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and at node j, we get

fj = f = k(uj − ui) = −kui + kuj . (8.4)

These two equations can be combined into a matrix equation
�

k −k
−k k

��

ui

uj

�

=

�

fi

fj

�

, or Ku = f . (8.5)

Here K is the stiffness matrix, u and f are the displacement
vector and force vector, respectively. This is the basic spring
element, and let us see how it works in a spring system such as
shown in Figure 8.2 where three different springs are connected
in serial.
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Figure 8.2: A simple spring system.

For a simple spring system shown in Figure 8.2, we now try
to determine the displacements of ui(i = 1, 2, 3, 4). In order
to do so, we have to assembly the whole system into a single
equation in terms of global stiffness matrix K and forcing f .
As these three elements are connected in serial, the assembly of
the system can be done element by element. For element E1,
its contribution to the overall global matrix is

�

k1 −k1

−k1 k1

��

u1

u2

�

=

�

f1

f2

�

, (8.6)

which is equivalent to

K1u = fE1
, (8.7)
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where Dgb is the diffusivity of the solute in water along grain boundaries
with a thickness w. Dgb also varies with temperature T . In fact, we
have

Dgb(T ) = D0e
− Ea

RT , (15.54)

where D0 is the diffusivity at reference temperature T0. R is the uni-
versal gas constant. Ea is the effective activation energy with a value
of 5 ∼ 100 kJ/mole depending on the porous materials.

Let c0 be the equilibrium concentration of the grain materials dis-
solved in pore fluid. Combing Eqs.(15.52) and (15.53), we have

dc

dr
=

ρsv

2Dgbw
. (15.55)

Integrating it once and using the boundary conditions: cr = 0 at r = 0,
c = c0 at r = L, we have the following steady state solution

c(r) = c0 −
ρsv

4Dgbw
(L2 − r2). (15.56)

The parabolic change of concentration c(r) implies that the stress σ(r)
should be heterogeneously distributed in the contact region.

Experimental studies show that both concentration and thin film
thickness depend on the effective stress σ, and they obey the following
constitutive laws

c = c0exp(−
νmσe

RT
) and w = w0exp(−

σe

σ0
), (15.57)

where w0, σ0 are constants depending on the properties of the thin film,
and ν is the molar volume (of quartz). From the relation (15.57), we
have

σe(r) = −RT

νm
ln

c(r)

c0
, (15.58)

where we have used the condition σe(r) = 0 at r = L. Let σ be the
averaged effective stress, then

πL2σ =

� L

0

2πσe(r)rdr. (15.59)

Combining (15.58) and (15.59), we have

σ = − 2RT

νmL2

� L

0

rln[1 − ρsėd̄

4c0Dgbw
(L2 − r2)]dr. (15.60)

Using (15.51) and integrating by parts, we have

σ = −RT

νm
[(1 − 1

BL2
)ln(1 − BL2) − 1], (15.61)

92 Chapter 6. Calculus of Variations

� r

�

� O

A

B

Figure 6.4: Geodesic path on the surface of a sphere.

and integrating again, we have

y = kx + c, k =
A√

1 − A2
. (6.20)

This is a straight line. That is exactly what we expect from the plane
geometry.

Well, you may say, this is trivial and there is nothing new about
it. Let us now study a slightly more complicated example to find the
shortest path on the surface of a sphere.

� Example 6.2: For any two points A and B on the surface of a sphere
with radius r as shown in Fig. 6.4, we now use the calculus of variations
to find the shortest path connecting A and B on the surface.

Since the sphere has a fixed radius, we need only two coordinates (θ, φ)
to uniquely determine the position on the sphere. The length element ds
can be written in terms of the two spherical coordinate angles

ds = r

�

dθ2 + sin2 θdφ2 = r

�

(
dθ

dφ
)2 + sin2 θ |dφ|,

where in the second step we assume that θ = θ(φ) is a function of φ so
that φ becomes the only independent variable. This is possible because
θ(φ) represents a curve on the surface of the sphere just as y = y(x)
represents a curve on a plane. Thus, we want to minimise the total length

L =

� B

A

ds =

� φB

φA

�

θ�2 + sin2 θ dφ,

where θ� = dθ/dφ. Since the integrand

ψ =
�

θ�2 + sin2 θ
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to the nodal degree of freedom such as the displacement.

8.2 Concept of Elements

8.2.1 Simple Spring Systems

The basic idea of the finite element analysis is to divide a model
(such as a bridge and an airplane) into many pieces or elements
with discrete nodes. These elements form an approximate sys-
tem to the whole structures in the domain of interest, so that
the physical quantities such as displacements can be evalu-
ated at these discrete nodes. Other quantities such as stresses,
strains can then be be evaluated at at certain points (usually
Gaussian integration points) inside elements. The simplest el-
ements are the element with two nodes in 1-D, the triangular
element with three nodes in 2-D, and tetrahedral elements with
four nodes in 3-D.
In order to show the basic concept, we now focus on the

simplest 1-D spring element with two nodes (see Figure 8.1).
The spring has a stiffness constant k (N/m) with two nodes i
and j. At nodes i and j, the displacements (in metres) are ui

and uj , respectively. fi and fj are nodal forces.
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Figure 8.1: Finite element concept.

From Hooke’s law, we know the displacement ∆u = uj −ui

is related to f , or
f = k(∆u). (8.2)

At node i, we have

fi = −f = −k(uj − ui) = kui − kuj , (8.3)
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8.4.3 Bézier Curve . . . . . . . . . . . . . . . . . . . . 150

8.5 Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

II Numerical Algorithms 159

9 Numerical Integration 161
9.1 Root-Finding Algorithms . . . . . . . . . . . . . . . . . 161

9.1.1 Bisection Method . . . . . . . . . . . . . . . . . . 162
9.1.2 Newton’s Method . . . . . . . . . . . . . . . . . . 164

9.1.3 Iteration Method . . . . . . . . . . . . . . . . . . 166
9.2 Numerical Integration . . . . . . . . . . . . . . . . . . . 168

9.2.1 Trapezium Rule . . . . . . . . . . . . . . . . . . 168

9.2.2 Order Notation . . . . . . . . . . . . . . . . . . . 170
9.2.3 Simpson’s Rule . . . . . . . . . . . . . . . . . . . 171

9.3 Gaussian Integration . . . . . . . . . . . . . . . . . . . . 173
9.4 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . 177

9.4.1 Unconstrained Optimisation . . . . . . . . . . . . 177
9.4.2 Newton’s Method . . . . . . . . . . . . . . . . . . 178
9.4.3 Steepest Descent Method . . . . . . . . . . . . . 179

9.4.4 Constrained Optimisation . . . . . . . . . . . . . 182

10 Finite Difference Method 185

10.1 Integration of ODEs . . . . . . . . . . . . . . . . . . . . 185
10.1.1 Euler Scheme . . . . . . . . . . . . . . . . . . . . 186
10.1.2 Leap-Frog Method . . . . . . . . . . . . . . . . . 188
10.1.3 Runge-Kutta Method . . . . . . . . . . . . . . . 188

10.2 Hyperbolic Equations . . . . . . . . . . . . . . . . . . . 189
10.2.1 First-Order Hyperbolic Equation . . . . . . . . . 189
10.2.2 Second-Order Wave Equation . . . . . . . . . . . 190

10.3 Parabolic Equation . . . . . . . . . . . . . . . . . . . . . 191

10.4 Elliptical Equation . . . . . . . . . . . . . . . . . . . . . 193

11 Finite Volume Method 195
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 195
11.2 Elliptic Equations . . . . . . . . . . . . . . . . . . . . . 196
11.3 Hyperbolic Equations . . . . . . . . . . . . . . . . . . . 197

11.4 Parabolic Equations . . . . . . . . . . . . . . . . . . . . 198

vi	 Contents



CONTENTS v

12 Finite Element Method 201

12.1 Concept of Elements . . . . . . . . . . . . . . . . . . . . 202

12.1.1 Simple Spring Systems . . . . . . . . . . . . . . . 202

12.1.2 Bar Elements . . . . . . . . . . . . . . . . . . . . 206

12.2 Finite Element Formulation . . . . . . . . . . . . . . . . 209

12.2.1 Weak Formulation . . . . . . . . . . . . . . . . . 209

12.2.2 Galerkin Method . . . . . . . . . . . . . . . . . . 210

12.2.3 Shape Functions . . . . . . . . . . . . . . . . . . 211

12.2.4 Estimating Derivatives and Integrals . . . . . . . 215

12.3 Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . 216

12.3.1 Basic Formulation . . . . . . . . . . . . . . . . . 216

12.3.2 Element-by-Element Assembly . . . . . . . . . . 218

12.3.3 Application of Boundary Conditions . . . . . . . 219

12.4 Transient Problems . . . . . . . . . . . . . . . . . . . . . 221

12.4.1 The Time Dimension . . . . . . . . . . . . . . . . 221

12.4.2 Time-Stepping Schemes . . . . . . . . . . . . . . 223

12.4.3 Travelling Waves . . . . . . . . . . . . . . . . . . 223

III Applications to Earth Sciences 225

13 Reaction-Diffusion System 227

13.1 Mineral Reactions . . . . . . . . . . . . . . . . . . . . . 227

13.2 Travelling Wave . . . . . . . . . . . . . . . . . . . . . . . 229

13.3 Pattern Formation . . . . . . . . . . . . . . . . . . . . . 230

13.4 Reaction-Diffusion System . . . . . . . . . . . . . . . . . 231

14 Elasticity and Poroelasticity 235

14.1 Hooke’s Law and Elasticity . . . . . . . . . . . . . . . . 235

14.2 Shear Stress . . . . . . . . . . . . . . . . . . . . . . . . . 240

14.3 Equations of Motion . . . . . . . . . . . . . . . . . . . . 241

14.4 Euler-Bernoulli Beam Theory . . . . . . . . . . . . . . . 246

14.5 Airy Stress Functions . . . . . . . . . . . . . . . . . . . 249

14.6 Fracture Mechanics . . . . . . . . . . . . . . . . . . . . . 252

14.7 Biot’s Theory . . . . . . . . . . . . . . . . . . . . . . . . 257

14.7.1 Biot’s Poroelasticity . . . . . . . . . . . . . . . . 257

14.7.2 Effective Stress . . . . . . . . . . . . . . . . . . . 259

14.8 Linear Poroelasticity . . . . . . . . . . . . . . . . . . . . 259

14.8.1 Poroelasticity . . . . . . . . . . . . . . . . . . . . 259

14.8.2 Equation of Motion . . . . . . . . . . . . . . . . 262

Contents	 vii



vi CONTENTS

15 Flow in Porous Media 263
15.1 Groundwater Flow . . . . . . . . . . . . . . . . . . . . . 263

15.1.1 Porosity . . . . . . . . . . . . . . . . . . . . . . . 263
15.1.2 Darcy’s Law . . . . . . . . . . . . . . . . . . . . 263
15.1.3 Flow Equations . . . . . . . . . . . . . . . . . . . 265

15.2 Pollutant Transport . . . . . . . . . . . . . . . . . . . . 269
15.3 Theory of Consolidation . . . . . . . . . . . . . . . . . . 272
15.4 Viscous Creep . . . . . . . . . . . . . . . . . . . . . . . . 277

15.4.1 Power-Law Creep . . . . . . . . . . . . . . . . . . 277
15.4.2 Derivation of creep law . . . . . . . . . . . . . . 278

15.5 Hydrofracture . . . . . . . . . . . . . . . . . . . . . . . . 283
15.5.1 Hydrofracture . . . . . . . . . . . . . . . . . . . . 283
15.5.2 Diagenesis . . . . . . . . . . . . . . . . . . . . . . 284
15.5.3 Dyke and Diapir Propagation . . . . . . . . . . . 285

A Mathematical Formulae 291
A.1 Differentiation and Integration . . . . . . . . . . . . . . 291

A.1.1 Differentiation . . . . . . . . . . . . . . . . . . . 291
A.1.2 Integration . . . . . . . . . . . . . . . . . . . . . 291
A.1.3 Power Series . . . . . . . . . . . . . . . . . . . . 292
A.1.4 Complex Numbers . . . . . . . . . . . . . . . . . 292

A.2 Vectors and Matrices . . . . . . . . . . . . . . . . . . . . 292
A.3 Asymptotic Expansions . . . . . . . . . . . . . . . . . . 293

B Matlab and Octave Programs 295
B.1 Gaussian Quadrature . . . . . . . . . . . . . . . . . . . . 295
B.2 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . 297
B.3 Pattern Formation . . . . . . . . . . . . . . . . . . . . . 299
B.4 Wave Equation . . . . . . . . . . . . . . . . . . . . . . . 301

Bibliography 303

Index 307

viii	 Contents



Preface

Mathematical modelling and computer simulations are an essential part
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that the book remains concise and yet comprehensive enough to include
important and interesting topics and popular algorithms. Furthermore,
we use a ‘theorem-free’ approach in this book with a balance of formal-
ity and practicality. We will increase dozens of worked examples so as
to tackle each problem in a step-by-step manner, thus the style will be
especially suitable for non-mathematicians, though there are enough
topics, such as the calculus of variation and pattern formation, that
even mathematicians may find them interesting.
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equations, partial differential equations, calculus of variations, integral
equations, probability, geostatistics, numerical integration, optimisa-
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Mathematical Methods





Chapter 1

Mathematical Modelling

1.1 Introduction

1.1.1 Mathematical Modelling

Mathematical modelling is the process of formulating an abstract model
in terms of mathematical language to describe the complex behaviour of
a real system. Mathematical models are quantitative models and often
expressed in terms of ordinary differential equations and partial differ-
ential equations. Mathematical models can also be statistical models,
fuzzy logic models and empirical relationships. In fact, any model de-
scription using mathematical language can be called a mathematical
model. Mathematical modelling is widely used in natural sciences,
computing, engineering, meteorology, and of course earth sciences. For
example, theoretical physics is essentially all about the modelling of
real world processes using several basic principles (such as the conser-
vation of energy, momentum) and a dozen important equations (such
as the wave equation, the Schrodinger equation, the Einstein equation).
Almost all these equations are partial differential equations.

An important feature of mathematical modelling and numerical al-
gorithms concerning earth sciences is its interdisciplinary nature. It
involves applied mathematics, computer sciences, earth sciences, and
others. Mathematical modelling in combination with scientific com-
puting is an emerging interdisciplinary technology. Many international
companies use it to model physical processes, to design new products,
to find solutions to challenging problems, and increase their competi-
tiveness in international markets.

The basic steps of mathematical modelling can be summarised as
meta-steps shown in Fig. 1.1. The process typically starts with the
analysis of a real world problem so as to extract the fundamental phys-

3
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Figure 1.1: Mathematical modelling.

ical processes by idealisation and various assumptions. Once an ide-
alised physical model is formulated, it can then be translated into the
corresponding mathematical model in terms of partial differential equa-
tions (PDEs), integral equations, and statistical models. Then, the
mathematical model should be investigated in great detail by math-
ematical analysis (if possible), numerical simulations and other tools
so as to make predictions under appropriate conditions. Then, these
simulation results and predictions will be validated against the existing
models, well-established benchmarks, and experimental data. If the
results are satisfactory (which they rarely are at first), then the math-
ematical model can be accepted. If not, both the physical model and
mathematical model will be modified based on the feedback, then the
new simulations and prediction will be validated again. After a certain
number of iterations of the whole process (often many), a good math-
ematical model can properly be formulated, which will provide great
insight into the real world problem and may also predict the behaviour
of the process under study.

For any physical problem in earth sciences, for example, there are
traditionally two ways to deal with it by either theoretical approaches or
field observations and experiments. The theoretical approach in terms
of mathematical modelling is an idealisation and simplification of the
real problem and the theoretical models often extract the essential or
major characteristics of the problem. The mathematical equations ob-
tained even for such over-simplified systems are usually very difficult
for mathematical analysis. On the other hand, the field studies and
experimental approach is usually expensive if not impractical. Apart
from financial and practical limitations, other constraining factors in-
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clude the inaccessibility of the locations, the range of physical param-
eters, and time for carrying out various experiments. As computing
speed and power have increased dramatically in the last few decades,
a practical third way or approach is emerging, which is computational
modelling and numerical experimentation based on the mathematical
models. It is now widely acknowledged that computational modelling
and computer simulations serve as a cost-effective alternative, bridging
the gap or complementing the traditional theoretical and experimental
approaches to problem solving.

Mathematical modelling is essentially an abstract art of formulating
the mathematical models from the corresponding real-world problems.
The master of this art requires practice and experience, and it is not
easy to teach such skills as the style of mathematical modelling largely
depends on each person’s own insight, abstraction, type of problems,
and experience of dealing with similar problems. Even for the same
physical process, different models could be obtained, depending on the
emphasis of some part of the process, say, based on your interest in
certain quantities in a particular problem, while the same quantities
could be viewed as unimportant in other processes and other problems.

1.1.2 Model Formulation

Mathematical modelling often starts with the analysis of the physical
process and attempts to make an abstract physical model by ideal-
isation and approximations. From this idealised physical model, we
can use the various first principles such as the conservation of mass,
momentum, energy and Newton’s law to translate into mathematical
equations. Let us look at the example of the diffusion process of sugar
in a glass of water. We know that the diffusion of sugar will occur if
there is any spatial difference in the sugar concentration. The physical
process is complicated and many factors could affect the distribution
of sugar concentration in water, including the temperature, stirring,
mass of sugar, type of sugar, how you add the sugar, even geometry
of the container and others. We can idealise the process by assuming
that the temperature is constant (so as to neglect the effect of heat
transfer), and that there is no stirring because stirring will affect the
effective diffusion coefficient and introduce the advection of water or
even vertices in the (turbulent) water flow. We then choose a represen-
tative element volume (REV) whose size is very small compared with
the size of the cup so that we can use a single value of concentration to
represent the sugar content inside this REV (If this REV is too large,
there is considerable variation in sugar concentration inside this REV).
We also assume that there is no chemical reaction between sugar and
water (otherwise, we are dealing with something else). If you drop
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Figure 1.2: Representative element volume (REV).

the sugar into the cup from a considerable height, the water inside the
glass will splash and thus fluid volume will change, and this becomes a
fluid dynamics problem. So we are only interested in the process after
the sugar is added and we are not interested in the initial impurity
of the water (or only to a certain degree). With these assumptions,
the whole process is now idealised as the physical model of the diffu-
sion of sugar in still water at a constant temperature. Now we have
to translate this idealised model into a mathematical model, and in
the present case, a parabolic partial differential equation or diffusion
equation [These terms, if they sound unfamiliar, will be explained in
detail in the book]. Let us look at an example.

Example 1.1: Let c be the averaged concentration in a representative
element volume with a volume dV inside the cup, and let Ω be an arbitrary,
imaginary closed volume Ω (much larger than our REV but smaller than
the container, see Fig. 1.2). We know that the rate of change of the mass
of sugar per unit time inside Ω is

δ1 =
∂

∂t

∫∫∫

Ω

cdV,

where t is time. As the mass is conserved, this change of sugar content in
Ω must be supplied in or flow out over the surface Γ = ∂Ω enclosing the
region Ω. Let J be the flux through the surface, thus the total mass flux
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through the whole surface Γ is

δ2 =

∫∫

Γ

J · dS.

Thus the conservation of total mass in Ω requires that

δ1 + δ2 = 0,

or
∂

∂t

∫∫∫

Ω

cdV +

∫∫

Γ

J · dS = 0.

This is essentially the integral form of the mathematical model. Using the
Gauss’s theorem (discussed later in this book)

∫∫

Γ

J · dS =

∫∫∫

Ω

∇ · JdV,

we can convert the surface integral into a volume integral. We thus have

∂

∂t

∫∫∫

Ω

cdV +

∫∫∫

Ω

∇ · JdV = 0.

Since the domain Ω is fixed (independent of t), we can interchange the
differentiation and integration in the first term, we now get

∫∫∫

Ω

∂c

∂t
dV +

∫∫∫

Ω

∇ · JdV =

∫∫∫

Ω

[
∂c

∂t
+∇ · J ]dV = 0.

Since the enclosed domain Ω is arbitrary, the above equation should be
valid for any shape or size of Ω, therefore, the integrand must be zero. We
finally have

∂c

∂t
+∇ · J = 0.

This is the differential form of the mass conservation. It is a partial dif-
ferential equation. As we know that diffusion occurs from the higher con-
centration to lower concentration, the rate of diffusion is proportional to
the gradient ∇c of the concentration. The flux J over a unit surface area
is given by Fick’s law

J = −D∇c,
where D is the diffusion coefficient which depends on the temperature and
the type of materials. The negative sign means the diffusion is opposite
to the gradient. Substituting this into the mass conservation, we have

∂c

∂t
−∇ · (D∇c) = 0,
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or
∂c

∂t
= ∇ · (D∇c).

In the simplified case when D is constant, we have

∂c

∂t
= D∇2c, (1.1)

which is the well-known diffusion equation. This equation can be ap-
plied to study many phenomena such as heat conduction, pore pressure
dissipation, groundwater flow and consolidation if we replace D by the
corresponding physical parameters. This will be discussed in greater
detail in the related chapters this book.

1.1.3 Parameter Estimation

Another important topic in mathematical modelling is the ability to
estimate the orders (not the exact numbers) of certain quantities. If
we know the order of a quantity and its range of variations, we can
choose the right scales to write the mathematical model in the non-
dimensional form so that the right mathematical methods can be used
to tackle the problem. It also helps us to choose more suitable numeri-
cal methods to find the solution over the correct scales. The estimations
will often give us greater insight into the physical process, resulting in
more appropriate mathematical models. For example, if we want to
study plate tectonics, what physical scales (forces and thickness of the
mantle) would be appropriate? For a given driving force (from thermal
convection or pulling in the subduction zone), could we estimate the
order of the plate drifting velocity? Of course, the real process is ex-
tremely complicated and it is still an ongoing research area. However,
let us do some simple (yet not so naive) estimations.

Example 1.2: Estimation of plate drifting velocity: we know the drift
of the plate is related to the thermal convection, and the deformation is
mainly governed by viscous creep (discussed later in this book). The strain
rate ė is linked to the driving stress σ by

ė =
σ

η
,

where η is the viscosity of the mantle and can be taken as fixed value
η = 1021 Pa s (it depends on temperature). The estimation of η will be
discussed in Chapter 15.
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Figure 1.3: Estimation of the rate of heat loss on the Earth’s surface.

Let L be the typical scale of the mantle, and v be the averaged drifting
velocity. Thus, the strain rate can be expressed as

ė =
v

L
.

Combining this equation with the above creep relationship, we have

v =
Lσ

η
.

Using the typical values of L ≈ 3000 km ≈ 3 × 106 m, σ ≈ 106 Pa, we
have

v =
Lσ

η
≈ 3× 106 × 106

2× 1021
≈ 1.5× 10−9m/s ≈ 4.7cm/year.

This value is about right as most plates move in the range of 1 ∼ 10
cm per year. The other interesting thing is that the accurate values of
σ and L are not needed as long as their product is about the same as
Lσ ≈ 3× 1012, the estimation of v will not change much.

If we use L ≈ 1000 km ≈ 106 m, then, to produce the same velocity, it
requires that σ = 3×106 Pa ≈ 30 atm, or about 30 atmospheric pressures.
Surprisingly, the driving stress for such large motion is not huge. The force
could be easily supplied by the pulling force (due to density difference) of
the subducting slab in the subduction zone.

Let us look at another example to estimate the rate of heat loss at
the Earth’s surface, and the temperature gradients in the Earth’s crust
and the atmosphere. We can also show the importance of the sunlight
in the heat energy balance of the atmosphere.
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Example 1.3: We know that the average temperature at the Earth’s
surface is about Ts = 300K, and the thickness of the continental crust
varies from d = 35km to 70km. The temperature at the upper lithosphere
is estimated about T0 = 900 ∼ 1400K (very crude estimation). Thus the
estimated temperature gradient is about

dT

dz
=
T0 − Ts

d
≈ 9 ∼ 31K/km.

The observed values of the temperature gradient around the globe are
about 10 to 30 K/km. The estimated thermal conductivity k of rocks is
about 1.5 ∼ 4.5 W/m K (ignoring the temperature dependence), we can
use k = 3 W/m K as the estimate for the thermal conductivity of the
crust. Thus, the rate of heat loss obeys Fourier’s law of conduction

q = −k∇T = −kdT
dz
≈ 0.027 ∼ 0.093W/m2,

which is close to the measured average of about 0.07 W/m2. For oceanic
crust with a thickness of 6 ∼ 7 km, the temperature gradient (and thus
rate of heat loss) could be five times higher at the bottom of the ocean,
and this heat loss provides a major part of the energy to the ocean so as
to keep it from being frozen.

If this heat loss goes through the atmosphere, then the energy conser-
vation requires that

k
dT

dz

∣
∣
crust + ka

dT

dh

∣
∣
air = 0,

where h is the height above the Earth’s surface and ka = 0.020 ∼ 0.025
W/m K is the thermal conductivity of the air (again, ignoring the variations
with the temperature). Therefore, the temperature gradient in the air is

dT

dh
= − k

ka

dT

dz
≈ −3.6 ∼ −4.5K/km,

if we use dT/dz = 30 W/km. The negative sign means the temperature
decreases as the height increases. The true temperature gradient in dry air
is about 10 K/km in dry air, and 6 ∼ 7K/km in moist air. As the thermal
conductivity increases with the humidity, so the gradient decreases with
humidity.

Alternatively, we know the effective thickness of the atmosphere is
about 50 km (if we define it as the thickness of layers containing 99.9%
of the air mass). We know there is no definite boundary between the at-
mosphere and outer space, and the atmosphere can extend up to several
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hundreds of kilometres. In addition, we can also assume that the temper-
ature in space vacuum is about 4 K and the temperature at the Earth’s
surface is 300K, then the temperature gradient in the air is

dT

dh
≈ 4− 300

50
≈ −6K/km,

which is quite close to the true gradient. The higher rate of heat loss (due
to higher temperature gradient) means that the heat supplied from the
crust is not enough to balance this higher rate. That is where the energy
of sunlight comes into play. We can see that estimates of this kind will
provide a good insight in the whole process.

Of course the choice of typical values is important in order to get a
valid estimation. Such choice will depend on the physical process and
the scales we are interested in. The right choice will be perfected by
expertise and practice. We will give many worked examples like this in
this book.

1.2 Mathematical Models

1.2.1 Differential Equations

The first step of the mathematical modelling process produces some
mathematical equations, often partial differential equations. The next
step is to identify the detailed constraints such as the proper boundary
conditions and initial conditions so that we can obtain a unique set of
solutions. For the sugar diffusion problem discussed earlier, we cannot
obtain the exact solution in the actual domain inside the water-filled
glass, because we need to know where the sugar cube or grains were
initially added. The geometry of the glass also needs to be specified.
In fact, this problem needs numerical methods such as finite element
methods or finite volume methods. The only possible solution is the
long-time behaviour: when t → ∞, we know that the concentration
should be uniform c(z, t → ∞) → c∞ (=mass of sugar added/volume
of water).

You may say that we know this final state even without mathemat-
ical equations, so what is the use of the diffusion equation ? The main
advantage is that you can calculate the concentration at any time us-
ing the mathematical equation with appropriate boundary and initial
conditions, either by numerical methods in most cases or by mathe-
matical analysis in some very simple cases. Once you know the initial
and boundary conditions, the whole system history will be determined
to a certain degree. The beauty of mathematical models is that many
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seemingly diverse problems can be reduced to the same mathematical
equation. For example, we know that the diffusion problem is governed
by the diffusion equation ∂c

∂t = D∇2c. The heat conduction is governed
by the heat conduction equation

∂T

∂t
= κ∇2T, κ =

K

ρcp
, (1.2)

where T is temperature and κ is the thermal diffusivity. K is ther-
mal conductivity, ρ is the density and cp is the specific heat capacity.
Similarly, the dissipation of the pore pressure p in poroelastic media is
governed by

∂p

∂t
= cv∇2p, (1.3)

where cv = k/(Sµ) is the consolidation coefficient, k is the permeability
of the media, µ is the viscosity of fluid (water), and S is the specific
storage coefficient.

Mathematically speaking, whether it is concentration, temperature
or pore pressure, it is the same dependent variable u. Similarly, it is
just a constant κ whether it is the diffusion coefficient D, the ther-
mal diffusivity α or the consolidation coefficient cv. In this sense, the
above three equations are identical to the following parabolic partial
differential equation

∂u

∂t
= κ∇2u. (1.4)

Suppose we want to solve the following problem. For a semi-infinite
domain shown in Fig. 1.4, the initial condition (whether temperature
or concentration or pore pressure) is u(x, t = 0) = 0. The boundary
condition at x = 0 is that u(x = 0, t) = u0 =const at any time t. Now
the question what is distribution of u versus x at t?

Let us summarise the problem. As this problem is one-dimensional,
only the x-axis is involved, and it is time-dependent. So we have

∂u

∂t
= κ

∂2u

∂x2
, (1.5)

with an initial condition

u(x, t = 0) = 0, (1.6)

and the boundary condition

u(x = 0, t) = u0. (1.7)

Let us start to solve this mathematical problem. How should we start
and where to start? Well, there are many techniques to solve these
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problems, including the similarity solution technique, Laplace’s trans-
form, Fourier’s transform, separation of variables and others.

Similarity variable is an interesting and powerful method because it
neatly transforms a partial differential equation (PDE) into an ordinary
differential equation (ODE) by introducing a similarity variable ζ, then
you can use the standard techniques for solving ODEs to obtain the
desired solution. We first define a similar variable

ζ =
x2

4κt
, (1.8)

so that u(x, t) = u(ζ) = f(ζ). Using the chain rules of differentiations

∂

∂x
=

∂

∂ζ

∂ζ

∂x
=

x

2κt

∂

∂ζ
,

∂2

∂x2
= (

x

2κt
)2
∂2

∂ζ2
+

1

2κt

∂

∂ζ
=

ζ

κt

∂2

∂ζ2
+

1

2κt

∂

∂ζ
,

∂

∂t
=

∂

∂ζ

∂ζ

∂t
= − x2

4κt2
∂

∂ζ
= −ζ

t

∂

∂ζ
, (1.9)

we can write the PDE (1.5) for u as

−ζ
t
f ′ = κ · [ ζ

κt
f ′′ +

1

2κt
f ′], (1.10)

where f ′ = df/dζ. Multiplying both sides by t/ζ,

−f ′ = f ′′(ζ) +
1

2ζ
f ′, or

f ′′

f ′ = −(1 +
1

2ζ
). (1.11)

Using (ln f ′)′ = f ′′/f ′ and integrating the above equation once, we get

ln f ′ = −ζ − 1

2
ln ζ + C, (1.12)

where C is an integration constant. This can be written as

f ′ =
Ke−ζ√

ζ
, (1.13)

where K = eC . Integrating it again, we obtain

u = f(ζ) = Aerf(
√

ζ) +B = Aerf(
x√
4κt

) +B, (1.14)

where

erf(x) =
2√
π

∫ x

0

e−ξ
2

dξ, (1.15)
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Figure 1.4: Heat transfer near a dyke through a semi-infinite medium.

is the error function and ξ is a dummy variable. A = K
√
π and B are

constants that can be determined from appropriate boundary condi-
tions. This is the basic solution in the infinite or semi-infinite domain.
The solution is generic because we have not used any of the boundary
conditions or initial conditions.

Example 1.4: For the heat conduction problem near a magma dyke in a
semi-infinite domain, we can determine the constants A and B. Let x = 0
be the centre of the rising magma dyke so that its temperature is constant
at the temperature u0 of the molten magma, while the temperature at the
far field is u = 0 (as we are only interested in the temperature change in
this case).

The boundary condition at x = 0 requires that

Aerf(0) +B = u0.

We know that erf(0) = 0, this means that B = u0. From the initial
condition u(x, t = 0) = 0, we have

A lim
t→0

erf(
x√
4κt

) + u0 = 0.

Since x/
√

4κt → ∞ as t → 0 and erf(∞) = 1, we get A + u0 = 0, or
A = −u0. Thus the solution becomes

u = u0[1− erf(
x√
4κt

)] = u0erfc(
x√
4κt

),

where erfc(x) = 1 − erf(x) is the complementary error function. The
distribution of u/u0 is shown in Fig. 1.5.

From the above solution, we know that the temperature variation
becomes significant in the region of x = d such that d/

√
κt ≈ 1 at a
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Figure 1.5: Distribution of u(x, t)/u0 with κ = 0.25.

given time t. That is
d =
√
κt, (1.16)

which defines a typical length scale. Alternatively, for a given length
scale d of interest, we can estimate the time scale t = τ at which the
temperature becomes significant. That is

τ =
d2

κ
. (1.17)

This means that it will take four times longer if the size of the hot body
d is doubled. Now let us see what it means in our example. We know
that the thermal conductivity is K ≈ 3 W/m K for rock, its density
is ρ ≈ 2700 Kg/m3 and its specific heat capacity cp ≈ 1000 J/kg K.
Thus, the thermal diffusivity of solid rock is

κ =
K

ρcp
≈ 3

2700× 1000
≈ 1.1× 10−6m2/s. (1.18)

For d ≈ 1m, the time scale of cooling is

τ =
d2

κ
≈ 1

1.1× 10−6
≈ 8.8× 105 seconds ≈ 10 days. (1.19)

For a larger hot body d = 100 m, then that time scale is τ = 105 days
or 270 years. This estimate of the cooling time scale is based on the
assumption that no more heat is supplied. However, in reality, there is
usually a vast magma reservoir below to supply hot magma constantly,
and this means that the cooling time is at the geological time scale over
millions of years.
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1.2.2 Functional and Integral Equations

Though most mathematical models are written as partial different
equations, however, sometimes it might be convenient to write them in
terms of integral equations, and these integral forms can be discretised
to obtained various numerical methods. For example, the Fredholm
integral equation can be generally written as

u(x) + λ

∫ b

a

K(x, η)y(η)dη = v(x)y(x), (1.20)

where u(x) and v(x) are known functions of x, and λ is constant. The
kernel K(x, η) is also given. The aim is to find the solution y(x).
This type of problem can be extremely difficult to solve and analytical
solutions exist in only a few very simple cases. We will provide a simple
introduction to integral equations later in this book.

Sometimes, the problem you are trying to solve does not give a
mathematical model in terms of dependent variance such as u which is
a function of spatial coordinates (x, y, z) and time t, rather they lead
to a functional (or a function of the function u); this kind of problem
is often linked to the calculus of variations.

For example, finding the shortest path between any given points on
the Earth’s surface is a complicated geodesic problem. If we idealise
the Earth’s surface as a perfect sphere, then the shortest path joining
any two different points is a great circle through both points. How can
we prove this is true? Well, the proof is based on the Euler-Lagrange
equation of a functional ψ(u)

∂ψ

∂u
=

d

dx
(
∂ψ

∂u′
), (1.21)

where u a function of x, u′ = du/dx, and ψ a function of u(x). The
detailed proof will be given later in this book in the chapter dealing
with calculus of variations.

1.2.3 Statistical Models

Both differential equations and integral equations are the mathemat-
ical models for continuum systems. Other systems are discrete and
different mathematical models are needed, though they could reduce
to certain forms of differential equations if some averaging is carried
out. On the other hand, many systems have intrinsic randomness, thus
the description and proper modelling require statistical models, or to
be more specific, geostatistical models in earth sciences.

For example, suppose that we carried out some field work and made
some observations of a specific quantity, say, density of rocks, over a
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Figure 1.6: Field observations (marked with •) and interpolation

for inaccessible locations (marked with ◦).

large area shown in Fig. 1.6. Some locations are physically inaccessible
(marked with ◦) and the value at the inaccessible locations can only
be estimated. A proper estimation is very important. The question
that comes naturally is how to estimate the values at these locations
using the observation at other locations? How should we start? As we
already have some measured data ρi(i = 1, 2, ..., n), the first sensible
thing is to use the sample mean or average of<ρi> as the approximation
to the value at the inaccessible locations. If we do this, then any two
inaccessible locations will have the same value (because the sample data
do not change). This does not help if there are quite a few inaccessible
locations.

Alternatively, we can use the available observed data to construct
a surface by interpolation such as linear or cubic splines. There, differ-
ent inaccessible locations may have different values, which will provide
more information about the region. This is obviously a better estima-
tion than the simple sample mean. Thinking along these lines, can we
use the statistical information from the sample data to build a statis-
tical model so that we can get a better estimation? The answer is yes.
In geostatistics, this is the well-known Kriging interpolation technique
which uses the spatial correlation, or semivariogram, among the ob-
servation data to estimate the values at new locations. This will be
discussed in detail in the chapter about geostatistics.

1.3 Numerical Methods

1.3.1 Numerical Integration

In the solution (1.14) of problem (1.5), there is a minor problem in the
evaluation of the solution u. That is the error function erf(x) because
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it is a special function whose integral cannot be expressed as a simple
explicit combination of basic functions, it can only be expressed in
terms of a quadrature. In order to get its values, we have to either use
approximations or numerical integration. You can see that even with
seemingly precise solution of a differential equation, it is quite likely
that it may involve some special functions.

Let us try to evaluate erf(1). From advanced mathematics, we know
its exact value is erf(1) = 0.8427007929..., but how do we calculate it
numerically?

Example 1.5: In order to estimate erf(1), we first try to use a naive

approach by estimating the area under the curve f(x) = 2√
π
e−x

2

in the

interval [0, 1] shown in Fig. 1.7. We then divide the interval into 5 equally-
spaced thin strips with h = ∆x = xi+1 − xi = 1/5 = 0.2. We have six
values of fi = f(xi) at xi = hi(i = 0, 1, ..., 5), and they are

f0 = 1.1284, f1 = 1.084, f2 = 0.9615,

f3 = 0.7872, f4 = 0.5950, f5 = 0.4151.

Now we can either use the rectangular area under the curve (which under-
estimates the area) or the area around the curve plus the area under curve
(which overestimates the area). Their difference is the tiny area about the
curve which could still make some difference. If we use the area under the
curve, we have the estimation of the total area as

A1 ≈ 0.2(f1 + f2 + f3 + f4 + f5) ≈ 0.7686.

The other approach gives

A2 ≈ 0.2(f0 + f1 + f2 + f3 + f4) ≈ 0.91125.

Both are about 8% from the true value erf(1) ≈ 0.8247. If we take the
average of these two estimates, we get

A3 ≈
A1 +A2

2
≈ 0.8399,

which is much better, but still 0.3% from the true value. This average
method is essentially equivalent to using fi = (fi−1+fi)/2 to approximate
the value of f(x) in each interval.

As you can see from this example, the way you discretise the in-
tegrand to estimate the integral numerically can have many variants,
subsequently affecting the results significantly. There are much better
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Figure 1.7: Naive numerical integration.

ways to carry out the numerical integration, notably the Gaussian in-
tegration which requires only seven points to get the accuracy of about
9th decimal place or 0.0000001% (see Appendix B). All these tech-
niques will be explained in detail in the part dealing with numerical
integration and numerical methods.

1.3.2 Numerical Solutions of PDEs

The diffusion equation (1.1) is a relatively simple parabolic equation.
If we add a reaction term (source or sink) to this equation, we get the
classical reaction-diffusion equation

∂u

∂t
= D∇2u+ γu(1− u), (1.22)

where u can be concentration and any other quantities. γu(1−u) is the
reaction term and γ is a constant. This seemingly simple partial differ-
ential equation is in fact rather complicated for mathematical analysis
because the equation is nonlinear due to the term −γu2. However,
numerical technique can be used and it is relatively straightforward to
obtain solutions (see the chapter on reaction-diffusion system in this
book). This mathematical model can produce intriguing patterns due
to its intrinsic instability under appropriate conditions.

In the two-dimensional case, we have

∂u

∂t
= D(

∂2u

∂x2
+
∂2u

∂y2
) + γu(1− u). (1.23)

Using the finite difference method to be introduced in the second half
of this book, we can solve this equation on a 2-D domain. Fig. 1.8
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Figure 1.8: Pattern formation of reaction-diffusion equation (1.23)

with D = 0.2 and γ = 0.5.

shows the stable pattern generated by Eq.(1.23) with D = 0.2 and
γ = 0.5. The initial condition is completely random, say, u(x, y, t=
0) =rand(n, n) ∈ [0, 1] where n × n is the size of the grid used in the
simulations. The function rand() is a random number generator and all
the random numbers are in the range of 0 to 1.

We can see that a beautiful and stable pattern forms automatically
from an initially random configuration. This pattern formation mech-
anism has been used to explain many pattern formation phenomena
in nature shown in Fig. 1.9, including patterns on zebra skin, tiger
skin and sea shell, zebra leaf (green and yellow), and zebra stones. For
example, the zebra rocks have reddish-brown and white bands first dis-
covered in Australia. It is believed that the pattern is generated by
dissolution and precipitation of mineral bands such as iron oxide as
mineral in the fluid percolating through the porous rock.

The instability analysis of pattern formation and the numerical
method for solving such nonlinear reaction-diffusion system will be dis-
cussed in detail later in this book.

1.4 Topics in This Book

So far, we have presented you with a taster of the diverse topics pre-
sented in this book. From a mathematical modelling point of view, the
topics in earth sciences are vast, therefore, we have to make a deci-
sion to select topics and limit the number of chapters so that the book
remains concise and yet comprehensive enough to include important
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(a) (b) (c)

(d) (e)

Figure 1.9: Pattern formation in nature: (a) zebra skin;

(b) tiger skin; (c) sea shell; (c) zebra grass;

and (e) zebra stone.

topics and popular numerical algorithms.
We use a ‘theorem-free’ approach which is thus informal from the

viewpoint of rigorous mathematical analysis. There are two reasons
for such an approach: firstly we can focus on presenting the results in
a smooth flow, rather than interrupting them by the proof of certain
theorems; and secondly we can put more emphasis on developing the
analytical skills for building mathematical models and the numerical
algorithms for solving mathematical equations.

We also provide dozens of worked examples with step-by-step deriva-
tions and these examples are very useful in understanding the funda-
mental principles and to develop basic skills in mathematical modelling.

The book is organised into three parts: Part I (mathematical meth-
ods), Part II (numerical algorithms), and Part III (applications). In
Part I, we present you with the fundamental mathematical methods,
including calculus and complex variable (Chapter 2), vector and ma-
trix analysis (Chapter 3), ordinary differential equations and integral
transform (Chapter 4), and partial differential equations and classic
mathematical models (Chapter 5). We then introduce the calculus of
variations and integral equations (Chapter 6). The final two chapters
(7 and 8) in Part I are about the probability and geostatistics.

In Part II, we first present the root-finding algorithms and numerical
integration (Chapter 9), then we move on to study the finite difference
and finite volume methods (Chapters 10 and 11), and finite element
methods (Chapter 12).

In Part III, we discuss the topics as applications in earth sciences.
We first briefly present the reaction-diffusion system (Chapter 13), then
present in detail the elasticity, fracture mechanics and poroelasticity
(Chapter 14). We end this part by discussing flow in porous media
including groundwater flow and pollutant transport (Chapter 15).

There are two appendices at the end of the book. Appendix A
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is a summary of the mathematical formulae used in this book, and
the second appendix provides some programs (Matlab and Octove) so
that readers can experiment with them and carry out some numerical
simulations. At the end of each chapter, there is a list of references for
further reading.
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Chapter 2

Calculus and Complex

Variables

The preliminary requirements for this book are the pre-calculus founda-
tion mathematics. We assume that the readers are familiar with these
preliminaries, therefore, we will only review some of the important con-
cepts of differentiation, integration, Jacobian and multiple integrals.

2.1 Calculus

2.1.1 Set Theory

Definitions

Let us first introduce some of the basic concepts in set theory. A set is
any well-defined collection of objects or elements, and the elements are
the members or objects in a set. We conventionally use the upper-case
letters to denote sets and lower-case letters for elements, and the listed
elements are enclosed in the curly brace {}. The membership in a set
is denoted using ∈, thus

x ∈ A , (2.1)

means that ‘x is a member of the set A ’, while

x /∈ A , (2.2)

means that ‘x is not a member of the set A ’. A special set is the empty
set or null set which has no element and is denoted by

∅ = {}, (2.3)

23
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which should not be confused with a non-empty set which consists of
a single element {0}.

We say that A is a subset of B if a ∈ A implies that a ∈ B. That
is to say that all the members of A are also members of B. We denote
this relationship as

A ⊆B. (2.4)

If all the members of A are also members of B, but there exists at
least one element b such that b ∈ B while b /∈ A , we say A is a proper

subset of B, and denote this relationship as

A ⊂B. (2.5)

When combining sets, we say that A union B, denoted by

A ∪B

forms a set of all elements that are in A , or B, or both. On the other
hand, A intersect B, written as

A ∩B,

is the set of all elements that are in both A and B.
A universal set Ω is the set that consists of all the elements under

consideration. The complement set of A or not A , denoted by Ā , is
the set of all the elements that are not in A . The set A −B or A

minus B is the set of elements that are in A and not in B, this is
equivalent to removing or substracting from A all the elements that
are in B. This leads to

A −B = A ∩ B̄, (2.6)

and
Ā = Ω−A . (2.7)

Example 2.1: For two sets

A = {2, 3, 5, 7}, B = {2, 4, 6, 8, 10},
and a universal set

Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
it is straightforward to check that

A ⊂ Ω, B ⊂ Ω, A −B = {3, 5, 7},
A ∪B = {2, 3, 4, 5, 6, 7, 8, 10}, A ∩B = {2},

Ā = Ω−A = {1, 4, 6, 8, 9, 10},
and finally Ā ∩A = ∅.
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Figure 2.1: Venn diagrams: a) A ∩ B, b) A ∪ B.

A

B−A

B

B

A

Ω

Ā

(a) (b)

Figure 2.2: Venn diagrams: a) B − A , b) Ā = Ω − A and B ⊂ A .

Venn Diagrams

The set operations seem too abstract, there is a better way to represent
such mathematical operations between sets, that is to use the Venn
diagrams as the topological representation. Fig. 2.1 represents the
intersect A ∩B and union A ∪B, while Fig. 2.2 represents B −A ,
Ā = Ω−A and B ⊂ A .

Special Sets

Some common sets in mathematics are used so often that they deserve
special names or notations. These include:

• N = {1, 2, 3, ...} or N = {0, 1, 2, ...} denotes the set of all natural
numbers;

• Z = {...,−2,−1, 0, 1, 2, ...} is the set of all integers;

• P = {2, 3, 5, 7, 11, ...} is the set of all primes;

• Q = {mn : m,n ∈ Z , n 6= 0}={−5
11 , 2,

7
19 , ...} is the set of all

rational numbers;
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• R is the set of all real numbers consisting of all rational numbers
and all irrational numbers such as

√
2, π, e;

• C is the set of complex numbers in the form of a + bi where
a, b ∈ R and i =

√
−1.

All these sets have an infinite number of elements. From the defi-
nitions, it is straightforward to check that

P ⊂ N ⊂ Z ⊂ Q ⊂ R ⊂ C . (2.8)

2.1.2 Differentiation and Integration

For a known function y = f(x) or a curve as shown in Figure 2.3, the
gradient or slope of the curve at any point P (x, y) is defined as

dy

dx
≡ df(x)

dx
≡ f ′(x) = lim

∆x→0

f(x+ ∆x)− f(x)

∆x
, (2.9)

on the condition that there exists such a limit at P . This gradient or
limit is the first derivative of the function f(x) at P . If the limit does
not exist at a point P when ∆x approaches zero, then we say that
the function is non-differentiable at P . By convention, the limit of the
infinitesimal change ∆x is denoted as the differential dx. Thus, the
above definition can also be written as

dy = df =
df(x)

dx
dx = f ′(x)dx, (2.10)

which can be used to calculate the change in dy caused by the small
change of dx. The primed notation ′ and standard notation d

dx can be
used interchangeably, and the choice is purely one of convenience.

The second derivative of f(x) is defined as the gradient of f ′(x),
that is to say,

d2y

dx2
≡ f ′′(x) =

df(x)

dx
. (2.11)

The higher derivatives can be defined in a similar manner. Thus,

d3y

dx3
≡ f ′′′(x) =

df ′′(x)

dx
, ...,

dny

dxn
≡ f (n) =

df (n−1)

dx
. (2.12)

In the case of y′ = f ′(x∗) = 0, the point corresponds to a stationary
point. The solution of f ′(x∗) = 0 is also called a first-order critical
point. The condition f ′′(x∗) = 0 defines a second-order critical point,
called an inflection point.
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Figure 2.3: Gradient of a function y = f(x)

The maxima or minima of a function only occur at stationary points
such as A,B and C shown in Fig. 2.3. The local maximum (such as
point B) occurs at

f ′(x∗) = 0, f ′′(x∗) < 0, (2.13)

while the local minima (such as points A and C) occurs at

f ′(x∗) = 0, f ′′(x∗) > 0. (2.14)

The pointC is a global minimum, while point A is just a local minimum.
In the case of f ′(x∗) = f ′′(x∗) = 0, the point does not mean a minimum
or maximum. For example, y = x3, we know that y′(0) = y′′(0) = 0.
It is not a local minimum or maximum, but just an inflection point in
this case.

Differentiation Rules

If a more complicated function f(x) can be written as a product of two
simpler functions u(x) and v(x), we can derive a differentiation rule
using the definition from first principles. We have

df

dx
= lim

∆x→0

f(x+ ∆x) − f(x)

∆x
=
d[u(x)v(x)]

dx

= lim
∆x→0

u(x+ ∆x)v(x + ∆x) − u(x)v(x)
∆x

,

= lim
∆x→0

[u(x+∆x)
v(x+∆x)−v(x)

∆x
+ v(x)

u(x+∆x)−u(x)
∆x

]
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= u(x)
dv

dx
+
du

dx
v(x), (2.15)

which can be written in a compact form using primed notations

f ′(x) = (uv)′ = u′v + uv′. (2.16)

If we differentiate this equation again and again, we can get Leibnitz’s
Theorem for differentiations

dn(uv)

dxn
= u(n)v+nu(n−1)v′ + ...+

(
n
r

)

u(n−r)v(r) + ...+uv(n), (2.17)

where the coefficients are the same as the binomial coefficients

nCr ≡
(
n
r

)

=
n!

r!(n− r)! . (2.18)

If a function f(x) [for example, f(x) = esin(x)] can be written as
a function of another function g(x), or f(x) = f [g(x)] [for example,
f(x) = eg(x) and g(x) = sin(x)], then we have

f ′(x) = lim
∆x→0

∆f

∆g

∆g

∆x
, (2.19)

which leads to the following chain rule

f ′(x) =
df

dg

dg

dx
, (2.20)

or

{f [g(x)]}′ = f ′[g(x)] · g′(x). (2.21)

In our example, we have f ′(x) = (esin(x))′ = esin(x) cos(x). If we use 1/v
instead of v in Eq.(2.16) and (1/v)′ = −v′/v2, we have the following
differentiation rule for quotients:

(
u

v
)′ =

u′v − uv′
v2

. (2.22)

Example 2.2: Assume an ideal mountain has the shape of a Gaussian
function

f(x) = e−ax
2

, −∞ < x <∞, a > 0,

at what location is the slope steepest? We know that

f ′(x) = −2axe−ax
2

,
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and

f ′′(x) =
df ′(x)

dx
= −2ae−ax

2

+ 4a2x2e−ax
2

.

The steepest (or maximum) slope or first derivative f ′(x) occurs at the
location where the second-derivative f ′′(x) is zero. That is

f ′′(x) = (−2a+ 4a2x2)e−ax
2

= 0.

Since exp(−ax2) > 0, we have

−2a+ 4a2x2 = 0,

or

x = ± 1√
2a
,

so we have two solutions.

The derivatives of various functions are listed in Table 2.1.

Table 2.1: First Derivatives

f(x) f ′(x)

xn nxn−1

ex ex

ax(a > 0) ax ln a
lnx 1

x
loga x

1
x ln a

sinhx coshx
coshx sinhx
tanx sec2 x

sin−1 x 1√
1−x2

cos−1 x − 1√
1−x2

tan−1 x 1
1+x2

Implicit Differentiation

The above differentiation rules still apply in the case when there is no
simple explicit function form y = f(x) as a function of x only. Let us
look at an example.
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Example 2.2: To find dy/dx given

y2 − sin(x)ey = 0.

In this case, we can differentiate the equation term by term with respect to
x so that we can obtain the derivative dy/dx which is in general a function
of both x and y. Now we have

2y
dy

dx
− cos(x)ey − sin(x)ey

dy

dx
= 0,

which leads to
dy

dx
=

cos(x)ey

2y − sin(x)ey
.

Integration

Integration can be viewed as the inverse of differentiation. The inte-
gration F (x) of a function f(x) satisfies

dF (x)

dx
= f(x), (2.23)

or

F (x) =

∫ x

x0

f(ξ)dξ, (2.24)

where f(x) is called the integrand, and the integration starts from
x0 (arbitrary) to x. In order to avoid any potential confusion, it is
conventional to use a dummy variable (say, ξ) in the integrand. As we
know, the geometrical meaning of the first derivative is the gradient of
the function f(x) at a point P , the geometrical representation of an
integral

∫ b

a

f(ξ)dξ

(with lower integration limit a and upper integration limit b) is the
area under the curve f(x) enclosed by x-axis in the region x ∈ [a, b].
In this case, the integral is called a definite integral as the limits are
given. For the definite integral, we have

∫ b

a

f(x)dx =

∫ b

x0

f(x)dx −
∫ a

x0

f(x)dx = F (b)− F (a). (2.25)
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The difference F (b) − F (a) is often written in a compact form F
∣
∣
∣

b

a
≡

F (b)−F (a). As F ′(x) = f(x), we can also write the above equation as

∫ b

a

f(x)dx =

∫ b

a

F ′(x)dx = F (b)− F (a). (2.26)

Since the lower limit x0 is arbitrary, the change or shift of the lower
limit will lead to an arbitrary constant c. When the lower limit is not
explicitly given, the integral is called an indefinite integral

∫

f(x)dx = F (x) + c, (2.27)

where c is the constant of integration. The integrals of some of the
common functions are listed in Table 2.2.

Table 2.2: Integrals

f(x)
∫
f(x)dx

xn(n 6= −1) xn+1

n+1
1
x ln |x|
ex ex
1

a2+x2
1
a tan−1 x

a
1

a2−x2
1
2a ln a+x

a−x
1

x2−a2
1
2a ln x−a

x+a
1√

a2−x2
sin−1 x

a
1√

x2+a2 ln(x +
√
x2 + a2)

[or sinh−1 x
a ]

1√
x2−a2 ln(x +

√
x2 − a2)

[or cosh−1 x
a ]

sinhx coshx
coshx sinhx
tanhx ln coshx

Integration by Parts

From the differentiation rule (uv)′ = uv′ + u′v, we get

uv′ = (uv)′ − u′v. (2.28)

Integrating both sides, we have
∫

u
dv

dx
dx = uv −

∫
du

dx
vdx, (2.29)
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in the indefinite form. It can also be written in the definite form as
∫ b

a

u
dv

dx
dx = [uv]

∣
∣
∣

b

a
+

∫ b

a

v
du

dx
dx. (2.30)

The integration by parts is a very powerful method for evaluating in-
tegrals. Many complicated integrands can be rewritten as a product
of two simpler functions so that their integrals can be easily obtained
using integration by parts.

Example 2.3: The integral of I =
∫
x99 lnx dx can be obtained by

setting v′ = x99 and u = lnx. Hence, v = x100

100 and u′ = 1
x . We now

have

I =

∫

x lnxdx =
x100 lnx

100
−
∫
x100

100

1

x
dx =

x100 lnx

100
− x100

10000
.

In general, we have
∫

xn lnx =
xn+1 lnx

n+ 1
− xn+1 lnx

(n+ 1)2
.

for n 6= −1.

Other important methods of integration include the substitution
and reduction methods. Readers can refer to any book that is dedicated
to advanced calculus.

Taylor Series and Power Series

From
∫ b

a

f(x)dx = F (b)− F (a), (2.31)

and dF
dx = F ′ = f(x), we have

∫ x0+h

x0

f ′(x)dx = f(x0 + h)− f(x0), (2.32)

which means that

f(x0 + h) = f(x0) +

∫ x0+h

x0

f ′(x)dx. (2.33)

If h is not too large or f ′(x) does not vary dramatically, we can ap-
proximate the integral as

∫ x0

x0

f ′(x)dx ≈ f ′(x0)h. (2.34)
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Thus, we have the first-order approximation to f(x0 + h)

f(x0 + h) ≈ f(x0) + hf ′(x0). (2.35)

This is equivalent to saying that any change from x0 to x0 + h is ap-
proximated by a linear term hf ′(x0). If we repeat the procedure for
f ′(x), we have

f ′(x0 + h) ≈ f ′(x0) + hf ′′(x0), (2.36)

which is a better approximation than f ′(x0 + h) ≈ f ′(x0). Following
the same procedure for higher order derivatives, we can reach the n-th
order approximation

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2!
f ′′(x0) +

h3

3!
f ′′′(x0)

+...+
hn

n!
f (n)(x0) +Rn+1(h), (2.37)

where Rn+1(h) is the error of this approximation and the notation
means that the error is about the same order as (n+ 1)-th term in the
series. This is the well-known Taylor theorem and it has many applica-
tions. In deriving this formula, we have implicitly assumed that all the
derivatives f ′(x), f ′′(x), ..., f (n)(x) exist. In almost all the applications
we meet, this is indeed the case. For example, sin(x) and ex, all the
orders of the derivatives exist. If we continue the process to infinity, we
then reach the infinite power series and the error limn→∞Rn+1 → 0
if the series converges. The end results are the Maclaurin series. For
example,

ex = 1 + x+
x2

2!
+ ...+

xn

n!
+ ..., (x ∈ R), (2.38)

sinx = x− x3

3!
+
x5

5!
− ..., (x ∈ R), (2.39)

cosx = 1− x2

2!
+
x4

4!
− ..., (x ∈ R), (2.40)

and

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+
x5

5
− ..., x ∈ (−1, 1]. (2.41)

2.1.3 Partial Differentiation

The derivative defined earlier is for function f(x) which has only one
independent variable x, and the gradient will generally depend on the
location x. For functions f(x, y) of two variables x and y, their gradient
will depend on both x and y in general. In addition, the gradient or
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rate of change will also depend on the direction (along x-axis or y-axis
or any other directions). For example, the function f(x, y) = x(y − 1)
has different gradients at (0, 0) along x-axis and y-axis. The gradients
along the positive x- and y- directions are called the partial derivatives
with respect to x and y, respectively. They are denoted as ∂f

∂x and ∂f
∂y ,

respectively.
The partial derivative of f(x, y) with respect to x can be calculated

assuming that y =constant. Thus, we have

∂f(x, y)

∂x
≡ fx ≡

∂f

∂x
|y = lim

∆x→0,y=const

f(x+ ∆x, y)− f(x, y)

∆x
. (2.42)

Similarly, we have

∂f(x, y)

∂y
≡ fy ≡

∂f

∂y
|x = lim

∆y→0,x=const

f(x, y + ∆y)− f(x, y)

∆y
. (2.43)

The notation ∂
∂x

∣
∣
y

emphasises that the fact that y is held constant. The

subscript notation fx (or fy) emphasizes that the derivative is carried
out with respect to x (or y). Mathematicians like to use the subscript
forms as they are simpler notations and can be easily generalised. For
example,

fxx =
∂2f

∂x2
, fxy =

∂2f

∂x∂y
. (2.44)

Since ∆x∆y = ∆y∆x, we have fxy = fyx.
For any small change ∆f = f(x+ ∆x, y+ ∆y)− f(x, y) due to ∆x

and ∆y, the total infinitesimal change df can be written as

df =
∂f

∂x
dx+

∂f

∂y
dy. (2.45)

If x and y are functions of another independent variable ξ, then the
above equation leads to the following chain rule

df

dξ
=
∂f

∂x

dx

dξ
+
∂f

∂y

dy

dξ
, (2.46)

which is very useful in calculating the derivatives in parametric form or
for change of variables. If a complicated function f(x) can be written
in terms of simpler functions u and v so that f(x) = g(x, u, v) where
u(x) and v(x) are known functions of x, then we have the generalised
chain rule

dg

dx
=
∂g

∂x
+
∂g

∂u

du

dx
+
∂g

∂v

dv

dx
. (2.47)
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When differentiating an integral

Φ(x) =

∫ b

a

φ(x, y)dy, (2.48)

with fixed integration limits a and b, we have

∂Φ(x)

∂x
=

∫ b

a

∂φ(x, y)

∂x
dy. (2.49)

When differentiating the integrals with the limits being functions of x,

I(x) =

∫ u(x)

v(x)

ψ(x, τ)dτ = Ψ[x, u(x)]−Ψ[x, v(x)], (2.50)

the following formula is useful:

dI

dx
=

∫ u(x)

v(x)

∂ψ

∂x
dτ + [ψ(x, u(x))

du

dx
− ψ(x, v(x))

dv

dx
]. (2.51)

This formula can be derived using the chain rule

dI

dx
=
∂I

∂x
+
∂I

∂u

du

dx
+
∂I

∂v

dv

dx
, (2.52)

where ∂I
∂u = ψ(x, u(x)), and ∂I

∂v = −ψ(x, v(x)).

2.1.4 Multiple Integrals

As the integration of a function f(x) corresponds to the area enclosed
under the function between integration limits, this can extend to the
double integral and multiple integrals. For a function f(x, y), the dou-
ble integral is defined as

F =

∫

Ω

f(x, y)dA, (2.53)

where dA is the infinitesimal element of the area, and Ω is the region
for integration. The simplest form of dA is dA = dxdy in Cartesian
coordinates. In order to emphasise the double integral in this case, the
integral is often written as

I =

∫∫

Ω

f(x, y)dxdy. (2.54)
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Example 2.4: The area moment of inertia of a thin rectangular plate,
with the width a and the depth b, is defined by

I =

∫∫

Ω

y2dS =

∫∫

Ω

y2dxdy.

The plate can be divided into four equal parts, and we have

I = 4

∫ a/2

0

[

∫ b/2

0

y2dy]dx = 4

∫ a/2

0

1

3
(
b

2
)3dx =

b3

6

∫ a/2

0

dx =
ab3

12
.

2.1.5 Jacobian

Sometimes it is necessary to change variables when evaluating an in-
tegral. For a simple one-dimensional integral, the change of variables
from x to a new variable v (say) leads to x = x(v). This is relatively
simple as dx = dx

dvdv, and we have

∫ xb

xa

f(x)dx =

∫ b

a

f(x(v))
dx

dv
dv, (2.55)

where the integration limits change so that x(a) = xa and x(b) =
xb. Here the extra factor dx/dv in the integrand is referred to as the
Jacobian.

For a double integral, it is more complicated. Assuming x = x(ξ, η),
y = y(ξ, η), we have

∫∫

f(x, y)dxdy =

∫∫

f(ξη)|J |dξdη, (2.56)

where J is the Jacobian. That is

J ≡ ∂(x, y)

∂(ξ, η)
=

∣
∣
∣
∣
∣

∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

∣
∣
∣
∣
∣
. (2.57)

The notation ∂(x, y)/∂(ξ, η) is just a useful shorthand. This is equiv-
alent to saying that the change of the infinitesimal area dA = dxdy
becomes

dxdy = |∂(x, y)

∂(ξ, η)
|dξdη = |∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
|dξdη. (2.58)
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Figure 2.4: Cylindrical polar coordinates.

Example 2.5: When transforming from (x, y) to polar coordinates
(r, θ), we have the following relationships

x = r cos θ, y = r sin θ.

Thus, the Jacobian is

J =
∂(x, y)

∂(r, θ)
=
∂x

∂r

∂y

∂θ
− ∂x

∂θ

∂y

∂r

= cos θ × r cos θ − (−r sin θ)× sin θ = r[cos2 θ + sin2 θ] = r.

Thus, an integral in (x, y) will be transformed into

∫∫

φ(x, y)dxdy =

∫∫

φ(r cos θ, r sin θ)rdrdθ.

In a similar fashion, the change of variables in triple integrals gives

V =

∫∫∫

Ω

φ(x, y, z)dxdydz =

∫∫∫

ω

ψ(ξ, η, ζ)|J |dξdηdζ, (2.59)

and

J ≡ ∂(x, y, z)

∂(ξ, η, ζ)
=

∣
∣
∣
∣
∣
∣
∣

∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

∣
∣
∣
∣
∣
∣
∣

. (2.60)
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Figure 2.5: Spherical polar coordinates.

For cylindrical polar coordinates (r, φ, z) as shown in Figure 2.4, we
have

x = r cosφ, y = r sinφ, z = z. (2.61)

The Jacobian is therefore

J =
∂(x, y, z)

∂(r, φ, z)
=

∣
∣
∣
∣
∣
∣

cosφ sinφ 0
−r sinφ r cosφ 0

0 0 1

∣
∣
∣
∣
∣
∣

= r. (2.62)

For spherical polar coordinates (r, θ, φ) as shown in Figure 2.5,
where θ is the zenithal angle between the z-axis and the position vector
r, and φ is the azimuthal angle, we have

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ. (2.63)

Therefore, the Jacobian is

J =

∣
∣
∣
∣
∣
∣

sin θ cosφ sin θ sinφ cos θ
r cos θ cosφ r cos θ sinφ −r sin θ
−r sin θ sinφ r sin θ cosφ 0

∣
∣
∣
∣
∣
∣

= r2 sin θ. (2.64)

Thus, the volume element change in the spherical system is

dxdydz = r2 sin θdrdθdφ. (2.65)

2.2 Complex Variables

Although all the quantities are real variables in the physical world,
however, it is sometimes desirable or even necessary to use complex
variables in mathematical modelling. In fact, the techniques based on
complex variables are among the most powerful methods for mathe-
matical analysis and solutions of mathematical models.
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2.2.1 Complex Numbers and Functions

Mathematically speaking, a complex number z is a generalised set or
the order pair of two real numbers (a, b ∈ R), written in the form of

z = a+ ib, i2 = −1, a, b ∈ R, (2.66)

which consists of the real part <(z) = a and the imaginary part =(z) =
b. It can also be written as the order pair of real numbers (a, b). The
addition and substraction of a two complex numbers are defined as

(a+ ib)± (c+ id) = (a± c) + i(b± d). (2.67)

The multiplication and division of two complex numbers are in the
similar way for polynomial expansions.

(a+ ib) · (c+ id) = (ac− bd) + i(ad+ bc), (2.68)

and
a+ ib

c+ id
=
ac+ bd

c2 + d2
+ i

bc− ad
c2 + d2

. (2.69)

Two complex numbers are equal a + ib = c + id if and only if a = c
and b = d. The complex conjugate or simply conjugate z̄ of z = a+ ib
is defined as

z̄ = a− ib. (2.70)

The order pair (a, b), similar to a vector, implies that a geometrical
representation of a complex number a+ ib by the point in an ordinary
Euclidean plane with x-axis being the real axis and y-axis being the
imaginary axis (iy). This plane is called the complex plane. The vector
representation starts from (0, 0) to the point (a, b). The length of the
vector is called the magnitude or modulus or the absolute value of the
complex number

r = |z| =
√

a2 + b2. (2.71)

The angle θ that the vector makes with the positive real axis is called
the argument,

θ = arg z. (2.72)

In fact, we may replace θ by θ + 2nπ (n ∈ N ). The value range
−π < θ ≤ π is called the principal argument of z, and it is usually
denoted by Argz. In the complex plane, the complex number can be
written as

z = reiθ = r cos(θ) + ir sin(θ). (2.73)

This polar form of z and its geometrical representation can result in
the Euler’s formula which is very useful in the complex analysis

eiθ = cos(θ) + i sin(θ). (2.74)
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The Euler formula can be proved using the power series. For any z ∈ C,
we have the power series

ez = 1 + z +
z2

2!
+ ...+

zn

n!
+ ..., (2.75)

and for a special case z = iθ, we have

eiθ = 1 + iθ − θ2

2!
+
iθ3

3!
− ... = (1 − θ2

2!
+ ...) + i(θ − θ3

3!
+ ...). (2.76)

Using the power series

sin θ = θ − θ3

3!
+
θ5

5!
− ..., cos θ = 1− θ2

2!
+
θ4

4!
− ..., (2.77)

we get
eiθ = cos θ + i sin θ. (2.78)

For θ = π, this leads to a very interesting formula

eiπ + 1 = 0. (2.79)

For two complex numbers z1 = r1e
iα1 and z2 = r2e

iα2 , it is straight-
forward to show that

z1z2 = r1r2e
i(α1+α2) = r1r2[cos(α1 + α2) + i sin(α1 + a2)]. (2.80)

Generally, the de Moivre’s formula can be obtained by repetitive use
of the above formula n times with α1 = α2 = θ

[cos(θ) + i sin(θ)]n = cos(nθ) + i sin(nθ). (2.81)

2.2.2 Analytic Functions

Any function of real variables can be extended to the function of com-
plex variables in the same form while treating the real numbers x as
x+ i0. For example, f(x) = x2, x ∈ R becomes f(z) = z2, z ∈ C. Any
complex function f(z) can be written as

f(z) = f(x+ iy) = <(f(z)) + i=(f(z)) = u(x, y) + iv(x, t), (2.82)

where u(x, y) and v(x, y) are real-valued functions of two real variables.
A function f(z) is called analytic at z0 if f ′(z) exists for all z in some

ε−neighborhood of z0 or differentiable in some open disk |z − z0| < ε.
If f(z) = u+ iv is analytic at every point in a domain Ω, then u(x, y)
and v(x, y) satisfies the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (2.83)
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Conversely, if u and v in f(z) = u + iv satisfy the Cauchy-Riemann
equation at all points in a domain, then the complex function f(z)
is analytic in the same domain. For example, the elementary power
function w = zn, (n > 1) is analytic on the whole plane, w = ρeiφ, z =
reiθ, then

ρ = rn, φ = nθ. (2.84)

The logarithm is also an elementary function w = ln z

ln z = ln |z|+ i arg(z) = ln r + i(θ + wπk), (2.85)

which has infinitely many values, due to the multiple values of θ, with
the difference of 2πik, (k = 0,±1,±2, ...). If we use the principal argu-
ment Argz, then we have the principal logarithm function

Ln(z) = ln |z|+ Argz. (2.86)

If we differentiate the Cauchy-Riemann equations and use ∂2u/∂x∂y =
∂2u/∂y∂x, we have

∂2u

∂x2
=

∂2v

∂x∂y
, (2.87)

and
∂2v

∂y2
= − ∂2v

∂y∂x
= − ∂2v

∂x∂y
. (2.88)

Adding these two, we have

∂2u

∂x2
+
∂2u

∂y2
= 0. (2.89)

A similar argument for v leads to the following theorem: For given
analytic function f(z) = u+ iv, then both u and v satisfy the Laplace
equations

∂2u

∂x2
+
∂2v

∂y2
= 0,

∂2v

∂x2
+
∂2v

∂y2
= 0. (2.90)

This is to say, both real and imaginary parts of an analytic function
are harmonic.

2.3 Complex Integrals

Given a function f(z) that is continuous on a piecewise smooth curve
Γ, then the integral over Γ is

∫

Γ f(z)dz, called a contour or line integral
of f(z). This integral has similar properties to the real integral

∫

Γ

[αf(z) + βg(z)]dz = α

∫

Γ

f(z)dz + β

∫

Γ

g(z)dz. (2.91)
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If F (z) is analytic and F ′(z) = f(z) is continuous along a curve Γ, then

∫ b

a

f(z)dz = F [z(b)]− F [z(a)]. (2.92)

2.3.1 Cauchy’s Integral Theorem

We say a path is simply closed if its end points and initial points co-
incide and the curve does not cross itself. For an analytic function
f(z) = u(x, y) + iv(x, y), the integral on a simply closed path

I =

∫

Γ

(u+ iv)(dx+ idy)] =

∫

Γ

(udx− vdy) + i

∫

Γ

(vdx+ udy). (2.93)

By using the Green theorem, this becomes

I =

∫

Ω

(−∂u
∂y
− ∂v

∂x
)dxdy + i

∫

Ω

(
∂u

∂x
− ∂v

∂y
)dxdy. (2.94)

From the Cauchy-Riemann equations, we know that both integrals are
zero. Thus, we have Cauchy’s Integral Theorem, which states that the
integral of any analytic function f(z) on a simply closed path Γ in a
simply connected domain Ω is zero. That is

∫

Γ

f(z)dz = 0.

This theorem is very important as it has interesting consequences.
If the closed path is decomposed into two paths with reverse directions
Γ1 and Γ2, then Γ1 and −Γ2 form a closed path, which leads to

∫

Γ1

f(z)dz =

∫

Γ2

f(z)dz. (2.95)

That is to say that the integral over any curve between two points
is independent of the path. This property becomes very useful for
evaluation of integrals. The integral of f(z)/(z − z0) over any simply
closed path Γ enclosing a point z0 in the domain Ω is,

1

2πi

∮

Γ

f(z)

z − z0
dz = f(z0).

Similarly, for higher derivatives, we have

∮

Γ

f(z)

(z − z0)n+1
dz =

2πif (n)(z0)

n!
.
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Figure 2.6: Contour for the integral I(α,β).

2.3.2 Residue Theorem

A function f(z) has a pole or singularity of order n at z = z0 if f(z)
is not analytic at z = z0 but (z − z0)nf(z) is analytic at z = z0. This
suggests that f(z) can be expanded as a power series, called Laurant
series

f(z) =

∞∑

k=−n
αk(z − z0)k, (2.96)

where αk are the coefficients. The most important coefficient is prob-
ably α−1 which is called the residue of f(z) at the pole z = z0. If f(z)
has a pole of order N at z0, the following formula gives a quick way to
calculate the residue

Resf(z)|z0 =
1

(N − 1)!
lim
z→z0

dN−1[(z − z0)Nf(z)]

dzN−1
. (2.97)

For any analytic f(z) function in a domain Ω except isolated singular-
ities at finite points z1, z2, ..., zN , the residue theorem states

∮

Γ

f(z)dz = 2πi

N∑

k=1

Resf(z)|zk
,

where Γ is a simple closed path enclosing all these isolated points or
poles. The residue theorem serves as a powerful tool for calculating
some real integrals and summation of series, especially when the inte-
grand is a function of sin and cos that can be changed into complex
integral. The real integral

∫∞
−∞ ψ(x)dx becomes 2πi multiplying the

sum of the residues of ψ(x) at the poles in the upper half-space. Let
us look at an example.
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Example 2.6: In order to evaluate the integral

I(α, β) =

∫ ∞

−∞

eiα
2ζ

x2 + β4
dζ,

it is necessary to construct a contour (see Figure 2.6). As the function

φ = eiα
2ζ/(β4 + ζ2) has two poles ζ = +iβ2 and −iβ2 from β4 + ζ2 = 0,

and only one pole ζ = +iβ2 is in the upper half plane, we can construct
a contour to encircle the pole at ζ = iβ2 by adding an additional arc at
the infinity (ζ →∞) on the upper half plane. Combining the arc with the
horizontal line from the integral limits from −∞ to ∞ along the ζ-axis, a
contour is closed. Hence, we have

φ =
eiα

2ζ/(ζ + iβ2)

ζ − iβ2
=

f(ζ)

ζ − iβ2
,

where f(ζ) = eiα
2ζ/(ζ + iβ2). Using the residue theorem, we have

I = 2πi[f(ζ = iβ2)] = 2πi
e−α

2β2

iβ2 + iβ2
= π

e−α
2β2

β2
.

In a special case when α = 0, we have
∫∞
−∞

1
ζ2+β4 dζ = π

β2 .

References

Abramowitz M. and Stegun I. A., Handbook of Mathematical Functions,
Dover Publication, (1965).

Courant R. and Hilbert, D., Method of Mathematical Physics, 2 vol-
umes, Wiley-Interscience, New York, (1953, 1962).

Fowler A. C., Mathematical Models in the Applied Sciences, Cam-
bridge University Press, (1997).

Kreyszig E., Advanced Engineering Mathematics, 6th Edition, Wiley
& Sons, New York, (1988).

Riley K. F., Hobson M. P. and Bence S. J., Mathematical Methods

for Physics and Engineering, 3rd Edition, Cambridge University
Press (2006).



Chapter 3

Vectors and Matrices

Many quantities such as force, velocity, and deformation in nature are
vectors that have both a magnitude and a direction. The manipulation
of vectors is often associated with matrices. In this chapter, we will first
discuss the basics of vector and matrix analysis, then we will discuss
tensors.

3.1 Vectors

A vector x is a set of ordered numbers x = (x1, x2, ..., xn), where its
components x1, x2, ..., xn are real numbers. All these vectors forms a
n-dimensional vector space Vn. To add two vectors x = (x1, x2, ..., xn)
and y = (y1, y2, ..., yn), simply add their corresponding components,

x + y = (x1 + y1, x2 + y2, ..., xn + yn), (3.1)

and the sum is also a vector. The addition of vectors has commutability
(u + v = v + u) and associativity [(a + b) + c = a + (b + c)]. Zero
vector 0 is a special case in that all its components are zeros. The
multiplication of a vector x with a scalar or constant α is carried out
by the multiplication of each component,

αy = (αy1, αy2, ..., αyn). (3.2)

Thus, −y = (−y1,−y2, ...,−yn). In addition, (αβ)y = α(βy) and
(α+ β)y = αy + βy.

Two nonzero vectors a and b are said to be linearly independent if
αa+βb = 0 implies that α = β = 0. If α, β are not all zeros, then these
two vectors are linearly dependent. Two linearly dependent vectors are
parallel (a//b) to each other. Three linearly dependent vectors a,b, c
are in the same plane.

45
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3.1.1 Dot Product and Norm

The dot product or inner product of two vectors x and y is defined as

x · y = x1y1 + x2y2 + ...+ xnyn =

n∑

i=1

xiyi, (3.3)

which is a real number. The length or norm of a vector x is the root
of the dot product of the vector itself,

|x| = ‖x‖ =
√

x · x =

√
√
√
√

n∑

i=1

x2
i . (3.4)

When ‖x‖ = 1, then it is a unit vector. It is straightforward to check
that the dot product has the following properties:

x · y = y · x, x · (y + z) = x · y + x · z, (3.5)

and
(αx) · (βy) = (αβ)x · y, (3.6)

where α, β are constants.
If θ is the angle between two vectors a and b, then the dot product

can also be written

a · b = |a||b| cos(θ), 0 ≤ θ ≤ π. (3.7)

If the dot product of these two vectors is zero or cos(θ) = 0 (i.e.,
θ = π/2), then we say that these two vectors are orthogonal.

Rearranging Eq.(3.7), we obtain a formula to calculate the angle θ
between two vectors

cos(θ) =
a · b
‖a‖ ‖b‖ . (3.8)

Since cos(θ) ≤ 1, then we get the useful Cauchy-Schwartz inequality:

‖a · b‖ ≤ ‖a‖ ‖b‖. (3.9)

Any vector a in a n-dimensional vector space Vn can be written
as a combination of a set of n independent basis vectors or orthogonal
spanning vectors e1, e2, ..., en, so that

a = α1e1 + α2e2 + ...+ αnen =

n∑

i=1

αiei, (3.10)

where the coefficients/scalars α1, α2, ..., αn are the components of a
relative to the basis e1, e2..., en. The most common basis vectors are
the orthogonal unit vectors. In a three-dimensional case, they are i =
(1, 0, 0), j = (0, 1, 0, k = (0, 0, 1) for three x-, y-, z-axis, and thus
x = x1i+x2j+x3k. The three unit vectors satisfy i · j = j · k = k · i = 0.
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3.1.2 Cross Product

The dot product of two vectors is a scalar or a number. On the other
hand, the cross product or outer product of two vectors is a new vector

c = a× b = (x2y3 − x3y2)i + (x3y1 − x1y3)j + (x1y2 − x2y1)k, (3.11)

this is usually written as

a× b =

∣
∣
∣
∣
∣
∣

i j k
x1 x2 x3

y1 y2 y3

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣

x2 x3

y2 y3

∣
∣
∣
∣
i +

∣
∣
∣
∣

x3 x1

y3 y1

∣
∣
∣
∣
j +

∣
∣
∣
∣

x1 x2

y1 y2

∣
∣
∣
∣
k. (3.12)

The angle between a and b can also be expressed as

sin θ =
‖a× b‖
‖a‖ ‖b‖ . (3.13)

In fact, the norm ‖a× b‖ is the area of the parallelogram formed by a
and b. The vector c = a×b is perpendicular to both a and b, following
a right-hand rule. It is straightforward to check that the cross product
has the following properties:

x× y = −y × x, (x + y) × z = x× z + y × z, (3.14)

and
(αx) × (βy) = (αβ)x × y. (3.15)

A very special case is a× a = 0. For unit vectors, we have

i× j = k, j× k = i, k× i = j. (3.16)

Example 3.1: For two 3-D vectors a = (2,−3, 1) and b = (2, 5, 0),
their dot product is

a · b = 2× 2 + (−3)× 5 + 1× 0 = −11.

As their moduli are

||a|| =
√

22 + (−3)2 + 12 =
√

14, ||b|| =
√

22 + 52 + 0 =
√

29,

we can calculate the angle θ between the two vectors. We have

cos θ =
a · b
||a||||b|| =

−11√
14
√

29
,
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or

θ = cos−1 −11√
406
≈ 123.09◦.

Their cross product is

v = a× b = (−3× 0− 1× 5, 1× 2− 2× 0, 2× 5− (−3)× 2)

= (−5, 2, 16).

The vector v is perpendicular to both a and b because

a · v = 2× (−5) + (−3)× 2 + 1× 16 = 0,

and
b · v = 2× (−5) + 5× 2 + 0× 16 = 0.

3.1.3 Differentiation of Vectors

The differentiation of a vector is carried out over each component and
treating each component as the usual differentiation of a scalar. Thus,
from a position vector

P(t) = x(t)i + y(t)j + z(t)k, (3.17)

we can write its velocity as

v =
dP

dt
= ẋ(t)i + ẏ(t)j + ż(t)k, (3.18)

and acceleration as

a =
d2P

dt2
= ẍ(t)i + ÿ(t)j + z̈(t)k, (3.19)

where (̇) = d()/dt. Conversely, the integral of v is

P =

∫

vdt+ c, (3.20)

where c is a constant.
From the basic definition of differentiation, it is easy to check that

the differentiation of vectors has the following properties:

d(αa)

dt
= α

da

dt
,
d(a · b)

dt
=
da

dt
· b + a · db

dt
, (3.21)

and
d(a× b)

dt
=
da

dt
× b + a× db

dt
. (3.22)
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ds =
√

dx2 + dy2
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dx

Figure 3.1: Arc length along a curve.

3.1.4 Line Integral

An important class of integrals in this context is the line integral which
integrates along a curve r(x, y, z) = xi+ yj+ zk. For example, in order
to calculate the arc length L of curve r as shown in Figure 3.1, we have
to use the line integral.

L =

∫ s

s0

ds =

∫ s

s0

√

dx2 + dy2 =

∫ x

x0

√

1 + (
dy

dx
)2dx. (3.23)

Example 3.2: The arc length of the parabola y(x) = 1
2x

2 from x = 0
to x = 1 is given by

L =

∫ 1

0

√

1 + y′2dx =

∫ 1

0

√

1 + x2dx

=
1

2
[x
√

1 + x2 + ln(x+
√

1 + x2)]
∣
∣
∣

1

0
=

1

2
[
√

2− ln(
√

2− 1)] ≈ 1.15.

3.1.5 Three Basic Operators

Three important operators commonly used in vector analysis, especially
in the formulation of the finite element methods, are the gradient op-
erator (grad or ∇), the divergence operator (div or ∇·) and the curl
operator (curl or ∇×).
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Sometimes, it is useful to calculate the directional derivative of a
scalar φ at the point (x, y, z) in the direction of n

∂φ

∂n
= n · ∇φ =

∂φ

∂x
cos(α) +

∂φ

∂y
cos(β) +

∂φ

∂z
cos(γ), (3.24)

where n = (cosα, cosβ, cos γ) is a unit vector and α, β, γ are the direc-
tional angles. Generally speaking, the gradient of any scalar function
φ of x, y, z can be written in a similar way,

gradφ = ∇φ =
∂φ

∂x
i +

∂φ

∂y
j +

∂φ

∂z
k. (3.25)

This is equivalent to applying the del operator ∇ to the scalar function
φ

∇ =
∂

∂x
i +

∂

∂y
j +

∂

∂z
k. (3.26)

The direction of the gradient operator on a scalar field gives a vector
field. The gradient operator has the following properties:

∇(αψ + βφ) = α∇ψ + β∇φ, ∇(ψφ) = ψ∇φ+ φ∇ψ, (3.27)

where α, β are constants and ψ, φ are scalar functions.
For a vector field

u(x, y, z) = u1(x, y, z)i + u2(x, y, z)j + u3(x, y, z)k, (3.28)

the application of the operator ∇ can lead to either a scalar field or
vector field depending on how the del operator applies to the vector
field. The divergence of a vector field is the dot product of the del
operator ∇ and u

div u = ∇ · u =
∂u1

∂x
+
∂u2

∂y
+
∂u3

∂z
, (3.29)

and the curl of u is the cross product of the del operator and the vector
field u

curl u = ∇× u =

∣
∣
∣
∣
∣
∣

i j k
∂
∂x

∂
∂y

∂
∂z

u1 u2 u3

∣
∣
∣
∣
∣
∣

. (3.30)

One of the most common operators in engineering and science is
the Laplacian operator

∇2φ ≡ ∇ · (∇φ) =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
, (3.31)

for Laplace’s equation
∆φ ≡ ∇2φ = 0. (3.32)
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3.1.6 Some Important Theorems

The Green theorem is an important theorem, especially in fluid dy-
namics and finite element analysis. For a vector field Q = ui + vj in
a 2-D region Ω with the boundary Γ and the unit outer normal n and
unit tangent t. The theorems connecting the integrals of divergence
and curl with other integrals can be written as Gauss’s theorem:

∫∫∫

Ω

(∇ ·Q)dΩ =

∫∫

S

Q · ndS, (3.33)

and Stokes’s theorem:
∫∫

S

(∇×Q) · kdS =

∮

Γ

Q · tdΓ =

∮

Γ

Q · dr. (3.34)

In our simple 2-D case, this becomes

∮

(udx+ vdy) =

∫∫

Ω

(
∂v

∂x
− ∂u

∂y
)dxdy. (3.35)

For any scalar functions ψ and φ, the useful Green’s first identity
can be written as

∮

∂Ω

ψ∇φdΓ =

∫

Ω

(ψ∇2φ+∇ψ · ∇φ)dΩ, (3.36)

where dΩ = dxdydz. By using this identity twice, we get Green’s
second identity

∮

∂Ω

(ψ∇φ− φ∇ψ)dΓ =

∫

Ω

(ψ∇2φ− φ∇2ψ)dΩ. (3.37)

3.2 Matrix Algebra

3.2.1 Matrix

Matrices are widely used in almost all engineering subjects. A matrix is
a table or array of numbers or functions arranged in rows and columns.
The elements or entries of a matrix A are often denoted as aij . A
matrix A has m rows and n columns,

A = [aij ] =








a11 a12 ... a1j ... a1n

a21 a22 ... a2j ... a2n

...
... aij ...

...
am1 am2 ... amj ... amn







, (3.38)
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we say the size of A is m by n, or m × n. A is square if m = n. For
example,

A =

(
1 2 3
4 5 6

)

, B =

(
ex sinx

−i cosx eiθ

)

, (3.39)

and

u =





u
v
w



, (3.40)

where A is a 2× 3 matrix, B is a 2× 2 square matrix, and u is a 3× 1
column matrix or column vector.

The addition (substraction) of two matrices A and B is only possible
if they have the same size m× n, and their sum, which is also m× n,
is obtained by adding corresponding entries

C = A + B, cij = aij + bij , (3.41)

where (i = 1, 2, ...,m; j = 1, 2, ..., n). We can multiply a matrix A by
a scalar α and this is equivalent to multiplying each entry by α. The
product of two matrices is only possible if the number of columns of A
is the same as the number of rows of B. That is to say, if A is m× n
and B is n× r, then the product C is m× r,

cij = (AB)ij =

n∑

k=1

aikbkj . (3.42)

If A is a square matrix, then we have Ar =

r
︷ ︸︸ ︷

AA...A. The multiplications
of matrices are generally not commutive, i.e., AB 6= BA. However, the
multiplication has associativity

A(uv) = (Au)v, A(u + v) = Au + Av. (3.43)

The transpose (denoted by AT ) of A is obtained by switching the
position of rows and columns, and thus AT will be n×m if A is m×n,
(aT )ij = aji, (i = 1, 2, ...,m; j = 1, 2, ..., n). Generally,

(AT )T = A, (AB)T = BTAT . (3.44)

The differentiation and integral of a matrix are done on each mem-
ber element. For example, for a 2× 2 matrix

dA

dt
≡ Ȧ =

(
da11

dt
da12

dt
da21

dt
da22

dt

)

, (3.45)
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and ∫

Adt =

(∫
a11dt

∫
a12dt∫

a21dt
∫
a22dt

)

. (3.46)

A diagonal matrix A is a square matrix whose every entry off the
main diagonal is zero (aij = 0 if i 6= j). Its diagonal elements or entries
may or may not have zeros. For example, the matrix

I =





1 0 0
0 1 0
0 0 1



 (3.47)

is a 3× 3 identity or unitary matrix. In general, we have

AI = IA = A. (3.48)

A zero or null matrix 0 is a matrix with all of its elements being zero.

3.2.2 Determinant

The determinant of a square matrix A is a number or scalar obtained
by the following recursive formula or the cofactor or Laplace expansion
by column or row. For example, expanding by row k, we have

det(A) = |A| =
n∑

j=1

(−1)k+jakjMkj , (3.49)

where Mij is the determinant of a minor matrix of A by deleting row
i and column j. For a simple 2 × 2 matrix, its determinant simply
becomes ∣

∣
∣
∣

a11 a12

a21 a22

∣
∣
∣
∣
= a11a22 − a12a21. (3.50)

The determinant has the following properties:

|αA| = α|A|, |AT | = |A|, |AB| = |A||B|, (3.51)

where A and B are the same size (n× n).
A n × n square matrix is singular if |A| = 0, and is nonsingular if

and only if |A| 6= 0. The trace of a square matrix tr(A) is defined as
the sum of the diagonal elements,

tr(A) =
n∑

i=1

aii = a11 + a22 + ...+ ann . (3.52)

The rank of a matrix A is the number of linearly independent vectors
forming the matrix. Generally, the rank of A is rank(A) ≤ min(m, n).
For a n× n square matrix A, it is nonsingular if rank(A) = n.
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3.2.3 Inverse

The inverse matrix A−1 of a square matrix A is defined as

A−1A = AA−1 = I. (3.53)

It is worth noting that the unit matrix I has the same size as A and
thus is a n × n matrix. The inverse of a square matrix exists if and
only if A is nonsingular or det(A) 6= 0. From the basic definitions, it is
straightforward to prove that the inverse of a matrix has the following
properties

(A−1)−1 = A, (AT)−1 = (A−1)T, (3.54)

and

(AB)−1 = B−1A−1. (3.55)

3.2.4 Matrix Exponential

Sometimes, we need to calculate exp[A], where A is a square matrix.
In this case, we have to deal with matrix exponentials. The exponential
of a square matrix A is defined as

eA ≡
∞∑

n=0

1

n!
An = I + A +

1

2
A2 + .... (3.56)

where I is a unity matrix with the same size as A, and A2 = AA
and so on. This (rather odd) definition in fact provides a method to
calculate the matrix exponential. The matrix exponentials are very
useful in solving systems of differential equations.

Example 3.3: For a simple matrix

A =

(
t 0
0 t

)

,

we have

eA =

(
et 0
0 et

)

.

Similarly, we have

A =

(
t t
t t

)

, eA =





1
2 (1 + e2t) 1

2 (e2t − 1)

1
2 (e2t − 1) 1

2 (1 + e2t)



.
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As you see, it is quite complicated but still straightforward to cal-
culate the matrix exponentials. Fortunately, it can be easily done using
a computer. By using the power expansions and the basic definition,
we can prove the following useful identities

etA ≡
∞∑

n=0

1

n!
(tA)n = I + tA +

t2

2
A2 + ..., (3.57)

ln(IA) ≡
∞∑

n=1

(−1)n−1

n!
An = A− 1

2
A2 +

1

3
A3 + ..., (3.58)

where t ∈ < is a real number.

3.2.5 Solution of linear systems

A linear system of m equations for n unknowns

a11u1 + a12u2 + ...+ a1nun = b1,

a21u1 + a22u2 + ...+ a2nun = b2,

...
...

am1u1 + am2u2 + ...+ amnun = bn, (3.59)

can be written in the compact form as







a11 a12 ... a1n

a21 a22 ... a2n

...
...

am1 am2 ... amn















u1

u2

...
un








=








b1
b2
...
bn







, (3.60)

or simply
Au = b. (3.61)

In the case of m = n, we multiply both sides by A−1 (this is only
possible when m = n),

A−1Au = A−1b, (3.62)

we obtain the solution of this equation as

u = A−1b. (3.63)

A special case of the above equation is when b = λu, and this
becomes an eigenvalue problem. An eigenvalue λ and corresponding
eigenvector v of a square matrix A satisfy

Av = λv, (3.64)
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or
(A− λI)v = 0. (3.65)

Any nontrivial solution requires
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 − λ a12 ... a1n

a21 a22 − λ ... a2n

...
...

an1 an2 ... ann − λ

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0, (3.66)

which is equivalent to

λn + αn−1λ
n−1 + ...+ α0 = (λ− λ1)(λ − λ2)...(λ− λn) = 0. (3.67)

In general, the characteristic equation has n solutions. Eigenvalues
have interesting connections with the matrix,

tr(A) =
n∑

i=1

aii = λ1 + λ2 + ...+ λn. (3.68)

For a symmetric square matrix, the two eigenvectors for two distinct
eigenvalues λi and λj are orthogonal vTv = 0.

Example 3.4: For a simple 2× 2 matrix

A =

(
1 5
2 4

)

,

its eigenvalues can be determined by
∣
∣
∣
∣

1− λ 5
2 4− λ

∣
∣
∣
∣
= 0,

or
(1 − λ)(4 − λ)− 2× 5 = 0,

which is equivalent to
(λ + 1)(λ− 6) = 0.

Thus, the eigenvalues are λ1 = −1 and λ2 = 6. The trace of A is
tr(A) = A11 + A22 = 1 + 4 = 5 = λ1 + λ2. In order to obtain the
eigenvector for each eigenvalue, we assume

v =

(
v1
v2

)

.

For the eigenvalue λ1 = −1, we plug this into

|A− λI|v = 0,
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and we have
∣
∣
∣
∣

1− (−1) 5
2 4− (−1)

∣
∣
∣
∣

(
v1
v2

)

= 0, or

∣
∣
∣
∣

2 5
2 5

∣
∣
∣
∣

(
v1
v2

)

= 0,

which is equivalent to 2v1 + 5v2 = 0, or v1 = − 5
2v2. This equation

has infinite solutions, each corresponds to the vector parallel to the unit
eigenvector. As the eigenvector should be normalised so that its modulus
is unity, this additional condition requires

v2
1 + v2

2 = 1, or (
−5v2

2
)2 + v2

2 = 1.

We have v1 = −5/
√

29, v2 = 2/
√

29. Thus, we have the first set of
eigenvalue and eigenvector

λ1 = −1, v1 =

(

− 5√
29

2√
29

)

. (3.69)

Similarly, the second eigenvalue λ2 = 6 gives
∣
∣
∣
∣

1− 6 5
2 4− 6

∣
∣
∣
∣

(
v1
v2

)

= 0.

Using the normalisation condition v2
1 +v2

2 = 1, the above equation has the

following solution λ2 = 6, vT2 =
(√

2
2

√
2

2

)

.

3.2.6 Gauss-Seidel Iteration

For a linear system Au = b, the solution u = A−1b generally involves
the inversion of a large matrix. The direct inversion becomes imprac-
tical if the matrix is very large (say, if n > 10000). Many efficient
algorithms have been developed for solving such systems. Gauss elim-
ination and Gauss-Seidel iteration are just two examples.

Gauss-Seidel iteration method provides an efficient way to solve the
linear matrix equation Au = b by splitting A into

A = L + D + U, (3.70)

where L,D,U are the lower triangle, diagonal and upper triangle ma-
trices of the A, respectively. The n step iteration is updated by

(L + D)u(n) = b−Uu(n−1). (3.71)

This procedure starts from an initial vector u(0) (usually, u(0) = 0)
stops if a prescribed criterion is reached. There are other iteration
methods such as relaxation method and Newton-Raphson method, and
readers can go into this in greater detail in a more advanced book on
linear algebra.
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3.3 Tensors

Many physical quantities such as stress and strain are tensors. Vectors
are essentially first-order tensors. Tensors are the extension of vectors,
and they can have any number of dimensions and any orders, though
most commonly used tensors are second order tensors.

3.3.1 Notations

In tensor analysis, the summation convention and notations for sub-
scripts are widely used. Any lowercase subscript that appears exactly
twice in any term of an expression means that sum is over all possible
values of the subscript. This convention is also called Einstein’s sum-
mation or the index form. For example, in the three-dimensional case,
we have

αixi ≡
3∑

i=1

aixi = α1x1 + α2x2 + α3x3. (3.72)

AijBjk ≡
3∑

j=1

AijBjk = Ai1B1k +Ai2B2k +Ai3B3k. (3.73)

∇ · u ≡ ∂ui
∂xi

=
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
. (3.74)

The Kronecker delta δij which is a unity tensor (like the unity matrix
I in matrix analysis), is defined as

δij =
{

1 (if i = j),
0 (if i 6= j).

(3.75)

Similar to δij , the three subscripts Levi-Civita symbol (not a tensor) is
defined as

εijk =

{ +1 (if i, j, k is an even permutation of 1, 2, 3),
−1 (if i, j, k is an odd permutation of 1, 2, 3),
0 (otherwise).

(3.76)
Both δij and εijk are related by

εijkεkpq = δipδjq − δiqδjp. (3.77)

Using the summation conventions, the matrix equation Ax = b can
alternatively be written as

Aijxj = bi, (i = 1, 2, ..., n). (3.78)



3.3 Tensors 59

3.3.2 Tensors

When changing the basis from the standard Cartesian e1 = i, e2 = j,
e3 = k to a new basis e′1, e

′
2, e

′
3, a position vector x = (x1, x2, x3) in

the old bases is related to the new vector x′ = (x′1, x
′
2, x

′
3) in the new

bases by a coefficient matrix Sij . Sij can be the rotation, translation,
enlargement or any of their combinations. For a rotation with an angle
of θ around a fixed axis, Sij becomes

Sij =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



. (3.79)

The orthogonality of Sij requires that SST = STS = I or

SijSjk = δik, SkiSkj = δij . (3.80)

If the components ui of any variable u are transformed to the compo-
nents u′i in a new basis in the same manner as

u′i = Sijuj , ui = Sjiu
′
j , (3.81)

then ui are said to form a first-order Cartesian tensor (or vector in this
case). If components of a variable σij are transformed as

σ′
ij = SipSjqσpq, σij = SpiSqjσ

′
pq, (3.82)

we say these components form a second-order tensor such as stresses
and strains.

In a similar fashion, higher-order tensors can be defined, and for
each order increase, then there is one Sij extra in the product for
transforming, but no subscripts are allowed to appear more than twice.

τ ′ij...k = SipSjq ...Skrτpq...r, τij...k = SpiSqj ....Srkτ
′
pq...r. (3.83)

In a similar way to multi-dimensional matrices, two tensors can be
added or subtracted component-by-component if and only if they are
the tensors of the same order. For second-order tensors, a tensor τij is
said to be symmetric if τij = τji, and antisymmetric if τij = −τji. An
interesting property of a tensor τij is that it can always be written as
a sum of a symmetric tensor and an antisymmetric tensor

τij =
1

2
(τij + τji)[sym.] +

1

2
(τij − τji)[antisym.]. (3.84)

All the formulae in vector analysis can be rewritten in the tensor
forms using the summation convention, known as index forms. For
example, we can write

∇× (∇× u)i = εijkεkpq
∂uq
∂xjxp

, (3.85)
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which is convenient for proving theorems.

Example 3.5: The dot product of two vectors can be written as

u · v = uivi = δijuivj ,

while the Laplace operator is equivalent to

∇2ψ =
∂2ψ

∂xi∂xi
= δij

∂ψ

∂xi∂xj
.

Similarly, the divergence theorem can be rewritten as the following form

∫

V

∂ui
∂xi

dV =

∮

S

uinidS.

The tensor forms are sometimes useful in proving complex relation-
ships among vectors and tensors. They also become handy for the
implementation of numerical algorithms.
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Chapter 4

ODEs and Integral

Transforms

Most mathematical models in applied mathematics, physics and earth
sciences are formulated in terms of differential equations. If the vari-
ables or quantities (such as velocity, temperature, pressure) change with
other independent variables such as spatial coordinates and time, their
relationship can in general be written as a differential equation or even
a set of differential equations.

4.1 Ordinary Differential Equations

An ordinary differential equation (ODE) is a relationship between a
function y(x) of an independent variable x and its derivatives y′, y′′,
..., y(n). It can be written in a generic form

Ψ(x, y, y′, y′′, ..., y(n)) = 0, (4.1)

where Ψ is a function of x, y, ..., y(n). The solution of the equation is a
function y = f(x), satisfying the equation for all x in a given domain
Ω. The order of the differential equation is equal to the order n of the
highest derivative in the equation. Thus, the Riccati equation :

y′ + a(x)y2 + b(x)y = c(x), (4.2)

is a first-order ODE, and the following equation of Euler-type

x2y′′ + a1xy
′ + a0y = 0, (4.3)

is a second order. The degree of an equation is defined as the power
to which the highest derivative occurs. Therefore, both the Riccati
equation and the Euler equation are of the first degree.

61
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An equation is called linear if it can be arranged into the form

an(x)y
(n) + ...+ a1(x)y

′ + a0(x)y = φ(x), (4.4)

where all the coefficients depend on x only, not on y or any of its
derivatives. If any of the coefficients is a function of y or any of its
derivatives, then the equation is nonlinear. If the right-hand side is zero
or φ(x) ≡ 0, the equation is homogeneous. It is called nonhomogeneous
if φ(x) 6= 0.

The solution of an ordinary differential equation is not always easy,
and it is usually very complicated for nonlinear equations. Even for
linear equations, the solutions can be found in a straightforward way for
only a few simple cases. The solution of a differential equation generally
falls into three types: closed form, series form and integral form. A
closed form solution is the type of solution that can be expressed in
terms of elementary functions and some arbitrary constants. Series
solutions are the ones that can be expressed in terms of a series when
a closed-form is not possible for certain type of equations. The integral
form of solutions or quadrature is sometimes the only form of solution
that is possible. If all these forms are not possible, the alternatives are
to use approximate and numerical solutions.

4.1.1 First-Order ODEs

Linear ODEs

A first-order linear differential equation can generally be written as

y′ + a(x)y = b(x), (4.5)

where a(x) and b(x) are the known functions of x. Multiplying both
sides of the equation by exp[

∫
a(x)dx], called the integrating factor, we

have

y′e
∫
a(x)dx + a(x)ye

∫
a(x)dx = b(x)e

∫
a(x)dx, (4.6)

which can be written as

[ye
∫
a(x)dx]′ = b(x)e

∫
a(x)dx. (4.7)

By simple integration, we have

ye
∫
a(x)dx =

∫

b(x)e
∫
a(x)dxdx+ C. (4.8)

So its solution becomes

y(x) = e−
∫
a(x)dx

∫

b(x)e
∫
a(x)dxdx+ Ce−

∫
a(x)dx, (4.9)
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where C is an integration constant. For example, from y′(x) − y(x) =
e−x, we have a(x) = −1 and b = e−x, so the solution is

y(x) = e−
∫

(−1)dx
∫

e−xe
∫

(−1)dx + Ce−
∫

(−1)dx

= ex
∫

e−2xdx+ Cex = −1

2
e−x + Cex. (4.10)

Nonlinear ODEs

For some nonlinear first order ordinary differential equations, some-
times a transform or change of variables can convert it into the stan-
dard first order linear equation (4.5). This is better demonstrated by
an example.

Example 4.1: The Bernoulli’s equation can be written in the generic
form

y′ + p(x)y = q(x)yn, n 6= 1. (4.11)

In the case of n = 1, it reduces to a standard first order linear ordinary
differential equation. By dividing both sides by yn and using the change
of variables

u(x) =
1

yn−1
, u′ =

(1− n)y′

yn
, (4.12)

we have
u′ + (1− n)p(x)u = (1− n)q(x), (4.13)

which is a standard first order linear differential equation whose general
solution is given earlier in (4.9).

In the simpler case when p(x) = 2x, q(x) = −1 and n = 2, we have

u′ − 2xu = 1, u(x) =
1

y(x)
.

For the initial condition y(0) = 1, we have u(0) = 1. Using solution (4.9),
we have

u(x) =

√
π

2
ex

2

erf(x) +Aex
2

,

where A is the integration constant. The requirement of u(0) = 1 leads
to A = 1. Thus, the solution for y(x) becomes

y(x) =
2e−x

2

(
√
πerf(x) + 2)

.

We will compare this solution with Euler’s scheme in Chapter 10.
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4.1.2 Higher-Order ODEs

Higher order ODEs are more complicated to solve even for the linear
equations. For the special case of higher-order ODEs where all the
coefficients an, ..., a1, a0 are constants,

any
(n) + ...+ a1y

′ + a0y = f(x), (4.14)

its general solution y(x) consists of two parts: the complementary func-
tion yc(x) and the particular integral or particular solution y∗p(x). We
have

y(x) = yc(x) + y∗p(x). (4.15)

The complementary function which is the solution of the linear
homogeneous equation with constant coefficients can be written in a
generic form

any
(n)
c + an−1y

(n−1)
c + ...+ a1y

′
c + a0 = 0. (4.16)

Assuming y = Aeλx where A is a constant, we get the characteristic
equation as a polynomial

anλ
n + an−1λ

(n−1) + ...+ a1λ+ a0 = 0, (4.17)

which has n roots in the general case. Then, the solution can be ex-
pressed as the summation of various terms yc(x) =

∑n
k=1 cke

λkx if the
polynomial has n distinct zeros λ1, ...λn. For complex roots, and com-
plex roots always occur in pairs λ = r ± iω, the corresponding linearly
independent terms can then be replaced by erx[A cos(ωx)+B sin(ωx)].

The particular solution y∗p(x) is any y(x) that satisfies the original
inhomogeneous equation (4.14). Depending on the form of the func-
tion f(x), the particular solutions can take various forms. For most
of the combinations of basic functions such as sinx, cos x, ekx, and
xn, the method of the undetermined coefficients is widely used. For
f(x) = sin(αx) or cos(αx), then we can try y∗p = A sinαx + B sinαx.
We then substitute it into the original equation (4.14) so that the coef-
ficients A and B can be determined. For a polynomial f(x) = xn(n =
0, 1, 2, ...., N), we then try y∗p = A+Bx+ ...+Qxn (polynomial). For

f(x) = ekxxn, y∗p = (A+Bx+ ...Qxn)ekx. Similarly, f(x) = ekx sinαx

or f(x) = ekx cosαx, we can use y∗p = ekx(A sinαx + B cosαx). More
general cases and their particular solutions can be found in various
textbooks.

A very useful technique is to use the method of differential operator
D. A differential operator D is defined as

D ≡ d

dx
. (4.18)
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Since we know that Deλx = λeλx and Dneλx = λneλx, so they are
equivalent to D 7→ λ, and Dn 7→ λn. Thus, any polynomial P (D) will
map to P (λ). On the other hand, the integral operator D−1 =

∫
dx

is just the inverse of the differentiation. The beauty of the differential
operator form is that one can factorise it the same as for the polyno-
mial, then solve each factor separately. The differential operator is very
useful in finding out both the complementary functions and particular
integral.

Example 4.2: To find the particular integral for the equation

y′′′′′ + 2y = 17e2x, (4.19)

we get

(D5 + 2)y∗p = 17e2x, (4.20)

or

y∗p =
17

D5 + 2
e2x. (4.21)

Since D5 7→ λ5 = 25, we have

y∗p =
17e2x

25 + 2
=
e2x

2
. (4.22)

This method also works for sinx, cosx, sinh x and others, and this is
because they are related to eλx via sin θ = 1

2i (e
iθ − e−iθ) and coshx =

(ex + e−x)/2.
Higher order differential equations can conveniently be written as a

system of differential equations. In fact, an nth-order linear equation
can always be written as a linear system of n first-order differential
equations. A linear system of ODEs is more suitable for mathematical
analysis and numerical integration.

4.1.3 Linear System

For a linear n order equation (4.16), it can always be written as a linear
system

dy

dx
= y1,

dy1
dx

= y2, ...,
dyn−1

dx
= yn−1,

an(x)y
′
n−1 = −an−1(x)yn−1 + ...+ a1(x)y1 + a0(x)y + φ(x), (4.23)

which is a system for u = [y y1 y2 ... yn−1]
T . If the independent

variable x does not appear explicitly in yi, then the system is said to be
autonomous with important properties. For simplicity and in keeping
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with the convention, we use t = x and u̇ = du/dt in our following
discussion. A general linear system of n-th order can be written as








u̇1

u̇2

...
u̇n








=








a11 a12 ... a1n

a21 a22 ... a2n

...
...

an1 an2 ... ann















u1

u2

...
un







, (4.24)

or
u̇ = Au. (4.25)

If u = v exp(λt), then this becomes an eigenvalue problem,

(A− λI)v = 0, (4.26)

which will have non-null solution only if

det(A− λI) = 0. (4.27)

4.1.4 Sturm-Liouville Equation

One of the commonly used second-order ordinary differential equations
is the Sturm-Liouville equation in the interval x ∈ [a, b]

d

dx
[p(x)

dy

dx
] + q(x)y + λr(x)y = 0, (4.28)

with the boundary conditions

y(a) + αy′(a) = 0, y(b) + βy′(b) = 0, (4.29)

where the known function p(x) is differentiable, and the known func-
tions q(x), r(x) are continuous. The parameter λ to be determined can
only take certain values λn, called the eigenvalues, if the problem has
solutions. For the obvious reason, this problem is called Sturm-Liouville
eigenvalue problem.

Sometimes, it is possible to transform a nonlinear equation into a
standard Sturm-Liouville equation, and this is better demonstrated by
an example.

Example 4.3: The Riccati equation can be written in the generic form

y′ = p(x) + q(x)y + r(x)y2, r(x) 6= 0.

If r(x) = 0, then it reduces to a first order linear ODE. By using the
transform

y(x) = − u′(x)

r(x)u(x)
,
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or

u(x) = e−
∫
r(x)y(x)dx,

we have
u′′ − P (x)u′ +Q(x)u = 0,

where P (x) = −r′(x)/r(x) + q(x) and Q(x) = r(x)p(x).

For each eigenvalue λn, there is a corresponding solution ψλn
, called

eigenfunctions. The Sturm-Liouville theory states that for two different
eigenvalues λm 6= λn, their eigenfunctions are orthogonal. That is
∫ b

a

ψλm
(x)ψλn

(x)r(x)dx = 0, or

∫ b

a

ψλm
(x)ψλn

(x)r(x)dx = δmn.

It is possible to arrange the eigenvalues in an increasing order

λ1 < λ2 < ... < λn < ...→∞.
Now let us study a real-world problem using differential equations.
Many fluid flow problems are relative to flow through a pipe, including
the water flow through a pipe, oil in an oil pipeline, and magma flow
in a dyke and others. Let us look at the Poiseuille flow in a cylindrical
pipe.

Example 4.4: The laminar flow of a viscous fluid through a pipe with
a radius r = a under a pressure gradient (see Fig. 4.1) ∇p = ∆P/L =
(Po−Pi)/L where Pi and Po (< Pi) are the pressures at inlet and outlet,
respectively. L is the length of the pipe. The drag force is balanced
by pressure change, and this leads to the following second-order ordinary
differential equation

∆P

L
= η

1

r

d

dr
[r
dv(r)

dr
],

where η is the viscosity of the fluid. This equation implies that the flow
velocity v is not uniform, it varies with r. Integrating the above equation
twice, we have

v(r) =
∆P

4ηL
r2 +A ln r + B,

where A and B are integrating constants. The velocity must be finite at
r = 0, which means that A = 0. The no-slip boundary v = 0 at r = a
requires that

∆P

4ηL
a2 +B = 0.

Thus, the velocity profile is

v(r) = −∆P

4ηL
(a2 − r2).
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Figure 4.1: Flow through a pipe under pressure gradient.

Now the total flow rate Q down the pipe is given by integrating the flow
over the whole cross section. We have

Q =

∫ a

0

2πrv(r)dr = −π∆P

2ηL

∫ a

0

(a2r − r3)dr = −π∆P

8ηL
a4. (4.30)

Here the negative sign means the flow down the pressure gradient. We
can see that the flow rate is proportional to the pressure gradient, inversely
proportional to the viscosity. Double the radius of the pipe, and the flow
rate will increase to 16 times.

4.2 Integral Transforms

Mathematical transform is a method of changing one kind of function
and equation into another, often simpler or more easily solveable kind.
Integral transform is a mathematical operator that produces a new
function F (s) by integrating the product of an existing function f(t)
and a kernel function K(t, s) between suitable limits

F (s) =

∫

K(t, s)f(t)dt. (4.31)

In the Laplace transform, the kernel is simply exp(−st) and integration
limit is from 0 to ∞. In the Fourier transform, the kernel is exp(±ist)
with a normalised factor.

Fourier transform maps a function in the time domain such as a sig-
nal into another function in the frequency domain, which is commonly
used in signal processing. Laplace transform is a very powerful tool in
solving differential equations. Here, we will focus on the three major
transforms: Fourier, Laplace and Wavelet commonly encountered in
engineering and computational sciences.
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4.2.1 Fourier Series

For a function f(t) on an interval t ∈ [−T, T ] where T > 0 is a finite
constant or half period, the Fourier series is defined as

f(t) =
a0

2
+

∞∑

n=1

an[cos(
nπt

T
) + bn sin(

nπt

T
)], (4.32)

where

a0 =
1

T

∫ T

−T
f(t)dt, an =

1

T

∫ T

−T
f(t) cos(

nπt

T
)dt, (4.33)

and

bn =
1

T

∫ T

−T
f(T ) sin(

nπt

T
)dt, (n = 1, 2, ...). (4.34)

Here an and bn are the Fourier coefficients of f(t) on [−T, T ]. The
function f(t) can be continuous or piecewise continuous with a finite
number of jump discontinuity. For a jump discontinuity at t = t0, if
f ′(t0−) and f ′(t0+) both exist with f(t0−) 6= f(t0+), then the Fourier
series converge to [f(t0−) + f(t0+)]/2. Fourier series in general tends
to converge slowly. In order for a function f(x) to be expanded, it
must satisfy the Dirichlet conditions: f(x) must be periodic with at
most a finite number of discontinuities, and/or a finite number of min-
ima or maxima within one period. In addition, the integral of |f(x)|
must converge. For example, these conditions suggest that ln(x) can-

not be expanded into a Fourier series in the interval [0, 1] as
∫ 1

0 | lnx|dx
diverges.

The nth term of the Fourier series, an cos(nπt/T ) + bn sin(nπt/T ),
is called the nth harmonic. The energy of the nth harmonic is defined
by A2

n = a2
n + b2n, and the sequence of A2

n forms the energy or power
spectrum of the Fourier series.

From the coefficient an and bn, one can easily see that bn = 0 for an
even function f(−t) = f(t). Similarly, a0 = an = 0 for an odd function
f(−t) = −f(t). In both cases, only one side [0, T ] of the integration is
used due to the symmetry. Thus, for even function f(t), we have the
Fourier cosine series on [0,T]

f(t) =
a0

2
+

∞∑

n=1

an cos(
nπt

T
). (4.35)

For odd function f(t), we have the Fourier sine series

f(t) =

∞∑

n=1

sin(
nπt

T
). (4.36)
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Figure 4.2: Triangular wave with a period of 2.

Example 4.5: The triangular wave is defined by f(t) = |t| for t ∈ [−1, 1]
with a period of 2 or f(t + 2) = f(t) shown in Fig. 4.2. Using the
coefficients of the Fourier series, we have

a0 =

∫ 1

−1

|t|dt =

∫ 0

−1

(−t)dt+

∫ 1

0

tdt = 1.

Since both |t| and cos(nπt) are even functions, we have for any n ≥ 1,

an =

∫ 1

−1

|t| cos(nπt)dt = 2

∫ 1

0

t cos(nπt)dt

= 2
t

nπ
sin(nπt)

∣
∣
∣
∣
∣

1

0

− 2

nπ

∫ 1

0

sin(nπt)dt =
2

n2π2
[cos(nπ)− 1].

Because |t| sin(nπt) is an odd function, we have

bn =

∫ 1

−1

|t| sin(nπt)dt = 0.

Hence, the Fourier series for the triangular wave can be written as

f(t) =
1

2
+2

∞∑

n=1

cos(nπ)− 1

n2π2
cos(nπt) =

1

2
+

4

π2

∞∑

n=1,3,5,...

(−1)n

n2
cos(nπt).

The first few terms, fn(t) = 1/2 + 4/π2 cos(πt), are shown in Fig. 4.3
where we can see that only a few terms are needed to produce a very good
approximation.

Here we can see that the triangular wave with derivative disconti-
nuity can be approximated well by two or three terms. This makes it
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0 1 2−1−2

1

0 1 2−1−2

1
n=1 n=2

Figure 4.3: Fourier series for the triangular wave f(t) = |t|, t ∈ [−1, 1] :

(a) first two terms (n=1); (b) first three terms (n = 2).

easy for any mathematical analysis. Fourier series are widely applied
in signal processing.

Now let us look at a real-world example by studying the Milankovitch
cycles in climate changes. Milankovitch theory explains paleoclimate
fluctuations and occurrence of the Ice Ages very well. The Mi-
lankovitch cycles, named after the Serbian scientist M. Milankovitch
who studied the effect of the Earth’s orbital motion on the climate in
a pioneer paper published in 1941, refer to the collective effect on the
climate change due to the changes in the Earth’s orbital movements
(see Fig. 4.4).

There are three major components in the orbital changes: preces-
sion of the perihelion, obliquity (or wobble of the Earth’s axis of rota-
tion), and eccentricity (or shape of the Earth’s orbit). Because of the
interaction of the Sun, the Moon, and other planets (mainly Jupiter
and Saturn) with the Earth, each of the three components usually has
multiple harmonic components. Here we will outline the theory.

The precession of the perihelion has a number of harmonic com-
ponents, ranging from 19 to 23.7 thousand years (kyrs), though the
weighted averaged is about 21 kyrs. The tilting of the Earth’s axis of
rotation varies from about 21.5◦ to 24.5◦ with periods from 29 to 53.6
kyrs. The averaged period is about 41.6 kyrs. The increase of obliq-
uity will lead to the increase of the amplitude of the seasonal cycle
in insolation. At the same time, the precession or wobble of this axis
(relative to fixed stars) completes a big circle in about 26 kyrs, though
it is about 21 kyrs if calculated relative to the perihelion. This wobble
is mainly caused by the differential gravitational force due to the fact
that the Earth is not a perfect sphere and it has an equatorial bulge.

The change of eccentricity varies from e = 0.005 to 0.06 with periods
ranging from 94.9 to 412.9 kyrs. Two major components are a long
period of 412.9 kyrs and an averaging short period of 110.7 kyrs, and
the latter is close to the 100 kyrs cycles of ice ages. All these harmonic
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Figure 4.4: Milankovitch cycles of the Earth’s orbital elements.

components interact and result in a complicated climate pattern.

Example 4.6: From the detailed calculation by Berger (1977) based
on Milankovitch’s theory, we can write the precession as

p ≈ p0 + p̃[0.42 sin(
2πt

19.1
) + 0.28 sin(

2πt

22.4
) + 0.30 sin(

2πt

23.7
)],

where we have used the approximated averaged periods. p̃ is the averaged
amplitude of the precession and p0 is the initial value. In writing this
equation, we have implicitly assumed that the phase shift between different
harmonic components is negligible, and many components with similar
periods have been combined into a single major component.

Similarly, the obliquity can be expressed as

θ ≈ θ0 + θ̃[0.06 sin(
2πt

29
) + 0.80 sin(

2πt

41
) + 0.14 sin(

2πt

53.6
)],

where θ̃ ≈ 1.5◦ is the averaged amplitude of tilting and θ0 ≈ 23◦ is the
mean angle. The current tilting is about 23.44◦.

The variation of the eccentricity is

e ≈ e0 + ẽ[0.22 sin(
2πt

95
) + 0.50 sin(

2πt

125
) + 0.28 sin(

2πt

412.9
)],

where ẽ ≈ 0.0275 is the averaged amplitude of eccentricity, and e0 ≈
0.0325 is the mean eccentricity. The present eccentricity of the Earth’s
orbit is about 0.017. Although the variation of e is small, it still results in
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Figure 4.5: Milankovitch cycles: (a) precession of perihelion;

(b) obliquity; and (c) eccentricity.

a change of distance of the order of about 5 million kilometers (aphelion
minus perihelion), or about 3% of the average distance from the Earth to
the Sun, which will result in about 6% change in solar energy reaching the
Earth as the energy flux is inversely proportional to the distance.

These variations are shown in Fig. 4.5 and their amplitude spectra are
shown in Fig. 4.6.

4.2.2 Fourier Integral

For the Fourier coefficients of a function defined on the whole real axis
[−∞,∞]:

a(ωn) =

∫ T

−T
f(t) cos(ωnt)dt, b(ωn) =

∫ T

−T
f(t) sin(ωnt)dt, (4.37)

where ωn = nπ
T under the limits of T → ∞ and ωn → 0, we have

a0 → 0 if
∫∞
∞ |f(t)| < ∞. In this case, the Fourier series becomes the

Fourier integral

f(t) =

∫ ∞

0

[a(ω) cos(ωt) + b(ω) sin(ωt)]dω, (4.38)

where

a(ω) =
1

π

∫ ∞

−∞
f(t) cos(ωt)dt, b(ω) =

1

π

∫ ∞

−∞
f(t) sin(ωt)dt. (4.39)
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Figure 4.6: Spectra of Milankovitch cycles (relative amplitudes).

Following similar discussions above, even functions lead to Fourier co-
sine integrals and odd functions lead to Fourier sine integrals.

4.2.3 Fourier Transforms

The Fourier transform F [f(t)] of f(t) is defined as

F (ω) = F [f(t)] =
1√
2π

∫ ∞

−∞
f(t)e−iωtdt, (4.40)

and the inverse Fourier transform can be written as

f(t) = F−1[F (ω)] =
1√
2π

∫ ∞

−∞
F (ω)eiωtdω, (4.41)

where exp[iωt] = cos(ωt) + i sin(ωt). The Fourier transform has the
following properties:

F [f(t) + g(t)] = F [f(t)] + F [g(t)], F [αf(t)] = αF [f(t)], (4.42)

and

F [(−it)nf(t)] =
dnF (ω)

dωn
, F [f (n)(t)] = (iω)nF (ω), (4.43)

if f(t → ±∞) = f ′(t → ±∞) = ... = f (n−1)(t → ±∞)→ 0. There are
some variations of the transforms such as the Fourier sine transform and
the Fourier cosine transform. The Fourier transforms of some common
functions are listed in the following table 4.1.

The most useful Fourier transform is the discrete form because sig-
nal processing is digital in form. The discrete Fourier transform (DFT)
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Table 4.1: Fourier Transforms

f(t) F (ω) = F [f(t)]
f(t− t0) F (ω)e−iωt0

f(t)e−iω0t F (ω − ω0)

δ(t) 1/
√

2π

1
√

2πδ(ω)
sign(t) 2

iω

e−α|t| 2α
α2+ω2

e−(αt)2 (α > 0) 1√
2α
e−

ω2

4α2

f(αt) 1
|α|F (ωα )

1
α2+t2

√
π
2
e−α|ω|

α

cos(ω0t)
√

π
2 [δ(ω − ω0) + δ(ω + ω0)]

sin(ω0) i
√

π
2 [δ(ω + ω0)− δ(ω − ω0)]

sinαx
x (α > 0)

√
π
2 , (|ω| < α); 0, (|ω| > α)

for periodic discrete function or signal x(n) with a period N is defined
as

X [k] =

N−1∑

n=0

x[n]e−i
2πkn

N , (4.44)

and inverse transform or signal reconstruction is

x[n] =
1

N

N−1∑

k=0

X [k]ei
2πkn

N . (4.45)

A periodic signal x(n+N) = x(n) has a periodic spectrum X [k+N ] =
X [k]. The discrete Fourier transform consists of N multiplications and
N−1 additions for eachX [k], thus for N values of k, the computational
complexity is of O(N2). However, if N = 2m (m ∈ N ), many of the
DFT calculations are not necessary. In fact, by rearranging the formula,
one can get the complexity of O(N log2N). This type of algorithm
is called Fast Fourier Transform (FFT). There is a vast amount of
literature about the signal processing such as FFT, filter design and
signal reconstruction.

4.2.4 Laplace Transforms

The Laplace transform L[f(t)] of a function f(t) is defined as

F (s) = L[f(t)] =

∫ ∞

0

f(t)e−stdt, (4.46)
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where s > 0. The inverse Laplace transform L−1[F (s)] is f(t) or f(t) =
L−1[F (s)]. The Laplace transform of most simple functions can be
obtained by direct integration. For simple functions t and eαt, we have

L[t] =

∫ ∞

0

te−stdt =

∫ ∞

0

1

s
e−stdt+

[

− t
s
e−st

]∞

0

=
1

s2
.

L[eαt] =

∫ ∞

0

eαte−stdt =

[

− 1

s− αe
−(s−α)t

]∞

0

=
1

s− α.

Conversely, L−1[ 1
s2 ] = t, L−1[ 1

s−α ] = eαt.
However, the inverse of Laplace transform is usually more compli-

cated. It often involves the partial fractions of polynomials and use
of a combination of Laplace transform rules. From the definition, it is
straightforward to prove that the Laplace transform has the following
properties:

L[αf(t) + βg(t)] = αL[f(t)] + βL[g(t)], (4.47)

L[eαtf(t)] = F (s− α), s > α, (4.48)

L[f(t− α)] = e−αsL[f(t)], (4.49)

L[f ′(t)] = sL[f(t)]− f(0), L[

∫ t

0

f(τ)dτ ] =
1

s
L[f ], (4.50)

The Laplace transform pairs of common functions are listed below in
table 4.2.

Example 4.7: In order to obtain the Laplace transform of f(t) =
coshωt, we shall first write

f(t) = coshωt =
1

2
(eωt + e−ωt).

Then, we have

L[f(t)] = F (s) =

∫ ∞

0

[
1

2
(eωt + e−ωt)]e−stdt

=
1

2
[

∫ ∞

0

e−(s−ω)tdt+

∫ ∞

0

e−(s+ω)tdt] =
1

2
[

1

s− ω +
1

s+ ω
] =

s

s2 − ω2
.

Both Fourier and Laplace transforms follow the convolution theo-
rem. For two functions f and g, their convolution f ∗ g is given by

f ∗ g =

∫ t

0

f(t− α)g(α)dα. (4.51)
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Table 4.2: Laplace Transform

Function f(t) Laplace Transform F (s)

1 1
s

δ(t) 1
tn, n > 0 n!

sn+1

cos(αt) s
s2+α2

sin(αt) α
s2+α2

eαt 1
s−α

t1/2 1
2 ( πs3 )1/2

t−1/2
√

π
s

tnf(t) (−1)n d
nF (s)
dsn

cos(αt+ β) s cos(β)−α sin(β)
s2+α2

sinh(αt) α
s2−α2

cosh(αt) s
s2−α2

erfc( α
2
√
t
) 1

se
−α√s

1√
πt
e−

α2

4t
1√
s
e−α

√
s

and their Laplace transforms follow the convolution theorem

L[f(t) ∗ g(t)] = F (s)G(s), (4.52)

L−1[F (s)G(s)] =

∫ t

0

f(t− α)g(α)dα. (4.53)

The Fourier transform has the similar property

f(t)∗g(t) =

∫ ∞

−∞
f(t)g(t−u)du, F [f(t)∗g(t)] = F (ω)G(ω). (4.54)

4.2.5 Wavelets

Fourier transform is an ideal tool for studying the stationary time signal
whose properties are statistically invariant over time. In Fourier trans-
form, the stationary signal is decomposed into linear combinations of
sine and cosine waves

1√
2π
,

1√
π

cos(nt),
1√
π

sin(nt), (n = 1, 2, ...). (4.55)

For non-stationary signals whose frequencies f = ω/2π vary with time,
the Fourier transform does not work well. In addition, in the Fourier
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transform there is a tradeoff between frequency resolution and time
resolution, that is ∆ω∆t ≥ 1

2 , which is similar to the Heisenberg
uncertainty principle for spatial and velocity intervals. The wavelet
transform is an alternative approach to the Fourier transform to over-
come the resolution problem using the Mother wavelet ψ or prototype
for generating the other windows functions, and all the used windows
are in the form of either dilated/compressed or shifted. As a result,
the wavelet transform is very powerful in dealing with non-stationary
signals. In the wavelet transform, a transient signal is decomposed
into elementary components of wavelets or wavelet packets. There are
three major type of wavelets: Grossmann-Morlet wavelets, Daubechies
wavelets and Gabor-Malvar wavelets. We start to define wavelets with
a real-valued function ψ(t) (t ∈ R) as the generator wavelet or mother
wavelet. The function ψ is both well localised, decreasing rapidly as
t→∞ and oscillating in a wavy manner. To generator other wavelets,
ψ(α, β, t) is used by translating in time and change of scales.

Grossmann-Morlet wavelets are of the form

1

α
ψ(
t− β
α

), α > 0, a, b ∈ R, (4.56)

where ψ a generator wavelet. The Daubechies wavelets have the form

2n/2ψ(2nt−m), m, n ∈ Z. (4.57)

The Gabor-Malvar wavelets are in the form

w(t−m) cos[π(n+
1

2
)(t−m)], m ∈ Z, n ∈ N. (4.58)

The literature on the wavelet processing is vast, and readers can find
more details in more specialised books.
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Chapter 5

PDEs and Solution

Techniques

5.1 Partial Differential Equations

Partial differential equations are much more complicated compared
with ordinary differential equations. There is no universal solution
technique for nonlinear equations, even numerical simulations are usu-
ally not straightforward. Thus, we will mainly focus on the linear
partial differential equations and equations of special interest to the
earth sciences.

A partial differential equation (PDE) is a relationship containing
one or more partial derivatives. Similar to the ordinary differential
equation, the highest nth partial derivative is referred to as the order
n of the partial differential equation. The general form of a partial
differential equation can be written as

ψ(u, x, y, ...,
∂u

∂x
,
∂u

∂y
,
∂2u

∂x2
,
∂2u

∂y2
,
∂2u

∂x∂y
, ...) = 0. (5.1)

where u is the dependent variable, and x, y, ... are the independent
variables.

A simple example of partial differential equations is the linear first-
order partial differential equation, which can be written as

a(x, y)
∂u

∂x
+ b(x, y)

∂u

∂y
= f(x, y). (5.2)

for two independent variables and one dependent variable u. If the
right-hand side is zero or simply f(x, y) = 0, then the equation is said

79
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to be homogeneous. The equation is said to be linear if a, b and f are
functions of x, y only, not u itself.

For simplicity in notation in the studies of PDEs, compact subscript
forms are often used in the literature. They are

ux ≡
∂u

∂x
, uy ≡

∂u

∂y
, uxx ≡

∂2u

∂x2
, uxy ≡

∂2u

∂x∂y
, ... (5.3)

and thus we can write (5.2) as

aux + buy = f. (5.4)

In the rest of the chapters in this book, we will use this notation when-
ever no confusion occurs.

5.1.1 First-Order PDEs

A first order linear partial differential equation can be written as

a(x, y)ux + b(x, y)uy = f(x, y), (5.5)

which can be solved using the method of characteristics in terms of a
parameter s

dx

ds
= a,

dy

ds
= b,

du

ds
= f, (5.6)

which essentially forms a system of first-order ordinary differential
equations. The simplest example of first-order linear partial differential
equations is the first-order hyperbolic equation

ut + cux = 0, (5.7)

where c is a constant. It has a general solution

u = ψ(x − ct), (5.8)

which is a travelling wave along the x-axis with a constant speed c. If
the initial shape is u(x, 0) = ψ(x), then u(x, t) = ψ(x − ct) at time t,
therefore the shape of the wave does not change with time though its
position is constantly changing.

5.1.2 Classification of Second-Order PDEs

A linear second-order partial differential equation can be written in the
generic form in terms of two independent variables x and y,

auxx + buxy + cuyy + gux + huy + ku = f, (5.9)
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where a, b, c, g, h, k and f are functions of x and y only. If f(x, y, u) is
also a function of u, then we say that this equation is quasi-linear.

If ∆ = b2 − 4ac < 0, the equation is elliptic. One famous example
is the Laplace equation uxx + uyy = 0.

If ∆ > 0, it is hyperbolic. A good example is the wave equation
utt = c2uxx.

If ∆ = 0, it is parabolic. Diffusion and heat conduction are of the
parabolic type ut = κuxx.

5.2 Classic Mathematical Models

Three types of classic partial differential equations are widely used and
they occur in a vast range of applications. In fact, almost all books
or studies on partial differential equations will have to deal with these
three types of basic partial differential equations.

5.2.1 Laplace’s and Poisson’s Equation

In heat transfer problems, the steady state of heat conduction with a
source is governed by the Poisson equation

k∇2u = f(x, y, t), (x, y) ∈ Ω, (5.10)

or

uxx + uyy = q(x, y, t), (5.11)

for two independent variables x and y. Here k is thermal diffusivity
and f(x, y, t) is the heat source. Ω is the domain of interest, usually a
physical region. If there is no heat source (q = f/κ = 0), it becomes
the Laplace equation. The solution of a function is said to be harmonic
if it satisfies Laplace’s equation.

In order to determine the temperature u completely, the appropriate
boundary conditions are needed. A simple boundary condition is to
specify the temperature u = u0 on the boundary ∂Ω. This type of
problem is the Dirichlet problem.

On the other hand, if the temperature is not known, but the gradient
∂u/∂n is known on the boundary where n is the outward-pointing unit
normal, this forms the Neumann problem. Furthermore, some problems
may have a mixed type of boundary conditions in the combination of

αu+ β
∂u

∂n
= γ,

which naturally occurs as a radiation or cooling boundary condition.
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5.2.2 Parabolic Equation

Time-dependent problems, such as diffusion and transient heat conduc-
tion, are governed by the parabolic equation

ut = kuxx. (5.12)

Written in the n-dimensional case x1 = x, x2 = y, x3 = z, ..., it can be
extended to the reaction-diffusion equation

ut = k∇2u+ f(u, x1, .., xn, t). (5.13)

5.2.3 Wave Equation

The vibration of strings and travelling seismic waves are governed by
the hyperbolic wave equation.

The 1-D wave equation in its simplest form is

utt = c2uxx, (5.14)

where c is the velocity of the wave. Using a transformation of the pair
of independent variables

ξ = x+ ct, (5.15)

and
η = x− ct, (5.16)

for t > 0 and −∞ < x <∞, the wave equation can be written as

uξη = 0. (5.17)

Integrating twice and substituting back in terms of x and t, we have

u(x, t) = f(x+ ct) + g(x− ct), (5.18)

where f and g are functions of x+ ct and x− ct, respectively. We can
see that the solution is composed of two independent waves. One wave
moves to the right and one travels to the left at the same constant
speed c.

5.3 Other Mathematical Models

We have shown examples of the three major equations of second-order
linear partial differential equations. There are other equations that oc-
cur frequently in mathematical physics, engineering and earth sciences.
We will give a brief description of some of these equations.
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5.3.1 Elastic Wave Equation

A wave in an elastic isotropic homogeneous solid is governed by the
following equation in terms of displacement u,

ρ
∂2u

∂t2
= µ∇2u + (λ+ µ)∇(∇ · u) + f , (5.19)

where ρ is density, λ and µ are Lamé constants, and f is body force.
Such an equation can describe two types of wave: transverse wave (S
wave) and longitudinal or dilatational wave (P wave). The speed of the
longitudinal wave is

vp =
√

(λ + 2µ)/ρ, (5.20)

and the transverse wave has the speed

vs =
√

µ/ρ. (5.21)

5.3.2 Reaction-Diffusion Equation

The reaction-diffusion equation is an extension of heat conduction with
a source f

ut = D∆u+ f(x, y, z, u), (5.22)

where D is the diffusion coefficient and f is the reaction rate. One
example is the combustion equation

ut = Duxx +Que−λ/u, (5.23)

where Q and λ are constants.

5.3.3 Navier-Stokes Equations

The Navier-Stokes equations for incompressible flow in the absence of
body forces can be written, in terms of the velocity u and the pressure
p, as

∇ · u = 0, ρ[ut + (u · ∇)u] = µ∇2u−∇p, (5.24)

where ρ and µ are the density of the fluid and its viscosity, respectively.
In computational fluid dynamics, most simulations are mainly related
to these equations. We can define the Reynolds number as Re = ρUL/µ
where U is the typical velocity and L is the length scale.

In the limit of Re� 1, we have the Stokes flow governed by

µ∇2u = ∇p. (5.25)

In the other limit of Re� 1, we have the inviscous flow

∇ · u = 0, ρ[ut + (u · ∇)u] = −∇p, (5.26)

where there is still a nonlinear term (u · ∇)u.
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5.3.4 Groundwater Flow

The general equation for three-dimensional groundwater flow is

Sσ
∂p

∂t
=
k

µ
∇2p− SσB

∂σ

∂t
+Q, (5.27)

where σ = σkk/3 is the mean stress, p is the pore water pressure, and Q
is source or sink term. Sσ is the specific storage coefficient and B is the
Skempton constant. k is the permeability of the porous medium and µ
is the viscosity of water. This can be considered as the inhomogeneous
diffusion equation for pore pressure.

5.4 Solution Techniques

Each type of equation usually requires different solution techniques.
However, there are some methods that work for most of the linearly
partial differential equations with appropriate boundary conditions on a
regular domain. These methods include separation of variables, method
of series expansion and transform methods such as the Laplace and
Fourier transforms.

5.4.1 Separation of Variables

The separation of variables attempts a solution of the form

u = X(x)Y (y)Z(z)T (t), (5.28)

where X(x), Y (y), Z(z), T (t) are functions of x, y, z, t, respectively. By
determining these functions that satisfy the partial differential equation
and the required boundary conditions in terms of eigenvalue problems,
the solution of the original problem is then obtained.

As a classic example, we now try to solve the 1-D heat conduction
equation in the domain x ∈ [0, L] and t ≥ 0

ut = kuxx, (5.29)

with the initial value and boundary conditions

u(0, t) = 0,
∂u(x, t)

∂x

∣
∣
∣
x=L

= 0, u(x, 0) = ψ(x). (5.30)

Letting u(x, t) = X(x)T (t), we have

X ′′(x)

X
=
T ′(t)

kT
. (5.31)
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As the left-hand side depends only on x and the right hand side only
depends on t, therefore, both sides must be equal to the same constant,
and the constant can be assumed to be −λ2. The negative sign is just
for convenience because we will see below that the finiteness of the
solution T (t) requires that eigenvalues λ2 > 0 or λ are real. Hence, we
now get two ordinary differential equations

X ′′(x) + λ2X(x) = 0, T ′(t) + kλ2T (t) = 0, (5.32)

where λ is the eigenvalue. The solution for T (t) is

T = Ane
−λ2kt. (5.33)

The basic solution for X(x) is simply

X(x) = α cosλx+ β sinλx. (5.34)

So the fundamental solution for u is

u(x, t) = (α cosλx+ β sinλx)e−λ
2kt, (5.35)

where we have absorbed the coefficient An into α and β because they
are the undetermined coefficients anyway. As the value of λ varies with
the boundary conditions, it forms an eigenvalue problem. The general
solution for u should be derived by superposing solutions of (5.35), and
we now have

u =

∞∑

n=1

XnTn =

∞∑

n=1

(αn cosλnx+ βn sinλnx)e
−λ2

nkt. (5.36)

From the boundary condition u(0, t) = 0 at x = 0, we have

0 =
∞∑

n=1

αne
−λ2

nkt, (5.37)

which leads to αn = 0 since exp(−λ2kt) > 0.

From ∂u
∂x

∣
∣
∣
x=L

= 0, we have

λn cosλnL = 0, (5.38)

which requires

λnL =
(2n− 1)π

2
, (n = 1, 2, ...). (5.39)

Therefore, λ cannot be continuous, and it only takes an infinite number
of discrete values, called eigenvalues.
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Each eigenvalue λ = λn = (2n−1)π
2L , (n = 1, 2, ...) has a correspond-

ing eigenfunction Xn = sin(λnx). Substituting into the solution for
T (t), we have

Tn(t) = Ane
− [(2n−1)π]2

4L2 kt. (5.40)

By expanding the initial condition into a Fourier series so as to deter-
mine the coefficients, we have

u(x, t) =
∞∑

n=1

βn sin(
(2n− 1)πx

2L
)e−[

(2n−1)π
2L

]2kt,

βn =
2

L

∫ L

0

ψ(x) sin[
(2n− 1)πx

2L
]dx. (5.41)

Example 5.1: In the special case when initial condition u(x, t = 0) =
ψ = u0 is constant, the requirement for u = u0 at t = 0 becomes

u0 =
∞∑

n=1

βn sin
(2n− 1)πx

2L
. (5.42)

Using the orthogonal relationships
∫ L

0

sin
mπx

L
sin

nπx

L
dx = 0, m 6= n,

and
∫ L

0

(sin
nπx

L
)2dx =

L

2
, (n = 1, 2, ...),

and multiplying both sides of Eq.(5.42) by sin[(2n − 1)πx/2L], we have
the integration

βn
L

2
=

∫ L

0

sin
(2n− 1)πx

2L
u0dx =

2u0L

(2n− 1)π
, (n = 1, 2, ...),

which leads to

βn =
4u0

(2n− 1)π
, n = 1, 2, ...,

and thus the solution becomes

u =
4u0

π

∞∑

n=1

1

(2n− 1)
e−

(2n−1)2π2kt

4L2 sin
(2n− 1)πx

2L
. (5.43)

This solution is essentially the same as the classical heat conduction prob-
lem discussed by Carslaw and Jaeger in 1959. This same solution can also
be obtained using the Fourier series of u0 in 0 < x < L.
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5.4.2 Laplace Transform

The integral transform can reduce the number of the independent vari-
ables. For the 1-D time-dependent case, it transforms a partial differ-
ential equation into an ordinary differential equation. By solving the
ordinary differential equation and inverting it back, we can obtain the
solution for the original partial differential equation. As an example,
we now solve the heat conduction problem over a semi-infinite interval
[0,∞),

ut = kuxx, u(x, 0) = 0, u(0, t) = T0. (5.44)

Example 5.2: Let ū(x, s) =
∫∞
0 u(x, t)e−stdt be the Laplace transform

of u(x, t), then Eq.(5.44) becomes

sū = k
d2ū

dx2
, ūx=0 =

T0

s
,

which is an ordinary differential equation whose general solution can be
written as

ū = Ae−
√

s
k
x +Be

√
s
k
x.

The finiteness of the solution as x → ∞ requires that B = 0, and the
boundary condition at x = 0 leads to

ū =
T0

s
e−
√

s
k
x.

By using the inverse Laplace transform, we have

u = T0erfc(
x

2
√
kt

),

where erfc(x) is the complementary error function.

5.4.3 Fourier Transform

The Fourier transform works in a similar manner to the Laplace trans-
form. The famous example is the classical wave equation

utt = c2uxx, u(x, 0) = ψ(x), ut(x, 0) = 0. (5.45)

Let ū(ω, t) = 1√
2π

∫∞
−∞ u(x, t)eiωxdx be the Fourier transform of u(x, t).

This transforms the PDE problem into an ODE

d2ū

dt2
= −c2ω2ū, ū(ω, 0) = ψ̄(ω),

dū(ω, 0)

dt
= 0.
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The general solution in terms of the parameter ω is

ū(ω, t) = ψ̄(ω) cos(cωt).

By using the inverse Fourier transform, we finally have

u(x, t) =
1√
2π

∫ ∞

−∞
ψ̄(ω) cos(cωt)e−iωxdω

=
1

2
[ψ(x+ ct) + ψ(x− ct)], (5.46)

which implies two travelling waves: one travels along the x-axis and
the other along the negative x-axis direction.

5.4.4 Similarity Solution

Sometimes, the diffusion equation

ut = κuxx, (5.47)

can be solved by using the so-called similarity method by defining a
similar variable

η =
x√
κt

(5.48)

or

ζ =
x2

κt
. (5.49)

One can assume that the solution to the equation has the form

u = (κt)αf [
x2

(κt)β
]. (5.50)

By substituting it into the diffusion equation, the coefficients α and β
can be determined. For most applications, one can assume α = 0 so
that u = f(ζ). In this case, we have

4ζu′′ + 2u′ + ζβ(κt)β−1u′ = 0, (5.51)

where u′ = du/dζ. In deriving this equation, one has to use the chain
rules of differentiations ∂

∂x = ∂
∂ζ

∂ζ
∂x and ∂

∂t = ∂
∂ζ

∂ζ
∂t .

Since the original equation does not have time-dependent terms
explicitly, this means that all the exponents for any t-terms must be
zero. Therefore, we have

β = 1. (5.52)

Now, the diffusion equation becomes

ζf ′′(ζ) = −(
1

2
+
ζ

4
)f ′. (5.53)
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Using (ln f ′)′ = f ′′/f ′ and integrating the above equation once, we get

f ′ =
Ke−ζ/4√

ζ
. (5.54)

Integrating it again and using the substitution ζ = 4ξ2, we obtain

u = A

∫ ξ

0

e−ξ
2

dξ = Cerf(
x√
4κt

) +D, (5.55)

where C and D are constants that can be determined from appropriate
boundary conditions.

Example 5.3: For the same problem as (5.44), the boundary condition
as x → ∞ implies that C + D = 0, while u(0, t) = T0 means that
D = −C = T0. Therefore, we finally have

u = T0[1− erf(
x√
4κt

)] = T0erfc(
x√
4κt

).

5.4.5 Change of Variables

In some cases, the partial differential equation may not be written in
the standard form; however, it can be converted into a known standard
equation by a change of variables. For example, the following simple
reaction-diffusion equation

∂u

∂t
= k

∂2u

∂x2
− αu, (5.56)

describes the heat conduction along a wire with a heat loss term −αu.
Carslaw and Jaeger show that it can be transformed into a standard
equation of heat conduction using the following change of variables

u = ve−αt, (5.57)

where v is the new variable. By simple differentiations, we have

∂u

∂t
=
∂v

∂t
e−αt − αve−αt =

∂v

∂t
e−αt − αu, ∂2u

∂x2
=
∂2v

∂x2
e−αt, (5.58)

we have

∂u

∂t
=
∂v

∂t
e−αt

︸ ︷︷ ︸

−αu = k
∂2u

∂x2
− αu = k

∂2v

∂x2
e−αt

︸ ︷︷ ︸

−αu, (5.59)
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which becomes
∂v

∂t
e−αt = k

∂2v

∂x2
e−αt. (5.60)

After dividing both sides by e−αt > 0, we have

∂v

∂t
= k

∂2v

∂x2
, (5.61)

which is the standard heat conduction equation for v.
For given initial (usually constant) and boundary conditions (usu-

ally zero), we can use all the techniques for solving the standard equa-
tion to get solutions. However, for some boundary conditions such as
u = u0, a more elaborate form of change of variables is needed. Crank
introduced Danckwerts’s method by using the following transform

u = α

∫ t

0

ve−ατdτ + ve−αt. (5.62)

Noting that ∂u
∂t = αve−αt − αve−αt + ∂v

∂t e
−αt, it is straightforward to

show
∂u

∂t
+ αu = k

∂2u

∂x2
. (5.63)

For the boundary condition u = u0, we have v = v0 = u0, and this is
because

u = u0 = αv0

∫ t

0

e−ατdτ+v0e
−αt = v0−v0e−αt+v0e−αt = v0, (5.64)

which is the same boundary condition for u.
There are other important methods for solving partial differential

equations. These include Green’s function, series methods, asymptotic
methods, approximate methods, perturbation methods and naturally
the numerical methods.
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Chapter 6

Calculus of Variations

The calculus of variations is important in many optimisation problems
and computational sciences, especially in the formulation of the finite
element methods. In this chapter, we will briefly touch on these topics.

The main aim of the calculus of variations is to find a function that
makes an integral stationary, making the value of the integral a local
maximum or minimum. For example, in mechanics we may want to find
the shape y(x) of a rope or chain when suspended under its own weight
from two fixed points. In this case, the calculus of variations provides a
method for finding the function y(x) so that the curve y(x) minimises
the gravitational potential energy of the hanging rope system.

6.1 Euler-Lagrange Equation

6.1.1 Curvature

Before we proceed to the calculus of variations, let us first discuss an
important concept, namely the curvature of a curve. In general, a curve
y(x) can be described in a parametric form in terms of a vector r(s)
with a parameter s which is the arc length along the curve measured
from a fixed point. The curvature κ of a curve is defined as the rate at
which the unit tangent t changes with respect to s. The change of arc
length is

ds

dx
=

√

1 + (
dy

dx
)2 =

√

1 + y′2. (6.1)

We have the curvature

dt

ds
= κ n =

1

ρ
n, (6.2)

91
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s
ρ n

θ

t

Figure 6.1: Concept of curvature.

where ρ is the radius of the curvature, and n is the principal normal
shown in Fig. 6.1.

As the direction of the tangent is defined by the angle θ made with
the x-axis by t, we have tan θ = y′. Hence, the curvature becomes

κ =
dθ

ds
=
dθ

dx

dx

ds
. (6.3)

From θ = tan−1 y′(x), we have

dθ

dx
= [tan−1(y′)]′ =

y′′

(1 + y′2)
. (6.4)

Using the expression for ds/dx, the curvature can be written in terms
of y(x), and we get

κ = |d
2r

ds2
| =

∣
∣
∣
∣

y′′

[1 + (y′)2]3/2

∣
∣
∣
∣
. (6.5)

Example 6.1: We know that the equation of a circle centered at (0, 0)
with a radius r is

x2 + y2 = r2.

In order to calculate the curvature at any point (x, y) along the circle, we
have to calculate y′ and y′′. Using implicit differentiation with respect to
x, we have

2x+ 2y′y = 0,
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s r

Figure 6.2: The radius of curvature of a circle is its radius r.

which leads to
y′ = −x

y
.

The second derivative is

y′′ = −x
2 + y2

y3
.

Using these expressions and x2 + y2 = r2, we have the curvature

κ = | y′′

[1 + (y′)2]3/2
| =

∣
∣
∣
∣
− r2/y3

[1 + (−x/y)2]3/2
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

− 1

y
√

r2

y2

∣
∣
∣
∣
∣
∣

=
1

r
.

Indeed, the curvature of a circle is everywhere 1/r. Thus, the radius of
curvature is the radius of the circle ρ = 1/κ = r.

6.1.2 Euler-Lagrange Equation

Since the calculus of variations is always related to some minimisation
or maximisation, we can in general assume that the integrand ψ of the
integral is a function of the shape or curve y(x) (shown in Figure 6.3),
its derivative y′(x) and the spatial coordinate x (or time t, depending
on the context). For the integral

I =

∫ b

a

ψ(x, y, y′)dx, (6.6)
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-

6

b

a

y(x)

y + εζ

y

x

Figure 6.3: Variations in the path y(x).

where a and b are fixed, the aim is to find the solution of the curve y(x)
such that it makes the value of I stationary or optimal. In this sense,
I[y(x)] is a function of the function y(x), and thus it is referred to as a
functional.

Here, stationary means that a small first-order change in y(x) will
only lead to the second-order changes in the values of I[y(x)], and con-
sequently, the change δI of I should be virtually zero due to any small
variations in the function y(x). Translating this into mathematical lan-
guage, we suppose that y(x) has a small change of magnitude of ε so
that

y(x)→ y(x) + εζ(x), (6.7)

where ζ(x) is an arbitrary function. The requirement of I to be sta-
tionary means that

δI = 0, (6.8)

or more accurately,

δI

δε
|ε=0 = 0, for all ζ(x). (6.9)

Using the multivariate Taylor series, we have

I(y, ε) =

∫ b

a

ψ(x, y + εζ, y′ + εζ′)dx

=

∫ b

a

ψ(x, y, y′)dx +

∫ b

a

[ε(ζ
∂ψ

∂y
+ ζ′

∂ψ

∂y′
)]dx+O(ε2). (6.10)
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The first derivative of I should be zero, and we have

δI

δε
=

∫ b

a

[
∂ψ

∂y
ζ +

∂ψ

∂y′
ζ′]dx = 0, (6.11)

which is exactly what we mean that the change δI (or the first-order
variation) in the value of I should be zero. Integrating this equation
by parts, we have

∫ b

a

[
∂ψ

∂y
− d

dx

∂ψ

∂y′
]ζdx = −

[

ζ
∂ψ

∂y′

]b

a

. (6.12)

If we require that y(a) and y(b) are fixed at the points x = a and x = b,
then these requirements naturally lead to ζ(a) = ζ(b) = 0. This means
that the right-hand side of the equation is zero. That is,

[

ζ
∂ψ

∂y′

]b

a
= 0, (6.13)

which gives
∫ b

a

[∂ψ

∂y
− d

dx

∂ψ

∂y′

]

ζdx = 0. (6.14)

As this equation holds for all ζ(x), the integrand must be zero. There-
fore, we have the well-known Euler-Lagrange equation

∂ψ

∂y
=

d

dx
(
∂ψ

∂y′
). (6.15)

It is worth pointing out that this equation is very special in the sense
that ψ is known and the unknown is y(x). It has many applications in
mathematics, physics, engineering and earth sciences.

The simplest and classical example is to find the shortest path on a
plane joining two points, say (0, 0) and (1, 1). We know that the total
length along a curve y(x) is

L =

∫ 1

0

√

1 + y′2dx. (6.16)

Since ψ =
√

1 + y′2 does not contain y, thus ∂ψ
∂y = 0. From the Euler-

Lagrange equation, we have

d

dx
(
∂ψ

∂y′
) = 0, (6.17)

its integral is
∂ψ

∂y′
=

y′
√

1 + y′2
= A. (6.18)
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s r

s

s O

A

B

Figure 6.4: Geodesic path on the surface of a sphere.

Rearranging it as

y′2 =
A2

1−A2
, or y′ =

A√
1−A2

, (6.19)

and integrating again, we have

y = kx+ c, k =
A√

1−A2
. (6.20)

This is a straight line. That is exactly what we expect from the plane
geometry.

Well, you may say, this is trivial and there is nothing new about
it. Let us now study a slightly more complicated example to find the
shortest path on the surface of a sphere.

Example 6.2: For any two points A and B on the surface of a sphere
with radius r as shown in Fig. 6.4, we now use the calculus of variations
to find the shortest path connecting A and B on the surface.

Since the sphere has a fixed radius, we need only two coordinates (θ, φ)
to uniquely determine the position on the sphere. The length element ds
can be written in terms of the two spherical coordinate angles

ds = r

√

dθ2 + sin2 θdφ2 = r

√

(
dθ

dφ
)2 + sin2 θ |dφ|,

where in the second step we assume that θ = θ(φ) is a function of φ only,
so that φ becomes the only independent variable. This is possible because
θ(φ) represents a curve on the surface of the sphere just as y = y(x)
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represents a curve on a plane. Thus, we want to minimise the total length

L =

∫ B

A

ds =

∫ φB

φA

√

θ′2 + sin2 θ dφ,

where θ′ = dθ/dφ. Since the integrand

ψ =
√

θ′2 + sin2 θ

does not explicitly depend on φ, we can use the simplified form of Euler-
Lagrange equation (6.34) discussed later

ψ − θ′ ∂ψ
∂θ′

= k,

where k is a constant. We have

√

θ′2 + sin2 θ − θ′ θ′
√

θ′2 + sin2 θ
= k,

or

θ′2 = (
dθ

dφ
)2 =

sin2 θ(sin2 θ − k2)

k2
.

By taking the square roots and rearranging the above equation, we get

dφ = ± kdθ

sin θ
√

sin2 θ − k2
= ±

1
sin2 θ

dθ
√

( 1
k2 − 1)− cot2 θ

.

Its integration gives

φ = ∓ sin−1[
cot θ

√
1
k2 − 1

] + α.

where α is the integration constant. Taking sin of both sides, we have

sin(φ− α) = ±β cot θ = sinφ cosα− sinα cosφ,

where

β =
1

√
1
k2 − 1

.

Multiplying both sides by r sin θ and using x = r sin θ cosφ, y = r sin θ sinφ
and z = r cos θ, we have

y cosα− x sinα = ±βz,



98 Chapter 6. Calculus of Variations

which corresponds to a plane passing through points A, B, and the origin
(x, y, z)= (0, 0, 0). Therefore, the intersection of the plane and sphere
produces a great circle on the surface connecting A and B, as the two
signs correspond to two segments of the great circle, one of which is
shorter than the other. However, in the special case when A and B are
opposite points, the two segments will have the same length. Great circles
are as important in geodesy as straight lines in plane geometry.

These examples are relatively simple. Let us now study a more
complicated case so as to demonstrate the wide range of applications of
the Euler-Lagrange equation. In mechanics, Hamilton’s principle states
that the configuration of a mechanical system is such that the action
integral I (the integral of the Lagrangian L = T −V ) is stationary with
respect to variations in the path. That is to say that the configuration
can be uniquely defined by its coordinates qi and time t, when moving
from one configuration at time t0 to another time t = t∗

I =

∫ t∗

t0

L(t, qi, q̇i)dt, i = 1, 2, ..., N, (6.21)

where T is the total kinetic energy (usually, a function of q̇i), and V is
the potential energy (usually, a function of qi). Here q̇i means

q̇i =
∂qi
∂t
. (6.22)

In analytical mechanics, the Lagrangian L (=kinetic energy− potential
energy) is often called the action, thus this principle is also called the
principle of least action. The physical configuration or the path of
movement follows a path that makes the action integral stationary.

In the special case, x→ t, the Euler-Lagrange equation becomes

∂L
∂qi

=
d

dt
(
∂L
∂q̇i

), (6.23)

which is the well-known Lagrange’s equation. This seems too abstract
so now let us look at a classic example.

Example 6.3: For a simple pendulum shown in Figure 6.5, we now try
to derive its equation of oscillations. We know the kinetic energy T and
the potential energy V are

T =
1

2
ml2(

dθ

dt
)2 =

1

2
ml2θ̇2, V = mgh = mgl(1− cos θ).
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Figure 6.5: A simple pendulum.

Using L = T − V , q = θ and q̇ = θ̇, we have

∂L
∂θ
− d

dt
(
∂L
∂θ̇

) = 0,

which becomes

−mgl sin θ − d

dt
(ml2θ̇) = 0.

Therefore, we have the pendulum equation

d2θ

dt2
+
g

l
sin θ = 0.

This is a nonlinear equation. If the angle is very small (θ � 1), so sin θ ≈ θ,
we then have the standard equation

d2θ

dt2
+
g

l
θ = 0.

for linear harmonic motion.

6.2 Variations with Constraints

Although the stationary requirement in the calculus of variations leads
to the minimisation of the integral itself, there is no additional con-
straint. In this sense, the calculus of variations discussed up to now is
unconstrained. However, sometimes these variations have certain ad-
ditional constraints, for example, the sliding of a bead on a hanging
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string. Now we want to make the integral I stationary under another
constraint integral Q that is constant. We have

I =

∫ b

a

ψ(x, y, y′)dx, (6.24)

subjected to the constraint

Q =

∫ b

a

φ(x, y, y′)dx. (6.25)

As for most optimisation problems under additional constraints, the
method of Lagrange multipliers can transform the constrained problem
into an unconstrained one by using a combined functional J = I + λQ

J =

∫ b

a

[ψ + λφ]dx, (6.26)

where λ is the undetermined Lagrange multiplier. Replacing ψ by [ψ+
λφ] in the Euler-Lagrange equation or following the same derivation,
we have

[
∂ψ

∂y
− d

dx
(
∂ψ

∂y′
)] + λ[

∂φ

∂y
− d

dx
(
∂φ

∂y′
)] = 0. (6.27)

Now we can come back to our example of the hanging rope problem
with two fixed points. The total length of the rope is L, and it hangs
from two fixed points (−d, 0) and (d, 0). From geometric consideration,
we require that 2d < L. In order to find the shape of the hanging rope
under gravity, we now define its total gravitational potential energy Ep
as

Ep =

∫ d

x=−d
[ρgy(x)ds] = ρg

∫ d

−d
y
√

1 + y′2dx, (6.28)

where ρ is the mass per unit length of the rope. The additional con-
straint is that the total length of the rope is a constant (L). Thus,

Q =

∫ d

−d

√

1 + y′2dx = L. (6.29)

By using the Lagrange multiplier λ, we have J = Ep + λQ, or

J =

∫ d

−d
[ρgy + λ]

√

1 + y′2dx. (6.30)

Since Ψ = [ρgy + λ]
√

1 + y′2 does not contain x explicitly, or ∂Ψ
∂x = 0,

the Euler-Lagrange equation can be reduced into a simpler form in this
special case. Using

dΨ

dx
=
∂Ψ

∂x
+
∂Ψ

∂y

dy

dx
+
∂Ψ

∂y′
dy′

dx
= 0 + y′

∂Ψ

∂y
+ y′′

∂Ψ

∂y′
, (6.31)
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and the Euler-Lagrange equation ∂Ψ
∂y = d

dx( ∂Ψ
∂y′ ), we have

dΨ

dx
= y′[

d

dx
(
∂Ψ

∂y′
)] + y′′

∂Ψ

∂y′
=

d

dx
[y′
∂Ψ

∂y′
], (6.32)

which can again be written as

d

dx
[Ψ− y′ ∂Ψ

∂y′
] = 0. (6.33)

The integration of this equation gives

Ψ− y′ ∂Ψ

∂y′
= A = const. (6.34)

Substituting the expression for Ψ into the above equation, the station-
ary value of J requires

√

1 + y′2 − y′2
√

1 + y′2
=

A

ρgy + λ
. (6.35)

Multiplying both sides by
√

1 + y′2 and using the substitutionA cosh ζ =
ρgy + λ, we have

y′2 = cosh2 ζ − 1, (6.36)

whose solution is

cosh−1[
ρgy + λ

A
] = ±xρg

A
+K. (6.37)

Using the boundary conditions y = 0 at x = ±d and the constraint
Q = L, we have K = 0 and an implicit equation for A

sinh(
ρgd

A
) =

ρgL

2A
. (6.38)

Finally, the curve for the hanging rope becomes the following catenary

y(x) =
A

ρg
[cosh(

ρgx

A
)− cosh(

ρgd

A
)]. (6.39)

Example 6.4: Dido’s problem concerns the strategy to enclose a max-
imum area with a fixed length circumference. Legend says that Dido was
promised a piece of land on the condition that it was enclosed by an ox-
hide. She had to cover as much land as possible using the given oxhide.
She cut the oxhide into narrow strips with ends joined, and a whole region
of a hill was enclosed.
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Suppose the total length of the oxhide strip is L. The enclosed area A
to be maximised is

A =

∫ xb

xa

y(x)dx,

where xa and xb are two end points (of course they can be the same
points). We also have the additional constraint

∫ xb

xa

√

1 + y′2dx = L = const.

This forms an isoperimetric variation problem. As L is fixed, thus the
maximisation of A is equivalent to making I = A + λL stationary. That
is

I = A+ λL =

∫ xb

xa

[y + λ
√

1 + y′2]dx.

Using the Euler-Lagrange equation, we have

∂I

∂y
− d

dx

∂I

∂y′
= 0,

or
∂

∂y
[y + λ

√

1 + y′2]− d

dx

∂

∂y′
[y + λ

√

1 + y′2] = 0,

which becomes

1− λ d

dx

( y′
√

1 + y′2

)

= 0.

Integrating it once, we get

λy′
√

1 + y′2
= x+K,

where K is the integration constant. By rearranging, we have

y′ = ± x+K
√

λ2 − (x+K)2
.

Integrating this equation again, we get

y(x) = ∓
√

λ2 − (x+K)2 +B,

where B is another integration constant. This is equivalent to

(x+K)2 + (y −B)2 = λ2,

which is essentially the standard equation for a circle with the centre at
(−K,B) and a radius λ. Therefore, the greatest area that can be enclosed
by a fixed length is a circle.

A similar argument leads to the conclusion that the domain with the
maximum volume enclosed by a surface with a fixed area is a sphere.
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6.3 Variations for Multiple Variables

What we have discussed so far mainly concerns the variations in 2-D,
and the variations are in terms of y(x) or curves only. What happens if
we want to study a surface in the full 3-D configuration? The principle
in the previous sections can be extended to any dimensions with mul-
tiple variables, however, we will focus on the minimisation of a surface
here. Suppose we want to study the shape of a soap bubble, the prin-
ciple of least action leads to the minimal surface problem. The surface
integral of a soap bubble should be stationary. A similar problem is the
shape of the Earth under the influence of gravity. If we assume that
the shape of the bubble is u(x, y), then the total surface area is

A(u) =

∫∫

Ω

Ψdxdy =

∫∫

Ω

√

1 + (
∂u

∂x
)2 + (

∂u

∂y
)2dxdy, (6.40)

where

Ψ =

√

1 + (
∂u

∂x
)2 + (

∂u

∂y
)2 =

√

1 + u2
x + u2

y. (6.41)

In this case, the extended Euler-Lagrange equation for two variables x
and y becomes

∂Ψ

∂u
− ∂

∂x
(
∂Ψ

∂ux
)− ∂

∂y
(
∂Ψ

∂uy
) = 0. (6.42)

Substituting Ψ into the above equation and using ∂Ψ
∂u = Ψu = 0 since

Ψ does not contain u explicitly, we get

− ∂

∂x
[
1

Ψ

∂u

∂x
]− ∂

∂y
[
1

Ψ

∂u

∂y
] = 0, (6.43)

or

(1 + u2
y)uxx − 2uxuyuxy + (1 + u2

x)uyy = 0. (6.44)

This is a nonlinear equation and its solution is beyond the scope of
this book. This nonlinear equation has been one of the active research
topics for more than a century. It has been proved that the fundamental
solution to this equation is a sphere, and in fact we know that all free
bubbles are spherical. Similarly, the shape of a planet without rotation
should be spherical. However, it becomes a rotational ellipsoid if spin
of the planet is included. For some problems, we can approximately
assume that ux and uy are small, thus the above equation becomes
Laplace’s equation

uxx + uyy = 0. (6.45)
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The calculus of variations has many applications. The other classi-
cal examples include Fermat’s principle in optics, the Sturm-Liouville
problem, surface shape minimisation, the action principle, and of course
finite element analysis.

6.4 Integral Equations

From the calculus of variations, we know that the unknown y(x) to be
optimised is the integrand of I. In a certain sense, this is an integral
equation. In fact, many physical processes and laws of conservation are
expressed in terms of integral forms rather than their differentiation
counterparts. Naturally, one of the ways of constructing an integral
equation is to integrate from a differential equation. Integral equa-
tions are much more complicated compared with differential equations.
There is no universal solution technique for nonlinear equations; even
the numerical simulations are usually not straightforward. Thus, we
will mainly focus on the simplest types of integral equations.

6.4.1 Fredholm Integral Equations

A linear integral equation for y(x) can be written in the following
generic form

u(x) + λ

∫ b

a

K(x, η)y(η)dη = v(x)y(x), (6.46)

where K(x, η) is referred to as the kernel of the integral equation. The
parameter λ is a known constant. If the function u(x) = 0, the equa-
tion is then called homogeneous. If u(x) 6= 0, the equation is inhomo-
geneous.

If the function v(x) = 0, then the unknown y(x) appears only once
in the integral equation, and it is under the integral sign only. This is
called the linear integral equation of the first kind

u(x) + λ

∫ b

a

K(x, η)y(η)dη = 0. (6.47)

On the other hand, if v(x) = 1, equation (6.46) becomes the integral
equation of the second kind

u(x) + λ

∫ b

a

K(x, η)y(η)dη = y(x). (6.48)

An integral equation with fixed integration limits a and b, is called a
Fredholm equation. If the upper integration limit b is not fixed, then the
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equation becomes a Volterra equation. The integral equation becomes
singular if at least one of its integration limits approaches infinite.

6.4.2 Volterra Integral Equation

In general, the Volterra integral equation can be written as

u(x) + λ

∫ x

a

K(x, η)y(η)dη = v(x)y(x). (6.49)

The first kind [or v(x) = 0] and second kind [or v(x) = 1] are defined
in a similar manner to the Fredholm equation.

The kernel is said to be separable or degenerate if it can be written
in the finite sum form

K(x, η) =

N∑

i=1

fi(x)gi(η), (6.50)

where fi(x) and gi(η) are functions of x and η, respectively. A kernel
is called a displacement kernel if it can be written as a function of the
difference (x− η) of its two arguments

K(x, η) = K(x− η). (6.51)

6.5 Solution of Integral Equations

Most integral equations do not have closed-form solutions. For linear
integral equations, closed-form solutions are only possible for the special
cases of separable and displacement kernels.

6.5.1 Separable Kernels

For a Fredholm integral equation of the second kind with a separable
kernel, we can substitute the kernel (6.50) into the equation and we
have

u(x) + λ

∫ b

a

N∑

i=1

fi(x)gi(η)y(η)dη = y(x), (6.52)

which becomes

u(x) + λ

N∑

i=1

fi(x)

∫ b

a

gi(η)y(η)dη = y(x). (6.53)
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Because the integration limits are fixed, the integrals over η are con-
stants that are to be determined. By defining

αi =

∫ b

a

gi(η)y(η)dη, (6.54)

we now have the solution in the form

y(x) = u(x) + λ

N∑

i=1

αifi(x), (6.55)

where the N coefficients αi are determined by

αi =

∫ b

a

gi(η)u(η)dη + λ

N∑

i=1

∫ b

a

[αifi(η)gi(η)]dη, (6.56)

for i = 1, 2, ..., N . Only for a few special cases can these coefficients be
written as simple explicit expressions.

6.5.2 Volterra Equation

A Volterra equation with separable kernels may be solved by trans-
forming into a differential equation via direct differentiation. In the
case of a simple degenerate kernel

K(x, η) = f(x)g(η), (6.57)

we have

y(x) = u(x) + λ

∫ x

0

f(x)g(η)y(η)dη, (6.58)

which becomes

y(x) = u(x) + λf(x)

∫ x

0

g(η)y(η)dη. (6.59)

If f(x) 6= 0, it can be written as

y(x)

f(x)
=
u(x)

f(x)
+ λ

∫ x

0

g(η)y(η)dη. (6.60)

Putting φ(x) = u(x)/f(x) and differentiating it, we have

[
y(x)

f(x)
]′ = φ′(x) + λg(x)y(x). (6.61)

By letting Ψ(x) = y(x)/f(x), we have

Ψ′(x) − λf(x)g(x)Ψ(x) = φ′(x), (6.62)
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which is a first-order ordinary differential equation for Ψ(x). This is
equivalent to the standard form

Ψ′ + P (x)Ψ = Q(x), (6.63)

where

P (x) = −λf(x)g(x), Q(x) = [
u(x)

f(x)
]′. (6.64)

We can use the standard technique of multiplying by the integrating
factor exp[

∫
P (x)dx] to obtain the solution. We get

y(x) = f(x)[e−
∫
P (x)dx]{

∫

[Q(x)e
∫
P (x)dx]dx}. (6.65)

With appropriate boundary conditions, the exact form of the solution
can be obtained.

Example 6.5: Let us try to solve an integral equation of Volterra type

y(x) = ex +

∫ x

0

ex sin(ζ)y(ζ)dζ.

First, we divide both sides by ex to get

y(x)

ex
= 1 +

∫ x

0

sin(ζ)y(ζ)dζ,

whose differentiation with respect to x leads to

[
y(x)

ex
]′ = y(x) sin(x), or

1

ex
y′(x) − y(x)e−x = y(x) sin(x).

Dividing both sides by y(x) and using [ln y(x)]′ = y′(x)/y(x), we have

[ln y(x)]′ = ex sinx+ 1.

By direct integration, we have

ln y(x) = x− 1

2
ex cosx+

1

2
ex sinx.

Thus, we finally obtain

y(x) = exp[x− ex

2
(cosx− sinx)].

There are other methods and techniques for solving integral equa-
tions such as the operator method, series method and the Fredholm
theory. However, most integral equations do not have closed-form so-
lutions. In this case, numerical methods are the best alternative.
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Chapter 7

Probability

All the mathematical models and differential equations we have dis-
cussed so far are deterministic in the sense that given accurate initial
and boundary conditions, the solutions of the system can be determined
(the only exception is to a certain degree the chaotic system). There
is no intrinsic randomness in the differential equations. In reality, ran-
domness occurs everywhere, and not all models are deterministic. In
fact, it is necessary to use stochastic models and sometimes the only
sensible models are stochastic descriptions. In these cases, we have to
deal with probability and statistics.

7.1 Randomness and Probability

Randomness such as roulette-rolling and noise arises from the lack of
information, or incomplete knowledge of reality. It can also come from
the intrinsic complexity, diversity and perturbations of the system. The
theory of probability is mainly the study of random phenomena so as
to find non-random regularity.

For an experiment or trial such as rolling dice whose outcome de-
pends on chance, the sample space Ω of the experiment is the set of all
possible outcomes. The sample space can be either finite or infinite.
For example, rolling a six-sided die will have six different outcomes,
thus the sample space is Ω = {1, 2, 3, 4, 5, 6}. The elements of a sample
space are the outcomes, and each subset of a sample space is called
an event. For example, the event S = {2, 4, 6} is a subset of Ω. In
a sample space Ω, the outcomes of an experiment are represented as
numbers (for example, 1 for heads and 0 for tails for tossing coins).

A real-valued variable that is defined for all the possible outcomes
is referred to as a random variable, which is a function that associates

109
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A A ∩B B A B

A ∩B=∅
(a) (b)

Figure 7.1: Venn diagrams: a) P (A ∩ B) = P (A )P (B) if A and B

are independent, b) P (A ∪ B) = P (A ) + P (B) if A ∩ B = ∅.

a unique numerical value with every outcome of an experiment, and
its actual value varies from trial to trial as the experiment is repeated.
The values of a random variable can be discrete (such as 1 to 6 in
rolling a single die) or continuous (such as the level of noise). If a
random variable only takes discrete values, it is called a discrete random
variable. If its values are continuous, then it is called a continuous
random variable.

Two events A and B can have various relationships and these can be
represented by Venn diagrams as shown in Figure 7.1. The intersection
A ∩ B of two events means the outcome of the random experiments
belongs to both A and B, and it is the case of ‘A AND B’. If no event
or outcome belongs to the intersection, that is A∩B = ∅, we say these
two events are mutually exclusive or disjoint.

The union A ∪B denotes the outcome belongs to either A or B or
both, and this means the case of ‘A OR B’. The complement Ā = Ω−A
(or not A) of the event A is the set of outcomes that do not belong to
A but in the sample space Ω (see Figure 7.2). The A − B means the
outcomes in A only.

Probability P is a number or an expected frequency assigned to an
event A that indicates how likely it is that the event will occur when a
random experiment is performed. This probability is often written as
P (A) to show that the probability P is associated with event A. For a
large number of fair trials, the probability can be calculated by

P (A) =
NA(number of outcomes in the event A)

NΩ(total number of outcomes)
. (7.1)

Example 7.1: If you tossed a coin for 1000 times, the head (H) occurred
511 times and the tail (T) occurred 489 times. The estimated probabilities
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A

A ∪B

B A

Ω

Ā

(a) (b)

Figure 7.2: Venn diagrams: a) P (A ∪ B) = P (A ) + P (B)

−P (A ∩ B), b) P (Ā ) = 1 − P (A ).

P (H) and P (T ) are

P (H) =
511

1000
= 0.511,

and

P (T ) =
489

1000
= 0.489.

There are three axioms of probability, and they are:

Axiom I : 0 ≤ P (A) ≤ 1.

Axiom II : P (Ω) = 1.

Axiom III : P (A ∪B) = P (A) + P (B), if A ∩B = ∅.
The first axiom says that the probability is a number between 0

and 1 inclusive. P (A) = 0 corresponds to impossibility while P (A) = 1
corresponds to absolute certainty. The second axiom simply means that
an event must occur somewhere inside the sample space. The third
axiom is often called the addition rule. Since A and Ā are mutually
exclusive (A ∩ Ā = ∅), we have

P (A) + P (Ā) = P (A ∪ Ā) = P (Ω) = 1, (7.2)

or
P (A) = 1− P (Ā), (7.3)

which is usually called the NOT rule. The third axiom can be further
generalised to any two events A and B

P (A ∪B) = P (A) + P (B)− P (A ∩B). (7.4)
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In a special case when events Ai(i = 1, 2, ..., n) exhaust the whole
sample space such that A = ∪ni=1Ai = A1 ∪ Ai ∪ ... ∪ An = Ω and
Ai ∩Aj = ∅ where (i 6= j),

P (A ∩B) =

n∑

i=1

P (Ai ∩B). (7.5)

Since Ω ∩ B = B, we also get P (Ω ∩ B) = P (B) =
∑n
i=1 P (Ai ∩ B),

which are the useful properties of the total probability.
For example, if you randomly draw a card from a standard pack of

52 cards, what is the probability of it being a red king or a diamond
with a face value being a prime number (if its face value is counted
from 1 to 13). The prime numbers are 2, 3, 5, 7, 11, 13, therefore there
are 6 cards that are primes. The possibility of event (A) of drawing a
red king is P (A) = 2

52 = 1
26 . The probability of event (B) of drawing

a prime number is P (B) = 6
52 = 3

26 . As a diamond king (13) is also a
prime, this means P (A ∩B) = 1

52 . Therefore, the probability

P (A ∪B) = P (A) + P (B)− P (A ∩B) =
1

26
+

3

26
− 1

52
=

7

52
. (7.6)

Two events A and B are independent if the events have no influence
on each other. That is to say, the occurrence of one of the events does
not provide any information about whether or not the other event will
occur. In this case, the probability of both occurring is equal to the
product of the probabilities of the two individual events P (A) and P (B)

P (A ∩B) = P (A) ∗ P (B). (7.7)

This can be easily extended to n mutually independent events Ai(i =
1, 2, ..., n). The probability of all these events happening is

P (

n∑

i=1

∩Ai) =

n∏

i=1

P (Ai) = P (A1)P (A2) · · ·P (An). (7.8)

Example 7.2: The probability of drawing a king from a pack of cards
(Event A), and showing an even number of rolling a six-sided die (event
B) is P (A ∩B). We know P (A) = 4/52, and P (B) = 3/6 = 1/2. Since
these two events are independent, the probability that both events occur
is

P (A ∩B) = P (A)P (B) =
4

52
· 1
2

=
1

26
.
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If the two events are not independent, then one may affect the other
event, in this case, we are dealing with the conditional probability which
will be discussed later in the next section.

In calculating the probabilities, it is useful to know the possible
combinations and permutations of certain objects. Suppose you have 5
pairs of shoes, 4 pairs of trousers, 7 shirts and 2 hats. This is equivalent
to the lineup problem from your feet to your head. In this case, as the
act of selecting each thing to wear is similar to putting it into slots in
successive stages, the total number of all possible ways is simply the
multiplication of all the possible choices for each stages. All possible
outfits you can wear form a permutation problem, and the total number
is 5× 4× 7× 5 = 700. In order to line 5 objects marked A,B,C,D,E,
in the first place, there are 5 possible choices, the second place has only
4 options, the third place 3 choices, the fourth place has 2 choices, and
there is only one left for the last place. Thus the number of all possible
permutations is 5× 4× 3× 2× 1 = 5!. Following this line of reasoning,
n objects can in general be permutated in n! ways.

Suppose there are n = 20 students in a class (named S1, S2, ....,
S20), we want to select 5 students at random to form a 5-student team
to do some field work. This is different from the lineup problem because
once you have selected any five students (say) S1, S7, S10, S15, S19,
it does not matter in what order you selected them, the final formed
team is the same. There are 5! permutations within the same team.
Order does not count in this case. This is a combination problem (also
called a committee problem). As before, there are 5 places to line up
the students, and the total number of all permutations for selecting
5 students is 20 ∗ 19 ∗ 18 ∗ 17 ∗ 16. Therefore, the total number of
combinations (of selecting 5 students) is

20C5 =
20 ∗ 19 ∗ 18 ∗ 17 ∗ 15

5!
=

20!

5!15!
= 15504. (7.9)

In general, the total number of all possible combinations of selecting k
objects from n is

nCk ≡
(
n
k

)

≡ n!

k!(n− k)! . (7.10)

The consistency requires 0! = 1.

Example 7.3: A research team of 5 members is chosen at random
from 8 female students, 10 male students, and 7 professors. What is the
probability of the team consisting of 2 female students, 2 male students,
and 1 professor? The total number of possible teams is 25C5. If two female
students are selected, we have 8C2. Similarly, 10C2 for selecting 2 male
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students, and 7C1 for selecting one professor. Therefore, we have

N =
8C2

10C2
7C1

25C5
=

42

253
≈ 0.166.

There is an interesting ‘birthday paradox’ which is related to this
context. The birthday paradox was first proposed in 1939 by Richard
von Mises, which asks what is the probability of two people having
the same birthday in a group of n people. For a group of 367 people,
it is certain that there must be at least two people having the same
birthday as there are only 365 (or 366 if someone was born in a leap
year) possible birthdays. Ignoring 29 February and the year of birth
and assuming that the birthdays are evenly distributed throughout the
year, we only have 365 different birthdays (days and months only). If
the event A denotes that all the n people will have different birthdays
(no birthday matching), the first person can have any date as his or
her birthday, 365/365. The second person must be in other 364 dates,
which is 364/365, and the kth person has (365−k+1)/365. Therefore,
the probability of no two people having the same birthday is

P (A, n) =
365

365
× 364

365
× ...× (365− n+ 1)

365

=
365 ∗ (364) ∗ ... ∗ (365− n+ 1)

365n
=

365!

(365− n)!365n
. (7.11)

Now the probability of two people with the same birthday is

P (Ā, n) = 1− P (A, n) = 1− 365!

(365− n)!365n
. (7.12)

The factorial 365! is a large number, but you do not have to deal with
such large numbers. You can use a simple calculator to estimate it. For
five people, the probability of two people with the same birthday is

P (Ā, 5) = 1− 365 ∗ 364 ∗ 363 ∗ 362 ∗ 361

3655
≈ 0.027, (7.13)

which seems insignificant. However, the interesting thing is that for
n = 23, the probability becomes

P (Ā, 23) = 1− 365!

(365− 23)!36523
≈ 0.507. (7.14)

This means that you have slightly more than a 50-50 chance of find-
ing two people sharing the same birthday. If you increase n, you
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get P (Ā, 30) ≈ 0.706 for n = 30, P (Ā, 40) ≈ 0.891 for n = 40, and
P (Ā, 50) ≈ 0.970 and P (Ā, 70) ≈ 0.9992 (almost certainty) for n = 70.

Another issue concerning probability is that there is some differ-
ence in combinations when the member drawn is placed back or not.
Suppose there are 10 red balls and 10 white balls in a bag. If we draw
a ball (say a red, event A) from the bag and then put it back (with
replacement), then we draw another ball (event B). P (A) = 1/20 and
P (B) = 1/20. The probability of getting two red balls is P (A ∩ B) =
P (A) ∗ P (B) = 1/400. We call this case I.

For a second case (Case II), if we do not put it back after we have
drawn the first ball (without replacement), then the probability of event
B is now different P (B) = 1/19 as there are now only 19 balls in the
bag. The probability of getting two red balls now becomes P (A∩B) =
1
20 × 1

19 = 1
380 , which is different from 1/400.

The reason here is that the two events are not independent in the
case of no-replacement. If we use notation ‘B|A’ which means that
event B occurs given that event A has occurred, then we can use P (B|A)
to denote the probability of event B when there is no replacement
in event A in the scenario described in Case II. Now P (B) becomes
P (B|A). Hence, we have

P (A ∩B) = P (A)P (B|A), (7.15)

which is often called the multiplication rule in probability theory. Sim-
ilarly, we can get

P (A ∩B) = P (B)P (A|B). (7.16)

This is essentially a conditional probability problem which forms the
main topic of the next section.

7.2 Conditional Probability

In calculating the probabilities, we often assume that all possible out-
comes of an experiment such as drawing a card are equally likely. Prob-
abilities can change if additional information is known or some other
event has already occurred and thus P (B|A) denotes the probability
that event B will occur given that event A has already occurred. The
conditional probability can be calculated by

P (B|A) =
P (B ∩A)

P (A)
. (7.17)

Conversely, we have

P (A|B) =
P (A ∩B)

P (B)
. (7.18)
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Using Eq.(7.15), we can write the above formulation as

P (A|B) =
P (A)P (B|A)

P (B)
=

P (A)P (B|A)

P (A)P (B|A) + P (Ā)P (B|Ā)
, (7.19)

which is the well-known Bayes theorem. Here we have used Ā∪A = Ω
and P (Ā) = 1 − P (A). As an example, we consider the drug test in
sports.

Example 7.4: It is believed that the test is 99% accurate if athletes
are taking drugs. For athletes not taking drugs, the positive test is only
0.5%. It is assumed that only one in 1000 athletes takes this kind of drug.
Suppose an athlete is selected at random and the test shows positive for
the drug. What is the probability that the athlete is really taking the drug?
Event A denotes an athlete is taking the drug, and B denotes the event
that the individual tests positive. Thus, P (A) = 1/1000, P (B|A) = 0.99
and P (B|Ā) = 0.005. The probability that the athlete is actually taking
the drug is

P (A|B) =
P (A)P (B|A)

P (A)P (B|A) + P (Ā)P (B|Ā)

=
0.001 ∗ 0.99

0.001 ∗ 0.99 + 0.999 ∗ 0.005
≈ 0.165. (7.20)

This is a surprisingly low probability.

7.3 Random Variables and Moments

7.3.1 Random Variables

For a discrete random variable X with distinct values such as the num-
ber of cars passing through a junction or the number of major earth-
quakes in a year, each value xi may occur with a certain probability
p(xi). In other words, the probability varies with the random variable.
A probability function p(xi) is a function that defines probabilities to
all the discrete values xi of the random variable X . As an event must
occur inside a sample space, the requirement that all the probabilities
must be summed to one leads to

n∑

i=1

p(xi) = 1. (7.21)

The cumulative probability function of X is defined by

P (X ≤ x) =
∑

xi<x

p(xi). (7.22)
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For a continuous random variable X that takes a continuous range
of values (such as the level of noise), its distribution is continuous and
the probability density function p(x) is defined for a range of values
x ∈ [a, b] for given limits a and b [or even over the whole real axis
x ∈ (−∞,∞)]. In this case, we always use the interval (x, x + dx] so
that p(x) is the probability that the random variable X takes the value
x < X ≤ x+ dx is

Φ(x) = P (x < X ≤ x+ dx) = p(x)dx. (7.23)

As all the probabilities of the distribution shall be added to unity, we
have

∫ b

a

p(x)dx = 1. (7.24)

The cumulative probability function becomes

Φ(x) = P (X ≤ x) =

∫ x

a

p(x)dx, (7.25)

which is the definite integral of the probability density function between
the lower limit a up to the present value X = x.

7.3.2 Mean and Variance

Two main measures for a random variable X with a given probabil-
ity distribution p(x) are its mean and variance. The mean µ or the
expectation value of E[X ] is defined by

µ ≡ E[X ] ≡<X>=

∫

xp(x)dx, (7.26)

for a continuous distribution and the integration is within the inte-
gration limits. If the random variable is discrete, then the integration
becomes the summation

E[X ] =
∑

i

xip(xi). (7.27)

The variance var[X ] = σ2 is the expectation value of the deviation
squared (X − µ)2. That is

σ2 ≡ var[X ] = E[(X − µ)2] =

∫

(x− µ)2p(x)dx. (7.28)

The square root of the variance σ =
√

var[X ] is called the standard
deviation, which is denoted by the symbol σ.
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The variance becomes a simple sum

σ2 =
∑

i

(x− µ)2p(xi), (7.29)

for a discrete distribution. In addition, any other formulae for a contin-
uous distribution can be converted to their counterpart for a discrete
distribution if the integration is replaced by the sum. Therefore, we will
mainly focus on the continuous distribution in the rest of the section.

Other frequently used measures are the mode and median. The
mode of a distribution is defined by the value at which the probability
density function p(x) is maximum. For an even number of data sets, the
mode may have two values. The medianm of a distribution corresponds
to the value at which the cumulative probability function Φ(m) = 1/2.
The upper and lower quartiles QU and QL are defined by Φ(QU ) = 3/4
and Φ(QL) = 1/4.

7.3.3 Moments and Generating Functions

In fact, the mean is essentially the first moment if we define the kth
moment of a random variable X by

E[Xk] ≡ µk =

∫

xkp(x)dx, k = 1, 2, ..., N. (7.30)

Similarly, the kth central moment is defined by

E[(X − µ)k] ≡ νk =

∫

(x− µ)kp(x)dx, k = 1, 2, ..., N. (7.31)

Obviously, the variance is the second central moment. From these
definitions, it is straightforward to prove that

E[αx+ β] = αE[X ] + β, E[X2] = µ2 + σ2, (7.32)

and
var[αx + β] = α2var[X ]. (7.33)

where α and β are constants.
Most probability functions can be expressed in terms of moments

and moment generating functions. The moment generating function is
defined by

GX(ν) ≡ E[eνX ] =

∫

eνxp(x)dx, (7.34)

where ν ∈ R is a real parameter. By expanding exp[νx] into power
series and using the definition of various moments, it is straightforward
to verify that

E[Xk] =
dkGX(ν)

dνk

∣
∣
∣
ν=0

, (7.35)
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and

σ2 =
d2GX(0)

dν2
− [

dGX(0)

dν
]2. (7.36)

7.4 Binomial and Poisson Distributions

7.4.1 Binomial Distribution

A discrete random variable is said to follow the binomial distribution
B(n, p) if its probability distribution is given by

B(n, p) = nCxp
x(1 − p)n−x, nCx =

n!

x!(n− x)! , (7.37)

where x = 0, 1, 2, ..., n are the values that the random variable X may
take, n is the number of trials. There are only two possible outcomes:
success or failure. p is the probability of a so-called ‘success’ of the
outcome. Subsequently, the probability of the failure of a trial is q =
1− p. Therefore, B(n, p) represents the probability of x successes and
n− x failures in n trials. The coefficients come from the coefficients of
the binomial expansions

(p+ q)n =

n∑

x=0

nCxp
xqn−x = 1, (7.38)

which is exactly the requirement that all the probabilities should be
summed to unity.

Example 7.5: Tossing a coin 10 times, the probability of getting 7
heads is B(n, 1/2). Since p = 1/2 and x = 7, then we have

10C7(
1

2
)7(

1

2
)3 =

15

128
,

which is about 0.117.

It is straightforward to prove that µ = E[X ] = np and σ2 = npq =
np(1− p) for a binomial distribution.

Another related distribution is the geometric distribution whose
probability function is defined by

P (X = n) = pqn−1 = p(1− p)n−1, (7.39)

where n ≥ 1. This distribution is used to calculate the first success,
thus the first n − 1 trials must be a failure if n trials are needed to
observe the first success. The mean and variance of this distribution
are µ = 1/p and σ2 = (1− p)/p2.
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7.4.2 Poisson Distribution

The Poisson distribution can be thought of as the limit of the binomial
distribution when the number of trial is very large n → ∞ and the
probability p → 0 (small probability) with the constraint that λ = np
is finite. For this reason, it is often called the distribution for small-
probability events. Typically, it is concerned with the number of events
that occur in a certain time interval (e.g., number of telephone calls in
an hour) or spatial area. The Poisson distribution is

P (X = x) =
λxe−λ

x!
, λ > 0, (7.40)

where x = 0, 1, 2, ..., n and λ is the mean of the distribution. Using
the definition of mean and variance, it is straightforward to prove that
µ = λ and σ2 = λ for the Poisson distribution. The parameter λ is the
location of the peak as shown in Figure 7.3.

Example 7.6: On average, there are about 2 major earthquakes (≥ 7.0
on the Richter scale) that occur somewhere in the world every year. This
estimation is based on the fact that there were 235 major earthquakes
between 1901 and 2007 recorded by US Geological Survey and others.
What is the probability of no major earthquake occurring during a year?
What is the probability of at least one major earthquake in a year? We
know that λ ≈ 2. The probability of no major earthquake is

P (X = 0) =
20e−2

0!
≈ 0.13533.

Thus, the probability of at least one major earthquake is P (X > 0) ≈
1− 0.13533 ≈ 0.864. In fact, the probability of having one earthquake is

P (X = 1) =
21e−2

1!
≈ 0.2707,

and the probability of two major earthquakes is

P (X = 2) =
22e−2

2!
≈ 0.2707.

However, the probability of 12 major earthquakes (occurring almost every
month) is

P (X = 12) =
212e−2

12!
≈ 0.00000115,

Which should be very rare in this case.
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Figure 7.3: Poisson distributions for different values of λ = 5, 10, 15.

The moment generating function for the Poisson distribution is
given by

GX(ν) =

∞∑

x=0

eνxλxe−λ

x!
= exp[λ(eν − 1)]. (7.41)

7.5 Gaussian Distribution

The Gaussian distribution or normal distribution is the most important
continuous distribution in probability and it has a wide range of appli-
cations. For a continuous random variable X , the probability density
function (PDF) of a Gaussian distribution is given by

p(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , (7.42)

where σ2 = var[X ] is the variance and µ = E[X ] is the mean of the
Gaussian distribution. From the Gaussian integral, it is easy to verify
that

∫ ∞

∞
p(x)dx = 1, (7.43)

and this is exactly the reason that the factor 1/
√

2π comes from the
normalisation of all the probabilities. The probability function reaches
a peak at x = µ and the variance σ2 controls the width of the peak
(see Figure 7.4).
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Figure 7.4: Gaussian distributions for σ = 5, 7, 10.

The cumulative probability function (CPF) for a normal distribu-
tion is the integral of p(x), which is defined by

Φ(x) = P (X < x) =
1√

2πσ2

∫ x

−∞
e−

(ζ−µ)2

2σ2 dζ. (7.44)

Using the error function defined by Chapter 1, we can write it as

Φ(x) =
1√
2
[1 + erf(

x− µ√
2σ

)]. (7.45)

The moment generating function for the Gaussian distribution is given
by

GX(ν) = eµν+
1
2 (σν)2 . (7.46)

The Gaussian distribution can be considered as the limit of the
Poisson distribution when λ � 1. Using the Sterling’s approximation
x! ∼

√
2πx(x/e)x for x � 1, and setting µ = λ and σ2 = λ, it can

be verified that the Poisson distribution can be written as a Gaussian
distribution

P (x) ≈ 1√
2πλ

e−
(x−µ)2

2λ , (7.47)

where µ = λ. In statistical applications, the normal distribution is often
written as N(µ, σ) to emphasise that the probability density function
depends on two parameters µ and σ.

The standard normal distribution is a normal distribution N(µ, σ)
with a mean of µ = 0 and standard deviation σ = 1, that is N(0, 1).
This is useful to normalise or standardise data for statistical analysis.
If we define a normalised variable

ξ =
x− µ
σ

, (7.48)
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it is equivalent to give a score so as to place the data above or below the
mean in the unit of standard deviation. In terms of the area under the
probability density function, ξ sorts where the data falls. It is worth
pointing out that some books define z = ξ = (x − µ)/σ in this case,
and call the standard normal distribution the Z distribution.

Table 7.1: Function φ defined by Eq.(7.50).

ξ φ(ξ) ξ φ
0.0 0.500 1.0 0.841
0.1 0.540 1.1 0.864
0.2 0.579 1.2 0.885
0.3 0.618 1.3 0.903
0.4 0.655 1.4 0.919
0.5 0.692 1.5 0.933
0.6 0.726 1.6 0.945
0.7 0.758 1.7 0.955
0.8 0.788 1.8 0.964
0.9 0.816 1.9 0.971

Now the probability density function of standard normal distribu-
tion becomes

p(x) =
1√
2π
e−

ξ2

2 . (7.49)

Its cumulative probability function is

φ(ξ) =
1√
2π

∫ ξ

−∞
e−

ξ2

2 dξ =
1

2
[1 + erf(

ξ√
2
)]. (7.50)

As the calculations of φ and the error function involve numerical inte-
gration, it is usual in practice to tabulate φ in a table (see Table 7.1)
so that you do not have to calculate their values each time you use it.

7.6 Other Distributions

There are a number of other important distributions such as the expo-
nential distribution, log-normal distribution, uniform distribution and
the χ2-distribution. The uniform distribution has a probability density
function

p =
1

β − α, x = [α, β], (7.51)

whose mean is E[X ] = (α+ β)/2 and variance is σ2 = (β − α)2/12.



124 Chapter 7. Probability

The exponential distribution has the following probability density
function

f(x) = λe−λx (x > 0), (7.52)

and f(x) = 0 for x ≤ 0. Its mean and variance are

µ = 1/λ, σ2 = 1/λ2. (7.53)

The log-normal distribution has a probability density function

f(x) =
1

x
√

2πσ2
exp[− (lnx− µ)2

2σ2
], (7.54)

whose mean and variance are

E[X ] = eµ+σ2/2, var[X ] = eσ
2+2µ(eσ

2 − 1). (7.55)

The χ2-distribution, called chi-square or chi-squared distribution,
is very useful in statistical inference and the method of least squares.
This distribution is for the quantity

χ2
n =

n∑

i=1

(
Xi − µi
σi

)2, (7.56)

where the n-independent variables Xi are normally distributed with
means µi and variances σ2

i . The probability density function for χ2-
distribution is given by

p(x) =
1

2n/2Γ(n/2)
x

n
2 −1e−x/2, (7.57)

where x ≥ 0, and n is called the degree of freedom.It can be verified
that the mean of the distribution is n and its variance is 2n.

Here the Γ function is given by

Γ(n) =

∫ ∞

0

xn−1e−xdx, (n > 0). (7.58)

For n is a positive integer, we have Γ(n + 1) = n! and Γ(1) = 1.
However, Γ(1

2 ) =
√
π.

For other distributions, readers can refer to more advanced books
that are devoted to probability theory and statistical analysis.

7.7 The Central Limit Theorem

The most important theorem in probability is the central limit theorem
which concerns a large number of trials and explains why the normal
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Figure 7.5: A uniform distribution.

distribution occurs so widely. This theorem is as follows: Let Xi(i =
1, 2, ..., n) be n independent random variables, each of which is defined
by a probability density function pi(x) with a corresponding mean µi
and a variance σ2

i . The sum of all these random variables

Θ =

n∑

i=1

Xi = X1 +X2 + ...+Xn, (7.59)

is also a random variable whose distribution approaches the Gaussian
distribution as n → ∞. Its mean E[Θ] and variance var[Θ] are given
by

E[Θ] =
n∑

i=1

E[Xi] =
n∑

i=1

µi, (7.60)

and

var[Θ] =

n∑

i=1

var[Θ] =

n∑

i=1

σ2
i . (7.61)

The proof of this theorem is beyond the scope of this book as it involves
the moment generating functions, characteristics functions and other
techniques. In geostatistics, we simply use these important results for
statistical analysis.

In the special case when all the variables Xi are described by the
same probability density function with the same mean µ and variance
σ2, these results become

E[Θ] = nµ, var[Θ] = nσ2. (7.62)
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Figure 7.6: An approximate Gaussian distribution (the outcomes

of the sum of face values in rolling 15 dice).

By defining a new variable

ξn =
Θ− nµ
σ
√
n
, (7.63)

then the distribution of ξn converges towards the standard normal dis-
tribution N(0, 1) as n→∞.

Let us see what the theorem means for a simple experiment of rolling
a few dice. For a fair six-sided die, each side will appear equally likely
with a probability of 1/6 ≈ 0.1667, thus the probability function after
rolling it, say, 15,000 times approaches a uniform distribution as shown
in Figure 7.5. If we roll n = 15 independent dice, the sums of the
face values vary from 1 to 90. After rolling the 15 dice 10,000 times,
the distribution is shown in Figure 7.6 and it approaches to a normal
distribution as n→∞.

7.8 Weibull Distribution

Although the distribution functions of the real-world random processes
are dominated by the Gaussian or normal distribution, however, there
are some cases where other distributions can describe the related phe-
nomena more accurately. Weibull’s distribution is such a distribution
with many applications in areas such as reliability analysis, engineering
design and earth sciences. Therefore, it deserves a special introduction
in detail. This distribution was originally developed by Swedish physi-
cist, A. Weibull in 1939 to try to explain the fact, well-known but unex-
plained at that time, that the relative strength of a specimen decreases
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Figure 7.7: Weibull density function for various-shaped parameters.

with increasing dimension. Since then, it has been applied to study
many real-world stochastic processes even including the distributions
of wind speed, rainfall, energy resources and earthquakes.

Weibull’s distribution is a three-parameter distribution given by

p(x, λ, β, n) =







n
λ (x−βλ )n−1 exp[−(x−βλ )n] (x ≥ β)

0 (x < β)
, (7.64)

where λ is scaling parameter, and n is the shape parameter, often re-
ferred to as the Weibull modulus. The parameter β is the threshold of
the distribution. By straightforward integration, we have the cumula-
tive probability density distribution

Φ(x, λ, β, n) = 1− e−( x−β
λ

)n

. (7.65)

For the fixed values λ = 1 and β = 0, the variation of n will give a broad
range of shapes and can be used to approximate various distributions
as shown in Fig. 7.7.

In reliability analysis, especially for a large infrastructure such as a
dam or a tall building or an underground mining tunnel under stress,
the survival probability is more conveniently represented as

Ps(V ) = exp[

∫

V

−(
σ

σ0
)n
dV

V0
], (7.66)

where V is the volume of the system. σ0 is the failure stress (either
tensile or shear) for the reference volume V0. The failure probability is

Pf (V ) = 1− Ps(V ). (7.67)
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Figure 7.8: Weakest link analogy.

For constant stress σ over the whole volume V , we simply have

Ps(V ) = exp[−(
σ

σ0
)n
V

V0
]. (7.68)

At the reference point σ = σ0 and V = V0 often obtained using lab-
oratory tests, we have Ps(V0) = e−1 ≈ 0.3679. As the stress becomes
extreme, σ →∞, then Ps → 0 and Pf → 1.

The fundamental idea of this volume-related probability function
is the weakest link theory. The larger the volume of a system, the
more likely it is to have a critical flaw that causes potential failure.
We can consider that the whole large volume V consists of m small
volumes/blocks V1, V2, ..., Vm and these small blocks are glued together
(see Fig. 7.8), thus the probability of survival of the whole system is
equivalent to the survival of all the subsystem blocks. If any one of
these blocks fails, the system is considered flawed and thus failed. In
the simplest case, V1 = V2 = ... = Vm = V0 and m = V/V0, the survival
probability of the whole system under constant stress σ is

Ps(V ) = Ps(mV0) =

m
︷ ︸︸ ︷

Ps(V0)× Ps(V0)× ...× Ps(V0)

= [Ps(V0)]
m = [e−( σ

σ0
)n

]
V
V0

= exp[− V
V0

(
σ

σ0
)n]. (7.69)

Example 7.7: Stalactites are tapering calcite needles hanging down
from the roof of caves. If their length is continuously increasing, there is
a danger that they will fall down due to failure under their own weight. In
order to model such a stalactitic system, we can idealise it as a cone with
the base diameter d and length h as shown in Fig. 7.9.
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Figure 7.9: Idealisation of a stalactitic system as a cone

with a base diameter of d and height h.

Model I: First, let us use a cylinder model to approximate the shape.
Then, the area of the cross section is uniform A = πd2/4, and the weight
under the cross section at x is simply

W = ρgAx =
ρgπd2

4
x,

where g is the acceleration due to gravity, and ρ is the average density.
Thus the stress at x is

σ =
W

A
= ρgx.

Therefore, the survival probability of the stalactitic system is

P (I)
s (V ) = exp[−

∫ h

0

(
σ

σ0
)n
Adx

V0
] = exp[−(

ρg

σ0
)n
πd2

4V0

∫ h

0

xndx]

= exp[−(
ρg

σ0
)n

πd2hn+1

4(n+ 1)V0
],

which provides a lower limit of the probability as we overestimate the total
volume (and thus the stress).

Model II: If we use a more realistic cone as the model, then the area
of the cross section at any value of x is A = π(xd/2h)2. The weight under

the cross section at x is W = ρg
∫ x

0 Adx = ρgπd2

12h2 x
3, so that the stress at

x is

σ =
W

A
=

1

3
ρgx.
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The survival probability of this system is

P (II)
s (V ) = e

−( ρg
3σ0

)n πd2

4h2V0

∫
h

0
xn+2dx

= e
−( ρg

3σ0
)n πd2hn+1

4(n+3)V0 ,

which provides an upper limit of the probability. The shape of a real sta-
lactitic tapering is more complicated. However, the probability decreases
with increasing h due to the fact that the volume increases with h, and a
larger volume means a higher probability of containing critical flaws, and
thus a higher probability of failure.
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Chapter 8

Geostatistics

Statistics is the mathematics of data collection and interpretation, and
the analysis and characterisation of numerical data by inference from
sampling. Statistical methods involve reduction of data, estimates and
significance tests, and relationship between two or more variables by
analysis of variance, and the test of hypotheses. Geostatistics uses
various statistical methods to analyse data in geosciences, though spe-
cialised tools such as kriging have been further developed to suitable
specific applications.

8.1 Sample Mean and Variance

If a sample consists of n independent observations x1, x2, ..., xn on a
random variable x such as variations in gold and oil prices, two im-
portant and commonly used parameters are sample mean and sample
variance, which can easily be estimated from the sample. The sample
mean is calculated by

x̄ ≡<x>=
1

n
(x1 + x2 + ...+ xn) =

1

n

n∑

i=1

xi, (8.1)

which is essentially the arithmetic average of the values xi.

Generally speaking, if u is a linear combination of n independent
random variables y1, y2, ..., yn and each random variable yi has an in-
dividual mean µi and a corresponding variance σ2

i , we have the linear
combination

u =

n∑

i=1

αiyi = α1y1 + α2y2 + ...+ αnyn, (8.2)

131
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where the parameters αi(i = 1, 2, ..., n) are the weighting coefficients.
From the central limit theorem, we have the mean µu of the linear
combination

µu = E(u) = E(

n∑

i=1

αiyi) =

n∑

i=1

αE(yi) =
∑

αiµi. (8.3)

Then, the variance σ2
u of the combination is

σ2
u = E[(u− µu)2] = E

[ n∑

i=1

αi(yi − µi)2
]

, (8.4)

which can be expanded as

σ2
u =

n∑

i=1

α2
iE[(yi − µi)2] +

n∑

i,j=1;i6=j
αiαjE[(yi − µi)(yj − µj)], (8.5)

where E[(yi − µi)2] = σ2
i . Since yi and yj are independent, we have

E[(yi − µi)(yj − µj)] = E[(yi − µi)]E[(yj − µj)] = 0. Therefore, we get

σ2
u =

n∑

i=1

α2
i σ

2
i . (8.6)

The sample mean defined in Eq.(8.1) can also be viewed as a linear
combination of all the xi assuming each of which has the same mean
µi = µ and variance σ2

i = σ2, and the same weighting coefficient αi =
1/n. Hence, the sample mean is an unbiased estimate of the sample
due to the fact µx̄ =

∑n
i=1 µ/n = µ. In this case, however, we have the

variance

σ2
x̄ =

n∑

i=1

1

n2
σ2 =

σ2

n
, (8.7)

which means the variance becomes smaller as the size n of the sample
increases by a factor of 1/n.

The sample variance S2 is defined by

S2 =
1

n− 1

n∑

i=1

(xi − x̄)2. (8.8)

It is worth pointing out that the factor is 1/(n − 1) not 1/n because
only 1/(n− 1) will give the correct and unbiased estimate of the vari-
ance. From the probability theory in the earlier sections, we know that
E[x2] = µ2 + σ2. The mean of the sample variance is

µS2 = E[
1

n− 1

n∑

i=1

(xi − x̄)2] =
1

n− 1

n∑

i=1

E[(x2
i − nx̄2)]. (8.9)



8.2 Method of Least Squares 133

Using E[x̄2] = µ2 + σ2/n, we get

µS2 =
1

n− 1

n∑

i=1

{E[x2
i ]− nE[x̄2]}

=
1

n− 1
{n(µ2 + σ2)− n(µ2 +

σ2

n
)} = σ2. (8.10)

Obviously, if we used the factor 1/n instead of 1/(n− 1), we would get
µS2 = n−1

n σ2 < σ2, which would underestimate the sample variance.
The other way to think about the factor 1/(n−1) is that we need at least
one value to estimate the mean, we need at least 2 values to estimate
the variance. Thus, for n observations, only n − 1 different values of
variance can be obtained to estimate the total sample variance.

8.2 Method of Least Squares

8.2.1 Maximum Likelihood

For a sample of n values x1, x2, ..., xn of a random variable X whose
probability density function p(x) depends on a set of k parameters
β1, ..., βk, the joint probability is then

Φ(β1, ..., βk) =

n∏

i=1

p(xi, β1, ..., βk)

= p(x1, β1, ..., βk)p(x2, β1, ..., βk) · · · p(xn, β1, ..., βk). (8.11)

The essence of the maximum likelihood is to maximise Φ by choosing
the parameters βi. As the sample can be considered as given values,
the maximum likelihood requires that

∂Φ

∂βi
= 0, (i = 1, 2, ..., k), (8.12)

whose solutions for βi are the maximum likelihood estimates.

8.2.2 Linear Regression

For experiments and observations, we usually plot one variable such as
pressure or price y against another variable x such as time or spatial
coordinates. We try to present the data in such a way that we can see
some trend in the data. For a set of n data points (xi, yi), the usual
practice is to try to draw a straight line y = a+ bx so that it represents
the major trend. Such a line is often called the regression line or the
best fit line as shown in Figure 8.1.
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Figure 8.1: Least square and the best fit line.

The method of least squares is to try to determine the two param-
eters a (intercept) and b (slope) for the regression line from n data
points. Assuming that xi are known more precisely and yi values obey
a normal distribution around the potentially best fit line with a variance
σ2, we have the probability

P =

n∏

i=1

p(yi) = A exp{− 1

2σ2

n∑

i=1

[yi − f(xi)]
2}, (8.13)

where A is a constant, and f(x) is the function for the regression
[f(x) = a + bx for the linear regression]. It is worth pointing out
that the exponent

∑n
i=1[yi − f(xi)]

2/σ2 is similar to the quantity χ2
n

defined in the χ2-distribution.
The essence of the method of least squares is to maximise the prob-

ability P by choosing the appropriate a and b. The maximisation of P
is equivalent to the minimisation of the exponent ψ

ψ =

n∑

i=1

[yi − f(xi)]
2. (8.14)

We see that ψ is the sum of the squares of the deviations ε2i = (yi −
f(xi))

2 where f(xi) = a+ bxi. The minimisation means the least sum
of the squares, thus the name of the method of least squares.

In order to minimise ψ as a function of a and b, its derivatives should
be zero. That is

∂ψ

∂a
= −2

n∑

i=1

[y − (a+ bxi)] = 0, (8.15)

and
∂ψ

∂b
= −2

n∑

i=1

xi[yi − (a+ bxi)] = 0. (8.16)
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By expanding these equations, we have

na+ b

n∑

i=1

xi =

n∑

i=1

yi, (8.17)

and

a

n∑

i=1

xi + b

n∑

i=1

x2
i =

n∑

i=1

xiyi, (8.18)

which is a system of linear equations for a and b, and it is straightfor-
ward to obtain the solutions as

a =
1

n
[

n∑

i=1

yi − b
n∑

i=1

xi] = ȳ − bx̄, (8.19)

b =
n
∑n

i=1 xiyi − (
∑n

i=1 xi)(
∑n

i=1 yi)

n
∑n
i=1 x

2
i − (

∑n
i=1 xi)

2
, (8.20)

where

x̄ =
1

n

n∑

i=1

xi, ȳ =
1

n

n∑

i=1

yi. (8.21)

If we use the following notations

Kx =

n∑

i=1

xi, Ky =

n∑

i=1

yi, (8.22)

and

Kxx =

n∑

i=1

x2
i , Kxy =

n∑

i=1

xiyi, (8.23)

then the above equations for a and b become

a =
KxxKy −KxKxy

nKxx − (Kx)2
, b =

nKxy −KxKy

nKxx − (Kx)2
. (8.24)

The residual error is defined by

εi = yi − (a+ bxi), (8.25)

whose sample mean is given by

µε =
1

n

n∑

i=1

εi =
1

n
yi − a− b

1

n

n∑

i=1

xi

= ȳ − a− bx̄ = [ȳ − bx̄]− a = 0. (8.26)
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The sample variance S2 is

S2 =
1

n− 2

n∑

i=1

[yi − (a+ bxi)]
2, (8.27)

where the factor 1/(n−2) comes from the fact that two constraints are
needed for the best fit, and the residuals therefore have n − 2 degrees
of freedom.

8.2.3 Correlation Coefficient

The correlation coefficient rx,y is a very useful parameter for finding
any potential relationship between two sets of data xi and yi for two
random variables x and y, respectively. If x has a mean µx and a
sample variance S2

x, and y has a mean µy and a sample variance S2
y ,

the correlation coefficient is defined by

rx,y =
cov(x, y)

SxSy
=
E[xy]− µxµy

SxSy
, (8.28)

where cov(x, y) = E[(x − µx)](y − µy) is the covariance. If the two
variables are independent, then cov(x, y) = 0, which means that there
is no correlation between them (rx,y = 0). If r2x,y = 1, then there
is a linear relationship between these two variables. rx,y = 1 is an
increasing linear relationship where the increase of one variable will
lead to increase of another. rx,y = −1 is a decreasing relationship
when one increases while the other decreases.

For a set of n data points (xi, yi), the correlation coefficient can be
calculated by

rx,y =
n
∑n

i=1 xiyi −
∑n

i=1 xi
∑n

i=1 yi
√

[n
∑
x2
i − (

∑n
i=1 xi)

2][n
∑n
i=1 y

2
i − (

∑n
i=1 yi)

2]
, (8.29)

or

rx,y =
nKxy −KxKy

√

(nKxx −K2
x)(nKyy −K2

y)
, (8.30)

where Kyy =
∑n

i=1 y
2
i .

Example 8.1: At a strike-slip fault, both shear stress τ and the slip
movement s were recorded. We have
Shear stress (MPa) τ : 16.2, 16.7, 16.8, 17.1, 17.4, 17.6, 18.3, 17.9;
Slip motion (cm/year) s: 0.55, 0.60, 0.75, 0.75, 0.85, 1.0, 1.1, 1.2.
The question is to find if there is any relationship between τ and s? From
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Figure 8.2: Confidence interval γ = 1 − α.

these data, we know the sample mean µτ = 17.25, µs = 0.85. The
covariance cov(h, s) = E[(h − µh)(s − µs)] = 0.132. We also have the
standard deviation of shear stress Sh = 0.6422 and the standard deviation
of slip Ss = 0.2179. Therefore, the correlation coefficient r is given by

r =
cov(h, s)

ShSs
≈ 0.132

0.6422 ∗ 0.2179
≈ 0.94.

This is a relatively strong correlation. Indeed, there is a linear relationship
between τ and s in theory.

8.3 Hypothesis Testing

8.3.1 Confidence Interval

The confidence interval is defined as the interval θ1 ≤ X ≤ θ2 so that
the probabilities at these two limits θ1 and θ2 are equal to a given
probability γ = 1− α (say, 95% or 99%). That is

P (θ1 ≤ X ≤ θ2) = γ = 1− α. (8.31)

The predetermined parameter γ is always near 1 so that it can be
expressed as a small deviation α � 1 from 1 (see Figure 8.2). If we
choose γ = 95%, it means that we can expect that about 95% of the
sample will fall within the confidence interval while 5% of the data will
not.

For the standard normal distribution, this means P (−θ ≤ ξ ≤ θ) =
1− α, so that

φ(ξ ≤ θ) = 1− α

2
. (8.32)

If α = 0.05, we have φ(ξ ≤ θ) = 0.975 or θ = 1.960. That is to say,
−θ ≤ ξ ≤ θ or µ−θσ ≤ x ≤ µ+θσ. We also know that if you repeat an
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experiment n times, the variance will decrease from σ2 to σ2/n, which
is equivalent to saying that the standard deviation becomes σ/

√
n for

a sample size n. If α = 0.01, then θ = 2.579, we have

µ− 2.579
σ√
n
≤ x ≤ µ+ 2.579

σ√
n
. (8.33)

On the other hand, for θ = 1, we get µ−σ ≤ x ≤ µ+σ and γ = 0.682. In
other words, only 68.2% of the sample data will fall within the interval
[µ− σ, µ+ σ] or

x = µ± σ, (8.34)

with a 68.2% confidence level.
It is conventional to use γ = 0.95 for probably significant, 0.99 for

significant, and 0.999 for highly significant.

Example 8.2: The sample data of the time taken for a quick lunch at
a restaurant are as follows: 19, 15, 30, 20, 15, 23, 28, 22, 23 minutes.
Suppose you want to attend a lecture at 12:30, at what time should you
start your order if you want to take 5% chance of being late? The sample
mean is

µ = x̄ =
1

9
(19 + 15 + 30 + 20 + 15 + 23 + 28 + 22 + 23) = 21.67.

The sample variance is

σ2 =
1

n− 1

n∑

i=1

(xi − µ)2 = 26.5,

which gives a standard deviation of σ = 5.15 minutes. If you are willing
to take 5% chance, then φ(ξ) = 0.95, it gives ξ = 1.645. So you should
start

x = µ+ ξσ = 30.15,

which is about 30 minutes earlier or at about 12:00.

8.3.2 Student’s t-distribution

The Student’s t-test is a very powerful method for testing the null
hypothesis to see if the means of two normally distributed samples
are equal. This method was designed by W. S. Gosset in 1908 and
he had to use a pen name ‘Student’ because of his employer’s policy
(Guinness Brewery) in publishing research results at that time. This
is a powerful method for hypothesis testing using small-size samples.
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This test can also be used to test if the slope of the regression line is
significantly different from 0. It has become one of the most popular
methods for hypothesis testing. The theoretical basis of the t-test is
the Student’s t-distribution for a sample population with the unknown
standard deviation σ, which of course can be estimated in terms of the
sample variance S2 from the sample data.

For n independent measurements/data x1, x2, ..., xn with an esti-
mated sample mean x̄ and a sample variance S2 as defined by Eq.(8.8),
the t-variable is defined by

t =
x̄− µ

(S/
√
n)
. (8.35)

The Student’s t-distribution with k = n − 1 degrees of freedom is the
distribution for the random variable t, and the probability density func-
tion is

p(t) =
Γ(k+1

2 )√
kπΓ(k/2)

[1 +
t2

k
]−

k+1
2 . (8.36)

It can be verified that the mean is E[t] = 0. The variance is σ2 =
k/(k − 2) for k > 2 and infinite for 0 < k ≤ 2.

The corresponding cumulative probability function is

F (t) =
Γ(k+1

2 )√
kπΓ(k/2)

∫ t

∞
[1 +

ζ2

k
]−

k+1
2 dζ. (8.37)

This integral leads to a hypergeometric function, which is not straight-
forward to calculate, which is why they are tabulated in many statistical
tables. For a confidence level of γ = 1 − α, the confidence interval is
given by

F (θ) = 1− α

2
, (8.38)

which is usually tabulated. For α = 0.05 and 0.01 (or 1− α/2 = 0.975
and 0.995), the values are tabulated in Table 8.1.

Suppose we are dealing with the 95% confidence interval, we have
p(−θ ≤ t ≤ θ) = 1 − α = 0.95 or p(t ≤ θ) = 1 − α/2 = 0.975, we have
θ = tα,k = 12.70(k = 1), 4.30(k = 2), 3.18(k = 3), ..., 2.228(k = 10),
..., 1.959 for k →∞. Hence,

µ− θ S√
n
≤ t ≤ µ+ θ

S√
n
. (8.39)

This is much more complicated than its counterpart, the standard
normal distribution.
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Table 8.1: Limits defined by F (θ) = 1 − α/2 in Eq.(8.38).

k F (θ)0.975 F (θ)0.995
1 12.7 63.7
2 4.30 9.93
3 3.18 5.84
4 2.78 4.60
5 2.57 4.03
6 2.45 3.71
7 2.37 3.50
8 2.31 3.36
9 2.26 3.25
10 2.23 3.17
20 2.09 2.85
50 2.01 2.68
100 1.98 2.63
∞ 1.96 2.58

8.3.3 Student’s t-test

There are quite a few variations of the Student’s t-test, and most com-
mon t-tests are the one-sample t-test and the two-sample t-test. The
one sample t-test is used for measurements that are randomly drawn
from a population to compare the sample mean with a known number.

In order to do statistical testing, we first have to pose precise ques-
tions or form a hypothesis, which is conventionally called the null hy-
pothesis. The basic steps of a t-test are as follows:

1. The null hypothesis: H0: µ = µ0 (often known value) for one
sample, or H0: µ1 = µ2 for two samples;

2. Calculate the t-test statistic t and find the critical value θ for a
given confidence level γ = 1− α by using F (t ≤ θ) = 1− α/2;

3. If |t| > θ, reject the hypothesis. Otherwise, accept the hypothesis.

Example 8.3: A study claims that a large region (with more than 250
subregions) has an averaged rate of soil erosion of 110 m/Ma (or µ0 =
110). Then, you randomly sampled 11 subregions to get the erosion rates
and the results are: x = 106, 112, 103, 108, 108, 109, 100, 106, 106, 99, 101.
Test the hypothesis:

H0 : µ = µ0,
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at a confidence level of 95%.

From the data, we know that n = 11, x̄ = 105.273, S = 4.077. Then,
we have

t =
(x̄− µ)

(S/
√
n)

=
(105.273− 110)

4.077/
√

11
≈ −3.846.

We only use the positive value if we look at the statistical tables. We also
know for k = n − 1 = 10 degrees of freedom at a 95% confidence level,
θ = 2.228. At a 95% confidence level, the probability of t > θ is 0.025 (or
2.5%) and the probability t < −θ is also 0.025. Thus, the hypothesis is
not valid at a 95% confidence level. At the same level of confidence, the
true mean µ0 of erosion rate lies in the range of

x̄− 2.228 ∗ S/
√

11 ≤ µ0 ≤ x̄+ 2.228S/
√

11

or 102.53 ≤ µ0 ≤ 108.00.

Another important t-test is the two-sample paired test. Assuming
that two pairs of n sample data sets Ui and Vi are independent and
drawn from the same normal distribution, the paired t-test is used to
determine whether they are significantly different from each other. The
t-variable is defined by

t =
(Ū − V̄ )

Sd/
√
n

= (Ū − V̄ )

√

n(n− 1)
∑n
i=1(Ũi − Ṽi)2

, (8.40)

where Ũi = Ui − Ū and Ṽi = Vi − V̄ . In addition,

S2
d =

1

n− 1

n∑

i=1

(Ũi − Ṽi)2. (8.41)

This is equivalent to apply the one-sample test to the difference Ui−Vi
data sequence.

Example 8.4: A novel pumping method of extracting oil was tried in
a group of wells in an oilfield (denoted by B), while a standard method
was used for the same wells before (denoted by A). At the end of the
assessment, the flow rates (in units of 1000 gallons per day) of 8 wells
were recorded as follows:
Standard method (A): Ui = 76, 77, 76, 81, 77, 76, 75, 82;
Novel method (B): Vi = 79, 81, 77, 86, 82, 81, 82, 80.
At a 95% confidence level, can you say the new method is really better
than the standard method?
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If we suppose that the two methods do not produce any difference in
results, i.e., their means are the same. Thus the null hypothesis is:

H0 : µA = µB.

We know that Ū = 77.5, V̄ = 81. The combined sample variance
Sd = 2.828. We now have

t =
Ū − V̄
Sd/
√
n

=
77.5− 81

2.828/
√

8
= −3.5.

We know from the statistical table that the critical value θ = 2.37 for
F (θ) = 1−α/2 and k = n−1 = 7. As t < −θ or t > θ, we can reject the
null hypothesis. That is to say, the new pumping method does produce
better results.

The variance analysis and hypothesis testing are important topics in
applied statistics, and there are many excellent books on these topics.
Readers can refer to the relevant books listed at the end of this book.
It is worth pointing out that other important methods for hypothesis
testing are Fisher’s F -test, χ2-test, and non-parametric tests. What
we have discussed in this chapter is just a tip of an iceberg, however,
it forms a solid basis for further studies.

8.4 Data Interpolation

Before we can discuss the geostatistical interpolation methods such as
kriging in detail, we have to briefly review the standard interpolation
methods such as the spline interpolation and the Bézier curve.

8.4.1 Spline Interpolation

The spline interpolation is to construct a function, called spline func-
tion, of degree m for given n+ 1 known values yi at n+ 1 data points
xi(i = 0, 1, 2, ..., n). These given points are organised in an increasing
order so that

x0 < x1 < ... < xn. (8.42)

The values yi at the given data points are often called knot values. The
major requirement is that the constructed spline function S(x) should
be continuous and produce the exact value at the data points. The
spline function can be constructed in a piecewise manner so that each
spline function Si(x) is valid in each data interval x ∈ [xi, xi+1].
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Figure 8.3: Spline construction for given values (yi−1, yi, yi+1) and

their derivatives (y′

i−1, y
′

i, y
′

i+1) at three points xi−1, xi and xi+1.

Linear Spline Functions

In the simplest case of three points with given values (yi−1, yi, yi+1) at
three distinct points xi−1, xi and xi+1, the simplest spline is the linear
functions, which can be constructed in each interval [xi, xi+1] so that
we have

Si(x) = yi +
(yi+1 − yi)
(xi+1 − xi)

(x− xi), x ∈ [xi, xi+1], (8.43)

which corresponds to the piecewise line segments in Fig. 8.3.
For two consecutive intervals, the functions Si−1 and Si should be

continuous, that is to say, Si(xi) = Si−1(xi) = yi. As i = 0, 2, ..., n− 1,
there are n such spline functions. In order to systematically construct
the spline interpolation for n+ 1 points, we can write

y = f(x) =
n∑

i=0

yiθ(x), (8.44)

where θi(x) are the linear elementary basis functions.

θi(x) =







x−xi

hi
, x ∈ [xi, xi+1]

xi−x
hi−1

, x ∈ [xi−1, xi],
(8.45)

where hi = (xi+1 − xi) and hi−1 = (xi − xi−1). The linear spline
function Si(x) in the interval x ∈ [xi−1, xx is expressed as

Si(x) = yi−1θi−1 + yiθi, (8.46)
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Figure 8.4: Linear spline construction from θ(x).

which can be represented geometrically as the dashed and dotted lines
in Fig. 8.4. We can see that Si(x) is continuous, but not necessary
smooth. The first derivative of the linear spline function are not con-
tinuous.

Cubic Spline Functions

The linear spline interpolation is continuous, but not smooth as there
is a discontinuity in the first derivatives. Now suppose the three deriva-
tives y′i−1, y

′
i, y

′
i+1 are also given at these three points (xi−1, yi−1),

(xi, yi) and (xi+1, yi+1), can we construct a class of better and smoother
spline functions (such as the dashed curve shown in Fig. 8.3) so that
their values and derivatives meet the given conditions? The answer is
yes, that is the cubic spline function. You may wonder why cubic?

In the interval [xi, xi+1], we now have four conditions: two function
values yi, yi+1, and two derivatives y′i, y

′
i+1. Obviously, linear function

is not enough, how about quadratic function S(x) = ax2 + bx + c?
The function is relatively smooth and the first derivative could meet
these requirements, but the second derivative S′′(x) = a is constant,
and if we require the second-derivative also continuous, this means that
either the second is constant everywhere (thus a is same everywhere)
or there is a discontinuity. Furthermore, we have only three unknown
a, b, c with four conditions, so in general they are over-determined, and
not all conditions will be met. Thus, we need a cubic function.

If we use the following generic cubic function

Si(x) = αi(x− xi)3 + βi(x− xi)2 + γi(x− xi) + δi, (8.47)

where i = 1, 2, ..., n, then the spline function is twice continuous differ-
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entiable. Its first derivative is

S′
i(x) = 3αi(x − xi)2 + 2βi(x− xi) + γi. (8.48)

The four conditions become

Si(xi) = yi, Si(xi+1) = yi+1, (8.49)

and
S′
i(xi) = y′i, S′

i(xi+1) = y′i+1. (8.50)

Thus, four equations and four unknown αi, βi, γi and δi which are
uniquely determined. The general requirements among different in-
tervals are Si(x), S

′
i(x), and S′′

i (x) should be continuous. We have

Si(xi) = yi, Si(xi+1) = yi+1, i = 0, 2, ..., n− 1, (8.51)

S′
i(xi+1) = S′

i+1(xi+1) = y′(xi+1), i = 0, 1, ..., n− 2, (8.52)

and
S′′
i (xi+1) = S′′

i+1(xi+1), i = 0, 1, ..., n− 2. (8.53)

In n intervals, we have 4n unknown, but we have 4n−2 conditions: n+1
from yi(i = 0, 1, ..., n− 1); 2(n− 1) from y′i and S′

i (i = 0, 1, ..., n− 2);
n− 1 from S′′

i , (i = 0, 1, ..., n− 2), so we need 2 more conditions.
The two extra conditions are at the two end points i = 0 and i = n.

The clamped boundary conditions are to set

S′
0(x0) = y′0, S′

n−1(xn) = y′n, (8.54)

which are usually given. If the derivatives at the end points are not
given, we can use the natural or free boundary conditions:

S′′
0 (x0) = 0, S′′

n−1(xn) = 0. (8.55)

In order to find the spline functions Si(x), it is conventional to
rewrite them in terms of the second derivative ξi = S′′

i (x), (i = 0, 1, 2,
..., n− 1), and we have

ξi = 6αi(x− xi) + 2βi. (8.56)

At x = xi, we have
ξi(xi) = 2βi, (8.57)

or

βi =
ξi
2
. (8.58)

Using the continuity of ξi at x = xi+1, we have

ξi(xi+1) = ξi+1(xi+1) = 6αihi + 2βi, hi = xi+1 − xi. (8.59)
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Combining with Eq.(8.58), we have

αi =
ξi+1 − ξi

6hi
. (8.60)

Since Si(xi) = yi at x = xi+1, we have

δi = yi. (8.61)

Substituting αi, βi and δi into Si(xi+1) = yi+1 at x = xi+1 and after
some rearrangement, we have

γi =
(yi+1 − yi)

hi
− hi(2ξi + ξi+1)

6
. (8.62)

Now substituting these coefficients into Eq.(8.5), we can express Si in
terms of the second derivatives ξi, and we have

Si(x) =
1

6hi
[ξi+1(x− xi)3 + ξi(xi+1 − x)3]

+[
yi+1

hi
− hi

6
ξi+1](x− xi) + [

yi
hi
− hi

6
ξi](xi+1 − x). (8.63)

This is a cubic polynomial, and the only thing left is to find the co-
efficients ξi. Using the continuity conditions: Si(xi) = Si−1(xi) = yi
and S′

i(xi) = S′
i−1(xi) at x = xi; Si(xi+1) = Si+1(xi+1) = yi+1 and

S′
i(xi+1) = S′

i+1(xi+1) at x = xi+1, we can rewrite the above equation
as

hi−1ξi−1+2(hi−1+hi)ξi+hiξi+1 = 6[
(yi+1 − yi)

hi
− (yi − yi−1)

hi−1
], (8.64)

where i = 1, 2, ..., n− 1. Writing them in a matrix form, we have








2(h0 + h1) h1 ... 0
h1 2(h1 + h2) ... 0
...

. . . hn−2

0 ... hn−2 2(hn−2 + hn−1)















ξ1
ξ2
...

ξn−1








=






6(y2−y1h1
− y1−y0

h0
)

...

6(yn−yn−1

hn−1
− yn−1−yn−2

hn−2
)




. (8.65)

Since ξ0 = 0 and ξn = 0 are given from the natural boundary condi-
tions, this linear system will uniquely determine ξ1, ..., ξn−1. For any
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Figure 8.5: Cubic spline construction from Θ(x).

given set of data, we should solve the linear system to get ξi, then to
compute Si(x).

In the case of equal spacing h0 = hi = hn−1 = h, the above equation
becomes








4 1 ... 0
1 4 ... 0
...

. . . 1
0 ... 1 4















ξ1
ξ2
...

ξn−1








=
6

h2








y2 − 2y1 + y0
y3 − 2y2 + y1

...
yn − 2yn−1 + yn−2







. (8.66)

Example 8.5: For the function

y = 2e−
x2

2 ,

we now try to approximate it using cubic spline functions constructed from
five points x0 = −2, x1 = −1, x2 = 0, x3 = 1, x4 = 2. We known that
y0 = 0.2707, y1 = 1.2130, y2 = 2.0, y3 = 1.2130, y4 = 0.2707. Since
these points are equally-spaced with h = 1, equation (8.66) then becomes





4 1 0
1 4 1
0 1 4









ξ1
ξ2
ξ3



 =





−0.9327
−9.443
−0.9327



,

whose solution is 



ξ1
ξ2
ξ3



 =





0.4080
−2.565
0.4080



.

At the two end points, we use the natural boundary condition ξ0 = 0 and
ξ4 = 0. Now substituting ξ0, ξ1, ξ2, ξ3, ξ4 into Eq.(8.63) for i = 0, 1, 2, 3,
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we have

S0 =
0.4080

6
(x + 2)3 + 0.4275(x+ 2),

S1 = −0.4955(x+ 1)3 + 1.282(x+ 1),

S2 = 0.4955(x− 1)3 − 1.282(x− 1),

and

S3 = −0.4080

6
(x− 2)3 − 0.4275(x− 2).

These spline functions are plotted in Fig. 8.5 as the heavy dashed curve.
We can see that cubic spline curves almost fall on the exact curve (solid)
of the original function y = 2 exp(−x2/2).

Alternatively, similar to the elementary basis function θi(x) for lin-
ear spline, we can find the corresponding basis function Θi(x) for cubic
function. In a given interval [xi, xi+1], if we assume that Θi(xi) = 0,
and Θ′

i(xi) = 0, we get

Θi(x) = (x− xi)2[α(x − xi) + β]. (8.67)

As we require that Θi(x) reaches the maximum Θi = 1 at x = xi+1, it
leads to

Θ′
i(xi+1) = 3αh2

i + 2βhi = 0, (8.68)

and

Θi(xi+1) = h2
i (αhi + β) = 1. (8.69)

The solutions are

α = − 2

h3
i

, β =
3

h2
i

. (8.70)

Therefore, we get

Θi = (x− xi)2[
3

h2
i

− 2(x− xi)
h3
i

]. (8.71)

The cubic spline function can in general be written as

S(x) =

n−1∑

i=0

yiΘi(x), (8.72)

which can be geometrically represented as the dashed and dotted curves
in Fig. 8.5 where as an example, y = 2 exp(−x2/2) is approximated
using the cubic spline functions.
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8.4.2 Lagrange Interpolating Polynomials

We have seen that the construction of spline functions is tedious. La-
grange polynomials provide a systematic way to construct interpolation
functions.

For any given n points (xi, yi), (i = 1, 2, ..., n), there is a Lagrange
interpolating polynomial P (x) of degree k ≤ (n − 1) which passes
through all n points. That is

P (x) =

n∑

i=1

Pi(x)yi, (8.73)

where

Pi =

n∏

j=1,j 6=i

(x− xj)
(xi − xj)

. (8.74)

For example, for n = 4, we have

P (x)=
(x− x2)(x− x3)(x− x4)y1
(x1 − x2)(x1 − x3)(x1 − x4)

+
(x− x1)(x− x3)(x − x4)y2
(x2 − x1)(x2 − x3)(x2 − x4)

+
(x− x1)(x − x2)(x− x4)y3
(x3 − x1)(x3 − x2)(x3 − x4)

+
(x− x1)(x − x2)(x− x3)y4
(x4 − x1)(x4 − x2)(x4 − x3)

. (8.75)

Example 8.6: For four equally-spaced points (xi, yi) = (1, 1), (2, 2),
(3,−0.5), and (4, 1), the Lagrange polynomial becomes

P (x) = − (x− 2)(x− 3)(x− 4)

6
y1 +

(x− 1)(x− 3)(x− 4)

2
y2

− (x− 1)(x− 2)(x− 4)

2
y3 +

(x − 1)(x− 2)(x− 3)

6
y4,

which is equivalent to

P (x) = 1.25x3 − 9.25x2 + 20x− 11.

The Lagrange polynomial and the four points are plotted in Fig. 8.6.

The disadvantage of Lagrange polynomials is that when n increases,
the order of the polynomials also increases, and this leads to greater os-
cillations between data points. For equally-spaced points, the Lagrange
interpolation oscillates around the true function. However, the advan-
tages of Lagrange polynomials are that they are unique and rigorous
and thus they become handy in mathematical proofs. In addition, they
form the basic formulation for shape functions in finite element analy-
sis discussed in later chapters and they are also widely used in signal
processing including audio-video analysis and seismic wave processing.
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Figure 8.6: Lagrange polynomial of degree 3 for 4 given points.
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Figure 8.7: Bézier interpolation: quadratic and cubic.

8.4.3 Bézier Curve

We now know that linear and quadratic spline functions are not quite
smooth, but splines of higher degrees are not straightforward to con-
struct. There is an alternative way to construct smooth interpolation
functions, that is to use Bézier curves (see Fig. 8.7). These interpola-
tion curves are smooth and can be easily extended to higher dimensions
to construct surfaces and volumes. Therefore, it is widely used in en-
gineering, computer graphics, and earth sciences.

The quadratic Bézier curve for any three points: P0(xi−1, yi−1),
P1(xi, yi), P2(xi+1, yi+1) as shown in Fig. 8.7, can be constructed using
a parameter t ∈ [0, 1]

P (t) = (1− t)2P0 + 2t(1− t)P1 + t2P2, (8.76)
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which is equivalent to

x(t) = (1− t)2xi−1 + 2t(1− t)xi + t2xi+1, (8.77)

and

y(t) = (1− t)2yi−1 + 2t(1− t)yi + t3yi+1. (8.78)

Clearly, t = 0 corresponds to (xi−1, yi−1) (end point), while t = 1 gives
(xi+1, yi+1) (another end point). The only unusual feature is that the
curve does not go through the point (xi, yi). This might be a disad-
vantage as it is not an exact interpolation, however, it becomes an ad-
vantage as the curve is very smooth and tangential to both end points.
This characteristic is also true for Bézier curves of higher degrees.

For four points, the cubic Bézier curve leads to

x(t) = (1− t)3xi−1 + 3t(1− t)2xi + 3t2(1 − t)xi+1 + t3xi+2, (8.79)

and

y(t) = (1− t)3yi−1 + 3t(1− t)2yi + 3t2(1− t)yi+1 + t3yi+2, (8.80)

where t ∈ [0, 1]. It is straightforward to extend any degree n using
coefficients of binomial expansion [(1− t) + t]n.

8.5 Kriging

Kriging is a class of interpolation techniques for random fields used
in geostatistics. It was named after a South-African mining engineer,
D.G. Krige, who developed this method for grading gold mines. It is
an exact interpolation method even for random observed data, and it is
thus widely used in both deterministic and random simulations. Krig-
ing methods are widely used in mining, remote sensing, environmental
sciences, engineering and earth sciences.

The above Bézier and spline interpolation methods are referred to as
deterministic interpolation methods because they are essentially based
on the surrounding measured or observed values and the smoothness
of the resulting surface is determined by specific mathematical func-
tions. Kriging, on the other hand, is a family of statistical interpolation
methods for constructing smooth interpolations based on the statistical
autocorrelation among the measured points. Because the information
of the measured data is used, kriging is thus capable of predicting with
some statistical certainty (or accuracy). Therefore, it is widely used in
earth sciences to make predictions for unmeasured locations based on
the surrounding measured values.
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Kriging is a geostatistical procedure to construct a linear estimate,
with a minimum error variance, at a location where the true value is
not known. Whether the data sets are mineral distribution in 3D, or
observations of some quantities over a 2-D region of the Earth’s surface,
or the cross-section of a stratigraphic column in 1-D, or a time series,
the formulations of kriging are the same if we formulate the method in
terms of general location variable x = (x1, x2, ...)

T = (x, y, ...)T in a
domain Ω.

The basic assumption of kriging is that the field value Z(x) at the
location x is a random variable, and each measurement is a realisa-
tion of the random variable. The difference in values is similar for a
similar distance h, and the closer the observed spatial data are, the
more positively correlated they are. Thus, the proximity of the data
and clustering will give indication of the possible true values at un-
observed locations. For given n observations (Zi, i = 1, 2, ..., n), the
general formula for predicting Z(x, y) at location (x, y) in kriging is
given by

Ẑ(x) =

n∑

i=1

λiZi =

n∑

i=1

λiZ(xi), (8.81)

which is the weighted sum of the measured data. Zi = Z(xi) is the ob-
served value at the location xi which is simply xi = xi one-dimensional
case and xi = (xi, yi) in two-dimensional case. λi is the weighting coef-
ficient, to be determined, associated with the i-th location. The essence
of kriging is the choice of λi in such a way that these coefficients depend
not only on the distance from the prediction location to the measured
points, but also on the spatial distribution of these measured points in
terms of their spatial autocorrelation and/or variogram.

Let µ(Zi) and µ(Ẑ) be the sample mean of the measured data Zi
and kriging mean, respectively. Assuming that the true value of Z at
x is Z(x), the mean of the prediction or estimate should be unbiased,
which requires that

E[Ẑ − Z] =

n∑

i=1

λiµ(Zi)− µ(Ẑ) = 0. (8.82)

There are many variations of kriging methods which depend on the
assumption of the kriging mean. Three general kriging methods are:
simple, ordinary, and universal kriging. In simple kriging, the kriging
mean is assumed known and taken to be zero, or µ(Ẑ) = 0. In the
ordinary kriging, µ(Ẑ) is assumed an unknown constant µ(Ẑ) = µ,
which implies that

n∑

i=1

λi = 1. (8.83)
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Universal kriging assumes a linear trend in the data, thus the kriging
mean will not be a constant.

Ordinary kriging is the most widely used, while the universal kriging
should only be used if there is a known trend in the observed data.

Let us define the residual of the data values as

ε(xi) = Z(xi)− µ(xi), (i = 1, 2, ..., n), (8.84)

where µ(xi) can be considered as constant, but unknown. The semi-
variogram γ(h) is defined as

γ(h) ≡ 1

2
E{[ε(x)− ε(x+ h)]2} (8.85)

where h is the distance between all pairs of data from xi to xj . The
variogram is just 2γ(h). For the simple and ordinary kriging methods
where µ(xi) is either zero or an unknown constant, we can use the
measured values to calculate γ(h), and we have

γ(h) =
1

2
E{[Z(xi)− Z(xj)]

2}. (8.86)

It is relatively straightforward to show that γ(h) = γ(−h) and
γ(0) = 0 due to the fact that the variance [ε(xi) − ε(xj)]2 = [ε(xj) −
ε(xj)]

2. However, the limit limh→0 γ(h) = C0 ≥ 0 is not necessarily
zero. If C0 6= 0, we have the so-called nugget effect, which may be due
either to some miscroscale variation or to measurement error. The term
nugget effect comes from the spatial variation caused by small nuggets
of ore, and this is of course an exaggeration. It is sometimes not easy
to find a pattern or trend from a semivariogram calculated using the
above formula, it is more feasible to divide the pair of data into many
bins with regular intervals of h, which leads to

γ(h)=
1

2N(h)

∑

N(h)

[ε(xi)−ε(xj)]=
1

2N(h)

N(h)
∑

i=1

[ε(xi)−ε(xi+h)]2, (8.87)

where N(h) is the set of data pair at xi and xj that have a similar h.
The covariance is defined as

C(h) = E[ε(x)ε(x+ h)]. (8.88)

Now expand the expression of the variogram, and we have

γ(h) =
1

2
{E[ε2(x)] + E[ε(x+ h)2]− 2E[ε(x)ε(x+ h)]}

=
1

2
{Var[ε(x)] + Var[ε(x+ h)]− 2C(h)} = C(0)− C(h), (8.89)
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that is
γ(h) = C(0)− C(h), (8.90)

where C(0) = E[ε2(x)]. Here we can see that the covariance C(h) is a
function of distance h only, and C(0) is the variance Var(ε(x)) or σ2

Z .
In kriging, it is assumed that C(h) a simple function of h. For example,
C(h) = σ2

Z exp(−θh2) where θ is a shape parameter. We will discuss
this in more detail later.

The objective of the kriging is to reduce the error variance

Π = E{[(Ẑ(x)− Z(x)]2} = E{[ε̂(x)− ε(x)]2}

= E[ε̂2(x)] +E[ε2(x)]− 2E[ε̂(x)ε(x)], (8.91)

where ε̂(x) = Z(x)− µ. Substituting (8.81), we have

Π =

n∑

i=1

n∑

j=1

λiλjC(xi,xj)− 2

n∑

i=1

λiC(x,xi) + C(0), (8.92)

where C(xi,xj) = E[ε(xi)ε(xj)] and C(x,xi) = E[ε(x)ε(xi)].
The minimisation of Π requires the following stationary conditions

∂Π

∂λi
= 2[

n∑

j=1

λjC(xi,xj)− C(x,xi)] = 0, (8.93)

where i = 1, 2, ..., n. This leads to

n∑

j=1

λjC(xi,xj) = C(x,xi), (8.94)

which is a system of n equations with n unknown weighting coefficients
λi. We can see that the weights λi will depend on the data set, the
location x of kriging estimate, the proximity of the data to the location
being kriged, and the clustering of the data.

If we want to obtain the estimate at a location, say, x = x0, the
above system of equations can be rewritten as the following matrix
form







C(x1,x1) C(x1,x2) ... C(x1,xn)
C(x2,x1) C(x2,x2) ... C(x2,xn)

...
...

. . .
...

C(xn,x1) C(xn,x2) ... C(xn,xn)















λ1

λ2

...
λn








=








C(x0,x1)
C(x0,x2)

...
C(x0,xn)








or
Cλ = C0, (8.95)
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where C is a n × n covariance matrix which can be calculated from
all possible pairs (xi,xj) of the measured data. C0 is the covariance
between the measured data and the location being estimated. λ =
(λ1, λ2, ..., λn)

T is the n-vector weights.
As the value of the location being estimated is not known, it is not

straightforward to calculate C(x0,xi) as it involves ε(x0). A possible
(but inefficient) way is to use the iterations starting from an initial
guess. There is a better way to do this, that is to use the data to derive
or construct some form of error covariance function. The covariances
are typically taken from a parametric covariance function of spatial
arguments, and this function should be positive definite over certain
range or distance. To make it easier from estimations, all parameters
of the covariance function are explicitly specified in kriging. In the case
when covariance is stationary, the covariance is given as an explicit
function of the spatial separation between pairs of locations.

In order to count the spatial proximity of the data, a second-order
stationary covariance function is usually used. The second-order sta-
tionary means that the mean µZ and variance σ2

Z of the errors are
constants, and the covariances depend only on the distance h between
input data. As the closer data are more likely correlated than distant
data locations, the covariance function should decrease as h increases.

For a given data set Zi, (i = 1, 2, ..., n), the computed semivariogram
γ(h) could be scattered around such as that shown in Fig. 8.8. From
Eq.(8.90), we know that

C(h) = C(0)− γ(h) = C0 + C1 − γ(h), (8.96)

which can determine C(h) once we know the semivariogram γ(h). For
simplicity, a best fit model is usually used as the idealisation of the
semivariogram derived from real experimental data. The value C0 and
and C1 and the shape of the model can be fitted using measured data.
In order to fit a semivariogram model, the number of data points or
sample size should be reasonably big n > 100, in practice, however,
n = 50 to 250 are acceptably reliable. If the sample size n < 50, we
still can try to use kriging to get estimate predictions for unobserved
locations if there is no better alternative.

There are many semivariogram models and we will give four most
popular models: linear, spherical, exponential and Gaussian.

The simplest semivariogram model is the linear model

γ(h) =







0 (h = 0)
C0 + C1

h
a (0 < h < a)

C0 + C1 (h ≥ a)
, (8.97)

where a is the range and C0 is the nugget effect due to sample errors.
C1 is the partial sill and C0 + C1 is the sill which is the asymptotic
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Figure 8.8: Semivariogram and idealisation.
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Figure 8.9: Semivariogram models: linear (dotted), spherical (dashed),

exponential (dot-dashed), and Gaussian (solid).

value of γ(h) as h � a, representing the variability in the absence of
any spatial correlation. For the distance h > a, the sample values are
no longer correlated.

A more elaborate model is the spherical model

γ(h) =







0 (h = 0)
C0 + C1{ 1

2 [3ha − (ha )3]} (0 < h < a)
C0 + C1 (h ≥ a)

. (8.98)

Exponential model is widely used and it has the following form

γ(h) =

{
0 (h = 0)

C0 + C1[1− e−β|h|/a] (h > 0)
, (8.99)

where β is a coefficient. In earth science literature, β = 3 is often used,
while in engineering, β = 1 is used. A better and smoother model is
the Gaussian model

γ(h) =

{
0 (h = 0)

C0 + C1[1− e−βh
2/a2

] (h > 0)
. (8.100)

These four models are plotted in Fig. 8.9. As to which model should
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sx1

sx2

sx3

ex0

Figure 8.10: Kriging example: estimation of Z(x0) at x0 = (2, 1) from

three observed data points: Z1 at x1, Z2 at x2, and Z3 at x3.

be used, the choice depends on the problem and underlying random
process.

Example 8.7: For any given three observed data points: Z1 = 15 at
x1 = (1, 4), Z2 = 22 at x2 = (0, 2), and Z3 = 19 at x3 = (4, 0), let us
now estimate the value Z0 at the inaccessible location x0(2, 1) as shown
in Fig. 8.10. Since there are only three data points, it is not sufficiently
accurate to fit the semivariogram model. Now we assume that the data
points are drawn from a random process, and the semivariogram model is
approximated as

γ(h) = 0.05 + 7[1− e−3(h/5)2 ],

which corresponds to C0 = 0.05, C1 = 7, and a = 5. Then, we have

Cij = C(xi,xj) = C0 + C1 − γ(h) =

{
C0 + C1 = 7.05 (h = 0)

7e−3(h/5)2 (h > 0)
.

Using the notation hij = |xi − xj |, we have h12 = |x1 − x2| = h21 =
h03 = |x0 − x3| = h02 =

√
5, and we get

C12 = C21 = C03 = C02 = 7e−3(
√

5/5)2 = 3.84.

Similarly, h13 = h31 = 5 and h23 = h32 =
√

20, we have C13 = C31 =
0.348, C23 = C32 = 0.635. For hii = 0, we have C11 = C22 = C33 =
9. As h01 =

√
10, we have C01 = 2.11. Finally, we have




7.05 3.84 0.348
3.84 7.05 0.635
0.348 0.635 7.05









λ1

λ2

λ3



 =





2.11
3.84
3.84



,
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Figure 8.11: (a) Survey locations and contour predicted by ordinary
kriging; (b) Gravity variations over the landscape.

whose solution is
(
λ1 λ2 λ3

)
=
(
0.003 0.498 0.499

)
. We see that

∑3
i=1 λi = 0.003 + 0.498 + 0.0499 = 1. The estimated value of Z0 is

Z0 =
∑3
i=1 λiZi = 0.003× 15 + 0.498× 22 + 0.499× 19 = 20.5.

Now let us look at a real application. A microgravity survey around
an ancient underwater volcano was carried out so as to establish the
topological variations of the volcano (there are better methods such as
seismic profiling, but here we just want to demonstrate an application
of kriging). There were 50 survey locations over an area of 2× 2 km2.
The survey points are shown in Fig. 8.11 (marked with circles), and the
gravity variations predicted by kriging are also shown. Here the unit
of the relative change of gravity is milligal (or mGal=10−5 m/s2). The
corresponding topological variations can be derived from the gravity
data using appropriate inverse methods.
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Part II

Numerical Algorithms





Chapter 9

Numerical Integration

The beauty of mathematical modelling is that a closed-form solution or
a simple formula will give tremendous insight into the mechanism and
behaviour of the underlying real-world process. However, such closed-
form solutions are rarely possible. In most cases, only approximate
solutions are possible. Such approximations can be obtained by using
simplified models or solving the mathematical models using approxi-
mation techniques. Alternatively, we can use numerical methods to get
the approximate solutions. In this chapter, we will introduce the fun-
damentals of the numerical techniques, and in the following chapters
we will study various commonly used methods in detail.

9.1 Root-Finding Algorithms

The essence of root-finding algorithms is to use iteration procedure to
obtain the approximate (though sometimes quite accurate) solutions,
starting from some initial guess solution. In fact, even ancient Babylo-
nians knew how to find the square root of 2 using the iterative meth-
ods. From the numerical technique we learnt at school, we know we
can numerically compute the square root of any real number k ( so that
x =
√
k) using the equation

x =
1

2
(x+

k

x
), (9.1)

starting with a random guess, say, x = 1. The reason is that the above
equation can be rearranged to get x =

√
k. In order to carry out the

iteration, we use the notation xn for the value of x at n-th iteration.
Thus, equation (9.1) provides a way of calculating the estimate of x at
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n+ 1 (denoted as xn+1). We have

xn+1 =
1

2
(xn +

k

xn
). (9.2)

If we start from an initial value, say, x0 = 1 at n = 0, we can do the
iterations to meet the accuracy we want.

Example 9.1: To find
√

5, we have k = 5 with an initial guess x0 = 1,
and the first five iterations are as follows:

x1 =
1

2
(x0 +

5

x0
) = 3,

x2 =
1

2
(x1 +

5

x1
) ≈ 2.333333333, x3 ≈ 2.238095238,

x4 ≈ 2.236068895, x5 ≈ 2.236067977.

We can see that x5 after 5 iterations is very close to its true value√
5 = 2.23606797749979..., which shows that the iteration method is

quite efficient.

The reason that this iterative process works is that the series x1,
x2, ..., xn converges towards the true value

√
k due to the fact that

xn+1/xn = 1
2 (1 + k/x2

n) → 1 as xn →
√
k. However, a good choice of

the initial value x0 will speed up the convergence. Wrong choice of x0

could make the iteration fail, for example, we cannot use x0 = 0 as the
initial guess. If we use x0 < 0 as the initial guess, it will converge at
−
√
k which is another root. So a sensible choice should be an educated

guess. At the initial step, if x2
0 < k, x0 is the lower bound and k/x0

is upper bound. If x2
0 > k, then x0 is the upper bound and k/x0 is

the lower bound. For other iterations, the new bounds will be xn and
k/xn. In fact, the value xn+1 is always between these two bounds xn
and k/xn, and the new estimate xn+1 is thus the mean or average of the
two bounds. This guarantees that the series converges towards the true
value of

√
k. This method is similar to the bisection method below.

9.1.1 Bisection Method

The above-mentioned iteration method to find x =
√
k is in fact equiva-

lent to finding the solution or the root of the function f(x) = x2−k = 0.
For any function f(x) in the interval [a, b], the root-finding bisection
method works in the following way as shown in Fig. 9.1.

The iteration procedure starts with two initial guessed bounds xa
(lower bound), and xb (upper bound) so that the true root x = x∗ lies
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-
0

6

x

f(x)
A

xa

B

xbx∗ xn

Figure 9.1: Bisection method for finding the root x∗ of f(x∗) = 0

between two bounds xa and xb in the domain x ∈ [a, b].

between these two bounds. This requires that f(xa) and f(xb) have
different signs. In our case shown in Fig. 9.1, f(xa) > 0 and f(xb) < 0,
but f(xa)f(xb) < 0. The obvious choice is xa = a and xb = b. The
next estimate is just the midpoint of A and B, and we have

xn =
1

2
(xa + xb). (9.3)

We then have to test the sign of f(xn). If f(xn) < 0 (having the same
sign as f(xb)), we then update the new upper bound as xb = xn. If
f(xn) > 0 (having the same sign as f(xa)), we update the new lower
bound as xa = xn. In a special case when f(xn) = 0, you have found
the true root. The iterations continue in the same manner until a given
accuracy is achieved or the prescribed number of iterations is reached.

Example 9.2: If we want to find
√
π, we have

f(x) = x2 − π = 0.

We can use xa = 1 and xb = 2 since π < 4 (thus
√
π < 2). The first

bisection point is

x1 =
1

2
(xa + xb) =

1

2
(1 + 2) = 1.5.

Since f(xa) < 0, f(xb) > 0 and f(x1) = −0.8916 < 0, we update the
new lower bound xa = x1 = 1.5. The second bisection point is

x2 =
1

2
(1.5 + 2) = 1.75,
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and f(x2) = −0.0791 < 0, so we update lower bound again xa = 1.75.
The third bisection point is

x3 =
1

2
(1.75 + 2) = 1.875.

Since f(x3) = 0.374 > 0, we now update the new upper bound xb =
1.875. The fourth bisection point is

x4 =
1

2
(1.75 + 1.875) = 1.8125.

It is within 2.5% of the true value of
√
π ≈ 1.7724538509.

In general, the convergence of the bisection method is very slow,
and Newton’s method is a much better choice in most cases.

9.1.2 Newton’s Method

Newton’s method is a widely-used classic method for finding the zeros
of a nonlinear univariate function of f(x) on the interval [a, b]. It is
also referred to as the Newton-Raphson method. At any given point
xn shown in Fig. 9.2, we can approximate the function by a Taylor
series

f(xn+1) = f(xn + ∆x) ≈ f(xn) + f ′(xn)∆x, (9.4)

where
∆x = xn+1 − xn, (9.5)

which leads to

xn+1 − xn = ∆x ≈ f(xn+1)− f(xn)

f ′(xn)
, (9.6)

or

xn+1 ≈ xn +
f(xn+1)− f(xn)

f ′(xn)
. (9.7)

Since we try to find an approximation to f(x) = 0 with f(xn+1), we
can use the approximation f(xn+1) ≈ 0 in the above expression. Thus
we have the standard Newton iterative formula

xn+1 = xn −
f(xn)

f ′(xn)
. (9.8)

The iteration procedure starts from an initial guess value x0 and con-
tinues until certain criteria are met. A good initial guess will use fewer
steps, however, if there is no obvious initial good starting point, you
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-
0

6

x

f(x)
A

xn

B

x∗
xn+1

Figure 9.2: Newton’s method of approximating the root x∗

by xn+1 from the previous value xn.

can start at any point on the interval [a, b]. But if the initial value is
too far from the true zero, the iteration process may fail. So it is a
good idea to limit the number of iterations.

Example 9.3: To find the root of

f(x) = x− e−x = 0,

we use Newton’s method starting from x0 = 1. We know that

f ′(x) = 1 + e−x,

and thus the iteration formula becomes

xn+1 = xn −
xn − e−xn

1 + e−xn
.

Since x0 = 1, we have

x1 = 1− 1− e−1

1 + e−1
≈ 0.5378828427,

and
x2 ≈ 0.5669869914, x3 ≈ 0.5671432859.

We can see that x3 (only three iterations) is very close to the true root is
x∗ ≈ 0.5671432904.

We have seen that Newton’s method is very efficient and that is
why it is so widely used. Therefore, we will implement this method
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using both Matlab and Octave programs which are listed in Appendix
B. Newton’s method can be modified for solving optimisation problems
because it is equivalent to finding the root of the first derivative f ′(x) =
0 once the objective function f(x) is given.

9.1.3 Iteration Method

Sometimes we have to find roots of functions of multiple variables,
and Newton’s method can be extended to carry out such a task. For
nonlinear multivariate functions

F (x) = [F1(x), F2(x), ..., FN (x)]T , (9.9)

where x = (x, y, ..., z)T = (x1, x2, ..., xp)
T , an iteration method is usu-

ally needed to find the roots

F (x) = 0. (9.10)

Newton-Raphson iteration procedure is widely used. We first approxi-
mate F (x) by a linear residual function R(x;xn) in the neighbourhood
of an existing approximation xn to x, and we have

R(x,xn) = F (xn) + J(xn)(x− xn), (9.11)

and
J(x) = ∇F , (9.12)

where J is the Jacobian of F . That is

Jij =
∂Fi
∂xj

. (9.13)

Here we have used the notation xn for the vector x at the n-th iteration,
which should not be confused with the power un or a vector u. This
might be confusing, but such notations are widely used in the literature
of numerical analysis. An alternative (and better) notation is to denote
xn by x(n), which shows the vector value at n-th iteration using a
bracket. However, we will use both notations if no confusion arises.

To find the next approximation xn+1 from the current estimate
xn, we have to try to satisfy R(xn+1,un) = 0, which is equivalent to
solving a linear system with J as the coefficient matrix

xn+1 = xn − J−1F(xn), (9.14)

under a given termination criterion ‖xn+1 − xn‖ ≤ ε. Iterations require
an initial starting vector x0, which is often set to x0 = 0.
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Example 9.4: To find the root of the system

x− e−y = 0, x2 − y = 0,

we first write it as

F (x) =

(
x1 − e−x2

x2
1 − x2

)

, x =

(
x1

x2

)

=

(
x
y

)

.

The Newton-Raphson iteration formula becomes

xn+1 = xn − J−1F (xn),

where the Jacobian J is

J =

(
∂F1

∂x1

∂F1

∂x2
∂F2

∂x1

∂F2

∂x2

)

=

(
1 e−x2

2x1 −1

)

,

whose inverse is

A = J−1 =
1

−1− 2x1e−x2

(
−1 −e−x2

−2x1 1

)

=
1

1 + 2x1e−x2

(
1 e−x2

2x1 −1

)

.

Therefore, the iteration equation becomes

xn+1 = xn − un

where

un = J−1F (xn) =
1

1 + 2x2e−x2

(
1 e−x2

2x1 −1

)(
x1 − e−x2

x2
1 − x2

)

=
1

1 + 2x1e−x2

(
x1 + (x2

1 − 1− x2)e
−x2

x2
1 + x2 − 2x1e

−x2

)

.

If we start with the initial guess x0 = (0, 0)T , we have the first estimate

x1 =

(
0
0

)

−
(
−1
0

)

=

(
1
0

)

,

and the second iteration gives

x2 =

(
1
0

)

−
(

0.33333
−0.33333

)

=

(
0.66667
0.3333

)

.
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If we continue this way, the third iteration gives

x3 = x2 −
(

0.01520796
−0.09082847

)

=

(
0.6514462
0.42415551

)

.

Finally, the fourth iteration gives

x4 = x3 −
(
−0.001472389
−0.002145006

)

=

(
0.65291859
0.4263005

)

.

The true root occurs at (0.6529186405, 0.4263027510), and we can see
that even after four iterations, the estimates are very close to the true
values.

9.2 Numerical Integration

An interesting feature of differentiations and integrations is that you
can get the explicit expressions of derivatives of most functions and
complicated expressions if they exist, while it is very difficult and some-
times impossible to express an integral in an explicit form, even for
seemingly simple integrands. For example, the error function, widely
used in engineering and sciences, is defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt. (9.15)

The integration of this simple integrand exp(−t2) does not lead to any
simple explicit expression, which is why it is often written as erf(), re-
ferred to as the error function. If we pick up a mathematical handbook,
we know that erf(0) = 0, and erf(∞) = 1, while

erf(0.5) ≈ 0.52049, erf(1) ≈ 0.84270. (9.16)

If we want to calculate such integrals, numerical integration is the best
alternative.

9.2.1 Trapezium Rule

Now if we want to numerically evaluate the following integral

I =

∫ b

a

f(x)dx, (9.17)

where a and b are fixed and finite. We know that the value of the
integral is exactly the total area under the curve y = f(x) between a
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x

y

y = f(x)

x0 = a x1 x2 xi xi+1 xn−1 xn = bx0 = a x1 x2 xi xi+1 xn−1 xn = bx0 = a x1 x2 xi xi+1 xn−1 xn = bx0 = a x1 x2 xi xi+1 xn−1 xn = bx0 = a x1 x2 xi xi+1 xn−1 xn = bx0 = a x1 x2 xi xi+1 xn−1 xn = bx0 = a x1 x2 xi xi+1 xn−1 xn = bx0 = a x1 x2 xi xi+1 xn−1 xn = b

P

Q

S

Figure 9.3: Numerical integration: n thin strips to approximate

the integral of a function f(x).

and b. As both the integral and the area can be considered as the sum
of the values over many small intervals, the simplest way of evaluating
such numerical integration is to divide up the integral interval into n
equal small sections and split the area into n thin strips so that h ≡
∆x = (b−a)/n, x0 = a and xi = ih+a(i = 1, 2, ..., n). The values of the
functions at the dividing points xi are denoted as yi = f(xi), and the
value at the midpoint between xi and xi+1 is labelled as yi+1/2 = fi+1/2

yi+1/2 = f(xi+1/2) = fi+1/2, xi+1/2 =
xi + xi+1

2
. (9.18)

The accuracy of such approximations depends on the number n and
the way to approximate the curve in each interval. Figure 9.3 shows
such an interval [xi, xi+1] which is exaggerated in the figure for clarity.
The curve segment between P and Q is approximated by a straight line
with a slope

∆y

∆x
=
f(xi+1)− f(xi)

h
, (9.19)

which approaches f ′(xi+1/2) at the midpoint point when h→ 0.

The trapezium (formed by P , Q, xi+1, and xi) is a better approxi-
mation than the rectangle (P , S, xi+1 and xi) because the former has
an area

Ai =
f(xi) + f(xi+1)

2
h, (9.20)
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which is close to the area

Ii =

∫ xi+1

xi

f(x)dx, (9.21)

under the curve in the small interval xi and xi+1. If we use the area Ai
to approximate Ii, we have the trapezium rule of numerical integration.
Thus, the integral is simply the sum of all these small trapeziums, and
we have

I ≈ h

2
[f0 + 2(f1 + f2 + ...+ fn−1) + fn]

= h[f1 + f2 + ...+ fn−1 +
(f0 + fn)

2
]. (9.22)

From the Taylor series (2.37), we know that

f(xi) + f(xi+1)

2
≈ 1

2

{

[f(xi+1/2)−
h

2
f ′(xi+1/2) +

1

2!
(
h

2
)2f ′′(xi+1/2)]

+[f(xi+1/2) +
h

2
f ′(xi+1/2) +

1

2!
(
h

2
)2]f ′′(xi+1/2)

}

= f(xi+1/2) +
h2

8
f ′′(xi+1/2). (9.23)

where O(h2f ′′) means that the value is the order of h2f ′′, or O(h2) =
Kh2f ′′ where K is a constant. Therefore, the error of the estimate of
I is h×O(h2f ′′) = O(h3f ′′).

9.2.2 Order Notation

Now let us briefly introduce the order notations. Loosely speaking, for
two functions f(x) and g(x), if

f(x)

g(x)
→ K, x→ x0, (9.24)

where K is a finite, non-zero limit, we write

f = O(g). (9.25)

The big O notation means that f is asymptotically equivalent to the
order of g(x). If the limit is unity or K = 1, we say f(x) is order of
g(x). In this special case, we write

f ∼ g, (9.26)

which is equivalent to f/g → 1 and g/f → 1 as x → x0. Obviously,
x0 can be any value, including 0 and ∞. The notation ∼ does not
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necessarily mean ≈ in general, though they might give the same results,
especially in the case when x→ 0 [for example, sinx ∼ x and sinx ≈ x
if x→ 0].

When we say f is order of 100 (or f ∼ 100), this does not mean
f ≈ 100, but it can mean that f is between about 50 and 150. The
small o notation is used if the limit tends to 0. That is

f

g
→ 0, x→ x0, (9.27)

or
f = o(g). (9.28)

If g > 0, f = o(g) is equivalent to f � g. For example, for ∀x ∈ R, we

have ex ≈ 1 + x+O(x2) ≈ 1 + x+ x2

2 + o(x).

Example 9.5: Another classical example is Stirling’s asymptotic series
for factorials

n! ∼
√

2πn(
n

e
)n(1 +

1

12n
+

1

288n2
− 139

51480n3
− ...). (9.29)

This is a good example of asymptotic series. For standard power expan-
sions, the error Rk(h

k) → 0, but for an asymptotic series, the error of
the truncated series Rk decreases compared with the leading term [here√

2πn(n/e)n]. However, Rn does not necessarily tend to zero. In fact,

R2 =
1

12n
·
√

2πn(n/e)n,

is still very large as R2 →∞ if n� 1. For example, for n = 100, we have
n! = 9.3326 × 10157, while the leading approximation is

√
2πn(n/e)n =

9.3248 × 10157. The difference between these two values is 7.7740 ×
10154, which is still very large, though three orders smaller than the leading
approximation.

9.2.3 Simpson’s Rule

The trapezium rule introduced earlier is just one of the simple and
popular schemes for numerical integration with the error of O(h3f ′′).
If we want higher accuracy, we can either reduce h or use a better
approximation for f(x)). A small h means a large n, which implies
that we have to do the sum of many small sections, and it may increase
the computational time.

On the other hand, we can use higher-order approximations for the
curve. Instead of using straight lines or linear approximations for curve
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segments, we can use parabolas or quadratic approximations. For any
consecutive three points xi−1, xi and xi+1, we can construct a parabola
in the form

f(xi + t) = fi + αt+ βt2, t ∈ [−h, h]. (9.30)

As this parabola must go through the three known points (xi−1, fi−1)
at t = −h, (xi, fi) at t = 0 and xi+1, fi+1 at t = h, we have the
following equations for α and β

fi−1 = fi − αh+ βh2, (9.31)

and
fi+1 = fi + αh+ βh2, (9.32)

which lead to

α =
fi+1 − fi−1

2h
, β =

fi−1 − 2fi + fi+1

h2
. (9.33)

We will see in later chapters that α is the centred approximation for
the first derivative f ′

i and β is the central difference scheme for the
second derivative f ′′

i . Therefore, the integral from xi−1 to xi+1 can be
approximated by

Ii =

∫ xi+1

xi−1

f(x)dx ≈
∫ h

−h
[fi+αt+βt

2]dt =
h

3
[fi−1+4fi+fi+1], (9.34)

where we have substituted the expressions for α and β. To ensure
the whole interval [a, b] can be divided up to form three-point approx-
imations without any point left out, n must be even. Therefore, the
estimate of the integral becomes

I ≈ h

3
[f0 +4(f1 + f3 + ...+ fn−1)+2(f2 + f4 + ...+ fn−2)+ fn], (9.35)

which is the standard Simpson’s rule.
As the approximation for the function f(x) is quadratic, an order

higher than the linear form, the error estimate of Simpson’s rule is thus
O(h4) or O(h4f ′′′′) to be more specific. There are many variations
of Simpson’s rule with higher order accuracies such as O(h5f (4)) and
O(h7f (6)).

Example 9.6: We know the exact value of the integral

I =

∫ π/2

0

sin2(x)dx =
π

4
.
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Let us now estimate it using the Simpson rule with n = 8 and h =
(π/2− 0)/8 = π/16. We have

I ≈ h

3
[f0 + 4(f1 + f3 + f5 + f7) + 2(f2 + f4 + f6) + f8].

Since fi = sin2(xi) = sin2(i ∗ h), we have f0 = 0, f1 = 0.03806, f2 =
0.14644, f3 = 0.308658, f4 = 0.5, f5 = 0.69134, f6 = 0.85355, f7 =
0.86193, and f8 = 1. Now the integral estimate is

I ≈ π

48
[0 + 4× 2.00 + 2× 1.50 + 1] ≈ 0.71994.

The true value is π/4 = 0.78539, so the error is about 9%. The order
of the estimate is O(h4f ′′′′). Since f ′′′′ = −8 cos2(x) + 8 sin2(x) or
|f ′′′′(0)| = 8, so the error is O(π4/164 ∗ 8) = O(0.01189). Thus, we can
expect the estimate to be accurate only to the first decimal place.

From the example, we have seen that the accuracy of Simpson’s rule
is only O(h4f ′′′′), and such estimate of integral usually requires very
small h (or large n). This means the evaluations of the integrand at
many points. Is there any way to go around this tedious slow process
and evaluate the integral more accurately using fewer points of eval-
uation? The answer is yes, and the numerical technique is called the
Gaussian integration or Gaussian quadrature.

9.3 Gaussian Integration

To get higher-order accuracy, we can use polynomials to construct var-
ious integration schemes. However, there is an easier way to do this.
That is to use the Gauss-Legendre integration or simply Gaussian in-
tegration. Since any integral I with integration limits a and b can be
transformed to an integral with limits −1 and +1 by using

ζ =
2(x− a)
(b− a) − 1, (9.36)

so that

I =

∫ b

a

g(x)dx =
(b − a)

2

∫ 1

−1

f(ζ)dζ, (9.37)

where we have used dx = (b−a)dζ/2. Therefore, we only have to study
the integral

J =

∫ 1

−1

f(ζ)dζ. (9.38)
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The n values of the function or n integration points are given by a
polynomial of n − 1 degree. For equal spacing h, this numerical inte-
gration technique is often referred to as the Newton-Cotes quadrature

J =

∫ 1

−1

f(dζ)dζ =

n∑

i=1

wif(ζi), (9.39)

where wi is the weighting coefficient attached to f(ζi). Such integral
will have an error of O(hn). For example, n = 2 with equal weighting
corresponds to the trapezium rule because

J = f−1 + f1. (9.40)

For the case of n = 3, we have

J =
1

3
[f−1 + 4f0 + f1], (9.41)

which corresponds to Simpson’s rule.
The numerical integration we use so far is carried out at equally-

spaced points x0, x1, ..., xi, ..., xn, and these points are fixed a priori.
There is no particular reason why we should use the equally-spaced
points apart from the fact that it is easy and simple. In fact, we can
use any sampling points or integration points as we wish to improve the
accuracy of the estimate to the integral. If we use n integration points
(ζi, i = 1, 2, ..., n) with a polynomial of 2n − 1 degrees or Legendre
polynomial Pn(x), we now have 2n unknowns fi and ζi. This means
that we can easily construct quadrature formula, often called Gauss
quadrature or Gaussian integration.

Mathematically, we have the Gauss quadrature

J =

∫ 1

−1

f(ζ)dζ =

n∑

i=1

wif(ζi), (9.42)

where ζi is determined by the zeros of the Legendre polynomial Pn(ζi) =
0 and the weighting coefficient is given by

wi =
2

(1− ζ2
i )[P

′
n(ζi)]2

. (9.43)

The error of this quadrature is of the order O(h2n). The proof of this
formulation is beyond the scope of this book. Readers can find the
proof in more advanced mathematical books.

Briefly speaking, Legendre polynomials are obtained by the follow-
ing generating function or Rodrigue’s formula

Pn(x) =
1

2nn!

dn(x2 − 1)n

dxn
. (9.44)
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Figure 9.4: Five integration points: a) Equally spaced with h = 1/4;

and b) Gauss points with |ζ1 − ζ3| ≈ 0.90617 and |ζ2 − ζ3| ≈ 0.53847.

For example,

P0(x) = 0, P1(x) = x, P2(x) =
1

2
(3x2 − 1), (9.45)

and

P3(x) =
1

2
(5x3 − 3x), P4 =

1

8
(3− 30x2 + 35x4). (9.46)

For both Newton-Cotes quadrature and Gauss quadrature, Figure 9.4
shows their difference and similarity.

The computation of locations ζi of the Gaussian integration points
and weighting coefficients wi is complicated, though straightforward
once we know the Legendre polynomials. For example, n = 2, we have

P2(ζ) =
1

2
(3ζ2 − 1) = 0, (9.47)

which has two solutions

ζ±1 = ±
√

1

3
≈ ±0.5774. (9.48)

Since P ′
2(ζ) = 3ζ, we have

w1 =
2

(1− ζ2
1 )(3ζ1)2

=
2

(1− (
√

1/3)2) ∗ (3
√

1/3)2
= 1 = w−1. (9.49)

The coefficients wi and the integration points are usually listed in tables
for various values of n.
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For multiple integrals

J =

∫ 1

−1

∫ 1

−1

f(ζ, η)dζdη, (9.50)

these Gaussian quadrature can easily be extended by evaluating the
integral with η being kept constant first, then evaluating the outer
integral. We have

J =

∫ 1

−1

[

∫ n

−1

f(ζ, η)dζ]dη =

∫ 1

−1

n∑

i=1

wif(ζi, η)dη

=

n∑

i=1

wi

∫ 1

−1

f(ζi, η)dη =

n∑

i=1

n∑

j=1

wiwjf(ζi, ηj), (9.51)

where we have used

∫ 1

−1

f(ζi, η)dη =

n∑

j=1

wjf(ζi, ηj). (9.52)

Example 9.7: To evaluate the integral

I =
2√
π

∫ 1

−1

e−x
2

dx =

∫ 1

−1

f(x)dx, f(x) =
2√
π
e−x

2

.

We know that its exact value from (9.15) is

I = 2 erf(1) = 1.685401585899...

Let us now estimate it using Simpson’s rule for three point integration at
x−1 = −1, x0 = 0 and x1 = 1, and we have

I ≈ 1

3
(f−1 + 4f0 + f1)

≈ 2

3
√
π

[e−(−1)2 + 4× 1 + e−(1)2 ] ≈ 1.7812,

which differs from its exact value by about 5.6%.

If we use the 3-point Gauss quadrature at x±1 = ±
√

3
5 and x0 = 0

with weighting coefficients w±1 = 5
9 and w0 = 8

9 , we have

I ≈
1∑

i=−1

wif(xi)
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≈ 2√
π

[
5

9
e−(−

√
3/5)2 +

8

9
× 1 +

5

9
e−(
√

3/5)2 ] ≈ 1.6911,

which is a better approximation than 1.7812. In fact, the error of Gauss
quadrature is just (1.6911−1.6854)/1.6911≈ 0.3%. This higher accuracy
is why the Gaussian quadrature is so widely used.

We will implement the 7-point Gaussian integration using both Mat-
lab and Octave and the programs will be provided in Appendix B. For
triple integrals and other integrals, the Gauss quadrature can be con-
structed in a similar way. We will see more numerical techniques in the
rest of the book.

9.4 Optimisation

Optimisation is everywhere. Almost routinely we have to minimise
the cost, and maximise the efficiency whether it is business, or plan-
ning your holidays or anything else. Mathematical programming is the
study of such planning procedure using mathematical tools. Nowadays,
computer simulations become an indispensable tool for implementing
various optimisation techniques. Here we will only briefly touch on
some of the basic ideas used in optimisation.

9.4.1 Unconstrained Optimisation

The simplest optimisation without any constraints is probably the
search of the maxima or minima of a function f(x). This requires
to find the root of the first derivatives or the stationary condition

f ′(x) = 0. (9.53)

However, the stationary condition f ′(x) = 0 is just a necessary condi-
tion, but it is not a sufficient condition. If f ′(x∗) = 0 and f ′′(x∗) > 0,
it is a local minimum. Conversely, if f ′(x∗) = 0 and f ′′(x∗) < 0, then
it is a local maximum. However, if f ′(x∗) = 0 but f ′′(x) is indefinite
(both positive and negative) when x → x∗, then x∗ corresponds to a
saddle point. For example, f(x) = x3 has a saddle point x∗ = 0 because
f ′(0) = 0 but f ′′ changes sign from f ′′(0+) > 0 to f ′′(0−) < 0.

Example 9.8: For example, in order to find the maximum or minimum
of a univariate function f(x)

f(x) = xe−x
2

, −∞ < x <∞, (9.54)
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we have to find first the stationary point x∗ when the first derivative f ′(x)
is zero. That is

df(x∗)

dx∗
= e−x

2
∗ − 2x2

∗e
−x2

∗ = 0. (9.55)

Since exp(−x2
∗) 6= 0, we have

x∗ = ±
√

2

2
. (9.56)

From the basic calculus we know that the maximum requires f ′′(x∗) ≤ 0
while minimum requires f ′′(x∗) ≥ 0. At x∗ =

√
2/2, we have

f ′′(x∗) = (4x2
∗ − 6)x∗e

−x2
∗ = −2

√
2e−1/2 < 0, (9.57)

so it corresponds to a maximum f(x∗) = 1
2e

−1/2. Similarly, at x∗=−
√

2/2,

f ′′(x∗) = 2
√

2e−1/2>0, we have a minimum f(x∗) = − 1
2e

−1/2.

Since a maximum of a function f(x) can be converted into a mini-
mum of A−f(x) where A is a large positive number, most optimisation
problems are more conveniently expressed in terms of minima. For ex-
ample, we know the maximum of f(x) = e−x

2

, x ∈ (−∞,∞) is 1 at
x∗ = 0. This problem can be converted to a minimum problem 1−f(x)
or 10− f(x) or any A− f(x) where A > 1.

9.4.2 Newton’s Method

The Newton’s method can be modified for solving optimisation prob-
lems because it is equivalent to finding the root of the first derivative
f ′(x) based on the stationary conditions once the objective function
f(x) is given. For a given function f(x) which is continuously differ-
entiable, we have the Taylor expansion about a known point x = xn
and ∆x = x− xn

f(x) = f(xn) + (∇f(xn))
T∆x+

1

2
∆xT∇2f(xn)∆x+ ..., (9.58)

which is written in terms of quadratic forms. This is minimised near a
critical point when ∆x is the solution of the following linear equation

∇f(xn) +∇2f(xn)∆x = 0. (9.59)

This leads to

x = xn −G−1∇f(xn), (9.60)
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where G = ∇2f(xn) is the Hessian matrix which is given by

G(x) ≡ ∇2f(x) ≡







∂2f
∂x2

1
... ∂2f

∂x1∂xn

...
...

∂2f
∂x1∂xn

. . . ∂2f
∂xn

2






, (9.61)

which is symmetric due to the fact that

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
. (9.62)

If the iteration procedure starts from the initial vector x(0) (usually
a guessed point in the domain), Newton’s iteration formula for the nth
iteration is

x(n+1) = x(n) −G−1(x(n))f(x(n)). (9.63)

It is worth pointing out that if f(x) is quadratic, then the solution can
be found exactly in a single step. However, this method is not efficient
for non-quadratic functions.

In order to speed up the convergence, we can use a smaller step size
α ∈ (0, 1] so that we have modified Newton’s method

x(n+1) = x(n) − αG−1(x(n))f(x(n)). (9.64)

It might sometimes be time-consuming to calculate the Hessian ma-
trix for second derivatives. A good alternative is to use an identity
matrix G = I so that G−1 = I, and we have the quasi-Newton method

x(n+1) = x(n) − αI∇f(x(n)), (9.65)

which is essentially the steepest descent method.

9.4.3 Steepest Descent Method

The essence of this method is to find the lowest possible objective func-
tion f(x) from the current point x(n). From the Taylor expansion of
f(x) about x(n), we have

f(x(n+1)) = f(x(n) + ∆s) ≈ f(x(n) + (∇f(x(n)))T∆s, (9.66)

where ∆s = x(n+1)−x(n) is the increment vector. Since we try to find
a lower (better) approximation to the objective function, it requires
that the second term on the right hand is negative. So

f(x(n) + ∆s)− f(x(n)) = (∇f)T∆s < 0. (9.67)
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From vector analysis, we know the inner product uTv of two vectors
u and v is largest when they are parallel but in opposite directions.
Therefore, (∇f)T∆s becomes the smallest when

∆s = −α∇f(x(n)), (9.68)

where α > 0 is the step size. This is the case when the direction ∆s
is along the steepest descent in the negative gradient direction. This
method is often referred to as the ‘hill-climbing’ in the case of finding
maxima.

The choice of the step size α is very important. A very small step
size means slow movement towards the local minimum, while a large
step may overshoot and subsequently makes it move far away from the
local minimum. Therefore, the step size α = α(n) should be different
at each iteration step and should be chosen so that it minimises the
objective function f(x(n+1)) = f(x(n), α(n)). Therefore, the steepest
descent method can be written as

f(x(n+1)) = f(x(n))− α(n)(∇f(x(n)))T∇f(x(n)). (9.69)

In each iteration, the gradient and step size will be calculated. Again, a
good initial guess of both the starting point and the step size is useful.

Example 9.9: Let us minimise the function

f(x1, x2) = 10x2
1 + 5x1x2 + 10(x2 − 3)2,

where
(x1, x2) = [−10, 10]× [−15, 15],

using the steepest descent method starting with the initial x(0) = (10, 15)T .
We know that the gradient

∇f = (20x1 + 5x2, 5x1 + 20x2 − 60)T ,

therefore
∇f(x(0)) = (275, 290)T .

In the first iteration, we have

x(1) = x(0) − α0

(
275
290

)

.

The step size α0 should be chosen such that f(x(1)) is at the minimum,
which means that

f(α0) = 10(10−275α0)
2 +5(10−275α0)(15−290α0)+10(12−290α0)

2,
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should be minimised. This becomes an optimisation problem for a single
independent variable α0. All the techniques for univariate optimisation
problems such as Newton’s method can be used to find α0. We can also
obtain the solution by setting

df

dα0
= −159725 + 3992000α0 = 0,

whose solution is α0 ≈ 0.04001.
At the second step, we have

∇f(x(1)) = (−3.078, 2.919)T , x(2) = x(1) − α1

(
−3.078
2.919

)

.

The minimisation of f(α1) gives α1 ≈ 0.066, and the new location is

x(2) ≈ (−0.797, 3.202)T .

At the third iteration, we have

∇f(x(2)) = (0.060, 0.064)T , x(3) = x(2) − α2

(
0.060
0.064

)

.

The minimisation of f(α2) leads to α2 ≈ 0.040, and thus

x(3) ≈ (−0.8000299, 3.20029)T .

Then, the iterations continue until a prescribed tolerance is met.
From calculus, we can set the first partial derivatives equal to zero

∂f

∂x1
= 20x1 + 5x2 = 0,

∂f

∂x2
= 5x1 + 20x2 − 60 = 0,

we know that the minimum occurs exactly at

x∗ = (−4/5, 16/5)T = (−0.8, 3.2)T .

We see that the steepest descent method gives almost the exact solution
after only 3 iterations.

In finding the step size αn in the above steepest descent method, we
have used the stationary condition df(αn)/dαn = 0. Well, you may say
that if we use this stationary condition for f(α0), why not use the same
method to get the minimum point of f(x) in the first place. There are
two reasons here. The first reason is that this is a simple example for
demonstrating how the steepest descent method works. The second
reason is that even for complicated multiple variables f(x1, ..., xp) (say
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p = 500), f(αn) at any step n is still a univariate function, and the
optimisation of such f(αn) is much simpler compared with the original
multivariate problem.

It is worth pointing out that in our example, the convergence from
the second iteration to the third iteration is slow. In fact, the steepest
descent is typically slow once the local minimisation is near. This is
because near the local minimisation the gradient is nearly zero, and
thus the rate of descent is also slow. If high accuracy is needed near
the local minimum, other local search methods should be used.

9.4.4 Constrained Optimisation

All optimisation problems can in general be expressed as nonlinearly
constrained optimisation problems, often written in the following generic
form

maximise/minimise
x∈<n f(x),

subject to φj(x) = 0, (j = 1, 2, ...,M),

ψk(x) ≥ 0, (k = 1, ..., N), (9.70)

where f(x) is the objective function or cost function. φi(x) are con-
straints in terms of M equalities, and ψj(x) are constraints written as
N inequalities. If the constraints are all linear, it becomes a linearly
constrained problem.

If we want to minimise a function f(x)

minimise
x∈<n f(x), (9.71)

subject to the following nonlinear equality constraint

g(x) = 0, (9.72)

then we can combine the objective function f(x) with the equality to
form a new function, called the Lagrangian

Π = f(x) + λg(x), (9.73)

where λ is the Lagrange multiplier, which is an unknown scalar to be
determined. This essentially converts the constrained problem into an
unconstrained problem for Π(x). If we have m equalities,

gj(x) = 0, (j = 1, ...,m), (9.74)

then we need M Lagrange multipliers λj(j = 1, ...,m). We have

Π(x, λj) = f(x) +

m∑

j=1

λjgj(x). (9.75)
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The requirement of stationary conditions leads to

∂Π

∂xi
=

∂f

∂xi
+

m∑

j=1

λj
∂gj
∂xi

, (i = 1, ..., p), (9.76)

and
∂Π

∂λj
= gj = 0, (j = 1, ...,m). (9.77)

These m + p equations will determine the p-component of x and m
Lagrange multipliers. As

∂Π

∂gj
= λj ,

we can consider λj as the rate of the change of the quantity Π as a
functional of gj .

Example 9.10: To solve the optimisation problem

maximise
(x,y)∈<2f(x, y) = xy2,

subject to the condition g(x, y) = x2 + y2 − 1 = 0. We define

Π = f(x, y) + λg(x, y) = xy2 + λ(x2 + y2 − 1).

The stationary conditions become

∂Π

∂x
= y2 + 2λx = 0,

∂Π

∂y
= 2xy + 2λy = 0,

and
∂Π

∂λ
= x2 + y2 − 1 = 0.

The condition xy + λy = 0 implies that y = 0 or λ = −x. The case of
y = 0 can be eliminated as it leads to x = 0 from y2 + 2λx = 0, which
does not satisfy the last condition x2 + y2 = 1. Therefore, the only valid
solution is λ = −x. From the first stationary condition, we have

y2 − 2x2 = 0, or y2 = 2x2.

Substituting this into the third stationary condition, we have

x2 − 2x2 − 1 = 0,

which gives
x = ±1.
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So we have four stationary points

P1(1,
√

2), P2(1,−
√

2), P3(−1,
√

2), P4(−1,−
√

(2)).

The values of function f(x, y) at these four points are

f(P1) = 2, f(P2) = 2, f(P3) = −2, f(P4) = −2.

Thus, the function reaches its maxima at (1,
√

2) and (1,−
√

2). The
Lagrange multiplier for this case is λ = −1.

Mathematical optimisation itself has vast literature. There are
other important methods such as linear programming, simplex method,
Hooke-Jeeves pattern search, metaheuristic methods, bioinspired algo-
rithms, and nonlinear programming.
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Chapter 10

Finite Difference

Method

The finite difference method is one of the most popular methods that
are used commonly in computer simulations. It has the advantage of
simplicity and clarity, especially in 1-D configuration and other cases
with regular geometry. The finite difference method essentially trans-
forms a differential equation into a coupled set of algebraic equations
by replacing the continuous derivatives with finite difference approx-
imations on a grid of mesh or node points that spans the domain of
interest based on the Taylor series expansions. In general, the boundary
conditions and boundary nodes need special treatment.

10.1 Integration of ODEs

The second-order or higher-order ordinary differential equations can be
written as a first-order system of ODEs. Since the technique for solving
a system is essentially the same as that for solving a single equation

dy

dx
= f(x, y), (10.1)

we shall focus on the first-order equation in the rest of this section. In
principle, the solution can be obtained by direct integration,

y(x) = y0 +

∫ x

x0

f(x, y(x))dx, (10.2)

but in practice it is usually impossible to do the integration analyti-
cally as it requires the solution of y(x) to evaluate the right-hand side.
Thus, some approximations shall be utilised. Numerical integration

185
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is the most common technique for obtaining approximate solutions.
There are various integration schemes with different orders of accuracy
and convergent rates. These schemes include the simple Euler scheme,
Runge-Kutta method, Relaxation method, and many others.

10.1.1 Euler Scheme

Using the notation h = ∆x = xn+1 − xn, yn = y(xn), xn = x0 +
n∆x (n = 0, 1, 2, ..., N), and ′ = d/dx for convenience, the explicit
Euler scheme can simply be written as

yn+1 = yn +

∫ xn+1

xn

f(x, y)dx ≈ yn + hf(xn, yn). (10.3)

This is a forward difference method as it is equivalent to the approxi-
mation of the first derivative

y′n =
yn+1 − yn

∆x
. (10.4)

The order of accuracy can be estimated using the Taylor expansion

yn+1 = yn + hy′|n +
h2

2
y′′|n + ... ≈ yn + hf(xn, yn) + O(h2). (10.5)

Thus, the Euler method is first-order accurate.
For any numerical algorithms, the algorithm must be stable in order

to reach convergent solutions. Thus, stability is an important issue in
numerical analysis. Defining δy as the discrepancy between the actual
numerical solution and the true solution of the Euler finite difference
equation, we have

δyn+1 = [1 + hf ′(y)] = ξδyn. (10.6)

In order to avoid the discrepancy to grow, it requires the following
stability condition |ξ| ≤ 1.

Example 10.1: For the ordinary differential equation

y′(x) + 2xy(x) + y2(x) = 0,

with the initial condition y(0) = 1. Its analytical solution (see Example.
4.1) is

y(x) =
2e−x

2

(
√
πerf(x) + 2)

.

Now let us solve it by the Euler scheme. Now we have

f(x) = −2xy(x)− y2(x),
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Figure 10.1: Comparison of numerical results with analytical solution.

and
yn+1 = yn + hf(xn, yn).

Using h = ∆x = 0.25, x0 = 0 and y0(x0) = 1, we have

y1(0.25) = 1 + hf(x0, y0) ≈ 1 + 0.25× (−1) = 0.75,

y2(0.5) = 1 + hf(x1, y1) ≈ 0.75 + 0.25× (−0.75) = 0.5156.

Similarly,
y3(0.75) ≈ 0.3203, y4(1.0) ≈ 0.1745.

The analytical value at x = 1 is

y∗ =
2e−12

(
√
πerf(1) + 2)

≈ 0.210599.

We can see that y4 underestimates the true value by about 17% (see Fig.
10.1). As h = 0.25, so the error will be in the order of O(h), so about
25%. Indeed, this simple integration scheme is not so accurate.

The stability restricts the size of interval h, which is usually small.
One alternative that can use larger h is the implicit Euler scheme,
and this scheme approximates the derivative by a backward difference
y′n = (yn − yn−1)/h and the right-hand side of Eq.(10.2) is evaluated
at the new yn+1 location. Now the scheme can be written as

yn+1 = yn + hf(xn+1, yn+1). (10.7)

The stability condition becomes

δyn+1 = ξδyn =
δyn

1− hf ′(y)
, (10.8)
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which is always stable if f ′(y) = ∂f
∂y ≤ 0. This means that any step

size is acceptable. However, the step size cannot be too large as the
accuracy reduces as the step size increases. Another practical issue
is that, for most problems such as nonlinear ODEs, the evaluation of
y′ and f ′(y) requires the value of yn+1 which is unknown. Thus, an
iteration procedure is needed to march to a new value yn+1, and the
iteration starts with a guess value which is usually taken to be zero for
most cases. The implicit scheme generally gives better stability.

10.1.2 Leap-Frog Method

The Leap-frog scheme is the central difference

y′n =
yn+1 − yn−1

2∆x
, (10.9)

which leads to
yn+1 = yn−1 + 2hf(xn, yn). (10.10)

The central difference method is second-order accurate. In a similar
way as Eq.(10.6), the leap-frog method becomes

δyn+1 = δyn−1 + 2hf ′(y)δyn, (10.11)

or
δyn+1 = ξ2δyn−1, (10.12)

where ξ2 = 1 + 2hf ′(y)ξ. This scheme is stable only if |ξ| ≤ 1, and
a special case is |ξ| = 1 when f ′(y) is purely imaginary. Therefore,
the central scheme is not necessarily a better scheme than the forward
scheme.

10.1.3 Runge-Kutta Method

We have so far seen that stability of the Euler method and the central
difference method is limited. The Runge-Kutta method uses a trial
step to the midpoint of the interval by central difference and combines
with the forward difference at two steps

ŷn+1/2 = yn +
h

2
f(xn, yn), (10.13)

yn+1 = yn + hf(xn+1/2, ŷn+1/2). (10.14)

This scheme is second-order accurate with higher stability compared
with previous simple schemes. One can view this scheme as a predictor-
corrector method. In fact, we can use multisteps to devise higher-order
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methods if the right combinations are used to eliminate the error terms
order by order. The popular classical Runge-Kutta method can be
written as

a = hf(xn, yn), b = hf(xn + h/2, yn + a/2), c = hf(xn + h, yn + b/2),

d = hf(xn + h, yn + c), yn+1 = yn +
a+ 2(b+ c) + d

6
, (10.15)

which is fourth-order accurate. Generally speaking, the higher-order
scheme is better than the lower scheme, but not always.

10.2 Hyperbolic Equations

The numerical solution of partial differential equations is more compli-
cated than that of ODEs because it involves time and space variables
and the geometry of the domain of interest. Usually, boundary con-
ditions are more complex. In addition, nonlinear problems are very
common in engineering applications. We start with the simplest first-
order equations and then move onto more complicated cases.

10.2.1 First-Order Hyperbolic Equation

For simplicity, we start with the one-dimensional scalar equation of
hyperbolic type,

∂u

∂t
+ c

∂u

∂x
= 0, (10.16)

where c is a constant or the velocity of advection. By using the forward
Euler scheme for time and centred-spaced scheme, we have

un+1
j − unj

∆t
+ c[

unj+1 − unj−1

2h
] = 0, (10.17)

where t = n∆t, n = 0, 1, 2, ..., x = x0 + jh, j = 0, 1, 2, ..., and h =
∆x. In order to see how this method behaves numerically, we use the
von Neumann stability analysis by assuming that the solutions are the
spatial eigenmodes or Fourier modes. Let look at it as an example.

Example 10.2: Assuming the independent solutions or eigenmodes or
Fourier modes in spatial coordinate x in the form of unj = ξneikhj , and
substituting into Eq.(10.17), we have

ξn(ξ − 1)eikhj

∆t
+ c

ξn[eikh − e−ikh]eikhj
2h

= 0.
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Dividing both sides by ξneikhj and using sinx = (eix − e−ix)/2, we have

ξ = 1− i c∆t
h

sin(kh). (10.18)

The stability criteria |ξ| ≤ 1 require

|ξ| =
√

1 + (
c∆t

h
)2 sin2 kh ≤ 1,

or

(
c∆t

h
)2 sin2 kh ≤ 0.

However, this inequality is impossible to satisfy and this scheme is thus
unconditionally unstable.

To avoid the difficulty of instability, we can use other schemes such
as the upwind scheme and Lax scheme. For the upwind scheme, the
equation becomes

un+1
j − unj

∆t
+ c[

unj − unj−1

h
] = 0, (10.19)

whose stability condition is

|ξ| = |1− c∆t

h
[1− cos(kh) + i sin(kh)]| ≤ 1, (10.20)

which is equivalent to

0 <
c∆t

h
≤ 1. (10.21)

This the well-known Courant-Friedrichs-Lewy stability condition, often
referred to as the Courant stability condition. Thus, the upwind scheme
is conditionally stable.

10.2.2 Second-Order Wave Equation

Higher-order equations such as second-order wave equation can be writ-
ten as a system of hyperbolic equations and then be solved using nu-
merical integration. They can also be solved by direct discretisation
using finite difference scheme. The wave equation

∂2u

∂t2
= c2

∂2u

∂x2
, (10.22)

consists of second derivatives. If we approximate the first derivatives
at each time step n using

u′i =
uni+1 − uni

∆x
, u′i−1 =

uni − uni−1

∆x
, (10.23)
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Figure 10.2: Travelling wave solution of utt − c2uxx = 0.

then we can use the following approximation for the second derivative

u′′i =
u′i − u′i−1

∆x
=
uni+1 − 2uni + uni−1

(∆x)2
. (10.24)

This is in fact a central difference scheme of second-order accuracy.
If we use the similar scheme for time-stepping, then we get a central
difference scheme in both time and space.

Thus, the numerical scheme for this equation becomes

un+1
i − 2uni + un−1

i

(∆t)2
= c2

uni+1 − 2uni + uni−1

(∆x)2
. (10.25)

This is a two-level scheme with a second-order accuracy. The idea of
solving this difference equation is to express (or to solve) un+1

i at time
step t = n + 1 in terms of the known values or data uni and un−1

i at
two previous time steps t = n and t = n− 1.

Solving the wave equation (10.22) with the initial condition

u(x, 0) = qe−[ 20
L

(x−L
2 ]2 , (10.26)

and wave reflection boundary conditions at both ends u(0, t) = u(L, t) =
0, we have the solution shown in Figure 10.2. We can see that the ini-
tial profile is split into two travelling waves: one travels to the left and
one to the right.

10.3 Parabolic Equation

For the parabolic equation such as the diffusion or heat conduction
equation

∂u

∂t
=

∂

∂x
(D

∂u

∂x
), (10.27)
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a simple Euler method for the time derivative and centred second-order
approximations for space derivatives lead to

un+1
j = unj +

D∆t

h2
(unj+1 − 2unj + unj−1). (10.28)

Let us look at its stability.

Example 10.3: From the application of von Neumann stability analysis
by substituting unj = ξneikhj into this equation, we have

ξn+1eikhj = ξneikhj +
D∆tξn

h2
[eikh(j+1) − 2eikhj + eikh(j−1)].

Dividing both sides by ξneikhj , we have

ξ = 1 +
D∆t

h2
[eikh − 2 + e−ikh].

Using cosx = (eix + e−ix)/2 and sin2(x/2) = (1− cosx)/2, we have

ξ = 1− 4D∆t

h2
sin2(

kh

2
). (10.29)

The stability requirement ξ ≤ 1 leads to the constraint on the timestep,

∆t ≤ h2

2D
. (10.30)

This scheme is conditionally stable.

For simplicity, we consider a 1-D heat conduction equation ut =
κuxx with an initial condition

u(x, 0) = q[H(x− 5L/8)−H(x− 3L/8)]

whereH(x) is a Heaviside function: H(x) = 1, if (x ≥ 0), andH(x) = 0
if (x < 0).

The evolution of the temperature profile is shown in Figure 10.3
where the initial profile is plotted as a dashed curve. We can see that
the profile is gradually smoothed out as time increases and this is the
typical behaviour of the diffusive system. The time-stepping scheme
we used limits the step size of time as larger time steps will make the
scheme unstable. There are many ways to improve this, and one of
most widely used schemes is the implicit scheme.

To avoid the difficulty caused by very small timesteps, we now use
an implicit scheme for time derivative differencing, and thus we have

un+1
j − unj =

D∆t

h2
(un+1
j+1 + 2un+1

j + un+1
j−1 ). (10.31)
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Figure 10.3: The 1-D time-dependent diffusion equation: ut −κuxx = 0.

Applying the stability analysis, we have

ξ =
1

1 + 4D∆t
h2 sin2 kh

2

, (10.32)

whose norm is always less than unity (|ξ| ≤ 1). This means the implicit
scheme is unconditionally stable for any size of time steps. That is why
implicit methods are more desirable in simulations. However, there is
one disadvantage of this method, which requires more programming
skills because the inverse of a large matrix is usually needed in implicit
schemes.

10.4 Elliptical Equation

In the parabolic equation, if the time derivative is zero or u does not
change with time ut = 0, then we reach a steady-state problem that is
governed by the elliptic equation. For the steady state heat conduction
problem, we generally have the Poisson problem,

∇ · [κ(u, x, y, t)∇u] = f, (10.33)

If κ is a constant, this becomes

∇2u = q, q =
f

κ
. (10.34)

There are many methods available to solve this problem, such as the
boundary integral method, the relaxation method, and the multigrid
method. Two major ones are the long-time approximation of the tran-
sient parabolic diffusion equations, the other includes the iteration
method. Long time approximation method is essentially based on the
fact that the parabolic equation

∂u

∂t
+ κ∇2u = f, (10.35)
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evolves with a typical scale of
√
κt. If

√
κt � 1, the system is ap-

proaching its steady state. Assuming t → ∞ and κ � 1, we then
have

∇2u =
f

κ
− 1

κ
ut → 0. (10.36)

Thus, the usual numerical methods for solving parabolic equations are
valid. However, other methods may obtain the results more quickly.

The iteration method uses the second-order scheme for space deriva-
tives, and equation (10.34) in the 2-D case becomes

ui+1,j − 2ui,j + ui−1,j

(∆x)2
+
ui,j+1 − 2ui,j + ui,j−1

(∆y)2
= q. (10.37)

If we use ∆x = ∆y = h, then the above equation simply becomes

(ui,j+1 + ui,j−1 + ui+1,j + ui−1,j)− 4ui,j = h2q, (10.38)

which can be written as
Au = b. (10.39)

In principle, one can solve this equation using matrix inverse techniques
such as the Gauss-Seidel iteration.
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Chapter 11

Finite Volume Method

11.1 Introduction

The finite difference method discussed in the previous chapter approx-
imates the ordinary differential equations and partial differential equa-
tions using Taylor series expansions, resulting in a system of algebraic
equations. The finite volume method resembles the finite difference
method in certain ways but the starting point is the integral formula-
tion of the problem. It uses the integral form of the partial differential
equations in terms of conservation laws, then approximates the surface
and boundary integrals in the control volumes. This becomes conve-
nient for problems involving flow or flux boundaries.

For a hyperbolic equation that is valid in the domain Ω with bound-
ary ∂Ω,

∂u

∂t
−∇ · (κ∇u) = q, (11.1)

or written in terms of flux function F = F(u) = −κ∇u, we have

∂u

∂t
+∇ ·F = q. (11.2)

The integral form of this equation becomes

∫

Ω

∂u

∂t
dΩ +

∫

Ω

∇ ·F =

∫

Ω

qdΩ. (11.3)

If the integral form is decomposed into many small control volumes, or
finite volumes, Ω =

⋃N
i=1 Ωi and Ωi

⋂
Ωj = ∅. By defining the control

volume cell average or mean value

ui =
1

Vi

∫

Ωi

udΩi, qi =
1

Vi

∫

Ωi

qdΩi, (11.4)

195
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where Vi = |Ωi| is the volume of the small control volume Ωi, the above
equation can be written as

∂ui
∂t

+

N∑

i=1

1

Vi

∫

Ωi

∇ ·F(ui)dΩi = qi, (11.5)

By using the divergence theorem

∫

V

∇ · F =

∫

Γ

F · ndA, (11.6)

we have

∂ui
∂t

+

N∑

i=1

1

Vi

∫

Γi

F · dS = qi, (11.7)

where dS = ndA is the surface element and n is the outward point-
ing unit vector on the surface Γi enclosing the finite volume Ωi. The
integration can be approximated using various numerical integration
schemes. In the simplest 1-D case with h = ∆x, the integration

ui =
1

h

∫ (i+1/2)h

(i−1/2)h

udx, (11.8)

is a vertex-centred finite volume scheme. In the following sections, we
will discuss the three major types of partial differential equations (el-
liptic, parabolic and hyperbolic) and their finite volume discretisations.

11.2 Elliptic Equations

Laplace’s equation is one of the most studied elliptic equations

∇2u(x, y) = 0, (x, y) ∈ Ω, (11.9)

its integral form becomes

∫

Ω

∇2udΩ =

∫

Γ

∂u

∂n
· dS = 0. (11.10)

The end equations after discretisation will depend on the details of
the problem such as boundary conditions and also the geometry of the
domain. Let us look at an example.

Example 11.1: For the simple regular 2-D grid points (i∆x, j∆y), the
control volume in this case is a cell centred at (i∆x, j∆y) with a size of
∆x (along x−axis) and ∆y (along y−axis), and the boundary integral on
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any cell consists of four parts integrated on each of the four sides. By
using the simple approximation ∂u

∂n with ∂u
∂x = (ui+1,j − ui,j)/∆x and

∂u
∂y = (ui,j+1 − ui,j)/∆y, we have

∫

Ωi,j

∂u

∂n
dΩ=

∆y

∆x
(ui+1,j+ui−1,j−2ui,j)+

∆x

∆y
(ui,j+1+ui,j−1−2ui,j) = 0.

Dividing both sides with ∆x∆y, and letting ∆x = ∆y = h, we obtain

(ui+1,j + ui,j+1 + ui−1,j + ui,j−1)− 4ui,j = 0, (11.11)

which resembles finite difference methods in many ways. In fact, this is
exactly the Laplace operator for a 5-point differencing scheme.

11.3 Hyperbolic Equations

For the hyperbolic equation of the conservation law in the 1-D case

∂u

∂t
+
∂Ψ(u)

∂x
= 0, (11.12)

we have its integral form in the fixed domain

∫ xb

xa

∂u

∂t
dx =

∂

∂t

∫ xb

xa

udx = −{Ψ[u(xb)]−Ψ[u(xa)]} = 0. (11.13)

If we use the mid-point u∗ to approximate the integral, we have

(xb − xa)
∂u∗

∂t
= −{Ψ[u(xb)]−Ψ[u(xa)]}. (11.14)

If we choose the control volume [(i − 1/2)∆x, (i+ 1/2)∆x] centred at
the mesh point xi = i∆x = ih with the approximation ui ≈ u∗i in
each interval, and using the forward differencing scheme for the time
derivative, we have

un+1
i − uni = −∆t

h
[Ψ(xi+1/2)−Ψ(xi−1/2)]. (11.15)

By further approximation of the flux Ψ(xi+1/2) ≈ Ψ(xi), we have the
upward scheme

un+1
i − uni = −∆t

h
[Ψ(ui)−Ψ(ui−1)], (11.16)
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which is conditionally stable as we know this from the finite difference
method. For the simplest flux Ψ(u) = cu, we have

un+1 = uni −
c∆t

h
(uni − uni−1), (11.17)

and its stability requires that

0 <
c∆t

h
≤ 1. (11.18)

11.4 Parabolic Equations

For the case of heat conduction

∂u

∂t
= k

∂2u

∂x2
+ q(u, x, t), (11.19)

we have its integral form

∫

t

∫

Ω

(
∂u

∂t
− k∂

2u

∂x2
− q)dxdt = 0. (11.20)

If we use the control volume from (i−1/2)h to (i+1/2)h where h = ∆x,
and with time from step n to n+ 1, we have

∫ (n+1)∆t

n∆t

∫ (i+1/2)h

(i−1/2)h

(
∂u

∂t
− k∂

2u

∂x2
− q)dxdt = 0. (11.21)

By using the mid-point approximation

∫ b

a

ψ(x)dx = ψ[
(a+ b)

2
](b − a), (11.22)

and the DuFort-Frankel scheme where we first approximate the gradient

∂2u

∂x2
=
uni+1 − 2uni + uni−1

h2
, (11.23)

then replace −2uni with −(un+1
j + un−1

j ), we have

un+1
i − un−1

i

2∆t
=

[(uni+1 − (un+1
i + un−1

i ) + uni−1)]

h2
+ qni , (11.24)

where we have used the central scheme for time as well. This is exactly
the DuFort-Frankel explicit scheme in the finite difference method; how-
ever, the starting point is different. In addition, the finite volume
scheme is more versatile in dealing with irregular geometry and more
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Figure 11.1: Heat conduction simulations via finite volume method.

natural in applying boundary conditions. Following the stability anal-
ysis, we get |ξ| < 1 is always true and thus the Dufort-Frankel scheme
is unconditionally stable for all ∆t and ∆x.

Example 11.2: In order to demonstrate how the finite volume method
works and also show the similarity and difference between the finite volume
method and the finite difference method, we start with a simple heat
conduction problem

∂u

∂t
= k

∂2u

∂x2
,

with boundary and initial conditions

u(x, 0) = 0.1| sin(4πx/L)|, u(0, t) = 1, u(0, t) = 0.

Using the finite volume method (11.24) and solving for un+1
i , we have

un+1
i =

1− β
1 + β

un−1
i +

β

1 + β
[uni+1 + uni−1],

where β ≡ 2k∆t/h2. The numerical solution is shown in Fig. 11.1 where
the dashed curve corresponds to the initial profile while the solid curve
corresponds to the profile at t = 0.03 or after 150 time steps.
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Chapter 12

Finite Element Method

In the finite difference methods, we approximate the equations at a fi-
nite number of discrete points, and there are many limitations in finite
difference methods. One such disadvantage is that it is not straight-
forward to deal with irregular geometry. More versatile and efficient
methods are greatly needed. In fact, the finite element method is one
of the most successful methods in scientific computing and has a wide
range of applications.

The basic idea of finite element analysis is to divide the domain
into many small blocks or elements as shown in Fig. 12.1. This is
equivalent to imaginarily cutting a solid structure such as a building or
geological region into many pieces or elements. These small blocks are
characterised by nodes, edges and surfaces, and the whole domain can
be considered as if these blocks or elements are glued together at these
nodes and along the element boundaries. In this way, we essentially
transform a continuum system with infinite degrees of freedom into a
discrete finite system with finite degrees of freedom. In fact, this is the
origin of the name ‘finite elements’. Since most continuum systems are
governed by differential equations, the major advantage of this trans-
formation is that the differential equation for a continuum system is
transformed into a set of simultaneous algebraic equations for the dis-
crete system with a finite number of elements. The approximations to
any field quantities such as displacements and stresses over these finite
elements use the piecewise polynomial interpolation techniques.

The fundamental aim of finite element analysis is to formulate the
numerical method in such a way that the partial differential equation,
in combination with the appropriate boundary conditions and loads,
will be transformed into algebraic equations in terms of matrices. For
time-dependent problems involving partial differential equations, the
equations will be transformed into an ordinary differential equation in

201



202 Chapter 12. Finite Element Method

Figure 12.1: Concept of finite elements.

terms of matrices, which will in turn be discretised and converted into
algebraic equations by time-stepping or some iteration techniques. For
example, a linear elastic problem can be formulated in such a way that
it is equivalent to an equation of the following type

Ku = f , (12.1)

where K is the stiffness matrix, and f is a vector corresponding to
nodal forces and some contribution from boundary conditions. u is the
unknown vector to be solved and it corresponds to a nodal degree of
freedom such as the displacement.

12.1 Concept of Elements

12.1.1 Simple Spring Systems

The basic idea of finite element analysis is to divide a model into many
pieces or elements with discrete nodes. These elements form an approx-
imate system to the whole structure in the domain of interest, so that
the physical quantities such as displacements can be evaluated at these
discrete nodes. Other quantities such as stresses and strains can then
be evaluated at certain points (usually Gaussian integration points)
inside elements. The simplest elements are those with two nodes in
1-D, the triangular element with three nodes in 2-D, and tetrahedral
elements with four nodes in 3-D.

In order to show the basic concept, we now focus on the simplest
1-D spring element with two nodes (see Figure 12.2). The spring has
a stiffness constant k (N/m) with two nodes i and j. At nodes i and
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Figure 12.2: A spring element.
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Figure 12.3: A simple spring system.

j, the displacements (in metres) are ui and uj, respectively. fi and fj
are nodal forces.

From Hooke’s law, we know the displacement ∆u = uj−ui is related
to f , or

f = k(∆u). (12.2)

At node i, we have

fi = −f = −k(uj − ui) = kui − kuj, (12.3)

and at node j, we get

fj = f = k(uj − ui) = −kui + kuj . (12.4)

These two equations can be combined into a matrix equation

(
k −k
−k k

)(
ui
uj

)

=

(
fi
fj

)

, or Ku = f . (12.5)

Here K is the stiffness matrix, u and f are the displacement vector and
force vector, respectively. This is the basic spring element, and let us
see how it works in a spring system such as shown in Figure 12.3 where
three different springs are connected in series.

For a simple spring system shown in Figure 12.3, we now try to
determine the displacements of ui(i = 1, 2, 3, 4). In order to do so, we
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have to assemble the whole system into a single equation in terms of
global stiffness matrix K and forces f . As these three elements are
connected in series, the system can be assembled element by element.
For element E1, its contribution to the global matrix is

(
k1 −k1

−k1 k1

)(
u1

u2

)

=

(
f1
f2

)

, (12.6)

which is equivalent to
K1u = fE1

, (12.7)

where 





k1 −k1 0 0
−k1 k1 0 0
0 0 0 0
0 0 0 0













u1

u2

u3

u4







=







f1
f2
.
.






, (12.8)

and fTE1
= (f1, f2, 0, 0). Similarly, for element E2, we have

(
k2 −k2

−k2 k2

)(
u2

u3

)

=

(
−f2
f3

)

, (12.9)

or

K2 =







0 0 0 0
0 k2 −k2 0
0 −k2 k2 0
0 0 0 0






, (12.10)

where we have used the balance at node 2. For element E3, we have

(
k3 −k3

−k3 k3

)(
u3

u4

)

=

(
−f3
f∗

)

, (12.11)

or

K3 =







0 0 0 0
0 0 0 0
0 0 k3 −k3

0 0 −k3 k3






, (12.12)

where f4 = f∗ has been used. We can now add the three sets of
equations together to obtain a single equation







k1 −k2 0 0
−k1 k1 + k2 −k2 0
0 −k2 k2 + k3 −k3

0 0 −k3 k3













u1

u2

u3

u4







=







f1
−f2 + f2
−f3 + f3

f∗






,

or
Ku = f , (12.13)
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where

K = K1 + K2 + K3=







k1 −k1 0 0
−k1 k1 + k2 −k2 0
0 −k2 k2 + k3 −k3

0 0 −k3 k3






, (12.14)

and
uT = (u1, u2, u3, u4), f = fE1 + fE2 + fE3 . (12.15)

In general, the matrix K is singular or its rank is less than the total
number of degrees of freedom, which is four in this case. This means
that the equation has no unique solution. Thus, we need the boundary
conditions to ensure a unique solution. In this spring system, if no
boundary condition is applied at any nodes, then the applied force at
the node 4 will make the spring system fly to the right. If we add a
constraint by fixing the left node 1, then the system can stretch, and a
unique configuration is formed. In our case where there are no applied
forces at nodes 2 and 3, we have

fT = (0, 0, 0, f∗). (12.16)

Example 12.1: For k1 = 100 N/m, k2 = 200 N/m, and k3 = 50N/m,
and f∗ = 20 N, the boundary at node 1 is fixed (u1 = 0). Then, the
stiffness matrix is

K =







100 −100 0 0
−100 300 −200 0

0 −200 250 −50
0 0 −50 50






,

and the force column vector

fT = (0, 0, 0, 20).

The rank of K is 3, therefore, we need at least one boundary condition.
By applying u1 = 0, we now have only three unknown displacements
u2, u3, u4. Since u1 = 0 is already known, the first equation for u1 becomes
redundant and we can now delete it so that the reduced stiffness matrix
A is a 3× 3 matrix. Therefore, we have

A =





300 −200 0
−200 250 0

0 −50 50



,

and the reduced forcing vector is

gT = (0, 0, 20).
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The solution is

u = A−1g =





0.2
0.3
0.7



.

Therefore, the displacements are u2 = 0.2m, u3 = 0.3m, and u4 = 0.7m.
Theoretically speaking, the force should be 20N everywhere in the

spring systems since the mass of the springs is negligible. Let us cal-
culate the force at nodes 2 and 3 to see if this is the case. At the node 2,
the extension in element E1 is ∆u = u2 − u1 = 0.2 m, thus the force at
node 2 is

f2 = k1∆u = 100× 0.2 = 20N.

Similarly, at node 3 of element E2, we have

f3 = k2(u3 − u2) = 200× 0.1 = 20N,

which is the same at node 3 of element E3

f3 = k3 × (−∆u) = k3(u4 − u3) = 50× 0.4 = 20N.

So the force is 20 N everywhere.

12.1.2 Bar Elements

The spring system we discussed earlier is limited in many ways, as a
spring does not have any mass and its cross section is not explicitly
included. A more complicated but realistic element is the bar element
(also called truss element) as shown in Figure 12.4, which is a uniform
rod with a cross section area A, Young’s elastic modulus E, and a
length L. A bar element can only support tension and compression,
it cannot support bending. For this reason, it is also called a truss
element.

The displacements at nodes i and j are ui and uj, respectively. The
forces at the corresponding nodes are fi and fj . Now we have to derive
its stiffness matrix. Assuming the bar is linearly elastic, the stress σ is
thus related to strain ε via σ = Eε. Since ε = (uj−ui)/L and σ = f/A
where F is the force in the bar element, we have

f =
EA

L
(∆u) = k(∆u), (12.17)

where ∆u = uj − ui is the extension or elongation of the bar element.
Now the equivalent spring stiffness constant is

k =
EA

L
. (12.18)



12.1 Concept of Elements 207

� -ee
-

fi fj

A,E,L

x

i j

ui uj

Figure 12.4: Bar element.

Therefore, the stiffness matrix K for this bar becomes

K =

(
k −k
−k k

)

=
EA

L

(
1 −1
−1 1

)

. (12.19)

We have up to now only discussed 1-D systems where all displace-
ments ui or uj are along the bar direction, and each node has only one
displacement (one degree of freedom). We now extend the study to
2-D systems. In 2-D, each node i has two displacements ui (along the
bar direction) and vi (perpendicular to the bar direction). Thus, each
node has two degrees of freedom.

If we rotate the bar element by an angle θ as shown in Figure
12.5, we cannot use the standard addition to assemble the system. A
transformation is needed from the global coordinates (x, y) to the local
coordinates (x′, y′). From the geometrical consideration, the global
displacements ui and vi at node i are related to the local displacement
u′i and (usually) v′i = 0.

(
u′i
v′i

)

=

(
cos θ sin θ
− sin θ cos θ

)(
ui
vi

)

. (12.20)

Using the similar transformation for uj and vj , we get the transfor-
mation for the two-node bar element

u′ =







u′i
v′i
u′j
v′j







=







cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 cos θ sin θ
0 0 − sin θ cos θ













ui
vi
uj
vj






,

which can be written as
u′ = Ru, (12.21)

where

R =







cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 cos θ sin θ
0 0 − sin θ cos θ






. (12.22)
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Figure 12.5: 2-D transformation of coordinates.

The same applies to transforming the force and the stiffness matrix,

f ′ = Rf , K′u′ = f ′. (12.23)

As the calculation is mainly based on the global coordinates, and the
assembly should be done by transforming the local systems to the global
coordinates, by combining the above two equations, we have

K′Ru = Rf , or R−1K′Ru = Ku = f , (12.24)

which is equivalent to a global stiffness matrix

K = R−1K′R. (12.25)

Since R is orthogonal, we have R−1 = RT . From the stiffness matrix
K′ in the local coordinates

K′ =
EA

L







1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0






, (12.26)

we have the stiffness matrix K = RTK′R or

K =
EA

L







cos2 θ cos θ sin θ − cos2 θ − cos θ sin θ
cos θ sin θ sin2 θ − cos θ sin θ − sin2 θ
− cos2 θ − cos θ sin θ cos2 θ cos θ sin θ
− cos θ sin θ − sin2 θ cos θ sin θ sin2 θ






.

Bar elements can only elongate or shrink, they do not support bend-
ing or deflection. For more complicated elements, it is more convenient
and even necessary to use a formal approach in terms of shape functions
and weak formulations. Figure 12.6 shows several common elements.
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(a) (b)

(c) (d)

Figure 12.6: Common elements: (a) triangular; (b) quadrilateral;

(c) tetrahedron; and (d) hexahedron.

12.2 Finite Element Formulation

12.2.1 Weak Formulation

Many problems are modelled in terms of partial differential equations,
which can generally be written as

L(u) = 0, x ∈ Ω, (12.27)

where L is a differential operator, often linear. This problem is usually
completed with the essential boundary condition (or prescribed values
ū), E(u) = (u − ū) = 0 for x ∈ ∂ΩE, and natural boundary conditions
B(u) = 0 for x ∈ ∂ΩN . Natural boundary conditions are usually
concerned with flux or force.

Assuming that the true solution u can be approximated by uh over
a finite element mesh with an averaged element size or mean distance
h between two adjacent nodes, then we can approximate the above
equation using

L(uh) ≈ 0. (12.28)

The ultimate goal is to construct a method of computing uh such
that the error |uh − u| is minimised. Generally speaking, the resid-
ual R(u1, ..., uM ,x) = L(uh(x)) varies with space and time. There are
several methods of minimising R. Depending on the scheme of min-
imisation and the choice of shape functions, various methods can be
formulated. These include the weighted residual method, the method
of least squares, the Galerkin method and others.
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Multiplying both sides of Eq.(12.28) by a test function or a proper
weighting function wi, integrating over the domain and using associated
boundary conditions, we can write the general weak formulation of
Zienkiewicz-type as

∫

Ω

L(uh)widΩ +

∫

∂ΩN

B(uh)w̄idΓ +

∫

∂ΩE

E(uh)w̃idΓE ≈ 0, (12.29)

where (i = 1, 2, ...,M), and w̄i and w̃i are the values of wi on the
natural and essential boundaries. If we can approximate the solution
uh by the expansion in terms of shape function Ni

uh(u, t) =

M∑

i=1

ui(t)Ni(x) =

M∑

j=1

ujNj , (12.30)

it requires that Ni = 0 on ∂ΩE so that we can choose w̃i = 0 on ∂ΩE .
Thus, only the natural boundary conditions are included since the es-
sential boundary conditions are automatically satisfied. In addition,
there is not such limitation on the choice of wi and w̄i. If we choose
w̄i = −wi on the natural boundary so as to simplify the formulation,
we have ∫

Ω

L(uh)widΩ ≈
∫

∂ΩN

B(uh)widΓ. (12.31)

12.2.2 Galerkin Method

There are many different ways to choose the test functions wi and
shape functions Ni. One of the most popular methods is the Galerkin
method where the test functions are the same as the shape functions,
or wi = Ni. In this special case, the formulation simply becomes

∫

Ω

L(uh)NidΩ ≈
∫

∂ΩN

B(uh)NidΓ. (12.32)

The discretisation of this equation will usually lead to an algebraic
matrix equation.

On the other hand, if we use the Dirac delta function as the test
functions wi = δ(x − xi), the method is called the collocation method
which uses the interesting properties of the Dirac function

∫

Ω

f(x)δ(x− xi)dΩ = f(xi), (12.33)

together with δ(x− xi) = 1 at x = xi and δ(x− xi) = 0 at x 6= xi.
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12.2.3 Shape Functions

The main aim of the finite element method is to find an approximate
solution uh(x, t) for the exact solution u at given nodal points,

uh(x, t) =

M∑

i=1

ui(t)Ni(x) (12.34)

where ui are unknown coefficients or the values of u at the discrete
nodal point i. Functions Ni (i = 1, 2, ...,M) are linearly independent
functions that vanish on the part of the essential boundary. At any
node i, we have Ni = 1, and Ni = 0 at any other nodes, or

M∑

i=1

Ni = 1, Ni(xj) = δij . (12.35)

The functions Ni(x) are referred to as basis functions, trial functions or
more often shape functions in the literature of finite element methods.

Linear Shape Functions

For the simplest 1-D element with two nodes i and j, the linear shape
functions (shown in Figure 12.7.) can be written as

Ni =
xj − x
L

=
1− ξ

2
, Nj = ξ =

x− xi
L

=
1 + ξ

2
, (12.36)

where ξ is the natural coordinate

ξ =
x− xo
L/2

, L = |xj − xi|, xo =
xi + xj

2
, (12.37)

where xo is the midpoint of the element, and ξi = −1 at x = xi and
ξj = 1 at x = xj .

A linear shape function spans only two adjacent nodes i and j, and
it requires two coefficients in the generic form

N(ξ) = a+ bξ. (12.38)

Quadratic Shape Functions

Suppose we want to get higher-order approximations, we can use, say,
the quadratic shape functions which span three adjacent nodes i, j,
and k. Three coefficients need to be determined

N(ξ) = a+ bξ + cξ2. (12.39)
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Figure 12.7: The 1-D linear shape functions.

Using the conditions ξi = −1 at x = xi and ξj = 1 at x = xj , and the
known displacements ui, uj and uk, we have

ui = a+ b× (−1) + c× (−1)2, (12.40)

uj = a, (12.41)

and

uk = a+ b× (1) + c× (1)2, (12.42)

whose solutions are




a
b
c



 =





uj
1
2 (ui − 2uj + uk)

1
2 (uk − ui)



. (12.43)

Substituting this into Eq.(12.39), we have

u =
ξ(ξ − 1)

2
ui + (1− ξ2)uj +

ξ(ξ + 1)

2
uk, (12.44)

which is equivalent to

u = Niui +Njuj +Nkuk, (12.45)

where

N = [Ni, Nj , Nk] = [
ξ(ξ − 1)

2
, (1− ξ2), ξ(ξ + 1)

2
]. (12.46)

Lagrange Polynomials

The essence of the shape functions is the interpolation, and the interpo-
lation functions can be of many different types. Lagrange polynomials
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Figure 12.8: (a) A bilinear quadrilateral element;

(b) A quadratic quadrilateral element.

are popularly used to construct shape functions. The n − 1 order La-
grange polynomials require n nodes, and the associated shape functions
can generally be written as

Ni(ξ)=

n∏

j=1,j 6=i

(ξ − ξj)
(ξi − ξj)

=
(ξ − ξ1)...(ξ − ξi−1)(ξ − ξi+1)...(ξ − ξn)

(ξi − ξ1)...(ξi − ξi−1)(ξi − ξi+1)...(ξi − ξn)
,

where ξj means that value of ξ at node j. For n = 3, it is straightfor-
ward to validate that

N1(ξ) =
ξ(ξ − 1)

2
, N2(ξ) = 1− ξ2, N3(ξ) =

ξ(ξ + 1)

2
. (12.47)

This method of formulating shape functions can be easily extended to
2D and 3D cases and for isoparametric elements. The derivative of
Ni(x) with respect to ξ is given by

N ′
i(ξ) =

n∑

k=1,k 6=i

1

(ξi − ξj)
Πn
j=1,j 6=i

(ξ − ξj)
(ξi − ξj)

. (12.48)

2D Shape Functions

The shape functions we discussed earlier are 1D shape functions (with
one independent variables x or ξ) for 1D elements. For 2D elements
such as quadrilateral elements, corresponding shape functions with two
independent variables: x and y, or ξ and η. Using the natural coor-
dinates ξ and η shown in Fig. 12.8, we can construct various shape
functions.

For a bilinear quadrilateral (Q4) element, we use bilinear approxi-
mations for the displacement field u and v. If we use

u = α0 + α1x+ α2y + α3xy, (12.49)
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v = β0 + β1x+ β2y + β3xy, (12.50)

and express them in terms of shape function Ni

u =
∑

Niui, v =
∑

Njvj , (12.51)

we can derive the shape functions by following the similar procedure
as discussed above. We have

N1 =
(1− ξ)(1 − η)

4
, N2 =

(1 + ξ)(1 − η)
4

, (12.52)

N3 =
(1 + ξ)(1 + η)

4
, N4 =

(1− ξ)(1 + η)

4
, (12.53)

From the 1-D linear shape functions

N
(2)
I (ξ) =

(1 − ξ)
2

, N
(2)
J (ξ) =

(1 + ξ)

2
, (12.54)

for a 2-node element (along x) where the superscript ‘(2)’ means 2
nodes, we can also write another set of linear shape functions for a
2-node element in the y-direction. We have

N
(2)
I (η) =

(1 − η)
2

, N
(2)
J (η) =

(1 + η)

2
. (12.55)

If we label the nodes by a pair (I, J) in 2D coordinates, we have

Ni(ξ, η) = NIJ = N
(2)
I N

(2)
J . (12.56)

We can see that

N1(ξ, η) = N
(2)
I (ξ)N

(2)
I (η), N2(ξ, η) = N

(2)
J (ξ)N

(2)
I (η), (12.57)

and

N3(ξ, η) = N
(2)
J (ξ)N

(2)
J (η), N4(ξ, η) = N

(2)
I (ξ)N

(2)
J (η). (12.58)

In fact, higher-order shape functions for 2D and 3D elements can be
systematically derived this way.

If we approximate the displacement field using higher-order approx-
imations, then we are dealing with the quadratic quadrilateral (Q8)
element because we have to use eight nodes (4 finite element nodes
and 4 midpoints). In this case, the shape functions are much more
complicated, for example, the shape function N2 becomes

N2 =
(1 − ξ)(1− η)

4
− 1

4
[(1− ξ2)(1 − η) + (1 + ξ)(1 − η2)]. (12.59)
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12.2.4 Estimating Derivatives and Integrals

Derivatives

Using the assumptions that ui(t) does not depend on space and Ni(x)
does not depend on time, the derivatives of u can be approximated as

∂u

∂x
≈ ∂uh

∂x
=

M∑

i=1

ui(t)N
′(x), u̇ ≈ ∂uh

∂t
=

M∑

i=1

u̇iN(x), (12.60)

where we have used the notations: ′ = d/dx and ˙ = ∂
∂t . The deriva-

tives of the shape functions Ni and higher-order derivatives are then
calculated in a similar way.

Gauss Quadrature

In the finite element analysis, the calculation of stiffness matrices and
application of boundary conditions such as in Eq.(12.32) involve the
integration over elements. Such numerical integration is often carried
out in terms of natural coordinates ξ and η, and the Gauss integra-
tion or Gauss quadrature as discussed in Section 9.3 is usually used
for evaluating integrals numerically. Gauss quadrature has relatively
high accuracy. For example, the n-point Gauss quadrature for one-
dimensional integrals

I =

∫ 1

−1

ψ(ξ)dξ ≈
n∑

i=1

wiψi. (12.61)

For the case of n = 3, we have

∫ 1

−1

ψ(ξ)dξ ≈
3∑

i=1

wiψi =
1

9
[8ψ2 + 5(ψ1 + ψ3)], (12.62)

which is schematically shown in Figure 12.9 where the 2-D Gauss in-
tegration is over a quadrilateral element with point 3 at (ξ3, η1) =
(
√

3/5,−
√

3/5) and point 9 at (ξ3, η3)=(
√

3/5,
√

3/5).
For two-dimensional integrals, we use n2-point Gauss quadrature of

order n, and we have

I =

∫ 1

−1

∫ 1

−1

ψ(ξ, η)dξdη =

n∑

i=1

n∑

j=1

wiwjψij , (12.63)

where ψij = ψ(ξi, ηj). In the case of n = 3, we have 9 points (shown in
Figure 12.9), and the quadrature becomes

I =

∫ 1

−1

∫ 1

−1

ψ(ξ, η) ≈
3∑

i=1

3∑

j=1

wiwjψi+3∗(j−1)(ξi, ηj)
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Figure 12.9: Gauss quadrature: a) 1-D integration with |ξ1 − ξ2|

= |ξ2 − ξ3| =
√

3/5; and b) 2-D 9-point integration.

=
1

81
[25(ψ1 +ψ3 +ψ7 +ψ9) + 64ψ5 + 40(ψ2 +ψ4 +ψ6 +ψ8)]. (12.64)

12.3 Heat Transfer

Heat transfer problems are very common in engineering and earth sci-
ences. The geometry in most applications is irregular. Thus, finite
element methods are especially useful in this case.

12.3.1 Basic Formulation

The steady-state heat transfer is governed by the heat conduction equa-
tion or Poisson’s equation

∇ · (k∇u) +Q = 0, (12.65)

with the essential boundary condition

u = ū, x ∈ ∂ΩE , (12.66)

and the natural boundary condition

k
∂u

∂n
− q = 0, x ∈ ∂ΩN . (12.67)

Multiplying both sides of Eq.(12.65) by the shape function Ni and using
the formulation similar to the formulation (12.32) in terms of u ≈ uh,



12.3 Heat Transfer 217

we have
∫

Ω

[∇ · (k∇u) +Q]NidΩ−
∫

∂ΩN

[k
∂u

∂n
− q]NidΓ = 0. (12.68)

Integrating by parts and using Green’s theorem, we have

−
∫

Ω

(∇uh · k · ∇Ni)dΩ +

∫

∂Ω

k
∂uh
∂n

NidΓ

+

∫

Ω

QNidΩ−
∫

∂ΩN

[k
∂uh
∂n
− q]NidΓ = 0. (12.69)

Since Ni = 0 on ∂ΩE , thus we have

∫

∂Ω

[ ]NidΓ =

∫

∂ΩN

[ ]NidΓ. (12.70)

Therefore, the above weak formulation becomes

∫

Ω

(∇uh · k · ∇Ni)dΩ−
∫

Ω

QNidΩ−
∫

∂ΩN

qNidΓ = 0. (12.71)

Substituting uh =
∑M
j=1 ujNj(x) into the equation, we have

M∑

j=1

[

∫

Ω

(k∇Ni · ∇Nj)dΩ]uj −
∫

Ω

QNidΩ−
∫

∂ΩN

qNidΓ = 0. (12.72)

This can be written in the compact matrix form

M∑

j=1

KijUj = fi, KU = f , (12.73)

where K = [Kij ], (i, j = 1, 2, ...,M), UT = (u1, u2, ..., uM ), and fT =
(f1, f2, ..., fM ). That is,

Kij =

∫

Ω

k∇Ni∇NjdΩ, (12.74)

fi =

∫

Ω

QNidΩ +

∫

∂ΩN

qNidΓ. (12.75)
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Figure 12.10: 1-D heat transfer with four elements and five nodes.

Example 12.2(a): As a simple example, we consider the 1-D steady-
state heat conduction problem,

u′′(x) +Q(x) = 0,

with boundary conditions

u(0) = β, u′(1) = q.

For a special case Q(x) = Q = const, we have the analytical solution

u(x) = −Q
2
x2 + (Q+ q)x+ β. (12.76)

Then Eq.(12.75) becomes

M∑

j=1

(

∫ 1

0

N ′
iN

′
jdx)uj =

∫ 1

0

QNidx+ qNi(1).

For the purpose of demonstrating the implementation procedure, let us
solve this problem by dividing the interval into 4 elements and 5 nodes
shown in Fig. 12.10. This will be discussed later in more detail.

12.3.2 Element-by-Element Assembly

In order to assembly the linear matrix system, we now use the popular
element-by-element method. The stiffness matrix K in Eqs.(12.73) and
(12.75) is the summation of the integral over the whole solution domain,
and the domain is now divided into m elements with each element on a
subdomain Ωe (e = 1, 2, ...,m). Each element contributes to the whole
stiffness matrix, and in fact, its contribution is a pure number. Thus,
assembly of the stiffness matrix can be done in an element-by-element
manner. Furthermore, Ki,j 6= 0 if and only if (or iff) nodes i and
j belong to the same elements. In the 1-D case, Ki,j 6= 0 only for
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j = i − 1, i, i + 1. In finite element analysis, the shape functions Nj
are typically localised functions, thus the matrix K is usually sparse in
most cases. The element-by-element formulation can be written as

Ki,j =

m∑

e=1

K
(e)
i,j , K

(e)
i,j =

∫

Ωe

k∇Ni∇NjdΩe, (12.77)

and

fi =

m∑

e=1

f
(e)
i , f

(e)
i =

∫

Ωe

QNidΩe +

∫

∂ΩN e

qNidΓe. (12.78)

In addition, since the contribution of each element is a scalar or a
simple number, the integration of each element can be done using the
local coordinates and local node numbers or any coordinate system
for the convenience of integration over an element. Then, the nonzero
contribution of each element to the global system matrix K is simply
assembled by direct addition to the corresponding global entry (of the
stiffness matrix) of the corresponding nodes or related equations. In re-
ality, this can be easily done using an index matrix to trace the element
contribution to the global system matrix.

12.3.3 Application of Boundary Conditions

Boundary conditions can be essential, natural or mixed. The essential
boundary conditions are automatically satisfied in the finite element
formulation by the approximate solution. These include the displace-
ment, rotation, and known value of the solution. Sometimes, they are
also called the geometric boundary conditions. In our example, it is
u(0) = β. Natural boundary conditions often involve the first deriva-
tives such as strains, heat flux, force, and moment. Thus, they are
also referred to as force boundary conditions. In our example, it is
u′(1) = q.

The natural boundary conditions are included in the integration in
the finite element equations such as (12.75). Thus no further imposition
is necessary. On the other hand, although the essential boundary condi-
tions are automatically satisfied in the finite element formulations, they
still need to be implemented in the assembled finite element equations
to ensure unique solutions. The simplest way is direct application. In
this method, we simply use the expansion uh =

∑M
i=1 uiNi, and apply

directly the essential boundary conditions at point i to replace the cor-
responding ith equation with ui = ūi so that ith row of the stiffness
matrix K in Eq.(12.73) becomes (0, 0, ..., 1, ..., 0) and the correspond-
ing fi = f(i) = ūi. All other points will be done in a similar manner.
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Figure 12.11: Comparison of numerical results (dots) with

analytical solution (solid curve).

This method is widely used due to its simplicity and the advantage
of time-stepping because it allows bigger time steps. The imposition
of the essential boundary conditions can be done in many other ways
including Lagrangian multiplier and penalty method.

Example 12.2(b): The assembly of the global system matrix for the
example with 4 elements and five nodes (see Fig. 12.10) is shown below.
For each element with i and j nodes, we have

Ni = 1− ξ, Nj = ξ, ξ =
x

L
, L = he,

K
(e)
ij = [

∫ L

0

kN ′
iN

′
jdx] =

k

he

(
1 −1
−1 1

)

, f
(e)
i =

Qhe
2

(
1
1

)

,

so that, for example in elements 1 and 2, these can extend to all nodes
(with hi = xi+1 − xi, i = 1, 2, 3, 4),

K(1) =









k/h1 −k/h1 0 0 0
−k/h1 k/h1 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









, f (1) =
Q

2









h1

h1

0
0
0









,

K(2) =









0 0 0 0 0
0 k/h2 −k/h2 0 0
0 −k/h2 k/h2 0 0
0 0 0 0 0
0 0 0 0 0









, f (2) =
Q

2









0
h2

h2

0
0









,
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and so on. Now the global system matrix becomes

K =









k/h1 −k/h1 0 0 0
−k/h1

k
h1

+ k
h2

−k/h2 0 0

0 −k/h2
k
h2

+ k
h3

−k/h3 0

0 0 −k/h3
k
h3

+ k
h4
−k/h4

0 0 0 −k/h4 k/h4









,

U =









u1

u2

u3

u4

u5









, f =









Qh1/2
Q(h1 + h2)/2
Q(h2 + h3)/2
Q(h3 + h4)/2
Qh4/2 + q









,

where the last row of f has already included the natural boundary condition
at u′(1) = q.

For the simplified case of k = 1, Q = −1, β = 1, q = −0.25, and
h1 = ... = h4 = 0.25, we have

K =









1 0 0 0 0
−4 8 −4 0 0
0 −4 8 −4 0
0 0 −4 8 −4
0 0 0 −4 4









, f =









1
−0.25
−0.25
−0.25
−0.375









.

So the solution is

U = K−1f =
(
1.00 0.72 0.50 0.34 0.25

)T
.

The values of this numerical solution are plotted against the analytical
solution (12.76) in Fig. 12.11. We can see that numerical solutions agree
well with the analytical results.

12.4 Transient Problems

12.4.1 The Time Dimension

The problems we have discussed so far are static or time-independent
because the time dimension is not involved. For time-dependent prob-
lems, the standard finite element formulation first produces an ordi-
nary differential equation for matrices rather than algebraic matrix
equations. Therefore, besides the standard finite element formulations,
extra time-stepping schemes should be used in a similar manner to that
in finite difference methods.
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As the weak formulation uses the Green theorem that involves the
spatial derivatives, the time derivatives can be considered as the source
term. Thus, one simple and yet instructive way to extend the finite
element formulation to include the time dimension is to replace Q in
Eq.(12.65) by Q− αut − βutt = Q− αu̇− βü. Now we have

∇ · (k∇u) + (Q− αu̇ − βü) = 0. (12.79)

The boundary conditions and initial conditions are u(x, 0) = φ(x),
u = u,x ∈ ∂ΩE, and k ∂u∂n − q = 0,x ∈ ∂ΩN . Using integration by

parts and the expansion uh =
∑M

j=1 ujNj , we have

M∑

j=1

[

∫

Ω

(k∇Ni∇Nj)dΩ] +
M∑

j=1

∫

Ω

[(NiαNj)u̇j + (NiβNj)üj ]dΩ

−
∫

Ω

NiQdΩ−
∫

∂ΩN

NiqdΓ = 0, (12.80)

which can be written in a compact form as

Mü + Cu̇ + Ku = f , (12.81)

where

Kij =

∫

Ω

[(k∇Ni∇Nj)]dΩ, (12.82)

fi =

∫

Ω

NiQdΩ +

∫

∂ΩN

NiqdΓ, (12.83)

and

Cij =

∫

Ω

NiαNjdΩ, Mij =

∫

Ω

NiβNjdΩ. (12.84)

The matrices K,M,C are symmetric, that is to say, Kij = Kji,
Mij = Mji, Cij = Cji due to the interchangeability of the orders in
the product of the integrand k, Ni and Nj (i.e., ∇Ni · k · ∇Nj =
k∇Ni∇Nj , NiαNj = NjαNi = αNiNj etc). The matrix C = [Cij ]
is the damping matrix similar to the damping coefficient of damped
oscillations. M = [Mij ] is the general mass matrix due to a similar
role acting as an equivalent mass in dynamics. In addition, before the
boundary conditions are imposed, the matrix is usually singular, which
may imply many solutions. Only after the proper boundary conditions
have been enforced, the stiffness matrix will be nonsingular, thus unique
solutions may be obtained. On the other hand, M and C will be always
non-singular if they are not zero. For example, for the 1-D elements
(with nodes i and j),

K
(e)
ij =

k

he

(
1 −1
−1 1

)

, det[K(e)] = 0, (12.85)
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but

M
(e)
ij =

βhe
6

(
2 1
1 2

)

, det[M (e)] 6= 0,

C
(e)
ij =

αhe
6

(
2 1
1 2

)

, det[C(e)] 6= 0, (12.86)

Clearly, if M = 0, it reduces to the linear heat conduction. If C = 0,
it becomes the wave equation with the source term.

12.4.2 Time-Stepping Schemes

From the general governing equation

Mü + Cu̇ + Ku = f , (12.87)

we see that it is an ordinary differential equation in terms of time and
matrices. Thus, in principle, all the time-stepping methods developed
in the standard finite difference method can be used for this purpose.
For a simple center difference scheme, we have

u̇ =
un+1 − un

∆t
, ü =

(un+1 − 2un + un−1)

(∆t)2
. (12.88)

so that Eq.(12.87) becomes

M
(un+1 − 2un + un−1)

(∆t)2
+ C

(un+1 − un−1)

2∆t
+ Kun = f . (12.89)

Now the aim is to express un+1 in terms of un and un−1.

12.4.3 Travelling Waves

For the wave equation (C = 0), we have

Mü + Ku = f . (12.90)

Using a central difference scheme for ü, we have

un+1 = M−1f(∆t)2 + [2I− (∆t)2M−1K]un − un−1, (12.91)

where I is an identity or unit matrix.

Example 12.3: For example, the 1-D wave equation

∂2u

∂t2
= c

∂2u

∂x2
, (12.92)
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with the boundary conditions

u(0) = u(1) = 0, u(x, 0) = e−(x−1/2)2 , (12.93)

can be written as

Mij =

∫ 1

0

NiNjdx, Kij =

∫ 1

0

cN ′
iN

′
jdx, f = 0. (12.94)

For h = hi = xi+1 − xi= const, we have

K=










1
h − 1

h 0 ... 0
− 1
h

2
h − 1

h ... 0
...

. . .
...

0 ... 2
h − 1

h
0 ... − 1

h
1
h










, M=










h/2 0 0 ... 0
0 h 0 ... 0
...

. . .
...

0 ... h
0 ... h/2










.

For fixed boundary conditions at both ends u(0) = u(L) = 0, we have
K(1, 1) = K(n, n) = 1, and K(1, 2) = K(n, n− 1) = 0. Therefore, the
global stiffness matrix becomes

K =










1 0 0 ... 0
− 1
h

2
h − 1

h ... 0
...

. . .
...

0 ... 2
h − 1

h
0 ... 0 1










.

Now the time march scheme is simply

un+1 = [2I− (∆t)2M−1K]un − un−1.

The initial profile u0 is derived from the u(x, 0) = exp[−(x − 1/2)2].
This problem can be solved using the Matlab (and Octave) program given
at the end of this book (Appendix B).
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Chapter 13

Reaction-Diffusion

System

The partial differential equations we solved in the previous chapters
using either finite difference methods or finite element methods are lin-
ear equations. The linear parabolic equation can easily be generalised
to a nonlinear reaction-diffusion equation. Mathematically speaking,
nonlinear equations are far more difficult to analyse, if not impossible.
From the numerical point of view, some extra linearisation and ap-
proximations should be used for nonlinear terms. However, the finite
difference schemes should still be useful for most nonlinear equations
though they should be implemented more carefully.

The most interesting phenomenon associated with the reaction-
diffusion system is probably the pattern formation due to its intrinsic
instability under appropriate conditions. Beautiful patterns can auto-
matically be formed under suitable conditions, including the patterns
on animal skins (tigers, zebras), pattern of sea shells, mineral inter-
action in zebra stones, and the yellow and green bands of zebra grass
leaves as shown in Chapter 1.

13.1 Mineral Reactions

Pattern formation based on the reaction-diffusion mechanism occurs
commonly in geophysical and geological processes. On the one hand,
patterns such as sand dunes, vegetation in grassland and plankton dis-
tribution are observed on a large scale. On the other hand, mineral
banding such as gneiss can be seen almost everywhere. The layering
and banding in rocks is formed by the segregation into separate bands
or foliations during metamorphism and diagenetic processes due to dis-

227
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solution and precipitation and the reaction-advection-diffusion trans-
port mechanism, and granular minerals such as quartz and feldspar
alternate with bands in which either platy mica or elongate amphibole
minerals dominate.

An important class of mineral reactions is probably the diagenetic
reaction in which the water-rich minerals such as smectite is trans-
formed into more stable minerals such as illite. Such reactions are
mainly carried out via the dissolution-precipitation processes. The de-
tails of the reaction will depend on many factors including temperature,
pressure, the concentration of the minerals, and other minerals pre-
sented. For simplicity, we here provide a simplified schematic reaction
model

mineral A
r1−→ mineral C + n[H2O], (13.1)

mineral C
r2−→ mineral B, (13.2)

where we are only concerned with two minerals A and B, and the
mineral C is the intermediate phase (usually aqueous), and n is the
number of water molecules produced in the reaction. r1 and r2 are the
reaction rates of the two-step reactions, respectively.

[A] and [B] are the concentrations of A and B, respectively. Let v
be the velocity of the flow. The mass conservation of both A and B
leads to

∂[A]

∂t
+∇ · ([A]v) = DA∇2[A]− r1, (13.3)

and
∂[B]

∂t
+∇ · ([B]v) = DB∇2[B] + r2, (13.4)

where DA and DB are diffusion coefficients of minerals A and B, re-
spectively. It is worth pointing out that these two equations have been
written in terms of simplified solute transport. In reality, these reac-
tions occur in porous media under the influence of temperature and
pressure. The porosity of the porous media should be included (see
discussion in Chapter 15).

The rates r1 and r2 may take complicated forms, depending on the
detailed mineral chemistry. For example, we may have

r1 = k1[A](1− e∆G1/RT )m1 , r2 = k2(e
∆G2/RT − 1)m2 , (13.5)

where k1 and k2 are constants, and ∆Gi is the change of Gibbs free
energy. T is the temperature and R is the universal gas constant. The
exponent m1,m2 = 1 ∼ 2 is also a known constant. For reactions to
happen, it is necessary that ∆Gi < 0. If the solution is very dilute,
it usually follows that ∆Gi = RT (ln c/c0) where c = [A] or [B] and
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c0 is the concentration at equilibrium. For given m1 = 2,m2 = 1 and
c0 = 1, we have

r1 = k1[A](1 − α[A])2, r2 = k2(1− [B]), (13.6)

where α ∈ [0, 1]. In the absence of advective flow (or v = 0), the above
equations become a system of reaction-diffusion of the generic form

∂[A]

∂t
= DA∇2[A] + f([A], [B]), (13.7)

∂[B]

∂t
= DB∇2[B] + g([A], [B]), (13.8)

where f and g are two known functions. These two equations form the
basis of our discussion in this chapter. Let us first just look at a single
equation by setting u = [A] and f(u) = f([A]). Under appropriate
conditions, it can have travelling wave solutions and instability.

13.2 Travelling Wave

The nonlinear reaction-diffusion equation

∂u

∂t
= D

∂2u

∂x2
+ f(u), (13.9)

can have the travelling wave solution under appropriate conditions of
f(0) = f(1) = 0, f(u) > 0 for u ∈ (0, 1), and f ′(0) > 0. For exam-
ple, f(u) = γu(1 − u) satisfies these conditions, and the equation for
this special case is called the Kolmogorov-Petrovskii-Piskunov (KPP)
equation. By assuming that the travelling wave solution has the form
u(ζ) and ζ = x− vt, and substituting into the above equation, we have

Du′′(ζ) + vu′(ζ) + f(u(ζ)) = 0. (13.10)

This a second-order ordinary differential equation that can be solved
with the appropriate boundary conditions

u(−∞)→ 1, u(∞)→ 0. (13.11)

The KPP theory suggests that the speed of the travelling wave is

v ≥ 2
√

Df ′(0). (13.12)

The KPP equation will be applied to study the transport process of
bacteria in porous media in Chapter 15.
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13.3 Pattern Formation

One of the most studied nonlinear reaction-diffusion equations in the
2-D case is the KPP equation

∂u

∂t
= D(

∂2u

∂x2
+
∂2u

∂y2
) + γq(u), (13.13)

and

q(u) = u(1− u). (13.14)

This KPP equation can describe a huge number of physical, chemical
and biological problems. The most interesting feature of this nonlinear
system is its ability to generate beautiful patterns.

We can solve it using the same finite difference scheme as in Chapter
10 by applying the periodic boundary conditions and using a random
initial condition. Using the central difference for spatial coordinates
and the explicit Euler scheme for time, we have

u
(n+1)
i,j − u(n)

i,j

∆t
= D[

u
(n)
i+1,j − 2u

(n)
i,j + u

(n)
i−1,j

(∆x)2
+
u

(n)
i,j+1 − 2u

(n)
i,j + u

(n)
i,j−1

(∆y)2
]

+γu
(n)
i,j (1− u(n)

i,j ). (13.15)

Using ∆x = ∆y = ∆t = 1, we have

u
(n+1)
i,j =D[u

(n)
i+1,j+u

(n)
i−1,j+u

(n)
i,j+1+u

(n)
i,j−1]+(1−4D)u

(n)
i,j +γu

(n)
i,j [1−u(n)

i,j ],

which has been implemented using Matlab and Octave (about 15 lines),
and the programs are given in Appendix B.

Figure 13.1 shows the pattern formation of the above equation on a
500 × 500 grid for D = 0.2 and γ = 0.5. We can see that rings and thin
curves are formed, arising from the random initial condition: u(0) =
random(n, n) ∈ [0, 1] where n is the size of the grid.

If the formed patterns are plotted on a landscape surface as shown
in Figure 13.2, the variations in the values of the field u(x, y) can be
easily demonstrated.

If you use the programs provided in Appendix B to run the simula-
tions, you will see that the pattern emerges naturally from the initially
random background. Once the pattern is formed, it evolves gradually
with time, but the characteristics such as the shape and structure of
the patterns do not change much with time. In this sense, one can see
beautiful and stable patterns.
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Figure 13.1: 2-D pattern formation for D = 0.2 and γ = 0.5.

13.4 Reaction-Diffusion System

The pattern formation in the previous section arises naturally from a
single equation of nonlinear reaction-diffusion type. In many applica-
tions, we often have to simulate a system of nonlinear reaction-diffusion
equations, and the variables are coupled in a complicated manner.

The pattern formation in the previous section comes from the in-
stability of the nonlinear reaction-diffusion system. In order to show
this, let us use the following mathematical model for enzyme inhibition
and cooperativity:

∂u

∂t
= Du(

∂2u

∂x2
+
∂2u

∂y2
) + f(u, v), (13.16)

∂v

∂t
= Dv(

∂2v

∂x2
+
∂2v

∂y2
) + g(u, v), (13.17)

and
f(u, v) = γu(1− u), (13.18)

g(u, v) = β(u − αu2v), (13.19)

where Du and Dv are diffusion coefficients, while α, β, γ are all con-
stants. This reaction-diffusion system may have instability if certain
conditions are met.

The steady state solutions are obtained from f(u0, v0) = 0 and
g(u0, v0) = 0. They are

u0 = 1, v0 =
1

α
, (13.20)
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Figure 13.2: Surface of 2-D pattern formation.

or
u0 = 0, v0 = 0. (13.21)

The latter solution u0 = v0 = 0 is trivial as it will give zero solution
everywhere. Let ψ = (ψu, ψv)

T = (u − u0, v − v0)T be a small pertur-
bation such that u = u0 + ψu and v = v0 + ψv. After substituting into
Eqs.(13.16) and (13.17) and neglecting the nonlinear terms involving
ψ2
u and ψ2

v so that (u0 + ψu)
2 = u2

0 + 2u0ψu + ψ2
u ≈ u2

0 + 2u0ψu, we
then get the following linearised equations

∂ψu
∂t

= Du∇2ψu + [γ(1− u0)− γu0]ψu, (13.22)

∂ψv
∂t

= Dv∇2ψv + β[1− 2αu0v0]ψu − βαu2
0ψv. (13.23)

where we have used the solutions for steady state. Writing them in a
compact form for ψ, we have

∂ψ

∂t
= D∇2ψ +Mψ, (13.24)

where

D =

(
Du 0
0 Dv

)

, (13.25)

and

M =

(
γ(1− 2u0) 0

β(1 − 2αu0v0) −βαu2
0

)

. (13.26)

Writing ψ in the form of Fourier components

ψ =
∑

eλt+ik·xψk, (13.27)
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Figure 13.3: Pattern formation on a 200×200 grid for Du = 0.2,
Dv = 0.1, α = 1, γ = 0.5, and β = 0.5.

where the summation is over all the wavenumber k = (kx, ky)
T , and

the dot product is k · x = kxx+ kyy. We finally have

|M − λI −Dk2| = 0, (13.28)

where I is a 2 × 2 identity matrix, and k2 = k · k. This eigenvalue
equation has two roots: λ = γ(1−2u0)−Duk

2 and λ = −βαu2
0−Dvk

2.
Since <(λ) > 0 implies that instability may occur, this requires that

Duk
2 < γ(1− 2u0), Dvk

2 < −βαu2
0. (13.29)

For example, for typical values of α = 1, β = γ = 0.5, Du = 0.2, and
Dv = 0.1, the instability condition is indeed satisfied. If the unsta-
ble criteria are satisfied, any small random perturbation can generate
complex patterns. It is worth pointing out that the linear stability anal-
ysis here just gives an indication of the potential parameter ranges for
pattern formation. For more accurate analysis, we need the nonlinear
stability theory.

Figure 13.3 shows the pattern formation of this system with periodic
boundary conditions on a 200× 200 grid where the results are mapped
onto a surface. The values used in this simulation are Du = 0.2, Dv =
0.1, α = 1, γ = 0.5 and β = 0.5.

References

Flake G. W., The Computational Beauty of Nature: Computer Explo-

ration of Fractals, Chaos, Complex Systems and Adapation, MIT
Press,( 2000).



234 Chapter 13. Reaction-Diffusion System

Fowler A. C., Mathematical Models in the Applied Sciences, Cambridge
University Press, (1997).

Keener J. and Sneyd J., A Mathematical Physiology, Springer-Verlag,
New York, (2001).

Korn R. W., Pattern formation in the leaf of zebra grass, J. Theor.

Biol., 187, 449-451 (1997).

Meinhardt H., Models of Biological Pattern Formation, Academic Press,
London, (1982).

Murray J. D., Mathematical Biology, Springer-Verlag, New York, (1998).

Press W. H., Teukolsky S. A., Vetterling W. T. and Flannery B. P.,
Numerical Recipes in C++: The Art of Scientific Computing,
2nd Edition, Cambridge University Press, (2002).

Yang X. S., Computational modelling of nonlinear calcium waves, Appl.

Maths. Modelling, 30, 200-208 (2006).

Yang X. S. and Young Y., Cellular automata, PDEs and pattern forma-
tion (Chapter 18), in Handbook of Bioinspired Algorithms, edited
by Olarius S. and Zomaya A. Y., Chapman & Hall/CRC, (2005).



Chapter 14

Elasticity and

Poroelasticity

14.1 Hooke’s Law and Elasticity

The basic Hooke’s law of elasticity concerns an elastic body such as a
spring, and it states that the extension x is proportional to the load F ,
that is

F = kx, (14.1)

where k is the spring constant. However, this equation only works for
1-D deformations.

For a slender elastic body under a given tensile load F shown in
Fig. 14.1, the strain is defined as

εn =
L− L0

L0
, (14.2)

where L0 is the initial length and L is the current length under load

F ⇐= =⇒ F

-�
L0

-� L1

L2
� -

L� -

Figure 14.1: Strains at various stages of deformation.
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F . The strain defined this way is called nominal strain εn. In reality,
the deformation or elongation does not occur instantaneously. It could
be considered in multiple stages from the initial L0 to the final L. For
simplicity, we only consider three stages L0 to L1, L2 and L. We have

εn1 =
L1 − L0

L0
, εn2 =

L2 − L1

L1
, εn3 =

L− L2

L2
. (14.3)

As the system is linear elasticity, the total strain εn should be equal to
the sum of each stage, but

εn1 + εn2 + εn3 6= εn. (14.4)

It seems that this definition of strain causes a problem.
Another definition of strain is the true strain εt given by

εt = ln(
L

L0
). (14.5)

If we use this definition, the strains at each stage are

εt1 = ln
L1

L0
, εt2 = ln

L2

L1
, εt3 = ln

L

L3
. (14.6)

We can see that

εt1 + εt2 + εt3 = ln[
L1

L0
× L2

L1
× L

L2
] = ln

L

L0
= εt, (14.7)

which means that the total true strain is equal to the sum of true strains
at each stage. This is a better definition, but it involves the logarithm.

From the definition of true strain, we know that

εt = ln(
L

L0
) = ln[1 +

(L− L0)

L0
] = ln(1 + εn). (14.8)

When εn � 1, ln(1 + εn) ≈ εn, and we have εt ≈ εn. In most elastic
problems we meet, the strains are small, thus we can simply use the
approximation εt ≈ εn. In this case, two definitions of strains are
essentially the same. However, for large strain deformation such as
elongation of elastic rubber bands and polythene, the true strain is
more convenient.

For the discussion of Hooke’s law in the case of a bar of uniform
cross section with a length L and a cross-sectional area A, it is more
convenient to use strain ε and stress σ. The stress and strain are defined
by

σ =
F

A
, ε =

∆L

L
, (14.9)
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where ∆L = L − L0 is the extension. The unit of stress is N/m2,
while the strain is dimensionless, though it is conventionally expressed
in m/m or percentage (%) in engineering. For the elastic bar, the
stress-strain relationship is

σ = Eε, (14.10)

where E is the Young’s modulus of elasticity. Written in terms F and
x = ∆L, we have

F =
EA

L
∆L = kx, k =

EA

L
, (14.11)

where k is the equivalent spring constant for the bar. This equation is
still only valid for any unidirectional compression or extension. For the
2-D and 3-D deformation, we need to generalise Hooke’s law. For the
general stress tensor (also called Cauchy stress tensor)

σ =





σxx σxy σxz
σyx σyy σyz
σzx σzy σzz



 =





σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33



, (14.12)

and strain tensor

ε =





εxx εxy εxz
εyx εyy εyz
εzx εzy εzz



 =





ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33



, (14.13)

it can be proved later that these tensors are symmetric, that is σ = σT

and ε = εT , which leads to

σxy = σyx, σxz = σzx, σyz = σzy, (14.14)

and

εxy = εyx, εxz = εzx, εyz = εzy. (14.15)

Therefore, we only have 6 independent components or unknowns for
stresses and 6 unknown strain components.

The strain tensor is defined by the displacement uT = (u1, u2, u3)

εij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

), (14.16)

where x1 = x, x2 = y, and x3 = z. Sometimes, it is useful to write

ε =
1

2
(∇u+∇uT ). (14.17)
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The generalised Hooke’s law can be written as

εxx =
1

E
[σxx − ν(σyy + σzz)], (14.18)

εyy =
1

E
[σyy − ν(σxx + σzz)], (14.19)

εzz =
1

E
[σzz − ν(σxx + σyy)], (14.20)

εxy =
1 + ν

E
σxy, (14.21)

εxz =
1 + ν

E
σxz, (14.22)

εyz =
1 + ν

E
σyz , (14.23)

where ν is the Poisson’s ratio, and it measures the tendency of extension
in transverse directions (say, x and y) when the elastic body is stretched
in one direction (say, z).

Poisson’s ratio can be defined as the ratio of the transverse con-
traction strain (normal to the applied load) to the axial strain in the
direction of the applied tensile stress (see Fig. 14.2). That is

ν = −εtransverse
εaxial

. (14.24)

For a perfectly incompressible material, ν = 0.5, and ν = 0 ∼ 0.5
for most common materials. For example, ν = 0.25 ∼ 0.3 for steels,
ν ≈ 0.5 for rubber, and ν ≈ 0 for the cork of a wine bottle. Some
auxetic materials such as polymer foams or anti-rubbers have a negative
Poisson’s ratio ν < 0. In fact, the isotropic upper limit of ν can reach
ν → 0.5 which corresponds to λ and K → ∞, while the lower limit
may approach ν → −1 which corresponds to G → ∞ [see Eq.(14.34)].
We will see later that the Poisson’s ratio of rocks will affect the speed
of propagation of waves commonly discussed in earth sciences.

This generalised Hooke’s law can be written concisely as

εij =
1 + ν

E
σij −

ν

E
σkkδij , (14.25)

where we have used Einstein’s summation convention σkk = σxx+σyy+
σzz . Another related quantity is pressure, which is defined by

p = −1

3
σkk = −σxx + σyy + σzz

3
. (14.26)

The negative sign comes from the conventions that a positive normal
stress results in tension, and negative one in compression, while the
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⇐= =⇒
Applied stress

(tensile)

-�
εaxial

6

?

εtransverse

Figure 14.2: Poisson’s ratio ν = −εtransverse/εaxial.

positive pressure acts in compression. Sometimes, it is more convenient
to express the stress tensor in terms of pressure and devitoric stress
tensor sij

σij = −pδij + sij . (14.27)

If we want to invert Eq.(14.25), we must first express σkk in terms of
εkk so that the right-hand side of the new expression does not contain
the stress σkk. By contraction using j → i, we have

εii =
1 + ν

E
σii −

ν

E
σkkδii =

1− 2ν

E
σii, (14.28)

where we have used δii = δ11 + δ22 + δ33 = 1 + 1 + 1 = 3 and σii = σkk.
In engineering and poroelastic theory, the quantity

εkk = εxx + εyy + εzz =
∂u1

∂x
+
∂u2

∂y
+
∂u3

∂z
= ∇ · u, (14.29)

means a fractional change in volume, known as dilation or volumetric
strain. It is often written as ∆ = εkk = ∇ · u. This gives that

σii = σkk =
E

1− 2ν
εkk. (14.30)

Substituting it into Eq.(14.25), we have

εij =
1 + ν

E
σij −

ν

E
(

E

1− 2ν
εkk)δij , (14.31)

or after some rearrangement

1 + ν

E
σij = εij +

ν

1− 2ν
εkkδij , (14.32)

which can be written as

σij = 2Gεij + λεkkδij , (14.33)
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where µ and λ are Lamé constants. They are

G = µ =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1 − 2ν)
=

2νG

(1− 2ν)
. (14.34)

This stress-strain relationship can also be written as

σ = 2Gε+ λ(∇ · u)δ. (14.35)

Here G = µ is called the shear modulus, while K is called the bulk
modulus which is the ratio of pressure −p to the volumetric strain
(dilation) under hydrostatic loading. We have

K =
−p
∆
. (14.36)

For hydrostatic loading, σxx = σyy = σzz = −p, and the combination
of Eqs.(14.28) and (14.29) leads to

∆ = − (1− 2ν)

3E
p, (14.37)

which gives

K =
E

3(1− 2ν)
. (14.38)

For most rocks, ν = 1/4 ∼ 1/3. If ν = 1/3, then K = E, and
G = 3E/8. For rubber, ν ≈ 0.5, K ≈ ∞. This means that it is
incompressible. That is why bicycle tyres should not be made of solid
rubber, which would not be comfortable to ride. On the other hand,
the Poisson’s ratio for the cork of a wine bottle is almost zero. This
means it can easily be inserted or removed from a wine bottle and yet
it can withstand the pressure within the bottle. Thus, it is ideal for
such a purpose.

14.2 Shear Stress

All materials have limited strength; above a certain limit, the mate-
rial will start to yield and eventually fail. Yield is driven by shearing
stresses and sliding along planes or grain boundaries in microcrystals,
while fracture is driven by normal stresses (mode I) to separate atomic
planes, creating free surfaces. Yield is usually associated with plastic
deformation, and fracture can associated with both brittle and plas-
tic materials. The prediction of failure planes, although not straight-
forward even for the most simple configuration, is not very difficult.
For example, under uniaxial tension (or compression), the yield is by
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⇑

⇓
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θ

A

τ

A/ cos θ

σ=F
A

Figure 14.3: Uniaxial tension or compression and failure plane.

shearing and the ultimate failure plane lies on a plane at 45◦ where the
shear stress reaches maximum (see Fig. 14.3). Let σy be the tensile
yield stress (normal stress) in the uniaxial tension when yield occurs,
and let τy be the maximum shear stress at yield.

The area of the plane with an angle θ to the uniaxial tension is

Aθ =
A

cos θ
, (14.39)

and the shear stress (the component along the plane per unit area) is

τ =
σ sin θ

1/ cos θ
= σ sin θ cos θ =

σ

2
sin 2θ. (14.40)

As the maximum sin 2θ = 1 occurs at 2θ = π/2, we have the relation-
ship between yield stress σy and shear stress τy

τy =
σy
2
, (14.41)

which occurs on a plane at θ = 45◦. In nature, many fractures indeed
occur at this angle, and even in a foundation built on a layer of soils,
if failure occurs by, say, landslide. However, the real situation is more
complicated in soils, and the angle may vary a lot due to the local stress
state, cohesion and internal friction in soils.

14.3 Equations of Motion

For a general solid where the inertia is not negligible, we have

∇ · σ + b = ρ
∂2u

∂t2
, (14.42)



242 Chapter 14. Elasticity and Poroelasticity

where ρ is the density of the elastic body. In some books, the following
form of body force b = ρf is used. In this case, the force f means the
force per unit mass. Together with the generalised Hooke’s law and
relationship with displacement u, we have the following set of equations
of motion for an elastic body.

∂σij
∂xj

+ bi = ρ
∂2ui
∂t2

, (14.43)

σij = 2Gεij + λεkkδij , (14.44)

εij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

). (14.45)

There are 15 equations (6 for stresses, 6 for strains, 3 for displacements)
and we have 15 unknowns (6 stress components, 6 strain components
and 3 displacements). Therefore, the elastic field should be uniquely
determined if appropriate boundary conditions are given. There are
other conditions such as compatibility equations, and we will briefly
discuss them later.

If we write the equations of motion using bold notation (usually for
tensors and vectors) notation, we have

∇ · σ + b = ρ
∂2u

∂t2
, , (14.46)

σ = 2Gε+ λ(∇ · u)δ, (14.47)

ε =
1

2
(∇u+∇uT ). (14.48)

If we substitute the generalised Hooke’s law and displacement into the
first equation (14.46), we have

∇ · [2Gε+ λ(∇ · u)δ] + b = ρ
∂2u

∂t2
, (14.49)

or

∇ · [G(∇u +∇uT ) + λ(∇ · u)δ] + b = ρ
∂2u

∂t2
, (14.50)

which leads to

(G+ λ)∇(∇ · u) +G∇2u+ b = ρ
∂2u

∂t2
. (14.51)

Using G+ λ = G/(1− 2ν) and after some rearrangements, we have

ρ
∂2u

∂t2
=

G

1− 2ν
∇(∇.u) +G∇2u+ b, (14.52)
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Figure 14.4: Seismic waves: P wave and S wave.

which is the well-known Cauchy-Navier equation. This equation sup-
ports both longitudinal wave (P wave) and transverse wave (S wave).
As shown in Fig. 14.4, the P waves are the primary or compressional
waves whose particle motion is parallel to the direction k of the propa-
gating wave, while the S waves are the secondary or shear waves whose
particle motion is perpendicular to the wave direction k. For example,
the sound waves in the air are compressional waves while the vibrations
of a guitar string generate S waves.

In the simplest 1-D case without any (external) body force b, we
can take ∇ · u = 0 for S-wave and u→ u1, we simply have

ρ
∂2u1

∂t2
= G

∂2u1

∂x2
, (14.53)

thus its wave speed is

vS =

√

G

ρ
. (14.54)

For the P waves in 1-D, the displacement field is non-rotational, i.e.,
∇× (∇× u) = 0. From the identity ∇(∇ · u) = ∇× (∇× u) +∇2u,
the 1-D Cauchy-Navier equation becomes

ρ
∂2u1

∂t2
= (λ+ 2G)

∂2u1

∂x2
. (14.55)

Then, the speed of P -wave is

vP =

√

(λ+ 2G)

ρ
. (14.56)
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Since λ+2G > G, therefore, P -waves always travel faster than S-waves.
In fact, using Eq.(14.34), we can write the ratio of the speed of P -waves
to that of S-waves as

vP
vS

=

√

λ+ 2G

G
=

√

K + 4
3G

G
=

√

2(1− ν)
1− 2ν

. (14.57)

We can see that this ratio is solely determined by the Poisson’s ratio
ν. For the Earth’s crust, ν = 0.2 ∼ 0.33, thus the inverse of the ratio

rv =
vS
vP

=

√

1− 2ν

2(1− ν) ≈ 0.50 ∼ 0.65. (14.58)

For example, in the middle part of the Earth’s crust, if we use a typical
(or average) value of E ≈ 80 GPa, ν ≈ 0.25 and ρ ≈ 2700 kg/m3, we
have

vS ≈
√

G

ρ
=

√

E

2(1 + ν)ρ
≈ 3400m/s. (14.59)

Since rv ≈ 0.57, thus the speed of P waves would be typically 3400/0.57
≈ 5900 m/s. In fact, P waves travel typically at speeds between 2 to
7.5 km/s in the Earth’s crust while S waves travel commonly at 50%
to 70% of the speed of P waves.

An interesting property of P and S waves in the Earth’s crust is that
the average ratio rv is relatively constant. Thus seismologists can use
this fact to estimate the distance d of the earthquake from observation
stations from the recorded time delay τ = tS − tP = d/vS − d/vP from
the first arrival of the P wave to the arrival of the S wave. The distance
d is most cases is about

d = τv0, v0 =
1

( 1
vS
− 1

vP
)
.

For the distance range from 50km to 500km, vS ≈ 3.4 km/s and vP ≈ 6
km/s, we have a typical value of v0 ≈ 8 km/s.

Example 14.1: Although it is possible to estimate the epicentre of an
earthquake from a single station using multiple component recording, it is
more accurate to use three or more observation stations. Assume there are
three seismic stations at A, B and C, and they calculated the S-P time
delay from their recorded seismographs and estimated that the distances
were 200km, 100km, and 125km from A, B and C, respectively. In order
to locate the source of the earthquake, we first draw a circle centred at A
with a radius of 200km. The source could anywhere on the circle. Now
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Figure 14.5: Locating the source P of an earthquake from

three observation stations: A, B and C.

we draw a second circle centred at B with a radius of 100km, and the
second circle intersects with the first at two locations P and Q. The two
locations are the potential epicentres. In order to determine the location
uniquely, we now draw a third circle centred at C with a radius of 125km,
which intersects with both of the other two circles at P . Therefore, P
is the estimated location of the earthquake. Of course, if we use more
seismic stations we can estimate the epicentre more accurately. This is
why seismologists usually have a network of seismic stations.

Furthermore, from the definitions of the strain components in terms
of displacements uT = (u1, u2, u3) = (u, v, w), we have

εxx =
∂u

∂x
, εyy =

∂v

∂y
, εxy =

1

2
(
∂u

∂y
+
∂v

∂x
). (14.60)

By assuming the displacements are continuous and differentiable func-
tions of positions, we differentiate εxx with respect to y twice, we have

∂2εxx
∂y2

=
∂3u

∂x∂y2
. (14.61)

Similarly, differentiating εyy with respect to x twice, we have

∂2εyy
∂x2

=
∂3v

∂y∂x2
. (14.62)

Now differentiating εxy with respect to y once, and with respect to x
once, we have

∂εxy
∂x∂y

=
1

2
[
∂3u

∂x∂y2
+

∂3v

∂y∂x2
] =

1

2
[
∂2εxx
∂y2

+
∂2εyy
∂x2

], (14.63)
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where we have used the interchangeability of partial derivatives ∂2v
∂x∂y

= ∂2v
∂y∂x . This can be rearranged as

∂2εxx
∂y2

+
∂2εyy
∂x2

= 2
∂2εxy
∂x∂y

, (14.64)

which is the compatibility equation. In the same fashion, we can derive
other compatibility equations

∂2εzz
∂y2

+
∂2εyy
∂z2

= 2
∂2εyz
∂y∂z

. (14.65)

∂2εxx
∂z2

+
∂2εzz
∂x2

= 2
∂2εxz
∂x∂z

. (14.66)

14.4 Euler-Bernoulli Beam Theory

The Euler-Bernoulli beam theory is a simplified theory for calculat-
ing the deflection of beams under a distribution of load force using
the linear isotropic theory of elasticity. The basic assumptions for the
beam theory are: 1) the beam is isotropic and elastic; 2) the beam de-
formation is dominated by bending, while distortion and rotation are
negligible; 3) the beam is long and slender with a constant cross sec-
tion along the axis. Under these assumptions, we can now derive the
governing equations.

Let u(x, t) be the deflection of the beam (shown in Figure 14.6),
A be the area of the cross section, and f(x, t) be the force per unit
length. The first assumption implies that the bending moment M is
proportional to the curvature κ of the bending. That is

M = EIκ, κ =
∂2u
∂x2

[1 + (∂u
∂x )2]3/2

, (14.67)

where E is the Young’s modulus and I is the area moment of the beam’s
cross section. In mechanics, I is also called the second moment of area
or the area moment of inertia. The area moment about a horizontal
axis through the centroid is defined by

I =

∫

Ω

y2dA, (14.68)

which has a unit of [m]4, and it should not be confused with the mass
moment of inertia J (also often denoted as I, but we use J here) about
an axis, which is defined by

J =

∫

Ω

r2dm =

∫

Ω

ρr2dxdydz (14.69)
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Figure 14.6: Beam bending.

with a unit of [Kg] [m]2. Neither E nor I change along the x-axis.
For a cylindrical rod with a radius of R, we have I = πR4/4. For a
rectangular beam with a base width of b and a depth of h, we have
I = bh3/12.

The second assumption means that the shear V (x) is related to the
bending moment

∂M

∂x
= V (x), (14.70)

and the third assumption means ∂u
∂x � 1. Therefore, we have

M ≈ EI ∂
2u

∂x2
, (14.71)

or

V ≈ ∂

∂x
(EI

∂2u

∂x2
). (14.72)

For a small volume element (also shown in Figure 14.6), the mass of

the element is ρAdx where ρ is the density, and the acceleration is ∂2u
∂t2 .

The shear force variation is given by V (x + dx) = V (x) + ∂V
∂x dx, and

the total force is

V (x) − V (x + dx) + f(x, t)dx = [f(x, t)− ∂V

∂x
]dx. (14.73)

Using the Newton’s second law of motion, we have

f(x, t)− ∂V

∂x
= ρA

∂2u

∂t2
. (14.74)

Substituting the above expression for V , we have

ρA
∂2u

∂t2
+

∂2

∂x2
[EI

∂2u

∂x2
] = f(x), (14.75)
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which is the Euler-Bernoulli equation. If there is no force f(x, t) = 0,
the equation becomes a homogeneous form

ρA
∂2u

∂t2
+

∂2

∂x2
[EI

∂2u

∂x2
] = 0, (14.76)

which is a fourth-order wave equation. It governs the waves that travel
along a beam, a lighting pole or any slender column.

For the elastostatic problem, ∂
2u
∂t2 ≈ 0, we have

∂2

∂x2
[EI

∂2u

∂x2
] = q(x), (14.77)

where q(x) = f(x) is the applied force per unit length. This equation
will be used to determine the deflection of a beam.

Let us now use the Euler-Bernoulli theory to calculate the shape of
a cantilever with a uniform cross section under a point load.

Example 14.2: For a point load or concentrated load P at x = L, we
have q = −Pδ(x−L) where δ(x−L) is a Dirac delta function with δ = 1
when x = L and δ = 0 everywhere else. The integral of δ(x− L) is

H(x− L) =

∫

δ(x− L)dx,

where H(x − L) is the heaviside function with H = 1 when x ≥ L and
H = 0 when 0 ≤ x < L. Using

∫

H(x− L)dx = (x− L)H(x− L),

and integrating the equation EI d
4u
dx4 = q twice, we have the moment M

M = EI
d2u

dx2
= Ax+B,

where A and B are two integration constants. At the free end x = L, The
shear is constant (due to a point load P ) and the moment is zero. Thus,
we have A = −P , and M(L) = AL +B = 0, or B = PL. Now we have

EI
d2u

dx2
= −Px+ PL.

Integrating it twice again, we have

EIu = −P
6
x3 +

PL

2
x2 + Cx+D,
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where C and D are two constants. Since the cantilever is fixed at x = 0,
we have u = du

dx = 0 at x = 0, which leads to C = 0 from u = 0 and
D = 0 from ux = 0. Finally, we have

u = − P

6EI
x3 +

PL

2EI
x2.

The end deflection at x = L is

d = −PL
3

6EI
+
PL3

2EI
=
PL3

3EI
.

Here we has derived that the end deflection for a point load P at x = L
is given by

d =
PL3

3EI
. (14.78)

The deflection under both distributed and point loads can be obtained
using superposition principles and the total deflection is their sum under
appropriate constraints.

14.5 Airy Stress Functions

Some problems in geomechanics and fracture mechanics concern the
solution of problems within a plane. In this case, we are dealing with
plane strain and plane stress problems. For a plane stress problem,
we assume that σzz = 0 (but εzz 6= 0), then the plane stress problem
involves no stress components depending on z. That is to say σxz =
σyz = σzz = 0. We have only three independent stress components
σxx, σyy, and σxy. The generalised Hooke’s law reduces to

εxx =
1

E
(σxx−νσyy), εyy =

1

E
(σyy−νσxx), εxy =

1 + ν

E
σxy. (14.79)

However,

εzz =
−ν

1− ν (εxx + εyy), (14.80)

which is not zero in general.
For plane strain problems, it is assumed that εzz = 0. Thus, there

are only three independent strain components εxx, εyy, and εxy, how-
ever, the stress σzz = ν(σxx + σyy) is not zero. The compatibility
equation becomes

∂2εxx
∂y2

+
∂2εyy
∂x2

= 2
∂2εxy
∂x∂y

. (14.81)
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Figure 14.7: An edge crack in an elastic plate.

For plane strain problems with no body forces, the equilibrium equa-
tions are automatically satisfied if the stress components are related
to a scalar function Φ, called Airy’s stress function. The Airy’s stress
function is defined by

σxx =
∂2Φ

∂y2
, σyy =

∂2Φ

∂x2
, σxy = − ∂2Φ

∂x∂y
. (14.82)

In this case, the compatibility equation becomes

∇2(∇2Φ) = 0, (14.83)

which is a biharmonic equation and can be written as

∇4Φ = 0. (14.84)

In cylindrical polar coordinates (r, θ, z), it becomes

[
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
]2Φ = 0. (14.85)

Now consider an edge crack in a semi-infinite elastic medium or solid
as shown in Figure 14.7, assuming the elastic body deforms in plane
strain. The far field is subjected to bounded stress σ at infinity. In order
to solve the governing equation to estimate the stress distribution, we
assume that the size of the elastic body is much greater than the length
a of the edge crack. The surfaces of the crack shall be stress free, which
leads to the following boundary conditions

σθθ =
∂2Φ

∂r2
= 0, σrθ = − ∂

∂r
(
1

r

∂Φ

∂θ
) = 0, at θ = ±π. (14.86)
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Let us try a solution of the form

Φ = rn+1f(θ), (14.87)

and substitute it into the governing biharmonic equation. We get

[
d2

dθ2
+ (n+ 1)2][

d2

dθ2
+ (n− 1)2]f(θ) = 0. (14.88)

As the second-order equation y′′ + λ2y = 0 has a general solution
y = A sinλθ+B cosλθ, here we can use this method twice. The general
solution takes the following form

f(θ)=A cos(n+ 1)θ +B sin(n+ 1)θ + C cos(n− 1)θ +D sin(n− 1)θ.

The boundary conditions become

σθθ = rn−1n(n+ 1)f(θ), (14.89)

and
σrθ = rn−1n{(n+ 1)[A sin(n+ 1)θ −B cos(n+ 1)θ]

+(n− 1)[C sin(n− 1)θ −D cos(n− 1)θ]}, (14.90)

at θ = ±π. We know n = 0 is trivial as it means that the stress is zero
everywhere. From the first equation, we have

sin(2nπ) = 0, n = ±1

2
,±1,±3

2
, ..., (14.91)

and rn(n ≥ 1) does not converge, therefore, they are not suitable so-
lutions. The constraint now becomes n ≤ 0, but the solution has
singularity as r → 0. This is, however, acceptable in the crack prop-
agation as the stress concentrations do physically exist. Substituting
the general solution into the boundary conditions with n = 1/2 and
θ = ±π, we get 3A+ C = 0, and B −D = 0.

By defining the stress intensity factor KI for the crack, or KI =
3A

√
2π

4 , which is for the opening (model I) of the crack, it is the stress
limit at θ = 0 so that

KI = lim
r→0

σθθ(r, θ)
∣
∣
∣
θ=0

. (14.92)

Finally, the solution of stresses can be written as

σrr =
KI√
2πr

(1 + sin2 θ

2
) cos

θ

2
, (14.93)

σθθ =
KI√
2πr

cos3
θ

2
, (14.94)

σrθ =
KI√
2πr

cos2
θ

2
sin

θ

2
. (14.95)

Once we have the stress distribution, we can get the strains and dis-
placements.
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Figure 14.8: Fracture modes: Mode I (normal opening), mode
II (in plane shear), and mode III (out of plane shear or tearing).

14.6 Fracture Mechanics

Any materials will have limited strength, and they can only carry finite
stresses. Beyond a certain limit of stress, called failure stress, the mate-
rial will fail, usually by fast fracture. The basic mechanism of fracture
is by movement of dislocation (or flaws) in the material or by bond-
breaking, and most likely a combination of these basic mechanisms.

At a crack tip, the stresses vary greatly with the distance r and
orientation θ. Writing the above stress expressions in the previous
section in terms of σx and σy, and using x = r cos θ, y = r sin θ as well
as sin θ = 2 sin θ

2 cos θ2 , we finally have

σx =
KI√
2πr

cos
θ

2
(1 − sin

θ

2
sin

3θ

2
), (14.96)

σy =
KI√
2πr

cos
θ

2
(1 + sin

θ

2
sin

3θ

2
), (14.97)

and

τxy =
KI√
2πr

cos
θ

2
cos

3θ

2
sin

θ

2
. (14.98)

The parameter KI is very important and is often called the stress
intensity factor for mode I (normal opening) cracking as shown in Fig.
14.8. For other fracture modes, there are also corresponding stress
intensity factors (KII and KIII).

From Eqs.(14.96) to (14.98), we know that the factor 1/
√

2πr ap-
proaches singularity as r → 0. This means the stress σ approaches
infinity as r → 0 at the crack tip. Combining Eqs.(14.92) with (14.94),
we have

KI = σ
√
πa, (14.99)
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where a is the initial crack length. The expression for the factor KI

implies that the overall intensity of the stress distribution (hence the
name, stress intensity factor) around a crack is governed by the applied
stress σ, the crack length a and the specimen geometry. The geometry
often introduces a geometrical factor or shape factor Y in the stress
intensity factor KI

KI = Y σ
√
πa. (14.100)

For an edge crack at the boundary Y = 1. For an edge crack of length
2a in a large plane sheet, Y = 1.12. As all materials can withstand
stress under a certain limit, if the stress exceeds a critical stress σf ,
called failure stress or strength, then fast fracture occurs when the
initial crack starts to propagate and extend rapidly. Therefore, the
crack tip can only withstand stresses up to a critical value of stress
intensity, referred to as critical stress intensity factor KIC . KIC is a
material property and is a measure of material toughness so it is called
fracture toughness. From the above equation, we have

KIC = Y σf
√
πa. (14.101)

For examples, we have KIC ≈ 150 MPa
√

m for steels; KIC ≈ 0.5
MPa

√
m for wood; and KIC ≈ 0.7 MPa

√
m for glass.

There is an alternative approach to study the fast fracturing process,
that is to use the energy balance approach first developed by A. Griffith
in 1920. From Fig. 14.7, we know that the strain energy per unit
volume for linear elastic media (σ = Eε) is given by

u =
1

2
σ · ε =

Eε2

2
=
σ2

2E
. (14.102)

Suppose that the region affected by crack is a triangular region with
a width of a and height h = βa. Thus, the total strain energy in the
region is

U = − σ
2

2E
βa2, (14.103)

where we use a negative sign to denote the fact that the strain energy
can be released to create cracks. In order for the crack to propagate,
energy is required to break the bond energy between atoms in the
surface created by any advancing crack increment δa. Let γ be the
specific surface energy (surface energy per unit area) with a unit of
J/m2. The total surface energy is

Γ = 2γa, (14.104)

for a crack of length a. Here the factor 2 comes from the fact that two
free surfaces have been created. The total energy in the system is

Π = U + Γ = 2γa− σ2

2E
βa2. (14.105)
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Figure 14.9: Energy in fast fracture in an elastic media.

We see that there are two competing terms (see Fig. 14.9), whose
stationary conditions will define a critical length a∗ of initial cracks at
the failure stress σf . We have

∂Π

∂a
= 2γ −

σ2
f

E
βa∗ = 0, (14.106)

or

a∗ =
2γE

βσ2
f

,
√

2Eγ = σf
√

βa∗. (14.107)

If we compare these results with Eq.(14.99) with a = a∗ and σ = σf ,
then we have

β = π, KIC =
√

2γE. (14.108)

In order to generalise the concept, it is more conventional to use the
critical strain energy release rate or fracture energy Gf (instead of 2γ)
to denote that the rate of strain energy release is sufficient to create
all free surfaces so as to sustain the crack propagation. This means
that Gf = 2γ or the rate of strain energy release is just balanced or
completely converted to surface energy. Crack propagation occurs only
if the energy needed to create a unit surface is sufficiently supplied (or
balanced) by the release rate of strain energy, and this is known as
Griffith’s criterion. Therefore, we have

σf =

√

EGf
πa

, KIC =
√

GfE, (14.109)

which is an important relationship because it links critical strain energy
release rate, failure stress and the length of cracks (or flaws in the
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Figure 14.10: Normal opening by splitting a double cantilever

beam with a thickness of b and fracture energy.

system). This relationship is only valid for plane stress. For plane
strain, we have

K2
IC = EGf (1− ν2). (14.110)

For ν ≈ 0.1 ∼ 0.3, (1 − ν2) ≈ 0.91 ∼ 0.99, thus K2
IC ≈ EGf can be

used for both cases.
From the data of KIC and E, we can calculate Gf or vice versa.

Using the values given earlier, we have E ≈ 210 GPa, KIC ≈ 150
MPa

√
m and 107 kJ m−2 for steels; E ≈ 2 GPa, KIC ≈ 0.5 MPa

√
m

and 0.12 kJ m−2 for wood; and E ≈ 70 GPa, KIC ≈ 0.7 MPa
√

m, and
0.007 kJ m−2 for glass. This is why glass is so brittle and can fracture
easily, and why steel is very stiff and resistant to fracturing.

Near the tip of a crack, there is a small region where crack propaga-
tion is not governed by fast fracture in the elastic media, but plasticity
comes to play an important role. This small region is called the process
zone with a size rp which can be estimated as follows. Though the bond
rupture is important in fast fracture process, however, the largest part
of the fracture energy is actually associated with plastic flow near the
crack tip, where the stress is so high that material starts to yield once
the stress reaches the yield stress σY .

When the stress is near the yield stress σY , plastic flow comes into
action and plays an important role in resisting crack propagation. From
KI = σ

√
πa, we know that σ = σY and KI = KIC , and we have

σ = σY =
KIC√
πrp

, or rp ≈
K2
IC

πσ2
Y

. (14.111)

Strictly speaking, Eqs.(14.96) to (14.98) are only valid in certain re-
gions, typically when rp < r < a/4. If r is too large or too small, the
stress is no longer correct.

Now a simple question is how to measure fracture energy for a given
material. There are many ways to achieve this, and the simplest way
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is to use the splitting of a double cantilever beam shown in Fig. 14.10.

Example 14.3: For the double cantilever beam, the total strain energy
U is

U =
1

2
Pδ =

1

2
CP 2,

where δ is the total deformation. Here we have also used the compliance
C = δ/P which is the ratio of deformation to an applied load P . The
strain energy release rate Gf is equivalent to

Gf =
∂U

∂s
=
P 2

2b

∂C

∂a

∣
∣
∣
a=a∗

,

where s is the surface area and ds = b da with b being the thickness of the
beam. As the double cantilever system is symmetric, the end deflection of
of a cantilever is δ/2 which is given by Eq.(14.78), and we have

δ

2
=
Pa3

3EI
=

4Pa3

Ebh3
,

where we have used I = bh3/12. As C = δ/P = 2a3/(3EI) and ∂C
∂a =

24a2/Ebh3, the critical energy release rate Gf at the critical load P∗ for
the crack to just propagate, is thus given by

Gf =
P∗
2b

2a2

EI
=

12P∗a2

b2h3E
.

The effect of grain size on the yield strength σy is often called the
Hall-Petch equation

σy = σ0 +
A√
d
, (14.112)

where σ0 is the lattice resistance, and d is the grain size or crystal-
lite size. A is a constant which is also called the dislocation locking
coefficient in materials sciences. This relationship is experimentally
validated from the millimetre scale to the submicrometre scale. It is
expected that it is also valid for the larger grain size. Consequently,
fine-grain materials are stronger than coarse-grained materials.

For ductile materials, ahead of the crack tip there is a substantial
amount of plastic flow, and this plasticity dissipates a lot of energy
as compared with the limited damage before bonds break in brittle
elastic materials. This higher energy dissipation requires a higher strain
energy release rate. Subsequently, ductile materials usually have higher
fracture energy. However, the concept of stress intensity factor is not
valid for ductile materials, and thus more advanced techniques such as
J-integral should be used.
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Figure 14.11: Irregular solid grains and pores in porous media.

14.7 Biot’s Theory

Poroelasticity is widely used in earth sciences, from geomechanics to
petroleum engineering, from hydrology to environmental fluid dynam-
ics. Linear poroelasticity can be considered as the extension of the
theory of elasticity to theory of porous media. Biot’s theory is as im-
portant to poroelasticity as Hooke’s law to linear elasticity.

14.7.1 Biot’s Poroelasticity

In linear elasticity, there is a relationship between strain and stress, and
thus there exist pairs of two basic elastic parameters such as Young’s
modulus E and Poisson’s ratio ν or the Lamé constant µ = G and λ
or the bulk modulus and one other parameter. In a porous medium,
the situation is more complicated as it consists of irregular solid grains
(solid matrix) and pores filled with fluid (see Fig. 14.11). The porous
system will deform under stress and the volume of pores will change,
and the pore pressure (the pressure of fluid in the pores) will also
change. In addition, as the volume of pores changes, the fluid content
will subsequently change. These processes are coupled and thus more
difficult to model. In linear poroelasticity, there are two more quanti-
ties: pore pressure p and the increment of fluid content θ = δmf/ρf
per unit volume where δmf is the change in fluid mass content and ρf
is the density of the fluid at reference state. Similar to the stress-strain
relationship in linear elasticity, we have to relate θ to p in some way.
Therefore, extra parameters are needed.

In order to introduce these parameters, we now start with the sim-
plest isotropic fluid-filled porous medium with isotropic applied stress
field σ. The volume strain or dilation ∆ is also related to the fluid
content ξ. In this simplest case, Biot’s theory provides a relationship
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concerning these quantities

(
∆
θ

)

=

(
A11 A12

A21 A22

)(
σ
p

)

, (14.113)

where Aij is the coefficient matrix. From the reciprocity in strain
energy where the final state of the system should be independent of
the order of applying forces, which leads to the Maxwell’s reciprocal
theorem, the matrix Aij should be symmetric. That is Aij = Aji. In
our case, A12 = A21. The coefficients can be defined by fixing one
independent variable and varying the other, and they are given by

A11 ≡
∂∆

∂σ

∣
∣
∣
p

=
1

K
, A12 ≡

∂∆

∂p

∣
∣
∣
σ

= A21 ≡
∂θ

∂σ

∣
∣
∣
p

=
1

H
, (14.114)

and

A22 ≡
∂θ

∂p

∣
∣
∣
σ

=
1

R
, (14.115)

where the notation |p emphasises the fact that p is held constant. K
is the drained bulk modulus, and the coefficient 1/K is the drained
compressibility of the material measured under drained condition at
constant pressure. Sσ = 1/R is the unconstrained specific storage
coefficient at constant stress, and 1/H is called the compressibility
under constant stress or the poroelastic expansion coefficient. These
notations might be unfamiliar; however, they are essentially the same
notations used by Biot in 1941, and such notations are widely used in
the literature of poroelasticity.

Now equation (14.113) becomes

(
∆
θ

)

=

(
1/K 1/H
1/H 1/R

)(
σ
p

)

. (14.116)

Other parameters that are widely used but can be derived from the
above three parameters are the Skempton’s coefficient B and the con-
strained specific storage coefficient S∆ which is the specific storage
coefficient at constant strain. They are defined by

B ≡ − ∂p
∂σ

∣
∣
∣
θ

=
R

H
, (14.117)

S∆ ≡
∂θ

∂p

∣
∣
∣
∆

=
1

M
= Sσ −

K

H2
= Sσ −

α2

K
, (14.118)

where α = K/H is called the Biot-Willis coefficient which is the ratio of
volume of fluid to the change in bulk volume at constant pore pressure.
The standard Poisson’s ratio ν is defined under the drained condition in
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poroelasticity at constant pressure and stress ν ≡ −εtransverse/εaxial.
There is a Poisson’s ratio defined under undrained condition, called
undrained Poisson’s ratio νu, which is given by

νu ≡ −
εtransverse
εaxial

∣
∣
∣
θ

=
3ν + αB(1− 2ν)

3− αB(1 − 2ν)
. (14.119)

14.7.2 Effective Stress

Terzaghi was the first to study the behaviour of soil and formulate
his consolidation theory. From a series of experimental studies, he
concluded that the solid grains are almost incompressible and pore
pressure p has almost no effect in the volume of the soil. What controls
the changes in the volume and strength of a soil is Terzaghi’s effective
stress σe defined as the difference of the total stress σij and the pore
pressure, that is σe = σ − p. As the conventions of the stress and
pressure are different in engineering, fluid dynamics and soil mechanics,
we use the following conventions: stress is negative for compression and
positive for tension, while pressure p is positive if it is greater than
ambient pressure in compression. Then, we have effective stress

σ′
ij ≡ σeij = σij + αpδij , (14.120)

where α isO(1) coefficient. In Terzaghi’s definition, we have α = 1. The
notations σ′ and σe are interchangeable. σe emphasises the fact that
it is effective stress, while σ′ is more convenient when using subscript
or index such as σ′

ij . Skempton in 1960 suggested that value α = 1− a
where 0 < a � 1 is affected by the grain-to-grain interfacial contact
area, though it might not be always the case for more fully compacted
rocklike porous media. In the simplest one-dimensional case, we have
the effective mean stress σ′

kk/3

σ′
kk

3
=
σkk
3

+ αp. (14.121)

We can also write them in terms of effective pressure pe = −σ′
kk/3

pe = P − αp, (14.122)

where P = −σkk/3 is the total pressure.

14.8 Linear Poroelasticity

14.8.1 Poroelasticity

As the effective stress is the most important concept in poroelasticity,
and since fluid cannot support shear, the constitutive laws should be
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formulated in terms of effective stress for fluid-saturated porous media.
In fact, effective stress σe or σ′

ij = σij+αpδij is to poroelasticity as total
stress σ to linear elasticity in a solid. For groundwater flow problems,
we can assume that the solid matrix grains are almost incompressible.
With these assumptions, we can simplify the formulation for poroelastic
flow problems, and we have a special form of Biot’s constitutive laws.

Since the Terzaghi effective stress is essentially the grain-to-grain
stress which acts only in the solid matrix, and the solid matrix itself
can be described using linear elasticity, we can now rewrite the linear
elasticity in terms of effective stress. If we replace the total stress σij
in the linear elasticity σij = 2Gεij + λεkkδij by the effective stress σ′

ij ,
we have

σ′
ij = 2Gεij + λεkkδij , (14.123)

or in terms of total stress and pressure

σij = 2Gεij+λεkkδij−αpδij ,= 2Gεij+
2Gν

1− 2ν
εkkδij−αpδij . (14.124)

This equation is equivalent to six equations for six independent com-
ponents of the stress and strain. From Eq.(14.116) and σ = σkk/3, the
extra constitutive equation becomes

θ =
1

3H
σkk +

p

R
=

α

3K
σkk +

α

KB
p. (14.125)

Both Eqs.(14.124) and (14.125) form the basic equations in Biot’s three-
dimensional poroelasticity.

If we want to invert Eq.(14.124), we have to obtain σkk by contrac-
tion using k = i = j and δkk = 3, we have

σkk = 2Gεkk +
2Gν

1− 2ν
εkkδkk − αpδkk, (14.126)

or

σkk =
2G(1 + ν)

1− 2ν
εkk − 3αp = 3Kεkk − 3αp, (14.127)

where we have used G = E/2(1 + ν) and K = E/3(1 − 2ν). Now we
have

εkk =
1

3K
σkk +

α

K
p. (14.128)

Example 14.4: The above equation can be written in terms of volume
stress and effective pressure. We have

εkk =
1

K
[
σkk
3

+ αp],
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Since −σkk/3 = P is the total pressure and P−αp is the effective pressure
pe using Eq.(14.122), we have

εkk = − 1

K
pe,

or
pe = −Kεkk = −K∆ = −K∇ · u.

This relationship highlights the fact that the volume strain is solely deter-
mined by the effective pressure in the porous medium.

In later discussion of consolidation, the relationship

pe = −K∇ · u, (14.129)

can be considered as the constitutive relationship of the porous medium.
In viscous creep and rock deformation, this relationship can be modified
to include viscous creep laws.

Substituting the expression for εkk back into Eq.(14.124) and using
2Gν/3K(1− 2ν) = ν/(1 + ν), we have

σij = 2Gεij +
ν

1 + ν
σkkδij + [

2Gν

K(1− ν) − 1]αpδij . (14.130)

Dividing both sides of the above equation by 2G and noting that

ν

K(1− 2ν)
− 1

2G
= − 1

3K
, (14.131)

we have

1

2G
σij = εij +

ν

2G(1 + ν)
σkkδij −

1

3K
αpδij . (14.132)

Rearranging this equation, we have

εij =
1

2G
σij −

ν

2G(1 + ν)
σkkδij +

α

3K
pδij

=
1 + ν

E
σij −

ν

E
σkkδij +

α

3K
pδij . (14.133)

Using σkk = 3Kεkk − 3αp from Eq.(14.127), Eq.(14.125) becomes

θ =
3K

3H
εkk + (

1

R
− α

H
)p. (14.134)

Using α = K/H and 1/R− α/H = α/KuB, we have

θ = αεkk +
α

KuB
p, (14.135)
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where

Ku =
K

1− αB , (14.136)

is the undrained bulk modulus under the constraint that ∆ is constant.

14.8.2 Equation of Motion

Using the poroelasticity constitutive relationship (14.124) and follow-
ing the same procedure of obtaining the equation of motion (14.52) in
linear elasticity ρü = G

(1−2ν)∇(∇·u) +G∇2u+ b, we will arrive at the

following equation of motion for poroelasticity

ρ
∂2u

∂t2
=

G

(1 − 2ν)
∇(∇ · u) +G∇2u+ α∇p+ b, (14.137)

where the only extra term is the α∇p. In the case of b = 0 the pressure p
usually increases with depth, we have p = ρfgh where h is the change of
fluid (water) head from initial head, often called the head in hydrology.
ρf is the density of the fluid and g is the acceleration due to gravity.
Therefore, we have

ρ
∂2u

∂t2
=

G

(1 − 2ν)
∇(∇ · u) +G∇2u+ αρfg∇h. (14.138)

Now we have an extra variable p (or h) to be determined, and thus an
extra equation is needed. This extra equation forms the basis of flow
in porous media and will be discussed in detail in the next chapter.
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Chapter 15

Flow in Porous Media

The theory of linear poroelasticity discussed in the last chapter can be
used to study various phenomena in porous media. As applications,
we will study groundwater flow, the consolidation of soil, pollutant
transport and viscous creep.

15.1 Groundwater Flow

For groundwater flow, we can often assume that the solid matrix is
incompressible and its deformation is small or even negligible. This
will simplify the governing equations tremendously.

15.1.1 Porosity

The void rate e is defined by

e =
volume of voids (Vv)

volume of solids (Vs)
. (15.1)

Since the porosity φ is the ratio of the volume of voids to the total
volume (V ), thus we have

φ =
Vv
V

=
Vv

Vs + Vv
=

e

1 + e
, (15.2)

or conversely e = φ
1−φ .

15.1.2 Darcy’s Law

Darcy’s law describes the flow through a porous medium under a pres-
sure gradient. It is as important to porous media as Fick’s law is

263
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to diffusion and heat conduction. Let q be the flux of the fluid flow
through the medium. Darcy’s law states that the flux q is proportional
to the pressure gradient

q = −k
µ
∇p, (15.3)

where k is the permeability of the porous system depending on mi-
crostructure of the solid rocks, and µ is the viscosity of the fluid.

The permeability k is usually a function of porosity φ, but it often
assumes that porosity φ does not change with time t in groundwater
flow. Typical values of permeability are 10−9 ∼ 10−11 m2(or 1000
darcy to 10 darcy) for sands (where 1 darcy = 10−12m2), 10−12 ∼
10−14 m2 for sandstone, 10−14 ∼ 10−16 m2 for limestone, and 10−18

m2 or even smaller for shales. However, the viscosity µ of fluid at room
temperature is about 10−3 N s m−2 and it varies with temperature.

Since gravity always appears in the groundwater flow, the pressure
should be replaced by p → p + ρfgz where ρf is the density of the
fluid, g is the acceleration due to gravity, and z is pointing upwards.
Therefore, Darcy’s law can be written the generic form

q = −k
µ
∇(p+ ρfgz) = −k

µ
∇p− κ~k, (15.4)

where ~k is a unit vector pointing upwards in the z-axis direction. The
ratio of k to µ defines a hydraulic conductivity κ

κ ≡ ρfgk

µ
. (15.5)

In groundwater flow, it is usual to link the pressure to a head h

p+ ρfgz = ρfgh, (15.6)

or
h = z +

p

ρfg
. (15.7)

Thus, Darcy’s law can be written in terms of the head h as

q = κ∇h. (15.8)

Example 15.1: Darcy’s flow velocity q is usually very small. In fact,
on the label of some popular mineral water bottles, it is claimed that the
mineral water has filtered through a 1500m layer of ancient limestone for
about 5000 years. Let us see if this is true.

We know that the permeability for limestone is about k = 10−14 ∼
10−16 m2, so we take a moderate value k = 10−15 m2 and the viscosity of
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water µ = 10−3 N s m−2. For the pressure gradient, we use the hydrostatic
gradient ∇p ≈ ρg ≈ 104 N m−3. Thus, the Darcy’s flow velocity is about
the order

q ≈ k

µ
∇p ≈ 10−15

10−3
× 104 ≈ 10−8m/s.

This seems too small, however, as there are about 365 × 24 × 3600 ≈
3.15× 107 seconds in a year. This velocity is about

q ≈ 10−8 × 3.15× 107 ≈ 0.315m/year.

Thus, for the water to filter through a layer of limestone with a thickness
of 1500m, it would take

t ≈ 1500

0.315
≈ 4700years.

So the value of 5000 years is about right. This means that the mineral
water (of this particular brand) is at least 5000 years old!

15.1.3 Flow Equations

The conservation of fluid mass or continuity equation can be written
as

∂θ

∂t
+∇ · q = Q, (15.9)

where Q is the fluid source which could vary with spatial coordinates
and even time t. Substituting Darcy’s law (15.3) into Eq.(15.9), we
have

∂θ

∂t
= ∇.(k

µ
∇p) +Q. (15.10)

In the case of k/µ is a constant, we have

∂θ

∂t
=
k

µ
∇2p+Q. (15.11)

Using the constitutive equation (14.125), we get

α

3K

∂σkk
∂t

+
α

KB

∂p

∂t
=
k

µ
∇2p+Q. (15.12)

As α/KB = 1/R = Sσ is the specific storage at constant stress, we can
rewrite the above equation as

Sσ
∂p

∂t
=
k

µ
∇2p− SσB

3

∂σkk
∂t

+Q, (15.13)
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which is the general equation for three-dimensional groundwater flow.
This is an inhomogeneous diffusion equation for pore pressure. We
can also express this equation in terms of h by using Eq.(15.7) and
assuming z and t are independent, and we have

S
∂h

∂t
= κ∇2h− γ ∂σkk

∂t
+Q, (15.14)

where S = Sσρfg and γ = SσB/3. Under the condition of constant
stress σzz so that ∂σkk

∂t = 0, we have a simpler equation

S
∂h

∂t
= κ∇2h+Q. (15.15)

Sometimes it is more convenient to write this governing equation in the
cylindrical polar coordinates (r, ϕ, z); we have

S
∂h

∂t
= κ[

1

r

∂

∂r
(r
∂h

∂r
) +

1

r2
∂2h

∂ϕ2
+
∂2h

∂z2
] +Q. (15.16)

In the simplified case when Q = 0 and h has rotational symmetry, then
h does not depend on ϕ and z, and we have

S
∂h

∂t
= κ

1

r

∂

∂r
(r
∂h

∂r
). (15.17)

Example 15.2: In order to measure the hydraulic conductivity κ, the
pumping out test is often used. In a well with a radius of r = a, a constant
pumping rate −Qp (volume per unit time) where we use the negative to
denote the flow is for pumping out (see Fig. 15.1). In the cylindrical
coordinates, the rate of water flow is

−Qp =

∫ h

0

∫ 2π

0

Jdϕdz,

where the flux J is

J = −κr∂h
∂r
.

This leads to

Qp = 2πκhr
∂h

∂r
.

Let h0 be the water level in the well, which means h = h0 at r = a. If
we can measure the water level h∗ by using a borehole at any location
r = R > a, we can determine the average hydraulic conductivity of the
layer (between initial water head level to h0).
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Figure 15.1: Measuring hydraulic conductivity by

the pumping out test.

Integrating both sides of the above equation, we have

2πκ

∫ h∗

h0

hdh =

∫ R

a

Qp
dr

r
,

which gives

πκ(h2
∗ − h2

0) = Qp ln
R

a
.

Thus, we have an expression for κ

κ =
Qp ln(R/a)

π(h2
∗ − h2

0)
.

Obviously, if there are more observation points for the water head at various
locations, the error of κ can be minimised.

There are other methods for measuring hydraulic conductivity such
as the rock sampling and pumping in test.

In the simplest 1-D case (z-axis only) where Q = 0 and the stress
σzz is constant, we simply have

∂h

∂t
=
κ

S

∂2h

∂z2
, (15.18)

which is the 1-D equation for groundwater flow under constant stress.
We can see that this is essentially the 1-D diffusion equation or heat
conduction equation we met in earlier chapters. Thus, the solution
techniques for given appropriate boundary conditions will be the same
as those for the diffusion equation. Let us look at an example.
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Figure 15.2: 1-D groundwater flow in a permeable layer.

Example 15.3: For the 1-D ground-water flow in a permeable layer
shown in Fig. 15.2, the top boundary is permeable at z = 0 so that
h = h0 (fixed water head), and the bottom boundary is an impermeable
base at z = d with ∂h

∂z = 0 (zero flux boundary). The initial condition is
h(z, t = 0) = 0. The present problem becomes

∂h

∂t
=
κ

S

∂2h

∂z2
,

with

h(z = 0, t) = h0,
∂h

∂z

∣
∣
∣
z=d

= 0, h(z, t = 0) = 0.

This problem can be converted into the same problem (5.29) with boundary
conditions (5.30) discussed earlier. Now let us set h = h0 + u and use
∂h
∂t = ∂u

∂t and ∂h
∂z = ∂u

∂z , we then have

∂u

∂t
=
κ

S

∂2u

∂z2
,

with boundary conditions

u(z = 0, t) = 0,
∂u

∂z

∣
∣
∣
z=d

= 0, u(z, t = 0) = −h0.

This is essentially the same problem as (5.29) if we transform z → x,
d→ L, κ/S → κ, and ψ = −h0. Using solution (5.43), we have

u = −4h0

π

∞∑

n=0

1

(2n+ 1)
sin

(2n+ 1)πz

2d
e−(2n+1)2π2κt/(4Sd2)].

Finally, the solution to the original problem becomes

h(z, t)=u+ h0 =h0[1−
4

π

∞∑

n=0

1

2n+1
sin

(2n+ 1)πz

2d
e
− (2n+1)2π2κt

(4Sd2) ].
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Figure 15.3: Evolving water heads for different dimensionless

time τ = κt/Sd in 1-D groundwater flow.

These results are shown in Fig. 15.3 where τ = κt/Sd is the dimensionless
time.

15.2 Pollutant Transport

An important issue in hydrology and environmental science is to under-
stand how any potential pollutant will be transported in porous media.
Let c be the concentration of the pollutant or solute in the fluid, and
conservation of mass for the solute leads to the following transport
equation

∂(φc)

∂t
+∇ · (cq) = ∇ · [D(φ)∇c] + r, (15.19)

where r is the pollutant source, and D(φ) is the diffusion coefficient
which is usually a function of porosity φ. The diffusion coefficient
depends on the tortuosity τD which is a measure of the zigzag path in
porous media compared with the straight path in the same domain. In
the simple case, we have D ∝ 1/τ2

d because the diffusion path becomes
tortuous as affected by the porosity φ, and thus the effective diffusion
coefficient is a function of φ. Generally speaking, D(φ) = D0(φ/φ0)

n

where n a constant and D0 is the diffusion coefficient at the initial or
reference porosity φ0. As before, q is the Darcy’s flow velocity which
can be written in terms of porosity φ and relative velocity v of fluid to
the solid. That is q = φv, and thus v can be viewed as the convection
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velocity for pollutant transport. Now we have

∂(φc)

∂t
+∇ · (cφv) = ∇ · [D(φ)∇c] + r. (15.20)

Since D0 ≈ 10−8 ∼ 10−10 m2 s−1 (in rocks) is usually small, the
pollutant transport process is primarily dominated by advection with
the Darcy’s flow which is usually faster than 10−8 m/s.

The governing equation for pollutant transport can also be used
to study the bacterial transport in saturated/unsaturated soils and
rocks. The transport of micro-organisms in porous media is crucially
important for water and waste water management. The fundamental
mobility of bacteria is based on the following simplified mechanism: the
bacteria tend to deposit and attach to the surface of the solid grains,
and they can also be released from the solid surface and be transported
via the advection fluid flow in the porous medium. For simplicity, we
model the deposition and release of the bacteria particles to or from the
solid as the first-order kinetic process, while modelling the transport in
fluid as the reaction-diffusion process. For a given species of bacteria,
let c and s be the bacterial concentrations in the fluid and the solid
surface, respectively. The governing equations can be written as

∂(φc)

∂t
= D∇2(φc)−∇(φcv)−(r0+r1)φc+

r2φ

A
s+rφc(c0−c), (15.21)

∂s

∂t
= Ds∇s+ r1Ac− r2s, (15.22)

where r is the growth rate of the bacteria species, and rc(c0 − c) is
the typical logistic growth function. c0 is the attainable maximum
concentration in water as limited by food supply. Ds is the diffusion
coefficient for solid phase which is very small and can thus be taken to
be zero (Ds = 0). r0 is the deposit rate at the water-air surface, r2 is the
bacteria release rate. r1 is the filtration factor including the absorption
of bacteria onto the solid surfaces. The coefficient A depends on the
porosity φ, degree of saturation Θ, specific surface area As, and the
bulk density ρ of the porous medium. That is

A =
φΘ

Asρ
. (15.23)

The rate r0 and r1 also depend on the concentration and air content
(1− β) so that

r0 = ra(1− β), r1 = rsΘ(1− s

smax
), (15.24)
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where ra is the deposition constant for the bacteria at the air-water
interface, while rs is the deposition constant on the solid surface. smax
is the maximum attainable bacterial concentration on the solid surface
due to competition for food.

For simplicity without losing generality, we can assume that the flow
velocity v is a known constant vector. We also assume that both φ and
A are constant. With these assumptions, the 1-D governing equations
become

∂c

∂t
= D

∂2c

∂z2
− v ∂c

∂z

−[ra(1− β) + rsΘ(1− s

smax
)]c+

r2
A
s+ rc(c0 − c), (15.25)

∂s

∂t
= rsΘ(1− s

smax
)Ac− r2s. (15.26)

These two equations are coupled and form a system of nonlinear reaction-
diffusion equations. The solution of the nonlinear system is usually
difficult, however, let us discuss a simplified case as an example.

Example 15.4: Let us study the bacteria transport in a simple 1-D case.
For the case of solid absorption limit, the deposit process is dominant and
the release rate is essentially zero. Thus, we can assume r2 = 0 and the
air content is sufficient so that β → 0. Let c0 be the attainable maximum
concentration of bacteria in water. We can dimensionalise the equations
by dividing both s and c by c0, which is equivalent to setting c = c0C and
s = c0S. We also choose a typical time scale D/v2 and a length scale
D/v so that t = (D/v2)τ and z = (D/v)Z, we have

∂C

∂τ
= D

∂2C

∂Z2
− v ∂C

∂Z
− [δ1 + δ2(1− γS)] + <C(1− C),

∂S

∂τ
= δ3(1 − γS)C,

where

δ1 =
raD

v2
, δ2 =

rsΘD

v2
,

δ3 =
rsΘAD

v2
, < =

rD

v2
.

where γ = c0/smax. We can further assume that the concentration c0 is
small compared with the solid concentration at the absorption limit smax
so that γ → 0. If we use γ = 0, the equation for S is simply

∂S

∂τ
= δ3C,
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Figure 15.4: Travelling wave of bacteria mobility (t = τD/v2).

which is decoupled from the equation for C because S can be determined
once C is known. Then, the equation for C becomes

∂C

∂τ
=
∂2C

∂Z2
− ∂C

∂Z
− (δ1 + δ2)C + <C(1 − C).

Using ζ = Z− τ as the new variable, we can write the advection reaction-
diffusion equation for C as an ordinary diffusion equation, and we have

dC

dζ
= D

d2C

dζ2
− δC + <C(1 − C),

where δ = δ1 + δ2. This a nonlinear ODE which can be solved numerically
using the finite difference method discussed earlier in this book. The results
are shown in Fig. 15.4 where δ = < = 0.1 are used. We can see that a
travelling wave of the bacteria concentration arises.

15.3 Theory of Consolidation

Consolidation is a well-studied phenomenon in porous media. In ground-
water flow and pollutant transport, we often assume that the porosity
does not change with time. In fact, porosity does change with time un-
der appropriate conditions. This is subject to consolidation and com-
paction. Consolidation is a term often used in geotechnical engineering
while compaction is often met in basin modelling and rock mechanics.
Terzaghi first presented the theory of consolidation in 1925 and most of
the work was about the prediction of settlement rates or consolidation
of soil based on the following assumptions: 1) soil is homogeneous and
fully saturated, and consolidation or compaction, is one-dimensional
(vertical); 2) Darcy’s flow is in one direction and the permeability k is
constant; 3) volume changes are caused solely by the effective stress,
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Figure 15.5: Terzaghi’s consolidation test.

which is in turn associated with the changes in void ratio or porosity
only. Assuming the conditions quoted above, and from Eq.(15.13), we
can simplify pore pressure by setting Q = 0 as there are no sources or
sinks. If the stress σkk is constant or varies little, then we have

Sσ
∂p

∂t
=
k

µ
∇2p, (15.27)

or
∂p

∂t
= cv∇2p, cv =

k

Sσµ
, (15.28)

where cv is the consolidation coefficient. This is the (simplified) gov-
erning equation for pore pressure dissipation.

Example 15.5: Terzaghi’s consolidation problem: the classical example
is the consolidation test carried out by Terzaghi for a layer of fluid-saturated
soil with a thickness of d. The top at z = 0 is loaded with a constant
stress σzz = −σ33 = const. The application of this load will initiate an
instantaneous response in the whole column under essentially undrained
conditions, which means an almost constant pore pressure p0 = Γσ33

where Γ is the load efficiency.
The initial pore pressure is now p(z, t = 0) = p0. The boundary condi-

tion at the top is that p(0, t) = 0. The bottom boundary is impermeable
or dp/dz|z=d = 0.

This problem is essentially the same as problem (5.29) with boundary
conditions (5.30) discussed earlier. Therefore, the solution is the same as
(5.43), and we have

p =
4Γσzz
π

∞∑

n=0

1

(2n+ 1)
sin[

(2n+ 1)πz

2d
]e−(2n+1)2cvπ

2t/4d2 .

This solution suggests that p → 0 or completely drained equilibrium as
t → ∞. The variations of pressure occur at a typical time scale t∗ when
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the smallest exponent (when n = 0) is unity so that the largest time factor
is e−1. That is

cvπ
2t∗

4d2
≈ 1,

which leads to

t∗ ≈
4d2

cvπ2
,

which means that the time for pore pressure dissipation will quadruple if
the column depth is doubled.

In rocks and geotechnical engineering, it is common to express the
consolidation in terms of porosity φ or void ratio e rather than pore
pressure. Let us now derive the consolidation in terms of φ. From the
fluid continuity equation (15.10), by setting Q = 0 and adding the term
due to gravity, we have

∂θ

∂t
= ∇ · [k

µ
(∇p+ ρfg)], (15.29)

where θ is the increment of fluid per unit volume, and for a fully liquid-
saturated porous medium, the change of fluid content θ can be at-
tributed to the change in porosity φ. Thus, we can write θ = %φ, where
%, the mass per unit fluid (pore) volume, is a constant, and % ≈ 1 can
be used in most applications. Now we get

%
∂φ

∂t
= ∇ · [k

µ
(∇p+ ρfg)]. (15.30)

From the previous chapter, we know that

pe = P − αp, (15.31)

where P is the total overburden pressure given by

P =

∫ L

z

ρgdz =

∫ L

z

[φρf + (1− φ)ρs]gdz + P0, (15.32)

where P0 is the external load at the boundary and P0 can be considered
as constant in most cases. ρs and ρf are the densities of the solid and
fluid, respectively. Now we have

∇P = −ρg = −[φρf + (1− φ)ρs]g. (15.33)

By substituting p in terms of P and pe, the governing equation (15.30)
becomes

%
∂φ

∂t
= ∇ · {k

µ
[
1

α
(−∇pe +∇P ) + ρfg]}
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= ∇ · {k
µ

[− 1

α
∇pe −

ρg

α
+ ρfg]} = ∇ · { k

αµ
[−∇pe + r]}, (15.34)

where
r = −[φρf + (1− φ)ρs] + αρfg. (15.35)

In order to complete this equation we need to have a constitutive rela-
tionship between the effective pressure pe and the porosity φ.

In the previous chapter, we know that the effective pressure pe is
related to the volume strain ∆. As a fluid such as water is incompress-
ible, the volume strain in the porous medium is essentially the volume
strain of the solid matrix, thus we can write the constitutive relation
(14.129) as

pe = −Ks∇ ·U , (15.36)

where Ks is the bulk modulus of the solid matrix. We also use U to
replace u as the displacement so as to avoid any possible confusion
between the displacement and the velocity v. By taking the material
derivative of both sides of the above equation, we have

ṗe ≡
Dpe
Dt

= −Ks∇ · U̇ = −Ks∇ · vs, (15.37)

where U̇ = vs is the velocity of the solid grains. For deformable media,
the time derivative should be the material derivative given by

D

Dt
=

∂

∂t
+ vs · ∇, (15.38)

where vs is the velocity of the solid. The material derivative is also
called the Lagrange derivative as it follows the motion of the particle.
If the consolidation is slow, then vs → 0, so D/Dt ≈ ∂/∂t. Indeed,
most processes in earth sciences are slow, so we do not have to worry
about the difference between the material derivative and the standard
time derivative.

Example 15.6: Let us now try to derive a constitutive relationship
between pe and φ from first principles. The conservation of mass for the
solid phase is

∂[ρs(1− φ)]

∂t
+∇ · [ρs(1− φ)vs] = 0,

where the density of the solid grains ρs =constant is often used. Dividing
both sides of this equation by ρs and rearranging it, we have

∂(1− φ)

∂t
+ vs · ∇(1− φ) =

D(1− φ)

Dt
= −(1− φ)∇ · vs.
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Using Eq.(15.37), we have

D(1− φ)

Dt
= −(1− φ)

ṗe
−Ks

=
(1 − φ)

Ks

Dpe
Dt

,

or
1

Ks

Dpe
Dt

=
1

(1− φ)

D(1− φ)

Dt
=
D ln(1− φ)

Dt
.

The left hand of this equation is a function of pe only and the right-hand
side is a function of (1−φ) only. This implies that pe is a function of 1−φ,
that is pe = pe(1 − φ). In fact, by integrating both sides with respect to
t, we have

pe
Ks

= ln(1− φ) +A,

where A is an integration constant. This is equivalent to

φ = 1− e−A+pe/Ks = 1−Bepe/Ks ,

where B = e−A. This indeed shows that pe is a function of φ only.

The relationship
pe = pe(φ), (15.39)

is often referred to as the constitutive relationship between the effective
pressure and porosity. The actual relationship depends on the type of
rocks or soil, and the type of problem. For example, the following
relationship, known as the normal consolidation line, is widely used in
consolidation of soil layers

e = e0 − Cc ln(pe/p0), (15.40)

where e is the void ratio, Cc is the compression index, and e0 is the void
ratio at the initial effective pressure p0. However, for the compaction
in basin modelling, the following equation

pe
p̄0

= ln
φ0

φ
− (φ0 − φ), (15.41)

is often used. Here φ0 is the initial porosity while the p̄0 is the reference
effective pressure.

Using the relationship Eq.(15.39), we can write Eq.(15.34) as

%
∂φ

∂t
= ∇ · { k

αµ
[−p′e(φ)∇φ + r]}, (15.42)

where p′e(φ) = dpe(φ)/dφ < 0 because the increase of pe will decrease
the porosity. This is the generalised consolidation equation under ex-
ternal load P0 and its own overburden load due to gravity. It is also
called the compaction equation in earth sciences.
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The overburden load (or its own weight) only becomes significant
when the the thickness L of the consolidation layer is very large, and
thus the overburden weight is comparable with or even much more
significant than the external load P0. This is true for some applications
in earth sciences such as compaction of sediments in sedimentary basins
and oil reservoirs, magma transport, and rock mechanics. However, for
applications in geotechnical engineering, the overburden weight is not
important, and this is equivalent to setting g = 0 or r = 0. In this
latter case, we obtain a simplified consolidation equation

∂φ

∂t
= ∇ · [Λ(φ)∇φ], (15.43)

where

Λ(φ) = −k(φ)

µ

1

α%
p′e(φ) > 0. (15.44)

We can see that this consolidation equation (15.43) is essentially a
nonlinear diffusion equation. In most applications, α ≈ 1 and % ≈ 1
are good approximations.

The permeability varies with porosity in complicated ways, depend-
ing on the type of rocks and soils. The most common function is the
Carman-Kozeny relationship

k(φ) = A
φm

(1− φ)2
, (15.45)

where A is a constant but could depend on the grain size. m is the
exponent and typically m = 2 ∼ 8 for rocks. It is often written as the
simplified form

k(φ) = k0(
φ

φ0
)m, (15.46)

where k0 is the permeability at the initial porosity φ0.

15.4 Viscous Creep

15.4.1 Power-Law Creep

Power-law creep belongs to plastic deformation which involves many
different mechanisms at the atomic levels. The basic equation is

ė = A
σn

dm
exp[− Q

RT
], (15.47)

where ė is the strain rate and A is a constant. σ is the mean effective
stress and d is grain size. R = 8.3144 J/mole K is the universal gas
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constant and T is the absolute temperature. Q is the activation energy
required to get crystal dislocations moving, and its value is typically
100−500 kJ/mole. n and m are constants depending on the mechanism
and materials. The value n is typically between 1 and 8. For dislocation
creep, n = 2 ∼ 8 with m = 0 (which means there is a grain size
effect). For diffusion-controlled creep such as viscous creep, n = 1, and
m = 2 ∼ 3.

In the simplest case of linear creep law (n = 1), we have the sim-
plified creep law

σ =
dm

Ae−Q/RT
ė. (15.48)

Since pe = −σ and ė = ∇ · U̇ = ∇ · vs where vs is the velocity of the
solid. We now have

pe = − dm

Ae−Q/RT
∇ · vs = −ξ∇ · vs. (15.49)

This is a linear constitutive equation for viscous creep.
It is worth pointing out that the creep law present here is differ-

ent from the constitutive equation (14.129) or ṗe = −Ks∇ · vs [see
Eq.(15.37)] for the linear poroelasticity, and the mechanisms are also
very different. In linear poroelasticity, the volume strain is related to
the effective pressure, while in creep the strain rate is linked to the
effective pressure and thus strain is continuously changing with time.
The viscosity of the fluid is relatively low, about 10−3 N s m−2 or 10−3

Pa s, but molten chocolate and toothpaste are highly viscous with a
viscosity of about 10 ∼ 103 Pa s. Pitch has a viscosity of about 2× 108

Pa s. Solid rock can behave like a fluid on a geological time scale, and
its viscosity is in the order of 1020 ∼ 1022 Pa s. We will try to derive
the linear creep law from first principles in the rest of this section.

15.4.2 Derivation of creep law

The approach for deriving the law of viscous creep depends on the un-
derlying mechanism. The classical theoretical consideration assumes
a grain-boundary diffusion film of constant thickness and diffusivity,
while other theories use the concept of a roughened, fluid-invaded non-
equilibrium contact structure. Coble’s classical treatment of grain
boundary diffusion creep includes the kinetics of quartz dissolution/
precipitation reaction. This 1-D approximation is only valid for a
closed system when the thickness w of the water film is small with
respect to the grain diameter (d). However, this mechanism is some-
what biased toward grain-boundary diffusion-controlled pressure solu-
tion creep. This shortcoming of the creep laws can be overcome by
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Figure 15.6: The contact areas increase as effective stress increases

due to the pressure-enhanced diffusion along grain boundaries.

using solute transport and pressure solution deformation under possi-
ble open system conditions.

Now let us consider the intergranular contact region as a disc with
a radius r = L shown in Fig. 15.6. Let J(r) be the radial component
of solute mass flux, ė be the average strain rate, and v is the uniform
shortening velocity of the upper grain relative to the lower grain due
to the pressure solution creep. The kinetic relation between v and ė is

v = ėd̄. (15.50)

For simplicity, we assume that the film thickness w does not change
with time and the diffusion is near steady-state. Mass conservation
gives

2πrJ(r) + ρsπr
2v = 0, (15.51)

where ρs is the density of grain solid. The flux J(r) obeys Fick’s Law

J(r) = −Dgbw
dc

dr
, (15.52)

whereDgb is the diffusivity of the solute in water along grain boundaries
with a thickness w. Dgb also varies with temperature T . In fact, we
have

Dgb(T ) = D0e
− Ea

RT , (15.53)

where D0 is the diffusivity at reference temperature T0. R is the uni-
versal gas constant. Ea is the effective activation energy with a value
of 5 ∼ 100 kJ/mol depending on the porous materials.

Let c0 be the equilibrium concentration of the grain materials dis-
solved in pore fluid. Combing Eqs.(15.51) and (15.52), we have

dc

dr
=

ρsv

2Dgbw
. (15.54)
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Integrating it once and using the boundary conditions: cr = 0 at r = 0,
c = c0 at r = L, we have the following steady state solution

c(r) = c0 −
ρsv

4Dgbw
(L2 − r2). (15.55)

The parabolic change of concentration c(r) implies that the stress σ(r)
should be heterogeneously distributed in the contact region.

Experimental studies show that both concentration and thin film
thickness depend on the effective stress σ, and they obey the following
constitutive laws

c = c0exp(−νmσe
RT

) and w = w0exp(−σe
σ0

), (15.56)

where w0, σ0 are constants depending on the properties of the thin film,
and νm is the molar volume (of quartz). From the relation (15.56), we
have

σe(r) = −RT
νm

ln
c(r)

c0
, (15.57)

where we have used the condition σe(r) = 0 at r = L. Let σ be the
averaged effective stress, then

πL2σ =

∫ L

0

2πσe(r)rdr. (15.58)

Combining (15.57) and (15.58), we have

σ = − 2RT

νmL2

∫ L

0

rln[1− ρsėd̄

4c0Dgbw
(L2 − r2)]dr. (15.59)

Using (15.50) and integrating by parts, we have

σ = −RT
νm

[(1− 1

BL2
)ln(1−BL2)− 1], (15.60)

where

B =
ρsėd̄

4c0Dgbw
. (15.61)

By defining a critical effective stress σc (and equivalently a critical
creep rate ėc ) when BL2 = 1

σc =
RT

νm
, ėc =

4c0Dgbw

ρsL2d̄
, (15.62)

(15.60) can be rewritten as

σ

σc
= [1− (1 − ėc

ė
) ln(1− ė

ėc
)]. (15.63)
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A typical value of σc is about 95 MPa with values of T ∼ 300 K,
R ∼ 8.31 J mol−1 K−1, and νm ∼ 2.6× 10−5 m3 mol−1.

Clearly, if |σ |� σc, we have

ė =
4νmc0Dgbw

RTρsd̄L2
σ =

16νmc0Dgbw

RTρsd̄3
σ, (15.64)

or

ė =
1

ξ
σ, ξ =

RTρsd̄
3

16νmc0Dgbw
, (15.65)

which is a linear creep law in terms of stress. Here we have used
L = d̄/2. A different choice of L = O(d̄) will only introduce an addi-
tional shape factor into the above relation. Under upper-crustal stress
conditions σ < 100 MPa, the above approximation is valid as we ex-
pected. At higher stress states, we can use | σ |� σc, then (15.63)
becomes

ė =
4c0Dgbw

ρsd̄L2
[1− e− νmσ

RT ]. (15.66)

Let L2 = 4d̄2/αs, and αs = O(1) is a shape factor. The above relation
(15.66) becomes

ė =
αsc0Dgbw

ρsd̄3
[1− e− νmσ

RT ], (15.67)

which is consistent with Dewers and Hajash’s empirical law derived
from a quartz compaction experiment. It is worth pointing out that
the creep law (15.67) degenerates into (15.65) when νmσ/RT � 1, but
it may be inaccurate when |σ | ∼ σc.

Now let us estimate the order of ξ. For typical values of R ≈ 8.31
J mod−1 K−1, T ≈ 300 K, c0 ≈ 10−4 M, w0Dgb ≈ 10−19 m3 s−1,
d̄ ≈ 10−4 m, ρs = 2.5× 103 kg m−3, and νm = 2× 10−5 m3 mol−1, we
have

ξ =
RTρsd̄

3

16νmc0Dgbw

≈ 8.31× 300× 2.5× 103 × (10−4)3

16× 2× 10−5 × 10−4 × 10−19
≈ 1.9× 1021Pa s, (15.68)

which suggests that rocks and thus the Earth’s crust are highly viscous
on a geological time scale.

Although mountains are formed due to the action of plate tectonics,
the plate itself is not perfectly rigid and the solid rocky mountain can
behave like a viscous chocolate paste on a geological time scale. In
fact, recent observations in the Greek islands suggest that some of the
mountainous surface has moved from 2m to 5m in the last hundred
years. Let us see if this is possible.
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Example 15.7: The spreading of a mountain: assuming that the moun-
tain (idealised as a cone) is about h = 1000 m high and the radius of the
base is 1000 m, the stress level is thus

σ ≈ ρgh = 2.5× 103 × 10× 1000 ≈ 2.5× 107Pa.

If we use ξ ≈ 2× 1021 Pa s from earlier estimation (15.68), we know from
Eq.(15.67) that the strain rate is

ė =
σ

ξ
≈ 2.5× 107

2× 1021
≈ 2.5× 10−14m/s ≈ 4× 10−7m/year.

This seems too small, but we have to know that it is the strain rate, not
the displacement. The strain increment in a year is about

e = ė× t(year) = 4× 10−7m.

As the strain is defined as e = δh/h, the displacement in a year is about

δh ≈ 1000× e ≈ 4× 10−4m = 0.4mm.

This is indeed too small. However, over a period of a million years, the
total displacement is about

δh× 106 ≈ 400m.

Over a million years, erosion occurs at a considerable rate. In addition, the
plate has moved for about 20 km assuming that the rate of plate motion
is about 2cm or 2× 10−2 m/year.

For the surface movement in Greek islands to be a few centimetres
a year, we have to use 2 orders lower (or 1/100) of the viscosity x ≈
2 × 10−19. Therefore, if we believe the observed data is linked to the
viscous mechanism, this means that the apparently rigid mountains are
more fluid-like than we expected.

Now let us look at the driving force of plate tectonics using a similar
estimation. We know that the plate is moving at about the speed 1 ∼ 9
cm/year, depending on the location, so we will choose a moderate speed
v = 5 cm/year or v ≈ 1.6 × 10−9 m/s. As the unit of strain rate is s−1,
so for the mantle of a thickness of L = 3000km = 3 × 106 m, the strain
rate is

ė =
v

L
≈ 1.6× 10−9

3× 106

m/s

m
≈ 5× 10−16 1

s
.

Using the viscosity ξ = 2 × 1021, we can estimate the driving force by
mantle convection is about

σ ≈ ξė = 2× 1021 × 5× 10−16 ≈ 106Pa,
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which is just about 10 atmospheric pressures. Thus, the driving shear force
by mantle convection on such a large scale is surprisingly small. Such force
can be provided by thermal convection of the mantle or even by pulling
force due to the density difference of the subduction zone. Of course, the
reality is much more complicated than this. The main point here is that
for plate tectonic phenomena to happen, the large scale convection does
not necessarily require a big force.

The constitutive relation (15.65) is only valid for the one-dimensional
case. We can extend it to a more general form σ = ξėkk. Noting that
pe = −σ and ėkk = ∇ · U̇ = ∇ · vs, we have the following compaction
law or creep law

pe = −ξ∇.vs. (15.69)

This creep relationship is widely used in studies of magma transport
and plate tectonics and other branches of Earth sciences.

15.5 Hydrofracture

Hydrofracturing is a major mechanism to create fractures in porous
rocks, soils and oil reservoirs. It is also a major technique for ground-
water remediation. For example, injecting water under high pressure
into a bedrock formation via a low yield water well will increase the
size and extent of the existing fractures in the bedrock, resulting in an
increase of the permeability. This will in turn increase the ultimate
yield capacity of the water well. This same procedure also applies to
the boreholes for oil reservoirs. In this final section, we will briefly
review the basic mechanism of hydrofracturing and related processes
such as magma transport and diagenetic reactions.

15.5.1 Hydrofracture

For a fluid-saturated porous medium, we know that the effective pres-
sure pe is related to the total pressure P and the pore pressure p

pe = P − p. (15.70)

The overpressure is the difference of the pore pressure and the hydro-
static pressure. If there is substantial overpressure induced by either
diagenesis or injected water or any other mechanisms, it is possible that
the pore pressure could significantly exceed its hydrostatic pressure. It
is even possible that the pore pressure is greater than the total pressure
P in certain regions.
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Figure 15.7: Hydrofracture via overpressuring due to the fluid

generation from the dehydration of water-rich minerals.

From the above equation, we know that if p > P , we have pe < 0.
In reality, the physics requires that the effective pressure should be
non-negative. What happens here is that fracture is initiated in rocks
so as to dissipate the overpressure. This is the basic mechanism for
hydrofracturing.

Most porous materials such as soil and rocks have limited (usu-
ally low) tensile strength, and small amounts of tensile stress due to
overpressure will result in fracturing. From the fracture mechanics dis-
cussed in the previous chapter, we know that the fracture formation
depends on the state of stress, pore fluid pressure, and the properties
of the rocks.

From the Hall-Petch relationship Eq.(14.112), we know that coarse-
grained rock is weaker than fine-grained rock. For example, it is ob-
served that in many sedimentary basins, sandstones tend to be frac-
tured while mudstones are not.

In groundwater remediation, the high-pressure water is injected into
the ground to create the microfractures by the hydrofracturing process,
resulting in an increase in permeability (and thus hydraulic conductiv-
ity) in surrounding porous rock layers. This will increase the water
yield in wells. The same procedure can also be applied to create frac-
tures in oil reservoirs so as to increase the production of a low yield
borehole.

15.5.2 Diagenesis

Diagenesis is an important process in sedimentary basins, and there
are many diagenetic reactions. The major process is the dewatering or
dehydration reaction of water-rich minerals such as smectite (S) which
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is transformed into more stable illite (I), releasing its bound water.
This reaction can schematically be represented as

S −→ I + n H2O, (15.71)

where n ≈ 5 the number of moles of water molecules released per mole
of smectite. Let φ, S and I be the porosity, volume fractions of smectite,
and volume fraction of illite, respectively. For the simplified model
given by Fowler and Yang in 2003, the governing equations become

∂S

∂t
= −eβ(T0+αz−T∗)S, (15.72)

∂I

∂t
+ (1− r)∂S

∂t
= 0, (15.73)

∂φ

∂t
= λ

∂2φ

∂z2
+ re−β(T0+αz−T∗)S, (15.74)

where λ, r and β are constants. z is the depth from the ocean floor.
T0 ≈ 300K is the temperature at the ocean floor, and α = 30K/km
is the temperature gradient. T∗ ≈ 90◦C ≈ 363K is the critical tem-
perature to switch on the diagenetic reaction, and this means that the
diagenetic reaction typically occurs at a depth of about 2.5 ∼ 3.5 km.
Here the equations have been written in non-dimensional form, and the
parameters are given by

λ =
Dτ

d2
, r = A0τ, (15.75)

where A0 is the Arrhenius coefficient and D is the diffusion coefficient.
The length scale is d = 1000 m and the time scale is τ = 1 million
years (or 0.3 × 1014 s). For typical values of D ≈ 3 × 10−8 m2/s and
A0 ≈ 3× 10−15 s−1, we have λ ≈ 1 and r ≈ 0.1.

For the values of λ = 1, β = 2, and r = 0.1, we can solve the above
equation numerically. The results are shown in Fig. 15.7 where we can
see that there is a diagenetic window for dehydration. In this window,
the overpressure is high because the bound water is released here. This
overpressuring will lead to the increase of porosity via hydrofracturing,
and this fracturing process is reflected by the increase of permeability
starting from the diagenetic window up to the ocean floor. This hy-
drofracture is a mechanism for creating vertical cracks in sedimentary
basins.

15.5.3 Dyke and Diapir Propagation

Another important fracturing process related to overpressuring is the
propagation of the magma dykes. Magma rise is driven by the buoyancy
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force due to density difference, and the resistance forces are the viscous
shear stress and fracture toughness. Dykes are formed through magma
intrusion into brittle rocks with a very small aspect ratio of width to
length, typically several metres wide and up to hundreds of kilometres
long. For a potential vertical dyke connected to a large magma reservoir
(see Fig. 15.8), its height and width are h and w, respectively. We can
idealise it as the viscous laminar flow or Poiseuille flow between two
parallel plates 2d apart (see Fig. 15.9). The governing equation is the
viscous flow equation Eq.(5.25)

ξ∇2v = ∇p, (15.76)

where ∇p is the pressure gradient and ξ is the viscosity of the fluid.
For the one-dimensional flow with ∇p = ∂p

∂x = ∆p=constant (pres-
sure drop per unit length), the equation simply becomes

∂2v

∂y2
=

∆p

ξ
. (15.77)

The boundary condition at y = d is v = 0 (non-slip condition), while
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the shear τ = ξ ∂v∂y = 0 at y = 0 by symmetry. Integrating the above
equation twice, we have

v =
∆p

2ξ
y2 +Ay +B. (15.78)

From ∂v
∂y = 0, we have A = 0. From v = 0 at y = d, we have B =

−∆p
2µ d

2. Thus, the solution becomes

v = −∆p

2ξ
(d2 − y2). (15.79)

The total flow rate per unit thickness (perpendicular to the page) is
the sum of all the layers or the integration. We have

Q =

∫ d

−d
vdy = 2

∫ d

0

vdy = −2∆p

3ξ
d3. (15.80)

Now coming back to our original problem, we know that the buoyancy
force is given by fb = δρgz where δρ is the density difference and g
is the acceleration due to gravity. Therefore, the pressure gradient is
∆p = ∂p

∂z = −δρg because pressure decreases as z increases. Using
d = w/2, we have

Q =
δρg

12ξ
w3. (15.81)

Since the total width is w, the averaged flow velocity v̄ is simply

v̄ =
Q

w
=
δρg

12ξ
w2. (15.82)

As the rock-magma viscosity and the magma viscosity are different, an
effective or combined viscosity should be used for the magma ascent.
For silicic magma, the density difference is about 100 ∼ 200 kg/m3.
The viscosity of magma is controlled by composition (such as Si and
water content), volatility of gas (such as water vapour), temperature,
and pressure. The viscosity varies from 102 Pa s (mafic or basaltic
magma) to 107 Pa s (felsic magma) and up to 1012 Pa s (such as
rhyolite). For a typical width of w = 2 m, the average velocity of
magma ascent is v̄ = δρg

12ξw
2 ≈ 3 × 10−10 ∼ 5m/s. Well, this estimate

varies too widely and is probably not much use. However, it does
give us an indication of how the flow rate varies with the width of the
dyke. In fact, the magma flow velocity in most cases is in the range of
10−3 ∼ 20 m/s or 4 m/hr to 70km/hr. The wide range of this velocity
is mainly controlled by pressure and more importantly by viscosity. For
example, the dry rhyolite magma has a viscosity of about 1011 Pa s at
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1100K, if its water content increases up to 5%, then its viscosity will
reduce to 105 Pa s. In addition, the crystallinity or the content of the
suspended solid crystals (expressed as volume fraction ψ) will affect the
the effective viscosity of the magma, which obeys the Einstein-Roscoe
equation

ξ = ξ0(1− βψ)−2.5, (15.83)

where ξ0 is the viscosity when ψ = 0 and β ≈ 1.67 is a constant.

Here we use the linear viscous relationship; if we use a nonlinear
relationship, then the width-dependence is even more complicated. If
the magma supply is limited, the cooling time scale is typically τ =
d2/κ [see Eq.(1.17) in Chapter 1] where κ is the thermal diffusivity.
For a typical value of κ ≈ 1 × 10−6 m2/s, we have τ ≈ 10 days for
d = 1m and τ ≈ 11 years for d = 20 m. If the temperature is too
low, the magma may solidify and block the flow though the channel.
If the viscosity is too high, it may also clog the channel. In general,
magma with low viscosity flows quickly and covers a large area (say,
hundreds of square kilometres), while magma with high viscosity flows
slowly and covers a relative small region. Volatile gases escape more
quickly in low viscosity magma, while gas pressure may build up in
high viscosity magma, causing potential violent eruptions. However, if
overpressure is high enough, the high pressure of the underlying magma
may overcome the blockage and the magma will erupt in an explosive
manner. If the overpressure dissipation is enough, the channel may be
clogged again.

It is worth pointing out that the above estimation is mainly valid
for the flow in existing fissures where flow and fracture can easily be
formed. If there is no existing fissure, then the fracture of the rock near
the head of the magma column is governed by the local stress so that
the whole column acts as an edge crack. Therefore, the fast fracture
criterion discussed in the previous chapter still applies

KIC = σ
√
πh, (15.84)

where σ is the principal stress, and KIC is the critical stress intensity
factor of the surrounding rock. If the column height h is relatively large,
then a small stress concentration will lead to further crack propagation.

Another interesting related phenomenon is the propagation and em-
placement of diapirs. The motion of a diapir is similar to the process
inside a lava lamp. As an example, let us look at a diapir in detail.

Example 15.8: A diapir is formed by intrusion under buoyancy and
pressure difference. Typical scale of diapirs is several kilometres. For a
diapir ascent, the Poiseuille flow in a cylinder is a crude model. From
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Eq.(4.30), we know that ∆P/L = −δρg. Thus, the total flow rate is

Q =
πgδρ

128ξ
w4, (15.85)

where w is the diameter of the diapir, and ξ is the effective combined
viscosity. As the area of the circular diapir is A = π(w/2)2, the average
ascent velocity is v̄ = gδρ

32ξw
2. For the typical values of w = 2km, ξ = 1017

Pa s, and δρ = 200 kg/m3, we have

v̄ =
gδρ

32ξ
w2 ≈ 9.8× 200

32× 1017
(2000)2 ≈ 1.23×10−9m/s ≈ 0.04m/year,

which is about 4 cm/year. It is a significant speed geologically.

An interesting implication of this estimation is that v̄ ∝ w2. This
means that larger diapirs will rise much faster than small diapirs. This
is because larger diapirs have a much greater force of buoyancy to
overcome the resistance of overlying rock layers. Obviously, as the
diapir body moves up, the temperature becomes lower, the density
of the ascent body becomes closer to the density of the surrounding
rock. Subsequently, the density difference is getting smaller, so is the
buoyancy. Studies show that the diapir ascent rate varies from 0.05 ∼
7m/year (at a depth between 40 and 10 km) to a slower rate 0.01 ∼ 0.1
m/year (at depths between 5 and 10 km). Alternatively, we know that
the time scale of cooling is τ = d2/κ, thus the diapir has moved up
h = v̄τ during the period of τ . For a diapir with d = 1000m and
κ ≈ 10−6 m2/s, we have τ ≈ 32, 000 years, so that h = 1250 m. This
again implies that large diapirs move quickly on the geological time
scale. The final emplacement of a diapir depends on many factors and
the most important factor is probably the density of the surrounding
rock.

The cylindrical model may be too far from the reality. A better
model to consider is that of the diapir as a sphere rising through the
viscous rock (like a rising balloon). Since both the diapir and the
surrounding rock are highly viscous, the actual model is modified as

v =
α

3

δρga2

ξr
, α =

ξr + ξd

ξr + 3ξd

2

, (15.86)

where a = w/2 is the radius of the spherical diapir. ξr and ξd are the
viscosities of the surrounding rock and the diapir, respectively. In the
case of ξd � ξr, we have α ≈ 2/3. Then, the above equation reduces to

the Stokes equation v ≈ 2δρga2

9ξr
which is the settling velocity of a rigid

sphere in a viscous fluid with viscosity ξr. However, ξd is usually two or
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three orders lower than ξr, and their typical values are ξd ≈ 1016∼1019

Pa s and ξr ≈ 1019 ∼ 1022 Pa s. More sophisticated mathematical
models are needed to get a better estimate and this is still an area of
active research.
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Appendix A

Mathematical Formulae

A.1 Differentiation and Integration

A.1.1 Differentiation

Differentiation Rules:

(uv)′ = u′v + uv′, (
u

v
)′ =

u′v − uv′
v2

f [g(x)]′ = f ′[g(x)] · g′(x)

Leibnitz’s Theorem:

dn

dxn
(uv) = u(n)v + bu(n−1)v′ + ...+

(
n
k

)

u(n−k)v(k) + ...+ uv(n),

(
n
k

)

= nCk =
n!

k!(n− k)!

A.1.2 Integration

Integration by parts

∫ b

a

u
dv

dx
dx = [uv]

∣
∣
∣

b

a
+

∫ b

a

v
du

dx
dx

Differentiation of an integral

d

dx

∫ b(x)

a(x)

u(x, y)dy = [u(x, b)
db

dx
− u(x, a)da

dx
] +

∫ b(x)

a(x)

∂u(x, y)

∂x
dy

291



292 Appendix A. Mathematical Formulae

A.1.3 Power Series

ez = 1 + z +
z2

2!
+ ...+

zn

n!
... (z ∈ C)

sin z = z − z3

3!
+
z5

5!
− ..., cos z = 1− z2

2!
+
z4

4!
− ...

sinh z = z +
z3

3!
+
z5

5!
+ ..., cosh z = 1 +

z2

2!
+
z4

4!
+ ...

A.1.4 Complex Numbers

eiθ = cos θ + i sin θ, z = x+ iy = reiθ = r(cosθ + i sin θ)

De Moivre’s formula:

[r(cos θ + i sin θ)]n = rn(cosnθ + i sinnθ)

A.2 Vectors and Matrices

a · b = |a||b| cos θ = axbx + ayby + azbz

a× b = n|a||b| sin θ =

∣
∣
∣
∣
∣
∣

i j k
ax ay az
bx by bz

∣
∣
∣
∣
∣
∣

Vector Triple

a · (b× c) =

∣
∣
∣
∣
∣
∣

ax ay az
bx by bz
cx cy cz

∣
∣
∣
∣
∣
∣

a · (b× c) = b · (c × a) = c · (a × b) = −a · (c× b)

a× (b× c) = (a · c)b− (a · b)c

Gauss’ Divergence Theorem

∫ ∫ ∫

V

∇ · udV =

∫∫

S

u · dA

Stokes’ Theorem
∫ ∫

S

(∇× u) · dA =

∮

Γ

u · dl
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Green’s Theorems
∫

V

(ψ∇2φ− φ∇2ψ)dV =

∫

S

(ψ
∂φ

∂n
− φ∂ψ

∂n
)|dS|

∮

(udx+ vdy) =

∫ ∫

(
∂v

∂x
− ∂u

∂y
)dxdy

Identities
∇ · ∇ × u = 0, ∇×∇φ = 0

∇× (φu) = φ∇× u + (∇φ)× u

∇ · (φu) = φ∇ · u + (∇φ) · u
∇× (∇× u) = ∇(∇ · u)−∇2u

Matrices

(AB...Z)T = ZT...BTAT, (AB...Z)−1 = Z−1...B−1A−1

|AB....Z| = |A||B|...|Z|, |A| = detA

Trace and Determinants

Avi = λivi, eig(AB) = eig(BA)

tr(A) =
∑

i

Aii =
∑

i

λi, λi = eig(A)

Exponential Matrices

eA ≡
∞∑

n=0

1

n!
An = I + A +

1

2
A2 + ...

etA ≡
∞∑

n=0

1

n!
(tA)n = I + tA +

t2

2
A2 + ...

A.3 Asymptotic Expansions

Gaussian Function

p(x;µ, σ) =
1√

2πσ2
exp[− (x− µ)2

2σ2
]→ δ(x) σ →∞.

Binomial Distribution

g(k;n, p) =

(
n
k

)

pk(1− p)n−k, (k = 0, 1, 2, ...n)
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g(k→ x;n→∞, p) ∼ f(x;λ = np), ( lim
n→∞

np = λ)

g(x;n→∞, p)|np�1 ∼ p(x;µ, σ), µ = np, σ2 = np(1− p)
Poisson Distribution

f(x;λ) =
e−λλx

x!
, x ∈ N

f(x;λ� 1) ≈ p(x;µ, σ), µ = λ, σ2 = λ

Stirling’s Formula

n! ≈ (
n

e
)n
√

2πn, n� 1

Error Function

erf(x) =
2√
π

∫ x

0

e−η
2

dη, erfc(x) = 1− erf(x) =
2√
π

∫ ∞

x

e−t
2

dt

erf(x) ∼ 1− e
−x2

x
√
π
, (x→∞), erf(x) ∼ 2√

π
[x− x

3

3
+
x5

10
−...], (x <∞).
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Appendix B

Matlab and Octave

Programs

The numerical algorithms discussed in this book can be implemented
in any programming languages, however, we do have to make a choice
when implementing them, though they should not be tied to a partic-
ular programming language. In this sense, this appendix can be used
alone and/or with reference to the main text of this book.

We will implement some of the algorithms using both Matlab and
Octave. The reasons for our choice are twofold: 1) Matlab is a popular
script programming language with many powerful functions for manip-
ulating matrice and vectors as well as visualisation, and it is widely
accessible (www.mathworks.com); 2) Octave is an open source soft-
ware (www.octave.org) that has many functions that are compatible
with Matlab and thus most Matlab programs can run directly on an
Octave platform (or with minimal modifications).

B.1 Gaussian Quadrature

For an integral with finite integration limits a and b, the 7-point Gaus-
sian quadrature is given by

I =

∫ b

a

f(x)dx =
(b − a)

2

∫ 1

−1

f [
(b− a)(ζ + 1)

2
+ a]dζ =

≈ b − a
2

n∑

i=1

wif [
(b− a)(ζi + 1)

2
+ a], (B.1)
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where we have used x = (b−a)(ζ+1)
2 + a. The Gaussian points are

ζ1 ≈ −0.94910, ζ2 ≈ −0.74153, ζ3 ≈ −0.40584,

ζ4 = 0.0, ζ5 = −ζ3, ζ6 = −ζ2, ζ7 = −ζ1, (B.2)

and their corresponding weighting coefficients are

w1 ≈ 0.12948, w2 ≈ 0.27970, w3 ≈ 0.38183,

w4 ≈ 0.41795, w5 = w3, w6 = w2, w7 = w1. (B.3)

This following implemented program works in both Matlab and Octave.
To run the program, type in (only about 16 lines) and save to a file,
Gauss quad.m in any directory, say, D:/programs.

For Matlab (Octave), first launch Matlab (or Gnu Octave), then
change to the directory where the file was saved (using>cd D:/programs),
and type in

>Guass quad (‘exp(-x.∧2)*2/sqrt(pi)’,0,1)
It will display

I = 0.84270079279326.

We know that the exact value is erf(1) = 0.84270079294971..., and we
see that the 7-point Guassian quadrature is accurate to the 9th decimal
place. The function in single quotation can be any valid Matlab or
Octave expression, however, the power .∧ (instead of ∧) and ./ (instead
of /) operators should be used as they are element-wise operations.
Alternatively, the vectorization command or vectorize can be used. It is
worth pointing out that when you install the Gnu Octave, you probably
have to install Gnuplot as well (www.gnuplot.info) if you have not
installed it on your computer.

Gauss quad.m

% Numerical Integration of I=\int_a^b f(x) dx

% by 7-point Gaussian Quadrature

% Programmed by X S Yang (Cambridge University)

% Usage: Gauss_quad(function_str,a,b)

% E.g. Gauss_quad(‘(sin(x)./x).^2’,0,pi);

function [I]=Gauss_quad(fstr,a,b) % line 1

% Power (.^) and division (./) in fstr should be used

format long; % line 2

if nargin<3,

disp(‘Usage:Gauss_quad(integrand,a,b)’);

disp(‘E.g., Gauss_quad(‘‘exp(-x.^2)*2./sqrt(pi)’’,-1,1);’);

end

% Default function and values if no input
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if nargin<1, % line 7

help Gauss_quad.m;

fstr=‘exp(-x.^2)*2/sqrt(pi)’;

a=-1.0; b=1.0;

end % line 11

% Converting the input integrand, fstr, to a function f(x)

f=inline(fstr,0);

% Seven-point integration scheme so zeta_1 to zeta_7

zeta=[-0.9491079123; -0.7415311855; -0.4058451513; 0.0;

0.4058451513; 0.7415311855; 0.9491079123];

% Weighting coefficients

w=[0.1294849661; 0.2797053914; 0.3818300505; 0.4179591836;

0.3818300505; 0.2797053914; 0.1294849661];

% Index for the seven points

Index=1:7; % line 15

I=(b-a)/2*sum(w(Index).*f((b-a).*(zeta(Index)+1)/2+a));

disp(‘ ’); disp(‘The integral is ’); I % line 16

B.2 Newton’s Method

The roots of a function f(x) = 0 can be found using Newton’s iteration
method

xn+1 = xn −
f(xn)

f ′(xn)
, (B.4)

where the initial value xn=0 can be a random guess. So we use x0 =randn
where randn is a random number drawn from a normal distribution. In
case of multiple roots, it will only produce a single root as the initial
guess is random. To get multiple roots, you can call the function many
times to obtain all the roots.

Newton matlab.m

% Finding roots of f(x)=0 via the Newton’s iteration method

% Programmed by X S Yang (Cambridge University)

% Usage: Newton(function_str); E.g. Newton(‘x.^5-pi’);

% [Notes: Since the initial guess is random, so in case

% of multiple roots, only a single root will be given.]

function [root]=Newton(fstr) ! line 1

format long; ! line 2

% Default function and values if no input

if nargin<1,

help Newton.m;

fstr=‘x.^5-pi’; ! line 5

end

% Tolerance (to the tenth decimal place)
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delta=10^(-10);

% Converting the input fstr to a function f(x)

f=inline(fstr);

% Defining x as the independent variable

syms x;

% Find the f’(x) from f(x) using diff

fprime=inline(char(diff(f(x),x))); ! line 10

% Initial random guess

xn=randn; deltax=1;

% Iteration until the prescribed accuracy

while (deltax>delta)

root=xn-f(xn)/fprime(xn);

deltax=abs(root-xn);

xn=root; ! line 15

end

disp(strcat(fstr, ‘ has a root’)); root ! line 17

For example, type in >Newton(‘x.∧5-pi’), it will produces a root

root = 1.2572741156,

which is accurate to the 10th decimal place. However, as we used some
symbolic function in Matlab to obtain f ′(x), the Octave version is slight
different, you have to supply the f ′(x). For the same example, we now
have to type in >Newton octave(’x.∧5-pi’,’5*x.∧4’).

Newton octave.m

% Finding roots of f(x)=0 via the Newton’s iteration method

% Programmed by X S Yang (Cambridge University)

% Usage: Newton(function,fprime);

% E.g. Newton(‘x.^5-3.1415’,‘5*x.^4’);

% [Notes: Since the initial guess is random, so in case

% of multiple roots, only a single root will be given.]

function [root]=Newton(fstr,fprimestr) ! line 1

format long; ! line 2

% Default function and values if no input

if nargin<1,

help Newton.m;

fstr=‘x.^5-3.1415’; fprimestr=‘5*x.^4’; ! line 5

end

% Tolerance (to the tenth decimal place)

delta=10^(-10);

% Converting fstr & fprime to functions f(x) & f’(x)

str=strcat(‘(’,fstr); str=strcat(str,‘)/(’);

str=strcat(str,fprimestr); str=strcat(str,‘)’);

fdivfp=inline(str); ! line 10

% Initial random guess
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xn=randn; deltax=1;

% Iteration until the prescribed accuracy

while (deltax>delta)

root=xn-fdivfp(xn);

deltax=abs(root-xn);

xn=root; ! line 15

end

disp(strcat(fstr, ‘ has a root’)); root ! line 17

B.3 Pattern Formation

The nonlinear reaction-diffusion equation (Chapter 13)

∂u

∂t
= D(

∂2u

∂x2
+
∂2u

∂y2
) + γu(1− u), (B.5)

can be discretised using the finite difference method. We have

u
(n+1)
i,j − u(n)

i,j

∆t
= D[

u
(n)
i+1,j − 2u

(n)
i−1,j + u

(n)
i,j

(∆x)2
+
u

(n)
i,j+1 − 2u

(n)
i,j + u

(n)
i,j−1

(∆y)2
]

+γu
(n)
i,j (1− u(n)

i,j ). (B.6)

Using ∆x = ∆y = ∆t = 1, we have

u
(n+1)
i,j = D[u

(n)
i+1,j + u

(n)
i−1,j + u

(n)
i,j+1 + u

(n)
i,j−1]

+(1− 4D)u
(n)
i,j + γu

(n)
i,j (1− u(n)

i,j ). (B.7)

This scheme is implemented using both Matlab and Octave. This sim-
ple program solves this nonlinear reaction-diffusion equation and gen-
erates beautiful patterns.

Pattern matlab.m

% Pattern formation: a 15 line matlab program

% PDE form: u_t=D*(u_{xx}+u_{yy})+gamma*q(u)

% where q(u)=‘u.*(1-u)’;

% The solution of this PDE is obtained by the

% finite difference method, assuming dx=dy=dt=1.

% Written by X S Yang (Cambridge University)

% Usage: pattern(200) or simply >pattern

% -----------------------------------------------

function pattern(n) % line 1

% Input number of time steps

if nargin<1, n=200; end % line 2
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% -----------------------------------------------

% Initialize parameters

% ---- time=100, D=0.2; gamma=0.5; --------------

time=100; D=0.2; gamma=0.5; % line 3

% ---- Set initial values of u randomly ---------

u=rand(n,n); grad=u*0; % line 4

% Vectorisation/index for u(i,j) and the loop ---

I = 2:n-1; J = 2:n-1; % line 5

% ---- Time stepping ----------------------------

for step=1:time, % line 6

% Laplace gradient of the equation % line 7

grad(I,J)= u(I,J-1)+u(I,J+1)+u(I-1,J)+u(I+1,J);

u =(1-4*D)*u+D*grad+gamma*u.*(1-u); % line 8

% ----- Show results ----------------------------

pcolor(u); shading interp; % line 9

% ----- Coloring and showing colorbar -----------

colorbar; colormap jet; % line 10

drawnow; % line 11

end % line 12

% ----- Topology of the final surface ----------

surf(u); % line 13

shading interp; % line 14

view([-25 70]); % line 15

As there are some differences in visualisation in Matlab and Octave,
the octave version is given below:

Pattern octave.m

% Pattern formation: a 15 line matlab program

% PDE form: u_t=D*(u_{xx}+u_{yy})+gamma*q(u)

% where q(u)=‘u.*(1-u)’;

% The solution of this PDE is obtained by the

% finite difference method, assuming dx=dy=dt=1.

% Written by X S Yang (Cambridge University)

% Usage: pattern(200) or simply >pattern

% -----------------------------------------------

function pattern_octave(n) % line 1

% Input number of time steps

if nargin<1, n=200; end % line 2

% -----------------------------------------------

% Initialize parameters

% ---- time=100, D=0.2; gamma=0.5; --------------

time=100; D=0.2; gamma=0.5; % line 3

% ---- Set initial values of u randomly ---------

u=rand(n,n); grad=u*0; % line 4

% Vectorisation/index for u(i,j) and the loop ---

I = 2:n-1; J = 2:n-1; % line 5
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% ---- Time stepping ----------------------------

for step=1:time, % line 6

% Laplace gradient of the equation % line 7

grad(I,J)= u(I,J-1)+u(I,J+1)+u(I-1,J)+u(I+1,J);

u =(1-4*D)*u+D*grad+gamma*u.*(1-u); % line 8

end

% ----- Show results in colors ------------------

colormap (jet); % line 9

pcolor(u); % line 10

B.4 Wave Equation

The finite element method for the wave equation in a 1-D case (in
Section 12.4.3) is implemented in the following program (Matlab and
Octave):

Fem wave.m

% Solving the 1-D wave equation using the

% finite element method, implemented in Matlab

% written by X S Yang (Cambridge University)

% PDE form: u_{tt}-c^2 u_{xx}=0; c=speed=1;

% n=number of nodes, N=time-step

n=100; % line 1

% ----- Initializing various parameters ---------

L=1.0; % length of domain

speed=1.0; % wave speed

m=n-1; % number of elements

time=1; % total time of simulations

% ----- Time steps and element size -------------

dt=L/(n*speed); hh=L/m;

N=time/dt; % Number of time steps

% ----- Preprocessing ---------------------------

% Split the domain into regularly-spaced n nodes

for i=1:n,

x(i)=(i-1)*L/m;

end % line 10

x(1)=0; x(n)=L;

% ----- Finding the element connectivity --------

% Simple 1-D 2-node elements E(1,:) and E(2,:)

for i=1:m,

E(1,i)=i; E(2,i)=i+1;

h(i)=abs(x(E(2,i))-x(E(1,i)));

end % line 15

% ----- Initialization of arrays/matrices --------

u=zeros(1,n)’; f=zeros(1,n)’;
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K=zeros(n,n); M=zeros(n,n);

% ----- Element-by-element assembly --------------

% M d^2U/dt^2+KU=f;

for i=1:m,

K(i,i)=K(i,i)+1/h(i);

K(i,i+1)=K(i,i+1)-1/h(i); % line 20

K(i+1,i)=K(i+1,i)-1/h(i);

K(i+1,i+1)=K(i+1,i+1)+1/h(i);

end

% ----- Application of boundary conditions ------

% Fixed boundary at both ends: u(0)=u(1)=0

K(n,n)=1; K(n,n-1)=0;

K(1,1)=1; K(1,2)=0; % line 25

% ----- General mass matrix M -------------------

for i=2:n-1,

M(i,i)=h(i);

end;

M(1,1)=hh/2;

M(n,n)=hh/2; % line 30

Minv=inv(M);

% ----- Preparing time stepping -----------------

D=2*eye(n,n)-dt*dt*Minv*K;

% ----- Initial waveforms with two peaks --------

u0=exp(-(40*(x-L/2)).^2)+0.5*exp(-(40*(x-L/4)).^2);

v=u0’; U=v;

% ---- Solving the matrix equation --------------

% ---- Start time-stepping ----------------------

for t=1:N,

u=D*U-v; % line 35

v=U; % stored to be used later

U=u; % stored as previous values

% ----- Display the travelling wave -------------

plot(x,u,x,u0); axis([0 L -1 1]);

drawnow;

end % line 40

It works in both Matlab and Octave and generates an animation of
travelling waves.

References
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and at node j, we get

fj = f = k(uj − ui) = −kui + kuj . (8.4)

These two equations can be combined into a matrix equation
�

k −k
−k k

��

ui

uj

�

=

�

fi

fj

�

, or Ku = f . (8.5)

Here K is the stiffness matrix, u and f are the displacement
vector and force vector, respectively. This is the basic spring
element, and let us see how it works in a spring system such as
shown in Figure 8.2 where three different springs are connected
in serial.
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Figure 8.2: A simple spring system.

For a simple spring system shown in Figure 8.2, we now try
to determine the displacements of ui(i = 1, 2, 3, 4). In order
to do so, we have to assembly the whole system into a single
equation in terms of global stiffness matrix K and forcing f .
As these three elements are connected in serial, the assembly of
the system can be done element by element. For element E1,
its contribution to the overall global matrix is

�

k1 −k1

−k1 k1

��

u1

u2

�

=

�

f1

f2

�

, (8.6)

which is equivalent to

K1u = fE1
, (8.7)
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where Dgb is the diffusivity of the solute in water along grain boundaries
with a thickness w. Dgb also varies with temperature T . In fact, we
have

Dgb(T ) = D0e
− Ea

RT , (15.54)

where D0 is the diffusivity at reference temperature T0. R is the uni-
versal gas constant. Ea is the effective activation energy with a value
of 5 ∼ 100 kJ/mole depending on the porous materials.

Let c0 be the equilibrium concentration of the grain materials dis-
solved in pore fluid. Combing Eqs.(15.52) and (15.53), we have

dc

dr
=

ρsv

2Dgbw
. (15.55)

Integrating it once and using the boundary conditions: cr = 0 at r = 0,
c = c0 at r = L, we have the following steady state solution

c(r) = c0 −
ρsv

4Dgbw
(L2 − r2). (15.56)

The parabolic change of concentration c(r) implies that the stress σ(r)
should be heterogeneously distributed in the contact region.

Experimental studies show that both concentration and thin film
thickness depend on the effective stress σ, and they obey the following
constitutive laws

c = c0exp(−
νmσe

RT
) and w = w0exp(−

σe

σ0
), (15.57)

where w0, σ0 are constants depending on the properties of the thin film,
and ν is the molar volume (of quartz). From the relation (15.57), we
have

σe(r) = −RT

νm
ln

c(r)

c0
, (15.58)

where we have used the condition σe(r) = 0 at r = L. Let σ be the
averaged effective stress, then

πL2σ =

� L

0

2πσe(r)rdr. (15.59)

Combining (15.58) and (15.59), we have

σ = − 2RT

νmL2

� L

0

rln[1 − ρsėd̄

4c0Dgbw
(L2 − r2)]dr. (15.60)

Using (15.51) and integrating by parts, we have

σ = −RT

νm
[(1 − 1

BL2
)ln(1 − BL2) − 1], (15.61)
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� r

�

� O

A

B

Figure 6.4: Geodesic path on the surface of a sphere.

and integrating again, we have

y = kx + c, k =
A√

1 − A2
. (6.20)

This is a straight line. That is exactly what we expect from the plane
geometry.

Well, you may say, this is trivial and there is nothing new about
it. Let us now study a slightly more complicated example to find the
shortest path on the surface of a sphere.

� Example 6.2: For any two points A and B on the surface of a sphere
with radius r as shown in Fig. 6.4, we now use the calculus of variations
to find the shortest path connecting A and B on the surface.

Since the sphere has a fixed radius, we need only two coordinates (θ, φ)
to uniquely determine the position on the sphere. The length element ds
can be written in terms of the two spherical coordinate angles

ds = r

�

dθ2 + sin2 θdφ2 = r

�

(
dθ

dφ
)2 + sin2 θ |dφ|,

where in the second step we assume that θ = θ(φ) is a function of φ so
that φ becomes the only independent variable. This is possible because
θ(φ) represents a curve on the surface of the sphere just as y = y(x)
represents a curve on a plane. Thus, we want to minimise the total length

L =

� B

A

ds =

� φB

φA

�

θ�2 + sin2 θ dφ,

where θ� = dθ/dφ. Since the integrand

ψ =
�

θ�2 + sin2 θ

8.2 Concept of Elements (X. S. Yang) Finite Element Methods

to the nodal degree of freedom such as the displacement.

8.2 Concept of Elements

8.2.1 Simple Spring Systems

The basic idea of the finite element analysis is to divide a model
(such as a bridge and an airplane) into many pieces or elements
with discrete nodes. These elements form an approximate sys-
tem to the whole structures in the domain of interest, so that
the physical quantities such as displacements can be evalu-
ated at these discrete nodes. Other quantities such as stresses,
strains can then be be evaluated at at certain points (usually
Gaussian integration points) inside elements. The simplest el-
ements are the element with two nodes in 1-D, the triangular
element with three nodes in 2-D, and tetrahedral elements with
four nodes in 3-D.
In order to show the basic concept, we now focus on the

simplest 1-D spring element with two nodes (see Figure 8.1).
The spring has a stiffness constant k (N/m) with two nodes i
and j. At nodes i and j, the displacements (in metres) are ui

and uj , respectively. fi and fj are nodal forces.

� ���

�
�
�

�
�
�

�
�
�

�
�
�

�
�
���

��

�

fi fj

k

x

i j

ui uj

Figure 8.1: Finite element concept.

From Hooke’s law, we know the displacement ∆u = uj −ui

is related to f , or
f = k(∆u). (8.2)

At node i, we have

fi = −f = −k(uj − ui) = kui − kuj , (8.3)
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