and the output Y(/). The notation of the alge­
braic operator in the tabulation is in the Laplace domain where s denotes the 

d 1 
Laplace operator which is the first derivative - the operator- - and - denotes 

dt s 
the Laplace operator, which is the integral. For details see Appendix B. 

The generalized structure of composite dynamic systems in Fig. 1.19 show that 
the block diagram structure illustrates that a mathematical operation is performed 
on the inputs ~, multiplied by the constant, Gj • Therefore, for any input value the 
output will be given by Y; = Gj . ~. 



48 1 Modeling Continuous-Time and Discrete-Time Systems 

u y 

a) c) 

b)_U __ U_'-.t~1 G, 

Fig. 1.20. Composite connections of two systems; (a) parallel, (b) feedback, (c) sequential 
(tandem) 

From Fig. 1.20a we find for parallel connections U = UI = U2, and with posi­
tive summary Y = YI + Y2 = GrUI + G2'U2 = (GI + G2)U. By similar reasoning to 
the above we note that the feedback structure in Fig. 1.20c results in UI = U ± Y2 = 

U ± G2• Y = U ± G2·GI• UI. Now consider the effect of feeding the output of one 
block into the input of a second' block, as shown in Fig. 1.20b, the resulting signal 
will be Y= G2·Gru. 

From Fig. 1.20a the impulse-response equation of the parallel connection can 
be derived as follows: 

(1.171) 

For the feedback connection shown in Fig 1.20c, the impulse-response function 
is the solution of the integral 

t v 
G(t,1') = Gi(t, 1') - JGI(tl,U) JG2 (U,V)G(V, 1')dudv. (1.172) 

T 

For the sequential solution, shown in Fig. 1.20b, we obtain 

t 

G(t,1') = JGI(tp U)G2 (U,1')dU. (1.173) 
T 

A block diagram illustrates the behavior of a system by depicting the action of 
the variables of the system. To extend the discussion, we focus on the fluid sys­
tem, given in Example 1.7. Clearly, there is an inflow qi and an outflow qo: it is 
also assumed that fluid is being stored in the tank. The graphical representation 
also shows that the outflow has an associated resistance. A block diagram, which 
is appropriate to the simple fluid system, is shown in Fig. 1.21. 



1.4 Block Diagram-based Algebraic Representation of Systems 49 

~_1/_C ------' 
H 

'----1IR----'~ 
Fig. 1.21. Block diagram for the simple fluid system of Example 1.7 

Three important block diagram symbols are introduced in this figure, the 

• Summing point 
• Splitting point 
• Operator 

Note that only one line enters and only one line leaves a block. Corresponding­
ly, only two lines enter and only one line leaves a circle depicting a summing 
point. The block diagram figure can be used to show that the outflow is the im­
portant variable, since it is influenced by the inflow. The feedback line depicts the 
physical fact that a decreased output will increase the water level H in the tank. At 
the same time, an increased flow will increase the outflow, such as: 

qa = f(H,t). (1.174) 

The water level H can be expressed as follows: 

(1.175) 

Thus, the overall outflow equation results in: 

qa = f{cD[(qj -qJ,t]}. (1.176) 

This arrangement will be very useful for the explicit form of the functional re­
lations, expressing the flow difference 

(1.177) 

and 

(1.178) 

where C is the liquid capacitance, and R is the flow resistance. 



50 1 Modeling Continuous-Time and Discrete-Time Systems 

Attention can be drawn to the fact that blocks and circles can be rearranged 
without destroying the validity of the representation. This offers the advantage that 
one may chose an arrangement that best satisfies the viewpoint of the analysis. For 
this reason the block diagram in Fig. 1.22 may be rearranged as follows: 

H 

Fig. 1.22. Rearrangement ofthe block diagram of Fig. 1.21 

This block diagram clearly shows that the inflow influence the water level H in 
the tank and that the outflow is a secondary variable. Now the overall relationship 
IS 

H = <I>[(q; - f(H,t),t]. (1.179) 

It is important to note that a block diagram contains no more information than the 
differential equation. It provides a pictorial process of manipulating the differen­
tial equations. The advantage of the block diagram representation is that the opera­
tional relations in the system are emphasized rather than the physical system. 
Moreover, due to the possibilities of block arrangements, we are better able to in­
terpret the function of the various elements than would be possible from the diffe­
rential equations. For this reason a number of rules for the manipulation and re­
duction of block diagrams are being introduced. 

1.4.2 Block Diagram Algebra 

Based on the general description above the relevant relationships that are neces­
sary when rearranging blocks of linear, as well as nonlinear, composite dynamic 
systems, based on a block diagram algebra, will be introduced. The relationships 
described by the respective algebraic equations show at first the original block dia­
gram and thereafter the equivalent block diagram. 



1.4 Block Diagram-based Algebraic Representation of Systems 51 

Combining parallel blocks: 

U 

y 

Fig. 1.23. Combining parallel blocks 

The output variables Yl and Y2 are multiplied by the respective transfer charac­
teristic Gj, which results in Yl = UGh and Y2 = UG2• Adding the variables Yl and 
Y2 results in the overall relation Y = Yl ± Y2 = (G l ± G2)· U. Thus the block diagram 
becomes 

Fig. 1.24. Resulting block of Fig. 1.23 

Feedback loop: 

Fig. 1.25. Feedback loop 

The block diagram shows the simplest form of a feedback control system, with 
G as the forward loop gain, and H as the feedback loop gain, and Yl as output 
variable, which can be described as Yl = (U ± Yl)·G, or Y = UG ± Yl GR. Rear­
ranging result in UG = Yl ± Yl·GR, hence UG = Yl(1 +G·H), and the control ratio 
is as follows 

Y.= G u. 
1 l±G.H 

(1.180) 

The block diagram above can now be reduced to a single block diagram 



52 I Modeling Continuous-Time and Discrete-Time Systems 

Fig. 1.26. Resulting block of Fig. 1.25 

Cascaded blocks: 

___ u~, ~.IL ___ G, __ ~--~Y,~~.~LI __ G_, __ ~--~Y~2--~. 
Fig. 1.27. Cascaded blocks 

The output variables are Y] = U]"G], and by similar reasoning Y2 = G2·Y]. 
Therefore, if U]"G] is substituted for Y] we find Y2 = G2·U]·G]. These equations, 
which are different forms of the same equation, demonstrate the very important 
idea, that simple blocks strung together in cascade fashion can be mUltiplied to­
gether, a fact that allows to be reduced such a string to a single block as follows: 

~ G, G, \-I-Y--=-'~. u ...I j G,G, 
'L-___ -" 

Fig. 1.28. Resulting blocks of Fig. 1.27 

Permutation of blocks: 

u 

·1 
G, Y, 

·1 
G, Y, 

u 

·1 
G, Y, 

·1 
y, 

G, 

Fig. 1.29. Permutation of blocks 

Moving a block before a summing junction: 

y, 

• 

• 

It is sometimes necessary to feed more than one signal into a block at the same 
time, which is achieved by a summing network. In block diagram symbols it is 
achieved by means of a summing junction, as shown in Fig. 1.30. 



1.4 Block Diagram-based Algebraic Representation of Systems 53 

:,~~_G __ ~~--~Y--~. 
Fig. 1.30. Moving a block before a summing junction 

The summing junction is shown as a circle with arrows into and out of the sym­
bol. The arrows into the symbol are always identified with a plus or minus sign, 
indicating either a positive or a negative signal. Inside the circle sometime the 
Greek letter sigma (L) is used. As shown in Fig. 1.30, U2 is added or subtracted 
from UI yielding U. UI and U2 are simultaneously fed into the block G, the output 
Y is the weighted sum of the two inputs, Y = (UI ± U2)'G, and for the rearranged 
case as shown below Y= UI'G ± U2'G 

~:, : : 1-------': 1r 
Fig. 1.31. Resulting blocks of Fig. 1.30 

Moving a block behind a summing point: 

~:~, ______ G ________ ~y __ ~~ y 

Fig. 1.32. Moving a block behind a summing point 

with the equation Y = U]"G ± U2• The output variable after moving is Y = G(UI ± 
G I ·U2) which yields a multiplication with the inverse transfer function 

u, 

~_G -----'~ 
r---------' 

u, 
G 

Fig. 1.33. Resulting blocks of Fig. 1.32 

Moving a block before a branch point: 



54 I Modeling Continuous-Time and Discrete-Time Systems 

u 
G 

Fig. 1.34. Moving a block before a branch point 

u G y 

u : 1 
Fig. 1.35. Resulting blocks of Fig. 1.34 

Y=G·U. 

Rearranging summing points: 

u, 

U, + Y 

U, 

Fig. 1.36. Rearranging summing points 

U,~Y 
f! f! 
U, U, 

Fig. 1.37. Resulting blocks of Fig. 1.36 

Inversion: Y = G. 

U ----1L-_G---.......J~ y 

Fig. 1.38. Inversion 

and the inverse function U = a-1• Y 



1.5 Basic Principles of Discrete-Time Systems 55 

u ------1 
Fig. 1.39. Resulting block of Fig. 1.38 

1.5 Basic Principles of Discrete-Time Systems 

1.5.1 Introduction 

As distinct from modeling and simulation of continuous-time systems the treat­
ment of discrete-time systems follows a completely different modeling paradigm. 
The difference depends on the appearance of trajectories of the respective system 
variables. For comparison, Fig. 1.40 shows the typical graphs of continuous-time 
and discrete-time model variables. In both cases the x-axis represents the time de­
pendence, the y-axis marks the value of the model quantity. The characteristics for 
continuous-time variables are continuous changes in value, which can be mathe­
matically expressed by a differential equation. In contrast the value of a discrete­
time variable may be constant nearly all the time. But there are only a few points 
on the time scale where the value changes. At these points, however, the value 
changes abruptly and without any interim value. 

Z1 

a) 

T 

Z2 

b) 

T 

Fig. 1.40. Continuous-time and discrete-time representation of system variables 

A characteristical example of a discrete-time transient of a model variable would 
be the number of persons waiting for service in front of an information desk. 
Changes in number are sudden: one person enters or leaves the queue. The process 
of joining the others who are already waiting there is not differentiated in more de­
tail: approaching, asking who is first and last. 



56 1 Modeling Continuous-Time and Discrete-Time Systems 

The only intention of the model is to give a prognosis for the mean waiting time 
of the customers, the mean length of the queue and so on. Therefore, the abstracti­
on during the process of model building reduces the dynamic behavior of the sys­
tem to sudden changes in the number of people waiting. The number of people in 
a queue is a classical discrete-time model variable. 

With this example in mind we may understand the two basic principles of buil­
ding time-discrete models: First, the definition of an event in the course of a 
model variable. Second, the condition for its dynamic behavior between the 
events. 

Remark 1.1 
A discrete-time event is an instantaneous occurrence that changes the system 

state. 

Remark 1.2 
The value of a discrete-time model quantity is constant over the time interval 

defined by two consecutive events, which can be stated as a condition for the 
course of a variable between events. 

Based on these two simple principles, systems from varying application areas 
can be sufficiently modeled. Characteristic examples of discrete event systems 
that follow these principles are: 

• Queuing systems: 
These systems distinguish between stations that offer services, and mobile 
elements that request services, and are able to move from one service station 
to another. The main task is to organize the services, maximize their utili­
zation, and minimize the waiting time for the mobile elements. 

• Manufacturing systems: 
These systems are an important area of application of discrete-event model­
ing. The stations are the highly automated machines of the plant, the mobile 
elements are the raw materials, the semi finished products, and finally the as­
sembled end product itself. In addition, highly automated transport systems or 
conveyors up to intelligent automotive units may complicate the systems be­
havior. However, the questions for simulation models are quite similar to 
those of the queuing systems: minimization of the production time, maximiza­
tion of the utilization of the machines. But the stations and the strategies to 
move the mobile elements between them (through the transportation units) are 
much more complex and specialized in accordance with the technical realiza­
tion of elements, stations, and transportation systems. 

• High bay warehouses 
Highly automated management of warehouse systems is a very reasonable 
application field for simulation. Because the goods stored are discrete ele­
ments and the places in the warehouse are discrete as well, the model concen­
trates on discrete changes in state variables, as places are free or occupied 
and transitions by the autonomously guided vehicle system start or end. The 



1.5 Basic Principles of Discrete-Time Systems 57 

main results of such a model are: access time, optimal positioning of the 
goods, number of vehicles needed, etc. 

• Computer systems: 
Historically the computer was the first application area for discrete simulation 
techniques. The main task is to optimize the architecture of a computer by si­
mulation of its hardware components in relation to its operating system and 
observing the workload of the CPU, the bus system, the storage, and the pe­
ripheral devices. Typical parameters are the queuing strategies, strategies for 
sharing the processor and all other parameters of the operating system. The 
discrete modeling unit for the simulation is the task with its needs concerning 
CPU time, storage space, external devices, etc. 

• Network systems 
The parameters of interest within a single computer and its dynamic behavior 
can easily be transferred to a network of computers: workload of its elements, 
dimensioning of buffers, strategies for routing, and so on. With the data pack­
age as the unit that moves between the nodes of the system, the simulation of 
network systems is a task for discrete-event simulation. 

When modeling dynamic systems by means of discrete-time events, two main 
issues have to be mentioned: 

• First, the term "event" implies a resolution of time that is related to infinite 
short time duration. An event happens without any consumption of time. In 
reality, however, every execution of an event will take (very little, but some) 
time. So we will have the resolution of the time axis as one problem to live 
with. 

• Secondly, the problem of what to do when two (or more) events happen at the 
same time step simultaneously. These problems are caused by the definition 
of the event itself and have to be solved later when we discuss the simulation 
algorithm that executes a system description only consisting of events. 

1.5.2 Modeling Concept of Discrete-Time Systems 

With the definition of the event and the description of its semantics how to model 
discrete-time systems is obvious. The description of the system dynamics consists 
of a chronologically sorted list of events that occur between the start time and the 
end time of the observation. All knowledge about the system is represented in this 
list. As in continuous-time models an initial value for the model quantities influ­
enced by the events must also be given. 

When building a discrete-time system model, one has to specifY these events 
and to put them into the correct order. If we look at the events used to model the 
very simple system shown in Fig. 1.41 we will find lots of very similar events. 
The example shows a single serving unit with a queue for the waiting customers. 
The customers are created randomly and receive a varying service time. After ser-



58 I Modeling Continuous-Time and Discrete-Time Systems 

vice the customers leave the system. This system is one of the simplest examples 
of discrete-event simulation and is called a "single-server system". 

-. 1111~·,----1 _~----.. 
arrival waiting queue service unit leaving 

Fig. 1.41. Discrete-time representation of a system concept 

Our objective now is to study the events for a single-server system, as shown in 
Fig. 1.42. Element el enters the queue at time 11, element e2 enters the queue at 
time 13, element e3 enters the queue at time 14, and so on. These are the events that 
describe the arrivals of customers. On the other hand, there are events describing 
the departures because the customers service time elapsed, which is the case for 
element e 1, which finishes service at time f2, element e2, which finishes service at 
time 16, element e3 which finishes service at time t9, and so on. 

For simplification of this task which specifies these events, a much more gen­
eral specification scheme may be offered by the model description languages and 
the corresponding simulation system that is available for time-discrete event simu­
lation. 

number of 
customers 

i ~il i 1 i1 
e1 e2 e4 e5 

t 
13 

e7 

events i t i 
14 I 16 

Fig. 1.42. Time events for a single-server system 

The idea behind this is to build up classes of events that describe the dynamic 
system on a more abstract level as the particular events are introduced above. The 
main classes may be: 

• Arrival of a customer 

• Customer enters queue 

• Start service 

• End of service 

• Customer leaves system 

Using these more abstract event classes, all arrivals, all entering in queues, all 
services start up, etc., max be modeled by a single piece of model code. Therefore, 



1.5 Basic Principles of Discrete-Time Systems 59 

the syntax of an event in a model description language consists of two defining 
parts: 

1. The condition of the event which specifies when the event will be executed. 

2. The body of the event which specifies what changes in the values of model 
quantities will happen. 

It is possible to change the values of a set of model quantities in the body of 
one single event, e.g. if an element is taken from the queue to the service station 
the number of elements in the queue may decrease and the number of elements in 
service may increase for the same amount. 

With respect to the event condition a further classification of events can be 
made: 

• Time events, whose event condition exclusively uses the simulation time T 
and whose execution depends only on the course of T. 

• State events, whose condition is a free Boolean expression that may include 
any model variable and whose execution depends on the state of the model 
variables they change, or even on the values of any other variables in the 
model. 

Example 1.11 
time event 

WHENEVER T > = Tenter 
BEGIN BODY 
number_customers := number_customers + I; 
END BODY 

Example 1.12 
state event 

WHENEVER number customers / number service units >= 5 
BEGIN BODY 
number _serverice _units: = number_service _units + 1; 
END BODY 

If the system dynamics follow some fixed rules such as iterations in time, de­
pending on certain states of the model, the model builder has the possibility of for­
mulating constructs like classes of events that represent more than one activity in 
the real world by a single event in the model description. 

Example 1.13 
state event 



60 I Modeling Continuous-Time and Discrete-Time Systems 

Whenever the value of the water level in a tank reaches its upper limit a quarter of its 
contents is taken away by the controller. 

WHENEVER tank level >= level max 
BEGIN BODY 
tank_Ievel:= tank_level' 0.75; 
END BODY 

Independently from the way the tank is filled (time-discrete by buckets or time­
continuous by a water flow from a water tap) this event assures the level will not 
exceed the given limit. 

Example: 1.14 
time event 

The following represents events that model the arrival of customers at a service station. 
The event is triggered by setting the next time the event will be active inside the body of the 
event itself. Thereby the variable InterArrivalTime may have a fixed value or may be repre­
sented by a random number to model a random arrival process. 

WHENEVER T >= T NextArrival 
BEGIN BODY 
customers_in_queue:= customers_in_queue + 1; 
T_NextArrival:= T_NextArrival + InterArrivalTime; 
END BODY 

For a single-server system the behavior may be modeled by a set of two event 
classes. The events have an implicit time condition for the next activation that is 
set by the procedures schedule _ arrival_event and schedule_departure _event. 

Example 1.15 
complete set of events to simulate the single-server system 

WHENEVER Arrival event 
IF number in server == 1 

THEN ( number _in_queue := number _in_queue +1; 
) 

ELSE ( number_in _server: = number _in_server +1; 
schedule_departure _event (T + T _service_time 

); ) 
schedule _ arrival_event (T + T _interarriva'-time ); 
protocol_state_changes 0; 

END Arrival event 
WHENEVER Departure_event 

IF number _in_queue == 0 
THEN ( number _in_server := 0; 

) 



ELSE ( 

1.5 Basic Principles of Discrete-Time Systems 61 

number_in_queue:= number _in_queue -1; 
schedule_departure_event (T + T_service_time 

); ) 
protocoCstate_changes 0; 

END Departure_event 

1.5.3 Simulation Concept 

Model specification of discrete-time systems has been briefly discussed. To run 
these models a simulation algorithm has to be chosen. The demands for such an 
algorithm has to fulfil some constraints that are known from the specification: 

1. Execute the events that happen in the simulation period between T _start and 
T _end completely. 

2. Execute them exactly at the point of time when their condition becomes true. 
3. Execute them in the right order. 
4. Execute them without consumption of simulation time. 

Simulation is a very simple approach that demonstrates the advantages of the 
so-called next-event-simulation best. Assuming the simulation interval is given by 
the start time and the end time for the run. Furthermore, the resolution ,1T of the 
time axis is determined, for example by the representation of numbers on a com­
puter. Hence the simplest simulation algorithm would be: 

Set ActTime := Start Time; 

WHILE ActTime <= EndTime 
DO 

END 

WHILE NOT (all event conditions are false) 
DO 

true> 
<find an event_condition in model description that is 

<execute the corresponding event> 
END 

ActTime := ActTime + deltaT; 

This algorithm executes the simulation correctly but consumes a lot of CPU 
time while it checks all event conditions every time step ,1T. Due to the characte­
ristics of discrete-event models in most cases nothing happens at the point of time 
under observation. It is typical for those systems to hold a given value constant for 
a certain period of time until the next event will change it. Checking the event 
conditions at every point of time mostly will be dispensable and causes an enor­
mous consumption of calculation time. On the other hand, the algorithm is a very 
simple one and nothing is needed concerning the formulation of the events. Be-



62 1 Modeling Continuous-Time and Discrete-Time Systems 

cause of its run-time behavior the algorithm is refined and the result is the so- cal­
led next event algorithm. Its data structure consists of two elements: 

• The current time 
• The future-event-list: an ordered list of events that are to be executed in future 

Each of these events has a time stamp that shows the point of time its condition 
becomes true. The list is ordered by a growing time stamp. Doing so, the event to 
be executed next makes the top of the list. 

The advantage of this event list is that there will not be other events between 
two entries in that list. Hence there is no need for the algorithm to check all the 
conditions between two events and it knows exactly when the next change in 
value of a model quantity will happen. 

The algorithmic version may be stated as follows: 

# initialize 

<set start time> 
<set end time> 
<put an initial set of events into the event list> 

# simulation loop 

END 

WHILE T<= Tend 
DO 

current_event := first entry of the event list; 
T : = current_event. time_stamp; 
execute (current_event); 
delete flam_event _list (current_event); 
current_event:= <first entry of the event list>; 
T : = current_event. time_stamp; 

The disadvantage of this approach is that it needs the help of the model builder: 
somebody has to insert new entries in the next-event list. After initialization, this 
is done by expanding the body of the events. Within the event specification the 
model builder has to specify when the active event will be active again, or, if there 
is another event that is triggered by the active event and when it is set up for exe­
cution. These are the two types mentioned before: self-triggered events (e.g. by in­
terarrival time) or condition triggered events at the same point of time (e.g. cus­
tomer enters empty queue and is transmitted to the service unit at the same point 
in time). 

More sophisticated solutions for discrete-event simulation algorithms are based 
on these two basic appro~ches. They modify the search for the next event in the 



1.6 Model Validation 63 

list which means they allow parallelism by distributing the event list, and they in­
tegrate continuous model elements in the processing of the simulation algorithm. 

1.6 Model Validation 

Modeling is a complex procedure that contains several steps: the qualification, the 
rectification, and finally the verification. 

• Qualification is the model-building process that is focused on the respective 
elements, relations, and attributes in order to describe the real dynamic system 
in an abstract manner as a so-called abstract model. 

• Rectification is the model-building process behind the qualification, which 
means the abstract model will be transformed into a mathematical model, the 
so-called real model, of the dynamic system. Hence rectification decides the 
proper form for the realization, which may include implementation, iteration 
algorithms, programming, imitation/simulation based on mechanical, electri­
cal, pneumatical elements, isomorphism, etc. From a more general point of 
view Fig. 1.43 shows the table of the respective correspondencies for rectifi­
cation. 

• Verification is the model-building process beyond rectification that is focused 
on fit or non fit of the model due to the respective dynamic behavior of the 
system. Verification includes the validation of the model, i.e. the quality of 
the model, and the falsification of the model, meaning less fitting. 

Verification: 

Real 
System 

Validation & Falsification 

Qualification 

Rectification 
Simulation 

Fig. 1.43. Process of qualification, rectification, and verification of dynamic systems 



64 1 Modeling Continuous-Time and Discrete-Time Systems 

1\ PhySlc:alfy 
I \ System 

Genera_ 
Description Electrical Hydraullcal Pneumatleal Thermal Translational Rotational 

Tr:ansversal 
p Variable e(t) 

V ~ Transil 
M Variable I(t) 

A : e(l) Product 

Voltage. Pressure 
VeIoctty 

CUlTent. Flow 
FOfCe, Momentutr 

Powet' suppr.ed 
to the element 

R Y 
e(t) Relation =.~umPtlon 

A / e(t) dl 

B 1 /I(t)dl 

~ / e(t) 1(1) dt 

L E 
G 

E R 
A 

S L 

Symbols 

(0- }~,idt 
e{t)-l/C· 

I f(Odt 
E""'lIY 
done on system 

U(t); P(I); Pressure 
VOltage 

i(t); V(O; Volume 
Current Flow 

P(1)-u(I). ~I) P(O-P(I). V(O 

R: ElectriCal 
Resistance 

R_~ ,,' 
Fbw • 
resistance 

P(t); PressUl"8 

mel); Mass Flow" 

identical to 
h)Oraulicai 

L; IrdJctor ~ ; Inertance ~ ; Inertance 

C; Capacitor 

E.,:Magnetk: 
Ene<gy 
of induelOr' 

~:Elecb1c 
Energy 
ofapKttor 

-c::I- R 

...... L 

-H- c 

~;~: ~.-~:~~ 
Eoo;:Kinetic Enet"gy 

offtuld floW 

E~Potentiai 
Energy 
of presslXe 
head 

-

T(I); Temperature VOl: Velocity 

Qro; Heat Flow t(I): FO«:e 

P(O= 0\(1) p(O-V(t)·f(O 

Thermal Res.istal'lOl (t'; Oamptng-
R.,= t.(FJow) factor 

R.-= .l.- (Transm.) 

""~,;. (Convect.) 

m • c;. Thetmel 
C8pocIty 

T~ 

C": Spring­
CDnSIant 

M:llAass 

Fig. 1.44. Correspondencies for modeling purposes 

0>(1):_ 
v_tty 

Met); Torque 

Model validation is a procedure that involves assessing the extent to which the 
model is focused, tractable, and fulfills the purpose for which the model has been 
formulated. From a more general point of view model validation is a multi dimen­
sional procedure reflecting the model purpose, current theories, and experimental 
test data relating to the particular system of interest together with other important 
knowledge. Hence validation may be stated as a complex procedure that takes 
place at several levels 

• Behavioral level, which means the model is able to reproduce the behavior of 
the dynamic system. 

• State-structure level, which means the model is able to be synchronized with 
the dynamic system due to a state from which the prediction of future behavi­
or may be possible. 

• Composite-structure level, which means the model may be used to represent 
the internal interactions of the dynamic system. 

A more straightforward validation method will be the deductive analysis, which 
shows the validity of the model, meaning its representation reflecting the model 
purpose which depends on the validity of the a priori knowledge. Validation due 
to deduction can be achieved in two ways: 

• Investigation of the exactness of the premises validates the model. 
• Checking other consequences of the premises validates that information and 

finally the model. 



1.6 Model Validation 65 

Moreover, the inductive analysis can be introduced as a straightforward valida­
tion, whether or not the induction procedure has been carried out in a mathe­
matical and logically correct way. Assuming a model represents a source of data, a 
valid model at a certain point in time has to have the equal signs specified. 

From a practical point of view, a model is sufficiently valid if its goal can be 
obtained. This means it fits the concept reflecting the model purpose. Hence a tru­
ly valid model would be a model that permits all possible objectives. 

For Example 1.9, the respective hydraulic system representation may be trans­
formed into an electrical system based on the table of correspondencies shown in 
Fig. 1.44. The electrical network representation, shown in Fig. 1.45, gives essen­
tially the same information as the hydraulic system representation above. In the 
RC network system the real physical elements are replaced by a schematic repre­
sentation of the actual hydraulic elements as they are shown in Fig. 1.16. The re­
sult is a model that is formulated by using the isomorphism concept reflecting the 
real-model purpose. Hence we may state that the RC network model is well 
founded due to its aims and scopes, and validity is given .. 

Fig. 1.45. Electrical network representation ofthe hydraulic system of Fig. 1.16 

The criteria by which model validity is assessed can be divided into two cri­
teria: 

1. Internal criteria: enabling conditions within the model itself to be judged 
without external reference to the model purpose, theory and/or data, which 
can be: 

o Consistency: requiring that the model formulated contains no logical, 
mathematical or conceptual contradictions. 

o Algorithmic validity: requiring that the algorithm for analytical solu­
tion or numerical simulation is appropriate and leads to accurate so­
lutions. 

2. External criteria: referring to the model itself, like the model purpose, the­
ory an/or data, which can be: 

o Empirical validity: requiring that the model formulated should corre­
spond to the available data. 

o Theoretical validity: requiring that the model should be consistent 
with accepted theories and/or models. 

o Pragmatic validity: requiring that testing the extent to which the 
model satisfies the objectives for which it has been developed. 



66 I Modeling Continuous-Time and Discrete-Time Systems 

o Heuristic validity: requiring in connection with tests that are associ­
ated with the assessment of the heuristic potential of the model, e.g. 
for scientific explanation, discovery, and/or hypothesis testing. 

Considerations of validity are required from the very beginning of model buil­
ding. Empirical and theoretical validity can be used by examining whether the re­
spective validation criteria are met or not, which then can be used as a perform­
ance index. A performance index is a quantitative measure of the performance of a 
model of a dynamic system and is chosen so that emphasis is given to the impor­
tant real- world constraints. 

A suitable performance index PI is the integral of the square of the error 

(1.181) 

where the upper limit T is a finite time chosen somewhat arbitrarily so that the in­
tegral approaches a steady-state value of the transient behavior of the system mo­
del and e is a measure of the error between the real-world system and the system 
model. 

Another possible performance criterion is the integral of the absolute magni­
tude of the error, which can be written as: 

PI = Ile(t*t. (1.182) 

This performance index is particularly useful for computer-simulation studies. 
In order to reduce the contribution of the large initial error to the value of the per­
formance integral and to place an emphasis on errors occurring later in the re­
sponse, another performance index has been proposed: 

PI = f t ·Ie(t)~t . (1.183) 

This performance index is designated the integral of the time multiplied by the 
absolute error. Another similar performance index is the integral of time multi­
plied by the squared error, which is: 

(1.184) 

The general form of the performance index is: 

PI = I ![e(t),u(t),y(t),t]dt , (1.185) 



1.7 References and Further Reading 67 

wherefis a function of the error, input, output, and time (see Chap. 5). 

1.7 References and Further Reading 

Astrom K, Albertos P, Blanke M, Isidori A, Schaufelberger W, Sanz E, (Eds.), 
(2001), Control of Complex Systems, Springer, London, Berlin, Heidelberg 
Burghes DN, Borrie MS, (1981), Modelling with Differential Equations, John 
Wiley & Sons, New York 
McClamroch HN, (1980), State Models of Dynamic Systems, Springer New York, 
Heidelberg, Berlin 
McDonald AC, Loewe H, (1981), Feedback and Control Systems, Reston Publ. 
Compo Inc. Reston 
DorfRC, (1986), Modern Control Systems, Addison-Wesley Publ. Reading 
Moller DPF, Popovic' D, Thiele G, (1983), Modeling, Simulation and Parameter­
Estimation of the Human Cardiovascular System, Vieweg Publ., Braunschweig, 
Wiesbaden 
Ogata K, (1967), State Space Analysis of Control Systems, Prentice-Hall, Inc. 
Eaglewood 
Seely S, (1964), Dynamic Systems Analysis, Reinhold Publishing Corporation, 
New York, Chapman & Hall Ltd., London 
Thaler GJ, (1989), Automatic Control Systems, West Publ., st. Paul 
van Wyk van Brievingh RP, Moller DPF, (Eds.), (1993), Biomedical Modeling 
and Simulation on a PC, Springer New York 

1.8 Exercises 

1.1 What is meant by the term modeling? 
1.2 List and defme the three main characteristics modeling a real-world problem. 
1.3 What is meant by the term behavioral level of modeling? 
1.4 What is meant by the term composite-structural level of modeling? 
1.5 What is meant by the term empirical modeling? 
1.6 What is meant by the term deductive modeling? 
1. 7 Test signals can be used for what? 
1.8 Give the mathematical description for a unit step. 
1.9 Give the mathematical description for a ramp function. 
1.10 Give a graph for Example 1.1. 
1.11 Define what is meant by the term simulation? 
1.12 Differential equations are of importance for modeling real-world systems. 

Why? 



68 1 Modeling Continuous-Time and Discrete-Time Systems 

1.13 Explain the structural representation ofthe state-variable model of Fig. 1.9. 
1.14 Derive the mathematical equation for an electrical RCL Network model. 
1.15 Derive the mathematical equation of the mechanical model being used for 

modeling tissue deformation. 
1.16 Give a model for the concept of liquid capacitance. 
1.17 Give the bock diagram for a feedback loop. 
1.18 What is meant by the term queuing system? 
1.19 What is meant by the term manufacturing system? 
1.20 List and define the five main characteristics modeling a discrete-event system 
1.21 Give an example for a time event. 
1.22 Give an example for a state event. 
1.23 What is meant by the term qualification while modeling? 
1.24 What is meant by the term rectification while modeling? 
1.25 What is meant by the term verification while modeling? 



2 Mathematical Description of Continuous-Time 
Systems 

2.1 Introduction 

Based on the phenomenological and physical principles, relevant to describing a 
particular dynamic system, the equations that characterize the system are carried 
out in a number of ways, some of which are in the time domain, and others written 
in a transformed domain. In the time domain the methods for the analysis of the 
response of the dynamic system are ordinary differential equations (ODEs) of or­
der n, sets of n first-order ordinary differential equations, partial differential equa­
tions (PDEs), the superposition integral, the convolution integral, and so on. Sol­
ving these equations can be done using numerical methods, based on suitable ma­
thematical models, while more and more indispensable tools for advanced systems 
analysis and synthesis are in use, as well as for computer-aided engineering de­
sign. In conjunction with an experimental verification method, the numerical­
simulation results of the suitable mathematical model can be proved. Moreover, 
the stability analysis of dynamic systems are quite useful when designing optimal 
control systems that are stable. For this purpose one has to know whether the roots 
of the system will be located near the equilibrium point or not. Stability analysis 
can be done, for example in the time domain, by means of the Routh Hurwitz cri­
terion in conjunction with the differential equations relating the response to the 
excitation. It has to be said that this method is restricted to linear systems. 

The time domain formulation can be transformed in the frequency domain by 
such transformations as the simple exponential function, the Laplace transform, 
named after the Frech astronomer Laplace, born 1749 in Beaumont-en-Auge. Nor­
mandy, France, as well as the Fourier transform, which is named after the French 
mathematician Baron Fourier, born 1768 in Auxerre, France. Stability analysis of 
the dynamic system in the frequency domain can be carried out by means of the 
Nyquist criteria, which is the imaginary or frequency axis for the particular system 
function. The Nyquist criteria is named after the American engineer Nyquist, born 
in Sweden 1889. The frequency-domain transformation, and their subsequent use, 
are also restricted to linear dynamic systems. 

D.P.F. Moeller, Mathematical  and Computational Modeling and Simulation Fundamentals

and Case Studies  © Springer-Verlag Berlin Heidelberg 2004



70 2 Mathematical Description of Continuous-Time Systems 

Definition 2.1 
A dynamic system is said to be continuous in time if the time interval I c 9\ con­
tains the definition range of the functions uO, xO, and yO, discrete in time, if the 
time interval I contains the definition range of the functions uO, x("), and yO .• 

Remark 2.1 
Continuous-time systems can be described by ordinary differential equations 
(ODEs), and/or partial differential equations (PDEs), respectively. Discrete-time 
systems are described by Petri-nets, named after the German mathematican Petri, 
born 1926 in Leipzig, Germany, queues, Markov-chains, named after the Russian 
mathematician Markov, born 1856 in Ryazan, Russia, and so forth. 

Continuous-time systems, as they are considered in this book, are assumed to 
be described by ordinary differential equations of order n, or by a set of n first-or­
der ordinary differential equations. Considering a differential equation of order n 

x(n)(t) = f(x,x', ... ,x(n-l) ,U,t) , (2.1) 

where U is the control function. By defining new variables X" X2, ... , Xn such that 

(2.2) 

(2.1) can be reduced to 

(2.3) 

x'n_l = xn 

x'n= f(X1,X2,···,xn,u,t) 

(2.3) represent n first-order differential equations, withfas a nonlinear function. 

2.1 ... 1 Representation of System Differential Equations in Terms of 
Vector-Matrix Notation 

Consider that the system equations can be adequately described by a set of n first­
order ordinary differential equations as follows 



2.1 Introduction 71 

(2.4) 

where x[, X2, ... , Xn are state variables, and u" U2, , ..• , Urn are control variables. As­
suming that the system outputs y" Y2, ... , Yk are related to the state variables x" X2, 

••• , Xn and control variables u" U2, , .•. , Urn by the following equation 

(2.5) 

If the order of the dynamic system is greater, such a set of equations becomes 
notationally complicated. To simplify the notation it becomes necessary to use the 
vector and matrix notation. Rewritten with vector notation, (2.4) and (2.5) be­
come, respectively 

x '= j{x, u, t), (2.6) 

and 

y= g(x, u, t), (2.7) 

where x, u, y,j{x, u, t), and g(x, u, t) are vectors defined by 

(2.8) 

x= U= y= 

yk 

where vectors x, U, and yare, respectively, called the state vector, the control vec­
tor, and the output vector. The dynamic system is specified by the vector-valued 
functions f and g. 



72 2 Mathematical Description of Continuous-Time Systems 

f(x, u, t)= 

J;(x,u,t) 

i2(X,u,t) 

in(x,u,t) 

g(x, u, t)= 

gl (x,u,t) 

g2(X,u,t) 
(2.9) 

If the system is linear in x and u, a set of n first-order differential equations is 

X'l = all (t)Xl + a l2 (t)x2 + ... + a ln (t)xn + bll (t)ul + ... + blm (t)um (2.10) 
x' 2 = a 21 (t)xl + a22 (t)X2 + ... + a2n (t)xn + b21 (t)ul + ... + b2m (t)um 

as well as m algebraic equations relating output variables, state variables, and con­
trol variables, which can be written as follows 

Yl = cll (t)Xl + Cl2 (t)X2 + ... + c ln (t)xn + dll (t)ul + ... + dIm (t)um (2.11) 
Y2 = C21 (t)Xl + C22 (t)X2 + ... + C2n (t)Xn + d21 (t)Ul + ... + d2m (t)um 

The linear continuous-time system, can be rewritten in terms of a vector matrix 

X' = A(t)·x + B(t)·u; X E 9{' ; u E 9t; t> 0 
(2.12) 

Y = C(t)-x + D(t)-u ; Y E gf; t> O. 

The mathematical model, given in (2.12) is called linear, as shown in Definition 
2.2. The matrixes of A(t), B(t), C(t), and D(t) are the transforms on the respective 
vector space, which is as follows: 

A(t): 9\ll ~ 9\ll as a (n, n )-matrix called the system matrix 
B(t): 9\ill ~ 9\ll as a (n, m)-matrix called the input matrix 
C(t): 9\ll ~ 9\k as a (k, n)-matrix called the output matrix 
D(t): 9\' ~ 9\P as a (p, r)-matrix which called the transition matrix 

Definition 2.2 
Let a dynamic system have for time stamp to with the initial state XIO E 9{' and the 
input function ul) E U the solution { Xl(t), Yl(t) }. Let for X20 E 9{' and U20 E U 
the solution be {X2(t), Y2(t) }. Hence, for all kj, k2 E 9t we find with 



2.1 Introduction 73 

(2.13) 

and 

(2.14) 

the solution 

(2.15) 

of the dynamic system, which is called a linear system. -

For a differential equation of order n, describing a dynamic system, it is possi­
ble to reduce the order n to n first-order equations, while making the analysis of 
the dynamic system somewhat simpler, as shown in (2.2). 

Example 2.1 
Many systems in the physical world are oscillatory systems, with conversion of energy 

from one form to another. In a pendulum the potential energy of the bob in the gravitational 
force field is converted to kinetic energy as the bob swings from its highest position to the 
neutral position. Electrical RCL networks (see Chap. 1) allow energy to be changed be­
tween components, and oscillation may result. If no energy loss occurs, the oscillation con­
tinues at a constant amplitude; however, most real systems lose energy, i.e. through dam­
ping, and the oscillations eventually cease. A simple oscillatory system, such as the simple 
pendulum, can be described by nonlinear differential equations of second order 

" dx' k F() , x =dt= . x ·x-x, (2.16) 

where x" is the acceleration of the displacement, x' is the rate of change of displacement 
over time, x is the displacement, and k is the damping term. F(x) is an algebraic function of 
x, which control the nature of the oscillation 

The second term of the differential equation (-x), when not dominant, causes accelera­
tion ofthe oscillating object toward the neutral point. 

A special form for F(x) was suggested by the Dutch physicist van der Pol, born 1889 in 
Amhem, Netherlands, when he investigated how to maintain the oscillations in a circuit that 
depends on continuous oscillations. The equation for maintaining the energy of the oscilla­
ting system becoming positive when Ixl is less than 1.0 and negative when Ixl is greater than 
1.0. The second-order differential equation for the van der Pol oscillator can be written as 

x"+k·(x2 -1)·x'+x=O. (2.17) 



74 2 Mathematical Description of Continuous-Time Systems 

Alternatively, one can describe the van der Pol oscillator by utilizing a set of 
two first-order differential equations as follows, the solution of which can be ob­
tained by simulation. 

which results in 

or 

X=X I 

x'= x. l = x2 

x"= x'2 

~ = [XI] = [~ 1][XI] _ k[X2 O][x~l. 
dl x2 1 k x2 0 0 x2 

(2.18) 

(2.19) 

(2.20) 

The state vector x(t) is defined as a minimal set of state variables which unique­
ly determines the future state of a dynamic system if their present values are gi­
ven. Thus, if X(/o), the state at I = to is known, thenthe state vector at any future 
time X(/), for t> to, is uniquely determined by differential equations such 

X· = A (t)·x + B(t)·u; t> O. (2.21 ) 

This equation set may be rewritten more compactly in matrix form 

x· =A'x + B·u, (2.22) 

which is in state-vector form, with x as state vector, u as the source or input vec­
tor, and A and B as the respective system and input matrix. 

It is observed that we may write an output vector, which gives the output vari­
ables as linear combinations of the state variables and the inputs. The output vec­
tor has the general form 

y = C-x + D'u, (2.23) 

where C is the output matrix, and D is the transition matrix. 



2.1 Introduction 75 

The state-variable description of a linear multivariable system was given in 
(2.5) for the time-varying case. The corresponding time-invariant vector-matrix 
notation yields 

x'=A·x + B·u 
y=C·x +D·u. (2.24) 

By taking Laplace transforms (see Sect. 2.4) throughout in (2.24) and by setting 
all initial conditions to zero, we obtain 

s X(s) = A·X(s) + B·U(s) 

Y(s) = C-X(s) +D·U(s). 

(2.25) 

Solving the first equation in (2.25) for X(s) and substituting into the second equa­
tion of (2.25) yields 

Y(s) = [C(sI -Ar1 B +D] U(s) = G(s)·U(s), (2.26) 

where G(s) is the system transfer matrix of dimension n by m. For a single-input, 
single-output system, called SISO, the system matrix in (2.26) becomes a system 
transfer function given by 

which is shown in Fig. 2.1. 

U(s) --1 G(s) ~ Y(s) 

Fig. 2.1. Transfer characteristic of a SISO system 

Example 2.2 
Let us assume that the transfer matrix of a linear system can be described by 

x2 =X3 

x; = -2Xl - 4X2 - 6X3 + u(t) 

y=Xl +x2 +u(t) 

Solving for (s1 - Arl yields 

(2.27) 

(2.28) 



76 2 Mathematical Description of Continuous-Time Systems 

(sf - At] = r[~ ~ ~]_ [ ~ 0 ~ ]TT = [~ ~ 1 
0 ]-] 

o 0 s -2 -4 -6 J 2 4 s+6 

(2.29) 

Forming G(s) (2.27) gives 

(2.30) 

2.1.2 Existence and Uniqueness of Solutions of Differential Equations 

Considering a dynamic system defined by sets of first-order differential equations: 

Definition 2.3 
The set Ax = b with m equations and n unknowns has solutions if and only if 
rank[A] = rank[Ab]. Let r = rank[A]. If condition rank[A] = rank[Ab] is satisfied 
and if r = n, then the existence of solutions is unique. _ 

Definition 2.4 
The set Ax = b with m equations and n unknowns has solutions if and only if 
rank[A] = rank[Ab]. Let r = rank[A]. If condition rank[AJ = rank[Ab] is satisfied 
and if r < n, an infinite number of solutions exists and r unknown variables can be 
expressed as linear combinations of the other n - r unknown variables, whose val­
ues are arbitrary. _ 

The check for existence and uniqueness of solutions requires that one form the 
augmented matrix [Ab]. The first n columns of the augmented matrix are the col­
umns of A. The last column of the augmented matrix is the column vector b. 

Example 2.3 
Determine whether the following set has a unique solution 

6x + 3 Y + 2z = 18 

-6x+3y+4z=12 

6x+3y+4z = 24 

The matrices A and b and x are 

(2.31 ) 



2.2 Controllability, Observability, and Identifiability 77 

A~[-:6 
3 

:' 3 

3 

(2.32) 

b~m (2.34) 

[6 3 2 IS] 
[Ab] = -6 3 4 12 

6 3 4 24 

(2.35) 

Fm (2.36) 

Obviously, from Definitions 2.3 and 2.4, the rank of A and [Ab] has to be proved. 
Rank [A ] = 3 and rank [Ab] =3. Because A and [Ab] have the same rank, a solution exists. 
This rank equals the number of unknowns, the solution is unique, x = 1, Y = 2, and z 3. 

2.2 Controllability, Observability, and Identifiability 

Controllability, observability, and identifiability are important properties of dyna­
mic systems, written in the state-variables notation, which characterizes the sys­
tems dynamics. A linear system is said to be state controllable when the system 
input u can be used to transfer the system from any initial state to any arbitrary 
state in a finite time. A linear system is said to be observable if the initial state 
X(/o) can be determined uniquely when given the outputY(/) for 10:::;; I:::;; I, for any I, 
> 10. The theory of controllability and observability was introduced in the 1960's 
by the Hungarian engineer and mathematician Kalman, born 1930 in Budapest, 
Hungary, the method of identifiability was later introduced by Astrom and Kal­
man. It is claimed that if a mathematical model of a dynamic system may be writ­
ten in the state equations, or one may use this method to show whether the model 
can be used for predictive measures or not. 

From a more general point of view the description of controllability can be 
given for the time-varying case as follows: 



78 2 Mathematical Description of Continuous-Time Systems 

Definition 2.5 
A linear dynamic system 

x'=A·x + B·u 
(2.37) 

y = C-x + D·u 

is said to be 
• Controllable at time 10 E T, if for a finite II> 10, tl E T exist. 
• Completely controllable, if for each 10 ETa finite time I I > 10, I lET exist. 
• Differential or particularly controllable, if for each 10 E T and each finite 

t, > to, t, E T, the matrix 

I) 

w(to,/l) = f<l>(to' r)B(r)BT (r)<I>T (to' T)dT (2.38) 

10 

is regular. -

The several descriptions of controllability represent the different characteristics 
of the dynamic system that are not the characteristics of the mathematical model. 
But the corresponding mathematical model has the same result, due to controlla­
bility, as the dynamic system. 

An important approach in systems analysis involves systems being completely 
controllable, which allows the prediction of how the system may behave. 

Definition 2.6 
A linear dynamic system 

x' =A'x + B·u 
(2.39) 

y = C·X +D'u 

is said to be completely state controllable if there exists a control signal u, defined 
over the finite interval 10 < I < IF, which transfers the system from any initial state 
x(to) = xQ to any desired final state X(/F) = XI in the defined time interval. _ 

Definition (2.6) is said to be true if and only if the (n, np) controllability matrix 

(2.40) 

has full row rank n, which means that the vector elements B, AB, ... , Ao-1B of Qc 
are linear independent, which means that the controllability matrix Qc has nonzero 
determinant. 



2.2 Controllability, Observability, and Identifiability 79 

Example 2.4 
A dynamic system can be described by the state-equation model 

x'(t) = A'x(t) + B'u(t) 
(2.41 ) 

with 

[-3 1] 
A = -2 1.5 

(2.42) 

(2.43) 

The dynamic system given in Example 2.4 is completely state controllable if Band AB 
are linear independent and the rank of the controllability matrix Qc: [B, AB] = 2, with 

B=[~] (2.44) 

and 

AB= [1.0] 
1.5 ' 

(2.45) 

hence 

Qc: = [B, AB] = 2, 
(2.46) 

which means the dynamic system is completely state controllable. 

Example 2.5 
Suppose a dynamic system can be described by equations in the Laplace domain (see 

Sect. 2.4) 

1 
Xl =--·U 

s+l 
(2.47) 



80 2 Mathematical Description of Continuous-Time Systems 

and 

1 
X 2 =--,(X1 +U), 

s+2 
(2.48) 

which can be rewritten in the state-equation notation as 

(2.49) 

(2.50) 

Assuming 

b =[~] (2.51 ) 

and 

(2.52) 

the dynamic system given above is not state controllable, while b + Ab = 0, which means 
that the vectors b, Ab are linear dependent. 

Definition 2.7 
A linear dynamic system 

x'=A'x+B'u (2.53) 

y = C-x +D'u (2.54) 

is said to be 
• Observable at time 10E T, if for a finite 11> 10, 11 E Texist 
• Completely observable, if for each 10 E T and each finite 11 > 10, II E T 

exist 
• Differential or particularily observable, if for each to E T and each finite 

II> to, lIE T, the matrix 



2.2 Controllability, Observability, and Identifiability 81 

II 

m(to,/1) = f<l>T (tl,tO)CT (t)C(t)<I>(tpto)dt (2.55) 

10 

is a regular one. 

The different ideas of observability are due to the properties of the dynamic 
system and not due to the properties of the mathematical model. But the mathema­
tical model has the same results, due to observability, as the dynamic system. 

Let us next consider that the system is completely observable, hence predic­
tions with it are possible, and we may write: 

Definition 2.8 
A linear dynamic system 

x' =A'x + B·u (2.56) 

y =Cx+D'u (2.57) 

is said to be completely observable within the finite interval to < t < tF, if any initial 
state x(to) = xQ can be determined from the output y, observed over the same inter-

val. -

Definition 2.8 is said to be true if and only if the (n, nr) observability matrix 

(2.58) 

has full rank n, with CT as the transpose of C. 

Example 2.6 
The state-variable description of a dynamic system is given for the time-varying case as 

follows 

x'(t) = A'x(t) + B·u(t) (2.59) 

y(t) = Cx(t). (2.60) 



82 2 Mathematical Description of Continuous-Time Systems 

The corresponding parameters are 

[ 
0 1 

~x= 0 0 
dt 

-6 -11 

(2.61) 

(2.62) 

with 

A=[~ 0 ~l 
-6 -11 -6 

(2.63) 

and 

c= [20 9 1], 
(2.64) 

or 

(2.65) 

which yields 

(2.66) 

and 

(2.67) 



2.2 Controllability, Observability, and Identifiability 83 

The vectors CT, CT AT, and CT (AT)2 are linear independent and the rank of the ob­
servability matrix is 

(2.68) 

thus the dynamic system, given in Example 2.6 is completely observable. 

Example 2.7 
Suppose the output equation is 

(2.69) 

instead of 

(2.70) 

the vectors CT, CT AT, and CT (ATi are linearly dependent, and the rank of the observabili­
ty matrix has the value 

(2.71) 

Thus the dynamic system is not observable. 

Definition 2.9 
A dynamic system is said to be identifyable in its parameters, within the time in­
terval 10 < I < IF, if the parameter vector 8 may be determined from the output y, 
observed over the same time interval 10 < I < IF •• 

Definition 2.10 
A dynamic system is said, for the true model parameter vector 8r, to be 

1. Parameter identifiable if there exists an input sequence {u} such that 8 
and 8r are distinguished for all 8"# 8r~ 

2. System identifiable if there exists an input sequence {u} such that 8 
and 8r- are distinguishable for all 8"# 8r but are a finite set. 

3. Unidentifyable in all other cases .• 

The state-variable concept of dynamic systems completely characterizes the 
system's past, since the past input is not required to determine the future output of 



84 2 Mathematical Description of Continuous-Time Systems 

the dynamic system. This seemingly elementary notation of state equations is of 
importance in the systems state-variables approach. In fact, this mathematical no­
tation, describing dynamic systems, is fundamentally based upon the state-variab­
les concept. 

On choosing state variables while describing a dynamic system mathematically, 
no prescription can be given for choosing the state variables in the sense of a ge­
neral guideline, i.e., in electrical RCL networks (see Sect. 1.3.1), the charge on 
each capacitor and the current through each inductor in the network usually serve 
to define the state variable of the respective network; in a mechanical system (see 
Chap. I) the force and mass of each body, usually serve to define the state variable 
of a mechanical system. In other domains choosing the state variables may be 
much more difficult. Once state variables are chosen, and the mathematical equa­
tions characterizing the state variables, the state equations can be derived. 

Depending on the particular form of the equations used to describe the dynamic 
system the state equations can be in one of the many mathematical forms. It is 
possible to classify state equations on the basis of their mathematical structure. 

Time is usually an independent variable in a state-variable model: 

• Sometimes the time variable is considered as a discrete variable, in such 
cases the state-variable model is typically described by recursive equa­
tions. 

• In other cases the independent variable time are considered to be real val-
ued. . 

• Sometimes there can be additional independent variables in which case 
the state-variable model is said to be distributed; such state-variable 
models is given as partial differential equations. 

• If time is the only independent variable then the state-variable model is 
said to be lumped, while the actual physical size will not really serve as a 
measure of lumpiness - moreover, we have to consider that we may have 
frequent occasions to distinguish between lumped and distributed ele­
ments-. 

• Further, the state-equation model may include random effects in which 
case the state-equation model is said to be stochastic. 

• If no such effects are included the state-equation model is said to be a de­
terministic one. 

2.3 Time Domain Solution of the Linear State Equation 
System 

We may note that the component state-variables equations, given in (2.27), ex­
press the uncoupled from, which in vector-matrix notation yield a diagonal matrix 
Ain 



2.3 Time Domain Solution of the Linear State Equation System 85 

x' =A'x +b'u (2.72) 

and 

(2.73) 

which are quite simple to solve for Xj(t), where i = 1,2, .. . ,n. Consider a linear sys­
tem with u = 0, described by 

x'=A·x. (2.74) 

The time solution of(2.74) has the form 

x(t) = (/{t, to) x(to) (2.75) 

where (/{t, to) is referred to as the state transition matrix. The Initial condition x(to) 
is transferred to the state x at time by the matrix (/{t, to). It is very obvious that 
tA,t, to) = I, the identity matrix, since the state x(t) is equal to x(to) at t = to. The 
transition characteristic of the state-transition matrix can be written as 

(2.76) 

which indicates that if an initial state vector x(to) is transferred to X(tl) by tA,t], to) 
and if x(tl) is then transferred to X(t2) by <I>(t2' tl), then x(to) can be transferred in a 
direct way to x(t2) by tA,t2' to), which is the product of the two state transition ma­
trices. If the matrix A in (2.74) is constant with time, then the state transition ma­
trix tA,t, to) is a function only of the distance t and to, that is, 

(2.77) 

Consider the matrix-exponential solution of the linear dynamic system, as 
shown in (2.74), yields 

x(t) = ~t ·x(O). (2.78) 

This obviously means that the time response of the dynamic system is equal to the 
exponential function if the matrix differentiation rule is used to form 



86 2 Mathematical Description of Continuous-Time Systems 

d d 
x'=- [x(t)] = - [~I. x(O)] =A·eAI. x(O). 

dt dt 
(2.79) 

Substituting (2.78) into (2.79) yields x' = A·x. Comparing (2.78) and (2.74) 
yields 

l/{t) = At e . 

We may now express the term tit in a Taylor series about t = 0 to give 

= 

~t) = eAI = L 
k=O 

1 1 
- Akl = I + A·t + - A2·t2 + ..... . 
k! 2! 

(2.80) 

(2.81 ) 

which is the equation for solving the state-transition equation by series expansion. 
Moreover, we may premultiply each term of the state-variables (2.74) by the 

exponential expression, which gives 

x '(t)'e_AI = A'x(t)'e-AI + B'u(t)'e-AI, (2.82) 

that is, dropping the explicit notation for time dependence and rearranging the 
equation 

x "e-AI _ A 'x'e-AI = B'u'e-AI (2.83) 

or 

(2.84) 

Multiplying by dt, and integrating over the time interval to to t, as well as chan­
ging the variables, we may write 

I I f dldr(e-ATx) dr = f B'u(i)'e-ATdT, 
(2.85) 

10 

or 



2.4 Solution of the State Equation using the Laplace Transfonn 87 

t 

x(t)-e_At - x(ta)-e-Ata f B·u( i)·eJr dr. 
(2.86) 

10 

Premultiplying all tenns in this equation by eA(I-lo) gives 

1 

x(t) = x(ta)-eA(t-Io) + f B·u( i)·e-A (1-10) dr, (2.87) 

10 

that is, rewritten in tenns ofthe state-transition matrix 

1 

x(t) = x(ta)· l1{t - ta) f B·u( i)·l1{t - ta)·dr, 
(2.88) 

10 

which is the matrix fonn of the convolution integral. The convolution integral in 
(2.88) involving the impulse-response function, and the superposition integral in 
tenns of the state-transition matrix. 

2.4 Solution of the State Equation using the Laplace 
Transform 

The state-transition matrix, detennined in Sect. 2.3, is used to yield the complete 
solution of the linear state-variable equations. Let the time-dependent behavior of 
a linear state-differential equation system be written in the notation: 

x'(t) = A·x(t) + B·u(t) (2.89) 

and 

yet) = C-x(t) + D·u(t), (2.90) 

which means the dependence of the output vector yet) from the input vector u(t), 
with system matrix A and input matrix B assumed to be constant matrices. To de­
tennine the solution of this state-differential equations the Laplace transfonn 
2[f{t)] = F(s) can be used as follows: 



88 2 Mathematical Description of Continuous-Time Systems 

sX(s) = AX(s) + X(O) + B'U(s), (2.91 ) 

where X(O) denotes the initial-state vector, presumably a known quantity, and s 
denotes the Laplace operator, which is the first derivative. Solving (2.91) gives 

Xes) = (sI -Arl X(O) + (sI -Arl B'U(s), (2.92) 

with Xes) as Laplace transform of x(/), and f as (n, n)-unit matrix which is defined 
by AI= IA =A, that is 

(2.93) 

Using A-I as the inverse matrix of A, that is A A-I = A-IA = I, and (sI - A) as a 
matrix called the characteristic matrix, gives 

(sI -A)X(s) = X(O) + B'U(s), (2.94) 

with L(s) = (sI - A) and DI(S) = (sI - Arl , where L(s) is the adjoint of the charac­
teristic matrix, and Li(s) the determinant of the matrix, called the characteristic po­
lynomial of matrix A, we can write 

gJ(s) = (sf -Ar l = _1_ ·~s). (2.95) 
Ll(s) 

The roots of the polynomial above are called eigenvalues of the dynamic sys­
tem. For a linear dynamic system with constant coefficients they will be simple 
relationships. 

Obviously, the time-domain solution can be obtained by convolving the inverse 
Laplace transform of (2.95) for (2.92), that is, 

1 1 
Xes) = -- . ~s) . X(O) + -- . ~:S) . U(s) 

~(s) ~(s) 
(2.96) 

As for ordinary differential equations, we may expand Xes) into a partial frac­
tion expansion, 



2.4 Solution of the State Equation using the Laplace Transform 89 

(2.97) 

with the specialized form of the solution 

X(S)i = "Z(s) . X(O) + "Z(s)· U(s) = Xi + Ui, 
(2.98) 

and the corresponding results 

x, = lim {"Z(s)· [( _ )( _ )]}. X(O) 
S S2 S S3 ... 

1 (2.99) 

S--fS I 

(2.100) 

X2 = lim {"Z(s,)· [( _ )( _ )]}. X(O) 
S S, S S3 ... 

1 (2.101 ) 

(2.102) 

and then form Xi as 

(S-s;) 
Xi = lim [ L\(s) ]. "Z(s) . X(O) 

(2.103) 

S--fSi 

i = 1,2, ... , n, (2.104) 

for each root of L(s) ·U(s) . _1_. The resultant state-vector x(t) can be written as 
A(s) 

(2.105) 



90 2 Mathematical Description of Continuous-Time Systems 

Therefore, we can write the complete solution X(/) by using the Laplace trans­
form 

(2.1 06) 

Using the notation of 

X(/) = yl{(s!-Arl}X(O) =e At (2.107) 

and the respective correspondence of the Laplace transforms 

l/{t) = yl {(s1 - Ar l }X(O) = eAt (2.108) 

we obtain the state-transition matrix for the linear system. The transition matrix 
determines the transient behavior of the dynamic system over all time, that is be­
tween time 10 and time II, that is 

d{/) = eAt (2.109) 

Assuming that the initial time is denoted I = 10 instead of I = 0, we may write 

x(t) = x(/o) . ~(t-tJ (2.110) 

as well as 

x(/) = x(O) . d{1 - (0)' (2.111 ) 

2.5 Eigenvalues of the Linear Vector-Equation Systems* 

Consider a linear system with u = 0, described in (2.74) as 

x'=A'x, (2.112) 



2.5 Eigenvalues of the Linear Vector-Equation Systems* 91 

where A hold a n X n matrix. Taking Laplace transforms and solving for X(s), we 
have 

sX(s) = AX(s) (2.113) 

with 

0= (A -sf)X(s) (2.114) 

where s is a scalar. The scalars s are called eigenvalues of A, and the vectors X(s) 
are called eigenvectors of A. The complete set of all eigenvalues are called the 
spectrum of A. 

(2.114) gives, for nontrivial cases of X(s) 

det(A - sf) = O. (2.115) 

the characteristic equation, with det(A - sl) as tha characteristic polynomial of A. 
It is a n-th-degree polynomial in s. The characteristic equation is given by 

(2.116) 

(2.117) 

The n roots of the characteristics (2.116) are the eigenvalues of A. They are 
called the characteristic roots. Note that a real n x n matrix A does not necessarily 
possess real eigenvalues. But since det(A - sf) = 0 is a polynomial with real coef­
ficients, any complex eigenvalues must occur in conjugate pairs, namely if a+j P 
is an eigenvalue, then a-jpis also an eigenvalue ofA. 

Example 2.8 
Assuming a dynamic system described by the system matrix A as below 

(2.118) 

Due to the Laplace transform we can write 



92 2 Mathematical Description of Continuous-Time Systems 

[
S-1 -2 

S(sI-A) = -1 s-3 

-2 1 

(2.119) 

Hence we find the eigenvalues of A as follows 

L1(s)=(s-I)(s-3)s-8-1 +2(s-3)-2s+2(s-I)=s3-4s2 +5s- (2.120) 
17 

which can be rewritten as 

~I 1 
L (s) =- ·L (s). 

A(s) 
(2.121) 

Example 2.9 
Consider a linear system described by the differential-equation system 

(2.122) 

and 

(2.123) 

If the system matrix A is given by 

(2.124) 

then the eigenvalues of A are found from 

det(A - AI) = 0 (2.125) 

[
-k-A, 0] det I = (-kl -A,)(-krA,) = 0 

kl -k2 -A, 
(2.126) 

The eigenvalues can be found as Al = -kl and Az = - k2• 



2.6 Stability Analysis* 93 

2.6 Stability Analysis* 

The transient response of a dynamic system is of primary interest and must be in­
vestigated. A very important characteristic of the transient performance of a dy­
namic system for this reason is the stability of the system. A dynamic system is 
said to be stable if the system remains near the equilibrium state, i.e. if the vari­
ables x and y remain bounded as t ~ "". If the dynamic system tends to return to 
the equilibrium state, it is said that the dynamic system is asymptotically stable. 
An equilibrium state Xe is said to be asymptotically stable at large if it is asymp­
totically stable for any initial state vector x(O), such that every motion converges 
to Xe as t ~ "". The stability analysis is inherently related to the design problem 
for linear time invariant systems. 

For the linear time invariant systems, described by 

dx 
dt = f (x,y), (2.127) 

: =g (x,y), (2.128) 

where f and g are continuous functions of x and y and have continuous partial deri­
vatives, will have a unique solution x = l!X..t), Y = If(t) for t ?: O. The concept of 
stability can be illustrated as a curve in the x y plane, called the phase plane, with t 
as parameter. The solutions are indicated as curves, referred to as trajectories. 

Consider a mass m moving on a horizontal level, attached by a spring to a fixed 
point at a wall. Neglecting the resistive element and external force, the resulting 
equation will be 

(2.129) 

Defining 

(2.130) 

we have a system of differential equations 

dx 
dt =y, (2.131) 

dy 2 
-=-w ·x, (2.132) 
dt 



94 2 Mathematical Description of Continuous-Time Systems 

which gives 

x = a . cos( 0) . t + {3) (2.133) 

y = -a . 0) . sin( OJ • t + {3) . (2.134) 

These equations define the trajectories 

(2.135) 

in the x y plane, as shown in Fig. 2.2 as a simulation result using the ModelMaker 
simulation software (see Chap. 4), with the x-axis as the displacement, and the y­
axis as the speed, starting at the initial conditions x(O) = 1, and y(O) = 1. 

Obviously, the trajectories shown in Fig. 2.2 are directly defined in terms of 
(2.30), given as 

dy 
dy dt 0)2 ·x 

(2.136) 
-=- ---
dx dx y 

dt 

In order to investigate the behavior of a dynamic system near equilibrium we 
may first assume that the equilibrium points are Xo = 0, and Yo = O. Hence we may 
define the equilibrium points as 

(i) Stable if x and y remain bounded as t ~ 00 

(ii) Asymptotically stable ifx,y ~ 0 as t ~ 00 

(iii) Unstable in any other case 

As mentioned earlier, stability analysis of a dynamic system is very important. 
For this reason we present different criteria to determine the stability of dynamic 
systems. A procedure for determining the stability of a linear time-invariant sys­
tem by examining its characteristic polynomial, called Routh Hurwitz criterion, 
will be introduced. If the time-domain formulation is transformed into the fre­
quency domain by such transformations as the simple exponential function, the 
stability of the system in the frequency-domain can be studied by means of the 
Nyquist criteria, which is the imaginary or frequency axis for the particular system 
function. The frequency-domain transformations, and their subsequent use, are 
also restricted to the linear systems. 



2.6 Stability Analysis* 95 

til l" [di \'JM __ .:_ o. 

~ ~,!I.Y.ItItgJ.!lliJ TIlS.lrvl 
,!II 

1111 

o !II 

0111 ,----1-1-----r--+----,---II---+-----. -02 

·'111 

.'!II 
.'!II ·'OJ ~!II 0111 o !II IOJ • !II 2111 

Fig.: 2.2. Simple trajectories in the x y plane 

2.6.1 Routh Hurwitz Criterion* 

Let the characteristic polynomial of a systems transfer function be written as 

(2.137) 

(2.138) 

with ll;,.l, ... , QO as real constants. A necessary condition for asymptotic stability 
is that all coefficients must have the same sign and none may be zero. This test by 
inspection is referred to as the Hurwitz test. 

The German mathematician Hurwitz, born 1859 in Hildesheim, Germany, pu­
blished in 1895 a necessary and sufficient condition for asymptotic stability based 
on the evaluation of certain determinants involving the characteristic polynomial 
coefficients. These numerical computations are quite cumbersome, especially for 
systems of order n. Earlier, in 1877, the Canadian mathematician Routh, born 
1831 in Quebec, Canada, had developed a tabular form that involves simple se­
quential calculation for inspection of the dynamics of systems. The interpretation 
of the Hurwitz determinants by means of calculations in a Routh table is referred 



96 2 Mathematical Description of Continuous-Time Systems 

to as Routh Hurwitz criterion. With the Routh Hurwitz criterion one can determine 
whether any roots of an algebraic equation lie in the right half s-plane. 

The Routh Hurwitz criterion may consider the following algebraic equation 

(2.139) 

The algebraic schedule of the Routh Hurwitz criterion is provided in Table 2.1. 
The coefficients of the characteristic polynomial are arranged in the first two rows 

Table 2.1. General form of the Routh table 

sn an a n-2 a n-4 a n-6 
sn-l 

an_1 a n-3 a n-5 a n-7 

bn- I bn-3 bn-5 bn-7 

Cn_1 Cn-3 Cn-5 

dn_1 dn-3 dn-5 

en_1 e n-3 

fn-I fn-3 

gn-I 

hn_1 

The elements of this schedule are given as 

Row 1: Alternate coefficients of the original equation 

an-2 an-4 an-6 

Row 2: Remaining coefficients ofthe original equation 

an-3 

Row 3: Take the appropriate cross product terms, as shown 

b = a n_1a n_2 - a na n_3 
n-l 

an- 1 

bn_ 5 = .... 

a n-8 

(2.140) 

(2.141) 

(2.142) 

(2.143) 

(2.144) 



2.6 Stability Analysis* 97 

Row 4: Take cross products of the elements of the second and third rows exactly 
in the manner to obtain the elements of row 3. Thus 

(2.145) 

(2.146) 

Cn_5 = ..... (2.147) 

Row 5, and so forth. 

Once any row has been completed, the elements of the following row may be 
determined from the previous two rows, e.g. for rows 3 and 4, until all elements of 
a row are zero. Hence the interpretation of the array in Table 2.1 is as follows: The 
number of roots of the original equation that lie in the right half s-plane is equal to 
the number of sign changes in the first column of the final array. This condition is 
known as the Routh Hurwitz criterion. 

Finally we can determine: All of the characteristic zeros have a negative real 
part if 

(a) an-l > 0, an-2 > 0, an-3 > 0, ... , an-8 > 0 
(b) all of the n-l numbers in the first column are positive 

Obviously, the Routh Hurwitz criterion is satisfied ifboth conditions (a) and (b) 
are satisfied, in which case the characteristic zeros all have negative real parts. If 
either condition ( a) or condition (b) is not satisfied then there must be a character­
istic zero that has a real part that is zero or positive. 

Example 2.1 0 
For the given characteristic polynomial the stability proof should be done using the 

Routh Hurwitz criterion 

d(s)= S3 + S2 + 4· s + 30· s . (2.148) 

The schedule for the Routh Hurwitz criterion is easily determined to be 

4 0 
(2.149) 

1 30 0 

-26 0 0 

30 0 0 



98 2 Mathematical Description of Continuous-Time Systems 

Condition (a) is satisfied but condition (b) is not while the first entry in the third row is 
negative. Finally from the Routh Hurwitz criterion it follows that there is at least one char­
acteristic zero with positive real part. In this case, the characteristic zeros can be determined 
to be 1 + j 3, 1- j 3 and -3 + j 0, which verifies the result. 

Example 2.11 
The stability and any limitations of the parameter K for stability of the following equa­

tion has to be examined 

(2S2 -s + K)(S +1)2 = 2s 4 +3s 3 +AS2 +(2K-l)s +(K+l) = O. (2.150) 

Observe that for all orders of s present in the polynomial, and for non-negative coeffi­
cients, Kmust be > \1,. The schedule for the Routh Hurwitz criterion can be determined as 

2 

3 
2-K 

3 
2K2+4K+ll 

K-2 

K f( + 1 
(2.151) 

2K-l 

K+l 

Avoiding sign changes from the second to the third roW' Kmust be < 2, and sign changes 
from the third row to the fourth row Kmust be > 2. The conditions imposed on parameter K 

cannot be fulfilled simultaneously, and there is no value of Kthat allows stability. 

2.6.2 Nyquist Criterion* 

In 1932, the American engineer Nyquist, born in Sweden 1889, published his sta­
bility criterion test which is deduced by a graphical procedure. The Nyquist crite­
rion allows determination of whether any of the roots of the equation 

I+G(s) = 0 (2.152) 

lie in the right half s-plane, where G(s) is the forward transfer function. For the 
feedback system, shown in Fig. 2.3, the overall system transfer function T(s) is 

T(s)=~= G(s) , 
U I+G(s)·H(s) 

(2.153) 

with G(s) as forward transfer function, and H(s) as feedback transfer function, U 
as the input, and Yas the ,output. 



2.6 Stability Analysis* 99 

+ 
E,--~ E, 

Fig. 2.3. Simple feedback system 

When the feedback loop shown in Fig. 2.3 is opened, the open loop gain then is 
G(s)ofl(s), which is directly related to (2.32), and also it will be the function in the 
denominator of (2.33). 

Obviously, the zeros of the denominator of (2.33) are poles of T(s). Since the 
right half-plane poles specify the instability margin of the feedback system, while 
the right-half plane zeros of the denominator are important in determination of the 
stability of the dynamic system. 

Applying the Nyquist criterion for stability analysis requires: 

1) The magnitude and phase angle of G in the G(j OJ) plane; in the more gen­
eral case G(jOJ)ofl(jOJ). 

2) The behavior of G in the s-plane and the poles of G(s) that lie on the 
imaginary axis or at the origin of the s-plane. 

3) The number of poles of G(s) in the right halfs-plane. 

+ tX: ...... j-axis 

s-plane 

-tX: 

infinite semi­
..... circle 

real axis 

a) 
teD \. 

increasing" , _ 

GUm)-plane 

real axis 

b) 

Fig. 2.4. Locus of s for the Nyquist criterion (a); assumed 1 + G(j OJ) for the system (b) 

The Nyquist criterion may be expressed mathematically as Z = N + P with 

• Z: number of zeros of 1 + G(s) that lie in the right half s-plane. 
• N: number of clockwise encirclements of the point - 1 + j 0 by the locus 

of G(s) as s describes the path shown in Fig. 2.4 a, 
• P: number of poles of G(s) that lie in the right half s-plane. 

For stability Z must be zero, that is P = - N. If P 7: - N, the system is unstable 



100 2 Mathematical Description of Continuous-Time Systems 

Example 2.12 
Determine for what range of K the dynamic system 1 + G(s) will have stable roots, with 

G(s)=K~. 
s(1-s) 

A table ofthe pertinent information of solution of (2.34) shows 

Table 2.2. Numbers of the Nyquist criterion 

Z N P 
1 0 1 
0 - 1 1 
2 1 1 

(2.154) 

Nature of response 
Unstable 
Stable 
Unstable 

It should be noted that stable roots exist for K in the range _00 < K < - 1. 

2.6.3 Ljapunov Stability Theorem* 

The stability of a dynamic system can be analyzecl using the Ljapunov stability 
theorem, named after the Russian mathematician, born 1857 in Yaroslavl, Russia. 
Consider the unforced (u = 0) linear dynamic system described by 

x'=A·x. (2.155) 

Suppose a Ljapunov function of the from 

V(x,t) = xl·p·x, (2.156) 

where P is positive-definite, and xt is the transpose of x. Then 

V'(x,t) = Xl ·p·x' + x' ·p·x. (2.157) 

Combine (2.74) and (2.157) gives 

V'(x,t) = Xl 'P'A'x + A· x·p·x. (2.158) 

which is, since (Ax)' = x'A' 



2.6 Stability Analysis* 101 

V'(x,t) = xt(PA + A·P)x. (2.159) 

If the vector - 0 is defined by 

A'P +PA =-0. (2.160) 

Consider 0 is negative definite, then V(x,t) is negative definite, and V(x,f) is de­
fined by the Ljapunov function 

V(x,t) = xt ·p·x. (2.161) 

Example 2.13 
Consider a second-order system 

(2.162) 

Assuming 0 is an arbitral)' symmetric positive-definite matrix, we choose 0 = I, the unit 
matrix. Equation A 'P + P A = - 0 thus becomes 

a 12 ] = [- I 0 ] . 
a 22 0-1 

(2.163) 

Multiplying the matrix equation and rewriting gives 

o ] [ PII j [- 1] a21 PI2 = 0 , 

2a22 Pll 1 

(2.164) 

which can be solved for p s having the general form 

(2.165) 

where trA = all + all (the sum ofthe diagonal terms of the matrix A). The vector P is posi­
tive-definite such as 



102 2 Mathematical Description of Continuous-Time Systems 

(2.166) 

and 

(2.167) 

These inequalities hold if 

(2.168) 

and 

tr A = all + a22 > 0 , (2.169) 

which are the required stability conditions of the second-order dynamic system. 

2.7 First-Order Linear State-Equation Models 

Linear dynamic systems are generally in the form of first-order systems that re­
quire only one state variable that describes the system response. First-order linear 
state systems are dependent on one of the state-space variables x, y, z, or depend­
ent of the state time stamp variable t. Assuming the state equations to be linear, 
Laplace transforms can be applied. 

Let a linear first order state model given as 

dx 
-=ax+bu, 
dt 

y=cx 

(2.170) 

where u is the input variable, y the output variable, x the state variable, and t is the 
time-dependent variable. The state variable model is defined by the constants a, b, 
and c, where a is the system parameter, b is the input parameter, and c the output 
parameter. The block diagram is shown in Fig. 2.5, where the Laplace transform 

1 
is used to denote the integration operator, while s is used to denote the differ-

s 



2.7 First-Order Linear State-Equation Models 103 

ential operator ~. Notice that the feedback structure of the state equations is ob­
dt 

vious from the block diagram. 

Fig. 2. 5. Block diagram of a first-order linear state systems model 

As the state equation is simple the explicit representation of the solution re­
sponse is determined as a function of the initial state and the input function. Sup­
pose that U(s) denotes the Laplace transform of u(t), Yes) denotes the Laplace 
transform of yet), and Xes) denotes the Laplace transform of x(t). Taking Laplace 
transforms and solving (2.171) gives 

sX -X(O) =a·X +b·U (2.171 ) 

y=c·X, (2.172) 

with X(O) as the initial state. Thus 

(2.173) 

and 

c c·b 
Y=-·X(O)+-·U. (2.174) 

s-a s-a 

Using the notation of the convolution integral in (2.88) gives for t> 0 

(2.175) 

and 

(2.176) 



104 2 Mathematical Description of Continuous-Time Systems 

which are functions of the state and the output transient response corresponding to 
the initial state and the input function. The first term in the expression above is the 
zero-input response while the second term is the zero-state response. In this case, 
the overall response is the sum of the zero-input response and the zero-state re­
sponse. Using the expression 

G(s)=~, (2.177) 
s-a 

called the transfer function of the dynamic system, which leads to the transform of 
the zero-state output response, which is the product of the transfer function and the 
transform of the input function. Once G(s) has been found, we have the expression 

g (t) = c . eat . b , (2.178) 

called the weighting or impulse-response function of the dynamic system, where­
by the transfer function is the transform of the weighting function. The denomi­
nator polynomial of the transfer function 

d(s) = s-a (2.179) 

tends to zero as t ~ 0 for any initial state, then the state equations are said to be 
stable. If a > 0 the state equations are said to be unstable. 

Obviously, the state equation indicated with one state variable is a minimal rea­
lization for a dynamic system, assuming that cob *" O. Any state model for the same 
dynamic system with more than one state variable would certainly not be minimal. 

Example 2.14 
Electrical network models usually are based on the assumptions that the components R, 

L, and C are constant (see also Sect. 1.3.1). The input signal of the electrical network, 
shown in Fig. 2.6, is the voltage Vo. It is assumed that the applied voltage source Vohas zero 
impedance. 

I R L 

v,C~ ~ 
Fig. 2.6. Simple electrical RL network 

If Kirchhoffs voltage law is applied, we can say that 

(2.180) 



2.7 First-Order Linear State-Equation Models 105 

with 

and 

that is, 

which gives 

V =L. dI 
L dt' 

dI 
R·I+L· -=v. dt 0' 

dI +R.I=Vo 
dt L L' 

(2.181) 

(2.182) 

(2.183) 

(2.184) 

!!c.dt R·t 

a first-order linear differential equation with the integrating factor e L = e L , which gives 
a specialized form, 

_+ __ .e L =_O.e L (
dI R· I) ROt V. ROt 

dt L L' 
(2.185) 

and combining terms, we have 

ROt d V. ROt 

(e L .1).- =_0 .e L 

dt L 
(2.186) 

Integrating this equation gives 

ROt V. ROt 

(e L • /) = J ; . e L . dt + C , (2.187) 

which may also be expressed as 

-R·t V. () R·t R·t 

I(t)=eL J ~t ·eL .dt+C.e L 
(2.188) 

where C is the constant of integration. Assuming Vo(t) = Vo, gives 



106 2 Mathematical Description of Continuous-Time Systems 

and if 1(0) = 10, gives 

v. -~ 
1(t)=_0 +C'e L 

R 

v. ( v.) _ R·t 
1(t)= ~+ 10 - ~ ·e L 

The time response of I(t) is shown in Fig. 2.7. 

VjR 

Fig. 2.7. Changes in current ofthe network shown in Fig. 2.6 

From Fig. 2.7 it can be seen that the current tends to a steady state. 

Example 2.15 

(2.189) 

(2.190) 

The kidneys perfonn two major functions: firstly they excrete most of the final products 
of the body's metabolism, called waste products (toxins), and secondly, they control the 
concentration of the body fluids. The kidneys each contain about 2400000 nephrons, and 
each nephron is capable of producing urine itself. Therefore, as in many cases, it is not ne­
cessary to discuss the entire kidney but merely the activities in the single nephron to explain 
the function of the kidney. The basic function of the nephron is to clean the blood plasma of 
unwanted substances, as it passes through the kidney. The substances that must be cleared 
include particularly the final products of metabolism, the unwanted substances, such as 
urea, creatinine, uric acid, and urates. In addition many other substances, such as sodium 
ions, potassium ions, chloride ions, and hydrogen ions tend to accumulate in the body in 
excess quantities; hence it is the function of the nephron to clear the plasma of these exces­
ses. The principal mechanism by which the nephron clears the plasma of unwanted sub­
stances is: 

• It filters a large proportion of the plasma through the glomerular membrane into 
the tubules of the nephron. 

• Then, as the filtered fluid flows through the tubules, the unwanted substances fail 
to be reabsorbed while the wanted substances, especially the water and many of 
the electrolytes, are reabsorbed back into the plasma of the peritubular capillaries. 

The major kidney function is that the useful portions of the tubular fluid are returned to 
the blood, while the unwanted portions pass into the urine. For this purpose the tremendous 
penneability of the glomerular membrane is due to its specific structure by which the fluid 



2.7 First-Order Linear State-Equation Models 107 

is filtered between the fenestra of the capillary endothelial cells, that are so small in diame­
ter that they prevent the filtration of all particles which an average size greater that 160 A. 
Then, outside the endothelial cells is a basement membrane composed mainly of a mesh­
work of mucopoly-saccaride fibrillae. A final layer of the glomerular membrane is a layer 
of epithelial cells with slit pores, which prevent filtration of all particles with diameter grea­
ter than 70 A. 

In the case of a dysfunction of the kidneys, the clearance fails to function properly, and 
unwanted substances increase to toxic levels. To avoid this dangerous situation for the hu­
man body, the unwanted substances removal process can be performed through an artificial 
kidney machine, called dialyser. In this case blood is taken from the body and passed into 
the dialyser. A cleaning fluid, called the dialyse, flows in the opposite direction in an adja­
cent compartment to the blood, being separated by a membrane with small pores, which are 
large enough to allow the passage of the relatively small molecules of the unwanted sub­
stances. The flow rate of the unwanted substances through the menbrane of the dialyser is 
determined by the differences in concentration on either side, the flow being from high to 
low concentration. A schematic diagram of the dialyser is shown in Fig. 2.8. 

Blood 
Unwanted 

+subfances~ ...+ 
Membrane 

Dialysate 

Fig. 2.S. Block diagram of a dialyser (modified after Burghes and Borne) 

The important quantity of the dialyser is the removal rate, which depends on the flow 
rates of the blood and dialysate through the dialyser, the size of the dialyser and the perme­
ability of the membrane. Assuming that the last two factors are fixed, we may than concen­
trate on finding the dependence of the removal rate on the flow rate. Let x denote the dis­
tance along the dialyser. Hence we may consider what happens in a small section of the 
dialyser from x to x + ax, as shown in Fig. 2.9 

A Blood D 

~ ..............~~oncrtr~ti~~u .~ ..... ~~ Membrane 

Dialysate 
c L-_______ C_o_n_c_en_t_ra_t_io_n_v ________ ~ F 

______ .~ x 
x+ox 

Fig. 2.9. Detailed block diagram of a dialyser (modified after Burghes and 
Borne) 



108 2 Mathematical Description of Continuous-Time Systems 

The state variables of the dialyser are the concentration of unwanted substances in the 
blood as well as in the dialysate. Denoting these by u and v respectively, we may assume 
that these quantities are functions of x, the distance along the dialyser, that is 

u = u(x) 

v = v(x). 
(2.191 ) 

The law govering the amount of unwanted substances passing through the membrane of 
the dialyser corresponds to Ficks law (see also Sect, 1.3.5) which states that the amount of 
substance passing through the membrane is proportional to the difference in concentration. 

The difference in concentration across AC is u(x) - vex), hence the mass transfer 
through a section of the membrane with unit width and length ax from blood to dialyse in 
unit time is given approximately by 

k· [u(x) - v(x)]. ax. (2.192) 

The proportional constant is assumed to be independent ofx. To derive the equations of 
the model we consider that mass changes in the element ADFC are in unit time. Hence we 
can notifY in unit time, 

mass flow across AB mass passing through mass flow across DE 
+ 

into element membrane BE out of element 

Converting this into mathematical terms gives 

QB . u(x) = k· [u(x) - v(x)]· ax + QB . u(x + ax), (2.193) 

where Q8 is the flow rate of blood through the dialyser machine, which can be expressed 
as follows 

QB .[u(x+ax)-u(x) ]=-k.[u(x)-v(x)]. 
ax 

Considering ax ~ 0, gives 

du 
QB ·-=-k·[u-v]. 

dx 

(2.194) 

(2.195) 

Mathematically, we obtain (2.37) by considering a small blood flow through the dia­
Iyser machine. In a similar way, if we consider a small dialyse, we obtain 

dv 
-QD'- = -k·[u-v]. 

dx 
(2.196) 



2.7 First-Order Linear State-Equation Models 109 

Equations (2.195) and (2.196) are called coupled differential equations, describing the 
dynamic model of the dialyser. Adding these equations and rearranging the terms yields 

hence, ifz = u - v, 

dudv k k - - - = --. (u - v) + -. (u - v) 
dx dx QB QD 

dz 
-=-a·z 
dx ' 

where a = J5...... - J5...... . For (2.198) we may use the e"A solution as follows: 
QB QD 

A -a·x 
Z= ·e 

where A is an arbitrary constant. From (2.195) we know 

du =_J5....... z =_J5....... A .e-a.x 

dx QB QB 

while integrating gives 

B k· A -ax 
u= +---·e 

a·QB 

(2.197) 

(2.198) 

(2.199) 

(2.200) 

(2.201) 

where B is an arbitrary constant. We may obtain v from (2.199) using (2.201), since 

u - v = A· e-a.x , (2.202) 

the solution of v is given by 

B k· A -a·x 
v= +---·e . 

a·QD 
(2.203) 

The overall solution depends on the boundary conditions chosen. Consider that the 
blood has initial concentration Uo on entry and the dialysate has almost zero concentration 
on entry, giving 

u = Uo at x = 0 (2.204) 

v =0 at x=L 



110 2 Mathematical Description of Continuous-Time Systems 

where L is the length of the dialyser. The most important factor of the dialyser is the 
amount of unwanted substances removed (in unit time). This quantity may be represented 
as 

L L d u(L) 

f k[u(x)-v(x)]dx =-QBf~ =-QB fdu =-QB[uo-u(L)]. 
o 0 Uo 

(2.205) 

These conditions determine the clearance function Cl of the dialyser, given by 

(2.206) 

Applying these condition and after some algebraic transforms we get 

(2.207) 

where 

k·L Q 
a·L=-[I-(~)] . 

QB QD 
(2.208) 

The key parameters for this dialyser model are 

(i) g: ' (2.209) 

the flow-rate ratio 

( .. ) k·L 
11 --. 

QB 
(2.210) 

Typical operating conditions of dialysers showing a variation of the respective values. 

QB varies from 100 to 300 ml/min, and QD from 200 to 600 ml/min, whilst the ratio k· L 
QB 

varies between I and 3. 



2.8 Second-Order Linear State-Equation Models 111 

2.8 Second-Order Linear State-Equation Models 

Real-world systems are complex and in most cases, they cannot be described by 
first-order differential equations. This requires the formulation of higher-order dif­
ferential equations for more accurately description of real-world systems. Consi­
der the mathematical model of a dynamic system given by 

d 2x dx 
-+ a·-+b·x = J(t) , 
dt2 dt 

(2.211) 

which is a second order linear differential equation with constant parameters a and 
b, and function.f{t) is a specified function of t. Solving differential equations of 
this type involves finding one particular solution xp(t) of (2.211). We will consider 
the difference between the so-called general solution x(t) of (2.211) and the so­
called particular solution xp(t). Let 

yet) = x(t) - x p (t), (2.212) 

then the second-order model, which is a sufficiently accurate representation of the 
real-world system, yields 

while both, x(t), and xp(t), satisty (2.211). Hence the function yet) satisfies the as­
sociated homogenous equation 

d 2 x dx 
-+a·-+b·x=O. 
dt2 dt 

(2.214) 

We may write yet) as xc(t) - this function is called the complementary function 
- thus the general solution of (2.211) yields 

x(t) = Xc (t) + xp (t). (2.215) 

Example 2.16 
Determine the general solution of 

d 2x dx 
-+a·-+b·x=O 
dt 2 dt ' 

(2.216) 

by using the Lagrange criterion x(t) = eAot, where A is a constant to be determined. To sat­
isfy the differential equation 



112 2 Mathematical Description of Continuous-Time Systems 

eAt (A? + a . A + b) = 0, (2.217) 

should be true for all appropriate t, we obtain 

(2.218) 

which is a quadratic equation in A, called the auxilliary equation, with two solutions, A.I and 
~, gives eA,I·t and e A2·t which are linearly independent. Hence the general solution of (2.214) 
has the form 

x(t) = A· e",·t + B. e-'2·t . (2.219) 

Depending on whether the square of (2.218) is positive, zero or negative, we obtain 
three cases: 

Case 1: cr - 4b > 0: 
For this case exist two real solutions, given by 

d 2x dx 
-+3·-+2·x=0 
dt2 dt ' 

(2.220) 

with the auxilliary equation 

(2.221) 

which gives 

(2.222) 

with A.I = - 2, and ~ = - 1, and the general solution is 

x(t) = A· e-2t + B· e-t • (2.223) 

Case 2: a2 - 4b = 0: 

a 
For this case we have a repeated root A = --, and a second linear independent 

2 

solution may be given by x· eM, yields 



2.8 Second-Order Linear State-Equation Models 113 

d 2x dx 
--4·-+4·x=0 
dt2 dt ' 

(2.224) 

with the auxilliary equation 

)} -4· .1,+4 = 0, (2.225) 

which gives 

(2.226) 

with ~ = e2-t as a solution, and it may be verified that ~ = x· e2-t is a second solution. 

The general solution is given as 

x(t) = A . e2-t + B . e2t . (2.227) 

Case 3: a2 -4b < 0: 
For this case we have complex roots, given as 

~ =a+ jp (2.228) 

and 

~=a-jp, (2.229) 

for which we may write the general solution as 

x(t) = A· e(a+JP}t + B· e(a-JP}t = ea-t (A. e+JPt + B· e-JPt ) 
(2.230) 

= eat [(A + B)cos(p, t)+ j(A - B)sin(p· t)l 

since e1tP = cos {/J + jsin (/J. Introducing the new arbitrary constants 

C=A+B 

D = j(A-B), 
(2.231) 

yields 

x(t) = eat(C ·cos(p ·t)+ D· sin(p, t)). (2.232) 



114 2 Mathematical Description of Continuous-Time Systems 

The second-order differential equation 

d 2 x dx 
-+2·-+2·x=0 
dt2 dt ' 

(2.233) 

has the auxilliary equation 

A? + 2 . A, + 2 = 0, (2.234) 

which gives 

A, = -l±j, (2.235) 

where a= - 1, fi= 1, gives the solution as 

x(t) = e-t(C· cos(t) + D· sin(t)). (2.236) 

We have seen how to solve (2.214) for several possible cases. In order to solve 
(2.211) we need to know only one particular solution, xp of (2.211). Unfortunately, 
it is not straightforward to find Xc, and we have to use trial and error methods. 

We may also write a second-order differential equation system as a set of first­
order state differential equations like 

dx\ 
- = a\\x\ + a\2x2 + b\u, 
dt (2.237) 

(2.238) 

(2.239) 

with u as the input variable, y as the output variable and Xl and X2 as the state va­
riables. The state model, given by the state equations and the output equation, is 
defined by the constants all. al2, a2]' a22 , b], b2, C], C2. 

Considering the state equations are linear, the Laplace transform can be ap­
plied. Supposing that U(s) denotes the Laplace transform of u(t), Y(s) denotes the 
Laplace transform ofy(t) andX(s) denotes the Laplace transform ofx(t), giving 

(2.240) 



2.8 Second-Order Linear State-Equation Models 115 

(2.241) 

(2.242) 

where the capital letters denote the Laplace transforms of the corresponding vari­
ables, we can write 

and 

y = {c1[(s-a22 )b1 + a12b2] + c2[a21b1 +(s-a11 )b2]} U. 
(S - a11)(s - a22 ) - a12a21 

(2.243) 

(2.244) 

(2.245) 

Therefore, the transfer function for the linear second-order case is given by 

G(s) 
c1[(s-a22 )b1 + a12b2]+c2[a21b1 +(s-a11 )b2] 

(S - all)(s -a22 ) - a12a21 
(2.246) 

where the transform of the zero state output response is the product of the transfer 
function, and the transform of the input function. The denominator polynomial of 
the transfer function is the characteristic polynomial of the linear second-order 
system 

(2.247) 

The zeros of this polynomial are called characteristic zeros of the system; they 
are also the so-called poles of the transfer function, and are part of the complex 
domain. Using this polynomial one can show that if the real part of the characte­
ristic zeros are negative, then the input response always tends to zero, and the sys­
tem is said to be stable. If this does not hold for the characteristic zeros, then the 
system is said to be unstable. 

Example 2.17 
Consider the second-order linear mechanical system, as shown in Fig. 2.10. The viscous 

damping force may be expressed by the equation 



116 2 Mathematical Description of Continuous-Time Systems 

(2.248) 

where c is a constant of proportionality. From the free-body diagram, we obtain the equa­
tion of motion 

m· x"+c· x'+k· x = F(t). (2.249) 

c 

--1;"-" ~ kx '" 

r'---'-r----L If ---XL-q; 
F(t) 

Fig. 2. 10. Second-order linear mechanical system model 

The solution of (2.249), detennined by several methods in this section, is used here to 
yield the complete solution of the second-order state-variable equation. If F(t) = 0, we ob­
tain the solution of the homogeneous differential equation whose solution corresponds 
physically to that of free damped vibration. With F(t}t:O, we obtain the particular solution 
that is due to the excitation irrespective of the homogeneous solution. In this case we are 
considering the homogeneous equation in which the forces are equated to zero, gives 

m· x"+c· x' +k· x = O. (2.250) 

The force acting on the mass is 

F=m'a, (2.251) 

where a is the acceleration and is defined as the second derivative of the state variable x" 

F =m·x". (2.252) 

The force acting on the damper is 



2.8 Second-Order Linear State-Equation Models 117 

F=c·x'. (2.253) 

The force due to the spring is 

F=k·x. (2.254) 

Thus the net force is equated to zero in (2.250). For the homogeneous equation we may 
assume a solution, given by 

(2.255) 

where A is a constant, as introduced in Example 2.16. Substituting (2.255) into (2.250) 
gives 

(2.256) 

which is satisfied for all values of t when 

(2.257) 

known as the characteristic equation and has two roots : 

C [cf2 k ~2 =--± (-) --. 
. 2m 2m m 

(2.258) 

Hence, the overall solution in its general form can be expressed as 

x(t) = A . eA;1 + B . e-'2 1 , (2.259) 

where A and B are constants to be evaluated from the initial conditions x(O) and x'(O). Sub­
stituting (2.258) into (2.219) gives 

-(~}r [~} [~}l x(t) = e 2m A- e + B . e . 

(2.260) 

The first term, 



118 2 Mathematical Description of Continuous-Time Systems 

e 
-(~} 

(2.261) 

is simply an exponentially decaying function over time. The behavior of the terms in paren­
theses, however, depends on whether the value of the radical is positive, zero or negative, 
giving three cases: 

Case 1: Overdamped oscillation 

If the damping term (~). ( is larger than !5...., the exponents in the previous equation 
2m m 

are real numbers, that is no oscillation is possible. We refer to this case as being an over­
damped system. 

Case 2: Underdamped oscillation 

When the damping term (~). ( is less than !5...., the exponent becomes an imaginary 
2m m 

number, 

(2.262) 

and here the terms in parentheses are oscillatory. We refer to this case as being an un­
derdamped system, what yields 

±[~} ~ ~ 
e =COSV~-(f,;;) .(±j.SinV~-(f,;;) .(. 

(2.263) 

Case 3: Critical damping 
The case between the oscillatory and nonoscillatory motion yields 

k (2.264) 
m 

and the radical is zero. The damping corresponding to this case is called critical damping, 
and thus 

Cc = 2m~ = 2mwn = 2.Jk;; . (2.265) 

Any damping can be expressed in terms of the critical damping by a nondimensional 
number z called the damping ratio, which is shown as the simulation result for several ca­
ses of oscillatory motion ilIJ. Fig. 2.11, 2.12 and 2.13 (see Chap. 4). 



2.8 Second-Order Linear State-Equation Models 119 

Figure 2.11 shows the general nature of oscillatory motion with the respective relations 

(2.266) 

(2.267) 

100.0 

>< 

.100.0 +-,--'--'--'-+-'--'---'--'--f--'--LL4-LL-LLl-'-LLY-JLLJ---,-!-'--'-'--'--j-.J.-'--'-4..l...J...l...J.-f-L..L...1.-'-j 

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 

Fig. 2.11. Damped oscillation z < 1 

Figure 2.12 shows the general nature of the nonoscillatory motion that holds for z > I 
the overdamped case with the relation 

(2.268) 

The motion is an exponentially decreasing function over time as shown in Fig. 2.12, for 
a periodic input with z > I 

(2.269) 



120 2 Mathematical Description of Continuous-Time Systems 

80.0 

70.0 

60.0 

50.0 

40.0 
>< 

30.0 

20.0 

10.0 

00 

-10.0 
0.0 

\ 
\ 

--x 

~,-------
10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 

Fig. 2.12. Exponentially decreasing motion for z > 1 

Figure 2.13 shows critically damped motion for z = 1.0 for the three types of response 
with initial displacement x(O), 

100.0 

50.0 

M 
>< 
N 0.0 >< 

x 

-50.0 

00 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 

Fig. 2.13. Critical damped motion for z ~ 0 5:1 

The mass damper spring system shown in Fig. 2.10, given by (2.260) in the no­
tation of differential equations can also be represented in terms of isomorphisms, 
introduced in Sect. 1.6, by an electrical RCL network representation, as shown in 
Fig. 2.14. 



2.8 Second-Order Linear State-Equation Models 121 

Fig. 2.14. RCL network 

The behavior of the RCL network can be described by the differential equation 

L. q"+R. q,+!L = V(t) 
C C' 

(2.270) 

where L is the inductance, R is the resistance, C is the capacitance, q is the charge, 
and V(t) is the time dependent voltage source. 

Comparing the differential equations, (2.219) and (2.270), shows that they have 
common state variables and parameters which ensures that the dynamic systems 
are based on the same general mathematical equations, given by 

A· x"+B· x'+C·x = D(t) , (2.271) 

which results in the correspondences given in Table 2.3. 

Table 2.3. Correspondences oflinear systems 

Mathematical model Mechanical system RCL network 
x: state-space x: oscillation q: charge 
x': derivative of x x': velocity i: current 
A: system parameter m: mass L: inductance 
B: system parameter c: damper R: resistance 
C: system parameter k: spring C: capacitance 
D(t) : input function F(t) : force E(t) : voltage 

As Table 2.3 shows, the mechanical and the electrical RCL network description 
are based on the general mathematical models of the physical systems. Hence the 
one system can be used in place of the other one describing the one system. Due to 
this we have a transform formalism for a dynamic system description, which can 
be expanded, if necessary. 

(2.271) can be rewritten as 

"B ,C D(t) x +_·x+_·x=--
A A A .. 

(2.272) 



122 2 Mathematical Description of Continuous-Time Systems 

Rewriting this differential equation, which is of second-order, using n first­
order differential equations gives 

(2.273) 

" , B ,C D(t) 
x =x =-_·x--·x+--

2 A A A, 
(2.274) 

which can be solved easily using simulation, as shown in Chap. 4, since each 
equation represents a single mode of dynamic behavior, we often refer to the form 
of state variables as the model-coordinate representation, given by 

dx] 

dt 
dx2 

dt 

x2 , (2.275) 

Y 

where c, OJ, and b are constant parameters. The parameter c is usually referred to 
as the damping ratio of the system and m is referred to as the natural frequency of 
the system. The transfer function of the dynamic system yields 

b 
G~) = 2 ' 

s +2·c·m·s+ar 
(2.276) 

and the characteristic polynomial is given by 

(2.277) 

Assuming c > 0 the system is said to be stable. If 0 < c < 1 the characteristic ze­
ros of the polynomial are real. 

The zero input response is determined by using the Laplace transform, which 
gives 

(2.278) 

(2.279) 



2.9 Higher-Order Linear State-Space Models* 123 

hence 

(s + 2· c· (0). XI (0) + X 2(0) 

S2 + 2· c· (0+ s + # 

s . X (0) - (02 . X (0) 
X = 2 I 

2 2 • 
s +2·c·(O·s+# 

(2.280) 

The time-dependent state responses can be determined using the inverse Lapla­
ce transform. The state response XI(t), if 0 < c > l,can be expressed by 

C·(O·X;(0)+X2(0) -NtH • ( ~1 \ + ·e . smm·vc- -l·t). 
m.~c2 -1 

in case that c > 1, the time dependent state response can be expressed by 

_ m.(c-~)x1(0)-X2(0) .e-w{c+,JcZ::!}t 
2 ·m· ~C2 -1 

+ m.(c+~).XI(0)+X2(0) .e-w{c-,JcZ::!},. 
2 ·m· ~C2 -1 

(2.281) 

(2.282) 

X2(t) can be derived similar to XI(t). Even in this case the zero-input response is 
a rather complicated function of the initial state XI(O) and X2(0). Instead of calcu­
lating, plotting X2(t) versus XI(t) gives a better intuitive understanding of the com­
plex system behavior. The XI versus X2 plane is called the phase plane or the state 
plane. The curves in this plane corresponding to solutions of the state equations 
are called trajectories. 

2.9 Higher-Order Linear State-Space Models* 

We now consider a specific class of dynamic systems that are of higher order, 
meaning they will have state variables higher than n = 2, with n as the order of the 
dynamic system. Furthermore, it will be assumed that the state equations are linear 
so that Laplace transforms can be used with benefit. 



124 2 Mathematical Description of Continuous-Time Systems 

Linear higher-order state-space models can be expressed in the fonn 

(2.283) 

where u is the input variable, y is the output variable and XI and X2 are the state­
space variables. The state-space model is defined by the constants all, ... ,aln, anI, 

... , ann, b l , ••• , bn, and CI, ... ,Cn• The function in the :z -domain is necessarily 
the ratio of two polynomial functions 

G(s) 

Example 2.18 

n(s) 

d(s) 
(2.284) 

We now consider as an example of a higher-order dyn!\mic system an automobile rear­
end suspension system. Mathematical modelbuilding can be used to help identify the effec­
ts of changing the struts on the automobile. For simplification, the mass of the tires as well 
as the axle are neglected. 

The automobile rear-end suspension system is a very complex real-world system that 
behaves like the translation system shown in Fig. 2.15. A bump in the road causes a dis­
placement of the tire, thereby causing a force to be transmitted through the axle to the strut 
of the vehicle. Since the spring and dampening coefficients of the tire are already set, the 
strut is the only factor that can be modified. The system can be analyzed using modeling 
techniques that include free body diagrams, as well as the D'Alembert theorem. Hence it is 
possible to substitute the various values for the struts and determine the best possible confi­
guration. 



2.9 Higher-Order Linear State-Space Models* 125 

c 

Fig. 2.15. System model of the automobile rear-end suspension system 

The schematic diagram, shown in Fig. 2.15, represents the model of an automobile rear­
end suspension system, where the mass is the weight of the car and the first spring damper 
pair is a shock absorber, while the second pair is the tire itself. The force F, represents the 
reaction force of the road. The suspension system can be easily modified by letting a mass 
represent the vehicle and connecting it to the axle by a spring damper combination, repre­
senting the strut. A mass-less lever represents the axle, which links the strut to the road via 
the tire. A spring damper pair also represents the tire. The damping coefficient is a fixed 
property ofthe rubber while the spring coefficient is a property of the tire pressure. 

As shown in Fig. 2.15, a mass is attached to the lever through a spring damper pair. As 
the lever deflects, forces are exerted through another spring-damper pair to produce the re­
action force F. In order to make this model manageable, we neglect the mass of the lever. 
We also assume that the lever moves through small angles. System analysis can be done 
based on a free-body diagram showing the forces acting on the mass Ml as given in Fig. 
2.16. 

Fig. 2.16. Free-body diagram of mass Ml 

If we assume the mass to be moving downward, viscous damping produces an opposing 

upward force proportional to the velocity dx2 as Kdl (dx2 ), and the spring yields an 
dt dt 

upward force proportional to the position difference (X2 -I) as , Ksl (X2 - Xl) , where Xl is 

the unstretched length of the spring. Downward forces are the result of gravity (Mg) and 



126 2 Mathematical Description of Continuous-Time Systems 

the external force IX3 (t) . Using D'Alemberts law, a French mathematician, born 1717 in 

Paris, 

LF=M·x" , (2.285) 

we can sum these forces algebraically with the downward direction considered positive be­
cause Xz is increasing in that direction and set that sum equal to the product of the mass and 

dZx 
its acceleration --z_z to yield 

dt 

L dZxz dxz () ( F=M·--=-K ·--K . x -x +M'g+j t) dtZ dl dt sl Z 1 x3' 
(2.286) 

where Kdl is the damping coefficient of the first damper, Ksl is the spring stiffness of the 

first spring and IX3 (t) is an external force. 

Rearranging (2.286) by placing terms involving Xz and its derivatives on the left gives 

(2.287) 

Neglecting the external force IX3 (t) on the right side of (2.288), we solve this equation 

for the static operating point xZsop due to the gravitational force only, yields 

d Z xZsop dxzsop ( ) M '--Z-+Kdl ·--+Ksl · XZsop -Xl = M· g. 
dt dt 

(2.288) 

Since xZsop is a constant, its derivatives are zero and (2.288) becomes 

(2.289) 

Therefore, the static equilibrium position xZsop is 

(2.290) 

Ifwe form Xz as the sum of the constantxzsop resulting from Mg and a variation of L1x 

resulting from Ix (t) we get 
3 



2.9 Higher-Order Linear State-Space Models* 127 

(2.291) 

Using (2.291) in (2.287) with X2sop from (2.289) yields the linear differential equation 

for the variation of L1x2 as 

(2.292) 

d 2 (Ax ) 
Solving (2.293) for 2 2 using Laplace transforms yields 

dt 

2 ( ) Kdl () Ks' ) 1 s ·M s =--·s·M s --·s·M (s +-F (s) 
2 M 2 M 2 MX3' (2.293) 

where LlX2(S) and Fx (S) are the Laplace transforms of L1x2(t) and /'x (t), respec-
3 3 

tiveley. We have shown how to determine the free-body system of mass MI. 
The rear-end suspension system, shown in Fig. 2.15, is much more complex as the sim­

ple free-body system, shown in Fig. 2.16. Using D'Alemberts law we have 

(2.294) 

r. 
where Tis the ratio of ..l.., where rl is the distance from pivot and r2 is the distance be­

r2 

tween spring and damping. Consider Al = x; we find 

(2.295) 

Determining the time response for systems described by state variables, we have to rear­

range (2.295) by moving the derivative over to the left side and setting VI equal to it, we 

obtain the first state equation 

(2.296) 

Let 

(2.297) 



128 2 Mathematical Description of Continuous-Time Systems 

Therefore, 

(2.298) 

Solving VI in terms of AI we have a set of second state equations 

(2.299) 

(2.300) 

(2.301) 

Since we still have X2 in the equations given above, we may develop an expression for X2 
in terms of X3 and XI. This can be achieved by writing equations for the forces of the spring 
damper pairs. Since the lever is assumed to be mass less we can use a simple ratio to deter­
mine the relationship between Xt. X2, and X3 as follows 

(2.302) 

Obviously, if we write the equations to determine the forces, we find the compression 
between the lever and the mass and the lever and the road, respectively, yielding 

(2.303) 

(2.304) 

As a result, the behavior of the automobile rear-end-suspension system considered here 
results in the following set of differential equations 

-r·Kd2 ·x; +r·x; . (Kd2 + KdJ-X; ·Kdl 
=Ksl ·xl -r·x2 . (Ks2 +Ksl )+r.X3 . Ks2· 

Rearranging the terms in (2.305) yields 

(2.305) 



2.9 Higher-Order Linear State-Space Models* 129 

Kdl .(r.x; -x;)+Ksl .(r.Xl -Xl) 

= r· [Kdl (X; - X;)+ Kdl (X3 - X2)] . 
(2.306) 

With the help of (2.306) we can define V2 and detennine the second state equation as 

follows 

(2.307) 

(2.308) 

Solving V2 for Xl and substituting the equation into the previous state equations yields 

(2.309) 

(2.310) 

and as a result of D' Alembert' slaw, we obtain 

(2.311) 

X(t, v):= 

We can now use these equations to approximate the behavior of the rear-end­
suspension system using the Runge Kutta method that can be done, for example, 
with the rkfixed function of the software package Mathcad. Runge, a German 
mathematician, was born 1927 in Bremen, Kutta, a German mathematician, was 
born 1867 in Pitschem Upper Silesia, Germany. 



130 2 Mathematical Description of Continuous-Time Systems 

2.10 Nonlinear State-Space Models* 

State models of real-world system are often nonlinear. Consequently, the tech­
niques indicated previously that are valuable in the analysis of linear state equa­
tions are not of direct applicability here. In fact, it is not possible to give general 
formulas or even procedures that are guaranteed to prove useful for non-linear 
state equations. 

Assuming a first-order state model of the form 

dx 

dt 
J(x,U), 

y g(x,u), 

(2.312) 

where x is the state variable, U is the input variable, and y is the output variable. 
The state model is defined by the two functions j{x, u) and g(x, u). Since the 

analysis of the state equations depends most importantly on the differential equa­
tion 

dx - = J(x,U) , 
dt 

(2.313) 

most attention will be directed toward this equation. The essence is that in some 
special cases it is possible to integrate the differential equation; in particular con­
sider the special case of a constant input function u(t) = u,t ~ 0, as introduced 

by McClamroch, we obtain 

dx 
= J(x,u). 

dt 
(2.314) 

This first-order differential equation can be determined using the method of 
separation of variables to obtain 

fX(t) dx rt 

x(O) J(x,u) = Jo dw. 
(2.315) 

In some cases, depending on the function f(x, u), it is possible to describe the 

integral of(2.315) as an explicit function of x(t),x(O) , and U, given by 

¢(x(t),x(O),u) = t. (2.316) 



2.10 Nonlinear State-Space Models* 131 

Finally, it can be possible using this implicit equation to determine x(t) as an 

explicit function of t, x(o) and U, attempting to integrate the state equation by 

the separation of variables. 
It is not possible to solve (2.316) for any initial state and any input function, 

which is usually rather easy to determine if there are constant solutions of the state 
equation. Consider the input is constant u(t) = U for t ~ 0, then if the condition 

o = f(x,u) (2.317) 

holds for X it follows that if x(o) = X then x(t) = X for all t ~ 0, i.e., X is an 

equilibrium state corresponding to the constant input u; the corresponding output 

function is necessarily constant and given by y(t) = g(x, u) for all t ~ 0. 
One of the most important methods in the analysis of nonlinear state equations 

is the approximation of the nonlinear equation by a suitable linear equation. Sup­
posing that X is an equilibrium state corresponding to the constant input function 
u; then the new approximated variables V, W , and z can be defined by 

u =u +v, 

y = g(x,u)+w, 

x=x+z. 

Hence we receive the equivalent nonlinear state model 

dz _ _ 
- = f(x+z,u +v), 
dt 
w =g(x+z,u+v)-g(x,u), 

(2.318) 

(2.319) 

where V and ware new input and output variables and z is a new state variable. 
If the input function U is close to the constant function U and if the state function 
X is close to the equilibrium state X then it is reasonable to approximate the func­

tions f(x, u) and g(x,u) by linear relations in X and u, which results in 

f(x+z,u +v) == f(x,u) + af (x,u)z+ af (x,u)v, ax au 
(2.320) 

- - ) (- -) af (- -) ag (- -) g(x+z,u+v ==g x,u +- X,U z+- X,U v ax au 



132 2 Mathematical Description of Continuous-Time Systems 

where the partial derivatives are evaluated at X and Ii. Substituting these ap­
proximations into (2.320) results, after simplification, in 

dz _ (aj (- -)) (Of (- -)) ---xu z+-xu v 
dt ax' au" 

(2.321) 

w =(~ (X,it)}+(~~ (x, it)} 
which is a linearized state model. If the functions u(t) and xCt) are close to the 

constant functions U and X, the variables v and z are small, and the error is less 

and the linearized state equations given above are valid. 

2.11 References and Further Reading 

Burghes ON, Borrie MS, (1981), Modelling with Differential Equations, John 
Wiley & Sons, New York 
McClamroch NN, (1980), State Models of Dynamic Systems, Springer, New 
York, Heidelberg, Berlin 
DorfRC, (1986) Modem Control Systems, Addison-Wesley, Reading 
Edwards CH, Penny DE, (2001), Differential Equations and Linear Algebra, Pear­
son EducationlPrentice Hall 
Moller DPF, (1992), Modeling, Simulation and Identification of Dynamic Systems 
(in German), Springer, Berlin, Heidelberg, New York 
Moller DPF, Popovic' ),0, Thiele G, (1983), Modeling, Simulation and Parame­
ter-Estimation of the Human Cardiovascular System, Vieweg Publ., Braun­
schweig, Wiesbaden 
Ogata K, (1967), Stata Space Analysis of Control Systems, Prentice-Hall, Inc. 
Englewood 
Rowland JR, (1986), Linear Control Systems, John Wiley& Sons, New York 
Savant CJ Jr, (1962 Fundamentals of the Laplace Transformation, McGraw-Hill 
Book Company, Inc., New York 
Seely S, (1964), Dynamic Systems Analysis, Reinhold Publishing Corporation, 
New York 
Seireg A, (1969), Mechanical Systems Analysis, International Textbook Compa­
ny, Scranton, Pennsylvania 
Strang G, (1998), Introduction to Linear Algebra, Wellesley-Cambridge-Press 



2.12 Exercises 133 

2.12 Exercises 

2.1 What is meant by saying that a dynamic system is continuous with time? 
2.2 Give an example of an ODE. 
2.3 Solve the ODE for an initial-value problem. 
2.4 Solve the ODE for a boundary-value problem. 
2.5 Give the vector-matrix notation for a linear continuous-time system. 
2.6 What is meant by saying that a dynamic system is a linear system? 
2.7 Describe a simple oscillatory system by using nonlinear differential equations 

of second order. 
2.8 What is meant by saying that a dynamic system has the order n? 
2.9 What is meant by saying that a dynamic system has the degree m? 
2.10 What is meant by the term rank? 
2.11 A dynamic system can be described by the equations 

12x+6y+4z=36 

- 12x + 6 y + 8z = 24 

12x+6y+8z=48 

Prove whether the system has a unique solution or not. 
2.12 Define what is meant by the term controllability? 
2.13 Define what is meant by the term observability? 
2.14 Define what is meant by the term identifiability? 
2.15 Define what is meant by the term convolution integral? 
2.16 Define what is meant by the term Laplace transform? 
2.17 Define what is meant by the term eigenvalues? 
2.18 Describe the meaning of the phase plane shown in Fig. 2.2. 

(2.322) 

2.19 Give the differential equation system describing the phase plane for the state 
variables Xl and X2.t 

2.20 Define what is meant by the terms stable, asymptotically stable, and unsta­
ble? 

2.21 Define what is meant by the term Nyquist criterion? 
2.22 Give a brief description for the loci of the Nyquist criteria as shown in Fig. 

2.4. 
2.23 Define what is meant by the term Routh Hurwitz criterion? 
2.24 A dynamic system can be described by the equation 

d(SFS 3 +S2 +8's+60.s. (2.323) 

Prove by using the Routh Hurwitz criterion whether the system is stable or 
not. 

2.25 The shock absorber spring system of an automobile as shown in Fig. 2.10 can 
be described by the second order-differential equation system in (2.48). If the 
mass has been displayed from its rest position to a distance Xm and the exter-



134 2 Mathematical Description of Continuous-Time Systems 

nal force F(t) is suddenly released, we get (2.49) which should be solved for a 
damped linear oscillation for position, velocity, and phase space. 



3 Mathematical Description of Discrete-Time 
Systems 

3.1 Introduction 

Consider a discrete-time system as a system in which the state variables change 
only at a discrete set of points in time, as shown in Figs. 1.20 and 1.21. For a dee­
per understanding of discrete-time systems, a number of terms are helpful to use, 
such as; 

• Entity, which is an object of interest 
• Attribute, which characterizes the property of an entity 
• Activity, which represents a time period of a specific length 
• Event, which is defined as an instantaneous occurrence that can change 

the state of the system 
• State, which characterizes that collection of variables necessary to de­

scribe the system at any time, relative to the objects of the study 
• Status of elements, such as busy or idle 

Let the formalisms describing discrete-time systems be of the same flexibility 
as general-purpose computer programming languages. Hence it is not accessible 
for any analytical method to calculate the trajectories for model quantities in its 
original form. However, with some restrictions in modeling such calculations can 
be done up to a certain grade. To succeed in this analytical way some assumptions 
of the system behavior and some restrictions in the design of the models are nec­
essary. Restrictions in modeling will lead to restrictions in the significance of the 
results of a simulation study. On the other hand, a restricted set of facilities for the 
model description enables the designer of a simulation system embedding more 
support into the system itself during the modeling process by ready-made compo­
nents with blocks of model code. 

D.P.F. Moeller, Mathematical  and Computational Modeling and Simulation Fundamentals

and Case Studies  © Springer-Verlag Berlin Heidelberg 2004



136 3 Mathematical Description of Discrete-Time Systems 

3.2 Statistical Models in Discrete-Time Systems 

In real-world systems analysis modelers often have to state that real-world sys­
tems are of an imposing complexity and variety, where events more or less never 
repeat exactly. Hence real-world modeling requires skills in recognizing the statis­
tical behavior of the various phenomena that must be incorporated into the model, 
based on a mathematical description that has a normalization in models as abstract 
representation, helping to understand the real-world phenomena. Therefore, part of 
the scientific work consists in formalization, which yields the respective mathe­
matical description of models of the real-world systems studied. This task is scien­
tifically oriented in order to gain a better understanding of real- world phenomena 
through an abstract representation. This can be based on experimentation and ob­
servation, to create representations and laws that formalize a verified hypothesis 
concerning the real-world phenomena. These formalizations are only useful if they 
succeed in seizing the essential features of the real-world systems. Then they per­
mit extrapolation that allows generalization from past experience to future events 
from which one can learn how to manipulate the real- world system for ones pur­
poses. The formalization used to mimic random processes of real-world systems 
are the basic concepts in probability and statistics as they relate to discrete-time or 
discrete-event systems modeling and simulation. 

3.2.1 Random Variables 

Let X be a variable that can assume any of several possible values over a range of 
such possible values. Assuming X is a variable in which the range of possible val­
ues is finite or countably infinite, the probability mass function of X is 

p(X;) = P(X = Xi 

p(xJ ~ 0 

LP(x1)=1. 

(3.1) 

(3.2) 

Assuming X is a variable in which the range of possible values is the set or real 
numbers, the probability mass function of X is 

b 

P(a ~ X ~ b) = ff(x)dx (3.3) 
a 



3.2 Statistical Models in Discrete-Time Systems 137 

f(x)'?O for all x in'f< (3.4) 

ff(x) =1 . 
9!x 

Let E(X) be the expected value of the random variable X. The expectation func­
tion is given by 

(3.5) 

if X is discrete, and by 

E(X) = fxf(x)dx, (3.6) 

if X is discrete. The expected value is also called the mean, denoted by Il. Defining 
the n-th moment of X results in the variance of the random variable X 

VeX) = El{X - E(X»)2 J= El{X -14 J . (3.7) 

Statistical models in discrete-event simulation include queuing systems, inven­
tory systems, reliability and maintainability systems, as well as manufacturing sys­
tems. 

3.2.2 Distributions 

Random variables can be based on continuous distributions or discrete distributi­
ons that are used to describe random phenomena. For continuous distributions one 
can use the 

• Erlanger distribution 
• Exponential distribution 
• Gamma distribution 
• Normal distribution 
• Uniform distribution 
• Weibull distribution 

For continuous distributions one can use the 

• Bernoulli distribution 
• Binomial distribution 



138 3 Mathematical Description of Discrete-Time Systems 

• Geometric distribution 
• Poisson distribution 

Example 3.1 
Assuming the number X of defective assemblies in the sample n of manufactured as­

semblies is binomially distributed. Let n = 30 and the probability of defective assembly p = 

0.02 results in 

P(X ~ 2) = ~(3:}0.02Y(0.98r-X = 

0.5455 + 0.3340 + 0.0988 = 0.9783 

The mean number of defectives in the sample is 

E(X) = n· p = 30·0.02 = 0.6. 

The variance of defectives in the sample is 

VeX) = n· p.q = 30·0.02·0.98 = 0.588. 

Example 3.2 

(3.8) 

(3.9) 

(3.10) 

Assuming a class of vacuum pumps has a time to failure that follows the Weibull distri­
bution, named after the Swedish engineer, born 1887 in Schleswig Holstein, Germany, with 
a= 200 h, /3= 0.333, and V= o. The mean time to failure yields for the mean Weibull dis­
tribution 

E(X) = v+ar(~ + IJ = 200r(3 + 1) = 200(3!) = 1200 h, (3.11 ) 

and for the variance Weibull distribution 

(3.12) 

The probability that a vacuum pump fails before 200 h can be calculated based on the 
cumulative distribution function of the Weibull distribution as follows 

( x-v)P (2000 )0.333 

F(x) = l-e a = l-e 200 = l_e-2.15 = 0.884. (3.13) 



3.3 Discrete-Event Simulation of Queuing systems 139 

3.3 Discrete-Event Simulation of Queuing systems 

One of the most well known application areas in modeling and simulation of dis­
crete-event systems are simulations of queuing systems that represent random­
based processes. The key element of a queuing system are the customers and the 
servers. Hence a queuing system can be described by the following attributes: 

• The calling population, which represents the population of potential cus­
tomers 

• The system capacity, which is the limit on the number of customers the 
discrete-event system can accommodate at any time 

• The composition of the arrivals, which can occur at scheduled times or at 
random times 

• The queuing discipline, which is the behavior of the queue in reaction to 
its current state 

• The service mechanism, which means that the service times may be con­
stant or of some random duration 

The attributes represent the elements of discrete-event systems. Elements are 
necessary to describe real-world systems and can be classified as: 

• Permanent elements, which are 
- Queues 
- Stations 
- Servers 
- etc. 

• Temporary elements, which are 
- Jobs 
- etc. 

• Times, which are 
- The inter arrival times between two jobs following each other 
- The service time needed in the server 
- etc. 

These elements can be represented through graphical symbols, such as circles 
for an indication of the waiting line in a queue, or blocks, which represent the 
servers, etc. By combining elements complex queuing nets can easily be built up 
visualizing the way a job moves through a net of service stations. Moreover, the 
symbols of the elements describe the limits of the queuing models by sources and 
sinks for jobs, and the possibility to branch and to merge the flow of the jobs. 

The intention of queuing models is to gain information about characteristic 
quantities that describe the workload of the servers, or the time the jobs need to 
pass through the discrete-event system. High workload of stations makes the dis-



140 3 Mathematical Description of Discrete-Time Systems 

crete-event system highly efficient for the operator, but increases the waiting time 
for jobs. Hence modeling and simulation is necessary for the prediction of these 
values to be able to parameterize the system in an acceptable manner. 

Example 3.3 
Consider a simple single-channel telecommunication system with the following ele­

ments: a calling population, a waiting line, and a server. Let the calling population be infi­
nite; that is, if a unit leaves the calling population and joins the waiting line or enters ser­
vice, there is no change in the arrival rate of other units that may need service. Arrivals for 
service occur one at a time if we use a randomized schedule; once they join the waiting 
line, they are eventually served. In this simple single-channel telecommunication model 
service times are assumed to be of some random length according to a probability distribu­
tion that does not change over time. Assume that the system capacity has no limit, meaning 
that any number of units can wait in line. Furthermore, the units should be served in the or­
der of their arrival by a single server, which results in the first-in, first-out (FIFO) service 
schedule. 

Let arrivals and services be defined by the distribution of the time between ar­
rivals and the distribution of the service times, respectively. For any simple single­
channel telecommunication queue, such as the one of Example 3.3, the overall ef­
fective arrival time has to be less than the total service rate, otherwise the waiting 
line will grow without bound. If queues grow without bound, they are called ex­
plosive or unstable. In cases where the arrival time will be for short terms greater 
than the service rate, there is a need for queuing networks with routing capabili­
ties. 

Queuing systems can be represented by terms such as stable, event, simulation 
clock, etc. Hence, the state of the queuing system is represented by its number of 
units as well as the status of the server, which can be busy or idle. An event then 
represents a set of circumstances that cause an instantaneous change in the state of 
the system. In case study Example 3.2 there are only two possible events that can 
affect the state of the single-channel telecommunication system, the arrival event, 
which means the entry of a unit into the system, and the departure event, meaning 
the completion of service on a unit. Furthermore, a simulation clock is used to 
track simulated time. 

If a unit enters the discrete-event system, the unit can find the server either busy 
or idle, which results in two cases: 

1. The unit begins service immediately if the server is idle. 
2. The unit enters the queue for the server immediately if the unit is busy. 

It is not possible for the server to be idle and the queue to be not empty, which 
can be interpreted as a third case. The results of which can be expressed in a ma­
trix form for the potential unit actions upon arrival, as shown in Table 3.1. 



3.3 Discrete-Event Simulation of Queuing systems 141 

Table 3.1. Cases of unit actions upon arrival (For details see text) 

Queue status 
Not empty Empty 

Server status Busy 2 2 
Idle 3 1 

After the completion of a service, as shown in Table 3.1, the server can be­
come idle or remain busy with the next unit. The relationship of these two out­
comes to the status of the queue is shown in Table 3.2. If the queue is not empty, 
another unit can enter the server keeping him busy, or if the queue is empty, the 
server will be idle after a service is completed, which is indicated by the disjunc­
tive indication of case 1 or 2. Again, it is impossible for the server to become busy 
if the queue is empty when a service is completed, which is indicated by case 3. 

Table 3.2. Server outcomes of Table 3.1 after service completion (For details see text) 

Queue status 
Not empty Empty 

Server status Busy lor2 3 
Idle 3 lor2 

Simulating queuing systems requires the stipulation of an event list for determi­
ning what will be next. This event list tracks the future times at which different 
types of events occur. Hence the simulation system is able to calculate the respec­
tive simulation clock time for arrivals and departures. If events occur at random 
times, the randomness needed can be realized through random numbers. Random 
numbers are distributed uniformly and independently on the interval [0,1]. Ran­
dom numbers are uniformly distributed on the set {O, 1,2,3, ... ,8, 9}. They can 
be generated with the respective queuing systems simulation packages. 

Example 3.4 
For the simple single-channel telecommunication queuing systems in Example 3.1, the 

inter-arrival times and service times can be generated from the distribution of random vari­
ables. Consider having seven customers with the inter-arrival times 0, 2, 6, 4, 3, 1,2. Based 
on the inter-arrival times the arrival times ofthe seven customers at the queuing systems re­
sults in 0, 2, 8, 12, 15, 16, 18. Due to these boundaries the first customer arrives at clock 
time 0, which sets the simulation clock in operation. The second customer arrives two time 
units later, at the clock time 2, the third customer arrives six time units later, at the clock 
time 8, etc. The second time values of interest in Example 3.2 are the service times that are 
generated at random from a distribution of service times. Let the possible service times be 
one, two, three, and four time units. Hence we are able to mesh the inter-arrival times and 
the service times, simulating the simple single-channel telecommunication queuing system, 
which results in the schedule, shown in Table 3.3. 



142 3 Mathematical Description of Discrete-Time Systems 

Table 3.3. Simulating the single-channel queuing system (For details see text) 

Customer no. Arrival time Service begins Service time Service ends 
1 0 0 4 4 
2 2 4 3 7 
3 8 8 2 10 
4 12 12 4 16 
5 15 17 3 20 
6 16 20 2 22 
7 18 22 4 26 

As shown in Table 3.3, the first customer arrives at clock time 0 and service 
starts immediately, which requires four time units. The second customer arrived at 
clock time 2, but service could not begin until clock time 4. This occurred because 
customer 1 did not finish service until clock time 4. The third customer arrives at 
clock time 8 and is finished at clock time 10, etc. The strategy that serves custom­
ers in Example 3.2 is based - again - on the first-in, first-out (FIFO) basis, which 
keeps track of the clock time at which each event occurs. 

Furthermore, the chronological ordering of events can be determined from Ta­
ble 3.3, as records of the clock times of each arrival event and of each departure 
event, depending on the customer number. The chronological ordering of events is 
needed as a basis concept for the realization of discrete-event simulation systems. 

Further interesting parameters for discrete-event simulation systems are the: 

• Workload, which represents the percentage of the simulation time a re­
source was working 

• Throughput, which is the number of jobs per time unit that leave the sys-
tem 

• Mean waiting time 
• Mean time in system 
• Queue length 
• Mean number of waiting jobs 

• etc. 

Moreover, knowledge of the layout of the queuing networks is of importance 
for the use of discrete-event simulation systems. The layout depends on: 

• Open-queuing systems, which have sources and sinks. The job-pass 
through the queuing net and leave it when all demands are satisfied. 
Typical examples of open-queuing systems are production lines, where 
the jobs are the raw materials that have to be treated by certain operations 
and leave the system as ready-made products. 

• Closed-queuing systems, which are identified by a closed loop in which 
the jobs move through the queuing net. The number of jobs are fixed for 
the whole siml.Ilation time. A typical example of a closed-queuing system 



3.3 Discrete-Event Simulation of Queuing systems 143 

is a multi user system with n terminals and a single central processing 
unit (CPU). The jobs circle between the terminals and the CPU; their 
number stays constant all over the simulation time. 

The way the jobs are processed through the queues is based on specific con­
cepts that show how to organize queues. The most common concepts are: 

• First-in, first-out (FIFO) 
• Last-in, last-out (LILO) 
• Shortest job first 
• Round robin 
• Shortest remaining processing time 
• Multi level feed back 
• Service in random number 

Simulating queuing systems generally requires the maintenance specifying the 
dynamic behavior of the discrete-event system, which can be done using simula­
tion tables, designed for the problem being investigated. Hence, the content of the 
simulation table depends from the observed system and can give answers such as: 

• The average waiting time of a customer is determined by the total time 
the customers wait in queue, divided by the total numbers of customers. 

• The average time a customer spends in the queuing system is determined 
by the total time the customers spend in the queuing system, divided by 
the total numbers of customers. 

• The average service time is determined by the total service time, divided 
by the total number of customers. 

• The average time between arrivals is determined by the sum of all times 
between arrivals, divided by the number of arrivals - 1. 

• The probability a customer has to wait in the queue is determined by the 
number of customers who wait in queue, divided by the total number of 
customers-

• The fraction of idle time of the server is determined by the total idle time 
of the server, divided by the total run time of the simulation. 

• etc. 

Moreover, it has to be decided whether: 

• It is possible to leave the queue without being served at all. 
• The number of jobs in the queue is limited. 
• There are priorities for the jobs (static and/or dynamic). 
• It is possible for a job with high priority to interrupt the service for a low­

priority one and to occupy the service station immediately when entering 
the queue. 

• etc. 



144 3 Mathematical Description of Discrete-Time Systems 

To standardize the description of queuing models, Kendall introduced notation 
for queuing systems, which includes information about the processes such as job 
arrivals and the distribution of the time that is needed in the server. This standard 
notation is based on a five-character code 

AIBlclNlk, (3.14) 

where A represents the interarrival-time distribution, B is the service-time distribu­
tion, c is the number of parallel servers - of a station (c ~ 1) -, N represents the 
system capacity and k is the size of the population. 

The elements of queues and servers are represented in the term "station". Hence 
a station can be described, using Kendalls notation, as: 

A / B I c - < strategy> [pre - emptive] [max imal queue -length] . (3.15) 

Kendall, a Swedish mathematician, was born 1907 in Conny Palm. 
The short forms for the mostly used distributions of queuing systems are: 

• G: general (no limitation concerning the distribution) 
• D: deterministic 
• M: exponential distribution 

• etc. 

Example 3.5 
Kendalls notation can be used as follows: 
M/DIl: which represents the simplest example, the FIFO principle. 
M/G/2: which represents a so-called pre-emptive systems example, the LCFS princple. 
MM/l/oo/oo: which indicates a single-server system with unlimited queue capacity and 
infinite calling population. Interarrival times and service times are exponentially distri­
buted. 

Performance measures for queuing systems are of importance for the validation 
of discrete-event simulation models, which are too complex to be modeled ana­
lytically. A queuing system typically has two stages of behavior, short-term or 
transient behavior, followed by long-term or steady-state behavior. If a queuing 
system is started it must operate for a period of time before reaching steady-state 
conditions. A discrete-event simulation model must run for a sufficiently long pe­
riod of time to exceed the transient period before measures of steady-state perfor­
mance can be determined, which results in a specific queuing notation that con­
tains 

• Steady-state probability of having n customers in system 
• Probability of n customers in system at time t 
• Arrival state 



3.3 Discrete-Event Simulation of Queuing systems 145 

• Effective arrival state 
• Effective rate of one server 
• Server utilization 
• Interarrival time between customers n-l and n 

• etc. 

Based on this notation for the various classes of queuing system models a per­
formance analysis can be introduced based on: 

• Steady-state parameters for MIMII queues 
• Steady-state parameters for MIG/1 queues 
• Steady-state parameters for MIEJI queues 
• Steady-state parameters for MID/1 queues 
• Steady-state parameters for MIMI liN queues 
• Steady-state parameters for MIMic queues 

For the first three queues the service times are exponentially distributed for M, 
generally distributed for G and Erlangen distributed for E. For the fourth case, D, 
the service times are constant. For MIMI liN queues, the system capacity is limited 
to N, for MIMIC queues the channels c operate in parallel. 

While simulation of queuing systems often is done manually, based on simula­
tion tables, one has to decide, comparing the difference between possible analyti­
cal and simulative solutions, which of the two methods should be used. This com­
parison can be restricted, reflecting limitations and advances. 

Limitations of the analytical solutions are: 

• Preconditions, concerning the distribution of the inter arrival times and 
time to be served 

• Substantial problems, to handle queuing strategies 
• Numerical efforts, to solve the state equations 
• Results only for the steady state 
• Only mean values, no predictions about the minimum and the maximum 

or the history of individual jobs 

An advantage of analytical solutions is: 

• Results, which are general for use of all possible parameterizations 

A limitation of simulation-based solutions is: 

• A single simulation run only corresponds to a single random sample, all 
simulation results are singular solutions for the given initial state, they 
are not general results for the whole model 

Advantages of simulation-based solutions are: 



146 3 Mathematical Description of Discrete-Time Systems 

• No preconditions concerning the distributions 
• Any strategy can be reproduced 
• Observation of the individual history for jobs and queue lengths possible 

Another important class of simulation problems of queuing systems involves 
inventory systems. An inventory system has a periodic review of length at which 
time the inventory level is observed, and an order that is made to bring the inven­
tory up to a specified level of amount in inventory. At the end of the review pe­
riod, an order quantity is placed. 

Example 3.6 
An inventory problem deals with the purchase and sale of newspapers. The paper sellers 

may buy the papers for 30 cents each and sell them for 50 cents each. Newspapers not sold 
at the end of the day are sold as scrap for 5 cents each. The problem to be solved with this 
inventory system is to determine the optimal number of papers the newspaper seller should 
purchase, which can be done by simulating the demands for a month and recording the 
profits from sales each day. The profit P can easily be calculated as follows: 

( sales ) [cos t Of) (profit loss 1 (salVage sale 1 
P = revenue - papers - excess demand + scrap papers . 

(3.16) 

Based on Example 3.6 the primary measure of the effectiveness of inventory 
systems, which are total system costs, can be extracted. Contributing to total in­
ventory cost are the following: 

• Item cost which represents the actual costs of the Q items acquired 
• Order costs which are the costs of initiating a purchase or production 

setup 
• Holding costs which are the costs for maintaining items in inventory 
• Shortage costs represent the costs of failing to satisfy demand 

In general, inventory problems of the type discussed above are often easier to 
solve then queuing problems. 

Furthermore, discrete-event simulation of queuing models is based on simula­
tion languages, which use programming languages. Assuming a model consists of 
two events: customer arrival and service completion. The events can be modeled 
with event subroutines, which are ARRIVE and DEPART, respectively. These 
subroutines include an INCLUDE statement, and can be described with general­
ized statements as follows 

SUBROUTINE ARRIVE 
INCLUDE'mml.dcl' 

Schedule next arrival 



IF (SERVER.EQ.BUSY) THEN 

END 

SUBROUTINE DEPART 
INCLUDE 'mml.dcl' 

Check whether the queue is empty or not 

IF (NIQ.EQ.O) THEN 

SERVER = IDLE 

ELSE 
Queue is not empty 
NIQ=NIQ+l 

END 

3.4 Petri-Nets 

3.4 Petri-Nets 147 

Another formalism for the analysis of the behavior of discrete-time systems are 
Petri nets, which offer a model specification paradigm that lies in between an ana­
lytical-solvable model description and a pure simulation-based solution. In their 
origin, Petri-nets have been used for the analysis of synchronization problems 
within a set of parallel processes. Nowadays, the general definition was extended 
in various directions and various types of nets are applied to mostly all application 
areas of discrete-time simulation problems. 

At the very beginning, the German mathematician Petri, born 1926 in Leipzig, 
Germany, published in 1962 a paper in which the definition of a Petri net was 
given. Petri-nets represent systems by means of a net structure, a weighted bipar­
tite directed graph that specifies the static part of the system, which contains two 
different types of knots: points and transitions. 

Definition 3.1 
A Petri-net is a triple that contains two kinds of nodes, points (P) and transitions 
(1), as well as flow relations (F), called edges, yields 

N:=(P,T F), (3.17) 

with 



148 3 Mathematical Description of Discrete-Time Systems 

PnT=fl> (3.18) 

F r;;;, (PxT)u(TxP) . (3.19) 

• 
Consider the node type point as a container for data or infonnation that will be 

symbolized by a circle. A transition can be assumed as a data-processing unit and 
will be symbolized by a square. Points and transitions are connected by means of 
arcs. Arcs are only allowed to connect a point with a transition, or a transition with 
a point. The first type of point is regarded as an input point for a transition, while 
the latter is regarded as an output point. Each arc is labeled with a weight that is a 
positive integer value. The marking or state of the net corresponds to the assign­
ment of one or more tokens to each point. Another state can be reached as a con­
sequence of the firing of a transition. Firing of a transition is due to the con­
sumption of tokens from all its input points and the production of tokens for all of 
its output points. A transition is only allowed to fire if there are sufficient tokens 
available with its inputs points, where the number of required tokens is detennined 
by the weight of the arcs. Hence we obtain: 

(3.20) 

(3.21) 

(3.22) 

which can be represented in the general fonn ofa Petri net, as shown in Fig. 3.1. 

Fig. 3.1. Petri-Net representation of F 

With this fonnalism typical aspects of processes become describable: 

• Parallelism 
• Generation and consuming of discrete objects during the process lifetime 
• Conditions for executing operations or actions 
• Causal dependencies between processes by using common resources 



3.4 Petri-Nets 149 

By their graphical representation a very descriptive model design is possible 
and the animation of the net is an obvious feature for representation. 

Example 3.7 
The points and transitions ofthe Petri-net, shown in Fig. 3.2, should be given. 

p, t, p, t, p, 
(/r-5) (/r-6) 

Fig. 3.2. Petri-net representation of points and transitions 

The Petri-net shown in Fig. 3.2 has the following nodes and transition relations: 

(3.23) 

K(PI) = 5, K(ps) = 6 for all other nodes the capacity -"7 00 

W(P2,t l ) = 3, W(P4,tJ = 2 all other edges are weighted 1 

which are the formal representation of a 6-tupel nodes-transition net 

N:= (P,T,F,K,W,Mo)' (3.24) 

with 

K :P-"7 NU{oo}, (3.25) 

which represents the points-capacity function, and 

W:F-"7N, (3.26) 



150 3 Mathematical Description of Discrete-Time Systems 

which is the points-weighting function, and 

(3.27) 

which represents the initial marking of points with 

(3.28) 

Petri nets fill many of the needs of systems modeling which is why they have 
extensions due to place/transistion nets with color, priority and time, which form 
the class of so-called high-level Petri-nets (HLPN). HLPN can be used for model­
ing more complex discrete-event systems models, while classical Petri-nets tend to 
be too large to handle. These extensions are 

• Color, to describe tokens that can have one or more values, forming the 
so-called class of colored Petri-nets 

• Time, which is included by associating time stamps with tokens, repre­
senting deterministic timed Petri-nets or random time as in stochastic 
Petri-nets 

• Hierarchy, which enables the structuring oflarge systems 

Compared with classical Petri-nets high-level Petri-nets necessitate renaming 
and the introduction of new symbols. Hence transactions are renamed as proces­
sors, and for points two types are defined, stores and channels. While channel 
represents a point, store is considered as a special point, which always contains 
precisely one token. 

Definition 3.2 
A high-level Petri-net is a n-tupel 

HLPN:=(P,T ,F,K,R,B,M,V,Wo) (3.29) 

with 

N:= (P,T ,F), (3.30) 

which is a Petri-net based on points, transitions, and flow relations and the func­
tions K, Z, R, B, and M with 

Z: TxOT~N, (3.31 ) 



3.4 Petri-Nets 151 

which represents the switching-time function, and 

R: T~N, (3.32) 

which is the final switching-time function with R(t) ~ Z(t,o.type) for t E T, and 

oED, 

B: (t,before(t)) ~ BOOLEAN, (3.33) 

as switching condition for t E T with Be/ore(t) cD, and 

M: TxO~O (3.34) 

as the respective switching methods, and 

V: F~OT (3.35) 

as the edge-type function, and 

VPE p:O~IWo(p)1 ~K(p) (3.36) 

as the initial condition of points P of type D with objects with the above given 
boundary .• 

Example 3.8 
A motor assembly line, as part of a car production line, can be modeled based on a high­

level Petri-net as shown in Fig. 3.3 . 

• Z: 6 s 
B: -

• M:-

t, 

... . Sell rnent.1 

p, 
(k=1) t, 

T 

. .$eglTl~nt2 .. 

p, P. 
t, (k=1 ) t. (k=1 

Fig. 3.3. High-level Petri-net representation of a conveyer belt of a motor assembly line 

Figure 3.3 shows the model of the conveyer belt as part of the transportation 
processes of the assembly line. From Figure 3.3 one can conclude that the objects 
pass concurrent through the HLPN. While assembly processes need in some cases, 



152 3 Mathematical Description of Discrete-Time Systems 

the take-over mechanism, the HLPN representation of a conveyer belt of the mo­
tor assembly line shown in Fig. 3.3 has to be expanded. The expansion of the 
HLPN has to allow the take-over in between stages 1 and 2 for changing the re­
spective different assembled motor units, for ongoing assembling procedures. The 
expanded HLPN model, including the take-over mechanism, is shown in Fig. 3.4 

From Fig. 3.4 one can conclude that in points PI and Ps we have one object each 
and none in P and P3, hence t2 will be activated. In the switching state one object 
of type motor moves out ofs1 and one object of type WT moves out ofps, both in 
the direction of transition t2. After the switching time of 15 seconds from transi­
tion t2 one object of type motor moves to point P3 and one object of type WR 
moves to point P2, which shows that the take-over mechanism is implemented in 
the correct manner. 

T 

Motor, 1 
t, p, 

Z: 15 sec (k=1) 

B: -
A4: - T 

Fig. 3.4. High-level Petri-net representation ofthe take-over mechanism of a motor assem­
bly line 

Moreover, assembly processes need in some cases, the direct-access mecha­
nism, which is another expansion of the HLPN representation of a conveyer belt 
of the motor assembly line shown in Fig. 3.3. The direct-access mechanism is of 
importance while implementing quality assurance within the HLPN model. The 
expanded HLPN model, including the direct-access mechanism, is shown in Fig. 
3.5. In the direct access stage the object with the attribute OK = true at point P12, 
activates the transition t13. When the value of the attribute is false, 114 will be acti­
vated and the defective motor moves during the switching state into the bypass 
loop. During transition tss of a workplace M the attribute OK will be set true, 
which results via t2 back to the assembly line. 



3.4 Petri-Nets 153 

t" 

O-In : 

T: 

O-Ou( 

p" 

1-----1 t" 

M:-

Motor, 1 

p" 
(k=1 ) 

M:-

1-----1 
B: failure 
M:-

Motor, 1 

T 

Z: 6 5 

B: -
M:-

t" 
. . : ............................. . 

Motor,1 Motor, 1 : 
r=-=-'-----. Z: 3 5 

B: -

Z: 655 

B: -
M: - M: - P.. M: OK:=1 P .. 

:T 

: Motor, 1 : (k=1) t,,: (k=1): 
T ,············.···················"1·····························,··············' 

. M 

Fig.3.5. High-level Petri-net representation of the direct-access mechanism of a motor as­
sembly line 

Developing a HLPN CAD-layout simulator for optimizing the order-entry­
dependent assemblies, can be based using the HLPN models shown in Figs. 3.3, 
3.4, and 3.5. The specific requirements of such types of simulation environment 
are specific commands, such as: 

• Change 
• Delete 
• Expand 



154 3 Mathematical Description of Discrete-Time Systems 

• Store 
• Load 
• Translate 
• etc. 

which can be implemented using programming languages such as C or Java. 
Programming the application-specific simulator Layout can be done based on 

the above-mentioned control structure, as follows: 

void PL_Editor(void); 
void PL _ Change(void); 
void Copy_ Ge(int in_nr, int out_nr); 
void PL_Delete(void}, 
void PL_GE_Delete(int nr); 
void Fetch _ Car(void); 
void PL _ Expand(void); 
void PL-Expand_Boundary(int nr, int*stages_nr) 

The final graphic user interface screenshot of the developed HLPN simulator 
for assembly lines is shown in Fig. 3.6. 

Fig.3.6. Screenshot running an assembly line simulation based on high-level Petri-nets 

While systems engineers often use models to investigate the properties of the 
system, like engineers responsible for motor assembling lines, as shown in Exam­
ple 3.8, Petri-nets offer an easy way to describe concurrent systems for the inspec­
tion of the dynamic behavior of the system under test. An easy-to-use computer 
tool that supports the deveopment and excecution of object oriented Petri-nets, 
which include net instances, synchonous channels, and seamless Java integration 
for easy modeling - and simulation - is Renew. Renew, meaning reference net 
workshop, is available free of charge, including the Java source code (see Links in 
Sect. 3.5 and Apendix C). Renew can serve as a development environment and 
execution engine for workflow systems, such as the above-mentioned motor as-



3.5 Discrete-Event Simulation of Parallel Systems 155 

sembling line in the automotive industry, where the firing of transistions is cou­
pled with the execution of the workflow tasks. Renew featured several extensions 
for the Petri-net formalism that includes clear arcs, flexible arcs, and inhibitor 
arcs. Also available are the expressiveness of timed Petri-nets, where time stamps 
are attached to tokens and to input and output arcs. The interactive debugging of 
complex net systems is supported by breakpoints and an inspection of Java token 
objects. The current release 1.6 contains several technical improvements suitable 
for production environmenst. These are remote simulation access, data base back­
ing and a net-loading mechanism. 

The main intention modeling real-world systems based on Petri-nets can be 
stated as follows: 

• Users interest in certain systems properties. 
• Simulation-based approach, which gives a singular predication for a sin­

gle given initial state of the model. To deduce knowledge of the system 
behavior from the structure of the model (here: the given net) is possible, 
much more common predications can be made. 

• Beneath its attractive graphical representation the main advantage of us­
ing net models to produce predications about the dynamics from struc­
tural analysis of the net can easily be done. 

3.5 Discrete-Event Simulation of Parallel Systems 

3.5.1 Introduction 

F or large-scale discrete-event models such as these used in manufacturing or traf­
fic simulation the simulation run time can grow considerably large. Therefore, the 
simulation models outcome is too slow for real-time support of decision makers. 
Going deeper into the system behavior and model specification the reasons are 
obvious: All real-world activities that occur in the system are modeled by sepa­
rately defined events. Hence the system has a wide extent and therefore many ac­
tivities ongoing simultaneously at different locations within the system. However, 
these activities are treated successively by applying the next-event algorithm of 
the models run-time system. Therefore, the spatially distributed activities that oc­
cur simultaneously are serialized, which leads to the observed growth in model 
execution time. 

The scope to shorten the execution time can be achieved by the following idea: 
Discrete-events that occur at the same time step are executed sequentially by two 
means: 



156 3 Mathematical Description of Discrete-Time Systems 

• To treat interdependencies between the events correctly 
• There is only one processing unit for the run-time system 

In many applications events are independent of each other simply because of 
the spatial distribution of the system components within the plant or within a geo­
graphic region. Therefore the first reason loses ground and the second one can be 
removed by offering more than one processing unit. 

However, the problem of interdependencies remains of interest at the spatial 
and/or logical interfaces between the independent units. For this reason it is im­
portant to know the subtasks that have to be solved before a correct discrete-event 
simulation run can be executed. 

3.5.2 Basic Tasks 

There are three subtasks that have to be taken into account: 

• Partitioning, meaning the segmentation of the model into model parts 
• Mapping and scheduling, meaning the assignment between the model 

components and the processing units 
• Synchronization, meaning the appropriate design for the run-time system 

to avoid inconsistencies caused by retarded information flows between 
the model components 

The explanations will show that these tasks depend on each other and that every 
solution depend on the model treated. 

3.5.2.1 Partitioning of the Model Description 

Two aspects are of importance while partitioning the model description: First the 
number of connections between two model components should be as small as pos­
sible, and secondly the information flow and/or the exchange of material, which 
can be expressed by such a connection, should be as low as possible. 

This work can be done graphically by dividing a model into parts of code, rep­
resenting each part by a node of a graph and plotting for every dependency be­
tween the model parts an edge between the corresponding nodes. With this data 
structure-partitioning algorithms can be imagined easily that fraction the model 
graph in a given number of sub graphs and minimize the traffic on the edges be­
tween these sub graphs. 

Often, the partitioning can be done automatically by a graph algorithm that 
analyses the structure of the model. However, this is a problematic task because 
only static information can be evaluated. The model dynamics that influences the 
intensity of using connections between model parts is neglected completely and 
can be taken into account only during the run-time of the model itself. This results 
in repeating partitioning even during run-time to guarantee that dynamic informa­
tion will be considered. This dynamically adapted model partitioning causes con-



3.5 Discrete-Event Simulation of Parallel Systems 157 

siderable costs in CPU time and can reduce the benefits received from parallel 
execution. 

3.5.2.2 Mapping and Scheduling 

The next step in parallelization deals with the mapping between the model parts 
and the processors available. Theoretically, two situations are possible: 

• The number of processors is greater than or equal to the number of 
model parts: In this case it seems obvious how to map the model parts 
into the set of processors: Each processor should be responsible for the 
activities of one model component. But, in general, this mapping concept 
is not optimal at all. If the ratio of component communication and activi­
ties within a component tends to communication, the communication 
dominates run-time behavior, which means it can be possible to reach 
even negative speed-ups in simulation time. 

• The number of processors is less than the number of model parts: This is 
the normal case of the mapping task. The optimal balance between the 
number of processors and the given number of model parts has to be 
found analytically or, - in most cases - through experiments. This map­
ping concept is the more practical one. 

Independently of these deliberations the question arises, where to store the mo­
del data during parallel execution of a simulation run. There are also two possibili­
ties: 

• Common ("shared") memory: fast access but expensive 
• Local ("distributed") memory for each of the processors: standard solu­

tion which causes consistency problems 

As discussed, the concepts for mapping depends on the model dynamic which 
can even change during a simulation run. Hence, adapting mapping with the de­
mands of the models dynamic behavior can be introduced as dynamical mapping, 
called scheduling. Due to the use in simulation, new criteria can be taken into ac­
count. The simplest and most obvious one is to use the current simulation time 
handled by a processor as a measure for its load. Hence, the scheduling algorithm 
should privilege those processors that have the slightest simulation time for the 
next mapping step. 

It should be noted that all these thoughts are not specific to parallel simulation 
but the restriction in application gives some hints as to what special criteria can be 
established to adapt standard algorithms to the given special application, such as 
synchronization algorithms. 



158 3 Mathematical Description of Discrete-Time Systems 

3.5.2.3 Synchronization 

As long as events handling by the different processors are independent, each of 
them can proceed in simulation time without regard to the others. If the partition­
ing and the mapping steps are executed properly, this will be the standard situa­
tion. But another more complicated situation is possible: Assuming a partitioning 
that is motivated by a geographical division of space. Each processor executes the 
model description for such a region and proceeds in simulation time autono­
mously. Under these preconditions the following conflict may occur: At a given 
time step, t, one element moves from the region processed by processor P to the 
region processed by P'. However, the current simulation time in P' is already t' 
which is greater than the current time t in P. What the simulation run time system 
has to do is either to prevent such a situation or to ensure that the event will be 
treated correctly although it depends in the past for processor P'. 

In general, the problem can be stated as follows: Each processor with its corre­
sponding simulation run-time system holds its own current simulation time t and is 
able to receive messages and material from other processors. It has to be assured 
that these pieces of information are interpreted and processed correctly, especially 
concerning the time they arrive. 

Solving this problem can be done by optimizing the speed up by reducing the 
overhead of the time control by deeper knowledge of the model specification and 
its implementation. The basic strategies behind this are called 

• Conservative strategy 
• Optimistic strategy 

The conservative strategy is based on the idea that the processes mutually give 
guarantees that assure that the sending process will not announce any more events 
that lie before a point of time given in this guarantee. The active process only is 
allowed to proceed in time guaranteed of all the other processes for the intended 
time step. The idea is quite simple and its function is obvious. 

Nevertheless, there are two problems: The process has to know enough about 
the future to give the adequate guarantee. This problem will be noticeable espe­
cially if there are complex interdependencies with feedback loops and can even 
cause a deadlock situation for the run-time system. The second problem is the low 
grade ofparallelity, which normally is the outcome of this strategy: The processes 
wait for each other instead of proceeding in time in parallel, which causes a de­
crease in speed up for the entire set of processes. 

The disadvantage of waiting for guarantees avoids the optimistic strategy. As 
the name says, every process is 'optimistic' and proceeds as fast as possible for its 
model components. If an event from a parallel working processor is sent with a 
time stamp less than the current time, the run-time system must be able to reset its 
own state to the time demands. After reset the incoming event can be considered 
correctly and the run can be continued as usual. Normally the calculations that the 
processor in advance became dispensable and must be repeated starting with the 
new initial state including the effects of the additional incoming event. Hence, this 



3.6 References and Further Reading 159 

strategy has to assure that a process can be reset to any time in the past. This task 
is expensive, because information about already passed model states has to be 
stored. Standard algorithms for solving this problem are either to store all previous 
model states or to store a list of all the events executed and try an undo operation 
from the current state backwards to the time the incoming event arrives. The first 
possibility has quite a large demand for storage space, the second is algorithmi­
cally complicated. 

It can be seen from the strategies that CPU time and storage can be substantial, 
which then reduces the intended speed-up through parallelism. The best methods 
avoiding these disadvantages are intelligent partitioning, mapping, and scheduling, 
which reduces the overhead for guarantees, resets, and undo operations. 

3.6 References and Further Reading 

Banks J, Carson JS, Nelson BL, Nicol DM, (2001), Discrete Event Simulation, 
Prentice Hall, New Jersey 
Girault C, Valk R, (2002) Petri Nets for Systems Engineering, Springer, Berlin 
Kheir NA, (1996), Systems Modeling and Computer Simulation, Marcel Dekker, 
Inc., New York 
Mehl H, (1994), Methods of Distributed Simulation (in German), Vieweg Publ., 
Braunschweig 
Zeigler BP, Praehofer H, Kim TG, (2000), Theory of Modeling and Simulation, 
Academic Press, San Diego 

Links: 
www.renew.de/ 
www.informatik.uni-hamburg.de/TGVrenewlbibliography.htrnl 

3.7 Exercises 

3.1 What is meant by the term random variable? 
3.2 What is meant by the term exponential distribution? 
3.3 What is meant by the term Weibull distribution? 
3.4 What is meant by the term FIFO? 
3.5 Describe Kendalls notation by using a simple example. 
3.6 Describe a simple queuing system by using a calling population, a waiting 

line and a server. 
3.7 What is meant by the term average waiting time? 
3.8 What is meant by the term probability of idle server? 
3.9 What is meant by the term lead-time demand? 



160 3 Mathematical Description of Discrete-Time Systems 

3.10 Give a simple example of the inventory problem. 
3.11 What is meant by the term Petri-net? 
3.12 Give the definiton of a Petri-net. 
3.13 Give an example of a Petri-net. 
3.14 What is meant by the term colored Petri-net? 
3.15 Give the definiton of a colored Petri-net. 
3.16 Give an example ofa colored Petri-net. 
3.17 What is meant by the term high-level Petri-net? 
3.18 Give the definiton for a high-level Petri-net. 
3.19 Give an example ofa high-level Petri-net. 
3.20 The algorithm for computing the state and output trajectories of a discrete-ti­

me system is based on the given input trajectory x(n) and its initial state q(O). 
With Ii as initial time, Tf as final time we have 

Ii = 0, Tf = 9 
x(O) = 1, x(9) = 0 
q(O) = 0 
t= Ii 
while (I f- Ii) { 
yet) = A,[q(t), x(t)] 
q(t + 1) = 4q(t), x(t)] 
} 

Execute the algorithm by hand and fill in Table 3.4 

Table 3.4 

Time 0 1 2 3 4 5 
Input trajectory 1 0 1 0 1 0 
State trajectory 0 
OlltJ>ut trajectory 1 

6 7 8 9 
1 0 1 0 



4 Simulation Sofware for Computational Modeling 
and Simulation 

4.1 Introduction 

When discussing the fundamental concepts of modeling continuous-time and dis­
crete- time real-world systems in Chap. 1 it was noted that an accurate mathe­
matical model is necessary for the use of computer simulation, which is focused 
on a better and/or deeper understanding of the dynamic behavior of real-world 
systems. The complexity of man-made systems in engineering and science, as well 
as the complexity of systems in biology, medicine, and nature, mostly do not al­
low closed analytical solutions for all the sets of linear and/or nonlinear mathema­
tical equations as they have been outlined in Chap. 2 to describe real-world sys­
tems. Assuming that the model has successfully been described, meaning the real­
world system is represented in terms of differential equations, partial differential 
equations, state-space equations, difference equations, queues, Petri-nets, etc., a 
solution of which can be obtained based on computational simulation. Using com­
puters for solving the equations that describe real-world systems in an effective 
and sufficient way, numerical integration methods are of importance. This is why, 
for a number of years, considerable effort has been devoted to the development of 
simulation software for continuous-time and discrete-time systems. 

Definition 4.1 
Simulation can be introduced as the process by which the understanding of the dy­
namic behavior of a real-world system can be obtained by observing the behavior 
of a mathematical model that represents the real-world system .• 

From Definition 4.1 it can be regarded that simulation can be described as re­
production of the dynamic behavior of a real-world system, based on a model rep­
resentation. The model of which contains the important attributes, relations, and 
objects of the dynamic system, which with the real-world system behavior can be 
approximated from simulation results by reasoning. The simulation process itself 
is said to be a computerized calculation of the outputs y of a mathematical model 
at the respective inputs u over the simulation time step t. 

Due to the method of model description, the dynamic behavior of real-world 
systems can be studied as 

D.P.F. Moeller, Mathematical  and Computational Modeling and Simulation Fundamentals

and Case Studies  © Springer-Verlag Berlin Heidelberg 2004



162 4 Simulation Sofware for Computational Modeling and Simulation 

• Physical similarity 
• Isomorphism 
• Mathematical reproduction 

In consideration of physical similarity, e.g. a physical model of an airplane can 
be developed and certain characteristics, i.e. the strength and forces attaching the 
wings of the airplane due to turbulences can be observed, for example, in a wind 
tunnel, which is much easier to realize compared with the tests of the real airplane 
under normal and non-normal real-world conditions. In medicine, for example, a 
hydraulic circulatory system simulator related to the viscosity of the blood, can be 
built up by which the elasticity of the vascular bed and/or the pericardial vessels 
can be observed. 

As a result of isomorphism, a real-world mechanical system, consisting of lo­
cally concentrated elements such as damper, spring, and mass, can be replaced by 
an electrical substituting system consisting of the respective elements like induc­
tance, capacitor, and resistor, which, with the observation of the dynamic behavior 
of the mechanical real-world system, can be carried out much more easily. Hence 
a table of correspondences is helpful when developing isomorphic models of real­
world systems, as shown in Table 4.1. 

Table 4.1. Correspondences of isomorphism 

1\=11, Gener8I 
Description Electrical H,drauUcal Pneum.tlcal Thennal Translational ~ 

T...."...,rsaI Voltage. Pressure U(Q; 1'(1); Pre ..... I'(Q: Pressu'. T(I),T_ ..... V(O;v.dy oI(I);~ 
P Variable e(t) VoIodIy Vo/loge VoIoctIy 

V R 
V(t);VoIume meo: Mass Flow cj(I): Heal Flow 1(0: Force M(t): TolqUO I Transit CUlTent. Flow ~t); 

M Variable 1(1) Fon:e. Mornenlurr Currenl Flow 

A 
: e(1) Product -suppled p(l)=I'(O'V(I) P«)=F'(t)o,,(t) P(O=«t) P<O-V(O·f(O p<o-lI(I)oM(O 10 tho efemenl P<O-u(t).;(t) 

R 
y 

R.~ _Res~ ct';Dompng- d;':~ _COnsumption ldenllcallo 
e(O Relation R;8ecfrical 

1IydIaU"a1 11,= h-(FIow) facto, 
e(O=R'f(U Resisl8nce .~ 

Flow - R,= ol-- cr ....... ) 
I resiStance 

~~ (Corwecl.) 

A / e(0 dI r<o-l~dI L:Induc:Io, J!.l. : Inertance ::. : fnortance -- c': Sprf'1l- c;.":5pqa-... .....- oonslonl 

/I(t)dl e(t).11C • C; Capoc:Ito, ~:=: 
m. V. fInIu.. m • C;. Therrnli M:Mes. 8;~ 

B I /f(t)dI r.'R.T'~ ... Capodly -N 
e(I)I(t)dt Ene'lll' JE.,Magnetic E,'KIneIIc Energy E,,:l<OIetic Energy e.:_FbIe .. E,;KineIic Energy e,,:-

l 
T dono on system Energy of IUd llow of pneumale_ Ilol Energy 01 0I......rrg ... Energy 
E 

01_ ._- ie.:!,*,1111 
oIoddIg 

G e.:Eloc1rtc e.:Poteotial e.:FblentiolEn_ .-
01 ........ Energy 

E R E""'9Y Energy "'--- e.:-III oIpressur. 
A ofc:apacllar 

head .... Spmg EIIIIIJII 
L 01_ 

S spmg 

Symbols T~. ~ R ~., D- R ::x::: ~ , .... L --- -.J\IV\r- L ~L 

-H- C -ID- -©-
T.:@.' ~ C ~ C 

In general, the mathematical equations representing the mathematical model of 
a real-world system can be solved with the help of numerical-integration methods 
(see Appendix A). The mathematical models, which describe the intrinsic transient 



4.1 Introduction 163 

system states, including the chosen physical system characteristics explicitly or 
implicitly, can be solved using different analytical methods, which can be sepa­
rated into four groups: 

1. Calculation of the characteristic polynomial after conversion of the diffe­
rential equations of the time-continuous systems into a system of algebra­
ic equations. 

2. Eigenvalue calculation. 
3. Numerical methods for the solution of the differential and/or difference 

equation systems. 
4. Petri-nets, queuing theory, distribution theory, probability theory, etc. for 

modeling and simulation of time-discrete systems. 

When digital computers became available in the late 1950s they replaced ana­
log hardware and relays, which were the typical components of analog computers 
in the past. Today digital computers are used for the simulation of continuous-time 
systems as well as for discrete-time systems in the various application domains. 
As an example, a large refinery may have as many as 1000 feedback loops, in 
comparison a paper mill may have up to 5000 feedback loops, meaning that be­
tween 1000 and 5000 controller equations and additional plant-dependent equa­
tions have to be solved. Such types of dynamic systems could neither be solved 
with the analog computers in the past, nor with the so called hybrid computers, 
which combine analog and digital computer facilities. Hence there was (and is) a 
need for digital computer simulation techniques. The innovation sequence in digi­
tal computer simulation techniques from the early 1950s till today can be cha­
racterized as follows: 

• 1955-1960: User programming, no user support, model building based 
on 
higher programming languages like FORTRAN, ALGOL, etc. 

• 1960-1965: First generation of simulation software, very simple user 
support through automatically generated computational relations, gra­
phical user interface. 

• 1965-1970: Second generation of simulation software, better tools, in­
teractivity . 

• 1970-1980: Third generation of simulation software with extended and 
new possibilities of simulation tools like combined simulation, etc. 

• 1980-1990: Fiurth generation of simulation software with domain spe­
cific and specialized simulators, animation possibilities, and easier model 
implementation 

• 1990-2000: Fifth generation of simulation software, embedding artificial 
intelligence, model specification and experimental environments, ex­
panding the possibilities of the tools of the fourth generation especially 
with much more sophisticated graphic tools that allowed 3D (spatial) and 
4D (time) to became a standard. 



164 4 Simulation Sofware for Computational Modeling and Simulation 

• 2000-2010: Sixth generation of simulation software, embedding object 
oriented modeling frameworks, soft-computing methodology like fuzzy 
sets, neuronal nets, genetic algorithms, evolution theory, probabilistic 
methods, virtual and augmented reality environments in simulation, 
which allow tactile force-feedback interaction, and simulation at the 
internet. 

From the very early beginning till today simulation software contains a simula­
tion language and a set of commands for the control of the simulation process. 

Although simulation software permits the description of the mathematical mo­
dels to be implemented and its parameters, there is an obvious advantage when us­
ing special-purpose application simulation software that has been especially writ­
ten for simulating continuous-time and discrete-time systems, from the viewpoints 
of the different application domains. These simulation software systems allow the 
user to implement and simulate models quickly and efficiently without being an 
expert in programming languages or numerical integration. 

Moreover, the innovation in modem computer technology increases the possi­
bilities of simulating complex systems. Hence we can consider computer simula­
tion based on mathematical models as a third column apart from theory and expe­
riments. In those many cases where experiments can not be realized, due to safety 
or security reasons, due to their time consuming nature, their costs, etc., it will be 
possible to obtain solutions for complex problems by means of mathematical and 
computational modeling and simulation, which results in a better understanding of 
real-world systems and the theory behind them. Examples are manifold such as 
the volume and time-dependent processes in engineering, chemical engineering 
problems involving transport phenomena, combustion analysis in an engine, 4D 
process analysis in geology, such as tunnel drilling with trenchless technology, 
structural mechanics application, applications in avionics such as vortex genera­
tion and shedding of vortices at the back hood of a planes wing, etc. Furthermore, 
modeling and simulation, by means of modem computer technology, provide in­
formation about the usability of hypotheses, e.g. for astrophysical problems such 
as the time course of matter distribution of a star formation, in molecular modeling 
due to the chemical structure for an optimal drug design, in physiology such as 
modeling and simulation of the nonlinear overall control mechanisms explained 
hypertension, or the nonlinear discrete modeling of tumor growth in humans and 
the respective test series for intra-individual sufficient tumor therapy, etc. 

In order to extend the possibilities of applying mathematical and computational 
modeling and simulation, scientists worldwide are presently attempting the expan­
sion of the classical descriptions by modem information processing based on the 
methods of artificial intelligence, soft computing, virtual and augmented reality, 
etc. In this sense artificial intelligence can be used twice in mathematical and com­
putational modeling and simulation, as an advisory system for decision support, 
and for adaptive intelligent control where the expert system has to be linked to the 
simulation models. Artificial intelligence can be regarded as that part of computer 
science concerned with the development of intelligent computer programs. To 
make a program intellig~nt means providing it with specific knowledge on the re-



4.1 Introduction 165 

spective problem domain. By contrast to this, soft-computing methods are prefera­
ble when modeling and simulation of real-world systems are based on vague data. 

The task of knowledge-based advisory systems for mathematical and computa­
tional modeling and simulation purposes is 

• User support in model synthesis, which focuses the knowledge on the 
modeling process, selecting and lumping domain primitives, defining 
models from schematic representations such as flow diagrams, symbolic 
notation, block diagrams, bond graphs, etc. 

• Providing knowledge of the known mathematical properties of a model, 
• user support in choosing the algorithms, numerical integration, parameter 

estimation, validation, layers for (neural-based) classifiers, definition of 
membership functions for fuzzy sets, etc. 

• User assistance due to the integration of mathematical expressions, to 
overcome the fact that equations often are semantically disconnected 
from the application domain and less suggestive as schematic representa­
tions. 

The knowledge representation itself can be based on rules, semantic nets, and 
frames, etc. In the case of 

• Rule-based systems, IF-THEN rules are used to perform forward or back­
ward chaining 

• Frame-based systems, frame hierarchies for inheritance and procedural 
attachments are used 

• Procedure-oriented systems, nested subroutines are used in order to orga­
nize and control program execution 

• Object-oriented systems, objects are used, which communicate with one 
another via messages 

• Logic-based systems, predicate calculus is used in order to structure the 
program and guide the execution 

• Access-oriented systems, probes are used that trigger new computations 
when data is changed or read 

Example 4.1 
A rule-based system, which interprets waveforms from a scanning densitometer to dis­

tinguish between different causes of inflammatory conditions in patients should have the 
rule: 

IF the tracing pattern is asymmetric gamma AND the gamma quantity is normal THEN 
the concentration of gamma globulin is within the normal range 

The knowledge representation using semantic nets is a method that is based on 
network structures. A semantic net consists of points, which are called nodes, 
connected by links, called arcs, which describes the relations between the nodes. 
The nodes in semantic nets stands for objects, concepts, or events. 



166 4 Simulation Sofware for Computational Modeling and Simulation 

Example 4.2 
Simple semantic nets can use an important type of arc, the is a relation, which can be 

expressed as follows: 

The Queen Mary is a(n) ocean liner and Every ocean liner is a ship 

When using the object-oriented method, a specified structure, consisting of ob­
jects (often called actors), is used that represent entities capable of exhibiting be­
havior. 

Example 4.3 
In an object-oriented air-battle simulation system the objects will be penetrators (offen­

sive aircrafts), airborne radars (AWACS), ground radars, missile installations, missiles, ser­
vice centers that interpret the radar reports, fighters (defensive aircrafts), fighter bases, 
command centers, and targets. Consider each object has distinct properties associated with 
each other that are embedded in a network hierarchy, showing inherited properties of 
higher-level objects, such as properties that are inherited in semantic nets and frames. For 
example the objects penetrators, fighters, missiles, and A WACS may all be linked to a 
higher-level object, which is called a moving object. In addition, the object AWACS can be 
linked to the higher-level object radar, and so on. 

Furthermore, the knowledge-based advisory system manages simultaneously 
different kinds of information sources simultaneously like: 

• Data bases and object bases: they consist of system data and/or objects, 
model data and/or objects, an experimental framework, experimental data 
obtained from the real-world system and/or objects, simulation data and/ 
or objects, etc. The data base can hold model data such as the exact mo­
del configuration to be simulated, or the outputs of the simulation run that 
should be stored in the data base. Moreover, the data base can be used for 
competitive representation of model entities, while these entities with 
their attributes and relations can be directly stored in an entity-attribute­
set representation as a framework for organizing data. 

• Algorithm bases: they contain numerical algorithms, parameter identifi­
cation algorithms, soft-computing methods, formalized manipulation 
methods, etc . 

• Knowledge bases: which comprise the general modeling knowledge, 
physical and mathematical knowledge about physical properties, simula­
tion-interpretation knowledge, etc. 

Simulation software systems (S) and expert systems (ES) can be embedded vice 
versa. This can be stated as a computer program using expert knowledge to obtain 
higher levels of performance in a narrow problem area, or soft-computing me­
thods, such as neuronal nets, fuzzy sets, evolution theory, probability theory, 
which results in a more advanced man machine interface for the simulation model, 
as shown in Fig. 4.1. 



4.1 Introduction 167 

Embedding, as shown in Fig. 4.1a, means that the simulation software system 
(S) is embedded in the knowledge-based system (ES) which makes domain-depen­
dent knowledge explicit and separated from the rest of the system. Therefore, ex­
isting knowledge has to be embedded in the knowledge-based system. The com­
munication is realized through the knowledge-based system, based on symbols. 
Hence the simulations run with obvious initial values and boundaries. 

B 

a) b) c) 

Fig. 4.1. Interaction of simulation software system (S), and expert system (ES) (see text) 

Toothing the simulation software system (S) and the knowledge-based system 
(ES), as shown in Figure 4.lb, allows the simultaneous use of both systems. The 
simulation task decays in its specific sequences, which can be distributed. Too­
thing can be used in complex simulation studies where solutions can only be ob­
tained in a sequence of different steps, but each step must be solvable. 

For a man machine interface, as shown in Fig. 4.lc, the communication passes 
through the knowledge-based system, which enables an intelligent dialog. 

The knowledge base in expert systems contains facts (data) as sources and rules 
(or other representations) which can use those facts as a basis for the decision-ma­
king processes. The inference mechanisms, or inference engines, contain an inter­
preter that decides how to apply the rules to infer new knowledge as well as a 
scheduler that decides the order (schedule) in which the rules can be applied. The 
resulting architectural structure of an expert system is shown in Fig. 4.2. 

Knowledge Base 
(Domain Knowledge) 

I Facts I 
I Rules I 

I Interpreter I 
l Scheduler J 

Inference Engine 
(General problem-solving knowledge) 

Fig. 4.2. Structure of an expert system 



168 4 Simulation Sofware for Computational Modeling and Simulation 

4.2 Digital Simulation Systems 

Digital simulation software systems consist of the simulation language and the 
translator. The simulation languages for computational modeling and simulation 
of continuous and discrete systems are discussed in the following sections, which 
includes complete applications of the most popular simulation software systems. 
The simulation software translator generates the compiler code for the simulation 
program, which will be translated into machine code, and linked with standard ele­
ments from the system library. When the model shows an error, such as in the case 
of an implicit loop, the simulation will be terminated before the first simulation 
runs. Furthermore, the computer determines values for the continuous functions 
Xj(t) of the system being simulated by producing a series of discrete values, such 
as X(/o), x(t}), X(t2), ... , x(tn), which should be identical to its continuous equivalent 
at I = Ik. Due to the discretization, while using numerical-integration methods, the 
discretization accuracy is limited, which results in errors in numerical- integration. 

Definition 4.2 

A simulation run can be defined as a calculation of the state-variables transient 
behavior in discrete steps, based on a calculation sequence of the mathematical 
model, which starts with the initial condition X(/o), and finishes with the final state 
x(te). The calculation of which can be based on fixed.or variable step width .• 

Moreover, simulation can be regarded as experimentation with models, while 
using simulation software. This definition is particularly appropriate when consid­
ering interactive simulation. 

The simulation software systems for computational modeling and simulation 
can be divided, as shown in Fig. 4.3, in software for 

• Continuous-time systems 
• Discrete-time systems 

Simulation software systems for continuous-time systems are 

• Block oriented simulation software, such as DARE, DORA, PROS 1M, 
PSI, SIDAS, SIMULANT II, SIMNON, etc. 

• Equation-based simulation software, such as ACSL, CADSIM, CSMD, 
Matlab-Simulink, SLCS-4, etc. 

Simulation software systems for discrete-time systems are 

• Transaction-based: time schedules are determined; elements of transac­
tion-based simulation software are transactions, blocks, facilities, queues, 
logical switches, numerical and logical variables, functions, tables 



4.3 Simulation Software for Continuous-Time Systems 169 

• Event-based: the time schedules of which depend on the time characteris­
tics of the event 

• Activity based: the simulation run will be active if the previous specified 
conditions are realized 

• Process oriented: the specified model element activates the next event 

Examples of available simulation software systems for discrete-time systems 
are: 

• ARENA, DEMOS, GPSS, GPSS/H MODSIM II, SIMAN, SIMPLE++, 
SIMPLEX, SIMULA, SIMSCRIPT 11.5, SLAM, SLX, etc. 

Simulation Software 

~ 
Continous-Time Systems .. 
Block-Based 

.­
Equation-Based 

.­
Discrete-Time Systems .. . . .­

Transaction- Event- Activity- Process-
Based Based Based Based 

Fig. 4.3. Simulation software for continuous-time and discrete-time systems 

4.3 Simulation Software for Continuous-Time Systems 

A variety of continuous-time system-simulation software systems have been deve­
loped since Selfridge wrote the first paper on the subject in 1955. Cellier gave, in 
1993, an excellent overview on the development of simulation software systems. 
In the last past few years, many simulation software systems have been developed, 
some of which will be discussed in the subsections of Sect. 4.3, which includes 
example applications. The widespread use of personal computers and workstations 
has had a profound impact on the use of simulation software. The trend is toward 
multipurpose, interactive simulation software systems that provide tools for 
mathematical modeling and simulation. Each approach has salient features, and 
familiarity with one of which can easily be transferred to another one. 

Regardless of the simulation software selected, several requirements for simu­
lation must be fulfilled by the user, such as the description of the real-world sys­
tem to be modeled and simulated, which involves specifying the type of elements, 
or functional blocks, of which the system consists and describing how the ele­
ments are interconnected. This is accomplished by means of structure statements 
or commands that include all standard and special functional blocks used to build 
up the model of the real-world system, while using a so-called block oriented 
simulation software system. Moreover, the blocks had to be specified by para­
meters, inputs and outputs, the appropriate functions, initial conditions, arbitrary 
functions, run time, time interval, and other control commands, etc. 



170 4 Simulation Sofware for Computational Modeling and Simulation 

Most simulation software systems are very user-oriented and incorporate de­
fault conditions that enable a novice to obtain meaningful results immediately. 

Moreover, simulation software can solve linear as well as the nonlinear differ­
ential equations of n-th order, describing the real-world system. In most cases the 
higher order differential equations are reduced as sets of first-order differential 
equations, which means for the block oriented simulation software the decompo­
sition into a block oriented scheme of first-order blocks, as shown in Fig. 4.4, 
which can easily be solved using numeric integration. 

STEP 

Fig. 4.4. Decomposition of a dynamic system of n-th order 

4.3.1 Block Oriented Simulation Software 

As an example of an interactive block oriented simulation software, the simulation 
system PSI will be briefly introduced, developed at the TH Delft, Netherlands. PSI 
can be used for studying the behavior of continuous-time - and discrete-time -
systems. The notation used in PSI is similar to the mostly-used ones in other block 
oriented simulation systems. Block oriented simulation software systems use the 
differential equations that represent the simulation model. 

Example 4.4 
Supposing the second-order differential equation 

y"(t) = -y'(t)- y(t)+u(t) , (4.1) 

which can be rewritten as set of first order integral equations, yields 

I 

y'(t) = y'(O) + fy"(r)dr (4.2) 
o 

I 

y(t) = y(O) + fy'(r)dr, (4.3) 
o 



4.3 Simulation Software for Continuous-Time Systems 171 

and modeled as a block oriented representation as shown in Fig. 4.5. 

STEP Y2DOT YDOT 

Fig. 4.5. Block diagram of a ssecond-order continuous system 

In Fig. 4.5 Y2DOT represents the second derivative, YDOT represents the first 
derivative, Y is the original function, and STEP represents a constant U(t). 

The second-order system, shown in Fig. 4.5, needs specific facilities such as: 

• Structure 
• Parameters 
• Numeric integration 
• Output 

The structure is given by defining the inputs of each block. If the inputs of all 
blocks are defined the structure of the simulation model is known, and the block­
oriented simulation software is able to calculate the behavior of the system. The 
idea behind the block oriented simulation approach is that any simulation model 
can be built up from basic block elements such as integrators, gain-transfer func­
tions, table lookup facilities, nonlinear function blocks, constants, etc. Each block 
is identified by its name, which determines the block and its output, as well as the 
block type and its inputs. In the example, shown in Fig. 4.5, we have 

STEP 
Y 
YDOT 
Y2DOT 

= u(t) 
= y(t) 
= y'(t) 
= y"(t) 

Together with the simulation software specific control commands the block 
structure can be defined. For PSI we use B as follows: 

PSI·B 
Configuration Specification 
Block, Type, Inputl, Input2, Input 3 
B'STEP, CON : STEP is a CON block 
B'YDOT,INT,Y2DOT : YDOT is an integrator with Y2DOT as input 
B'Y,INT,YDOT : Y is an integrator with YDOT as input 
B'Y2DOT,SUM,STEP,Y,YDOT: Y2DOT is a summer to add all inputs 
B· 



172 4 Simulation SofWare for Computational Modeling and Simulation 

The parameters of each block can be defined using specific control commands, 
which depends on the simulation software used. For PSI we use P, hence 

PSH 
Parameters 
Blocks, ParI, Par2, Par3 
P'STEP,I : STEP has value I 
PY,O,I : initial condition=O; input gain=1 
P'YDOT,O,I : initial condition=O; input gain=1 
PY2DOT,1,-1,-1 : gains of the corresponding inputs 
p. 

The variables that determine the numeric integration, are the integration me­
thod, the integration interval, and the simulation time, which can be defined by 
specific control commands. For PSI we use T and obtain: 

PSH 
Integration interval=O.l 
Integration time= 1 0.0 

Using 0.1 for the integration interval and 10.0 for the integration time, the si­
mulation run, as shown in Fig. 4.6, will be calculated for 10 time units with an in­
tegration interval of 0.1 time unit. 

All blocks are calculated during the simulation 'run, however, only some of 
which can be shown on the screen. Supposing that y(t) is the output variable of in­
terest which may be shown on the screen, some specific control commands are 
needed, which depends from the simulation software used. For PSI we use 0, 
hence 

PSI'O 
Name of blocks to be shown=? 

Now the required transient behavior can be calculated and the output vari­
able(s) indicated are shown on the screen, as shown in Fig. 4.6. The simulation run 
will start using a specific control command. For PSI we use R 

PSI-R 

PSI allows the presentation of more than the one variable, meaning more com­
plex figures can be shown representing the respective system variables, which in­
clude inputs as well as outputs. 



4.3 Simulation Software for Continuous-Time Systems 173 

~ / . 

tL ... ..................... -..................... -.. "-' -............ -.................. : 
r 
:l~; 

Fig. 4.6. Transient behavior of the output variable y(t) 

As mentioned, simulation software systems for continuous-time systems have 
salient features but all are based on three types of instructions, 

• Model instructions, which generate the algebraic block oriented structure 
of the mathematical equations of the real-world system 

• Data instructions, which are used to assign the respective parameter val­
ues, initial conditions, etc. 

• Control instructions, which determine the simulation run and select the 
output variables 

The simulation run itself can be divided into four steps, which will be shown 
for the simulation software SIDAS, in detail, 

• Interactive implementation of the block diagram of the mathematical mo­
del: SIDAS outlines a frame with a number of cross-points, at each of 
which a block can be inserted representing the respective mathematical 
function element. To insert a block, e.g. an integrator, one chooses a 
cross-point with the cursor and types "I" for insert, followed by the sym­
bolic name of the block to be inserted, which is "INT" for the integrator 
block. Connecting or modifying blocks, a set of additional commands are 
available, such as change a block, delete a block, link a block to different 
blocks and end the input modus, etc. Moreover, special blocks are used to 
implement specific algorithms, transient behavior, etc. 

• Set of block parameters: initial conditions, gain factors of integrators, si­
mulation parameters such as the length of the simulation interval, the de­
sired accuracy of the numerical integration, the numeric integration me­
thod, etc. 

• Numerical solution of the sets of differential equations: based on success­
ful sorting algorithms, which determine the calculation sequence in such 
a way that only theses elements are processed in the loop the values of 
which are updated in the respective sequence. 

• Presentation of simulation results. 

Sorting algorithms handle the algebraic loop problem of a simulation run. The 
simulation run has an algebraic loop problem if it is not possible to calculate all 



174 4 Simulation SofWare for Computational Modeling and Simulation 

blocks bEE in such a way that the output of a block bi is connected to the input of 
block bj , then i < j. The value of algebraic blocks can be calculated if: 

• The algebraic block is a constant block 
• The output of the algebraic block at tn+ I is known either by the initial va­

lues or the output values one step behind the actual integration step 
• The output value of the algebraic block has been already calculated in the 

actual time interval 

Sorting algorithms are used to determine the calculation sequence of the func­
tional elements used. The first step of a sorting procedure deals with the evalua­
tion of the simulation configuration determining the matrix positions of the inte­
grators with their inputs, the block numbers of the previous functional blocks in a 
counter-clock wise signal flow. This results in a list of sorted algebraic functions 
that allows the calculation for each block as a function of its argument in the de­
termined sequence. If all integration steps in the sorted sequence are finished the 
next repetition of the sorted loop will be prepared setting 

n:= n+ I (4.4) 

and 

(4.5) 

The simulation runs through the sorted loop until the condition tn = t and/or an­
other given condition is reached that terminated the procedure. For an algebraic 
loop one or more algebraic blocks are connected in a closed loop that contains no 
dynamic components such as integrators. Algebraic loops can be eliminated by 
opening the loop, which means manipulating the original equation. 

Example 4.5 
A model of the renal blood flow control system that allows elucidation how of the kid­

neys regulate the physiological variables that are affecting the renal function can be built 
for the long-term blood-pressure-regulation observation. The model is based on the Guyton 
overall renal function model, named after the American physiologist Guyton, born 1919 in 
Oxford, Mississippi, USA. A simplified version only uses a single feedback loop. The urine 
output (UO) as the most important renal variable has been considered as a nonlinear func­
tion of the arterial blood pressure (PAS), which yields 

UO=j{PAS), (4.6) 

with the implicit functionality that blood-pressure stabilization depends on the renal sodium 
and water output. From physiology it is known that sodium influences the renal characteris-



4.3 Simulation Software for Continuous-Time Systems 175 

tic, which is important for the arterial blood pressure control due to the ability of the kidney 
to maintain an appropriate balance between an increased sodium and water output in the 
case of an increase of perfusion pressure. After a malfunction of the renal characteristic, 
which is the case in high blood pressure, the threshold of the diuretic pressure is increased. 
Hence the extra cellular fluid volume (VECF) can be calculated as follows 

VECF = j{UO, WS), (4.7) 

which influences the blood volume (VB), yields 

VB = j{VECF), (4.8) 

where f is a nonlinear function. The blood volume effects the mean systemic pressure 
(PMS) as follows 

PMS =j{VB), (4.9) 

where f is a nonlinear function. With the right atrium pressure (PRA) and the resistance of 
venous return (RVR) the venous return (VR) can be calculated as 

VR=PMS-PRA , 
RVR 

(4.10) 

assuming that an increased inflow of blood into the heart does not increase the right atrium 
pressure, which is based on the Frank Starling law of the heart, meaning the heart pumps, 
whatever amount of blood enters it, and does so without a significant rise in the right atrium 
pressure. Closing the loop, arterial blood pressure (PAS) can be obtained by multiplying 
venous return by the total peripheral resistance (RA), yields 

PAS=VR·RA, (4.11 ) 

the result of which is shown in Fig. 4.7. 
In the block diagram, shown in Fig. 4.7, the notation NL indicates that the block repre­

sents a nonlinear function while the notation L represents a linear relationship of the re­
spective block. The symbol • in a block indicates a multiplying function of the block, 
while the + sign in a block indicates a division function of the respective block. The line 
from bottom left to top right within the block indicates that the block is operating as an In­
tegrator, for which the appropriate numeric integration method can be chosen. 

The model, shown in Fig. 4.7, can be implemented using the simulation system SIDAS, 
which results in Fig. 4.8. 

The simulation results can be demonstrated in comparison with animal experimental re­
sults, as shown in Fig, 4.9. Dotted columns represent animal-experimental results, white 
columns are simulation results obtained with the mathematical model shown in Fig. 4.7. 



176 4 Simulation SofWare for Computational Modeling and Simulation 

Fig. 4.7. Mathematical model of the renal influenced long-term arterial blood pressure con­
trol; WS means isotonic fluid uptake (water and salt) 

Fig.4.8. SIDAS block diagram of the mathematical model of the renal influenced long 
term arterial blood pressure control, shown in Fig. 4.7. 



4.3 Simulation Software for Continuous-Time Systems 177 

Fig. 4.9.shows the steady state values of the system for the mean arterial blood pressure 
(PAS), the mean systemic Pressure (PMS), the total peripheral resistance (RA), the blood 
volume (VB), the cardiac output (VR), and the urine output (UO) for the nonnal case and 
experimental-induced hypertension based on the reduction of two-thirds of the renal mass­
so-called Goldblatt clip - , for different isotonic water and sodium loads: 

(a) Nonnal case with isotonic water and sodium load WS = 1 mLimin 0.9 gldl NaCL 
(b) Removal of two-thirds of the renal mass with isotonic water and sodium load WS = 

1 mLimin 0.9 gldl NaCL 
(c) (emoval of two-third of the renal mass with increased isotonic water and sodium load 

WS = 2.5 mLimin 0.9 g/dl NaCL 

Fig. 4.9. one can conclude that the simulation results (white columns) are in good accor­
dance with the experimental results (dotted columns). One expection can be seen for PAS 
and VB in case (c). The results can be understood as follows: The higher mean arterial pres­
sure (PAS) is caused by the higher value of the total peripheral resistance (RA). The reason 
for the higher total peripheral resistance is physiologically based on the myogenic autoregu­
lation, which has been implanted in the model. Hence, the model and the real-world system 
are in good accordance. Discussing the other haemodynamic parameters will result in simi­
lar good accordance between the model and the real-world system, Goldblatt hypertension. 

200 
PAS 

[ ...... Hg] 

150 b 

100 

0 

RA 

2.4 [~~.~ -] 
b .. 

1.2 

0 

VR 

10 
r ... :nJ 

b 

oL----L....L--'-_L-1----'-_--'-~'___ 

10-

o 

2 

PMS 
[ ...... Hg] 

VB 
[ .) .. , 

uo 

[:.~J 

b 

b 
... ~ 

• b 

r-

I" 

Fig. 4.9. Simulation and experimental results showing the influence of an isotonic water 
and sodium load for a nonnal kidney and for the removal of two-thirds of the renal mass 



178 4 Simulation Sofware for Computational Modeling and Simulation 

4.3.2 Equation-Oriented Simulation Software 

It has been mentioned that the widespread use of personal computers and worksta­
tions had a profound impact on the use of simulation software. Beside the interac­
tive block oriented simulation software systems, described in Sect. 4.3.1, equa­
tion-oriented simulation software systems had been developed for the direct im­
plementation of the mathematical equation into the simulation software. Today a 
wide variety of different equation-oriented simulation software systems are avai­
lable. As a typical example of an equation-oriented simulation software, the wide­
ly known CSMP (continuous system modeling program) will be briefly intro­
duced. The model-building process in CSMP is based on three steps: 

• INITIAL 
• DYNAMIC 
• END 

containing the respective structural, data, and control statements. 
The structural statements transform the mathematical expressions of the real­

world system through algebraic statements into functional blocks. The data state­
ments connect the symbolic defined parameters, constants, and initial conditions, 
with the respective numerical values. The control statements schedule the time de­
pendence of the output variables. 

INITIAL contains the parameter values and initial values. DYNAMIC contains 
the model description. END terminates the simulation run, and contains the para­
meters with its new values, which may be calculated in a second run. 

Example 4.6 
The ingestion and subsequent metabolism of a drug in a human individual should be 

simulated. The model used to study the ingestion, distribution and metabolism of the drug 
in the human individual is based on a two-compartment model, shown in Fig. 4.10. 

~ K" I ~ - "1L. __ x_, _~---'-'----l.~ L __ X_, --'rxW 
Fig. 4.10. Two-compartment model 

Supposing that the drug is taken orally, it enters the gastrointestinal tract, is absorbed 
into the circulation and distributed throughout the body to be metabolized and finally elimi­
nated. Compartment Xl describes the gastrointestinal tract and the gastrointestinal vascular 
bed (circulation) of the individual; compartment X2 stands for the bloodstream (between the 
distribution and elimination processes) of the individual, whereas K12 and K20 represent the 
distribution and elimination constants, respectively. Let us start at time zero, and let Xl(t) 
denote the mass (concentration) of drug in compartment I and Xlt) be the mass (concen­
tration) of drug in compartment 2. If the ingestion rate of the drug U(t) > 0, we find the 
plausible assumption for the two-compartment model that the rate of change of the mass of 
drug in the gastrointestinal tract is equal to the rate at which the drug is ingested minus the 
rate at which the drug is distributed from the gastrointestinal tract to the bloodstream: 



4.3 Simulation Software for Continuous-Time Systems 179 

dXj(t) = U(t) - blood distribution rate compartment 1 to 2. (4.12) 
dt 

(4.12) is commonly a mass-balance equation. In the case of first-order kinetics, the drug 
distribution rate from compartment 1 to 2 is assumed to be proportional to the mass (or con­
centration) of the drug in the first compartment. If K12 > 0 is the corresponding proportiona­
lity constant, then (4.12) becomes:. 

dX l -=U(t)-KI2 ·XI(t), 
dt 

(4.13) 

where K 12X I is the inflow rate of drug distribution from the first compartment. Compart­
ment 2 is described by a flow-rate equation that balances the inflow and outflow rates de­
scribed by (4.14): 

dXl = U(t) - KI2 . XI (t) . 
dt 

(4.14) 

With respect to first-order kinetics, the outflow rate of compartment 2 is proportional to 
X2• Thus (4.14) becomes: 

dX . 
__ 2 = mflow rate - outflow rate, 
dt 

(4.15) 

where K20 is the elimination constant. 
(4.13) and (4.15) constitute the linear model of the phannaceutical kinetics. In a matrix­

vector fonnat the constant coefficient linear differential equations yield (t> 0): 

{
;'}={-KI2 
__ 2 KI2 

dt 

o }.{XI(t)}+{U(t)} , 
-K20 X 2 (t) 0 

(4.16) 

with 

(4.17) 

The model of the phannaceutical kinetics described in (4.16) represents a second-order 
linear model. The first differential equation is uncoupled from the second differential equa­
tion, meaning there is no feedback from the second differential equation to the first differ­
ential equation, which means that the mathematical model not difficult for analytical stud­
ies. The second differential equation is coupled with the first differential equation. 

The homogeneous differential equation of(4.13) is 



180 4 Simulation Sofware for Computational Modeling and Simulation 

(4.18) 

which can be solved using the approach 

(4.19) 

Substituting (4.8) into (4.7) yields 

- A ·e-J ·/ + K12 . e-'<·/ = 0, (4.20) 

with the solution A = K12, which can be used in (4.19) 

XI (t) = e-K12 ./ • (4.21) 

Therefore, the solution of (4.2) is 

(4.22) 

Consider the initial value as XI (0) = A we obtain with CI = A 

XI(t) = A·e-K12 ·/ • (4.23) 

Substituting (4.23) into (4.15) results in 

dX2 _ K ·A· -KI2 ·/ -K ·X (t) dt - 12 e 20 2 , 
(4.24) 

which can be rewritten after multiplying by eK12 .( as follows 

(4.25) 

The left side of (4.25) can be rewritten using the product rule for the calculus of dif­

ferential equations, which has the form ~(X2(t). eK20 ·/ ) hence, (4.25) can be integrated as 
dt 

follows: 



4.3 Simulation Software for Continuous-Time Systems 181 

X 2 (t) ·eKl2ot = K12 . A· fe(K20-KI2)ot • dt +c 
, (4.26) 

or 

(4.27) 

which results in 

(4.28) 

With the initial value X 2 (0) = 0 we obtain 

K ·A K A 0= 12 +c ~ C = 12' 

K 20 - KI2 K 20 - KI2 ' 
(4.29) 

and finally 

(4.30) 

The model of the pharmaceutical kinetics described in (4.16) can be imple­
mented directly in common simulation systems. For the simulation software 
CSMP the model formalization is as follows: 

INITIAL 
PARAMETERS KI2=loO, K20=0.5 
CONSTANT A=O., K31=0., XlO=IOO., X20=lOO. 

DYNAMIC 
Xl DOT = -KI2XI + U 
X2DOT = Kl2XI - K2X2 
Xl = INTGRL (XlO, XfDOT) 
X2 = INTGRL (X20, X2DOT) 
U = AEXP(-K31-TIME) 

TIMER DELT=O.I, OUTDEL=0.2, FINTIM=lO.O 
PRTPLT U, Xl, X2 
END 
PARAMETER A = I 00. 0 
END 
STOP 

The transient behavior of the derived two-compartment model can be investiga­
ted in some case study examples. The primary interest in studying the two-com-



182 4 Simulation Sofware for Computational Modeling and Simulation 

partment model is to govern how input ingestion rate and/or the initial concentra­
tion of the drug in the body affect the subsequent amounts of drug in the blood­
stream of the individual. The variable X2(t) - and hence compartment X2 - is of 
great importance, because it is accessible for analysis by taking blood samples. 
For this purpose the behavior of X2(t) can be shown in Figs. 4.11, 4.12, and 4.13, 
using the two-compartment model described above. 

itA": 
Hit «tty )cey to continue 

11.",A,,-X -=---~o:;.,.-o::: ___ p'l[KnJ:ltlJ!9liW; __ C_!!.!ISJAlILBan-~l!'l!!..~ 
TillE 

r. 

.. J 

Dose 88"..( 

Dose 4Bx 

Dose 211:< 

"~--8------------------~----'- 8 
I> ACT:4.'185194 

/IAI'I : 
MX: 

lCZ 
118 

": .. 
ACt: 11. B36SZ 

Fig.4.11. Change of the dose with single oral intake 

HI'" any key 1;0 ccmU .... 
tlltE 

6 

J 
i _. __ .. ___ . ___ ._ ... IIAlS.J!YLw.:tJ2Qr.~;~.'r~_u~._. _____ . __ . __ --j 

Fig. 4.12. Change the drug or its form with single oral intake to demonstrate the relation to 
the minimum effective and maximum safe concentration 



""'" : /tAX: 

L 
I 

r-

" ": 

xz 
28 

Day 

ACT:S.Z15784 

4.3 Simulation Software for Continuous-Time Systems 183 

Fig. 4.13. The effect of interruption during night hours of a multiple-dose regimen 

4.3.3 General·Purpose Simulation Software 

The simulation models built are mostly either language or platform dependent, 
which can be block- or equation-oriented. Although they still provide valuable 
simulation results, these models lack the ability to be easily ported to another soft­
ware, or easily capable of interoperation to generate larger and more complex mo­
dels. Compared with the described bock-oriented and equation-oriented simulation 
systems in Sects. 4.3.1 and 4.3.2, general-purpose simulation systems are a group 
of simulation software, that are based on equations rather than on blocks allowing 
the user to handle much more complex models. A typical representative of gene­
ral-purpose simulation software is the widely known simulation system ACSL 
(advanced continuous simulation language). 

General-purpose simulation systems such as ACSL are compiler based. Hence 
a modification of the model structure requires the translation of the model, compi­
lation, and linking with the required software tools. Consequently, this simulation 
software is less interactive and suited for the experienced user. Due to this ACSL 
has been developed for modeling of dynamic systems by time-dependent differen­
tial equations and/or transfer functions. Although the dynamic system being mo­
deled are time dependent, the independent variable can be something other than 
time, such as distance or angle. Typical application areas where ACSL currently is 
being applied include: biomedical systems, chemical process representation, con­
trol systems design, heat transfer analysis, fluid flow, missile and aircraft simula­
tions, plant and animal growth, power plant dynamics, robotics, toxicological 
models, vehicle handling, etc. The current ACSL information can be found in the 



184 4 Simulation Sofware for Computational Modeling and Simulation 

respective handbooks and reference documentation as well as on the web, 
www.aegis.com. 

While ACSL is a general-purpose simulation system, models can be developed 
from: 

• Block diagrams 
• Mathematical equations 
• Other conceptualizations of systems 

but probably the most common ones are free-body diagrams of physical systems, 
as shown for the pendulum example in Fig. 4.14. 

Fig. 4.14. Pendulum on a rigid rod 

Example 4.7 
Let us use the diagram in Fig. 4.14 to describe the motion of a nonlinear pendulum. The 

terms for this example are as follows: 

m = mass [kg] 
W = weight [N] 
g = gravity [mls2] 
I = length of rod [m] 
k = viscous damping [kg/(mlS)] 

E> = deflection of road from vertical [rad] 

e = rate of change of 0 [radls] 

8 = acceleration of0 [radls2] 

F = tangential force [N] 

The tangential force, which acts to increase the angle e, can be written in two different 
forms. The first one results in: 

F = -W ·sin0-k·t·e. (4.31) 

Secondly, with a constal!lt mass, Newtons law can be expressed as: 



4.3 Simulation Software for Continuous-Time Systems 185 

F=m·I·0. (4.32) 

Combining (4.31) and (4.32) results in the differential equation form 

m ·1 ·0+ k ·1· e + W . sin e = 0 . (4.33) 

The ACSL translator handles the differential equations and their numeric integration. 
Differential equations have to be written in terms of their highest-order derivative, while 
the integral will be calculated with the INTEG statement. In the pendulum example the ac­
celeration of the angle thdd",g" is the highest derivative that can be expressed by rearrang­
ing (4.33), which results in 

thdd= 
(k ·I·thd + W· sin(th» 

m·1 

The angular rate thd ~ (e) and position th ~ (e) are obtained by integration 

thd = INTEG(thdd,thdic) 

th = INTEG(thd,thic), 

(4.34) 

where thdie and thie are the initial conditions of thd and th, respectively. They form the 
model. Other statements in the program can support these equations or control the execu­
tion of the program. These equations can be written in ACSL in the order given even 
though th and thd are used in the thdd equation. 

In the ACSL language a program can be written without any structural statements other 
than the PROGRAM and the END statements, which are known as implicit structure, mea­
ning all code is implied to be in a DERIVATIVE section. An explicit program describes the 
structure explicitly, meaning it allows to separate code, as shown in Fig. 4.15. 

ROGRAM 

ND 

INITIAL 
END 
DYNAMIC 

f
DERIVATIVE 
END 
DISCRETE 
END 

END 
TERMINAL 
END 

Fig. 4.15. Explicit structure in ACSL 

The respective sections are: 



186 4 Simulation Sofware for Computational Modeling and Simulation 

• INITIAL: appears at the beginning of the program before time moves 
forward, and is evaluated only once per run. Calculations in this section 
involve initial conditions of state variables or the initialization of count­
ers. The pendulum example needs INITIAL for the calculation of the 
conversion factor degrees per radian. 

• DYNAMIC: moves forward in time. Within the DYNAMIC section, the 
DERIVATIVE section moves forward in a continuous manner, control-
led by the integration algorithm. In the pendulum example, the angle th 
is converted to degrees in the DYNAMIC section. 

• DERIVATIVE: contains differential equations and integrations. ACSL 
sorts the equations deciding what has to be calculated in what order. 

• DISCRETE: are at the same level as DERIVATIVE, but are activated by 
INTERVAL or SCHEDULE statements, to describe discrete events. 

• TERMINAL: is executed once after time has stopped. When program 
control transfers out of the DERIVATIVE or DYNAMIC section in re­
sponse to the TERMINAL statement, it moves to the beginning of the 
TERMINAL section. TERMINAL is used for statistical calculations such 
as missile miss distance. Also parameters of the model can be changed in 
the TERMINAL section. 

With this background and the explicit structure, shown in Fig. 4.15, the pro­
gram listing for the pendulum example can be written in ACSL as follows: 

PROGRAM Damped Nonlinear Pendulum 

INITIAL 
! ----Convers ion factor, deg/rad 
DPR = 45.0 / (A TAN(J. 0)) 

END ! of INITIAL 

DYNAMIC 
DERIVATIVE 

!----Integration algorithm and step size 
ALGORITHM IALG = 4 
MAXTERVAL MAXT = 0.0125 
NSTEPS NSTP = 1 

!----Constants of model (units in kg m s) 
CONSTANT mass = 1.0 
CONSTANT length = 0.5 
CONSTANT kdamp = 0.3 
CONSTANT thdic = 0.0 
CONSTANT thic = 1.0 
CONSTANT g = 9.81 

!----Angular acceleration of mass 
thdd=(mass·g·sin(th) +kdamp' length' thd}/ (length' mass) 



4.3 Simulation Software for Continuous-Time Systems 187 

! ----Integrate for angular velocity and position 
thd = INTEG (thdd, thdic) 
th = INTEG (thd, thic) 

END ! of Derivative 

! ----Communication interval 
CINTERVAL CINT = 0.025 

! ----Termination condition 
CONSTANT tstop = 4.99 
TERM!' (T. GE. Tstop) 

!----Angle in degree for output 
xth = DPR-th 

END ! of Dynamic 

TERMINAL 
! ----Call for debug dump 
LOGICAL dump 
CONSTANT dump = .FALSE 
IF (dump) CALL DEBUG 

END ! of Terminal 
END ! of Program 

It should be noted, that the program controls, as shown in the program listing 
above, can be changed at runtime. 

The communication interval CINTERVAL controls the frequency at which the 
DYNAMIC section is executed. This is where the values of the variables on the 
PREP ARE list are logged to the intermediate data. 

The integration algorithm IALG, maximum step size MAXT, and number of 
steps per communication interval NSTP have been placed in the DERIVATIVE 
section. IALG is an integer between 1 and 9. The default IALG is 4, which means 
Runge Kutta fourth-order numeric integration method (see Appendix A). 

Output from ACSL is divided into the two categories high and low volume. 
This distinction is made while the screen should not be overwhelmed with data. 
Low-volume output consists of error messages and the result of DISPLAY, OUT­
PUT, and RANGE commands. The results of all other commands are considered 
high-volume HVDPRN. PRINT / ALL asks for all variables on the PREPARE list 
to be printed in columns, and PRINT INCIPRIN is the number of communication 
intervals per print line. If INCIPRN is 10, every tenth line is printed. With SPARE 
commands before and after START, simulation execution CPU time is given. The 
PROCEDURE statement in the example runtime file contains several commands. 
With go, each command is executed in tum. The respective ACSL runtime com­
mand file for the pendulum example are shown in Fig. 4.16. 



188 4 Simulation Sofware for Computational Modeling and Simulation 

SET HVDPRN=.TRUE. 
SET TITLE='Nonlinear Pendulum Example' 
PREP ARE t, th, xth, thd, thdd 
PROCEDURE go 
SPARE; START; SPARE 
PRINT fALL INCIPRN=1O 
END 

Fig. 4.16. Runtime command file for the pendulum example in ACSL 

Results of using ACSLs runtime commands are shown in Fig. 4.17. 

Line T 
o O. 
10 0.25 
20 0.50 
30 0.75 
40 1.00 
50 1.25 
60 1.50 

ACSL Runtime Exec Version 6 Level lOa Page 1 
SET HVDPRN=.TRUE. 
SET TITLE='Nonlinear Pendulum Example' 
PREP ARE t, th, xth, thd, thdd 
PROCEDURE go 
SPARE; START; SPARE 
PRINT fALL INCIPRN=1O 
END 
END of file found on unit 4 
Reverting to logical unit number 5 
go 
SPARE 
Accumulated cp time 263.640000, Elapsed cp time O. 
START 
SPARE 
Accumulated cp time 264.550000. Elapsed cp time 0.91000400 
PRINT fALL INCIPRN=10 
TH XTH 
1.0000000 57.2958000 
0.52727300 30.2105000 
-0.42950000 -24.5942000 
-0.88829600 -50.8956000 
-0.46029400 -26.3729000 
0.39687100 22.7390000 
0.79093400 45.3172000 

THD 
O. 
-3.466430 
-3.403780 
-0.0216652 
3.1363300 
3.0172500 
-0.08855000 

Fig. 4.17 ACSL pendulum log (PRN) file 

THDD 
-16.50970000 

-8.83224400 
9.18676000 

15.23160000 
7.74530000 

-8.48898000 
-13.9235000 

It is trivial to say but plots are much more intuitive than data columns. Hence 
simulation software has plotting options embedded. Time plots for the ACSL pen­
dulum example are using the following command: 

ACSL> PLOTth, thd 

Fig. 4.18 shows the plot calculated with the ACSL. All scales are chosen auto­
matically. 



4.3 Simulation Software for Continuous-Time Systems 189 

~ro---+---+---+---+--~ 

Fig. 4.18. Pendulum time plot 

... 
o 
,:: 

Using tags and symbols in a plot has the following commands in ACSL: 

ACSL> SET TITLE(41) = initial angle 1.0 radians' 
ACSL> SET SYMCPL=.T.,NPCCPL=20 
ACSL> PLOT IXTAG= '(sec)' th ITAG= '(rad) ' ICHAR= 't' &, thd 

ITAG='(radls), ICHAR=l 

TITLE is Nonlinear Pendulum Example, but more information can be added. 
SYMCPL is a logical to determine whether symbols are to be drawn on the curve; 
NPCCPL is the number of data points between the symbols. PLOT IXT AG adds a 
string of characters to the X-axis label. PLOT ITAG adds a string of characters to 
the Y-axis label. PLOT ICHAR specifies the character to be drawn on the curve if 
SYMCPL is TRUE. The respective example is shown in Figure 4.19. 

~onJ.inl!'cY Pendullo>fI'I EW"lftj)lE" 
Initial em 1.1.0 rCldi.,..s 

7 ~TD---r--~2---+'---+--~ 
T (5Vt) 

Fig. 4.19. Pendulum tags and symbols 

Another possibility for plotting options are the phase plane plots, as shown in 
Figu. 4.20. A phase plane plot is a graph over state variables, i.e. Xl over X 2• For a 
given set of initial conditions XI(O) = X lO, and X2(0) = X 20, the differential equa-



190 4 Simulation Sofware for Computational Modeling and Simulation 

tion of the dynamic system, for the pendulum example of (4.10), have a unique so­
lution Xl = l/{t) , and X2 = If(t), for t> O. In this case it is helpful to represent the 
unique solution as a curve in the Xl X 2 plane; the phase plane with t as parameter, 
marking the respective time stamps of the Xl X2 tuples. 

For a phase plane plot of the velocity thd (Xl) versus the angle th (X2) in ACSL 
we need the following commands: 

ACSL> SET XINCPL=4, NPCCPL=40 
ACSL>PLOT lXAXIS=th IXTAG= '(rad) '& ,thd IHI=4 ITAG= '(radls) ' 

ICHAR=5 

. 
"-

Non 1 ineat' Pendulum Example 
Initial an Ie 1.0 rc:ldians 

1l LO++--+--I+----+--+-+-I----+ 

1:1.0 -0.5 0.0 0.5 
TH (red) 

1.0 

Fig. 4.20. Pendulum phase-plane plot 

XINCPL sets the length of the X-axis (X2), and Y-axis (Xl) equal, hence the re­
sult is a square plot with the zero-zero point in the middle. PLOT IXAXIS IXT AG 
specifies th as the X-axis variable. PLOT ICHAR, NPCCPL are set to produce a 
centered character. 

4.3.4 Component-Based Simulation Software 

Besides the previously introduced simulation systems in Sects. 4.3.1, 4.3.2, and 
4.3.3, another trend in simulation software is towards component-based systems 
that provide a wide range of model parts - the components - which can be used 
for model building. A typical representative of a component based simulation soft­
ware is ModelMaker. Model building with ModelMaker first involves construct­
ing a diagram on the screen that represents the various model parts. This diagram 
is composed of a series of ModelMaker components, each of which are intended 
for a different type of mathematical operation. Each component has a definition 
that can be edited to insert its equation and any other information. ModelMaker 
can be applied to all areas of modeling in science, environmental science, mathe­
matics, physics, chemistry, sociology, ecology, life science, etc. Using the compo-



4.3 Simulation Software for Continuous-Time Systems 191 

nent-based approach, first one can visualize the system and then built the model. 
ModelMaker's extensive range of functions allows to one model just about any 
system functionality: continuous and discontinuous functions, stiff systems and 
stochastic systems. The user can rationalize the results using ModelMakers analy­
sis methods like optimization, minimization, Monte Carlo and sensitivity analysis. 
The Monte Carlo analysis enables model parameters to be specified as random 
distributions, while a model runs for a specified number of times, and during each 
run the value of the parameter is taken from a specified probability distribution. 
Hence, the effect of varying parameters of a component value can be observed. 
The current ModelMaker information can be found on the web, www. Modelkine­
tix.com. 

The model building and analyzing process in ModelMaker contains several 
steps: 

• Building a model with the respective components: 

Compartments Represent containers or integrators in the model 

Flows Signify transport of a quantity from one compartment to another 

Variables Values that are calculated as the model is run, according to the equa-
tions 

Defined values Values that are calculated at the start of a run or in response to the ac-
tions of an event 

Influences Indicate where the value of a component affects the value of another 

Delays Delay the value of another component for a defined period of time 

DLL-functions Add new functionality - design and integrate an own DLL 

Sub-models Create models within models 

Lookups Incorporate external numerical data into the model 

Events Adjust the values of other components and cater for discontinuous 
models 

Parameters Store constant values in the model 

Text boxes Add informative text or pictures to the model 

• Running the model: 
To run a model the user can choose for calculation one of the different numeric in­
tegration methods such as Runge Kutta, Mid Point, Euler, Bulirsch Stoer and Gear 
(see Appendix A). ModelMaker is also an appropriate solver for stiff systems 
simulation where processes happen on very different time scales. Other simulation 
features of the simulation language of ModelMaker are: 

• User defined or adaptive output points 
• Fixed or variable step length 
• Error scaling 



192 4 Simulation Sofware for Computational Modeling and Simulation 

One also can use the repeated run facility to run a model several times. More­
over, ModelMaker provides the ability to analyze: 

• Periodic models 
• Stochastic models 

Calculated values produced by running a model can be compared with experi­
mental data by using optimization methods. During optimization, selected model 
parameters are systematically adjusted to find the best fit between the model and 
the experimental data. ModelMaker offers for optimization iterative numerical 
methods like the Marquardt or the Simplex methods. They are very powerful op­
timization methods but can be very time consuming. They may not always find the 
best parameter values fit and may be, in certain circumstances, simple. Simple a­
nalytical methods such as linear regression are not generally applicable. For opt­
imization purposes ModelMaker offer a comprehensive statistical reporting. 

• Reporting results: 

Once the model has been simulated and analyzed the user can generate tables of 
results, graphs, and statistics. The respective features include: 

• Fully customized graphs 
• Comprehensive statistical output 
• Tabulation of model values 
• Cut and paste tools that allow to incorporate data, models, graphs, etc. 

into other applications. 

Example 4.8 
An important class of systems are those based on electrical networks, consisting of resis­

tors (R), capacitors (C), and inductors (L). When building models based on electrical RCL 
networks we can use differential equations as the respective mathematical representation. 
For this class of systems we can apply the principle of physical isomorphism, while the 
real-world system, which is introduced as an electrical RCL network, can be described by 
an analogous structured second system, which is the one used for system analysis. The sec­
ond system can be instead of the original electrical RCL network, a mass damper system. 
Both systems are shown in Fig. 4.21, which shows that an electrical system can also be 
modeled through a mechanical mass damper spring system and vice versa. 

The mass damper spring system can be described by the second-order differential equa­
tion 

M·x+D·x+C-x = F(t) , (4.35) 

with M as mass, D as damping factor, C as spring constant, and X as elongation. 



4.3 Simulation Software for Continuous-Time Systems 193 

... 
F(t) 
a) 

o 

b) 

Fig. 4.21. Mass-Damper-Spring-System (a) and LRC-Network (b) 

The differential equation of the isomorphic electrical RCL network can be described by 
the differential equation 

L.q··.R.q· +!L= V(t) 
c C' 

(4.36) 

with L as inductance, R as resistance, C as capacitance, q as charge, and Vet) as time de­
pendent voltage source. 

The comparison of both differential equations show that they have the same structure, 
due to the same mathematical notation concept behind, which can be rewritten in the gen­
eral system description formula 

A·x+B·x+C-x=D(t) , (4.37) 

which results in the following correspondences, shown in Table 4.2. 

Table 4.2. Correspondences between various dynamic systems 

Mathematical model Mechanical system RCL network 
x: state-space x: oscillation q: charge 
x': derivative ofx x': velocity i: current 
A: system parameter A: mass L: inductance 
B: system parameter D: damper R: resistance 
C: system parameter C: spring C: capacitance 
D(t) : input function F(t) : force E(t) : voltage 

As Table 4.2 shows, the mechanical system notation and the electrical RCL 
network notation are physical systems for each other, which means that one sys­
tem can be used for the other one describing the one system, but both notations 
can be described through the same mathematical model description formula. 
Hence we have a transform for system description, which can be expanded, if nec­
essary. 

(4.37) can be rewritten as 



194 4 Simulation Sofware for Computational Modeling and Simulation 

"B ,C D(/) x +_·x+-·x=--. 
A A A 

(4.38) 

Rewriting this differential equation, which is of second order, using n first­
order differential equations we find: 

(4.39) 

,,' B, C D(/) 
x =x =--·x--·x+--. 

2 A A A 

This results, due to the original second-order system, in two first-order differen­
tial equations: 

(4.40) 
, B, C D(/) 

x =-_·x --·x +--. 
2 A 2 A I A 

We can now introduce the first derivation Xl as Integratorl and the second deri­

vation x2 as Integrator2. These two integrators can be solved in ModelMaker by 

using compartments. They are defined by a symbol, a differential equation and ini­
tial values, and produce a series of values as output. The differential equation is 
solved as a function of the independent variable I by default. 

Integrator 1 (4.41 ) 

Integrator 2 ,,' B, C D(/) 
x =x =-_·x --·x---· 

2 A A A 
(4.42) 

From these equations we see that Integratorl and Integrator2 have an interrela­
tionship which means each of the values of Integrator! influences Integrator2, 
which also means that the values ofIntegrator2 affect the values ofIntegratorl. In 
ModelMaker this relationship is represented by arrows as follows: 

Integrator 1 I ............... ~ ...... . I Integrator 2 I 

Fig. 4.22. Bidirectional coupling of integrators 

Note that the two arrows and the dotted line, as used in ModelMaker, represent 
the bidirectional influences. 



4.3 Simulation Software for Continuous-Time Systems 195 

The parameters that influence the integrators are obtained from the dynamic 
systems equations, which are given in (4.38). This equation is the equation of the 
Integrator2, which means it depends on the parameters A, B, C, and D. Changes in 
these parameters will influence the Integrator2. Due to this fact we can represent 
the model of the dynamic system in ModelMaker as shown in Fig. 4.23. 

Fig. 4.23. ModelMaker implementation of the ReL network of Fig. 4.21h 

Building the model in ModelMaker contains three categories, which are: 

l. Define compartments: 

Integratorl: which is Integrator2 with equation X = Xl = x2 

2 h· h . ... B. C D(t) Integrator: w IC IS X = x2 = -_·x-_·x+--, 
A A A 

which can be represented by: 

BCD 
- - . Integrator2 - - . Intergrator 1 + -

A A A 

2. Define constants: 
A = inductance 
B = resistance 
C = capacitance 

3. Define variable: 
D = voltage = cos(t) 

(4.43) 

All elements are interconnected and we can study the dynamic system behavior 
for the several cases of interest, which can be done by changing the parameters A, 
B, and C, as well as the variables; assuming that the initial value can be 1 at both, 
Integratorl and Integrator2. The model chosen to represent this system can be ba­
sed on electrical RCL networks, as described above. The significant system vari­
ables are voltage, charge, and current. 

With the system description of(4.37) 



196 4 Simulation Sofware for Computational Modeling and Simulation 

A·x+B·x+C·x=D(t) , (4.44) 

which can be transformed into a series of first-order differential equations, for the 
implementation of ModelMaker's simulation model we use (4.20) and receive the 
resultant ModelMaker model, shown in Fig. 4.24 

I Integrator 1 ..... ~. 

Fig.: 4.24. ModelMaker implementation model of the RCL network of Fig. 4.22 including 
the coupling with Integratorl 

The following correspondences can be applied to the model: 

• A = inductance 

• B = resistance 

• C = capacitance 

• D = voltage 

• Integrator2 = X2 

• Integrator I = Xl 

A, B, and C are used as defined values, being the model parameters to be varied 
during simulation. The values of A, Band C do not vary during a single simulation 
run, their values are entered in the model as defined values. D is equal to cos(t) for 
all case study examples. The value of the cosine function is a variable over the 
course of a simulation run, it is placed inside a variable block. Integrator2 repre­
sents the current that flows through the system. Values A, B, C, D, and Integratorl 
influence the calculation of Integrator2, and each of which must be connected to 
Integrator2 using an influence arrow type. Integrator I represents the charge in the 
system that is influenced by the calculation performed in Integrator2, hence an in­
fluence arrow has to be inserted from Integrator2 to Integrator!. The model built 
up allows easy manipulation of the system parameters to be tested. 

The ModelMaker implementation is ultimately determined by the mathematical 
model, which in any case is the basis for a simulation run. 

Example 4.9 
Case Study I: A = I; B = I; C = I 

Represents a resistive circuit where capacitance and inductance are equal. Charge (Inte­
grator 1) and current (Integrfltor2) reach the state of harmonic oscillation at t = 6. The ampli-



4.3 Simulation Software for Continuous-Time Systems 197 

tude of the oscillations of charge and current is near 2.0 (range of -1.0 to 1.0), as shown III 

Fig. 4.25. 

"' .... I. 

" 

,n 

., 
u .. ..,,, .. -< 

~ 
.... 

00 

~s 

'0 

·1 ~ I ..... . I • , "1 .... 4 t • ..... ....... t- , ..... , ••• .I..,...... I •••• t I", • I 
GO 100 :01) ~ll .00 'llQ i'iIlQ 1Q.0 MID ~.- 10 I(t\C 

Fig. 4.25. Graph of case study I with A = I, B = I and C = I 

The graph shows that charge and current reach a harmonic state very quickly, which is a 
result of the balance of resistance, capacitance, inductance, and the absence of a significant 
disturbance, which can be introduced by a large value of the resistance. The amplitude of 
the waves (i.e., current) is a result of the small resistance against the voltage. 

Analytically, a motion is classified as being harmonic when the acceleration at any time 
is proportional in magnitude and opposite in sign to the displacement. Considering an ob­
ject in a rectilinear motion with coordinate x, it will undergo a simple harmonic motion if 

dx 2 2 
--=-OJ ·x, 
dt 

(4.45) 

where ol is a constant of proportionality. It can be easily verified that the solution for the 
differential equation describing the simple harmonic motion is 

x = a . sin ¢t + b . cos OJt , (4.46) 

from which 

x = Q. sin(OJI + rp), (4.47) 

where a, b, and14 ¢ are inter-related integration constants representing the characteristics 
of the oscillation. These constants can be evaluated from the initial or boundary conditions 
of the motion. By examination of (4.47) it can be seen that llJ is the frequency of the mo-



198 4 Simulation Sofware for Computational Modeling and Simulation 

tion, while .Q and rfJ are its amplitude and phase angle respectively. Differentiating (4.47) 
with respect to time we obtain the expressions for the velocity and acceleration as 

and 

v = dx = m. Q. cos(mt + ¢) = m. Q. sin(mt + ¢ + n- ), m 2 

a = dx: = _m2 .Q.sin(OJt+¢) = m2 .Q.sin(mt+¢+n-). 
dt 

(4.48) 

(4.49) 

These expressions show that velocity and acceleration can also be represented by vec­
tors rotating with the angular frequency OJ. These vectors have amplitudes OJ • n, and oJ . 
n, and phase angles 1d2 + l/J, and lHl/Jrespectively. 

From (4.48) and (4.49) we can conclude that for on harmonic motion, or any oscillation 
for that matter, the vectors representing the velocity and acceleration lead the displacement 
vector by nl2 and n radians, respectively. Therefore, the phase difference between the two 
is of importance. 

i 
I 

11 -

.,. 

t · ~_ ...... -..._,_ 

.. ... 

....... 
Fig. 4.26. Phase plane for case study 1 with A = 1, B = 1, and C = 1 

The phase-plane representation in Fig. 4.26 shows that the system tends to zero (the re­
sultant circle is centered at (0,0», which means the system is stable. The diameter of the 
circle in Fig. 4.25 is 1.0, which is equal to the amplitude of the waves, shown in Fig. 4.25. 
The small resistance value results in a system reaching the stable state in a relatively short 
time period. 

Example 4.10 
Case Study 2: A = 10, B = 10, C = 10 

Represents a resistive system where capacitance and inductance are equal. Charge (Integra­
tor!) and current (Integrator2) reach the state of harmonic oscillation at t = !9. The ampli­
tude of the oscillations of charge and current is 0.2 (range of -O.! to 0.1), is shown in Fig. 
4.27. 



v .. .. 

4.3 Simulation Software for Continuous-Time Systems 199 

, . 
"' 

"" I 1\1\1 /\/\/ /\I\I\I\J\J / / 

'D ~~+-'-'~I--'-'--'--'-;f-'-L ........ ~.~ ...... I I I I ! , , I .... 

aD 100;'00 010" iI,IO Wt;lI IQU "IIlU 

Fig.: 4.27. Graph I of case study 2 with A = 10, B = 10, and C= 10 

The graph in Fig. 4.26 shows that charge and current reach a harmonic state in a relative 
shortly time. The amplitude ofthe waves (i.e. the strength of the current) in Fig. 4.27 is lim­
ited by the higher resistance values. 

i 
j 

"T 
t 

.. 
t 

• j 

I 
t 

t 

•• 1 

.., ... "" 

o 
• ~ • A ~ A • , • • • • , 

CI~ 10 ot. 0 
__ 1 

Fig. 4.28. Graph II of case study 2 with A = 10, B = 10, and C = 10 

The graph in Fig. 4.28 shows that the system tends to zero (the resultant circle is cen­
tered at (0,0)), which means that the graph illustrates a stable system. The diameter of the 
circle in Fig. 4.28 is 0.5, which equals the amplitude of the waves as shown for graph I in 
Fig. 4.27. Compared with Fig. 4.26, it can be concluded that the system needs a longer time 
to reach the stable state. 

Example 4.11 
Case Study 3: A = 1, B = 10, C = I 



200 4 Simulation Sofware for Computational Modeling and Simulation 

Represents a resistive circuit because capacitance equals inductance. Charge (Integratorl) 
and current (Integrator2) reach a state of harmonic oscillation at t = 44. The amplitude of 
the oscillations of charge and current is 0.2 (range of -0.1 to 0.1), as shown in Fig. 4.29. 

'. 

.0 \f\N\MNV\/VVVVVV 

0" ......... , ... '" ~ .. , • "' t'" ~ ........ ........ t ~ ... "' "'--t ....... ...A- ........... ....... 

00 KlO :00 0 .-)0 '.(ID 000 7'00 '0 oruo 'fila 

Fig. 4.29. Graph I of case study 3 with A = I, B = 10, and C = I 

The graph in Fig. 4.29 shows that the system requires a long time to reach a harmonic 
state due of the dominance of the resistance in the system. The amplitude (i.e., the strength) 
of the current is the same as in Fig. 4.27, which results from the relationship between volt­
age, resistance, and current, while resistance is the same as in Fig. 4.27, and the resultant 
current is the same. The charge in the system, as shown for graph I, needs more time to 
reach the harmonic state relative to the current, as was true for the previous cases. Charge 
and current are out of phase initially, and their amplitude differs . 

... 

o 

Fig. 4.30. Graph II of case study 2 with A = I, B = 10, and C = I 

The graph in Fig. 4.30 shows that the system tends to zero, which means stability. In the 
case shown in Fig. 4.30, the system needs a relatively long time to reach the stable state, 
due to the imbalance of resistive, capacitive, and inductive forces in the system. The vari-



4.3 Simulation Software for Continuous-Time Systems 201 

ance in amplitude initially between charge and current results in an irregular graph (the sys­
tem ultimately reach an harmonic state). 

Example 4.12 
Case Study 4: A = I, B = 10, C = 5 

Represents a system that can be assumed as capacitive because capacitance (B) is greater 
than inductance (C). Charge (lntegratorl) and current (lntegrator2) reach a state of har­
monic oscillation at t = 12. The amplitude of the oscillations of charge and current is 0.2 
(range of -0.1 to 0.1), as shown in Fig. 4.31 . 

•• 

. , 

"j { f\J Nv WVV I\MN 
......... - ... ~.QI ... 

Fig. 4.31. Graph I of case study 4 with A = 1, B = 10, and C = 5 

The graph in Fig. 4.31 shows that the charge and current reach an harmonic state in a 
short time as a result of the counterforce of an increased capacitance against the resistance 
that has not been altered from case study 3 . 

• + 

i 
I · 

o 
.. -Fig. 4.32. Graph II of case study 4with A = 1, B = 10, and C = 5 

The graph in Fig. 4.32 shows that the system tends to zero, meaning a stable system. 
The center of the circle in Fig. 4.32 created graphically by the charge over the current plot 
is centered at zero with a diameter equal to the amplitude of the charge and current waves 



202 4 Simulation Sofware for Computational Modeling and Simulation 

illustrated in Fig. 4.30. The progression of the system from its initial state to the stable state 
is relatively fast, as a result of the increase of capacitance against the larger resistance. 

The simulation models are steady-state RCL networks enforced by an altema­
ting current, represented by the function D(t) = cos(t), which generates a forced 
oscillation in the system with a predictable frequency. The results of the above 
case studies reveal the following: 

• All cases are examples of damped harmonic oscillation; each set of vari­
ables results in harmonic oscillation of charge and current in electrical 
RCL networks, or oscillation and velocity in mechanical systems. 

• All case studies result in the respective current of the electrical RCL net­
work, or velocity in mechanical systems, which is in phase with voltage 
or force, respectively. 

• The largest current is generated due to the impedance of the electrical 
RCL network Z = (R2 + (XL - Xd)1I2, in which XL = Xc has the smallest 
value of R. Case study 1 shows the largest current in this study. 

• The electric current is demonstrated to be the electric charge per unit 
time; inversely, charge (represented by Integratorl) is shown to be a 
function of current (lntegrator2) multiplied by time. 

• The relation between current, voltage, and resistance, determined by 
Ohms law, is demonstrated in each case study, showing that voltage is 
the same for each case, the simulation proves that an increase in resis­
tance results in a decrease in current. 

• All case studies illustrate systems that reach a stable state. 
• Increasing the value of parameter A, meaning increasing the mass (in a 

mechanical system) or inductance (in a RCL network system), the veloc­
ity can become smaller (in a mechanical system) or the current (in a RCL 
network system) will be lower. The Integrator2 (current) tends to the zero 
state if we the simulation runs for a longer time interval. 

• Increasing the value of parameter B, meaning increasing the damper (in a 
mechanical system) or resistance (in a RCL network system), the time in­
terval the system needs to reach a stable state or equilibrium states in­
crease. The problem depends on the difference in amplitude and values 
between q (charge) and i (current). 

• Increasing the value of parameter C, meaning increasing the spring (in a 
mechanical system) or capacitance (in a RCL network system), will make 
the system reach the equilibrium state. 

• Using a different notation instead of using cos(t) for D, it might happen 
that the system can not fit to the stable state, and it can jump far away 
from the stable state. Using D = arctan(t) can be used as proof. 



4.3 Simulation Software for Continuous-Time Systems 203 

4.3.5 High-Performance Simulation Software for Technical Computing 

Besides the previously introduced simulation systems in Sects. 4.3.1 till 4.3.4, an­
other trend in simulation software is toward high-performance languages applica­
ble for technical computing. These simulation software languages are mathemati­
cally and graphical-based combining the model parts using special scripts. Scripts 
are ASCI text files describing a sequence of statements and functions that can be 
saved and used as desired without having to recreate them each time they are nee­
ded. They are useful for automating series of simulation-language commands, 
such as computations that have to be performed repeatedly from the command 
line. Scripts operate on existing data in the workspace, or they can create new data 
on which to operate. Any variables that scripts create remain in the workspace af­
ter the script finishes so they can be used for further computations. A typical re­
presentative of a script-file-based simulation software is MATHLAB, which is a 
high-performance software for technical computing that integrates computation, 
visualization, and programming in an easy-to-use environment where problems 
and solutions are expressed in the mathematical notation. In MATLAB scripts are 
identified as M files, which contain the sequence of commands that are ordinarily 
processed following the command prompt. Several types of M files are used with 
MA TLAB. The special toolboxes available for MA TLAB are in fact made up of 
M files, developed for the particular application. 

Example 4.13 
The Collatz problem, namend after the Gennan mathematician Collatz, born 1910 in 

Amsberg, Gennany, is to prove that the Collatz function will resolve to 1 for all positive in­
tegers. The M-files for this case study example have the filenames collatz.m and collatz­
plot.m. The file collatz.m generates the sequence of integers for any given n. The file col­
latzplot.m calculates the number of integers in the sequence for any given n and plots the 
results. For any given positive integer, n, the Collatz function produces a sequence of num­
bers that always resolves to 1. If n is even, divide it by 2 to get the next integer in the se­
quence. If n is odd, multiply it by 3 and add 1 to get the next integer in the sequence. Re­
peat the steps for the next integer in the sequence until the next integer is 1. The number of 
integers in the sequence varies, depending on the starting value, n. 

TheMATLAB code for collatz.m (obtained from MATLAB M-File Section) is as fol­
lows: 

function sequence=collatz(n) 
% Collatz problem. Generate a sequence of integers resolving to 1 
% For any positive integer, n: 
% Divide n by 2 if n is even 
% Multiply n by 3 and add 1 if n is odd 
% Repeat for the result 
% Continue until the result is 1% 
sequence = n; 
next_value = n; 
while next value> 1 

if rem (next_value, 2) ==0 
next_value = next_value/2; 



204 4 Simulation Sofurare for Computational Modeling and Simulation 

else 
next ~ value = 3 *next _ value+ 1 ; 

end 
sequence = [sequence, next_value}; 

end 

TheMATLAB code for collatzplot.m (obtained from MATLAB M-File Section) is as 
follows: 

function collatzplot(n) 
% Plot length of sequence for Collatz problem 
% Prepare figure 
clf 
set(gcf, 'DoubleBuffer', 'on ~ 
set(gca, 'XScale', 'linear~ 
% 
% Determine and plot sequence and sequence length 
form=l:n 

plot_seq = collatz(m); 
seq_length(m) = length (plot_seq); 
line(m,plot _seq, 'Marker','. : 'MarkerSize:9, 'Color', 'blue~ 
drawnow 

end 

From Example 4.13 it can be seen that the name M file comes from the form of 
the filename, which is filename.m. 

Statements in MA TLAB have the form 

»variable=expression, 

where the two right arrows » represent the command prompt, which precedes all 
commands, and variable identifies a variable, such as x, y, U, etc. The names for 
variables must begin with a letter and may include numbers and letters. For exam­
ple, the expression x = 9 defines a variable x and assigns it a value of 9. Adding 
parentheses to the expression changes the order of processing. Modeling with 
MATLAB is initiated by opening an M-file window and typing in the respective 
commands necessary to describe the real-world system. 

Example 4.14 
Consider a first order RC network described by the voltage current relationship 

(4.50) 

where the time constant is Tc = RoC. The MATLAB command sequence is 

»V=(1-exp(-tlTc)); 



4.3 Simulation Software for Continuous-Time Systems 205 

The MATLAB command sequence to plot the output of the first-order differential equa­
tion for an input of 1.0 and a time constant of 0.5 and the final time 3.0 is 

»Tc=0.5; 
»t=[O:O,l :3]; 
»V=(l-exp(-tIT c)); 
»plot(t,V); 
»titleCFirst Order System Response'); 
»xlabel('Time'); 
»ylabel('Outpuf); 
»grid 

where the x y plot is generated as the result of the command 

»plot(x,y); 

where x and y have been previously defined or calculated by other command statements and 
expressions. Both the x-axis and the y-axis can be labeled with 'xlabel' and 'ylabel' com­
mands, as shown above. 

A plot can be given a descriptive title with the 'title' command 

»titleCFirst Order System Response') . 

The title command places the characters between the single quotation at the top 
of the plot. 

MA TLAB also provides several commands for manipulating, analyzing, and 
simulating systems in block-diagram form, which is helpful for control systems 
analysis and simulation. Very useful functions in MATLAB for the control sys­
tems domain are rlocus, which plots root locus from the translator function of the 
system, or Bode, Nichols, and Nyquist plots. MATLAB also includes functions 
for providing discrete-time systems. For example, the function c2d converts from 
continuous to discrete forms of system representation. 

Furthermore, in MATLAB, functions exist in directories in the computer's file 
system. A directory may contain many functions (M-files). Function names are 
unique only within a single directory (e.g. more than one directory many contain a 
function called pie3). When typing a function name on the command line, 
MATLAB must search all the directories it is aware of to determine which func­
tion to call. This list of directories is called MATLABpath. 

When looking for a function, MATLAB searches the directories in the order 
they are listed in the path, and calls the first function whose name matches the 
name of the specified function. 

Consider writing an M-file, named pie3.m, and put it in a directory that is 
searched before the spec graph directory that contains MA TLABs pie3 function, 
then MATLAB uses the pie3 function instead. 

Object-oriented programming in MATLAB allows users to have many methods 
(MATLAB functions located in class directories) with the same name and enables 
MATLAB to determine which method to use based on the type or class of the 



206 4 Simulation Sofware for Computational Modeling and Simulation 

variables passed to the function. For example, if p is a portfolio object, then 
pie3(p) calls@portfolio/pie3.m because the argument is a portfolio object. 

Information about MATLAB is available on the web, at www.mathworks.org. 
Together with SIMULINK, which has become the most widely used software 

language for modeling, simulating, and analyzing real-world systems, models can 
be easily built from scratch, or taken from existing models with the help of the 
tools offered by MA TLAB-SIMULINK. 

Simulations are interactive, which means that parameters can be changed dur­
ing the simulation run and it can immediately be seen what happens. Furthermore, 
SIMULINK offers an instant access to all analysis tools of MATLAB, hence the 
results, obtained with SIMULINK, can be analyzed with MATLAB and visual­
ized. 

SIMULINK supports linear and nonlinear systems, modeled in continuous­
time, sampled-time, or a mixture of both. Systems can also be multirate, i.e. have 
different parts that are sampled or updated at different rates. 

For modeling, SIMULINK provides a graphical user interface (GUI) building 
models as block diagrams, using click-and-drag mouse operations. With this inter­
face one can draw the models just as with pencil and paper, which is easier so as 
to formulate differential equations and difference equations in a language or pro­
gram. For this purpose SIMULINK includes a comprehensive block library of: 

• Sinks 
• Sources 
• Linear and nonlinear components 
• Connectors 
• etc. 

and allows customizing and creating own blocks. Models in SIMULINK are hie­
rarchical, which allows models be built top-down or bottom-up. Hence the user 
may view the system at a high level, then double-click on blocks to go down 
through the levels to see increasing levels of model details. This approach pro­
vides insight into how a model is organized and how its parts interact. 

After a model has been built up it can be simulated, using a choice of integrati­
on methods, either from the SIMULINK menus or by entering commands in the 
MATLAB command window. The menus are particularly convenient for interacti­
ve work, while the command-line approach is very useful for running a batch of 
simulations (e.g. Monte Carlo simulations or sweeping a parameter across a range 
of values). Using scopes and the other display blocks users are able to observe the 
simulation results while the simulation is running. In addition, the interactivity of 
SIMULINK allows to be changed parameters and immediately shows what hap­
pens, for "what if' exploration. The simulation results obtained with SIMULINK 
can be transferred into the MATLAB workspace for post processing and visualiza­
tion. 

Model analysis tools include linearization and trimming tools, which can be ac­
cessed from the MATLAB command line, and the many tools in MATLAB and its 
application toolboxes. And because MA TLAB and SIMULINK are integrated, the 



4.3 Simulation Software for Continuous-Time Systems 207 

user can simulate, analyze, and revise his models in either environment at any 
point. The current MA TLAB-SIMULINK information can be found on the web at 
www.mathworks.com. 

Example 4.15 
As an example we build a simple model in SIMULINK. The model integrates a sine 

wave and displays the result, along with the sine wave. The block diagram of the model is 
shown in Fig. 4.33. 

D 
Sine Wave Scope 

Integrator 

Fig. 4.33. Simple SIMULINK model 

To create a model in SIMULINK, one has to type SIMULINK in the MATLAB 
command window. On Microsoft Windows, the SIMULINK Library Browser ap­
pears. Creating a new model on Windows, one has to select the New Model but­
ton on the Library Browsers toolbar. SIMULINK now opens a new model win­
dow. To create the model shown in Fig. 4.33, one needs to copy blocks into the 
model from the following SIMULINK block libraries: 

• Sources library (the Sine Wave block) 
• Sinks library (the Scope block) 
• Continuous library (the Integrator block) 
• Signals and systems library (the Mux block) 

One can copy a Sine Wave block from the Sources library, using the Library 
Browser (Windows only) or the Sources library window (UNIX or Windows). To 
copy the Sine Wave block from the Library Browser, one has to expand the Li­
brary Browser tree to display the blocks in the Sources library. This can be done 
by clicking on the Sources node to display the Sources library blocks. Finally, one 
has to click on the Sine Wave node to select the Sine Wave block. Now drag the 
Sine Wave block from the browser and drop it in the model window. SIMULINK 
creates a copy of the Sine Wave block on the point where one dropped the node 
icon. To copy the Sine Wave block from the Sources library window, one has to 
open the Sources window by double-clicking on the Sources icon in the SIMU­
LINK library window. SIMULINK displays the Sources library window. Now one 
has to drag the Sine Wave block from the Sources window to the model window. 
Thereafter one has to copy the rest of the blocks in a similar manner from their re-



208 4 Simulation Sofware for Computational Modeling and Simulation 

spective libraries into the model window. One can move a block from one place in 
the model window to another by dragging the block. Furthermore, one can move a 
block a short distance by selecting the block, then pressing the arrow keys. With 
all the blocks copied into the model window, the model designed looks as shown 
in Fig. 4.34. 

IB 
Sine Wave Scope 

Integrator 

Fig. 4.34. SIMULINK block icons for build up of the model shown in Fig. 4.34 

It can be seen from Fig. 4.34 that the block icons have an angle bracket on the 
right of the Sine Wave block and two on the left of the Mux block. The> symbol 
pointing out of a block is an output port; if the symbol points to a block, it is an 
input port. A signal moves out of an output port and into an input port of another 
block through a connecting line. When the block,s are interconnected, the port 
symbols disappear. The blocks can be connected. The Sine Wave block has to be 
connected to the top input port of the Mux block. For this reason the pointer has to 
be positioned over the output port on the right side of the Sine Wave block. It 
should be noted that the cursor shape changes to cross-hairs. The mouse button 
should be held down and the cursor should be moved to the top input port of the 
Mux block. It should be noted that the line is dashed while the mouse button is 
down and that the cursor shape changes to double-lined cross hairs as it ap­
proaches the Mux block. The mouse button should be released. The blocks are in­
terconnected. It is also possible to connect the line to the block by releasing the 
mouse button while the pointer is inside the icon. If so, the line is connected to the 
input port closest to the cursors position. It should be noted that most of the lines 
connect output ports of blocks to input ports of other blocks. However, one line 
connects a line to the input port of another block. This line, called a branch line, 
connects the Sine Wave output to the Integrator block, and carries the same signal 
that passes from the Sine Wave block to the Mux block. Finishing the block con­
nections, we obtain a model that looks like the one in Fig. 4.33. 

The simulation parameters have to be specified. For this reason one can open 
the Scope block to view the simulation output. Keeping the Scope window open, 
set up SIMULINK to run the simulation for 10 s, which is the Stop time (its de­
fault value is set to 10.0). The simulation parameters can be set by choosing Simu­
lation Parameters from the Simulation menu. If one close the Simulation Pa­
rameters dialog box by clicking on the OK button, SIMULINK applies the 



4.3 Simulation Software for Continuous-Time Systems 209 

parameters and closes the dialog box. One can choose Start from the Simulation 
menu and watch the traces of the Scope block's input, as shown in Fig. 4.35 . 

• ) Scope I!!I~Ei 

Fig. 4.35. Transient behavior of the SIMULINK model shown in Fig. 4.33 

The simulation stops when it reaches the stop time specified in the Simulation 
Parameters dialog box or when one chooses Stop from the Simulation menu or 
presses the Stop button on the model windows toolbar (Windows only). To save 
the built up model, one can choose Save from the File menu and enter a filename 
and location. That file contains the description of the model. For termination of 
MA TLAB and SIMULINK, we can use Exit MA TLAB (on a Microsoft Windows 
system) or Quit MATLAB (on a UNIX system). 

SIMULINK can be used for a wide range of applications in the different scien­
tific domains. Hence we introduce a case study example showing its performance. 

Example 4.16 
The increasing demands in water quality result in the need for more effective process 

control of wastewater-treatment plants. One way of increasing the efficiency is using a 
model-based on-line process control, which requires a suitable model that describes the dy­
namic behavior of the process well enough and is as simple as possible at the same time. 

Consider that the process of nitrification is the most important complex biochemical 
process in a wastewater-treatment plant, consisting of several enzymatic reactions. The first 
step of the reaction, the oxidation of ammonia to nitrite, is performed by bacteria of the 
type nitrosomonas, while the conversion of nitrite to nitrate is carried out by a bacteria of 
type nitrobacter. Both processes depend directly on each other since nitrite oxidation is a 
consecutive reaction to the ammonia oxidation and both reaction rates depend on the nitrite 
concentration. The nitrification reaction scheme is as follows: 

(4.51 ) 

The energy released in this process is used for the growth of the bacteria, which are slow 
growing as well as fast growing. Hence, the adapting ability of the bacteria for optimization 



210 4 Simulation Sofware for Computational Modeling and Simulation 

of the wastewater-treatment plant is of importance, meaning that on a certain scale the mi­
cro-organisms adapt to the changing conditions in the plant. The fact of the different bacte­
ria growth results in different changes of the reaction rates, hence one of the reactions is 
preferred for the description of the plants dynamic. Consider a sudden increase of ammonia 
concentration in the inflow of the wastewater-treatment plant reactor, which results in an 
accumulation of nitrite, yields, some time before the nitrobacter bacteria have adapted to 
the increased load, a reduction in the nitrite concentration in the plant. 

For simulation analysis a reactor type has to be chosen for investigating the nitrification, 
which takes place in this case study example in a so-called packed-bed reactor. Both types 
of bacteria are immobilized on a static mixer, meaning that the surface of the packed-bed is 
covered with a biofilm that is in contact with the wastewater and the air. Wastewater and air 
are injected at the bottom of the reactor, as shown in Fig. 4.36. 

The reactor is equipped with recirculation, which is several times larger than the influent 
flow, to weaken the concentration profiles inside the reactor. Without recirculation an inhi­
bition of the biological reaction is possible because of variations in the influent wastewater 
flow rates, concentration, and composition. 

The main advantages of the packed-bed reactor are: 

• Realization of high bacterial concentrations with high sludge ages independent of 
flow changes 

• Robustness, because there is no wash-out of bacteria 
• Limit of the maximum of the conversion rate, due to the diffusion of the biofilm 

For a deeper understanding of the hydrodynamics inside the packed-bed reactor, which 
has an important influence on the distribution of substrate and hence on the reaction kinet­
ics, we build up a reactor model that can be used for the simulation of the transient behav­
ior, using MATLAB-SIMULINK. An intermediate state of mixing behavior can be mode­
led using a cascade of reactors with recirculation, as shown in Fig. 4.37. 

Static mixer 
with 
immobilized 
bacteria 

Exhaus gas 

Effluent 

Recirculation 

Fig. 4.36. Schematic diagram of a packed-bed reactor 

Recirculation 

Fig.4.37. Schematic diagram ofa cascade of reactors with recirculation 



4.3 Simulation Software for Continuous-Time Systems 211 

Using a pulse input of a nonreacting tracer as a test signal (see Sect. 1.1), the transient 
behavior of the cascade of reactors can be simulated. Simulations with a cascade of five re­
actors, as shown in Fig. 4.38, show that this model behaves like a complete-mixing reactor 
if the recirculation flow exceeds a certain value, as shown in Fig. 4.38. 

To gain a deeper insight into the dynamic behavior of the packed-bed reactor type, one 
has to formalize the mass balance for a specific substance as follows: 

= flow In - flow out ± (
Rate of Change] ( .) ( ) (increase or decrease] 

in reactor by reaction 

(4.52) 

The last term of the sum is added or subtracted, which depends on whether the concen­
tration is increased or decreased by the reaction. For modeling the packed-bed reactor, 
flows (F) and concentrations Cj are the most important parameters, as shown in Fig. 4.39. 

0,3 l 

~ 0,28 
c 
.2 
iii 0,26 
~ c 
8 0,24 c 
g - influent concentration .. 0,22 III 
0 
~ 

0 ,2 I-

0,18 
0 20 40 60 80 100 

Time [h) 

Fig. 4.38. Simulation results with five reactors cascade with different recirculation flows 

F, C, 
reactor 

F •. C, 

Fig. 4.39. Flows and concentrations of the packed-bed reactor model 

The mass balance equation of the packed-bed reactor, shown in Fig. 4.39, can be de­
scribed as follows: 

(4.53) 

Dividing (4.53) by volume Vresults in a differential equation notation which can be di­
rectly implemented in common simulation systems 



212 4 Simulation Sofware for Computational Modeling and Simulation 

dC2 F; F2 
--=-·c --·c ±r. 
dt V \ V 2 

(4.54) 

This first-order differential equation can be used for ammonia, nitrite, and nitrate which 
describe the change of the corresponding concentrations. The reaction rate r in (4.54) de­
pends on the yield coefficient Y, the bacteria concentration CB and the specific growth rate f1 
which describes the growth behavior of the micro-organisms, as follows: 

(4.55) 

The yield coefficient is of constant value but changes caused by growth and death of the 
bacteria have to be taken into account, using a differential equation with a constant death 
rate kd, yields 

(4.56) 

(4.55) and (4.56) are of importance while modeling the nitrification process depending 
on the specific growth rates. Hence f1 has to be introduced due to its variations, which can 
be done using the Monod equation, which sets f1 equal to a function of substrate concentra­
tion c" yielding 

(4.57) 

where Ks is the so-called half-maximum saturation coefficient since Il equals Ilmax/2 if Ks 
equals Cs. Observation have shown that at high concentration the substrate can also act as a 
toxic growth inhibitors which can be taken into account using the Haldane equation, which 
is an extension of the Monod equation, given in (4.57), resulting in 

(4.58) 

where (csiIK\ is the so-called inhibition term, which is small in magnitude at low substrate 
concentrations, and increases at high values of Cs• There are other influences on the growth 
rate, which can be taken into consideration using additional terms in (4.58), expressing the 
respective kinetic influences, 



4.3 Simulation Software for Continuous-Time Systems 213 

dNH4 = F; .NH _ F2 .NH -r (4.59) 
dt V 4.1 V 4 Ns 

dN02 F; F2 
--=-·NO --·NO +r -r dt V 2,1 V 2 Ns Nb 

dN03 = F; .NO _ F2 .NO +r 
dt V 3,1 V 3 Nb 

d;s = (,uNS -kd.NJNs 
dNb ( ) --= f1Nb -kd Nb ·Nb dt . 

Consider the overall reactor kinetics is based on first-order differential equations, de­
scribing the respective concentration changes, we obtain for the concentration changes of 
ammonia (NH4 ), nitrite (N02), nitrate (N03), nitrosomonas (NS) and nitrobacter (Nb) the re­
spective set of differential equations where rNs and rNb are in relation to (4.55), and an ex­
panded version of (4.58) is used for the calculation of /!Ns and /!Nsb' 

The differential equations set (4,59) has been implemented in MATLAB-SIMULINK 
for simulation. The verification of the simulation study is based on measurements from a 
pilot plant, to show that the derived reactor model fits the reality of a real wastewater­
treatment plant reactor, as shown in Fig. 4.40 for the concentration changes of ammonia 
(NH4). 

Fig. 4.40 shows the comparison of measured ammonia values of the pilot plant and the 
simulation results of ammonia for a period of six days, which shows a reasonable match 
between predicted (simulated) and measured data. Hence the model, shown in Fig. 4.39, 
which is described by (4.48) can be used for optimization as well as for prediction. 

,........ 
::::::::: 
C) 

E ........ 
C 20 
0 ;:: 
~ 10 ..... 
c 
8 
c 0 0 
U 0 24 

Effluent ammonia 

- -4 - - - - -1- - - - - ~ 
1 1 

48 72 96 
Time [h] 

1 
1 

120 144 

Fig. 4.40. Measured values (thick lines) and simulated results (thin lines) for the 
concentration changes of ammonia (NH4) of the packed-bed reactor, shown in Fig. 4.39 



214 4 Simulation Sofware for Computational Modeling and Simulation 

4.4 Discrete-Time System Simulation Software* 

Discrete-time systems simulation systems can be separated into general-purpose 
and special or application-purpose simulation systems. Their structure is similar to 
the continuous ones, but they contain an event-based control of time that allows 
classification of discrete-system simulation systems as follows: 

• Transaction oriented simulation software; are based on a time-step con­
trol, determined through preprogrammed logical conditions related to the 
respective blocks. Language elements of transaction-oriented simulation 
systems are transactions, blocks, facilities, queues, pools and storages, 
logical switches, numerical and logical variables, functions, and tables. 

• Event-oriented simulation software; are based on time-dependent and re­
stricted event-handling language elements. 

• Activity-oriented simulation software; are based on activity schedules 
that are started if specific constraints are fulfilled. 

• Process-oriented simulation software; are based on the activation trigger 
of the following events as specified language elements. 

The development of discrete-system simulation software results in several sys­
tems, which are the 

• Universal or special-purpose discrete system simulation systems, such as 
ARENA, GASP, GPSS, MODSIM, SIMSCRIPT, SIMAN, SLAMSYS­
TEM, based on general-purpose programming languages 

• Application-oriented discrete-system simulation systems, such as NET­
WORK, SIMFACTORY, SIMPLE++, SIMULAP, XCELL, etc., based 
on programming languages for special-application domains 

The universal or general-purpose discrete system simulation languages are ap­
plicable in a wide range of applications, but, for example, the user has to have 
specific programming experience, such as TESS (the extended SLAM system), 
and SIMAN (simulation analysis language). 

Application-based simulation systems are primarily more specific due to their 
application-domain dependent design that results in a better efficiency. But in con­
trast, their flexibility and their restriction to a specific application domain are less 
acceptable, from the general-purpose point of view. New software releases show 
two specific approaches: 

• Parameterized, application-oriented systems, that are expanded by a user 
simulation system, like SIMF ACTORY 11.5 Re1.6, or an interface for a 
higher programming language is embedded, as in SIMAN V. Hence, the 
user can develop and implement his own control strategies, or his specific 
model components, which may be combined with the standard elements. 



4.4 Discrete-Time System Simulation Software* 215 

• Object-oriented simulation systems, based on specified basic compo­
nents, which allow an object-oriented design of the application-specific 
components, such as the OS/2 metafiles for graphics in SLAMSYSTEM. 

A typical representative of a special-purpose simulation programming language 
based on the process interaction-approach and oriented towards queueing systems 
is GPSS (general purpose simulation system). GPSS is a highly structured simula­
tion software based on standard blocks, which represent events, delays, and other 
actions that affect the transaction flow. Hence, GPSS can be used to model situa­
tions where transactions, such as entities, customers, units of traffic, etc., are flow­
ing through a system, which can be a network of queues, with the queues preced­
ing scare resources. The GPSS block diagram is converted to block statements, 
and control statements are added, which results in a GPSS model. Furthermore, 
GPSS contains specific subroutines for coordinating the transactions: 

• Coordination of transactions within one step 
• Coordination of transactions within parallel steps 
• Coordination of time-equal transactions 

Its successor, GPSSIH, provides improvements of the fundamental concepts of 
an earlier version of GPSS, such as transaction flow view, facilities, queues, and 
storages. Its latest version includes 

• Ampervariables that allow arithmetic combinations of values used in the 
simulation 

• Animation 
• Arithmetic expressions as block operands 
• Built-in files 
• Built-in mathematical functions 
• Built-in random variate generators 
• Expanded control statements 
• Faster execution 
• Floating-point clock 
• Interactive debugging 

• etc. 

The animator for GPSS/H is proof animation, which provides a 2D animation, 
based on a scale drawing that can run in post-processed mode or concurrently. 

Example 4.17 
The kernel of a single-server queue-simulation program in GPSSIH contains the 

GENERATE statement which represents the arrival event, with the interarrival times given 
by the statements RVEXPO(l,&IAT). RVEXPO stands for random variable, exponentially 
distributed, while I indicates the random number to use, and &IAT indicates that the mean 
time for the exponential distribution comes from an ampervariable, indicated by the & cha-



216 4 Simulation Sofware for Computational Modeling and Simulation 

racter. The next statement is a QUEUE, named SYSTIME. The QUEUE statement works in 
conjunction with the DEPART statement to collect data on queues - r any other subsystem. 

Another successor to GPSS/H, SLX, replaces many of the features of GPSSIH 
entirely and represents many of them with simpler, more general constructs, be­
cause SLX is a layered modeling system in which GPSSIH comprises only one of 
the five layers, which are as follows: 

• Layer 0: C based kernel that supports a number of primitives required for 
simulation 

• Layer 1: simulation and statistical primitives, consisting of data struc-
tures, subroutines, operators, and macros, written in SLX 

• Layer 2: general GPSSIH features 
• Layer 3: application-domain-specific packages 
• Layer 4: special packages such as highly interactive front ends 

SIMSCRIPT, a representative of another universal discrete simulation system 
that allows users to built models either process-oriented or event-oriented. 
SIMSCRIPT can be used to produce dynamic and static presentation graphics. 
Animation of the simulation output is realized using the SIMGRAPHICS software 
to produce interactive graphic front ends or forms for entering model input data. 

A typical representative of the class of applicati<;ln-oriented discrete simulation 
software is SIMAN V, which incorporates the ARENA environment that includes 

• Menu-driven point- and click procedures for modeling 
• Animation of the model 
• Input processor which assists in fitting distributions to data 
• Output processor, which can be used to obtain confidence intervals, his­

tograms, etc. 

Example 4.18 
Event handling should be introduced through the state event. 
Whenever the value of the water level in a tank reaches its upper limit a quarter of its 

contents is taken away by the controller. 

WHENEVER tank level> = level max - -
BEGIN BODY 

tank_level := tank_level' 0.75; 
END BODY 

Independently from the way the tank is filled this event assures the level will 
not exceed the given limit (see Example 1.8). 



4.5 Multi-Domain Simulation Software for Large-Scale Systems* 217 

4.5 Multi-Domain Simulation Software for Large-Scale 
Systems* 

Real-world systems are often described through large-scale models, which can 
contain domain-dependent continuities as well as discontinuities, discrete events, 
changes of the structure, etc. Due to the different implications of real-world sys­
tems multi-domain simulation systems have to cover an efficient handling of the 
manifolds. Therefore, a specific design emphasis is necessary for synchronization 
and propagation of events and the possibility to find consistent restarting condi­
tions after an event. Moreover, time-continuous parts or elements modeling real­
world systems have to embedded into the overall large-scale system model. In re­
cent decades, numerous simulation systems have been developed to assist model­
ers of large-scale simulation. Some are general-purpose simulation tools, others 
where developed for simulation in specific application domains, such as avionics 
(e.g. Easy5), electrical circuits (e.g. Spice), multibody systems (e.g. ADAMS), 
chemical processes (e.g. ASPEN), etc. A typical representative of a multi-domain 
simulation software usable for large-scale systems is Modelica, which is both a 
modeling language and a model-exchange specification. To accomplish this goal, 
the developers of previous object-oriented modeling languages such as Allan, 
Dymola, NMF, ObjectMath, Omola, SIDOPS and Smile worked together with ex­
perts from many engineering domains to create the specification for the Modelica 
language, based on their wide range of experiences. The current Modelica specifi­
cation can be found on the web site at www.modelica.org. In addition to defining 
the specification for the Modelica language, the Modelica Association also pub­
lishes a standard library of Modelica models, called Modelica Standard Libray. 
Modelica allows an equation-based, a component-based and a block-diagram ap­
proach. As an alternative to equation-based approaches, functions can be used in 
Modelica, which represent an algorithmic section, used when procedural seman­
tics are required. Moreover, Modelica allows one to declare arrays of scalars, i.e. 
an array of floating-point numbers, as well as arrays of components, i.e. an array 
of resistor instances or an array of record instances. Arrays of scalars are useful 
for representing mathematical entities like vectors and matrices. 

For the pendulum example in Sect. 4.3.3, based on the equations of motion, the 
model in the Modelica language specification is 

model SimplePendulum 
parameter Real L = 2; 
constant Real g = 9.81; 
Real theta; 
Real omega; 

equation 
der (theta) = omega; 
der (omega) = -(gIL)·theta; 

end SimplePendulum; 



218 4 Simulation Sofware for Computational Modeling and Simulation 

Using the vocabulary of the Modelica simulation software the keyword model 
is followed by the name of the model. Thereafter the parameters and constants 
characterizing the model are defined, as well as the variables that appear in the 
equations. The parameters are quantities that remain constant during a simulation 
run but may have different values from one simulation run to another. The vari­
ables are those quantities that are functions of time. The constants are those quan­
tities that are unlikely to change. The model will be completed by an equation 
section, which includes a built-in operator called der, which is used to represent 
the time derivative of a variable. The model equation includes first-order ordinary 
differential equation (ODEs), which describe the equations of motion of the sim­
ple pendulum. These equations look like 

(4.60) 

in the mathematical notation, where E> is the angular position, L is the length of 

the pendulum, g is the acceleration due to earths gravity, and OJ is the angular ve­
locity of the pendulum. 

Modelica allows working with models combining continuous and discrete sys­
tems due to several formalisms: 

• Ordinary differential equations (ODEs) 
• Differential algebraic equations (DAEs) 
• Bond graphs 
• Finite-state automata 
• Petri-nets 

• etc. 

The Modelica language has been designed to allow tools to generate very effi­
cient code, this is because Modelica is an object-oriented modeling-language ba­
sed simulation software. Moreover, Modelica allows, for example, hardware-in­
the-loop simulation, and supports both high-level modeling by composition of pre­
defined library units and detailed library component modeling by equations. In or­
der that Modelica is also useful for model exchange, it is important that libraries 
of the most commonly used components are available, in fact, ready to use, and 
sharable between applications. Such a library includes 

• Mathematical functions, i.e. sin, cos, In, exp, int, etc. 
• Type definitions, i.e. angle, voltage, etc. 
• Interface definitions, i.e. pin, etc. 
• Components. 

The components library includes: 



4.5 Multi-Domain Simulation Software for Large-Scale Systems* 219 

• Input/output blocks 

• Electric and electronic elements 

• Electric power systems 

• Drive trains 

• Gearboxes 

• Multi-body systems 

• Hydraulic systems 

• Thermo-fluid flow 

• Aircraft flight system dynamics 

• Bond graphs 

• Finite state machines 

• Petri-nets 

• etc. 

Example 4.19 
As an example for the components library we define a model for a resistor, created from 

interface model class TwoPin, that has two pins p and n, and add a parameter for resistance 
and Ohms law to define the behavior in Modelica. Ohms law describes the behavior of the 
resistance 

which is, in Modelica, 

v=i·R, 

model Resistor "Electrical Resistor" 
parameter Resistance R=300 "Resistance"; 
ElectricalPin p, n; 
equation 
R*pj = p.v - n.v; 
pj + nj = 0: 
End Resistor; 

(4.61) 

Example 4.19 shows how a model for the resistor can be written in Modelica. 
The "." in quantities such as p.v is a way of accessing the internal elements of a 
component. Since p is an instance of an ElectricalPin it contains the variable for 
voltage v. Therefore, the quantity p.v represents the voltage associated with pin p. 

It is of importance when developing component models to use a consistent sign 
convention for the flow quantities. The normal sign convention for Modelica 
components is defined such that positive flow are into the component. Therefore, 
inside the Resistor model, the value of p.i refers to the current that flows into the 
resistor from pin p and the value of n.i refers to the current that flows into the re­
sistor from pin n. From Example 4.19 one can see that a positive value for p.i. re­
sults when p.v is greater than n.v. That is consistent with the normal sign conven­
tion. Likewise, a positive value for n.i results when n.v is greater than p.v. 



220 4 Simulation Sofware for Computational Modeling and Simulation 

In Example 4.19, the current pj is used to represent the current in Ohms law, 
given in (4.61). The choice between using pj and nj is arbitrary. However, if nj 
have been used, the model equation has to be written as: 

R . n.i = n.v - p.v; (4.62) 

in order to satisfy the sign convention for the flow variables, i.e. a positive value 
represents a flow into the component. The value of 300 Q for the resistance of the 
resistor is the default value of Mode Ii ca. 

Modelica also supports multi-domain system models, characterized by the fact 
that their components belong to different engineering domains. As an example of 
a multi-domain system model an industrial robot is chosen. The model is com­
posed of a control system and a plant model. The plant model contains electrical 
and mechanical components. Using the model editor, a model for an industrial ro­
bot can be defined by drawing a composition diagram as shown in a 3D view in 
Fig. 4.41. 

Fig. 4.41. 3D view of an industrial robot 

Example 4.20 
The industrial robot model shown in Fig. 4.41 can be decomposed such that the me­

chanical part of the robot consists of six revolute joints, six bodies, and finally the load. A 
body component describes the mass and inertia effects of the body. The joints of the robot 
are given by the axis. An axis is a key component that describes the motor and gear box that 
drive the joint, the control system, and the reference generation. A possible Modelica libra­
ry representation, shown on an abstract level in Fig. 4.42, contains the reference accele­
ration of the axis qddRef as an input value of the connector, and a mechanical flange to 
drive a shaft on the output-side connector. The decomposition of the axis shows that the 
reference acceleration (qddRef) will be integrated twice in order to derive a reference ve­
locity (qdRef) and a reference position (qRef). The reference values are fed into a controller 
(irControl), while the controller output is the reference current of the motor (irMotor), driv-



4.5 Multi-Domain Simulation Software for Large-Scale Systems* 221 

ing the gear box (irGear). The driving part of the gear box is a mechanical flange to which 
the axis of a shaft or of a robot joint can be connected. 

------.. K2 

qddREF -. qdRef -. qRef -. K1-.1-. irControl-'irMotor -. irGear -. out 

Fig. 4.42. Composition diagram of one axis of the industrial robot, shown in Fig. 4.42 

Typical for the axis controllers (irControl) are the velocity and the position con­
troller, the output of which is the desired reference current of the motor. The cur­
rent of the motor is approximately proportional to the produced motor torque, the 
quantity to be controlled. The irMotor model of the electric motor consists of an 
analog current controller, which can be realized using operational amplifiers, and 
the DC motor with the components Ra, La, emf. The output current of the current 
controller represent the input signal of the motor. The DC motor produces a torque 
that drives a mechanical flange. 

The composition diagram of the gearbox irGear of the driving system is mod­
eled by the motor inertia, a rotational spring to model the gear elasticity, an ideal 
gear box representing the gear ration and a load inertia to model the rotational in­
ertia of all parts at the driven side of the gear. A friction component connected be­
tween the motor shaft and the shaft bearings models the Coulomb friction of the 
bearings. 

Describing how to model the details of a component, we can consider a simple 
motor drive system, as shown in Fig. 4.43. The system can be built up as a set of 
connected components: a controller, a motor, a gear box, and a load. 

Fig. 4.43. Schematic diagram of the motor drive 

Fig. 4.43 is a composite model that specifies the topology of the system to be 
modeled in terms of components and connections between the components. For 
example the statement "Gear Box (n = 100)" declares a component gearbox of 
class Gear Box and sets the default ratio, n, to 100. 

The complete Modelica model ofthe system in Fig. 4.43 is shown in Fig. 4.44. 

model MotorDrive 
PI 
Motor 
Gearbox 
Shaft 
Tachometer 

equation 

controller; 
motor; 
gearbox (n=lOO); 
Jl(J=10) 
wi; 

connect( controller. out, motor.inp); 
connect(motor.flange, gear box.a); 



222 4 Simulation Sofware for Computational Modeling and Simulation 

connect(gearbox .b, 
connect(Jl.b, 
connect(wl.w, 

end MotorDrive; 

Jl.a); 
wl.a); 
controller.inp ); 

Fig. 4.44. Modelica model ofthe motor drive system in Fig. 4.43 

The connections in Fig. 4.44 specifY the interactions between the several com­
ponents, as shown in Fig. 4.43. A connector contains all quantities needed to de­
scribe the interaction. 

The Modelica model of the motor drive, shown in Fig. 4.43, represents a typical 
feedback loop for which the continuous time transfer function can be calculated 
using the computer algebra as an efficient simulation code. The Modelica model 
of a continuous-time transfer function is as follows: 

partial block SISO 
input Real u; 
output Real y; 

end SISO; 
block TransferFunction 

extends SISO; 
parameter Real a[:]={l,l} "Denominator"; 
parameter Real b[:]={l} "Numerator"; 

protected 
constant Integer na=size (a, I); 
constant Integer nb(max=na)=size (b, I); 
constant Integer na=na-I "System order"; 
RealbO[na]=cat(l, b, zeros(na -nb» "Zero ex­
panded vector"; 
Real x[n] "State vector"; 

Equation 
IIControllable canonical fonn 
der (x[2:n])=x[1:n-l]; 
a[na]'der (x[l]+a[l :n]'x=u; 
y=(b=[l :n]-bO[ na]/a[na]'a[l :n])'x+bO[na]/a[ na]'u 

end TransferFunction; 

Beside Modelica other multi-domain simulation software systems had been re­
cently developed, a typical representative of which is FEMLAB. FEMLAB is an 
interactive environment for modeling and simulation of physical phenomena, that 
can be described through partial differential equations (PDE). This finite element 
software combines ready-to-use applications with free-equation formulations. The 
formulations in the ready-to-use applications are open, which means that it is easy 
to change the existing equations and to add arbitrary couplings with other physical 
phenomena. Traditional modeling software include the most common multiphys­
ics couplings as hard-wired elements. However, as computers have become more 
powerful and easy-to-use, modeling has penetrated into all disciplines of science 
and engineering, which has made it increasingly difficult for software developers 



4.5 Multi-Domain Simulation Software for Large-Scale Systems* 223 

to hard-wire all the possible couplings. The solution to this is given by equation­
based simulation software, where these couplings are created dynamically through 
equation interpreters that transfer a given formulation to a numerical code. How­
ever, it is not necessary to have deep knowledge in mathematics or numerical ana­
lysis when using FEMLAB. Model building in FEMLAB will be simple by defin­
ing the relevant physical quantities rather than defining the equations directly. 
FEMLAB then intemally compiles a set of PDEs representing the problem, but 
FEMLAB also offers an equation-based modeling application mode, which allows 
the user to define his own systems of partial differential equations. Beside provid­
ing these multiple modeling approaches, FEMLAB offers broad flexibility, either 
through a flexible self-contained graphical user interface or a user interface that 
integrates seamlessly with MATLAB, the package that provides the computational 
engine behind FEMLAB. 

The underlying mathematical structure with which FEMLAB operates is a sys­
tem of partial differential equations, which can be represented in the 

• Coefficient form, suitable for linear or nearly linear problems 
• General form, intended for nonlinear problems 
• Weak form, usable as high-level finite element modeling software 

Let u be a single dependent variable, meaning an unknown function on the do­
main that is to be determined from the partial differential equation (PDE) problem. 
A PDE problem in coefficient form yields: 

AU 
d -+V·(-cVu-au+r)+P·Vu+au=j inn 

a at 
n· (cVu + au - r) + qu = g - hT J1 on on 

hu =r on on. 

(4.63) 

The domain of interest is usually called Q, consisting of bounded subdomains 
and boundaries. The symbol Q represents the union of all subdomains, and aQ de­
notes the domain boundary. The outward unit normal vector on aQ is denoted by 
n. The first equation is the PDE that has to be satisfied in.Q. The second and third 
equations are the boundary conditions that are satisfied due to the constraints in Q. 
The second equation is referred to as a generalized Neumann boundary condition, 
and the third is referred to as the Dirichlet constraint. The symbol V is the vector 
differential operator, defined as 

V=(~, ... ,~J, 
aX1 aXn 

(4.64) 



224 4 Simulation Sofware for Computational Modeling and Simulation 

where the space conditions are denoted x], ... , Xu. where n represents the number 
of space dimensions. 

When the coefficients depend only on the space coordinates, the POE is called 
linear. If the coefficients depend on u, or the components of l7u, the POE is called 
nonlinear. When the coefficients are nonlinear the general or the weak solution 
form will be used. 

Let u be a single dependent variable, meaning an unknown function on the do­
main that is to be determined from the partial differential equation (POE) problem. 
Then the stationary problem in the general form reads 

v·r=F in n (4.65) 

( aR)T 
- n . r = G + au f.l on an 

O=R on an. 

The first equation is the POE. The second and third equations are the Neumann 
and Oirichlet boundary conditions, respectively. The terms r, F, G, and R are usu­
ally called coefficients, which can be functions of the space coordinates, the solu­
tion u, or the components of l7u. It should be noted that the coefficients F, G, and 
R are scalar, while r is a vector called the flux vector. The T in the Neumann 
boundary condition denotes the transpose, and f.l is the Lagrange multiplier. 

The weak form comes from a certain equation involving integrals that can be 
derived from a POE. The solution to a POE is simply referred to as a solution. In 
FEMLAB, a solution computed using one of the three types of POE, is always a 
weak solution. The coefficient or general form is used to enter the POE coeffi­
cients. FEMLAB then derives the corresponding weak equation, the weak form of 
the POE, which is then discretized by the finite element method, and solved. The 
weak solution allows direct access to the terms of the weak equation, which results 
in a maximum freedom defining finite element problems. 

A POE problem on coefficients form can be transformed into the correspond­
ing weak form as follows. The POE problem is known as 

v . (-cVu -au + y)+ fJ· Vu +au = f in n (4.66) 

n·(cVu+au-y)+qu=g-hTf.l on an 

hu =r on an. 

Let v be an arbitrary function on fl, called test function. Multiplying the POE 
by this function, rearranging terms, and integrating, we obtain 



4.5 Multi-Domain Simulation Software for Large-Scale Systems* 225 

fvv . (-cVu -au + y)dA = fV(j - fJ· Vu -au)dA, (4.67) 
n n 

where dA is the area element, in 2D and volume element in 3D. Integration by 
parts yields 

fv(-cVu -au + y)·nds - fVv.( -cVu -au + y)dA = 
an n 

fV(j - fJ· Vu -au)dA 
n 

where ds is the length element. With the Neumann boundary condition 

n . (c V u + au - y) + qqu = g - hT Ii , 

we obtain the following equation: 

0= fVv.(-cVu -au+ y)+v(j - fJ· Vu -au)dA + 
n 

f v . ( - qu + g - hT Ii )ds 
an 

(4.68) 

(4.69) 

(4.70) 

Together with the Dirichlet constraint, this is the weak form of the coefficients 
PDE problem. The mathematician Dirichlet born in 1805 in Duren, Germany. 

Furthermore, it is possible to set up models in FEMLAB as stationary or time 
dependent, linear or nonlinear, scalar or multicomponent, as well as performing 
eigenfrequency or eigenmode analysis. 

Solving the PDEs that describe the model, FEMLAB applies the finite element 
method (FEM), which means running that method in conjunction with adaptive 
meshing and error control as well as with a variety of numerical solvers. A detai­
led description can be found in the Reference Guide on the web site at www.fem­
lab.com. 

As mentioned PDEs are the fundamental basis to model scientific phenomena, 
which is why FEMLAB can model a large number of physical phenomena in 
many disciplines including 

• Acoustics 

• Bioscience 

• Chemical reactions 

• Diffusion 

• Electromagnetics 

• Fluid dynamics 

• Fuell cells 



226 4 Simulation Sofware for Computational Modeling and Simulation 

• General physics 

• Geophysics 

• Heat transfer 

• Micro-electromechanical systems (MEMS) 

• Microwave engineering 

• Optics 

• Photonics 

• Porous media flow 

• Quantum mechanics 

• Radio-frequency components 

• Semiconductor devices 

• Structural mechanics 

• Transport phenomena 

• Wave propagation 

• etc. 

The modeling software of FEMLAB is easy to learn, as is shown in the Getting 
Started Guide (see Sect. 4.9) which contains several ready-to-use applications for 
the application domains chemical engineering, electromagnetics and structural 
mechanics. 

Example 4.21 
A 3D current and heat balance problem will be investigated. The current heats the alu­

minum and the heat is dissipated to the adjacent air and to the silicon substrate, which re­
sults in a temperature gradient along the thickness of the aluminum plate, which seems to 
impede the model builder from reducing the problem down to two space dimensions. In this 
case study example, one can make use of the symmetry and asymmetry in the problem to 
reduce the geometry to one fourth of the original description. 

The boundary conditions and the expression for the conductivity are identical in the 2D 
and 3D problems for current conduction, which implies electrical insulation everywhere 
except for the edges on the right and left. 

The heat balance can be defined as follows: The temperature is fixed on the right and 
left edges of the silicon device. On the base of the silicon substrate and at the vertical 
boundaries on the substrate, one can assume thermal insulation. At all other surfaces one 
can define convective heat dissipation through film theory, using tabulated values for the 
heat transfer coefficient in the fictitious film, where all temperature differences are con­
firmed. At the boundary between the aluminum film and the substrate, FEMLAB automati­
cally gives the continuity in temperature and heat flux. 

The next step is to define the heat balance in the silicon device. In the silicon substrate, 
only conduction and accumulation of the heat occur. In the aluminum film, heat production 
is introduced also, by the conductor current. The production of heat is proportional to the 
square of the current density. 

The thickness and length of the device geometry, shown in Fig. 4.45, differ by several 
orders of magnitude. This implies that a large number of elements would be required if one 
treated the problem without scaling, since the smallest length would set the edge size of the 
elements. Scaling can be used in different ways, such as scale the thickness of the deposit in 
order to get the same order of magnitude as the width of the strip. This can be achieved by 



4.5 Multi-Domain Simulation Software for Large-Scale Systems* 227 

introducing a new space coordinate along the thickness of the substrate and the deposit ac­
cording to: 

z 
z =-. 

L 
(4.71) 

Setting L to 0.05 gives a scaled deposit thickness of 20 J.lm. The scaling is amounts for 
all properties and sources treated in the model. 

Tair = 293 K 
heat and current 
balances 

heat balance 
current balance not defined 

SOOmA 

Fig. 4.45. Heat and current balance in a silicon device 

Both the current and the heat balance are based on the change of flux per unit length. 
The change in current density per unit length has to be divided by the scaling length L to 
account for the scaling in geometry. 

I1j I1j 

I1z L& 
(4.72) 

In addition, the current density is proportional to the potential change per unit length, 
which implies that the flux balance has to be scaled by division by L2. 

(4.73) 

Introducing this in FEMLAB by using a scaled conductivity in the z-direction yields 

(4.74) 

The analogous calculation results in a scaled thermal conductivity: 



228 4 Simulation Sofware for Computational Modeling and Simulation 

(4.75) 

It should be noted that the electrical and thermal conductivities do not have to be scaled 
in the x- and y-directions. 

The heat source is proportional to the square of the current density and has therefore to 
be divided by L 2 in the contribution in the z-direction, 

(4.76) 

In addition, all boundary conditions involving fluxes in the z-direction should be scaled 
by L. The scaled conductivity is divided by the square of L, which implies that the fluxes in 
the z-direction, at the boundaries, have to be divided by L to compensate, yielding 

(-lT~V) 1. 
L2(tlZ)2 = L}z· 

(4.77) 

Based on the equations derived, the 3D geometry can be created in FEMLAB by extru­
sion a 2D projection of the film geometry, shown in Fig. 4.45. 

• Select Export to Workspace, Geometry as Objects .. .in the File menu 
• Press OK to export COl - which is now available in the MATLAB command 

window-

To redefine the problem to 3D proceed as follows: 

• Push the New button 
• Press the Dimension, 3D radio button 
• Select the Physics ModeslHeat transfer and press OK 
• Open the Multiphysics/Add_Edit_modes ... menu and highlight Conductive 

Media DC, press» button 
• Press OK 

In the Draw Mode one can create the work plane: 

• Select Work plane I in the Draw menu to work in the x y plane 
• Select Insert from workspace, Geometry object(s) ... 
• Type CO 1 to export the cross-sectional 2D geometry 
• Remote the left and the lower half of the geometry by performing Boolean opera­

tions 
• Press the Zoom extents button 

The cross-sectional geometry is now one fourth ofthe original. Extruding makes it 3D. 



4.5 Multi-Domain Simulation Software for Large-Scale Systems* 229 

• Select Extrude in the Draw menu 
• Press OK 
• Type 20e-6 in the Distance edit field, press OK 

. .•. 

Go back to work plane I and create the rectangular cross section of the substrate. 

• Select Work plane I in the Draw menu 
• Press Rectangle tool button 
• Draw a rectangle by snapping to the upper left vertices of the existing geometry 

and drag it until the rectangle snaps to the lower right vertex of the deposit cross 
section 

• Select Extrude in the Draw menu 
• Type -40e-6 in the Distance edit field to create the 3D substrate 
• Press OK 

Options, such as input data of the model, are defined in the Options menu. The activa­
tion and deactivation of the current balance in the substrate can be defined in the Subdo­
main menu, as well as the expressions for the conductivity in the x, y, and z direction in the 
corresponding component position. Toggle to the heat transfer application mode to define 
the subdomain settings is as follows: 

• Select Heat transfer (ht) in the Multiphysics menu 
• Select subdomain 1 and define the Subdomain settings according to ... 
• Set the initial condition to TO 
• Press Apply 
• Select subdomain 2 and define the Subdomain settings according to ... 
• Set the initial condition to TO 
• Press OK 

With the Boundary mode one can define the boundaries of the 3D current and heat bal­
ance problem as follows: 



230 4 Simulation Sofware for Computational Modeling and Simulation 

• Select Conductive media DC (dc) in the Multiphysisc menu 
• Select Boundary settings in the Boundary menu 
• Press Ctrl-A to select all boundaries. Check copy from 5. 
• Set Insulation/symmetry for all boundaries 
• Select boundary 17 and press the Inward current density radio button 
• Type in/side/thick in the Inward current density edit field 

Boundary 5 

i"~ 
4 • 

Boundary 17 

• .. 
.0 

The inwards current density does not have to be scaled since it does not contain any 
component in the z-direction. 

• Select boundary 5 and press the Asymmetry/ground radio button 

Toggle to the heat transfer application. 

• Select Heat transfer (ht) in the Multiphysics menu 
• Select Boundary settings in the Boundary menu 
• Press Ctrl-A to select all boundaries 
• Set Insulation/symmetry for all boundaries 
• Select boundaries 6,10,11,14, and 15 

'o 

In the Solve mode one can compute the solution for the heat transfer. Once a good 
enough solution have been obtained, one can proceed to solve the time-dependent graph for 
the temperature field as follows: 



4.6 Simulation Software for Mixed-Mode Circuits* 231 

• Select Parameters in the Solve menu 
• Click on the Multiphysics tab and select both application models in the Solve for 

variables list 
• Click on the General tab and press the Time depends radio button 
• Click the Timestepping tab and type 0:0.001 :0.03 in the Output time edit field 
• Select the fldaspk solver in the time stepping algorithm pull-down menu 
• Press OK 
• Press the Restart button 

In the Post mode the plot parameters are defined. The T = j(t) plot is shown in Fig. 4.46. 

~ ...... (T) 
010 

--
0,., 

000 

~ --... 
..... 

-
zoo ~ 

• 0: •• •• •• , It , 0 II , . 
l .... 

Fig. 4.46. Temperature plot ofthe silicon device, shown in Fig. 4.4.6 

The plot in Fig. 4.46 compared with the 2D result shows that the time scale of the proc­
ess is similar in the two- and three-dimensional cases but there is a different maximal tem­
perature. This is due to the high heat capacity and thickness of the substrates, which is able 
to cool the deposit to a larger extent than air during the heating process. 

4.6 Simulation Software for Mixed-Mode Circuits* 

Traditionally, electronic circuit design was verified by building prototypes, sub­
jecting the circuit to various stimuli, such as input signals, temperature changes, 
power-supply variations, etc., and then measuring its response using appropriate 
laboratory equipment. Prototype building is somewhat time consuming, but it pro­
duces practical experience from which to judge the manufacturability of the de-



232 4 Simulation Sofware for Computational Modeling and Simulation 

sign. Computer programs that simulate the performance of an electronic circuit 
provide a simple, cost-effective means of confirming the intended operation prior 
to circuit construction, and of verifying new ideas that could lead to improved cir­
cuit performance. Berkeleys Spice and the Georgia Techs Xspice simulators are 
the classical ones in this domain. The B2SpiceAIDV 4 circuit simulator helps to 
design analog, digital, and mixed-mode circuits. Rather than working on circuit 
design with physical components, which require expensive equipment and a lab, 
the B2SpiceAIDV 4 allows one to perform realistic simulations on circuits without 
clipping wires or splashing solder. Editing and simulating circuits is a quick and 
easy procedure. The current B2SpiceAIDV4 information for the latest patches and 
more can be found on the web site at www.beigebag.com. 

Example 4.22 
The schematic B2SpiceA/DV4 editor allows one to enter a circuit design. When buil­

ding a new circuit all parts will be added into the circuit by choosing them from menus and 
drawing wires to connect the devices, and setting the properties for the devices to customize 
their behavior. Building a simple resistor-transistor-logic (RTL) inverter circuit is as fol­
lows: 

1. Place the devices 
2. Customize the transistor 
3. Set the device properties 
4. Simulate the circuits AC and DC transfer curve 
5. Simulate the circuits transient behavior 

Step one: devices are chosen from the Devices menu or from the Part Chooser window, 
to place the device one has to click the mouse button. Step two: one has to choose the tran­
sistor type from the Devices menu and place the device in the circuit diagram. Step three: 
sets the device names and properties, i.e. the voltage source is named to VC and the Volt­
age to 5V, the collector resistor is named R and its resistance set to 5k etc. If all properties 
are set the circuit looks like Fig. 4.47 

VC 
5 

Fig. 4.47. B2SpiceA/DV4 model of a simple RTL inverter circuit 

The analysis of AC and DC responses to a sine-wave input signal is to verify 
that the developed circuit behaves as an inverter. Hence step 4 deals with the si­
mulation which is set up from the Simulation menu and the DC Transfer Curve 



4.6 Simulation Software for Mixed-Mode Circuits* 233 

simulation can be set up by clicking in the checkbox and on the button for Single 
or Dual parameter DC sweep. After entering the parameters 

• Name 1 is VS (name of source to step) 
• Start 1 is 0 (starting voltage) 
• Stop 1 value is 5 
• Step 1 value is I E-I 

the circuit can be run by clicking Run Simulation. 
The fifth step performs a transient analysis of the circuit. The output response 

can be observed while the voltage source VS is modified to sinusoidal transient 
properties. Add a voltmeter in parallel with the voltage source for observation, 
named IVin, and an ampere meter in series to VC named VIVC. The modified 
circuit looks like Fig. 4.48, showing some values of the time-dependent quantities. 

VC 
5 

Fig. 4.48. B2SpiceAlDV4 model of the RTL inverter circuit in Fig. 4.47 

The simulation run can now be started from the Simulation menu. The simula­
tion results ofthe RTL inverter, shown in Fig. 4.48, are shown in Fig. 4.49. 

, 
-4 ••• • · •••• ••••• • t •••. 

i 

·, . ,.tl1 -- 1'lovn 
r~tr ", . ,. t 4:-'. 

Fig. 4.49. B2SpiceA/DV4 simulation results of the RTL inverter circuit in Fig. 4.50 



234 4 Simulation Sofware for Computational Modeling and Simulation 

Example 4.2.3 
For a digital circuit design we choose the components from the Digital Devices menu or 

from the Part Choosers digital subfolder. Building a three-input and function can be real­
ized based on the same procedure as discussed for the analog circuit. First, one has to 
choose Gates from the Categories menu or from the Part Chooser window. Then scroll­
ing to the 74LS lOD _ D and with a double click on that item the three-input nand gate fol­
lows the cursor to be placed. Next we choose and place an inverter from the Digital De­
vices menu and place it to the output of the nand gate. Now we can use the drawing tool 
and/or the selection cursor to draw the wires necessary. The circuit finally should look like 
that shown in Fig. 4.50. 

In1 

In2 

In3 

Fig. 4.50. B2SpiceA/DV4 model of the three-input and function 

The simulation run can now be started from the Simulation menu. Following 
the simulation run on the screen it can be seen that the simulation time will in­
crease to 20 ns, and the output value will change to 1. It should be noted, that all 
wires as well as the inputs and the output can be observed by using the probe tool. 

4.7 Combined Simulation Software 

Traditionally, simulation models that built are mostly either language or platform 
dependent. They are developed for continuous-time or discrete-time systems simu­
lation approaches, normally using a single simulation software for the continuous­
time world and a specific simulation software for the discrete-time world. In some 
situations real-world systems include diverse components that then requires dif­
ferent formalisms for modeling and simulation. This occur when the system com­
ponents are continuous with concentrated parameters that show slow and fast 
parts, or for a system that contains a queuing part and a continuous part, which 
should be introduced as a combined system. Using an object-oriented approach 
one can simulate combined systems creating objects that simulate system submod­
els - queuing and continuous - running them concurrently. Hence, submodels of 
very different kinds can run and interact in the same simulation environment. 

Typical representatives of combined simulation systems are PASION, and the 
recently launched Any~ogic. PASION is an object-oriented, Pascal-related simu-



4.7 Combined Simulation Software 235 

lation software that handles models specified in terms of processes and events. 
The PASION process is an object-type declaration that defines the object proper­
ties, such as attributes and events. At run time, objects are created according to 
the declared processes and activated. Then, the objects run by executing their 
events and interacting with each other, but the event queue and the clock mecha­
nism are hidden from the user. The PASION models can be expressed in terms of 
the DEVS formalism (DEVS: discrete event simulation). Though PASION proc­
ess declaration does not define formally model inputs and outputs, the relation be­
tween PASION processes and DEVS formalism are clear. Inputs and outputs and 
some model parameters are PASION attributes that can be PASCAL simple or 
structured variables of any type. This gives the model good versatility. This is why 
the modeler only has to know which of the process attributes are inputs, which are 
outputs, and which of them are model parameters. All other model variables are 
hidden. The internal and external transition functions are coded as the process 
events. Using the object-oriented terminology, process attributes are model data, 
and events are model methods. The difference between an event and a procedure 
is that events can be scheduled, and their execution occurs only through messages 
issued to the schedule, hidden for the user. Special scheduling algorithms are used 
to add the events on the event queue. There is no formal difference between 
PASION discrete-event and continuous process methods. Simply, a continuous 
object, described by a set of differential equations, has at least one event that inte­
grates the system equations over a given time interval and schedules itself to be 
executed repeatedly. The model type is defined as a PASION process declaration. 
PASION links are available on the web at www.raczynski.com. 

Compared with PASION, AnyLogic is a new-generation simulation software 
for combined simulation recently introduced. This simulation software is develo­
ped on the basis of the latest advances in complex system modeling theory and 
working standards in system design. It allows system exploration at any desired 
depth and any level of abstraction. The fundamental basis to model real-world sys­
tems with AnyLogic includes 

• Arbitrary complex behavior logic, timing, topologies such as ring, chain 
mesh, etc., and routing 

• Block based flowchart modeling 
• Differential and algebraic equations 
• Direct links to data bases and GIS 
• HLA support 
• MATLAB-SIMULINK-type library 
• Modeling in Java, to run models on any Java-enabled platform, or even 

as applets on web browsers 
• Messages passing, ports, custom routing 
• Statechart modeling, to combine discrete and continuous behaviors 
• UML for Real Time (UML-RT) 



236 4 Simulation Sofware for Computational Modeling and Simulation 

UML-RT in AnyLogic is specifically adapted for the development of complex, 
event-driven, real-time, real-world systems. Its modeling constructs have rigorous 
formal semantics that provide for model execution. UML-RT modeling means 

• Explicit structural decomposition 
• Clear separation of structure and behavior 
• High degree of reusability 

UML-RL is a complete working modeling standard. When developing a model 
in AnyLogic one develops classes of active objects representing the real-world ob­
jects. Active objects can encapsulate other active objects to any desired level. 
Running the AnyLogic model the object instances from their Active Object Class. 
There is one designated root class, which describes the model structure. Active ob­
jects interact with their surroundings solely through interface objects, which are 
ports and variables. Ports are used for discrete communication (message passing) 
optionally using a queue, while variables are used for continuous communication. 

For using UML-RT AnyLogic provides a graphical user interface similar to 
classical visual development tools for programming languages. The included li­
braries give that development environment the extention to do discrete, continu­
ous, and hybrid simulation modeling. If licensed by the user separately, NAG li­
braries or other numerical methods, not yet implemented in Java, can be added. 

The notation of the interface makes active object classes highly reusable. 
Moreover, the modeler can define the object behavior as Java method and run it 
within the active object as a separate thread, the execution of which can be syn­
chronized with other activities through 

• Delay (timeout) method 
• WaitEvent (static event) method 
• WaitFORMessage( .. ) method ofthe PortQueuing class 

The innovative core technology together with a remarkable set of features ma­
kes AnyLogic an advanced technology solution for a broad range of real-world 
application domains, such as 

• Dynamic systems and control algorithms 
• Education and training 
• Enterprise modeling 
• Mechanics and robotics 
• Military 
• Optimization 
• Supply chain systems and manufacturing 
• System dynamics and business simulation 
• Traffic and pedestrian movement 
• Telecom, networks and computer systems 

• etc. 



4.7 Combined Simulation Software 237 

This core technology is continuously extended by different libraries, like 
MATLAB-SIMULINK, to provide the look and feel of the original SIMULINK 
simulation environment, or an Enterprise Library, which gives similar possibilities 
to build traditional discrete-event simulation models. 

Providing Java classes, any AnyLogic Java class can be integrated in a Java 
program. On the other hand, external routines can be integrated, either by includ­
ing external classes, or using the JNI interface to non-Java libraries. 

As already mentioned, AnyLogic includes optionally OptQuest, the most com­
mon and widely used optimization software. 

As long as there are no platform-dependend libraries needed for a specific 
simulation model. The precompiled Java-Applet can be put on a Webserver and 
used over the internet without any restrictions. This gives a main advantage in dis­
tributed development or project management. 

From the vast number of examples, provided with AnyLogic, three selected 
models will be explicitly described. 

Example 4.24 
A fixed number of ants are passing over a 20 space. At the space boundaries, they re­

bound like billard balls. The ants must not collide, therefore a visionDistance, a visi­
onAngle, a turnAngle, and a stop Time has been defined model-wide. An ant is an active 
object class, with four external parameters (x, y) for its current position in the space and its 
velocity (vx, ry). If two ants are about to collide (they are able to see each ither within the 
parameters visionDistance and visionAngle) they stop for the specified stopTime. After­
wards they change direction according to the turnAngle. 

Ants 
Ttv. K • modo! of • coloction of objKt. 
(>nU) mo.lnoj ... 20 'P". (. ,"cton9t). 
They • .bound ~om bordo.-. (ljI<. !>lord 
bois) orodlry to ,.ood looxlwv .. <h -. 
'" 

this AnylO9it \!~"':'"' ~ (c) 2002 Xl Toe 
"INiW.xjt*'<. .com 

Parameters 

VISIorDIstarce: 20.0 

=~101~· === 
ViSionAnQIe: 0.7 

r:Q!===== 

tU'I'IArTJia: 0.3 

10Ii::::===== 
st~1lne: 3.0 

~==========~ 

•• 
• • 

_ r:J x 



238 4 Simulation Sofware for Computational Modeling and Simulation 

The schreenshot shows the model in an applet-window. It is remarkable that the parame­
ters can be changed during the simulation run. 

This example combines continuous processes like the distance check to each other per­
formed by every ant itself with discrete state events (move-stop). 

Example 4.25 
Completely different from Example 4.24, Example 4.25 deals with very large simulation 

models such as they are used for System Dynamics - Urban Dynamics 
Being responsible for the development of a city, different actions can be taken and their 

effects on the whole development are shown. The time steps are set to one generation (30 
years), but that value can be set individually by the user. 

Compared to other System Dynamics specialized tools, this example shows the modula­
rity, the model can be built on. The necessary equations are programmed in the Active Ob­
ject Classes, where they are needed. The interactions between those classes are modeled by 
continuous external input and output variables. For this reason, the fairly large model is 
well structured and clearly arranged. There is no restriction in using differential equations 
or any other equations at the same time even within the same active object class. 

--- , ..... .­.. ..-....... . .-... .. -..... --... .""'­.""""'-.. -
-.-

-.. ---- ....... . -.-..... .­.-­.­.. ~ .-. .... . ... -.-
.~ ................ . -.--,,-, '.0-

tr~ 

-"-, 1 

0 

" . 

--

.J~ 

..... 1""1 .. 1_1 
CIoo_""*,",,,"", ...... , -". - .... 
d - • - 11I'~1N1). ~ 

0..- I r~"''''_1 
r Lddi-. .. 
~S>oo_ 

"Sta.....,~ 



~'''~.' .. 

I 11 
Wr.,td~~ .IIi 

!n..-.Er::­
LiI>ot~ ...... V--~ 

Bu\iles\ development 

-~~ 
I 11 

-~ C:::(pEj 
T"~: ~§J 

STEP 

..JIll: ,I);J ",r'JIl~ 
ff90't:lK~ 

WI'IIt •• r,),l...w 'NW 
boJ>t" ,'""~ • .,~'" "'~,*<b 
''''''''AnJml>UlO<ldo.ow-'''' 
or.cqn. \.'14 thtw 10 KC~ ,U 

t*,ro:\lC¥'l"'¥t .. ~t,..,)J 
nll1('fWr!'"!ft¥I+WS~.-..:f 

Example 4.26: Multiple-call centers 

4.7 Combined Simulation Software 239 

iht~tll:"-t"""'''IJIClHf.CU' 
"""' ..... tt.-.lo1."t<+m 
_ • ..-.lo<!Im,",,",""'~flI 

A network of similar equipped and staffed call centers will be optimized. Because of 
economical reasons, the individual call centers contain different numbers of staff, taking 
calls. Therefore, call centers are linked to others for dynamically routing of calls. This will 
avoid balked calls and therefore dissatisfied customers. 

Starting with global parameters, like mean call duration and various cost factors, the call 
centers can be parameterized individually by specifying the average calls per hour, the 
queue capacity, and the number of operators. 

Finally, the capacities of the links between call centers can be changed dynamically, to 
optimize the call-center capacities and additionally the network in between. 



240 4 Simulation Sofware for Computational Modeling and Simulation 

Multiple 
Call Centers c.... .. - -,,. ._- ~ 
....... _ ......... _1hI 
1 .... l~ ... rot.-.I"' ... _Jl .... ........... _--- .... ..... ....... ........... , ..... . ..... _ ................ .. ............................. 
-....... ... d .. ...... 
0..- ......... ... 
'!'hI ............... ,., ..... ........ 
"'CIII_._~ ... I..-w 
... ....,dtlfIIG\O~ ................... .IJI'f.-­__ . __ -tI\o_,.._ 
H ........ __ ......... RIII 

..., ....... .. 
' .. 

... - ". .. ., rO"-
\jI$ .......... , 

.1 . 
Lo 

I • 

u 

''-IAgOnd------j 
.... _ ... 4_ .. 

I 
~ 

, ..... --

...... ... - ,....... 

Various other examples are also of interest and are explained in detail wihin the fully 
functional time-limited evaluation version of AnyLogic. 

4.8 Checklist for the Selection of Simulation Software 

The following checklist summarizes the several topics discussed in the previous 
chapters to give an overview of the important features to be checked when selec­
ting a simulation system. 

o Model building 
o discrete simulation 
o simulation language 
Dgeneralpurpose 
D process oriented 

o Application Domain 

o continuous simulation 
o simulation software 
D application specific 
D activity oriented 

D business dynamics 0 biology/medicine 
D control systems 0 multiphysics 
o structural mechanics 0 robotics 

D combined simulation 
D programming language 
D object oriented 
D event oriented 

D engineering 
D chemistry 
D telecom 



4.8 Checklist for the Selection of Simulation Software 241 

o networking 
n computer systems 
o workflow 

D Interface 

o traffic 
o cost modeling 
o material flow 

o programming languageD database/SQL 
o CAD/CAM/CIM D calculation 
D ..... 

D Animation 
D online 020/30 
o playback o zoom/scroll 
D snapshots o windows 

D USER Interface 
o menus o Help 
o Windows o editor 
o communication o user guidance 

o Price 
o list price o discount 
D update costs o training 
D servicelhotline o hardware costs 
o libraries o personnel costs 

D Results, presentation 
D GUI 0 user defined 
o interval analysis 

o ServicelReferences 
o documentation 
o hotline 
n updates 
o references 

D User 

o confidence analysis 

D training 
o maintenance 
o user groups 
o adaptation/extension 

o simulation language 0 object-oriented 

o training period o decision table 

o manufacturing 
o supply chain 
D ..... 

o ASCII 
o optimization 

DVRlAR 
o pixel 
D ..... 

DGUI 
o keyboard 
D ..... . 

o licence agreements 
D documentation 
o expansion costs 
D ........ . 

D statistical module 
D ..... . 

o practical examples 
o test installation 
o installed base 
D ..... 

D higher programming lan­
guage 

D ..... . 



242 4 Simulation Sofware for Computational Modeling and Simulation 

4.9 References and Further Reading 

Astrom K, Albertos P, Blanke M, Isidori A, Schaufelberger W, Sanz R (Eds.), 
(2001), Control of Complex Systems, Springer, London, Berlin, Heidelberg 
Banks J, Carson JS, Nelson BL, Nicol DM, (2001), Discrete Event System Simu­
lation, Prentice Hall, New Jersey 
Breitenecker F, Ecker H, Bausch-Gall I, (1993), Simulation with ACSL (in Ger­
man), Vieweg Publ., Wiesbaden 
Cellier FE, (1993), Integrated Continuous System Modeling and Simulation Envi­
ronments, pp. 1-29, In CAD for Control Systems, Linkes D, (Ed.), Marcel Dekker 
Publ. New York 
Engelbert J, Nguyen T, Thurston C, (2002), B2 Spice AID Version 4, Beige Bag 
Software Inc. 
Hendiksen J, (1993), SLX, the Successor to GPSS/H, Proc. of the SCS Winter 
Simulation Conference 
Jungblut J, Sievers M, Vogelpohl A, Bracio BR, MOller DPF, (1997), Dynamic Si­
mulation of Wastewater Treatment: The Process of Nitrification, Simulation Prac­
tice and Theory Vol. 5, pp. 689-700 
Kheir NA, (1996), Systems Modeling and Computer Simulation, Marcel Dekker, 
Inc., New York, Basel, Hong Kong 
Leonard NE, Levine WS, (1992), Using MATLAB to Analyze and Design Control 
Systems, Benjamin & Cummings Inc., Redwood 
Moller DPF, Popovic' D, Thiele G (1983), Modeling, Simulation and Parameter­
Estimation of the Human Cardiovascular System, Vieweg Publ., Braunschweig, 
Wiesbaden 
Moller DPF (1992), Modeling, Simulation and Identification of Dynamic Systems 
(in German), Springer, Berlin, Heidelberg, New York 
Moller DPF (1997), Combined Simulation, Proc. UK Simulation Conference 
Raczynski S, (1999), Combined Simulation: PASION Approach, Proceed. of the 
SCS Summer Simulation Conference, pp. 48-52 
Russel EC, (1983), SIMSCRIPT 11.5 and SIMGRAPHIS, Proc. of the SCS Winter 
Simulation Conference 
Sandige RS, (2002), Digital Design Essentials, Prentice Hall, New Jersey 
Schriber T, (1993), Perspectives on Simulation using GPSS, Proc. of the SCS 
Summer Simulation Conference 
Selfridge RG, (1955), Coding a General Purpose Digital Computer to Operate as a 
Differential Analyzer, Proc. IRE Western Joint Computer Conference 
Tiller MM, (2001), Introduction to Physical Modeling with Modelica, Kluwer 
Academic Publishers, Boston, Series Engineering and Computer Science Vol. 615 
van Wyk van Brievingh RP, Moller DPF, (Eds.), (1993), Biomedical Modeling 
and Simulation on a PC, Springer, New York 
Waterman DA, (1986), A Guide to Expert Systems, Addison-Wesley Publ. Com­
pany, Reading 
Ziegler BP, Praehofer H, Kim TG (2000), Theory of Modeling and Simulation, 
Academic Press, San qiego 



4.10 Exercises 243 

Technical Manuals 
Advanced Continuous Simulation Language, Beginners Guide, Mitchell and 
Gauthier Associates, 1997, U.S.A. 
Getting Started using Simulink, The Mathworks Inc. 2002 
FEMLAB 2.3 Getting Started Guide, Comsol AB, Stockholm, 2002 

Links 

http://www.aegis.com 
http://www.beigebag.com 
http://www.femlab.com 
http://www.mathworks.com 
http://www.modelica.org 
http://www.modelkinetix.com 
http://prozessoptimierung.arcs.ac.at 
http://www.raczynski.com. 
http://www.xjtek.com 

4.10 Exercises 

4.1 What is meant by the term simulation? 
4.2 What is meant by the term physical similarity? 
4.3 What is meant by the term isomorphism? 
4.4 What is meant by the term rule-base system? 
4.5 What is meant by the term semantic net? 
4.6 What is meant by the term expert system? 
4.7 What are the components of an expert system? 
4.8 What is meant by the term block oriented simulation system? 
4.9 Give an example of a block oriented simulation system. 
4.10 What is meant by the term equation-oriented simulation system? 
4.11 Give an example of an equation-oriented simulation system. 
4.12 What is meant by the term transaction-oriented simulation system? 
4.13 Give an example of a transaction-oriented simulation system. 
4.14 What is meant by the term event-oriented simulation system? 
4.15 Give an example of an event-oriented simulation system. 
4.16 What is meant by the term activity-oriented simulation system? 
4.17 Give an example of an activity-oriented simulation system. 
4.18 What is meant by the term process-oriented simulation system? 
4.19 Give an example of a process-oriented simulation system. 
4.20 What is meant by the term mixed-mode simulation system? 
4.21 Give an example of a mixed-mode simulation system. 



244 4 Simulation Sofware for Computational Modeling and Simulation 

4.11 Case Study Examples 

The case study examples are embedded in this book to learn to build more ad­
vanced models and to get a step-by-step introduction into the selected simulators 
FEMLAB and ModelMaker. 

4.11.1 FEMLAB 

It will be shown how to create a geometry using FEMLABs CAD tool, how to set 
up model equations, and finally how to post-process the solution I 

After starting a tutorial you can pause, fast forward or reverse the movie by us­
ing the buttons in the bottom of the tutorial window. 

To be able to view the movies you need to have the Macromedias Flash 5 plug­
in installed and ensure that you have at least Internet Explorer 4.x or Netscape 
4.06+. It is also recommended to use at least 56 Kbitls transfer rate. 

Case Study 4.1: Forced and free convection heat transfer 
This case study example describes a fluid flow problem with heat transfer in the fluid. 

An array of heating tubes is submerged in a vessel with fluid flow entering at the bottom. 
The figure below depicts the setup 

Fluid now 
direction 

Hutlng tubes 

A first consideration when modeling should always be the true dimension of the prob­
lem. Many problems do not show variations in three dimensions and can be extrapolated 
from the solution of a related 2D case. Assuming any end effects from the walls of the ves­
sel can be neglected, the solution can be assumed constant in the direction of the heating 
tubes, and the model is therefore reduced to a 2D domain (below). 

I I would like to thank PO Dr. Stefan Funken, FEMLAB GmbH, Gottingen, Gennany, for his support. 



4.11 Case Study Examples 245 

The next consideration is finding symmetries. In this case, inclusion of symmetry planes 
allows you to model only the thin domain indicated in the figure. 

Governing Equations 
This is a multiphysics model, meaning that it involves more than one kind of physics. In 

this case, you have incompressible Navier Stokes equations from fluid dynamics, together 
with a heat transfer equation, that is, essentially a convection-diffusion equation. There are 
four unknown field variables: the velocity field components u and v; the pressure, p, and the 
temperature, T. They are all inter-related through bidirectional multiphysics couplings. 

The pure incompressible Navier Stokes equations consist of a momentum balance (a 
vector equation) and a mass conservation and incompressibility condition. The equations 
are 

au 2 
p - +p(u·V)u = -Vp+riV u+F 

at 
v·u=o 

(4.78) 

where F is a volume force, pthe fluid density and '7 the dynamic viscosity. We denote the 
vector differential operator. See further "Overview ofPDE Modles" on pages 1-336 of the 
FEMLAB Getting Started Guide. 

The heat equation is an energy conservation equation that says only that the change in 
energy is equal to the heat source minus the divergence of the diffusive heat flux 

aT 
pc-+ V . (-kVT + pCpTu) = Q 

pat (4.79) 

where cp is the heat capacity of the fluid, and p is fluid density as before. The expression 
within the brackets is the heat flux vector, and Q represents a source term. The heat flux 
vector contains a diffusive and a convective term where the latter is proportional to the ve­
locity field u. 

In this model, the above equations are coupled through the F and Q terms. First, add free 
convection to the momentum balance with the Boussinesq approximation. In this approxi­
mation, variations in density with temperature are ignored; except insofar as they give rise 
to a buoyancy force lifting the fluid. This force will be put in the F-term in the Navier 



246 4 Simulation Sofware for Computational Modeling and Simulation 

Stokes equations. See further "Marangoni Convection" on pages 2-321 in the Model Li­
brary. 

At the same time, the velocity field must be accounted for in the heat equation. Instead 
of applying the heat equation as it stands, you can put the divergence of the convective heat 
flux into the Q coefficient, using the fact that the velocity field is divergence free. This puts 
the equation on a form that can be used in FEMLAB's heat transfer application mode. 

Case Study 4.2: Thermo electric heating in a bus bar 
The resistive heating in a bus bar leads to a rise in temperature which, in tum, increases 

the resistance of the bus bar. The time evolution of current, temperature, and lumped resis­
tance is studied. 

This case study example examines the relationship between current throughput and tem­
perature inside a solid copper bar. Such bus bars are used as conductors in industrial envi­
ronments requiring very high currents, for example, aluminum smelters and certain chemi­
cal plants. 

The thermo electric coupling is two-way: volume currents inside the bus bar, which are 
proportional to the conductivity, act as a distributed heat source, while at the same time the 
temperature affects the metal's conductivity. These kinds of dependencies make it neces­
sary to create a multiphysics model. 

As a first step, the stationary-current distribution at constant temperature will be mod­
eled. It is highly recommended that you follow along with the description of the modeling 
process in this example even if you are not an electromagnetics expert. The discussion fo­
cuses on how to use FEMLABs graphical interface rather than on the underlying physics. 

The second part of the example adds a heat transfer equation, bidirectionally coupled to 
the stationary-current model. This part is primarily about multiphysics modeling, showing 
how to connect phenomena from different fields of physics. It also shows how you define 
coupled variables, which can be, for example, an integral of the solution, evaluated on some 
part of the model geometry. 

Geometry and boundary conditions 
The bus bar is mounted as an intermediate step between two high voltage cables and a 

load. Because ofthe symmetry, it is only necessary to model one half of the true geometry. 



4.11 Case Study Examples 247 

The copper bus bar is electrically insulated everywhere, except for two contact plates 
around the mounting holes. The temperature is constant on the contact plates, and on the 
parts in contact with the load or mounting screw. All free faces have heat transfer coeffi­
cients corresponding to free-air convection, but the symmetry face is isolated in all respects. 

Constant temperature 

Case Study 3: 2D radiator 

Symmetry lace, no current 
and no heat conduction 

This model is an example of the 2D-physics-mode working environment. We will model 
heat conduction in a solid and therefore make use ofthe heat transfer application mode. 

Case Study 4.4: 3D Radiator 
This model is an example ofthe 3D physics mode working environment. We will model 

heat conduction in a solid and therefore make use of the heat transfer application mode. 



248 4 Simulation Sofware for Computational Modeling and Simulation 

Case Study 4.5: The catalytic burner 
A mixture of air and hydrogen enters a catalytic reactor. Hydrogen reacts in the catalyst 

and the influence of convection and diffusion coupled to reactions is studied. 

FEMLAB Chemical Engineering Module 

Case Study 4.6: Coupled free and porous-media flow 
The coupling between flow in an open channel and the flow induced in the porous walls 

of the channels is studied. The model couples the Navier Stokes equations in the open 
channel, with the Brinkman equations for porous-media flow. The results show that there is 
a substantial flow in the porous media and this flow is induced both by pressure and viscous 
effects. 



4.11 Case Study Examples 249 

Case Study 4.7: Simulation of a fixed-bed reactor for catalytic hydrocarbon 
oxidation 

This model treats the process for production of phthalic anhydride in a multi tube fixed­
bed reactor. The process is highly exothermic and cooling at the surface of the reactor tubes 
is accounted for in the model. The model includes mass balances for the involved species 
and an energy balance. 

FEMLAB Electromagnetics Module 

Case Study 4.8: Model of a cold crucible for molten metals 
A cold crucible is modeled, which is used for elaboration of alloys that require a high 

degree of purity. The cold crucible is surrounded by an inductor, which makes the crucible 
act like a field concentrator due to the induced currents. 

Case Study 4.9: Electromagnetic brake, exporting to SIMULINK 
A metal disk is rotating in the air gap of a magnet. Currents are induced, and the forces 

on the current lines will slow down the disk. FEMLAB models the static problem of com-



250 4 Simulation Sofware for Computational Modeling and Simulation 

puting the induced currents, SIMULINK computes the time-evolution ofthe angular veloc-

ity. 

Case Study 4.10: Model of a monoconical RF antenna 
The antenna impedance and radiation pattern are studied as a function of frequency of a 

monoconical antenna, with a finite ground plane and a 50-Ohm coaxial feed. 

FEMLAB Structural Mechanics Module 

Case Study 4.11: Stress-optical effects in a photonic waveguide 
The stress-optical effect causes unwanted birefringence in a planar photonic waveguide. 

Plane-strain analysis followed by an optical mode analysis show the resulting split of the 
fundamental modes. 

Case Study 4.12: Model of pressure vessel 
A pressure vessel modeled with shell elements is subjected to an internal pressure higher 

than the surrounding atmospheric pressure. The deformation of the vessel is exaggerated in 



4.11 Case Study Examples 251 

the figure. The displacement around the pipe connections is especially important since rup­
ture at the pipe joints can occur. 

Case Study 4.13: Model of a tank filled with water 
A tank is built up by shell elements and beam elements. The parametric solver is used to 

visualize the tank being gradually filled with water. 

4.11.2 ModelMaker 

ModelMaker is designed to mimic the process of conceptual model building. 
Hence the first step involves constructing a diagram on the screen that represents 
the various model parts. This diagram is composed of a series of ModelMaker 
components, each of which is intended for a different type of mathematical opera­
tion. Each component has a definition that can be edited to insert its equation and 
any other appropriate information. Once your model has been implemented, it can 
be run; the equations are solved, generating results that can be interpreted in 
graphs or tables. 

It will be shown how to create a model of a system using ModelMaker's tool 
bar, how to set up model equations, and finally how to post-process the solution. 

After starting the ModelMaker power-point tutorial you get a step-by-step in­
sight into the modelling process. 

Case Study 4.14: Model of a mass damper spring system 
The mass damper spring system can be described by the differential equation 



252 4 Simulation Sofware for Computational Modeling and Simulation 

Mx" + D'x' + C'x = F(t), (4.80) 

with M = mass, D = damping factor, C = spring constant, X = elongation. With the trans­
form A ·x" + B'x' + C'x = D(t) the equation above can be rewritten as follows 

(4.81) 

Rewriting this differential equation, which is of second order, using n first-order differ­
ential equations we find: 

(4.82) 

x" = X2' = - (BIA)-x' - (CIA)'x + D(t)IA . 

This results, due to the original second-order system, in two first-order ODEs: 

(4.83) 

X2' = - (BIA)·xz' - (CIA)'xJ + D(t)IA . 

which can be solved using ModelMaker. You are required to build the model of the second­
order system given above and implement it with ModelMaker according to the following 
specifications with initial conditions of integrators being 1: 

• A = 1, B = 1, C = 1, D = cos(t) 
• A = 10, B = 10, C = 10, D = cos(t) 
• A=l,B=lO,C=l,D=cos(t) 
• A=1,B=10,C=5,D=cos(t) 

Case Study 4.15: Model of ingestion and subsequent metabolism of a drug 
In project 2 ingestion and subsequent metabolism of a drug in a given individual are ex­

amined on the bases of a combined simulation containing continuous-time and discrete­
tiem elements. 

Background: 
A two-compartment model is used to study ingestion, distribution, and metabolism of a 

drug in the individual. It provides the background information of the mechanism of action 
of drugs in general pharmacological terms and the significance of pharmacokinetic parame­
ters in determining the efficacy of drugs. In particular, the drug is ingested, e.g. orally as 
medication, the drug enters the gastrointestinal tract from where it is then distributed 
throughout the bloodstream of the individual to be metabolized and eliminated. The pri­
mary interest of studying compartment models is to govern how input ingestion rate and/or 
the initial concentration of the drug in the body affects the individual. 



4.11 Case Study Examples 253 

The phannacokinetic model described in the equation above is a second-order linear 
model. The first differential equation is uncoupled from the second differential equation, 
the second differential equation is coupled with the first differential equation. It should be 
noted that this observation is important, since mathematical models should not be exces­
sively difficult for analytical studies. 

Limitations of the model: 
The main purpose of the model is to demonstrate the basic time courses of drugs in dif­

ferent fluids, tissues and/or organs and excreta of the body. Hence the model is kept as sim­
ple as possible while remaining accurate and realistic. The main limitations are: 

• The model is linear, i.e. non linearities are not considered 
• The model equations used neglect feedback influences 
• Real biological systems don not have set points 
• We can not instruct the model to adjust to output variables to certain values ofthe 

state, we only change its parameters 

The model is not suitable for studying the effects of physical workload because the 
mechanisms that maintain the oxygen utilization during workload are neglected. 

In this model, combined simulation is realized, the event has to be introduced using the 
block-independent event. Moreover, the ModelMaker realization should use a source com­
partment as the respective flux_in variable, and a drain compartment as the respective 
flux _ Compartment2 uptake 

Requirements: 
You are required to give the analytical mathematical solution of the two-compartment 

model (for this purpose see Chap. 2). 
You are required to build the model of the second-order system given above and imple­

ment it with ModelMaker 3.0 according to the following initial specifications of compart­
ment 1 is 0 and compartment 2 being I. 

Single dose-injection 
1. k12 = 0.1, k2 = 0.1 
2. kl2 = 0.1, k2 = 0.05 
3. k12 = om, k2 = 0.01 

Event triggered multiple dose-injection 
4. kl2 = 0.1, k2 = 0.1 
5. kl2 = 0.1, k2 = 0.05 
6. k12 = om, k2 = 0.01 

Case Study 4.16: Modeling and simulation of a single and a double pendulum 
Modeling and simulation of dynamic systems with different degrees of freedom are part 

of this third project, based on the physical system of a pendulum on a rigid rod. 
Background: 
The physical model of the pendulum can be described as 

Fa = -Fd - Fg = - D . V - M 'g . sin( $) = - r .l/f - M· g . sin( $) (4.84) 

with Fa: acceleration force, Fd: damping force = D . v, Fg: gravidity force, M: mass, g: 
gravitation constant, v: velocity, r: radius, and the angle l/J. Assuming 



254 4 Simulation Sofware for Computational Modeling and Simulation 

F 
a=-'l... 

M' 
<1>'= ~ and <1>"= ~ , , 

r r 
(4.85) 

we obtain 

Fa = M· a = M· df' . r (4.86) 

and due to this we find the second order vector differential equation: 

M· r· <1>. <I>"+d<l>· r· <1>. <I>'+M . <1>. g. <I>'·sin(<I» = 0, (4.87) 

which can be rewritten as 

(4.88) 

This second-order differential equation is a nonlinear differential equation due to the 
term sin( 11». With 11>= x we find the state equations x = Xj, Xl '= X2, and X2'= a I r may be of 
interest when modeling the pendulum system. with the initial conditions XIO = x(O), and X20 

=x'(O). 
Requirements: 
You are required to build the model of the single pendulum on a rigid rod as given 

above and implement it with ModelMaker 3.0 according to the following specifications (D: 
damping factor, M: mass, g: gravitation constant, r: radius) with initial conditions of the in­
tegrators being 1: 

1. D=l, M=l,g=9.8l,r=1 
2. D = 0.4, M= 2, g= 9.81, r= 5 
3. D=1,M=10,g=9.81,r=1O 
4. D= 1, M= 10,g= 9.81, r= 1 
5. D= 10, M= 10, g= 9.81, r= 10 

Background: 
The physical model of the double pendulum can be described by the masses Ml and M2 

that are connected by massless rods of length rl and r2' The equations of motion of the two 
masses, expressed in terms of the angles 11>1 and ~ as indicated, are 

(4.89) 

Requirements: 
You are required to show for Part 2 that 11>1 = 0, dl1>l/dt = 0, ~ = 0, d~/dt = 0 defines 

equilibrium states, theoretically, and choose the respective parameter and give an explana­
tion. 



4.11 Case Study Examples 255 

You are required to obtain linearized state equations for the double pendulum that are 
valid ifthe pendulum system is near its equilibrium state, and explain it. 

You are required to document the time dependent behavior and the phase-plane behavior 
of the double pendulum for the five cases of the double pendulum and explain the mea­
ning of the graphs. 

1. Mj =I,M2=I,g=9.81,rj=l,r2=1 
2. Mj=10,M2=I,g=9.81,rj=5,r2=1 
3. M j = I,M2= 10,g=9.81,rj = l,r2=5 
4. M j =10,M2=1O,g=9.81,rj=5,r2=5 
5. M j =2,M2=4,g=9.81,rj =2,r2=4 

Case Study 4.17: Modeling of the population growth and balance 
Population models predict either population growth without bound or inevitable extinc­

tion. The difference is based on whether the growth rate is positive or negative. 
The population can be modeled at the beginning of time period t based on the logistic 

population model 

x(t) 
x(t + 1) - x(t) = r· x(t)· (1- -), 

k 
(4.90) 

where r is the growth rate, and k represents the carrying capacity, which is the population 
level at which the birth and death rates of a species precisely match, resulting in a stable 
population over time. 

Requirements: 
You are required to determine the equilibrium populations. 
You are required to simulate the model with parameter values r = 0.007 and k = 1000, 

and using an initial population of 250, running the model for 100 years. 
You are required to try other values of r, k and initial populations. 

Case Study 4.18: Modeling of the birth and death rates ofa population 
Instead of simply computing the net change in population the model has to be rear­

ranged to keep track of the birth and death rates, both of which are likely to be non-nega­
tive. 

The newly developed model will still have a container containing the population level. 
However, there will be now two flows, one associated with births and a second associated 
with deaths. 

The birth and death rates can be modeled at the beginning of time period t based on the 
population model as follows 

x(t) 
x(t + 1) - x(t) = r· x(t)· (1--) 

k 
x(t) 

x(t + 1) - x(t) = r· x(t) - r· x(t)·_, 
k 

(4.91) 

where the first term r·x(t) can be interpreted as the birth rate in this model, while the second 
term, r·x(t)·x(t)lk, can be interpreted as the death rate. 

Requirements: 
You are required to determine the equilibrium of birth and death of the population. 
You are required to simulate the model ifbirth rate is faster or slower than death rate. 



256 4 Simulation SofWare for Computational Modeling and Simulation 

You are required to expand the model assuming a new predator comes to the area. 
You are required to expand the model due to food supplies and simulate the new model 

for the decrease and increase of food supply. 

Case Study 4.19: Modeling the Lotka Volterra equations 
The Lotka Volterra model is a classical ecological model that explains the oscillatory 

levels of certain fish catches in the Atlantic. 
To obtain a more realistic model of two interacting species, we include the effects of 

competition of the prey Xl among themselves for their limited amount of resources, and the 
competition among the predators Xl for the limited amount of prey. The model yields 

x; = Xl (G - B . Xl) 

X; =xl(B,xl -S) 
(4.94) 

where G is the growth rate, and B represents the carrying capacity which is the population 
level at which the birth and death rates of a species precisely match, resulting in a stable 
population over time, and S is the death rate. 

Requirements: 
You are required to determine the dynamic behavior when the initial conditions are: Xl 

(0) = 10.000, and Xl (0) = 1.000, and B = 6.10-6, G = 0.005, and S = 0.5. 

Case Study 4.20: Reference nets for habour-based w,orkflow analysis of ship 
transportation 



5 Parameter Identification of Dynamic Systems 

5.1 Introduction 

As shown in Chap. 1, there are two different approaches building a model of a re­
al-world system, the theoretical one, based on the derivation of the essential physi­
cal relationships of the real-world system, and the empirical one, based on ex­
periments with the real-world system. Practical approaches combine both. The 
difficulty in implementing a mathematical model, developed theoretically, is that 
not all important system parameters, appearing in the model equations as some co­
efficients, are known a priori. Unknown parameter values can be determined 
through experiments with the real-world system. This can, in principle, be done 
through evaluation of the data measured at the system input and output by the use 
of parameter-identification methods, which will work either in a direct manner, as 
shown in Fig. 5.1, or in an indirect way, by using an adjustable-parameter vector, 
which is part of the mathematical model, as shown in Fig. 5.2. Hence the parame­
ter-identification method can be stated as a link between data and models. 

Fig. 5.1. Direct parameter identification 

From Fig. 5.2 one can conclude that parameter identification of unknown sys­
tem parameters can be done using a mathematical model of the real-world system 
and adapting its parameters. In fact only the model structure has to be known to 
build the adaptive model or to implement it as part of a software package. The ini­
tial parameter values themselves are guessed, for instance, on some preliminary 
knowledge about the real-world system. The type of model structure and the pa­
rameter identification method chosen for estimation purposes are of essential im­
portance for the accuracy of the estimates. 

D.P.F. Moeller, Mathematical  and Computational Modeling and Simulation Fundamentals

and Case Studies  © Springer-Verlag Berlin Heidelberg 2004



258 5 Parameter Identification of Dynamic Systems 

Input 

Model 
Parameter 
Adjustment 
Algorithm 

Parameter Correction 

Fig. 5.2. Parameter identification using an adaptive model 

From Fig. 5.2, the parameter-identification methodology can be considered sy­
nonymous for statistical and numerical procedures to obtain reasonable values for 
model parameters or data. The classical method is the linear regression technique, 
which goes back to the 18th century. It is easy to handle, hence linear regression 
has long been established as a convenient tool for analyzing data of dynamic sys­
tems. However, the diversion of using linear regression methods has led to an 
overemphasis on linear relationships. But, mostly, the relationships of real-world 
systems - or data - are nonlinear and linearization is nothing more than an appro­
ximation with a limited scope. Nowadays, statistical program packages are avail­
able with routines for solving nonlinear regression problems. But in recent years, 
highly efficient parameter-identification techniques for dynamic systems have 
been developed. Today, parameter-identification provides the link between data 
and models, in other words, between statistics and :simulation. 

It is the goal of any identification procedure to obtain the unknown model para­
meters for the real-world system. In practice the identification procedures are ba­
sed on discrete measurements. The resulting model can be described in a continu­
ous-time or a discrete-time representation and it can be linear or nonlinear in its 
parameters. System models are mainly used for the following purposes: 

• Getting deeper insight into the physical structure of real-world dynamic 
systems 

• Developing efficient adaptive controllers for real-world systems applica­
tions described by the identified model 

Hence, the term identification specifies the determination of a model as an ele­
ment of a given class of system models, based on input and output measures, to 
which the real-world system is equivalent. The meaning of an identification task 
therefore is as follows: 

• Data and measurements of the time-dependent input and output signals of 
the real-world dynamic system are known. Unknowns are the structure 
and the parameters of the suitable mathematical model. 

• Solving the identification problem, one has to arrange, that the mathe­
matical model, which is connected in parallel to the real-world system, 
has the same static and dynamic behavior. Therefore, the parameters of 



5.1 Introduction 259 

the mathematical model have to be optimized in such a way that the mo­
del outputs fit with the experimental data. 

Let a time-continuous mathematical model of a real-world dynamic system, be 
described by a set of n ordinary first-order nonlinear differential equations, param­
eterized in an n-dimensional parameter vector ft. Consider that this model fit the 
transfer behavior of the real-world system for a parameter vector ft = fiRs with 
sufficient accuracy, meaning that the output of the model and the real-world sys­
tem coincide. If this assumption is true this model is said to be the true model of 
the real-world system and the corresponding parameter vector fiRs = firM exists, 
with firM as the true parameter vector. 

Remark 5.1 
Let MM be the set of mathematical models, and the chosen mathematical 

model MM be the best fit of a model for the real-world system RS. The chosen 
model MM is the best fit ifthe sum of squares is minimal. 

(5.1) 

Remark 5.2 
Let e be an error functional that is based on the difference between the mea­

sures of the real-world system output LRS and the calculated numbers of the output 
of the mathematical modelXMM 

(5.2) 

Hence the identification problem of the unknown parameters then can be ex­
pressed as an optimization problem minimizing a chosen performance criterion 

t 

J = f(e)2dt -;. Min. (5.3) 
D 

Remark 5.3 
Let the n-dimensional identification task be restricted to a p-dimensional model 

with the p-dimensional parameter vector ft. Hence the identification task can be 
reduced to a parameter-estimation problem. The goal of the parameter estimation 
problem is the adaptation of the p-dimensional parameter vector ft of the mathe­
matical model - which can be introduced as an identification model - such that its 
output XMM(ft, t) will coincide with the output of the real-world system LRS (ft, t). 

Remark 5.4 
Let an identification task be defined as a task to adjust the parameter vector ft 

of an identification model in such a way that its output sequence {XMM(ft)} coin-



260 5 Parameter Identification of Dynamic Systems 

cides with the output sequence of the real-world system U:is(@)}. A real-world 
system is called identifiable if 

(5.4) 

which is only the case if 

(5.5) 

Remark 5.4 takes into account cases in which the system outputs IRs of the real­
world system are imprecisely, corrupted by measurement noise, introduced as llRS, 

which yields 

(5.6) 

The outputs of the mathematical model LMM and of the real-world system IRs have 
to be compared. If IRs coincides with XMM the difference between the measured 
system outputs and the model outputs can be expressed as 

(5.7) 

with the output measurement error vector ~M i.e. 

(5.8) 

The identification task is solved if flMM can be adapted in such a way that the 
estimated output error ~M(flMM) is minimal, i.e. the outputs of the mathematical 
model and the real-world system coincide due to the equality of input and initial 
conditions. If this assumption is true the model is said to be the true model of the 
real-world system and the corresponding parameter vector !&s is called the true 
parameter vector .@rM, or true output error ~RS(!&S) vector. 

5.2 Mathematical Notation of the Identification Task 

Definition 5.1 
Let a real-world system mathematically be described by a set of first-order linear or non­
linear differential equations, with r input and m output variables 



5.2 Mathematical Notation of the Identification Task 261 

dx d7 = L(~(t),Z.!.(t),t,qJ, (5.9) 

and 

~(O) =[ ~; ] (5.l 0) 

yet) = g(~(t),Z.!.(t),t,£) , (5.11) 
- -

where !i.(t) E mr are the input variables, y(t) E mm are the output variables, :!(t) E 9{n 

are the state variables, ,!(O) as the known initial conditions, and ~ as known mea­
surable initial conditions; a E mA, !!. E mB , and C E me are the parameters to be 

identified .• 

RemarkS.S 
Iff and g are the linear or nonlinear functions the initial value problem in (5.9) 

and (5.10) has a unique solution. It is, therefore, not excluded that the functionf 
may be discontinuous at certain points of t, - this is due to time discrete events 
during simulation - and at certain points of! - due to state events during simula­
tion - or at certain points of!:!.. Consider that the output variables lRs(t) and the in­
put variables llRS(t) of the real-world system are measured at discrete - not neces­
sarily equidistant - times, then 

t=t} ,t} E[O,T],j=I, .... ,k. (5.12) 

The output measurements [RS.meas(t) can be disturbed by an additive, zero 

mean noise !let): 

(5.13) 

The unknown parameters of the parameter vector !it expressed as 

(5.14) 

can be identified for an input !:!.(t) with 



262 5 Parameter Identification of Dynamic Systems 

/i.(t) = '1-RS(t);j = l, ... ,k , (5.15) 

hence we receive the output function 1:'Rs(t) of the model, described by (5.9), 
(5.10) and (5.11), given as 

(5.16) 

This can be achieved exactly for y.(t) = JiRsCt), t E [0, 11 if the structure of the 
mathematical model has the same structure as the real-world dynamic system, 
meaning there is no measurement noise added to the model, which means no sto­
chastic part, which is related to the noise. Consider the measurement noise of ran­
dom type, characterized by its probability density function. 

5.3 Identification Task 

The identification of the parameters of a p-dimensional vector.&s of a real-world 
system can be characterized by an error criterion, . defining the way in which the 
components of the parameter vector & of the mathematical (identification) mo­
del can be adjusted to coincide with 

(5.17) 

Due to the implementation of the identification method on a computer, a time­
discrete description of the time-continuous model will be used subsequently. For 
linear dynamic systems and of piecewise-constant system inputs a description can 
easily be deduced from the set of n first-order differential equations as an equiva­
lent set of n first-order difference equations or alternatively, as one difference 
equation of n-th order, which is a simplification in the computation of the model 
output for identification purposes. This is not the case for nonlinear time-continu­
ous models. 

The identification model of the identification task applied to linear systems can 
be described by n-th order difference equations 

(5.18) 

and 



5.3 Identification Task 263 

Yk :=y(k·fa );k=O,I, .... ,n, (5.19) 

with fa as sampling time, y as output variable, and !fl as the p-dimensional para­
meter vector defined as 

(5.20) 

with p = 2n. Defining the polynomials 

(5.21 ) 

and 

(5.22) 

with q-l as so-called shift operator, given by 

(5.23) 

the difference equation, (5.18), can be written in the simplified form 

(5.24) 

(5.24) can be rewritten as 

(5.25) 

Fig. 5.3 illustrates the relationships between the real-world system and the 
mathematical model, representing a model with adjustable parameters q. 

Fig. 5.4 shows the relationships with the real-world system, in this case the hu­
man cardiovascular system. The mathematical model of Fig. 5.3 is called the iden­
tification model, marked by a head sign, and a third block element, called the true 
model, shown as dashed lines in Fig. 5.4, because its existence is an assumption 
for theoretical reasons. 



264 5 Parameter Identification of Dynamic Systems 

(U,) 

Mathematical 
Model 

8(q') 
A(q-') 

(Y •• m.) 

Fig. 5.3. Relationship between the real-world system and the mathematical model 

Real System (Y .... ,) 
(U,) 

True Model 

Fig. 5.4 Relationship between the real-world system, the true model, and the identification 
model 

The identification model, shown in Fig. 5.4, is an adaptive model with the ad­
aptive parameter vector 

, T " 

~ := [on-J,on-2,···,oo;bn-p ···,bo] , (5.26) 

and is of the same structure as the true model by definition. All quantities of the 
identification model are marked by a head sign due to the corresponding quantities 
of the true model, i.e. 

(5.27) 

and 

(5.28) 



5.3 Identification Task 265 

corresponding to (5.24) and (5.25). Inputs and outputs are represented by the se­
quences of their sampled values, e.g. yet) is represented by {Yd. 

The identification task can now be regarded as the task to adjust the parameter 

vector ~ of the identification model such as that its output sequence rYk (~)} co­

incide with the output of the true model {Yd. This is possible by definition for 

0==0 - -RS' (5.29) 

Consider, this is only the case if 

(5.30) 

the system is called identifiable in its parameters. 
The explanation of the identification task given above is admissible if the mea­

sured system output YMeas,k is corrupted by measurement noise vk ' i.e. 

(5.31 ) 

which is shown in Fig. 5.4. If {l\} coincides with {Yk } the difference between the 

measured system output and the model output, defined by the error functional, 
given in (5.32), 

(5.32) 

will coincide with the output measurement error vk ' i.e. 

(5.33) 

Interpreting 1\ (~) according to (5.33), i.e. as an estimate of the output mea­

surement error, called output error, the identification task can be characterized 

such that ~ has to be adjusted such that the estimated measurement error 

V k (e) will coincide with the real measurement error V k . 

Remark 5.6 
Consider the identification task such that certain known properties of {vd are 

impressed on {Vk( e )} where {vd can be a deterministic but generally unknown 



266 5 Parameter Identification of Dynamic Systems 

measurement-error sequence. The estimated error sequence {v,J 0 )} can be con­

sidered as reconstruction of the error sequence. 

RemarkS.7 
Consider the error reconstruction has to be determined such that the parameter 

vector estimate ~ approximates the true parameter vector ~RS' 

RemarkS.8 
A 

The output-error estimate {v,J 0 )} discussed so far is a nonlinear function of 

e even in the case of a linear true model. For linear systems the so-called equati­

on-error is linear in the parameters to be identified if these are defined to be coef­
ficients of the difference equation, given in (5.18). Due to this property in some 
cases it is possible to find a parameter estimate in closed form. 

5.4 Output-Error Least Squares Method* 

A method for identitying the system-parameter v~ctor e RS is characterized by an 

error criterion defining the sense in which the components of the parameter vector 
~ of the identification model can be adjusted. For the output error least square 

method the error criterion chosen is 

N A 

IN@MM)= L(l\@) -;(Vk»2 ~ Min, (5.34) 
k=n 

where N is the number of measurements. Defining the vectors 

(5.35) 

and 

(5.36) 

of the estimated and the real-world output errors, respectively, (5.34) can be writ­
ten as 

(5.37) 



5.4 Output-Error Least Squares Method* 267 

Consider a stationary stochastic process {vk } with C;(vk ) = 0, (5.34) and (5.37) 

can be simplified as 

, N , 

J N (~) = ~:c v; (~) ~ Min, (5.38) 
k:::::n 

and 

(5.39) 

Substituting QN (~) in (5.38) we obtain the least squares output-error criterion 

in its well-known notation 

N , , 

IN(~) = ~)YMeas,k -Yk(~)Y ~ Min. (5.40) 
k=n 

Defining iN (~) , and r~eas in an analogous way, as ~N (~), and t:N , respecti­

vely, the corresponding formulation of the criterion in (5.40) in matrix form be­
comes 

(5.41) 

iN (~) is a nonlinear function of (~) the parameter vector (e)~in' which 

minimizes J N (~) , which can be determined by numerical optimization methods. 

Remark 5.9 
A reasonable interpretation of the error criterion in (5.39) can be given if the 

output error {vd is assumed to be Gaussian. Hence the probability of vN has the 

form 

(5.42) 

Consider the estimated output-error sequence {l\ (e)} as a realization of the 

output error criterion and determine (~) such as 

(5.43) 



268 5 Parameter Identification of Dynamic Systems 

(~) is the so-called maximum likelihood estimate, since we find from (5.42) that 

(5.43) is equivalent to 

(5.44) 

Assuming a white-noise process {vd stationary with 

(5.45) 

yields 

(5.46) 

hence (5.44) is equivalent to (5.39) and the parameter estimate (~)~in' which 

minimizes the sum of the squared distances of {Ok (~)} from the expected value 

ofvk becomes the so-called maximum-likelihood estimate. 
The output error least squares criterion can be given as follows: 

(5.47) 

with f(tj) as the error function to be minimized. The performance criterion can be 

(5.48) 

Usually one selects q = 2, which results in the output error least square estima­
tion. If q > 2 the maximum error is minimized. By means of the weighting coeffi­
cients di , i = 1, ... , m, different error variances of each component of.IMM may be 
taken into account. The model output X is also a function of the model parameters 
12, the performance criterion in (5.48) can be rewritten in the form 

(5.49) 

Hence, the identification problem requires the solution of the mathematical 
problem 



5.4 Output-Error Least Squares Method* 269 

J N (p) = Min. (5.50) 

The structure of the output-error least squares method, based on the assumptions 
made above, is shown in Fig. 5.5. The following remarks are to be noted: 

• The input function IfM(t), tE [t, 11 can be either an input signal, available 
during normal system operation, or a specific generated test signal, like a 
pseudorandom binary sequence. 

• The measurable initial conditions ,!M will be stored as well as the sampled 
input and output functions. Unknown initial conditions must be consid-
ered as parameters to be identified. ! 

• The nonlinear parameter-optimization problem J N (p) = Min. has to be 

solved iteratively. Starting with the iteration the initial values I2 must be 
available. They can be chosen as close as possible to the optimum values 
in order to allow a faster convergence. Such parameters I2 can usually be 
obtained from physical considerations. 

• Using the stored input measurements and the actual parameters 12 , the 
model output lXtj ), j = 1, ... , k has to be simulated during every optimiza­
tion iteration step. Therefore, a fast and sufficiently accurate numerical 
integration procedure is necessary. 

• The algorithm integrating the differential equations usually requires val­
ues !i.( t) where t "* tj ,j = 1, .. , k. For this reason it is necessary to calcu­
late - by using the stored values IfM(tj) - a function y'(t) that approxi­
mates the input signal IfM(t), for tE[O, n This approximation may be 
done exactly for specially generated input signals IfM(t). For this purpose 
piecewise-constant functions have been used. 



270 5 Parameter Identification of Dynamic Systems 

Generation of input 
Function 

Measurable 
Initial 

Condition 

Sampling 
Device 

Sampling 
Device 

Analog I Digital Converter 

Approximation 
of the Input 
Functions 

Iterative 
Solution of the 
Nonlinear 
Programming 
Problem 

IN(p)l=min 

Storage Device 

Parameter Initial Values 

Model 
x=f,(x,u,t,a) 

y=g,(x,u,t,c) 

Performance 
Criterion 

+ 

Fig. 5.5 Structure of the output-error least squares method 

5.5 Equation-Error Least Squares Method* 

Substituting the output variable lk of the true model in the difference equation 
given in (5.24) for 

(5.51) 

as a consequence of the measurement equation 



5.5 Equation-Error Least Squares Method* 271 

YMeas,k = ~ + vk , (5.52) 

yields 

(5.53) 

where ek is defined by 

(5.54) 

(5.53) is the mathematical formalism of the true model depending on the meas­
ured output variable YMeas,k' described in (5.52), considering an equation-error ek, 

given in (5.54), Consider the equation-error process {ed is white and the meas­
urement process can be deduced from a white-noise process {nk} by 

(5.55) 

which is of importance due to the consistency properties of (~)~in' while the 

whole class of equation-error methods can be traced back to it. Before discussing 
this in detail in Sect. 5.6 it can be shown that in the case of a quadratic-error crite-

rion a simply expression for (~)~in can be found. This is due to the linearity of 

the parameters, i.e. in the components of (~) of the equation-error. Therefore, a 

time-consuming iterative search algorithm, necessary while using the output-error 
methods, can be avoided. 

The identification model equation corresponding with the true model equation 
can be written as 

, -1 '-1' 
A(q )YMeas,k = B(q )Uk + ek , (5.56) 

which is shown in Fig. 5.6 
The corresponding true model and the differential equations of the identifica­

tion model, given in (5.53) and (5.56), can be written as 

Y =mT 0+e Meas,k _Meas,k-l_ k' (5.57) 

and 



272 5 Parameter Identification of Dynamic Systems 

T A A 

YMeas,k = ~Meas,k-l§!+ek' (5.58) 

respectively, with 

mT '- [ Y . Y .. Y . U . . U ] 
Meas.k-l .- - Meas,k-i'- Meas,k-2""'- Meas,k-n' k-l"'" k-n . (5.59) 

(V.) 

(y ..... ,) 
Real System 

True Model 

B(q-') Ih~:~~:*_1 A(q-') r-h 
~ 
(e,) 

Identification Model 

Fig. 5.6. Equation-error criterion realized by the use of the true model and the identifica­
tion model 

Furthermore, defining the measurement matrix as 

MN 
-Meas 

T 
!!!..Meas,n 

T 

!!!:.Meas,n+l 

T 

~Meas,N 

and the corresponding vectors as 

yT ._ [Y . Y .. Y ]T 
_Meas'- Meas,n' Meas,n+l'°'" Meas,N 

and 

(5.60) 

(5.61) 

(5.62) 



5.5 Equation-Error Least Squares Method* 273 

(5.63) 

(5.57) and (5.58) can be comprised of 

k=n,n+l, ... ,N, (5.64) 

in the matrix form 

yN = M N-1 E>+eN 
_Meas _Meas _ _ , (5.65) 

and 

yN = M N-1 @+it 
_Meas _Meas _ _ ' (5.66) 

respectively. Analogous to the output error the norm of the difference of 

(5.67) 

and ~{~N} can be minimized, i.e. 

(5.68) 

Consider ~ {~N } to be not known, while being dependent on the unknown true 

parameter vector ~s. For a stationary measurement error, with ~(Vk) = 0, we 

obtain 

(5.69) 

hence (5.68) can be rewritten as 

(5.70) 

or, alternatively 



274 5 Parameter Identification of Dynamic Systems 

(5.71) 

If ~N (~) is replaced in (5.71) by (5.66) we obtain the equation-error least 

squares criterion in its conventional form 

J (0) = (yN - MN-I(0)T(yN - M N-1 (0» ~ Min N _ _Meas _MM _ _Meas _Meas _ • (5.72) 

Remark 5.9 
Consider a Gaussian distribution for the equation-error, i.e. 

(5.73) 

we obtain a maximum-likelihood interpretation of (5.68) analogous to the output­
error least squares criterion in (5.54). 

From (5.73) it follows that the maximum-likelihood criterion 

(5.74) 

is equivalent to the weighted equation-error-least squares criterion 

-I 

(~N (~)_~(~t»T L(~N (~)_~(eN» ~ Min, (5.75) 
fN 

which is equivalent to (5.37) if 

(5.76) 

i.e. if {ed is a white-noise stationary process with variance <7; , which is not the 

truth in general. On the other hand the criterion in (5.71) can be approximately ap-
A 

plied if an estimate L is known, or if { ek } is not given in (5.54) but is a sys-
fN 

tern-noise process with a known statistical behavior. 

Remark 5.10 
If the identification model, given in (5.58), can be written as 



5.5 Equation-Error Least Squares Method* 275 

with the so-called one-step-ahead prediction (OSP) 

, , T ' 

YOSP,k(E»:= !?!Meas,k-l(52) (5.78) 

of Yk, and defming in an analogous way 

(5.79) 

(5.72) yields the form 

(5.80) 

or 

(5.81) 

respectively, often found in the literature, which should not be confused with the 
similar looking output-error criterion in (5.58). The difference between these two 
criteria becomes clear when writing Yk (~), based on (5.61), in the alternative 

formula 

(5.82) 

where 

(5.83) 

Therefore, in the equation-error formulation the model outputs Yk in (5.83) ap­

pear replaced by the measured-system outputs YMeas, kin (5.34). 
For simplification purposes, the upper index N characterizing the length of the 

identification interval, can be dropped if misunderstandings are unlikely. 
Consider the performance index J N (~) as a minimum for the parameter vector 

, ,N 

~ = ~Min satisfying 



276 5 Parameter Identification of Dynamic Systems 

MT M €</ =MT Y _Meas _Meas _Min _Meas _Meas ' (5.84) 

as a necessary condition, meaning the assumption of a sufficient performance 

MT M >0 _Meas -Meas _ (5.85) 

is given. From (5.84) and (5.85) minimizing the parameter vector yields 

(5.86) 

If the structures of the identification model and the true model coincide and the 
input sequence persistently excites the real-world dynamic system (see also Sect. 
1.1), (5.85) will hold and therefore the inverse in (5.86) will exist. 

Remark 5.11 
If {ek} is stationary with unknown expectation 

(5.87) 

ecan be treated in (5.81) and (5.86) as an additional parameter to be estimated, 
which can be done by rewriting the problem, given in (5.81), while introducing an 
extended measurement matrix 

[11 
~N~l N~l 1 

M Meas := [M Meas' ~ ], 

(5.88) 

and an extended parameter vector 

~ [8] !2:= ~ , (5.89) 

instead of M~eas and 8 , respectively. 

Due of the fact that the entity of all measured data along the identification in­
terval are included in (5.86) this solution is called the direct solution. Alterna­
tively, (5.86) can be calculated recursively by incorporating the additional data 



5.5 Equation-Error Least Squares Method* 277 

{YMeas,k;Ukl k = 3n,3n+ 1, ... ,N}, (5.90) 

step-by-step starting with the direct solution for the identification interval 

[0,(3n-1)TaJ· (5.91) 

It can be shown that e k can be derived from ~ k-I introducing an additive cor­

rection term proportional to the estimated equation-error t ' i.e . 

• k • k-I k k 
~ =~ +K·~, (5.92) 

with 

.k k T • k-I 
e =Y -m e _ _Meas _Meas,k-l_ (5.93) 

k-I k-l_-I 

Kk = L~Meas,k-I[1 + ~:eas,k_ILmMeas,k-I] , (5.94) 

and 

k k-l 
"-,, _KkmT 
~ - ~ - -Meas,k-l ' 

(5.95) 

k 

where L is given as 

k ".= (Mk-I )T Mk-I 
~. _Meas _Meas' (5.96) 

For k = N the recursive as well as the direct solution coincide, i.e ~N = e :in' 
The importance of the recursive formulation, given in (5.92 - 5.96), is due to the 

possibility of calculating the parameter estimate ~:in online. 



278 5 Parameter Identification of Dynamic Systems 

5.6 Consistency of the Parameter Estimates* 

We have shown how to determine the error criteria, given in (5.55) and (5.81). 
Based on the output error and the equation-error, respectively, the error criteria de-

termine the minimized value of e such that the identification model output Yk 

approximate the measured system output Y Meas,k instead of the noise-free output l:k, 
which for some reasons may be not available. This has several consequences due 
to the statistical properties of the parameter estimates based on the different meth­
ods. 

Consider the properties of the equation-error estimates we can replace YMeas in 
(5.86), obtaining 

E/ =(MT M )-IMT M 0 +(MT M rlMT e _Min _Meas _Meas _Meas _Meas _RS _Meas _Meas _Meas_ (5.97) 

=0 +(MT M rlMT e 
_RS _Meas -Meas _Meas_ 

For convenience, the true model 

(5.98) 

in (5.48) yields 

(5.99) 

with 

(5.100) 

Note that for this regression problem the equation-error and the output error are 
identical because the output components of ff!.k in (5.83) and of !!1Meas,k in (5.59) 

AN 
are dropped, meaning !2Min is an unbiased estimate of ~RS ' i.e. 

(5.101) 



5.6 Consistency of the Parameter Estimates* 279 

if the input {Ud and the equation-error process {ek} are statistically independent, 

hence ~(ek) = O. Since M Meas is independent of {YMeas,k} and therefore of {vd, 

it is independent of {ed, yields 

~(MT M )-' MT e) = ~{(MT M )-' MT }~(e) = 0 '=' -Meas -Meas _Meas _ '=' _Meas -Meas _Meas '=' _ _ • (5.102) 

Consider the true model equation 

(5.103) 

M Meas,k depend on {ek} hence the factorization of the expectation in (5.102) is 

not allowed. 
,N. • • 

Let {ek} be a white-noise process independent on {Ud, ~Mjn IS conSIstent III 

probability, given as 

,N 

P lim ~Min = ~RS • (5.104) 

N~oo 

This property is similar to an asymptotic unbiased estimate, which can be unbi­
ased due to limit N ~ 00. Using (5.97) we can write 

plim~:jn = §!RS + plim[(M~easM Mea<r' M~ea<~] (5.1 05) 

N~oo N~oo 

Do l' [( 1 MT MT )-'] l' [1 MT ] = '!;!.RS + P 1m N _Meas _Mea< P 1m N _Meas ~ 

Equation (5.104) yields 

(5.106) 

Therefore, the consistency property is a weaker property than the asymptotic un­

biased property, hence Et is consistent but not asymptotically unbiased. 
_Mm 

Assuming {ed is not a white-noise process the equation-error least squares es­
timate, given in (5.86), will be a nonconsistent estimate. 



280 5 Parameter Identification of Dynamic Systems 

5.7 Consistency Modifications of the Equation-Error 
Method* 

Suppose that a white-noise process {ek} of the error criteria, given in (5.40) and 
(5.81) is a restriction that results in the extension of the ordinary equation-error 
least squares method. Solving this problem means transforming the model, given 
in (5.54), such that the transformed equation-error will be white. Consequently, 
we use the assumption that the equation-error can be expressed through a true 
model 

(5.107) 

where 

(5.108) 

is known and {wk } is a white random process. Multiplying the true model (5.54) 

by D(q-l) from the left we receive the transformed model 

(5.109) 

the equation-error of which is defined by 

(5.110) 

with {ek } as a white random process. Changing the polynomial factors in (5.109) 

and defining 

(5.111) 

~ -\ 
YMeas,k := D(q ) Y Meas ,k , (5.112) 

(5.109) can be rewritten as 

(5.113) 



5.7 Consistency Modifications of the Equation-Error Method* 281 

Consequently, the transfonned input and output sequence can be described by 

the original model, but with a white equation-error sequence {ek } as necessary 

~N 

for E> Min to be consistent. This equation is shown in Fig. 5.7, in which the real-

world system is assumed to be the cardiovascular system (see Sect. 5.10) . 

(V.) 

(U,) (v ...... ) 
-4j...-----------.J Real System I-----~ 

re.) 
Fig. 5.7. Relationships between the real system, the true model, and the identification 
model of the modified equation-error method 

Remark 5.12 
The output-error method, as described in (5.109), can be interpreted as a trans­

fonned equation-error with 

(5.114) 

Since D(q-l) is unknown, different methods were proposed to estimate D(q-l) in 
addition to A(q-l) and B(q-l). The most fundamental ones being the generalized 
least squares method, the extended model method, the extended matrix method 
and the combined instrumental variable approximate maximum-likelihood me­
thod. 

Using the noise model of the generalized least square method for estimating 
D(q-l), as shown in (5.56), can only be done if ek is known. If ek is not known one 
has to start with an estimate of ek and improve it iteratively so that it becomes con­
sistent after a sufficient number of iteration steps. This situation is shown in Fig. 
5.8, where the upper indices characterize the number ofthe actual iteration step. 



282 5 Parameter Identification of Dynamic Systems 

(V.) 

(U,) (V,) 
Real System ~--"'-------.r 

(V ..... ) 

1\ 

(e.) 

Fig. 5.S. Parameter estimation scheme for the generalized least squares method 

Consider an extended model method, the iteration is avoided by using the ex­
tended model, shown in (5.54), without transforming the input and output of the 
system using direct identification of the coefficients of the product polynomials 
D· A( q -I) and D· B( q -I) , the coefficients of which may be interpreted as the para-

meters of a true model of the increased order n , where 

n=n+m. (5.115) 

Neglecting the common zeros of DA(q-l) and DS(q-l) the estimates A(q-I) and 

S(q-I) can be determined. 

Remark 5.13 
An essence of the extended matrix method is that this method is more advanta­

geous relative to the generalized least squares and extended model method in the 
sense that it can properly be used together with a more general noise model 

(5.116) 

with 

(5.117) 

Defining the modified polynomials 



5.7 Consistency Modifications of the Equation-Error Method* 283 

(5.118) 

and 

(5.l19) 

the equation-error can be derived from (5.116) as follows 

(5.l20) 

Substituting this expression for ek in (5.54) we obtain the modified true model 
equation 

(5.l21 ) 

Consider ek and Wk in the second and third term at the right side of (5.l21) are 
known, (5.121) can be interpreted as a modified true model with an equation-error 
of 

(5.122) 

so that A, B, C' and D' can be consistently estimated using the equation-error least 
square method. Again using the estimates of ek and Wk, consistent estimates of the 
parameters can be approximated in an iterative way. 

A further class of consistent estimation methods are the instrumental variable 
approximate maximum likelihood methods. Consider the random sequence 
{wk } is Gaussian, the maximum-likelihood estimates of A and B, with C and D 

fixed, and of C and D, with A and B fixed, can be calculated using a relaxation­
type iteration. 

The primary problem due to the nonlinearity in the coefficients of the polyno­

mials :4.,13, C,D of the identification model can be separated into two problems 

linear in the coefficients of A and B or C and b, which can be solved sequen­
tially. It can be shown by introducing suitable transformed variables, the solutions 
of these problem will be of the instrumental variable type as well as the approxi­
mate maximum-likelihood type, respectively. 

The instrumental variable approximate maximum-likelihood method is based 
on the following system model 



284 5 Parameter Identification of Dynamic Systems 

(S.123) 

and the measurement noise model 

(S.124) 

with the Gaussian, white and stationary random sequence {wk} with ~{Wk} = 0 

and var(w) = a;, i.e. 

1 ~ 2 p(Wk) ~ exp[---2 L... W ]. 
2aw k k 

Introducing vk from (S.124) into (S.123) and premultip1ying (S.123) by 

we obtain, after changing the polynomial factors 

(S.12S) 

(S.126) 

(S.127) 

hence W k can be interpreted as the output error of the transformed system model 

(S.128) 

with 

(S.129) 

and 

(S.130) 



5.7 Consistency Modifications of the Equation-Error Method* 285 

Instead of solving the complex maximum-likelihood problem 

, I ",2' 
p(Wk) ~ exp[---2 L. W ~] ~ Max, 

2aw k k 

(5.131) 

where 

(5.132) 

and 

(5.133) 

the two subproblems 

(5.134) 

with 

(5.135) 

and 

(5.136) 

with 

(5.137) 

can be solved sequentially and iteratively in j, which approximate the complex 

maximum-likelihood solution. It can be shown that the equations for ~AB have 

the typical instrumental variable form 

~T ,N ~T 

M M e =M Y _ -Meas_AB,Min _ _ Meas· (5.138) 



286 5 Parameter Identification of Dynamic Systems 

On both sides of (5.138) the multiplying matrix factor M~eas of the equation-error 
~T ~ 

have been replaced by M . M can be deduced from M Meas by replacing the mea-

surement variables KMeas,k using prefiltered variables Yk* in M Meas . 

We have shown how to determine the solution for the first subproblem. Solving 
the second subproblem, defined by (5.135) and (5.136), the necessary conditions 

for ~~D can be found from the equations resulting from the application of the ex­

tended-matrix method to the noise model 

(5.139) 

using suitably defined prefiltered estimates v; and w; instead of vk and Wk' 

We may note the existence of a class of consistent methods, known as bias­
correcting methods that try to circumvent the iterative character of the methods 
discussed above to preserve the closed-form character of the equation-error least 
squares solution. For this purpose the difference of the probability limit of the esti-

mate e :in of the noise-free solution has to be used to correct the equation-error 

least squares solution, shown in (5.86). 
Consider the right side of (5.140) 

plim~:in = [plim(~ M~easM MeaJr1 • P lim(~ M~easM Meas) , 

N~~ N~~ N~~ 

satisfy the probability limits 

we obtain 

and 

plim(e) = lim';(e), 

N~~ N~~ 

Plim(~M~, y" ) = lim(~MTY)+r N _",eas -",eas N - - -

N~~ 

(5.140) 

(5.141) 

(5.142) 

(5.143) 



5.8 Identifiability* 287 

The adapted parameter estimate 

;;...N = [fMT M )_N,,]-lfMT Y -N) 
!::!Min,corr '-!!!..Meas_Meas £..J ~Meas_Meas r (5.144) 

n 

will then be a consistent estimate, i.e. it holds that 

AN 

P lim !2Min,corr = !2RS' (5.145) 

N~oo 

It should be noted that (5.142) and (5.143) can also be used in the case of noisy 
input measurements. Moreover, if the input and output noise processes are inde-

pendent and white, L, will be diagonal, and !.. = Q. ~:in,corr can be calculated re-
n 

cursively in a similar way as ~:'n' given in (5.140). 

5.8 Identifiability* 

The problem of identifiability has been discussed from a general point of view in 
Chap. 2 together with the problems of controllability and observability. In this sec­
tion a concept of identifiability that does not rely on a special parameter-estimati­
on method and its application to time-discrete systems will be discussed. The real­
world system to be identified can be described by (5.146) 

(5.146) 

where infinitely many parameter vectors 

(5.147) 

exist that describe the actual state of the real-world system based on the error cri­
terion method. Hence for all parameter vectors that satisfy the condition 

~ ~ 

8 1 := 8 l + 8 3 = 8 RSl + 8 RS3 = 8 RS1 =const. , (5.148) 

for all 



288 5 Parameter Identification of Dynamic Systems 

E> = [E>],0RS2,0RS] -E>d, (5.149) 

the true model outputs {Yk (§!)} are indistinguishable. Thus, the real-world sys­

tem, the true model of which given in (5.146) with 

(5.150) 

is not identifiable. But a reduced parameter vector, given in (5.151), 

T ~ ° =[O e ] _ _]'_2 (5.151) 

would be uniquely identifiable. 
This example shows that real-world systems identifiability can be assumed to 

be coupled with the problem of model-structure selection, which has to be solved 
before starting to estimate the real-world system parameters from noisy measure­
ments. It also shows that real-world systems identifiability depends on the systems 
input sequence {Ud. If, for instance, Uk = 0, the true model output {Yd is indis­
tinguishable for all 19:!. 

RemarkS.14 
Consider f2Rs does not exist, meaning for no f} true model output the real sys­

tem output can be made identical which means it can be excluded due to the as­
sumption that if a true model exists the structure of which is known. This can hap­
pen in such cases that too-low model order was chosen 

Moreover, identifiability is of importance due to cases when a time-discrete 
version of the true model is derived, which is for piecewise-constant inputs from a 
time-continuous model, the parameters of which can be determined from the time­
discrete model parameter estimates. In such cases the distinguishability of the 
time-continuous model outputs is necessary but not sufficient for the distinguisha­
bility of the time-discrete model outputs. 

Definition S.2 
A real-world system is called - relative to the true model structure at f2Rs -

(i) Parameter identifiable if there exists an input sequence {Ud such 
that f} and flRs are distinguishable for all f} * f2Rs 

(ii) system identifiable if there exist an input sequence {Ud such that 

e and ~RS_are distinguishable for all f}* f2Rs but a finite set 

(iii) Unidentifiable in all other cases 



5.8 Identifiability· 289 

A single parameter is said in case (i) to be uniquely identifiable, in case (ii) only 
identifiable. _ 

Definition 5.2 is independent of the existence of an identification method to be 
used in estimating the single parameter or the parameter vector consistently, but 
identifiability in this sense is a necessary condition to identify the real-world sys­
tem at all. 

Example 5.1 
As an example of Definition 5.1, part (ii), consider a true model given by 

(5.152) 

This system can be at best system identifiable, but not parameter identifiable, at 

E> = E>RS = [E>RS1,E>RS2]' (5.153) 

because there is no input sequence {Ud for which the two parameter vectors 

(5.154) 

and 

(5.155) 

are distinguishable. 
The condition for local identifiability of real-world systems, described by linear time­

discrete models is considered to be based on the fact that the output sequence of the linear 

time-discrete model are indistinguishable for two different parameter vectors ff!J and fh for 

any input sequence {Uk}, if the impulse responses for ff!J and fh are identical. This will be 
the case if and only if the Markov parameters of the system are identical. The Markov pa­
rameters are defined for a single-input, single-output system, as coefficients of the expan­
sion of z-transfer function Hz(z) in Z-l. For a true model in the state notation 

(5.156) 

(5.157) 

with the n-dimensional state vector ,!k, the z-transfer function is given by 



290 5 Parameter Identification of Dynamic Systems 

H () T( I ..... )-Ih Thz-I T ..... hz-2 -1-2 
z Z =£ Z_ -~ _ =£ _ +£ _'4.'_ + ... =goz +glz + .... (5.158) 

Taking into account that the Markov parameters for k ~ 2n are identical ifthey are identical 
for k = 0, 1, ... , 2n-l, the local identifiability problem of the system described in (5.156) 

and (5.157) at e = ~s can be examined by testing the distinguishability of the Markov 
parameter matrix 

(5.159) 

at ~s. In a sufficiently small vicinity of ~s we obtain 

(5.160) 

If the 2n x p matrix aG(8 RS) has full rank p for all L\8:t:- 0, we obtain with 
a~ - -

(5.160) Q.(~RS + L\~):t:- Q so that (f!) is distinguishable from Q.(~RS). 

Theorem 5.1 
A necessary and sufficient condition for global as well as local parameter iden­

tifiability of a linear time-discrete system at ~s is 

(5.161) 

Example 5.2 
Theorem 5.1 can be applied to the true model examples mentioned before. The state­

space notation ofthe model in (5.160) is 

(5.162) 

(5.163) 

with <1>=(81 + 8 2), h = 8 2, and c = 1, hence the Markov parameter matrix Q(m is given as 
follows 



5.8 Identifiability* 291 

G(e) =[8 8 ·(e +e )]. _ _ _2'_2 _1 _3 (5.164) 

Following (5.160) aG hasp = 3 columns, but only 2n = 2 rows, because n = I, hence the 
ae 

maximum rank of aQ. is 2 ( < P ). Theorem 5.1 means that the system described by 
ae 

(5.162) and (5.163) is locally unidentifiable. 

Consider a reduced-parameter vector, given in (5.150), i.e. if <l> = 81 , h = O2, and c = I, 
we get 

(5.165) 

and 

~~ =[: ~], 
_ 2 1 

(5.166) 

the rank of which is equal to 2 (= p ) if ~ *- o. Thus the system represented by the true 
model in Equations (5.162) and (5.163), with the reduced parameter vector given in 
(5.151), is locally parameter identifiable for O2 *- o. The exception O2 *- 0 reflects that for 

O2 *- 0 the model cannot be excited by U, so that changes in 8 1 do not show any change in 

the output Yk • 

For the model given in (5.152) we have <l> = e~ ,h = O2, and c = I, yields 

(5.167) 

and 

8G [0 I 1 
8~ = 28 8 2 8~ , 

(5.168) 

The corresponding system is locally parameter identifiable if 8 1 .82 *- 0 , i.e. 0 1 *- 0 

and O2 *- O. 
The additional condition on 0 1 is due to the fact that the Markov parameters do not 

change at 0 1 = 0 for sufficiently small deviations L181 because 



292 5 Parameter Identification of Dynamic Systems 

(5.169) 

It ,hould h' noted tha' '0,,11 El = [::]="'" th"ondition' El, '" 0 and El2 '" 0 

the system is locally parameter identifiable although globally there exists always the undis-

tin"',bahlo-pa,.m""""o, El = [ -El~' J. 

Remark 5.15 
If the parameters ofa time-continuous model in state-space notation 

dx -
-= = A(0)x+b(0)u, dt ----- (5.170) 

(5.171) 

have to be identified, Theorem 5.1 holds for the time-continuous Markov para­
meter matrix 

(5.172) 

A sufficient condition for preserving the property of local distinguishability of 
the system response y(t, f!) for the sampled response (Yk( 19)} is that the sampling 
frequency 

(5.173) 

satisfY the sampling theorem, i.e. that OJa > 2OJmax , where OJmax is the largest imagi­

nary part of the system eigenvalues. 



5.9 System Input Properties* 293 

5.9 System Input Properties* 

The importance of the system input for identification purposes has become appar­
ent in connection with the various problems discussed in the preceeding sections. 
At the very first the input sequence {Ud has to be chosen in such a way that the 
system is identifiable at all, e.g. in the sense of Definition 5.1. Furthermore, it may 
be found that the equation-error least squares estimate 0: in (5.86) only exists if 
the inverse of the matrix (M~ )T (M~ ) exists, i.e-:- this matrix must be posi-

_~v.t.eas _lYleas 

tive-definite: 

A necessary and sufficient condition for (5.174) to hold is that 

be of full rank. Partitioning of 

by 

M N - 1 
_Meas 

M N - 1 
_Meas 

N N N 
M Meas = [IMeas'Q. ], 

we find 

Un_l Un_2 Uo 

UN .- Un Un-l U .-

UN UN - 1 UN-n 

(5.174) 

(5.175) 

(5.176) 

(5.177) 

(5.178) 

has to be of full rank, i.e. the columns of if must be linearly independent, so that 
we found, as a necessary condition, 

(5.179) 

for (5.174) to hold. 



294 5 Parameter Identification of Dynamic Systems 

Proving the consistency of the estimate ~:in we need a stochastic equivalent of 

(S.179) which could hold the form 

(S.180) 

A measure of the quality of the parameter estimation is its variance, which de­
pends on the input sequence {Uk}. The variance of a parameter estimate can be re­
duced significantly if the system is exited by a pulse sequence instead of a step 
impulse. 

5.10 Parameter Identification of the Cardiovascular Sys­
tem* 

Consider, that the human cardiovascular system consists of the heart, the lung, the 
systemic vascular bed, the pulmonary vascular bed, and an adaptation of the sys­
tem due to physical exercises, based on the respective control loops. Such a type 
of real-world system can be described through a nonlinear model based on com­
partments that represent the circulatory fluid dynamic and the central nervous con­
trol, shown in the block diagram in Fig. S.9, which contain nine first-order diffe­
rential equations and 27 nonlinear algebraic equations. 

The model, shown in Fig. S.10, illustrates the signal flow between the various 
subsystems of the model of the cardiovascular system and the various interacting 
control loops. Here, thin lines show the operation flow of the cardiovascular sys­
tem including the baroreceptor feedback loop; thick lines show the operation flow 
of oxygen requirement under ergometric (physical) workload, and its influence on 
the cardiovascular system. Furthermore, dashed lines indicate the nonlinear pres­
sure volume relationship of the compliances of the vascular beds. 

From Fig. S.9 we can derive the nonlinear vector differential equation 

dX - = j(X, U,Z, 8 s ), 
dt 

(S.181) 

with X as state vector 

X:=[PAS, PVS, PAP, pVp]T, (S.182) 



5.10 Parameter Identification of the Cardiovascular System* 295 

the components of which are the mean systemic pressure (PAS), the mean pulmo­
nary pressure (PAP), the mean venous systemic pressure (PVP) and the mean pul­
monary venous pressure (PVP), and U as the control vector 

U:=[HF, RAJT, (5.183) 

the components of which are HF and RA, as the heart frequency and the periph­
eral resistance, respectively, Z as system disturbance, and ~ as the system-para­
meter vector. 

U,=HF 
Plant: ~Z=EW Sensor: 
Cardiovascular System Baroreceptor y=PAS 
x=f(x,u,o"z) y=c'X x 

U,~ rAS

) 

c'=(1,0,0,0) 

x= PVS . ={HF} 
PAP ,U RA -------------------- ., 
PVP Regulator 

Centres of the Medulla 

Ult:o.J Efferent Delay 
U, ~ 

I 

Ult:o. J 
Efferent Delay 

I "P-'--t--- ~ 

I 

Fig. 5.9. Block diagram of the nonlinear model ofthe human cardiovascular system 

Sensing of PAS by the so-called pressure or baroreceptors at the afferent path­
way to the centers of the medulla can be modeled by the linear output equation 

(5.184) 

Finally, the centers of the medulla can be interpreted as the controller of the 
system with PAS as control variable, which can be modeled as follows 

(5.185) 



296 5 Parameter Identification of Dynamic Systems 

(5.186) 

with ~J and ~ as the respective controller-parameter vectors. The control va­

riables U1 and U2 are given by the controller outputs {JI and {j 2 respectively, de­

layed by the efferent pathway. 

~ Oxygen Require-

----
Oxygen Require-

~ Effective Oxygen Arterio Venous 
ment Function ment Function Deficit Function Oxygen Differ-
Under Workload at Rest enceAVDO, 

~-PA~ 
I 

Arteria I Pulmonary Venai 
Pulmonary ~ Arterioles ----. Pulmonales ~--I 

CAP RP CVP I 
I 

OR ~-- ______ I 

+ PVP+ 

Ventricle Atrium 
"Right Heart" r "Left Heart" 

Atrium ~ Ventricle 

PVS Q, -------
I 
I 
I 

Systemic Systemic I 

~S 
Systemic 

Heart Sinus I:;-~ ... Venae +-- Arterioles Arteriae ~ CVS PR CAS 

1 'f Higher Centers ----- ..... 
(Cortex, Hypo-
thalamus) 

-4 
XR Centers of 

the Medulla 
Baroreceptor Sympathicus 

N.v.x. 
Parasymp. 

N. GLPH.IX 

Fig. 5.10. Block diagram ofthe physiological structure ofthe cardiovascular system 

Using the disturbance input Z, shown in Fig. 5.9, the system can be exited in 
particular with an ergometric workload (EW). 

Consider several cases we first try to identify the contractility of the heart mus­
cle, introduced through the contractility parameters KKL and KKR, as well as the 
tonic activity of the sinus node of the heart, expressed as the transfer constant 
KHF, while the model is exited due to an ergometric workload (EW). KKL and 



5.10 Parameter Identification of the Cardiovascular System* 297 

KKR are defined as the proportionality constants in the relations of the stroke vol­
umes of the left (SVL) and right (SVR) chamber of the heart 

and 

SVL=KKL. VD 
PAS' 

SVR=KKR. VD 
PAP' 

(5.187) 

(5.188) 

which describe the interdependence between the stroke volume of the heart and 
the ratio of the end diastolic filling volume (VD) and the mean pressure of the cor­
responding vascular compartment against which the heart has to stroke. 

Furthermore, the identifiability of the vascular beds compliance parameters will 
be examined. For this purpose the other parameters ofthe system are assumed to 
be known a priori. 

For identification purposes the output-error least squares method was used, 
with N = 95 measurements distributed over the whole identification interval. In 
order to reduce rounding-error effects in the vicinity of the minimum and to avoid 
the computation of gradients, needing a significant simulation time, the error func­
tional is minimized using the Rosenbrock direct search method, rather than a gra­
dient method. The computation for the numerical integration of the differential 
equations 

[

PAS
1 [PAS1 

d PVS PVS 
- =A +V 
dt PAP PAP , 

PVP PVP 

(5.189) 

over the whole identification interval was done using a 5-th order Runge Kutta 
method with variable step length. 

For the first experiment, the identification of the parameters KHF, KKL, and 
KKR is attempted relative to a reduced identification interval of 1 minute length 
and N = 12 equally spaced measurements taken from the model step response. It 
can be seen from Table 5.1 that, by this experiment, only KHF can be identified 
with reasonable precision. KHF is the transfer constant of the tonic activity at the 
sinus node of the heart, influenced by sympathetic changes under an ergometric 
workload, KKL is the contractility constant of the left ventricle, and KKR is the 
contractility constant of the right ventricle. 



298 5 Parameter Identification of Dynamic Systems 

Table 5.1 Results of simultaneous identification of KKL, KKR, and KHF over an interval of 
I min. length and N = 12 equally spaced measurements of the model step response, O'v = 
1 %. The compliance parameter values are given in parameter set (b) of Table 5.2. 

Experiment Parameter True value Initial value Estimated value 
1 KKL 50,00 70,00 44,90 
1 KKR 7,00 10,00 10,40 
1 KHF 0,60 0,30 0,586 

A more detailed examination of the identification results of KKL and KKR 
shows that the exactness of corresponding estimates depends significantly on the 
assumed compliance parameter values. For illustration, the error functional (in lo­
garithmic scale) is shown as a function of KKR, parameterized in KKL in Figs. 
5.11 and 5.12 for the two compliance-parameter sets given in Table 5.2, respec­
tively. 

Table 5.2 Compliance-parameter sets assumed in the model-to-model identification 

Parameter set CASN KCVS KCAP KCVP 
(a) 2,9087 3575,00 51,542 1087,15 
(b) 1,5 371,25 34,361 43,48 

For the compliance-parameter set (a) the error functional is of the form of a 
deep crater over the two-dimensional KKL - KKR parameter space with a unique 
minimum for the true parameter values. If, however, the second set of compliance 

parameters, which is parameter set (b), is assumed, J N (~) is valley-like with the 

line of largest depth showing a small ascent from a unique deepest point at the true 
parameter value. Therefore, fus is identifiable in general, but if the ascent of the 
bottom of the valley reaches zero, the parameters would no longer be identifiable. 
In practice it is very difficult to find the search direction along the valley using the 
Rosenbrock method. Unlike the gradient methods like the Davidon Fletcher Pow­
ell method appear to be not applicable at all because of the valley. If, during the 
minimization procedure, a point of this bottom of the valley is reached, the search 
hangs up, in general. The graphical representation of the error functional shows 
that the identification results obtained can be recognized as points of the bottom 
edge of the valley. 



5.10 Parameter Identification of the Cardiovascular System* 299 

r-----------------~~----------~~--__, 102 
-~i!l2.._-----

~--------------~~,~----------------__;10-1 

"' : \ : 
~----------------·~,~:------------------~10·2 

-------------------i 10-a 

4 .. .. 7 a II 10 11 
KKA • 

Fig. 5.11. Error functional J N (e) as a function of KKR, parameterized in KKL for N = 

12 and compliance parameter set (a) of Table 5.2 

r-----------------------------------------------',0 2 

IN(Q) 

r---------~~~~~--_Y------~~._------~----~100 

~----------~~~_+_r--_;~~------~-~------~10-1 

~------------~~~~----~~~--------------~10-2 

L-,-----~----r_----~--~r_--~----_r----,_--~10-a 

• II 7 II 10 11 12 
KKA, 

Fig. 5.12. Error functional J N (e) as a function of KKR, parameterized in KKL, for N = 

12 and compliance parameter set (b) of Table 5.2. The trace of a typical Davidon Fletcher 
Powell search (DFP) and corresponding Rosenbrock search (R) are shown as dotted lines 



300 5 Parameter Identification of Dynamic Systems 

5.11 Error-Functional Minimization by Gradient Methods· 

Writing the equation-error functional as follows 

J N (~) = t (~)~(~) (5.190) 

= yT Y _2yT M E>+fE»T MT M fe) 
-Meas_Meas _Meas_Meas_ ~ _Meas_Meas~ , 

and if 

(5.191) 

(5.192) 

and 

'Ol.N~) T 
H(8): = , = 2· M "e~.M"e~.' - - o@) _m'~ m'~ 

(5.193) 

are introduced in (5.146), J N (~) can be written in the fonn of the Taylor series 
expansion about {jl= 0: 

(5.194) 

The necessary condition for an extremum of J N (~) yields 

aJN~) = q(O) + H(O)(e) = 0, 
o(§!) -- -- - -

(5.195) 

,N 
hence the expression for E> Min can be written as 

,N _\ 

E> Min = -H q(Q) , (5.196) 

where the argument of H(f2.) has been dropped, due to (5.80), while H is inde­

pendent of ~ . 

Using the Taylor expansion of J N(~) up to the quadratic tenn in the nonqua-

dratic case, in order to receive an approximation of ~:in ' i.e. solving the problem 



5.11 Error-Functional Minimization by Gradient Methods* 301 

The closer ~i is to ~:in the better the approximation of J N (~) through 
A A N A A 

J N (~) at !2Min and the closer the minimum argument !2 = !2i +!, resulting from 

the necessary condition 

8JN (?i+!) = q(8)+H(8)(8_ -8) = 0 8(!2) - _I - _I _I! _I -
(5.198) 

to the minimum argument of J N (~) • From (5.198) we obtain 

(5.199) 

or 

(5.200) 

if the inverse of H (~i) exists. If H (~i) is positive-definite, i.e. H (~i)Q we ob­

tain 

(5.201 ) 

However, 

(5.202) 

is a necessary condition for the convergence of the method based on (5.200) to be 
reached. 

A sufficient condition for Qi+!, generated by the iteration step 

(5.203) 

may be successful in the sense of (5.202) is 

IT. > 0 _I _ (5.204) 



302 5 Parameter Identification of Dynamic Systems 

for a sufficiently small step of length Pi in the search direction 

v. := rr.q(8.). 
_I -' __ I (5.205) 

This means that the modified iteration step in (5.200) 

(5.206) 

will be successful if H (~i) is positive-definite, and if the step length Pi is suffi­

ciently small. When using the Newton Raphson method,pi = I is assumed fixed so 
that even for H (~i ) > Q a successful step is not guaranteed by the sufficient con­

dition mentioned above, but if the functional is quadratic in Q, this method may 

give the optimum solution in one step. If II; = £ is chosen, (5.203) becomes the 

steepest descent iteration which is known to be of very slow convergence in the 
vicinity of the minimum, since, in general, only a very small step length will be 
successful. Optimization methods relying on the iteration of (5.203) are called 
gradient methods. 

5.12 Error-Functional Minimization by Direct Search 
Methods* 

In comparison to the gradient methods, the success of a parameter change relative 
to a chosen search direction in the sense of (5.202) is not known in advance. 
Hence the difference of the functional values has to be calculated only in order to 
decide whether an iterative step was successful or not. This decision may be done 
correctly even if only the sign of the calculated result is correct. 

Due to the fact that the direct search methods do not need the gradient values 
themselves, no restrictions relative to the differentiability properties of J N (~) 

have to be taken into account. This is particularly important if the methods are to 
be applied in the case of nonlinear systems. In spite of this nonlinear system, there 
are possible situations where the direct search methods are unable to improve a 
parameter estimate ~i' although it is still significantly different from the true pa-

rameter vector e RS' and although e RS is locally parameter identifiable in the 

sense of definition 5.8-1. It may be seen that such problems are different from 



5.12 Error-Functional Minimization by Direct Search Methods* 303 

gradient methods, which may be of a principal nature, although parameter insensi­
tivities of the error functional may cause smaller effects, too. 

The direct search methods are comprehensively described in the literature. 
Hence we may restrict ourselves to some principal problems when applying the 
Rosenbrock method. The most basic search method is the so-called relaxation 

method where an initial parameter vector 80 is changed in linearly independent 

directions of the parameter space, mostly the coordinate directions, in a successive 
way. If the change in a direction 

(5.207) 

is successful the search will be continued with the new initial parameter vector de­
fined by 

~o :=~I' (5.208) 

The convergence of this method is slow. Therefore, the more sophisticated 
search methods, e.g. the Hooke Jeeves and the Rosenbrock methods tried to accel­
erate the convergence by continuing the search in a new direction, taking into ac­
count the direction of the overall success of the last iteration step. The successive 
parameter changes along all basis vectors of the parameter space, relative to a pre­
defined criterion, is said to be an exploration step. The result of an exploration, 
which may be a new point in the parameter space, is called a base point. 

The relaxation method may be interpreted as a sequence of simple exploration 
steps to the coordinate basis. When applying the Hooke Jeeves method, a success­
ful exploration step is followed by a search in the direction of the difference of the 
last two base points, followed by a new exploration step in the coordinate basis. 
Using the Rosenbrock method, in comparison, the first exploration step is fol­
lowed immediately by the next exploration step. These strategies are illustrated in 
the two dimensional parameter space in Fig. 5.13, 

From Fig. 5.13 it can be seen, on applying the relaxation method, that the step 
length will be doubled from base point to base point in the case of success, other­
wise multiplied by -0.5, while in the Rosenbrock method, case (c) in Fig. 5.13, 
this strategy is followed in the search of a new base point too. The new point is de­
fined by the property that in every search direction a success was followed by a 
failure. The points Pi in Fig. 5.13 characterize the base points as results of ex pi ora­
tion steps relative to the criteria defined. Noninterconnected points indicate unsuc­
cessful trials. 



304 5 Parameter Identification of Dynamic Systems 

6 0, 

4 
P, 

2 
P, 

2 4 

0, 
6 

4 

2 

2 4 

6 0, 

4 

2 

2 4 

o 

o 

P, 

6 8 

o 

6 8 

o 

P, 

6 8 

o 
P, 

10 

P, 

10 

P, 

10 

(a) 
o 

o 

o 

01 

12 14 

(b) 

01 

12 14 

(c) 

o 

0, 

12 14 

Fig. 5.13: Illustration ofthe relaxation method (a), the Hooke Jeeves method (b) and the 
Rosenbrock method (c) 

Figure 5.14 illustrates a situation in which a direct search method may fail. The 
point ~j is assumed to lie on an edge of the error functional J N (~) which is 

characterized by its lines of constant height forming acute angles along the edge, 

This angle is shown in particular in ~i by crossing tangents of J N (8 i). lfthe 

search directions lie in the shaded area between these tangents, which is the truth, 
i.e. for the coordinate directions in this case an exploratory step can not be suc­
cessful even by using a step length as small as possible. The Rosenbrock method 



5.12 Error-Functional Minimization by Direct Search Methods* 305 

may be only successful in e. if the direction of overall success from the last step, 
_I 

or the basis vector orthogonal to this direction, points into the unshaded area be­
tween the two tangents. Otherwise, it will fail and hang up in e .. 

_I 

A o 2 

10s., 
~----------------------L-~--------+A 

91 

Fig. 5.14: Illustration of a situation where a direct search method in e. fails if the search 
directions lie inside the shaded area. -I 

Remark 5.12-1 
The search directions in the Rosenbrock method change only if at least in two 

of them the last exploration was successful. 

In the example, shown in Fig. 5.14 it was assumed that IN(~) was not diffe­

rentiable along the edge. In this case the gradient methods would not be applicable 
at all. If, in spite of this, the method of the steepest descent were used, the method 
would hang up in ~j because the two possible calculated search directions lie in 

the shaded area. 

Similar problems may appear in the case of a differentiable functional that is 
flat around the minimum point so that the sensitivity of J N (~) , relative to one pa-

rameter, is very small. Such a case is illustrated in Fig. 5.15. In e there is no im-
_I 

provement possible in one coordinate direction O2 at all because it is tangent 

to J N (~) = c1 • In the ~j direction an improvement is relative to the numerical pre-

cision used only realizable if the changes of ~01 are sufficiently large. If the ini-



306 5 Parameter Identification of Dynamic Systems 

tial step length of the exploration is too small, I N (0;) appears as a minimum al­

though ~1 is significantly different from~RS· 

A 

0, 

A 
0, 

Fig. 5.15: Illustration of a situation where a search method may fail because of the insensi­
tivity of the error functional J N (~) relative to a parameter component 

Remark 5.12-2 
This effect becomes even more apparent if the search directions are rotated 

against the coordinate directions, because the possible changes in 8 1 are even 

smaller. This effectively results in a search along a line eli ;:::: constant, without 

any improvement. A wrongly calculated gradient in ~ 1 or too small starting step 

length may cause similar effects when using the gradient methods in such a situa­
tion. 

5.13 Identifiability and the Output-Error Least Squares 
Method* 

The definition of local identifiability, based on the distinguishability of the system 
output, is equivalent to the so-called least squares identifiability. A system is 

called locally least squares parameter identifiable in ~RS if J N (~) has a unique 

minimum at ~ = ~RS • 



5.13 Identifiability and the Output-Error Least Squares Method* 307 

Remark 5.13-1 
In the stochastic case, the distinguishability of the system outputs may be de­

fined by the distinguishability of the probability densities of the output. 

If J N (~) is calculated for a sufficiently large N relative to one coordinate ~ j , 

it is possible to test the property of identifiability due to these two parameters by 
searching for a unique minimum, without the necessity of determining the exact 

~ N ~ 

value of e Min. If it is, in principle, possible to estimate ~RS consistently with a 

sufficient small variance for the chosen N, i.e. if N is large enough, this may only 
be the case if J N (~) shows the unique local minimum, stated by the equivalence 

of output distinguishability and least squares identifiability. 

Remark 5.13-2 
The local identifiability of a system, relative to a linearized nonlinear model, 

implies identifiability of the original nonlinear system due to the linearization. 
Since the linearization of a complex model may be involved, the computer-aided 
determination of identifiability is of great importance. 

A graphical representation of J N (~) in the vicinity of the local minimum also 

allows a pseudominimum to be detected, which is a minimum pretended by the 
minimization algorithm. 

Due to the possibility of a systematic or random variation of the search directi­
ons for successfully continuing the search, hanging up in a pseudominimum, it 
may be possible to vary the initial parameter values in order to find a possibly 
closer approximation of the true minimum, i.e. a smaller value of the error func­
tional. Hence the detection of pseudominima will become of importance since the 
numerical results may have similar characteristics in the case of a really unidenti­
fiable system. This may be demonstrated based on the model given in equation 
(5.146) with the assumption of noise-free measurements Y Meas. k = Yk. In this case, 
the identification model is represented by 

~ ~ ~ 

Y.:+l = (01 + 0 3 )y': + 0Pk , (5.209) 

for which no unique equation-error identification solution exists as a consequence 
of the fact that the matrix AI'-l in 

(5.210) 

i.e. in 



308 5 Parameter Identification of Dynamic Systems 

1'; l Y, 

UO 

}J::1 
(5.211) 

1'; 1'; UI 

YN 

= Y
N

-
I UN _I 

has no full rank. Disregarding the numerical minimization method, applied to the 
equation-error least squares problem, as a best case an element of the infinite solu­
tion set 

(5.212) 

may be found. On the other hand, the particular solution, as an element of this set, 
depends on the initial parameter vector for the iteration and the special strategy of 
the method chosen for minimization purposes. In the more general case of a non 
linear model, e.g. of 

(5.213) 

the solution set would be characterized by the condition 

(5.214) 

If the corresponding parameter set is infinite, the system may be unidentifiable 
relative to this model, and the error functional J N (~) forms a valley along this 

set. 

Remark 5.13-3 
A system, identifiable in principle, may appear practically unidentifiable if 

J N (~) is valley-based over the parameter space, due to the insensitivity of the er­

ror functional along this valley. 

5.14 References and Further Reading 

Aoki M, (1971), Introduction to Optimization Techniques, McMillan Company, 
New York 
Bard Y, (1974), Nonlinear Parameter Estimation, Academic Press, New York 



5.15 Exercises 309 

Hsia TC, (1977), System Identification, Lexington Books 
Iserman R, (1974), Process-Identification (in German), Springer, Berlin, Heidel­
berg, New York 
Jacoby GLS, Kowolik Jg, Pizzo JT, (1972), Iterative Methods for Nonlinear Op­
timization Problems, Proentice Hall Publ., New Jersey 
Moller DPF, (1992), Modeling, Simulation and Identification of Dynamic Systems 
(in German), Springer, Berlin, Heidelberg, New York 
Moller DPF, Popovic D, Thiele G, (1983), Modeling, Simulation and Parameter­
Estimation of the Human Cardiovascular System, Vieweg Publ., Braunschweig, 
Wiesbaden 
Richter 0, Sondgerath D, (1990), Parameter Estimation in Ecology, VCH Publi­
shers, Weinheim 
Rufer DF, (1977), General Purpose Nonlinear Programming Package, In: Lecture 
Notes in Control and Information Sciences, Springer, Berlin, Heidelberg, New 
York 
Wong KY, Polah E, (1967), Identification of Linear Discrete-Time Systems Using 
the Instrumental Variable Method, In: IEEE Trans. Automat. Control, Vol 12, 
pp.707-718 

5.15 Exercises 

5.1 What is meant by the term parameter identification? 
5.2 Give the models for the direct and the adaptive parameter identification 

schemes. 
5.3 What is meant bysaying a real-world system is called identifiable in its 

parameters? 
5.4 The identification model of the identification task can be described by a set of 

linear differetial equations. Give the mathematical description for a p­
dimensional parameter vector and define the polynomials A(q-l) and B(q-l). 

5.5 What is meant by the term true model? 
5.6 A method for identifYing the system parameter vector is characterized by the 

error criterion. For the output-error least square method what does the error 
criterion look like? 

5.7 What is meant by equation-error least squares method? 
5.8 Give a model for the equation-error criterion realized by the use of the true 

model and an identification model. 
5.9 What is meant by the term consistency of the parameter estimates? 
5.l0 Give an example of the generealized least squares method. 



310 5 Parameter Identification of Dynamic Systems 

5.11 Give an example of the maximum-liklehood method. 
5.12 What is meant by the term identifiability? 
5 .13 Describe the error functional for monimization by using the gradient method. 
5.14 What is meant by the term direct search method? 
5.15 The most basic search method is the relaxation method. How does this 

method works? 
5.16 Explain the Hooke Jeeves search method. 
5.17 Explain the Rosenbrook search method. 
5.18 Explain the Davidon Fletcher Powel search method. 
5.19 Compare the search methods mentioned in Exercises 5.14 to 5.18 as fit, fitter, 

and fittest for use in nonlinear parameter identification. 

5.20 The identification model Y meas ,k = m ~eas ,k-l e + e k can be reformulated 

for the case of the one-step-ahead-prediction (OSP). Give the formula for 

Yk' 



6 Soft-Computing Methods 

6.1 Introduction 

The formalizations of modeling are only useful if they succeed in seizing the es­
sential features of the dynamic system under test. They permit extrapolations that 
allows one to generalize, often correctly, from past experience to future events 
from which we can learn how the dynamic system can be manipulated for ones 
purposes, which is a kind of uncertainty. In our world, which is more or less pre­
cisely understandable or predictable, we are more conscious of uncertainty. This 
uncertainty appears in the form of imprecision, vagueness, and ill-defined, ill-se­
parable, and doubtful data. Using nonprecise information, called soft-information, 
needs a specific form of computation, called soft-computing. There are four main 
classes of methods that form soft-computing: 

• Neural networks 
• Fuzzy logic 
• Genetic algorithms 
• Probabilistic reasoning 

Although each of these classes of methods can be used to resolve certain types 
of applications, they are in fact complementary to each other, and in many cases it 
can be better to employ them in combination rather than exclusively. 

Usually, the approaches in uncertainty, combining soft information with classi­
cal mathematical methods in an ad hoc manner, can be investigated by using simu­
lation to show the validity of the approaches to the specific problem under test. 
Therefore, during past years, processing of uncertainty, or soft-information proc­
essing, had been applied due to the different disciplines for a large variety in for­
mal representations of models in the different scientific domains. But this task has 
become its own view, impressed by the respective domain. Introducing for those 
formalizations, soft-computing techniques, one can impart an understanding that 
the formalization itself can not provide. Because soft-computation is more of a 
simulation science discipline, it is a collection of methods that can be expressed in 
terms of algorithms, belonging to the respective disciplines, that has proved to be 
of vital importance to progress in all fields of endeavor. 

In practice, the formalization of models itself is an iterative process, as intro­
duced in Chap. I, consisting of measurements, if possible, and computing strate­
gies, by changing the structure of the formal description in an effort to closely 

D.P.F. Moeller, Mathematical  and Computational Modeling and Simulation Fundamentals

and Case Studies  © Springer-Verlag Berlin Heidelberg 2004



312 6 Soft-Computing Methods 

match the complex system behavior. The computing strategy behind this is based 
on the category in the nearest-neighbor sense, if the adapted representation is close 
enough to the previous one. In fact, the formalization has served its purpose when 
an optimal match is obtained between the computed results and the data obtained 
from the investigated real-world system. 

Soft-information processing in modeling and simulation generate the basic in­
sight that categories are not absolutely clear cut; they belong to lesser or greater 
degree to that category. Hence, soft-computing systems break with the tradition, 
that the real world can be precisely and unambiguously characterized, which 
means divided into categories, and then manipulating these formalizations accord­
ing to precise and formal rules. From the mathematical point of view soft-compu­
ting means multivaluedness or multivalence. Logical paradoxes and the Heisen­
berg uncertainty principle led to the development of multivalence, and in the 
1930s quantum theorists allowed for indeterminacy by including a third or middle 
truth value in the bivalent logical framework. In 1965, the American systems sci­
entist Zadeh, born 1921 in Baku in Azerbaijan, introduced the term fuzzy into the 
literature, and inaugurated a second wave of interest in multi valued mathematical 
structures - from systems to topologies. 

6.2 Fuzzy Logic 

The classical two-valued logic represents the meaning of a proposition as true or 
false. It is possible to combine simple propositions through the use of operators 
such as and, or, and not, into more complex ones. Whether this new resulting pro­
position is true or false depends not only on the truth of each simple proposition, 
but also on the connectives used. Several propositions may be used to perform 
reasoning, but the kind of logic we need is not classical logic, it is fuzzy logic. 
This is because classical logic can not represent a proposition with imprecise 
meaning. However, in fuzzy logic, which can be viewed as an extension of multi­
valued mathematical structures, a proposition can be true or false and have an in­
termediate value such as very true or less false. In general, fuzzy logic is con­
cerned with formal principles of approximately reasoning, while classical two­
valued logic is concerned with formal principles of reasoning, as systems scientist 
Zadeh mentioned in 1965, introduced the term fuzzy into the literature, and inau­
gurated a second wave of interest in multi valued mathematical structures - from 
systems to topologies· - extending a bivalent indicator function iA of nonfuzzy 
subset A of X to a multivalued indicator or membership function mAX~[O,I]. 
This allows one to combine multi valued or fuzzy sets with the point wise opera­
tors of indicators functions for the large variety of fuzzy-logic systems. 

Let X be a collection of objects denoted generically by x; that is, X = {x}. A 
fuzzy set A in X is a set of ordered pairs: 

(6.1) 



6.2 Fuzzy Logic 313 
where JA(x) is the generalized form of a membership function that associates with 
each x E X a real number in the interval [0, I]. The value JA(x) indicates the grade 
of membership of x in A. WhenJA(x) = I, it means that x strongly belongs to A. As 
the value of JA(x) gets close to zero, the grade of membership of x in A becomes 
lower, while a value JA(x) = ° indicates x does not belong to A. 

Example 6.1 
A classed set A of real numbers greater than 8 can be expressed as 

(6.2) 

where there is a clear, unambiguous boundary 8 such that if x is greater than this number, 
then x belongs to the set A; otherwise x does not belong to the set. 

If X is a collection of objects denoted generically by x, then a fuzzy set A in X is 
defined as a set of ordered pairs, as follows: 

A = {(x,,uAx)~x E X}, (6.3) 

where flA(X) is called the membership function for the fuzzy set A. The member­
ship function maps each element of X to a membership grade (or membership 
value) between ° and 1. 

Example 6.2 
Let X = {Berlin, Hamburg, Stuttgart, Munich} be the set of cities one may chose to live 

in. The fuzzy set C = desirable city to live in can be described as follows: 

C = {(Berlin,0.75XHamburg,0.5XStuttgart,0.5XMunich,0.75)}. (6.4) 

Apparently the universe of discourse X is discrete and it contains nonordered objects, 
four big cities in Germany. 

The membership functions should be designed in such a way that they model 
precisely observed values in the real world. However, often, it is difficult to derive 
membership functions with such characteristics. In practice, membership functions 
are often defined based on the data collected from measures or from experiments 
and a set of well-shaped functions. The most commonly used membership func­
tions are: 

• Linear membership function, which is specified by two parameters {a, b} 
as follows: 



314 6 Soft-Computing Methods 

x-a { 

O;x::; a 

J.iL(X)= --;a::;x::;b 
b-a 

l;x~b 

(6.5) 

• Piecewise linear or triangle membership function, which is specified by 
three parameters {a, b, c} as follows: 

O;x::;a 
x-a 
--;a::;x::;b 
b-a J.ip(x) = 

(6.6) 

• Trapezoidal membership function, which is specified by four parameters 
{a, b, c, d} as follows: 

O;x::;a 
x-a 
--;a::;x::;b 
b-a 

J.iT(X) = l;b::; x::; c 

d-x 
--;c::;x::; d 
d-c 

O;x~d 

(6.7) 

An alternative concise expression of the trapezoidal membership function using 
min and max is 

( ( x-a d-X)) Trapezoidal(a,b,c,d) = max min --, 1 ,-- , 0 . 
b-a d-c 

(6.8) 

The parameters {a, b, c, d} with a < b ::; c < d determine the x coordinates of the 
four comers of the underlying trapezoidal membership function. 

• S-membership function, which is specified by three parameters {a, b, c} 
as follows: 



O;x~a 

x-a 
2(--)2;a:'S:x:'S:b 

c-a 
x-c 

1-2(--)2;b:'S:x:'S:c 
c-a 

l;x ~c 

6.2 Fuzzy Logic 315 

(6.9) 

In the preceding functions a, b, c, and d are some constants, where 

a:'S:b:'S:c:'S:d. (6.l0) 

In real-world systems the union and the intersection of two fuzzy sets A and B 
are often used, describing the model behavior. 

The union of two fuzzy sets A and B is a fuzzy set C, written as C = AuB, 
whose membership function is defined by 

Jiu(x) = max{JiAx),JiB (x)}; x EX, (6.l1 ) 

called the maximum of the fuzzy sets or T -conorm maximum operator, the model 
of which will use fuzzy sets as follows: 

A or fUzzy set B . (6.l2) 

The intersection of two fuzzy sets A and B is a fuzzy set C, written as C = AnB, 
whose membership function is defined by 

(6.13) 

called the minimum of the fuzzy sets or the T-norm minimum operator, the model 
of which will use fuzzy set as follows: 

A and fuzzy set B . (6.l4) 

In practice, fuzzy relations are of importance. A fuzzy relation is a fuzzy set de­
fined on the Cartesian product of crisp sets XI. X2, ... , Xn, where tuples (XI. X2, .•. , 

xn) have varying degrees of membership within the relation. Two binary relations 
can be combined to produce a new binary relation, called composition. Given the 
binary relations P(X,Y) and Q(Y,Z), their composition R(X,Z) is represented as 

R(X,Z) = P(X,y)oQ(Y,Z). (6.15) 



316 6 Soft-Computing Methods 

The relation R(X,Z) is a subset of the Cartesian product of X and Z, where 
(x,z)ER ifand only if there exists at least one YEY such that (X,Y)EP and (y,Z)EQ. 

There are different ways for calculation of the composition. The most well­
known method is the max-min composition. Given R(X,Z) = P(X, y) 0 Q(Y,Z), the 
max-min composition can be thought of as the strength of the relational tie be­
tween elements X and Y. For this type of composition, the membership degree for 
each tuple (x, Y)ER is defined as follows: 

f.1R(X,Z) = max{mirlPAx, Y),f.1Q(y,z)Thx EX,Z EZ. 
)'EY 

(6.16) 

Two of the main concepts that play an important role in many applications of 
fuzzy logic are the concepts of linguistic variables and fuzzy if-then rules. A lin­
guistic variable is a variable whose values are words or sentences in a language. 
The set of the linguistic values of a linguistic variable is called a term set. In gene­
ral, fuzzy if-then rules can be represented as 

if XI is Al and x2 is A2 and ... xn is An 

then YI is BI and Y2 is B2 and ... Yn is Bm 

(6.17) 

where x], X2, ... , Xn. Y], Y2, .,., Ym are linguistic variables, and A], A2, ... , An, B], B2, 
.. " Bm are their respective linguistic values. 

The importance of the calculus of fuzzy if-then rules results from the fact that 
much of the human knowledge lends itselfto representation in the form of a hier­
archy or fuzzy if-then rules. Furthermore, the inference mechanisms in the calcu­
lus of fuzzy if-then rules are relatively simple and in harmony with the modes of 
human reasoning, which are approximate rather than exact. As a consequence the 
calculus of fuzzy if-then rules is easy to master and apply. 

6.2.1 Pure Fuzzy-Logic Systems 

The basic configuration of a pure fuzzy-logic systems is based on the fuzzy rule 
base, which consists of a collection of fuzzy if-then rules, and the fuzzy-inference 
mechanisms that uses these fuzzy if-then rules in order to determine a mapping 
output universe of discourse U c Rn to fuzzy sets in the output universe of dis­
course VcR based on fuzzy-logic principles. Fuzzy if-then rules are of the fol­
lowing form: 

R(k): IF XI is AI(k) AND ... AND xn is A~k) THEN Y is Bk , (6.18) 

where Aj(k) and B/k) are the respective fuzzy sets, X = (x], ... ,xn? E U and Y E V are 
input and output linguistic variables, respectively, and k = 1,2, ... ,1. 



6.2 Fuzzy Logic 317 
Each fuzzy if-then rule defines fuzzy set A](k) x], ... , xn An(k) ~ B(k) in the prod­

uct space U x V. Let A be an arbitrary fuzzy set in U, then the output determined 
by each fuzzy if-then rule of (6.1) is a fuzzy set A 0 R(k) in V whose membership 
function is 

(6.19) 

with· as operator that can be MIN, MAX, PRODUCT, or others. JlA is used to 
represent the membership function of a fuzzy set A. 

The final output of a pure fuzzy-logic system is a fuzzy set A 0 (R], ... ,Rn (k») in V 
that is a combination of the respective fuzzy set. Hence a pure fuzzy-logic system 
constitutes the essential part of fuzzy-logic systems as a general framework in 
which linguistic information is quantified and fuzzy-logic principles are used to 
realize systematic use of linguistic information. 

6.2.2 Takagi and Sugeno fuzzy logic systems 

Instead of considering fuzzy if-then rules in the form of (6.1), Takagi and Sugeno 
proposed the Sugeno fuzzy model in an effort to develop a systematic approach to 
generating fuzzy rules from a given input-output data set, using fuzzy if-then rules 
in the following form: 

(6.20) 

where Aj(k)are fuzzy sets, Cj are real-valued parameters, called crisp values, i k) is 
the Takagi-Sugeno fuzzy system output due to the rule L(k), and k=1,2, .. .l. That is, 
they considered rules whose if-part is fuzzy but whose then-part is crisp. For a 
real-valued input vector x = (x], ... , xn) T, the output y(x) of a Takagi Sugeno fuzzy 
systems is a weighted average of y(k): 

/ 

LW(k)/k) 

y(x) = -,,-k==]-:-/ -­

LW(k) 

(6.21) 

where weight w(k) implies the overall truth value ofthe premise of rule L(k) for the 
input and is calculated as 

W(k) = IT JLA?)(xJ , (6.22) 
;=1 



318 6 Soft-Computing Methods 

which is shown in the rule base L(k) for example 

£1) : if 4 is 4(1) and , ... , xn is ~I) theny<l) = C~I) + c}l\ + '''., c~l)xx 

l1P)y(\) 

--+ y(X}EV 
l.J:kly<k) 

J5k):if 4 is 4(k) and '''., xn is ~k) theny<k) = ~k) + C~k\ + '''., C~k)xx 

(6.23) 

6.2.3 Fuzzy-Logic Systems with Fuzzification and Defuzzification 

Compared to the pure fuzzy-logic system of Sect. 6.2.1 we now add a fuzzifier to 
the input and a defuzzifier to the output of the pure fuzzy-logic system. The fuzzi­
fier maps crisp points in U to fuzzy sets in U, and the defuzzifier maps fuzzy sets 
in V to crisp points in V. The fuzzy rule base as well as the fuzzy-inference mecha­
nisms are called the fuzzy-inference engine, and are the same as those shown in 
Fig. 6.1 for the pure fuzzy-logic system. 

XinU yin V 

Fig. 6.1. Fuzzy system with fuzzifier and defuzzifier 

6.2.4 Fuzzy Modeling of a Soccer Playing Mobile Robot 

Soccer playing robots are being used in education to foster understanding and in­
terest in artificial intelligence, multimodal systems, engineering, and science in 
order to solve complex problems through active learning comprehensive knowled­
ge undergoing real-world applications. RoboCup, previously known as the Robot 
Cup World Initiative, has initiated a broad international program of research and 
education, which has the aim to promote artificial intelligence and intelligent robot 
research by providing a simple problem to be solved by the integration of different 
technologies and the collaboration of various resources. The idea to have soccer­
playing mobile robots dat~s from 1993, with the first official conference and tour-



6.2 Fuzzy Logic 319 
nament held in Japan four years later in 1997. There are some mobile robots used 
for soccer, which are remotely controlled. These robots cannot be categorized as 
autonomous robots, as these systems do not behave autonomously. Mobile autono­
mous robots are systems that do not need any guidance. They are programmed to 
work in a specific environment and they work independently. As a mobile autono­
mous robot did not had any clear solutions to offer for industries they have been 
mostly developed in research laboratories for very specific task execution, like 
pathfinder. The very first mobile autonomous systems was developed in 1968 by 
the Stanford Research Institute. Today the Lego® Mindstorms™ are very conve­
nient to use for mobile autonomous robots. 

To represent how fuzzy logic can be used in a control system, an example for 
moving a soccer-playing mobile robot, is discussed. Fig. 6.2 shows the playground 
with several mobile robots. 

From a more general point of view the position of the mobile robot movement 
is determined by two linguistic variables, the direction angle, denoted as a, and 
the distance from the object, which is for a soccer-playing robot the ball, denoted 
as x. The direction of the mobile robot movement, denoted as fl, is determined by 
the angle of the wheels steering position. For a given initial mobile robot position 
within the specific area, the soccer playground, the goal for the mobile robot is to 
move toward the center of the ball. The desired final position is to let the mobile 
robot moving the ball on a track toward the goal. a, fl, and x are the respective lin­
guistic variables for this purpose. To each of these linguistic variables, a set of lin­
guistic values can be assigned as follows: 

Table 6.1. Distance variables 

Distance x Input variable 
L left side of the track toward the goal 
C center of the track toward the goal 
R right side of the track toward the goal 

Table 6.2. Direction angle variables 

Direction angle a Input variable 
N north direction toward the goal 
W west direction toward the goal 
S south direction toward the goal 
E East direction toward the goal 

Table 6.3. Wheels angle variables 

Wheels angle f3 Output variable 
TR turn right toward the goal 
SF straight forward toward the goal 
TL turn left toward the goal 

As shown in Fig. 6.3, a range of numerical values can be assigned to each lin­
guistic value of a linguistic variable. In Fig. 6.3, each graph, called a membership 
function, indicates the degree to which an input value belongs to a particular lin-



320 6 Soft-Computing Methods 

guistic value. Such a degree of membership ranges from 0 to 1. The value 0 indi­
cates no membership, and the value 1 represents full membership. Hence a value 
between 0 and 1 represents a partial membership. 

Fig. 6.2. Soccer playing mobile robots 

1iY)(lL C R 1 

1 . 1 

O~ 
-20 -10 0 10 20 

Distance (x) 

1E N W S E 

ot><XX><J 
90 180 270 360 

Direction angle (a) 

1~TL SF TRI 

1 1 
01 1 

-20 -10 0 10 0 

Wheel angle (~) 

Fig. 6.3. Membership functions for the distance x, direction angle a, and wheels angle p 

Based on the steering and control concepts of the different chassis construction 
such as mobile robots with small maneuver space, or such as a 3-wheel-driving 
system, or such as a mobile robot system using 2 or 4 wheels, the driving system 
of the soccer playing robot uses 2 wheels as shown in Fig. 6.4. 



6.2 Fuzzy Logic 321 

Fig. 6.4. Steering-strategy and control of a specific chassis construction for a soccer play­
ing mobile robot 

The rules have to be defined, describing the dynamic behavior of the soccer 
playing robot. In general, each rule produces some output linguistic values based 
on some input linguistic values. In the case of the mobile robot, some of the rules 
can be defined as 

ifa 

ifa 

ifa 

N and x 

N and x 

N and x 

L then fJ = TR (6.24) 

C then fJ SF 

R then fJ TL 

These rules can be extended to consider all the possible values for a; thus there 
will be 12 rules in all, which can be represented in the fuzzy associative memory 
(FAM), shown in Fig. 6.5. 

Table 6.4. F AM set of rules for determining the mobile robot movement 

Distance x 
L C R 

N TR SF TL 
Direction a W TR TR SF 

S TL TL TR 
E SF TL TL 

For given input values for x and a, the fuzzy-logic controller can determine an 
output value for ~, the angle of the steering wheel(s). For this purpose, foreach 
input value the fuzzy controller determines the membership degree of its corres­
ponding linguistic values. As a next step, for each rule, as shown for example in 
Table 6.1, the minimum of the membership degrees of its antecedents is chosen as 
a membership degree for the rules consequent, which is considered as a weight for 



322 6 Soft-Computing Methods 

the rules consequent. When there is more than one membership degree for a con­
sequent, the MAXIMUM operator is chosen for that consequent. Hence the mem­
bership degree is assigned to each linguistic value. If a crisp output is required 
from the fuzzy rule base rather than the fuzzy output set, a process called defuzzi­
fication is used to compress this information. The crisp output is generally ob­
tained using a mean of maxima or a center of gravity defuzzification strategy. The 
most widely adopted method for defuzzifying a fuzzy set A of a universe of dis­
course Z, is the centroid defuzzification or center of gravity method, which is 
based on the centroid of area ZeOA 

ZCOA = 
,k,uA (z)zdz 

,k,uA(z)dz ' 

(6.25) 

where JiA (z) is the aggregated output of the membership function and ZeOA is the 
control output, which equals the fuzzy centroid of A, where the limits of integra­
tion correspond to the entire universe of discourse Z of angular values of the steer­
ing wheel(s) velocity values. 

The center of gravity method, COG, provides a weighted average of aUlinguis­
tic output values. A simplified calculation is as follows: 

n 

Lci·Li 
COG = ...::i=:::..' __ 

rL 
i=1 

(6.26) 

where the L j are the weights of linguistic output values and the Cj are the weighting 
factors. 

As an illustration of the information process between the fuzzification and de­
fuzzification, Fig. 6.6 shows the signal flow through a continuous fuzzy-logic sys­
tem using the center of gravity defuzzification method. There exist p multivariate 
fuzzy input sets and q univariate fuzzy output sets. 

Example 6.3 
Let the starting point of the mobile robot be at direction x = -10.0, and the direction an­

gle a = 90°. For these initial values the membership degree of the linguistic input values are 
for the distance x = -10: fiL = 1.0; fie = 0; fiR = 0, and for the direction angle a = 90°: fiN = 

1.0; fiw = 0; fis = 0; fiE = O. Combining distance and direction, as shown in the fuzzy asso­
ciative memory in Fig. 6.5, with the respective membership degree fii for each rule conse­
quently results in the membership matrix, shown in Fig. 6.7. 

Table 6.5. Membership degree for each F AM rule based on the initial conditions 

Ir I~ I~ I~ 



IE 10 10 
6.2 Fuzzy Logic 323 

10 

The system output-value calculation can be evaluated by using the center of 
gravity method, and the MAX operator, while there is more than one membership 
degree, as follows: 

COG= «20.0· MAX(PTR(·» + (-20.0· MAX(PSFO) + (0.0· MAX(pTL (.») (6.27) 
MAX(PTRO) + ~(PSF(·» + MAX(pTL 0) 

In this formula the maximum degree of each of the four membership degrees is 
chosen, 1.0 for TR, and 0.0 and 0.0 for ST and TL, respectively. Based on these 
degrees we finally receive the mobile robot system output value as follows: 

COG= (20.0 ·1.0) + (-20.0·0.0) + (0.0·0.0) = 20.0 . 
1.0 

(6.28) 

That is, that the wheels of the mobile robot will turn to the right with an angle 
of 20.0°. The robot moves for a short distance and then the process repeats for the 
new position. 

fuzzy 
intersection 
(AWO) 

fuzzy implification 
(IF-THEN) 

Fig. 6.6. Information flow through a continuous fuzzy system with p multivariate 
fuzzy input sets and q univariate fuzzy output sets 

Example 6.4 
Let the slope of a terrain range between -45 and +45 degrees, which can be divided into 

several memberships in between large negative and large positive. We will further assume 
that the terrain can vary between very rough, rough, moderate, and smooth, and the output 
speed of the fuzzy-logic system may range between 0 and 20 mph, divided into very slow, 



324 6 Soft-Computing Methods 

slow, medium, fast, and very fast. The rules of the fuzzy-logic mobile robot system are as 
follows: 

iJslope is large-positive and terrain is very-rough 

then speed of the robot is very-slow 

iJslope is large-positive and terrain is rough 

then speed of the robot is slow 

iJslope is large-positive and terrain is moderate 

then speed of the robot is medium 

iJslope is large-positive and terrain is smooth 

then speed of the robot is high 

iJslope is positive and terrain is very-rough 

then speed of the robot is slow 

iJ speed is positive and terrain is rough 

then speed of the robot is medium 

iJslope is positive and terrain is moderate 

then speed of the robot is slow 

iJ··· 

Using the fuzzy logic toolbox of MAT LAB SIMULINK, one can customize the 
fuzzy system adapted to the needs of the specific application. Customizing the 
membership function is based on using an M-file. To define a membership func­
tion one has to follow the guideline, given in "Fuzzy Logic Toolbox, Users Guide 
Version 2, The Mathworks". Constructing rules can be done using the graphical 
Rule Editor interface, as described in the "Fuzzy Logic Toolbox, Users Guide 
Version 2". For example to insert rules in the Rule Editor proceed as follows: 

large-positive under the variable slope 
very-rough under the variable terrain 
the ratio button and in the connection block 
very-slow under the output variable speed 

The resulting rule is: 

if slope is large-positive and terrain is very-rough 
then speed of the robot is very-slow. 

6.2.5 Fuzzy Modeling of a Wastewater Treatment Plant* 

Wastewater treatment plants are constructed on data, obtained from a priori know­
ledge, on-line, and laboratory side measures, as well as from tank models. In 1983 



6.2 Fuzzy Logic 325 
the IA WPRC (International Association on Water Pollution Research and Control) 
formed a task group to facilitate the application of mathematical models for the 
design and operation of biological wastewater treatment plants. The models, 
which are developed for single-activated sludge systems performing carbon oxida­
tion, nitrification, and denitrification, are representing complex biological pro­
cesses, as shown in Fig. 6.8 (see Example 4.15 in Sect. 4.3.5). 

The model includes several fundamental processes such as aerobic growth of 
heterotrophic biomass - meaning different kinetic states - anoxic growth of het­
erotrophic biomass, aerobic growth of autothophic biomass. The increase in water 
quality demands results in the construction of different reactor types for waste wa­
ter treatment plants, the most common ones are the three-stage reactor types, as 
shown in Fig. 6.9. 

Oxidation / 
Adsorption 

Surplus Back 
Sludge Sludge 

Nitrification 

Bypass 

Recirculation 

Denitrification 

Outflow 

Air 

Back Sludge 

Fig. 6.8. Model of a wastewater treatment plant with oxidation, nitrification, and denitrifi­
cation processes 

1. Stage 2. Stage 

'-------IMixer'I+---------< S 

S = Separation 
PB = Packed bed 

3. Stage 

Fig. 6.9. Model of a wastewater treatment plant with three-stage reactor type 

While short-term, mid-term and long-term behavior of wastewater treatment 
plants influence the measurement accuracy as well as the measures themselves, 
modeling and simulation are of importance when designing optimized wastewater 



326 6 Soft-Computing Methods 

treatment plants. Qualitative modeling, which describes the relations of the several 
processes of a wastewater treatment plant in the context of a fuzzy-logic system 
approach, is a way to handle vagueness and ill-defined systems. The fuzzy-logic 
approach covers fuzzification and defuzzification. Inferences can be deduced from 
the analysis of the real-world process. The rule-based reasoning system represents 
an adequate state transition description of the complex nonlinear system behavior, 
which can not be solved using common algebraic equations. Using fuzzy-logic 
control systems, the design and operation of wastewater treatment plans can be­
come more efficient. The goal of using fuzzy-knowledge-based controllers in sin­
gle-sludge wastewater treatment plants is based on the purpose of how to achieve 
the following objectives 

• Removing significant errors in the systems output by appropriate adjust­
ment of the systems control output 

• Preventing the systems output from exceeding constraints 
• Producing control in a close vicinity of the set-point-area 

The rule base of a fuzzy-knowledge-based controller can be divided into two 
groups of rules: 

• Active rule groups, i.e., incremental change in control output, determined 
by the rules applied for every time slot 

• Constraint rules, which become active only when the systems output is 
within the constraint bounds 

Fuzzy if-then rules can be represented in the form shown in Table 6.1. Based 
on real-world measurements, a fuzzy-logic model of a gas fumance can be de­
rived, the input is the methane feed rate, and the output is the CO2 concentration in 
the outlet gases which can consist of rule sets in the following semantic notation: 

if the current CO2 concentration is medium 
and the previous methame feed rate was low 
then the next CO2 concentration will be high 

In contrast for a fuzzy-knowledge-based controller the if-then rules for this pro­
cess result in: 

if the previous CO2 concentration was medium 
and the current CO2 concentration is high 
then change the methane feed rate with a small increase 

Next, similar to an expert system, a set of rules has to be defined. In general 
each rule produces some output linguistic values based on some input linguistic 
values. For example, this rule can be transformed into a general semantic fuzzy­
controller syntax. A simplified representation of which is as follows: 

if e is low and edot is zero then system output is low 



6.2 Fuzzy Logic 327 
if e medium and edot is zero then system output is medium 

if e is high and edot is positive then system output is medium 

where e denotes the error, and edot the change of error, for the chosen PI-fuzzy­
knowledge based controller. 

Based on these rules, a fuzzy-knowledge-based controller for optimal control of 
a single-sludged wastewater treatment plants can be derived and tested based on 
modeling and simulation in order to keep the system optimally controlled due to 
its different boundary conditions. The single-sludge wastewater-treatment plant 
models, expanded by the fuzzy-logic-knowledge based controller, can be integra­
ted in an object-oriented modeling and simulation environment, meaning that it 
will be possible to create new models using inheritance mechanisms, applied to 
the object-oriented models data base, suited to a specific problem by means of in­
heritance and refinement. Based on such a data base, an object-oriented modeling 
and simulation toolbox has to be created that supports engineers in the design 
process of adaptive control of single-sludge wastewater-treatment plants, with 
embedded fuzzy-logic controller systems, i.e. to solve problems dealing with 
wastewater-treatment plants like aerobic bulking. 

6.2.6 Fuzzy-Logic Control System* 

Fuzzy control is the industrial application domain of fuzzy-logic. The basic archi­
tecture of a fuzzy controller consists of an inference engine that operates on pro­
portional and derivative input signals, and produces an output that is either the 
control action or the calculated change in control. Thus it works as either a P (pro­
portional), a PD (proportional and derivative), a PI (proportional and integral), or 
a PID (proportional, integral and derivative) controller. For a learning fuzzy con­
troller, the learning layer, which is built around the fuzzy controller, acts as a 
critic, assessing the current state of the plant and recommending changes to the 
control signal via the performance index and the model. 

The pure fuzzy controller operates by measuring the current deviation of the 
plant from the desired set point, producing an error, and the change in error, the 
derivative, is given by the difference between two successive errors. Other inputs, 
such as an integral term, can be included as inputs to the rule base, although it is 
sufficient just to consider the two variables. Both inputs are multiplied by the sca­
ling or gain factors GE and GCE, which can be used to alter the gain of the sys­
tem, where GE represents the gain of the proportional part of the controller, and 
GCE represent its integral part, while E and C represent the input signal the capa­
citor. respectively. The input membership functions for the pure fuzzy controllers 
are defined on a discrete input space, hence a quantization layer is necessary, 
which maps each scaled input to an integer, and fuzzy input membership functions 
are then defined on this space. A control action is calculated, e.g. based on a 
fuzzy- reasoning algorithm, after being scaled by the factor GU, the control is ap­
plied to the plant, by means of look-up tables, and any old rules are modified 
when the plant not operating is required. This process can be repeated for a range 



328 6 Soft-Computing Methods 

of different step inputs until the plant is operating satisfactorily. The pure fuzzy 
controller with an add-on adaptive learning mechanism is shown in Fig. 6.10. 

The fuzzy controller is able to control systems that previously could only be 
controlled by skilled operators such as in power plant systems, process engineer­
ing control, chemical engineering control, etc. 

Learning mechanism 
--------------------------~ 

1 
performance 1 

index 1 

controller 

1 
1 

- ____ - _________ 1 

Fig. 6.10. Pure fuzzy-control architecture with add-on learning mechanism 

Example 6.5 
A popular nonlinear fuzzy control problem is the inverted pendulum. Let the pendulum 

be positioned by a joint on top of a mobile system, as shown in Fig. 6.11, where I is the 
length of the pendulum shaft, ms is the mass of the pendulum shaft, m is the mass of the 
mobile system, F(t) is the pulling force of the mobile system, and @is the angle. The task is 
to adjust the cost function of the mobile system to balance the inverted pendulum in two 
dimensions. 

m, 

----+-----. F(t) 

'---__________ --'x (t) 

Fig. 6.11. Fuzzy control applied to the inverted pendulum problem 

The classical system model for control of the direction of the movement can be de­
scribed using differential equations of second order, as follows: 



6.2 Fuzzy Logic 329 

l·8=Fv ·sinE>-FH ·l·cosE> (6.29) 

F(t)-FH =m'x 

where Fv is the vertical joint force, FH is the horizontal joint force, F(t) is the pulling force 
of the mobile system, and ms is the mass of the pendulum and x is the position. 

There are two state fuzzy variables and one control fuzzy variable. The first state fuzzy 
variable is the angle e the pendulum shaft holds with the vertical. Hence zero angle corre­
sponds to the vertical position, and positive angles are to the right of the vertical and nega­
tive angles are to the left. The second fuzzy variable forms the angular velocity Lie. In 
practice we approximate the instantaneous angular velocity Lie as the difference between 
the present angle measurement 0 t and the previous angle measurement ~-h yields 

(6.30) 

The control fuzzy variable is the driving system current or angular velocity Vb which can 
be positive or negative. Let the pendulum fall to the right, the driving-system velocity may 
be negative to compensate, and when the pendulum falls to the left, the driving system ve­
locity may be positive. If the pendulum successfully balances at the vertical, the driving­
system velocity will be zero. 

Let the real line R be the universe of discourse of the fuzzy variables. In practice we re­
strict each universe of discourse to a comparatively small interval, such as [-90, 90] for the 
pendulum angle, centered about zero, means quantize each universe of discourse into seve­
ral overlapping fuzzy-set values. Consider that the fuzzy variables can be positive, zero, or 
negative, we can quantize the magnitudes of the fuzzy variables finely or coarsely. Suppose 
we quantize the magnitudes as small, medium, and large yielding in seven fuzzy-set values: 

NL: Negative Large 
MM' Negative Medium 
NS: Negative Small 
ZE: Zero 
PL: Positive Large 
PM' Positive Medium 
PS: Positive Small 

The fuzzy rules of the inverted pendulum are triples, such as NM, ZE, PM They de­
scribe how to modify the control variable for observed values of the pendulum state vari­
ables. Hence we can interpret the triple NM, ZE, PM as the set-level implication 

if the pendulum angle e is negative but medium 

and the angular velocity Lie is about zero, 

then the driving velocity has to be positive but medium 

which can be expressed in the short linguistic form 

if e=NM and Lle= ZE then v = PM, 



330 6 Soft-Computing Methods 

and the steady-state rule can be described by the triple ZE, ZE, ZE. 
Control problems often require nulling a scalar error measure, which means that control 

can be done by nulling the norms of the system error vector and the error-velocity vectors. 
The error measure can be the angle and the angular velocity, hence e "" e(t), or, Lig "" 

Lie(t). Adaptive error nulling extends the classical fuzzy-logic methodology to nonlinear es­
timation and control, introduced as a learning mechanism, as shown in Fig. 6.11. 

The inverted pendulum can be described by a 7 by 7 matrix with linguistic fuzzy-set en­
tries, where the columns are indexed by the seven fuzzy sets that quantize the angle g, and 
the rows are indexed by the seven fuzzy sets that quantize the angular velocity ~e. The 49 
entries of the 7 by 7 matrix represent a subset of 73 possible two antecedent fuzzy rules, but 
in practice most of the entries are blank. 

Let the angle gbe zero but the pendulum moves. If the angular velocity Ligis negative, 
the pendulum will overshoot to the left, which means that the driving system velocity 
should be positive to compensate. If the angular velocity Ligis positive, the driving system 
velocity should be negative. The greater the angular velocity is in magnitude, the greater 
the driving system velocity in its magnitude. Positive g values with negative Lig values 
may result in negative driving system current values, since the pendulum heads toward the 
vertical, which results in the triple PS, NS, NS. Symmetrically, negative g values with posi­
tive Lig values may result in positive driving-system current values, which results in the 
triple NS, PS, PS. Finally we obtain 15 fuzzy-rules altogether, which in practice, success­
fully balance the inverted pendulum. We can represent the 15 fuzzy-rules as the 7 by 7 lin­
guistic matrix: 

Table 6.6. Rule base of the inverted pendulum example 

g NL NM NS ZE PS PM PL 
Lig NL PL 

NM PM 
NS PS NS 
ZE PL PM PS ZE NS 
PS PS NS 
PM NM 
PL NL 

Suppose the current pendulum angle g = 15 degrees and the angular velocity Lig = -10, 
the corresponding driving system current value v = F( g, Lie) = (15, -10). The fuzzy-rule 
notation ZE, ZE, ZE implicitly assumes that we combine antecedent fuzzy sets conjunc­
tively with and. Hence this data satisfies as the antecedent of the fuzzy rule ZE, ZE, ZE 

min(m~(e), m~~(~e)) = min(m~E(15), m~~(-lO) = 

min(zero angle value, zero angular - velocity) 

(6.31 ) 

where the respective values of the angle and angular velocity for the angular value and the 
angular-velocity datum can be found from the respective triangular fuzzy-set membership 
functions. 



6.3 Neural Nets* 331 

6.3 Neural Nets* 

Neural networks address the issue of effective information organization and pro­
cessing. Since biological brains are being interpreted, from a more mechanistically 
point of view, as working examples of massively parallel, densely interconnected, 
self-organizing computational networks, they represent an ideal prototype with 
which special-purpose simulation models can be run. 

The basic brain processing unit is the nerve cell, called a neuron, as shown in 
Fig. 6.12a. An artificial neural network consists, compared to the neuron, of input 
variables and weighting factors, activation layers, and output variables, as shown 
in Fig. 6.l2b. The neurological pendant of the inputs are called dendrites as part of 
the anterior motor-neuron, extend for one-half to one millimeter in all directions 
from the neuronal soma. The dendrites can receive signals from a fairly large spa­
tial area around the motor-neuron. This provides vast opportunity for summation 
of signals from many separate so-called presynaptic neurons. The neurological 
pendant to the weighting functions are called synapses. The synapse could be in­
terpreted as the juncture between one neuron and the next, based on three major 
parts, the soma, the main body of the neuron; a single axon, which extends from 
the soma into the peripheral nerve; and the dendrites, which are thin projections of 
the soma that extend up to one millimeter, into the surrounding areas of the cord. 
The output has its neurological pendant in the axon, which is the central core of a 
nerve fiber. 

e2 
e1 

tj 
e3 

Dendrites '\ 
--. Ws ..... 
~ t-O- 1 
~ 

Axon 

a) b) 
OJ (t) 

~ 

~ 
Fig. 6.12. Biological neuron (a) and artificial neuron (b) 

Fig. 6.l2b shows a neuron with three inputs, e], e2, and e3 which form the syn­
apses of an artificial neuron that receive an activation Xi with a specific strength Wi 

from another artificial neuron, which will be part of the summaries process of the 



332 6 Soft-Computing Methods 

output, the axon. Each input can take only one of the two binary values, + I or -1. 
In addition, the neuron also has a constant input Ws that has the constant value + 1 
all the time. The weight Wi corresponding to the input el is WI. and so on. The 
weight corresponding to the input Ws is WB and is called the bias weight, which is 
used for threshold-level control. All inputs are multiplied by their weights and 
then summed to determine the activation level of the neuron, the real value a. For 
the output of this neuron, 0 variables, to be connected to the input of other neu­
rons, the real value a needs to be converted into a binary value of + 1 or -1. A 
hard-limiting activation function can be used to do this conversion. The output of 
their neuron is computed with a value of + 1 if a is greater then zero and a value of 
-1, otherwise. 

The basic concept results in an input vector e = (eJ, ... , en)T, a weighting vector 
w = (WI. .. , Wo)T and the resulting activity as the sum of the weighted input, which 
could be assigned as activity function 0: 

o(w,e) = L wjej = wT e . 
j 

Modeling the threshold relation can be formalized as follows: 

o( w, e) = wT e - T , 

where T indicates the threshold. With 

and 

this can be written as 

o(w,e) = Lwjej -T = (w, ... , w,-T)(e, ... ,e,T) = wT e, 
j 

which can be rearranged as follows 

(6.32) 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

(6.37) 

where the power (i) notation indicates the correlation of the e components. Model­
ing high-order synapses then can directly be derived from the equations above as 
follows: 



6.3 Neural Nets* 333 

- (0) L (I) L (Z) L (3) o - W + w. e. + w.. ke .ek + w. . k {e .eke{ + ... . 
I 1 l,j. J E,}.. ) 

(6.38) 
i i,j,k i,j,k,l 

This type of artificial neuron are called sigma-pi units. 
Let us consider the use of a two input artificial neurons representing some ele­

mentary logic functions such as AND and OR. This requires finding the weights 
ws, WI. and W2, so that the neuron can represent the desired mapping. By choosing 
Ws = -1.5, WI = + 1, and W2 = + 1, we find the neuron represents an AND function, 
and choosing Ws = 1.5, WI = + 1, and W2 = + 1, we find the neuron represents an OR 
function, which can be seen from the truth table in Table 6.7. 

Table 6.7. Truth tables for the a) AND and b) OR Functions 

el ez OAND el ez ~R 

-1 -1 -1 -1 -1 -1 
-1 +1 -1 -1 +1 +1 
+1 -1 -1 +1 -1 +1 
+1 +1 +1 +1 +1 +1 

(a) (b) 

A single divides the input patterns into two classes, one for which the output is 
+ 1 and the other for which the output is -1. The distinction between outputs + 1 
and -1 occurs when the weighted sum a equals O. For the OR function we have 

(6.38) 

(6.39) 

for the AND function. 

(6.40) 

which is the equation of a straight line. 

Example: 6.6 
A two-layer perceptron model to implement the XOR function with three neurons, the 

input layer NI and Nz , and the output layer N3, has nine variable weights, as follows: 

Table 6.S. Weight variables of the two layer perceptron model 



334 6 Soft-Computing Methods 

the output of neuron Nj is 

(6.41 ) 

with 0- as the sigmoid function, where -1.0 indicates that Nl is less than zero. Let el = e2 = 

0.1, and the initial weights are 

Table 6.9. Valued weight variables of the two layer perceptron model 

Wll = -0.1 W12= 0.2 W13 = -0.05 
W2l = -0.2 W22= 0.1 W23 = 0.2 
WSNI = 0.2 WSN2=- 0.2 WSN3 = 0.1 

then we obtain: 

01 = 0-[(-0.1).0.1 + (-0.2)·0.1 + (-1.0).0.2], (6.42) 

1 
01 =0-[(-0.01+(-0.02)+(-0.2)]=0-[-0,23]= 023' 

(1+e' ) 
(6.43) 

Similarly, the output of neuron N2 is: 

(6.44) 

02 = 0-[(0.2).0.1 + (0.1)·0.1 + (-1.0)· (-0.2)], (6.45) 

1 
02 = 0-[(0.02+ (0.01) + (0.2)] = 0-[0,23] = -023' 

(1 + e . ) 
(6.46) 

Finally, the output of the network is 

(6.47) 

03 = 0-[(-0.05).0.1 + (0.2)·0.1 + (-1.0)· (0.1)], (6.48) 

1 
01 = 0-[(-0.005+(0.02)+(-0.1)]= 0-[-0,085] = 0085' 

(1 + e' ) 
(6.49) 

The preceding functions represent a simple mechanism to calculate the output 
of the neural network. The error signals can now be calculated starting from the 



6.3 Neural Nets* 335 
outermost layer. In this case neuron N3 is an output neuron. The error signal for 
this neuron is as follows: 

(6.50) 

where 03 is the actual output and t is the target output. Therefore, 

1 1 1 
C == . (1- ) . (0 1- ) 

3 (1 + eO,085) (1 + eO,085) . (1 + eO,085) . (6.51 ) 

We can now update the weights ofw13, W23, and WSN3. 

(6.52) 

1 1 1 1 
wJ3 -O.05+[0.5·---025' 0085 ,(1- 0085)·(0.1- 0085)], 

l+e'l+e" l+e" l+e" 
(6.53) 

(6.54) 

(6.55) 

Calculating the weight changes for the hidden layer, the error must be propa­
gated back toward the input. As such, the error signal for neuron NI becomes 

(6.56) 

The error CI can be used to update the weights coming from the inputs to the 
neuron NI, which results in the new weights as follows: 

(6.57) 

(6.58) 

WSNI == W SNI + PCI (-1.0). (6.59) 

The error signal for neuron N2 becomes: 

(6.60) 



336 6 Soft-Computing Methods 

Finally, the weights W12, W22, and WSN2 become 

(6.61) 

(6.62) 

(6.63) 

Using the preceding weights, a new output value for the neural network can be 
calculated. This type of network calculation is called a back-propagation algo­
rithm. Multilayer perceptrons and back-propagation networks are currently the 
most widely used neural networks. Consider an n-input, single-output network 
withp nodes in the hidden layer, as shown in Fig. 6.13. The (p+l)-dimensional 
weight vector associated with the output node is denoted by wo, and the (n+l)-di­
mensional weight vector associated with the i-th node in the hidden layer is given 
by Wi for i = 1,2, ... , p. Each node has connections with all the nodes in the previ­
ous layer plus a bias term. The (n+ 1 )-dimensional network input vector at time t is 
composed of the bias term plus the n-dimensional input vector and is denoted by 
x(t) and the network output is y(t). The output of the JIidden layer nodes is denoted 
by the (p+ 1 )-dimensional vector a(t) and the output of the i-th node in the hidden 
layer is 

o (6.64) 
otherwise 

for i = 1,2, ... , p. (6.65) 

The dependence of the weights on time is neglected for simplification and when 
the network has an output node with a linear transfer function the output will be 

Example 6.7 

y(t) = fa/I). WO,j = aT (t)wo. 
j~O 

(6.66) 

We now introduce the adaptation of fuzzy systems by using sensitized neuronal nets. 
The idea of sensitization of neuronal nets means condition of a neuronal net by well-defi­
ned distinguishable data sets in order to deepen and to enlarge the stored information in the 
context of chunking. Chunking means adaptation onto a new fact or an unknown situation 
based on knowledge in the form of facts or models. Transforming these facts to neuronal 
nets means that at the very first a net has to learn the respective basic concept. To prevent 
this the neuronal net incluqes typical output ranges in its classification behavior, it is neces-



6.3 Neural Nets* 337 
sary to normalize the input data set, by using preprocessing algorithms. For this reason we 
add the wheel angle j3 of Sect. 6.2.4 to a sensitized neural-net-trained neural mobile system 
controller as an input. The controller network contained 24 hidden neurons. The controller 
network was controlled with 52 training samples from the fuzzy controller; 26 samples for 
the left half ofthe plane and 26 samples for the right half of the plane. The training requires 
more than 100000 iterations. The sensitized neuronal nets classifier can separate all trained 
states, representing a powerful concept of weaker evolutionary states to be trained, as 
shown in Fig. 6.14. In Fig. 6.14 time differences between the early warning of trajectory er­
rors of a common neural classifier and a sensitized neural network is shown. Both nets have 
had the same warning criteria, setting an alarm when the probability for a trajectory error is 
higher then 85%. It can be seen that a sensitized neural classifier shortens the alarm time by 
a factor 5, as the net classifies the evolutionary state of the beginning of a trajectory error 
rather early. 

input 
layer 

x,-----0 
network 

input 

x. ---~ 

x, 

, , , , , , 

hidden 
layer 

y 

Fig. 6.13. Three-layer network with linear input nodes and a linear output node 

(%) 

80 

60 

40 

20 

sensibilized net 

normal net 

/ 

time (s) 

Fig. 6.14. Difference between early warning of a trajectory error of a sensitized and a nor­
mal neural net. 



338 6 Soft-Computing Methods 

6.4 References and Further Reading 

Brown M, Harris C, (1994), Neurofuzzy Adaptive Modelling and Control, Pren­
tice Hall, New York, London, Toronto, Sydney, Tokyo, Singapore 
Demuth HB, Beale M, (2000), Neural Network Toolbox, The Math Works Inc. 
Hagan MT, Demuth HB, Beale M, (1996), Neural Network Design, PWS Publish­
ing Company, Boston 
Jang JSR, Sun CT, Mizutani E, (1997), Neuro-Fuzzy and Soft Computing, Pren­
tice Hall 
Jungblut J, (1998), Modeling and simulation of biological wastewater-treatment 
plants based on newest development of wastewater-treatment methods, (in Ger­
man), PhD Thesis, TU Clausthal 
Kaufmann A, Gupta MM, (1991), Introduction to Fuzzy Arithmetic, Van Nostrand 
Reinhold, New York 
Kosko B, (1992), Neural Networks and Fuzzy Systems, Prentice Hall, Englewood 
Cliffs 
Zadeh LA, (1992), The Calculus of Fuzzy If/Then Rules, In: Fuzzy Logic, pp. 
84-94, Ed. B. Reusch, Springer, Berlin, Heidelberg, New York 

Technical Manuals 
Fuzzy Logic Toolbox, Users Guide, Version 2, The Math Works Inc., 2001 

6.5 Exercises 

6.1 What is meant by the term fuzzy set? 
6.2 What is meant by the term membership function? 
6.3 Describe the maximum operator by using a simple example. 
6.4 Describe the minimum operator by using a simple example. 
6.5 Describe the Takagi and Sugeno fuzzy system. 
6.6 Describe fuzzyfication by using a simple example. 
6.7 Describe defuzzyfication by using a simple example. 
6.8 Describe the fuzzy inference engine by using a simple example. 
6.9 What is meant by the term fuzzy control? 
6.10 Describe the fuzzy control system by using a simple example. 
6.11 What is meant by the term fuzzy rule base? 
6.12 Describe the fuzzy rule base system by using a simple example. 
6.13 What is meant by the term center of gravity? 
6.14 Give an example of the center of gravity method. 
6.15 What is meant by the term neural network? 
6.16 What is meant by the term activity function? 
6.17 What is meant by the term perceptron? 
6.18 What is meant by the term back-propagation? 
6.19 What is meant by the term hidden layer? 



7 Distributed Simulation 

7.1 Introduction 

Conservative simulation algorithms are based on the restriction that an event can­
not be executed unless it is proved that no other event shows up during execution. 
This restriction is fulfilled by using strict synchronization between logical proc­
esses. Different methods for the analysis of event-based systems have been intro­
duced for revealing the parallel properties of the several applications, algorithms, 
as well as environments. To handle parallel-event traces from a more methodo­
logical point of view, the distributed-simulation method was been introduced. Dis­
tributed simulation is used for real-world system analysis, where events have to be 
processed in a concurrent way. This results in a speed up of the simulation task. 
The basic ideas behind distributed simulation are mapping and scheduling, which 
means that an event can only be executed if it is proved that this event is indepen­
dent of other prospective executable events. For this reason guarantee messages 
are exchanged. This concept finally results in 

• Classical simulation methods 
• Optimistic simulation methods 
• Hybrid methods 
• Speculative simulation methods 
• Deterministic tie-breaking methods 
• Distributed shared memory methods 
• Fuzzy-based methods 

One of the most important points in event-oriented simulation is that every 
event will be processed in a deterministic way. Consider a tie-breaking method 
that does not sequentialize simultaneous events. Hence one can assume that se­
quencing pays attention to the transitive generation sequence. Consider that the 
simultaneous events e and e' of the same logical process can be processed in such 
a way that e can be executed before e', if e' can be directly or indirectly generated 
from e. This constraint of sequentialized simulation is a simple boundary, meaning 
e' does not exist before e has been executed and the event execution is not re­
peated, which is not possible at any time for an optimistical method. The con­
straint which has to be fulfilled is called deterministic tie-breaking. 

D.P.F. Moeller, Mathematical  and Computational Modeling and Simulation Fundamentals

and Case Studies  © Springer-Verlag Berlin Heidelberg 2004



340 7 Distributed Simulation 

Definition 
A tie-breaking method is called deterministic, if 

(1) In several simulation runs, one by one, the respective logical processes 
(LP) have at each time the same sequence of event handling 

(2) The several simulation runs are based on a transitive generation sequence 

• 
Another important method used for performance prediction and analysis of dis­

tributed simulation is the so-called critical-path analysis, based on event traces that 
present the events and their interactions. 

The critical-path analysis is an analytical approach based on an event trace 
from the simulation of a real-world problem. The obtained trace can be trans­
formed into a directed-event graph whose edges are weighted with real-time val­
ues representing computational and communicational delays. Consider that the 
weights are selected such that they represent the timing characteristics of the exe­
cution hardware and the communication network. When constructing the directed­
event graph a critical path algorithm can be applied by searching the longest 
weighted path in the graph. The logical path between the first event and the last 
event represents the so-called lower bound for the simulation. 

The generation of a directed-event graph is limited by two constraints, i.e. pre­
decessor and creator relationships, which restrict the parallel execution of events, 
since the constraints were fulfilled before an event can be scheduled for execution. 
Let the creator relationship represent a situation where an event e causes an event 
e'. Hence the event e has to be executed before the event e'. Let the predecessor 
relationship represent a situation where events e and e' are scheduled to the same 
logical process and the time stamp of event e is less than the timestamp of e'. 
Hence event e is executed before e', and the earliest possible completion time for 
event e can be calculated using the critical times of its creator and predecessor as 
follows: 

r; = max {rerea/(i) ' r pred(i)}+ 11 r; (7.1) 

where LlTj is the required execution time of event ei and rcreat(i) and rpred(i) are the 
critical times of the creator and the predecessor, respectively. The critical time of 
the last event in the critical path represents the lower bound for the execution time 
of the simulation. Obtaining critical-time results for a given problem results in a 
procedure that uses the measured time of simulation traces for event execution, 
send functions, and receive times. Based on these time traces a model configura­
tion can be selected for which the event times in the traces can be updated. With 
these results a new run of the critical path analysis can be started that yields new 
results. 

Due to the heterogeneous concepts used in distributed simulation Sects. 7.2 and 
7.3 will focus on specific aspects of building distributed-simulation environments 
for traffic-simulation sy~tems. 



7.2 Distributed Simulation of Traffic and Transportation 341 

7.2 Distributed Simulation of Traffic and Transportation 

7.2.1 Introduction 

The huge increase in motorized individual traffic during the past two decades re­
sults in the well-known traffic-jam situations as well as in traffic collapse during 
the rush hours in the cities. Solutions adapting to the different demands, depending 
00 the real-world traffic situations, are not available either for local or for global 
traffic planning. But there are world-wide needs for solutions. Due to the comple­
xity and heterogeneous concepts of traffic systems, local as well as global solu­
tions seem to be difficult to realize. For practical reasons we have to restrict our­
selves from the macroscopic to the microscopic aspects of system analysis of 
traffic flows, based on positions and movements of transport vehicles, traffic lanes 
and crossings, traffic lights and traffic signs, municipal and individual traffic 
flows, people as parallel execution of events etc. Hence microscopic traffic struc­
tures can be properly analyzed by modeling and simulation for the respective sce­
nario analysis. 

Computer modeling of complex and heterogeneous traffic systems is an itera­
tive process, consisting of model building and computer simulation by changing 
the real structure of the model and its parameters in an effort to match the complex 
traffic system well. In fact, the derived model has served its purpose when an op­
timal match is obtained between the simulation results and the data obtained from 
the real-world traffic system. In general, building a model of a traffic system en­
tails the utilization of three types of information sources: 

• Goals and purposes of modeling, i.e. boundaries, components of relevance, 
level of details 

• A priori knowledge of the traffic system being modeled 
• Experimental data consisting of measurements on the system inputs and out­

puts 

Due to the possibilities of modeling, a variety of levels of conceptual and 
mathematical representations of traffic systems are evident, depending on the 
goals and purposes for which the models are intended, the extent of the a priori 
knowledge available, data gathered through experimentation, and measurements 
of the real-world traffic systems. For a real-world traffic simulation a distributed 
interactive simulator is necessary, which fits to the inherent boundaries, reflecting: 

• Simulation of single transport vehicles 
• Simulation of transport vehicle bundles 
• Simulation of individual lanes 
• Simulation of any kind of road network 



342 7 Distributed Simulation 

• Realization as distributed interactive simulator in order to fit large road 
network situations 

• Simple but flexible interface to adapt the control strategies i.e. traffic 
lights 

In order to build a realistic distributed traffic simulator, a library of simulation 
models is necessary, including 

• Different types of traffic situations 
• Different types of road conditions 
• Different types of car-following behavior 
• Different types of velocity profiles 
• Different interaction profiles of traffic participants 
• Different types of lane changing 
• Different types of dangerous traffic situations 
• Different types of interactions with pedestrians 

• etc. 

7.2.2 Traffic-Simulation Model 

Model building of traffic situations is based on assumptions as follows: 

• Traffic flow can be described as a sequence of situations 
• Within each situation the driver has scope for action that could interact 

with different subsequent situations 
• Each driver decides from his point of view on the appropriate action 

With these situation-action-model assumptions, for each time segment the spe­
cific traffic situation can be analyzed for decision support of the so-called driver­
vehicle-element. With this in mind, the following interactions of the distributed 
traffic simulator can be realized: 

• Driver-vehicle-element holds the actual lane, adapting to the actual traffic 
situation 

• Driver-vehicle-element decides for lane changing in case of a slow vehi­
cle in front or fall into line in case of branch off 

• Driver-vehicle-element has to adapt to a right-of-way situation 

Each situation described above, is based on models for driver-vehicle-elements. 
For a right-of-way situation the driver-vehicle-element has to adapt, which means 
decision for in-time reaction. The on-time t depends on the actual velocity v and 
the distance d from the actual conflict zone, yielding 



7.2 Distributed Simulation of Traffic and Transportation 343 

t==!!..., (7.2) 
v 

where t is the time needed with the actual velocity to arrive at the conflict zone; t 
can be calculated for the respective driver-vehicle-elements of a right-of-way 
situation, which yields 

I1t == to -tna , (7.3) 

where ta means right-of-way authorized direction and tna means right-off-way non 
authorized direction. Hence L1t can be interpreted as the decision of driving into 
the actual conflict zone or not. The decision to drive depends on the mathematical 
notation of a stochastic process, based on a probabilistic distribution. Driving de­
pendents from time yields 

p(AIZ == z) == p(z) , (7.4) 

where p(z) is a continuous function, z == - OC) ~ p == 0 and z == + OC) ~ p == 1. Investi­
gations show thatp(z) holds p(z) == 0 atz == -10 andp(z) == 1 atz == +10. 

Ifwe use another probabilistic function such as a symmetrical logarithmic func­
tion, 

1 
p(z) == 1 -b·z ' 

+a·e 
(7.5) 

the parameters a and b represent the respective regression model parameters. 
Calculating the on-time of a decision, we have to define a vehicle-dependent 

variable x 

rpv + ndv 
x == --"----

2 ' 
(7.6) 

where rpv characterizes a randomized probabilistic variable and ndv a normal dis­
tributed variable, reflecting the driver's safety needs. For x> p(z) within the con­
sidered in-time segment, the decision means drive. If x < p(z) the driver decides to 
wait for a gap. 

7.2.3 Distributed Traffic-Simulation System 

The distributed traffic-simulation system contains several programs running as 
single modules in a distributed computer network. Distribution of the computatio­
nalload onto different computers allows an effective simulation of large road net-



344 7 Distributed Simulation 

works. Because a single computer could not process the burden while the distribu­
ted simulator for traffic simulation contains several simulation modules, several 
control modules as well as several graphic modules and a communication server, 
as shown in Fig. 7.1. 

~ 
t 
~ 

Communication 

~ 
Server 

~ 
t 

Fig. 7.1. Distributed interactive traffic simulator 

The realization as a distributed simulation system is a state-of-the-art approach, 
while decision making within the different simulation models depends on load 
boundaries for each driver-vehicle-element. This means only driver-vehicle-ele­
ments in the near surroundings have to be taken into account. Therefore, parts of 
the simulated road network can be simulated independently from each other. Only 
in the neighborhood is a transfer of data necessary. The modules tasks are as fol­
lows: 

• Communication server: data handling and synchronization between 
the different components tasks via a server 

The server contains the data of the different modules: 

• Simulation modules: computation of the different types of traffic 
flows under the supervision of the communication server 

• Control modules: activation and deactivation of sensors and actors of 
traffic-light control systems under the supervision of the communi­
cation server 

• Graphic modules: display of the actual intrinsic traffic dynamics of 
the involved driver-vehicle-elements within the road network 



7.2 Distributed Simulation of Traffic and Transportation 345 

7.2.4 Description and Implementation of Road Networks 

By using the traffic simulator it is possible to optimize the traffic flows at different 
traffic nodes. Simulating a specific traffic node, the affiliated road network has to 
be built up. For the respective road networks a specific discrete road network de­
scription language had been developed, written in the object-oriented language 
C++. The description language deals with 

• Clear description of road networks 
• Separation of a global road network into local road networks as parts of 

the simulation modules 

A road-network description offers the simmodule and the end simmodule 
while in between the simulation modules specific road network is described. 
Based on the town map of the city of Portland, OR, we receive: 

Ilroad network description 
Iidefinition of the first module 
simmodule McCall Waterfront Park, Portland 

end simmodule 

Iidefinition ofthe second module 
simmodule Lownsdale Square, Portland 

end simmodule 

With the definition of a simulation module the road network can be described, 
based on lane segments that have to be connected. The definition of lane segments 
is done by section network. Connection of lane segments is done by section con­
nection. 

Iidefinition of the first module 
simmodule McCall Waterfront Park, Portland 
section network 

input SW Front Ave.(x,y,ali,len) 
{ 
} 
lane SW Main St.(x,y,ali,len) 
{ 
} 
lane SW 4th Ave.(x,y,ali,len) 
{ 
} 



346 7 Distributed Simulation 

section connection 
connect SW Front Ave.[l]->SW Main St.[l]; 
connect SW Main St.[l]->SW 4th Ave.[l]; 

end simmodule 

Based on the example given above, connections between different simulation 
modules are necessary, which is realized within the developed distributed simula­
tion system for traffic simulation with the elements netoutput and netinput. 

simmodule Chinatown, Portland 

I !road network output 
netoutput Burnside St.(x,y,ali,len) 
{ 
} 

end simmodule 

simmodule South Park Blocks, Portland 

liroad network South Park Blocks, Portland 
netinput SW 9th Ave.(x,y,ali,len) 
{ 
} 

end simmodule 
netconnect Chinatown. Burnside Street->South Park Blocks.SW 9th 
Ave.; 

where the abbreviations used are as follows: x means x-direction of the middle of 
the road at the very beginning of the element, y means y-direction of the middle of 
the road at the very beginning of the element, ali means align of the lane element, 
len means length of the lane element. 

The different simulation modules require additional attributes, like number of 
lanes, speed limits, demand-dependent sensor distances, crossings, etc. 

For example, the simulation module Berlin, Germany, could look like 

simmodule Berlin, Germany 
section network 
lane Unter den Linden(x,y,ali,len) 
{ 



7.2 Distributed Simulation of Traffic and Transportation 347 

numlanes(2); 
maxspeed(50.0); 
demand sensor(I,50); 
} 

end simmodule 

where numlanes(x) means numbers of lanes, maxspeed(s) means speed limit, de­
mand name(l,p) means demand sensor with lane number and position measure 
from the very beginning of the lane element. 

7.2.5 Implementation and Simulation 

The implementation and the simulation will be discussed based on two case study 
examples. The first example deploys on classical traffic-light-control concepts, the 
second one uses modem fuzzy-set control (see Chap. 6). Simulation is based on 
the simulation modules described above, control modules, traffic-light modules, 
sensor-instrumented traffic measures, and animation modules. Hence the applica­
tion-specific road network can easily be adapted to actual objects of investigation. 

Example 7.1 
Classical traffic-light control is based on sensor instrumentation with fixed green light 

duration. Depending on the queue and the actual green light direction, the new traffic de­
pendent green light direction will be determined, with fixed green light duration and fixed 
duration time. For practical reasons we use a formula that fits the different traffic situations 
well 

gld = 5 + spv . len , (7.7) 

where gld stands for green light duration, spv stands for second per vehicle, and len means 
length. 

Example 7.2 
The fuzzy-set traffic-light control is based on sensor instrumentation with adaptive green 

light durations, and is dependent on the actual traffic queues. Fuzzy-set system is a name 
for systems with direct relationship to fuzzy concepts, as described in Chap. 6 in detail. 
Based on this assumption the fuzzy-set traffic-control system can be described by rule bases 
as follows: 

if priority. high = queue. long or queueingtime.long 
if priority. medium = queue. medium and not queueingtime.long 

if priority. low =queue.short and not queueingtime.long 



348 7 Distributed Simulation 

which results, together with the defuzzification function GetPriority:P in, 

!!Identification oftraffic direction with max. priority 
Ilcase study 2Clausthal-Zellerfeld, Germany 
intCFuzControl:ClausthaIMaxPriority(int dir) 
{ 
int i,j; 
I !Direction with max. priority 
int maxdir; 
I/Max. Priority 
double maxpriority; 
double newpriority; 
II Fuzzy membership functions 
double lowpri, midpri, highpri; 
I !Priorities for each direction 
maxpriority = -1 ; 
maxdir= -1; 
for (j = dir; J dir+4; j++) 
{ 
i = j % 4; 
lowpri=Fuzzy AND(LengthShort( Clausthallength[i]), 
NotW aitLong( Clausthalwaitingtime[ i]); 
midpri=Fuzzy AND(LengthMid( Clausthallength [i]), 
NotWaitLong(Clausthalwaitingtime[i]); 
highpri = FuzzyOR(LengthLong(Clausthal[i]), 
WaitLong(Clausthalwaitingtime[i]); 
newpriority = GetPriority(Lowpri, midpri, highpri); 
if (newpriority > maxpriority) 
{ 
IlNew direction has higher priority then former direction 
maxpriority = newpriority; 
maxdir= 1; 
} 
} 
return maxdir % 4; 
} 

The fuzzy-set traffic simulator can simply be regarded as an input-output trans­
fer system, the transfer operator of which is based on a fuzzy kernel as shown in 
Fig. 7.2. 



7.2 Distributed Simulation of Traffic and Transportation 349 

Input Output 

IQueue lengthl Priority 

~ ~ 
~ZZYkerv 
~ ~ 

1 Waiting time 1 r-I P-h-as-e-'-e-ng-t---'h 1 

Fig. 7.2 Fuzzy kernel of the fuzzy-set traffic-control system 

The control program of the fuzzy-set traffic-control system can be described as 
follows: 

IlFuzzy Traffic Control Program 
I lFuzzyset for Queuelength 
fuzzyset Queuelength 
membershipfunction short 
start255 
(10,255) 
(60,0) 
endO 

memberfunction long 
startO 
(70,0) 
(120,255) 
(170,0) 
endO 

IlRulebase 
start rulebase 

Priority .Low( OutPriRG )=QueueLength. Short(InQL 
RG); 
Priority.High(OutPriRG)=QueueLength.Long(InQLRG) OR 
W aitingTime.ExtraLong(In WTRG) 

end 

Comparing the simulation results from the classical traffic-control system with 
the fuzzy traffic-control system it can be stated that the fuzzy system is more 



350 7 Distributed Simulation 

flexible. Moreover, it allows a direct understanding and operating of the traffic­
control system in a familiar way using a description language and rules. 

7.2.6 Distributed Transportation 

The distributed-transportation problem can be described and solved as shown for 
the case study approach of the traffic simulator, but in this approach we will use 
mathematical programming as a modeling technique as a powerful tool in decision 
support. Assume the transportation problem can be described as a product that will 
be shipped in the amounts 0[, ... , Om from each of the m shipping origins, and re­
ceived in the amounts d[, ... , do by each of the shipping destinations. Hence the 
distributed transportation problem consists of determining the amounts Xod to be 
shipped from origins 0 to destinations d, to minimize the cost of transportation. 
The transportation problem described deals with a decision problem and can be 
solved using the method of linear programming, which deals with linear objective 
functions and linear constraints. Hence, at the beginning, one has to identify the 
possible decisions to be made that leads to identifying the problem variables. 
Thereafter, one has to determine which decisions are admissible, which results in a 
set of constraints according to the nature of the described problem. As a final step 
the cost functional has to be calculated. For the transportation-problem description 
the data are as follows: 

• m: number of origins 
• n: number of destinations 
• OJ: amount to be shipped from origin i 
• ~: amount to be received in destination} 
• cij: cost of sending a unit of product from origin i to destination} 

The variables of the distributed transportation problem are 

• xij: amount to be shipped from origin i to destination} 

assuming that these variables are not negative: 

Xij ~ 0; i = 1, ... ,m; } = l, ... ,n, (7.8) 

which implies that the direction of the product flow is prefixed by the origin and 
the destination. However, other assumptions can be made, such as using unre­
stricted real variables, i.e. xij E 9t, when we do not want to prefix origins and 

destinations. 
The constraints of the distributed-transportation problem can be written as fol­

lows: 



7.2 Distributed Simulation of Traffic and Transportation 351 

n 

LXY = 0;; i = 1, ... ,m 
j=1 

m 

LXY =dj ; j=I, ... ,n 
;=1 

(7.9) 

The first set of constraints states that the total amount that is shipped from ori­
gin i has to be equal to the sum of the amounts that are going from origin i to all 
destinationsj, withj= 1, ... , n. 

The second set of constraints states that the total amount that is received at des­
tinationj has to be equal to the sum of the amounts that are shipped to that desti­
nation from all origins i, with i =1, ... , m. 

Finally, the function to be minimized for the distributed-transportation problem 
has to be described. For this approach we are interested in minimizing the total 
cost of transportation, which can be described as the sum of the unit costs times 
the amounts being shipped. Hence we have to minimize the function 

m n 

F= LLcy·xij. (7.10) 
;=1 j=1 

When we have identified the respective formulas, we are able to solve the lin­
ear programming problem. 

Example 7.3 
Assuming that the transportation problem can be described by m = 3 shipping origins 

and n = 3 destinations, and 01 = 2,02 = 3, 03 = 4, dl = 5, d2 = 6, d3 = 7, we obtain for the 
constraints the matrix 

Xli (7.11) 

1 1 1 0 0 0 0 0 0 
xl2 

2 

0 0 0 1 1 0 0 0 
x13 

3 

0 0 0 0 0 0 1 1 
X21 

4 
C·X= X22 

1 0 0 0 1 0 1 0 0 5 

0 1 0 0 0 0 0 
X23 

6 

0 0 0 0 0 0 0 
X31 

7 
X32 

X33 

with Xij ~ 0; i,j = 1,2,3. 
From this matrix one can conclude that the first three equations correspond to the prod­

uct balance at the three origins and the last three equations are due to the balance at the 
three destinations. Consider the particular values 



352 7 Distributed Simulation 

2 3] 
56, 

8 9 

(7.12) 

we obtain for the minimization problems of the transportation costs 

(7.13) 

Using specific software packages, such as the GAMS package, the minimiza­
tion problem can easily be solved, which means obtaining a minimum value for 
the objective function F which implies a minimum cost. 

7.3 Introduction into HLA* 

HLA is the abbreviation for high-level architecture for modeling and simulation, 
which has been developed by the US Department of Defense (DoD). Initially 
HLA was created with a special focus on military simulation applications and their 
special needs for interoperability and reusability of the components (called feder­
ates in HLA). Since the general problems in modeling and simulating complex 
large-scale systems in the military and in the nonmilitary community are more and 
more comparable, the question of whether HLA can be used in the military as well 
as in the civilian domains had been answered such that HLA is now available for 
both parties, after it had been accepted as an IEEE standard for distributed simula­
tion. 

Using HLA for distributed simulation, several users, so called federates, of the 
distributed-simulation environment, a so-called federation, cooperate, and use a 
common runtime infrastructure, so called RTI, a software, which can be assumed 
to be a specific part of a distributed operating system. HLA itself defines a bi­
directional interface between federates and the RTI. 

7.3.1 HLA at the Very First* 

HLA is defined by three major elements, which are very similar to VHDL (VHDL 
= very high speed integrated circuit hardware description language): 

• HLA rules or federation rules (FR), which ensure proper runtime interaction 
of simulations (or federates) in a federation, describing the simulation and fe­
deration responsibilities 



7.3 Introduction into HLA * 353 

• Interface specification (IS), which defines the interfaces between federates 
and the run-time-infrastructure (RTI) services and provides the means for fe­
derates to exchange data 

• Object model template (OMT) , which describes the data federates exchange 
providing a common method for recording information, establishing the for­
mat of key models: 

°Federation object model (FOM) 
°Simulation object model (SOM) 
°Management object model (MOM) 

7.3.2 Federation Rules* 

At the highest level, HLA consists of a set of HLA rules that must be obeyed if a 
federate or federation is to be regarded as HLA compliant. 

HLA Rules for Federations 

• Federations shall have a FOM, documented in accordance with the OMT. 
• All representations of objects in the FOM shall be in the federates, not in the 

RTI. 
• During a federation execution, all exchange of FOM data among federates 

shall take place via the RTI. 
• During a federation execution, federates shall interact with the RTI in accor­

dance with the HLA interface specification. 
• During a federation execution, an attribute of an instance of an object shall be 

owned by only one federate at any given time. 

HLA Rules for Federates 

• Federates shall have a SOM, documented in accordance with the OMT. 
• Federates shall be able to update and/or reflect any attributes of objects in 

their SOM, and send and/or receive SOM interactions externally, as specified 
in their SOM. 

• Federates shall be able to transfer and/or accept ownership of attributes dyna­
mically during a federation execution, as specified in their SOM. 

• Federates shall be able to vary the conditions under which they provide up­
dates of attributes of objects, as specified in their SOM. 

• Federates shall be able to manage local time in a way that will allow them to 
coordinate data exchange with other members of a federation. 



354 7 Distributed Simulation 

7.3.3 Interface Specification* 

The interface specification identifies how federates interact with federation and, 
ultimately, with one another. 

Run-Time Infrastructure (RTI) 

• Software that provides common services to simulation systems 
• Implementation ofHLA interface specification 
• Architectural foundation encouraging portability and interoperability 

RTI Services 

• Separate simulation and communication 
• Improve on older standards 
• Facilitates construction and destruction of federations 
• Supports object declaration and management between federates 
• Assists with federation time management 
• Provides efficient communications to logical groups of federates 

Interface Specification Management Areas 

• Federation management 
• Declaration management 
• Object management 
• Ownership management 
• Data distribution management 
• Time management 

7.3.4. Object Model Template (OMT)* 

Reusability and interoperability require that all objects and interactions managed 
by a federate, and visible outside the federate, are specified in detail and with a 
common format. OMT provides a standard for documenting HLA object-model 
information. 

OMT 

• Provides a common framework for HLA object-model documentation 
• Posters interoperability and reuse of simulations and their components 

Required Information 



7.3 Introduction into HLA* 355 

• Object class structure table 
• Object interaction table 
• Attribute/parameter table 
• FOM/SOM lexicon 

Optional Information (OMT Extensions) 

• Component structure table 
• Associations table 
• Object model metadata 

The OMT defines the FOM, the SOM, and the MOM. 

Federation Object Model (FOM) 

• One per federation 
• Introduces all shared information, e.g. objects, interactions 
• Contemplates interfederate issues, e.g. data encoding schemes 

Simulation Object Model (SOM) 

• One per federate 
• Describes salient characteristics of a federate 
• Presents objects and interactions that can be used externally 
• Focus on the federate's internal operation 

Management Object Model (MOM) 

• Universal definition 
• Identifies objects and interactions used to manage federations 

7.3.5 Suggested Steps at the Very First* 

Federates shall have a HLA SOM, documented in accordance with the HLA 
OMT. The suggested steps are as follows: 

1. Identify essential objects. 
2. Identify attributes used in describing the above objects. 
3. Build class hierarchy based on common attribute groupings. 
4. Classify each object and prepare object class structure table. 
5. Repeat steps 1-4 for interactions. Identify interactions and associated parame­

ters, build hierarchy, classify interactions, and prepare the interaction class ta­
ble. 



356 7 Distributed Simulation 

6. Prepare initial attribute and parameter tables. 
7. While constructing data types, lexicons, and routing space tables, iterate with 

earlier tables, especially the attribute and parameter tables. Verify that the po­
tential attributes or parameters have not been overlooked and/or modify exist­
ing ones as necessary. 

7.3.6 Land-based Transportation* 

From a practical point of view, as shown in Sect. 7.2, one has to restrict oneself 
from the macroscopic aspects to a microscopic systems analysis concept when 
modeling land-based transportation, based on positions and movements of trans­
port vehicles, traffic lanes and crossings, traffic lights and traffic signs, municipal 
and individual traffic flows, people as discrete events, etc. Microscopic land-based 
transportation could then be properly analyzed by modeling and simulation. 

With respect to the spectrum of modeling, a variety of levels of conceptual and 
mathematical representation of land-based transportation are evident, depending 
on the goals and purposes for which the model was intended, the extent of the a 
priori knowledge available, data gathered through experimentation, and measure­
ments on real land-based transportation. For the HLA land-based transportation 
simulator we need a similar structure as discussed in Sect. 7.2. 

7.3.7 HLA Land-based Transportation Simulator* 

The distributed land-based transportation simulation system contains a federation 
and several federates that could run on a distributed computer network. Distribu­
tion of the computational load on different computers allows an effective simula­
tion of large road networks because one single computer could not process the 
burden. The components ofthe system, shown in Fig. 7.3, are 

• RTIexec, a global process that manages the creation and destruction of fede­
ration execution 

• FedExec, one running process per executing federation that manages the fede­
ration, allows federates to join and resign from the federation and facilitates 
data exchange between federates 

• Federates (simulation modules) that perform the computation of the different 
types of traffic flows 

• A graphic module that displays the actual intrinsic traffic dynamics of the in­
volved driver-vehicle-elements within the road network 

• 



7.3 Introduction into HLA * 357 

I Graphic module I 

~t~ 
Federate car I I Federate street I 'F-e-d-e-ra-t=-e-t-ra-ffj-IC-li9-h-'t 

t~_ 
~ ++ Fed Exec for federation 
~ street-traffic-case 

Fig. 7.3. Schematic diagram of the HLA traffic-simulation-system 
Example 7.4 
The initialization of the RunTime Infrastructure contains the following steps: 

• Instantiating of the objects for the R TI ambassador and federate ambassador 
• Creating federation execution with specified name 
• Joining the federate to the federation 
• Setting the initial time management parameter 

which can be implemented as follows: 

11---------------------------------
II Create RTI objects 
II 
II The federate communicates to the II RTI through the RTIambassador 
II object and the RTI communicates 
II back to the federate through the 

II FederateAmbassador object. 
11---------------------------------
RTI::RTIambassador rtiAmb; 
II libRTI provided 
TrF ederateAmbassador fedAmb; 
II User-defined 
II Named value placeholder for the federates handle 
RTI::FederateHandle federateId; 

11--------------------------------
I I Create federation execution. 
II The RTI_ CONFIG environment 
II variable must be set in the 
II shell's environment to the 
I I directory that contains the 
II RTl.rid file and the Traffic.fed 
11---------------------------------
try 

{ 
11--------------------------------
II A successful createFederation 



358 7 Distributed Simulation 

I I Execution will cause the fedex 
I I process to be executed on this I I machine. 
II A "Traffic. fed" file must exist 
II in the current directory. This 
II file specifies the FOM object, 
I I interaction class structures, 
I I default/initial transport and or 
II dering information for object at 
I I tributes and interaction classes 
11---------------------------------

cout «"FED TR: CREATING FEDERATION EXECUTION" « 
endl; 
rtiAmb.createFederationExecution( fedExecName, "Traffic.fed" ); 
cout «"FED TR: SUCCESSFUL CREATE FEDERATION 
EXECUTION" « endl; 
} 

catch (RTI:: FederationExecutionAlreadyExists& e ) 
{ 
cerr« "FED_TR: Note: Federation execution already exists."« 

&e«endl; 
} 

catch (RTI::Exception& e) 
{ 
cerr«"FED _ TR:ERROR:"«&e«endl; 
return -I; 
} 

RTI::Boolean Joined=RTI::RTI]ALSE; 
int numTries = 0; 

11---------------------------------
II Join federation execution 
I I Here we loop around the 
II joinFederationExecution call 
I I until we try too many times or 
I I the Join is successful. 
11---------------------------------
while(lJoined &&(numTries++ < 20» 

{ 
11---------------------------------
try 
{ 
cout«"FED_TR: JOINING FEDERATION EXECUTION:"« ex 
eName « endl; 
federateld = 
rtiAmb.joinF ederationExecution (myStreet->GetN ameO,fedExecName, 
&fedAmb); 

Joined = RTI::RTI_TRUE; 
} 
catch (RTI:: FederateAlreadyExecutionMember& e) 
{ 
cerr«"FED _ TR:ERROR:"« 



7.3 Introduction into HLA * 359 

myStreet->GetNameO«"already exists in the Federation Exe­
cution"«fedExecName«". "«endl; 

cerr« &e « endl; 
return -I; 
} 
catch (R TI::F ederationExecutionDoesN otExist&) 
{ 
cerr«"FED TR:ERROR:"«fedExecName «"Federation Execu 
tion"«"does not exist"«endl; 
rtiAmh.tick(2.0, 2.0); 
} 
catch ( RTI::Exception& e ) 
{ 
cerr«"FED _ TR:ERROR:"«&e«endl; 
return -1; 
} 
} / / end of while 

cout«"FED TR:JOINED SUCCESSFULLY:" «exeName«": Fed 
erate Handle=" «federateld« endl; 

Each federate has to 

• Define what data needs to be published for each update or event 
• Declare which updates and interaction (event) it is interested in receiving by 

subscribing to those attributes/messages 
• Specify if the federate is interested in controlling unnecessary message traffic 

The simulation consists of 

• Calculate state and update to R TI 
• Ask for time advance 
• Tick the RTI waiting for grant 

When a federate has completed its simulation, it deletes the objects it created 
(streets, lane, intersection, cars, etc.), resigns from the federation execution and 
tries to destroy the federation. 

7.3.8 HLA Description of Road Networks* 

By using the land-based transportation simulator it is possible to optimize the traf­
fic flows at different traffic nodes. To simulate a specific traffic node, the affili­
ated road network has to built up. For easy modeling of road networks a HLA­
specific notation was introduced, which deals with: 

• Clear description of road networks 



360 7 Distributed Simulation 

• Splitting of a global road network into local road networks as parts of the 
simulation modules 

Example 7.5 
The HLA-RTI land-based transportation simulator results on cars, streets, and possible 

interrupt requests for traffic lights or traffic signs. In accordance with the explanation in 
Sect. 7.2 streets are assumed, consisting of lanes for each direction, like west to east, east to 
west, north to south, and south to north, realized with blocks of equal length. Here the 
streets are assumed to have one lane per direction. The cars are driving - as a simplification 
of the simulation system realized in case study I - with the same speed. Hence traffic flow 
can be described as a sequence of blocks, as shown in Fig. 7.4. 

West _. - . - . - . - . - . - . - . - -. - -. - -. - -. - . - . - . - . - -. _. East 

Block 1 Block 2 Block n 

Fig. 7.4. Schematic diagram of federation street traffic west to east and vice versa 

With the HLA land-based transportation simulation environment the federation 
consists of more federates responsible for traffic flow. Due to that type of fede­
rates, the following object classes can be used: Street, Lane, Block, Car, Traffic 
Light, Intersection, EntryInlntersection. 

With the HLA land-based transportation simulation environment the object 
classes can be described as follows: 

class Street contains: 
name of the street 
number of lane per direction 

(l lane in this case of study) 
number of blocks per lane 
direction ·char[2]; 

(for example: direction (0) = "west" 
direction (1) = "east" ) 

lane for direction[O] 
lane for direction [ I] 

class Lane contains: 
direction 
array of Block 

class Block contains: 
array of TrafficLight 
array of TrafficSign 



array of ear 

class Car contains: 
pointer to Street 
pointer to Lane 
pointer to Block 
max velocity 
current velocity 

7.3 Introduction into HLA * 361 

class TrafficLight characterized by: 
ID 
state(color) 
for entry in street 
for entry in block 

class Intersection contains: 
array of EntryInlntersection 

class EntryInIntersection characterized by: 
street 
lane 
numberOfBlock 

The developed HLA land-based transportation simulator version can be en­
hanced by more features like: 

• Streets with more then one lane for each direction 
• Cars do not need to have the same velocity profile; (when one has to taken 

into account the fact that a driver-vehicle-element can decide to overtake an­
other driver-vehicle-element driving with a slower velocity) 

• More complex intersections, traffic sign, etc. 

In the case of several streets, the class Street must contain as a supplement an 
array with pointers to each street (a static variable), in order to access them and 
perform the communication: 

static StreetPtr ms_StreetExtent[MAX_STREETS + I]; 

In addition, instead of the two attributes of type Lane, (lane for direction[O] 
and lane for direction[l)), the class has two arrays oflanes, each oflength "num­
ber oflanes per direction". 



362 7 Distributed Simulation 

7.4 References and Further Reading 

Castillo E, Conejo AJ, Pedregal P, Garcia R, Alguacil A, (2002), Building and 
Solving Mathematical Programming Models in Engineering and Science, John 
Wiley & Sons, New York 
Jari P, Ikonen J, Hmju J, (1999), Predicting the Performance of Distributed Simu­
lation through Event Traces, In: SCSC-Proceedings, SCS, San Diego 
StraBburger S, (2001), Distributed Simulation Based on HLA in Civilian Applica­
tion Domains; SCS-Europe 

Technical Documents 
Draft Standard for Modeling and Simulation High Level Architecture: Framework 
and Rules, Technical report P1516IDl, IEEE, 1998 
High Level Architecture Interface Specification, Technical report PI516,1, IEEE, 
1998 
High Level Architecture Run-Time Infrastructure Programmers Guide, DoD, 1998 

Links 
http://hla.dmso.mil 
http://hla.dmso.mil/docslib/mspolicy/msmp/ 
http://hla.dmso.mil/R IISUPlhla _ softlrtilrti-3r4/prog.doc 
http://www.ecst.csuchico.edU!~hla!courses.html 

7.5 Exercises 

7.1 What is meant by the term distributed simulation? 
7.2 What is meant by the term tie-braecking method? 
7.3 What is meant by the term driver-vehicle-element? 
7.4 Describe the traffic simulation by using a simple example. 
7.5 Describe the components of a traffic simulator. 
7.6 What is meant by the term HLA? 
7.7 What is meant by the term federation? 
7.8 What is meant by the term federate? 
7.9 What is meant by the term object model template? 
7.10 What is meant by the term federation object model? 
7.11 What is meant by the term simulation object model? 
7.12 What is meant by the term management object model? 
7.13 What is meant by the term R II? 



8 Virtual Reality 

8.1 Introduction 

Virtual reality can be described as a synthetic 3D computer-generated universe 
that is a perceived as the real universe. The key technologies behind virtual reality 
systems (VRS) and virtual-environment systems (yES) are 

• Real-time computer graphics 
• Color displays 
• Advanced software 

Computer graphics techniques have been successfully applied for creating syn­
thetic images, necessary for virtual reality and virtual-environmental systems. 
Creating an image, using computer graphics techniques, can be done by storing 
3D objects as geometric descriptions, which can then be converted into an image 
by specific information of the object, such as color, position, and orientation in 
space, and from what location it is to be viewed. Real-time computer graphics 
techniques allow the user to react within the time frame of the application domain, 
which finally results in a more advanced man machine interface, which is the 
whole rationale for virtual reality systems and virtual-environments. 

Color displays are used for displaying the views of the virtual reality as well as 
the virtual-environmental universe to provide a visual sensation of the objects 
from the physical application domain into the virtual domain. The color displays 
are of great variety, such as monitors fixed to the windows of the simulator cock­
pit for visual sensation of flying in a flight simulator, or head mounted displays 
(HMD) which visually isolates the user from the real world. A head-mounted dis­
play can provide the left and right eye with two separate images that include paral­
lax differences, which supplies the user's eyes with a stereoscopic view of the 
computer generated world, which is a realistic stereoscopic sensation. 

Advanced software tools are used to support the real-time interactive manipula­
tion of large graphic databases, which can be used to create a virtual environment, 
which can be anything from 3D objects to abstract data bases. Moreover, 3D mod­
eling and simulation tools are part of the advanced software tools. Hence, a 3D 
model can be rendered with an illumination level simulating any time of the day, 
or using OpenGL, a quasistandard for 3D modeling and visualization, one can cre-

D.P.F. Moeller, Mathematical  and Computational Modeling and Simulation Fundamentals

and Case Studies  © Springer-Verlag Berlin Heidelberg 2004



364 8 Virtual Reality 

ate geometrical bodies of every shape and size for simulating the different views 
of the geological and geophysical parameters of a tunnel scenario, as shown in 
Figs. 8.1 and 8.2, which can be moved in size in real time, using the advanced 
simulation software tools. The image realism can be improved by incorporating 
real-world textures, shadows, and complex surfaces, etc. For example, Fig. 8.1 
shows the sequence of a "flight through a tunnel". Top left part of Fig. 8.1 shows 
the scenic view of the landscape, top middle part of Fig. 8.1 shows the top-frontal 
view of the scenic landscape, top right part of Fig. 8.1 shows the front view of the 
scenic landscape, and bottom left part of Fig. 8.1 shows the different geological 
structures and the tunnel inlet and outlet as front view of the scenic landscape, bot­
tom middle part of Fig. 8.1 showing the front view of the tunnel inlet with parts of 
the geological structure, and bottom right part of Fig. 8.1 shows a scenario inside 
the tunnel with the end of the tube in front of the view. 

Fig. 8.1. Virtual reality tunnel simulation scenario 

Fig. 8.2. 3D model of the virtual reality tunnel simulation scenario of Fig. 8.1 



8.1 Introduction 365 

Due to intuitive interaction with the virtual reality techniques new scenic pres­
entations are possible, as shown in Figs. 8.1 and 8.2, which offers concepts for 
modeling and simulation of complex real-world systems with parameterized or 
nonparameterized topologies within a unique framework. This results in rapid pro­
totyping based on flexible modeling tools with concepts for geometry, motion, 
control, as well as virtual reality components like images, textures, shadowing, 
rendering, animation, multimedia, etc. 

The technical complexity associated with developments in the virtual universe 
requires the use of metric values, which can then be converted into several impor­
tant factors that relate to the metric values themselves, especially metric dimen­
sionality, metric attributes, metric types, etc. 

An easy and straightforward approach for the design of metric-valuated dimen­
sions could be found using unidimensional scaling. However, methods of unidi­
mensional scaling are generally applied only in cases with good reason to believe 
that one dimension is sufficient. But metric-valuated accuracy and presentation fi­
delity lead to a multidimensional scaling. A multidimensional scale is necessary 
for the adequate description of images, if additional information would probably 
be required. Therefore, a multidimensional scale has to be developed, where me­
tric-valuated attributes are the actual quality parameters measured along each 
quality dimension, which are realism, interpretability, and accuracy. 

There are a number of possible metric-valuated types that could be used for the 
dimensions of a quality-assessment metric, such as: 

• Criteria-based ones, which are based on a textual scale, prefixing the levels of 
the scale 

• Image-based ones, which are based on a synthetic scene where a rating is as­
signed by identifying the standard image having a subjective quality that is 
closest to that being rated 

• Physical-parametric-based ones, which are based on measured values such as 
integrated power spectrum, mensuration error, etc. 

The big challenge of virtual reality techniques is that it takes us one step closer 
to virtual objects by making us part of the virtual domain. Computer graphics 
techniques applied in the virtual reality systems of today providing visual images 
of the virtual universe, but the systems of tomorrow will also create acoustic im­
ages of the virtual universe, which can be introduced as the 5-th dimension of the 
virtual reality technique - while time is the 4-th dimension - which can stimulate 
the sounds in the virtual environments. One could imagine that other more advan­
ced modes of user interaction, such as to touch and feel virtual objects, can com­
plete the sensation of illusion in virtual worlds, which can be introduced as the 6-
th dimension of virtual reality techniques. Moreover, smelling and tasting may 
also become imaginable in virtual environments, enhancing the order of dimen­
sion. The benefits of the technique of virtual reality are manifold, which is why 
this technique is so vital to many different application domains, ranging from 
automotive and avionics applications in the industry, as well as molecular and 
medical topics, military applications, catastrophic management, education and 



366 8 Virtual Reality 

training, etc., to the different academic research domains. Based on features of­
fered through computer graphics techniques, meaning visualization of highly real­
istic models, and through the integration of real-time computing, virtual reality 
enables the user to move around in virtual environments, such as walking through 
a tunnel as shown in Fig. 8.1, or to acquire flying skills without involving real air­
planes or airports, as realized in virtual training environments for pilots, etc. 

Based on the spatial and temporal geometric description, which can then be 
converted into an image by specifying the respective information behind, virtual 
reality techniques can be used as the basic concept for virtual-world simulation, as 
well as for analysis and prognosis of complex processes in virtual worlds. 

Furthermore, underlying databases in virtual-environments offer the ability to 
store and retrieve heterogeneous and huge amounts of data for modeling virtual 
worlds. Hence, virtual reality can be seen as a specific type of a real-time embed­
ded system combining different technological approaches that are integrated 
within one environmental solution. 

In the case of a flight simulator, as shown in Fig. 8.3, the computer graphics 
techniques are used to create a perspective view of a 3D virtual world, and the 
view of this world is determined by the orientation of the simulated aircraft. Simu­
lating the complex behavior of the aircraft requires a sophisticated modeling tech­
nique and embedding of several real-time systems, such as engines, hydraulics, 
flight dynamics, instruments, navigation, etc., as well as weather conditions, and 
so on, which are components and modes of th~ flight simulator's virtual­
environment. The information necessary to feed the flight simulator with real­
world data are available from the databases of the aircraft manufacturer and the 
manufacturer of the aero engines. They describe the dynamic behavior of the air­
craft when taxiing on the ground, or flying in the air, or engine temperature and 
fuel bum rates, etc. The flight models used in the flight simulator are based on the 
data obtained from the manufacturer as well as the data describing the flight con­
trols to simulate the behavior of the airplane under regular as well as under non­
regular flight conditions. 

During flight simulation, the pilot - as well as the co-pilot - sit inside a replica 
cockpit and gaze through the forward-facing and side-facing windows, which are 
2000 panoramic displays reflecting the computer-generated graphical virtual uni­
verse. The flight simulator creates a realistic sensation of being in a real-world 
plane flying over some 3D landscape, as shown in Fig. 8.3. But today, the flight­
simulator panoramic displays do not contain stereoscopic information, the fact that 
the images are collimated to appear as though they are located at infinity creates a 
strong sense of being immersed in a 3D world. 

Furthermore, immersion can be enhanced by allowing the users head move­
ments to control the gaze direction of the synthetic images that provides the user's 
brain with motion-parallax information to complement other cortical pathways of 
the visual cues in the brain. This requires tracking the user's head in real time, and 
if the user's head movements are not synchronized with the images, the result will 
be disturbing. 



8.1 Introduction 367 

Fig. 8.3. Flight simulator (bottom) and cockpit view inside the flight simulator (top right) 
and view from the waiting position for take off (top left) 

When visually immersed within a virtual environment there is a natural inquisi­
tive temptation to reach out and touch virtual objects as part of interaction possi­
bilities in the virtual universe, which is impossible, as there is nothing to touch and 
to feel, when dealing with virtual objects. But, the user's sense of immersion can 
be greatly enhanced by embedding tactile feedback mechanisms in the virtual en­
vironment. Embedding tactile feedback needs some specific hardware compo­
nents, such as data gloves, which enable the user to grasp or to sense real-time 
hand gestures. Hence data gloves will provide a simple form of touch-and-feel 
stimulus where small pads along the fingers stimulate a touching and feeling sen­
sation. Thus, if a collision is detected between the users virtual hand - the data 
glove - and a virtual object, the data glove is activated to stimulate the touch and 
feel condition. However, the user may not be suddenly aware of the objects mass, 
as there is no mechanism for engaging the user's arm muscles. Therefore, it is 
necessary to transmit forces from the virtual domain to the user interface, meaning 
there is a need for embedding articulated manipulators in the virtual environment 
that could create such forces. 



368 8 Virtual Reality 

There are many advantages of working in the virtual domain, such as: 

• Accuracy due to subject specification, which means that the real-world 
models can be built with great accuracy as they are based upon CAD data 
of the real-world objects 

• Flexibility, which means building virtual representations of anything as 
well as interacting with this representation via the virtual reality front 
ends 

• Animated features, which means animation of sequences, objects, etc., in 
space and time 

Example 8.1 
Combining these three aspects for real-time simulation in virtual environments should 

be based on the integration of the overall information, but only a few approaches maintain 
this problem and have been developed like the cave automatic virtual-environment, or the 
digital mock up (DMU) in the avionic industry, shown in Figs. 8.4 and 8.5, allowing the 
user a real-time interaction that is not only restricted to the 3D model itself, it also is para­
meterized, which could lead to a better framework for real-world system analysis, such as 

• Statistic and cinematic interference tests 
• Development of new methods for DMU application 
• Investigation of applicability of new technologies within the virtual product de­

sign process 

Fig. 8.4. Digital mock up (DMU) of a planes wing! 



369 

Fig. 8.5. Digital mock up (DMU) of a plane wing showing the application of virtual re­
ality to simulate the possibility of a maintenance procedure within the plane's wing! 

8.2 Virtual Reality applied to Medicine 

8.2.1 Introduction 

Applying the virtual reality technique to the medical domain could be stated as 
combining distributed virtual environments to support collaboration among team 
members working with space distance, developing plans and procedures, doing 
measurements and data processing of surgical procedures, medical research pro­
jects, clinical-oriented support systems development and evaluation, etc. One of 
the most interesting new paradigms in virtual reality techniques in this domain is 
that 3D representations are not the only possibility of a setting. 

Many virtual applications in medicine, ifnot already now, will in the future ma­
ke use of specific graphics. The virtual space will be visualized in space and time. 
Users in charge of virtual reality in the medical domain should be able to interact 
in space and time, which can then be converted into an image such as walking 
through the vascular bed for inspection of collagen settings at the vessels walls, or 
interacting with other medical disciplines for consultancy through a graphical user 
interface in the context of a computer-supported cooperative work, as well as de­
signing the vivid view of cosmetic surgery, etc. 

I I would like to thank Dr. Roland E. Haas, DaimlerChrysler RTI Bangalore, India, for his support. 



370 8 Virtual Reality 

The interweaving of functionality, distribution, efficiency, and openness as­
pects are very noticeable in the computer graphics techniques. The virtual space is 
graphically visualized flamboyance and for the most part the users in charge of the 
medical virtual domain should see the same image. 

Therefore, for virtual reality applications in medicine, a multiuser virtual envi­
ronment has been developed, consisting of the following components: 

• Space ball and cyber gloves for tactile interaction in the virtual environment 
• Head mounted devices for visual interaction in the virtual environment 
• 3D geometrical body creation and motion technique for virtual space feeling 
• 3D visual interactive interface for definition, manipulation, animation, and per­

formance analysis of medical geometrical bodies 
• Object-oriented data base system for efficient data management in virtual rea­

lity applications 
• Hardware for the necessary computational power in space and time 
• Objects organization into inheritance hierarchies for the transparency of the 

virtual environment 
• Simulation software 

Created medical object's inherit the properties and verbs of their ancestors. Ad­
ditional verbs and properties, as well as specializations of inherited components, 
can be defined to address the new object's unique behavior and appearance. Based 
on these assumptions a simulator for a virtual environment for medical application 
can be designed. 

8.2.2 Morphing 

The time-dependent presentations of processes are of importance, bringing to­
gether real-world scenarios and virtual scenarios of real-world objects, to find op­
timal geometries, which can be calculated using non uniform rational B-splines 
(NURBS) . This B-spline representation is based on a grid of defmed points Pi,j' 

which are approximated through bicubic parameterized analytical functions, as 
given in (8.1) and (8.2). 

r' P1,2 P,. ) (8.1) 

P. = P2,l P2,2 P2,n 
l,j : : ,Pi,j = (x,y,z), 

Pm,l Pm,2 Pm,n 



8.2 Virtual Reality applied to Medicine 371 

ti:N;,p(u)Nj,q(v)W;,/:,j (8.2) 
S(u v) = _;=,.;.,o"-j=....:.o _______ _ 

, n m Os U,V s 1. 
LLN;,/u)Nj,q(v)w;,j 
;=0 j=O 

The NURBS method allows calculation of the resulting surface or curve points 
by varying one curve or two surface parameter values u and v of the interval [0,1], 
respectively, and evaluating the corresponding B-spline basis function N;,p as 
given in (8.3). 

if u; sus U;+l} , 

otherwise 

N . (u) = u - u; () U;+p+l - U ( ) l,p . N;,p_l u + . N;+p_l u , 
u;+p - u; U;+p+l - U;+l 

V analogous 

(8.3) 

(8.4) 

(8.5) 

As the parameter values u and v can be chosen continuously, the resulting ob­
jects are mathematically defined in any point that show no irregularities or breaks. 

There are several parameters that have to be adjusted for the approximation of 
given points, changing the view of the described object and, if necessary, an inter­
polation of all points can be achieved. 

First, the polynomial order describes the curvature of the resulting curve or sur­
face, which gives the mathematical function a higher level of flexibility. Secondly, 
the defining points can be weighted in accordance with their dominance with re­
spect to the other control points. A higher weighted point influences the direction 
of the curve or surface more than a lower weighted one. Furthermore, knot vectors 
U and V define the local or global influence of control points, so that every calcu­
lated point is defined by a smaller or a greater array of points, which results in lo­
calor global deformations, respectively. 

NURBS are easy to use for modeling as well as modifying the respective achie­
vement by means of moving the control points that the user is able to adjust the 
objects simply by pulling or pushing the control points, as shown in Fig. 8.6. 



372 8 Virtual Reality 

i 
Fig. 8.6. Modeling and modification of a NURBS surface 

Based on these concepts a methodology to interpolate a given set of points, i.e. 
the results of scanned data of a human face surface measurement, has been devel­
oped. As shown in Fig. 8.7, huge sets of scattered data points are used to generate 
the resulting object using 3D simulation. 

Using multiple levels of surface morphing, the multi-level B-spline approxima­
tion algorithm (MBA) adjusts a predefined surface, i.e. a flat square or a cylinder. 
Constraints like the curvature or direction at specific points are given or can be 
evaluated with the algorithm, as shown in Fig. 8.8. 

Fig. 8.7. Morphing based on a multi level B-Spline approximation 



8.2 Virtual Reality applied to Medicine 373 

S-Part 
Space Partitioning 

B-Rep 
Boundary Representation 

CSG 
Constructive Solid Geometry 

Fig. S.S. Volumetric models for virtual reality representation, top left: space partitioning, 
bottom left: boundary representation, bottom right: constructive solid geometry, top to mid­

dle: unification, middle to bottom: difference 

8.2.3 Deformable Models· 

Mathematically, geometric subjects can be interpreted as embedded contours in an 
image plane, which can be written as a virtual reality framework concept 

(8.6) 

The contour itself can be assumed to be 

3(s) = (x(s),Y(S»T , (8.7) 

where x and y are the coordinate functions and s E [0,1], the parametric domain. 
The shape of a contour subject to an image I = (x, y) can be described by the 

functional 



374 8 Virtual Reality 

3(3) = E(3) + r(3). (8.8) 

The functional given above can be interpreted as representation of the energy 
of the contour, which means that the final shape of this contour corresponds to a 
minimum of energy. Due to that assumption the first term of the functional given 
above can be introduced as internal deformation energy 

I 103 1
2 

103212 3(3)= jAI(s)- +A(S)-2 ·os. 
o os os 

(8.9) 

This equation describes the deformation of a stretchy, and flexible contour, 
with AI(s) as tension of the contour and A2 (s) as rigidity. 

In accordance with the calculus of variations, the contour 3 (s), which minimi­
zes the energy 3 (3) must satisfy the Euler Lagrange equation 

o 03 02 023 
--(w ·-)+-(w .-)+ VP(3(s t)) =0. 

os I os OS2 2 OS2 ' 
(8.10) 

The vector partial differential equation, introduced above, describes the balance 
of internal and external forces when the contour rests at equilibrium. Therefore the 
first two terms represent the internal stretching and bending forces, respectively, 
while the third term represents the external forces that couple the contour to the 
image data. 

8.2.4 Deformable Models for Surface Reconstruction in Medicine* 

The treatment of patients with myocardial pumping insufficiency results in cardiac 
surgery cases that finally ends with a heart transplantation. Heart transplantation 
carries a high risk for the patient, a long-life postoperative specific lifestyle and a 
long-life drug dose regimen, as well as huge costs for the surgical as well as for 
the postsurgical treatment. Due to this situation, the possibilities of cardiac-assist 
systems and/or mechanisms are the focus of several medical research projects. 
One of which deals with surface reconstruction of the heart, which can then be 
converted into a model for a fiber elastic network, which could be pulled tight 
over the heart, inserted during cardiac surgery, to assist the insufficient heart mus­
cle. The principle behind this is based on the mechanisms well known from the 
use of assist pantyhose for varicose veins. Together with the technique of minimal 
invasive surgery, the fiber elastic network could be used as an intra-corporal con­
tractility assistance for the insufficient ventricles. 

Measurements with the nuclear medical devices NMR and CT result in very 
good representations of the inner sections of the human body. Nevertheless, the 
segmentation of separat~ organs and the representation of real 3D reconstructions, 



8.2 Virtual Reality applied to Medicine 375 

based on soft shapes from the measurements, is a task that had not been solved 
sufficiently till now. The different segmentation methods in use are based on the 
assumption that the grey values of the measured dot space can be interpreted as 
the border between organs. Conventional methods are based on dot pursuit algo­
rithms that have important disadvantages as follows: 

• The resulting models are primarily voxel-based and limited to carrying on the 
signal processing procedures 

• If grey values are within gaps they will be considered within the 3D model, 
hence an actual fit is necessary 

• Vague data of in vivo as well as in vitro measurements of organs result in a 
significant deterioration, meaning the extracted 3D model will be inaccurate 

Treating the disadvantages of the above-mentioned methods for shape recon­
struction of the human heart, a specific morphing algorithm, which was previously 
used for applications in the virtual universe, the multi-level B-spline approxima­
tion for 3D modeling, was redesigned for the medical domain and implemented. 

The data obtained from NMR or CT measurements are weighted in accordance 
to their grey scale values that, thereafter, being treated as a projection in a free­
space allocation area, the non uniform rational B-spline (NURBS). The mathema­
tical representation with the projection reference point in the direction of the vec­
tor of the projection, results in a space-domain description that will be deformed in 
a successive way, one after each other. The influence of the dot projection will be 
more severely weighted and more effective due to the respective free-space allo­
cation. In a sequence of steps, the influence of weighting factors will be more and 
more reduced, hence the deformation will only affect the local areas of represen­
tations. Changing the order of the polynomials of the functions, and the number of 
iteration steps used, allows an application-domain-specific approximation of in­
formation of the dot space. 

Example 8.2 
Using appropriate weighting factors, and simultaneous distortion of the models through 

the dots, single and remote dots will be smoothed automatically, whereby, also from NMR 
or CT pictures, 3D deformable models can be extracted. Moreover, a rough approximation 
of the human heart can be extracted, which, together with the clinical expertise results in a 
much more adopted surface reconstruction. Due to the intrinsic power of the multi-level B­
spline approximation for 3D modeling, an exact view of the hearts surface is possible after 
a few iteration cycles, as shown in Fig. 8.9, which can then be converted into a simulation 
mode of the fiber elastic network, which could be pulled tight over the heart, within the 
virtual-heart environment. 



376 8 Virtual Reality 

Fig. 8.9. Surface reconstruction with NURBS used in the virtual-pig-heart environment for 
simulation ofthe tailored fiber elastic net 

Based on constraints of the most important dots, single subdomains of the out­
come space domain can be manipulated. Based on the knowledge of the position 
of single organ compartments, e.g. the ventricle of the right heart, the target ori­
ented deformation of the basis space domain is possible. 

Example 8.3 

Magnetic resonance imaging (MRl) data typically contain a number of slice planes 
taken through a volume, such as the human body. MATLAB includes an MRI data set that 
contains 27 image slices of a human head, which can be used as a virtual reality simulation 
environment, as shown in Example 8.1. Some useful techniques for visualizing this data in­
clude displaying the data as: 

• Series of 2D images representing slices through the head 

• 2D and 3D contour slices taken at arbitrary locations within the data 

• Isosurface with isocaps showing a cross section ofthe interior 



8.2 Virtual Reality applied to Medicine 377 

The MRI data are stored as arrays. The first step in this virtual reality simulation envi­
ronment is to load the data and transform the data array from 4D to 3D based on the 
MATLAB specific commands 

load mri 
D = squeeze(D); 

Displaying one of the MRI images, one uses the image command, indexing into the data 
array to obtain the respective image. Thereafter one has to adjust axis scaling, and install 
the MRI color map, which was loaded along with the data. 

image _num = 8; 
image(D(:, :,image _ num)) 
axis image 
colormap( map) 

Now save the x- and y-axis limits for use in the next part of the example: 

x=xlim 
y=ylim 

This MRI data, shown above, can be treated as a volume because it is a collection of 
slices taken progressively through the 3D object. The contour slice is used by displaying a 
contour plot of a slice of the volume. To create a contour plot with the same orientation and 
size as the image created in the first part of Example 8.3, one has to adjust the y-axis direc­
tion, set the x and y limits, and set the data aspect ratio: 

contourslice(D,[ ],[ ],image_num) 
axis ij 
xlim(x) 
ylim(y) 
daspect([ 1 , 1 , 1 ]) 
colormap('default') 



378 8 Virtual Reality 

This contour plot uses the figure color map to map color to contour value. 

20 

~O 

GO 

60 

100 

120 

Unlike images, which are 2D objects, contour slices are 3D objects that can be displayed 
in any orientation. For example, one can display four contour slices in a 3D view. To im­
prove the visibility of the contour line, one has to increase the line width to 2 points: 

25 

20 

15 

10 

5 

phandles = contourslice(D,[ ],[ ],[1,12,H,27],8); 
view(3); axis tight 
set(phandles, 'Line Width' ,2) 

100 
80 

20 

Isosurfaces can be used in MATLAB to display the overall structure of a volume. When 
combined with isocaps, this technique can reveal information about data on the interior of 
the isosurface. 

First, the data have to be smoothed. Thereafter, the isosurface are used to calculate the 
isodata in MATLAB. Patcj1 is used to display this data as a graphics object. 



8.2 Virtual Reality applied to Medicine 379 

Ds = smooth3(D); 
hiso = patch(isosurface(Ds,5), ... 
'FaceColor',[ 1,.75,.65], ... 
'EdgeColor' ,'none') 

Moreover, the isocaps are used to calculate the data for another patch that is displayed at 
the same isovalue (5) as the surface. The un smoothed data (D) are used to show details of 
the interior. One can see this technique as the sliced-away top of the head. 

hcap = patch(isocaps(D,5), ... 
'FaceColor','interp', ... 
'EdgeColor', 'none') 
colormap(map) 

Defining the view and set the aspect ratio: 

view( 45,30) 
axis tight 
daspect([I, I , .4]) 

Add lighting and recalculate the surface normals based on the gradient of the volume 
data, which produces smoother lighting. Increase the ambient strength property of the iso 
cap to brighten the coloring without affecting the isosurface. Set the specular color reflec­
tance of the isosurface to make the color of the specular reflected light closer to the color of 
the iso surface; then set the specular exponent to reduce the size of the specular spot. 

lightangle( 45,30); 
set(gcf, 'Renderer', 'zbuffer'); lighting phong 
isonormals(Ds,hiso) 
set(hcap,' AmbientStrength' ,.6) 
set(hiso,'SpecularColorReflectance',0,'SpecularExponent',50) 

25 

20 
15 

10 

5 

The isocap uses interpolated face coloring, which means the figure color map determines 
the coloring of the patch. This example uses the color map supplied with the data. 



380 8 Virtual Reality 

To display isocaps at other data values, try changing the iso surface value or use the sub­
volume command. See the isocaps and subvolume reference pages for examples. 

8.3 Virtual Reality in Geo Science* 

8.3.1 Introduction* 

The focus of geo science research nowadays concentrates on computer simulation 
and information systems for underground studies, i.e. in soil modeling, meaning 
that expensive insitu testing can be replaced by accurate computer simulations. 
This not only reduces the costs, because simulation can also calculate results with­
in minutes to show first hints why certain effects occur. These hints then can be 
used to achieve even better simulation studies and can help to better understanding 
the complex spatiotemporal nature of geological processes. The information of 
virtual environments used in the geo scientific research can be categorized as fol­
lows: 
• Spatial temporal information; the main purpose deals with an efficient storage, 

analysis and display of subjects that characterize the geometrical data. Geolo­
gists use spatial as well as temporal information to create rendered 3D models 
of technical entities and the surrounding underground structure to explore the 
environment. Real-time user interactions are not provided. 

• Process information; obtained from fluid flows or chemical-process analysis, 
are mainly concerned with solving some kind of differential equations, which 
are normally specialized for the respective application domain, hence the input 
data can be extracted from real-world measurements. 

Combining these two approaches with the virtual reality techniques results in a 
unified simulation system embedded in a virtual environment. 

8.3.2 Modeling and Simulation of Space and Time* 

The process of modeling in geo scientific problems differs from computer-aided 
design (CAD) where the user develops a new object based on ideas and given re­
strictions. In contrast to this construction, creating a 3D model of a geological un­
derground deals with the reconstruction of complex objects of the real-world sys­
tem, which are only known in a very small surrounding, i.e. through borehole 
drilling, etc. The geoscientist tries to remodel parts of the real-world domain as 
accurately and realistically as possible. 



8.3 Virtual Reality in Geo Science* 381 

The next step is to integrate temporal aspects representing the dynamic process­
ses and the development of the geological underground that finally leads to real­
time virtual reality models. To accomplish this task temporal-data base concepts 
for time and scenario management have to be developed due to the geo scientific 
background. Temporal aspects can be seen as shown in Fig. 8.10 

• Continuous-time by means of a single vectored parameter 
• Time-dependent versioning allowing the simulation and adaptation of 3D 

spatial models based on various parameters 

continuous~= _ _ 

... ----.. c-r:::: 

--<<=~----~==~~~--
Versionlng 

Fig. 8.10. Continuous time and versioning 

The temporal concepts are embedded within the underlying virtual reality data 
base model allowing the user to build up 4D models as a combination of the 3D 
structures and the processes in these structures. Based on the integration of tempo­
ral information the basic concepts for simulating the processes and analyzing as 
well as predicting future developments under differing conditions are designed. 
For 4D models in space and time, consistency is of major concern. While the user 
tries to describe real-world objects, the virtual reality system has to prove whether 
user-defined constraints fit, also when all solids are placed nonoverlapping, not 
only in the 3D models, but furthermore in its changing through temporal devel­
opments. 

In addition, the best results of simulation or analysis are worth nothing, if their 
calculated values can not be interpreted and remapped to the original real-world 
objects. For the evaluation of the simulations it is necessary to recheck the results 
with real-world measurements to ensure their correctness. Therefore, examples 
must be found that allow the determination of error values, which in fact will be a 
difficult task. 

But any simulation result is inapplicable if the data presentation can not provide 
the new information to the user. Hence, first approaches for user-friendly data 
visualization use charts and diagrams. The problem arising here is the loss of the 
3D background. The best approach presenting the results would be the integration 
in the abstract spatial model of the real-world domain, which can then be con­
verted into an image by specifying information such as the objects color, position 
and orientation in space, and from what location it is to be viewed. 



382 8 Virtual Reality 

Example 8.4 
A practical example is found in geology where detailed geometric descriptions are input 

to the CAD system of the virtual environment, which can then render perspective views of 
the scene. The benefits of such techniques are manifold, because the user then can identify 
different parameters and their distribution directly at their actual position in space and time, 
which is shown as a practical example in Fig. 8.11. 

Fig. 8.11. Integration of the 3D virtual reality terrain model with subsurface fractures 

8.3.3 Combined Virtual Reality System CoRe* 

A system analysis for spatial information management has shown that movements 
in an artificial 3D model are quite difficult, especially for inexperienced users. 
Through the integration of virtual reality techniques for spatial information man­
agement the gap between a 4D model and the usually 2D user interface can be 
closed. 

As mentioned before, virtual reality can be introduced as an embedded system 
of hardware and software components that allow users to view and interact within 
a virtual universe of space and time analyzing different scenarios, while changing 
the underlying simulation parameters. 

The hardware components for a virtual environment consists of computer(s), 
3D-input and output devices such as head mounted displays (HMDs), cyber 
gloves, head tracking devices, and for some applications some sort of measuring 
equipment for real-world data. 

The software for a virtual environment consists of tools for 3D modeling, real­
istic rendering, shadowing, imaging, photogrammetry, simulation, etc., as well as 
an embedded data base system for storage and retrieval of spatial, temporal, and 
thematic data, object characterization, etc., which results in a multilayer data base, 
as shown in Fig. 8.12. 



8.3 Virtual Reality in Geo Science* 383 

Fig. 8.12. Multilayer data base structure of a real-world geological process including the 
metrical layer, the topological layer, and the thematic layer 

The architectural concept of the virtual-environment system CoRe contains a 
partition in three modular layers, shown in Fig. 8.13, which are the: 

• Internal level; which represents the data base system, as shown in Fig. 8.12, 
including the essential concepts of data-management systems, such as transac­
tion management, concurrency control, recovery mechanisms, and data re­
trieval. 

• External level; which represents the integrated user interface that combines as­
pects of well-known user interaction through dialogs in conjunction with ad­
vanced virtual environments. Using virtual reality devices such as head moun­
ted displays (HMD), head mounted tracking devices (HMTD), data gloves and 
3D mice (space ball, space mouse), and eventually some sort of measuring 
equipment for real-world data. The user can navigate through space and time 
of the virtual universe model of the geological real-world domain, retrieve in­
formation at any point in the model and directly interact, i.e. change parame­
ters or the model itself. 

• Conceptual level, which embeds the modeling and simulation tasks. Within 
this level temporal, spatial, and thematic information is represented with the 
aid of the proposed concepts. The object-relational approach allows any repre­
sentation of the real-world domain to be changed through space and time. As 
these operations are achieved with methods, the objects themselves behave on 
the basis of their internal status, the overall model and the user interaction. 



384 8 Virtual Reality 

~-
Virtual Reality c cu 

~ > 
~j Integration 
cu 

-lioo 
~ 
0 ::u ......... III 

~ C) Modelling ~ III .,.-c.CU 0 
and GI > (") 

u cu ~ Simulation c..J 
0 III 
u 

(") 
0 

J~ 

ti_ 
c GI Information-
~ > OODBMS cu cu system 'C:..J 

Fig. 8.13. The virtual environment CoRe 

8.4 DDSim Prototyping Tool for Autonomous Robots 

DDSim is a Java™-based system prototyping tool allowing users of mobile robots 
to develop and validate behavior in a simulated environment before running the 
strategies on a real robot2• DDSim can easily be configured and adapted to the ma­
nifold of specific needs, such as real-world and multi agent interaction, which can 
be simulated very appropriative. DDSim uses modem interface standards to con­
figure all important parameters of the application. For example, the geometry of 
simulated objects and robots are specified using XML. 

2 I would like to thank Dipl Inf. Peter Scholl, Fraunhofer Institute of Autonomous Intelligent Systems, 
SchloB Birlinghoven, St. Augustin, Germany, for his support. 



8.4 DDSim Prototyping Tool for Autonomous Robots 385 

XML is a mark-up language for documents containing structured information. 
Extensible markup language (XML) is a simple, yet very flexible text format de­
rived from SGML (ISO 8879). Originally designed to meet the challenges of 
large-scale electronic publishing, XML is also playing an increasingly important 
role in the exchange of a wide variety of data on the WWW. 

Using XML is appropriate as it is hierarchically structured like a mobile robot. 
Each robot consists of several subsystems like sensors and actuators. These sen­
sors have attributes, which can be described using XML-structured documents. 

At the Fraunhofer Institute of Autonomous Systems at SchloB Birlinghofen, 
Germany, two different document type definitions (DTD) had been developed, 
which can be used for defining one's own configurations, which are the definition 
file for the robot and the environment of the simulation. 

The robot definition contains the description for arbitrary robots. Each robot 
can be equipped with various sensors, which are appropriate to evaluate the opti­
mal configuration of the robot, representing the solution of a given problem. Using 
simulation it is possible to evaluate the behavior of the robot with respect to the 
given specified sensor configuration. Therefore, a suitable configuration for the 
desired behavior and accordingly the robot configuration can easily be found be­
fore building an actual physical prototype of the robot. An example of the docu­
ment type definition (DTD) for a robot is 

<!ELEMENT Sensor (Label?, DrawColor?,(TouchSensor I Infrared I 
Camera I LaserScanner I 
RelativeEncoder I AbsoluteEncoder I 
Compass))> 

<!ELEMENT Infrared (ScanRange, DistanceSensorDefaultRetumValue, 
Position, Rotation» 

<!ELEMENT ScanRange EMPTY> 
<!ATTLIST ScanRange 

MinRange CDATA #REQUIRED 
MaxRange CDAT A #REQUIRED> 

<!ELEMENT DistanceSensorDefaultRetum Value EMPTY> 
<!ATTLIST DistanceSensorDefaultRetum Value 

SmallerMinRange CDAT A #REQUIRED 
BiggerMaxRangeCDATA #REQUIRED> 

An XML document with the corresponding content looks like: 

<Robot RobotType="KURT2"> 
<CenterOfRotation XCenterOfRotation="O" 

<Drive 

<Infrared> 
<ScanRange 

YCenterOfRotation="O"/> 
DistanceLeftRightWheel="30" 
WheelDiameter=" I 0" 
MaxSpeed=" 150"/> 

MinRange="20" 



386 8 Virtual Reality 

MaxRange="55" 
/> 

<DistanceSensorDefaultReturn Value 
SmalierMinRange="-I" 
BiggerMaxRange="O" 

/> 
<Position 

/> 
<Rotation 

/> 
</Infrared> 

XPosition=" 17" 
YPosition=" -15" 
ZPosition="9" 

XRotation=" -45" 
YRotation="O" 
ZRotation="O" 

Fig. 8.14 shows the robot for the above-mentioned XML description in an of­
fice environment. In the upper left comer, the output of the laser scanner is dis­
played in a special trace window. Fig. 8.15 shows the same program with a differ­
ent configuration. The environment depicts a soccer field with three robots 
equipped with color cameras. This scenario is called RoboCup . 

...... _ ........ 0.- ... _ .. 

~~~~~--------~,~r-~--------------------~. 

r

Fig. 8.14. Simulation of a robot in an office environment

RoboCup is an international joint project to promote artificial intelligence (AI),
robotics, and related fields. It is an attempt to foster AI and intelligent robotics re­
search by providing a standard problem where a wide range of technologies can be
integrated and examined. RoboCup chose to use soccer as a central topic of re­
search, aiming at innovations to be applied for socially significant problems and
industries.

8.4 DDSim Prototyping Tool for Autonomous Robots 387

Fig. 8.15. RoboCup robots equipped with color cameras. In the upper right comer a special
trace window is shown, which views the detected color-bounding boxes of the robot on the
right. The red ball for example is depicted on the right side of the trace window as a red box

In an environment definition the user describes their own environment, e.g. an
office environment in which they want to simulate the robots. This is the real­
world for the robot in which they can interact.

The definition for the objects in the environment is based on 2D polygons. To
make the scene more realistic it is possible to add textures to the objects. Also a
height can be specified, thus actually a 2Y2 D scene description results, shown as
follows. For more specialized implementation a 3D rendering algorithm can be
used allowing the user a 3D view.

<!DOCTYPE Environment

<!ELEMENT Object EMPTY>
<!ATTLIST Object

>
>

Color CDAT A #REQUlRED
XPoints CDATA #REQUlRED
YPoints CDA T A #REQUlRED
XPosition CDATA #REQUIRED
YPosition CDATA #REQUlRED
ZPosition CDATA #REQUlRED
XRotation CDAT A #REQUlRED
Height CDAT A #REQUlRED
Name CDATA #REQUlRED

It is possible to define one or more objects in the XML document. The attrib­
utes, which are declared in the DTD, have to be filled with content for each new
object in XML document.

388 8 Virtual Reality

A corresponding XML document looks like:

<Environment>

<Object Color="200,200,200"
XPoints="0,349,349, 154, 154,337,337,12,12,48,48,0" Y
Points="0,0,520,520,508,508, 12, 12,508,508,520,520"
XPosition=" 1242" YPosition=" 1 00" XRotation="O" ZPosition="O"
Height="315"
Name="room208"/>

<!Environment>

Moreover, DDSim is able to calculate in real-time sensor signals for each robot,
which depend on the movement in the virtual environment. Different sensors, like
distance or touch sensors have been implemented. A color camera based on blob
detection is often used in robotics environments and can be configured as a 3600

omnidirectional camera. The color blob information is used in robotics for naviga­
tion or obstacle avoidance. Furthermore, a simulated laser scanner can be used to
explore the self-localization or navigation algorithms. It is fairly simple to imple­
ment new sensors and integrate them into the system.

The dynamic model of the robot is simulated with a trained neuronal network.
This model is generated from data recorded in actual training experiments, which
can be done for each robot, via collecting and storing data from the odometry. The
matrix of the neuronal network will be saved into files that are read by the simula­
tor. The source files of the matrix are specified in the XML documents.

The robot's behavior is generated by the DD-designer, which is a graphical de­
sign program developed by the Fraunhofer Institute AIS. DD-Designer generates
the specific code for each behavior system, which can be tested directly in the
simulation.

The behavior system is embedded in a so-called behavior client. This client
communicates via CORBA with the simulation engine. Therefore, it is possible to
integrate any robot control program - independent of the general structure of the
respective program. But other programming languages that supporting CORBA
can be used for implementing the behavior client. This approach makes it simple
to integrate existing algorithms.

For integration of existing behavior, it is necessary to create an architecture, al­
lowing the community of mobile robot users an easy adaptation of their own con­
structs, which can be done using a CORBA communication layer. The CORBA
communication is specified with the interface-definition language. This IDL file
holds the specific set- and get-functions. One of the main advantages of introduc­
ing the communication layer is that the client can also interact with a real robot. At
the Fraunhofer Institute AIS a CORBA server with two robots has been imple­
mented. One is the new "VolksBot" , a modular platform for education. The other
is a special outdoor robot called "Pegasus" . These robots run with specific behav­
ior, developed and proved by simulation.

8.4 DDSim Prototyping Tool for Autonomous Robots 389

Cli~nt Module

Robot control program

~ t W-LAN/LAN I
serter Module

GUI I
Simulation En~ ne

I

CORBA
Communication Layer

CORBA
Communication Layer

Hardware Interface

Hardware

Fig. 8.16. Communication diagram that shows at the top the client module with the embed­
ded-robot control program. At the bottom left is shown the architecture of the simulation

DDSim, at the bottom right the architecture of a real robot

A 3D rendering program can supplement the 2D visualization of DDSim. Ren­
dering was implemented to improve vision algorithms to produce more realistic
scenes. With this add-on, complex scene representations can be shown from any
arbitrary viewpoint. The program is developed in Java™ and based on OpenGL®.
It is possible to use file formats like 3DS (3D Max) or VRML. The simulation
sends the position of the moving objects via CORBA to the rendering program.
Therefore, it is possible to use another computer for visualization of the simula­
tion. A result of which is shown in Fig. 8.17.

Adaptation to different environments like office, RoboCup or garden or differ­
ent robot types like KURT2, RoboCup or VolksBot successfully prove the flexible
concepts behind DDSim.

I

I

390 8 Virtual Reality

Fig. 8.17. 3D rendering

8.5 References and Further Reading

Abramowski S, MUller H, (1991), Geometric Modeling (in German), BI-Wissen­
schaftsverlag, Series Computer Science, Vol. 75
Aumann G, Spitzmuller K, (1993), Computer based Geometry (in German) Com­
puterorientierte Geometrie, BI-Wissenschaftsverlag, Series Computer Science,
Vol. 89
Bozinowski S, Schoell P, Engineering goalkeeper behavior using an emotion
leaming method, KI99: German Annual Meeting of AI Workshop on RoboCup,
Bonn, September 13th and 15th, 1999
Bredenfeld A, Christaller T, Gohring W, Gunther H, Jaeger H, Kobialka HU,
Ploger PG, SchOll P, Siegberg A, Streit A, Verbeek C, Wilberg J, (2000), Behav­
ior engineering with dual dynamics models and design tools, In: RoboCup-99:
Robot Soccer World Cup III, Veloso M, Ed., Lecture Notes in Computer Science,
pp.231-242
Bredenfeld A, Christaller T, Jaeger H, Kobialka HU, SchOll P, (2000), Robot be­
havior design using dual dynamics, GMD report, 117, GMD Research Center In­
formation Technology, St. Augustin, 23 pages
Bredenfeld A, Christaller T, Gohring W, Glinther H, Jaeger H, Kobialka HU,
P16ger PG, SchOll P, Siegberg A, Streit A, Verbeek C, Wilberg J, (1999), Behav­
ior engineering with dual dynamics models and design tools, In: Sixteenth Interna­
tional Joint Conference on Artificial Intelligence IJCAI-99 Workshop ABS-4
Third International Wqrkshop on RoboCup, Veloso M, Ed., pp. 57 - 62

8.5 References and Further Reading 391

Crilly AJ, Earnshaw RA, Jones H, (1993), Applications of Fractals and Chaos.
Springer, Berlin
Earnshaw RA, Gigante MA, Jones HH, (1993), Virtual Reality Systems, Aca­
demic Press
Encarnacao J, Peitgen HO, Saka G, Englert G, (1991), Fractal Geometry and
Computer Graphics, Springer, Berlin
Encarnacao J, Strasser W, Klein R, (1996), Graphic Dataprocessing I (in German),
Oldenburg Verlag
Encarnacao J, Strasser W, Klein R, (1997), Graphic Dataprocessing II (in Ger­
man), Oldenburg Verlag
Gilfillan L, Harbison K, (1998), Using distributed virtual environments (DVE) for
collaborative program planning and management: Problems and potential. In:
Proc. VWSIM'98 (Eds.: Landauer C, Bellman KL), SCS Publishers, San Diego,
pp.39-46
Hoffmann C M, (1989), Geometric and Solid Modeling, Morgan Kaufmann Pub.
Kalawsky R, (1993), The Science of Virtual Reality and Virtual Environments,
Addison-Wesley
Kesper B, (200), Cocept of a Geo-Data Model for the use of Free Form Volume
Bodies based on Volume Non Uniform Rational B-Splines (in German) PhD The­
sis, Hamburg
Kobialka HU, Scholl P, (2000), Quality Management for Mobile Robot Develop­
ment, In: Intelligent autonomous systems, Pagello E, Ed., p. 698 -703
Kobialka HU, Scholl P, (2000), Fast Assessment of Robot Programs, In: Robotik
2000, VDI-Berichte, p. 293-298
Moller DPF, (1998), Virtual Reality: Simulation Synergy in Laboratories and Ou­
ter Space Domains. In: Simulation: Past, Present and Future (Eds.: Zobel R,
Moller DPF), Vol. II, SCS Publishers, Delft, pp. 64-66
Schneider M, (1997), Spatial Data Types for Database Systems. Springer, Berlin
Singh A, Goldgof D, Terzopoulos, (1998), Deformable Models in Medical Image
Analysis, IEEE Press, Los Alamitos, USA
StraBer W, Seidel HP, (1989), Theory and Practice of Geometric Modeling,
Springer, Berlin
Vince J A, (1992), 3D Computer Animation, Addison-Wesley
Vince JA, (1995), Virtual Reality Systems, Addison-Wesley
Watt A, (1993), 3D Computer Graphics, Addison-Wesley
Watt A, Watt A, (1992), Advanced Animation and Rendering Techniques, Addi­
son-Wesley
Yachik TR, (1998), Synthetic Scene Quality Assessment Metrics Development
Considerations. In: Proc. VWSIM'98 (Eds.: Landauer, C. and Bellman, K.L.),
SCS Publishers, San Diego, pp. 47-57

Links:
www.ddsim.de

392 8 Virtual Reality

8.6 Exercises

8.1 What is meant by the term virtual reality?
8.2 What is meant by the term openGL?
8.3 What is meant by the term spatiotemporal data?
8.4 What is meant by the term head mounted display?
8.5 What is meant by the term data glove?
8.6 What is meant by the term touch-and-feel sensation?
8.7 What is meant by the term CAVE?
8.8 What is meant by the term DMU?
8.9 What is meant by the term morphing?
8.10 What is meant by the term NURBS?
8.11 What is meant by the term MBA?
8.12 What is meant by the term constructive solid geometry?
8.13 What is meant by the term space partitioning?
8.14 What is meant by the term deformable model?
8.15 What is meant by the term surface reconstruction?
8.16 What is meant by the term isosurface?
8.17 What is meant be RoboCup?
8.18 What is meant by 3d rendering?
8.19 What is meant by the term CORBA?
8.20 What is meant by the term XML?

Appendix A

Numeric Integration

The digital simulation software systems determine values for the continuous sig­
nals by producing a series of discrete values, meaning the continuous function x(t)
becomes a sequence of discrete values x(to), x(t), X(t2), . . ., x(tn), x(tn+d as noticed
in Sect. 1.5. Usually, the time interval between adjacent values is constant and
represented by h = tn+I - tn. Ideally x(tn), the produced discrete values of the func­
tion at a particular point in time, should be identical to its continuous equivalent at
t = tn, which depends on the 'accuracy of the computer, meaning the number of bits
the computer uses to represent a value as well as by the accuracy of the simulation
model. Furthermore, the discretization error of the methods used to calculate the
derivatives, commonly referred to as a numeric integration, is often critical. It
represents the primary source of error in a simulation variable x(t) at t = tn. A very
crude but easily obtainable measure of the accuracy of an integration formula is
the order of error. The order of error can be derived by comparing the error of a
formula with Taylors series expansion Xn+1 in terms of Xno which can be written in
the form

(A.I)

where h is the time interval and X is the derivative of x at t = tn. Basically the se­
ries gives the values of x at t = tn+\ in terms of X n and its derivatives. The order of
the first term, in which both differ, is said to be the order of error. Taylors series
can be used to derive several numeric integration formulas, but more importantly,
it is the criterion used for evaluating almost all numeric integration techniques. As
an example of a numeric integration method, consider the approximation using
only the first two terms ofTaylors series

394 Appendix A

x(tn +h) = X n +h ·xn •

Solving for the derivatives gives

(A.2)

(A3)

which is commonly referred to as Eulers method, or the rectangular rule. This me­
thod can be simply demonstrated for first-order differential equations

x+a·x(t)=b(t), (AA)

with x(t=O) = 0 and b(t) = 1, a unit step input. For the discrete equivalent, (A-3) is
used in (A-4), which results in

x -x
n+l n +a.x = b

h n n'

which can be solved for Xn+l in terms of Xm a and th~ input b, which yields

xn+1 = Xn - a -h-Xn + h-bn •

(A5)

(A6)

Again, it should be noticed that h is the time interval between adjacent discrete
values and a is a parameter in the original equation, and (A-6) is a difference
equation. Almost any programming language can be used to write a program to
calculate successive values of X n+l from the proceeding value xn, the time interval
h, the parameter a, and the input bn.

There is a variety of numeric integration methods existing that require a mathe­
matical translation of the original set of differential equations. This requires me­
thods that can be inserted as numeric integration into a continuous system simu­
lation. Integration schemes of that type can be classified into:

• Single-step integration methods
• Multi-step integration methods

In either case we can distinguish between

• Methods with constant step size
• Methods with variable step size

Single-Step Formulae 395

Any such numeric integration method is an approximation of true integration
by a discrete difference scheme, the problem of which is to define an operator F
such that

approximated over a given interval c; tn+h,) the integral

In+ h /n+ h

Xn+1 = f rp(X,S,t)dt = fxdt ,

with h as the interval size, and F being a k-step integration formula.

Single-Step Formulae

The simplest single-step formulae, amongst others, are :

(A.7)

(A.8)

•

•

•

Eulers numeric integration: xn +1 = xn +h ·xn +O(h 2
)

Trapezoidal numeric integration: xn+1 = xn +!!... (xn +xn+1) +O(h3
)

2

.. . x =X +!!.. .(x +x)+O(h3
)

Heuns numenc integration: n+l n 2 n n+1

xn+1 = xn +h-xn

These methods formulate an approximation Xn+1 at time step tn+l of the true in­
tegration x(t) with a discrete difference scheme, compared to the solution obtained
from the previous integration step X n, t« and the increment h, which is the time in­
terval. For a Euler integration, the increment Xn-l - Xn of the integral is simply de-

termined by taking the derivative xn at the beginning and multiplying it by the in­

terval size h. The poor performance of this simple numerical integration scheme
can be slightly improved using the average of the derivatives at the beginning and
at the end of the interval and multiplying by h, which is a description of the trape-

zoidal scheme. With the value Xn+1 we have a predictive step first while using the

Euler numerical integration scheme, which finally results in the Heun numeric in­
tegration, which is called the second-order Runge Kutta formula.

As mentioned before, the most important topic when using integration schemes,
is the accuracy. Hence the approximation of the integration scheme has to be as
accurate as possible. Again, this can be realized if a value of a state variable taken

396 Appendix A

at 1= 10 + \ is calculated as an expression of preceding values of the same state vari­
able and its derivative. The integration scheme itself determines the approximation
by taking the derivative at the initial step Xo = Ftx.; 10) and thereafter, moving one

half-step ahead, calculating at time step t \ the gradient
n+­

2

From

Xl I = F(X1
1,1 I) '

n+- n+- n+-
2 2 2

(A.9)

(A.IO)

based on the stored values of xo, and 10 , Moreover, the integration scheme evalu­
ates the gradient, described by (A-9), for half a step ahead the derivative, yields

from

X2 I= F(X2 I,1 I),
n+- n+- n+-

2 2 2

(A. I I)

(A.12)

Consider the gradient in (A-12) the next integration sequence starts one step
ahead to approximate the integral , which results in

(A.I3)

The approximations described through (A-lO), (A-12), and (A-l3), can be re­
written in a form that more clearly reveals the fact that a weighting average of the
previous predictions of the derivatives are taken into account for the evaluation of
the final approximation one step ahead to obtain a more accurate approximation of
the integral as follows:

Single-Step Formulae 397

(A.14)

A very crude but easily obtainable measure of the accuracy of the numeric integra­
tion scheme is to choose the weighting factors ai, i = I, . ..,4 such that the error of
Xn+1 is comparable to the error of a formula with Taylors series expansion of the
genuine solution, given in (A-I), fits at the tenn of fourth order, with R as the re­
spective rest tenn.

(A.15)

The solution Xn+l is bounded from Xm In and h as follows

(A.16)

with E as incremental function, which depends on the type of differential equa­
tion. E can be chosen as follows

with

:=:(xn,ln ,h) = fan ·Kn,
n-I

n- l

«, = F(xn -i»:». .
n=l

(A.17)

(A. 18)

The coefficients an, A, K; with n = I, .. . , n-l
, in (A-17) and (A-18) are un­

known. A solution can be obtained deriving Taylors series expansion compared
due to the respective series terms of (A-I 7) and (A-18) with the coefficients an,
A, Kn· The index m in (A-17) characterizes the order of the numeric integration
scheme used. Hence, m represents a measure of the accuracy of the integration
formula , meaning that the derivative order of the incremental function is unimpor­
tant compared with Taylors series expansion terms. The accuracy is better the
higher the degree of m, because accuracy depends on the order of the discretiza­
tion criterion, which is O(hm

+
I
) . For practical reasons, proven values for m are 1,2,

3, and 4 which finally results in the fourth-order Runge Kutta formula , This for­
mula proves the increment h for each discrete integration step to evaluate the dif­
ference between the discretization error and the error criterion, which will be e <
O. For a given increment h the program calculates one integration step and the re-

398 Appendix A

spective error function e. In the case that e > e. the integration step will be re­
peated with one half-step length. For e < e for all e = 1, . .. , n, an integration step
with twice the step length will be used.

Multi-Step Formulae

Single-step formulae, especially when they are of the complexity of the fourth­
order Runge Kutta method and higher, are difficulty to handle. In the case of the
fourth-order Runge Kutta method one has to calculate four discrete function val­
ues to obtain one value of the integral. Schemes, that use the results of preceding
steps seem to be less difficult to handle. These types of schemes are the multi-step
integration formulae, which can be written in the general notation as follows:

Xn+1= 00 ,xn+01 ·xn_1+,···+om ,xn_m+

h[b_1 ,xn+1+bo·xn+,···,+bm.xn-J
(A.19)

The iterative nature of an integration scheme given in (A-19), results in a prob­
lem of the multi step integration scheme, the inherent potential of instability. For
this reason, Dahlquist' introduced a necessary condition for stability: In an m-step
formula, not more than m-l coefficients if m is even and not more than m coeffi­
cients if m is odd can be chosen freely for the purpose of minimizing the approxi­
mation error.

1 Dahlquist G, (1975), Convergence and Stability in the Numerical Integration of ODEs,
Math. Scand. 4, pp. 33-35

Appendix B

Laplace Transform

Chapters 2 and 3 are concerned with continuous-time systems and their mathema­
tical models in terms of differential equations, transfer functions and state-space
models , as well as discrete -time systems and their mathematical models in terms
of statist ical notations, queuing systems, Petri-nets, and parallelisms. In this sec­
tion the Laplace transform (and its inverse) are introduced, a very convenient tool
for the analysis of the response characteristics of models in terms of differential
equations representing linear continuous-time systems. From a more general point
of view a transform is a mathematical method that allows a much simpler solution
with it.

A functionj{t) is called transformable if

00

~f(t)~-(""dt :s; 00,

o

(B.l)

for some real, positive 0:, known as the abscissa of absolute convergence. The
Laplace transform converts or transforms a real function of a real variable into a
complex function of a complex variable. In particular, let j{t), be a real function
defined for t > 0, then the Laplace transform of this function is defined by

00

F(s) = f f(t)·e-s·'dt=L[f(t)].
o

Likewise, given F(s), one expresses the inverse Laplace transformj{t) as

f(t) = L-1{F(s)} ,

(B.2)

(B.3)

400 Appendix B

which is defined as

1 C+ja>

f(t)=-. fF(s)es-lds ,
2Jg c-cjo»

(B.4)

where c is a real constant that is greater than the real part of all the singularities of
F(s), the Laplace transform, and.f{t) as a time-dependent function.

Example BI
Obtain the Laplace transform forj{t) = e-a

./ for t ~ 0, where a is a constant.

00 - (s.a}t I 1
F() - f - a·t -s-Id _ e 00 -s - e e t- ---.

o -(s+a) 0 s+a
(B.5)

The integrals in (B-2) and (B-4) are defined for complex values of s hence F(s) repre­
sents a complex function for which the methods of complex analysis are applicable. The
Laplace transform is defined for a wide class of functions, as long as the complex values s
are restricted to a region in the complex plane for which the indefinite integral converges.

Under normal circumstances systems analysts are interested in the dynamic be­
havior of the system under test, starting, at time t = 0, which with the lower
boundary of the integral is t = 0 instead of - jio. which results in the so-called one
boundary Laplace transform

F(s) =(}j(t) ·e-s
.
tdt =LV(t)] . (B.6)

Let a be an arbitrary real number and let .f{t), t > 0, have a Laplace transform,
then

L[a . f(t)] =a -LV(t)] =a -F(s).

Let.f{t) and g(t) be defined for t > 0, each having a Laplace transform

LV(t) + g(t)] = LV(t)]+ L[g(t)] .

(B.7)

(B.8)

The properties given in (B-7) and (B-8) guarantee that the Laplace operator is
linear ; linearity is a critical property of the Laplace transform.

For ~ we obtain the respective Laplace operator L[~]=S . Hence them m
Laplace transform of the first derivative of.f{t) is found to be

I

Laplace Transform 401

L d~;t) = s .F(s) - f(O) , (B.9)

and for higher-order derivatives

L d
n
f 2(t) = s"F(s) - sn-If(O) - sn-2f(O) - ...- r: (0) .

dt
(B.IO)

If all the initial conditions ofj(t) and its derivatives!,(t),f"(t),r- J (t) are zero,

(B.ll)

Let a be an arbitrary real number and let j(t), t > 0, have a Laplace transform
F(s), then

Suppose thatj(t), t> 0, has a Laplace transform F(s) and that the limit

lim f(t)

t~oo

exists. Then the final-value theorem holds

lim f(t) = lim s -F(s).

t~oo s~oo

Suppose thatj(t), t> 0, has a Laplace transform F(s) and that the limit

lim f(t),

t~O

exists. Then the initial-value theorem is

lim f(t) = lim s- F(s).

t~O s~O

Suppose

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

402 Appendix B

d
L[t./(1)]= --·F(s).

ds

In a similar way we obtain

(B.17)

(B.18)

(B.19)

(B.20)

-aot. Lr -aot] 1 . IFor e we receive the L-operator Le =--,shown m Examp e B1.
s+a

The previous Laplace transform theorems, presented without proof, are often
useful in developing the Laplace transform of a given function. However, the in­
version problem is also of substantial interest and importance. Given the complex
function F(s) it is desired to find a function.f(t) defined for t > 0 such that

L[r(t)] = F(s) .

Sometimes this inversion property is written as

(B.2l)

(B.22)

For a linear time-invariant system the ratio of the Laplace transform of the out­
put to the Laplace transform of the input is called the transfer function. The trans­
fer function is useful; however, it does not provide any information concerning the
physical structure of the system.

Example B2
The transfer function ofa simple RC network, shown in Fig. B-1, is to be derived.

R

Laplace Transform 403

L

-f--------cllJ
Assum ing

Fig. B-1. Simple RC network

/(s) ~ L[i(t)] (B.23)

and T = R -C , as well as dQ = I the voltage-current relation ships can be written as
dt

which results in

Vo(s) = R -/(s)+ /(s)
C os

1

F(s) = Vo(s) =~.
Vc(s) s+~

T

(B.24)

(B.25)

(B.26)

Example B3
For the RC network, introduced in Example B2, the ordinary differential equation can be

written as follows

(B.27)

which yields in the Laplace doma in

(B.28)

404 Appendix B

With Vc(O)= Vo , we obtain

F(s) =Vc(s) =Vo.[(1)]+ VO.[_T_] .
S l+T ·s l+T·s

For the time domain we obtain

which results for the current I(t) in

(B.29)

(B.30)

(B.31)

while] = dQ = ~. The graph of the voltage and the current behavior over time is shown
dt R

in Fig. B-2.

V,I

Fig. B-2. V- I graph of the simple RC network from Example B2

Example B4
For the RC network in Example B2 the input quantity is the voltage Vi applied at the in­

put ports. Assuming that the applied voltage source Vi has zero impedance. The output of
the network is the voltage Vo across the resistor. Let Q denote the charge on the capacitor
and let] denote the current through the capacitor; then the total voltage drop in the loop is

Q-+R·] - V; = O.
C

The charge-current relationship is

(B.32)

Laplace Transform 405

dQ = I 0 (B.33)
dt

The charge Q is represented as state variable x; the input variable is Vo = Vi and the
output variable is y = Vo = R -I. Thus the state model for the RC network results in

dx I I
-=--x+-V,
dt T R 0

I
y=-x+Vo•

C

(B.34)

(B.35)

The objective of Example B4 is to determine the response properties of the out­
put voltage to the initial state of the RC network and to the input voltage, meaning
examining the response properties. Determining the response of the RC network
uses the Laplace transform of the state equation, assuming Qo is the initial state

and Vo (t), t > 0 is the input, hence we get

I I
sX-Q =-- X +- v'

o T R 0'

where Vo(s) andX(s) are Laplace transforms of Vo(t) and x (t), yielding

x =-.l?L+ Vo
1 I '

S +- R(s +-)
T T

and

Thus the output voltage is

The transfer function for the RC network is

s
G(s) =-1 0

s+ ­
T

(B.36)

(B.3?)

(B.38)

(B.39)

(BAD)

406 Appendix B

Since t > 0 the system is stableThe response to a sinusoidal input voltage Vo(t)
=V;·cosart for t > 0 results in an output as follows

Q _!- V I _I-T

y(t)=--o·e r_-!...·fe t ·cosw·r .dr+V; .cosw·r.
C t °

(B.41)

This integral can be evaluated with some difficulty. An alternative solution is
based on the frequency-response function

y(t)~M(w) ·V; ·cos[w ·t+lb(w)], as t~oo,

with the transfer function,

M(w)ej¢(W)=~,
jw+­

r

w
M(w) = l'

..[;;;+(-f
l'

yielding

1
tanlb(w) = -.

to-t:

(B.42)

(B.43)

(B.44)

(B.45)

Thus the frequency-response function has the following properties: If OJ =0 ,

M(w) =0 and ¢J(w) =" ; for OJ> 0,0 < M(w) < 1, 0 < lb(w)< ,. ; as ca~ 00,

2 2
M(w) ~ 1, and ¢(OJ) > o.

Appendix C

Online Resources

Intentionally this textbook has been designed to be independent of any particular
simulation software package. This decision was made largely because of the grow­
ing popularity of modeling and simulation itself, and the continuous introduction
of new-generation simulation software packages has been accompanied by tre­
mendous diversity . The days when most courses on modeling and simulation used
one or two simulation software packages are quickly giving way to the situation of
tremendous diversity in other possible efficient solutions using modeling and
simulation as a generalized methodology. Some courses integrate the use of
MATLAB SIMULINK, others using ACSL, and so on. This diversity, coupled
with the evolution of modeling and simulation into a discipline, make the need to
decouple lecture material from more advanced case study material quite evident.

However, we have not simply left the instructor and students entirely on their
own with respect to the use of simulation software packages. Instead we have used
the World Wide Web to supplement this book with extensive Case Study materi­
als. In fact, using the Web, we can provide even more than a typical modeling and
simulation textbook might be able to provide .

The Web site accompanying "Mathematical and Computational Modeling and
Simulation: Fundamentals and Case Studies" can be found at:

http://www .springer.de/cgi/svcat/search_book.pl?isbn=3-540-40389-2

and

http://www.informatik.uni-hamburg.de/TIS/M&S

It currently includes items like:

• Case studies in the various domains of chemical engineering, electrical engi­
neering, environmental systems, mechanical engineering, medicine, physics,
telecommunication, etc.

408 Appendix C

• Links to related Web sites, and simulation software industry documents
• Power-point tutorials,
• Power-point lecture slides (to be added in future) .

Of course, the Web site will continually evolve, so more items may be added in
future.

Index

2,50 scene description 387
20231 ,237,244,376,378,382
20 polygons 387
20 projection 228
20 radiator 247
20 visual ization 389

3D 226,229,363,366,369,370,374,
375,376,378,380,381 ,382

3D mice 383
3D Radiator 247
3D rendering 389, 390
3D rendering algorithm 387
3D simulation 372
3D spatial models 381
3D view 387
3D virtual reality terra in model 382

40 381,382

acceleration 14,27,28,30,73,116,
126,184,198

access-oriented systems 165
accuracy 393
ACSL 183,185,186,187,188,189,

407
activation layers 331
activation level 332
activity function 332
activity-oriented simulation 214
adaptive control 327
adaptive learning mechan ism 328
adapt ive model 257,258,264
adjustable parameters 263
adjustable-parameter vector 257
admissible controls 17
advanced case study material 407
aerobic growth 325

airborne radars 166
airplane 162
algebraic equations 294
algebraic loops 174
algorithm

minimization algorithm 307
aluminum film 226
ampere meter 233
angular acceleration 29, 31
angular displacement 31
angular momentum 33
angular position 28, 29
angular velocity 28, 29, 31, 250, 329,

330
animation 215
Animation 241
antenna impedance 250
AnyLogic 234, 235, 236, 240
applet-window 238
approx imation error 398
arbitrary equations 43
arbitrary function 224
arbitrary robots 385
ARENA 216
arrival event 140
arterial blood pressure 174, 175
articulated manipulators 367
artificial intelligence 163, 164, 318, 386
artificial kidney machine 107
assembling procedures 152
assembly line simulation 154
assembly processes 151
asymptotic unbiased estimate 279
asymptotically stable 94
automobile 124, 125, 128, 133
automobile rear-end suspension system

124,125
automoti ve I , 155
auxilliary equation 26, 112, 113, 114

410 Index

average service 143
average time 143
average waiting time 143
avionics I, 217
axis controllers 221

B2SpiceNDV4 232,234
back-propagation networks 336
bacteria 209,210
baroreceptor feedback loop 294
beam elements 251
black box 4
block based flowchart 235
block diagram 19,47,48,49,50,51,

102,103,107,171,173,215
block diagram algebra 50
block oriented representation 171
block oriented simulation 171
block oriented simulation software 168,

170, 178
blood volume 175,177
bloodstream 178, 182,252
body fluids 106
body heat 40
body mass 32
body's metabolism 106
Boltzmanns law 40
Bond graph 13
Boyle Mariottes law 37
breast cancer 35
bus bar 246

CAD-layout simulator 153
call-center capacities 239
calling population 139, 140
capacitance 23,121,193,195,196,197,

200
capacitor 23, 24, 25, 162, 404
car production line 151
cardiac output 177
cardiac-assist systems 374
cardiovascular system 281,294
car-following behavior 342
carrying capacity 256
cartesian product 316
cascaded blocks 52
catalytic burner 248
catastrophic management 365
center of gravity 322
central nervous control 294
characteristic equation 91,1117

characteristic matrix 88
characteristic polynomial 88,91,94,95,

96,97, 115, 122, 163
characteristic zeros 97,98, 115, 122
charge 23,84,121,193
chemical dynamics 42
chemical engineering control 328
chemical reaction 43, 45
chunking 336
circulatory system 162
clearance 107, 110
closed-queuing systems 142
cold crucible 249
Collatz problem 203
color map 379
combined simulation 163,235,240
combining parallel blocks 51
communication server 344
compartment models 252
compartments 191,194,195
complex eigenvalue 91
complex surfaces 364
compliance 298
component based simulation software

190 ,
component-based systems 190
composite-structure 64
composition 315, 316

max-min composition 316
composition ofthe arrivals 139
computational modeling I , 164
computational modeling and simulation

168
computer graphics 363, 366
computer simulation 161
computer-supported cooperative work

369
concentrated elements 162
concentration 40,43, 106, 107, 108,

109
concentration gradient 39
concurrency control 383
condition 59
conductivity 23, 226, 229
conductor current 226
conservation of energy 37,40
conservation of mass 37
conservative strategy 158
consistency 65,271 ,279
consistent estimate 287
constraint rules 326

constraints 351
container 148
continuous library 207
continuous simulation 240
continuous-time models 18, 57
continuous-time system 72
continuous-time systems 55, 70, 168,

173,399
contour slices 378
contractility 35, 296, 297
control 1
control commands 171
control concepts 320
control instructions 173
control loops 294
control modules 344
control points 371
control ratio 51
control statements 178
control system 51
control variables 71,72
control vector 71, 295
controllability 21,77,78,79, 133,287
controllability matrix 78
controller 163
control-systems 3
convection 40
convolution integral 69,87, 103, 133
copper bus bar 247
CORBA 388, 389
cortical pathways 366
cosmetic surgery 369
cost of transportation 350,351
CPU time 157,159,187
creatinine 106
creator relationships 340
crisp output 322
critical damping 118
cross-sectional area 22
CSMP 178,181
CT pictures 375
current 24,84,106,121,193,197,404
current source 25
customer 58, 139, 142,215,239
cyber gloves 370,382

D'Alembert's law 126, 127, 129
damper 116, 120, 121, 125, 126, 128,

162,193,251
damping 31,73,115, 118, 122, 125,

126,127,184,192,252

Index 411

damping force 253
dangerous traffic situations 342
database 155
data glove 367,383
data instructions 173
data retrival 383
Davidon Fletcher Powell 298, 299
DDSim 384, 388, 389
deadlock 158
death rates 255, 256
decision making 344
deductive method 6
deformable models 373,374,375
deformation energy 374
deformations 371
defuzzification 322, 326, 348
defuzzifier maps 318
defuzzifying 322
delays 191
dendrites 331
denitrification 325
denominator polynomial 104, 115
density 37
density of electrons 23
diagonal matrix 84
dialyser 107,108, 109, 110
dialyser machine 108
dielectric constant 23
difference equation 161,262,263,266,

270
differential block 47
differential equation 5, 15,26,69,70,

72,73, 74, 76, 84, 93, 109, Ill, 114,
120,121,122,128,133,161,170,
179, 185, 190, 192, 193, 194,205,
212,213,251,252,253,254,259,
260,262,271,294,328,394,399

differential operator 103
diffusion 39
diffusion dynamics 39
digital circuit design 234
digital mock up 368
direct search method 297,302,304
directed-event graph 340
Dirichlet constraint 223, 225
discrete difference scheme 395
discrete simulation 240
discrete-event model 19, 155
discrete-event simulation 62, 137, 146,

156,237
discrete-event systems 139

412 Index

discrete-time event 56, 57
discrete-time model 56
discrete-time system 55,61 , 135, 168,

214,399
discretization accuracy 168
discret ization error 393, 397
displacement 73, 197
displacement vector 198
distance 342
distributed models 19
distributed simulation system 344
distributed traffic simulator 342
distributed-simulation 339
distributed-transportation 350, 351
DLL-functions 191
dose regimen 183
doubtful data 31I
driver-vehicle-element 342, 343, 344
driving system 320
drug distribution 179
DTD 387
DYNAMIC 187
dynamic viscosity 245
dynamically routing 239

edge 156
edge-type function 151
education 365
eigenvalue 88,91 ,92, 133,292
Eigenvalue 163
eigenvectors 91
elastic collision 29
electrical circuit 22
electrical current 40
electrical elements 22
electrical network representation 65
electromagnetic brake 249
electronic circuit design 231
elliptic orbit 34
elongation 192, 252
embedded fuzzy-logic controller

systems 327
empirical method 6
empirical validity 65
end diastolic filling volume 297
endothelial cells 107
energy conservation equation 245
entity 135,215
equation-based simulation software 168

equation-error 266,271,274,275,277,
278,279,280,281,283,286,293,
300,307,308,309

equilibrium 36,69,93,94, 131,255,
374

equilibrium position 126
equilibrium state 21, 45, 93, 131
ergometric workload 296
error criteria 278, 280
error criterion 7,262,266,267,275,

287,397
error functional 259, 265, 298, 306
error reconstruction 266
error sequence 266,267
error signal 335
error vector 260
Euler Lagrange equation 374
Eulers method 394
Eulers numeric integration 395
event 18,59,61,62,135,140, 159, 191,

235,311,339,340,359
event classes 58
event-based 169
event-based control 214
event-oriented simulation 214
evolutionary state 337
existence of solutions 76
expectation function 137
experimental environments 163
expert system 166, 326
exponential block 47
external event 19
extra cellular fluid volume 175

Faradays law 24
federate 353,356,357,359
federate ambassador 357
federation 356,357,358,360
federation object model (FOM) 353
federation rules 352
FedExec 356
feedback connection 48
feedback loop 51,99,158,163
feedback loop gain 51
feedback structure 103
feedback transfer function 98
FEMLAJB 222,223,244,249
fiber elastic network 374
Ficks law 39, 108
FIFO 140

film geometry 228
final-value theorem 401
first-order kinetics 179
fixed-bed reactor 249
flight simulation 366
flight simulator 363
flow 191,248
flow phenomena 36
flow rate 37
flow relations 147
flow resistance 38,49
fluid density 245
fluid mechanics 36
flux balance 227
flux linkage 24
FOM 353, 355, 358
food supply 256
force 30,73,84,93,116,117,121 ,124,

125,126,134,184,193,329
force-feedback 164
forward loop gain 51
forward transfer function 98
frame-based systems 165
Frank Starling law 175
Fraunhofer Institute AIS 388
free body diagram 124
free-air convection 247
free-body diagram 28, 116, 125, 184
frequency 69,94,122
frequency dependency 26
frequency-domain 69,94
frequency-response function 406
function

AND function 333
OR function 333
sigmoid function 334
XOR function 333

fuzzification 326
fuzzifier maps 318
fuzzy associative memory 321
fuzzy control 328
fuzzy controller 321,327,328,337
fuzzy- controller syntax 326
fuzzy if-then rule 316,317
fuzzy if-then rules 316, 326
fuzzy kernel 348
fuzzy logic 312,316,317,319
fuzzy logic toolbox 324
fuzzy- reasoning algorithm 327
fuzzy relation 315
fuzzy rule base 322

Index 413

fuzzy rules 329, 330
fuzzy set 312,313,315,316,317
fuzzy system 323, 336, 349
fuzzy variables 329
fuzzy-inference 318
fuzzy-inference mechanisms 316
fuzzy-knowledge-based controller 326
fuzzy-logic 324, 327
fuzzy-logic control systems 326
fuzzy-logic controller 321
fuzzy-logic system 316, 317, 318, 322
fuzzy-set 329
fuzzy-set control 347
fuzzy-set membership 330
fuzzy-set traffic simulator 348
fuzzy-set traffic-control 347, 349

GAMS package 352
gases 36
gastrointestinal tract 178, 252
Gaussian distribution 274
gearbox 221
generalized Neumann boundary 223
general-purpose simulation systems 183
geological processes 380
geometrical bodies 364
glomerular membrane 106
Goldblatt clip 177
GPSS 215
GPSS/H 215,216
gradient 306, 396
gradient methods 298, 302, 303, 305,

306
graph 156,319
graphic databases 363
graphic module 344, 356
graphical user interface 206
gravidity force 253
gravitation constant 253
gravitational constant 32
gravitational force 35, 126
gravity 184
green light direction 347
growth rate 255, 256
gyration 31

harmonic motion 197
harmonic oscillation 198
head mounted devices 370
head mounted displays 363, 382, 383
head mounted tracking devices 383

414 Index

head tracking devices 382
heart 294,296,297,375
heart frequency 295
heart transplantation 374
heat balance 226, 227
heat capacity 23I, 245
heat equation 245
heat flux vector 245
heat production 226
heat transfer 40, 229, 230, 244, 246,

247
heterotrophic biomass 325
Heuns numeric integration 395
Heuristic validity 66
hidden layer nodes 336
high bay warehouses 56
high-level architecture 352
high-level Petri-net 151, 154
HLA 235,353
HLA land-based transportation 360
HLA-RTI 360
homogeneous differential equation 116
homogenous equation III
Hooke Jeeves method 303, 304
Hurwitz test 95
hybrid simulation 236
hydraulic system representation 65

identifiability 77, 133,287,288,289,
290,297,306,307,310

identification 258, 274
identification interval 275,276,277,

297
identification model 21,259,262,263,

264,265,266,271,272,276,278,
281,283,307,309,310

identification task 259, 260, 265
identifyable 83
idle 135
ill-defined 311, 326
ill-separable 311
image plane 373
imaging 382
immersion 366
impulse response matrix 46
impulse-response 48,87, 104
incompressibility condition 245
increment 395, 397
individual lanes 341

inductance 24,25,121,162,193,195,
196,197

inductor 24
industrial robot 220
inertia 28, 31
infinite number 28
influences 191
INITIAL 186
initial condition 75,94, 117, 151, 168,

256
initial state 2,3,20,72,77,78,81,85,

93,103,104,123,131 ,405
initial-value theorem 401
input 17,46,67,72,74,75,77,83,87,

98, 103, 104, us, 119, 122, 123, 130,
131

input function 2,3,20, 72, 121, 193
input matrix 20, 72, 74, 87
input set 4
input variable 14,47, 102, 114, 124,

130,405
input vector 3, 19,20,332
input voltage 405
insitu testing 380
instrumental variable 283, 285
integral block 47
integral equations 170
integration formula 393
integration interval 172
integration operator 102
integration step 397
integration time I72
inter arrival times 139
interaction profiles of traffic participants

342
interactions with pedestrians 342
interactivity 163
interface specification 353, 354
intra-corporal contractility assistance

374
inventory systems 137, 146
inverse Laplace transform 399
inversion 54
inverter circuit 232, 233
isocap 376,379,380
isomorphism 65, 120, 162
isosurface 376,378,379
Item cost 146

Java 154,237
Java integration 154

Java-Applet 237
Java™ 384, 389
JNI interface 237
jobs 139
joins 140
joints 220

Kendalls notation 144
Kichhoffs voltage 25
kidney 106
kidney function 106
kinetic energy 30
Kirchhoffs circuit laws 12
Kirchhoffs current law 25
Kirchhoffs voltage law 104
knowledge bases 166
knowledge representation 165
knowledge-based system 167
KURT2 389

.2'-domain 124
Lagrange criterion III
Lagrange multiplier 224
laminar flow 36
land-based transportation 356,359,361
lane changing 342
lane element 346,347
lane segments 345
Laplace domain 47,79,403
Laplace operator 88
Laplace transform 69,75,87,88,90,

91, 102, 103, 114, 115, 122, 123, 127,
133,399,400,401 ,402,405

large-scale models 217
learning mechanism 330
least squares 267,268,269,270,274,

279,280,286,293,297,306,307,
308,309
generalized least squares 281, 282

lecture material 407
Lego® Mindstorms 319
length 184
linear programming 350, 351
linear regression 258
linear system 73, 75, 77, 85, 90, 92, 133
linguistic information 317
linguistic input values 322
linguistic output values 322
linguistic values 326
linguistic variables 316
liquid capacitance 37,38,49

Index 415

liquid volume 37
Ljapunov function 100, 101
Ljapunov stability theorem 100
logarithmic function 343
logic-based systems 165
look-up tables 327
lookups 191
L-operator 402
Lotka Volterra model 256
lung 294

M-fiIes 203
magnetic resonance imaging 376
maintainability systems 137
man machine interface 167
management 18
management object model (MOM) 353
maneuver space 320
manufacturing systems 56, 137
mapping 156, 157, 158,339
Markov parameter 289,290,291,292
Markov-chains 70
mass 28,30,31 ,39,40,42,84,93,108,

116, 120, 121, 124, 125, 126, 127,
128,133,162,184,192,193,251 ,
252,253,328,329

mass balance equation 211
mass conservation 245
mass-less lever 125
mastectomy 35
mathematical model 5,6,16,19,47,69,

72,7~78,81, Ill , 124, 161 , 162,
168,173,175,176,179,253,257,
258,260,263,264,399

MATLAB 203,204,205,228,237,
324,376,377,378,407

MATLAB-SIMULINK 235
matrix notation 71
matrix- vector 179
MAX operator 323
maximum likelihood 268
MAXIMUM operator 322
maximum-likelihood 268,274,281 ,

283,285
MBA 372
mean arterial blood pressure 177
mean number ofwaiting jobs 142
mean of maxima 322
mean systemic pressure 175, 177
mean time in system 142
mean waiting time 142

416 Index

measurement equation 270
measurement error 265, 273
measurement matrix 272, 276
measurement noise 284
measurement variables 286
mechanical components 220
mechanical elements 30
mechanical system 84, 115, 116, 193
mechatronics I
membership degree 316, 321, 322, 323
membership function 312,313,314,

315,317,319,322,324,327,338
linear membership function 313
S-membership function 314
trapezoidal membership function 314
triangle membership function 314

message passing 235
metabolism 178, 252
methods with constant step size 394
methods with variable step size 394
metrical layer 383
metric-valuated 365
microscopic systems analysis concept

356
microscopic traffic structures 341
microsystems I
military applications 365
minimization problem 352
model building 240
model data 235
model instructions 173
model specification 163
model structure 5
model validation 63, 64
Modelica 22,217,218,219,220,221,

222
modeling 12,63
ModelMaker 94,190,191,194,195,

196,244,251,252,254
MOM 353,355
monoconical antenna 250
Monod equation 212
motion 27,30,36,93, 116, 118, 119,

120, 197
motion of particles 29
motor 220, 221
motor assembling line 155
motor assembly line 151
moving a block 52, 53
MRI 376
mucopoly-saccaride fibrillae 107

multi level feed back 143
multibody systems 217
multidimensional scaling 365
multi-domain system 220
multilayer data base 383
multilayer perceptrons 336
multi-level B-spline approximation 375
multi-level B-spline approximation

algorithm 372
multiphysics 229, 230, 245
multiple-call centers 239
multi-step integration formulae 398
multi-step integration methods 394
multivalence 312
multivaluedness 312
multivariable system 46, 75
multivariate fuzzy input 322, 323
musculus pectoralis major 35

Navier Stokes equations 245, 246, 248
navigation 388
nephron 106
network element 25
network systems 57
Neumann boundary condition 224, 225
neural networks 331
neuron 331,333,334,335
Newton Raphson method 302
Newtons law 12,29,30,35, 184
next-event algorithm 155
next-event list 62
next-event-simulation 61
nitrification 325
nitrification reaction 209
nitrite 213
nitrite concentration 209
nitrite oxidation 209
nitrobacter 213
node 147, 148, 149, 156
noise 260, 261, 262, 265
noise model 286
noise-free 278, 307
non uniform rational B-spline 370, 375
nonconsistent estimate 279
normal distributed variable 343
numeric integration 393, 394, 395, 397
numerical integration 15, 395
numerical methods 163
numerical optimization methods 267
~RBS 370,371 ,375,376
Nyquist criteria 69,94, 133

Nyquist criterion 98,99, 100, 133

object bases 166
object Class 236
Object model template (OMT) 353
object properties 235
object-oriented data base 370
object-oriented modeling 164,217, 218,

327
object-oriented programming 205
object-oriented systems 165
object-relational approach 383
object-type declaration 235
observability 21,77,81 ,83, 133,287
observability matrix 81,83
observable 77,80,81 ,83
obstacle avoidance 388
office environment 386
Ohms law 22, 202, 220
OMT 353,354,355
one-step-ahead prediction 275
open loop 99
OpenGL 363, 389
open-queuing systems 142
operational research 18
optimal control 69
optimistic strategy 158
oral intake 182
order-entry-dependent assemblies 153
ordinary differential equation 9, 14,88,

403
orifices 36
oscillation 73, 118, 119, 121, 134, 193,

197, 198
oscillatory system 73
outflow 49
output 16,17,46,67,71,72,74,75,77,

81,83,87,98,104,115,131
output equation 38
output error 260,265,266,267,268,

273,278,284
output function 19, 20
output matrix 20, 72, 74
output sequence 259,265
output set 4
output variable 51, 102, 114, 124, 130,

263,331 ,405
output variables 72
output vector 2,3, 19,20,71
output voltage 405
output-error method 281

Index 417

overall renal function 174
overdamped system 118
oxidation 325

packed-bed reactor 210, 211
panoramic displays 366
parallel execution 157
parallel processes 147
parameter estimate 268,277,278,287
parameter estimation 21,282,294
parameter identifiable 83
parameter vector 21,83,259,260,261,

262,263,264,265,266,267,273,
275,276,288,289,291,292,295,
303,308,309
true parameter vector 302

parameter- identification 257,258
partial differential equation 9,70, 161 ,

222,223,224
partial fraction expans ion 88
partial fractioning 44
particle 27, 28, 29, 30
particle dynamics 27
particular solution 111, 114, 116
partition ing 156, 158
PASION 234
Pegasus 388
pendulum 73,184,188,189,190,217,

218,253,254,255,329
inverted pendulum 328, 329, 330
pendulum shaft 328

perceptron model 333
performance 144,395
performance criterion 7,9,66,259,268
performance index 66, 275
periodic models 192
peripheral resistance 295
peritubular capillaries 106
permittivity 23
permutation ofblocks 52
Petri 148
Petri-net 12,70,147, 149, 154, 155,

161 , 163,399
pharmacokinetic model 253
phase angle 99,198
phase plane 93, 123, 133, 198, 255
photogrammetry 382
photonic waveguide 250
physical exercises 294
physical model 162
physical similarity 162

418 Index

physical structure 258
physical system 163,184
PI-fuzzy- knowledge based controller

327
pipe connections 251
pipe joints 251
pipes 36
pivot 127
planet 32
planetary model 34
polar coordinates 32
polar moment 31, 32
poles 99, 115
population growth 255
population model 255
porous-media flow 248
power plant systems 328
pragmatic validity 65
predecessor relationship 340
prediction 64
prefiltered variables 286
preprocessing algorithms 337
pressure 40, 248

mean pulmonary pressure 295
mean pulmonary venous pressure

295
mean venous systemic pressure 295
systemic pressure 295

pressure vessel 250
probabilistic distribution 343
probability 138, 140, 143, 144,279,286
probability density function 262
probability mass function 136
procedu re-oriented systems 165
process attributes 235
process engineering control 328
process information 380
process-oriented simulation 214
proportional block 47
prototype building 231
prototyping tool 384
PSI 170
pulse sequence 294
pure fuzzy controller 327

quadratic-error criterion 271
qualification 63
queue 55,56,62,70,139,141,161
queue length 142
queue-simulation 215
queuing discipline 139 I

queuing models 139, 144
queuing systems 56, 137, 139, 140, 141,

144, 145,399

radiation pattern 250
radiation resistance 40
ramp function 10
random arrival process 60
random length 140
random number 60, 141, 143
random process 280
random sequence 284
random times 141
random variable 136,137, 141
randomized probabilistic 343
randomized schedule 140
rank 76,77,78,79,81,83,133
RC network 65, 204, 402, 403, 404, 405
RCL network 17, 73, 84, 120, 121, 192,

193, 195,202
reactants 42
reaction rates 42
reactor kinetics 213
reactor tubes 249
reactor type 210, 211, 325
realistic sensation 366
real-world system 257,258,259,260,

261,262,263,264,281,287,288,
289,294,309,312,365

rear-end suspension system 127, 128
rearranging summing points 54
recirculation 210
recovery mechanisms 383
rectification 63
regression 278, 343
relative velocity 29
relaxation method 303
renal blood flow 174
rendering 382
resistance 22, 121, 193, 195, 196, 197
resistive heating 246
resistor 23, 25, 162, 404
resistor-transistor-logic 232
Reynolds criterion 36
Reynolds number 36
RF antenna 250
right atrium pressure 175
right-of-way situation 342, 343
rigid body 28
road conditions 342
road network 341,344,345,356

RoboCup 386,387,389
robot 385, 387
Robot Cup 318
robotics I
robots

mobile robots 319, 323
soccer playing robots 318, 319, 320,

321
Rosenbrock method 298, 303, 304, 305
rotary force 3I
round robin 143
Routh Hurwitz criterion 69,94,96,97,

98,133
routing capabilities 140
RTI353,356,357,358,359
RTI ambassador 357
rule base 326, 347
rule-based reasoning system 326
rule-based systems 165
Runge Kutta formula 397
Runge Kutta method 129,398
run-time-infrastructure 353

sampling time 263
scenic landscape 364
schedule 141
scheduling 156,157,339
search algorithm 271
search direction 302, 305
self-triggered events 62
semantic nets 165, 166
sensitivity 305
sensitization 336
sensitized neural network 337
separation of the variables 44
sequence of states 19
sequentialized simulation 339
servers 139
service mechanism 139
service schedule 140
service time 139
shadowing 382
shell elements 251
shift operator 263
shipping destinations 350
shipping origins 350, 351
shock absorber 125, 133
shortage costs 146
shortest job first 143
shortest remaining processing time 143
SIDAS 173, 176

Index 419

sigma-pi units 333
signals and systems library 207
silicon substrate 226
SIMAN 214,216
SIMGRAPHICS 216
simple single-channel 140
simple single-channel

telecommunication queuing system
141

SIMSCRlPT 216
simulation 1,21 ,61 ,139,146,155,

157, 158, 161, 168, 175,202,208,
210,232,233,234,253,258,327,
352,356,365,380,382,383,393
very large simulation 238

simulation algorithm 61,339
simulation clock 140, 141
simulation model 155, 171
simulation modules 344
simulation object model (SOM) 353
simulation parameters 208
simulation software 163, 166, 167
simulation time 59, 157, 158, 161
SIMULINK 22,206,208,209,210,

237,249,250,324,407
single event 59
single-channel telecommunication 140
single-input, single-output system 75
single-server system 60
single-step formulae 395, 398
single-step integration methods 394
sinks library 207
sinusoidal time function II
situation-action-model 342
SLAM 214
slices ofa human head 376
SLX 216
soft computing 164
soft-computing 165,166,311 ,312
soft-tissue 35, 36
soft-tissue deformation 35
SOM 353,355
sorting algorithms 173, 174
sources library 207
space ball 370
space-domain description 375
spatial distribution 156
spatial domain 19
spatial temporal information 380
speed limits 346
s-plane 96,97,98,99

420 Index

spring 93,117,120,121,124,125,126,
127,128,133,162,192,193,251,
252

stability 21,69,93,94,95,97,98,99,
100, 102, 398

stable 69,93,94, 100, 104, 115, 122,
133, 140

state controllable 77, 78, 79, 80
state equation 38, 102, 103, 104, 127,

129,131
state equations 19,20,77,84,102, 103,

104,114,123,128,129,130,131,
132

statemodel 102,104,114,130,131,
132,405

state plane 123
state response 104, 123
state transition 17
state transition matrix 85
state variable 4,17,19,71 ,72,74,84,

102, 104, 108, 114, 116, 121, 122,
123,127,130,131,133,135,405

state vector 3, 19,20,71,74,289,294
statechart modeling 235
state-differential equation 87
state-equation 79,80,84
state-equation model 79,84
state-events 59
state-space 102, 121, 193,292
state-space equations 161
state-space model 124,399
state-space response 45
state-space variables 124
state-structure level 64
state-transition matrix 85,87,90
state-variable 20,75, 77, 81, 83, 84, 86,

87, 116, 168
state-vector 89
stationary stochastic process 267
stations 139
statistical behavior 274
statistical models 137
steepest descent 302, 305
steering-strategy 321
step impulse 294
step length 15, 16,302,398
stochastic 307
stochastic models 192
stochastic properties 18
stroke volumes 297
structural statements 178

subsurface fractures 382
Sugeno fuzzy model 317
summing junction 53
summing point 49, 53
superposition integral 69,87
surface morphing 372
surface reconstruction 374,376
suspension system 125, 129
synapse 331
synchronization 156, 158
synchronization algorithms 157
system capacity 139
system disturbance 295
System Dynamics 238
system matrix 17,18,20,72,75,87,91 ,

92
system parameter 102, 121, 193
system response 102
systemic vascular bed 294

tactile feedback 367
tailored fiber elastic net 376
Takagi-Sugeno fuzzy system 317
take-oyer mechanism 152
tank inlet 37
tank outlet 37
tank volume 37
Taylor expansion 300
Taylor series 86, 300, 393, 397
T-conorm maximum operator 315
temperature 40, 41
temperature differences 226
temperature field 230
temporal-data 381
test signal 9, 11, 269
text boxes 191
textures 364
thematic layer 383
theoretical validity 65, 66
thermal capacitance 41
thermal conductivity 227
thermo electric coupling 246
thermodynamics 40
threshold 332
threshold-level control 332
tie-breaking method 339,340
time- discrete models 289
time domain 16, 17, 404
time events 59
time function 19
time interval 2, 3, 70, 393, 394

time response 85, 106, 127
time stamp 62,72, 155,340
time step 61
time-continuous model 262, 288, 292
time-cont inuous system 17
time-dependent variable 102
time-dependent versioning 381
time-discrete system 287,290
time-invariant system 402
time-variant system 20
tires 124
T-norm minimum operator 315
token 148, 155
topological layer 383
torque 29, 30, 31
total peripheral resistance 175, 177
touch-and-feel 367
traffic control 1
traffic flow 341,342,344,345,356,

359
traffic lanes 341, 356
traffic light 341,342,356,360
traffic nodes 345
traffic queues 347
traffic signs 341
traffic simulation 155,344, 346
traffic simulator 345
traffic situat ions 342
traffic systems 341
traffic-control system 350
traffic-jam 341
traffic-light 344, 347
traffic-simulation system 340, 343
trajectory error 337
transaction management 383
transaction oriented simulation 214
transaction-based 168
transactions 215
transfer function 4,47, 75, 95, 98, 104,

115, 122,289,336,399,405,406
transfer matrix 75
transition 147, 148, 149
transition funct ion 19
transition matrix 20, 72, 74
transport vehicles 341,356
trapezoidal numeric integration 395
true model 21,83,259,260,263,264,

265,266,270,271 ,272,276,278,
279,280,281 ,282,283,288,289,
290,291,309

true parameter vector 266

Index 421

tubes 36
tubules 106
tuning band 13
turbulent flow 36
two-compartment model 178, 182

UML 235,236
unbiased estimate 278
uncertainty 311
underdamped system 118
underground studies 380
unidentifyable 83
uniqueness of solutions 76
unit matrix 88, 101
unit step 10, 11
units of traffic 215
univariate fuzzy output 322, 323
universe of discourse 313, 322, 329
unstable 94,99, 100, 104, 115, 133
urates 106
Urban Dynamics 238
urea 106
uricacid 106
urine output 177
USER Interface 241
user programming 163

van der Pol oscillator 73
variable step width 168
variables 191

direction angle variables 319
distance variables 319
linguistic variables 319
wheels angle variables 319

variance 294,307
vector differential equation 254, 294
vector partial differential equation 374
vector-matrix 75, 84, 133
vehicle bundles 341
velocity 13,27,28,29,30,37, 121 ,

193,198,253,342,343,361
velocity profiles 342
venous return 175
ventricle

left ventricle 297
right ventricle 297

verification 63
virtual environment 363, 367
virtual objects 367
virtual reality 363, 365
virtual reality tunnel 364

422 Index

virtual scenarios 370
virtual training environments 366
virtual universe 367
visability 378
viscosity 37
viscous damping force 115
visual cues 366
visual sensation 363
visualization 363
VolksBot 388,389
voltage 23,121,193,195,196,197,

404
voltage drop 24, 404
voltage source 25,104,121,193,233
voltmeter 233
volume 40
volume force 245
volumetric models 373

waiting line 140
waiting time 56

wastewater treatment plant 209,210,
324,325,327

water heating 41
water level 49
Web site 408
Webserver 237
Weibull distribution 138
weight 184
weighted average 317
weighting factors 322, 331
weighting vector 332
white-noise 268, 271, 274, 279, 280
workflow systems 154
workload 139, 142

X~L 384,385,386,387,388

zero-input response 104
zero-state response 104
z-transfer function 289

Druck und Bindpng: Strauss Offsetdruck GmbH

