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Preface

Mathematical modeling is the link between mathematics and the rest of the
world. You ask a question. You think a bit, and then you refine the question,
phrasing it in precise mathematical terms. Once the question becomes a math-
ematics question, you use mathematics to find an answer. Then finally (and
this is the part that too many people forget), you have to reverse the process,
translating the mathematical solution back into a comprehensible, no–nonsense
answer to the original question. Some people are fluent in English, and some
people are fluent in calculus. We have plenty of each. We need more people
who are fluent in both languages and are willing and able to translate. These
are the people who will be influential in solving the problems of the future.

This text, which is intended to serve as a general introduction to the area
of mathematical modeling, is aimed at advanced undergraduate or beginning
graduate students in mathematics and closely related fields. Formal prerequi-
sites consist of the usual freshman–sophomore sequence in mathematics, includ-
ing one–variable calculus, multivariable calculus, linear algebra, and differential
equations. Prior exposure to computing and probability and statistics is useful,
but is not required.

Unlike some textbooks that focus on one kind of mathematical model, this
book covers the broad spectrum of modeling problems, from optimization to
dynamical systems to stochastic processes. Unlike some other textbooks that
assume knowledge of only a semester of calculus, this book challenges students
to use all of the mathematics they know (because that is what it takes to solve
real problems).

The overwhelming majority of mathematical models fall into one of three
categories: optimization models; dynamic models; and probability models. The
type of model used in a real application might be dictated by the problem at
hand, but more often, it is a matter of choice. In many instances, more than
one type of model will be used. For example, a large Monte Carlo simulation
model may be used in conjunction with a smaller, more tractable deterministic
dynamic model based on expected values.

This book is organized into three parts, corresponding to the three main
categories of mathematical models. We begin with optimization models. A five-
step method for mathematical modeling is introduced in Section 1 of Chapter
1, in the context of one–variable optimization problems. The remainder of
the first chapter is an introduction to sensitivity analysis and robustness. These
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viii PREFACE

fundamentals of mathematical modeling are used in a consistent way throughout
the rest of the book. Exercises at the end of each chapter require students
to master them as well. Chapter 2, on multivariable optimization, introduces
decision variables, feasible and optimal solutions, and constraints. A review of
the method of Lagrange multipliers is provided for the benefit of those students
who were not exposed to this important technique in multivariable calculus.
In the section on sensitivity analysis for problems with constraints, we learn
that Lagrange multipliers represent shadow prices (some authors call them dual
variables). This sets the stage for our discussion of linear programming later
in Chapter 3. At the end of Chapter 3 is a section on discrete optimization
that was added in the second edition. Here we give a practical introduction to
integer programming using the branch–and–bound method. We also explore the
connection between linear and integer programming problems, which allows an
earlier introduction to the important issue of discrete versus continuous models.
Chapter 3 covers some important computational techniques, including Newton’s
method in one and several variables, and linear and integer programming.

In the next part of the book, on dynamic models, students are introduced
to the concepts of state and equilibrium. Later discussions of state space, state
variables, and equilibrium for stochastic processes are intimately connected to
what is done here. Nonlinear dynamical systems in both discrete and continuous
time are covered. There is very little emphasis on exact analytical solutions in
this part of the book, since most of these models admit no analytic solution.
At the end of Chapter 6 is a section on chaos and fractals that was added in
the second edition. We use both analytic and simulation methods to explore
the behavior of discrete and continuous dynamic models, to understand how
they can become chaotic under certain conditions. This section provides a
practical and accessible introduction to the subject. Students gain experience
with sensitive dependence to initial conditions, period doubling, and strange
attractors that are fractal sets. Most important, these mathematical curiosities
emerge from the study of real–world problems.

Finally, in the last part of the book, we introduce probability models. No
prior knowledge of probability is assumed. Instead we build upon the material in
the first two parts of the book, to introduce probability in a natural and intuitive
way as it relates to real–world problems. Chapter 7 introduces the basic notions
of random variables, probability distributions, the strong law of large numbers,
and the central limit theorem. At the end of Chapter 7, Introduction to Prob-
ability Models, is a section on diffusion, which was added in the third edition.
Here we give a gentle introduction to partial differential equations by focusing
on the diffusion equation. We provide a simple derivation of the point source
solution to this partial differential equation, using Fourier transforms, to arrive
at the normal density. Then we connect the diffusion model to the central limit
theorem introduced in the previous Section 7.3, Introduction to Statistics. This
new section on diffusion grew out of a class taught at the University of Nevada
for beginning graduate students in the earth sciences. The applications are to
contaminant migration in the atmosphere and ground water. Chapter 8 covers
the basic models of stochastic processes, including Markov chains, Markov pro-
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cesses, and linear regression. At the end of Chapter 8, Stochastic Models, a new
section on time series was added in the third edition. This section also serves as
an introduction to multivariate regression models with more than one predic-
tor. As a natural follow-up to the discussion in Section 8.3, Linear Regression,
the new section on time series introduces the important idea of correlation. It
also shows how to recognize correlated variables and include the dependence
structure in a time series model. The discussion is focused on autoregressive
models, since these are the most generally useful time series models. They are
also the most convenient, in that they can be handled using widely available
linear regression software. For the benefit of students with access to a statistical
package, this section illustrates the proper application and interpretation of ad-
vanced methods including autocorrelation plots and sequential sums of squares.
However, the entire section can also be covered using only a basic implemen-
tation of regression that allows multiple predictors and outputs the two basic
measures: R2 and the residual standard deviation s. This can all be done with
a good spreadsheet or hand calculator. Chapter 9 treats simulation methods
for stochastic models. The Monte Carlo method is introduced, and Markov
property is applied to create efficient simulation algorithms. Analytic simula-
tion methods are also explored, and compared to the Monte Carlo method. In
the fourth edition, two new sections were added to the end of Chapter 9. The
first new section covers particle tracking methods, for solving partial differential
equations via Monte carlo simulation of the underlying stochastic process. The
final section of the book introduces fractional calculus in the context of anoma-
lous diffusion. The fractional diffusion equation is solved by particle tracking,
and applied to a problem in ground water pollution. This section ties together
the concepts of fractals, fractional derivatives, and probability distributions with
heavy tails.

Each chapter in this book is followed by a set of challenging exercises. These
exercises require significant effort, as well as a certain amount of creativity, on
the part of the student. I did not invent the problems in this book. They are
real problems. They were not designed to illustrate the use of any particular
mathematical technique. Quite the opposite. We will occasionally go over some
new mathematical techniques in this book because the problem demands it. I
was determined that there would be no place in this book where a student
could look up and ask, “What is all of this for?” Although typically oversim-
plified or grossly unrealistic, story problems embody the fundamental challenge
in applying mathematics to solve real problems. For most students, story prob-
lems present plenty of challenge. This book teaches students how to solve story
problems. There is a general method that can be applied successfully by any
reasonably capable student to solve any story problem. It appears in Chapter
1, Section 1. This same general method is applied to problems of all kinds
throughout the text.

Following the exercises in each chapter is a list of suggestions for further
reading. This list includes references to a number of UMAP modules in applied
mathematics that are relevant to the material in the chapter. UMAP modules
can provide interesting supplements to the material in the text, or extra credit



x PREFACE

projects. All of the UMAP modules are available at a nominal cost from the
Consortium for Mathematics and Its Applications (www.comap.com).

One of the major themes of this book is the use of appropriate technology
for solving mathematical problems. Computer algebra systems, graphics, and
numerical methods all have their place in mathematics. Many students have
not had an adequate introduction to these tools. In this course we introduce
modern technology in context. Students are motivated to learn because the
new technology provides a more convenient way to solve real–world problems.
Computer algebra systems and 2–D graphics are useful throughout the course.
Some 3–D graphics are used in Chapters 2 and 3 in the sections on multivari-
able optimization. Students who have already been introduced to 3–D graphics
should be encouraged to use what they know. Numerical methods covered in the
text include, among others, Newton’s method, linear programming, the Euler
method, linear regression, and Monte Carlo simulation.

The text contains numerous computer–generated graphs, along with instruc-
tion on the appropriate use of graphing utilities in mathematics. Computer al-
gebra systems are used extensively in those chapters where significant algebraic
calculation is required. The text includes computer output from the computer
algebra systems Maple and Mathematica in Chapters 2, 4, 5, and 8. The chap-
ters on computational techniques (Chapters 3, 6, and 9) discuss the appropriate
use of numerical algorithms to solve problems that admit no analytic solution.
Sections 3.3 and 3.4 on linear-integer programming include computer output
from the popular linear programming package LINDO. Sections 8.3 and 8.4
on linear regression and time series include output from the commonly used
statistical package Minitab.

Students need to be provided with access to appropriate technology in or-
der to take full advantage of this textbook. We have tried to make it easy for
instructors to use this textbook at their own institution, whatever their situa-
tion. Some will have the means to provide students with access to sophisticated
computing facilities, while others will have to make do with less. The bare ne-
cessities include: (1) a software utility to draw 2–D graphs; and (2) a machine
on which students can execute a few simple numerical algorithms. All of this can
be done, for example, with a computer spreadsheet program or a programmable
graphics calculator. The ideal situation would be to provide all students access
to a good computer algebra system, a linear programming package, and a statis-
tical computing package. The following is a partial list of appropriate software
packages that can be used in conjunction with this textbook.
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Computer Algebra Systems:

• Derive, Chartwell-Yorke Ltd., www.chartwellyorke.com/derive

• Maple, Waterloo Maple, Inc., www.maplesoft.com

• Mathcad, Parametric Technology Corp., www.ptc.com/products/mathcad

• Mathematica, Wolfram Research, Inc., www.wolfram.com/mathematica

• MATLAB, The MathWorks, Inc., www.mathworks.com/products/matlab

• Maxima, free download, maxima.sourceforge.net

Statistical Packages:

• Minitab, Minitab, Inc., www.minitab.com

• SAS, SAS Institute, Inc., www.sas.com

• SPSS, IBM Corp., www.ibm.com/software/analytics/spss

• S-PLUS, TIBCO Corp., spotfire.tibco.com

• R, R Foundation for Statistical Computing, free download, www.r-project.org

Linear Programming Packages:

• LINDO, LINDO Systems, Inc., www.lindo.com

• MPL, Maximal Software, Inc., www.maximal-usa.com

• AMPL, AMPL Optimization, LLC, www.ampl.com

• GAMS, GAMS Development Corp., www.gams.com

The numerical algorithms in the text are presented in the form of pseudo-
code. Some instructors will prefer to have students implement the algorithms
on their own. On the other hand, if students are not going to be required to pro-
gram, we want to make it easy for instructors to provide them with appropriate
software. All of the algorithms in the text have been implemented on a variety
of computer platforms that can be made available to users of this textbook at
no additional cost. If you are interested in obtaining a copy, please contact the
author, or go to www.stt.msu.edu/ mcubed/modeling.htmlwhere you can
download these implementations. Also, if you are willing to share your own im-
plementation with other instructors and students, please send us a copy. With
your permission, we will make copies available to others at no charge.

A complete and detailed solutions manual for instructors is available from
the author or the publisher, for instructors who adopt the text for classroom use.
Computer implementations of the algorithms used in the text can be downloaded
for a variety of platforms, along with the computer files used to produce all of
the graphics and computer outputs included in the text. These downloads are
all available at www.stt.msu.edu/

users/

users/mcubed/modeling.html
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The response to the first three editions of the text has been gratifying. The
best part of this job is interacting with students and instructors who use this
book. Please feel free to contact me with any comments or suggestions.

Mark M. Meerschaert
Department of Statistics and Probability
Michigan State University

East Lansing, MI 48824-1027 USA

Phone: (517) 353-8881
Fax: (517) 432-1405
Email: mcubed@stt.msu.edu
Web: www.stt.msu.edu/

C430 Wells Hall

users/mcubed



Chapter 1

ONE VARIABLE
OPTIMIZATION

Problems in optimization are the most common applications of mathematics.
Whatever the activity in which we are engaged, we want to maximize the good
that we do and minimize the unfortunate consequences or costs. Business man-
agers attempt to control variables in order to maximize profit or to achieve a
desired goal for production and delivery at a minimum cost. Managers of renew-
able resources such as fisheries and forests try to control harvest rates in order to
maximize long–term yield. Government agencies set standards to minimize the
environmental costs of producing consumer goods. Computer system managers
try to maximize throughput and minimize delays. Farmers space their plantings
to maximize yield. Physicians regulate medications to minimize harmful side
effects. What all of these applications and many more have in common is a
particular mathematical structure. One or more variables can be controlled to
produce the best outcome in some other variable, subject in most cases to a
variety of practical constraints on the control variables. Optimization models
are designed to determine the values of the control variables which lead to the
optimal outcome, given the constraints of the problem.

We begin our discussion of optimization models at a place where most stu-
dents will already have some practical experience. One–variable optimization
problems, sometimes called maximum–minimum problems, are typically dis-
cussed in first–semester calculus. A wide variety of practical applications can
be handled using just these techniques. The purpose of this chapter, aside from
a review of these basic techniques, is to introduce the fundamentals of mathe-
matical modeling in a familiar setting.

1.1 The five-step Method

In this section we outline a general procedure that can be used to solve problems
using mathematical modeling. We will illustrate this procedure, called the five-

Fourth edition
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4 CHAPTER 1. ONE VARIABLE OPTIMIZATION

step method, by using it to solve a one–variable maximum–minimum problem
typical of those encountered by most students in the first semester of calculus.

Example 1.1. A pig weighing 200 pounds gains 5 pounds per day and costs
45 cents a day to keep. The market price for pigs is 65 cents per pound, but is
falling 1 cent per day. When should the pig be sold?

The mathematical modeling approach to problem solving consists of five
steps:

1. Ask the question.

2. Select the modeling approach.

3. Formulate the model.

4. Solve the model.

5. Answer the question.

The first step is to ask a question. The question must be phrased in mathemat-
ical terms, and it often requires a good deal of work to do this. In the process
we are required to make a number of assumptions or suppositions about the
way things really are. We should not be afraid to make a guess at this stage.
We can always come back and make a better guess later on. Before we can ask
a question in mathematical terms we need to define our terms. Go through the
problem and make a list of variables. Include appropriate units. Next make a
list of assumptions about these variables. Include any relations between vari-
ables (equations and inequalities) that are known or assumed. Having done all
of this, we are ready to ask a question. Write down in explicit mathematical
language the objective of this problem. Notice that the preliminary steps of
listing variables, units, equations and inequalities, and other assumptions are
really a part of the question. They frame the question.

In Example 1.1 the weight w of the pig (in lbs), the number of days t until
we sell the pig, the cost C of keeping the pig t days (in dollars), the market
price p for pigs ($/lb), the revenue R obtained when we sell the pig ($), and our
resulting net profit P ($) are all variables. There are other numerical quantities
involved in the problem, such as the initial weight of the pig (200 lbs). However,
these are not variables. It is important at this stage to separate variables from
those quantities that will remain constant.

Next we need to list our assumptions about the variables identified in the
first stage of step 1. In the process we will take into account the effect of the
constants in the problem. The weight of the pig starts at 200 lbs and goes up
by 5 lbs/day so we have

(w lbs) = (200 lbs) +

(
5 lbs

day

)
(tdays).
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Variables: t = time (days)
w = weight of pig (lbs)
p = price for pigs ($/lb)
C = cost of keeping pig t days ($)
R = revenue obtained by selling pig ($)
P = profit from sale of pig ($)

Assumptions: w = 200 + 5t
p = 0.65− 0.01t
C = 0.45t
R = p · w
P = R− C
t ≥ 0

Objective: Maximize P

Figure 1.1: Results of step 1 of the pig problem.

Notice that we have included units as a check that our equation makes sense.
The other assumptions inherent in our problem are as follows:(

p dollars

lb

)
=

(
0.65 dollars

lb

)
−
(
0.01 dollars

lb · day

)
(t days)

(C dollars) =

(
0.45 dollars

day

)
(t days)

(R dollars) =

(
p dollars

lb

)
(w lbs)

(P dollars) = (R dollars)− (C dollars)

We are also assuming that t ≥ 0. Our objective in this problem is to maximize
our net profit, P dollars. Figure 1.1 summarizes the results of step 1, in a form
convenient for later reference.

The three stages of step 1 (variables, assumptions, and objective) need not be
completed in any particular order. For example, it is often useful to determine
the objective early in step 1. In Example 1.1, it may not be readily apparent
that R and C are variables until we have defined our objective, P , and we recall
that P = R−C. One way to check that step 1 is complete is to see whether our
objective P relates all the way back to the variable t. The best general advice
about step 1 is to do something. Start by writing down whatever is immediately
apparent (e.g., some of the variables can be found simply by reading over the
problem and looking for nouns), and the rest of the pieces will probably fall into
place.

Step 2 is to select the modeling approach. Now that we have a problem
stated in mathematical language, we need to select a mathematical approach
to use to get an answer. Many types of problems can be stated in a standard
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form for which an effective general solution procedure exists. Most research in
applied mathematics consists of identifying these general categories of problems
and inventing efficient ways to solve them. There is a considerable body of
literature in this area, and many new advances continue to be made. Few, if
any, students in this course will have the experience and familiarity with the
literature to make a good selection for the modeling approach. In this book,
with rare exceptions, problems will specify the modeling approach to be used.
Our example problem will be modeled as a one–variable optimization problem,
or maximum–minimum problem.

We outline the modeling approach we have selected. For complete details
we refer the reader to any introductory calculus textbook.

We are given a real–valued function y = f(x) defined on a subset
S of the real line. There is a theorem that states that if f attains its
maximum or minimum at an interior point x ∈ S, then f ′(x) = 0,
assuming that f is differentiable at x. This allows us to rule out
any interior point x ∈ S at which f ′(x) ≠ 0 as a candidate for max–
min. This procedure works well as long as there are not too many
exceptional points.

Step 3 is to formulate the model. We need to take the question exhibited in
step 1 and reformulate it in the standard form selected in step 2, so that we can
apply the standard general solution procedure. It is often convenient to change
variable names if we will refer to a modeling approach that has been described
using specific variable names, as is the case here. We write

P = R− C

= p · w − 0.45t

= (0.65− 0.01t)(200 + 5t)− 0.45t.

Let y = P be the quantity we wish to maximize and x = t the independent
variable. Our problem now is to maximize

y = f(x)

= (0.65− 0.01x)(200 + 5x)− 0.45x
(1.1)

over the set S = {x : x ≥ 0}.
Step 4 is to solve the model, using the standard solution procedure identified

in step 2. In our example we want to find the maximum of the function y = f(x)
defined by Eq. (1.1) over the set x ≥ 0. Figure 1.2 shows a graph of the function
f(x). Since f is quadratic in x, the graph is a parabola. We compute that

f ′(x) =
(8− x)

10
,

so that f ′(x) = 0 at the point x = 8. Since f is increasing on the interval
(−∞, 8) and decreasing on (8, ∞), the point x = 8 is the global maximum. At
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126 

128 

130 

132 

134 
f(

x)

0 5 10 15 20 
x

Figure 1.2: Graph of net profit f(x) = (0.65− 0.01x)(200 + 5x)− 0.45x versus
time to sell x for the pig problem.

this point we have y = f(8) = 133.20. Since the point (x, y) = (8, 133.20) is
the global maximum of f over the entire real line, it is also the maximum over
the set x ≥ 0.

Step 5 is to answer the question posed originally in step 1; i.e., when to sell
the pig in order to maximize profit. The answer obtained by our mathematical
model is to sell the pig after eight days, thus obtaining a net profit of $133.20.
This answer is valid as long as the assumptions made in step 1 remain valid.
Related questions and alternative assumptions can be addressed by changing
what we did in step 1. Since we are dealing with a real problem (A farmer owns
pigs. When should they be sold?), there is an element of risk involved in step 1.
For that reason it is usually necessary to investigate several alternatives. This
process, called sensitivity analysis, will be discussed in the next section.

The main purpose of this section was to introduce the five-step method for
mathematical modeling. Figure 1.3 summarizes the method in a form convenient
for later reference. In this book we will apply the five-step method to solve a
wide variety of problems in mathematical modeling. Our discussion of step 2
will generally include a description of the modeling approach selected, along
with an example or two. The reader who is already familiar with the modeling
approach may choose to skip this part, or just skim to pick up the notation.
Some of the other points summarized in Fig. 1.3, such as the use of “appropriate
technology,” will be expanded upon later in this book.

The exercises at the end of each chapter also require the application of the
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Step 1. Ask the question.

• Make a list of all the variables in the problem, including appropriate units.

• Be careful not to confuse variables and constants.

• State any assumptions you are making about these variables, including
equations and inequalities.

• Check units to make sure that your assumptions make sense.

• State the objective of the problem in precise mathematical terms.

Step 2. Select the modeling approach.

• Choose a general solution procedure to be followed in solving this problem.

• Generally speaking, success in this step requires experience, skill, and
familiarity with the relevant literature.

• In this book we will usually specify the modeling approach to be used.

Step 3. Formulate the model.

• Restate the question posed in step 1 in the terms of the modeling approach
specified in step 2.

• You may need to relabel some of the variables specified in step 1 in order
to agree with the notation used in step 2.

• Note any additional assumptions made in order to fit the problem de-
scribed in step 1 into the mathematical structure specified in step 2.

Step 4. Solve the model.

• Apply the general solution procedure specified in step 2 to the specific
problem formulated in step 3.

• Be careful in your mathematics. Check your work for math errors. Does
your answer make sense?

• Use appropriate technology. Computer algebra systems, graphics, and
numerical software will increase the range of problems within your grasp,
and they also help reduce math errors.

Step 5. Answer the question.

• Rephrase the results of step 4 in nontechnical terms.

• Avoid mathematical symbols and jargon.

• Anyone who can understand the statement of the question as it was pre-
sented to you should be able to understand your answer.

Figure 1.3: The five-step method.
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five-step method. Getting in the habit of using the five-step method now will
make it easier to succeed on the more difficult modeling problems to come. Be
sure to pay particular attention to step 5. In the real world, it is not enough
to be right. You also need the ability to communicate your findings to others,
some of whom may not be as mathematically knowledgeable as you.

1.2 Sensitivity Analysis

The preceding section outlines the five-step approach to mathematical modeling.
The process begins by making some assumptions about the problem. We are
rarely certain enough about things to be able to expect all of these assumptions
to be exactly valid. Therefore, we need to consider how sensitive our conclusions
are to each of the assumptions we have made. This kind of sensitivity analysis
is an important aspect of mathematical modeling. The details vary according
to the modeling approach used, and so our discussion of sensitivity analysis will
continue throughout this book. We will focus here on sensitivity analysis for
simple one–variable optimization problems.

In the preceding section we used the pig problem (Example 1.1) to illustrate
the five-step approach to mathematical modeling. Figure 1.1 summarizes the
assumptions we made in solving that problem. In this instance the data and
assumptions were mostly spelled out for us. Even so, we need to be critical.
Data are obtained by measurement, observation, and sometimes sheer guess.
We need to consider the possibility that the data are not precise.

Some data are naturally known with much more certainty than others. The
current weight of the pig, the current price for pigs, and the cost per day of
keeping the pig are easy to measure and are known to a great degree of certainty.
The rate of growth of the pig is a bit less certain, and the rate at which the
price is falling is even less certain. Let r denote the rate at which the price is
falling. We assumed that r = 0.01 dollars per day, but let us now suppose that
the actual value of r is different. By repeating the solution procedure for several
different values of r, we can get an idea of the sensitivity of our answer to the
value of r. Table 1.1 shows the results of solving our problem for a few selected
values of r. Figure 1.4 contains the same sensitivity data in graphical form. We
can see that the optimal time to sell is quite sensitive to the parameter r.

A more systematic method for measuring this sensitivity would be to treat
r as an unknown parameter, following the same steps as before. Writing

p = 0.65− rt,

we can proceed as before to obtain

y = f(x)

= (0.65− rx)(200 + 5x)− 0.45x.

Then we can compute

f ′(x) =
−2(25rx+ 500r − 7)

5
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r x
($/day) (days)
0.008 15.0
0.009 11.1
0.010 8.0
0.011 5.5
0.012 3.3

Table 1.1: Sensitivity of best time to sell x to rate r at which price is falling for
the pig problem.

2 

4 

6 

8 

10 

12 

14 

16 

x 
(d

ay
s)

0.008 0.009 0.01 0.011 0.012 
r ($ / day)

Figure 1.4: Graph of best time to sell x versus rate r at which price is falling
for the pig problem.
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Figure 1.5: Graph of net profit f(x) = (0.65− 0.015x)(200+ 5x)− 0.45x versus
time to sell x for the pig problem in the case r = 0.015.

so that f ′(x) = 0 at the point

x =
(7− 500r)

25r
. (1.2)

The optimal time to sell is given by Eq. (1.2) as long as this expression is
positive, i.e., as long as 0 < r ≤ 0.014. For r > 0.014, the vertex of the parabola
y = f(x) lies outside of the set x ≥ 0 over which we are maximizing. In this
case the optimal time to sell is at x = 0 since we have f ′ < 0 on the entire
interval [0, ∞). See Figure 1.5 for an illustration in the case r = 0.015.

We are also uncertain about the growth rate g of the pig. We have assumed
that g = 5 lbs/day. More generally, we have that

w = 200 + gt,

which leads to the equation

f(x) = (0.65− 0.01x)(200 + gx)− 0.45x, (1.3)

so that

f ′(x) =
−(2gx+ 5(49− 13g))

100
.

Now f ′(x) = 0 at the point

x =
5(13g − 49)

2g
. (1.4)
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Figure 1.6: Graph of best time to sell x versus growth rate g for the pig problem.

The optimal time to sell is given by Eq. (1.4) so long as it represents a nonneg-
ative value of x. Figure 1.6 shows the relationship between the growth rate g
and the optimal time to sell.

It is most natural and most useful to interpret sensitivity data in terms of
relative change or percent change, rather than in absolute terms. For example, a
10% decrease in r leads to a 39% increase in x, while a 10% decrease in g leads
to a 34% decrease in x. If x changes by an amount ∆x, the relative change
in x is given by ∆x/x, and the percent change in x is 100∆x/x. If r changes
by ∆r, resulting in the change ∆x in x, then the ratio between the relative
changes is ∆x/x divided by ∆r/r. Letting ∆r → 0 and using the definition of
the derivative, we obtain

∆x/x

∆r/r
→ dx

dr
· r
x
.

We call this limiting quantity the sensitivity of x to r, and we will denote it by
S(x, r). In the pig problem we have

dx

dr
=
−7
25r2

= −2, 800
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at the point r = 0.01 and x = 8; thus

S(x, r) =
dx

dr
· r
x

= (−2, 800)
(
.01

8

)
=
−7
2

.

If r goes up by 2%, then x goes down by 7%. Since

dx

dg
=

245

2g2

= 4.9,

we have

S(x, g) =
dx

dg
· g
x

= (4.9)

(
5

8

)
= 3.0625,

so that a 1% increase in the growth rate of the pig would cause us to wait about
3% longer to sell the pig.

In order to compute the sensitivity S(y, g), first substitute (1.4) into the
objective function y = f(x) from (1.3) to obtain

y =

(
0.65− 0.01

[
5(13g − 49)

2g

])(
200 + g

[
5(13g − 49)

2g

])
− 0.45

[
5(13g − 49)

2g

]
=

150.0625

g
+ 50.375 + 10.5625g.

Then compute the derivative

dy

dg
= −150.0625

g2
+ 10.5625,

and substitute g = 5 to get dy/dg = 4.56, which leads to

S(y, g) =
dy

dg
· g
y

= (4.56)

(
5

133.20

)
= 0.17.
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If the pig grows 10% faster than expected, the expected net profit will be 1.7%
larger. The computation of the derivative dy/dg in this case involves quite a bit
of algebra. In Chapter 2, we will discuss how a computer algebra system can be
used to perform the necessary algebraic computations.

The successful application of sensitivity analysis procedures requires good
judgment. It is usually not possible to compute sensitivity coefficients for each
parameter in the model, nor is this particularly desirable. We need to select
those parameters about which there is the most uncertainty and perform sen-
sitivity analysis on them. The interpretation of sensitivity coefficients also de-
pends on the degree of uncertainty, the fundamental question being the extent
to which our uncertainty about the data affects our confidence in the answer.
In the pig problem, we are probably considerably more certain of the growth
rate g than of the rate r at which prices fall. A 25% error in g would be quite
surprising if we have observed the past history of growth in this pig or in similar
animals. A 25% error in our estimate of r would not be at all surprising.

1.3 Sensitivity and Robustness

A mathematical model is robust if the conclusions it leads to remain true even
though the model is not completely accurate. In real problems we will never have
perfect information, and even if it were possible to construct a perfectly accurate
model, we might be better off with a simpler and more tractable approximation.
For this reason a consideration of robustness is a necessary ingredient in any
mathematical modeling project.

In the preceding section we introduced the process of sensitivity analysis,
which is a way to gauge the robustness of a model with respect to assumptions
about the data. There are other assumptions made in step 1 of the mathematical
modeling process which should also be examined. While it is often necessary to
make assumptions for purposes of mathematical convenience and simplicity, it
is the responsibility of the modeler to see to it that these assumptions are not
so specialized as to invalidate the results of the modeling process.

Figure 1.1 contains a summary of the assumptions made in solving the pig
problem. Aside from data values, the main assumptions are that both the weight
of the pig and the selling price per pound are linear functions of time. These
are obviously simplifying assumptions and cannot be expected to hold exactly.
After all, according to these assumptions, a year from now the pig would weigh

w = 200 + 5(365)

= 2, 025 lbs

and sell for

p = 0.65− 0.01(365)

= −3.00 dollars/lb.

A more realistic model would take into account both the nonlinearity of these
functions and the increasing uncertainty as time goes on.
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How can a model give the right answer if the assumptions are wrong? While
mathematical modeling strives for perfection, perfection can never be achieved.
It would be more descriptive to say that mathematical modeling strives toward
perfection. A well–constructed mathematical model will be robust, which is to
say that while the answers it gives may not be perfectly correct, they will be
close enough to be useful in a real–world context.

Let us examine the linearity assumptions made in the pig problem. Our
basic equation is

P = pw − 0.45t,

where p is the selling price of the pig in dollars per pound, and w is the weight
of the pig in pounds. If the original data and assumptions of the model are
not too far off, then the best time to sell the pig is obtained by setting P ′ = 0.
Calculate to find

p′w + pw′ = 0.45

dollars per day. The term p′w+ pw′ represents the rate of increase in the value
of the pig. Our model tells us to keep the pig as long as the value of the pig is
increasing faster than the cost of feeding it. Furthermore, the change in the pig’s
value has two components, p′w and pw′. The first term, p′w, represents the loss
in value due to a drop in price. The second term, pw′, represents the gain in
value due to the pig gaining weight. Consider the practical problems involved in
the application of this more general model. The data required include a complete
specification of both the future growth of the pig and the future changes in price
as differentiable functions of time. There is no way to know these functions
exactly. There is even some question as to whether they make sense. Can the
pig be sold at 3 A.M. Sunday morning? Can price be an irrational number? Let
us construct a realistic scenario. The farmer has a pig weighing approximately
200 lbs. The pig has been gaining about five lbs/day during the last week. Five
days ago the pig could have been sold for 70 cents/lb but by now the price has
dropped to 65 cents/lb. What should we do? The obvious approach is to project
on the basis of this data (w = 200, w′ = 5, p = 0.65, p′ = −0.01) and decide
when to sell. This is exactly what we did. We understand that p′ and w′ will
not remain constant over the next few weeks, and that therefore p and w will
not be linear functions of time. However, as long as p′ and w′ do not change
too much over this period, the error involved in assuming they remain constant
will not be too great.

We are now prepared to give a somewhat broader interpretation to the results
of our sensitivity analysis from the preceding section. Recall that the sensitivity
of the best time to sell (x) to changes in the growth rate w′ was calculated to be
3. Suppose that in fact the growth rate over the next few weeks is somewhere
between 4.5 and 5.5 lbs/day. This is within 10% of the assumed value. Then
the best time to sell the pig will be within 30% of 8 days, or between 5 and 11
days. The amount of lost profit by selling at 8 days is less than 1 dollar.

With regard to price, suppose that we feel the value p′ = −.01, or a 1
cent/day drop in price over the next few weeks, is a worst–case scenario. Prices
are likely to drop more slowly in the future and may even level off (p′ = 0).
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All we can really say now is that we should wait at least 8 days to sell. For
small values of p′ (near zero), our model suggests waiting a very long time to
sell. However, our model is not valid over long time intervals. The best course
of action in this case is probably to keep the pig for a week, reestimate the
parameter values p, p′, w′, and w, and start over.

1.4 Exercises

1. An automobile manufacturer makes a profit of $1,500 on the sale of a
certain model. It is estimated that for every $100 of rebate, sales increase
by 15%.

(a) What amount of rebate will maximize profit? Use the five-step
method, and model as a one–variable optimization problem.

(b) Compute the sensitivity of your answer to the 15% assumption. Con-
sider both the amount of rebate and the resulting profit.

(c) Suppose that rebates actually generate only a 10% increase in sales
per $100. What is the effect? What if the response is somewhere
between 10 and 15% per $100 of rebate?

(d) Under what circumstances would a rebate offer cause a reduction in
profit?

2. In the pig problem, perform a sensitivity analysis based on the cost per
day of keeping the pig. Consider both the effect on the best time to sell
and on the resulting profit. If a new feed costing 60 cents/day would let
the pig grow at a rate of 7 lbs/day, would it be worth switching feed?
What is the minimum improvement in growth rate that would make this
new feed worthwhile?

3. Reconsider the pig problem of Example 1.1, but now assume that the price
for pigs is starting to level off. Let

p = 0.65− 0.01t+ 0.00004t2 (1.5)

represent the price for pigs (cents/lb) after t days.

(a) Graph Eq. (1.5) along with our original price equation. Explain why
our original price equation could be considered as an approximation
to Eq. (1.5) for values of t near zero.

(b) Find the best time to sell the pig. Use the five-step method, and
model as a one–variable optimization problem.

(c) The parameter 0.00004 represents the rate at which price is leveling
off. Conduct a sensitivity analysis on this parameter. Consider both
the optimal time to sell and the resulting profit.
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(d) Compare the results of part (b) to the optimal solution contained
in the text. Comment on the robustness of our assumptions about
price.

4. An oil spill has fouled 200 miles of Pacific shoreline. The oil company
responsible has been given 14 days to clean up the shoreline, after which
a fine will be levied in the amount of $10,000/day. The local cleanup crew
can scrub five miles of beach per week at a cost of $500/day. Additional
crews can be brought in at a cost of $18,000 plus $800/day for each crew.

(a) How many additional crews should be brought in to minimize the
total cost to the company? Use the five-step method. How much will
the clean–up cost?

(b) Examine the sensitivity to the rate at which a crew can clean up the
shoreline. Consider both the optimal number of crews and the total
cost to the company.

(c) Examine the sensitivity to the amount of the fine. Consider the
number of days the company will take to clean up the spill and the
total cost to the company.

(d) The company has filed an appeal on the grounds that the amount of
the fine is excessive. Assuming that the only purpose of the fine is to
motivate the company to clean up the oil spill in a timely manner, is
the fine excessive?

5. It is estimated that the growth rate of the fin whale population (per year)
is rx(1− x/K), where r = 0.08 is the intrinsic growth rate, K = 400, 000
is the maximum sustainable population, and x is the current population,
now around 70,000. It is further estimated that the number of whales
harvested per year is about 0.00001 Ex, where E is the level of fishing
effort in boat–days. Given a fixed level of effort, population will eventually
stabilize at the level where growth rate equals harvest rate.

(a) What level of effort will maximize the sustained harvest rate? Model
as a one–variable optimization problem using the five-step method.

(b) Examine the sensitivity to the intrinsic growth rate. Consider both
the optimum level of effort and the resulting population level.

(c) Examine the sensitivity to the maximum sustainable population.
Consider both the optimum level of effort and the resulting popu-
lation level.

6. In Exercise 5, suppose that the cost of whaling is $500 per boat–day, and
the price of a fin whale carcass is $6,000.

(a) Find the level of effort that will maximize profit over the long term.
Model as a one–variable optimization problem using the five-step
method.
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(b) Examine the sensitivity to the cost of whaling. Consider both the
eventual profit in $/year and the level of effort.

(c) Examine the sensitivity to the price of a fin whale carcass. Consider
both profit and level of effort.

(d) Over the past 30 years there have been several unsuccessful attempts
to ban whaling worldwide. Examine the economic incentives for
whalers to continue harvesting. In particular, determine the con-
ditions (values of the two parameters: cost per boat–day and price
per fin whale carcass) under which harvesting the fin whale produces
a sustained profit over the long term.

7. Reconsider the pig problem of Example 1.1, but now suppose that our
objective is to maximize our profit rate ($/day). Assume that we have
already owned the pig for 90 days and have invested $100 in this pig to
date.

(a) Find the best time to sell the pig. Use the five-step method, and
model as a one–variable optimization problem.

(b) Examine the sensitivity to the growth rate of the pig. Consider both
the best time to sell and the resulting profit rate.

(c) Examine the sensitivity to the rate at which the price for pigs is
dropping. Consider both the best time to sell and the resulting profit
rate.

8. Reconsider the pig problem of Example 1.1, but now take into account
the fact that the growth rate of the pig decreases as the pig gets older.
Assume that the pig will be fully grown in another five months.

(a) Find the best time to sell the pig in order to maximize profit. Use the
five-step method, and model as a one–variable optimization problem.

(b) Examine the sensitivity to the time it will take until the pig is fully
grown. Consider both the best time to sell and the resulting profit.

9. A local daily newspaper with a circulation of 80,000 subscribers is thinking
of raising its subscription price. Currently the price is $1.50 per week, and
it is estimated that the paper would lose 5,000 subscribers if the rate were
to be raised by ten cents/week.

(a) Find the subscription price that maximizes profit. Use the five-step
method, and model as a one–variable optimization problem.

(b) Examine the sensitivity of your answer in part (a) to the assumption
of 5,000 lost subscribers. Calculate the optimal subscription rate
assuming that this parameter is 3,000, 4,000, 5,000, 6,000, or 7,000.

(c) Let n = 5, 000 denote the number of subscribers lost when the sub-
scription price increases by ten cents. Calculate the optimal subscrip-
tion price p as a function of n, and use this formula to determine the
sensitivity S(p, n).
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(d) Should the paper change its subscription price? Justify your conclu-
sions in plain English.
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Chapter 2

MULTIVARIABLE
OPTIMIZATION

Many optimization problems require the simultaneous consideration of a number
of independent variables. In this chapter we consider the simplest category of
multivariable optimization problems. The techniques should be familiar to most
students from multivariable calculus. In this chapter we also introduce the use
of computer algebra systems to handle some of the more complicated algebraic
computations.

2.1 Unconstrained Optimization

The simplest type of multivariable optimization problems involves finding the
maximum or minimum of a differentiable function of several variables over a
nice set. Further complications arise, as we will see later, when the set over
which we optimize takes a more complex form.

Example 2.1. A manufacturer of color TV sets is planning the introduction of
two new products, a 19–inch LCD flat panel set with a manufacturer’s suggested
retail price (MSRP) of $339 and a 21–inch LCD flat panel set with an MSRP
of $399. The cost to the company is $195 per 19–inch set and $225 per 21–inch
set, plus an additional $400,000 in fixed costs. In the competitive market in
which these sets will be sold, the number of sales per year will affect the average
selling price. It is estimated that for each type of set, the average selling price
drops by one cent for each additional unit sold. Furthermore, sales of the 19–
inch set will affect sales of the 21–inch set, and vice–versa. It is estimated that
the average selling price for the 19–inch set will be reduced by an additional 0.3
cents for each 21–inch set sold, and the price for the 21–inch set will decrease by
0.4 cents for each 19–inch set sold. How many units of each type of set should
be manufactured?

21
Fourth edition
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Variables: s = number of 19–inch sets sold (per year)
t = number of 21–inch sets sold (per year)
p = selling price for a 19–inch set ($)
q = selling price for a 21–inch set ($)
C = cost of manufacturing sets ($/year)
R = revenue from the sale of sets ($/year)
P = profit from the sale of sets ($/year)

Assumptions: p = 339− 0.01s− 0.003t
q = 399− 0.004s− 0.01t
R = ps+ qt
C = 400, 000 + 195s+ 225t
P = R− C
s ≥ 0
t ≥ 0

Objective: Maximize P

Figure 2.1: Results of step 1 of the color TV problem.

The five-step approach to mathematical modeling, introduced in the preced-
ing chapter, will be used to solve this problem. Step 1 is to ask a question. We
begin by making a list of variables. Next we write down the relations between
variables and any other assumptions, such as nonnegativity. Finally, we for-
mulate a question in mathematical terms, using the established notation. The
results of step 1 are summarized in Figure 2.1.

Step 2 is to select the modeling approach. We will solve this problem as a
multivariable unconstrained optimization problem. This type of problem is typ-
ically treated in introductory courses in multivariable calculus. We will outline
the model and the general solution procedure here. We refer the reader to any
introductory calculus textbook for details and mathematical proofs.

We are given a function y = f(x1, . . . , xn) on a subset S of the
n–dimensional space Rn. We wish to find the maximum and/or min-
imum values of f on the set S. There is a theorem that states that if
f attains its maximum or minimum at an interior point (x1, . . . , xn)
in S, then ∇f = 0 at that point, assuming that f is differentiable
at that point. In other words, at the extreme point

∂f

∂x1
(x1, . . . , xn) = 0

∂f

∂xn
(x1, . . . , xn) = 0.

(2.1)

The theorem allows us to rule out as a candidate for max–min any
point in the interior of S for which any of the partial derivatives of f
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do not equal zero. Thus, to find the max–min points we must solve
simultaneously the n equations in n unknowns defined by Equation
(2.1). Then we must also check any points on the boundary of S,
as well as any points where one or more of the partial derivatives is
undefined.

Step 3 is to formulate the model, using the standard form chosen in step 2.
Let

P = R− C

= ps+ qt− (400, 000 + 195s+ 225t)

= (339− 0.01s− 0.003t)s

+ (399− 0.004s− 0.01t)t

− (400, 000 + 195s+ 225t).

Now let y = P be the quantity we wish to maximize, and let x1 = s, x2 = t be
our decision variables. Our problem now is to maximize

y = f(x1, x2)

= (339− 0.01x1 − 0.003x2)x1

+ (399− 0.004x1 − 0.01x2)x2

− (400, 000 + 195x1 + 225x2)

(2.2)

over the set
S = {(x1, x2) : x1 ≥ 0, x2 ≥ 0}. (2.3)

Step 4 is to solve the problem, using the standard solution methods outlined
in step 2. The problem is to maximize the function f given by Eq. (2.2) over
the set S defined in Eq. (2.3). Figure 2.2 shows a 3–D graph of the function f .
This plot indicates that f attains its maximum in the interior of S. Figure 2.3
shows a plot of the level sets of f .

From this plot we can estimate that the maximum value of the function f
occurs around x1 = 5, 000 and x2 = 7, 000. The function f is a paraboloid,
and the vertex of the paraboloid is the unique solution to Eq. (2.1) obtained by
setting ∇f = 0. We compute that

∂f

∂x1
= 144− 0.02x1 − 0.007x2 = 0

∂f

∂x2
= 174− 0.007x1 − 0.02x2 = 0

(2.4)

at the point

x1 =
554, 000

117
≈ 4, 735

x2 =
824, 000

117
≈ 7, 043.

(2.5)
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Figure 2.2: 3–D graph of profit y = f(x1, x2) from (2.2) versus production levels
x1 of 19–inch sets and x2 of 21–inch sets for the color TV problem.
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Figure 2.3: Contour plot showing level sets of profit y = f(x1, x2) from (2.2)
versus production levels x1 of 19–inch sets and x2 of 21–inch sets for the color
TV problem.
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The point (x1, x2) defined by Eq. (2.5) represents the global maximum of f
over the entire real plane. It is therefore also the maximum of f over the set S
defined in Eq. (2.3). The maximum value of f is obtained by substituting Eq.
(2.5) back into Eq. (2.2), which yields

y =
21, 592, 000

39
≈ 553, 641. (2.6)

The calculations of step 4 in this problem are a bit cumbersome. In cases
like this one, it is appropriate to use a computer algebra system to perform the
necessary calculations. Computer algebra systems can differentiate, integrate,
solve equations, and simplify algebraic expressions. Most packages can also
perform matrix algebra, draw graphs, and solve some differential equations.
Several good computer algebra systems (Maple, Mathematica, Derive, etc.) are
available for both mainframe and personal computers, and many systems offer
a student version at a substantially reduced price. The graphs in Figure 2.2 and
Figure 2.3 were drawn using the computer algebra system Maple. Computer
algebra systems are an example of the kind of “appropriate technology” we
referred to in Fig. 1.3, in our summary of the five-step method. Figure 2.4
shows the results of using the computer algebra system Mathematica to solve
the current model.

There are several advantages to using a computer algebra system for a prob-
lem like this. It is more efficient and more accurate. You will be more productive
if you learn to use this technology, and it will give you the freedom to concen-
trate more on the larger issues of problem solving instead of getting bogged
down in the calculations. We will illustrate the use of computer algebra systems
again in our sensitivity analysis calculations below, where the algebra is even
more exacting.

The final step, step 5, is to answer the question in plain English. Simply
stated, the company can maximize profits by manufacturing 4,735 of the 19–
inch sets and 7,043 of the 21–inch sets, resulting in a net profit of $553,641 for
the year. The average selling price for a 19–inch set is $270.52 and $309.63 for
a 21–inch set. The projected revenue is $3,461,590, resulting in a profit margin
(profit/revenue) of 16 percent. These figures indicate a profitable venture, so
we would recommend that the company proceed with the introduction of these
new products.

The conclusions of the preceding paragraph are based on the assumptions
illustrated in Fig. 2.1. Before reporting our findings to the company, we should
perform sensitivity analysis to insure that our conclusions are robust with re-
spect to our assumptions about both the market for TV sets and the man-
ufacturing process. Our main concern is the value of the decision variables
x1 and x2, since the company must act on this information.

We illustrate the procedure for sensitivity analysis by examining the sensi-
tivity to price elasticity for 19–inch sets, which we will denote by the variable
a. Price elasticity is the term used by economists to describe the sensitivity
of quantity sold to the asking price. In our model we assumed that a = 0.01
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Figure 2.4: Optimal solution to the color TV problem using the computer alge-
bra system Mathematica.

dollars per set. Substituting into our previous formula, we obtain

y = f(x1, x2)

= (339− ax1 − 0.003x2)x1

+ (399− 0.004x1 − 0.01x2)x2

− (400, 000 + 195x1 + 225x2).

(2.7)

When we compute partial derivatives and set them equal to zero, we obtain

∂f

∂x1
= 144− 2ax1 − 0.007x2 = 0

∂f

∂x2
= 174− 0.007x1 − 0.02x2 = 0.

(2.8)
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Figure 2.5: Graph of optimum production level x1 of 19–inch sets versus price
elasticity a for the color TV problem.

Solving for x1 and x2 as before yields

x1 =
1, 662, 000

40, 000a− 49

x2 = 8, 700− 581, 700

40, 000a− 49
.

(2.9)

See Figs. 2.5 and 2.6 for the graphs of x1 and x2 versus a.
From these graphs it appears that a higher price elasticity a for 19–inch sets

will reduce the optimal production level x1 for 19–inch sets and increase the
optimal production level x2 for 21–inch sets. It also appears that x1 is more
sensitive to a than x2, which seems to make sense. To get a numerical measure
of these sensitivities we compute

dx1

da
=
−66, 480, 000, 000
(40, 000a− 49)2

=
−22, 160, 000, 000

41, 067

at a = 0.01, so that

S(x1, a) =

(
−22, 160, 000, 000

41, 067

)(
0.01

554, 000/117

)
= −400

351
≈ −1.1.
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Figure 2.6: Graph of optimum production level x2 of 21–inch sets versus price
elasticity a for the color TV problem.

A similar calculation yields

S(x2, a) =
9, 695

36, 153
≈ 0.27.

If the price elasticity for 19–inch sets were to increase by 10%, then we should
make 11% fewer 19–inch sets and 2.7% more 21–inch sets.

Next, we consider the sensitivity of y to a. What effect will a change in the
price elasticity for 19–inch sets have on our profits? To obtain a formula for y
in terms of a, we substitute Eq. (2.9) back into Eq. (2.7) to get

y =

[
339− a

(
1, 662, 000

40, 000a− 49

)
− 0.003

(
8, 700− 581, 700

40, 000a− 49

)]
×
(

1, 662, 000

40, 000a− 49

)
+

[
399− 0.004

(
1, 662, 000

40, 000a− 49

)
− 0.01

(
8, 700− 581, 700

40, 000a− 49

)]
×
(
8, 700− 581, 700

40, 000a− 49

)
−
[
400, 000 + 195

(
16, 620, 000

40, 000a− 49

)
+225

(
8, 700− 581, 700

40, 000a− 49

)]
.

(2.10)

See Fig. 2.7 for a graph of y versus a. It appears that an increase in price
elasticity for 19–inch sets will result in lower profits.
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Figure 2.7: Graph of optimum profit y versus price elasticity a for the color TV
problem.

To compute S(y, a) we will need to obtain a formula for dy/da. One way
to do this would be to employ one–variable methods directly on Eq. (2.10),
perhaps with the aid of a computer algebra system. Another method, which
is computationally more efficient, is to use the multivariable chain rule, which
implies that

dy

da
=

∂y

∂x1

dx1

da
+

∂y

∂x2

dx2

da
+

∂y

∂a
. (2.11)

Since both ∂y/∂x1 and ∂y/∂x2 are zero at the optimum, we have

dy

da
=

∂y

∂a
= −x2

1

directly from Eq. (2.7), so

S(y, a) = −
(
554, 000

117

)2
0.01

(21, 592, 000/39)

= −383, 645

947, 349
≈ −0.40.

Thus, a 10% increase in price elasticity for 19–inch sets will result in a 4% drop
in profit.

The fact that the term

∂y

∂x1

dx1

da
+

∂y

∂x2

dx2

da
= 0
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> y:=(339-a*x1-3*x2/1000)*x1

>   +(399-4*x1/1000-x2/100)*x2-(400000+195*x1+225*x2);

y := 339 - a x1 - 
3

1000
 x2









 x1 + 399 - 
1

250
 x1 - 

1

100
 x2









 x2 - 400000 - 195 x1 - 225 x2

> dydx1:=diff(y,x1);

dydx1 := -2 a x1 + 144 - 
7

1000
 x2

> dydx2:=diff(y,x2);

dydx2 := - 
7

1000
 x1 - 

1

50
 x2 + 174

> s:=solve({dydx1=0,dydx2=0},{x1,x2});

s := x2 = 
48000 -21 + 7250 a( )

-49 + 40000 a
, x1 = 

1662000

-49 + 40000 a









> assign(s);dx1da:=diff(x1,a);

dx1da := - 
66480000000

-49 + 40000 a( )
2

> assign(a=1/100);x1;
554000

117

> sx1a:=dx1da*(a/x1);

sx1a := 
-400

351

> evalf(sx1a);

-1.139601140

> 

Figure 2.8: Calculation of the sensitivity S(x1, a) for the color TV problem
using the computer algebra system Maple.

in Eq. (2.11) has its own real–world significance. This part of the derivative
dy/da represents the effect on profits of the changing optimal production levels
x1 and x2. The fact that it sums to zero means that small changes in production
levels have (at least in the linear approximation) no effect on profits. Geomet-
rically, since we are at the maximum point where the curve y = f(x1, x2) is
flat, small changes in x1 and x2 have little effect on y. Almost all of the drop
in optimal profits caused by a 10% increase in price elasticity for 19–inch sets
is due to the change in selling price. Therefore, the production levels given by
our model will be very nearly optimal. For example, suppose that we have as-
sumed a = 0.01, but that this price elasticity is in fact 10% higher. We will set
our production levels using Eq. (2.5), which means that we will produce 11%
too many 19–inch sets and around 3% too few 21–inch sets, compared to the
optimal solution given by Eq. (2.9) with a = 0.011. Also, our profits will be 4%
lower than expected. But what have we actually lost by applying the results of
our model? Using Eq. (2.5) with a = 0.011, we will net a $531,219 profit. The
optimal profit would be $533,514 (set a = 0.011 in Eq. (2.9) and substitute back
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into Eq. (2.7)). Hence, we have lost only 0.43 percent of the potential maximum
profit by applying the results of our model, even though our actual production
levels were quite a way off from the optimum values. Our model appears to be
extremely robust in this regard. Furthermore, a similar conclusion should hold
for many similar problems, since it is basically due to the fact that ∇f = 0 at
a critical point.

All of the previous sensitivity analysis calculations could also be performed
using a computer algebra system. In fact, this is the preferred method, assuming
that one is available. Figure 2.8 illustrates how the computer algebra system
Maple can be used to compute the sensitivity S(x1, a). The calculations of the
other sensitivities are similar.

Sensitivity analysis for the other elasticities could be carried out in the same
manner. While the particulars will differ, the form of the function f suggests
that each affects y in essentially the same manner. In particular, we have a high
degree of confidence that our model will lead to a good (nearly optimal) decision
about production levels even in the presence of small errors in the estimation
of price elasticities.

We will say just a few words on the more general subject of robustness. Our
model is based on a linear price structure. Certainly, this is only an approxima-
tion. However, in practical applications we are likely to proceed as follows. We
begin with an educated guess about the size of the market for our new products
and with a reasonable average sale price. Then we estimate elasticities either
on the basis of past experience with similar situations or on the basis of limited
marketing studies. We should be able to get reasonable estimates for these elas-
ticities over a certain range of sales levels. This range presumably includes the
optimal levels. So in effect we are simply making a linear approximation of a
nonlinear function over a fairly small region. This sort of approximation is well
known to exhibit robustness. After all, this is the whole idea behind calculus.

2.2 Lagrange Multipliers

In this section we begin to consider optimization problems with a more so-
phisticated structure. As we noted at the beginning of the previous section,
complications arise in the solution of multivariable optimization models when
the set over which we optimize becomes more complex. In real problems we are
led to consider these more complicated models by the existence of constraints
on the independent variables.

Example 2.2. We reconsider the color TV problem (Example 2.1) introduced
in the previous section. There we assumed that the company has the potential
to produce any number of TV sets per year. Now we will introduce constraints
based on the available production capacity. Consideration of these two new
products came about because the company plans to discontinue manufacture of
some older models, thus providing excess capacity at its assembly plant. This
excess capacity could be used to increase production of other existing product
lines, but the company feels that the new products will be more profitable. It
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Variables: s = number of 19–inch sets sold (per year)
t = number of 21–inch sets sold (per year)
p = selling price for a 19–inch set ($)
q = selling price for a 21–inch set ($)
C = cost of manufacturing sets ($/year)
R = revenue from the sale of sets ($/year)
P = profit from the sale of sets ($/year)

Assumptions: p = 339− 0.01s− 0.003t
q = 399− 0.004s− 0.01t
R = ps+ qt
C = 400, 000 + 195s+ 225t
P = R− C
s ≤ 5000
t ≤ 8000
s+ t ≤ 10, 000
s ≥ 0
t ≥ 0

Objective: Maximize P

Figure 2.9: Results of step 1 for the color TV problem with constraints.

is estimated that the available production capacity will be sufficient to produce
10,000 sets per year (≈ 200 per week). The company has an ample supply of
19–inch and 21–inch LCD panels and other standard components; however, the
circuit boards necessary for constructing the sets are currently in short supply.
Also, the 19–inch TV requires a different board than the 21–inch model because
of the internal configuration, which cannot be changed without a major redesign,
which the company is not prepared to undertake at this time. The supplier is
able to supply 8,000 boards per year for the 21–inch model and 5,000 boards per
year for the 19–inch model. Taking this information into account, how should
the company set production levels?

Once again we will employ the five-step method. The results of step 1 are
shown in Figure 2.9. The only change is the addition of several constraints on
the decision variables s and t. Step 2 is to select the modeling approach.

This problem will be modeled as a multivariable constrained optimization
problem and solved using the method of Lagrange multipliers.

We are given a function y = f(x1, . . . , xn) and a set of con-
straints. For the moment we will assume that these constraints can
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be expressed in the form of k functional equations

g1(x1, . . . , xn) = c1

g2(x1, . . . , xn) = c2

...

gk(x1, . . . , xn) = ck.

Later on we will explain how to handle inequality constraints. Our
job is to optimize

y = f(x1, . . . , xn)

over the set

S = {(x1, . . . , xn) : gi(x1, . . . , xn) = ci for all i = 1, . . . , k}.

There is a theorem that states that at an extreme point x ∈ S,
we must have

∇f = λ1∇g1 + · · ·+ λk∇gk.

We call λ1, . . . , λk the Lagrange multipliers. This theorem assumes
that ∇g1, . . . , ∇gk are linearly independent vectors (see Edwards
(1973), p. 113). Then in order to locate the max–min points of f on
the set S, we must solve the n Lagrange multiplier equations

∂f

∂x1
= λ1

∂g1
∂x1

+ · · ·+ λk
∂gk
∂x1

...

∂f

∂xn
= λ1

∂g1
∂xn

+ · · ·+ λk
∂gk
∂xn

together with the k constraint equations

g1(x1, . . . , xn) = c1

...

gk(x1, . . . , xn) = ck

for the variables x1, . . . , xn and λ1, . . . , λk. We must also check
any exceptional points at which the gradient vectors ∇g1, . . . , ∇gk
are not linearly independent.

The method of Lagrange multipliers is based on a geometrical
interpretation of the gradient vector. Suppose for the moment that
there is only one constraint equation,

g(x1, . . . , xn) = c,
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so that the Lagrange multiplier equation becomes

∇f = λ∇g.

The set g = c is a curved surface of dimension n− 1 in Rn, and for
any point x ∈ S the gradient vector ∇g(x) is perpendicular to S at
that point. The gradient vector ∇f always points in the direction in
which f increases the fastest. At a local max or min, the direction
in which f increases fastest must also be perpendicular to S, so at
that point we must have ∇f and ∇g pointing along the same line;
i.e., ∇f = λ∇g.

In the case of several constraints, the geometrical argument is
similar. Now the set S represents the intersection of the k level
surfaces g1 = c1, . . . , gk = ck. Each one of these is an (n − 1)–
dimensional subset of Rn, so their intersection is an (n− k)–dimen-
sional subset. At an extreme point, ∇f must be perpendicular to
the set S. Therefore it must lie in the space spanned by the k
vectors ∇g1, . . . , ∇gk. The technical condition of linear indepen-
dence ensures that the k vectors ∇g1, . . . , ∇gk actually do span a
k–dimensional space. (In the case of a single constraint, linear inde-
pendence simply means that ∇g ≠ 0.)

Example 2.3. Maximize x+2y+3z over the set x2 + y2 + z2 = 3.

This is a constrained multivariable optimization problem. Let

f(x, y, z) = x+ 2y + 3z

denote the objective function, and let

g(x, y, z) = x2 + y2 + z2

denote the constraint function. Compute

∇f = (1, 2, 3)

∇g = (2x, 2y, 2z).

At the maximum, ∇f = λ∇g; in other words,

1 = 2xλ

2 = 2yλ

3 = 2zλ.

This gives three equations in four unknowns. Solving in terms of λ,
we obtain

x = 1/2λ

y = 1/λ

z = 3/2λ.
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Using the fact that
x2 + y2 + z2 = 3,

we obtain a quadratic equation in λ, with two real roots. The root
λ =
√
42/6 leads to

x =
1

2λ
=

√
42

14

y =
1

λ
=

√
42

7

z =
3

2λ
=

3
√
42

14
,

so that the point

a =

(√
42

14
,

√
42

7
,
3
√
42

14

)

is one candidate for the maximum. The other root, λ = −
√
42/6,

leads to another candidate, b = −a. Since ∇g ≠ 0 everywhere on
the constraint set g = 3, a and b are the only two candidates for
the maximum. Since f is a continuous function on the closed and
bounded set g = 3, f must attain its maximum and minimum on
this set. Then, since

f(a) =
√
42, and f(b) = −

√
42,

the point a is the maximum and b is the minimum. Consider the
geometry of this example. The constraint set S defined by the equa-
tion

x2 + y2 + z2 = 3

is a sphere of radius
√
3 centered at the origin in R3. Level sets of

the objective function

f(x, y, z) = x+ 2y + 3z

are planes in R3. The points a and b are the only two points on
the sphere S at which one of these planes is tangent to the sphere.
At the maximum point a, the gradient vectors ∇f and ∇g point in
the same direction. At the minimum point b, ∇f and ∇g point in
opposite directions.

Example 2.4. Maximize x+ 2y + 3z over the set x2 + y2 + z2 = 3
and x =1.

The objective function is

f(x, y, z) = x+ 2y + 3z,
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so
∇f = (1, 2, 3).

The constraint functions are

g1(x, y, z) = x2 + y2 + z2

g2(x, y, z) = x.

Compute

∇g1 = (2x, 2y, 2z)

∇g2 = (1, 0, 0).

Then the Lagrange multiplier formula ∇f = λ1∇g1 + λ2∇g2 yields

1 = 2xλ1 + λ2

2 = 2yλ1

3 = 2zλ1.

Solving for x, y, and z in terms of λ1 and λ2 gives

x =
1− λ2

2λ1

y =
2

2λ1

z =
3

2λ1
.

Substituting into the constraint equation x = 1 gives λ2 = 1− 2λ1.
Substituting all of this into the remaining equation

x2 + y2 + z2 = 3

yields a quadratic equation in λ1, which gives λ1 = ±
√
26/4. Substi-

tuting back into the equations for x, y, and z yields the two following
solutions:

c =

(
1,

2
√
26

13
,
3
√
26

13

)

d =

(
1,
−2
√
26

13
,
−3
√
26

13

)
.

Since the two gradient vectors ∇g1 and ∇g2 are linearly independent
everywhere on the constraint set, the points c and d are the only
candidates for a maximum. Since f must attain its maximum on this
closed and bounded set, we need only evaluate f at each candidate
point to find the maximum. The maximum is

f(c) = 1 +
√
26,
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and the point d is the location of the minimum. The constraint set
S in this example is a circle in R3 formed by the intersection of the
sphere

x2 + y2 + z2 = 3

and the plane x = 1. As before, the level sets of the function f are
planes in R3. At the points c and d these planes are tangent to the
circle S.

Inequality constraints can be handled by a combination of the
Lagrange multiplier technique and the techniques for unconstrained
problems. Suppose that the problem in Example 2.4 is altered by
replacing the x = 1 constraint with the inequality constraint x ≥ 1.
We can consider the set

S = {(x, y, z) : x2 + y2 + z2 = 3, x ≥ 1}

as the union of two components. The maximum over the first com-
ponent

S1 = {(x, y, z) : x2 + y2 + z2 = 3, x = 1}

was found to occur at the point

c =

(
1,

√
8

13
, 1.5

√
8

13

)

in our previous analysis, and we can calculate that

f(x, y, z) = 1 + 6.5

√
8

13
= 6.01

at this point. To consider the remaining part

S2 = {(x, y, z) : x2 + y2 + z2 = 3, x > 1},

we return to our analysis from Example 2.3, noting that there is no
local maximum of f anywhere on this set. Therefore, the maximum
of f on S1 must be the maximum of the function f on the set S. If
we had considered the maximum of f over the set

S = {(x, y, z) : x2 + y2 + z2 = 3, x ≤ 1},

then the maximum would be at the point

a =

(
1

2
,
2

2
,
3

2

)
·
√

6

7

found in our analysis of Example 2.3.
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Returning now to the problem introduced at the beginning of this section, we
are ready to continue the modeling process with step 3. We will formulate the
revised color TV problem as a constrained multivariable optimization problem.
We wish to maximize y = P (profit) as a function of our two decision variables,
x1 = s and x2 = t. We have the same objective function

y = f(x1, x2)

= (339− 0.01x1 − 0.003x2)x1 + (399− 0.004x1 − 0.01x2)x2

− (400, 000 + 195x1 + 225x2).

We wish to maximize f over the set S consisting of all x1 and x2 satisfying the
constraints

x1 ≤ 5, 000

x2 ≤ 8, 000

x1 + x2 ≤ 10, 000

x1 ≥ 0

x2 ≥ 0.

The set S is called the feasible region because it represents the set of all feasible
production levels. Figure 2.10 shows a graph of the feasible region for this
problem.

We will apply Lagrange multiplier methods to find the maximum of y =
f(x1, x2) over the set S. Compute

∇f = (144− 0.02x1 − 0.007x2, 174− 0.007x1 − 0.02x2).

Since ∇f ≠ 0 in the interior of S, the maximum must occur on the boundary.
Consider first the segment of the boundary on the constraint line

g(x1, x2) = x1 + x2 = 10, 000.

Here ∇g = (1, 1), so the Lagrange multiplier equations are

144− 0.02x1 − 0.007x2 = λ

174− 0.007x1 − 0.02x2 = λ.
(2.12)

Solving these two equations together with the constraint equation

x1 + x2 = 10, 000

yields

x1 =
50, 000

13
≈ 3, 846

x2 =
80, 000

13
≈ 6, 154

λ = 24.
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Figure 2.10: Graph showing the set of all feasible production levels x1 of 19–inch
sets and x2 of 21–inch sets for the color TV problem with constraints.
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Figure 2.11: Graph showing level sets of profit y = f(x1, x2) versus production
levels x1 of 19–inch sets and x2 of 21–inch sets together with the set of all
feasible production levels for the color TV problem with constraints.
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Substituting back into Eq. (2.2), we obtain y = 532, 308 at the maximum.
Figure 2.11 shows a Maple graph of the level sets of f together with the

feasible region.
The level sets f = C for C = 0, 100, 000, . . . , 500, 000 form smaller and

smaller concentric rings, all of which intersect the feasible region. The level set
f = 532, 308 forms the smallest ring. This set barely touches the feasible region
S, and is tangent to the line x1 + x2 = 10, 000 at the optimum point. This
graphical evidence indicates that the critical point found by using Lagrange
multipliers along the constraint line x1 + x2 = 10, 000 is actually the maximum
of the function f over the feasible region S.

Figure 2.12: Optimal solution to the color TV problem with constraints using
the computer algebra system Mathematica.

An algebraic proof that this point is actually the maximum is a bit more
complicated. By comparing values of f at this critical point with values at
the endpoints (5, 000, 5, 000) and (2, 000, 8, 000), we can show that this critical
point is the maximum over this line segment. Then we can optimize f over the
remaining line segments and compare results. For example, the maximum of
f over the line segment along the x1 axis occurs at x1 = 5, 000. To see this,
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apply Lagrange multipliers with g(x1, x2) = x2 = 0. Here ∇g = (0, 1), so the
Lagrange multiplier equations are

144− 0.02x1 − 0.007x2 = 0

174− 0.007x1 − 0.02x2 = λ.

Solving these two equations together with the constraint equation x2 = 0 yields
x1 = 7, 200, x2 = 0, and λ = 123.6. This is outside the feasible region, so the
max–min along this segment must occur at the endpoints (0, 0) and (5, 000, 0).
The first is the minimum and the second is the maximum, since the value of f
at the second is greater. It is also possible to optimize along this line segment
by substituting x2 = 0 and using one variable methods. Since the largest
value of f occurs on the slanted line segment, we have found the maximum
over S. Some of the calculations in step 4 are rather involved. In such cases
it is appropriate to use a computer algebra system to simplify the process of
computing derivatives and solving equations. Figure 2.12 shows the results of
using the computer algebra system Mathematica to perform the calculations of
step 4 for the constraint line x1 + x2 = 10, 000.

In plain English, the company can maximize profits by producing 3,846 of
the 19–inch sets and 6,154 of the 21–inch sets for a total of 10,000 sets per year.
This level of production uses all of the available excess production capacity. The
resource constraints on the availability of TV circuit boards are not binding.
This venture will produce an estimated profit of $532,308 annually.

2.3 Sensitivity Analysis and Shadow Prices

In this section we discuss some of the specialized techniques for sensitivity anal-
ysis in Lagrange multiplier models. It turns out that the multipliers themselves
have a real–world significance.

Before we report the results of our model analysis in Example 2.2, it is
important to perform sensitivity analysis. At the end of Section 2.1 we inves-
tigated the sensitivity to price elasticity for a model without constraints. The
procedure for our new model is not much different. We examine the sensitivity
to a particular parameter value by generalizing the model slightly, replacing the
assumed value with a variable. Suppose we want to look again at the price
elasticity, a, for 19–inch sets. We rewrite the objective function as in Eq. (2.7)
so that

∇f =

(
∂f

∂x1
,
∂f

∂x2

)
,

where ∂f/∂x1 and ∂f/∂x2 are given by Eq. (2.8). Now the Lagrange multiplier
equations are

144− 2ax1 − 0.007x2 = λ

174− 0.007x1 − 0.02x2 = λ.
(2.13)
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Solving together with the constraint equation

g(x1, x2) = x1 + x2 = 10, 000

yields

x1 =
50, 000

1, 000a+ 3

x2 = 10, 000− 50, 000

1, 000a+ 3

λ =
650

1, 000a+ 3
− 26.

(2.14)

Then we have

dx1

da
=
−50, 000, 000
(1, 000a+ 3)2

dx2

da
=
−dx1

da
,

(2.15)

so that at the point x1 = 3, 846, x2 = 6, 154, a = 0.01, we obtain

S(x1, a) =
dx1

da
· a
x1

= −0.77

S(x2, a) =
dx2

da
· a
x2

= 0.48.

See Figures 2.13 and 2.14 for the graphs of x1 and x2 versus a in this case. If the
price elasticity of 19–inch sets increases, we will shift production from 19–inch
to 21–inch sets. If it decreases, then we will produce more 19–inch sets and
fewer 21–inch sets.

In any case, as long as the point (x1, x2) given by Eq. (2.14) lies between
the other constraint lines (.007 ≤ a ≤ .022), we will always produce a total of
10,000 sets.

Now let us consider the sensitivity of our optimal profit y to the price elas-
ticity a for 19–inch sets. To obtain a formula for y in terms of a, we substitute
Eq. (2.14) back into Eq. (2.2) to get

y =

[
339− a

(
50, 000

1, 000a+ 3

)
− 0.003

(
10, 000− 50, 000

1, 000a+ 3

)](
50, 000

1, 000a+ 3

)
+

[
399− 0.004

(
50, 000

1, 000a+ 3

)
− 0.01

(
10, 000− 50, 000

1, 000a+ 3

)]
×
(
1, 000− 50, 000

1, 000a+ 3

)
−
[
400, 000 + 195

(
50, 000

1, 000a+ 3

)
+ 225

(
10, 000− 50, 000

1, 000a+ 3

)]
.

See Figure 2.15 for the graph of y versus a.
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Figure 2.13: Graph of optimal production level x1 of 19–inch sets versus price
elasticity a for the color TV problem with constraints.
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Figure 2.14: Graph of optimal production level x2 of 21–inch sets versus price
elasticity a for the color TV problem with constraints.



44 CHAPTER 2. MULTIVARIABLE OPTIMIZATION

400 

500 

600 

700 

800 
y 

(p
ro

fit
 in

 $
10

00
s)

0 0.005 0.01 0.015 0.02 
a ($ / set)

Figure 2.15: Graph of optimum profit y versus price elasticity a for the color
TV problem with constraints.

In order to get a numerical measure of the sensitivity of y to a, we could
apply one–variable techniques to the above expression, perhaps with the aid
of a computer algebra system. Another method, which is much more efficient
computationally, is to use the multivariable chain rule in Eq. (2.11). For any
a, the gradient vector ∇f is perpendicular to the constraint line g = 10, 000.
Since

x(a) = (x1(a), x2(a))

is a point on the curve g = 10, 000, the velocity vector

dx

da
=

(
dx1

da
,
dx2

da

)
is tangent to the curve. But then ∇f is perpendicular to dx/da; i.e., the dot
product

∇f · dx
da

=

(
∂y

∂x1
,
∂y

∂x2

)
·
(
dx1

da
,
dx2

da

)
=

∂y

∂x1

dx1

da
+

∂y

∂x2

dx2

da
= 0

in general. Therefore, we again obtain

dy

da
=

∂y

∂a
= −x2
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as in Section 2.1. Now we can easily compute that

S(y, a) =
dy

da
· a
y

= −(3, 846)2 0.01

532, 308

= −0.28.

As in the unconstrained problem, an increase in price elasticity leads to lost
profits. It is also true here that, as in the unconstrained problem, almost all
of the lost profit is due to the fact that the selling price for 19–inch sets has
decreased. If a = 0.011 and we use x1 = 3, 846, x2 = 6, 154 instead of the
new optimum given by Eq. (2.13), we will not lose much potential profit. The
gradient vector ∇f points in the direction of fastest increase of the objective
function f , which represents our profits. We are not at the optimum, but the
path between the optimum and the point (3,846, 6,154) is perpendicular to ∇f .
Therefore, we may expect that the value of f at this point does not vary much
from the optimum value. Hence our model leads to a nearly optimal decision
even in the presence of small variations in a.

We remark that for this problem it would also make sense to use a computer
algebra system to perform the necessary calculations. Figure 2.16 illustrates the
use of the computer algebra system Maple to compute the sensitivity S(x2, a).
The other sensitivities can be computed in a similar manner.

We will now consider the sensitivity of the optimal production levels x1

and x2 and the resulting profit y to the available manufacturing capacity of
c = 10, 000 sets per year. In order to do this we will return to our original
problem, replacing the constraint g = 10, 000 by the more general form g = c.
The feasible region is similar to that pictured in Fig. 2.10, but now the slanted
constraint line is moved a bit (remaining parallel to the line x1 + x2 = 10, 000).
For values of c near 10, 000, the maximum still occurs at the point on the
constraint line

g(x1, x2) = x1 + x2 = c (2.16)

where ∇f = λ∇g. Since both ∇f and ∇g are unchanged from our original
problem, we have the same Lagrange multiplier equations from Eq. (2.12), which
are to be solved along with the new constraint equation, Eq. (2.16). Solving,
we obtain

x1 =
13c− 30, 000

26

x2 =
13c+ 30, 000

26

λ =
3(106, 000− 9c)

2, 000
.

(2.17)
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> y:=(339-a*x1-3*x2/1000)*x1
>   +(399-4*x1/1000-x2/100)*x2-(400000+195*x1+225*x2);

 := y  +  −  −  − 






 −  − 339 a x1

3

1000
x2 x1







 −  − 399

1

250
x1

1

100
x2 x2 400000 195 x1 225 x2

> dydx1:=diff(y,x1);

 := dydx1 −  +  − 2 a x1 144
7

1000
x2

> dydx2:=diff(y,x2);

 := dydx2 −  −  + 
7

1000
x1

1

50
x2 174

> s:=solve({dydx1=lambda,dydx2=lambda,x1+x2=10000},{x1,x2,lambda});

 := s { }, , = x1
50000

 + 1000 a 3
 = x2 20000

 − 500 a 1

 + 1000 a 3
 = λ −52

 − 500 a 11

 + 1000 a 3
> assign(s);
> dx2da:=diff(x2,a);

 := dx2da  − 
10000000

 + 1000 a 3
20000000

 − 500 a 1

( ) + 1000 a 3 2

> assign(a=1/100);
> sx2a:=dx2da*(a/x2);

 := sx2a
25

52
> evalf(sx2a);

.4807692308

      

Figure 2.16: Calculation of the sensitivity S(x2, a) for the color TV problem
with constraints using the computer algebra system Maple.

Now

dx1

dc
=

1

2
dx2

dc
=

1

2
.

(2.18)

There is a simple geometric explanation for Eq. (2.18). Since ∇f points in the
direction of the fastest increase of f , when we move the constraint line in Eq.
(2.16), the new optimum (x1, x2) should be located at approximately the point
where ∇f intersects the line in Eq. (2.16). Then

S(x1, c) =
1

2
· 10, 000
3, 846

≈ 1.3

S(x2, c) =
1

2
· 10, 000
6, 154

≈ 0.8.
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To obtain the sensitivity of y to c, we compute

dy

dc
=

∂y

∂x1

dx1

dc
+

∂y

∂x2

dx2

dc

= (24)

(
1

2

)
+ (24)

(
1

2

)
= 24,

which is the value of the Lagrange multiplier λ. Now

S(y, c) = (24)

(
10, 000

532, 308

)
≈ 0.45.

The geometric explanation for dy/dc = λ is as follows. We have ∇f = λ∇g,
and as we increase c, we move out in the direction ∇f . As we move in this
direction, f increases λ times as fast as g.

The derivative dy/dc = 24 has an important real–world interpretation. The
addition of 1 unit of production capacity ∆c = 1 results in an increased profit
∆y = 24 dollars. This is called a shadow price. It represents the value to
the company of a certain resource (production capacity). If the company is
interested in the possibility of increasing production capacity, which is, after
all, the binding constraint, it should be willing to pay up to $24 per unit of
added capacity. Alternatively, it would be worthwhile to transfer production
capacity from the manufacture of 19–inch and 21–inch LCD flat panel TV sets
to an alternative product if and only if the new product would yield a profit
greater than $24 per unit.

The calculation of sensitivities in this problem can be simplified by using
a computer algebra system. Figure 2.17 illustrates the use of the computer
algebra system Maple to compute the sensitivity S(y, c).

The other sensitivities can be computed in a similar manner. If you have the
good fortune to have access to a computer algebra system, you should use it for
your own work. Real–world problems often involve lengthy computations. Some
facility in the use of a computer algebra system will make you more productive.
It is also a lot more fun than calculation by hand.

Of course, the optimal level of profit y and the production levels x1 and x2

are totally insensitive to the values of the other constraint coefficients, since
the other constraints, x1 ≤ 5, 000 and x2 ≤ 8, 000, are not binding. A small
change in the upper bounds on x1 or x2 would change the feasible region, but
the optimal solution would remain at (3,846, 6,154). Thus, the shadow prices
for these resources are zero. The company would be unwilling to pay a premium
to increase the available number of TV circuit boards, since they do not need
them. This situation would not change unless the number of boards available
was reduced to 3,846 or less for 19–inch sets, or to 6,154 or less for 21–inch sets.
In the next example, we will consider what happens in this case.

Example 2.5. Suppose that in the constrained color TV problem of Example
2.2, the number of circuit boards available for 19–inch TVs is only 3,000 per
year. What is the optimum production schedule?
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> y:=(339-x1/100-3*x2/1000)*x1
>   +(399-4*x1/1000-x2/100)*x2-(400000+195*x1+225*x2);

 := y  +  −  −  − 






 −  − 339

1

100
x1

3

1000
x2 x1







 −  − 399

1

250
x1

1

100
x2 x2 400000 195 x1 225 x2

> dydx1:=diff(y,x1);

 := dydx1 −  +  − 
1

50
x1 144

7

1000
x2

> dydx2:=diff(y,x2);

 := dydx2 −  −  + 
7

1000
x1

1

50
x2 174

> s:=solve({dydx1=lambda,dydx2=lambda,x1+x2=c},{x1,x2,lambda});

 := s { }, , = λ −  + 
27

2000
c 159  = x1  − 

1

2
c

15000

13
 = x2  + 

1

2
c

15000

13
> assign(s);
> dydc:=diff(y,c);

 := dydc −  + 
27

2000
c 159

> assign(c=10000);
> dydc;

24
> syc:=dydc*(c/y);

 := syc
78

173
> evalf(syc);

.4508670520

 

Figure 2.17: Calculation of the sensitivity S(y, c) for the color TV problem with
constraints using the computer algebra system Maple.

In this case the point on the level curve x1 + x2 = 10, 000 at which f(x1, x2)
is maximized occurs outside of the feasible region. The maximum of f on the
feasible region occurs at the point (3,000, 7,000). This is the intersection of the
constraint curves

g1(x1, x2) = x1 + x2 = 10, 000

g2(x1, x2) = x1 = 3, 000.

At this point we have

∇f = λ1∇g1 + λ2∇g2.

In fact, we can easily compute

∇f = (35, 13)

∇g1 = (1, 1)

∇g2 = (1, 0)
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at the point (3,000, 7,000); thus we have λ1 = 13 and λ2 = 22. Of course any
vector in R2 can be written as a linear combination of (1, 1) and (1, 0). The
point, however, of computing the Lagrange multipliers, is that even in the case
of multiple constraints, they still represent the shadow prices for the binding
constraints (production capacity and 19–inch boards). In other words, an addi-
tional unit of production capacity is worth $13, and an additional circuit board
is worth $22.

For the convenience of the reader, we include here a proof of the
fact that the Lagrange multipliers represent shadow prices. We are
given a function y = f(x1, . . . , xn), which is to be optimized over
the set defined by one or more constraint equations of the form

g1(x1, . . ., xn) = c1

g2(x1, . . ., xn) = c2

...

gk(x1, . . ., xn) = ck.

Suppose that the optimum occurs at a point x0 at which the hy-
potheses of the Lagrange multiplier theorem are satisfied, so that at
this point we have

∇f = λ1∇g1 + · · ·+ λk∇gk. (2.19)

Since the constraint equations can be written in any order, it will
suffice to show that λ1 is the shadow price corresponding to the
first constraint. Let x(t) denote the location of the optimum point
over the set g1 = t, g2 = c2, . . . , gk = ck. Since g1(x(t)) = t, we have
∇g(x(t)) · x′(t) = 1, and in particular ∇g(x0) · x′(c1) = 1. Since for
i = 2, . . . , k we have gi(x(t)) = ci constant for all t, we have
∇gi(x(t)) · x′(t) = 0, and in particular ∇gi(x0) · x′(c1) = 0. The
shadow price is

d(f(x(t)))

dt
= ∇f(x(t)) · x′(t)

evaluated at the point t = c1. Then, from the fact that Eq. (2.19)
holds at the point x0, we obtain∇f(x0)·x′(c1) = λ1∇g1(x0)·x′(c1) =
λ1 as desired.



50 CHAPTER 2. MULTIVARIABLE OPTIMIZATION

2.4 Exercises

1. Ecologists use the following model to represent the growth process of two
competing species, x and y:

dx

dt
= r1x

(
1− x

K1

)
− α1xy

dy

dt
= r2y

(
1− y

K2

)
− α2xy.

The variables x and y represent the number in each population; the param-
eters ri represent the intrinsic growth rates of each species; Ki represents
the maximum sustainable population in the absence of competition; and
αi represents the effects of competition. Studies of the blue whale and
fin whale populations have determined the following parameter values (t
in years):

Blue Fin
r 0.05 0.08
K 150,000 400,000
α 10−8 10−8

(a) Determine the population levels x and y that maximize the number
of new whales born each year. Use the five-step method, and model
as an unconstrained optimization problem.

(b) Examine the sensitivity of the optimal population levels to the in-
trinsic growth rates r1 and r2.

(c) Examine the sensitivity of the optimal population levels to the envi-
ronmental carrying capacities K1 and K2.

(d) Assuming that α1 = α2 = α, is it ever optimal for one species to
become extinct?

2. Reconsider the whale problem of Exercise 1, but now look at the total
number of whales. We will say that the whale population levels x and y
are feasible provided that both x and y are nonnegative. We will say that
the population levels x and y are sustainable provided that both of the
growth rates dx/dt and dy/dt are nonnegative.

(a) Determine the population levels that are feasible, sustainable, and
that maximize the total whale population x + y. Use the five-step
method, and model as a constrained optimization problem.

(b) Examine the sensitivity of the optimal population levels x and y to
the intrinsic growth rates r1 and r2.

(c) Examine the sensitivity of the optimal population levels x and y to
the environmental carrying capacities K1 and K2.
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(d) Assuming that α1 = α2 = α, examine the sensitivity of the optimal
population levels x and y to the strength of competition α. Is it ever
optimal to drive one species to extinction?

3. Reconsider the whale problem of Exercise 1, but now consider the eco-
nomic ramifications of harvesting.

(a) A blue whale carcass is worth $12,000, and a fin whale carcass is
worth about half as much. Assuming that controlled harvesting can
be used to maintain x and y at any desired level, what population
levels will produce the maximum revenue? (Once population reaches
the desired levels, the population levels will be kept constant by har-
vesting at a rate equal to the growth rate.) Use the five-step method.
Model as an unconstrained optimization problem.

(b) Examine the sensitivity of the optimal population levels x and y to
the parameters r1 and r2.

(c) Examine the sensitivity of revenue in $/year to the parameters r1
and r2.

(d) Assuming α1 = α2 = α, study the sensitivity of x and y to α. At
what point does it become economically optimal to drive a species to
extinction?

4. In Exercise 1, suppose that the International Whaling Commission (IWC)
has decreed that no population of whales may be sustained at a level less
than half of the environmental carrying capacity K.

(a) Find the population levels that maximize the sustained profit subject
to these constraints. Use Lagrange multipliers.

(b) Examine the sensitivity of the optimal population levels x and y and
the sustained profit to the constraint coefficients.

(c) The IWC feels that enforcement of the minimum population rules
is most easily carried out in terms of quotas. Determine the quotas
(maximum number of blue whales and fin whales harvested per year)
that will have an equivalent effect to the K/2 rule.

(d) The whalers, complaining that IWC quotas cost them a considerable
amount of money, have petitioned for them to be relaxed. Analyze
the potential effects of increased quotas on both the yearly revenue
of the whalers and the population levels of the whales.

5. Consider the color TV problem without constraints (Example 2.1). Be-
cause the company’s assembly plant is located overseas, the U.S. govern-
ment has imposed a tariff of $25 per unit.

(a) Find the optimal production levels, taking the tariff into consider-
ation. What does the tariff cost the company? How much of this
cost is paid directly to the government, and how much represents
lost sales?
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(b) Would it be worthwhile for the company to relocate production fa-
cilities to the U.S. in order to avoid the tariff? Assume that the
overseas facility can be leased to another manufacturer for $200,000
per year and that the cost of constructing and operating a new facil-
ity in the U.S. would amount to $550,000 annually. The construction
costs have been amortized over the expected life of the new facility.

(c) The purpose of the tariff is to motivate manufacturing companies to
operate plants in the U.S. What is the minimum tariff that would
make it worthwhile for the company to relocate its facility?

(d) Given that the tariff is large enough to motivate the company to move
its facility, how important is the actual tariff amount? Consider the
sensitivity of both production levels and profit to the amount of the
tariff.

6. A manufacturer of personal computers currently sells 10,000 units per
month of a basic model. The cost of manufacture is $700/unit, and the
wholesale price is $950. During the last quarter the manufacturer lowered
the price $100 in a few test markets, and the result was a 50% increase in
sales. The company has been advertising its product nationwide at a cost
of $50,000 per month. The advertising agency claims that increasing the
advertising budget by $10,000/month would result in a sales increase of
200 units/month. Management has agreed to consider an increase in the
advertising budget to no more than $100,000/month.

(a) Determine the price and the advertising budget that will maximize
profit. Use the five-step method. Model as a constrained optimiza-
tion problem, and solve using the method of Lagrange multipliers.

(b) Determine the sensitivity of the decision variables (price and adver-
tising) to price elasticity (the 50% number).

(c) Determine the sensitivity of the decision variables to the advertising
agency’s estimate of 200 new sales each time the advertising budget
is increased by $10,000 per month.

(d) What is the value of the multiplier found in part (a)? What is the
real–world significance of the multiplier? How could you use this
information to convince top management to lift the ceiling on adver-
tising expenditures?

7. A local daily newspaper has recently been acquired by a large media con-
glomerate. The paper currently sells for $1.50/week and has a circula-
tion of 80,000 subscribers. Advertising sells for $250/page, and the paper
currently sells 350 pages/week (50 pages/day). The new management is
looking for ways to increase profits. It is estimated that an increase of
ten cents/week in the subscription price will cause a drop in circulation
of 5,000 subscribers. Increasing the price of advertising by $100/page will
cause the paper to lose approximately 50 pages of advertising per week.
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The loss of advertising will also affect circulation, since one of the reasons
people buy the paper is for the advertisements. It is estimated that a loss
of 50 pages of advertisements per week will reduce circulation by 1,000
subscriptions.

(a) Find the weekly subscription price and the advertising price that
will maximize profit. Use the five-step method, and model as an
unconstrained optimization problem.

(b) Examine the sensitivity of your conclusions in part (a) to the as-
sumption of 5,000 lost sales when the price of the paper increases by
ten cents.

(c) Examine the sensitivity of your conclusions in part (a) to the as-
sumption of 50 pages/week of lost advertising sales when the price of
advertising is increased by $100/page.

(d) Advertisers who currently place advertisements in the newspaper
have the option of using direct mail to reach their customers. Di-
rect mail would cost the equivalent of $500/page of newspaper ad-
vertising. How does this information alter your conclusions in part
(a)?

8. Reconsider the newspaper problem of Exercise 7, but now suppose that
advertisers have the option of using direct mail to reach their customers.
Because of this, management has decided not to increase the price of
advertising beyond $400/page.

(a) Find the weekly subscription price and the advertising price that
will maximize profit. Use the five-step method, and model as a con-
strained optimization problem. Solve by the method of Lagrange
multipliers.

(b) Determine the sensitivity of your decision variables (subscription
price and advertising price) to the assumption of 5,000 lost sales
when the price of the paper increases by ten cents.

(c) Determine the sensitivity of the two decision variables to the assump-
tion of 50 pages of advertisements lost per week when the advertising
price increases by $100/page.

(d) What is the value of the Lagrange multiplier found in part (a)? Inter-
pret this number in terms of the sensitivity of profit to the $400/page
assumption.

9. Reconsider the newspaper problem of Exercise 7, but now look at the news-
paper’s business expenses. The current weekly business expenses for the
paper are as follows: $80,000 for the editorial department (news, features,
editorials); $30,000 for the sales department (advertising); $30,000 for the
circulation department; and $60,000 in fixed costs (mortgage, utilities,
maintenance). The new management is considering cuts in the editorial
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department. It is estimated that the paper can operate with a minimum of
a $40,000/week editorial budget. Reducing the editorial budget will save
money, but it will also affect the quality of the paper. Experience in other
markets suggests that the paper will lose 2% of its subscribers and 1% of
its advertisers for every 10% cut in the editorial budget. Management is
also considering an increase in the sales budget. Recently the manage-
ment of another paper in a similar market expanded its advertising sales
budget by 20%. The result was a 15% increase in advertisements. The
sales budget may be increased to as much as $50,000/week, but the over-
all budget for business expenses will not be increased beyond the current
level of $200,000/week.

(a) Find the editorial and sales budget figures that maximize profit. As-
sume that the subscription price remains at $1.50/week, and the
advertising price stays at $250/page. Use the five-step method,
and model as a constrained optimization problem. Solve using the
method of Lagrange multipliers.

(b) Calculate the shadow price for each constraint, and interpret their
meaning.

(c) Draw a graph of the feasible region for this problem. Indicate the
location of the optimal solution on this graph. Which of the con-
straints are binding at the optimal solution? How is this related to
the shadow prices?

(d) Suppose that cuts in the editorial budget produce an unusually strong
negative response in this market. Assume that a 10% cut in the
editorial budget causes the paper to lose p% of its advertising and
2p% of its subscribers. Determine the smallest value of p for which
the paper would be better off not to cut the editorial budget.

10. A shipping company has the capacity to move 100 tons/day by air. The
company charges $250/ton for air freight. Besides the weight constraint,
the company can only move 50,000 ft3 of cargo per day because of limited
volume of aircraft storage compartments. The following amounts of cargo
are available for shipping each day:

Weight Volume
Cargo (tons) (ft3/ton)

1 30 550
2 40 800
3 50 400

(a) Determine how many tons of each cargo should be shipped by air
each day in order to maximize revenue. Use the five-step method, and
model as a constrained optimization problem. Solve using Lagrange
multipliers.
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(b) Calculate the shadow prices for each constraint, and interpret their
meaning.

(c) The company has the capability to reconfigure some of its older planes
to increase the size of the cargo areas. The alterations would cost
$200,000 per plane and would add 2,000 ft3 per plane. The weight
limits would stay the same. Assuming that the planes fly 250 days
per year and that the remaining lifetime of the older planes is around
five years, would it be worthwhile to make the alterations? To how
many planes?

Further Reading

1. Beightler, C., Phillips, D. and Wilde, D. (1979) Foundations of Optimiza-
tion. 2nd ed., Prentice–Hall, Englewood Cliffs, New Jersey.

2. Courant, R. (1937) Differential and Integral Calculus. vol. II, Wiley, New
York.

3. Edwards, C. (1973) Advanced Calculus of Several Variables. Academic
Press, New York.

4. Hundhausen, J., and Walsh, R. The Gradient and Some of Its Applica-
tions. UMAP module 431.

5. Hundhausen, J., and Walsh, R. Unconstrained Optimization. UMAP mod-
ule 522.

6. Nievergelt, Y. Price Elasticity of Demand: Gambling, Heroin, Marijuana,
Whiskey, Prostitution, and Fish. UMAP module 674.

7. Nevison, C. Lagrange Multipliers: Applications to Economics. UMAP
module 270.

8. Peressini, A. Lagrange Multipliers and the Design of Multistage Rockets.
UMAP module 517.





Chapter 3

COMPUTATIONAL
METHODS FOR
OPTIMIZATION

The preceding chapters have discussed some of the analytic techniques for solv-
ing optimization problems. These techniques form the basis for most optimiza-
tion models. In this chapter we will study some of the computational problems
that arise in real applications and discuss a few of the most popular methods
for dealing with them.

3.1 One Variable Optimization

Even for simple one–variable optimization problems, the task of locating global
extreme points can be exceedingly difficult. Real problems are usually messy.
Even when the functions involved are differentiable everywhere, the computation
of the derivative is often complicated. The worst part, however, is solving the
equation f ′(x) = 0. The plain and simple fact is that most equations cannot
be solved analytically. The best we can do in most instances is to find an
approximate solution by graphical or numerical techniques.

Example 3.1. Reconsider the pig problem of Example 1.1, but now take into
account the fact that the growth rate of the pig is not constant. Assume that
the pig is young, so that the growth rate is increasing. When should we sell the
pig for maximum profit?

We will use the five-step method. Step 1 will be to modify the work we
did in Section 1.1, as summarized in Fig. 1.1. Now we cannot simply assume
that w = 200 + 5t. What would be a reasonable assumption to represent an
increasing rate of growth? There are, of course, many possible answers to this
question. Let us suppose for now that the growth rate of the pig is proportional
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to its weight. In other words, let us assume that

dw

dt
= cw. (3.1)

From the fact that dw/dt = 5 lbs/day when w = 200 lbs, we conclude that
c = 0.025. This leaves us with a simple differential equation to solve for w,
namely

dw

dt
= 0.025w, w(0) = 200. (3.2)

We can solve Eq. (3.2) by separation of variables to obtain

w = 200e0.025t. (3.3)

Since all of our other assumptions are unchanged from what was presented in
Fig. 1.1, this concludes step 1.

Step 2 is to select our modeling approach. We will model the problem as
a one–variable optimization problem. The general solution procedure for one–
variable optimization problems was outlined in Section 1.1. In this section we
will explore some computational methods that can be used to implement this
general solution procedure. Computational methods such as those we present
here are often needed in real problems when calculations become either too hard
or too tedious to perform by hand.

Step 3 is to formulate the model. The only difference between the present
case and the problem formulation of Section 1.1 is that we have to replace the
weight equation w = 200 + 5t by Eq. (3.3). This leads to the new objective
function

y = f(x)

= (0.65− 0.01x)(200e0.025x)− 0.45x,
(3.4)

and our problem is to maximize the function in Eq. (3.4) over the set S = {x :
x ≥ 0}.

Step 4 is to solve the model. We will use the graphical method. Good
graphing utilities for personal computers, and graphing calculators, are widely
available. We start our graphical analysis of this problem by producing a graph
of the function in Eq. (3.4) on the same scale as Fig. 1.2, our graph of the
original objective function. In this case we are left with the feeling that there
is more to see on the graph of this function. We would say that Fig. 3.1 is not
a complete graph of this function over the set S = [0, ∞).

Figure 3.2 is a complete graph. It shows all of the important features we
need for the solution of our problem.

How do we know when we have a complete graph? There is no simple
answer to this question. Graphing is an exploratory technique. You need to
experiment and to use good judgment. Of course, we do not need to look at
negative values of x, but we also need not look beyond x = 65. After this point
our formula says that the price for pigs is negative, which is clearly nonsense.
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for the pig problem with nonlinear weight model.
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Figure 3.3: First zoom–in on the graph of net profit f(x) from (3.4) versus time
to sell x for the pig problem with nonlinear weight model.

From the graph in Fig. 3.2 we can conclude that the maximum occurs around
x = 20 and y = f(x) = 140. To obtain a better estimate, we can zoom in on
the maximum point of the graph. Figures 3.3 and 3.4 show the outcome of
successive zooms.

On the basis of the graph in Fig. 3.4, we would estimate that the maximum
occurs at

x = 19.5

y = f(x) = 139.395.
(3.5)

At this point we have found the location of the maximum to three significant
digits, and the value of the maximum to six significant digits. Since f ′(x) = 0
at the maximum, the function f(x) is quite insensitive to changes in x near this
point, so we are able to obtain more accuracy for f(x) than for x.

Step 5 is to answer the question. After taking into account the fact that the
growth rate of the young pig is still increasing, we now recommend waiting 19
or 20 days to sell. This should result in a net profit of approximately $140.

The graphical method used in step 4 to locate the optimum point (see Eq.
(3.5)) did not produce a high degree of accuracy. This is acceptable for the
present problem because we do not need a high degree of accuracy. While it
is true that the graphical method can be made to produce higher accuracy (by
zooming in on the optimum point over and over again), there are more efficient
computational methods that should be used in such cases. We will look at some
of these next, in the course of our sensitivity analysis.
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Figure 3.4: Second zoom–in on the graph of net profit f(x) from (3.4) versus
time to sell x for the pig problem with nonlinear weight model.

Let us examine the sensitivity of the optimum coordinates in Eq. (3.5) to
the growth rate c = 0.025 for the young pig. One way to do this would be
to repeat our graphical analysis for several different values of the parameter c.
However, this would be tedious. We would prefer a more efficient method.

Let us begin by generalizing the model. Now we are assuming that

dw

dt
= cw, w(0) = 200, (3.6)

so that
w = 200ect. (3.7)

This leads to the objective function

f(x) = (0.65− 0.01x)(200ecx)− 0.45x. (3.8)

From our graphical analysis, we know that for c = 0.025, the optimum occurs
at an interior critical point, at which point f ′(x) = 0. Since f is a continuous
function of c, it seems reasonable to conclude that the same holds for values of c
near 0.025. In order to locate this interior critical point, we need to compute the
derivative f ′(x) and solve the equation f ′(x) = 0. The first part of this process
(computing the derivative) is relatively easy. There is a standard method for
computing derivatives that you learned in one–variable calculus. It can be
applied to virtually any differentiable function. For complicated expressions
the derivative can also be computed using a computer algebra system (Maple,
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Mathematica, Derive, etc.) or a hand calculator (such as the HP–48). In our
problem, it is not too difficult to compute by hand that

f ′(x) = 200cecx(0.65− 0.01x)− 2ecx − 0.45. (3.9)

The second part of the process is to solve the equation

200cecx(0.65− 0.01x)− 2ecx − 0.45 = 0. (3.10)

You can try to solve this equation by hand, but you are unlikely to succeed in
obtaining an algebraic solution. Some computer algebra systems can now solve
(3.10) in terms of the W function, which was developed specifically to solve
equations of this type. Ongoing research in mathematics and mathematical
software will continue to expand our ability to solve equations, but the plain and
simple fact is that most equations still cannot be solved by algebraic methods.
While there does exist a general algebraic method for computing derivatives,
there is no general algebraic method for solving equations. Even for polynomials,
it is known that there can be no generally useful algebraic method of finding
roots (i.e., there can be no analog of the quadratic formula) for degree five or
above. This is why it is often necessary to resort to numerical approximation
methods to solve algebraic equations.

We will use Newton’s method to solve Eq. (3.10). You probably learned
about Newton’s method in one–variable calculus.

We are given a differentiable function F (x) and an approximation
x0 to the root F (x) = 0. Newton’s method works by linear approxi-
mation. Near x = x0 we have F (x) ≈ F (x0)+F ′(x0)(x−x0) by the
usual tangent line approximation. To obtain a better estimate x =
x1 of the actual root to F (x) = 0, we set F (x0)+F ′(x0)(x−x0) = 0
and solve for x = x1 to get x1 = x0 − F (x0)/F

′(x0). Geometri-
cally, the tangent line to y = F (x) at the point x = x0 intersects
the x–axis at the point x = x1. As long as x1 is not too far away
from x0, the tangent line approximation should be reasonably good,
and so x1 should be close to the actual root. Newton’s method pro-
duces a sequence of increasingly accurate estimates x1, x2, x3, . . ., to
the actual root by repeating this tangent line approximation. Once
we are sufficiently close to the root, each successive approximation
produced by Newton’s method is accurate to about twice as many
decimal places as the preceding estimate.

Figure 3.5 presents Newton’s method in a form called pseudocode. This is a
standard method for describing a numerical algorithm.

It is a fairly simple matter to transform pseudocode into a working com-
puter program in any high–level computer language (BASIC, FORTRAN, C,
PASCAL, etc.) or to implement on a spreadsheet. It is also possible to program
in most computer algebra systems. For the numerical methods in this book,
any of these options can be used. It is not recommended that these algorithms
be implemented by hand.
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Algorithm: NEWTON’S METHOD

Variables: x(n) = approximate location of root after n iterations.
N = number of iterations

Input: x(0), N

Process: Begin
for n = 1 to N do

Begin
x(n)←− x(n− 1)− F (x(n− 1))/F ′(x(n− 1))
End

End

Output: x(N)

Figure 3.5: Pseudocode for Newton’s Method in one variable.

c x
0.022 11.626349
0.023 14.515929
0.024 17.116574
0.025 19.468159
0.026 21.603681
0.027 23.550685
0.028 25.332247

Table 3.1: Sensitivity of best time to sell x to growth rate parameter c for the
pig problem with nonlinear weight model.

In our problem we want to use Newton’s method to find a root of the equation

F (x) = 200cecx(0.65− 0.01x)− 2ecx − 0.45 = 0. (3.11)

For values of c near 0.025, we expect to find a root near the point x = 19.5. We
used a computer implementation of Newton’s method to produce the results in
Table 3.1. For each value of c, we performed N = 10 iterations starting at the
point x(0) = 19.5. An additional sensitivity run with N = 15 was used to verify
the accuracy of our results.

Notice that our method of solution for Eq. (3.11) has two steps. First, we
apply a global method (graphing) to locate an approximate solution. Then, we
apply a fast local method to determine the exact solution to the desired accuracy.
These are the two stages of numerical solution, and they are common to most
generally useful solution methods. For one–variable optimization, graphing is
the simplest and most useful global method. Newton’s method is easy to pro-
gram, and built–in numerical equation solvers are also available on most graph-
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ing calculators, spreadsheets, and computer algebra systems. While the details
vary, most of these solvers are based on some variation of Newton’s method.
These solvers can be used safely and effectively in the same manner as New-
ton’s method. First, use a global method to approximate the root. Most solvers
require either a point estimate or an interval estimate of the root. Then, exercise
the solver and verify the result, either by performing sensitivity analysis on the
available tolerance parameter(s), or by substituting the numerical solution back
into the original equation. One word of caution: Casual and uncritical faith in
the results of numerical solvers is dangerous. For many real problems, including
some of the exercises in this book, inappropriate use of numerical solvers has
been known to produce significant errors. Initial application of an appropriate
global method, and subsequent verification of the root, are important parts of
the numerical solution procedure. Some calculators, computer algebra systems,
and spreadsheets also have numerical optimizers. Usually, these routines ap-
ply a variant of Newton’s method based on a numerical approximation of the
derivative. The same advice applies to these routines. Use a global method to
approximate the optimum, exercise the numerical optimizer, and then perform
sensitivity analysis on the tolerance parameters to ensure accuracy.

In order to relate our sensitivity results back to the original data in the
problem, in Figure 3.6 we have plotted the root x, which represents the optimal
time to sell, against the growth rate

g = 200c, (3.12)

which was originally given as g = 5 lbs/day.
To obtain a numerical estimate of sensitivity, we solve Eq. (3.11) once more,

setting c = 0.02525 (a 1% increase). The solution found was

x = 20.021136,

which represents a 2.84% increase in x. Thus, we estimate that S(x, c) = 2.84.
Since

g = 200c,

we can easily show that

S(x, g) = S(x, c) = 2.84.

Also, if we let h denote the initial weight of the pig (we assumed h = 200 lbs),
then since

h = 5/c,

we have

S(x, h) =
dx

dh
· h
x

=

(
dx/dc

dh/dc

)(
5/c

x

)
= −S(x, c) = −2.84.
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Figure 3.6: Graph of best time to sell x versus growth rate g for the pig problem
with nonlinear weight model.

In fact, it is generally true that if y is proportional to z, then

S(x, y) = S(x, z), (3.13)

and if y is inversely proportional to z, then

S(x, y) = −S(x, z). (3.14)

Now we have computed the sensitivity of x to both the initial weight of the
pig and the growth rate of the pig. The other sensitivities are unchanged from
the original problem considered in Chapter 1, since the other parameters appear
in the objective function in the same manner as before.

The fact that our optimal solution in the present case differs so markedly
from what we found in Chapter 1 (19 or 20 days here versus 8 days there) raises
some important questions about the robustness of our model. There is also
serious concern about whether the assumption

p = 0.65− 0.01t

would be valid over a three–week period. Alternative models for price could
certainly be considered, along with more sophisticated models of the growth
process for a representative pig. Some of these issues of robustness are addressed
in the exercises at the end of this chapter. What we can say now is this: If
the pig’s rate of growth does not diminish, and if the price decline does not
accelerate, then we should hold onto the pig for another week. At that time, we
can reevaluate the situation on the basis of new data.
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3 0 1 4 2 1
2 1 1 2 3 2
5 3 3 0 1 2
8 5 2 1 0 0
10 6 3 1 3 1
0 2 3 1 1 1

Figure 3.7: Map showing the number of emergency calls per year in each one
square mile area of the city. Up is north and right is east.

3.2 Multivariable Optimization

The practical problems associated with locating the global optimum of a func-
tion of several variables are similar in many ways to those discussed in the pre-
ceding section. Additional complications arise because of the dimension of the
problem. Graphical techniques are not available in dimensions n > 3, and solv-
ing ∇f = 0 becomes more complicated as the number of independent variables
increases. Constrained optimization is also more difficult because the geometry
of the feasible region can be more complicated.

Example 3.2. A suburban community intends to replace its old fire station
with a new facility. The old station was located at the historical city center.
City planners intend to locate the new facility more scientifically. A statistical
analysis of response–time data yielded an estimate of 3.2 + 1.7r0.91 minutes
required to respond to a call r miles away from the station. (The derivation of
this formula is the subject of Exercises 17 and 18 in Chapter 8.) Estimates of
the frequency of calls from different areas of the city were obtained from the fire
chief. They are presented in Figure 3.7. Each block represents one square mile,
and the numbers inside each block represent the number of emergency calls per
year for that block. Find the best location for the new facility.

We will represent locations on the city map by coordinates (x, y), where x is
the distance in miles to the west side of town, and y is the distance in miles to
the south side. For example, (0, 0) represents the lower left–hand corner of the
map, and (0, 6) represents the upper left–hand corner. For simplicity we will
divide the city into nine 2× 2–mile squares and assume that each emergency
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Figure 3.8: 3–D graph of average response time z = f(x, y) from (3.15) versus
map location (x, y) for the facility location problem.

is located at the center of the square. If (x, y) is the location of the new fire
station, the average response time to a call is z = f(x, y), where

z = 3.2 + 1.7 [6
√
(x− 1)2 + (y − 5)2

0.91

+ 8
√

(x− 3)2 + (y − 5)2
0.91

+ 8
√
(x− 5)2 + (y − 5)2

0.91

+ 21
√

(x− 1)2 + (y − 3)2
0.91

+ 6
√
(x− 3)2 + (y − 3)2

0.91

+ 3
√

(x− 5)2 + (y − 3)2
0.91

+ 18
√
(x− 1)2 + (y − 1)2

0.91

+ 8
√

(x− 3)2 + (y − 1)2
0.91

+ 6
√
(x− 5)2 + (y − 1)2

0.91
]/84.

(3.15)

The problem is to minimize z = f(x, y) over the feasible region 0 ≤ x ≤ 6,
0 ≤ y ≤ 6.

Figure 3.8 shows a 3–D graph of the objective function f over the feasible
region. It appears as though f attains its minimum at the unique interior
point at which ∇f = 0. Figure 3.9 shows a contour plot of the level sets of f ,
indicating that ∇f = 0 near the point x = 2 and y = 3.

Now, it is certainly possible to compute ∇f in this problem, but it is not
possible to solve ∇f = 0 algebraically. Further graphical analysis is possible,
but this is especially cumbersome for functions of more than one variable. What
is needed here is a simple global method for estimating the minimum.
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Figure 3.9: Contour plot of average response time z = f(x, y) from (3.15) versus
map location (x, y) for the facility location problem.

Figure 3.10 presents an algorithm for random search. This optimization
method simply picks N feasible points at random and selects the one that yields
the smallest value of the objective function. The notation Random {S} denotes
a randomly selected point from the set S. A computer implementation of ran-
dom search was applied to the function in Eq. (3.15) with a = 0, b = 6, c =
0, d = 6, and N = 1, 000. The resulting estimate of the minimum occurred at

xmin = 1.66

ymin = 2.73

z min = 6.46.

(3.16)

Since this algorithm involves random numbers, a repetition of the same com-
puter implementation with the same inputs may produce slightly different out-
puts. The accuracy of random search is roughly the same as if the N points
were to lie on an equally spaced grid over the entire feasible set. Such a grid
would contain 32× 32 points (322 ≈ 1, 000), so we would be accurate to within
6/32 ≈ 0.2 in both x and y. Since ∇f = 0 at the minimum, we obtain much
better accuracy in z. An alternative to random search would be a grid search
(examine z = F (x, y) at N equally spaced points). The performance of grid
search is essentially the same as random search, but random search is more
flexible and easier to implement.

The estimates in Eq. (3.16) of the optimum location (1.7, 2.7) and the re-
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Algorithm: METHOD OF RANDOM SEARCH

Variables: a = lower limit on x
b = upper limit on x
c = lower limit on y
d = upper limit on y
N = number of iterations
xmin = approximate x coordinate of minimum
ymin = approximate y coordinate of minimum
z min = approximate value of F (x, y) at minimum

Input: a, b, c, d, N

Process: Begin
x←− Random {[a, b]}
y ←− Random {[c, d]}
z min←− F (x, y)
for n = 1 to N do

Begin
x←− Random {[a, b]}
y ←− Random {[c, d]}
z ←− F (x, y)
if z < zmin then
xmin←− x
ymin←− y
z min←− z

End
End

Output: xmin, y min, z min

Figure 3.10: Pseudocode for the method of random search.

sulting average response time of 6.46 minutes were obtained by evaluating the
objective function at N = 1, 000 random points in the feasible region. Better
accuracy could be obtained by increasing N . However, the behavior of this
simple, global method does not encourage such an approach. Each additional
decimal place of accuracy requires increasing N by a factor of one hundred.
Hence, this method is only suitable for obtaining a rough approximation of the
optimum. For the present problem the answer we found is good enough. The
simplifying assumptions we made earlier introduced errors on the order of one
mile in emergency location, so there is no point in demanding more accuracy
now. It is enough to state that the facility should be located around (1.7, 2.7)
on the map, for an average response time of around 6.5 minutes. The exact
location will, in any case, depend on several factors not incorporated into our
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model, such as the location of roads and the availability of land in the area
of the optimal site. It is also reasonable to consider different definitions of an
“optimal” location; see Exercise 3.6.

It is important to provide an estimate of the sensitivity of response time to
the eventual facility location. Since ∇f = 0 at the optimal location, we do not
expect f to vary much near (1.7, 2.7). To obtain a more concrete understand-
ing of the sensitivity of f to (x, y) near the optimum, we reran the random
search program, replacing f by −f and bounding 1.5 ≤ x ≤ 2, 2.5 ≤ y ≤ 3. Af-
ter N = 100 observations we found that the maximum of f over this region was
approximately 6.49 minutes, or about 0.03 minutes longer than the observed
optimum. It does not matter in any practical sense where in this half–mile
square area we locate the station.

The random search methods employed in the preceding example are simple
but slow. For some problems, where greater accuracy is required, such methods
are unsuitable. If the functions involved are as complex as the objective in
Example 3.2, then it will be very hard to obtain an accurate answer. More
accurate and efficient methods for global optimization of functions of more than
one variable are almost always based on the gradient. We now present an
example in which these methods are more tractable, because the gradient is
easier to compute.

Example 3.3. A manufacturer of lawn furniture makes two types of lawn
chairs, one with a wood frame and one with a tubular aluminum frame. The
wood–frame model costs $18 per unit to manufacture, and the aluminum–frame
model costs $10 per unit. The company operates in a market where the number
of units that can be sold depends on the price. It is estimated that in order
to sell x units per day of the wood–frame model and y units per day of the
aluminum–frame model, the selling price cannot exceed 10 + 31x−0.5 + 1.3y−0.2

$/unit for wood–frame chairs, and 5 + 15y−0.4 + 0.8x−0.08 $/unit for aluminum–
frame chairs. Find the optimal production levels.

The objective is to maximize the profit function z = f(x, y) $/day over the
feasible set of production levels x ≥ 0, y ≥ 0, where

z = x(10 + 31x−0.5 + 1.3y−0.2)− 18x

+y(5 + 15y−0.4 + 0.8x−0.08)− 10y.
(3.17)

Figure 3.11 shows a graph of f . The graph indicates that f has a unique
interior maximum at the point where ∇f = 0. Figure 3.12 shows the level sets
of f . This graph suggests that the maximum occurs around x = 5 and y = 6.
We calculate the gradient ∇f(x, y) = (∂z/∂x, ∂z/∂y) to get

∂z

∂x
= 15.5x−0.5 − 8 + 1.3y−0.2 − 0.064yx−1.08

∂z

∂y
= 9y−0.4 − 5 + 0.8x−0.08 − 0.26xy−1.2.

(3.18)
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Figure 3.11: 3–D graph of profit z = f(x, y) from (3.17) versus the number x of
wood–frame chairs and the number y of aluminum–frame chairs produced per
day in the lawn chair problem.
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Figure 3.12: Contour graph of profit z = f(x, y) from (3.17) versus the number
x of wood–frame chairs and the number y of aluminum–frame chairs produced
per day in the lawn chair problem.
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A random search of N = 1, 000 points over the region 0 ≤ x ≤ 10, 0 ≤ y ≤ 10
yields an observed maximum of $52.06 per day at the production level x = 4.8
and y = 5.9 chairs per day. To obtain a more accurate numerical estimate of the
optimum point, we will use a multivariable version of Newton’s method to solve
the gradient equation ∇f = 0. Figure 3.13 gives the algorithm for Newton’s
method in two variables.

We are given a set of differentiable functions, f1, . . . , fn, and an
approximate root (x1(0), . . . , xn(0)) to the system of equations

f1(x1, . . . , xn) = 0

...

fn(x1, . . . , xn) = 0.

(3.19)

In order to simplify the explanation, and to clarify the connec-
tion between the one–variable and multivariable Newton’s method,
we will use vector notation. Let x = (x1, . . . , xn) and F (x) =
(f1(x), . . . , fn(x)) so that we can rewrite Eq. (3.19) in the form
F (x) = 0 and x(0) is the initial estimate of the root. Newton’s
method produces a sequence of increasingly accurate estimates x(1),
x(2), x(3), . . . to the actual root F (x) = 0 using a linear approxima-
tion. Near x = x(0) we have F (x) ≈ F (x(0)) + A(x − x(0)), where
A is the matrix of partial derivatives

A =

∂f1/∂x1 · · · ∂f1/∂xn

...
...

∂fn/∂x1 · · · ∂fn/∂xn


evaluated at x = x(0). This is the multivariable version of the
tangent line approximation. To obtain a better estimate x = x(1)
to the actual root F (x) = 0, we set F (x(0)) + A(x− x(0)) = 0 and
solve for x = x(1) to get x(1) = x(0)−A−1F (x(0)). This is exactly
the same formula as in the one–variable case, except that we cannot
divide by the derivative matrix, so we take the inverse. Once we
are sufficiently close to the root, each successive approximation is
accurate to about twice as many decimal places as the preceding
estimate. Just as in the one–variable case, the sequence of estimates
produced by Newton’s method converges rapidly to the actual root.

The pseudocode in Figure 3.13 implements Newton’s method in
two variables using the formula for the inverse of a 2× 2 matrix(

q r
s t

)−1

=
1

qt− rs

(
t −r
−s q

)
.

In the general case, it is necessary to compute the inverse of the
derivative matrix A by other methods. For more details on Newton’s
method in several variables, see Press, et al. (2002).
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Algorithm: NEWTON’S METHOD IN TWO VARIABLES

Variables: x(n) = approximate x coordinate of the root after n iterations.
y(n) = approximate y coordinate of the root after n iterations.
N = number of iterations

Input: x(0), y(0), N

Process: Begin
for n = 1 to N do

Begin
q ←− ∂F/∂x(x(n− 1), y(n− 1))
r ←− ∂F/∂y(x(n− 1), y(n− 1))
s←− ∂G/∂x(x(n− 1), y(n− 1))
t←− ∂G/∂y(x(n− 1), y(n− 1))
u←− −F (x(n− 1), y(n− 1))
v ←− −G(x(n− 1), y(n− 1))
D ←− qt− rs
x(n)←− x(n− 1) + (ut− vr)/D
y(n)←− y(n− 1) + (qv − su)/D
End

End

Output: x(N), y(N)

Figure 3.13: Pseudocode for Newton’s method in two variables.

In our problem we have

F (x, y) = 15.5x−0.5 − 8 + 1.3y−0.2 − 0.064yx−1.08

G(x, y) = 9y−0.4 − 5 + 0.8x−0.08 − 0.26xy−1.2,
(3.20)

and so we can compute that

∂F

∂x
= 0.06912yx−2.08 − 7.75x−1.5

∂F

∂y
= −0.064x−1.08 − 0.26y−1.2

∂G

∂x
= −0.064x−1.08 − 0.26y−1.2

∂G

∂y
= 0.312xy−2.2 − 3.6y−1.4.

(3.21)

We used a computer implementation of Newton’s method in two variables start-
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ing at x(0) = 5, y(0) = 5. After N = 10 iterations we obtained

x = 4.68959

y = 5.85199
(3.22)

as our estimate of the root. A further sensitivity run with N = 15 was made
to confirm these results. Substituting back into Eq. (3.17) yields z = 52.0727.
Hence, the optimal solution to the lawn chair problem is to produce 4.69 wood–
frame chairs and 5.85 aluminum–frame chairs per day, which should result in a
net profit of $52.07 per day.

As in the one–variable case, the accurate numerical solution of systems of
equations is a two–step process. First, we must use a global method to estimate
the location of the root. Graphical methods are useful if there are only two
variables, but for most problems, a numerical method such as random search is
necessary. A variety of more sophisticated global methods is also available, most
of which are tailored to special classes of problems. Next, we use a fast local
method to obtain an accurate solution, which must be verified either by sensi-
tivity analysis of the parameters which control accuracy, or by substituting the
numerical solution back into the original system of equations. Newton’s method
is a very fast local method that requires computing the partial derivatives. Var-
ious modifications exist which employ estimates of the partial derivatives; e.g.,
see Press, et al. (2002). Most spreadsheets and computer algebra systems have
multivariable equation solvers, and solvers are also available in most numeri-
cal analysis software libraries and packages. To use one of these, begin with
a global method to estimate the location of the root, then exercise the solver,
and finally verify the solution as usual. Do not simply plug in the equations,
use the solver, and accept the reported solution, as this can lead to serious
errors. Many spreadsheets, computer algebra systems, and numerical analysis
packages also have multivariable numerical optimizers. Usually these routines
apply a variation of Newton’s method based on numerical approximation of the
derivatives. The same advice applies to these routines. Use a global method to
approximate the optimum, exercise the numerical optimizer, and then perform
sensitivity analysis on the tolerance parameters to ensure accuracy.

Multivariable optimization problems with constraints may be harder to solve.
In some cases the optimum occurs in the interior of the feasible region, so that
we may treat the problem as if there were no constraints. When the optimum
occurs on the boundary, the situation is more complex. There are no simple,
generally effective computational algorithms for solving such problems. The
methods that do exist are tailored to the particular features of some special
class of problems. In the next section we will discuss the most important of
these.

3.3 Linear Programming

Multivariable optimization problems with constraints are almost always difficult
to solve. A variety of computational techniques has been developed to handle
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Requirements Corn Wheat Oats
per acre

Irrigation 3.0 1.0 1.5
(acre–ft)

Labor 0.8 0.2 0.3
(person–hrs/week)

Yield 400 200 250
($)

Table 3.2: Data for the farm problem of Example 3.4.

special types of multivariable optimization problems, but good general methods
do not yet exist, even at the most sophisticated levels. The area of research that
considers the development of new computational methods for such problems is
called nonlinear programming, and it is very active.

The simplest type of multivariable constrained optimization problem is one
where both the objective function and the constraint functions are linear. The
study of computational methods for such problems is called linear programming.
Software packages for linear programming are widely available and are in fre-
quent use for problems in manufacturing, investment, farming, transportation,
and government. Typical large–scale problems involve thousands of decision
variables and thousands of constraints. There are many well–documented cases
where an operations analysis based on a linear programming model has gener-
ated savings in the millions of dollars. Details can be found in the literature on
operations research and management science.

Example 3.4. A family farm has 625 acres available for planting. The crops
the family is considering are corn, wheat, and oats. It is anticipated that 1,000
acre–ft of water will be available for irrigation, and the farmers will be able to
devote 300 hours of labor per week. Additional data are presented in Table 3.2.
Find the amount of each crop that should be planted for maximum profit.

We will use the five-step method. The results of step 1 are shown in Figure
3.14. Step 2 is to select the modeling approach. We will model this problem as
a linear programming problem.

The standard (inequality) form of a linear programming model
is as follows: Maximize the objective function y = f(x1, . . . , xn) =
c1x1 + · · ·+ cnxn over the feasible region defined by the constraints

a11x1 + · · ·+ a1nxn ≤ b1

...
...

...

am1x1 + · · ·+ amnxn ≤ bm

(3.23)

and x1 ≥ 0, . . . , xn ≥ 0. This is a special case of the multivariable
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Variables: x1 = acres of corn planted
x2 = acres of wheat planted
x3 = acres of oats planted
w = irrigation required (acre–ft)
l = labor required (person–hrs/wk)
t = total acreage planted
y = total yield ($)

Assumptions: w = 3.0x1 + 1.0x2 + 1.5x3

l = 0.8x1 + 0.2x2 + 0.3x3

t = x1 + x2 + x3

y = 400x1 + 200x2 + 250x3

w ≤ 1, 000
l ≤ 300
t ≤ 625
x1 ≥ 0; x2 ≥ 0; x3 ≥ 0

Objective: Maximize y

Figure 3.14: Results of step 1 of the farm problem.

constrained optimization problem discussed in Chapter 2. Let

g1(x1, . . . , xn) = a11x1 + · · ·+ a1nxn

...

gm(x1, . . . , xn) = am1x1 + · · ·+ amnxn

(3.24)

and

gm+1(x1, . . . , xn) = x1

...

gm+n(x1, . . . , xn) = xn.

The constraints can be written in the form g1 ≤ b1, . . . , gm ≤ bm
and gm+1 ≥ 0, . . . , gm+n ≥ 0. The set of (x1, . . . , xn) that satisfies
these constraints is called the feasible region. It represents all feasible
values for the decision variables x1, . . . , xn. Since∇f = (c1, . . . , cn)
can never be zero, the function cannot attain its maximum in the
interior of the feasible region. At a maximum on the boundary we
must have

∇f = λ1∇g1 + · · ·+ λm+n∇gm+n (3.25)

with λi ≠ 0 only if the ith constraint is binding. For i = 1, . . . , m,
the value of the Lagrange multiplier λi represents the potential in-
crease in the maximum value of the objective function f(x1, . . . , xn)
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that would result from relaxing the ith constraint by one unit (chang-
ing it to gi(x1, . . . , xn) ≤ bi + 1). Computation of the optimal
solution to a linear programming problem is usually obtained by
computer, using a variation of the simplex method. This method
is based on the fact (which you can easily verify) that the optimal
solution must occur at one of the corner points of the feasible region.
Rather than go into the details involved in the algebra of the simplex
method, we will concentrate on what you need to know in order to
use a linear programming package correctly.

In the simplex method, the coordinates of a corner point are com-
puted using the alternative (equality) form of a linear programming
problem: Maximize y = c1x1 + · · ·+ cnxn over the set

a11x1 + · · ·+ a1nxn + xn+1 = b1

a21x1 + · · ·+ a2nxn + xn+2 = b2

...

am1x1 + · · ·+ amnxn + xn+m = bm

(3.26)

and x1 ≥ 0, . . . , xn+m ≥ 0. The variable xn+i is called a slack
variable because it represents the amount of slack remaining in the
ith constraint. The ith constraint is binding when the slack vari-
able xn+i = 0. The coordinates of a corner point can be obtained
by setting n of the variables x1, . . . , xm+n equal to zero, and then
solving the resulting m equations in m unknowns. The corner point
is feasible if the remaining m variables (called basic variables) turn
out to be nonnegative.

Suppose that we have a moderate size linear programming prob-
lem, with n = 50 variables and m = 100 constraints. The number of
corner points is equal to the number of possible choices for which 50
of the 150 variables (50 decision variables plus 100 slack variables)
we set equal to zero. The number of possible ways to choose 50 out
of 150 is (150!)/(50!)(100!), or around 2 × 1040. A computer pro-
gram that could check one corner point every nanosecond would take
around 8× 1030 years to solve this problem, which is representative
of a typical linear programming application. The simplex method
typically calculates only a selected subset of the corner points (a
very small fraction of the total). A linear program of size n = 50,
m = 100 can be solved quickly on a mainframe computer. As of
this writing, a problem of this size is at the upper limits of what can
be solved in a reasonable amount of time on a personal computer,
but technological advances will certainly push these limits further in
the near future. As a general rule, the execution time for a linear
program using the simplex method is proportional to m3, so that
an order–of–magnitude improvement in processor speed more than
doubles the size of the linear program that can be handled by a
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given machine. For the problems in this book, any good computer
implementation of the simplex method will be adequate. It is not
recommended that these problems be solved by hand.

Step 3 is to formulate the linear programming model in the standard form.
In our problem the decision variables are the number of acres of each crop x1, x2,
and x3. We want to maximize the total yield, y = 400x1 + 200x2 + 250x3, over
the set

3.0x1 + 1.0x2 + 1.5x3 ≤ 1, 000

0.8x1 + 0.2x2 + 0.3x3 ≤ 300

x1 + x2 + x3 ≤ 625

(3.27)

and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.
Step 4 is to solve the problem. We used a computer implementation of

the simplex method called LINDO, written by Linus Schrage. The results of
step 4 are shown in Figure 3.15. The optimal solution is Z = 162, 500 at
x1 = 187.5, x2 = 437.5, x3 = 0. Since the slack variables for rows 2 and 4 are
zero, the first and third constraints are binding. Since the slack variable for row
3 is equal to 62.5, the second constraint is not binding.

Step 5 is to answer the question. The question was how much of each crop
to plant. The optimal solution is to plant 187.5 acres of corn, 437.5 acres of
wheat, and no oats. This should yield $162,500. The optimal crop mixture we
found uses all 625 acres and all 1,000 acre–ft of irrigation water, but only 237.5
of the available 300 person–hours of labor per week. Thus, there will be 62.5
person–hours per week that may be devoted to other profitable activities, or to
leisure.

We will begin our sensitivity analysis by considering the amount of water
available for irrigation. This amount will vary as a result of rainfall and temper-
ature, which determine the status of the farm’s irrigation pond. It would also be
possible to purchase additional irrigation water from a nearby farm. Figure 3.16
illustrates the effect of one additional acre–ft of irrigation water on our optimal
solution. Now we can plant an additional half–acre of corn (a more profitable
crop), and in fact we save a little bit of labor (0.3 person–hours per week). The
net result is an additional $100 in yield.

The $100 is the shadow price for this resource (irrigation water). The farm
should be willing to purchase additional irrigation water for up to $100 per
acre–ft. Alternatively, it should be unwilling to part with its own irrigation
water for less than $100 per acre–ft. In Fig. 3.15, the shadow prices for the
three resources (water, labor, and land) are called dual prices. They appear
next to the corresponding slack variables. An additional acre of land would also
be worth $100. Additional labor is worth $0, since there is an excess.

The dollar amount per acre that each crop will yield varies with the weather
and the market. Figure 3.17 shows the effect of a slightly higher yield for corn.
This would not affect our decision variables x1, x2, and x3 (the amount of each
crop we should plant). Our yield increases, of course, by 50x1 = $9, 375. It is
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MAX 400 X1 + 200 X2 + 250 X3

SUBJECT TO

2) 3 X1 + X2 + 1.5 X3 <= 1000

3) 0.8 X1 + 0.2 X2 + 0.3 X3 <= 300

4) X1 + X2 + X3 <= 625

END

LP OPTIMUM FOUND AT STEP 2

OBJECTIVE FUNCTION VALUE

1) 162500.000

VARIABLE VALUE REDUCED COST

X1 187.500000 .000000

X2 437.500000 .000000

X3 .000000 -.000015

ROW SLACK OR SURPLUS DUAL PRICES

2) .000000 100.000000

3) 62.500000 .000000

4) .000000 99.999980

NO. ITERATIONS= 2

Figure 3.15: Optimal solution to the farm problem using the linear programming
package LINDO.

also interesting to note the change in the shadow prices. Water is at more of a
premium when corn is more valuable. (Although both the water and the land
constraints are binding, it is the water constraint that keeps us from planting
more corn in place of wheat.)

Figure 3.18 shows what happens if oats yield a bit more than expected. A
very small change in this parameter has a very significant effect on our optimal
decision. Now we plant oats instead of wheat. We also plant considerably less
corn than before. Apparently, our model is quite sensitive to this parameter.
This being the case, it seems appropriate to consider the sensitivity to this
parameter in more depth.

Let c denote the yield ($/acre) for oats, so that our objective function f(x) =
400x1 + 200x2 + cx3. Note that the value of c does not affect the shape of the
feasible region S. Several additional model runs were made varying c. For
c ≤ 250 the optimal solution is at the corner point (187.5, 437.5, 0), and for
c > 250 the optimal solution is at the adjacent corner point (41.66̄, 0, 583.33̄).
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MAX 400 X1 + 200 X2 + 250 X3

SUBJECT TO

2) 3 X1 + X2 + 1.5 X3 <= 1001

3) 0.8 X1 + 0.2 X2 + 0.3 X3 <= 300

4) X1 + X2 + X3 <= 625

END

LP OPTIMUM FOUND AT STEP 0

OBJECTIVE FUNCTION VALUE

1) 162600.000

VARIABLE VALUE REDUCED COST

X1 188.000000 .000000

X2 437.000000 .000000

X3 .000000 -.000015

ROW SLACK OR SURPLUS DUAL PRICES

2) .000000 100.000000

3) 62.200000 .000000

4) .000000 99.999980

NO. ITERATIONS= 0

Figure 3.16: Optimal solution to the farm problem with one extra acre–foot of
water using the linear programming package LINDO.

Both points lie on the line formed by the intersection of the two planes

3.0x1 + 1.0x2 + 1.5x3 = 1, 000

x1 + x2 + x3 = 625.
(3.28)

Consider the gradient vector ∇f = (400, 200, c) at any point along this line.
For c < 250 the gradient vector points toward the corner point with x3 = 0.
For c > 250 the gradient vector points toward the corner point with x2 = 0.
As c increases, the gradient vector turns away from the former and toward the
latter. At c = 250 the gradient vector ∇f is perpendicular to the line through
these two points. For this value of c, any point along the line segment joining
the two corner points will be optimal.

The practical ramification of our model’s sensitivity to the parameter c is
that we don’t know whether we should plant oats or wheat. A small variation
in yield would change our optimal decision. In light of the fact that the $/acre
yield varies considerably with the weather and the market, it might be best to
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MAX 450 X1 + 200 X2 + 250 X3

SUBJECT TO

2) 3 X1 + X2 + 1.5 X3 <= 1000

3) 0.8 X1 + 0.2 X2 + 0.3 X3 <= 300

4) X1 + X2 + X3 <= 625

END

LP OPTIMUM FOUND AT STEP 0

OBJECTIVE FUNCTION VALUE

1) 171875.000

VARIABLE VALUE REDUCED COST

X1 187.500000 .000000

X2 437.500000 .000000

X3 .000000 12.500000

ROW SLACK OR SURPLUS DUAL PRICES

2) .000000 125.000000

3) 62.500000 .000000

4) .000000 75.000000

NO. ITERATIONS= 0

Figure 3.17: Optimal solution to the farm problem with a higher yield for corn
using the linear programming package LINDO.

present the farmer with more than one option. Any crop mixture of the form

x1 = 187.5t+ 41.66̄(1− t)

x2 = 437.5t+ 0(1− t)

x3 = 0t+ 583.33̄(1− t)

(3.29)

for any 0 ≤ t ≤ 1 will use all the available land and irrigation water. There
is too much uncertainty in the figures for the $/acre yield to tell which option
would produce the most profit.

Sometimes sensitivity analysis is performed in response to client feedback
after the results of an initial study have been presented. Suppose that after the
farmer has seen the results of our analysis, a new seed catalog arrives with an
advertisement for a new variety of corn. This variety of corn is more expensive,
but is supposed to require less irrigation. Figure 3.19 shows the results of a
sensitivity run in which we assumed that the corn planted requires only 2.5
acre–feet of irrigation water per acre (instead of 3.0). The new seed corn yields
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MAX 400 X1 + 200 X2 + 260 X3

SUBJECT TO

2) 3 X1 + X2 + 1.5 X3 <= 1000

3) 0.8 X1 + 0.2 X2 + 0.3 X3 <= 300

4) X1 + X2 + X3 <= 625

END

LP OPTIMUM FOUND AT STEP 1

OBJECTIVE FUNCTION VALUE

1) 168333.300

VARIABLE VALUE REDUCED COST

X1 41.666670 .000000

X2 .000000 13.333340

X3 583.333300 .000000

ROW SLACK OR SURPLUS DUAL PRICES

2) .000000 93.333340

3) 91.666660 .000000

4) .000000 120.000000

NO. ITERATIONS= 1

Figure 3.18: Optimal solution to the farm problem with a higher yield for oats
using the linear programming package LINDO.

an additional $12,500, and in this case we will, of course, plant more corn than
before. It is also interesting to note that in this case the shadow price for water
has increased 33%.

Finally, suppose that the farmer wishes to investigate the addition of a new
crop, barley. An acre of barley requires 1.5 acre–ft of water, 0.25 person–hours
of labor, and is expected to yield $200. We represent the new crop in our model
by adding a decision variable x4 = acres of barley. Figure 3.20 shows our model
run. The results are essentially unchanged from our base case. A mixture of corn
and wheat remains our optimal solution, and it is easy to see why. Although
barley and wheat yield the same, barley requires more water and more labor.

Example 3.5. A large construction firm is currently excavating at three sites.
Meanwhile, they are also building at four additional sites, where they require fill
dirt. The excavations at sites 1, 2, and 3 produce 150, 400, and 325 cubic yards
of dirt per day. The building sites A, B, C, and D require 175, 125, 225, and
450 cubic yards of dirt per day. Additional fill dirt can also be obtained from
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MAX 400 X1 + 200 X2 + 250 X3

SUBJECT TO

2) 2.5 X1 + X2 + 1.5 X3 <= 1000

3) 0.8 X1 + 0.2 X2 + 0.3 X3 <= 300

4) X1 + X2 + X3 <= 625

END

LP OPTIMUM FOUND AT STEP 1

OBJECTIVE FUNCTION VALUE

1) 175000.000

VARIABLE VALUE REDUCED COST

X1 250.000000 .000000

X2 375.000000 .000000

X3 .000000 16.666680

ROW SLACK OR SURPLUS DUAL PRICES

2) .000000 133.333300

3) 25.000000 .000000

4) .000000 66.666660

NO. ITERATIONS= 1

Figure 3.19: Optimal solution to the farm problem with a lower water require-
ment for corn using the linear programming package LINDO.

site 4 at a cost of 5 dollars per cubic yard. The cost of shipping fill dirt is about
20 dollars per mile for one truckload, and a truck carries 10 cubic yards of dirt.
Table 3.3 gives the distance between sites in miles. Find the transportation plan
that minimizes the cost to the company.

We will use the five-step method. The results of step 1 are shown in Figure
3.21. For example, we can ship no more than 150 cubic yards of dirt per day
from site 1, and we must ship at least 175 cubic yards of dirt to site A. Since it
costs $20 per mile to ship 10 cubic yards of dirt, the cost of shipping one cubic
yard of dirt from site i = 1, 2, or 3 to site j = A, B, C, or D is $2 per mile.
There is an additional cost of $5 per cubic yard if we ship from site i = 4. We
assume that there is no limit to the amount of dirt we can obtain from site 4, if
we are willing to pay the price.

Step 2 is to select the modeling approach. We will model this problem as
a linear programming problem, and we will solve using a spreadsheet. Most
spreadsheets include an equation solver or optimizer that implements the sim-
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MAX 400 X1 + 200 X2 + 250 X3 + 200 X4

SUBJECT TO

2) 3 X1 + X2 + 1.5 X3 + 1.5 X4 <= 1000

3) 0.8 X1 + 0.2 X2 + 0.3 X3 + 0.25 X4 <= 300

4) X1 + X2 + X3 + X4 <= 625

END

LP OPTIMUM FOUND AT STEP 1

OBJECTIVE FUNCTION VALUE

1) 162500.000

VARIABLE VALUE REDUCED COST

X1 187.500000 .000000

X2 437.500000 .000000

X3 .000000 -.000015

X4 .000000 49.999980

ROW SLACK OR SURPLUS DUAL PRICES

2) .000000 100.000000

3) 62.500000 .000000

4) .000000 99.999980

NO. ITERATIONS= 1

Figure 3.20: Optimal solution to the farm problem with the addition of a new
crop, barley, using the linear programming package LINDO.

plex method. If the linear programming problem is not in the standard form
defined by Eq. (3.23) or (3.26), a simple transformation usually suffices. For ex-
ample, to minimize the objective function y = f(x1, . . . , xn), we can maximize
−y. Most implementations perform these transformations automatically, allow-
ing for a more natural problem formulation. There is also a special streamlined
version of the simplex method specially formulated for transportation problems.
This transportation simplex method is much more efficient for large–scale prob-
lems. For the present problem, the ordinary simplex method will suffice.

Step 3 is to formulate the model. In this problem the decision variables are
the number of cubic feet of dirt xij we want to ship from site i to site j, and
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Site to receive fill dirt

Excavation site A B C D
1 5 2 6 10
2 4 5 7 5
3 7 6 4 4
4 9 10 6 2

Table 3.3: Mileage data for the dirt problem of Example 3.5: Miles between
building sites.

Variables: xij = dirt shipped from site i to site j (cubic yards)
si = dirt shipped from site i (cubic yards)
rj = dirt shipped to site j (cubic yards)
cij = cost of shipping dirt from site i to site j ($/cubic yard)
dij = distance from site i to site j (miles)
C = total shipping cost ($)

Assumptions: s1 = x1A + x1B + x1C + x1D

s2 = x2A + x2B + x2C + x2D

s3 = x3A + x3B + x3C + x3D

s4 = x4A + x4B + x4C + x4D

rA = x1A + x2A + x3A + x4A

rB = x1B + x2B + x3B + x4B

rC = x1C + x2C + x3C + x4C

rD = x1D + x2D + x3D + x4D

s1 ≤ 150, s2 ≤ 400, s3 ≤ 325
rA ≥ 175, rB ≥ 125, rC ≥ 225, rD ≥ 450
cij = 2dij if i = 1, 2, 3 or (2dij + 5) if i = 4

where dij is given in Table 3.3
C = c1Ax1A + c1Bx1B + c1Cx1C + c1Dx1D

+ c2Ax2A + c2Bx2B + c2Cx2C + c2Dx2D

+ c3Ax3A + c3Bx3B + c3Cx3C + c3Dx3D

+ c4Ax4A + c4Bx4B + c4Cx4C + c4Dx4D

xij ≥ 0 for i = 1, 2, 3, 4 and j = A, B, C, D

Objective: Minimize C

Figure 3.21: Results of step 1 of the dirt problem.
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A A B C D E F G
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

costs
DCBAsite

20124101
10141082

8812143
91725234

solution
availableshippedDCBAsite

150000001
400000002
325000003

000004
0000received

450225125175needed
0total cost 

Figure 3.22: Spreadsheet formulation for the dirt problem.

our objective is to minimize the total cost y = C where

y = 10x1A + 4x1B + 12x1C + 20x1D

+ 8x2A + 10x2B + 14x2C + 10x2D

+ 14x3A + 12x3B + 8x3C + 8x3D

+ 23x4A + 25x4B + 17x4C + 9x4D

(3.30)

subject to the constraints

x1A + x1B + x1C + x1D ≤ 150

x2A + x2B + x2C + x2D ≤ 400

x3A + x3B + x3C + x3D ≤ 325

x1A + x2A + x3A + x4A ≥ 175

x1B + x2B + x3B + x4B ≥ 125

x1C + x2C + x3C + x4C ≥ 225

x1D + x2D + x3D + x4D ≥ 450

(3.31)

and xij ≥ 0 for i = 1, 2, 3, 4 and j = A, B, C, D.
Figure 3.22 shows a spreadsheet set up for this problem. Most of the cells

contain data. Cells F9 to F12, B13 to E13, and B15 contain formulas. For
example, we input F9 = B9+C9+D9+E9 and B13 = B9+B10+B11+B12
while B15 = B3 ∗ B9 + C3 ∗ C9 + · · · + D6 ∗ D12 + E6 ∗ E12. Then we
must tell the spreadsheet which cell contains the objective, which cells contain
decision variables, and we must specify the constraints. The details vary from
one spreadsheet to another; consult the manual or on–line help facility for your
spreadsheet if you are not sure how to proceed.
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A A B C D E F G
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

costs
DCBAsite

20124101
10141082

8812143
91725234

solution
availableshippedDCBAsite

1501250012501
4001750001752
325325100225003

3503500004
450225125175received
450225125175needed

7650total cost 

Figure 3.23: Spreadsheet solution for the dirt problem showing the optimal
shipping plan.

Step 4 is to solve the problem. Figure 3.23 shows the spreadsheet solution
for this problem obtained using the Quattro Pro optimizer. Notice that all of
the receiving constraints are binding, but not all the shipping constraints are
binding. Step 5 is to answer the question. The optimal solution is to ship 125
cubic yards of dirt per day from site 1 to site B, and 175 cubic yards from site 2
to site A. Site 3 sends 225 cubic yards to site C and another 100 cubic yards to
site D. The remaining 350 cubic yards of dirt needed at site D come from site
4. The added cost of purchasing dirt is offset by the fact that site 4 is close to
site D. The total cost of this transportation plan is $7,650 per day. According
to this shipping plan, we will not use all the dirt excavated from sites 1 and 2,
so we will need to make other arrangements to dispose of the extra dirt.

We begin our sensitivity analysis by examining some of the reports that can
be automatically generated by the spreadsheet optimizer. Figure 3.24 shows a
sensitivity report on the constraints in our problem. Notice that the constraints
on site 1 and site 2 are nonbinding, with a slack of 25 and 225 respectively. This
means that there are 25 cubic yards of dirt being excavated from site 1, and 225
cubic yards from site 2, that are not being shipped under the optimal trans-
portation plan. The dual values listed in Figure 3.24 are the shadow prices. The
shadow prices for sites 1 and 2 are zero, since these constraints are nonbinding.
The shadow price for site 3 is −1 dollar, meaning that the total cost would
increase by −1 dollar if this constraint were increased by 1 cubic yard of dirt.
One of the principal advantages of the spreadsheet implementation is the ease
with which we can perform sensitivity analysis. We simply change the value in
cell F12 from 325 to 326 and reoptimize. The resulting optimal solution (not
shown) changes E11 to 101, E12 to 349 and B15 to 7649. All the other decision
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DecrementIncrementDual ValueSlackBinding?ConstraintValueCell
25Infinite025No<=150125site 1

225Infinite0225No<=400175site 2
100350-10Yes<=325325site 3
17522580Yes>=175175site A
1252540Yes>=125125site B
22510090Yes>=225225site C
350Infinite90Yes>=450450site D

Figure 3.24: Spreadsheet sensitivity report for the dirt problem showing sensi-
tivity to changes in the amount of dirt available or the amount of dirt needed.

variables are unchanged. In other words, we ship one more cubic yard of dirt
from site 3 to site D and we save $1 per day.

The shadow prices for site A, B, C, D are all positive; e.g., the shadow price
for site C is 9 dollars. If we require an additional 10 cubic yards at site C, then
this will cost an additional $90. To check this, we change cell D14 from 225
to 235 and reoptimize. The resulting optimal solution is shown in Figure 3.25.
Note that the total cost increases by $90 from $7,650 to $7,740. Now site C
received 235 cubic yards from site 3, while site D receives 90 cubic yards from
site 3 and 360 cubic yards from site 4. The other shipments remain the same.

The columns labelled “increment” and “decrement” show the amount of
increase or decrease in the individual constraint amounts for which the shadow
prices remain valid. If we increase the amount required at site C from 225 to
325 or less, then the total cost will increase by $9 per cubic yard. If we go
beyond this amount, then the nature of the solution will change. In this case it
is easy to see why the nature of the solution changes if we need more than 325
cubic yards of dirt per day at site C. Right now we are getting all of the dirt
for site C from site 3, but if we need more then 325 cubic yards at site C, then
we must haul dirt from another site at a higher cost.

Figure 3.26 shows the spreadsheet report on sensitivity to objective function
coefficients. The increment and decrement amounts indicate the amount of
increase or decrease we can make in one of these cost–per–mile numbers without
changing the optimal solution. For example, the current cost of shipping one
cubic yard from site 1 to site B is 4 dollars. Lowering the cost by less than 4
dollars or raising the price by less than 6 dollars will not change the optimal
shipping plan. The total cost will change, since we are shipping 125 cubic yards
per day from site 1 to site B. Consider the geometry of the simplex method.
When we change an objective function coefficient, we are not changing the
feasible region at all. The optimal solution will only change if we alter the
objective function enough so that the current corner point solution is no longer
optimal. Then the optimal solution jumps to another corner point. We can
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solution
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1501250012501
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3603600004
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7740total cost 

Figure 3.25: Spreadsheet solution for the dirt problem with 10 additional cubic
yards of dirt needed at site C.

DecrementIncrementGradientFinalStartingVariable Cells
2Infinite1000x1A
8281750x2A
7Infinite1400x3A

15Infinite2300x4A
4641250x1B
6Infinite1000x2B
9Infinite1200x3B

21Infinite2500x4B
3Infinite1200x1C
5Infinite1400x2C
9382250x3C
8Infinite1700x4C

11Infinite2000x1D
1Infinite1000x2D
3181000x3D
1193500x4D

Figure 3.26: Spreadsheet sensitivity report for the dirt problem showing sensi-
tivity to changes in the shipping costs.
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Figure 3.27: Spreadsheet solution for the dirt problem if we ship all of the
excavated dirt.

verify this by changing the value in cell C3 and reoptimizing. If we insert any
value between 0 and 10 into C3, we get the same shipping plan as in Figure 3.23.
If we insert 11 into C3, then the shipping plan changes so that site B receives
125 cubic yards of dirt per day from site 2 and none from site 1.

Finally, we consider the robustness of our model. Our optimal solution in
Figure 3.23 indicates that we should not ship all of the excavated dirt to another
construction site. This leaves the company with a problem. Where do we put
all the extra dirt? The company will need to put the extra dirt somewhere,
and this will result in some additional cost. We do not have information about
these costs, but we can explore some options. Suppose that we ship all of the
excavated dirt to another construction site to be used as fill dirt. We know this
is not the optimal solution, but how much more would it cost? We can find out
by making a small change in our model. In step 1 we assumed that s1 ≤ 150,
s2 ≤ 400, s3 ≤ 325. Assume now that s1 = 150, s2 = 400, s3 = 325. The first
three inequality constraints in Eq. (3.31) are replaced by

x1A + x1B + x1C + x1D = 150

x2A + x2B + x2C + x2D = 400

x3A + x3B + x3C + x3D = 325

(3.32)

and the rest of our linear programming problem remains the same. After chang-
ing these three constraints on our spreadsheet, we reoptimize to obtain the re-
sults shown in Figure 3.27. Sites B and C receive the same shipments as before,
but now site A gets 25 cubic yards of fill dirt per day from site 1 and site D gets
250 cubic yards of fill dirt per day from site 2. According to this transportation
plan, we only need to purchase 100 cubic yards from site 4. The new plan gets
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rid of the extra 250 cubic yards of dirt and the additional cost is only $300 per
day, a little more than one dollar per cubic yard. We do not really know which
of these two plans is best. If the company needs to haul the excavated dirt away
from the site, then they may favor the alternate plan. If they can use the dirt
at or near the excavation site, they may prefer the original plan. We should
present both plans to the company management and let them choose.

3.4 Discrete Optimization

All of the models used so far in this book have been based on continuous vari-
ables. In many real–world problems we must deal with variables that are dis-
crete, like the integers. Discrete mathematics was once considered an arcane
field with little or no practical applications. With the invention of digital
computers, discrete mathematics has become extremely important. Discrete
optimization is useful for problems in scheduling, inventory, investment, trans-
portation, manufacturing, ecology, and computer science. Discrete models play
an important role in the remainder of the text, and the relationship between
continuous and discrete variables is one of the major issues in modeling.

In some cases a discrete optimization problem can be solved by simply enu-
merating the possibilities. In other cases we can employ continuous methods
and then round off to the nearest integer. Nonlinear programming problems
usually become much harder to solve when continuous decision variables are
replaced by discrete variables. The feasible region becomes more complex when
continuity is lost, and is often represented by a graph or tree structure. Effective
solution algorithms have been developed for some classes of problems, and the
improvement of these algorithms is a very active area of research. However, as
in the continuous case, there are still no universally effective methods for solving
discrete optimization problems.

In this section we will concentrate on one type of discrete optimization prob-
lem called integer programming. Integer programming is the discrete analog of
the linear programming model considered in the preceding section. Aside from
being the most commonly applied discrete optimization algorithm, the paral-
lel with linear programmming will facilitate comparison between discrete and
continuous models. An added bonus is that most linear programming imple-
mentations also solve integer programming problems, so that we can concentrate
our attention on the model rather than learning a new software package.

Example 3.6. Reconsider the family farm problem of Example 3.4. The family
has 625 acres available for planting. There are 5 plots of 120 acres each and
another plot of 25 acres. The family wants to plant each plot with only one
crop: corn, wheat, or oats. As before, 1,000 acre–ft of water will be available
for irrigation, and the farmers will be able to devote 300 hours of labor per
week. Additional data are presented in Table 3.2. Find the crop that should be
planted in each plot for maximum profit.

We will use the five-step method. The results of step 1 are shown in Figure
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3.28. Step 2 is to select the modeling approach. We will model this problem as
an integer programming problem.

Variables: x1 = number of 120 acre plots of corn planted
x2 = number of 120–acre plots of wheat planted
x3 = number of 120–acre plots of oats planted
x4 = number of 25–acre plots of corn planted
x5 = number of 25–acre plots of wheat planted
x6 = number of 25–acre plots of oats planted
w = irrigation required (acre–ft)
l = labor required (person–hrs/wk)
t = total acreage planted
y = total yield ($)

Assumptions: w = 120(3.0x1 + 1.0x2 + 1.5x3)
+ 25(3.0x4 + 1.0x5 + 1.5x6)

l = 120(0.8x1 + 0.2x2 + 0.3x3)
+ 25(0.8x4 + 0.2x5 + 0.3x6)

t = 120(x1 + x2 + x3) + 25(x4 + x5 + x6)
y = 120(400x1 + 200x2 + 250x3)

+ 25(400x4 + 200x5 + 250x6)
w ≤ 1, 000
l ≤ 300
t ≤ 625
x1 + x2 + x3 ≤ 5
x4 + x5 + x6 ≤ 1
x1, . . . , x6 are nonnegative integers

Objective: Maximize y

Figure 3.28: Results of step 1 of the modified farm problem.

An integer programming (IP) problem is a linear programming
(LP) problem in which the decision variables are further constrained
to take integer values. Both the objective function and the con-
straints must be linear. The most commonly used method for solving
an IP is the method of branch–and–bound. This method involves
branching through repeated solutions of LPs chosen to bound the
solution of the IP. If we remove the constraint that the decision
variables in a given IP take only integer values, we obtain what is
known as the LP relaxation. Since the feasible region of the LP
relaxation is larger than the feasible region of the corresponding IP,
any optimal solution of the LP relaxation for which all of the deci-
sion variables take integer values is also an optimal solution of the
IP. If some decision variable is not an integer, we branch to create
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two additional LP relaxations. For example, if the optimal solu-
tion to the LP relaxation yields x1 = 11/3, then we consider the
original problem together with the additional constraint x ≤ 3, and
we also consider the original problem together with the additional
constraint x ≥ 4. Any integer solution must satisfy one of these
additional constraints. By continuing to branch any time we find
an optimal solution with a fractional decision variable, we obtain a
binary tree of LP relaxations. If one of the new LPs has an optimal
solution with all integer decision variables, this becomes a candidate
for the solution to the original IP. Since the new LP has a smaller
feasible region than the original, this integer solution also gives a
useful lower bound on the optimal solution of the original IP. By
systematically branching through the tree, and using these solution
bounds, we will eventually solve the original IP. Because the branch–
and–bound method requires many iterations of the simplex method,
integer programming problems generally take much longer to solve
than linear programming problems of the same size.

Step 3 is to formulate the problem. In our problem the decision variables
are the number of 120–acre plots and the number of 25–acre plots to plant with
corn, wheat, or oats. Notice that the variables x4, x5, and x6 are binary decision
variables. They can only take the values 0 or 1. Our integer programming
problem in standard form is to maximize the total yield y = 48000x1+24000x2+
30000x3 + 10000x4 + 5000x5 + 6250x6 over the set

375x1 + 125x2 + 187.5x3 + 75x4 + 25x5 + 37.5x6 ≤ 1000

100x1 + 25x2 + 37.5x3 + 20x4 + 5x5 + 7.5x6 ≤ 300

x1 + x2 + x3 ≤ 5

x4 + x5 + x6 ≤ 1

(3.33)

where x1, . . . , x6 are nonnegative integers.
Step 4 is to solve the problem. Figure 3.29 shows the solution of our integer

programming problem using the popular linear programming package LINDO.
The GIN 6 command specifies that the first six decision variable are nonnegative
integers. Everything else in the problem specification is the same for the IP and
the LP. The optimal solution is y = 156, 250 which occurs when x3 = 5, x6 = 1,
and the other decision variables are all zero. At the optimal solution the first
two constraits are nonbinding, and the last two are binding.

Step 5 is to answer the question. If the family does not wish to split up
individual plots (plan B), then the best plan is to plant oats in every plot. This
results in an expected total yield of $156,250 for the season. This is about 4%
less than the projected total yield of $162,500 if we allow more than one crop
per plot (plan A, the optimal solution found in Example 3.4). Plan A uses all of
the acreage available, all of the irrigation water available, and all but 62.5 of the
300 person–hours of labor available each week. Plan B uses all of the acreage
available, but only 975 of the 1000 available acre–feet of irrigation water, and
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MAX 48000 X1 + 24000 X2 + 30000 X3 + 10000 X4 + 5000 X5 + 6250 X6

SUBJECT TO

2) 375 X1 + 125 X2 + 187.5 X3 + 75 X4 + 25 X5 + 37.5 X6 <= 1000

3) 100 X1 + 25 X2 + 37.5 X3 + 20 X4 + 5 X5 + 7.5 X6 <= 300

4) X1 + X2 + X3 <= 5

5) X4 + X5 + X6 <= 1

END

GIN 6

OBJECTIVE FUNCTION VALUE

1) 156250.0

VARIABLE VALUE REDUCED COST

X1 0.000000 -48000.000000

X2 0.000000 -24000.000000

X3 5.000000 -30000.000000

X4 0.000000 -10000.000000

X5 0.000000 -5000.000000

X6 1.000000 -6250.000000

ROW SLACK OR SURPLUS DUAL PRICES

2) 25.000000 0.000000

3) 105.000000 0.000000

4) 0.000000 0.000000

5) 0.000000 0.000000

NO. ITERATIONS= 101

Figure 3.29: Optimal solution to the modified farm problem using the linear
programming package LINDO.

only 195 of the available 300 person–hours of labor available each week. We
leave it to the family to decide which plan is best.

Sensitivity analysis can be very time–consuming for integer programming
problems, because IPs take so much longer to solve than LPs. There are no
shadow prices to guide us, because the value of the objective function at the
optimal solution does not change smoothly as the constraints vary. Integer solu-
tions will not usually lie exactly on the constraint boundaries, so the optimum
may also be sensitive to small changes in nonbinding constraints. We begin
by considering the amount of irrigation water available. Suppose that an addi-
tional 100 acre–feet of water is available. This changes our IP in Eq. (3.33) by
substituting 1100 for 1000 in the first constraint. Figure 3.30 shows the LINDO
solution to this IP. Now we plant one 120–acre plot of corn, one 120–acre plot
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of wheat, and we plant oats everywhere else. Our optimal solution is quite sen-
sitive to the amount of irrigation water available, even though this constraint
was not binding in our original IP solution. The new plan yields an additional
$12,000 in expected revenue.

MAX 48000 X1 + 24000 X2 + 30000 X3 + 10000 X4 + 5000 X5 + 6250 X6

SUBJECT TO

2) 375 X1 + 125 X2 + 187.5 X3 + 75 X4 + 25 X5 + 37.5 X6 <= 1100

3) 100 X1 + 25 X2 + 37.5 X3 + 20 X4 + 5 X5 + 7.5 X6 <= 300

4) X1 + X2 + X3 <= 5

5) X4 + X5 + X6 <= 1

END

GIN 6

OBJECTIVE FUNCTION VALUE

1) 168250.0

VARIABLE VALUE REDUCED COST

X1 1.000000 -48000.000000

X2 1.000000 -24000.000000

X3 3.000000 -30000.000000

X4 0.000000 -10000.000000

X5 0.000000 -5000.000000

X6 1.000000 -6250.000000

ROW SLACK OR SURPLUS DUAL PRICES

2) 0.000000 0.000000

3) 55.000000 0.000000

4) 0.000000 0.000000

5) 0.000000 0.000000

NO. ITERATIONS= 62

Figure 3.30: Optimal solution to the modified farm problem with an additional
100 acre–feet of water available.

The optimal solution in Figure 3.29 shows that there are 25 acre–feet of
unused irrigation water. If we lower the amount of water available, we will not
change the optimal solution unless we go below 975 acre–feet. This is because
the optimal solution will remain feasible, and since we are shrinking the feasible
region, it must remain optimal as well. Figure 3.31 shows what happens if
we have only 950 acre–feet of water available. The optimal IP solution is to
plant one 120–acre plot of corn, four 120–acre plots of wheat, and to plant corn
instead of oats in the smaller 25 acre plot. We use all the water and all the
land, but we have 80 person–hours of labor per week to spare. The expected
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MAX 48000 X1 + 24000 X2 + 30000 X3 + 10000 X4 + 5000 X5 + 6250 X6

SUBJECT TO

2) 375 X1 + 125 X2 + 187.5 X3 + 75 X4 + 25 X5 + 37.5 X6 <= 950

3) 100 X1 + 25 X2 + 37.5 X3 + 20 X4 + 5 X5 + 7.5 X6 <= 300

4) X1 + X2 + X3 <= 5

5) X4 + X5 + X6 <= 1

END GIN 6

OBJECTIVE FUNCTION VALUE

1) 154000.0

VARIABLE VALUE REDUCED COST

X1 1.000000 -48000.000000

X2 4.000000 -24000.000000

X3 0.000000 -30000.000000

X4 1.000000 -10000.000000

X5 0.000000 -5000.000000

X6 0.000000 -6250.000000

ROW SLACK OR SURPLUS DUAL PRICES

2) 0.000000 0.000000

3) 80.000000 0.000000

4) 0.000000 0.000000

5) 0.000000 0.000000

NO. ITERATIONS= 4

Figure 3.31: Optimal solution to the modified farm problem with 50 acre–feet
less water available.

total yield is $154,000, which is only $2,250 less than before. This illustrates
the unpredictable nature of IP solutions. For a 5% decrease in the amount of
available irrigation water, instead of planting oats everywhere, we should not
plant oats anywhere.

The main robustness issue is the relation between discrete and continuous
optimization. We have already seen that devoting large plots to a single crop
dramatically changes the optimal planting scheme. Now we will return to the
original farm problem and examine the effect of changing the minimum plot
size. Table 3.4 shows the results of several LINDO runs with different minimum
plot sizes. For example, when the minimum plot size is 2 acres, we maximize



3.4. DISCRETE OPTIMIZATION 97

Minimum Plot Size Corn Wheat Oats Yield
(acres) (acres) (acres) (acres) (dollars)

0 187.5 437.5 0 162,500
1 42 1 582 162,500
2 188 436 0 162,400
5 45 10 570 162,500
10 190 430 0 162,000
20 60 40 520 162,000
50 200 400 0 160,000
100 200 400 0 160,000
125 125 250 250 162,500
150 150 300 150 157,000
200 200 400 0 160,000
250 250 250 0 150,000
300 0 0 600 150,000
500 0 0 500 125,000

Table 3.4: Comparison of optimal planting schemes for the farm problem for
different minimum plot sizes.

total yield y = 800x1 + 400x2 + 500x3 over the set

6.0x1 + 2.0x2 + 3.0x3 ≤ 1000

1.6x1 + 0.4x2 + 0.6x3 ≤ 300

x1 + x2 + x3 ≤ 312

(3.34)

and x1, x2, x3 are nonnnegative integers representing the number of 2–acre plots
of corn, wheat, and oats to plant. Figure 3.32 shows the optimal solution for
a minimum plot size of 2 acres using LINDO. The optimal solution is to plant
94 plots of corn (for a total of 2 × 94 = 188 acres), 218 plots of wheat (436
acres), and no oats. For this model excursion we do not plant in any leftover
acreage, so that when the minimum plot size is 2 acres, we will leave 1 acre
unplanted. The optimal solution in Table 3.4 changes significantly as the min-
imum plot size increases. Recall that, in the continuous optimization problem
(LP), there are two optimal corner point solutions (x1, x2, x3) = (187.5, 437.5, 0)
and (x1, x2, x3) = (41.66̄, 0, 583.33̄) at which we achieve the optimal yield of
y = 162, 500. For small minimum plot sizes, the best planting scheme jumps
between discrete approximations to these two solutions. For minimum plot sizes
of 2, 10, and 50 acres, the solution is similar to the original corn–and–wheat
planting scheme. For minimum plot sizes of 1, 5, and 20 acres, the solution is
similar to the alternate corn–and–oats planting scheme. When the minimum
plot size gets larger, both the optimal planting scheme and the expected total
yield vary considerably. A larger minimum plot size may result in either a larger
or smaller yield. For example, when we use a plot size of 125 acres, we obtain
a scheme which matches the original $162,500 expected total yield. Note that
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MAX 800 X1 + 400 X2 + 500 X3

SUBJECT TO

2) 6 X1 + 2 X2 + 3 X3 <= 1000

3) 1.6 X1 + 0.4 X2 + 0.6 X3 <= 300

4) X1 + X2 + X3 <= 312

END

GIN 3

OBJECTIVE FUNCTION VALUE

1) 162400.0

VARIABLE VALUE REDUCED COST

X1 94.000000 -800.000000

X2 218.000000 -400.000000

X3 0.000000 -500.000000

ROW SLACK OR SURPLUS DUAL PRICES

2) 0.000000 0.000000

3) 62.399998 0.000000

4) 0.000000 0.000000

NO. ITERATIONS= 2

Figure 3.32: Optimal solution to the farm problem with a minimum plot size of
2 acres.

the 625 acres divide evenly into 125–acre plots, and that the optimal solution
(x1, x2, x3) = (125, 250, 250) lies on the line segment of Eq. (3.29) giving the
optimal solutions for the original LP. Most larger plot sizes give a considerably
smaller expected yield, however, and the planting schemes vary widely.

Consider the geometry of the LP and its various IP approximations. When
we choose a minimum plot size, we are restricting the feasible region to a lattice
of integer points. If the plot size is small, then there are many such points,
and they cover most of the feasible region, in the sense that there is a lattice
point near every feasible point. Since the objective function is continuous, we
can find a lattice point solution for the IP that is nearly optimal for the original
LP. But when the lattice points are widely spaced, discretization will often
change the optimal solution significantly, since there may be no lattice point
near the LP optimum. Generally speaking, discretization makes little difference
as long as the jumps between lattice points (in our example, the minimum plot
size) represent a small percent change in the decision variables. Otherwise the
IP solution may be very different than the solution to the corresponding LP
relaxation.
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Route From To Miles Cubic Yards
1 1 B 2 125
2 2 A 4 175
3 3 C 4 225
4 3 D 4 100
5 4 D 4 350

Table 3.5: Route data for the truck problem of Example 3.7.

Example 3.7. Reconsider the dirt problem of Example 3.5. The company
has already determined the optimal shipping plan, assuming that dump trucks
with a 10 cubic yard capacity are being used. The company also has 3 larger
trucks available that can carry 20–cubic–yard loads. It may be possible to use
these trucks to save some money on shipping. The 10–cubic–yard trucks take
an average of 25 minutes to load, 5 minutes to unload, and travel at an average
of 20 miles per hour. The cost of operating these trucks is $20 per mile per
load. The larger 20–cubic–yard trucks take 35 minutes to load, 5 minutes to
unload, and travel at an average of 20 miles per hour. The cost of operating
these trucks is $30 per mile per load. How should these trucks be assigned in
order to maximize our savings on shipping costs?

We will use the five-step method. Step 1 is to ask a question. The question
is which trucks to assign to which routes. The optimal shipping routes found in
Example 3.5 are shown in Table 3.5. There are 5 routes of varying length, and
the amount of dirt shipped also varies. We will assume that either 10–cubic–
yard trucks or 20–cubic–yard trucks, but not both, are used on each route. Since
the larger trucks carry twice as much dirt at less than twice the cost, we want
to assign these trucks to the routes where they will save us the most money.
We need to compute the number of trucks needed and the total cost of shipping
for each route and each type of truck, and then compute the potential savings
for using larger trucks on each route. The optimal shipping plan calls for 125
cubic yards of dirt to be shipped from site 1 to site B, a distance of 2 miles. It
takes the smaller trucks 20 minutes to load, 5 minutes to unload, and 6 minutes
of travel time at 20 miles per hour, for a total of 31 minutes per load. We
assume an 8–hour workday, so that each truck can be assigned no more than
480 minutes of work per day. It will take 13 loads to move the 125 cubic yards of
dirt, for a total of 13×31 = 403 minutes of work, so one small truck is sufficient
to service route 1. The cost of servicing route 1 with one small truck is

13 loads× 2 miles

load
× 20 dollars

mile
= 520 dollars.

It takes the larger trucks 30 minutes to load, 5 minutes to unload, and 6 minutes
of travel time on route 1, for a total of 41 minutes per load. It will take 7 loads
to move the 125 cubic yards of dirt, for a total of 7× 41 = 287 minutes of work,
so one large truck is enough to service route 1. The cost of servicing route 1
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Variables: xi = 1 if we use large trucks on route i
xi = 0 if we use small trucks on route i
T = total number of large trucks used
y = total cost savings ($)

Assumptions: T = 1x1 + 1x2 + 2x3 + 1x4 + 2x5

y = 100x1 + 360x2 + 400x3 + 200x4 + 640x5

T ≤ 3

Objective: Maximize y

Figure 3.33: Results of step 1 of the truck problem.
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Figure 3.34: Spreadsheet formulation for the truck problem.

with one large truck is

7 loads× 2 miles

load
× 30 dollars

mile
= 420 dollars.

The potential savings on route 1 is $100. The savings and number of trucks
required on the remaining routes is calculated similarly. The results of step 1
are summarized in Figure 3.33.

Step 2 is to select a modeling approach. We will model this problem as a
binary integer programming (BIP) problem. A BIP is an IP with binary deci-
sion variables that can only take the integer values 0 or 1. It is common to use
BIP to represent YES/NO decisions. Typical applications include assignment
problems, scheduling, facility location, and investment portfolios. Specialized
algorithms are available for BIPs that are much faster than the usual IP algo-
rithms. For the small BIP problems in this book, any IP or BIP solver will
suffice.

Step 3 is to formulate the problem. Figure 3.34 shows a spreadsheet formu-
lation for this problem. Column D contains the binary decision variables xi, 0
if small trucks are used and 1 if large trucks are used. Column E counts the
number of large trucks used, and column F tallies our cost savings. For example,
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A A B C D E F
1
2
3
4
5
6
7
8

actualpossible
savingstrucksdecisionsavingstrucksroute

00010011
3601136012

00040023
00020014

6402164025
10003totals3available

Figure 3.35: Spreadsheet solution for the truck problem.

Trucks Routes Savings ($) Marginal Savings ($)
1 2 360 360
2 5 640 280
3 2,5 1000 360
4 2,4,5 1200 200
5 2,3,5 1400 200
6 2,3,4,5 1600 200
7 all 1700 100

Table 3.6: Sensitivity to number of large trucks available for the truck problem.

E3=B3*D3 and F3=C3*D3, while E8=E3+ · · ·+E7. We use the spreadsheet
solver to maximize the total F8=F3+ · · ·+F7 with constraints E8≤B8, and D3
through D7 binary integers.

Step 4 is to solve the problem. Figure 3.35 shows the optimal assignment
of trucks to routes, obtained from the spreadsheet optimization utility. The
optimum value of y = 1000 is obtained at x2 = 1, x5 = 1, and xi = 0 for
i = 1, 3, 4. Step 5 is to answer the question. We wanted to know how to use the
larger 20–cubic–yard trucks to save some money on our transportation costs.
By using one of the large trucks on route 2 and the other two large trucks on
route 5, we can save around $1,000 per day.

The first question for sensitivity analysis is how the potential cost savings
depends on the number of large trucks available. The company may have other
large trucks that can be reassigned, or they may be able to lease additional
trucks. They may also have other projects in mind for their own trucks, so we
will consider the effect of increasing or decreasing the number of large trucks
available. Table 3.6 shows the results of our sensitivity runs. In each case we
alter the constraint cell B8 and reoptimize.

We record the optimal decision (which routes to service with large trucks)
as well as the expected cost savings. We also tabulate the marginal savings.
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For example, the company can save $1,200 by using 3 large trucks, or $1,400 by
using 4 large trucks, so the 4th truck saves the company $200 per day. If the
company can obtain the use of 1, 2, or 3 additional trucks for less than $200
per day, it will save money. On the other hand, if the company has another
activity where a large truck would save more than $360 per day, then they
would be better off using one less large truck for the transportation plan under
consideration. The marginal savings are like shadow prices, since they tell us
the potential impact of altering the constraint by one unit.

Next, we consider the impact of changes in the potential cost savings per
route. Currently, we estimate that assigning 2 large trucks to route 5 will save
the company $640 per day. Another way to view this is that each truck on route
5 saves the company $320 per day. Large trucks on routes 3 and 4 save $200
per day, and a large truck on route 1 saves $100 per day. It seems reasonable
that small changes in the cost savings on route 5 will not alter our conclusion
that assigning large trucks to routes 2 and 5 is the best plan. To verify this, we
alter the value in cell C7 and reoptimize. Any value greater than 400 yields the
same optimal decision. A value less than 400 leads us to assign large trucks to
routes 2 and 3.

In the course of our robustness analysis, we will illustrate the way in which
binary constraints can be used to restrict the possible decisions. Suppose man-
agement decides that large trucks should not be used on route 2, because the
larger trucks will cause a public relations problem in that neighborhood. We
could reformulate the problem to exclude this decision, but it is far easier to
add the constraint x2 = 0 to our current formulation. Now the optimal solution
is to use large trucks on routes 4 and 5, with a total projected savings of $840.
This political concession costs the company $160 per day. Now suppose that,
for similar political reasons, management decides that if large trucks are used
on route 4, then large trucks must be used on route 3 as well. This policy can
be incorporated into our formulation by adding the linear constraint x3 ≥ x4, or
x3−x4 ≥ 0. If we add only this constraint, the optimal solution does not change,
since the original optimal decision already satisfies this additional constraint (we
don’t use large trucks on either route). If we impose both constraints, then the
optimal policy is to use large trucks on routes 3 and 4, with a total projected
savings of $600 per day.

3.5 Exercises

1. Reconsider the pig problem of Example 1.1, but now suppose that the
price for pigs after t days is p = 0.65e−(.01/.65)t dollars/pound.

(a) Show that the price for pigs is falling by one cent/day at time t = 0.
What happens as t increases?

(b) Find the optimal time to sell the pig. Use the five-step method, and
model as a one–variable optimization problem.
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(c) The parameter 0.01 represents the rate at which price is falling at
time t = 0. Perform a sensitivity analysis on this parameter. Con-
sider both the best time to sell and the resulting net profit.

(d) Compare the results of (b) to what was done in Section 1.1, and
comment on the robustness of our model.

2. Reconsider the pig problem of Example 1.1, but now suppose that the
weight of the pig after t days is w = 800/(1 + 3e−t/30) lbs.

(a) Show that the pig is gaining about 5 lbs/day at t = 0. What happens
as t increases?

(b) Find the optimal time to sell the pig. Use the five-step approach,
and model as a one–variable optimization problem.

(c) The parameter 800 represents the eventual mature weight of the pig.
Perform a sensitivity analysis for this parameter. Consider both the
best time to sell and the profit obtained.

(d) Compare the results obtained in (b) to what was done in Sections 1.1
and 3.1. Comment on the robustness of our model. What general
conclusions can we draw?

3. A statistical algorithm to determine the difference in effectiveness between
two alternative treatments requires maximizing the quantity∑

(k1,k2)∈E

(
n1

k1

)
pk1
1 (1− p1)

n1−k1

(
n2

k2

)
pk2
2 (1− p2)

n2−k2

over the set

S = {(p1, p2) : p1 − p2 = ∆; p1, p2 ∈ [0, 1]}.

Here E is a subset of the set

E0 = {(k1, k2) : k1 = 0, 1, 2, . . . , n1; k2 = 0, 1, 2, . . . , n2}

and ∆ ∈ [−1, 1]. Find the maximum in the case n1 = n2 = 4, ∆ = −0.1,

E = {(0, 4), (0, 3), (0, 2), (0, 1), (1, 4), (1, 3), (2, 4)}

(Santner and Snell (1980)).

4. One method of evaluating the effectiveness of institutional trauma and
burn medicine involves maximizing the function

f(p1, . . . , pn) =

(
A−

n∑
i=1

pi

)
√√√√B +

n∑
i=1

pi(1− pi)



104 CHAPTER 3. COMPUTATIONAL METHODS FOR OPTIMIZATION

over the set

{(pi, . . . , pn) : ai ≤ pi ≤ bi for all i = 1, . . . , n}.

Maximize f in the case n = 2, A = −5.92, B = 1.58, a1 = 0.01, b1 = 0.33,
a2 = 0.75, and b2 = 0.85 (Falk, J. et al., (1992)).

5. Reconsider the competing species model of Exercise 3 in Chapter 2. As-
sume that a level of effort E boat–days will result in the annual harvest of
qEx blue whales and qEy fin whales, where the parameter q (catchability)
is assumed to equal approximately 10−5. Given a constant level of effort,
assume that population levels will stabilize at the point where growth rate
equals harvest rate.

(a) Assuming that the cost of a whaling expedition is $250 per boat–day,
find the level of effort that will maximize profit for the industry in
the long run. Use the five-step method, and model as a one–variable
optimization problem.

(b) Examine the sensitivity to catchability q. Consider profit, level of
effort, and the eventual stable population levels of the whales.

(c) Increasing technology will certainly raise whale catchability. What
will be the long–term effects on the whale populations and on the
whaling industry?

6. Reconsider the facility location problem of Example 3.2, but now assume
that the response time from point (x0, y0) to point (x1, y1) is proportional
to the road travel distance |x1 − x0|+ |y1 − y0|.

(a) Find the location that minimizes average response time. Use the
five-step method, and model as a multivariable unconstrained opti-
mization problem.

(b) Examine the sensitivity of the optimal location to the estimated num-
ber of emergencies in each 2 × 2–mile sector. Can you draw any
general conclusions?

(c) Comment on the robustness of this model. Compare the optimal lo-
cation to that obtained in the analysis of Section 3.2. What do you
think would happen if we assumed that response time was propor-
tional to the straight–line distance r =

√
(x1 − x0)2 + (y1 − y0)2?

7. Reconsider the color TV problem of Example 2.1, but now use numerical
methods instead of the analytic methods we employed in Chapter 2.

(a) Determine the production levels x1 and x2 that maximize the ob-
jective function y = f(x1, x2) in Eq. (2.2) of Chapter 2. Use the
two–variable version of Newton’s method.
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(b) As in Section 2.1, let a denote the price elasticity for 19–inch sets.
In part (a) we assumed a = 0.01. Now assume that a increases by
10% to a = 0.011 and repeat the optimization problem in part (a).
Use your results to obtain a numerical estimate of the sensitivities
S(x1, a), S(x2, a), and S(y, a). Compare to the results obtained
analytically in Section 2.1.

(c) Let b denote the price elasticity for 21–inch sets. Currently, b = 0.01.
As in part (b), use numerical methods to estimate the sensitivities of
x1, x2, and y to the parameter b.

(d) Compare the analytic methods of Section 2.1 to the numerical meth-
ods employed in this problem. Which do you prefer? Explain.

8. Reconsider Exercise 6 in Chapter 2, but now suppose that management
has been persuaded to lift the ceiling on advertising expenditures. The
assumption that sales vary as a linear function of the advertising budget is
probably not reasonable over the wider range of advertising budget figures
we now wish to consider. Suppose instead that sales are increased by 1,000
units each time the advertising budget is doubled.

(a) Find the price and the advertising budget that will maximize profit.
Use the five-step method, and model as an unconstrained optimiza-
tion problem.

(b) Determine the sensitivity of the decision variables (price and adver-
tising budget) to price elasticity (the 50% number).

(c) Determine the sensitivity of the decision variables to the advertising
agency’s estimate of 1,000 new sales each time the advertising budget
is doubled.

(d) What goes wrong in part (a) if we assume a linear relationship be-
tween advertising budget and sales? Why wasn’t this an issue in
Exercise 6 of Chapter 2?

9. (Continuation of Exercise 8) Repeat Exercise 8, but now assume an al-
ternative model of the relationship between advertising expenditures and
sales. Suppose that doubling the advertising budget results in 1,000 addi-
tional sales, but doubling it again results in only 500 additional sales, and
so forth. Repeat parts (a) through (c) of Exercise 8. In part (c), deter-
mine the sensitivity to the assumption of 1,000 additional sales the first
time the advertising budget is doubled. Compare your results to those
obtained in Exercise 8, and comment on the robustness of the model.

10. Reconsider the newspaper problem of Exercise 7 in Chapter 2, but now
suppose that we choose to maximize our profit margin (profit as a per-
centage of revenue). Assume that our business expenses remain fixed at
$200,000 per week.
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(a) Find the subscription price and the advertising price that maximize
profit margin. Use the five-step method, and model as an uncon-
strained optimization problem. Find an approximate solution by the
method of random search.

(b) Let z = f(x, y) denote the objective function you obtained in part
(a). Use a computer algebra system to determine F = ∂f/∂x and
G = ∂f/∂y. Then determine ∂F/∂x, ∂F/∂y, ∂G/∂x, and ∂G/∂y.

(c) Use Newton’s method in two variables to obtain a precise answer to
the question in part (a). Use the approximate solution from part (a)
as your initial estimate. The required derivatives were calculated in
part (b).

(d) If you have not previously solved part (a) of Exercise 7 in Chapter
2, then do so now. Use any method. Compare to the results of part
(c). Does it matter whether we choose to maximize profit or profit
margin? Explain.

11. Reconsider the lawn chair problem of Example 3.3. Notice that the objec-
tive function f(x, y) tends to infinity as x or y approaches zero, and that
f(x, y) is undefined on the lines x = 0 and y = 0 that form the boundary
of the feasible region. Presumably, the estimates of price elasticity are not
accurate when extrapolated all the way to x = 0 or y = 0.

(a) Correct this model deficiency by altering the feasible region.

(b) Comment on the robustness of the decisions you made in part (a).

(c) Show that, for your corrected model, the optimal solution lies in the
interior of the feasible region. Locate any local maximum of f(x, y)
on the boundary, and show that at every such point ∇f points into
the interior.

12. Reconsider the newspaper problem of Exercise 9 in Chapter 2. Solve as
a linear programming problem using a computer. Answer questions (a),
(b), and (c) from the original problem.

13. Reconsider the cargo problem (Exercise 10 of Chapter 2). Solve as a linear
programming problem using a computer. Answer questions (a), (b), and
(c) from the original problem.

14. Reconsider the color TV problem of Example 2.2, but make the simplifying
assumption that the company makes a profit of $80 per 19–inch set and
$100 per 21–inch set.

(a) Find the optimal production levels. Use the five-step method, and
solve as a linear programming problem using a computer.

(b) Determine the shadow prices for each constraint and explain what
they mean. Which constraints are binding on the optimal solution?
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MI NY CA GA Output
1 430 550 680 700 105

Textile Mill 2 510 590 890 685 160
3 395 425 910 450 85

Allocation 70 100 105 75

Table 3.7: Data for the transportation problem of Exercise 15. Shipping cost
per truckload in dollars.

(c) Determine the sensitivity to the objective function coefficients (profit
per set). Consider both profit and optimal production levels.

(d) Draw a graph of the feasible region (see Fig. 2.10) and include a pic-
ture of ∇f at the optimum. Describe geometrically what happens to
the vector ∇f as we change one of the objective function coefficients.
Use this geometric idea to determine how much each objective func-
tion coefficient can change before the current optimal solution is no
longer optimal.

15. The Burningham textiles company has three textile mills located in the
southern U.S. and four distribution centers located in Michigan, New York,
California, and Georgia. The estimated yearly output from each mill, the
allocation to each warehouse, and the shipping costs are tabulated in Table
3.7.

(a) Find the transportation plan that minimizes shipping costs. Use the
five-step method, and solve as a linear programming problem using
a computer.

(b) Determine the shadow prices for each of the output constraints.
Would it be beneficial to shift production capacity from one mill
to another? How much should the company be willing to spend to
facilitate the shift?

16. A manufacturer of personal computers sells three desktop models. Model
A costs $850 to manufacture and sells for $1,250; model B costs $950 to
manufacture and sells for $1,400; and model C costs $1,500 to manufacture
and sells for $2,500. The company purchases 10,000 desktop cases each
month, and each computer requires one case. Models A and B use a 15–
inch monitor, and the company can obtain 5,000 of these monitors per
month. Model C uses a 17–inch monitor, and 7,500 of these are available
per month. The remaining components are freely available. The company
has 20,000 hours of production capacity available per month, and the
production of each unit of model A, B, and C requires 1, 1.25, and 1.75
hours respectively.

(a) How many of each type of computer should the company produce?
Use the five-step method and solve as a linear programming problem.
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(b) Determine the shadow prices for each constraint. Explain what each
shadow price means in the context of this problem.

(c) Next month, the company plans to put model C computers on sale
for $2,199. How does this change the results of parts (a) and (b)?

(d) The company is considering a new desktop model D. This model will
cost $1,250 to manufacture and will sell for $1,895. It requires a
desktop case, a 17–inch monitor, and 1.5 hours of production. How
will this change the results of parts (a) and (b)? Would you advise the
company to go ahead with their plans to introduce this new model?

17. A retired engineer has $250,000 to invest and is willing to spend five
hours per week managing her investments. Municipal bonds earn 6% per
year and require no management. Real estate investments are expected
to appreciate at 8% per year and require one hour of management per
$100,000 invested. Blue chip stocks earn 10% per year and require 1.5
hours of management. Junk bonds earn 12% and require 2.5 hours, while
grain futures earn 15% and require five hours per $100,000 invested.

(a) How should the retiree invest her money in order to maximize her
expected earnings? Use the five-step method and solve as a linear
programming problem.

(b) Determine the shadow prices for each constraint. Interpret each
shadow price in the context of this problem.

(c) The retiree downloads software from the internet that allows her
to effectively manage her grain futures in three hours per week per
$100,000. How does this change the results in parts (a) and (b)?

(d) After a few disasters in the futures market, the engineer decides that
risk is a significant factor in her investment strategy. An investment
self–help book ranks municipal bonds, real estate, blue chip stocks,
junk bonds, and grain futures as risk level 1, 4, 3, 6, and 10 respec-
tively. The engineer decides that her investment portfolio should
have an average risk level of no more than 4. How does this change
the results in parts (a) and (b)?

18. The Green Supply Company manufactures plastic grocery bags and milk
jugs. The company can obtain 5,000 lbs of used plastic bags, 18,000 lbs of
used plastic milk jugs, and 40,000 of industrial plastic scraps per week at a
cost of $18, $12, and $10 per 100 lbs respectively. The company has orders
for 4,000 boxes of plastic bags and 80,000 milk jugs per week. One box
of plastic bags requires 6 lbs of plastic, costs $5 to manufacture, and sells
for $14. It costs $9 and requires 14 lbs of plastic to make 100 milk jugs,
and the jugs retail for $20. The plastic bags must be at least 25% post–
consumer recycled plastic (used milk jugs or bags) because of consumer
preference, and the milk jugs must be at most 50% post–consumer recycled
plastic for strength.
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(a) Determine the optimal mix of plastics for each product. Use the
five-step method and model as a linear programming problem.

(b) Determine the shadow prices for the each constraint, and interpret
each shadow price in the context of this problem.

(c) A new supplier can provide industrial plastic scraps at $8 per 100
lbs. How does this change the results in parts (a) and (b)?

(d) A new customer has offered to buy 40,000 environmentally friendly
milk jugs per week for $30 per 100 jugs. The jugs must contain at
least 35% post–consumer recycled plastic. How does this change the
results in parts (a) and (b)? Should the company accept this new
customer?

19. Reconsider the dirt problem of Example 3.5, and assume that the company
will only ship full truckloads of dirt.

(a) Suppose that the company uses dump trucks with a capacity of ten
cubic yards of dirt, and find the optimal shipping plan. Use the
five-step method and solve as an integer programming problem.

(b) Repeat part (a) assuming that the trucks have a capacity of five cubic
yards.

(c) Repeat part (a) assuming that the trucks have a capacity of 20 cubic
yards.

(d) Compare the results of parts (a), (b), and (c) to determine the ro-
bustness of the original linear programming model. Is the original
shipping plan in Example 3.5 nearly optimal for any size truck?

20. (Variation of Exercise 14) Reconsider the color TV problem of Example
2.2, but make the simplifying assumption that the company makes a profit
of $80 per 19–inch set and $100 per 21–inch set. In this problem we will
explore the effect of discretization on the optimal solution.

(a) Find the optimal production levels. Use the five-step method, and
solve as a linear programming problem using a computer.

(b) Because of mass production, the TV sets are actually made in batches
of 30. Find the optimal number of batches to maximize profit. Solve
as an integer programming problem using a computer.

(c) Repeat part (b) assuming batch sizes of 10, 20, 50, 100, 200, and
300. For each case, use integer programming to compute the optimal
number of batches for each type of TV set.

(d) Compare the results in parts (a), (b), and (c) and comment on the
robustness of the original linear programming solution found in part
(a). How does the discretization of the feasible region affect the
optimal solution? Consider both the optimal levels of production
and the optimal profit.
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21. (Variation of Exercise 15) The Burningham textiles company has three
textile mills located in the southern U.S. and four distribution centers
located in Michigan, New York, California, and Georgia. The estimated
yearly output from each mill, the allocation to each warehouse, and the
shipping costs are tabulated in Table 3.7.

(a) Find the transportation plan that minimizes shipping costs. Use the
five-step method, and solve as a linear programming problem using
a computer.

(b) The company has purchased three new trucks for shipping. The new
trucks are more fuel–efficient, and are expected to reduce shipping
costs by 50%. Assume that one truck can make one trip per week (52
per year), and that each route will use either all old or all new trucks.
How should the company use the new trucks in order to maximize
their cost savings? Use the five-step method, and solve as an integer
programming problem using a computer.

(c) Perform a sensitivity analysis on the number of new trucks. Deter-
mine the optimal shipping plan and the expected cost savings for
n = 4, 5, 6, and 7 new trucks. If the cost of a new truck is $12,000
per year amortized over the expected life of the vehicle, how many
additional trucks should the company purchase?

(d) Because the State of California has instituted new pollution laws for
trucks, the company must use the new trucks to ship to CA. How
does this change the results of parts (b) and (c)? What do the new
CA pollution laws cost the company?

22. Reconsider the textile shipping problem of Exercise 21, but now assume
that both old and new trucks can be used on the same route. Answer
the same questions as before. [Hint: Use one decision variable to indicate
whether or not one new truck is used on route i, another decision variable
to indicate whether a second truck is used, and so forth.]

23. A computer operating system stores files on a hard disk. Five large files
of sizes 18, 23, 12, 125, and 45 MB are to be stored. Contiguous blocks
of storage are available with size 25, 73, 38, and 156 MB, and each file
must be stored in one contiguous block. In this problem we will explore
an integer programming algorithm to assign files to storage blocks.

(a) In order to reserve large contiguous blocks of storage for future use,
we want to store each file in the smallest available block large enough
to hold the file. Define the cost of storing file i in block j to be the
size of block j, and determine the assignment of files to blocks that
minimizes the total cost. Use the five-step method, and model as an
integer programming problem.

(b) Suppose that the 12 MB file expands to 19 MB. How does this effect
the optimal solution found in part (a)? How much can this 12 MB
file expand before the optimal solution changes?
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(c) Suppose that the 18 MB file and the 23 MB file are to be stored in
the same block, since they are used by the same program. How does
this affect the optimal solution found in part (a)?

(d) One “greedy” algorithm for allocating blocks to files is to place each
file in the first available block that is large enough to hold it. Apply
this algorithm (by hand) and compare to the results of part (a). Is
the IP solution found in part (a) significantly better than the results
of the greedy algorithm?

(e) Why not just maximize the size of the largest remaining contiguous
block of storage? Can this optimization problem be solved as an IP?

24. A technical manager is scheduling engineers to work on several upcoming
projects. Projects A, B, and C will require 18, 12, and 30 person–months
to complete. Engineers 1, 2, 3, and 4 are available to work on these
projects. Their monthly salaries are $3000, $3500, $3200, and $3900 re-
spectively.

(a) Determine the schedule (allocation of engineers to projects) that min-
imizes the total cost of finishing all the projects. Assume that en-
gineers are assigned to only one project every six months, and that
all projects are to be completed within 18 months. [Hint: Let the
decision variable xijk indicate whether engineer i works on project j
during period k.]

(b) Repeat part (a) assuming that engineer 1 is unavailable during period
2 because of a prior assignment. How does this affect the optimal
solution? How much would it be worth to the technical manager to
have engineer 1 reassigned to his team during period 2?

(c) Repeat part (a) assuming that engineers 2 and 3 cannot work together
because of a personality conflict. How much does their personal ani-
mosity cost the company?

(d) The company is offered a $10,000 performance bonus if they can com-
plete project A within 6 months. How does this change the optimal
schedule?

Further Reading

1. Beltrami, E. (1977) Models for Public Systems Analysis. Academic Press,
New York.

2. Dantzig, G. (1963) Linear Programming and Extensions. Princeton Uni-
versity Press, Princeton, New Jersey.

3. Falk, J., Palocsay, S., Sacco, W., Copes, W. and Champion, H. (1992)
Bounds on the Trauma Outcome Function via Optimization. Operations
Research 40, Supp. No. 1, S86–S95.



112 CHAPTER 3. COMPUTATIONAL METHODS FOR OPTIMIZATION

4. Gearhart, W. and Pierce, J. Fire Control and Land Management in the
Chaparral. UMAP module 687.

5. Hillier, F. and Lieberman, J. (1990) Introduction to Operations Research.
McGraw–Hill, New York.

6. Maynard, J. A Linear Programming Model for Scheduling Prison Guards.
UMAP module 272.

7. Press, W., Flannery, B., Teukolsky, S. and Vetterling, W. (2002) Numer-
ical Recipes in C++: The Art of Scientific Computing. 2nd Ed., Cam-
bridge University Press, New York. See also www.numerical-recipes.com

8. Polack, E. (1971) Computational Methods in Optimization. Academic
Press, New York.

9. Santner, T. and Snell, M. (1980) Small–sample confidence intervals for
ρ1 − ρ2 and ρ1/ρ2 in 2 × 2 contingency tables. Journal of the American
Statistical Association 75, 386–394.

10. Straffin, P. Newton’s Method and Fractal Patterns. UMAP module 716.



Chapter 4

INTRODUCTION TO
DYNAMIC MODELS

Many problems of practical interest involve processes that evolve over time.
Dynamic models are used to represent the changing behavior of these systems.
Space flight, electrical circuits, chemical reactions, population growth, invest-
ments and annuities, military battles, the spread of disease, and pollution con-
trol are just a few of the many areas in which extensive use is made of dynamic
models.

The five-step method and the fundamental principles of sensitivity analysis
and robustness are as relevant and useful for dynamic models as they are for
optimization models. We will continue to rely on them as we explore some of
the most popular and generally applicable dynamic modeling techniques. In the
course of this study, we will also introduce the important modeling concepts of
state space, equilibrium, and stability. All of this will also be very useful in the
last part of this book, where we explore stochastic models.

As a general rule, dynamic models are easy to formulate and hard to solve.
Exact analytic solutions are available only for a few special cases, such as linear
systems. Numerical methods usually do not provide a good qualitative under-
standing of system behavior. Therefore, the application of graphical techniques
is usually employed as at least one part of the analysis of dynamic models.
Because of the inherent simplicity of graphical techniques, along with their ge-
ometrical nature, this chapter also provides us with an ideal opportunity to
introduce some of the deepest and most fundamental modeling concepts used
for dynamic systems.

4.1 Steady State Analysis

In this section we will consider the simplest type of dynamic model. The math-
ematics required are elementary indeed. Even so, the practical applications for
this model are numerous, and the absence of too much sophisticated technique
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leaves us free to concentrate on some of the most fundamental ideas of dynamic
modeling.

Example 4.1. In an unmanaged tract of forest area, hardwood and softwood
trees compete for the available land and water. The more desirable hardwood
trees grow more slowly, but are more durable and produce more valuable timber.
Softwood trees compete with the hardwoods by growing rapidly and consuming
the available water and soil nutrients. Hardwoods compete by growing taller
than the softwoods can and shading new seedlings. They are also more resistant
to disease. Can these two types of trees coexist on one tract of forest land
indefinitely, or will one type of tree drive the other to extinction?

We will use the five-step method. Let H and S denote the populations of
hardwood and softwood trees, respectively. A convenient unit often used by
biologists is the biomass (tons per acre of living tree). We need to make some
assumptions about the dynamics of these two populations. To begin with, we
want to make assumptions that are as simple as possible without neglecting
the most fundamental aspects of the problem. Later on, we can improve or
enrich our model if necessary. It is reasonable to assume that in conditions
of unrestricted growth (plenty of room, sunshine, water, and soil nutrients),
the growth rate of a species is roughly proportional to the size of the species.
Twice as many trees give rise to twice as many little trees. As population
increases, members of the same species must compete for resources, and this
inhibits growth. Thus, it is reasonable to assume that growth rate is roughly
linear in population size for small populations and then falls off as population
increases. The simplest growth rate function with these properties is

g(P ) = rP − aP 2.

Here r is the intrinsic growth rate, and a << r is a measure of the strength of
resource limitations. If a is smaller, there is more room to grow.

The effect of competition is also due to resource limitations. The presence
of hardwood trees limits the amount of sunlight, water, etc., available for the
softwoods, and vice versa. The loss in growth rate due to competition depends
on the size of both populations. A simple assumption is that this loss is propor-
tional to the product of the two. Given these assumptions about growth and
competition, we wish to know whether we can expect one species to die out over
time. Figure 4.1 summarizes the results of step 1.

Step 2 is to select the modeling approach. We will model this problem as a
dynamic model in steady state.

We are given functions

f1(x1, . . . , xn)

...

fn(x1, . . . , xn)
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Variables: H = hardwood population (tons/acre)
S = softwood population (tons/acre)
gH = growth rate for hardwoods (tons/acre/year)
gS = growth rate for softwoods (tons/acre/year)
cH = loss due to competition for hardwoods (tons/acre/year)
cS = loss due to competition for softwoods (tons/acre/year)

Assumptions: gH = r1H − a1H
2

gS = r2S − a2S
2

cH = b1SH
cS = b2SH
H ≥ 0, S ≥ 0
r1, r2, a1, a2, b1, b2 are positive reals

Objective: Determine whether H → 0 or S → 0

Figure 4.1: Results of step 1 for the tree problem.

defined on a subset S of Rn. The functions f1, . . . , fn represent
the rate of change of each variable x1, . . . , xn respectively. A point
(x1, . . . , xn) in the set S is called an equilibrium point provided that

f1(x1, . . . , xn) = 0

...

fn(x1, . . . , xn) = 0

(4.1)

at this point. The rate of change of each of the variables x1, . . . , xn

is then equal to zero, and so the system is at rest.
The variables x1, . . . , xn are called state variables, and S is called

the state space. Since the functions f1, . . . , fn depend only on the
current state (x1, . . . , xn) of the system, knowledge of the current
state suffices to determine the entire future of the system. What
happened in the past does not matter. We only need to know where
we are now, not how we got here. When we are at an equilibrium
point, defined by Eq. (4.1), we say that the system is in steady state.
At this point all of the rates of change are equal to zero. All of
the forces acting on the system are in balance. For this reason the
equations in (4.1) are sometimes referred to as the balance equations.
When a dynamic system is in steady state, it remains there forever.
Since all of the rates of change are equal to zero, any future time
will find us in exactly the same place we are right now.

In order to find the equilibrium states of a dynamic system, we
need to solve the n equations in n unknowns given by Eq. (4.1).
In very easy cases we can solve by hand. Sometimes we can solve
using a computer algebra system. All of the problems in this chap-
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ter, including the exercises, can be solved using these techniques.
Of course, many real problems give rise to systems of equations
that cannot be solved analytically. We will treat such problems in
Chapter 6, where we discuss computational methods for dynamical
systems. (Alternatively, we could use the multivariable version of
Newton’s method introduced in Chapter 3.)

Step 3 is to formulate the model. Let x1 = H and x2 = S denote our two
state variables, defined on the state space

{(x1, x2) : x1 ≥ 0, x2 ≥ 0}.

The steady–state equations are

r1x1 − a1x
2
1 − b1x1x2 = 0

r2x2 − a2x
2
2 − b2x1x2 = 0.

(4.2)

We are interested in solutions of this system of equations that lie in the state
space. These solutions represent the equilibrium points of our dynamic model.

Step 4 is to solve the model. Factoring out x1 from the first equation and
x2 from the second, we find four solutions, three at the following coordinates:

(0, 0)

(0, r2/a2)

(r1/a1, 0)

and the fourth at the intersection of these two lines:

a1x1 + b1x2 = r1

b2x1 + a2x2 = r2.

See Fig. 4.2 for an illustration.
Solving by Cramer’s rule yields

x1 =
r1a2 − r2b1
a1a2 − b1b2

x2 =
a1r2 − b2r1
a1a2 − b1b2

.

If the two lines do not cross inside the state space, then there are only three
equilibria. In this case the two species of trees cannot coexist in peaceful equi-
librium.

We are interested to know the conditions under which x1 > 0 and x2 > 0.
It is reasonable to assume that ai > bi, since the effect of competition between
members of the same species should be stronger than the competition between
species. The growth rate is

rixi − aixixi − bixixj ,
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r2/a2

r2/b2

r1/b1

r1/a1

x1

x2

Figure 4.2: Graph of softwoods x2 versus hardwoods x1 showing equilibria for
the tree problem.

where the first term represents unrestricted growth, the second represents the
effect of competition within a population, and the third represents competition
between populations. Since the two types of trees do not occupy exactly the
same ecological niche, we would suppose that for xi = xj the effect of competi-
tion within a population would be the stronger. Hence ai > bi, so

a1a2 − b1b2 > 0.

The condition for coexistence is, therefore, that

r1a2 − r2b1 > 0

a1r2 − b2r1 > 0,

or, in other words,
r2
a2

<
r1
b1

and
r1
a1

<
r2
b2

,

as shown in Fig. 4.2.
Step 5 is to report in plain English the results obtained from our model

analysis. It is difficult to do so in this case, because our answer is qualified,
and the qualifications involve unknown parameters. In order to communicate
our results clearly, we would like to find a more tangible interpretation of our
conditions for coexistence. Let us reexamine our model formulation to see if we
can interpret the meaning of the ratios ri/ai and ri/bi in some straightforward
way.
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The parameters ri measure growth tendency, and the parameters ai and bi
measure the strength of competition within and between populations, respec-
tively. Thus, the ratios ri/ai and ri/bi must measure the relative strength of
growth versus competition. Let us try to go further. In the absence of compe-
tition between species, the growth rate is

rixi − aix
2
i = xi(ri − aix).

The ratio ri/ai represents the equilibrium population level in the absence of
competition between species, or the level at which the population will stop
growing of its own accord. Similarly, if we neglect the factor of competition
within a population, the net growth rate is

rixi − bixixj = xi(ri − bixj).

The ratio ri/bi thus represents the level of population j necessary to put an end
to growth of population i. In light of this, we can now give our analysis results
the following concrete interpretation.

For each type of tree (hardwood and softwood), there are two kinds of limits
to growth. The first comes from competition with the other type of tree, and the
second comes from competition between trees of the same type under crowded
conditions. Thus, for each type of tree there is one point where growth will halt
itself due to crowding, and another point where the growth of one type of tree
will halt the growth of the other type due to competition. The condition for
coexistence of both types is that each type reaches the point where it limits its
own growth before it reaches the point where it limits the other’s growth.

The steady–state analysis of this section leaves one important question unan-
swered. Given that a dynamic model has an equilibrium solution, will we ever
get there? The answer depends on the dynamics of the model. An equilibrium
point

x0 = (x0
1, . . . , x

0
n)

is said to be asymptotically stable (or just stable) if whenever the state variables

(x1(t), . . . , xn(t))

pass sufficiently close to x0, they are drawn into the equilibrium. In other words,

(x1(t), . . . , xn(t))→ x0.

Steady–state analysis cannot answer the question of stability, so we will have to
defer further discussion of this topic to the next section.

4.2 Dynamical Systems

Dynamical system models are the most commonly used type of dynamic model.
In a dynamical system model the forces of change are represented by differential
equations. In this section we will focus on the graphical method for obtaining
qualitative information about a dynamical system. The emphasis will be on
questions of stability.
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Variables: B = number of blue whales
F = number of fin whales
gB = growth rate of blue whale population (per year)
gF = growth rate of fin whale population (per year)
cB = effect of competition on blue whales (whales per year)
cF = effect of competition on fin whales (whales per year)

Assumptions: gB = 0.05B(1−B/150, 000)
gF = 0.08F (1− F/400, 000)
cB = cF = αBF
B ≥ 0, F ≥ 0
α is a positive real constant

Objective: Determine whether dynamic system can reach stable equilibrium
starting from B = 5, 000, F = 70, 000

Figure 4.3: Results of step 1 for the whale problem.

Example 4.2. The blue whale and fin whale are two similar species that inhabit
the same areas. Hence, they are thought to compete. The intrinsic growth rate
of each species is estimated at 5% per year for the blue whale and 8% per year
for the fin whale. The environmental carrying capacity (the maximum number
of whales that the environment can support) is estimated at 150,000 blues and
400,000 fins. The extent to which the whales compete is unknown. In the last
100 years intense harvesting has reduced the whale population to around 5,000
blues and 70,000 fins. Will the blue whale become extinct?

We will use the five-step method. Notice that this problem is very similar
to Example 4.1. Step 1 is to ask a question. We will use the number of blue
and fin whales as state variables and make the simplest possible assumptions
about growth and competition. The question we begin with is this: Can the
two populations of whales grow to stable equilibrium starting from their current
levels? The results of step 1 are summarized in Figure 4.3.

Step 2 is to select the modeling approach. We will model this problem as a
dynamical system.

A dynamical system consists of n state variables (x1, . . . , xn) and
a system of differential equations

dx1

dt
= f1(x1, . . . , xn)

...
...

dxn

dt
= fn(x1, . . . , xn)

(4.3)

defined on the state space (x1, . . . , xn) ∈ S, where S is a subset of
Rn. The existence and uniqueness theorem of differential equations
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states that if f1, . . . , fn have continuous first partial derivatives in
a neighborhood of a point

x0 = (x0
1, . . . , x

0
n),

then there exists a unique solution to this system of differential equa-
tions through this initial condition. See any introductory text on
differential equations for details (e.g., Hirsch, et al. (1974) p. 162).
Many other differential equation models can be reduced to the form
(4.3). If the dynamics depend on time, we can introduce time as
another state variable. If second derivatives are involved, we can
include first derivatives as state variables, and so forth.

It is best to think of a solution to a dynamical system as a path
through the state space. As long as differentiability assumptions are
satisfied, there is a path through each point, and paths cannot cross
except at an equilibrium. Let

x = (x1, . . . , xn)

F (x) = (f1(x), . . . , fn(x)).

Then the dynamical system equation is

dx

dt
= F (x). (4.4)

For a path x(t), the derivative dx/dt represents the velocity vector.
Hence, for every solution curve x(t), we have that F (x(t)) is the
velocity vector at each point. The vector field F (x) tells us in what
direction and how fast we are moving through the state space. Usu-
ally, a good idea of the qualitative behavior of a dynamical system in
two variables can be obtained by drawing the vector field at selected
points. The points where F (x) = 0 are the equilibria, and we will
pay special attention to the vector field nearby these points.

Step 3 is to formulate the model. Let x1 = B and x2 = F , and write

x′
1 = f1(x1, x2)

x′
2 = f2(x1, x2),

where

f1(x1, x2) = 0.05x1

(
1− x1

150, 000

)
− αx1x2

f2(x1, x2) = 0.08x2

(
1− x2

400, 000

)
− αx1x2.

(4.5)

The state space is
S = {(x1, x2) : x1 ≥ 0, x2 ≥ 0}.
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400,000

.08/α

.05/α

150,000
x1

x2

Figure 4.4: Graph of fin whales x2 versus blue whales x1 showing the vector
field (4.5) for the whale problem.

Step 4 is to solve the model. We want to sketch a graph of the vector field
for this problem. Start out by sketching the level sets f1 = 0 and f2 = 0. The
equilibria will be at the intersection of these two. Furthermore, the velocity
vectors will be vertical along f1 = 0 (x′

1 = 0) and horizontal along f2 = 0 (x′
2 =

0). Draw the velocity vectors along these two curves. Then fill in some of
the velocity vectors in between. It helps to remember that (as long as F (x)
is continuous, which it usually is) both the length and direction of the vectors
change continuously. In fact, for this kind of analysis, the length of the velocity
vectors is not very important. See Figure 4.4 for the finished graph.

There are four equilibrium solutions, three at

(0, 0)

(150, 000, 0)

(0, 400, 000)

(4.6)

and another at a point whose coordinates depend on α. Our graph assumes
that

400, 000 < (0.05/α).

In this case it is easy to see that the equilibrium in the interior is the only stable
one. In fact, any solution through a point in the interior of the state space
will eventually converge upon this equilibrium. In particular, the solution with
initial conditions x1(0) = 5, 000 and x2(0) = 70, 000 tends to this equilibrium
as t→∞.
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Step 5 is to summarize the results of our model analysis in nonmathematical
terms. Based on our analysis, in the absence of further harvesting, the whale
populations will grow back to their natural levels, and the ecological system will
remain in stable equilibrium.

Of course, our conclusions are based on some rather broad assumptions. For
example, we have assumed that the effect of competition is relatively small. If it
were larger (i.e., if (0.05/α) < 400, 000), then the two species could not coexist.
It does seem reasonable to make the assumption that α is small, since we know
that the two species have coexisted for a long time before we began to harvest
them. We have also made several simplifying assumptions about the growth
process. The most critical of these is that for very small population levels, the
population still tends to increase at the intrinsic growth rate. It is believed
that some species have a minimum size (called the minimum viable population
level) below which the growth rate is negative, ensuring the eventual extinction
of the species. This assumption would, of course, change the behavior of our
dynamical system. See Exercise 5 at the end of this chapter.

Finally, we address the questions of sensitivity analysis and robustness. First
let us consider the sensitivity to the parameter α, for which we have very little
information. For any value of α < 1.25 × 10−7 there is a stable equilibrium
x1 > 0, x2 > 0 at

x1 =
150, 000(8, 000, 000α− 1)

D

x2 =
400, 000(1, 875, 000α− 1)

D
,

(4.7)

where

D = 15, 000, 000, 000, 000α2 − 1,

which we found by Cramer’s Rule. For example, if α = 10−7, then

x1 =
600, 000

17
≈ 35, 294

x2 =
6, 500, 000

17
≈ 382, 353.

(4.8)

The sensitivities at this point are

S(x1, α) = −
21, 882, 352, 927

6, 000, 000, 000
≈ −3.6

and

S(x2, α) =
27

221
≈ 0.122.

The above calculations could be performed either by hand or by using a com-
puter algebra system. Figure 4.5 illustrates the computation of the sensitivity
S(x1, α) using the computer algebra system Maple.



4.2. DYNAMICAL SYSTEMS 125

> e1:=(5/100)*(1-x1/150000)-alpha*x2;

e1 := 
1

20
 - 

1

3000000
 x1 - α x2

> e2:=(8/100)*(1-x2/400000)-alpha*x1;

e2 := 
2

25
 - 

1

5000000
 x2 - α x1

> s:=solve({e1=0,e2=0},{x1,x2});

s := x2 = 
400000 -1 + 1875000 α( )

-1 + 15000000000000 α
2
, x1 = 

150000 -1 + 8000000 α( )

-1 + 15000000000000 α
2













> assign(s);

> dx1dalpha:=diff(x1,alpha);

dx1dalpha := 
1200000000000

-1 + 15000000000000 α
2
 - 

4500000000000000000 -1 + 8000000 α( ) α

-1 + 15000000000000 α
2

( )

2

> assign(alpha=10^(-7));

> sx1alpha:=dx1dalpha*(alpha/x1);

sx1alpha := 
-62

17

> evalf(sx1alpha);

-3.647058824

Figure 4.5: Calculation of the sensitivity S(x1, α) for the whale problem using
the computer algebra system Maple.

The blue whale population is most sensitive to α. If α = 10−8, then

x1 =
276, 000, 000

1, 997
≈ 138, 207

x2 =
785, 000, 000

1, 997
≈ 393, 090.

Of course we will always have x1 < 150, 000 and x2 < 400, 000, as is apparent
from the graph in Fig. 4.4. But the most important features of this equilibrium
are not its coordinates, but rather the fact that an equilibrium exists on x1 >
0, x2 > 0 and is stable. These conclusions remain valid over the entire range of
α < 1.25 × 10−7, which we believe to be plausible. Hence, we should say that
our main conclusion is not at all sensitive to α. Similarly, our main conclusion
is not at all sensitive to our data on intrinsic growth rate and carrying capacity,
or even to the current whale populations.

Deeper questions of robustness revolve around the assumed form of the func-
tions f1 and f2. We assumed that x′

1/x1 and x′
2/x2 are linear functions of

x1 and x2, respectively. These lines represent the point where one species or
the other stops growing. Suppose that we relax this linearity assumption. Let

x′
1 = x1 g1(x1, x2)

x′
2 = x2 g2(x1, x2).
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x1

x2

g1=0

g2=0

Figure 4.6: Graph of fin whales x2 versus blue whales x1 showing vector field
for the generalized whale problem.

All of our analysis results would certainly remain true if g1 and g2 were not
linear, so long as the vector field had the same general features. See Figure 4.6
for an illustration.

4.3 Discrete Time Dynamical Systems

In some problems it is most natural to model the time variable as being dis-
crete. When this happens, the usual differential equations are replaced by their
discrete–time analog: difference equations. The relationship between discrete
and continuous dynamics is the relationship between ∆x/∆t and dx/dt, so it
is often assumed that the behavior of a dynamical system will be roughly the
same whether we assume that time is continuous or discrete. However, this kind
of logic overlooks one important point. There is a kind of time delay built into
every discrete–time dynamical system, which is the length of the time step ∆t.
For systems in which the dynamic forces are very strong, this time delay can
lead to unexpected results.

Example 4.3. Astronauts in training are required to practice a docking ma-
neuver under manual control. As a part of this maneuver, it is required to bring
an orbiting spacecraft to rest relative to another orbiting craft. The hand con-
trols provide for variable acceleration and deceleration, and there is a device on
board that measures the rate of closing between the two vehicles. The following
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strategy has been proposed for bringing the craft to rest. First, look at the
closing velocity. If it is zero, we are done. Otherwise, remember the closing
velocity and look at the acceleration control. Move the acceleration control so
that it is opposite to the closing velocity (i.e., if closing velocity is positive, we
slow down, and we speed up if it is negative) and proportional in magnitude
(i.e., we brake twice as hard if we find ourselves closing twice as fast). After a
time, look at the closing velocity again and repeat the procedure. Under what
circumstances will this strategy be effective?

We will use the five-step method. Let vn denote the closing velocity observed
at time tn, the time of the nth observation. Let

∆vn = vn+1 − vn

denote the change in closing velocity as a result of our adjustments. We will
denote the time between observations of the velocity indicator by

∆tn = tn+1 − tn.

This time interval naturally divides into two parts: the time it takes to adjust
the velocity controls and the time between adjustment and the next observation
of the velocity indicator. Write

∆tn = cn + wn,

where cn is the time to adjust the controls and wn is the waiting time until the
next observation. The parameter cn is a function of astronaut response time,
and we are free to choose wn.

Let an denote the acceleration setting after the nth adjustment. Elementary
physics yields

∆vn = an−1cn + anwn.

The control law says to set acceleration proportional to (−vn); hence

an = −kvn.

The results of step 1 are summarized in Figure 4.7.
Step 2 is to select the modeling approach. We will model this problem as a

discrete–time dynamical system.

A discrete–time dynamical system consists of a number of state
variables (x1, . . . , xn) defined on the state space S ⊆ Rn and a
system of difference equations

∆x1 = f1(x1, . . . , xn)

...
...

∆xn = fn(x1, . . . , xn).

(4.9)
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Variables: tn = time of nth velocity observation (sec)
vn = velocity at time tn (m/sec)
cn = time to make nth control adjustment (sec)
an = acceleration after nth adjustment (m/sec2)
wn = wait before (n+ 1)th observation (sec)

Assumptions: tn+1 = tn + cn + wn

vn+1 = vn + an−1cn + anwn

an = −kvn
cn > 0
wn ≥ 0

Objective: Determine whether vn → 0

Figure 4.7: Results of step 1 of the docking problem.

Here ∆xn represents the change in xn over one time step. It is com-
mon to take time steps of length 1, which just amounts to selecting
appropriate units. If time steps are of variable length, or if the dy-
namics of the system vary over time, then we include time as a state
variable. If we let

x = (x1, . . . , xn)

F = (f1, . . . , fn),

then the equations of motion can be written in the form

∆x = F (x).

A solution to this difference equation model is a sequence of points

x(0), x(1), x(2), . . .

in the state space with

∆x(n) = x(n+ 1)− x(n)

= F (x(n))

for all n. An equilibrium point x0 is characterized by

F (x0) = 0,

and the equilibrium is stable if

x(n)→ x0

whenever x(0) is sufficiently close to x0. As in the continuous time
case, many other difference equation models can be reduced to the
form (4.9) by introducing additional state variables.
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210
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Figure 4.8: Vector field for Example 4.4.

Think of a solution as a sequence of points in the state space.
The vector F (x(n)) connects the point x(n) to the point x(n + 1).
A graph of the vector field F (x) can reveal much about the behavior
of a discrete–time dynamical system.

Example 4.4. Let x = (x1, x2), and consider the difference equa-
tion

∆x = −λx, (4.10)

where λ > 0. What is the behavior of solutions near the equilibrium
point x0 = (0, 0)?

Figure 4.8 shows a graph of the vector field F (x) = −λx in the
case where 0 < λ < 1. It is clear that x0 = (0, 0) is a stable
equilibrium. Each step moves closer to x0. Now let us consider
what happens when λ becomes larger. Each of the vectors in Fig.
4.8 will stretch as λ increases. For λ > 1 the vectors are so long that
they overshoot the equilibrium. For λ > 2 they are so long that the
terminal point x(n+1) is actually farther away from (0, 0) than the
starting point x(n). In this case x0 is an unstable equilibrium.

This simple example clearly illustrates the fact that discrete–time
dynamical systems do not always behave like their continuous–time
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analogs. Solutions to the differential equation

dx

dt
= −λx (4.11)

are all of the form
x(t) = x(0)e−λt,

and the origin is a stable equilibrium regardless of λ > 0. The
difference in behavior for the analogous difference equation in Eq.
(4.10) is due to the inherent time delay. The approximation

dx

dt
≈ ∆x

∆t

is only valid for small ∆t, where the term small depends on the
sensitivity of x to t. It should only be relied upon in cases where ∆x
represents a small relative change in x. When this is not the case,
the difference in behavior between discrete and continuous systems
can be dramatic.

We return now to the docking problem of Example 4.3. Step 3 of the five-
step method is to formulate the model. We are modeling the docking problem
as a discrete–time dynamical system. From Fig. 4.7 we obtain

(vn+1 − vn) = −k vn−1 cn − k vnwn.

Hence, the change in velocity over the nth time step depends on both vn and
vn−1. To simplify the analysis, let us assume that cn = c and wn = w for all n.
Then the length of each time step is

∆t = c+ w

seconds, and we do not need to include time as a state variable. We do, however,
need to include both vn and vn−1. Let

x1(n) = vn

x2(n) = vn−1.

Compute

∆x1 = −kwx1 − kcx2

∆x2 = x1 − x2.
(4.12)

The state space is (x1, x2) ∈ R2.
Step 4 is to solve the model. There is one equilibrium point (0, 0) found at

the intersection of the two lines

kwx1 + kcx2 = 0

x1 − x2 = 0.
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x1

x2

Figure 4.9: Graph of previous velocity x2 versus current velocity x1 showing
vector field for the docking problem.

These are the steady–state equations obtained by setting ∆x1 = 0 and ∆x2 = 0.

Figure 4.9 shows a graph of the vector field

F (x) = (−kwx1 − kcx2, x1 − x2).

It appears as though solutions will tend toward equilibrium, but it is hard to
be sure. If k, c, and w are large, then the equilibrium is probably unstable, but
once again it is difficult to tell.

In mathematics we often come across problems we cannot solve. Usually
the best thing to do in such cases is to review our assumptions and consider
whether we can reduce the problem to one that we can solve by making a
further simplifying assumption. Of course this would be a meaningless and
trivial exercise unless the simplified problem had some real significance.

In our docking problem we have expressed the change in velocity ∆vn as
the sum of two components. One represents the change in velocity occurring
between the time we read the velocity indicator and the time we adjust the
acceleration controls. Suppose that we can do this very quickly. In particular,
suppose that c is very much smaller than w. If vn and vn−1 are not too different,
the approximation

∆vn ≈ −kwvn
should be reasonably accurate. The difference equation

∆x1 = −kwx1
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is a familiar one from Example 4.4, and we know that we will get a stable
equilibrium for any kw < 2. If kw < 1, we will approach the equilibrium
asymptotically without overshooting.

Step 5 is to answer the analysis question in plain English. Maybe we should
just say in plain English that we don’t know the answer. However, we probably
can do better than that. Let us report that a completely satisfactory solution
is not obtainable by elementary graphical methods. In other words, it will take
more work using more sophisticated methods to determine exactly the condi-
tions under which the proposed control strategy will work. It does seem that
the strategy will be effective in most cases as long as the time interval between
control adjustments is not too long and the magnitude of those adjustments is
not too large. The problem is complicated by the fact that there is a time delay
between reading the velocity indicator and adjusting the controls. Since the
actual closing velocity may change during this interval, we are acting on dated
and inaccurate information. This adds an element of uncertainty to our calcu-
lations. If we ignore the effects of this time delay (which may be permissible if
the delay is small), we can then draw some general conclusions, which are as
follows.

The control strategy will work so long as the control adjustments are not too
violent. Furthermore, the longer the interval between adjustments, the lighter
those adjustments must be. In addition, the relationship is one of proportion. If
we go twice as long between adjustments, we can only use half as much control.
To be specific, if we adjust the controls once every 10 seconds, then we can only
set the acceleration controls at 1/10 of the velocity setting to avoid overshooting
the target velocity of zero. In order to allow for human and equipment error, we
should actually set the controls somewhat lower, say 1/15 or 1/20 of velocity.
More frequent adjustments require more frequent observations of the closing
velocity indicator and more concentration on the part of the operator, but they
do allow for the successful administration of more thrusting power under control.
Presumably, this would be advantageous.

Normally, we would conclude our discussion of this problem with a fairly
comprehensive sensitivity analysis. In view of the fact that we have not yet
found a way to solve this problem, we will defer that discussion to a later
chapter.

4.4 Exercises

1. Reconsider the tree problem of Example 4.1. Assume that

r2
a2

<
r1
b1

and
r1
a1

<
r2
b2

so that the situation is as pictured in Fig. 4.2.

(a) Draw the vector field for this model.

(b) Classify each of the four equilibrium points as stable or unstable.
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(c) Can the two species of trees coexist in stable equilibrium?

(d) Suppose that a logging operation removes all but a few of the valuable
hardwood trees in this stand of forest. What does this model predict
about the future of the two species of trees?

2. Reconsider the tree problem of Example 4.1, but now assume that

r2
a2

<
r1
b1

and
r1
a1
≥ r2

b2
.

(a) Locate each of the equilibrium points (x1, x2) in the state space
x1 ≥ 0, x2 ≥ 0.

(b) Draw the vector field for this case.

(c) Classify each equilibrium as stable or unstable.

(d) Suppose that we start out with an equal amount of hardwood and
softwood trees. What does this model predict about the future of
the two species?

3. Repeat Exercise 2, but now assume that

r2
a2
≥ r1

b1
and

r1
a1

<
r2
b2

.

4. In the whale problem of Example 4.2 we used a logistic model of popu-
lation growth, where the growth rate of population P in the absence of
interspecies competition is

g(P ) = rP

(
1− P

K

)
.

In this problem we will be using the simpler growth model

g(P ) = rP.

(a) Can both species of whales coexist? Use the five-step method, and
model as a dynamical system in steady state.

(b) Draw the vector field for this model. Indicate the location of each
equilibrium point.

(c) Classify each equilibrium point in the state space as stable or unsta-
ble.

(d) Suppose that there are currently 5,000 blue whales and 70,000 fin
whales. What does this model predict about the future of the two
species?

5. In the whale problem of Example 4.2 we used a logistic model of popu-
lation growth, where the growth rate of population P in the absence of
interspecies competition is

g(P ) = rP

(
1− P

K

)
.
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In this problem we will be using a more complex model,

g(P ) = rP

(
P − c

P + c

)(
1− P

K

)
,

in which the parameter c represents a minimum viable population level
below which the growth rate is negative. Assume that α = 10−8 and that
the minimum viable population level is 3,000 for blue whales and 15,000
for fin whales.

(a) Can the two species of whales coexist? Use the five-step method, and
model as a dynamical system in steady state.

(b) Sketch the vector field for this model. Classify each equilibrium point
as stable or unstable.

(c) Assuming that there are currently 5,000 blue whales and 70,000 fin
whales, what does this model predict about the future of the two
populations?

(d) Suppose that we have underestimated the minimum viable popula-
tion for the blue whale, and that it is actually closer to 10,000. Now
what happens to the two species?

6. Reconsider the whale problem of Example 4.2, and assume that α = 10−8.
In this problem we will investigate the effects of harvesting on the two
whale populations. Assume that a level of effort E boat–days will result
in the annual harvest of qEx1 blue whales and qEx2 fin whales, where the
parameter q (catchability) is assumed to equal approximately 10−5.

(a) Under what conditions can both species continue to coexist in the
presence of harvesting? Use the five-step method, and model as a
dynamical system in steady state.

(b) Draw the vector field for this problem, assuming that the conditions
identified in part (a) are satisfied.

(c) Find the minimum level of effort required to reduce the fin whale
population to its current level of around 70,000 whales. Assume that
we started out with 150,000 blue whales and 400,000 fin whales before
mankind began to harvest them.

(d) Describe what would happen to the two populations if harvesting
were allowed to continue at the level of effort identified in part (c).
Draw the vector field in this case. This is the situation which led the
IWC to call for an international ban on whaling.

7. One of the favorite foods of the blue whale is called krill. These tiny
shrimp–like creatures are devoured in massive amounts to provide the
principal food source for the huge whales. The maximum sustainable pop-
ulation for krill is 500 tons/acre. In the absence of predators, in uncrowded
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conditions, the krill population grows at a rate of 25% per year. The pres-
ence of 500 tons/acre of krill increases blue whale population growth rate
by 2% per year, and the presence of 150,000 blue whales decreases krill
growth rate by 10% per year.

(a) Determine whether the whales and the krill can coexist in equilib-
rium. Use the five-step method, and model as a dynamical system in
steady state.

(b) Draw the vector field for this problem. Classify each equilibrium
point in the state space as stable or unstable.

(c) Describe what happens to the two populations over time. Assume
that we start off with 5,000 blue whales and 750 tons/acre of krill.

(d) How sensitive are your conclusions in part (c) to the assumption of
a 25% growth rate per year for krill?

8. Two armies are to engage in battle. The red army enjoys a three–to–
one numerical superiority, but the blue army is better trained and better
equipped. Let R and B denote the force levels of red and blue forces. The
Lanchester model of combat states that

R′ = −aB − bRB

B′ = −cR− dRB,

where the first term accounts for direct fire (aimed at a specific target)
and the second term accounts for attrition due to area fire (e.g., artillery).
We are assuming that weapon effectiveness is higher for blue than for red;
i.e., a > c and b > d. But what kind of edge in weapon effectiveness would
be necessary to counteract a 3 : 1 numerical superiority?

(a) Assuming that a = λc and b = λd for some λ > 1, determine the
approximate lower bound on λ necessary for blue to win the war.
Use the five-step method, and model as a dynamical system.

(b) In part (a) you assumed red had an n : 1 numerical superiority.
Discuss the sensitivity of your results in part (a) to the parameter
n ∈ (2, 5).

9. The following simple model is intended to represent the dynamics of supply
and demand. Let P denote the selling price of a certain product and Q
the quantity of this product being produced. The supply curve Q = f(P )
tells how much should be produced at a given price to maximize profit.
The demand curve P = g(Q) tells what price buyers should pay given a
certain level of production in order to maximize their utility.

(a) Select a specific product and make an educated guess as to the form
of the supply curve Q = f(P ) and the demand curve P = g(Q).

(b) Use the results of part (a) to determine the equilibrium levels of
P and Q.
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(c) Formulate a dynamic model based on the assumption that P will
tend toward the level dictated by the demand curve, while Q will
tend to the level given by the supply curve.

(d) According to your model, is the (P, Q) equilibrium stable? Does
it matter whether you assume a discrete–time or continuous–time
model? (Economists usually assume a discrete–time model in order
to represent the effect of a time delay.)

(e) Perform a sensitivity analysis for the assumptions you made in part
(a). Consider the question of stability.

10. A population of 100,000 members is subject to a disease that is seldom
fatal and leaves the victim immune to future infections by this disease.
Infection can only occur when a susceptible person comes in direct contact
with an infectious person. The infectious period lasts approximately three
weeks. Last week, there were 18 new cases of the disease reported. This
week, there were 40 new cases. It is estimated that 30% of the population
is immune due to previous exposure.

(a) What is the eventual number of people who will become infected?
Use the five-step method, and model as a discrete–time dynamical
system.

(b) Estimate the maximum number of new cases in any one week.

(c) Conduct a sensitivity analysis to investigate the effect of any assump-
tions you made in part (a) that were not supported by hard data.

(d) Perform a sensitivity analysis for the number of cases (18) reported
last week. It is thought by some that in early weeks the epidemic
might be underreported.

11. Reconsider the docking problem of Example 4.3, and now assume that
c = 5 sec, w = 10 sec, and k = 0.02.

(a) Assuming an initial closing velocity of 50 m/sec, calculate the se-
quence of velocity observations v0, v1, v2, . . ., predicted by the model.
Is the docking procedure successful?

(b) An easier way to compute the solution in part (a) is to use the iter-
ation function G(x) = x + F (x), with the property that x(n + 1) =
G(x(n)). Compute the iteration function for this problem, and use
it to repeat the calculation in part (a).

(c) Calculate the solution x(1), x(2), x(3), . . ., starting at x(0) = (1, 0).
Repeat, starting at x(0) = (0, 1). What happens as n → ∞? What
does this imply about the stability of the equilibrium (0, 0)? [Hint:
Every possible initial condition x(0) = (a, b) can be written as a
linear combination of the vectors (1, 0) and (0, 1), and G(x) is a
linear function of x.]

(d) Are there any states x for which G(x) = λx for some real λ? If so,
what happens to the system if we start with this initial condition?
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Chapter 5

ANALYSIS OF DYNAMIC
MODELS

In this chapter we consider some of the most broadly applicable techniques for
the analysis of discrete and continuous time dynamical systems. Except for a
few special cases, these methods do not yield exact analytical solutions. Such
exact analytical methods are more properly treated in a course on differential
equations. In any case, most dynamical system models which arise in practice
are not amenable to exact solution by any known technique. In this chapter,
we will present techniques which can be applied to the analysis of almost any
dynamical system model. These methods can provide important qualitative
information about the behavior of dynamical systems, even when exact analytic
solutions are not obtainable.

5.1 Eigenvalue Methods

When the equations of a dynamic model are linear, it is possible to obtain an ex-
act analytical solution. While linear dynamics are rare in real life, the majority
of dynamic systems can be approximated by linear systems, at least locally. Such
linear approximations, especially in the neighborhood of an isolated equilibrium
point, provide the basis for many of the most important analytical techniques
available for dynamic modeling.

Example 5.1. Reconsider the tree problem of Example 4.1. Assume that
hardwoods grow at a rate of 10% per year and softwoods at a rate of 25% per
year. An acre of forest land can support about 10,000 tons of hardwoods or
6,000 tons of softwoods. The extent of competition has not been numerically
determined. Can both types of trees coexist in stable equilibrium?

Step 1 of the five-step method was laid out in Figure 4.1. In this particular
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case we have

r1 = 0.10

r2 = 0.25

a1 =
0.10

10, 000

a2 =
0.25

6, 000
.

Step 2 is to select the modeling approach, including a method of analysis. We
will analyze this nonlinear dynamical system by the eigenvalue method.

Suppose we are given a dynamical system x′ = F (x) where x =
(x1, . . . , xn) is an element of the state space S ⊆ Rn and F =
(f1, . . . , fn). A point x0 ∈ S is an equilibrium or steady state if
and only if F (x0) = 0. There is a theorem that states that an
equilibrium point x0 is asymptotically stable if the matrix

A =

∂f1/∂x1 (x0) · · · ∂f1/∂xn (x0)
...

...
∂fn/∂x1 (x0) · · · ∂fn/∂xn (x0)

 (5.1)

has eigenvalues with all negative real parts. If any eigenvalue has a
positive real part, then the equilibrium is unstable. In the remaining
cases (pure imaginary eigenvalues) the test is inconclusive (Hirsch
and Smale (1974) p. 187).

The eigenvalue method is based on a linear approximation. Even
if x′ = F (x) is not linear, we will have

F (x) ≈ A(x− x0)

in the neighborhood of the equilibrium point. This is the same sort
of linear approximation you saw in one–variable calculus, except that
now the derivative of F is represented by a matrix. Some authors will
call this matrix DF in analogy to the one–variable derivative. The
linear approximation is good enough so that if the origin is a stable
equilibrium of x′ = Ax (i.e., the point x0 is a stable equilibrium of
x′ = A(x−x0)), then x0 is a stable equilibrium of x′ = F (x) as well.
Therefore, it is enough to understand the eigenvalue test in the case
of a linear system.

Undoubtedly, you solved some linear systems of differential equa-
tions in your introductory differential equations course, and you
probably learned about the relation between solutions and eigen-
values. For example, if Au = λu (i.e., u is an eigenvector of A
belonging to the eigenvalue λ), then x(t) = ueλt is a solution to the
initial value problem

x′ = Ax, x(0) = u.
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It is actually possible to write down the general solution to an n×n
system of linear differential equations, although it is rather messy
and requires a lot of linear algebra. One good thing that comes out of
doing so, however, is a general description of solution behavior. This
theorem says that for any solution x(t) to the differential equation
x′ = Ax, where A is a matrix of constants, each coordinate is a
linear combination of terms that look like one of

tkeat cos(bt), tkeat sin(bt)

where a ± ib is an eigenvalue of A (if the eigenvalue is real then
b = 0), and k is a nonnegative integer less than n. From this general
description it is easy to calculate that the origin is an asymptoti-
cally stable equilibrium of the system x′ = Ax if and only if every
eigenvalue a± ib has a < 0. (Hirsch and Smale (1974) p. 135)

Of course, a successful application of the eigenvalue method re-
quires us to be able to compute the eigenvalues. In simple cases (e.g.
on R2) it will be possible to compute eigenvalues by hand, or possi-
bly with the aid of a computer algebra system. Otherwise, we will
have to rely on approximate methods. Fortunately, there do exist
numerical analysis software packages to compute the eigenvalues of
an n × n matrix, and these are effective in most cases. (e.g., Press
(1986))

Returning to Example 5.1, recall from Section 4.1 that there is an equilibrium
at the point

x1 =
r1a2 − r2b1

D

x2 =
a1r2 − b2r1

D

where D = a1a2 − b1b2. We have now specified values for a1, a2, r1, and r2 but
not for b1 and b2. We will, however, continue to assume that bi < ai. For the
moment let us take bi = ai/2. Then the coordinates of the equilibrium point
are x0 = (x0

1, x
0
2), where

x0
1 =

28000

3
≈ 9333

x0
2 =

4000

3
≈ 1333

(5.2)

The dynamical system equations are x′ = F (x) where F = (f1, f2) and

f1(x1, x2) = 0.10x1 −
0.10

10000
x2
1 −

0.05

10000
x1x2

f2(x1, x2) = 0.25x2 −
0.25

6000
x2
2 −

0.125

6000
x1x2

(5.3)
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The partial derivatives are

∂f1
∂x1

=
20000− x2

200000
− x1

50000
∂f1
∂x2

=
−x1

200000
∂f2
∂x1

=
−x2

48000
∂f2
∂x2

=
−x1

48000
− x2

12000
+

1

4

(5.4)

Evaluating the partial derivatives (5.4) at the equilibrium point (5.2) and sub-
stituting back into (5.1), we obtain

A =

(
−7/75 −7/150
−1/36 −1/18

)
. (5.5)

The eigenvalues of this 2×2 matrix can be computed as the roots of the equation∣∣∣∣λ+ 7/75 7/150
1/36 λ+ 1/18

∣∣∣∣ = 0.

Evaluating the determinant, we obtain the equation

1800λ2 + 268λ+ 7

1800
= 0,

and then we obtain

λ =
−67±

√
1339

900
.

Since both eigenvalues have negative real parts, the equilibrium is stable.
The eigenvalue test for continuous time dynamical systems involves quite

a bit of computation. This is an appropriate application for a computer al-
gebra system. Figure 5.1 illustrates the use of the computer algebra system
Mathematica to perform the computations in step 4 for the present problem.

Finally, we proceed to step 5. We have found that hardwoods and softwoods
can coexist in stable equilibrium. There will be approximately 9,300 tons per
acre of hardwoods and 1,300 tons per acre of softwoods in a mature, stable
forest. These conclusions are based on certain plausible assumptions about the
degree of competition between the two types of trees. A sensitivity analysis
will be conducted to determine the effect of these assumptions on our broad
conclusions.

For the sensitivity analysis, we will still assume that bi = t ai but we will
relax the assumption that t = 1/2. The conditions

bi < ai

(ri/ai) < (rj/bj)
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In[1]:= f1 = x1 ê 10 - Hx1^2 ê 10L ê 10000 - H5 x1 x2 ê 100L ê 10000

Out[1]=
x1
�������
10

−
x12

�������������������
100000

−
x1 x2

�������������������
200000
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4
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3
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3
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Figure 5.1: Calculations for step 4 of the tree problem using the computer
algebra system Mathematica.

imply that 0 < t < 0.6. The coordinates of the equilibrium point (x0
1, x

0
2) are

x0
1 =

10000− 6000t

1− t2

x0
2 =

6000− 10000t

1− t2
.

(5.6)

The differential equations of this system are x′
i = fi(x1, x2) where

f1(x1, x2) = 0.10x1 −
0.10x2

1

10000
− 0.10tx1x2

10000

f2(x1, x2) = 0.25x2 −
0.25x2

2

6000
− 0.25tx1x2

6000

(5.7)
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and the partial derivatives are

∂f1
∂x1

=
10000− tx2

100000
− x1

50000

∂f1
∂x2

=
−tx1

100000

∂f2
∂x1

=
−tx2

24000

∂f2
∂x2

=
−tx1

24000
− x2

12000
+

1

4
.

(5.8)

Evaluating the partial derivatives (5.8) at the equilibrium point (5.6) and sub-
stituting back into (5.1) yields

A =


5− 3t

50(t2 − 1)

t(5− 3t)

50(t2 − 1)

t(3− 5t)

12(t2 − 1)

3− 5t

12(t2 − 1)

 . (5.9)

The characteristic equation we must solve to find the eigenvalues is[
λ− 5− 3t

50(t2 − 1)

][
λ− 3− 5t

12(t2 − 1)

]
−
[
t(3− 5t)

12(t2 − 1)

][
t(5− 3t)

50(t2 − 1)

]
= 0. (5.10)

Solving equation (5.10) for λ yields two roots:

λ1 =
143t− 105 +

√
9000t4 − 20400t3 + 20449t2 − 9630t+ 2025

600(1− t2)

λ2 =
143t− 105−

√
9000t4 − 20400t3 + 20449t2 − 9630t+ 2025

600(1− t2)
.

(5.11)

Figure 5.2 illustrates the use of the computer algebra system Maple to com-
pute the eigenvalues for this problem. Computer algebra systems are especially
useful for problems like this one, where the calculations become complicated,
and there is an increased risk of error when doing all of the algebra by hand.
Most computer algebra systems also include a graphing utility. The combina-
tion of graphics and algebra is important in problems such as the present one.
Drawing a graph is often the easiest way to solve an inequality.

Figure 5.3 shows a graph of λ1 and λ2 versus t over the interval 0 < t <
0.6. From this graph we can see that λ1, λ2 are always negative, so that the
equilibrium is stable regardless of the strength of competition. (If you did
Exercise 1 of Chapter 4, you probably drew the same conclusion from a graphical
analysis.)

5.2 Eigenvalue Methods for Discrete Systems

The methods of the previous section apply only to continuous time dynamical
systems. In this section we will present analogous methods for the stability
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> with(linalg):
> f1:=x1/10-(x1^2/10)/10000-(t*x1*x2/10)/10000;

 := f1  −  − 
1

10
x1

1

100000
x12 1

100000
t x1 x2

> f2:=25*x2/100-(25*x2^2/100)/6000-(25*t*x1*x2/100)/6000;

 := f2  −  − 
1

4
x2

1

24000
x22 1

24000
t x1 x2

> df1dx1:=diff(f1,x1);

 := df1dx1  −  − 
1

10

1

50000
x1

1

100000
t x2

> df1dx2:=diff(f1,x2);

 := df1dx2 −
1

100000
t x1

> df2dx1:=diff(f2,x1);

 := df2dx1 −
1

24000
t x2

> df2dx2:=diff(f2,x2);

 := df2dx2  −  − 
1

4

1

12000
x2

1

24000
t x1

> s:=solve({f1/x1=0,f2/x2=0},{x1,x2});

 := s { }, = x2 2000
−  + 3 5 t

−  + 1 t2
 = x1 2000

−  + 5 3 t

−  + 1 t2

> assign(s);
> A:=array([[df1dx1,df1dx2],[df2dx1,df2dx2]]);

 := A

















 −  − 
1

10

1

25

−  + 5 3 t

−  + 1 t2

1

50

t ( )−  + 3 5 t

−  + 1 t2
−

1

50

t ( )−  + 5 3 t

−  + 1 t2

−
1

12

t ( )−  + 3 5 t

−  + 1 t2
 −  − 

1

4

1

6

−  + 3 5 t

−  + 1 t2

1

12

t ( )−  + 5 3 t

−  + 1 t2

> eigenvals(A);

1

2

−  +  + 286 t 210 2  −  +  −  + 20449 t2 9630 t 2025 20400 t3 9000 t4

 − 600 t2 600
,

1

2

−  +  − 286 t 210 2  −  +  −  + 20449 t2 9630 t 2025 20400 t3 9000 t4

 − 600 t2 600

      

Figure 5.2: Calculations for sensitivity analysis in the tree problem of Example
5.1 using the computer algebra system Maple.

analysis of discrete time dynamical systems. Once again, the basis for our
analysis is a linear approximation, together with a calculation of eigenvalues.

Example 5.2. Reconsider the docking problem of Example 4.3, and assume
now that it takes 5 seconds to make the control adjustments, and another 10
seconds until we can return from other tasks to observe the velocity indicator
once again. Under these conditions, will our strategy for matching velocities be
successful?

Step 1 of the five-step method was summarized in Figure 4.7. Now we will
assume cn = 5, wn = 10. For the moment we will set k = 0.02, and then later
we will perform a sensitivity analysis on k.

Step 2 is to select the modeling approach, including the method of solution.
We will use an eigenvalue method.
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Figure 5.3: Graph of the eigenvalues λ1 and λ2 from (5.11) versus the parameter
t in the tree problem.

Given a discrete time dynamical system

∆x = F (x)

where x = (x1, . . . , xn) and F = (f1, . . . , fn), let us define the itera-
tion function

G(x) = x+ F (x).

The sequence x(0), x(1), x(2), . . . is a solution to this system of dif-
ference equations if and only if

x(n+ 1) = G(x(n))

for all n. An equilibrium point x0 is characterized by the fact that
x0 is a fixed point of the function G(x); i.e., G(x0) = x0.

There is a theorem that says that an equilibrium point x0 is
(asymptotically) stable if every eigenvalue of the matrix of partial
derivatives

A =

∂g1/∂x1(x0) · · · ∂g1/∂xn(x0)
...

...
∂gn/∂x1(x0) · · · ∂gn/∂xn(x0)

 (5.12)

has absolute value less than one. If the eigenvalue is complex a ±
ib then by “absolute value” we mean the complex absolute value√
a2 + b2. This simple test for stability is analogous to the eigen-

value test for continuous time dynamical systems presented in the
preceding section (Hirsch and Smale (1974) p. 280).
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As in the continuous case, the eigenvalue method for discrete
time dynamical systems is based on a linear approximation. Even if
the iteration function G(x) is not linear, we will have

G(x) ≈ A(x− x0)

in the neighborhood of the equilibrium point x0. In other words
the behavior of the iteration function G in the neighborhood of the
equilibrium point x0 is approximately the same as the behavior of
the linear function Ax near the origin. Therefore, the behavior of our
original nonlinear system in the neighborhood of x0 is approximately
the same as the behavior of the linear discrete time dynamical system
defined by the iteration function

x(n+ 1) = Ax(n)

in the neighborhood of the origin. The linear approximation is good
enough so that if the origin is a stable equilibrium of the linear
system, then x0 is a stable equilibrium of the original nonlinear
system. So it only remains to discuss the conditions for stability of
the linear system.

A matrix A is called a linear contraction if Anx→ 0 for every x.
There is a theorem that states that if every eigenvalue of a matrix
A has absolute value less than one, then A is a linear contraction
(Hirsch and Smale (1974) p. 279). It follows that the origin is a stable
equilibrium of the discrete time dynamical system with iteration
function A whenever the eigenvalues of A all have absolute value
less than one. We illustrate the proof of this result in a simple case.
Suppose that Ax = λx for all x. Then λ is an eigenvalue of A,
and every nonzero vector x is an eigenvector belonging to λ. In this
simple case we will always have

x(n+ 1) = Ax(n) = λx(n)

so that the origin is a stable equilibrium if and only if |λ| < 1.

Now we return to the docking problem. Step 3 is to formulate the model
as necessary for the application of the techniques identified in step 2. In this
case we already have a linear system with equilibrium x0 = (0, 0). The iteration
function is

G(x1, x2) = x+ F (x1, x2) = (g1, g2)

where

g1(x1, x2) = 0.8x1 − 0.1x2

g2(x1, x2) = x1.

Moving on to step 4, we calculate∣∣∣∣λ− 0.8 0.1
−1 λ− 0

∣∣∣∣ = 0
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or λ2 − 0.8λ+ 0.1 = 0, from which we obtain

λ =
4±
√
6

10
.

There are n = 2 distinct eigenvalues, and both are real and lie between−1 and +
1. Hence the equilibrium x0 = 0 is stable, and so we will get x(t) → (0, 0) for
any initial condition.

Step 5 is to state our results in plain English. We assumed 15 seconds
between control adjustments; 5 seconds to make the adjustment and 10 seconds
slack time. Using a correction factor of 1 : 50, we can guarantee success for our
proportional method of control. In practical terms, a correction factor of 1 : 50
means that if the velocity indicator reads 50 m/sec we will set the acceleration
controls for −1 m/sec2; if the reading is 25 m/sec, we set the controls at −0.5
m/sec2, and so on.

What follows is a sensitivity analysis for the parameter k. For a general k
the iteration function is given by G = (g1, g2) where

g1(x1, x2) = (1− 10k)x1 − 5kx2

g2(x1, x2) = x1

which leads to the characteristic equation

λ2 − (1− 10k)λ+ 5k = 0.

The eigenvalues are

λ1 =
(1− 10k) +

√
(1− 10k)2 − 20k

2

λ2 =
(1− 10k)−

√
(1− 10k)2 − 20k

2
.

(5.13)

The quantity under the radical in (5.13) becomes negative between

k1 =
4−
√
12

20
≈ 0.027

and

k2 =
4 +
√
12

20
≈ 0.373.

Figure 5.4 shows a graph of λ1 and λ2 over the interval 0 < k ≤ k1. From
the graph we can see that both eigenvalues have absolute value less than one, so
that the equilibrium (0, 0) is stable over this entire range of k. For k1 < k < k2
both eigenvalues are complex, and the condition for stability is that[

(1− 10k)

2

]2
+

[√
20k − (1− 10k)2

2

]2
< 1 (5.14)
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Figure 5.4: Graph of the eigenvalues λ1 and λ2 from (5.13) versus control pa-
rameter k in the docking problem: case 0 < k ≤ k1.
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Figure 5.5: Graph of the eigenvalues λ1 and λ2 from (5.13) versus control pa-
rameter k in the docking problem: case k ≥ k2.
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R

L

C

i

Figure 5.6: RLC circuit diagram for Example 5.3.

which reduces to k < 1/5. Figure 5.5 shows a graph of λ1 and λ2 for k ≥ k2. It
is easy to see that the smaller eigenvalue λ2 has absolute value greater than one
for all such k. To summarize, the method will achieve matched velocities as long
as k < 0.2, or at least a 1 : 5 correction factor. Of course, it is of some interest
to know which value of k is the most efficient. We will leave this problem for
the exercises.

5.3 Phase Portraits

In Section 5.1 we introduced the eigenvalue test for stability in continuous time
dynamical systems. This test is based on the idea of a linear approximation
in the neighborhood of an isolated equilibrium point. In this section we will
show how this simple idea can be used to obtain a graphical description of the
behavior of a dynamical system near an equilibrium point. This information
can then be used along with a sketch of the vector field to obtain a graphical
description of the dynamics over the entire state space, called the phase portrait.
Phase portraits are important in the analysis of nonlinear dynamical systems
because, in most cases, it is not possible to obtain exact analytical solutions.
At the end of this section we also include a brief discussion of some similar
techniques for discrete time dynamical systems, again based on the idea of
linear approximation.

Example 5.3. Consider the electrical circuit diagrammed in Figure 5.6. The
circuit consists of a capacitor, a resistor, and an inductor in a simple closed
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Variables: vC = voltage across capacitor
iC = current through capacitor
vR = voltage across resistor
iR = current through resistor
vL = voltage across inductor
iL = current through inductor

Assumptions: C dvC/dt = iC
vR = f(iR)
L diL/dt = vL
iC = iR = iL
vC + vR + vL = 0
L = 1
C = 1/3
f(x) = x3 + 4x

Objective: Determine the behavior of all six variables over time

Figure 5.7: Step 1 of the RLC circuit problem.

loop. The effect of each component of the circuit is measured in terms of the re-
lationship between current and voltage on that branch of the loop. An idealized
physical model gives the relations

C
dvC
dt

= iC (capacitor)

vR = f(iR) (resistor)

L
diL
dt

= vL (inductor)

where vC represents the voltage across the capacitor, iR represents the current
through the resistor, and so on. The function f(x) is called the v-i characteristic
of the resistor. Usually f(x) has the same sign as x. This is called a passive
resistor. Some control circuits use an active resistor, where f(x) and x have
opposite sign for small x, see Example 5.4. In the classical linear model of
the RLC circuit, we assume that f(x) = Rx where R > 0 is the resistance.
Kirchoff’s current law states that the sum of the currents flowing into a node
equals the sum of the currents flowing out. Kirchoff’s voltage law states that the
sum of the voltage drops along a closed loop must add up to zero. Determine
the behavior of this circuit over time in the case where L = 1, C = 1/3, and
f(x) = x3 + 4x.

We will use the five-step method. The results of step 1 are summarized in
Figure 5.7. Step 2 is to select a modeling approach. We will model this problem
using a continuous time dynamical system, which we will analyze by sketching
the complete phase portrait.
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Suppose that we are given a dynamical system x′ = F (x) where
x = (x1 . . . , xn) and F has continuous first partial derivatives in the
neighborhood of an equilibrium point x0. Let A denote the matrix
of first partial derivatives evaluated at the equilibrium point x0 as
defined by (5.1). We have stated previously that for x near x0 the
system x′ = F (x) behaves like the linear system x′ = A(x − x0).
Now we will be more specific.

The phase portrait of a continuous time dynamical system is sim-
ply a sketch of the state space showing a representative selection of
solution curves. It is not hard to draw the phase portrait for a linear
system (at least on R2) because we can always find an exact solution
to a linear system of differential equations. Then we can just graph
the solutions for a few initial conditions to get the phase portrait.
We refer the reader to any textbook on differential equations for
the details on how to solve linear systems of differential equations.
For nonlinear systems, we can draw an approximate phase portrait
in the neighborhood of each isolated equilibrium point by using the
linear approximation.

A homeomorphism is a continuous function with a continuous
inverse. The idea of a homeomorphism has to do with shapes and
their generic properties. For example, consider a circle in the plane.
The image of this circle under a homeomorphism

G : R2 → R2

might be another circle, an ellipse, or even a square or a triangle.
But it could not be a line segment. This would violate continuity.
It also could not be a figure eight, because this would violate the
property that G must have an inverse (so it must be one-to-one).
There is a theorem that states that if the eigenvalues of A all have
nonzero real parts, then there is a homeomorphism G that maps
the phase portrait of the system x′ = Ax onto the phase portrait
of x′ = F (x), with G(0) = x0 (Hirsch and Smale (1974) p. 314).
This theorem says that the phase portrait of x′ = F (x) around the
point x0 looks just like that of the linear system, except for some
distortion. It would be as if we drew the phase portrait of the linear
system on a sheet of rubber which we could stretch any way we like,
but could not tear. This is a very powerful result. It means that
we can get an actual picture (good enough for almost all practical
purposes) of the behavior of a nonlinear dynamical system near each
isolated equilibrium point just by analyzing its linear approximation.
Then, to finish up the phase portrait on the rest of the state space, we
combine what we have learned about the behavior of solutions near
the equilibrium points with the information contained in a sketch of
the vector field.

Step 3 is to formulate the model. We begin by considering the state space.
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There are six state variables to begin with, but we can use Kirchoff’s laws
to reduce the number of degrees of freedom (the number of independent state
variables) from six to two. Let x1 = iR and notice that x1 = iL = iC as well.
Let x2 = vC . Then we have

x′
2

3
= x1

vR = x3
1 + 4x1

x′
1 = vL

x2 + vR + vL = 0.

Substitute to obtain

x′
2

3
= x1

x2 + x3
1 + 4x1 + x′

1 = 0,

and then rearrange to get

x′
1 = −x3

1 − 4x1 − x2

x′
2 = 3x1.

(5.15)

Now if we let x = (x1, x2), then Eq. (5.15) can be written in the form x′ = F (x)
where F = (f1, f2) and

f1(x1, x2) = −x3
1 − 4x1 − x2

f2(x1, x2) = 3x1.
(5.16)

This concludes step 3.
Step 4 is to solve the model. We will analyze the dynamical system (5.15) by

sketching the complete phase portrait. Figure 5.8 shows a Maple graph of the
vector field for this dynamical system. It is also a fairly simple matter to sketch
the vector field by hand. Velocity vectors are horizontal on the curve x1 = 0
where x′

2 = 0, and vertical on the curve x2 = −x3
1 − 4x1 where x′

1 = 0. There
is one equilibrium point (0, 0) at the intersection of these two curves. From the
vector field it is difficult to tell whether the equilibrium is stable or unstable. To
obtain more information, we will analyze the linear system that approximates
the behavior of (5.15) near the equilibrium (0, 0).

Computing the partial derivatives from (5.16), we obtain

∂f1
∂x1

= −3x2
1 − 4

∂f1
∂x2

= −1

∂f2
∂x1

= 3

∂f2
∂x2

= 0.

(5.17)



154 CHAPTER 5. ANALYSIS OF DYNAMIC MODELS

x1
1.510.50-0.5-1-1.5

x2

8

6

4

2

0

-2

-4

-6

-8

Figure 5.8: Graph of voltage x2 versus current x1 showing vector field (5.16)
for the RLC circuit problem of Example 5.3.

Evaluating the partial derivatives (5.17) at the equilibrium point (0, 0) and
substituting back into Eq. (5.1), we obtain

A =

(
−4 −1
3 0

)
.

The eigenvalues of this 2×2 matrix can be computed as the roots of the equation∣∣∣∣λ+ 4 1
−3 λ

∣∣∣∣ = 0.

Evaluating the determinant, we obtain the equation

λ2 + 4λ+ 3 = 0,

and then we obtain
λ = −3,−1.

Since both eigenvalues are negative, the equilibrium is stable.
To obtain additional information, we will solve the linear system x′ = Ax.

In this case we have (
x′
1

x′
2

)
=

(
−4 −1
3 0

)(
x1

x2

)
. (5.18)

We will solve the linear system (5.18) by the method of eigenvalues and eigenvec-
tors. We have already calculated the eigenvalues λ = −3,−1. To compute the
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eigenvector corresponding to the eigenvalue λ, we must find a nonzero solution
to the equation (

λ+ 4 1
−3 λ

)(
x1

x2

)
=

(
0

0

)
.

For λ = −3 we have (
1 1
−3 −3

)(
x1

x2

)
=

(
0

0

)
from which we obtain (

x1

x2

)
=

(
−1
1

)
,

so that (
−1
1

)
e−3t

is one solution to the linear system (5.18). For λ = −1 we have(
3 1
−3 −1

)(
x1

x2

)
=

(
0

0

)
from which we obtain (

x1

x2

)
=

(
−1
3

)
,

so that (
−1
3

)
e−t

is another solution to the linear system (5.18). Then, the general solution to
(5.18) can be written in the form(

x1

x2

)
= c1

(
−1
1

)
e−3t + c2

(
−1
3

)
e−t (5.19)

where c1, c2 are arbitrary real constants.
Figure 5.9 shows the phase portrait for the linear system (5.18). This graph

was obtained by plotting the solution curves (5.19) for a few select values of the
constants c1, c2. For example, when c1 = 1 and c2 = 1, we plotted a parametric
graph of

x1(t) = −e−3t − e−t

x2(t) = e−3t + 3e−t.

We superimposed a graph of the linear vector field in order to indicate the
orientation of the solution curves. Whenever you plot a phase portrait, be sure
to add arrows to indicate the direction of the flow.

Figure 5.10 shows the complete phase portrait for the original nonlinear dy-
namical system (5.15). This picture was obtained by combining the information
in Figures 5.8 and 5.9 and using the fact that the phase portrait of the nonlinear
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Figure 5.9: Graph of voltage x2 versus current x1 showing linear approximation
to the phase portrait near (0, 0) for the RLC circuit problem of Example 5.3.
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Figure 5.10: Graph of voltage x2 versus current x1 showing complete phase
portrait for the RLC circuit problem of Example 5.3.
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system (5.15) is homeomorphic to the phase portrait of the linear system (5.18).
In this example there is not much qualitative difference between the behavior
of the linear and the nonlinear systems.

Step 5 is to answer the question. The question was to describe the behavior
of the RLC circuit. The overall behavior can be described in terms of two
quantities, the current through the resistor and the voltage drop across the
capacitor. Regardless of the initial state of the circuit, both quantities eventually
tend to zero. Furthermore, it is eventually true that either voltage is positive
and current is negative, or vice versa. For a complete graphical description of
the way that current and voltage behave over time, see Figure 5.10, where x1

represents current and x2 represents voltage. The behavior of other quantities
of interest can easily be described in terms of these two variables (see Figure
5.7 for details). For example, the variable x1 actually represents the current
through any branch of the circuit loop.

Next, we will perform a sensitivity analysis to determine the effect of small
changes in our assumptions on our general conclusions. First let us consider
the capacitance C. In our example we assumed that C = 1/3. Now we will
generalize our model by letting C remain indeterminate. In this case we obtain
the dynamical system

x′
1 = −x3

1 − 4x1 − x2

x′
2 =

x1

C

(5.20)

in place of (5.15). Now we have

f1(x1, x2) = −x3
1 − 4x1 − x2

f2(x1, x2) =
x1

C
.

(5.21)

For values of C near 1/3, the vector field for (5.21) is essentially the same as in
Figure 5.8. Velocity vectors are still horizontal on the curve x1 = 0 and vertical
on the curve x2 = −x3

1 − 4x1. There is still one equilibrium point (0, 0) at the
intersection of these two curves.

Computing the partial derivatives from Eq. (5.21), we obtain

∂f1
∂x1

= −3x2
1 − 4

∂f1
∂x2

= −1

∂f2
∂x1

=
1

C
∂f2
∂x2

= 0.

(5.22)

Evaluating the partial derivatives (5.22) at the equilibrium point (0, 0) and



158 CHAPTER 5. ANALYSIS OF DYNAMIC MODELS

substituting back into Eq. (5.1), we obtain

A =

(
−4 −1
1/C 0

)
.

The eigenvalues of this matrix can be computed as the roots of the equation∣∣∣∣λ+ 4 1
−1/C λ

∣∣∣∣ = 0.

Evaluating the determinant, we obtain the equation

λ2 + 4λ+
1

C
= 0.

The eigenvalues are

λ = −2±
√
4− 1

C
.

If C > 1/4, then we have two distinct real negative eigenvalues, and so the
equilibrium is stable. In this case, the general solution to the linear system is(

x1

x2

)
= c1

(
−1

2 + α

)
e(−2+α)t + c2

(
−1

2− α

)
e(−2−α)t (5.23)

where α2 = 4− 1/C. The phase portrait of the linear system is about the same
as Figure 5.9, except that the slope of the straight line solutions varies with
C. Then for values of C greater than 1/4, the phase portrait for the original
nonlinear system is a lot like the one shown in Figure 5.10. We conclude that
our general conclusions about this RLC circuit are not sensitive to the exact
value of C as long as C > 1/4. A similar result may be expected for the
inductance L. Generally speaking, the important characteristics of our solution
(e.g., eigenvectors) depend continuously on these parameters.

Next, we consider the question of robustness. We assumed that the RLC
circuit had v-i characteristic f(x) = x3 + 4x. Suppose more generally that
f(0) = 0 and that f is strictly increasing. Now the dynamical system equations
are

x′
1 = −f(x1)− x2

x′
2 = 3x1.

(5.24)

Now we have

f1(x1, x2) = −f(x1)− x2

f2(x1, x2) = 3x1.
(5.25)

Let R = f ′(0). The linear approximation uses

A =

(
−R −1
3 0

)
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and so the eigenvalues are the roots to the equation∣∣∣∣λ+R 1
3 λ

∣∣∣∣ = 0.

We compute that

λ =
−R±

√
R2 − 12

2
.

As long as R >
√
12, we have two distinct real negative eigenvalues, and the

behavior of the linear system is as depicted in Figure 5.9. Furthermore the
behavior of the original nonlinear system cannot be too different from Figure
5.10. We conclude that our model of this RLC circuit is robust with regard to
our assumptions about the form of the v-i characteristic.

Example 5.4. Consider the nonlinear RLC circuit with L = 1, C = 1, and v-i
characteristic f(x) = x3 − x. Determine the behavior of this circuit over time.

The modeling process is, of course, the same as for the previous example.
Letting x1 = iR and x2 = vC , we obtain the dynamical system

x′
1 = x1 − x3

1 − x2

x′
2 = x1.

(5.26)

See Figure 5.11 for a plot of the vector field. The velocity vectors are vertical
on the curve x2 = x1 − x3

1 and horizontal on the x2 axis. The only equilibrium
is the origin (0, 0). It is hard to tell from the vector field whether or not the
origin is a stable equilibrium.

The matrix of partial derivatives is

A =

(
1− 3x2

1 −1
1 0

)
.

Evaluate at x1 = 0, x2 = 0 to obtain the linear system(
x′
1

x′
2

)
=

(
1 −1
1 0

)(
x1

x2

)
,

which approximates the behavior of our nonlinear system near the origin. To
obtain the eigenvalues we must solve∣∣∣∣λ− 1 1

−1 λ− 0

∣∣∣∣ = 0

or λ2 − λ+ 1 = 0. The eigenvalues are

λ = 1/2± i
√
3/2.

Since the real part of every eigenvalue is positive, the origin is an unstable
equilibrium.
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Figure 5.11: Graph of voltage x2 versus current x1 showing vector field from
(5.26) for the RLC circuit problem of Example 5.4.

To obtain more information, we will solve the linear system. To find an
eigenvector belonging to

λ = 1/2 + i
√
3/2,

we solve (
−1/2 + i

√
3/2 1

−1 1/2 + i
√
3/2

)(
x1

x2

)
=

(
0

0

)
and we obtain

x1 = 2, x2 = 1− i
√
3.

Then we have the complex solution(
x1

x2

)
=

(
2

1− i
√
3

)
e(

1
2+i

√
3

2 )t.

Taking real and imaginary parts yields two linearly independent real solutions
u = (x1, x2), where

x1(t) = 2et/2 cos(t
√
3/2)

x2(t) = et/2 cos(t
√
3/2) +

√
3 et/2 sin(t

√
3/2)

and v = (x1, x2), where

x1(t) = 2et/2 sin(t
√
3/2)

x2(t) = et/2 sin(t
√
3/2)−

√
3 et/2 cos(t

√
3/2).
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Figure 5.12: Graph of voltage x2 versus current x1 showing linear approximation
to the phase portrait near (0, 0) for the RLC circuit problem of Example 5.4.

The general solution is c1u(t)+c2v(t). The phase portrait for this linear system
is shown in Figure 5.12. This graph shows parametric plots of the solution for
a few select values of c1 and c2. We superimpose a plot of the vector field in
order to show the direction of the flow.

Note that, if we zoom in or zoom out on the origin in this linear phase
portrait, it will look essentially the same. One of the defining characteristics
of linear vector fields and linear phase portraits is that they look the same on
every scale. The phase portrait for the nonlinear system in the neighborhood
of the origin looks about the same, with some distortions. The solution curves
near (0, 0) spiral outward, moving counterclockwise. If we continue to zoom in
to the origin on a vector field or phase portrait for the nonlinear system, it will
look more and more like the linear system. Further away from the origin, the
behavior of the nonlinear system may vary significantly from that of the linear
system.

In order to obtain the complete phase portrait of the nonlinear system, we
need to combine the information from Figures 5.11 and 5.12. It is apparent
from the vector field in Figure 5.11 that the behavior of solution curves changes
dramatically farther away from the origin. There is still a general counterclock-
wise flow, but the solution curves do not spiral out to infinity as in the linear
phase portrait. Solution curves that begin far away from the origin look like
they are moving toward the origin as they continue their counterclockwise flow.
Since the solution curves near the origin are spiraling outwards, and the solution
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curves far away from the origin tend inward, and we know that solution curves
do not cross, something interesting must be happening in the phase portrait.
Whatever is happening, it is something that can never happen in a linear sys-
tem. If a solution curve spirals outward in a linear phase portrait, then it must
continue to spiral all the way out to infinity. In Section 6.3 we will explore the
behavior of the dynamical system (5.26) using computational methods. We will
wait until then to draw the complete phase portrait.

Before we leave the subject of linear approximation techniques,
we should point out a few facts about discrete time dynamical sys-
tems. Suppose we have a discrete time dynamical system

∆x = F (x)

where x = (x1, . . . , xn), and let

G(x) = x+ F (x)

denote the iteration function. At an equilibrium point x0 we have
G(x0) = x0. In Section 5.2 we used the approximation

G(x) ≈ A(x− x0)

for values of x near x0, where A is the matrix of partial derivatives
evaluated at x = x0 as defined by (5.12).

One way to obtain a graphical picture of the iteration function
G(x) is to draw the image sets

G(S) = {G(x) : x ∈ S}

for various sets

S = {x : |x− x0| = r}.

In dimension n = 2 the set S is a circle, and in dimension n = 3
it is a sphere. It is possible to show that, as long as the matrix A
is nonsingular, there is a diffeomorphism H(x) that maps the image
sets A(S) onto G(S) in a neighborhood of the point x0. If a point
x lies inside of S, then G(x) will be inside of G(S). This allows
a graphical interpretation of the dynamics. Figures 5.13 through
5.15 illustrate the dynamics of the docking problem from Example
5.2. In this case, G(S) = A(S), since G is linear. Starting at a state
on (or inside) the set S, shown in Figure 5.13, the next state will
be on (or inside, respectively) the set A(S), shown in Figure 5.14,
and then the next state will be on (or inside, respectively) the set
A2(S) = A(A(S)), shown in Figure 5.15. As n→∞, the set An(S)
gradually shrinks in toward the origin.
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Figure 5.13: Dynamics of the docking problem showing the initial condition
S = {(x1, x2) : x

2
1 + x2
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Figure 5.14: Dynamics of the docking problem showing A(S) after one iteration.
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Figure 5.15: Dynamics of the docking problem showing A2(S) after two itera-
tions.

5.4 Exercises

1. Reconsider Exercise 4 of Chapter 4.

(a) Sketch the vector field for this model. Determine the location of
each equilibrium in the state space. Can you tell from the vector
field which of the equilibria are stable?

(b) Use the eigenvalue method to test the stability of each equilibrium
in the state space.

(c) For each equilibrium point, determine the linear system that approx-
imates the behavior of the original dynamical system in the neigh-
borhood of the equilibrium point. Write the general solution to this
linear system, and sketch the linear phase portrait.

(d) Sketch the complete phase portrait for this model, using the results
of parts (a) and (c).

(e) Given the current estimates of 5000 blue whales and 70,000 fin whales,
what does this model predict about the future of the two species?

2. Reconsider Exercise 5 of Chapter 4.

(a) Sketch the vector field for this model. Determine the location of each
equilibrium in the state space.
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(b) Use the eigenvalue method to test the stability of each equilibrium
in the state space.

(c) For each equilibrium point, determine the linear system that approx-
imates the behavior of the original dynamical system in the neigh-
borhood of the equilibrium point. Write the general solution to this
linear system, and sketch the linear phase portrait.

(d) Sketch the complete phase portrait for this model, using the results
of parts (a) and (c).

(e) Given the current estimates of 5000 blue whales and 70,000 fin whales,
what does this model predict about the future of the two species?

3. Reconsider Exercise 6 of Chapter 4. Assume that the catchability coef-
ficient q = 10−5 and that the level of effort is E = 3000 boat-days per
year.

(a) Sketch the vector field for this model. Determine the location of each
equilibrium in the state space.

(b) Use the eigenvalue method to test the stability of each equilibrium
in the state space.

(c) For each equilibrium point, determine the linear system that approx-
imates the behavior of the original dynamical system in the neigh-
borhood of the equilibrium point. Write the general solution to this
linear system, and sketch the linear phase portrait.

(d) Sketch the complete phase portrait for this model, using the results
of parts (a) and (c).

(e) Given the current estimates of 5000 blue whales and 70,000 fin whales,
what does this model predict about the future of the two species?

4. Repeat Exercise 3, but now assume a level of effort of E = 6000 boat-days
per year.

5. Reconsider Exercise 7 of Chapter 4.

(a) Sketch the vector field for this model. Determine the location of each
equilibrium in the state space.

(b) Use the eigenvalue method to test the stability of each equilibrium
in the state space.

(c) For each equilibrium point, determine the linear system that approx-
imates the behavior of the original dynamical system in the neigh-
borhood of the equilibrium point. Write the general solution to this
linear system, and sketch the linear phase portrait.

(d) Sketch the complete phase portrait for this model, using the results
of parts (a) and (c).
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(e) Suppose that an ecological disaster suddenly kills off 80% of the krill
in the area, leaving 150,000 blue whales and only 100 tons per acre
of krill. What does our model predict about the future of the whales
and the krill?

6. Reconsider Exercise 9 of Chapter 4.

(a) Use an eigenvalue method to determine the stability of the (P,Q)
equilibrium, assuming a continuous time model.

(b) Repeat part (a) assuming a discrete time model. To what do you
attribute the difference in your results?

7. Reconsider the tree problem of Example 5.1. Assume t = 1/2.

(a) Sketch the vector field for this model. Indicate the location of each
equilibrium in the state space.

(b) For each equilibrium point, determine the linear system that approx-
imates the behavior of the original dynamical system in the neigh-
borhood of the equilibrium point. Write the general solution to this
linear system, and sketch the linear phase portrait.

(c) Sketch the complete phase portrait for this model, using the results
of parts (a) and (b).

(d) Suppose that a small number of hardwood trees is introduced into a
mature stand of softwood trees. What does our model predict about
the future of this forest?

8. Reconsider the tree problem of Example 5.1, but now suppose that the
strength of the competition factor is too great to allow the coexistence of
both hardwood and softwood trees. Assume t = 3/4.

(a) Sketch the vector field for this model. Indicate the location of each
equilibrium in the state space.

(b) For each equilibrium point, determine the linear system that approx-
imates the behavior of the original dynamical system in the neigh-
borhood of the equilibrium point. Write the general solution to this
linear system, and sketch the linear phase portrait.

(c) Sketch the complete phase portrait for this model, using the results
of parts (a) and (b).

(d) Suppose that a small number of hardwood trees is introduced into a
mature stand of softwood trees. What does our model predict about
the future of this forest?

9. Reconsider the RLC circuit problem of Example 5.3 and perform a sen-
sitivity analysis on the parameter L, which gives the inductance of the
capacitor. Assume that L > 0.

(a) Describe the vector field for the general case L > 0.
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(b) Determine the range of L for which the equilibrium (0, 0) remains
stable.

(c) Draw the phase portrait for the linear system in the case where there
are two real eigenvalues.

(d) Use the results of parts (a) and (c) to draw the complete phase por-
trait. Comment on the sensitivity of our conclusions in Section 5.3
to the actual value of the parameter L.

10. Reconsider the RLC circuit problem of Example 5.3, but now suppose
that the capacitance C = 1/5.

(a) Sketch the vector field for this model.

(b) Use the eigenvalue method to test the stability of the equilibrium at
the origin.

(c) Determine the linear system that approximates the behavior of the
original dynamical system in the neighborhood of the origin. Write
the general solution to this linear system, and sketch the linear phase
portrait.

(d) Sketch the complete phase portrait for this model, using the results of
parts (a) and (c). How does the behavior of the RLC circuit change
when the capacitance C is lowered?

11. (Continuation of Exercise 10) Reconsider the RLC circuit problem of Ex-
ample 5.3, and now consider the effect of varying the capacitance C over
the entire range 0 < C <∞.

(a) Sketch the phase portrait of the linear system that approximates the
behavior of the RLC circuit in the neighborhood of the origin in the
case 0 < C < 1/4. Compare with the case C > 1/4, which was done
in the text.

(b) Draw the complete phase portrait for the RLC circuit for the case
0 < C < 1/4. Describe the changes that occur in the phase portrait
as we transition between the two cases 0 < C < 1/4 and C > 1/4.

(c) Draw the phase portrait of the linear system in the case C = 1/4
where there is only one eigenvalue. Sketch the phase portrait of the
nonlinear system in this case. Explain how the phase portrait in this
case represents an intermediate step between the case of two real
distinct eigenvalues (C > 1/4) and one pair of complex conjugate
eigenvalues (0 < C < 1/4).

(d) Reconsider the description of circuit behavior given in step 5 of Ex-
ample 5.3 in the text. Describe in plain English the behavior of the
RLC circuit in the more general case C > 0.

12. Reconsider the space docking problem of Example 5.2.

(a) Draw the vector field for this problem.
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(b) Find the eigenvectors associated with the eigenvalues

λ =
4±
√
6

10

that were calculated in the text. Draw these eigenvectors on the
picture from part (a). What do you notice about the vector field at
these points?

(c) Calculate the rate at which closing velocity decreases (% per minute)
if we start at an eigenvector.

(d) Generally speaking, what can you say about the rate of decrease in
closing velocity for an arbitrary initial condition [Hint: Any (x1, x2)
initial condition is a linear combination of the two eigenvectors found
in part (b).]

13. (Continuation of Exercise 12) Reconsider the space docking problem of
Example 5.2.

(a) As in Exercise 12, calculate the rate at which closing velocity de-
creases (% per minute) as a function of the control parameter k over
the range of values 0 < k ≤ 0.0268.

(b) Find the value of k in part (a) that maximizes the rate of decrease
in closing velocity.

(c) Explain the significance of your results in part (b) in terms of the
efficiency of the control parameter k.

(d) Explain the problem with extending the approach used in this prob-
lem to find the most efficient value of k over the entire interval
0 < k < 0.2 over which we have a stable control procedure.

14. Reconsider the space docking problem of Example 5.2, but now approxi-
mate the discrete time dynamical system

∆x1 = −kwx1 − kcx2

∆x2 = x1 − x2

by its continuous time analogue

dx1

dt
= −kwx1 − kcx2

dx2

dt
= x1 − x2

(a) Show that the continuous time model has a stable equilibrium at
(0, 0). Assume w = 10, c = 5, and k = 0.02.

(b) Solve the continuous model, using the method of eigenvalues and
eigenvectors.
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(c) Draw the complete phase portrait for this model.

(d) Comment on any differences between the behavior of the discrete and
continuous models.

15. (Continuation of Exercise 14) Reconsider the docking problem of Example
5.2. As in Exercise 14, replace the discrete time model by its continuous
time analogue.

(a) Assume w = 10 and c = 5. For what values of k does the continuous
model have a stable equilibrium at (0, 0)?

(b) Solve the continuous model using the method of eigenvectors and
eigenvalues.

(c) Draw the complete phase portrait for this model. How does the phase
portrait depend on k?

(d) Comment on any differences between the continuous and discrete
models.

16. Reconsider the tree problem of Example 5.1.

(a) Can both types of trees coexist in equilibrium? Assume bi = ai/2.
Use the five-step method, and model as a discrete time dynamical
system with a time step of one year.

(b) Use the eigenvalue test for discrete time dynamical systems to check
the stability of the equilibrium you found in part (a).

(c) Perform a sensitivity analysis on the parameter t, where bi = tai.
Determine the range of 0 < t < 0.6 for which the equilibrium found
in part (a) is stable.

(d) Comment on any differences in results between the discrete time and
continuous time models. As a practical matter, does it make any
difference which we choose?
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Chapter 6

SIMULATION OF
DYNAMIC MODELS

The technique of simulation has become the most important and popular method
of analysis for dynamic models. Exact solution methods such as those taught
in introductory courses in differential equations are of limited scope. The fact
is that we do not know how to solve very many differential equations. The
qualitative methods introduced in the two preceding chapters are more widely
applicable, but for some problems we need a quantitative answer and a high
degree of accuracy. Simulation methods provide both. Almost any dynamic
model that will occur in practical applications can be simulated to a reasonable
degree of accuracy. Furthermore, simulation techniques are very flexible. It is
not hard to introduce more complex features such as time delays and stochastic
elements, which are difficult to treat analytically.

The principal drawback of simulation comes in the area of sensitivity analy-
sis. Without recourse to an analytic formula, the only way to test sensitivity to
a particular parameter is to repeat the entire simulation for several values and
then interpolate. This can be very expensive and time–consuming if there are
several parameters to test. Even so, simulation is the method of choice for many
problems. If we cannot solve analytically, and if we need quantitative solutions,
then we really have no alternative but to simulate.

6.1 Introduction to Simulation

There are essentially two ways to approach the analysis of a dynamic system
model. The analytic approach attempts to predict what will happen according
to the model in a variety of circumstances. In the simulation approach, we build
the model, turn it on, and find out.

Example 6.1. Two forces, which we will call red (R) and blue (B), are engaged
in battle. In this conventional battle, attrition is due to direct fire (infantry) and

171
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Variables: R = number of red divisions (units)
B = number of blue divisions (units)
DR = red attrition rate due to direct fire (units/hour)
DB = blue attrition rate due to direct fire (units/hour)
IR = red attrition rate due to indirect fire (units/hour)
IB = blue attrition rate due to indirect fire (units/hour)

Assumptions: DR = a1B
DB = a2R
IR = b1RB
IB = b2RB
R ≥ 0, B ≥ 0
R(0) = 5, B(0) = 2
a1, a2, b1, b2 are positive reals
a1 > a2, b1 > b2

Objective: Determine the conditions under which R→ 0
before B → 0

Figure 6.1: Results of step 1 of the war problem.

area fire (artillery). The attrition rate due to direct fire is assumed proportional
to the number of enemy infantry. The attrition rate due to artillery depends
on both the amount of enemy artillery and the density of friendly troops. Red
has amassed five divisions to attack a blue force of two divisions. Blue has the
advantage of defense, and superior weapon effectiveness besides. How much
more effective does blue have to be in order to prevail in battle?

We will use the five-step method. The results of step 1 are summarized in
Figure 6.1. We have assumed that the attrition rate due to area fire is directly
proportional to the product of enemy force level and friendly force level. It
seems reasonable to assume at this stage that force level is proportional to force
density. And since we have no information about the number of artillery versus
infantry units, for this analysis we simply assume that artillery and infantry
units are attrited in proportion to their numbers. Hence, the number of remain-
ing artillery or infantry units on each side is assumed to remain in proportion
to the total number of units.

Next is step 2. We will use a discrete–time dynamical system model, which
we will solve by simulation. Figure 6.2 gives an algorithm for simulating a
discrete–time dynamical system in two variables:

∆x1 = f1(x1, x2)

∆x2 = f2(x1, x2).
(6.1)

Step 3 is next. We will model the war problem as a discrete–time dynamical
system with two state variables: x1 = R, the number of red force units; and
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Algorithm: DISCRETE–TIME SIMULATION

Variables: x1(n) = first state variable at time n
x2(n) = second state variable at time n
N = number of time steps

Input: x1(0), x2(0), N

Process: Begin
for n = 1 to N do

Begin
x1(n)← x1(n− 1) + f1(x1(n− 1), x2(n− 1))
x2(n)← x2(n− 1) + f2(x1(n− 1), x2(n− 1))
End

End

Output: x1(1), . . . , x1(N)
x2(1), . . . , x2(N)

Figure 6.2: Pseudocode for discrete–time simulation.

x2 = B, the number of blue force units. The difference equations are

∆x1 = −a1x2 − b1x1x2

∆x2 = −a2x1 − b2x1x2.
(6.2)

We will start with x1(0) = 5 and x2(0) = 2 divisions of troops. We will use a
time step of ∆t = 1 hour. We will also need numerical values for ai and bi in
order to run the simulation program. Unfortunately, we have been given no idea
what they are supposed to be. We will have to make an educated guess. Suppose
that a typical conventional battle lasts about 5 days and that engagement takes
place about 12 hours per day. That means that one force is depleted in about
60 hours of battle. If a force were to be depleted by 5% per hour for 60 hours,
the fraction remaining would be (0.95)60 = 0.05, which looks about right. We
will assume that a2 = 0.05. Since area fire is not generally as effective as direct
fire in terms of attrition, we will assume b2 = 0.005. (Recall that bi is multiplied
by both x1 and x2, which is why we made it so small.) Now blue is supposed
to have greater weapon effectiveness than red, so we should have a1 > a2 and
b1 > b2. Let us assume that a1 = λa2 and b1 = λb2 for some λ > 1. The analysis
objective is to determine the smallest λ that will make x1 → 0 before x2 → 0.
Now the difference equations are

∆x1 = −λ(0.05)x2 − λ(0.005)x1x2

∆x2 = −0.05x1 − 0.005x1x2.
(6.3)

In step 4 we will solve the problem by running the simulation program for
several values of λ. We begin by exercising the model for λ = 1, 1.5, 2, 3, and 5.
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Figure 6.3: Graph of blue divisions x2 versus red divisions x1 for the war prob-
lem: case λ = 1.0.

This should give us a good idea of how large λ needs to be, and it allows us to
check our simulation against our intuitive grasp of the situation. For example,
we should check that the larger λ is, the better blue does.

The results of this first batch of model runs are shown in Figures 6.3 through
6.7. A summary of our findings is contained in Table 6.1.

For each run we have recorded the value of λ, the duration of the battle,
the identity of the winner, and the number of units remaining on the winning
side. We decided to run the simulation for up to 14 days of combat (or N = 168
hours). The duration of battle is defined to be the number of hours of actual
combat (there are 12 hours of fighting per day) until one of the variables x1 or x2

becomes zero or negative. If both sides survive 168 hours of combat, we call it
a draw.

Advantage Hours of Winning Remaining
(λ) Combat Side Forces
1.0 8 red 4.4
1.5 9 red 4.1
2.0 9 red 3.7
3.0 10 red 3.0
5.0 17 red 1.0

Table 6.1: Summary of simulation results for the war problem.
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Figure 6.4: Graph of blue divisions x2 versus red divisions x1 for the war prob-
lem: case λ = 1.5.
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Figure 6.5: Graph of blue divisions x2 versus red divisions x1 for the war prob-
lem: case λ = 2.0.
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Figure 6.6: Graph of blue divisions x2 versus red divisions x1 for the war prob-
lem: case λ = 3.0.
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Figure 6.7: Graph of blue divisions x2 versus red divisions x1 for the war prob-
lem: case λ = 5.0.



6.1. INTRODUCTION TO SIMULATION 177

0 

0.5 

1 

1.5 

2 
x2

 (
bl

ue
 d

iv
is

io
ns

)

0 1 2 3 4 5 
x1 (red divisions)

Figure 6.8: Graph of blue divisions x2 versus red divisions x1 for the war prob-
lem: case λ = 6.0.

It does not look good for blue. Even with a 5 : 1 edge in weapon effectiveness,
blue will lose the battle. We decided to make a few more model runs to find
out just how big λ would have to be for blue to win. At λ = 6.0, the blue side
won after 13 hours of battle, with 0.6 units remaining (see Figure 6.8). A few
more model runs, bisecting the interval 5.0 ≤ λ ≤ 6.0, yielded a lower bound of
λ = 5.4 for blue to win. At λ = 5.3, red was the winner.

Finally, we need to summarize our results. We simulated an engagement
between an attacking red force of five divisions and a defending blue force of
two divisions. We assumed that the two forces would engage and continue to
fight until there emerged a clear victor. We wanted to investigate the extent to
which a greater weapon effectiveness (kill rate) could offset a 5 : 2 numerical
disadvantage. We simulated a number of battles for different ratios of weapon
effectiveness. We found that blue would need at least a 5.4 : 1 advantage in
weapon effectiveness to defend successfully against a numerically superior red
force of 5 divisions.

Having finished the five-step method and answered the question stated in
step 1, we need to perform a sensitivity analysis. This is particularly important
in a problem such as this one, where most of our data came from sheer guesswork.
We will begin by investigating the relationship between the magnitude of the
attrition coefficients and the outcome of the battle. We had assumed that
a2 = 0.05, b2 = a2/10, a1 = λa2, and b1 = λb2. We will now vary a2, keeping
the same relative relationship between it and the other variables.

We will investigate the dependence of λmin on a2, where λmin is defined to
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Force ratio Advantage required
(red : blue) (λmin)

8 : 2 11.8
7 : 2 9.5
6 : 2 7.3
5 : 2 5.4
4 : 2 3.6
3 : 2 2.2
2 : 2 1.1

Table 6.2: Summary of simulation results showing the effect of force ratio for
the war problem.

be the smallest value of λ for which blue wins. This requires making a number
of model runs for each value of a2. It turns out that there is no need to tabulate
these results, because in every case we checked (from a2 = 0.01 to a2 = 0.10),
we found λmin = 5.4, the same as our baseline case (a2 = 0.05). There is
apparently no sensitivity to the magnitude of the attrition coefficients.

Several more kinds of sensitivity analysis are possible, and the process prob-
ably should go on as long as time permits, curiosity persists, and the pressures
of other obligations do not intrude. We were curious about the relationship
between λmin and the numerical superiority ratio of red versus blue, currently
assumed to be 5 : 2. To study this, we returned to the baseline case, a2 = 0.05,
and made several model runs to determine λmin for several values of the initial
red force strength x1, keeping x2 = 2 fixed. The results of this model excursion
are tabulated in Table 6.2. The case x1 = 2 was run as a check. We found
λmin = 1.1 in this case, because the case λ = 1 produced a draw.

6.2 Continuous–Time Models

In this section we discuss the fundamentals of simulating continuous–time dy-
namical systems. The methods presented here are simple and usually effective.
The basic idea is to use the approximation

dx

dt
≈ ∆x

∆t

to replace our continuous–time model (differential equations) by a discrete–
time model (difference equations). Then we can use the simulation methods we
introduced in the preceding section.

Example 6.2. Reconsider the whale problem of Example 4.2. We know now
that starting at the current population levels of B = 5, 000, F = 70, 000, and
assuming a competition coefficient of α < 1.25 × 10−7, both populations of
whales will eventually grow back to their natural levels in the absence of any
further harvesting. How long will this take?
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We will use the five-step method. Step 1 is the same as before (see Fig. 4.3),
except that now the objective is to determine how long it takes to get to the
equilibrium starting from B = 5, 000, F = 70, 000.

Step 2 is to select the modeling approach. We have an analysis question that
seems to require a quantitative method. The graphical methods of Chapter 4
tell us what will happen, but not how long it will take. The analytical methods
reviewed in Chapter 5 are local in nature. We need a global method here. The
best thing would be to solve the differential equations, but we don’t know how.
We will use a simulation; this seems to be the only choice we have.

There is some question as to whether we want to adopt a discrete–time or a
continuous–time model. Let us consider, more generally, the case of a dynamic
model in n variables, x = (x1, . . . , xn), where we are given the rates of change
F = (f1, . . . , fn) for each of the variables x1, . . . , xn, but we have not yet
decided whether to model the system in discrete–time or continuous–time. The
discrete–time model looks like

∆x1 = f1(x1, . . . , xn)

...

∆xn = fn(x1, . . . , xn),

(6.4)

where ∆xi represents the change in xi over 1 unit of time (∆t = 1). The units
of time are already specified. The method for simulating such a system was
discussed in the previous section.

If we decided on a continuous–time model instead, we would have

dx1

dt
= f1(x1, . . . , xn)

...

dxn

dt
= fn(x1, . . . , xn),

(6.5)

which we would still need to figure out how to simulate. We certainly can’t
expect the computer to calculate x(t) for every value of t. That would take
an infinite amount of time to get nowhere. Instead we must calculate x(t) at a
finite number of points in time. In other words, we must replace the continuous–
time model by a discrete–time model in order to simulate it. What would the
discrete–time approximation to this continuous–time model look like? If we use
a time step of ∆t = 1 unit, it will be exactly the same as the discrete–time
model we could have chosen in the first place. Hence, unless there is something
wrong with choosing ∆t = 1, we don’t have to choose between discrete and
continuous. Then we are done with step 2.

Step 3 is to formulate the model. As in Chapter 4, we let x1 = B and x2 = F
represent the population levels of each species. The dynamical system equations
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are

dx1

dt
= 0.05x1

(
1− x1

150, 000

)
− αx1x2

dx2

dt
= 0.08x2

(
1− x2

400, 000

)
− αx1x2

(6.6)

on the state space x1 ≥ 0, x2 ≥ 0. In order to simulate this model we will begin
by transforming to a set of difference equations

∆x1 = 0.05x1

(
1− x1

150, 000

)
− αx1x2

∆x2 = 0.08x2

(
1− x2

400, 000

)
− αx1x2

(6.7)

over the same state space. Here, ∆xi represents the change in population xi

over a period of ∆t = 1 year. We will have to supply a value for α in order to
run the program. We will assume that α = 10−7 to start with. Later on, we
will do a sensitivity analysis on α.

Step 4 is to solve the problem by simulating the system in Eq. (6.7) using a
computer implementation of the algorithm in Fig. 6.2. We began by simulating
N = 20 years, starting with

x1(0) = 5, 000

x2(0) = 70, 000.

Figures 6.9 and 6.10 show the results of our first model run. Both blue whale
and fin whale populations grow steadily, but in 20 years they do not get close
to the equilibrium values

x1 = 35, 294

x2 = 382, 352

predicted by our analysis back in Chapter 4.
Figures 6.11 and 6.12 show our simulation results when we input a value

of N large enough to allow this discrete–time dynamical system to approach
equilibrium.

Step 5 is to put our conclusions into plain English. It takes a long time for
the whale populations to grow back: about 100 years for the fin whale, and
several centuries for the more severely depleted blue whale.

We will now discuss the sensitivity of our results to the parameter α, which
measures the intensity of competition between the two species. Figures 6.13
through 6.18 show the results of our simulation runs for several values of α. Of
course, the equilibrium levels of both species change along with α.

However, the time it takes our model to converge to equilibrium changes
very little. Our general conclusion is valid whatever the extent of competition:
It will take centuries for the whales to grow back.
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Figure 6.9: Graph of blue whales x1 versus time n for the whale problem: case
α = 10−7, N = 20.
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Figure 6.10: Graph of fin whales x2 versus time n for the whale problem: case
α = 10−7, N = 20.
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Figure 6.11: Graph of blue whales x1 versus time n for the whale problem: case
α = 10−7, N = 800.
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Figure 6.12: Graph of fin whales x2 versus time n for the whale problem: case
α = 10−7, N = 100.
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Figure 6.13: Graph of blue whales x1 versus time n for the whale problem: case
α = 3× 10−8, N = 800.
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Figure 6.14: Graph of blue whales x1 versus time n for the whale problem: case
α = 10−8, N = 800.
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Figure 6.15: Graph of blue whales x1 versus time n for the whale problem: case
α = 10−9, N = 800.
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Figure 6.16: Graph of fin whales x2 versus time n for the whale problem: case
α = 3× 10−8, N = 100.
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Figure 6.17: Graph of fin whales x2 versus time n for the whale problem: case
α = 10−8, N = 100.
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Figure 6.18: Graph of fin whales x2 versus time n for the whale problem: case
α = 10−9, N = 100.
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6.3 The Euler Method

One of the reasons we simulate dynamic models is to obtain accurate quanti-
tative information about system behavior. For some applications the simple
simulation techniques of the previous section are too imprecise. More sophisti-
cated numerical analysis techniques are available, however, that can be used to
provide accurate solutions to initial value problems for almost any differential
equation model. In this section we present the simplest generally useful method
for solving systems of differential equations to any desired degree of accuracy.

Example 6.3. Reconsider the RLC circuit problem of Example 5.4 in the
previous chapter. Describe the behavior of this circuit.

Our analysis in Section 5.3 was successful only in determining the local
behavior of the dynamical system

x′
1 = x1 − x3

1 − x2

x′
2 = x1

(6.8)

in the neighborhood of (0, 0), which is the only equilibrium of this system. The
equilibrium is unstable, with nearby solution curves spiraling counterclockwise
and outward. A sketch of the vector field (see Fig. 5.11) reveals little new
information. There is a general counterclockwise rotation to the flow, but it is
hard to tell whether solution curves spiral inward, outward, or neither, in the
absence of additional information.

We will use the Euler method to simulate the dynamical system in Eq. (6.8).
Figure 6.19 gives an algorithm for the Euler method. Consider a continuous–
time dynamical system model

x′ = F (x)

with x = (x1, . . . , xn) and F = (f1, . . . , fn), along with the initial condition
x(t0) = x0.

Starting from this initial condition, at each iteration the Euler method pro-
duces an estimate of x(t + h) based on the current estimate of x(t), using the
fact that

x(t+ h)− x(t) ≈ hF (x(t)).

The accuracy of the Euler method increases as the step size h becomes smaller;
i.e., as the number of steps N becomes larger. For small h the error in the
estimate x(N) of the final value of the state variable x is roughly proportional
to h. In other words, using twice as many steps (i.e., reducing h by half)
produces results twice as accurate.

Figures 6.20 and 6.21 illustrate the results obtained by applying a computer
implementation of the Euler method to Eq. (6.8). Each graph in Figs. 6.20 and
6.21 is the result of several simulation runs. For each set of initial conditions,
we need to perform a sensitivity analysis on the input parameters T and N .

First, we enlarged T until any further enlargements produced essentially
the same picture (the solution just cycled around a few more times). Then
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Algorithm: THE EULER METHOD

Variables: t(n) = time after n steps
x1(n) = first state variable at time t(n)
x2(n) = second state variable at time t(n)
N = number of steps
T = time to end simulation

Input: t(0), x1(0), x2(0), N, T

Process: Begin
h← (T − t(0))/N
for n = 0 to N − 1 do
Begin

x1(n+ 1)← x1(n) + hf1(x1(n), x2(n))
x2(n+ 1)← x2(n) + hf2(x1(n), x2(n))
t(n+ 1)← t(n) + h
End

End

Output: t(1), . . . , t(n)
x1(1), . . . , x1(N)
x2(1), . . . , x2(N)

Figure 6.19: Pseudocode for the Euler method.

we enlarged N (i.e., decreased the step size) to check accuracy. If doubling N
produced a graph that was indistinguishable from the one before, we judged
that N was large enough for our purposes.

In Fig. 6.20 we started at x1(0) = −1, x2(0) = −1.5. The resulting solution
curve spirals in toward the origin, with a counterclockwise rotation. However,
before it gets too close to the origin, the solution settles into a more–or–less
periodic behavior, cycling around the origin. When we start nearer the origin
in Fig. 6.21, the same behavior occurs, except now the solution curve spirals
outward. In both cases the solution approaches the same closed loop around
the origin. This closed loop is called a limit cycle.

Figure 6.22 shows the complete phase portrait for this dynamical system.
For any initial condition except (x1, x2) = (0, 0), the solution curve tends to
the same limit cycle. If we begin inside the loop, the curve spirals outward; if
we begin outside the loop, the curve moves inward. The kind of behavior we see
in Fig. 6.22 is a phenomenon that cannot occur in a linear dynamical system.
If a solution to a linear dynamical system spirals in toward the origin, it must
spiral all the way into the origin. If it spirals outward, then it spirals all the
way out to infinity. This observation has modeling implications, of course. Any
dynamical system exhibiting the kind of behavior shown in Fig. 6.22 cannot be
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Figure 6.20: Graph of voltage x2 versus current x1 for the nonlinear RLC circuit
problem: case x1(0) = −1.0, x2(0) = −1.5.
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Figure 6.21: Graph of voltage x2 versus current x1 for the nonlinear RLC circuit
problem: case x1(0) = 0.1, x2(0) = 0.3.
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Figure 6.22: Graph of voltage x2 versus current x1 showing the complete phase
portrait for the nonlinear RLC circuit problem of Example 6.3.

modeled adequately using linear differential equations.

The graphs in Figures 6.20–6.22 were produced using a spreadsheet imple-
mentation of the Euler method. The advantage of a spreadsheet implementation
is that the computations and graphics are both performed on the same plat-
form, and the results of changing initial conditions can be observed instantly.
A simple computer program to implement this algorithm is effective, but the
output is harder to interpret without graphics. Many graphing calculators and
computer algebra systems also have built–in differential equation solvers, most
of which are based on some variation of the Euler method. The Runge–Kutta
method is one variation that uses a more sophisticated interpolation between
x(t) and x(t + h); see Exercise 21 at the end of this chapter. No matter what
kind of numerical method you use to solve differential equations, be sure to
check your results by performing a sensitivity analysis on the parameters that
control accuracy. Even the most sophisticated algorithms can produce serious
errors unless they are used with care.

Next, we will perform a sensitivity analysis to determine the effect of small
changes in our assumptions on our general conclusions. Here we will discuss
the sensitivity to the capacitance C. Some additional questions of sensitivity
and robustness are relegated to the exercises at the end of this chapter. In
our example we assumed that C = 1. In the more general case we obtain the
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dynamical system

x′
1 = x1 − x3

1 − x2

x′
2 =

x1

C
.

(6.9)

For any value of C > 0, the vector field is essentially the same as in Fig. 5.11.
The velocity vectors are vertical on the curve x2 = x1 − x3

1 and horizontal on
the x2 axis. The only equilibrium is the origin, (0, 0).

The matrix of partial derivatives is

A =

(
1− 3x2

1 −1
1/C 0

)
.

Evaluate at x1 = 0, x2 = 0 to obtain the linear system(
x′
1

x′
2

)
=

(
1 −1

1/C 0

)(
x1

x2

)
, (6.10)

which approximates the behavior of our nonlinear system near the origin. To
obtain the eigenvalues, we must solve∣∣∣∣λ− 1 1

−1/C λ− 0

∣∣∣∣ = 0,

or λ2 − λ+ 1/C = 0. The eigenvalues are

λ =
1±

√
1− 4

C
2

. (6.11)

As long as 0 < C < 4, the quantity under the radical is negative, so we have
two complex conjugate eigenvalues with positive real parts, making the origin
an unstable equilibrium.

Next, we need to consider the phase portrait for the linear system. It is
possible to solve the system in Eq. (6.10) in general by using the method of
eigenvalues and eigenvectors, although it would be rather messy. Fortunately,
in the present case it is not really necessary to determine a formula for the exact
analytical solution to Eq. (6.10) in order to draw the phase portrait. We already
know that the eigenvalues of this system are of the form λ = a± ib, where a is
positive. As we mentioned previously (in Section 5.1, during the discussion of
step 2 for Example 5.1), this implies that the coordinates of any solution curve
must be linear combinations of the two terms eat cos(bt) and eat sin(bt). In other
words, every solution curve spirals outward. A cursory examination of the vector
field for Eq. (6.10) tells us that the spirals must rotate counterclockwise. We
thus see that for any 0 < C < 4, the phase portrait of the linear system in Eq.
(6.10) looks much like the one in Fig. 5.10.

Our examination of the linear system in Eq. (6.10) shows that the behavior
of the nonlinear system in the neighborhood of the origin must be essentially
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Figure 6.23: Graph of voltage x2 versus current x1 for the nonlinear RLC circuit
problem: case x1(0) = 0.1, x2(0) = 0.3, C = 0.5.

the same as in Fig. 6.22 for any value of C near the baseline case C = 1. To
see what happens farther away from the origin, we need to simulate. Figures
6.23 through 6.26 show the results of simulating the dynamical system in Eq.
(6.9) using the Euler method for several different values of C near 1. In each
simulation run we started at the same initial condition as in Fig. 6.21.

In each case the solution curve spirals outward and is gradually attracted
to a limit cycle. The limit cycle gets smaller as C increases. Several different
initial conditions were used for each value of C tested (additional simulation
runs are not shown). In each case, apparently, a single limit cycle attracts
every solution curve away from the origin. We conclude that the RLC circuit of
Example 6.3 has the behavior shown in Fig. 6.22 regardless of the exact value
of the capacitance C, assuming that C is close to 1.

6.4 Chaos and Fractals

One of the most exciting mathematical discoveries of the twentieth century is
the chaotic behavior of some dynamic models. Chaos is characterized by the
apparently random behavior of solutions, with extreme sensitivity to initial
conditions. Chaotic dynamical systems can give rise to exotic limit sets called
fractals. Chaotic dynamical system models have been used to handle prob-
lems in turbulent fluid flow, ecosystems with aperiodic population fluctuations,
cardiac arrythmia, occasional reversal of the earth’s magnetic poles, complex
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Figure 6.24: Graph of voltage x2 versus current x1 for the nonlinear RLC circuit
problem: case x1(0) = 0.1, x2(0) = 0.3, C = 0.75.
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Figure 6.25: Graph of voltage x2 versus current x1 for the nonlinear RLC circuit
problem: case x1(0) = 0.1, x2(0) = 0.3, C = 1.5.



6.4. CHAOS AND FRACTALS 193

-2 

-1.5 

-1 

-0.5 

0 

0.5 

1 

1.5 

2 
x2

-1.5 -1 -0.5 0 0.5 1 1.5 
x1

Figure 6.26: Graph of voltage x2 versus current x1 for the nonlinear RLC circuit
problem: case x1(0) = 0.1, x2(0) = 0.3, C = 2.0.

chemical reactions, lasers, and the stock market. Many of these applications are
controversial, and their implications are still being explored. One of the most
surprising things about chaos is the way it can emerge from simple nonlinear
dynamic models.

Example 6.4. Reconsider the whale problem of Example 4.2, but now suppose
that we use a discrete model to project population growth with a time step
of several years. We know that for a time step of one year, the discrete and
continuous time models behave in essentially the same manner. How large a time
step can we use and still retain the same qualitative behavior as the continuous
time model? What happens to the model if we use too large a time step?

We will use the five-step method. The results of step 1 are the same as in
Figure 4.3. In step 2 we specify a continuous–time dynamical system model,
which we will solve by simulation using the Euler method.

Consider a continuous–time dynamical system model

dx

dt
= F (x) (6.12)

with x = (x1, . . . , xn) and F = (f1, . . . , fn), along with the ini-
tial condition x(t0) = x0. The Euler method uses a discrete time
dynamical system

∆x

∆t
= F (x) (6.13)
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to approximate the behavior of the continuous time system. One
reason to use a large step size is to make long-range predictions. For
example, if time t is measured in years, then ∆x = F (x)∆t is a
simple projection of the change in the state variable x over the next
∆t years, based on the current state information. If the step size ∆t
is chosen so that the relative change ∆x/x remains small, then the
discrete time system in Eq. (6.13) will behave much like the original
continuous time system in Eq. (6.12). If the step size is too big, then
the discrete time system can exhibit very different behavior.

Example 6.5. Consider the simple linear differential equation

dx

dt
= −x. (6.14)

Compare the behavior of solutions to Eq. (6.14) to those of its dis-
crete time analogue

∆x

∆t
= −x. (6.15)

Solutions to Eq. (6.14) are all of the form

x(t) = x(0)e−t. (6.16)

The origin is a stable equilibrium, and every solution curve decays
exponentially fast to zero. For Eq. (6.15) the iteration function is

G(x) = x+∆x

= x− x∆t

= (1−∆t)x.

Solutions to Eq. (6.15) are all of the form

x(n) = (1−∆t)nx(0).

If 0 < ∆t < 1, then x(n) → 0 exponentially fast, and the behavior
is much like that of the continuous time differential equation. If
1 < ∆t < 2, then we still have x(n) → 0, but the sign of x(n)
oscillates between positive and negative. Finally, if ∆t > 2, then
x(n) diverges to infinity as it oscillates in sign. In summary, the
solutions of Eq. (6.15) behave much like those of Eq. (6.14) as long
as the time step ∆t is chosen so that the relative change ∆x/x
remains small. If the time step ∆t is too large, then Eq. (6.15)
exhibits behavior entirely different from that of its continuous time
analogue Eq. (6.14).

For linear dynamical systems, the time delays inherent in dis-
crete approximations can lead to unexpected behavior. A stable
equilibrium can become unstable, and new oscillations can occur.
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For linear systems, this is about the only way in which the behavior
of the discrete approximation can differ from that of the original con-
tinuous system. For nonlinear continuous time dynamical systems,
however, discrete approximations can also exhibit chaotic behavior.
In a chaotic dynamical system, there is an extreme sensitivity to
initial conditions, along with apparently random behavior of indi-
vidual solutions. Chaos is usually associated with systems in which
nearby solutions tend to diverge, but overall remain bounded. This
combination of factors can only occur in a nonlinear system.

The study of chaos in discrete time dynamical systems is an
active area of research. Some iteration functions produce extremely
complex sample paths, including fractals. A typical fractal is a set of
points in the state space that is self–similar and whose dimension is
not an integer. Self–similar means that the object contains smaller
pieces that are exact scaled–down replicas of the whole. One simple
way to measure dimension is to count the number of boxes needed
to cover the object. For a one–dimensional object, it takes n times
as many boxes if they are 1/n times as large; for a two–dimensional
object, it takes n2 times as many, and so on. For an object with
fractal dimension d, the number of boxes it takes to cover the object
increases like nd as the box size 1/n tends to zero.

Step 3 is to formulate the model. We begin with the continuous time dy-
namical system model

dx1

dt
= f1(x1, x2) = 0.05x1

(
1− x1

150, 000

)
− αx1x2

dx2

dt
= f2(x1, x2) = 0.08x2

(
1− x2

400, 000

)
− αx1x2

(6.17)

on the state space x1 ≥ 0, x2 ≥ 0, where x1 denotes the population of blue
whales and x2 the population of fin whales. In order to simulate this model, we
will transform to a set of difference equations

∆x1 = f1(x1, x2)∆t

∆x2 = f2(x1, x2)∆t
(6.18)

over the same state space. Then, for example, ∆x1 represents the change in the
population of Blue whales over the next ∆t years. We will assume that α = 10−8

to start with, and later on we will do a sensitivity analysis on α. Our objective
is to determine the behavior of solutions to the discrete time dynamical system
in Eq. (6.18) and compare to what we know about solutions to the continuous
time model in Eq. (6.17).

In step 4 we solve the problem by simulating the system in Eq. (6.17) using
a computer implementation of the Euler method for several different values of
h = ∆t. We assume that x1(0) = 5, 000 and x2(0) = 70, 000, as in Example 6.2.
Figure 6.27 illustrates the results of our simulation with N = 50 iterations and
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Figure 6.27: Graph of fin whales x2 versus time t for discrete time simulation
of the whale problem with time step h = 1.

a time step of h = 1 years. In 50 years the fin whales grow back steadily but
do not quite reach their eventual equilibrium level. In Figure 6.28 we increase
the step size to h = 2 years. Now our simulation with N = 50 iterations shows
the fin whale population approaching its equilibrium value. Using a larger time
step h is an efficient way to project further into the future, but then something
interesting happens.

Figure 6.29 shows the result of using a time step of h = 24 years. The
solution still approaches its equilibrium, but now there is an oscillation. Figure
6.30 shows what happens when we use a time step of h = 27 years. Now the
population actually diverges from the equilibrium and eventually settles into a
discrete limit cycle of period two.

When h = 32, the solution settles down into a limit cycle of period four; see
Figure 6.31. Figure 6.32 shows that when h = 37, the solution exhibits chaotic
behavior. The effect is similar to that of a random number generator. When
h = 40 (not shown), the solution quickly diverges to infinity. The behavior of
the blue whale population is similar. Different initial conditions and different
values of α produce similar results. In every case there is a transition from
stability to instability as the step size h increases. As the equilibrium becomes
unstable, first oscillations appear, then discrete limit cycles, and then chaos.
Finally, if h is too large the solutions simply diverge.

Step 5 is to answer the question. The discrete approximation to the contin-
uous time model is useful as long as the time step is small enough to keep the
relative change in the state variables small at each time step. Using a larger
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Figure 6.28: Graph of fin whales x2 versus time t for discrete time simulation
of the whale problem with time step h = 2.
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Figure 6.29: Graph of fin whales x2 versus time t for discrete time simulation
of the whale problem with time step h = 24.
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Figure 6.30: Graph of fin whales x2 versus time t for discrete time simulation
of the whale problem with time step h = 27.
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Figure 6.31: Graph of fin whales x2 versus time t for discrete time simulation
of the whale problem with time step h = 32.
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Figure 6.32: Graph of fin whales x2 versus time t for discrete time simulation
of the whale problem with time step h = 37.

time step allows us to project further into the future, but when the time step
becomes too large, the behavior of the discrete time system no longer resem-
bles that of the original continuous time model. It is interesting to observe the
strange behavior of the discrete time system when a larger time step is em-
ployed; however, this behavior has no apparent connection to the real–world
situation we are trying to model.

Many population models are based on some variation of the logistic model
x′ = rx(1−x/K). Most of these models exhibit chaos in the discrete approxima-
tion. It is typical for the dynamics to transition from stable equilibrium to limit
cycles to chaos (and then to unstable divergence) as the time step is increased.
At the transition from limit cycles to chaos, the limit set typically becomes a
fractal. See Exercise 25 at the end of this chapter for an illustration. There are
many interesting books and articles on chaos and fractals. Strogatz (1994) is
one good reference at an advanced undergraduate to beginning graduate level.

The emergence of chaos from the discrete approximation in the whale prob-
lem is interesting, but seems to have nothing to do with the real world. At
best it is a mathematical curiosity, at worst a numerical headache. The next
example, however, shows that chaos and fractals can also emerge naturally from
realistic models of physical situations.

Example 6.6. Consider a layer of air that is heated from the bottom. In certain
situations the warmer air rising up interacts with the colder air sinking down
to form turbulent convection rolls. The complete derivation of the dynamics of
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motion involves a system of partial differential equations, which can be solved by
the method of Fourier transforms; see Lorentz (1963). A simplified representa-
tion involves three state variables. The variable x1 represents the rate at which
the convection rolls rotate, x2 represents the temperature difference between
the ascending and descending air currents, and x3 represents the deviation from
linearity of the vertical temperature profile, a positive value indicating that the
temperature varies faster near the boundary. The equations of motion for this
system are

x′
1 = f1(x1, x2, x3) = −σx1 + σx2

x′
2 = f2(x1, x2, x3) = −x2 + rx1 − x1x3

x′
3 = f3(x1, x2, x3) = −bx3 + x1x2,

(6.19)

and we will consider the realistic case where σ = 10 and b = 8/3. The remaining
parameter r represents the temperature difference between the top and bottom
of the air layer. Increasing r pumps more energy into the system, creating more
vigorous dynamics. The dynamical system of Eq. (6.19) is called the Lorentz
equations, after the meteorologist E. Lorentz who analyzed them.

To find the equilibrium points of Eq. (6.19), we solve the system of equations

−σx1 + σx2 = 0

−x2 + rx1 − x1x3 = 0

−bx3 + x1x2 = 0

for the three state variables. Obviously, (0, 0, 0) is one solution. The first
equation implies x1 = x2. Substituting into the second equation, we obtain

−x1 + rx1 − x1x3 = 0

x1(−1 + r − x3) = 0

so that if x1 ̸= 0, then x3 = r − 1. Then, from the third equation we obtain
x2
1 = bx3 = b(r − 1). If 0 < r < 1, there are no real roots to this equation, and

so the origin is the only equilibrium point. If r = 1, then x3 = 0, and again the
origin is the only equilibrium point. If r > 1, then there are three equilibrium
points

E0 = (0, 0, 0)

E+ = (
√
b(r − 1),

√
b(r − 1), r − 1)

E− = (−
√
b(r − 1),−

√
b(r − 1), r − 1).

Graphical analysis of the vector field is difficult, since we are now in three
dimensions. Instead, we will perform an eigenvalue analysis to test the stability
of these three equilibrium points. The matrix of partial derivatives is

DF =

 −σ σ 0
r − x3 −1 −x1

x2 x1 −b

 .
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At the equilibrium E0 = (0, 0, 0) with the parameter values σ = 10 and b = 8/3,
this matrix becomes

A =

−10 10 0
r −1 0
0 0 −8/3

 ,

which has three real eigenvalues

λ1 =
−11−

√
81 + 40r

2

λ2 =
−11 +

√
81 + 40r

2

λ3 =
−8
3

for any value of r > 0. If 0 < r < 1, then all of these eigenvalues are negative,
so that the origin is a stable equilibrium. If r > 1, then λ2 > 0, so the origin is
an unstable equilibrium.

The eigenvalue analysis for the remaining two equilibria is rather messy.
Fortunately, the eigenvalues are the same at both E+ and E−. For 1 < r <
r1 ≈ 1.35, all three eigenvalues are real and negative. For any value of r > r1,
there is one eigenvalue λ1 < 0 and one complex conjugate pair λ2 = α + iβ,
λ3 = α− iβ. The real part α is negative for r1 < r < r0 and positive for r > r0,
where r0 ≈ 24.8. Thus, for 1 < r < r0, there are two stable equilibria at E+ and
E−, while for r > r0, every equilibrium is unstable. Solutions nearby these two
equilibria will behave much like those of the linear system x′ = Ax, where A is
the matrix of partial derivatives DF evaluated at the equilibrium point. Every
component of every linear solution can be written as a linear combination of
terms of the form eλ1t, eαt cos(βt), and eαt sin(βt). When r1 < r < r0, nearby
solution curves spiral into the nonzero equilibrium points, and when r > r0,
they spiral outwards. It also turns out that solutions do not diverge to infinity
when r > r0. We have seen this kind of behavior before, in the nonlinear RLC
circuit of Example 5.4. In that case a computer simulation showed that the
solution curves settled into a limit cycle. We will now simulate the dynamical
system of Eq. (6.19) to determine the long–term behavior of solutions.

The Euler method for three state variables uses exactly the same algorithm
as in Figure 6.19 except for the addition of another state variable. A computer
implementation of that algorithm was used to simulate the solution of Eq. (6.19)
in the case σ = 10 and b = 8/3. Figure 6.33 shows the results of a simulation
using r = 8 and initial conditions (x1, x2, x3) = (1, 1, 1). We graphed x2 versus
x1 since these variables are the easiest to interpret. We used N = 500 and
T = 5, so that the step size was h = 0.01. Additional sensitivity runs were made
to ensure that increasing the simulation time T or decreasing the step size h
led to essentially the same graph. As we expected from our earlier analysis, the
solution curve spirals into the equilibrium point at x1 = x2 = 4.32 (and x3 = 7).
Recall that x1 represents the rate at which the convection rolls rotate, and x2

represents the temperature difference between the ascending and descending air
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Figure 6.33: Graph of temperature differential x2 versus convection rate x1 for
the weather problem with r = 8 and initial condition (x1, x2, x3) = (1, 1, 1).

currents. When r = 8, both of these quantities eventually settle down into a
stable equilibrium. Figure 6.34 shows the simulation for the case r = 8 and
initial condition (x1, x2, x3) = (7, 1, 2). Keep in mind that this graph is actually
a projection of a three–dimensional picture. Of course, the real solution curve
does not cross itself. That would violate the uniqueness of solutions. Once
again, the solution spirals into the equilibrium.

As we increase the value of r, the simulation becomes extremely sensitive to
discretization. Figure 6.35 shows the results of a simulation using r = 18 and
initial conditions (x1, x2, x3) = (6.7, 6.7, 17). We used N = 500 and T = 2.5
for a step size of h = 0.005. The solution curve rotates rapidly about the
equilibrium E+ = (6.733, 6.733, 17) while it spirals in very slowly. Figure 6.36
shows the results of the same simulation using N = 500 and T = 5 for a slightly
larger step size of h = 0.01. In this case the solution spirals outward, away
from the equilibrium. Of course, this is not really what is happening in the
continuous time model, it is just an artifact of our simulation method. Because
the system is very near the point between stability and instability, we must be
careful to perform sensitivity analysis on the parameters N and T to ensure
that the behavior of the discrete time system really reflects what is going on
with the continuous time model.

Finally, we consider the case r > r0, where we know that the equilibrium
points are all unstable. Figure 6.37 shows the results of a simulation using r = 28
and initial conditions (x1, x2, x3) = (9, 8, 27). We used N = 500 and T = 10 for
a step size of h = 0.02. A careful sensitivity analysis on N and T was performed
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Figure 6.34: Graph of temperature differential x2 versus convection rate x1 for
the weather problem with r = 8 and initial condition (x1, x2, x3) = (7, 1, 2).
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Figure 6.35: Graph of temperature differential x2 versus convection rate x1 for
the weather problem with r = 18 and initial condition (x1, x2, x3) = (6.7, 6.7, 17)
using step size h = 0.005.
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Figure 6.36: Graph of temperature differential x2 versus convection rate x1 for
the weather problem with r = 18 and initial condition (x1, x2, x3) = (6.7, 6.7, 17)
using step size h = 0.01.
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Figure 6.37: Graph of temperature differential x2 versus convection rate x1 for
the weather problem with r = 28 and initial condition (x1, x2, x3) = (9, 8, 27).
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Figure 6.38: Graph of convection rate x1 versus time t for the weather prob-
lem with r = 28 comparing two initial conditions (x1, x2, x3) = (9, 8, 27) and
(x1, x2, x3) = (9.01, 8, 27).

to verify that this solution curve really represents the behavior of our continuous
time model. At first the solution curve rotates rapidly about the equilibrium
E+ = (8.485, 8.485, 27) while it spirals outward very slowly. Eventually, the
solution curve heads out toward the equilibrium E− = (−8.485,−8.485, 27),
where it spirals around for a while, and then eventually heads back towards
E+. Simulations using larger values of N and T indicate that the solution
never repeats itself, yet remains bounded. It continues to cross over between
the region around E+ and the region around E−.

Other solutions with nearby initial conditions show essentially the same be-
havior. There is also an extreme sensitivity to initial conditions. Solutions that
begin very close together eventually move farther apart. The solution curve
represented in Figure 6.37 started at the point (x1, x2, x3) = (9, 8, 27) at time
t = 0, and by time t = 10, it was spiraling around E−. A nearby solution curve,
starting at the point (x1, x2, x3) = (9.01, 8, 27) at time t = 0, ends up spiraling
around E+ by time t = 10. Figure 6.38 compares the path of the x1 coordinate
for these two solution curves. By time t = 10 it would be impossible to guess
that these two solutions began at almost the same initial condition. Yet if we
let the simulation time T get larger and larger, we see that both solution curves
trace out almost exactly the same shape in the state space. This limiting set
is called a strange attractor. Although it is bounded, its length is infinite, and
cross sections (for example, the collection of all points at which the curve inter-
sects the plane x3 = 0) are typically fractals. In fact, one reasonable analytic



206 CHAPTER 6. SIMULATION OF DYNAMIC MODELS

approach for dealing with the strange attractor is to consider the mapping that
sends a given intersection point to the next. This iteration function acts much
like the one we analyzed in Example 6.4 for the logistic model of population
growth. In this rather unexpected way, the analysis of discrete and continuous
time dynamical systems finds a new connection.

6.5 Exercises

1. Reconsider the war problem of Example 6.1. In this problem we explore
the effects of weather on combat. Bad weather and poor visibility decrease
the effectiveness of direct fire weapons for both sides. The effectiveness
of indirect fire weapons is relatively unaffected by the weather. We can
represent the effects of bad weather in our model as follows. Let w denote
the decrease in weapon effectiveness caused by bad weather conditions,
and replace the dynamical system in Eq. (6.3) by

∆x1 = −wλ(0.05)x2 − λ(0.005)x1x2

∆x2 = −w0.05x1 − 0.005x1x2.
(6.20)

Here, the parameter 0 ≤ w ≤ 1 represents a range of weather conditions,
with w = 1 indicating the best weather and w = 0 indicating the worst
weather.

(a) Use a computer implementation of the algorithm in Fig. 6.2 to sim-
ulate the discrete–time dynamical system in Eq. (6.20) in the case
λ = 3. Assume that adverse weather conditions cause a 75% decrease
in weapon effectiveness for both sides (w = 0.25). Who wins the bat-
tle, and how long does it take? How many divisions of troops remain
on the winning side?

(b) Repeat your analysis for each of the cases w = 0.1, 0.2, 0.5, 0.75, and
0.9, and tabulate your results. Answer the same questions as in part
(a).

(c) Which side benefits from fighting in adverse weather conditions? If
you were the blue commander, would you expect red to attack on a
sunny day or a rainy day?

(d) Examine the sensitivity of your results in parts (a), (b), and (c) to the
degree of weapon superiority of blue over red. Repeat the simulations
in parts (a) and (b) for λ = 1.5, 2.0, 4.0, and 5.0, and tabulate your
results as before. Reconsider your conclusions in part (c). Are they
still valid?

2. Reconsider the war problem of Example 6.1. In this problem we will con-
sider the effect of tactics on the outcome of the battle. The red commander
is considering the option of holding two of his five divisions in reserve until
the second or third day of combat. You can simulate each possibility as
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a deviation from the baseline case by running two separate simulations.
First, simulate the first one or two days of battle, matching two blue di-
visions against three red divisions. Then, use the final outcome of that
simulation as the initial conditions for the rest of the battle, except add
two more divisions to the red side.

(a) Use a computer implementation of the algorithm in Fig. 6.2 to sim-
ulate the first phase of battle, in which two blue divisions fight three
red divisions. Assume λ = 2, and tabulate the final force levels for
the two cases (12 or 24 hours of battle).

(b) Use the results of part (a) to simulate the next phase of battle. Add
two divisions to the final force levels for red, and continue the simu-
lation. In each case, tell which side wins the battle, how many units
remain on the winning side, and how long the battle lasts (total time
for both phases of battle).

(c) The red commander may choose to commit all of his forces on the
first day, or he may keep two divisions in reserve for one or two days.
Which of the three strategies is better? Optimize on the basis of
achieving victory at the minimum cost in terms of lost manpower.

(d) Perform a sensitivity analysis on the parameter λ, which describes the
extent to which blue has weapon superiority. Repeat parts (a) and (b)
for λ = 1.0, 1.5, 3.0, 5.0, and 6.0, and identify the optimal strategy
for each value of λ. State your general conclusions concerning the
optimal strategy for red.

3. Reconsider the war problem of Example 6.1. In this problem we will
investigate the effect of tactical nuclear weapons on the battle. As a
desperation move, the blue commander considers calling for a tactical
nuclear strike. It is estimated that such a strike will kill or incapacitate
70% of the red force, and 35% of the blue force as well.

(a) Use a computer implementation of the algorithm in Fig. 6.2 to simu-
late the discrete–time dynamical system in Eq. (6.3), assuming that
the blue commander calls for an immediate nuclear strike. Start with
initial conditions x1 = (0.30)5.0, x2 = (0.65)2.0, and assume λ = 3.
Who wins the battle, and how long does it take? How many divisions
survive on the winning side? How does blue benefit from calling for
a nuclear attack in this case?

(b) Simulate the case where the blue commander waits for six hours and
then calls for a nuclear attack. Simulate six hours of battle, starting
with x1 = 5 divisions and x2 = 2 divisions. Reduce the remaining
number of troops for both sides to represent the results of a nuclear
strike, and then continue the simulation. Answer the same questions
as in part (a).

(c) Compare the results of parts (a) and (b) to the case of conventional
combat summarized in the chapter. Discuss the benefits of a tactical
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nuclear strike by blue. Can such a move be effective and, if so, when
should the commander request the strike?

(d) Examine the sensitivity of your conclusions in part (c) to the extent
λ of blue weapon superiority. Repeat the simulations of parts (a) and
(b) for each of the cases λ = 1.0, 1.5, 2.0, 5.0, and 6.0, and answer
the same questions as before.

4. Reconsider the space docking problem of Example 5.2. Suppose that our
initial closing velocity is 50 m/sec under zero acceleration.

(a) Determine the time required for docking, assuming that the control
factor k = 0.02. Use a computer implementation of the algorithm
for discrete–time dynamical systems described in Fig. 6.2. Assume
docking is complete when the closing velocity has been reduced to
less than 0.1 m/sec in absolute value for all future time.

(b) Repeat the simulation of part (a) for each of the cases k = 0.01, 0.02,
0.03, . . ., 0.20, and determine the time required for docking in each
case. Which of these values of k results in the quickest time to dock?

(c) Repeat part (b), assuming an initial closing velocity of 25 m/sec.

(d) Repeat part (b), assuming an initial closing velocity of 100 m/sec.
What conclusions can you draw about the optimal value of k for this
docking procedure?

5. Reconsider the infectious disease problem introduced in Exercise 10 of
Chapter 4. Use a computer implementation of the algorithm in Fig. 6.2
to simulate this discrete–time dynamical system model. Answer the ques-
tions in parts (a) through (d) from the original exercise.

6. In Exercise 4 of Chapter 4, we introduced a simplified model of population
growth in the whale problem.

(a) Simulate this model, assuming that there are currently 5,000 blue
whales and 70,000 fin whales. Use the simple simulation technique of
Section 6.2, and assume α = 10−7. What happens to the two species
of whales over the long term, according to this model?

(b) Examine the sensitivity of your conclusions in part (a) to the assump-
tion that there are currently 5,000 blue whales. Repeat the simulation
of part (a), assuming that there are originally 3,000, 4,000, 6,000, or
7,000 blue whales. How sensitive are your conclusions to the exact
number of blue whales in the ocean at the present time?

(c) Examine the sensitivity of your conclusions in part (a) to the as-
sumption that the intrinsic growth rate of the blue whale is 5% per
year. Repeat the simulation of part (a), assuming that the actual
rate is 3, 4, 6, or 7% per year. How sensitive are your conclusions to
the actual intrinsic growth rate for the blue whales?
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(d) Examine the sensitivity of your conclusions in part (a) to the com-
petition coefficient α. Repeat the simulation of part (a) for each of
the cases α = 10−9, 10−8, 10−6, and 10−5, and tabulate your re-
sults. How sensitive are your general conclusions to the extent of
competition between the two species?

7. In Exercise 5 of Chapter 4, we introduced a more sophisticated model of
population growth in the whale problem.

(a) Simulate this model, assuming that there are currently 5,000 blue
whales and 70,000 fin whales. Use the simple simulation technique
of Section 6.2, and assume that α = 10−8. What happens to the two
species of whales over the long term, according to this model? Do
both species of whales grow back, or will one or both species become
extinct? How long does this take?

(b) Examine the sensitivity of your conclusions in part (a) to the assump-
tion that there are currently 5,000 blue whales. Repeat the simula-
tion of part (a), assuming that there are originally 2,000, 3,000, 4,000,
6,000, or 8,000 blue whales. How sensitive are your conclusions to
the exact number of blue whales in the ocean at the present time?

(c) Examine the sensitivity of your conclusions in part (a) to the assump-
tion that the intrinsic growth rate of the blue whale is 5% per year.
Repeat the simulation of part (a), assuming that the actual rate is
2, 3, 4, 6, or 7% per year. How sensitive are your conclusions to the
actual intrinsic growth rate for the blue whales?

(d) Examine the sensitivity of your conclusions in part (a) to the assump-
tion that the minimum viable population level of the blue whale is
3,000 whales. Repeat the simulation of part (a), assuming that the
actual level is 1,000, 2,000, 4,000, 5,000, or 6,000 whales. How sen-
sitive are your conclusions to the actual minimum viable population
level for the blue whales?

8. Reconsider Exercise 6 in Chapter 4, and assume α = 10−8. Assume that
the current population levels are B = 5,000 and F = 70,000.

(a) Use a computer implementation of the simple algorithm used in Sec-
tion 6.2 to determine the effect of harvesting. Assume E = 3,000
boat–days per year. What happens to the two species of whales over
the long term, according to this model? Do both species of whales
grow back, or will one or both species become extinct? How long
does this take?

(b) Repeat part (a), assuming that E = 6,000 boat–days per year.

(c) For what range of E does the number of whales of both species ap-
proach a nonzero equilibrium?
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(d) Repeat part (c) for each of the cases α = 10−9, 10−8, 10−6, and 10−5,
and tabulate your results. Discuss the sensitivity of your conclusions
to the extent of interspecies competition.

9. Reconsider the whale harvesting problem of Exercise 6 in Chapter 4. In
this problem we will explore the economic incentives for whalers to drive
one species of whale to extinction. Assume that there are currently 5,000
blue whales and 70,000 fin whales.

(a) Simulate this model, assuming E = 3,000 boat–days. Use the simple
simulation technique of Section 6.2, and assume that α = 10−7. De-
termine the long–term harvest rate in blue whale units per year (2
fin whales = 1 blue whale unit).

(b) Determine the level of effort that maximizes the long–term harvest
rate in blue whale units. Simulate each of the cases E = 500, 1,000,
1,500, . . ., 7,500, boat–days per year. Which case results in the high-
est sustainable yield?

(c) Assume that whalers harvest at the rate that maximizes their long–
term sustainable yield. What happens to the two species of whales
over the long term, according to this model? Do both species of
whales grow back, or will one or both species become extinct? How
long does this take?

(d) Some economists argue that whalers will act to maximize the long–
term sustainable yield for the entire industry. If so, would continued
harvesting cause one or both species of whales to become extinct?

10. (Continuation of Exercise 9) Some economists argue that whalers will act
in such a way as to maximize the total discounted revenue obtained by
the entire whaling industry. Assume that harvesting produces revenue of
$10,000 per blue whale unit, and assume a discount rate of 10%. If revenue
Ri is obtained in year i, the total discounted revenue is defined as

R0 + λR1 + λ2R2 + λ3R3 + · · · ,

where 1− λ represents the discount rate (λ = 0.9 for this problem).

(a) Simulate this model, assuming E = 3,000 boat–days. Use the sim-
ple simulation technique of Section 6.2, and assume that α = 10−7.
Determine the total discounted revenue for this case.

(b) Determine the level of effort that maximizes the total discounted
revenue. Simulate each of the cases E = 500, 1,000, 1,500, . . ., 7,500,
boat–days per year. Which case results in the highest yield?

(c) Assume that whalers harvest at the rate that maximizes their total
discounted revenue. What happens to the two species of whales over
the long term, according to this model? Do both species of whales
grow back, or will one or both species become extinct? How long
does this take?
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(d) Perform a sensitivity analysis on the parameter α, which measures
the extent of interspecies competition. Consider each of the cases
α = 10−9, 10−7, 10−6, and 10−5, and tabulate your results. Dis-
cuss the sensitivity of your conclusions to the extent of interspecies
competition.

11. Reconsider the predator–prey model of Exercise 7 in Chapter 4.

(a) Determine by simulation the equilibrium levels for whales and krill.
Use the simple simulation technique discussed in Section 6.2. Begin
at several different initial conditions and run the simulation until
both population levels have settled down into steady state.

(b) Suppose that after both population levels have settled down into
steady state, an ecological disaster kills off 20% of the whales and
80% of the krill. Describe what happens to the two species, and how
long it takes.

(c) Suppose that harvesting has depleted the whales to 5% of their equi-
librium population level, while krill remain at about the same level.
Describe what happens once harvesting is stopped. How long does it
take for the whales to grow back? What happens to the krill popu-
lation?

(d) Examine the sensitivity of your results in part (c) to the assumption
that 5% of the whales remain. Simulate each of the cases where 1,
3, 7, or 10% remain, and tabulate your results. How sensitive is the
time it takes for the whales to grow back to the extent to which the
population is depleted?

12. Reconsider the tree problem of Example 5.1.

(a) Determine how long it will take for both hardwoods and softwoods
to grow to 90% of their stable equilibrium levels. Assume an initial
population of 1,500 tons/acre of softwood trees and 100 tons/acre of
hardwoods. This is the situation in which we are trying to introduce
a new type of more valuable tree into an existing ecosystem. Assume
bi = ai/2, and use the simple simulation technique introduced in
Section 6.2.

(b) Determine the point at which the biomass of hardwood trees is in-
creasing at the fastest rate.

(c) Assuming that hardwoods are worth four times as much as softwoods
in $/ton, determine the point at which the value of the forest stand
($/acre) is increasing at the fastest rate.

13. (Continuation of Exercise 12) Clear–cutting is a technique in which all of
the trees in the forest are harvested at one time and then replanted.
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(a) Determine the optimal harvest policy for this forest; i.e., determine
the number of years we should wait before cutting and replanting.
Assume that replanting involves 100 tons/acre of hardwoods and 100
tons/acre of softwoods. Base your answer on the number of $/acre
per year generated.

(b) Determine the optimal harvest policy, assuming that only hardwoods
are replanted (200 tons/acre).

(c) Repeat part (b), but now assume that only softwoods are replanted
(200 tons/acre).

(d) State the optimal clear–cutting policy for management of this tract
of forest land. At what point would you consider selling the land
rather than reforesting?

14. Reconsider the more sophisticated competing species model of Exercise 5
in Chapter 4. Assume α = 10−8.

(a) Use a computer implementation of the Euler method to simulate
the behavior of this model, starting with the initial conditions x1 =
5,000 blue whales and x2 = 70,000 fin whales. Perform a sensitivity
analysis on both T and N to ensure the validity of your results, as in
the text. What happens to the two species of whales over the long
term, according to this model? Do both species of whales grow back,
or will one or both species become extinct? How long does this take?

(b) Repeat part (a) for a range of initial conditions for both blue and
fin whales. Tabulate the results of your simulations, and answer the
same questions as in part (a) for each case.

(c) Use the results of parts (a) and (b) in order to draw the complete
phase portrait for this system.

(d) Indicate the region on the phase portrait where one or both species
of whale are destined to become extinct.

15. Reconsider the RLC circuit problem of Example 6.3, and perform a sen-
sitivity analysis on the parameter L, which represents inductance.

(a) Generalize the dynamical system model in Eq. (6.8) to represent the
case L > 0. How does the vector field for this model vary with L?

(b) Determine the form of the linear system that approximates the be-
havior of the nonlinear RLC circuit model in the neighborhood of
the origin. Calculate the eigenvalues for the linear system as a func-
tion of L. Determine the range of L over which both eigenvalues are
complex with positive real part, as in the baseline case L = 1.

(c) Use a computer implementation of the Euler method to simulate the
behavior of the RLC circuit for each of the cases L = 0.5, 0.75, 1.5,
and 2.0. Use the same initial condition x1 = 0.1, x2 = 0.3 as in Fig.
6.21. For each case, perform a sensitivity analysis on both T and N
to ensure the validity of your results, as in the text.
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(d) Simulate several additional initial conditions for each value of L spec-
ified in part (c). Draw the complete phase portrait for each case.
Describe how the phase portrait changes in response to changes in
the inductance L.

16. Reconsider the RLC circuit problem of Example 6.3, and now consider
what happens in the case of a large capacitance, C > 4.

(a) Solve the linear system in Eq. (6.10) by the method of eigenvalues
and eigenvectors in the case C > 4.

(b) Draw the phase portrait for this linear system. How does the phase
portrait change as a function of C?

(c) Use a computer implementation of the Euler method to simulate the
RLC circuit for each of the cases C = 5, 6, 8, and 10. Use the same
initial condition x1 = 0.1, x2 = 0.3 as in Fig. 6.21. For each case,
perform a sensitivity analysis on both T and N to ensure the validity
of your results, as in the text.

(d) Simulate several additional initial conditions for each value of C spec-
ified in part (c). Draw the complete phase portrait for each case.
Contrast with the case 0 < C < 4 discussed in the text. What
changes occur in the phase portrait as we transition between the two
cases?

17. Reconsider the RLC circuit problem of Example 6.3, and now consider
the robustness of our general conclusions with respect to the assumption
that the resistor in this RLC circuit has v–i characteristic f(x) = x3 − x.
In this problem we will assume that f(x) = x3− ax, where the parameter
a may represent any positive real number. (The case a = −4 was the
subject of Example 5.3.)

(a) Generalize the dynamical system model in Eq. (6.8) to represent the
general case a > 0. How does the vector field for this model vary
with a?

(b) Determine the form of the linear system that approximates the be-
havior of the nonlinear RLC circuit model in the neighborhood of the
origin. Calculate the eigenvalues for the linear system as a function
of a.

(c) Draw the phase portrait for this linear system. How does the phase
portrait change as a function of a?

(d) Use a computer implementation of the Euler method to simulate the
RLC circuit for each of the cases a = 0.5, 0.75, 1.5, and 2.0, and
draw the complete phase portrait for each case. What changes occur
in the phase portrait as we change a? What do you conclude about
the robustness of this model?
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18. Reconsider the RLC circuit problem of Example 6.3, and now consider
the robustness of our general conclusions with respect to the assumption
that the resistor in this RLC circuit has v–i characteristic f(x) = x3 − x.
In this problem we will assume that f(x) = x|x|1+b − x, where b > 0.

(a) Generalize the dynamical system model in Eq. (6.8) to represent the
general case b > 0. How does the vector field for this model vary
with b?

(b) Determine the form of the linear system that approximates the be-
havior of the nonlinear RLC circuit model in the neighborhood of the
origin. Calculate the eigenvalues for the linear system as a function
of b.

(c) Draw the phase portrait for this linear system. How does the phase
portrait change as a function of b?

(d) Use a computer implementation of the Euler method to simulate the
RLC circuit for each of the cases b = 0.5, 0.75, 1.25, and 1.5. Draw
the complete phase portrait for each case. What changes occur in
the phase portrait as we change b? What do you conclude about the
robustness of this model?

19. A pendulum consists of a 100 g weight at the end of a lightweight rod 120
cm in length. The other end of the rod is fixed, but can rotate freely. The
frictional forces acting on the moving pendulum are thought to be roughly
proportional to its angular velocity.

(a) The pendulum is lifted manually until the rod makes a 450 angle
with the vertical. Then the pendulum is released. Determine the
subsequent motion of the pendulum. Use the five-step method, and
model as a continuous–time dynamical system. Simulate using the
Euler method. Assume that the force due to friction is of magnitude
kθ′, where θ′ is the angular velocity in radians per second and the
coefficient of friction is k = 0.05 g/sec.

(b) Use a linear approximation to determine the approximate behavior
of the system near equilibrium. Assume that the magnitude of the
frictional force is kθ′. How does the local behavior depend on k?

(c) Determine the period of the pendulum. How does period vary with
k?

(d) This size pendulum will be used as part of the mechanism for a grand-
father clock. In order to maintain a certain amplitude of oscillation,
a force is to be applied periodically. How much force should be ap-
plied, and how often, to produce an amplitude of ±300? How does
the answer depend on the amplitude desired? [Hint: Simulate one
period of the pendulum oscillation. Vary the initial angular velocity
θ′(0) to obtain periodic behavior.]
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20. (Chaos) This problem illustrates the striking difference between the be-
havior of continuous–time and discrete–time dynamical systems that can
occur even in simple models.

(a) Show that the continuous–time dynamical system

x′
1 = (a− 1)x1 − ax2

1

x′
2 = x1 − x2

has a stable equilibrium at x1 = x2 = (a− 1)/a for any a > 1.

(b) Show that the analogous discrete–time dynamical system

∆x1 = (a− 1)x1 − ax2
1

∆x2 = x1 − x2

also has an equilibrium at x1 = x2 = (a− 1)/a for any a > 1.

(c) Use a simulation to explore the stability of the equilibrium x1 = x2 =
(a− 1)/a and the behavior of nearby solutions for the discrete–time
dynamical system. For each of the cases a = 1.5, 2.0, 2.5, 3.0, 3.5,
and 4.0, try several different initial conditions near the equilibrium
point and report what you see. (The case a = 4.0 represents a simple
model of chaos, the apparently random behavior of a deterministic
dynamical system.)

21. (Programming exercise) An alternative method that can be used to sim-
ulate dynamical systems is the Runge–Kutta method.

Figure 6.39 gives an algorithm for the Runge–Kutta method to simulate
a dynamical system in two variables,

dx1

dt
= f1(x1, x2)

dx2

dt
= f1(x1, x2).

For a fairly small step size h, Runge–Kutta has the property that doubling
the number of steps (halving h) produces results approximately 16 times
more accurate.

(a) Implement the Runge–Kutta method on a computer.

(b) Verify your computer implementation by using it to solve the linear
system given by Eq. (5.18) in Chapter 5. Compare your results to
the analytic solution in Eq. (5.19) for the case c1 = 1, c2 = 0.

(c) Verify the results obtained in Figs. 6.20 and 6.21 for the RLC circuit
problem of Example 6.3.

22. Reconsider the whale problem of Example 6.4. In this problem we will
explore the behavior of the blue whale population. Assume that α = 10−8

and begin with x1 = 5, 000 blue whales and x2 = 70, 000 fin whales.
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Algorithm: RUNGE–KUTTA METHOD

Variables: t(n) = time after n steps
x1(n) = first state variable at time t(n)
x2(n) = second state variable at time t(n)
N = number of steps
T = time to end simulation

Input: t(0), x1(0), x2(0), N, T

Process: Begin
h← (T − t(0))/N
for n = 0 to N − 1 do

Begin
r1 ← f1(x1(n), x2(n))
s1 ← f2(x1(n), x2(n))
r2 ← f1(x1(n) + (h/2)r1, x2(n) + (h/2)s1)
s2 ← f2(x1(n) + (h/2)r1, x2(n) + (h/2)s1)
r3 ← f1(x1(n) + (h/2)r2, x2(n) + (h/2)s2)
s3 ← f2(x1(n) + (h/2)r2, x2(n) + (h/2)s2)
r4 ← f1(x1(n) + hr3, x2(n) + hs3)
s4 ← f2(x1(n) + hr3, x2(n) + hs3)
x1(n+ 1)← x1(n) + (h/6)(r1 + 2r2 + 2r3 + r4)
x2(n+ 1)← x2(n) + (h/6)(s1 + 2s2 + 2s3 + s4)
t(n+ 1)← t(n) + h
End

End

Output: t(1), . . . , t(N); x1(1), . . . , x1(N); x2(1), . . . , x2(N)

Figure 6.39: Pseudocode for the Runge–Kutta method.

(a) Use the Euler method with a time step of h = ∆t = 1 year. Simu-
late N = 50 time steps and describe the behavior of the blue whale
population over time.

(b) Repeat the simulation of part (a) with N = 50 time steps for each of
the cases h = 5, 10, 20, 30, 35, and 40. How does the behavior of the
blue whale population change as the time step h increases?

(c) Repeat part (b) for α = 10−7 and α = 10−9. How sensitive are your
conclusions in part (b) to the assumption that α = 10−8?

(d) Repeat part (b) starting from the initial condition x1 = 150, 000 blue
whales and x2 = 400, 000 fin whales, and assume that α = 10−8. How
sensitive are your conclusions in part (b) to the assumption that we
start with x1 = 5, 000 blue whales and x2 = 70, 000 fin whales?
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23. Reconsider the whale problem of Example 6.4. In this problem we will
explore the sensitivity to initial conditions for a chaotic dynamical system.
Assume that α = 10−8 and that we begin with x2(0) = 70, 000 fin whales.

(a) Use the Euler method with a time step of h = ∆t = 35 years. Simu-
late to determine the number of blue whales x1(T ) that remain after
T = 1750 years (N = 50 time steps), using the initial condition
x1(0) = 5, 000 blue whales.

(b) Repeat the simulation of part (a) using the initial condition x1(0) =
5050 and determine the resulting blue whale population x1(T ) af-
ter T = 1750 years. Compare to the results of part (a) and com-
pute the sensitivity of the eventual population level to the initial
condition. Note that the relative change in the initial condition is
∆x1(0)/x1(0) = 0.01 and the relative change in the eventual popu-
lation level is ∆x1(T )/x1(T ).

(c) Repeat part (b) for each of the initial conditions x1 = 5005, 5000.5,
5000.05, 5000.005 and comment on the relation between the sensitiv-
ity and the difference ∆x1(0) in the initial condition.

(d) How sensitive is this chaotic dynamical system to small changes in the
initial condition? If we estimate the current state of such a system,
can we reliably predict its future?

24. Reconsider the whale problem of Example 6.4. In this problem we will
explore the transition from stability to instability in the discrete approx-
imation of Eq. (6.18) as the step size h = ∆t increases. Assume that
α = 10−8.

(a) Compute the coordinates of the equilibrium in the positive first quad-
rant for the continuous time dynamical system of Eq. (6.17). Use the
eigenvalue test for continuous time dynamical systems to show that
this equilibrium is stable.

(b) Explain why the iteration function for the discrete approximation is
given by G(x) = x+ hF (x) where h = ∆t. Write down the iteration
function for the discrete time dynamical system of Eq. (6.18).

(c) Write down the matrix of partial derivatives A = DG evaluated at
the equilibrium point found in part (a), and compute the eigenvalues
of this matrix as a function of the step size h.

(d) Use the eigenvalue test for discrete time dynamical systems to deter-
mine the largest step size h for which the equilibrium found in part
(a) remains stable in the discrete approximation. Compare with the
results in the text.

25. Reconsider the whale problem of Example 6.4. In this problem we will use
simulation to explore the fractal limit sets in the discrete approximation
of Eq. (6.18) for different step sizes h = ∆t.
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(a) Use a computer implementation of the Euler method to reproduce
the results shown in Figure 6.31 in the text. Assume that α = 10−8

and use a step size of h = ∆t = 32 years with initial conditions
x1(0) = 5, 000 blue whales and x2(0) = 70, 000 fin whales.

(b) Plot fin whales x2(n) versus blue whales x1(n) for n = 100, . . . , 1000.
Your graph should show the limit set consisting of four points.

(c) Repeat the simulation of part (a) for step size h = 33, 34, . . . , 37. For
each case, plot the limit set as in part (b). How does the limit set
change as the step size increases?

(d) Repeat part (c) for initial condition x1(0) = 150, 000 blue whales and
x2(0) = 400, 000 fin whales. Does the limit set depend on the initial
condition?

(e) Repeat part (c) for α = 3× 10−8. Does the limit set depend on the
competition parameter α?

26. Reconsider the weather problem of Example 6.6.

(a) Use a computer implementation of the Euler method to reproduce
the results of Figure 6.33 in the text. Assume σ = 10, b = 8/3, r = 8,
and use the initial condition (x1, x2, x3) = (1, 1, 1).

(b) Use the results of part (a) to plot the deviation x3 from linearity of the
temperature profile versus the rate x1 at which the convection rolls
rotate. Perform a sensitivity analysis on the step size h to ensure
that your plot represents the true behavior of the continuous time
dynamical system.

(c) Repeat part (b) for the initial condition (x1, x2, x3) = (7, 1, 2). Does
the solution curve approach the equilibrium found in the text?

(d) Repeat part (b) for r = 18 and r = 28. How does the solution
behavior change as r increases?

27. Reconsider the weather problem of Example 6.6.

(a) Use a computer implementation of the Euler method with N = 500
and T = 2.5 (step size h = 0.005) to reproduce the results of Figure
6.35 in the text. Assume σ = 10, b = 8/3, r = 18, and use the initial
condition (x1, x2, x3) = (6.7, 6.7, 17).

(b) Repeat part (a) for larger step sizes h = 0.01, 0.015, . . . , 0.03. You
can keep N = 500 and increase T = 5, 7.5, 10, 12.5, and 15. How does
the simulated solution curve change as the step size increases?

(c) Find the coordinates of the equilibrium point E+ when σ = 10,
b = 8/3, and r = 24. Verify by simulation. Begin the simulation at
the initial condition E+ and check that the solution remains at this
point.
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(d) Is the equilibrium point E+ found in part (c) stable? Verify by simu-
lation. Begin the simulation at the initial condition E++(0.1, 0.1, 0)
and determine whether the solution tends toward the equilibrium
point E+. How small a step size h must be used to ensure that the
simulation results represent the true behavior of the continuous time
dynamical system?
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Chapter 7

INTRODUCTION TO
PROBABILITY MODELS

Most real–life problems contain elements of uncertainty. In some models we may
introduce random elements to account for uncertainties in human behavior. In
other models we may be unsure of the exact physical parameters of a system,
or we may be unsure of the exact physical laws that govern its dynamics. It
has even been suggested in some cases that physical parameters and physical
laws are essentially random; for example, in quantum mechanics. Sometimes
probabilities are introduced into a model as a matter of convenience, sometimes
as a matter of necessity. In either case, it is here in the realm of probability
that mathematical modeling becomes most interesting and useful.

Probability is a familiar and intuitive idea. In this chapter we begin our
treatment of probability models. We do not assume any prior background in
formal probability theory. We will introduce the basic concepts of probability
here in a natural way as they emerge in the study of real problems.

7.1 Discrete Probability Models

The most simple and intuitive probability models are those involving a dis-
crete set of possible outcomes and no time dynamic elements. Such models are
frequently encountered in the real world.

Example 7.1. An electronics manufacturer produces a variety of diodes. Qual-
ity control engineers attempt to insure that faulty diodes will be detected in the
factory before they are shipped. It is estimated that 0.3% of the diodes pro-
duced will be faulty. It is possible to test each diode individually. It is also
possible to place a number of diodes in series and test the entire group. If this
test fails, it means that one or more of the diodes in that group are faulty. The
estimated testing cost is 5 cents for a single diode, and 4+n cents for a group of
n > 1 diodes. If a group test fails, then each diode in the group must be retested
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Variables: n = number of diodes per test group
C = testing cost for one group (cents)
A = average testing cost (cents/diode)

Assumptions: If n = 1, then A = 5 cents
Otherwise (n > 1), we have C = 4 + n
if the group test indicates that all
diodes are good, and C = (4 + n) + 5n
if the group test indicates a failure.
A = (Average value of C)/n

Objective: Find the value of n that minimizes A

Figure 7.1: Results of step 1 for the diode problem.

individually to find the bad one(s). Find the most cost–effective quality control
procedure for detecting bad diodes.

We will use the five-step method. The results of step 1 are summarized in
Figure 7.1. The variable n is a decision variable, and we are free to choose
any n = 1, 2, 3, . . ., but the variable C is the random outcome of the quality
control procedure we select. We say C is a random variable. The quantity
A, however, is not random. It represents the average or expected value of the
random variable C/n.

Step 2 is to select the modeling approach. We will use a discrete probability
model.

Consider a random variable X, which can take any of a discrete
set of values

X ∈ {x1, x2, x3, . . .},
and suppose that X = xi occurs with probability pi. We will write

Pr{X = xi} = pi.

Of course, we must have
Σpi = 1.

Since X takes the value xi with probability pi, the average or ex-
pected value ofX should be a weighted average of the possible values
xi, weighted according to their relative likelihoods pi. We will write

EX = Σxipi. (7.1)

The probabilities pi represent what we will call the probability dis-
tribution of X.

Example 7.2. In a simple game of chance, two dice are rolled and
the bank pays the player the number of dollars shown on the dice.
How much would you pay to play this game?
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Figure 7.2: Histogram of probability versus outcome showing the distribution
of the sum of two dice.

LetX denote the number shown on the dice. There are 6×6 = 36
possible outcomes, and each is equally likely. There is only one way
to roll a 2, so

Pr{X = 2} = 1/36.

There are two ways to roll a 3 (1 and 2, or 2 and 1), so

Pr{X = 3} = 2/36.

The complete probability distribution of X is illustrated in Figure
7.2. The expected value of X is

EX = 2(1/36) + 3(2/36) + · · ·+ 12(1/36),

or EX = 7. After many repetitions of this game, you would expect
to win about seven dollars per roll. Therefore, it would be worth-
while to play the game if it cost no more than seven dollars to play.

To be more specific, suppose that you play the game over and
over. Let Xn denote the amount you win on the nth roll of the
dice. Each Xn has the same distribution, and the different Xn are
independent. The amount won on one roll does not depend on the
amount won in the previous roll. There is a theorem called “the
strong law of large numbers,” which says that for any sequence of
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independent, identically distributed random variables X, X1, X2,
X3, . . . with EX finite, we will have

X1 + · · ·+Xn

n
→ EX (7.2)

as n→∞ with probability 1. In other words, if you play the game
for a long time, you are virtually certain to win about $7 per roll
(Ross (1985) p. 70).

The formal definition of independence is as follows. Let Y and Z
denote two random variables with

Y ∈ {y1, y2, y3, . . .}

and

Z ∈ {z1, z2, z3, . . .}.

We say that Y and Z are independent if it is generally true that

Pr{Y = yi and Z = zj} = Pr{Y = yi}Pr{Z = zj}. (7.3)

For example, let Y and Z denote the number on the first and second
dice, respectively. Then

Pr{Y = 2, Z = 1} = Pr{Y = 2}Pr{Z = 1} = (1/6)(1/6) = (1/36),

and likewise for each possible outcome. The random variables Y and
Z are independent. The number that comes up on the second die
has nothing to do with what happened on the first.

Returning to the diode problem of Example 7.1, we see that the random
variable C takes on one of two possible values for any fixed n > 1. If all the
diodes are good, then

C = 4 + n.

Otherwise,

C = (4 + n) + 5n,

since we have to retest each diode. Letting p denote the probability that all the
diodes are good, the remaining possibility (one or more bad diodes) must have
probability 1− p. Then the average or expected value of C is

EC = (4 + n)p+ [(4 + n) + 5n](1− p). (7.4)

Now for step 4. There are n diodes, and the probability that one individual
diode is bad is 0.003. In other words, the probability that one individual diode
is good is 0.997. Assuming independence, it follows that the probability that
all n diodes in one test group are good is p = 0.997n.
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The expected value of the random variable C is

EC = (4 + n)0.997n + [(4 + n) + 5n](1− 0.997n)

= (4 + n) + 5n(1− 0.997n)

= 4 + 6n− 5n(0.997)n.

Hence, the average testing cost per diode is

A =
4

n
+ 6− 5(0.997)n. (7.5)

The strong law of large numbers tells us that this formula represents the long–
run average cost we will experience if we use test groups of size n. Now all we
need is to minimize A as a function of n. We leave the details to the reader (see
Exercise 1). The minimum of A = 1.48 cents/diode occurs at n = 17.

We conclude with step 5. Quality control procedures for detecting faulty
diodes can be made considerably more economical by group testing methods.
Individual testing costs approximately 5 cents/unit. Bad diodes occur only
rarely, at a rate of 3 per 1,000. By testing groups of 17 diodes each, in series,
we can reduce testing costs by a factor of three (to 1.5 cents/diode) without
sacrificing quality.

Sensitivity analysis is critical in this type of problem. The implementation
of a quality control procedure will depend on several factors outside the scope
of our model. It may be easier to test diodes in batches of 10 or 20, or perhaps
n should be a multiple of 4 or 5, depending on the details of our manufacturing
process. Fortunately, the average cost A does not vary significantly between
n = 10 and n = 35. Again, we leave the details to the reader. The parameter
q = 0.003, which represents the failure rate in the manufacturing process, must
also be considered. For example, this value may vary with the environmental
conditions inside the plant. Generalizing on our previous model, we have

A =
4

n
+ 6− 5(1− q)n. (7.6)

At n = 17 we have

S(A, q) =
dA

dq
· q
A

= 0.16,

so small variations in q are not likely to affect our cost very much.
A more general robustness analysis would consider the assumption of inde-

pendence. We have assumed that there is no correlation between the times of
successive failures in the manufacturing process. It may be, in fact, that bad
diodes tend to be produced in batches, perhaps due to a passing anomaly in the
manufacturing environment, such as a vibration or a power surge. The mathe-
matical analysis of dependent random variable models cannot be dealt with in
its entirety here. The stochastic process models introduced in the next chapter
are capable of representing some kinds of dependence, while some other types of
dependence admit no tractable analytic formulations. Problems in robustness
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Variables: λ = decay rate (per second)
Tn = time of nth observed decay

Assumptions: Radioactive decays occur at random
with rate λ. Tn+1 − Tn ≥ 3× 10−9 for all n

Objective: Find λ on the basis of a finite number
of observations T1, . . . , Tn

Figure 7.3: Results of step 1 of the radioactive decay problem.

are very much an active and intriguing branch of current research in probability
theory. In practice, simulation results tend to indicate that expected value mod-
els based on independent random variables are quite robust. More importantly,
it has been found through experience that such models provide useful, accurate
approximations of real–life behavior in most cases.

7.2 Continuous Probability Models

In this section we consider probability models based on random variables that
take values over a continuum. Such models are particularly convenient for rep-
resenting random times. The mathematical theory required is completely anal-
ogous to the discrete case, except that now integrals replace sums.

Example 7.3. A “type I counter” is used to measure the radioactive decay in
a sample of fissionable material. Decays occur at random, at an unknown rate,
and the purpose of the counter is to measure the decay rate. Each radioactive
decay locks the counter for a period of 3 × 10−9 seconds, during which time
any decays that occur are not counted. How should the data received from the
counter be adjusted to account for the lost information?

We will use the five-step method. The results of step 1 are summarized in
Figure 7.3. Step 2 is to select the modeling approach. We will use a continuous
probability model.

Suppose that X is a random variable that takes values on the
real line. A convenient way to describe the probability structure of
X is to specify the function

F (x) = Pr{X ≤ x},

called the distribution function of X. If F (x) is differentiable, we
call the function

f(x) = F ′(x)

the density function of X. Then for any real numbers a and b we
have

Pr{a < X ≤ b} = F (b)− F (a) =

∫ b

a

f(x) dx. (7.7)
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In other words, the area under the density curve represents proba-
bility. The mean or expected value of X is defined by

EX =

∫ ∞

−∞
xf(x) dx, (7.8)

which is directly analogous to the discrete case, as can be seen by
considering the Riemann sum for the integral. (See Exercise 13
for details.) It is also worthwhile pointing out that this notation
and terminology were originally adapted from a problem in physics,
namely the center of mass problem. If a wire or rigid rod is laid out
along the x axis, and f(x) represents the density (gms/cm) at point
x, then the integral of f(x) represents mass, and the integral of xf(x)
represents the center of mass (assuming, as we do in probability, that
the total mass is equal to 1).

The special case of random arrivals occurs frequently in applica-
tions. Suppose that arrivals (e.g., customers, phone calls, radioactive
decays) occur at random with rate λ, and let X denote the random
time between two successive arrivals. It is common to assume that
X has the distribution function

F (t) = 1− e−λt, (7.9)

so that the density function of X is

f(t) = λe−λt. (7.10)

This distribution is called the exponential distribution with rate pa-
rameter λ.

One very important property of the exponential distribution is
its “lack of memory”. For any t > 0 and s > 0, we have

Pr{X > s+ t|X > s} = Pr{X > s+ t}
Pr{X > s}

=
e−λ(s+t)

e−λs
= e−λt

= Pr{X > t}.

(7.11)

In other words, the fact that we have already waited s units of time
for the next arrival does not affect the (conditional) distribution of
the time until the next arrival. The exponential distribution “for-
gets” that we have already waited this long. The probability in Eq.
(7.11) is called a conditional probability. Formally, the probability
of event A occurring, given the event B occurs, is

Pr{A|B} = Pr{A and B}
Pr{B}

. (7.12)

In other words, Pr{A|B} is the relative likelihood of A among all
possible events once B has occurred.
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Now we proceed to step 3, the model formulation. We are assuming that
radioactive decays occur at random at an unknown rate λ. We will model this
process by assuming that the times between successive radioactive decays are
independent and identically distributed with an exponential distribution with
rate parameter λ. Let

Xn = Tn − Tn−1

denote the times between successive observations of a radioactive decay. Of
course, Xn does not have the same distribution as the time between successive
decays, because of the lock time. In fact, Xn ≥ 3 × 10−9 with probability 1,
which is certainly not true for the exponential distribution.

The random time Xn consists of two parts. First, we must wait a = 3×10−9

seconds while the counter is locked, and then we must wait an additional Yn

seconds until the next decay. Now Yn is not simply the time between two decays,
because it begins at the end of the lock time, not at a decay time. However, the
memoryless property of the exponential distribution guarantees that Yn is still
exponential with rate parameter λ.

Step 4 is to solve the model. Since Xn = a+ Yn, we have EXn = a+EYn,
where

EYn =

∫ ∞

0

tλe−λt dt.

Integrate by parts to find EYn = 1/λ. Thus, EXn = a + 1/λ. The strong law
of large numbers says that

lim
n→∞

X1 + · · ·+Xn

n
= a+

1

λ

with probability 1. In other words, (Tn/n) → a + 1/λ. For large n it will be
approximately true that

Tn

n
= a+

1

λ
. (7.13)

Solving for λ, we obtain

λ =
n

Tn − na
. (7.14)

Finally, we conclude with step 5. We have obtained a formula for decay
rate that corrects for the decays missed while the counter is locked. All that
is required is to record the length of observation and the number of decays
recorded. The distribution of those decays in the observation interval is not
required to determine λ.

Sensitivity analysis should consider the lock time a, which must be deter-
mined empirically. The accuracy to which we can determine a will affect the
accuracy of λ. From Eq. (7.14) we calculate that

dλ

da
= λ2.

The sensitivity of λ to a is then

S(λ, a) = λ2(a/λ) = λa.
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This is also the expected number of decays during the lock time. We can there-
fore get a better estimate of λ (in relative terms) for a less intensely radioactive
source. One simple way to achieve this is to use fewer grams of radioactive ma-
terial in our sample. Another important source of potential error comes from
the assumption that

(X1 + · · ·+Xn)/n = a+ 1/λ.

Of course, this is not exactly true. Random fluctuations will cause the empirical
rate to vary from the mean, although we do have convergence as n → ∞. The
study of such random fluctuations is the subject of the next section.

Finally, there is the matter of robustness. We have made an assumption
about the decay process that appears to be very special. We have assumed
that times between decays are independent and that they have a particular
distribution (exponential with rate parameter λ). Such an arrival process is
called a Poisson process. The Poisson process is commonly used to represent
random arrivals. Its use can be justified in part by the fact that many real–
world arrival processes have interarrival times that are at least approximately
exponential. This can be verified by collecting data on arrival times. But this
does not answer the question of why the exponential distribution occurs.

It turns out that there is a mathematical reason for expecting an arrival
process to look Poisson. Consider a large number of arrival processes that are
independent of one another. We make no assumption about the interarrival
time distribution of an arrival process, only that the interarrival times are in-
dependent and identically distributed. There is a theorem that states, under
fairly general conditions, that the arrival process obtained by merging all of
these independent processes has to look Poisson. (The merged process tends to
Poisson as the number of merged processes tends to infinity.) This is why the
Poisson process, based on the exponential distribution, is such a robust model
(see Feller (1971) p. 370).

7.3 Introduction to Statistics

In any modeling situation it is desirable to get quantitative measures of per-
formance. For probability models an additional complication is involved in
deriving such parameters of system behavior. We must have a way to deal with
the random fluctuations in system behavior that are characteristic of probabil-
ity models. Statistics is the study of measurement in the presence of random
fluctuations. The appropriate use of statistical methods must be a part of the
analysis of any probability model.

Example 7.4. An emergency 911 service in a local community received an
average of 171 calls per month for house fires over the past year. On the basis
of this data, the rate of house fire emergencies was estimated at 171 per month.
The next month only 153 calls were received. Does this indicate an actual
reduction in the rate of house fires, or is it simply a random fluctuation?
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Variables: λ = Rate of house fire reports (per month)
Xn = time between (n− 1)st and nth fire (months)

Assumptions: House fires occur at random with rate λ;
i.e., X1, X2, . . . are independent, and each Xn has
an exponential distribution with rate parameter λ

Objective: Determine the probability that as few as 153 calls
would be received in one month, given λ = 171

Figure 7.4: Results of step 1 of the house fire problem.

We will use the five-step method. The results of step 1 are summarized in
Figure 7.4. We are assuming exponential interarrival times for the emergency
calls. Step 2 is to determine the modeling approach. We will model this as a
statistical inference problem.

Suppose that X, X1, X2, X3, . . ., are independent random vari-
ables, all with the same distribution. Recall that if X is discrete,
the average or expected value is

EX = Σxk Pr{X = xk},

and if X is continuous with density f(x), then

EX =

∫
xf(x) dx.

Another distributional parameter, called the variance, measures the
extent to which X tends to deviate from the mean EX. In general
we define

V X = E(X − EX)2. (7.15)

If X is discrete, we have

V X = Σ(xk − EX)2 Pr{X = xk}, (7.16)

and if X is continuous with density f(x), we have

V X =

∫
(x− EX)2f(x) dx. (7.17)

There is a result called the central limit theorem, that states that as
n → ∞, the distribution of the sum X1 + · · · +Xn gets closer and
closer to a certain type of distribution called a normal distribution.
Specifically, if we let µ = EX and σ2 = V X, then for all t real we
have

lim
n→∞

Pr

{
X1 + · · ·+Xn − nµ

σ
√
n

≤ t

}
→ Φ(t) (7.18)
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Figure 7.5: Graph of the standard normal density function (7.19).

where Φ(t) is a special distribution function called the standard nor-
mal distribution. The density function for the standard normal dis-
tribution is defined for all x by

g(x) =
1√
2π

e−x2/2, (7.19)

so that, for all t, we have

Φ(t) =

∫ t

−∞

1√
2π

e−x2/2 dx. (7.20)

Figure 7.5 shows a graph of the standard normal density. Nu-
merical integration shows that the area between −1 ≤ x ≤ 1 is
approximately 0.68, and the area between −2 ≤ x ≤ 2 is approxi-
mately 0.95. Thus, for all n sufficiently large, we will have

−1 ≤ X1 + · · ·+Xn − nµ

σ
√
n

≤ 1

about 68% of the time, and

−2 ≤ X1 + · · ·+Xn − nµ

σ
√
n

≤ 2 (7.21)

about 95% of the time. In other words, we are 68% sure that

nµ− σ
√
n ≤ X1 + · · ·+Xn ≤ nµ+ σ

√
n,
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and 95% sure that

nµ− 2σ
√
n ≤ X1 + · · ·+Xn ≤ nµ+ 2σ

√
n. (7.22)

It is common in practice to accept the 95% interval from Eq. (7.22)
as the range of normal variation in a random sample. In cases where
the sum X1 + · · ·+Xn does not lie in the interval from Eq. (7.22),
we say that the deviation is statistically significant at the 95% level.

Now we move on to step 3, the model formulation. We are assuming that the
times between calls, Xn, are exponentially distributed, with density function

f(x) = λe−λx

on x ≥ 0. We have previously calculated that

µ = EXn = 1/λ.

The variance
σ2 = V Xn

is given by

σ2 =

∫ ∞

0

(x− 1/λ)2λe−λx dx,

and the central limit theorem gives probability estimates of the extent to which

(X1 + · · ·+Xn)

can vary from its mean, n/λ. In particular, we know that Eq. (7.22) holds with
probability 0.95.

On to step 4. We calculate that

σ2 = 1/λ2,

using integration by parts. Substituting µ = 1/λ and σ = 1/λ into Eq. (7.22),
we find that the relation

n

λ
− 2
√
n

λ
≤ X1 + · · ·+Xn ≤

n

λ
+

2
√
n

λ
(7.23)

must hold with probability 0.95. Substituting λ = 171 and n = 153 into Eq.
(7.23), we are 95% sure that

153

171
− 2
√
153

171
≤ X1 + · · ·+X153 ≤

153

171
+

2
√
153

171
,

or in other words,
0.75 ≤ X1 + · · ·+X153 ≤ 1.04.

Therefore, our observation that

X1 + · · ·+X153 ≈ 1
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is within the range of normal variation.
Finally, step 5. There is insufficient evidence to conclude that the rate of

house fire emergency calls has declined. The variation in the observed number
of calls may well be the result of normal random variation. Of course, if the
observed number of calls per month continues to be this low, then we would
reassess the situation.

A few items should be included in our sensitivity analysis. First of all,
we have concluded that 153 calls in one month is within the range of normal
variation. More generally, suppose that n calls are received in one month.
Substituting λ = 171 into Eq. (7.23), we conclude that

n

171
− 2
√
n

171
≤ X1 + · · ·+Xn ≤

n

171
+

2
√
n

171
(7.24)

with probability 0.95. Since the interval

n

171
± 2
√
n

171

contains 1 for any value of n ∈ [147, 199], we would conclude more generally
that 95% of the time there will be between 147 and 198 calls in a month. In
other words, the range of normal variation for this community is 147 to 198
emergency calls per month.

Now let us consider the sensitivity of our conclusions to the assumption
that the actual expected number of emergency calls is 171 per month. Less
specifically, assume that there is an average of λ emergency calls per month.
We have observed n = 153 calls in a one–month period. Substituting into Eq.
(7.23), we conclude that

153

λ
− 2
√
153

λ
≤ X1 + · · ·+X153 ≤

153

λ
+

2
√
153

λ
(7.25)

with probability 0.95. Since the interval

153

λ
± 2
√
153

λ

contains 1 for any value of λ between 128 and 178, we conclude that a month with
153 emergency calls is within the range of normal variation for any community
in which the average number of emergency calls is between 128 and 178 per
month.

There is a final matter of robustness that requires comment. We have as-
sumed that the times between calls, Xn, are exponential. However, the central
limit theorem remains true for any distribution as long as µ and σ are finite.
Hence, our conclusion is really not sensitive to the assumption of an exponen-
tial distribution. It only requires that σ is not too much smaller than µ (for
an exponential distribution, µ = σ). As we remarked at the end of Section 7.2,
there is a good reason to expect this to be the case. Of course, we can always
check by estimating µ and σ from the data.
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7.4 Diffusion

The normal density function introduced in Section 7.3 is also important in an-
other way. Brownian motion is the accumulation of small, independent random
movements of particles. The sum of those independent random movements rep-
resents the location of the particle. The central limit theorem says that the
distribution of this sum can be approximated by a normal probability density.
Hence, the normal density is a model for the diffusion of small particles. In this
section, we introduce the diffusion equation, a partial differential equation for
particle spreading, in a way that highlights the close connection between the
deterministic model and its probabilistic counterpart.

Example 7.5. An accident at an industrial plant ten kilometers upwind of a
small town releases an airborne pollutant. One hour after release, a toxic cloud
2000 meters long is headed toward the town at a wind speed of 3 kilometers
per hour. The maximum concentration of pollutant in the cloud is 20 times the
safe level. What is the maximum concentration expected in town, when will it
occur, and how long until the concentration of pollutant falls back below a safe
level?

We will use the five-step method. The first step is to ask a question. We
want to know the concentration of pollutant in town and how it varies over
time. Let us assume that the cloud of pollutant moves at a constant velocity in
the direction of the town. Because of diffusion, the pollutant will also spread as
it moves, lowering the peak concentration. Hence, we expect the concentration
to diminish with time. We will assume that the wind speed is constant at three
kilometers per hour, so that the distance between the town and the plume center
is decreasing at three kilometers per hour. We can use the fact that the cloud
has spread to a length of 2000 meters in the first hour to estimate the rate of
spreading. Then our objective is to predict how the concentration at the town
location will vary over time as the cloud of pollutant passes through. The results
of step 1 are summarized in Figure 7.6.

Step 2 is to select the modeling approach. We will use a diffusion model.

Diffusion is the spreading of particles due to small random move-
ments. The relative concentration of contaminant C(x, t) at location
x at time t is described by a partial differential equation called the
diffusion equation. Here the term relative concentration indicates
that the concentration function has been normalized so that the to-
tal mass of particles

∫
C(x, t) dx = 1. This is useful to emphasize the

connection to probability theory. The diffusion equation results from
a combination of two elements. First of all, the law of conservation
of mass states that

∂C

∂t
= − ∂q

∂x
(7.26)

where q(x, t) is the particle flux, the number of particles passing
through the point x per unit time. The change in concentration
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Variables: t = Time since release of pollutant (hrs)
µ = Distance travelled by plume center (km)
x = Distance between plume center and town (km)
s = Plume spread at time t (km)
P = Pollution concentration in town (times safe level)

Assumptions: µ = 3t
x = 10− µ
Peak concentration P = 20 when t = 1 hour
Plume spread is s = 2000 meters at t = 1 hour

Objective: Determine the maximum pollution level in town, and
time until pollution falls back down to a safe level

Figure 7.6: Results of Step 1 of the pollution problem.

inside a small box of width ∆x at location x is the result of the dif-
ference between the particle flux q(x, t) into the box on the left side,
and the flux q(x+∆x, t) ≈ q(x, t)+∆x ∂q/∂x(x, t) out of the box at
the right. If ∂q/∂x > 0, then the mass is exiting on the right faster
than it enters on the left, so the concentration will decrease. The
net loss of mass over a time interval ∆t is ∆M ≈ −∆x ∂q/∂x ∆t,
and hence, the concentration C = M/∆x changes by an amount
∆C = ∆M/∆x ≈ −∂q/∂x∆t, which leads to ∆C/∆t ≈ −∂q/∂x.
Taking limits as ∆x → 0 yields the conservation of mass equation
(7.26). The second element is Fick’s Law, the empirical observation
that diffusive particle flux is proportional to the concentration gra-
dient (particles tend to diffuse from areas of high concentration to
areas of low concentration), or in other words,

q = −D

2

∂C

∂x
(7.27)

for some constant D > 0, called the diffusivity. Combining (7.26)
and (7.27) yields the diffusion equation

∂C

∂t
=

D

2

∂2C

∂x2
, (7.28)

which can be solved to predict the spread of contaminants.
The simplest way to solve the diffusion equation is to use Fourier

transforms. The Fourier transform of a function f(x) is given by the
integral formula

f̂(k) =

∫ ∞

−∞
e−ikxf(x)dx. (7.29)

Using integration by parts, it is easy to show that the derivative
f ′(x) has Fourier transform (ik)f̂(k). Tables of Fourier transforms
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are widely available, and computer algebra systems like Maple and
Mathematica also compute Fourier transforms and their inverses
(i.e., compute f(x) for a given f̂(k) and vice versa). One useful for-
mula that can be verified from tables or a computer algebra system
is that the standard normal density (7.19) has Fourier transform

ĝ(k) =

∫ ∞

−∞
e−ikx 1√

2π
e−x2/2dx = e−k2/2. (7.30)

The standard normal distribution is connected with the diffusion
model because sums of independent particle movements are asymp-
totically normal. Since we are interested in the way this distribution
of particles spreads over time, we need to understand the scaling
properties of the normal density. If Z is a standard normal random
variable with mean zero and variance one, then X = σZ has mean
zero and its variance is E(X2) = E(σ2Z2) = σ2. The distribution
function of X is given by

F (x) = P (X ≤ x) = P (σZ ≤ x) = P (Z ≤ x/σ) =

∫ x/σ

−∞
g(t)dt.

Substituting u = σt gives

F (x) =

∫ x

−∞
g(σ−1u)σ−1du,

which shows that the random variable X = σZ has density function

f(x) =
1√
2πσ2

e−x2/(2σ2).

Then a change of variables t = σx in (7.30) shows that the Fourier
transform of this density function is

f̂(k) = e−(σ2k2)/2.

In the limiting case σ ↓ 0 the Fourier transform is identically equal
to one. This corresponds to a random variable concentrated at the
origin, so that its spread is zero.

Now let us see how we can use Fourier transforms to solve the
diffusion equation. Take Fourier transforms

Ĉ(k, t) =

∫ ∞

−∞
e−ikxC(x, t)dx

in the diffusion equation (7.28) to obtain

dĈ

dt
=

D

2
(ik)2Ĉ = −D

2
k2Ĉ, (7.31)
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which is a very simple ordinary differential equation (u′ = au) for
the Fourier transformed concentration. The solution to this dif-
ferential equation with initial condition Ĉ(k, 0) = 1 for all k is

Ĉ(k, t) = e−Dtk2/2. This initial condition implies that at time t = 0
the contaminant plume is concentrated at the point x = 0 (the lim-
iting case σ ↓ 0). Now invert the Fourier transform to get

C(x, t) =
1√
2πDt

e−x2/(2Dt), (7.32)

the point source solution to the diffusion equation (7.28).

The connection between the diffusion equation (7.28) and the
central limit theorem from Section 7.3 can now be made explicit.
Suppose that over a small time interval ∆t a contaminant particle
makes a small random movementXi and that all of these movements
are independent. Then the particle location at time n∆t is given by
the sum X1 + · · ·+Xn of these movements. Assume that the mean
jump E(Xi) = 0 and the variance of a jump is σ2 = E(X2

i ). Then
the central limit theorem (7.18) implies

X1 + · · ·+Xn

σ
√
n

≈ Z

standard normal, so that X1 + · · · + Xn ≈ σ
√
nZ in the sense of

having approximately the same distribution. Hence, the probability
distribution of particle location at time t = n∆t is approximately
Gaussian with variance nσ2 = (t/∆t)σ2. Taking D = σ2/∆t, so
that nσ2 = Dt, we can relate the limiting random particle location√
DtZ at time t with its probability density C(x, t) in (7.32). For

example, this relation shows that the contaminants spread at a rate
proportional to

√
t. The normal density solution to the diffusion

equation represents the relative concentration of contaminants, since
it integrates to one. To represent concentration, it is only necessary
to multiply by the total mass of contaminants.

Returning to the pollution problem, we continue with Step 3. The concen-
tration P of pollutant is 20 times the safe level at time t = 1 hour and has
spread to a width of s = 2000 meters. We assume a coordinate system where
the pollutant release occurred at location 0 and the town is at location 10 kilo-
meters. We also assume that the center of the plume has moved to location
µ = 3t kilometers after t hours. Using the diffusion model, we can represent
the contaminant plume at time t = 1 as a normal density with center or mean
µ = 3 kilometers and standard deviation σ = 0.500 kilometers, so that the in-
terval µ±2σ contains the bulk (about 95%) of the pollutant. In other words, we
assume that s = 4σ. Then we can model the relative concentration of pollutant
x kilometers away from the plume center of mass at time t by equation (7.32),
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where D = σ2 = 0.25. This leads to the equation

C(x, t) =
1√
0.5πt

e−x2/(0.5t) (7.33)

for the relative concentration x kilometers away from the plume center of mass
at time t. Next, we note that the pollution concentration P is proportional to
the relative concentration C. Using the units of % of safe level, we wish to set
P = 20 when t = 1 and x = 0. Hence, we solve

P = 20 = P0
1√
0.5π

e−02/0.5

to get P = P0C, where P0 = 20
√
0.5π. Putting this all together, we get that

the pollution level in the town, at time t and distance x = 10 − µ = 10 − 3t
kilometers from the plume center of mass, is given by

P =
20√
t
e−(10−3t)2/(0.5t), (7.34)

and we want to answer the following questions: What is the maximum value of
P and when does it occur? When will P fall below the safe level of P = 1?

Now we move on to Step 4. We want to maximize equation (7.34) over the
set t > 0, and we want to solve the equation P = 1 for the largest positive root
t > 0. We leave the details to the reader (see Exercise 15). The maximum of
P = 10.97 occurs at the point t0 ≈ 3.3. There are two roots to the equation
P = 1 over the set t > 0 that occur at (approximately) t = 2.7 and at t = 4.1.

Finally, for Step 5. The cloud of pollutant will expose the town to unsafe
levels of contamination, almost 11 times the safe level. This peak level of risk
will occur approximately 3 hours and 20 minutes after the pollution event. After
around 4 hours the contamination level will fall back below safe levels. We also
note that the level of contamination in the town will rise to an unsafe level for
the first time at approximately 2 hours and 40 minutes after the accident.

Sensitivity analysis should focus on the parameters in our model that contain
a significant amount of uncertainty. The biggest uncertainty is probably in the
wind speed v, which could change over time. In our model we assumed v = 3.0
kilometers per hour. Generalizing the model, we now have that

P =
20√
t
e−(10−vt)2/(0.5t), (7.35)

and we repeat the analysis for different values of v. Table 7.1 shows the results
of this exercise. It is clear that the wind speed has a very significant effect
on the risk to the town. A higher wind speed produces a shorter exposure,
but at a higher level of contamination. A lower wind speed does the opposite;
it leads to a much longer exposure but at lower levels. Solving the problem
again with a velocity of v = 3.03 (a 1% increase) yields a 0.5% increase in the
maximum concentration M , so we conclude that S(M, v) = 0.5. The time T
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Wind Speed Highest Time of Max Time Until Safe
(km/hr) Concentration Level (hrs) Level (hrs)

1.0 6.3 9.9 13.4
2.0 9.0 5.0 6.3
3.0 11.0 3.3 4.1
4.0 12.7 2.5 3.0
5.0 14.2 2.0 2.3

Table 7.1: Sensitivity analysis results for the pollution problem.

at which the maximum concentration M occurs goes down by −1.0 percent, so
we conclude that S(T, v) = −1. The time L until the concentration falls to a
safe level also decreases by 1% when the velocity increases by 1%, so we also
have S(L, v) = −1. Of course, we could also compute these sensitivities from
Table 7.1, with nearly the same results. We can also use the results of our
sensitivity analysis to bound the parameters of risk in the event of variations in
wind speed. For example, if the wind speed varies between 3 and 4 kilometers
per hour over the next few hours, then we conservatively estimate that the
maximum contamination in the town will be less than 12.7 times the safe level,
and that contamination will drop to safe levels within 4.1 hours.

Finally, we come to the matter of robustness. Since the normal solution to
the diffusion equation is connected to the central limit theorem, we expect a
great deal of robustness. After all, independent random particle jumps have to
converge to a normal distribution, regardless of the underlying distribution of
the individual jumps. Another limitation of our model is that we assume the
wind speed is the same at every point in space. It is true that the wind speed
may vary, but we can easily account for this in our model by letting the velocity
v(t) vary over time. Then we can make the same kind of calculations if we are
given accurate data or predictions of wind speed. In either case, the diffusion
model predicts that a cloud of particles will spread away from its center of mass
at a rate proportional to the square root of time. This is due to the fact that
the particle density describes a normal random variable

√
DtZ with standard

deviation (spread)
√
Dt. In many applications, it has been found that clouds of

diffusing particles spread at a different rate than the classical model predicts.
This is called anomalous diffusion, and it is a very active research area. See
Exercise 18 for an illustration.

7.5 Exercises

1. Consider the diode problem of Example 7.1. Let

A(x) =
4

x
+ 6− 5(0.997)x

denote the average cost function.
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(a) Show that on the interval x > 0, A(x) has a unique minimum value
at the point where A′(x) = 0.

(b) Use a numerical method to estimate the minimum to within 0.1.

(c) Find the minimum value of A(x) over the set x = 1, 2, 3, . . .

(d) Find the maximum of A(x) over the set 10 ≤ x ≤ 35.

2. Reconsider the diode problem of Example 7.1. In this exercise we will
investigate the problem of estimating the failure rate q. In Example 7.1
we assumed that q = 0.003; in other words, that 3 out of 1,000 diodes are
flawed.

(a) Suppose that we test a batch of 1,000 diodes and we find that 3 are
flawed. On this basis we estimate that q = 3/1, 000. How accurate is
this estimate? Use the five-step method, and model as a statistical
inference problem. [Suggestion: Define a random variable Xn to
represent the status of the nth diode. Let Xn = 0 if the nth diode is
good, or Xn = 1 if the nth diode has a flaw. Then the sum

X1 + · · ·+Xn

n

represents the fraction of bad diodes, and the central limit theorem
can be used to estimate the likely variation of this sum from the true
mean q.]

(b) Repeat part (a), assuming that 30 bad diodes were found in a batch
of 10,000.

(c) How many diodes need to be tested in order to be 95% sure that
we have determined the failure rate to within 10% of its true value?
Assume that the true value is close to our original estimate of q =
0.003.

(d) How many diodes need to be tested in order to be 95% sure that
we have determined the failure rate to within 1% of its true value?
Assume that the true value is close to our original estimate of q =
0.003.

3. Consider the radioactive decay problem of Example 7.3, and suppose that
our counter registers an average of 107 decays/sec over a period of 30
seconds.

(a) Use Eq. (7.14) to estimate the actual decay rate λ.

(b) Generalize Eq. (7.13), using the central limit theorem. Calculate the
range of normal variation (at the 95% level) for the observed decay
rate Tn/n for an arbitrary value of the true decay rate λ.

(c) Determine the range of λ for which the observed decay rate Tn/n =
107 is within the range of normal variation at the 95% level. How
accurate is our estimate in part (a)?
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(d) How long would we have to sample this radioactive material to be
95% sure we have determined the true decay rate λ to six significant
digits (i.e., to within 0.5× 10−6 λ)?

4. It can be shown that the area beneath the graph of the standard normal
density function (see Eq. (7.19)) between −3 ≤ x ≤ 3 is approximately
0.997. In other words, for large n we are about 99.7% sure that

nµ− 3σ
√
n ≤ X1 + · · ·+Xn ≤ nµ+ 3σ

√
n.

Use this fact to repeat the calculations in Exercise 3, but use the 99.7%
confidence level. Comment on the sensitivity of your answer in part (d)
to the confidence level.

5. Reconsider the house fire problem of Example 7.4. In this exercise we will
investigate the problem of estimating the rate λ at which emergency calls
occur.

(a) Suppose that 2,050 emergency calls are received in a one–year period.
Estimate the rate λ of house fires per month.

(b) Assuming that the true value of λ is 171 calls per month, calculate the
range of normal variation for the number of emergency calls received
in one year.

(c) Calculate the range of λ for which 2,050 calls in one year is within
the range of normal variation. How accurate is our estimate of the
true rate λ at which house fires occur?

(d) How many years of data would be required to obtain an estimate of
λ accurate to the nearest integer (an error of ±0.5)?

6. Reconsider the house fire problem of Example 7.4. The underlying random
process is called a Poisson process because it can be shown that the number
of arrivals (calls) Nt during a time interval of length t has a Poisson
distribution. Specifically,

Pr{Nt = n} = e−λt(λt)n

n!

for all n = 0, 1, 2, . . .

(a) Show that
ENt = λt

and
V Nt = λt.

(b) Use the Poisson distribution to calculate the probability that the
number of calls received in a given month deviates from the mean of
171 by as much as 18 calls.
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(c) Generalize the calculation of part (b) to determine the exact range
of normal variation (at the 95% level) for the number of calls in a
one–month period.

(d) Compare the exact method used in part (c) with the approximate
calculation of the range of normal variation that is included in the
discussion of sensitivity analysis for Example 7.4 in the text. Which
method would be more appropriate for determining the range of nor-
mal variation in the number of calls received in a single day? In a
year?

7. The Michigan state lottery runs a game in which you pay $1 to buy a
ticket containing a three–digit number of your choice. If your number is
drawn at the end of the day, you win $500.

(a) Suppose you were to buy one ticket per week for a year. What are
your chances of coming out a winner for the year? [Hint: It is easy
to compute the probability of coming out a loser!]

(b) Can you improve your chances of coming out a winner this year
by purchasing more than one ticket per week? Calculate the prob-
ability of coming out a winner if you buy n tickets a week, for
n = 1, 2, 3, . . . , 9.

(c) Suppose that the state lottery sells 1,000,000 tickets this week. What
is the range of likely variation in the amount of money the state will
make this week? How likely is it that the state will lose money this
week? Use the central limit theorem.

(d) What is wrong with using the central limit theorem to answer the
question in part (a) or (b)?

8. (Murphy’s Law, part I) You are staying at a downtown hotel. In front of
the hotel there is a taxicab stand. Taxis arrive at random, at a rate of
about one every five minutes.

(a) How long do you expect to wait for a taxicab, assuming that there
is none at the hotel when you exit?

(b) The time until the arrival of the next taxicab is called a forward
recurrence time. The time since the most recent arrival is called a
backward recurrence time. For a Poisson process it can be shown that
backward and forward recurrence times have the same distribution.
(The probabilistic behavior of the process is the same if we let time
run in reverse.) Using this fact, how long on average has it been since
the last taxi arrived at the time you exit the hotel?

(c) On average, the time between taxicab arrivals is five minutes. How
long on average is the length of time between the arrival of the cab
you just missed and the one you have to wait for?
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9. (Murphy’s Law, part II) You are at the supermarket checkout stand. After
waiting for what seems like an unusually long time to check out, you decide
to conduct a scientific experiment. One by one, you measure the length
of time each customer has to wait. You continue until you find one who
has to wait longer than you did.

(a) Let X denote the time you had to wait, and let Xn denote the time
the nth customer had to wait. Let N denote the number of the first
customer n for whichXn ≥ X. To be fair, assume thatX, X1, X2, . . .
are identically distributed. Explain why the probability that N ≥ n
(i.e., that out of the group consisting of you and the first n − 1
customers, you waited the longest) must equal 1/n.

(b) Calculate the probability distribution of the random variable N .

(c) Calculate the expected value EN , which represents the number of
customers you must observe, on average, until you find one who
waited longer than you did.

10. (Murphy’s Law, part III) A doctor of internal medicine with a busy prac-
tice expects to be called into the hospital to respond to a serious heart
attack on average about once every two weeks. Assume that heart at-
tacks in this physician’s patient population occur at random with this
rate. One such emergency call is a challenge. Two such calls in a single
day is a disaster.

(a) How many heart attacks should the physician expect to respond to
in a single year?

(b) Explain why the probability that n heart attacks during the year all
occur on different days is

365

365
· 364
365
· 363
365
· · · 365− n+ 1

365
.

(c) What is the probability that the doctor has to respond to two or
more heart attacks on the same day sometime this year?

11. A squadron of 16 bombers needs to penetrate air defenses to reach its
target. They can either fly low and expose themselves to the air defense
guns, or fly high and expose themselves to surface–to–air missiles. In
either case, the air defense firing sequence proceeds in three stages. First,
they must detect the target, then they must acquire the target (lock on
target), and finally they must hit the target. Each of these stages may or
may not succeed. The probabilities are as follows:

AD Type Pdetect Pacquire Phit

Low 0.90 0.80 0.05
High 0.75 0.95 0.70
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The guns can fire 20 shells per minute, and the missile installation can
fire three per minute. The proposed flight path will expose the planes for
one minute if they fly low, and five minutes if they fly high.

(a) Determine the optimal flight path (low or high). The objective is to
maximize the number of bombers that survive to strike the target.

(b) Each individual bomber has a 70% chance to destroy the target. Use
the results of part (a) to determine the chances of success (target
destroyed) for this mission.

(c) Determine the minimum number of bombers necessary to guarantee
a 95% chance of mission success.

(d) Perform a sensitivity analysis with respect to the probability p =
0.7 that an individual bomber can destroy the target. Consider the
number of bombers that must be sent to guarantee a 95% chance of
mission success.

(e) Bad weather reduces both Pdetect and p, the probability that a bomber
can destroy the target. If all of these probabilities are reduced in the
same proportion, which side gains an advantage in bad weather?

12. A scanning radio communications sensor attempts to detect radio emis-
sions and pinpoint their locations. The sensor scans 4,096 frequency
bands. It takes the sensor 0.1 seconds to detect a signal. If no signal
is detected, it moves to the next frequency. If a signal is detected, it takes
an additional five seconds to get a location fix. There is no signal except
on about 100 of the frequency bands, but the sensor does not know which
ones are being used, so it must scan them all. On the busy frequencies,
the percent utilization (i.e., the fraction of time that the signal is on)
varies from 30% to 70%. An additional complication is that emissions on
the same frequency can come from several different sources, so the sensor
must continue to scan all frequencies even after a source is located.

(a) Determine the approximate detection rate for this system. Assume
that all frequency bands are scanned sequentially.

(b) Suppose the sensor has the capability of remembering 25 high–priority
frequency bands, which are scanned ten times as often as the others.
Assuming that the sensor is eventually able to identify 25 busy fre-
quencies and gives them high priority, how does the detection rate
change?

(c) Suppose that, in order to obtain useful information, we must be able
to detect emissions on a particular frequency at a minimum rate of
once every three minutes. Determine the optimal number of high–
priority channels.

(d) Perform a sensitivity analysis on the answer to part (c) with respect
to the average utilization rate for busy frequencies.
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13. In this problem we will explore the parallel between discrete and contin-
uous random variables. Suppose that X is a continuous random variable
with distribution function F (x) and density function f(x) = F ′(x). For
each n we define a discrete random variable Xn with approximately the
same distribution as X. Partition the real line into intervals of length
∆x = n−1, and let Ii denote the ith interval in the partition. Then, for
each i, select a point xi in the ith interval, and define

pi = Pr{Xn = xi} = f(xi)∆x.

(a) Explain why we can always choose the points xi so that we will have

pi = Pr{X ∈ Ii}

for all i. This ensures that
∑

pi = 1.

(b) Derive a formula that represents the probability that a < Xn ≤ b in
terms of the density function f for any two real numbers a and b.

(c) Derive a formula that represents the mean EXn in terms of the den-
sity function f .

(d) Use the results of part (b) to show that as n→∞ (or, equivalently,
∆x→ 0), we have

Pr{a < Xn ≤ b} → Pr{a < X ≤ b}

for any two real numbers a and b. We say that Xn converges in
distribution to X.

(e) Use the results of part (c) to show that as n →∞ (or, equivalently,
∆x→ 0), we have

EXn → EX.

We say that Xn converges in mean to X.

14. (Geometric distribution) In this problem we investigate the discrete ver-
sion of the exponential distribution. Suppose that arrivals occur at random
at times i = 1, 2, 3, . . . Then the time X between two successive arrivals
has the geometric distribution

Pr{X = i} = p(1− p)i−1,

where p is the probability of an arrival occurring at time i.

(a) Show that Pr{X > i} = (1 − p)i. [Hint: Use the geometric series
1 + x+ x2 + x3 + · · · = (1− x)−1.]

(b) Use part (a) to show that X has the memoryless property Pr{X >
i+ j|X > j} = Pr{X > i}.

(c) Compute EX = 1/p. [Hint: Differentiate the geometric series to
obtain 1 + 2x+ 3x2 + · · · = (1− x)−2.] Explain why p is the arrival
rate for the discrete process.
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(d) Customers arrive at a public telephone at random at the rate of one
every ten minutes. If Y is the time of first afternoon arrival, use the
exponential model to compute Pr{Y > 5}. If X is the number of
minutes until the next arrival (take the clock time Y and just record
the minutes X), use the geometric model to compute Pr{X > 5}.
Compare.

15. Consider the pollution problem of Example 7.5. Let

P (t) =
20√
t
e−(10−3t)2/(0.5t)

denote the pollution concentration in town at time t.

(a) Graph the function P (t) and comment on its important features.

(b) Show that on the interval t > 0, P (t) has a unique maximum at the
point where P ′(t) = 0.

(c) Use a numerical method to estimate the maximum to within 0.1.

(d) Show that the equation P (t) = 1 has two positive roots.

(e) Use a numerical method to estimate each positive root of the equation
P (t) = 1 to within 0.1.

16. A chemical spill has contaminated the ground water near a municipal well.
One year after the spill, the contaminant plume is 500 meters downstream
of the spill, with a width of 200 meters. The concentration at the center
of the plume is 3.6 parts per million.

(a) How long will it take until the maximum concentration reaches the
municipal well located 1,800 meters downstream? What will the
concentration be? Assume a one–dimensional diffusion model with
constant velocity, as in Example 7.5.

(b) When will the concentration at the municipal well fall below a safe
level of 0.001 parts per million?

(c) Compute the sensitivity of the answers in parts (a) and (b) to the
groundwater velocity.

(d) Compute the sensitivity of the answers in parts (a) and (b) to the
measured width of the contaminant plume.

17. (2–D pollution problem) In this problem we consider a two–dimensional
diffusion model for the pollution problem of Example 7.5. The relative
concentration C(x, y, t) at location (x, y) at time t follows a bivariate nor-
mal distribution

C(x, y, t) =
1√
2πDt

e−x2/(2Dt) · 1√
2πDt

e−y2/(2Dt),
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where the center of the plume is assumed to be at location x = 0, y = 0.
This bivariate density function solves the 2-D diffusion equation

∂C

∂t
=

D

2

∂2C

∂x2
+

D

2

∂2C

∂y2

and the connection to the probability model is the same as before, except
that we also consider the spreading effect of small random jumps in the y
direction. As in Example 7.5, an accident at an industrial plant ten kilo-
meters upwind of a small town releases an airborne pollutant. One hour
after release, a toxic cloud 2,000 meters wide is headed toward the town
at a wind speed of three kilometers per hour, and the peak concentration
is 20 times the safe level. Assume that the wind is blowing in the positive
x direction, so that the plume center of mass is at location (3, 0) at time
t = 1, and the town is at location (10, 0).

(a) Make a 3–D plot of the concentration plume at time t = 1. Comment
on its most important features.

(b) How long will it take until the maximum concentration reaches the
town located ten kilometers downwind? What will the concentration
be?

(c) When will the concentration in the town fall below a safe level of
0.001 parts per million?

(d) Repeat parts (b) and (c), assuming that the wind is not blowing
directly into town. Assume that at time t = 1 hour the plume center
of mass is at location (2.95, 0.5). How much difference does the wind
direction make?

(e) Compare the results of parts (b) and (c) to what was found in the
text. Does it make a significant difference whether we use a 1-D or a
2-D diffusion model?

18. (Anomalous diffusion) In this exercise we will investigate a model for
anomalous super-diffusion, where a plume spreads faster than the classical
diffusion equation predicts. Reconsider the pollution problem of Example
7.5, but now assume that the dispersivity D(t) grows with time, so that
D(t) = 0.25t0.4 in Eq. (7.32).

(a) Repeat the calculations of Example 7.5. How long will it take un-
til the maximum concentration reaches the town? What will the
concentration be?

(b) When will the concentration in town fall to a safe level?

(c) Examine the sensitivity of the answers in parts (a) and (b) to the
scaling parameter p = 0.4. Repeat parts (a) and (b) for p = 0.2, 0.3,
0.5, and 0.6, and discuss.

(d) Compare the results of parts (b) and (c) to what was found in the
text. How does the possibility of anomalous super-diffusion affect the
conclusions in the text?
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Chapter 8

STOCHASTIC MODELS

The deterministic dynamic models of Part II of this book do not allow for
the explicit representation of uncertainty. When random effects are taken into
account, the resulting model is called a stochastic model. Several kinds of general
stochastic models are in wide use today. In this chapter we will introduce the
most important and commonly used stochastic models.

8.1 Markov Chains

A Markov chain is a discrete–time stochastic model. It is a generalization of the
discrete–time dynamical system model introduced in Section 4.3. Although the
model is simple, the number and diversity of applications are surprisingly large.
In this section we will introduce the general Markov chain model. We will also
introduce a concept of steady state appropriate for a stochastic model.

Example 8.1. A pet store sells a limited number of 20–gallon aquariums. At
the end of each week, the store manager takes inventory and places orders. Store
policy is to order three new 20–gallon aquariums at the end of the week if all
of the current inventory has been sold. If even one of the 20–gallon aquarium
remains in stock, no new units are ordered. This policy is based on the observa-
tion that the store only sells an average of one of the 20–gallon aquariums per
week. Is this policy adequate to guard against potential lost sales of 20–gallon
aquariums due to a customer requesting one when they are out of stock?

We will use the five-step method. Step 1 is to ask a question. The store
begins each sales week with an inventory of between one and three of the 20–
gallon aquariums. The number of sales in one week depends on both the supply
and the demand. The demand averages one per week but is subject to random
fluctuations. It is possible that on some weeks demand will exceed supply, even
if we start the week with the maximum inventory of three units. We would
like to calculate the probability that demand exceeds supply. In order to get a
specific answer, we need to make an assumption about the probabilistic nature
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Variables: Sn = supply of aquariums at the
beginning of week n

Dn = demand for aquariums during
week n

Assumptions: If Dn−1 < Sn−1, then Sn = Sn−1 −Dn−1

If Dn−1 ≥ Sn−1, then Sn = 3
Pr{Dn = k} = e−1/k!

Objective: Calculate Pr{Dn > Sn}

Figure 8.1: Results of step 1 of the inventory problem.

of the demand. It seems reasonable to assume that potential buyers arrive at
random at a rate of one per week. Hence, the number of potential buyers in one
week will have a Poisson distribution with mean one. (The Poisson distribution
was introduced in Exercise 6 of Chapter 7.) Figure 8.1 summarizes the results
of step 1. Step 2 is to select the modeling approach. We will use a Markov chain
model.

A Markov chain can best be described as a sequence of random
jumps. For the purposes of this book, we will assume that these
jumps can only involve a finite discrete set of locations or states.
Suppose that the random variables Xn take values in a finite discrete
set. There is no harm in assuming that

Xn ∈ {1, 2, 3, . . . , m}.

We say that the sequence {Xn} is a Markov chain provided that the
probability that Xn+1 = j depends only on Xn. If we define

pij = Pr{Xn+1 = j|Xn = i}, (8.1)

then the entire future history of the process {Xn} is determined
by the pij and the probability distribution of the initial X0. Of
course, when we say “determined”, we mean that the probabilities
Pr{Xn = i} are determined. The actual value of Xn depends on
random factors.

Example 8.2. Describe the behavior of the following Markov chain.
The state variable

Xn ∈ {1, 2, 3}.

If Xn = 1, then Xn+1 = 1, 2, or 3 with equal probability. If Xn = 2,
then Xn+1 = 1 with probability 0.7, and Xn+1 = 2 with probability
0.3. If Xn = 3, then Xn+1 = 1 with probability 1.
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Figure 8.2: State transition diagram for Example 8.2.

The state transition probabilities pij are given by

p11 =
1

3

p12 =
1

3

p13 =
1

3
p21 = 0.7

p22 = 0.3

p31 = 1,

and the rest are zero. It is customary to write the pij in matrix
form:

P = (pij) =

 p11 · · · p1m
...

...
pm1 · · · pmm

 . (8.2)

Here

P =

1/3 1/3 1/3
0.7 0.3 0
1 0 0

 .

Another convenient method is called the state transition diagram
(see Figure 8.2). This makes it easy to visualize the Markov chain
as a sequence of random jumps. Suppose X0 = 1. Then X1 =
1, 2, or 3 with probability 1/3 each. The probability that X2 =
1 is obtained by calculating the probability associated with each
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individual sequence of jumps that transitions from state 1 to state
1 in two steps. Thus,

Pr{X2 = 1} =
(
1

3

)(
1

3

)
+

(
1

3

)
(0.7) +

(
1

3

)
(1) = 0.677.

Similarly,

Pr{X2 = 2} =
(
1

3

)(
1

3

)
+

(
1

3

)
(0.3) = 0.211,

and

Pr{X2 = 3} =
(
1

3

)(
1

3

)
=

1

9
.

To calculate Pr{Xn = j} for larger n, it is useful to observe that

Pr{Xn+1 = j} =
∑
i

pij Pr{Xn = i}. (8.3)

The only way to get to state j at time n + 1 is to be in some
state i at time n, and then jump from i to j. Hence, we could have
calculated

Pr{X2 = 1} = p11 Pr{X1 = 1}+ p21 Pr{X1 = 2}+ p31 Pr{X1 = 3},

and so forth. This is where the matrix notation comes in handy.
If we let

πn(i) = Pr{Xn = i},

then Eq. (8.3) can be written in the form

πn+1(j) =
∑
i

pij πn(i). (8.4)

If we let πn denote the vector with entries πn(1), πn(2), . . . and let
P denote the matrix in Eq. (8.2), then the set of equations relating
πn+1 to πn can be written most compactly in the form

πn+1 = πnP. (8.5)

For example, we have that π2 = π1P , or

(0.677, 0.211,
1

9
) =

(
1

3
,
1

3
,
1

3

)1/3 1/3 1/3
0.7 0.3 0
1 0 0

 .

Now we can calculate π3 = π2P to get

π3 = (0.485, 0.289, 0.226)
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to three decimal places. Continuing on, we obtain

π4 = (0.590, 0.248, 0.162)

π5 = (0.532, 0.271, 0.197)

π6 = (0.564, 0.259, 0.177)

π7 = (0.546, 0.266, 0.188)

π8 = (0.556, 0.262, 0.182)

π9 = (0.551, 0.264, 0.185)

π10 = (0.553, 0.263, 0.184)

π11 = (0.553, 0.263, 0.184)

π12 = (0.553, 0.263, 0.184).

Notice that the probabilities πn(i) = Pr{Xn = i} tend to a spe-
cific limiting value as n increases. We say that the stochastic process
approaches steady state. This concept of steady state or equilibrium
differs from that for a deterministic dynamic model. Because of ran-
dom fluctuations, we cannot expect that the state variable will stay
at one value when the system is in equilibrium. The best we can
hope for is that the probability distribution of the state variable
will tend to a limiting distribution. We call this the steady–state
distribution. In Example 8.2 we have

πn → π,

where the steady–state probability vector

π = (0.553, 0.263, 0.184) (8.6)

to three decimal places.
A faster way to calculate the steady–state vector π is as follows.

Suppose that

πn → π.

Certainly

πn+1 → π

too, so if we let n → ∞ on both sides of Eq. (8.5), we obtain the
equation

π = πP. (8.7)

We can calculate π simply by solving this linear system of equations.
For Example 8.2 we have

(π1, π2, π3) = (π1, π2, π3)

1/3 1/3 1/3
0.7 0.3 0
1 0 0

 ,
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and it is not hard to calculate that Eq. (8.6) is the only solution to
this system of equations for which∑

πi = 1.

Not every Markov chain tends to steady state. For example,
consider the two–state Markov chain for which

Pr{Xn+1 = 2|Xn = 1} = 1

and
Pr{Xn+1 = 1|Xn = 2} = 1.

The state variable alternates between states 1 and 2. Certainly πn

does not tend to a single limiting vector. We say that this Markov
chain is periodic with period two. Generally we say state i is periodic
with period δ if, starting at Xn = i, the chain can return to state i
only at times n+ kδ. If {Xn} is aperiodic (every state i has period
δ = 1), and if, for each i and j, it is possible to transition from i
to j in a finite number of steps, we say that Xn is ergodic. There
is a theorem that guarantees that an ergodic Markov chain tends to
steady state. Furthermore, the distribution of Xn tends to the same
steady–state distribution regardless of the initial state of the system
(see, e.g., Çinlar (1975) p. 152). Thus, in Example 8.2, if we had
started with X0 = 2 or X0 = 3, we would still see πn converge to the
same steady–state distribution π given by Eq. (8.6). The problem of
calculating the steady–state probability vector π is mathematically
equivalent to the problem of locating the equilibrium of a discrete–
time dynamical system with state space π ∈ Rm, 0 ≤ πj ≤ 1,∑

πi = 1

and iteration function
πn+1 = πnP.

The previously cited theorem states that there is a unique asymp-
totically stable equilibrium π for this system whenever P represents
an ergodic Markov chain.

We return now to the inventory problem of Example 8.1. We will model this
problem using a Markov chain. Step 3 is to formulate the model. We begin with
a consideration of the state space. The concept of state here is much the same as
for deterministic dynamical systems. The state contains all of the information
necessary in order to predict the (probabilistic) future of the process. We will
take Xn = Sn, the number of 20–gallon aquariums in stock at the beginning of
our sales week, as the state variable. The demand Dn relates to the dynamics
of the model and will be used to construct the state transition matrix P . The
state space is

Xn ∈ {1, 2, 3}.
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Figure 8.3: State transition diagram for the inventory problem.

We do not know the initial state, but it seems reasonable to assume that X0 = 3.
In order to determine P , we will begin by drawing the state transition diagram.
See Figure 8.3. The distribution of the demand Dn yields

Pr{Dn = 0} = 0.368

Pr{Dn = 1} = 0.368

Pr{Dn = 2} = 0.184

Pr{Dn = 3} = 0.061

Pr{Dn > 3} = 0.019,

(8.8)

so that if Xn = 3, then

Pr{Xn+1 = 1} = Pr{Dn = 2} = 0.184

Pr{Xn+1 = 2} = Pr{Dn = 1} = 0.368

Pr{Xn+1 = 3} = 1− (0.184 + 0.368) = 0.448.

The remaining state transition probabilities are computed similarly. The state
transition matrix is

P =

.368 0 .632
.368 .368 .264
.184 .368 .448

 . (8.9)

Now for step 4. The analysis objective was to calculate the probability

Pr{Dn > Sn}
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that demand exceeds supply. In general this probability depends on n. More
specifically, it depends on Xn. If Xn = 3, then

Pr{Dn > Sn} = Pr{Dn > 3} = 0.019,

and so forth. To get a better idea of how often demand will exceed supply, we
need to know more about Xn.

Since {Xn} is an ergodic Markov chain, we know that there is a unique
steady–state probability vector π that can be computed by solving the steady–
state equations. Substituting Eq. (8.9) back into Eq. (8.7), we obtain

π1 = .368π1 + .368π2 + .184π3

π2 = .368π2 + .368π3

π3 = .632π1 + .264π2 + .448π3,

(8.10)

which we need to solve along with the condition

π1 + π2 + π3 = 1,

to obtain the steady–state distribution of Xn. Since we now have four equations
in three variables, we can delete one of the equations in Eq. (8.10) and then solve,
which yields

π = (π1, π2, π3) = (.285, .263, .452).

For all large n it is approximately true that

Pr{Xn = 1} = .285

Pr{Xn = 2} = .263

Pr{Xn = 3} = .452.

Putting this together with our information about Dn, we obtain

Pr{Dn > Sn} =
3∑

i=1

Pr{Dn > Sn|Xn = i}Pr{Xn = i}

= (.264)(.285) + (.080)(.263) + (.019)(.452) = .105

for large n. In the long run, demand will exceed supply about 10% of the time.
It is easy to compute the steady–state probabilities using a computer algebra

system. Figure 8.4 illustrates the use of the computer algebra system Maple to
solve the system of equations in Eq. (8.10) to find the steady–state probabilities.

Computer algebra systems are quite useful in such problems, especially when
performing sensitivity analysis. If you have access to a computer algebra system,
it will be useful in the exercises at the end of this chapter. Even if you prefer
to solve systems of equations by hand, you will have the ability to verify your
results.

Finally, step 5. The current inventory policy results in lost sales about 10%
of the time, or at least five lost sales per year. Most of this is due to the fact



8.1. MARKOV CHAINS 259

> s:={pi1=.368*pi1+.368*pi2+.184*pi3,

>      pi2=.368*pi2+.368*pi3,

>      pi1+pi2+pi3=1};

s := π1 = 0.368 π1 + 0.368 π2 + 0.184 π3, π2 = 0.368 π2 + 0.368 π3, π1 + π2 + π3 = 1{ }

> solve(s,{pi1,pi2,pi3});

π2 = 0.2631807648, π1 = 0.2848348783, π3 = 0.4519843569{ }

> 

Figure 8.4: Calculation of the steady–state distribution of the number of 20–
gallon aquariums in stock at the beginning of the week for the inventory problem,
using the computer algebra system Maple.

that we do not order more aquariums when only one is left. Although we only
sell an average of one unit per week, the actual number of potential sales per
week (demand) fluctuates from one week to the next. Hence, when we start the
week with only one unit in stock, we run a significant risk (about a one in four
chance) of losing potential sales due to insufficient inventory. In the absence of
other factors, such as a discount for orders of three or more, it seems reasonable
to try out a new inventory policy in which we never start out a week with only
one aquarium.

We now come to the subject of sensitivity analysis and robustness. The
main sensitivity issue is the effect of the arrival rate λ of potential buyers on the
probability that demand exceeds supply. Currently λ = 1 customer per week.
For arbitrary λ, the state transition matrix for Xn is given by

P =

 e−λ 0 1− e−λ

λe−λ e−λ 1− (1 + λ)e−λ

λ2e−λ/2 λe−λ 1− (λ+ λ2/2)e−λ

 , (8.11)

using the fact that Dn has a Poisson distribution. While it would be possible to
carry through the calculation of p = Pr{Dn > Sn} from this point, it would be
very messy. It makes more sense simply to repeat the calculations of step 4 for a
few selected values of λ near 1. The results of this exercise are shown in Figure
8.5. They confirm that our basic conclusions are not particularly sensitive to
the exact value of λ. The sensitivity S(p, λ) is around 1.5. (Another sensible
option for sensitivity analysis is to use a computer algebra system to perform
the messy calculations. See Exercise 2 at the end of this chapter.)

Finally, we should consider the robustness of our model. We have assumed
a Markov chain model based on a Poisson process model of the arrival process.
The robustness of the Poisson process model as a representative of a more
general arrival process was discussed briefly at the end of Section 7.2. It is
reasonable to conclude that our results would not be altered significantly if the
arrival process were not exactly Poisson. The basic assumption here is that
the arrival process represents the merging of a large number of independent
arrival processes. Many kinds of customers arrive at the shop from time to
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Figure 8.5: Graph showing the sensitivity of the probability of lost sales to
arrival rate in the inventory problem.

time to buy a 20–gallon aquarium, and it is reasonable to assume that they do
not coordinate this activity with each other. Of course, certain store activities,
such as an advertised sale price on 20–gallon aquariums, would invalidate this
assumption, resulting in the need to reexamine the conclusions of our modeling
exercise. It may also be that there are significant seasonal variations in the
demand for this item.

The other basic modeling assumption is that the inventory level Sn rep-
resents the state of the system. A more sophisticated model might take into
account the store manager’s response to long–term fluctuations in sales, such as
seasonal variations. The mathematical analysis of such a model is more com-
plex, but not essentially different from what we did here. We just expand the
state space to include information on past sales; say, Sn, Sn−1, Sn−2, Sn−3. Of
course, our transition matrix P is now 81× 81 instead of 3× 3.

Many different inventory policies are possible. Several of these are explored
in the exercises at the end of the chapter. Which inventory policy is the best?
One way to approach this question is to formulate an optimization model based
on a generalized version of our Markov chain model. A range of inventory
policies is described in terms of one or more decision variables, and the objective
is defined in terms of the resulting steady–state probabilities. The study of
such models is called Markov decision theory. Details can be found in any
introductory text on operations research (e.g., Hillier et al. (1990)).
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Variables: Xt = number of forklifts in repair
at time t months.

Assumptions: Vehicles arrive for repair at
the rate of 4.5 per month.
Maximum repair rate is 7.3
vehicles per month.

Objective: Calculate EXt, Pr{Xt > 0}

Figure 8.6: Results of step 1 of the forklift problem.

8.2 Markov Processes

A Markov process model is the continuous–time analogue of the Markov chain
model introduced in the preceding section. It may also be considered as a
stochastic analogue to a continuous–time dynamical system model.

Example 8.3. A mechanic working for a heavy equipment repair facility is
responsible for the repair and maintenance of forklift trucks. When forklifts
break down, they are taken to the repair facility and serviced in the order of
their arrival. There is space for 27 forklift trucks at the facility, and last year
the facility repaired 54 trucks. Average repair time for a single vehicle is about
three days. In the past few months certain questions have been raised about
the effectiveness and the efficiency of this operation. The two central issues are
the time it takes to have a machine repaired, and the percentage of time the
mechanic devotes to this part of his duties.

We will analyze the situation using a mathematical model of the repair
facility. Forklift trucks arrive at the facility for repair at a rate of 54/12 = 4.5
per month. The maximum rate at which they can be repaired is 22/3 ≈ 7.3
vehicles per month, based on an average of 22 working days per month. Let Xt

denote the number of vehicles in the repair shop at time t. We are interested
in the average number in service, EXt, and the proportion of time that the
mechanic is busy repairing machines, represented by Pr{Xt > 0}. Figure 8.6
summarizes the results of step 1.

We will model the repair facility using a Markov process.

A Markov process is the continuous–time analogue of the Markov
chain introduced in the previous section. As before, we will assume
that the state space is finite; i.e., we will suppose

Xt ∈ {1, 2, 3, . . . , m}.

The stochastic process {Xt} is a Markov process if the current state
Xt really represents the state of the system; i.e., it totally determines
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the probabilistic future of the process. This condition is formally
written as

Pr{Xt+s = j|Xu : u ≤ t} = Pr{Xt+s = j|Xt}. (8.12)

The Markov property, Eq. (8.12), has two important implica-
tions. First of all, the time until the next transition does not de-
pend on how long the process has been in the current state. In other
words, the distribution of time spent in a particular state has the
memoryless property. Let Ti denote the time spent in state i. Then
the Markov property says that

Pr{Ti > t+ s|Ti > s} = Pr{Ti > t}. (8.13)

In Section 7.2 we showed that the exponential distribution has this
property, so Ti could have density function

Fi(t) = λie
−λit. (8.14)

In fact, the exponential distribution is the only continuous distribu-
tion having the memoryless property. (This is a deep theorem in
real analysis. See Billingsley (1979) p. 160.) Hence, for a Markov
process the distribution of time in a particular state is exponential
with parameter λi, which depends in general on the state i.

The second important implication of the Markov property has to
do with state transition. The probability distribution that describes
the identity of the next state can depend only on the current state.
Thus, the sequence of states visited by the process forms a Markov
chain. If we let pij denote the probability that the process jumps
from state i to state j, then the embedded Markov chain has state
transition probability matrix P = (pij).

Example 8.4. Consider a Markov chain with state transition prob-
ability

P =

 0 1/3 2/3
1/2 0 1/2
3/4 1/4 0

 , (8.15)

and form a Markov process by assuming that the jumps of {Xt}
follow this Markov chain with the average times in states 1, 2, 3
equal to 1, 2, and 3, respectively.

Solving the steady–state equation π = πP shows that the pro-
portion of jumps that land in states 1, 2, and 3 are 0.396, 0.227, and
0.377, respectively. However, the proportion of time spent in each
state also depends on how long we wait in one state before the next
jump. Correcting for this produces the relative proportions 1(.396),
2(.227), and 3(.377). If we normalize to 1 (divide each term by the
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sum), we get 0.200, 0.229, and 0.571. Hence the Markov process
spends about 57.1% of the time in state 3, and so on. We call this
the steady–state distribution for the Markov process. Generally, if
π = (π1, . . . , πm) is the steady–state distribution for the embedded
Markov chain and λ = (λ1, . . . , λm) is the vector of rates, then the
proportion of time spent in state i is given by

Pi =
(πi/λi)

(π1/λ1) + · · ·+ (πm/λm)
. (8.16)

The reciprocal of the rate λi represents mean time in state i. In sum-
mary, a Markov process can be thought of as a Markov chain where
the time between jumps has an exponential distribution, depending
on the current state.

An equivalent model can be formulated as follows. Given that
Xt = i, let Tij be exponential with parameter aij = λipij . Further-
more, suppose that Ti1, . . . , Tim are independent. Then the time Ti

until the next jump is the minimum of Ti1, . . . , Tim, and the next
state is the state j such that Tij is the minimum of Ti1, . . . , Tim.
The mathematical equivalence between the two forms of the Markov
process model follows from the fact that

Ti = min(Ti1, . . . , Tim)

is exponential with parameter

λi =
∑
j

aij

and that
Pr{Ti = Tij} = pij .

(The proof is left to the reader. See Exercise 7 at the end of the
chapter.) The parameter

aij = λipij

denotes the rate at which the process tends to go from state i to state
j. It is customary to depict the rates aij in a rate diagram. The rate
diagram for Example 8.4 is given in Figure 8.7. Often the structure
of a Markov process is originally specified by such a diagram.

This alternative formulation for the Markov process leads to
a convenient method of computing the steady–state distribution,
based on the rate diagram. As before we define

aij = λipij

to be the rate at which the process tends to jump from state i to
state j. Also, let

aii = −λi
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denote the rate at which the process tends to leave state i. It can
be shown that the probability functions

Pi(t) = Pr{Xt = i} (8.17)

must satisfy the differential equations

P ′
1(t) = a11P1(t) + · · ·+ am1Pm(t)

...

P ′
m(t) = a1mP1(t) + · · ·+ ammPm(t)

(8.18)

(see Çinlar (1975) p. 255). This basic condition can be most easily
understood by using the fluid–flow analogy. Visualize the probabil-
ities Pi(t) as the amount of fluid (probability mass) at each state i.
The rates aij represent the rate of fluid flow, and the fact that

P1(t) + · · ·+ Pm(t) = 1

means that the total amount of fluid stays equal to 1. In the case of
Example 8.4, we have

P ′
1(t) = −P1(t) +

1

4
P2(t) +

1

4
P3(t)

P ′
2(t) =

1

3
P1(t)−

1

2
P2(t) +

1

12
P3(t)

P ′
3(t) =

2

3
P1(t) +

1

4
P2(t)−

1

3
P3(t).

(8.19)

The steady–state distribution for the Markov process corresponds
to the steady–state solution to this system of differential equations.
Setting P ′

i = 0 for all i, we obtain

0 = −P1 +
1

4
P2 +

1

4
P3

0 =
1

3
P1 −

1

2
P2 +

1

12
P3

0 =
2

3
P1 +

1

4
P2 −

1

3
P3.

(8.20)

Solving the system of linear equations in Eq. (8.20) together with
the condition

P1 + P2 + P3 = 1

yields

P =

(
7

35
,
8

35
,
20

35

)
,

which is the same as before.
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Figure 8.7: Rate diagram for Example 8.4, illustrating the rate at which the
process tends to jump from one state to another.

One simple way to determine the system of equations that must
be solved to get the steady–state distribution for a Markov process is
to use the fluid–flow analogy. Fluid flows into and out of each state.
In order for the system to remain in equilibrium, the rate at which
fluid flows into each state must equal the rate at which it flows back
out. For example, in Fig. 8.7 fluid is flowing out of state 1 at the
rate of 1/3 + 2/3 = 1× P1. Fluid flows from state 2 back into state
1 at the rate of 1/4 × P2 and from state 3 to state 1 at the rate of
1/4× P3, so we have the condition

P1 = 1/4 P2 + 1/4 P3.

By applying this principle of

[Rate out] = [Rate in]

to the other two states as well, we obtain the system of equations

P1 =
1

4
P2 +

1

4
P3

1

2
P2 =

1

3
P1 +

1

12
P3

1

3
P3 =

2

3
P1 +

1

4
P2.

(8.21)
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which is equivalent to the system of equations in Eq. (8.20). We call
the system of equations in Eq. (8.21) the balance equations for our
Markov process model. They express the condition that the rates
into and out of each state are in balance.

In Section 8.1 we remarked that an ergodic Markov chain will
always tend to steady state. Now we will state the corresponding
result for Markov processes. A Markov process is called ergodic if, for
every pair of states i and j, it is possible to jump from i to j in a finite
number of transitions. There is a theorem that guarantees that an
ergodic Markov process always tends to steady state. Furthermore,
the distribution of Xt tends to the same steady–state distribution
regardless of the initial state of the system (see, for example, Çinlar
(1975) p. 264). Let

P (t) = (P1(t), . . . , Pm(t))

denote the current probability distribution of our Markov process.
Then, this theorem says that for any initial probability distribution
P (0) on the state space, we will always see the probability distri-
bution P (t) of the Markov process state vector Xt converge to the
same steady–state distribution

P = (P1, . . . , Pm)

as t → ∞. The system of differential equations in Eq. (8.18) that
describes the dynamics of the probability distribution P (t) can be
written in matrix form as

P (t)′ = P (t)A, (8.22)

where A = (aij) is the matrix of rates. This is a linear system of
differential equations on the space

S = {x ∈ Rm : 0 ≤ xi ≤ 1;
∑

xi = 1}. (8.23)

Our theorem says that if this dynamical system in Eq. (8.22) repre-
sents an ergodic Markov process, then there exists a unique stable
equilibrium solution P . Furthermore, for any initial condition P (0)
we will have P (t)→ P as t→∞. More detailed information about
the transient (time–dependent) behavior of the Markov process can
be obtained by explicitly solving the linear system in Eq. (8.22) by
the usual methods.

Now we return to the forklift problem of Example 8.3. We want to formulate
a Markov process model for Xt = the number of forklifts in repair at time t
months. Since the facility can handle only 27 forklifts, we have

Xt ∈ {0, 1, 2, . . . , 27}.
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Figure 8.8: Rate diagram for the forklift problem, illustrating the rate at which
the number of forklifts in service tends to increase or decrease.

The only allowed transitions are from Xt = i to Xt = i+ 1 or i− 1. The rates
up and down are λ = 4.5 and µ = 7.3, respectively, except that we cannot
transition up from state 27 or down from state 0. The rate diagram for this
problem is shown in Figure 8.8.

The steady–state equations PA = 0 can be obtained from the rate diagram
by using the

[Rate out] = [Rate in]

principle. From Fig. 8.8 we obtain

λP0 = µP1

(µ+ λ)P1 = λP0 + µP2

(µ+ λ)P2 = λP1 + µP3

...

(µ+ λ)P26 = λP25 + µP27

µP27 = λP26.

(8.24)

Solving along with ∑
Pi = 1

will yield the steady–state Pr{Xt = i}. We are interested in

Pr{Xt > 0} = 1− Pr{Xt = 0} = 1− P0

and in

EXt =
∑

iPi.
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Figure 8.9: Histogram showing the distribution of the number of forklifts in
service at any given time.

Moving on to step 4, we first solve for P1 in terms of P0, then for P2 in terms
of P1, and so forth, to obtain

Pn = (λ/µ)Pn−1

for all n = 1, 2, 3, . . . , 27. Then

Pn = (λ/µ)
n
P0

for all such n. Since
27∑

n=0

Pn = P0

27∑
n=0

(
λ

µ

)n

= 1,

we must have

P0 =
1− ρ

1− ρ28
,

where ρ = λ/µ. Here we have used the standard formula for the sum of a finite
geometric series. For n = 1, 2, 3, . . . , 27 we have

Pn = ρnP0 =
ρn(1− ρ)

1− ρ28
. (8.25)

Now ρ = λ/µ = 4.5/7.3 ≈ 0.616, so 1−ρ28 ≈ 0.9999987. Hence, we may assume
for all practical purposes that P0 = 1− ρ and Pn = ρn(1− ρ) for n ≥ 1.
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Now we calculate our two measures of performance. First, we have

Pr{Xt > 0} = 1− P0 = ρ ≈ 0.616.

Next, we have

EXt =
27∑

n=0

nPn

=

27∑
n=0

nρn(1− ρ),

(8.26)

which yields EXt = 1.607.

To summarize (step 5), we consider a system where forklift trucks break
down at a rate of 4.5 per month and are taken to a repair facility with the
capacity to service up to 7.3 per month. Since the rate at which vehicles arrive
for repair is only about 60% of the potential service rate, the mechanic is busy
with this activity only about 60% of the time. However, since breakdowns occur
essentially at random, there will be times when there is more than one vehicle in
the shop at one time, through no fault of the mechanic. In fact, on an average
day we would expect to see 1.6 vehicles in the repair facility. By this, we mean
that if we kept track on a daily basis of the number of vehicles in the repair
facility, then at the end of the year this number would average about 1.6. More
specifically, we would expect the distribution indicated by Fig. 8.9.

Murphy’s Law is certainly in evidence here. Even if the mechanic does his
job flawlessly, on 8% of the working days in a year, there will be 5 or more
forklift trucks in the shop. Since it takes three days to fix one truck, this
represents a backlog of about three weeks. Assuming 250 working days a year,
this unfortunate situation will occur about 20 days out of the year. Meanwhile,
a time study will show the mechanic busy on this part of his job only about 60%
of the time. This seeming discrepancy can be explained by the simple fact that
breakdowns are not always nicely spaced out. Sometimes, due to sheer bad luck,
several machines will break down in rapid succession, and the mechanic will be
swamped. At other times there will be long periods between breakdowns, and
the mechanic will have no repairs to perform.

There are really two management problems here. One is the problem of idle
time. There is no way to avoid the sporadic nature of this job activity, so idle
time will continue to be a significant concern. Management might consider the
extent to which the mechanic can perform other duties during this idle time. Of
course, these duties should be easily interruptible in case there is a breakdown.

The second problem is backlogs. Sometimes a number of forklift trucks
will be waiting for repair. Additional study may be required to determine
whether this problem should be addressed by devoting additional manpower
to the repair activity during particularly busy periods. (This problem is the
subject of Exercise 8 at the end of this chapter.)
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Finally, we come to the very important questions of sensitivity and robust-
ness. Both measures of performance depend on the ratio

ρ =
λ

µ
,

currently equal to 0.616. The relation

Pr{Xt > 0} ≈ ρ (8.27)

requires no further comment. If we let A = EXt denote the average number in
the system, then (using 1− ρ28 ≈ 1) we have

A =
27∑

n=0

nρn(1− ρ), (8.28)

which reduces to
A = ρ+ ρ2 + ρ3 + · · ·+ ρ27 − 27ρ28.

This is approximately

ρ(1 + ρ+ ρ2 + ρ3 + · · · ) = ρ

1− ρ
,

and so
dA

dρ
≈ 1

(1− ρ)2
,

so that

S(A, ρ) ≈ 2.6.

A small error in ρ would not significantly alter our conclusions based on A =
EXt.

We should also consider the size of the facility storage area, currently at
K = 27 forklift trucks. We have seen that for moderate ρ (not too close to
1) this parameter makes little difference, in the sense that we have continually
used the approximation

1− ρK+1 ≈ 1.

Indeed, this approximation is equivalent to the assumption that there is unlim-
ited storage capacity for forklift trucks to repair. Essentially, we are assuming
that K = ∞. If more storage capacity is made available, this will not change
the rate λ at which vehicles arrive to be repaired. Thus, ρ = λ/µ remains the
same, so both our measures of performance are insensitive to K. The only effect
of increasing K (i.e., obtaining aditional storage space) will be to increase the
number of trucks that can be waiting for service.

The model we have used to represent the repair facility is a special case
of a queuing model. A queuing model represents a system consists of one or
more service facilities at which arrivals are processed, and those arrivals that
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cannot be processed have to wait for service in a queue. There is a large body
of literature on queuing models, including much current research. A textbook
on operations research (e.g., Hillier et al. (1990)) is a good place to begin. The
most important assumption we might try to relax is that service times have an
exponential distribution. There is ample reason to suspect that the arrivals are
more or less random. There is a result (based on the simplifying assumption
K = ∞, which we have made before) for a general service time distribution
with variance σ2 that states that ρ = λ/µ is the probability that the server is
busy and the steady–state

EXt = ρ+
λ2σ2 + ρ2

2(1− ρ)
. (8.29)

Of course, this reduces to ρ/(1− ρ) in the case of an exponential service time.
In that case, σ = 1/µ. The general conclusion to be drawn from this formula is
that the average number of vehicles in repair grows with the variance of service
time. Thus, more uncertainty about the length of a repair will result in longer
waiting times.

8.3 Linear Regression

The single most commonly used stochastic model assumes that the expected
value of the state variable is a linear function of time. The model is attractive
not only because of its wide range of applications, but also because of the
availability of good software implementations.

Example 8.5. Adjustable–rate mortgages on private homes are commonly
based on one of several market indices tabulated by the federal home loan bank.
The author’s mortgage is adjusted yearly on the basis of the U.S. Treasury
one–year Constant Maturity (CM1) index for May of each year. Historical data
for the three–year period beginning June 1986 are shown in Table 8.1 (source:
Board of Governors of the Federal Reserve). Use this information to project the
estimated value of this index in May 1990, the date of the next adjustment.

We will use the five-step method. Step 1 is to ask a question. We are
attempting to estimate the future trend in a variable that exhibits a tendency
to grow with time, along with some random fluctuation. Let Xt denote the U.S.
Treasury one–year Constant Maturity (CM1) index at time t months after May
1986. A graph of Xt for t = 1, . . . , 37 is shown in Figure 8.10. We want to
estimate X48. If we assume that Xt depends in part on a random element, then
we cannot expect to predict X48 exactly. The best we can hope for is an average
value EX48, along with some kind of measure of the magnitude of uncertainty.
For the moment we will concentrate on obtaining an estimate of EX48. We will
leave the other matter for the section on sensitivity analysis.

Step 2 is to select the modeling approach. We will model this problem using
linear regression.
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month TB3 TB6 CM1 CM2 CM3 CM5
6/86 6.21 6.28 6.73 7.18 7.41 7.64
7/86 5.84 5.85 6.27 6.67 6.86 7.06
8/86 5.57 5.58 5.93 6.33 6.49 6.80
9/86 5.19 5.31 5.77 6.35 6.62 6.92
10/86 5.18 5.26 5.72 6.28 6.56 6.83
11/86 5.35 5.42 5.80 6.28 6.46 6.76
12/86 5.49 5.53 5.87 6.27 6.43 6.67
1/87 5.45 5.47 5.78 6.23 6.41 6.64
2/87 5.59 5.60 5.96 6.40 6.56 6.79
3/87 5.56 5.56 6.03 6.42 6.58 6.79
4/87 5.76 5.93 6.50 7.02 7.32 7.57
5/87 5.75 6.11 7.00 7.76 8.02 8.26
6/87 5.69 5.99 6.80 7.57 7.82 8.02
7/87 5.78 5.86 6.68 7.44 7.74 8.01
8/87 6.00 6.14 7.03 7.75 8.03 8.32
9/87 6.32 6.57 7.67 8.34 8.67 8.94
10/87 6.40 6.86 7.59 8.40 8.75 9.08
11/87 5.81 6.23 6.96 7.69 7.99 8.35
12/87 5.80 6.36 7.17 7.86 8.13 8.45
1/88 5.90 6.31 6.99 7.63 7.87 8.18
2/88 5.69 5.96 6.64 7.18 7.38 7.71
3/88 5.69 5.91 6.71 7.27 7.50 7.83
4/88 5.92 6.21 7.01 7.59 7.83 8.19
5/88 6.27 6.53 7.40 8.00 8.24 8.58
6/88 6.50 6.76 7.49 8.03 8.22 8.49
7/88 6.73 6.97 7.75 8.28 8.44 8.66
8/88 7.02 7.36 8.17 8.63 8.77 8.94
9/88 7.23 7.43 8.09 8.46 8.57 8.69
10/88 7.34 7.50 8.11 8.35 8.43 8.51
11/88 7.68 7.76 8.48 8.67 8.72 8.79
12/88 8.09 8.24 8.99 9.09 9.11 9.09
1/89 8.29 8.38 9.05 9.18 9.20 9.15
2/89 8.48 8.49 9.25 9.37 9.32 9.27
3/89 8.83 8.87 9.57 9.68 9.61 9.51
4/89 8.70 8.73 9.36 9.45 9.40 9.30
5/89 8.40 8.39 8.98 9.02 8.98 8.91
6/89 8.22 8.00 8.44 8.41 8.37 8.29

Table 8.1: Possible adjustable–rate mortgage loan indices.
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Figure 8.10: Graph of CM1 index versus time for the ARM problem.

The linear regression model assumes that

Xt = a+ bt+ εt, (8.30)

where a and b are real constants and εt is a random variable that
represents the effect of random fluctuations. It is assumed that

ε1, ε2, ε3, . . .

are independent and identically distributed with mean zero. It is
also common to assume that εt is normal; i.e., that for some σ > 0
the random variable

εt/σ

has the standard normal density. In the case where the random fluc-
tuations represented by εt involve the additive effects of a fairly large
number of independent random factors, this normal assumption is
justified by the central limit theorem. (The normal density and the
central limit theorem were introduced in Section 7.3.)

Since the error term εt has mean zero,

EXt = a+ bt, (8.31)

so the problem of estimating EXt reduces to the estimation of the
parameters a and b. If we were to graph the line

y = a+ bt (8.32)
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on the graph of Fig. 8.10, we would expect the data points to lie near
this line, with some above and some below. The best–fitting line,
representing our best estimate of the parameters a and b, should
minimize the extent to which the data points deviate from the line.

Given a set of data points

(t1, y1), . . . , (tn, yn),

we measure the goodness of fit of the regression line in terms of the
vertical distance

|yi − (a+ bti)|

between the data point (ti, yi) and the point on the regression line,
Eq. (8.32), at t = ti. To avoid absolute value signs, which are trouble-
some in an optimization problem, we measure the overall goodness
of fit by

F (a, b) =
n∑

i=1

(yi − (a+ bti))
2. (8.33)

The best–fitting line is characterized by a global minimum of
the objective function in Eq. (8.33). Setting the partial derivatives
∂F/∂a and ∂F/∂b equal to zero yields

n∑
i=1

yi = na+ b
n∑

i=1

ti

n∑
i=1

tiyi = a
n∑

i=1

ti + b
n∑

i=1

t2i .

(8.34)

Solving these two linear equations in two unknowns determines
a and b.

An estimate of the predictive power of the regression equation
(8.32) can be obtained as follows. Let

y =
1

n

n∑
i=1

yi (8.35)

denote the average or mean value of the y data points, and for each
i let

ŷi = a+ bti. (8.36)

The total variation yi− y between any one data value and the mean
value can be expressed as the sum

(yi − y) = (yi − ŷi) + (ŷi − ȳ) . (8.37)

The first term on the right-hand side of Eq. (8.37) represents the er-
ror (vertical distance of the data point from the regression line), and
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the second term represents the amount of deviation in y accounted
for by the regression line. A little algebra shows that

n∑
i=1

(yi − y)2 =
n∑

i=1

(yi − ŷi)
2 +

n∑
i=1

(ŷi − y)2. (8.38)

The statistic

R2 =

n∑
i=1

(ŷi − ȳ)2

n∑
i=1

(yi − ȳ)2
(8.39)

measures the portion of the total variation in the data accounted for
by the regression line. The remaining portion of the total variation
is attributed to random errors; i.e., the effect of εt. If R

2 is close to
1, then the data are very nearly linear. If R2 is close to 0, the data
are very nearly random.

Most educational computer laboratories have statistical packages
that will automatically compute a, b, and R2 from a data set. In-
expensive software of the same kind is available for most personal
computers, and some hand–held calculators have built–in linear re-
gression functions. For the linear regression problems in this book,
any of these methods will suffice. It is not recommended that these
problems be solved by hand.

Step 3 is to formulate the model. We will let Xt represent the value of the
CM1 index t months after May 1986, and we will assume the linear regression
model in Eq. (8.30). The data are

(t1, y1) = (1, 6.73)

(t2, y2) = (2, 6.27)

...

(t37, y37) = (37, 8.44).

(8.40)

The best–fitting regression line can be obtained by solving the linear system of
equations in Eq. (8.34) to obtain a and b. Then the goodness–of–fit statistic
R2 can be obtained from Eq. (8.39). Using a computer implementation of this
linear regression model will allow us to avoid a lot of tedious calculation.

Step 4 is to solve the model. We used the Minitab statistical package to
obtain the regression line

y = 5.45 + 0.0970t (8.41)

and
R2 = 83.0%

(see Figure 8.11 for selected outputs). To do this, first we entered the CM1 data
into one column of a Minitab worksheet and entered the time index numbers
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t = 1, 2, 3, . . . , 37 into another column. Then we used the pull-down menus to
issue the command Stat > Regression > Regression and specified the CM1
data as the response and the time index data as the predictor. To get the
prediction interval for t = 48, we selected the Options button in the regression
window and entered “48” in the box labelled Prediction intervals for new

observations. The details of this procedure and the resulting outputs are quite
similar if you use a different statistical package, a spreadsheet with a regression
tool, or even a hand calculator (although some features, like prediction intervals,
may not be available).

The regression equation is

cm1 = 5.45 + 0.0970 t

Predictor Coef SE Coef T P

Constant 5.4475 0.1615 33.73 0.000

t 0.096989 0.007409 13.09 0.000

S = 0.481203 R-Sq = 83.0% R-Sq(adj) = 82.6%

Unusual Observations

Obs t cm1 Fit SE Fit Residual St Resid

1 1.0 6.7300 5.5445 0.1551 1.1855 2.60R

R denotes an observation with a large standardized residual.

Predicted Values for New Observations

New

Obs Fit SE Fit 95% CI 95% PI

1 10.1030 0.2290 (9.6381, 10.5678) (9.0211, 11.1848)X

X denotes a point that is an outlier in the predictors.

Values of Predictors for New Observations

New

Obs t

1 48.0

Figure 8.11: Solution to the ARM problem using the statistical package Minitab.

Equation (8.41) represents the best–fitting straight line through the data
points in Eq. (8.40). See Figure 8.12 for a graphical illustration. The average
trend in the CM1 index over the period June 1986 to June 1989 has been to
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Figure 8.12: Graph of CM1 index versus time showing the regression line for
the ARM problem.

increase by 0.0970 per month. Substituting t = 48 into Eq. (8.41), we obtain
the estimate

EX48 = 5.45 + 0.0970(48) = 10.1

for the May 1990 CM1 index value. Since R2 = 83.0%, the regression equation
accounts for 83% of the total variation in our CM1 index data. This gives us
a fairly high level of confidence in our estimate of EX48. Of course, the actual
value of X48 will differ due to random fluctuations. More details about the
likely magnitude of these fluctuations will be provided below in the sensitivity
analysis.

Finally, step 5. We have concluded that the CM1 index shows a general
trend, increasing by about 0.097 points per month. This figure is based on
historical observations over the last three years. Projecting on this basis, we
obtain the estimate of 10.1 for the May 1990 index figure. This is about 1.1
points higher than the May 1989 index, so in 1990 the author should expect his
ARM payments to increase again.

The most important sensitivity analysis question here is the amount of ran-
dom fluctuation inXt.We are assuming the linear regression model in Eq. (8.30),
where εt is mean zero normal. Our regression package estimated the standard
deviation σ ≈ 0.4812 on the basis of the data. In other words, εt/0.4812 is ap-
proximately standard normal. About 95% of the data points were no more than
±2σ away from the line in Eq. (8.41). If this is representative of the magnitude
of future fluctuations, then we would expect X48 to lie between 10.1± 2σ with
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95% confidence; i.e., we should see

9.1 ≤ X48 ≤ 11.1.

There is also a more sophisticated method built into the statistics package that
takes into account the additional uncertainty involved in estimating EX48. This
method yields 9.02 ≤ X48 ≤ 11.19 at the 95% confidence level. See Fig. 8.11.

Next we consider the sensitivity of our model to unusual data values. We
are assuming the linear regression model from Eq. (8.30). Most of the time the
random error εt will be small, but there is a small probability that εt will be
rather large, so that one or more of our data points may lie far off the regression
line. We need to consider the sensitivity of our procedure to such anomalous
points, which are called outliers.

It is not hard to show that the regression line for a set of data points (t1, y1),
. . ., (tn, yn) will always pass through the point (t̄, ȳ) defined by

t̄ =
t1 + · · ·+ tn

n

ȳ =
y1 + · · ·+ yn

n
.

(8.42)

In our model we have t̄ = 19 and ȳ = 7.29. The regression procedure selects
the best–fitting line through the point (19, 7.29). Since the essence of the
procedure is to minimize the vertical distance between the regression line and
the data points, an outlier will tend to pull the regression line toward itself,
regardless of the location of the other data points. The situation gets worse
as n gets smaller, because then each individual data point has more influence.
It also gets worse as the distance from the base point (t̄, ȳ) gets larger, since
points farther out on the regression line have more leverage.

In Fig. 8.11 the statistical package Minitab has flagged the data point (1, 6.73)
as being unusual. If we plug t = 1 into the regression equation, we get

ŷ1 = 5.45 + 0.0970(1) = 5.547.

The vertical distance or residual y1 − ŷ1 is 1.18, which means that this data
point is about 2.6 standard deviations above the regression line. In order to
ascertain the sensitivity of our model to this outlier, we repeat the regression
calculation, leaving out the data point (1, 6.73). Figure 8.13 shows the results
of this sensitivity run.

The new regression equation is

EXt = 5.30 + 0.103t

with R2 = 86.2%. The predicted value EX48 = 5.30 + 0.103(48) = 10.24 is
our new estimate of the CM1 index on May 1990. The new residual standard
deviation is 0.438450, so we expect that the CM1 index on May 1990 will be
between 10.24± 2(0.44). In other words, we are 95% sure that we will see

9.36 < X48 < 11.12.
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The regression equation is

cm1 = 5.30 + 0.103 t

Predictor Coef SE Coef T P

Constant 5.3045 0.1554 34.13 0.000

t 0.102634 0.007034 14.59 0.000

S = 0.438450 R-Sq = 86.2% R-Sq(adj) = 85.8%

Figure 8.13: Sensitivity analysis for the ARM problem using the statistical
package Minitab.

The more sophisticated prediction interval computed by Minitab (not shown in
Figure 8.13) is a bit wider: 9.24 ≤ X48 ≤ 11.22. Either way, these conclusions
are about the same as before, so we conclude that our model is not too sensitive
to this outlier.

The main robustness issue here concerns our choice of a linear model in Eq.
(8.30). More generally, we might assume that

Xt = f(t) + εt, (8.43)

where f(t) represents the true value of one–year U.S. Treasury bonds at time
t, and εt represents fluctuations in the market. In this more general setting the
linear regression model represents a linear approximation

f(t) ≈ a+ bt, (8.44)

which is good near the base point (t̄, ȳ). In Figure 8.11, Minitab has flagged
the point t = 48 as being far away from the center point t = 19. We have data
for 1 ≤ t ≤ 37 and strong evidence of a linear relationship over this interval
(R2 = 83%). In other words, the linear approximation in Eq. (8.44) involves
at most a small percent error over this interval. As we move away from this
interval, however, it must be expected that the error involved in this linear
approximation gets worse. Another robustness issue arises from our assumption
that the random errors εt are independent and identically distributed. A more
complex model might take into account the dependence between these random
variables. We will explore this issue in Section 8.5.

Our linear regression model is a simple example of a time series model. A
time series model is a stochastic model of one or more variables that evolve
over time. Most economic forecasting is done using time series models. More
complex time series models represent the interaction of several variables and
dependence in the random fluctuations of these variables. Time series analysis
is a branch of statistics. In the next section, we provide an introduction to the
essentials of time series analysis. For more details about time series models, a
good reference is Box et al. (1976).



280 CHAPTER 8. STOCHASTIC MODELS

8.4 Time Series

A time series is a stochastic process that varies over time, usually observed at
fixed intervals. Daily temperature and rainfall, monthly unemployment levels,
and annual income are some typical examples of time series. The basic tool for
modeling time series is linear regression, introduced in Section 8.3. For that rea-
son, this section may be considered as a follow-up to Section 8.3 that introduces
some additional applications and methods. Indeed, the example we consider
next is an extension of the ARM problem from that section. This section re-
quires a numerical implementation of multiple regression; i.e., linear regression
with more than one predictor. This is available in a statistical package (e.g.,
Minitab, SAS, SPSS) or a spreadsheet (e.g., Excel). Since it is not reasonable
to perform these problems by hand, a full set of computational formulas will
not be given.

Example 8.6. Reconsider the ARM problem of Example 8.5 but now consider
the relationship between the mortgage index at different times. Answer the
same question as before: Estimate the value of the CM1 index in May 1990
using the data provided on the CM1 index values from June 1986 to June 1989.

We will use the five-step method. Step 1 is the same as before, except that
now we also want to take into account the dependence between the CM1 index
at different times. We are attempting to estimate the future trend in a variable
that exhibits a tendency to grow with time, along with some random fluctuation.
Let Xt denote the U.S. Treasury one–year Constant Maturity (CM1) index at
time t months after May 1986. A graph of Xt for t = 1, . . . , 37 was shown in
Figure 8.10. We want to estimate X48. We will assume that Xt depends on
the time t, the previous values Xt−1, Xt−2, . . . and a random element. Then we
want to predict the average EX48 along with a suitable estimate of uncertainty.

Step 2 is to select the modeling approach. We will model this problem as a
time series and fit an autoregressive model.

A time series is a sequence of random variables {Xt} that varies
over time t = 0, 1, 2, . . . according to some random pattern. The
key to time series modeling is to recognize the pattern. A typical
assumption is that the pattern involves a trend added to a station-
ary time series. The trend is a non-random function that varies
over time, and it represents the mean value of the series. Once the
trend is removed, we are left with a mean zero time series, and we
want to model its dependence structure. The simplest case is where
the remaining time series consists of independent random variables.
However, it is typical to find dependence between these variables.
Dependence is measured in terms of the covariance. For two ran-
dom variables X1 and X2, the covariance

Cov(X1, X2) = E[(X1 − µ1)(X2 − µ2)],

where µi = E(Xi), the expected value or mean. The covariance
measures the linear relation between the two variables. If X1 and
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X2 are independent, then the covariance Cov(X1, X2) = 0. A posi-
tive covariance indicates that a higher–than–average value of X1 is
likely to be found in the company of a higher–than–average value
of X2. Likewise, a low value of X1 will typically be found along
with a low value of X2. For example, if X1 is the income of an
individual and X2 is their income tax, then Cov(X1, X2) would be
positive. You cannot infer the income tax knowing only the income,
but it is a good bet that someone with a high income pays more
tax, and someone with a low income pays less. Mathematically,
(X1 − µ1) is the deviation of income from the average, and likewise
for (X2 − µ2). The covariance averages the product of these. If one
tends to be positive when the other is positive, and negative when
the other is negative, then the covariance is positive, indicating a
positive relation. For another example, the median price X1 of a
home in a town is negatively correlated to the percentage of families
X2 owning their own home. Here µ1 is the median home price over
all towns, and µ2 is the average percentage of families owning their
own home, taken over all the towns. When X1−µ1 is positive, then
X2 − µ2 is likely to be negative, and vice versa, so their average
Cov(X1, X2) will be negative, indicating a negative relation between
these two variables. We also note that correlation only captures a
linear relation. Consider the case where X1 is the air pressure in
a car tire and X2 is the tread life. If X1 is near the mean µ1, the
recommended air pressure, then X2 will be the highest. If X1 is
either smaller or larger than its mean, then X2 will decrease. The
covariance does not capture this kind of dependence. Finally, we
note that the covariance is also a generalization of the variance, in
the sense that Var(X) = Cov(X,X).

A close cousin of the covariance is the correlation

ρ = corr(X1, X2) =
Cov(X1, X2)

σ1σ2
= E

[
(X1 − µ1)

σ1

(X2 − µ2)

σ2

]
which is a dimensionless version of the covariance. Here σ2

i =
Var(Xi) is the variance, so that σi is the standard deviation of the
random variable Xi. Since both µi and σi have the same units as
Xi, the units cancel, leaving a dimensionless measure of dependence.
Again, if X1 and X2 are independent, then corr(X1, X2) = 0, and
we say that X1 and X2 are uncorrelated. It can also be shown that
the correlation satisfies −1 ≤ ρ ≤ 1 in all cases, the extreme cases
ρ = ±1 corresponding to the case of perfect dependence where X2

is a linear function of X1. If ρ > 0, we say that X1 and X2 are
positively correlated, and if ρ < 0, we say that they are negatively
correlated.

Correlation is a useful measure of dependence in a time series.
In that context we call ρ(t, h) = corr(Xt, Xt+h) the autocorrelation
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function of the time series. It measures the serial dependence be-
tween the times series at different times. The time series is called
stationary (or sometimes weakly stationary) if the mean E(Xt) and
the autocorrelation function ρ(h, t) are constant over time. In time
series analysis, it is often necessary to detrend the series to get some-
thing that is stationary. In Example 8.5 we detrended the CM1 times
series Xt by using regression to identify a linear trend a+ bt, leaving
a zero mean (centered) error term εt that we modeled as independent
and identically distributed. In the context of time series analysis,
this is called random noise. It is the simplest centered times series.
More generally, one might hope that the centered series is at least
stationary, with a correlation structure that remains the same over
time. There are various tests for stationarity, but the simplest is
just to plot the errors εt over time to see whether they appear to
follow a consistent (random) pattern. One typical indication of non-
stationarity would be a widening or narrowing of the distribution of
εt over time. This is called heteroscedasticity, which just means that
the variance changes. Once we are satisfied that a centered time
series is stationary, we attempt to model its covariance structure.
The simplest useful model for this is called an autoregressive process

Xt = a+ bt+ c1Xt−1 + · · ·+ cpXt−p + εt (8.45)

where for convenience, we have also included the trend. The param-
eter p is called the order of the autoregressive process, sometimes
abbreviated as AR(p). In the context of linear regression, we can fit
the parameters of an autoregressive process by regressing the obser-
vations Xt against multiple predictors. The first is the time t, as in
Section 8.3. The remaining predictors are the previous observations
Xt−1, . . . , Xt−p. Now the trick is to choose a reasonable value for the
parameter p, and there are two main ways to do this. One way is to
look at the R2 value, which measures how much of the variability in
Xt is captured by the predictors. Since any additional data will give
at least a slightly better prediction, adding a predictor will always
make R2 increase. However, a very small increase is not worth the
bother of carrying another predictor, so one could just add predictors
Xt−1, Xt−2, and so forth one by one, until the additional improve-
ment in R2 is minimal. Some packages also output an adjusted R2

value that includes a penalty for an increased number of predictors.
If this is available, one can simply add predictors until the adjusted
R2 begins to decrease (or more generally, consider several models
and pick the one with the largest adjusted R2). Such packages also
typically list the sequential sums of squares that can be interpreted
as an extension of the R2 statistic. Recall that for a simple (one
predictor) linear regression model, the formula (8.39) for R2 is the
sum of the squares of the regressions (ŷi − ȳ) divided by the sum of
the squares of the total variations (yi − ȳ). The sequential sums of
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squares are just the individual components in the sum of the squares
of the regressions, one predictor at a time, to measure the additional
variation captured by each additional predictor. Looking at the se-
quential sums of squares is another way to measure the additional
value of another predictor, essentially equivalent to looking at the
change in the R2 value. Additional information is contained in the
p–values for each of the estimated regression coefficients a, b, and
ci. The p–value indicates the likelihood that this parameter value
could have occurred by chance, even though the predictor does not
belong in the model (or equivalently, it belongs in the model with a
coefficient of zero). Hence, a small p–value (say, p < 0.05) indicates
strong evidence that the predictor belongs in the model. However,
this is less important then the R2 indicator, since a predictor can
be statistically significantly related to the dependent variable Xt we
are trying to predict, and still add just a small amount of informa-
tion. Hence, we might not consider it worthwhile to include. This
is the principle of parsimony: Make the model as simple as possible,
without sacrificing the ability to predict.

The second method for autoregressive modeling is to consider the
residuals from the time series model, which are simply our estimates
of the error term εt. Once we have determined our estimates of the
parameters a, b, and ci from the regression, we can use the formula

εt = Xt − (a+ bt+ c1Xt−1 + · · ·+ cpXt−p)

to estimate the errors. Since our goal is to include enough predic-
tors in the model to capture the dependence structure, we would
like the resulting εt sequence to be an uncorrelated noise sequence.
We can check this by computing the autocorrelation function of the
residuals. Most statistical packages will automatically compute the
residuals and their autocorrelation function, as well as p–values or
error bars for the autocorrelation function ρ(h). The error bars in-
dicate the likely values of ρ(h) in the case of a noise sequence, and
values outside these bars (also indicated by a low p–value, typically
less than 0.05) indicate a statistically significant correlation. Since
the autocorrelation function assumes a stationary process, it is also
advisable to check for this using graphical displays of the residuals.

Step 3 is to formulate the model. We will model the CM1 index Xt at
time t months after May 1986 as an autoregressive time series with a linear
trend. Hence, we are assuming that Eq. (8.45) holds for some constants a, b,
c1, . . . , cp and some noise sequence εt. In order to choose a suitable value for
the parameter p, we will consider a sequence of increasingly complex models
p = 0, 1, 2, . . . until we achieve a satisfactory result, indicated by a model with
(hopefully) a small number of predictors that appears to have an uncorrelated
noise sequence of residuals. Then we can proceed to estimate (forecast) the
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Figure 8.14: Graph of CM1 residuals εt versus time for the simple regression
model of equation (8.30).

value Xt of the CM1 index at month t = 48, which is May 1990, along with
appropriate error bounds.

Step 4 is to solve the problem. We will use the statistical package Minitab
which has convenient facilities for multiple regression, time series analysis, and
graphical display. We begin by examining in more detail the results of the mod-
eling in Example 8.5. There, we fit a simple linear regression model of the form
Xt = a + bt + εt. The results are summarized in Figure 8.11. The best–fit
regression line is given by a = 5.45 and b = 0.097, indicating an upward trend
in the CM1 index. The statistic s = 0.48 estimates the standard deviation
of the errors εt, and the R2 statistic indicates that the trend predicts 83% of
variations in the CM1 index Xt. The p–values for both a and b are given as
0.000, indicating strong statistical evidence that these parameters are different
from zero. Our subsequent analysis and predictions were based on the simple
regression model, which assumes that the errors εt form a noise sequence, in-
dependent and identically distributed. We will now test this assumption using
graphical displays and the correlation function.

The residuals or estimated errors are computed as described in Section 8.3,
using the estimated values of a and b and the equation εt = Xt − (a+ bt). The
predicted values ŷt = a + bt are plotted in Figure 8.12 along with the original
data. The residuals are simply the vertical deviations (yt − ŷt) of the data
values from the regression line, where yt = Xt is the t-th observation of the
CM1 index. For example, the second data value is y2 = 6.27 and the fitted
value is ŷ2 = 5.45+0.097(2) = 5.64, so the residual is y2− ŷ2 = 0.63, indicating
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the the second data point in Figure 8.12 is 0.63 units above the regression line.
Figure 8.14 shows a plot of the residuals. They were computed in Minitab

by clicking the Storage button in the regression window and checking the box
labelled Residuals. The graph was also prepared in Minitab using the com-
mand Graph > Scatterplot. The data appear stationary in the sense that the
spread of values does not seem to increase or decrease with t. However, it does
appear that there may be some serial dependence, particularly for t ≥ 20 where
there seems to be an upward trend. This could indicate many things, including
nonstationarity, a change in the dependence structure of the series, or some
correlation.

To investigate further, we compute the autocorrelation function of the residu-
als. Figure 8.15 shows the results of this calculation using the Minitab command
Stat > Time Series > Autocorrelation applied to the residuals stored as
part of the regression calculation. The vertical bars indicate the correlation
function ρ(h) = corr(εt, εt+h) as a function of the time lag h = 1, 2, 3, . . . and
the dotted curve represents the 95% error bars. The autocorrelation function
plotted here is, of course, a statistical estimate of the model autocorrelation, and
the error bars show the range of normal variation for this statistical estimate for
an uncorrelated noise sequence. Hence, a value outside the bars indicates strong
statistical evidence for a nonzero autocorrelation. In Figure 8.15, the first value
ρ(1) is well outside the error bars. This is an indication of serial correlation in
the residuals εt from our simple regression, evidence that a more complex model
is needed to obtain a simple uncorrelated (white) noise sequence. This kind of
strong positive correlation can cause a pattern that looks like a trend, as seen
in Figure 8.14, since a large positive value of εt makes it more likely that the
next value is large, and so forth.

Now we proceed to consider a more complicated autoregressive times series
model (8.45) for the CM1 index time series data. Our goal is to find a number
of predictors p in terms of the past history of the process that is in some sense
optimal. We begin by repeating the regression procedure with p = 1 additional
predictor Xt−1. First, we prepare another column of data Xt−1; that is, the
CM1 index shifted downward by one place. Use a simple copy and paste or the
Minitab command Stat > Time Series > Lag. It is necessary to leave off the
last CM1 index value in the lag one column Xt−1, since the statistical package
requires predictors to be the same data length as the predicted data (and, of
course, the first entry is blank or missing, in Minitab this is denoted by a ∗
in that data cell). The details vary with different packages, but the steps are
similar. Now we repeat the regression command and store the residuals.

Figure 8.16 displays portions of the Minitab computer output. The regres-
sion equation is Xt = 1.60 + 0.033t + 0.698Xt−1, where Xt is the CM1 index
t months after May 1986. This indicates an upward trend along with some se-
rial dependence between the CM1 index on subsequent months. The statistic
R2 = 94.1% indicates that the combination of trend and the CM1 index from
last month predicts 94.1% of the variations in the CM1 index this month. This
is a significant improvement over the value R2 = 83.0% for the simple linear
regression model of Example 8.5.
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Figure 8.15: Autocorrelation function for CM1 residuals εt versus lag for the
simple regression model of equation (8.30).

The adjusted R2 = 93.8% here is also higher than the 82.6% figure from Ex-
ample 8.5, additional evidence that the autoregressive model is superior. The
analysis of variance statistics give more detail on the R2 calculation. Recalling
the formula (8.39), we see that R2 is the ratio of two sums of squares. The sum
of squared regressions

∑
i(ŷi− ȳ)2 = 44.676 and the sum of squares of total vari-

ation is
∑

i(yi − ȳ)2 = 47.460. The ratio of these two is R2 = 44.676/47.460 =
0.941. The sequential sums of squares table indicates that 40.924 of the 44.676
residual sum of squares comes from the first predictor t, and an additional 3.752
comes from the addition of a second predictor Xt−1. If we had listed the two
predictors in the reverse order, then these two figures would change, since the
two predictors t and Xt−1 are not completely independent, but they would still
add to 44.767. We also note that the p-value for the constant a = 1.5987 is
0.008, the p–value for the coefficient b = 0.03299 of the predictor t is 0.007, and
the p–value for the coefficient c1 = 0.6977 of Xt−1 is 0.000. This is additional
evidence that all these coefficients are statistically significantly different than
zero and should be included in the model.

Figure 8.17 shows the fitted model 1.60 + 0.033t+ 0.698Xt−1 plotted along
with the data Xt to check the quality of the fit. It appears that the fit is better
than the simple regression line; compare Figure 8.12. Now a prediction of X48

can be accomplished by iterating the equation Xt = 1.60 + 0.033t+ 0.698Xt−1
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The regression equation is

CM1 = 1.60 + 0.0330 t + 0.698 X(t-1)

Predictor Coef SE Coef T P

Constant 1.5987 0.5652 2.83 0.008

t 0.03299 0.01144 2.88 0.007

X(t-1) 0.6977 0.1046 6.67 0.000

S = 0.290471 R-Sq = 94.1% R-Sq(adj) = 93.8%

Analysis of Variance

Source DF SS MS F P

Regression 2 44.676 22.338 264.75 0.000

Residual Error 33 2.784 0.084

Total 35 47.460

Source DF Seq SS

t 1 40.924

X(t-1) 1 3.752

Figure 8.16: Autoregressive model for the ARM problem using the statistical
package Minitab.

starting at t = 37 (e.g., use a hand calculator or a spreadsheet). This yields

X38 = 1.60 + 0.0330(38) + 0.698(8.44) = 8.75

X39 = 1.60 + 0.0330(39) + 0.698(8.75) = 8.99

...

X48 = 1.60 + 0.0330(48) + 0.698(10.16) = 10.28

so we predict that the value of the CM1 index for May 1990 will be 10.28. Using
the model Xt = 1.60 + 0.033t + 0.698Xt−1 + εt along with the fact that the
estimated standard deviation of εt is 0.290471, we predict (with 95% certainty)
that the value of the CM1 index on May 1990 will be between 10.28± 2(0.29),
or in other words, between 9.7 and 10.9. This is a more precise estimate than
Example 8.5 because the regression model fits more closely, giving a smaller
error standard deviation. Graphically, the standard deviation is simply the
typical vertical variation of the data points from the prediction line, so a closer
fit gives a smaller standard deviation. However, the bottom line is the same
as before: The author’s ARM interest rate is likely to increase again in 1990.
In fact, this improved model gives a slightly higher estimate for the May 1990
CM1 index.

Next we examine the model residuals to determine whether they resemble an
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Figure 8.17: Graph of CM1 index versus time t showing the fitted autoregressive
model of equation (8.45) with p = 1.
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Figure 8.18: Graph of CM1 residuals εt versus time for the autoregressive model
of equation (8.45) with p = 1.
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uncorrelated (white) noise sequence. Figure 8.18 shows a plot of the residuals
for this AR(1) model versus time. This plot is more satisfactory than Figure
8.14, with no significant evidence of serial correlation. We can also examine the
autocorrelation function of these residuals as we did before, and this plot (not
shown) indicates no serial correlation, since all the autocorrelations are within
the error bars. Hence, it is reasonable to conclude that the AR(1) model (8.45)
with p = 1 captures nearly all of the dependence in the CM1 time series. To
validate this conclusion, we may also consider a further regression model with
three predictors: t, Xt−1, and Xt−2. We leave the details for an exercise (see
Exercise 8.19).

Finally, we come to Step 5. Example 8.6 may be considered as part of
the robustness analysis of Example 8.5. There we predicted that the value of
the CM1 index on May 1990 would be 10.1, about 1.1 points higher than the
May 1989 index value of 8.98. The more sophisticated model considered here
gives a refined estimate of 10.2, a little higher. We also recall that in Example
8.5 we produced a prediction interval of (9.1,11.1) with 95% confidence. The
refined model yields a significantly tighter interval of (9.7,10.9). Putting this all
together, we expect that the CM1 index for May 1990 is likely to be a bit more
than one point higher than the May 1989 value, and we are reasonably sure it
will go up by at least 3/4 of a percent.

Sensitivity analysis could include many factors. For example, two of the
observations at t = 16, 37 were flagged by Minitab for large residuals (both were
more than 2.2 standard deviations from the mean). Hence, we could repeat the
analysis with these values deleted, to see if this makes any significant difference.
We could consider a different trend function like a + bt + ct2 (see Exercise
16) or atb (see Exercise 18 where we apply this trend to the response time
data for the facility location problem). We could also add more predictors
Xt−2, Xt−3, . . . and check to see if this makes a big difference (see Exercise
8.19). The possibilities are literally endless, and hence, some judgment is called
for. This is where the principle of parsimony comes in. Our goal is to get a
reasonable estimate of the CM1 index for May 1990, based on the available
data. Refining the simple regression model of Example 8.5 to the AR(1) model
of Example 8.6 was probably worthwhile, not so much for the improved point
estimate of 9.2 instead of 9.1, but rather for the significantly tighter prediction
interval. If we only cared about the point estimate, then simple linear regression
is probably good enough. Whether it is worth while to continue in this vein, to
consider more alternative models with more predictors and/or more complicated
trend functions, is less clear. In the real world, sensitivity analysis can continue
as long as time and funds permit, but at some point the intelligent modeler will
declare victory and move on to a new challenge.

Many interesting robustness questions are important in the analysis of real–
world time series. One question is the trend. While we use a linear trend,
other options such as a higher order polynomial (see Exercise 16) or a nonlinear
trend (see Exercise 18) can also be considered. Adding more parameters will
always improve the fit, so care is required. Examining the adjusted R2 value is
one way to avoid over-parameterization. Often the choice of trend function will
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depend on the applications. For example, for income or population data, one
might expect exponential rather than linear growth. Another important issue is
change point analysis: Did the underlying correlation structure or trend function
of the time series change at some point during the data collection period? For
example, this is an important part of the debate over global warming. Time
series is a growing field both in applications and theory. A good place to start
learning more about the underlying theory is Brockwell and Davis (1991).

8.5 Exercises

1. Reconsider the inventory problem of Example 8.1, but now suppose that
the store policy is to order more aquariums if there are less than two left
in stock at the end of the week. In either case (zero or one remaining) the
store orders enough to bring the total number of aquariums in stock back
up to three.

(a) Calculate the probability that the demand for aquariums in a given
week exceeds the supply. Use the five-step method, and model as a
Markov chain in steady state.

(b) Perform a sensitivity analysis on the demand rate λ. Calculate the
steady–state probability that demand exceeds supply, assuming λ =
0.75, 0.9, 1.0, 1.1, and 1.25, and display in graphical form, as in Fig.
8.5.

(c) Let p denote the steady–state probability that demand exceeds sup-
ply. Use the results of part (b) to estimate S(p, λ).

2. (Requires a computer algebra system) Reconsider the inventory problem
of Example 8.1. In this problem we will explore the sensitivity of the
probability p that demand exceeds supply to the demand rate λ.

(a) Draw the state transition diagram for an arbitrary λ. Show that Eq.
(8.11) is the appropriate state transition probability matrix for this
problem.

(b) Write down the system of equations analogous to Eq. (8.10) that
must be solved to get the steady–state distribution for a general λ.
Use a computer algebra system to solve these equations.

(c) Let p denote the steady–state probability that demand exceeds sup-
ply. Use the results of part (b) to obtain a formula for p in terms of
λ. Graph p versus λ for the range 0 ≤ λ ≤ 2.

(d) Use a computer algebra system to differentiate the formula for p
obtained in part (c). Calculate the exact sensitivity S(p, λ) at λ = 1.

3. Reconsider the inventory problem of Example 8.1, but now suppose that
the inventory policy depends on recent sales history. Whenever inventory
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drops to zero, the number of units ordered is equal to two plus the number
sold over the past week, up to a maximum of four.

(a) Determine the steady–state probability distribution of the number
of aquariums in stock. Use the five-step method, and model as a
Markov chain.

(b) Determine the steady–state probability that demand exceeds supply.

(c) Determine the average size of a resupply order.

(d) Repeat parts (a) and (b), but now suppose that weekly demand is
Poisson with a mean of 2 customers per week.

4. Reconsider the inventory problem of Example 8.1, but now suppose that
three additional aquariums are ordered any time that there are less than
two in stock at the end of the week.

(a) Determine the probability that demand exceeds supply on any given
week. Use the five-step method, and model as a Markov chain in
steady state.

(b) Use the steady–state probabilities from part (a) to calculate the ex-
pected number of aquariums sold per week under this inventory pol-
icy.

(c) Repeat part (b) for the inventory policy in Example 8.1.

(d) Suppose that the store makes a profit of $5 per 20–gallon aquar-
ium sold. How much would the store gain by implementing the new
inventory policy?

5. For the purposes of this problem, we will consider the stock market to be
in one of three states:

1 Bear market
2 Strong bull market
3 Weak bull market

Historically, a certain mutual fund gained −3%, 28%, and 10% annually
when the market was in states 1, 2, and 3 respectively. Assume that the
state transition probability matrix

P =

0.90 0.02 0.08
0.05 0.85 0.10
0.05 0.05 0.90


applies to the weekly change of state in the stock market.

(a) Determine the steady–state distribution of market state.

(b) Suppose that $10,000 is invested in this fund for ten years. Determine
the expected total yield. Does the order of state transitions make any
difference?
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(c) In the worst–case scenario, the long–run expected proportion of time
in each market state is 40%, 20%, and 40%, respectively. What is
the effect on the answer to part (b)?

(d) In the best–case scenario, the long–run expected proportion of time
in each market state is 10%, 70%, and 20%, respectively. What is
the effect on the answer to part (b)?

(e) Does this mutual fund offer a better investment opportunity than a
money market fund currently yielding about 8%? Consider that the
money market fund offers a lower risk.

6. A Markov chain model of floods uses the state variable Xn = 0, 1, 2, 3, 4
where state 0 means the average daily flow is below 1,000 cubic feet per
second, state 1 is 1,000–2,000 cfs, state 2 is 2,000–5,000 cfs, 3 is 5,000–
10,000 cfs, and 4 is over 10,000 cfs. The state transition probability matrix
for this model is

P =


0.9 0.05 0.025 0.015 0.01
0.3 0.7 0 0 0
0 0.4 0.6 0 0
0 0 0.6 0.4 0
0 0 0 0.8 0.2

 .

(a) Draw the state transition probability diagram for this model.

(b) Find the steady–state probability distribution for this model.

(c) How often are severe floods (over 10,000 cfs) expected to occur?

(d) A reservoir used for drought storage depends on the flow of this river.
When the flow is over 5,000 cfs, the reservoir is allowed to store 1,000
acre–feet per day. When the flow is under 1,000 cfs, the reservoir is
required to release 100 acre–feet per day back into the river. Find the
expected annual number of acre–feet of water stored in the reservoir.
Is this number positive or negative? What does this mean?

7. This exercise shows the equivalence of the two formulations of a Markov
process model.

(a) Suppose that Ti1, . . . , Tim are independent random variables and that
Tij is exponential with rate parameter aij = pijλi. Assume that∑

pij = 1 and λi > 0. Show that

Ti = min(Ti1, . . . , Tim)

has an exponential distribution with rate parameter λi. [Hint: Use
the fact that

Pr{Ti > x} = Pr{Ti1 > x, . . . , Tim > x}

for all x > 0.]
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(b) Suppose that m = 2 so that Ti = min(Ti1, Ti2) and show that
Pr{Ti = Ti1} = pi1. [Hint: Use the fact that

Pr{Ti = Ti1} = Pr{Ti2 > Ti1}

=

∫ ∞

0

Pr{Ti2 > x} fi1(x) dx,

where fi1(x) is the probability density function of the random vari-
able Ti1.]

(c) Use the results of (a) and (b) to show that in general Pr{Ti = Tij} =
pij .

8. Reconsider the forklift problem of Example 8.3, but now suppose that a
second mechanic is called in whenever two or more trucks need repair.

(a) Determine the steady–state distribution of the number of trucks need-
ing repair. Use the five-step method and model as a Markov process.

(b) Use the results of part (a) to calculate the steady–state expected
number of forklift trucks in the repair facility, the probability that the
first mechanic is busy, and the probability that the second mechanic
is called in. Compare to the results obtained for one mechanic in
Example 8.3.

(c) The cost of the second mechanic is $250 per day, and the mechanic is
only paid for the days worked. Another option which can be used in
case of backlog (two or more trucks in repair) is to lease replacement
vehicles for customers whose trucks are in repair, at a cost of $125
per week per vehicle. Which of the two plans is most cost-effective?

(d) There is some uncertainty as to the actual cost of bringing in a second
mechanic during periods of backlog. What is the minimum cost per
day for a second mechanic that makes leasing a better alternative?

9. Five locations are connected by radio. The radio link is active 20% of the
time, and there is no radio activity the remaining 80% of the time. The
main location sends radio messages with an average duration of 30 seconds,
and the remaining four locations send messages that average 10 seconds
in length. Half of all radio messages originate at the main location, with
the remaining proportion equally divided among the other four locations.

(a) For each location, determine the steady–state probability that this
location is sending a message at any given time. Use the five-step
method, and model as a Markov process.

(b) A monitoring station samples from the radio emissions on this net-
work once every five minutes. How long on average does it take until
the monitor finds a message in progress from one particular location?
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(c) The monitor can identify the source of a radio message if the message
lasts at least three seconds after the monitor begins listening. How
long does it take until the monitor locates one particular location?

(d) Perform a sensitivity analysis to see how the results of part (c) are
affected by the percent utilization of the radio frequency (currently
20%).

10. A gasoline service station has two pumps, each of which can service two
cars at a time. If all pumps are busy, cars will queue up in a single
line to await a free pump. Since the station operates in a competitive
environment, it can be expected that customers encountering long lines at
this station will take their business elsewhere.

(a) Construct a model that can be used to predict both the steady–state
probability of a waiting line and the expected length of the line.
Use the five-step method, and model as a Markov process. You will
have to make some additional assumptions about customer demand,
service time, and balking (refusing to join a queue).

(b) Use the model of part (a) to estimate the fraction of potential business
lost because of customer balking. Consider a range of possible levels
of customer demand.

(c) What is the easiest way to infer the level of customer demand (i.e.,
potential sales) from data to which the station manager has access?

(d) Under what circumstances would you recommend that the station
purchase additional pumps?

11. A certain form of one–celled creature reproduces by cell division, produc-
ing two offspring. The mean lifetime before cell division is one hour, and
each individual cell has a 10% chance of dying before it can reproduce.

(a) Construct a model that represents the evolution of population size
over time. Use a Markov process, and draw a rate diagram.

(b) Describe in general terms what you would expect to happen to the
population level over time.

(c) What is the problem with applying steady–state results to this model?

12. Table 8.2 gives per capita income in 1982 dollars and population density
in population per square miles for the ten poorest counties in Asia (source:
Webster’s New World Atlas, (1988)).

(a) Does the data support the proposition that prosperity is linked to
population density? Use linear regression to obtain a formula that
predicts per capita income as a linear function of population density.

(b) What percentage of the total variation in per capita income can be
attributed to variations in population density?
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Country Per Capita Income Population Density
(in 1982 dollars) (pop. per sq. mi.)

Nepal 168 290
Kampuchea 117 101
Bangladesh 122 1740
Burma 171 139
Afghanistan 172 71
Bhutan 142 76
Vietnam 188 458
China 267 284
India 252 578
Laos 325 45

Table 8.2: Per capita income versus population density for the 10 poorest Asian
nations.

(c) What is the effect on your answers to parts (a) and (b) if we leave
out of our analysis the country (Bangladesh) with population density
of more than 1,000 per square mile?

(d) On the basis of your regression model, estimate the potential benefit
for the citizens of a poor Asian country that manages to reduce its
population by 25%.

13. Reconsider Exercise 12(a), but now obtain the regression line by solving
the underlying optimization problem by hand. Letting ti denote the pop-
ulation density and yi the per capita income of country i, the goodness–
of–fit for a candidate regression line

y = a+ bt

is given by Eq. (8.33) in the text. Plug in the data points (ti, yi) and com-
pute the function F (a, b). Then obtain the best–fitting line by minimizing
F (a, b) over the set of all (a, b) ∈ R2.

14. Reconsider the ARM problem of Example 8.5. Suppose that only the
data for the period June 1986 to June 1988 were known, and we were
attempting to predict the May 1989 value of the CM1 index.

(a) Use a computer or calculator implementation of linear regression to
obtain the regression line for this data.

(b) What is the predicted value of the May 1989 CM1 index according
to the regression model of part (a)?

(c) What is the value of R2 for the model in part (a)? How would you
interpret this value?
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(d) Compare to the actual value of the May 1989 CM1 index. How close
was the predicted value? Was it within two standard deviations?

15. Repeat Exercise 14, but use the numbers for the TB3 index.

16. Reconsider the ARM problem of Example 8.5. Use a computer program
for multiple regression to predict future trends in the CM1 index by fitting
a second–degree polynomial to the data. After you input the time index
t = 1, 2, 3, . . . in one column, and the CM1 data in a second column,
prepare a third column of data containing the second power of the time
index numbers t2 = 1, 4, 9, . . . Multiple regression will give the best–
fitting second–degree polynomial

CM1 = a+ bt+ ct2,

and R2 can be interpreted as before. This technique is known as polyno-
mial least squares.

(a) Use a computer implementation of multiple linear regression to ob-
tain a formula that predicts the CM1 index as a quadratic function
of t.

(b) Use the formula obtained in part (a) to predict the expected May
1990 value for the CM1 index.

(c) What percent of the total variation in the CM1 index can be ac-
counted for by using this model?

(d) Compare the R2 value for this multiple regression model with what
was done in Section 8.3. Which model gives the best fit?

17. (Response–time formula from Example 3.2) A suburban community in-
tends to replace its old fire station with a new facility. As part of the
planning process, response–time data were collected for the past quarter.
It took an average of 3.2 minutes to dispatch the fire crew. The dispatch
time was found to vary only slightly. The time for the crew to reach the
scene of the fire (drive time) was found to vary significantly depending on
the distance to the scene. The data on drive time are displayed in Table
8.3.

(a) Use linear regression to obtain a formula that predicts drive time as
a linear function of distance traveled. Then determine a formula for
total response time, including dispatch time.

(b) What percentage of the total variation in drive time is accounted for
by the formula you came up with in part (a)?

(c) Draw a graph of drive time versus distance for the data in Table 8.3.
Do the data seem to indicate a linear trend?

(d) Plot the regression line from part (a) on the graph made in part (c).
Does the line seem to be a good predictor for this data?
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Distance Drive Time
(miles) (minutes)
1.22 2.62
3.48 8.35
5.10 6.44
3.39 3.51
4.13 6.52
1.75 2.46
2.95 5.02
1.30 1.73
0.76 1.14
2.52 4.56
1.66 2.90
1.84 3.19
3.19 4.26
4.11 7.00
3.09 5.49
4.96 7.64
1.64 3.09
3.23 3.88
3.07 5.49
4.26 6.82
4.40 5.53
2.42 4.30
2.96 3.55

Table 8.3: Response time data for the facility location problem.

18. (Continuation of Exercise 17) Another way to get a formula that relates
drive time d to distance r is to use a power law model. Suppose that the
underlying relationship between d and r is of the form d = arb. Taking
logarithms of both sides yields the relationship

ln d = ln a+ b ln r.

Then linear regression can be used to estimate the parameters ln a and b
in this linear equation.

(a) Transform the data in Table 8.3 by taking logarithms of both the
drive time d and the distance r. Plot ln d versus ln r. Does your
graph suggest a linear relationship between ln d and ln r?

(b) Use linear regression to obtain a formula that predicts ln d as a linear
function of ln r. Then determine a formula for total response time,
including dispatch time, as a function of the distance r to the fire.
Compare to the formula in Example 3.2.
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(c) What is the value of R2 for your regression model in part (b)? How
do you interpret this number?

(d) Plot drive time d versus distance r, and then sketch a graph of the
formula for d as a function of r, which you determined in part (b).
Does the power law model seem to give a good fit to this data?

(e) Compare the results of parts (c) and (d) with the results of Exercise
17. Which model seems to give a better fit to this data? Justify your
answer.

19. (Model selection for CM1 data) Reconsider the ARM problem of Example
8.6, but now consider a time series model with two previous months of data
as predictors.

(a) Use a computer package for multiple linear regression to fit the model

Xt = a+ bt+ c1Xt−1 + c2Xt−2 + εt

to the CM1 data.

(b) Interpret the R2 value for this model, and compare with the results
of Example 8.6.

(c) Make a plot for the residuals for this model, similar to Figure 8.18 in
the text. Do the residuals appear to form a stationary uncorrelated
noise sequence?

(d) Iterate the model equation from part (a) and estimate the CM1 index
on May 1990. Use the reported standard deviation to give a 95%
prediction interval. Compare with the results of Example 8.6. Is this
new model significantly better?

20. (Model selection for TB3 data) Reconsider the ARM problem of Examples
8.5 and 8.6, but now consider the TB3 data from Table 8.1.

(a) Use simple linear regression to fit the model Xt = a + bt + εt as in
Example 8.5. Predict the TB3 index for September 1989 and give a
95% prediction interval.

(b) Compute the residuals for the model in part (a) and check for sta-
tionarity and serial dependence. Does the model seem adequate?

(c) Repeat parts (a) and (b) using the autoregressive model Xt = a +
bt + c1Xt−1 + εt as in Example 8.6 and compare with the results of
(a) and (b).

(d) Which of the two models would you recommend? Justify your an-
swer.
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Chapter 9

SIMULATION OF
PROBABILITY MODELS

Computational methods for optimization are important, because most optimiza-
tion problems are too difficult to be solved analytically. For dynamic models, it
is often possible to determine steady–state behavior analytically, but the study
of transient (time–dependent) behavior requires computer simulation. Prob-
ability models are even more complex. Models with no time dynamics can
sometimes be solved analytically, and steady–state results are available for the
simplest stochastic models. But for the most part, probability models are solved
by simulation. In this chapter we will discuss some of the most generally useful
simulation methods for probability models.

9.1 Monte Carlo Simulation

Questions involving the transient or time–dependent behavior of stochastic mod-
els are difficult to resolve analytically. Monte Carlo simulation is a general
modeling technique that is usually effective for such problems. The construc-
tion of Monte Carlo simulation software can be time–consuming, and the re-
peated simulation runs needed for accuracy and sensitivity analysis can become
prohibitively expensive. Even so, Monte Carlo simulation models continue to
enjoy a very wide appeal. They are easy to conceptualize, easy to explain, and
they are the only viable method for the modeling of many complex stochastic
systems. A Monte Carlo simulation models random behavior. It can be based
on any simple randomizing device, such as a coin flip or the roll of dice, but
typically a computer pseudorandom number generator is used. Because of the
random element, each repetition of the model will produce different results.

Example 9.1. Arriving on your vacation, you are dismayed to learn that the
local weather service forecasts a 50% chance of rain every day this week. What
are the chances of 3 consecutive rainy days?
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Variables: Xt =

{
0 if no rain on day t

1 if rain on day t

Assumptions: X1, X2, . . . , X7 are independent
Pr{Xt = 0} = Pr{Xt = 1} = 1/2

Objective: Determine the probability that
Xt = Xt+1 = Xt+2 = 1 for some
t = 1, 2, 3, 4, or 5

Figure 9.1: Results of step 1 of the rainy day problem.

We will use the five-step method. Step 1 is to formulate a question. In
the process we assign variable names to quantities of interest, and we clarify
our assumptions about these variables. Then we state a question in terms of
these variables. See Figure 9.1 for the results of step 1. Step 2 is to select the
modeling approach. We will use Monte Carlo simulation.

Monte Carlo simulation is a technique that can be applied to
any probability model. A probability model includes a number of
random variables and must also specify the probability distribution
for each of these random variables. Monte Carlo simulation uses a
randomizing device to assign a value to each random variable, in
accordance with its probability distribution. Since the results of the
simulation depend on random factors, subsequent repetitions of the
same simulation will reproduce different results. Usually a Monte
Carlo simulation will be repeated a number of times in order to
determine an average or expected outcome.

Monte Carlo simulation is typically used to estimate one or more
measures of performance (MOPs) of the system. Repeated simu-
lations can be considered as independent random trials. For the
moment let us consider the situation where there is only one simu-
lation parameter Y to be examined. Repeated simulation produces
the results Y1, Y2, . . . , Yn, which we may consider as independent
and identically distributed random variables whose distribution is
unknown. By the strong law of large numbers we know that

Y1 + · · ·+ Yn

n
→ EY (9.1)

as n → ∞. Hence, we should use the average of Y1, . . . , Yn to
estimate the true expected value of Y . We also know that, letting

Sn = Y1 + · · ·+ Yn,

the central limit theorem implies that

Sn − nµ

σ
√
n
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is approximately standard normal for large n, where µ = EY and
σ2 = V Y. For most cases the normal approximation is fairly good
when n ≥ 10. Even though we do not know µ or σ, the central limit
theorem still gives some important insight. The difference between
the observed average Sn/n and the true mean µ = EY is

Sn

n
− µ =

σ√
n

(
Sn − nµ

σ
√
n

)
, (9.2)

so we can expect the variation in the observed mean to tend to zero
about as fast as 1/

√
n. In other words, to get one more decimal place

of accuracy in EY would require 100 times as many repetitions of
the simulation. More sophisticated statistical analysis is possible,
but the basic idea is now very clear. We will have to be satisfied
with fairly rough approximations of average behavior if we are to
use Monte Carlo simulation.

As a practical matter, there are many sources of error and vari-
ation in a modeling problem, and the additional variation produced
by Monte Carlo simulation is not typically the most serious of these.
A judicious application of sensitivity analysis will suffice to ensure
that the results of a simulation are used properly.

Moving on to step 3, we now need to formulate the model. Figure 9.2 gives
an algorithm for Monte Carlo simulation of our vacation problem.

As in Chapter 3, the notation Random {S} denotes a point selected at ran-
dom from the set S. In our simulation, each day’s weather is represented by a
random number from the interval [0, 1]. If the number turns out to be less than
p, we assume that this is a rainy day. Otherwise, it is a sunny day. Then p is the
probability that any one day is rainy. The variable C simply counts the number
of consecutive rainy days. Figure 9.3 shows a slightly modified algorithm. The
modified version repeats the Monte Carlo simulation n times and counts the
number of rainy weeks (i.e., the number of weeks in which it rains 3 days in a
row). The notation

Y ← Rainy Day Simulation (p)

indicates that we evaluate the output variable Y by running the rainy day
simulation from Fig. 9.2 with input variable p.

Step 4 is to solve the problem. We ran a computer implementation of the
algorithm in Fig. 9.3 with p = 0.5 and n = 100. The simulation counted 43
rainy weeks out of 100. On this basis we would estimate a 43% chance of a
rainy week. Several additional runs were made to confirm these results. In
every case the simulation counted around 40 rainy weeks out of 100. Given the
likely magnitude of error in the 50% estimated chance of rain, this is about as
much accuracy as we will need for this problem. More details on the sensitivity
of our simulation results to random factors will be discussed later, in the section
on sensitivity analysis.
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Algorithm: RAINY DAY SIMULATION

Variables: p = probability of one rainy day

X(t)=

{
1 if rain on day t

0 otherwise

Y =

{
1 if ≥ 3 consecutive rainy days

0 otherwise

Input: p

Process: Begin
Y ← 0
C ← 0
for t = 1 to 7 do

Begin
if Random {[0, 1]} < p then

X(t) = 1
else

X(t) = 0
if X(t) = 1 then

C ← C + 1
else

C ← 0
if C ≥ 3 then Y ← 1
End

End

Output: Y

Figure 9.2: Pseudocode for Monte Carlo simulation of the rainy day problem.

Finally, step 5. Arriving on your vacation, you find that the local weather
service predicts a 50% chance of rain every day for a week. A simulation indi-
cates that, if this forecast is correct, there is a 40% chance that there will be at
least 3 consecutive rainy days this week. These results apply to sunshine as well
as rain, and so, to end on a somewhat more optimistic note, let us point out
that there is a 50% chance of sunshine every day this week, and a 40% chance
of at least 3 consecutive days of sunshine. Enjoy your vacation!

We will begin our sensitivity analysis by examining the sensitivity of our
simulation results to random factors. Each model run simulates n = 100 weeks
of vacation and counts the number of rainy weeks. In the terminology of step 2,
our MOP is Y , where Y = 1 indicates a rainy week, and Y = 0 indicates other-
wise. Our model simulates n = 100 independent random variables Y1, . . . , Yn,
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Algorithm: REPEATED RAINY DAY SIMULATION

Variables: p = probability of 1 rainy day
n = number of weeks to simulate
S = number of rainy weeks

Input: p, n

Process: Begin
S ← 0
for k = 1 to n do

Begin
Y ← Rainy Day Simulation (p)
S ← S + Y
End

Output: S

Figure 9.3: Pseudocode for repeated Monte Carlo simulation to determine av-
erage behavior in the rainy day problem.

all of which have the same distribution as Y . Here Yk = 1 indicates that week k
was a rainy week. Our model outputs the random variable Sn = Y1 + · · ·+ Yn,
which represents the number of rainy weeks. Let

q = Pr{Y = 1} (9.3)

denote the probability of a rainy week. It is not hard to calculate that

µ = EY = q

σ2 = V Y = q(1− q).
(9.4)

Our first model run output Sn = 43. On this basis, we can use the strong law
of large numbers, Eq. (9.1), to estimate that

q = EY ≈ Sn/n = 0.43. (9.5)

How good is this estimate? By the central limit theorem, we obtain from Eq.
(9.2) that Sn/n is unlikely to differ from µ = q by more than 2σ/

√
n, since

a standard normal random variable is 95% certain to have absolute value less
than 2. Using Eqs. (9.4) and (9.5), we would conclude that our estimate in Eq.
(9.5) is within

2
√

(0.43)(0.57)/100 ≈ 0.1 (9.6)

of the true value of q.
A more elementary way to investigate the sensitivity of our simulation results

to random factors is to compare the results of a number of model runs. Figure
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Figure 9.4: Histogram showing the distribution of the number of rainy weeks
out of 100 for the rainy day problem.

9.4 shows the results of 40 model runs, each of which simulates 100 weeks of
vacation. All of these model runs lead to estimates Sn/n ≈ 0.4, and none is
outside of the interval 0.4 ± 0.1. It also appears that the distribution of Sn is
approximately normal.

We should also examine the sensitivity of our simulation results to the fore-
cast 50% chance of rain. Figure 9.5 shows the results of 10 additional model
runs for each of the cases p = 0.3, 0.4, 0.5, 0.6, and 0.7, where p is the probabil-
ity of one rainy day. The boxes connected by the dotted line show the average
outcome (fraction of rainy weeks), and the vertical bars show the range of out-
comes for each case. For a 40% chance of rain each day, the probability of at
least 3 consecutive rainy days in a week is around 20%, and so forth. While
the probability of 3 straight days of rain varies quite a bit, it seems safe to say
that if the chance of rain each day is moderate, then so is the chance of rain 3
straight days in one week.

What about robustness? We should examine the critical assumptions that
make up the structure of the model. In step 1 we assumed that the indicator
variables X1, . . . , X7 were independent and identically distributed. In other
words, the chance of rain is the same each day, and the weather on one day is
independent of the weather on any other day. Suppose instead that Pr{Xt =
1} varies with t, still keeping the independence assumption. We can use our
sensitivity analysis results to obtain upper and lower bounds on the probability
of 3 consecutive days of rain, reasoning that this probability should be monotone
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Figure 9.5: Graph of the probability of a rainy week versus the chance of rain
one day for the rainy day problem.

increasing as any Pr{Xt = 1} increases. A higher chance of rain on day t means
a higher probability of 3 straight days of rain, all else being equal. Then, if
all Pr{Xt = 1} are between 0.4 and 0.6 (a 40% to 60% chance of rain), the
probability of 3 days of rain is between 0.2 and 0.6. Our model is quite robust
in this regard, partly due to the fact that we are not looking for a lot of accuracy
in our answer.

Suppose now that {Xt} are not independent. For example, we could model
{Xt} as a Markov chain on the state space {0, 1}. This implies that the chance
of rain today depends on the weather yesterday. Local weather forecasts rarely
contain the kind of information necessary to formulate such a model, particularly
the state transition probabilities. However, we could always guess at these and
then use sensitivity analysis to ensure that we have not assumed too much. The
kind of question we are asking here cannot be answered using a steady–state
analysis, because it concerns the time–dependent or transient behavior of the
stochastic process. Such questions are usually difficult to handle analytically,
even by advanced techniques. This is one reason why Monte Carlo simulation is
so widely used. On the other hand, it is sometimes possible to develop analytical
solutions; see Exercise 9.19.
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9.2 The Markov Property

A stochastic process is said to have the Markov property if the information
contained in the current state of the process is all that is needed to determine the
probability distribution of future states. Markov chains and Markov processes
were introduced in Chapter 8. Both have the Markov property. Monte Carlo
simulation of a stochastic process is much simpler in the presence of the Markov
property, because it reduces the quantity of information that needs to be stored
in the computer.

Example 9.2. We reconsider the docking problem of Example 4.3, now taking
into account the random element. Our basic assumptions are summarized in
Fig. 4.7. Our goal or objective, as before, is to determine the success of our
control procedure to match velocities.

We will use the five-step method. Our starting point is Fig. 4.7, but we must
also make some assumptions about the variables an, cn, and wn. Ideally we
would perform some experiments and collect data on such factors as astronaut
response time and the time it takes to read or manipulate controls. In the
absence of such data, we would attempt to make some reasonable assumptions
consistent with what is known about similar situations.

The random variable that represents the most uncertainty (i.e., the greatest
variance) is cn, the time it takes to make a control adjustment. This variable
represents the time it takes to observe the rate of closing, calculate the desired
acceleration adjustment, and carry out the adjustment. We will assume that
it takes roughly 1 second to observe the rate of closing, 2 seconds to calculate
the adjustment, and 2 seconds to make the adjustment. The actual time to
carry out each phase is random. Let Rn denote the time to read the closing
velocity, Sn the time to calculate the desired adjustment, and Tn the time to
make the adjustment. Then ERn = 1 second and ESn = ETn = 2 seconds. We
need to make a reasonable assumption about the distributions of these random
variables. It seems reasonable to suppose that they are all nonnegative, mutually
independent, and that outcomes close to the mean are most likely. There is a
wide variety (infinite!) of distributions that fit this general description, and as
of now, we have no particular reason to prefer one over another. This being the
case, we will refrain from specifying the exact distribution at this time. One of
our random variables is cn = Rn+Sn+Tn. The others are wn, the waiting time
before the next control adjustment, and an, the acceleration after this control
adjustment. We will assume that an = −kvn+εn, where εn is a (small) random
error. We assume that εn is normally distributed with mean zero. The variance
of εn depends on both the skill of the human operator and on the sensitivity
of the control mechanism. We will assume that we can typically achieve an
accuracy of about ± 0.05 m/sec2, and so we set the standard deviation of
εn at σ = 0.05. The waiting time wn will depend on cn if we are trying to
maintain a fixed time between control adjustments of 15 seconds total. We will
assume that wn = 15− cn+En, where En is a small random error. Assume En



9.2. THE MARKOV PROPERTY 309

Variables: tn = time of nth velocity observation (sec)
vn = velocity at time tn (m/sec)
cn = time to make nth control adjustment (sec)
an = acceleration after nth control adjustment (m/sec2)
wn = wait before (n+ 1)st observation (sec)
Rn = time to read velocity (sec)
Sn = time to calculate adjustment (sec)
Tn = time to make adjustment (sec)
εn = random error in control adjustment (m/sec2)
En = random error in waiting time (sec)

Assumptions: tn+1 = tn + cn + wn

vn+1 = vn + an−1cn + anwn

an = −kvn + εn
cn = Rn + Sn + Tn

wn = 15− cn + En

v0 = 50, t0 = 0
ERn = 1, ESn = ETn = 2, and the
distribution of Rn, Sn, Tn is yet
to be specified
εn is normal mean 0, standard
deviation 0.05
En is normal mean 0, standard
deviation 0.1

Objective: Determine T = min{tn : |vn| ≤ 0.1}

Figure 9.6: Results of step 1 of the docking problem with random factors.

has mean zero, is normal, and that astronaut response–time limitations imply
a standard deviation of 0.1 seconds.

We should now consider the analysis objectives. We want to determine the
success of our control procedure. Certainly, we are interested in seeing that
vn → 0. Simulation can determine that. But we also have the opportunity to
gather information on other aspects of system performance. We should decide at
this time, as a part of step 1, what measures of performance (MOPs) we want to
track. The selected MOPs should represent important quantitative information
that can be used as the basis for comparison with computing control procedure
options. Assume that our initial closing velocity is 50 m/sec, and that the
velocity–matching process is considered successful when the closing velocity has
been reduced to 0.1 m/sec. We would be most interested in the total time it
takes to succeed. This will be our measure of performance. At this point, to
conclude step 1, we summarize our results in Figure 9.6.

Step 2 is to select the modeling approach. We will use a Monte Carlo simu-
lation based on the Markov property.

The general idea is as follows. At each time step n there is
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Begin
Read data
Initialize X0

While (not done) do
Begin
Determine distribution of Xn+1 using Xn

Use Monte Carlo method to determine Xn+1

Update records for MOPs
End

Calculate and output MOPs
End

Figure 9.7: Algorithm for the general Markovian simulation.

a vector Xn that describes the current state of the system. The
sequence of random vectors {Xn} is assumed to have the Markov
property. In other words, the current state Xn contains all of the
information needed to determine the probability distribution of the
next state, Xn+1.

The general structure of the simulation is as follows. First, we
initialize variables and read data files. At this stage we must specify
the initial state X0. Next, we enter a loop that repeats until an
end condition is satisfied. In the loop we use Xn to specify the dis-
tribution of Xn+1, and then we use a random number generator to
determine Xn+1 according to that distribution. We must also cal-
culate and store any information needed to generate the simulation
MOPs. Once the end condition occurs, we exit the loop and output
the MOPs. Then we are done. The algorithm for this simulation is
illustrated by Figure 9.7.

We need to discuss the inner loop in some detail. Suppose for
now that the state vector Xn is one–dimensional. Let

FΘ(t) = Pr{Xn+1 ≤ t|Xn = Θ}.

The value of Θ = Xn determines the probability distribution of
Xn+1. The function FΘ maps the state space

E ⊆ R

onto the interval [0, 1]. There are widely available methods for gen-
erating a random number in [0, 1], and these can be used to generate
a random variable with distribution FΘ. Since

y = FΘ(x)

maps
E → [0, 1],
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the inverse function
x = F−1

Θ (y)

maps
[0, 1]→ E.

If U is a random variable uniformly distributed over [0, 1] (i.e., the
density function of U is the function equal to 1 on [0, 1] and equal
to 0 elsewhere), then Xn+1 = F−1

Θ (U) has distribution FΘ, since
given Xn = Θ,

Pr{Xn+1 ≤ t} = Pr{F−1
Θ (U) ≤ t}

= Pr{U ≤ FΘ(t)}
= FΘ(t)

(9.7)

because
Pr{U ≤ x} = x for 0 ≤ x ≤ 1.

Example 9.3. Let {Xn} denote a stochastic process where Xn+1

has an exponential distribution with rate parameter Xn. Determine
the first passage time

T = min{n : X1 + · · ·+Xn ≥ 100},

assuming that X0 = 1.

We will present a computer simulation to solve this problem once
we discuss the details of generating Xn+1 from Xn. Letting Θ = Xn,
the density function of Xn+1 is

fΘ(x) = Θe−Θx

on x ≥ 0. The distribution function is

FΘ(x) = 1− e−Θx.

Setting
y = FΘ(x) = 1− e−Θx

and inverting, we obtain

x = F−1
Θ (y) = − ln(1− y)/Θ.

Hence we can let
Xn+1 = − ln(1− U)/Θ,

where U is a random number between 0 and 1. See Figure 9.8 for
the complete simulation algorithm.

The discussion above provides a method of generating random
variables with any prescribed distribution. While useful in theory,
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Algorithm: FIRST PASSAGE TIME SIMULATION (Example 9.3)

Variables: X = initial state variable
N = first passage time

Input: X

Process: Begin
S ← 0
N ← 0
until (S ≥ 100) do

Begin
U ← Random {[0, 1]}
R← X
X ← − ln(1− U)/R
S ← S +X
N ← N + 1
End

End

Output: N

Figure 9.8: Pseudocode for the Markovian simulation for Example 9.3.

in practice there is sometimes a catch. For many distributions, such
as the normal distribution, it is not easy to compute the inverse
function F−1

Θ . We can always circumvent this difficulty by interpo-
lating from a table of functional values, but in the case of a normal
distribution, there is an easier way.

The central limit theorem guarantees that for any sequence of in-
dependent, identically distributed random variables {Xn} with mean
µ and variance σ2, the normalized partial sums

(X1 + · · ·+Xn)− nµ

σ
√
n

tend to a standard normal distribution. Suppose {Xn} are uniform
on [0, 1]. Then

µ =

∫ 1

0

x · dx = 1/2

σ2 =

∫ 1

0

(x− 1/2)2 dx = 1/12,

(9.8)

and so for n sufficiently large, the random variable

Z =
(x1 + · · ·+Xn)− n/2√

n/12
(9.9)



9.2. THE MARKOV PROPERTY 313

Algorithm: NORMAL RANDOM VARIABLE

Variables: µ = mean
σ = standard deviation
Y = normal random variable with mean µ, standard deviation σ

Input: µ, σ

Process: Begin
S ← 0
for n = 1 to 12 do

Begin
S ← S +Random {[0, 1]}
End

Z ← S − 6
Y ← µ+ σZ
End

Output: Y

Figure 9.9: Pseudocode for Monte Carlo simulation of a normal random variable.

is approximately standard normal. For most purposes a value of
n ≥ 10 is sufficient. We will use n = 12 to eliminate the denominator
in Eq. (9.9). Given a standard normal random variable Z, another
normal random variable Y with mean µ and standard deviation σ
can be obtained by setting

Y = µ+ σZ. (9.10)

Figure 9.9 shows a simple algorithm for generating normal random
variables with a specified mean and variance.

Returning to the docking problem, we begin step 3. Our first concern is to
identify our state variables. In this case we can take

T = tn

V = vn

A = an

B = an−1

(9.11)

as our state variables. Since our only MOP is already a state variable, we will
not need to initialize or update any additional variables for that purpose. Figure
9.10 gives the algorithm for our docking simulation. The notation Normal (µ, σ)
denotes the output of the normal random variable algorithm described in Fig.
9.9.
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Algorithm: Docking Simulation

Variables: k = control parameter
n = number of control adjustments
T (n) = time (sec)
V (n) = current velocity (m/sec)
A(n) = current acceleration (m/sec2)
B(n) = previous acceleration (m/sec2)

Input: T (0), V (0), A(0), B(0), k

Process: Begin
n← 0
while |V (n)| > 0.1 do

Begin
c← Normal (5, 1)
B(n)← A(n)
A(n)← Normal (−k V (n), 0.05)
w ← Normal (15− c, 0.1)
T (n)← T (n) + c+ w
V (n)← V (n) + cB(n) + wA(n)
n← n+ 1
End

End

Output: T (n)

Figure 9.10: Pseudocode for Monte Carlo simulation of the docking problem.

For now we will assume that

cn = Rn + Sn + Tn

has a normal distribution with a mean of µ = 5 seconds and a standard deviation
of σ = 1 second.

Figure 9.11 shows the results of 20 simulation runs. In these runs the docking
time ranged between 156 and 604 seconds, with an average docking time of 305
seconds.

We have constructed a Monte Carlo simulation of a velocity–matching ex-
ercise for spacecraft manual docking. Our simulation takes into account the
random factors inherent in this man–machine system. Based on what we be-
lieve to be a reasonable set of assumptions on operator performance, the model
indicates a wide variance in the time to complete the docking procedure. For ex-
ample, the time to match velocities starting from a relative velocity of 50 m/sec,
and using a 1 : 50 control factor, averaged about 5 minutes. But outcomes of
less than 3 or greater than 7 minutes are not uncommon. The major source
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Figure 9.11: Histogram showing the distribution of docking times for the docking
problem: case k = 0.02, σ = 0.1.

of variation is the time it takes the pilot to complete the control adjustment
procedure.

One important parameter for sensitivity analysis is the standard deviation of
cn, the time to make a control adjustment. We have assumed that the standard
deviation of cn is σ = 1. Figure 9.12 shows the results of 20 additional model
runs for a few values of σ near 1. As in Fig. 9.5, we let the vertical bars represent
the range of outcomes, and the boxes connected by the dotted line indicate the
average outcome for each value of σ. It seems that our overall conclusions are
fairly insensitive to the exact value of σ. In every case the average docking time
is around 300 seconds (5 minutes), and the variation in docking times is quite
large.

Probably the most important parameter for sensitivity analysis is the control
parameter k. We have assumed k = 0.02, which results in an average docking
time of around 300 minutes. Figure 9.13 shows the results of some additional
model runs in which we varied k. We made 20 additional model runs for each
new value of k. As before, the vertical bars denote the range of outcomes,
and the boxes represent the average outcome for each value of k. As we would
expect, docking time is reasonably sensitive to the control parameter k. Of
course, it is of considerable interest to determine the best value of k. We will
leave this problem for the exercises.

The main robustness question for this model is the distribution of cn, which
we assumed was normal. Since our results did not vary significantly with small
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Figure 9.12: Graph of docking time versus standard deviation σ of time to make
nth control adjustment for the docking problem.
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Figure 9.13: Graph of docking time versus control parameter k for the docking
problem: case σ = 1.
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changes in σ, and since we are not demanding much accuracy, there is ample
reason to expect the model to exhibit robustness with respect to the distribution
of cn. There are a few simple experiments to verify robustness that suggest
themselves. We leave these to the exercises.

9.3 Analytic Simulation

Monte Carlo simulation models are relatively easy to formulate, and they are
intuitively appealing. Their major drawback is that a very large number of
model runs is required to obtain reliable results, especially in the area of sen-
sitivity analysis. Analytic simulations are more difficult to formulate, but are
computationally more efficient.

Example 9.4. A military operations analyst plans an air strike against a well–
defended target. High–altitude strategic bombers will be sent to attack this
important target. It is important to ensure the success of this attack early
in the battle, preferably on the first day. Each individual aircraft has a 0.5
probability of destroying the target, assuming that it can get through the air
defense and then acquire (i.e., find) the target. The probability that a single
aircraft will acquire the target is 0.9. The target is defended by 2 surface–to–air
missile (SAM) batteries and a number of air defense guns. The flight profile
of the aircraft will prevent the air defense guns from being effective (because
the planes will be too high). Each SAM battery has its own tracking radar
and computer guidance equipment, which is capable of tracking 2 aircraft and
guiding 2 missiles simultaneously. Intelligence estimates a 0.6 probability that
1 missile will disable its target aircraft. Both SAM batteries share a target
acquisition radar that is highly effective against high–altitude bombers at a
range of up to 50 miles. The effective range of the tracking radar is 15 miles.
The bombers will travel at 500 miles/hour at an altitude of 5 miles, and the
attack requires that they loiter in the target area for 1 minute. Each SAM
battery can launch 1 missile every 30 seconds, and the missiles travel at 1,000
miles/hour. How many bombers should be sent against this target to ensure its
destruction?

We will use the five-step method. Step 1 is to formulate a question. We want
to know how many aircraft to commit to this mission. The goal is to destroy the
target, but it is immediately clear that we cannot demand a 100% guarantee of
success. Let us say now that we want to be 99% sure of destroying the target.
We will perform a sensitivity analysis on this number later on. Suppose that
N aircraft are committed to this mission. The number of planes destroyed by
air defenses before they can complete their attack on the target is a random
variable. We will denote this random variable by X. In order to obtain an
expression for the probability S that the mission is a success, we will proceed in
two stages. First we will obtain an expression for the probability Pi of mission
success, given that X = i planes are destroyed before they can attack the target.
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Then we will obtain the probability distribution of X so that we can compute

S =
∑
i

Pi Pr{X = i}. (9.12)

If N aircraft are sent and X = i are destroyed before they reach the target,
then there are (N − i) attacking aircraft. If p is the probability that 1 attacking
aircraft can destroy the target, then (1− p) is the probability that 1 attacking
aircraft will fail to destroy the target. The probability that all (N− i) attacking
aircraft fail to destroy the target is

(1− p)N−i.

Thus, the probability that at least one of the attacking aircraft succeeds in
destroying the target is

Pi = 1− (1− p)N−i. (9.13)

The total exposure time to air defense prior to completing the attack is

15 mi

500 mi/hr
· 60 min

hr
= 1.8 min

on the way to the target, and an additional minute in the target area, for a
total of 2.8 minutes, in which time each SAM battery fires 5 shots. Thus, the
attacking aircraft will be exposed to m = 10 shots total. We assume the number
of aircraft X destroyed will have a binomial distribution

Pr{X = i} =
(
m

i

)
qi(1− q)m−i, (9.14)

where (
m

i

)
=

m!

i!(m− i)!
(9.15)

is the binomial coefficient. (The distribution in Eq. (9.14) is the analytic model
for the number of successes in m trials, where q represents the probability of
success. See Exercise 12 for more details.) Now, in order to compute the
probability of mission success S, we need to substitute Eqs. (9.13) and (9.14)
back into Eq. (9.12). Then our objective is to determine the smallest N for
which S > 0.99. This concludes step 1. We summarize our results in Figure
9.14.

Step 2 is to select our modeling approach. We will use an analytic simula-
tion model. In a Monte Carlo simulation we draw random numbers to simulate
events and use repeated trials to estimate probabilities and expected values. In
an analytic simulation we use a combination of probability theory and computer
programming to calculate probabilities and expected values. Analytic simula-
tions are more mathematically sophisticated, which accounts for their greater
efficiency. The feasibility of analytic simulation depends on both the problem
complexity and the skill of the modeler. Most highly skilled analysts consider
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Variables: N = number of bombers sent
m = number of missiles fired
p = probability 1 bomber can destroy target
q = probability 1 missile can disable bomber
X = number of bombers disabled prior to attack
Pi = probability of mission success given X = i
S = overall probability of mission success

Assumptions: p = (0.9)(0.5)
q = 0.6
m = 10
Pi = 1− (1− P )N−i

Pr{X = i} =
(
m
i

)
qi(1− q)m−i; i = 0, 1, 2, . . . , m

S =
m∑
i=0

Pi Pr{X = i}

Objective: Find the smallest N for which S > 0.99

Figure 9.14: Results of step 1 of the bombing run problem.

Monte Carlo simulation as a last resort, to be employed only if they are unable
to formulate a suitable analytic model.

Step 3 is to formulate the model. Figure 9.15 shows an algorithm for ana-
lytic simulation of the bombing run problem. The notation Binomial (m, i, q)
denotes the value of the binomial probability defined by Eqs. (9.14) and (9.15).

Step 4 is to solve the model. We used a computer implementation of the
algorithm in Fig. 9.15, with inputs

m = 10

p = (0.9)(0.5)

q = 0.6,

and we varied N to obtain the results shown in Figure 9.16.
A minimum of N = 15 planes is required to ensure a 99% chance of mission

success. Step 5 is to answer the question, which is how many bombers we must
commit to this mission in order to be 99% sure of success. The answer is 15.
Now we need to conduct a sensitivity analysis to get at the broader question of
what would be a good number of bombers to commit to this mission.

First let us consider the desired probability of success S = 0.99. This is
a number we literally just made up. Figure 9.17 shows the effect of varying
this parameter. It appears that N = 15 is a reasonable decision, although any
number greater than 10 and less than 20 would be fine. Sending more than 20
aircraft would be overkill.

Bad weather would decrease the detection probability, which factored into
the equation p = (0.9)(0.5). If the detection probability decreases to 0.5, then
p = 0.25, and for S > 0.99 we will need at least N = 23 aircraft. If the detection



320 CHAPTER 9. SIMULATION OF PROBABILITY MODELS

Algorithm: BOMBING RUN PROBLEM

Variables: N = number of bombers sent
m = number of missiles fired
p = probability 1 bomber can destroy target
q = probability 1 missile can disable bomber
S = probability of mission success

Input: N, m, p, q

Process: Begin
S ← 0
for i = 0 to m do

Begin
P ← 1− (1− p)N−i

B ← Binomial (m, i, q)
S ← S + P ·B
End

End

Output: S

Figure 9.15: Pseudocode for analytic simulation of the bombing run problem.

0.86 

0.88 

0.9 

0.92 

0.94 

0.96 

0.98 

1 

P
r(

ta
rg

et
 d

es
tr

oy
ed

)

10 12 14 16 18 20 
number of bombers
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sent N for the bombing run problem.
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Figure 9.17: Graph of minimum number of bombers N required to obtain mis-
sion success probability S in the bombing run problem.

probability is 0.3, then N = 35 aircraft are required. The overall relationship
between the detection probability and the number of planes required for mission
success is illustrated in Figure 9.18. It is unlikely that we will want to fly this
mission in bad weather.

One of the applications for models of this kind is to analyze the potential
operational impact of engineering advances. Suppose we had a bomber that
flew at 1,200 miles/hour and that reduced the loitering time at the target to
15 seconds. Now the aircraft will be exposed to SAM fire for only 1 minute,
so that the air defense can only shoot m = 4 missiles. Now N = 11 bombers
are required to get a 99% chance of success. Figure 9.19 shows the relationship
between the number of bombers sent and the probability of mission success
in the baseline case (m = 10 missiles are fired by the air defense) and in the
case of the advanced concept aircraft (m = 4). For the sake of comparison, we
also include the case m = 0 missiles fired. This curve represents the maximum
potential benefit of the proposed technology. If bombers are exposed to no
threat from air defense, it still takes at least 8 planes to ensure a 99% chance of
success.

Suppose that we would produce a better targeting system that increased the
probability of one aircraft destroying the target to 0.8. Now p = (0.9)(0.8) =
0.72 and, all else remaining the same, it would take N = 13 aircraft to achieve
S > 0.99. This is not much of an improvement. If we combine the high–speed
bomber with the high–accuracy bombs, we can trim the number of planes needed
to 8.
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Figure 9.18: Graph of minimum number of bombers N required for mission suc-
cess versus probability bombers can detect target for the bombing run problem.
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What if we have underestimated the effectiveness of enemy air defenses? If
q = 0.8, then N = 17 aircraft are required for S > 0.99. If q = 0.6 but m = 15
(assume that there are 3 SAM batteries), then 18 planes are needed. In either
case our general conclusions are not seriously altered.

On the subject of robustness, we have made a number of simplifying as-
sumptions in our model. We have assumed that each of the attacking aircraft
acquires the target independently and with the same probability. In reality the
first bombs may throw up smoke and dust, obscuring the target area. This may
reduce the probability that the remaining bombers can acquire the target. We
have already performed a sensitivity analysis on this parameter and found that
N is quite sensitive to this probability. Although our model cannot represent a
dependence here, it does provide bounds. If each individual aircraft has at least
a 50% chance of target acquisition, then N = 23 planes will suffice.

Our model also assumed that the SAM batteries never shoot twice at the
same aircraft. This is certainly the optimal strategy in a target–rich environ-
ment, where the number of potential targets exceeds the maximum number of
shots. But suppose that a new stealth technology is able to reduce significantly
the number of aircraft detected. Now the air defense may have more shots than
targets. Assume that the air defense is able to tell whether they have disabled
an aircraft, so that they will not waste any shots. If d aircraft are detected,
then the number of aircraft kills in m shots may be represented using a Markov
chain model where

Xn ∈ {0, 1, . . . , d}

is the number of hits after n shots. The state transition probabilities are

Pr{Xn+1 = i+ 1|Xn = i} = q and Pr{Xn+1 = i|Xn = i} = 1− q

for 0 ≤ i < d, and of course

Pr{Xn+1 = d|Xn = d} = 1.

If X0 = 0, then Xm is the number of aircraft lost. It would be possible to calcu-
late the probability distribution of Xm for each d = 1, . . . , N and incorporate
this into a modified version of our model. This is an example of the application
of transient analysis for a Markov chain. It is also much easier to implement a
Monte Carlo simulation for this problem. See Exercises 14 and 15 below. Our
analytic simulation model is not very robust in this regard.

9.4 Particle Tracking

Particle tracking is a method for solving partial differential equations by simu-
lating the associated stochastic process. This Monte Carlo simulation method
is much simpler to code than other numerical solution methods. It is particu-
larly useful for models with variable coefficients, irregular domains, or boundary
values. For diffusion problems, it also provides a useful physical model for the
motion of individual particles.
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Variables: t = Time since release of pollutant (hrs)
d = Distance between pollution particle and town (km)
s = Plume spread at time t (km)
P = Pollution concentration in town (ppm)
v = Wind speed at distance d from town (km/hr)

Assumptions: v = 3 if d > 10
v = 8− 5d/10 if d ≤ 10
Peak concentration P = 1000 ppm at t = 1 hour
Plume spread is s = 2000 meters at t = 1 hour

Objective: Determine the maximum pollution level in town, and
time until pollution falls to safe level of 50 ppm.

Figure 9.20: Results of Step 1 of the pollution problem.

Example 9.5. Reconsider the pollution problem of Example 7.5, but now con-
sider that the wind speed increases as we get closer to the city. Suppose that
the wind speed increases from 3 kilometers per hour at the spill site to 8 kilo-
meters per hour in the center of town. This is due to a heat island effect, where
the buildings and pavement in the city retain more heat, leading to warmer
conditions and higher wind speeds. Taking this into account, what is the max-
imum concentration expected in town, when will it occur, and how long until
the concentration of pollutant falls back below a safe level? For this Category 1
pollutant (the most dangerous kind), the US Environmental Protection Agency
safe level is 50 parts per million (ppm) by volume.

We will use the five-step method. The first step is to ask a question. We
want to know the concentration of pollutant in town and how it varies over time.
We will assume that the wind speed varies depending on the distance from the
center of town. Since we do not know how the actual wind speed varies, we will
make the simple assumption that wind speed varies linearly between a value of
3 km/hr at distances 10 or more km from town, up to 8 km/hr at the center of
town. Then later we will test this assumption through sensitivity and robustness
analysis (see also Exercise 21 at the end of this chapter). The results of Step 1
are summarized in Figure 9.20.

Step 2 is to select the modeling approach. We will use a diffusion model,
and solve the model by the method of particle tracking.

The diffusion equation

∂C

∂t
=

D

2

∂2C

∂x2
, (9.16)

was introduced in Section 7.4. Now we modify this equation to
explicitly represent plume velocity. Recall that C(x, t) represents
the relative concentration of contaminants at location x at time t.
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The diffusion equation (9.16) models spreading away from the plume
center of mass, and for a constant velocity, the center of mass is
located at µ = vt where v is the average velocity. A probability
model for the diffusion equation was also explained in Section 7.4.
In that model, we track the particle plume in a moving coordinate
system, with the origin at the plume center of mass. Each particle
makes a small random movement Xi over a small time interval ∆t,
and these movements are assumed to be independent with mean 0
and variance D∆t. Then the central limit theorem implies that the
particle has deviated by an amountX1+· · ·+Xn ≈

√
DtZ away from

the center of mass by time t = n∆t for n sufficiently large, where Z
is standard normal. Now consider the actual particle location after
n steps, assuming a constant plume velocity v. A randomly selected
particle moves by an amount v∆t+Xi over the time interval ∆t, so
after n jumps the particle is located at

X1 + · · ·+Xn + vt ≈ vt+
√
DtZ.

The probability density function of
√
DtZ was given in equation

(7.32) in Section 7.4. Since the term vt is not random, a simple
change of variable shows that vt +

√
DtZ has probability density

function

C(x, t) =
1√
2πDt

e−(x−vt)2/(2Dt) (9.17)

for any t > 0. This change of variable shifts the center of the graph
from x = 0 to x = vt.

Next we will use Fourier transforms to see how (9.17) solves a
diffusion equation with drift. Using (7.30) along with a change of
variable y = (x− vt)/

√
Dt yields

Ĉ(k, t) =

∫ ∞

−∞
e−ikxC(x, t) dx = e−ikvt−Dtk2/2

when C(x, t) is given by (9.17). Then

dĈ

dt
= −v(ik)Ĉ +

D

2
(ik)2Ĉ, (9.18)

and inverting the Fourier transform leads to

∂C

∂t
= −v ∂C

∂x
+

D

2

∂2C

∂x2
, (9.19)

the diffusion equation with drift.
To solve this equation by particle tracking, simulate a large num-

ber N of random particles, using a Monte Carlo simulation of (X1+
v∆t) + · · · + (Xn + v∆t) with t = n∆t. Then a relative frequency
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Algorithm: PARTICLE TRACKING CODE

Variables: N = number of particles
T = time of final particle jump
M = number of particle jumps
v = particle velocity
D = particle dispersivity
t(j) = time of jth jump
S(i, j) = location of ith particle at time t(j)

Input: N , T , M , v, D

Process: Begin
∆t← T/M
for j = 0 to M do

Begin
t(j)← j∆t
End

for i = 1 to N do
Begin
S(i, 0)← 0
for j = 0 to M − 1 do
Begin

S(i, j + 1)← S(i, j) + Normal (v∆t,
√
D∆t)

End
End

Output: t(1), . . . , t(M)
S(1, 1), . . . , S(N, 1)

...
S(1,M), . . . , S(N,M)

Figure 9.21: Pseudocode for particle tracking simulation of Section 7.5.
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Figure 9.22: Relative frequency histogram showing results of the particle track-
ing code in Figure 9.21 with N = 10, 000, T = 4, M = 50, v = 3.0, and
D = 0.25. The corresponding analytical solution (solid line) to the diffusion
equation with drift (9.19) at time t = 4 is also shown for comparison.

histogram of these particle locations will approximate the probabil-
ity density curve C(x, t) that gives the theoretical relative concen-
tration for an infinite number of particles. Figure 9.21 shows the
pseudocode for this algorithm. Figure 9.22 shows the results of a
computer implementation, to solve the pollution problem of Exam-
ple 7.5 with v = 3.0 km/hr and D = 0.25 km2/hr. The simulation
used N = 10, 000 particles, a final time of T = 4 hours, and M = 50
time steps. Figure 9.22 also shows the analytical solution (9.17) for
comparison. It is apparent that the histogram gives a reasonable ap-
proximation to the normal density curve. The particle model can be
considered as the basic physical model for this problem. The density
curve is an approximation, justified by the central limit theorem.

The particle tracking algorithm can easily be extended to allow
the coefficients v,D in (9.19) to vary in space. When the velocity
v varies in space, the only difference is that the mean jump size
v∆t for any given particle depends on the current location. In other
words, the particle jumps become a Markov chain on the continuous
state space −∞ < x <∞ and the jump distribution depends on the
current state in a very simple way. As ∆t→ 0, the graph with these
Markov chain jumps converges to a diffusion process, whose density
function C(x, t) solves the diffusion equation with drift (9.19), see
Friedman (1975) for more details.
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Now we continue with Step 3 of the pollution problem. Using the method
of particle tracking, we will model the pollution plume as a cloud of random
particles, and we will use Monte Carlo simulation to track the plume movements.
We assume a coordinate system where the pollutant release occurred at location
0 and the town is at location 10 kilometers. Then the distance between a particle
at location x and the center of town is given by d = |x − 10|. All N particles
are located at x = 0 at time t = 0. At each time step ∆t, each particle makes
a random movement v∆t+Xi where

v = v(x) =

{
3 if |x− 10| > 10,

8− 0.5|x− 10| if |x− 10| ≤ 10.
(9.20)

Each Xi has mean 0 and variance D∆t where D = 0.25. For our simulation,
we will take each Xi to be normally distributed. We will also assign a mass to
each particle. Since the maximum pollution concentration at time t = 1 hour is
20 × 50 ppm = 1000 ppm, the pollution concentration P (x, t) is related to the
relative concentration C(x, t) by P = P0C where P0 = 1000

√
0.5π, using the

calculations of Section 7.4. Hence we will assign each particle a concentration
∆P = P0/N . In our problem setup, x = 0 represents the pollution source,
and x = 10 the center of town. We will estimate concentration in the center
of town based on the number of particles at location 9.5 < x ≤ 10.5. If K out
of N particles lie in this interval, the relative concentration C ≈ K/N , and the
pollution level is P ≈ P0(K/N) = K∆P . If the time interval [0, T ] is divided
into M jumps, then the time increment is ∆t = T/M . The pseudocode for this
particle tracking simulation is summarized in Figure 9.23. The variable t(j) is
the time after j times steps. The state variable S(i, j) represents the location
of particle i at time t(j). The simulation only requires us to store the current
state, i.e., we can replace S(i, j) by S in the code. The variable P (j) represents
the estimated pollution level in town at time t(j).

Step 4 is to implement the particle tracking code developed in Step 3. After
implementing the algorithm in Figure 9.23, one run of the resulting code with
final time T = 4.0 hours, M = 100 time steps, andN = 1, 000 particles produced
estimates of P max = 397, T max = 1.96, and Tsafe = 2.32 for our three MOP.
Figure 9.24 shows the simulated concentration levels P (j) at each time t(j). The
roughness in the graph is due to the particle tracking simulation. Using more
particles (i.e., increasing N) would result in a smoother graph.

Step 5 is to answer the question. We estimate that the maximum pollu-
tion level in town will occur about 2 hours after the accident. The maximum
pollution level in town is predicted to reach about 400 parts per million (ppm)
by volume, which is about 8 times greater than the maximum safe level of this
Category 1 contaminant. It is estimated that the pollution plume will continue
through town, carried by the wind, and after 2 hours and 40 minutes, the toxic
level in town will fall back down below the safety threshold. These estimates are
based on a particle tracking simulation that approximates the path of pollution
particles headed toward the town. The simulation takes variations in wind speed
into account, since wind speeds are generally greater in the city. Figure 9.24
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Algorithm: PARTICLE TRACKING CODE (Example 9.5)

Variables: N = number of particles
T = time of final particle jump (hrs)
M = number of particle jumps
t(j) = time of jth jump (hrs)
P (j) = pollution concentration in town after j jumps (ppm)
P max = maximum pollution concentration in town (ppm)
T max = time of maximum pollution in town (hrs)
Tsafe = time pollution in town falls to safe level (hrs)

Input: N , T , M

Process: Begin
∆t← T/M

∆P ← 1000
√
0.5π/N

for j = 1 to M do
t(j)← j∆t
P (j)← 0

for i = 1 to N do
S(i, 0)← 0
for j = 1 to M do
v ← 3
if |S(i, j − 1)− 10| ≤ 10 then v ← 8− 0.5|S(i, j − 1)− 10|
S(i, j)← S(i, j − 1) + Normal (v∆t, 0.5

√
∆t)

if 9.5 < S(i, j) ≤ 10.5 then P (j) = P (j) + ∆P
T max← 0
P max← 0
Tsafe← 0
for j = 1 to M do

if P (j) > P max then
P max← P (j)
T max← t(j)

if P (j) > 50 then Tsafe = t(j) + ∆t
End

Output: T max, P max, Tsafe

Figure 9.23: Pseudocode for particle tracking simulation of the pollution prob-
lem with variable wind speed.
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Figure 9.24: Estimated pollution concentration in center of town for the pollu-
tion problem with variable wind speed. The dotted line indicates the maximum
safe level.

illustrates the predicted contamination levels at the center of town over time,
starting at the time of the accident. The dotted line in that figure indicates the
maximum safe level of 50 ppm.

For sensitivity analysis, we begin by investigating the sensitivity of our sim-
ulation results to random factors. Figure 9.25 illustrates the result of R = 100
simulation runs of the algorithm in Figure 9.23. Each simulation assumes a final
time of T = 4.0 hours, using M = 100 time steps, and N = 1, 000 particles. The
average value of P max for these simulations is around 400 ppm, with a typical
range of ±20 ppm. More specifically, the R = 100 simulation runs produced
100 values of P max, with sample mean 404.12 and sample standard deviation
16.18. The sample mean and sample standard deviation were computed using
built-in functions in our programming platform. For R data points X1, . . . , XR,
the sample mean x̄ is just the average,

x̄ =
1

R

R∑
j=1

Xj .

The sample variance is given by the formula

s2 =
1

R− 1

R∑
j=1

(Xj − x̄)2,

which averages the squared deviations from the sample mean. Then the sample
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Figure 9.25: Estimated pollution concentration in center of town for the pollu-
tion problem with variable wind speed. Results of 100 simulations.

standard deviation s is the square root of the sample variance. Dividing by
R − 1 instead of R in the formula for the sample variance ensures that the
estimates of σ2 are unbiased, i.e., repeated application of this formula in the
same setting gives estimates that average to the correct value. The sample mean
can be considered a typical value, and the sample standard deviation measures
the typical spread of values. See Ross (1985) for more details.

The most common value of the time T max of the maximum concentration
was 1.92 hours, and every trial gave a value between 1.88 and 1.96. The most
common value of the time Tsafe until a safe level was 2.32 hours, and all values
were between 2.28 and and 2.36. Since the time step was T/M = 0.04, the
difference between the most common values and the largest or smallest value
was a single time step. We conclude that the T max and Tsafe are relatively
unaffected by random factors. The sensitivity of P max to random factors is
somewhat greater. This standard deviation depends on the number of particles
N used in each simulation.

To test this, we conducted R = 10 additional simulations with N = 10, 000
particles, using the same values of the remaining parameters. The resulting
values for the maximum concentration P max were all between 395 and 408,
with a sample mean of 400 and a sample standard deviation of 5.6. A simple
probability model explains how the variation in outcomes depends on the sample
size. The estimated value of P max is K∆P where ∆P = P0/N is not random,
and K is the random number of particles that lie in the interval 9.5 < x ≤ 10.5.
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The quantity P max = P0q where

q =

∫ 10.5

9.5

C(x, t) dx

is the theoretical probability that a given particle will lie in this interval, at time
t = T max. As in Section 9.1, set Yi = 1 if the ith particle lies in this interval,
and Yi = 0 otherwise, so that each Yi has mean q and variance σ2 = q(1 − q).
Then K = Y1 + · · ·+YN is the number of particles that lie in this interval. The
strong law of large numbers guarantees that

K∆P = P0(K/N) = P0
Y1 + · · ·+ YN

N
→ P0q = P max

as the number of particles N → ∞. The central limit theorem implies that
K/N is unlikely to vary from its mean q by more than 2σ/

√
N for N large.

Hence increasing the number of particles by a factor of 10 should decrease the
variability of simulation results by a factor of

√
10 ≈ 3, which is consistent with

our results. To go a bit further, since the total mass of all particles is

P0 =

∫ ∞

−∞
P (x, t) dx = 1000

√
0.5π ≈ 1253 ppm,

the maximum concentration of 400 ppm represents about 30% of the particles.
Then we could predict that around 68% of our simulated estimates for P max
should lie within P0

√
(0.3)(0.7)/N ppm of the true value, which evaluates to

around 18 ppm for N = 1000 and 5.7 ppm for N = 10, 000. This is reasonably
consistent with the observed standard deviations (16 and 5.6, respectively) for
those simulations. A similar analysis shows that variations in the estimated
concentration curve Figure 9.24 decrease like the square root of the number of
particles in the simulation. Hence a larger number of particles will result in a
smoother curve. However, since the variations fall off like the square root of the
sample size, it may not always be practical to simulate enough particles to get
a completely smooth curve.

Next we consider the robustness of our results to the assumed form of the
velocity function v = v(x). A comparison with the results of Section 7.4 shows
that, compared to the case of a constant velocity, the particle tracking model
predicts a faster arrival of the peak concentration, and a lower level of that
concentration. Since the safe level is 50 ppm, the highest concentration in town
is 50 × 11 = 550 ppm at a constant wind speed of 3.0 km/hr, arriving after
3.3 hours. This can also be checked using a simple modification of the particle
tracking code in Figure 9.23, by deleting the line:

if |S(i, j)− 10| ≤ 10 then v ← 8− 0.5|S(i, j)− 10|.

Then the velocity is fixed at 3.0 km/hr throughout the simulation. One simu-
lation run of the modified code with final time T = 6.0 hours, M = 150 time
steps, and N = 10, 000 particles produced estimates of P max = 528 ppm at
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Figure 9.26: Left panel: Particle traces for particle tracking model with variable
wind speed (9.20). Right panel: Particle traces for particle tracking model with
constant wind speed v = 5 km/hr.

time T max = 3.28 hours, and Tsafe = 4.04 hours, in good agreement with the
results from Section 7.4. In summary, it seems that the variation in wind speed
causes the peak to arrive sooner, with a lower concentration. Is this due to the
fact that the “average” wind speed is increasing?

The sensitivity analysis in Table 7.1 shows that the peak concentration in
town ranges between 50× 11 = 315 ppm at a wind speed of 1.0 km/hr to 50×
14.2 = 710 ppm at a wind speed of 5.0 km/hr. That is, a higher wind speed leads
to higher peak concentration in town, arriving earlier. This makes sense, because
at a higher wind speed, the plume arrives sooner, with less time to spread.
Indeed, the particle tracking simulation with the variable wind speed v(x) ≥
3 km/hour given by (9.20) predicts that the plume peak will arrive sooner.
However, the model also predicts a lower peak concentration. To understand
this paradox, we will take a closer look at the individual particle traces.

The left panel in Figure 9.26 graphs the paths of N = 20 particles from
the particle tracking model with variable wind speed (9.20). These graphs
were produced using the algorithm in Figure 9.23 by plotting S(i, j) versus t(j)
for j = 1, 2, . . . ,M for particles i = 1, 2, . . . , N . Compare the right panel in
Figure 9.26, which graphs the paths of N = 20 particles with constant wind
speed v = 5, chosen so that both plumes reach the city, located at coordinate
x = 10, at around the same time. Compared to the constant velocity model, the
variable velocity paths are significantly more dispersed. A closer inspection of
the left panel shows the reason for this dispersion. Because of random factors,
some particle begin more slowly, and therefore experience lower velocities in
the subsequent jumps. Other particles begin faster, and remain on a faster
path. The term dispersion is used to describe the spreading of particles due to
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Figure 9.27: Observed variance for particle tracking model (boxes) with vari-
able wind speed (9.20) compared to observed variance for the same model with
constant wind speed v = 5 km/hr (diamonds), and theoretical variance for the
model with constant wind speed (solid line).

differences in velocity. For pollution problems in air and water, dispersion is
often the main driving factor behind plume spreading.

In engineering models of contaminant transport, it is common to use the dif-
fusion equation with drift (9.19) as the basic model for plume evolution. It
has been noted in many studies that the parameter D, determined by fitting a
Gaussian probability density curve to data, tends to grow with time (or with
distance traveled by the plume center of mass). This super-diffusion is often at-
tributed to variations in the particle velocities. An interesting fractal model for
porous media, used in ground water contamination studies, has been proposed
to explain the observation that D tends to grow like a power law, D = D0t

p for
some p > 0, in many studies. See Wheatcraft and Tyler (1988) for more details.

Figure 9.27 documents super-dispersion in the particle tracking model with
variable velocity. The graph shows the results of a particle tracking simulation
with N = 1000 particles with final time T = 2.0 hours, and M = 50 time steps,
so that the time increment t∆t = 0.04 is the same as before. The boxes shows
the variance of the particle locations {S(i, j) : 1 ≤ i ≤ N} at each time t(j) for
j = 1, . . . ,M , using the algorithm in Figure 9.23. For a constant velocity, the
variance grows linearly, since the particle location at time t is vt + Zt, where
Zt is normally distributed with mean zero and variance = Dt. This is the
theoretical variance line on the graph. The results of another particle tracking
simulation, using the algorithm in Figure 9.23 with constant velocity v = 5
km/hr, and all other parameters the same, was run to check this theoretical
result. The diamonds on the graph show the resulting variance in particle
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locations at each time step, to demonstrate how closely the observed variance
matches the theoretical model. Note that a constant velocity simulation with
v = 3 or v = 8 or any other value would produce the same result, since the
constant velocity only changes the mean particle location, and has no effect on
the variance.

The super-dispersion in contaminant plumes creates a significant problem
in practice, since it means that the constant coefficient equation (9.19) is inad-
equate to predict plume behavior. A variety of methods have been applied to
address this problem, including more complicated systems of differential equa-
tions in one or more dimensions with variable coefficients, that can be solved by
particle tracking or finite difference codes similar to those developed in Chapter
6 of this book. Recently, an interesting new idea has been proposed to model
super-diffusive plumes using fractional calculus. The new model replaces the
second derivative in (9.19) by a fractional derivative of order 1 < α < 2. In the
next section, we will investigate an application of this fractional diffusion model
to ground water pollution.

9.5 Fractional Diffusion

Fractional derivatives were invented by Leibnitz in 1695, soon after their integer
order cousins, but have only recently found practical applications. Now they are
used in models of anomalous diffusion in water and air pollution, heat transfer
in complex materials, invasive species, cell membranes, and electronics. In this
section, we will use particle tracking to explore a fractional calculus model for
water pollution.

Example 9.6. An experiment to study dispersion in ground water was con-
ducted on a United States Air Force base in Columbus, Mississippi in 1993 (see
Boggs et al. (1993) for further details). Water containing a radioactive tracer
(tritium) was injected underground, and the movement of the tritium plume
through the ground water was tracked over time. Figure 9.28 shows the relative
concentration C(x, t) of tritium tracer versus distance x meters downstream
from the injection site, based on measurements taken t = 224 days after injec-
tion. The thin curve near the bottom of the graph is the best fitting Gaussian
density, the solution to the diffusion equation with drift (9.19). The movement
of the center of mass over the course of the experiment was roughly proportional
to elapsed time. The plume spread proportional to t0.9, evidence of anomalous
super-dispersion. It is also clear that the plume shape is strongly skewed in
the positive (downstream) direction, so that the symmetric Gaussian solution
to the traditional diffusion equation (9.19) cannot provide an adequate model
for this data. Tritium levels were be measured in Curies, a unit of radioactivity.
One Curie (Ci) is defined as 3.7 × 1010 decays per second. In this experiment,
P0 = 540 Ci of tritium were injected. Estimate the time and amount of the
maximum tritium level at a point x = 20 meters downstream of the injection
site, as well as the time required for the tritium concentration at that location
to fall below 2 Ci.
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Figure 9.28: Measured tritium concentration (hollow circles) from the fractional
diffusion problem of Example 9.6 with fitted stable density (thick solid line) and
fitted Gaussian density (thin black line), from Benson et al. (2001).

We will use the five-step method. The first step is to ask a question. We
adopt a coordinate system where x = 0 is the injection site, and water flows in
the positive x direction, consistent with Figure 9.28. We want to predict the
concentration of tritium tracer at location x = 20 meters downstream from the
injection site, and how it varies over time. The results of step 1 are summarized
in Figure 9.29.

Step 2 is to select the modeling approach. We will use a fractional diffusion
model, and solve the model by the method of particle tracking.

The fractional derivative ∂αC/∂xα can be defined as the function
with Fourier transform (ik)αĈ. The fractional diffusion equation
with drift is

∂C

∂t
= −v ∂C

∂x
+D

∂αC

∂xα
(9.21)

where 1 < α < 2. Take the Fourier transform on both sides to get

dĈ

dt
= −v(ik)Ĉ +D(ik)αĈ

and solve, using the point source initial condition Ĉ(k, 0) ≡ 1, to
arrive at

Ĉ(k, t) =

∫ ∞

−∞
e−ikxC(x, t) dx = e−ikvt+Dt(ik)α (9.22)

for any t > 0. This Fourier transform cannot be inverted in closed
form, but it is known from probability theory that C(x, t) is an α-
stable density function.
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Variables: t = Time since release of tracer (days)
x = Distance downstream from injection site (m)
P = Pollution concentration at location x at time t (Ci)

Assumptions: Average plume velocity is constant
Plume spreads proportional to t0.9

Plume is positively skewed

Objective: Determine the maximum tracer concentration 20 m
downstream, time the maximum occurs, and time until
concentration falls below 2 Ci.

Figure 9.29: Results of Step 1 of the water pollution problem.

The stable density appears in an extended central limit theo-
rem. Suppose that X,X1, X2, . . . are independent and identically
distributed random variables. If Pr{X > x} = Ax−α for some
A > 0 and some 1 < α < 2, then the extended central limit theorem
implies that

lim
n→∞

Pr

{
X1 + · · ·+Xn − nµ

n1/α
≤ x

}
→ Pr{Zα ≤ x} (9.23)

where µ = E(X), and Zα is a stable random variable with index α,
whose density gα(x) has Fourier transform

ĝ(k) =

∫ ∞

−∞
e−ikxg(x) dx = eD(ik)α (9.24)

for some D > 0 depending on A and α. Because σ2 = V (X) =∞ in
this case, the usual central limit theorem, discussed in Section 7.3,
does not apply here. See Meerschaert and Sikorskii (2012) for more
details about stable laws, the extended central limit theorem, and
fractional derivatives.

The spreading rate of the solution C(x, t) to the fractional dif-
fusion equation can be determined from the Fourier transform. A
simple change of variables shows that the mean-centered concentra-
tion C0(x, t) = C(x+ vt, t) has Fourier transform∫ ∞

−∞
e−ikxC0(x, t) dx = eDt(ik)α , (9.25)

and another change of variables shows that t−1/αC0(t
−1/αx, 1) has

the same Fourier transform as C0(x, t). This shows that the peak
concentration falls like t1/α, and the plume spreads like t1/α away
from its center of mass at x = vt. Since α < 2, this means that the
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plume spreads faster than a traditional diffusion, so that the frac-
tional diffusion equation with drift (9.21) is a model for anomalous
super-diffusion. Finally, note that in the case α = 2, the fractional
diffusion model reduces to traditional diffusion.

Step 3 is to formulate the model. We will model the tritium plume using
the fractional diffusion equation (9.21). We will solve this equation by the
method of particle tracking introduced in Section 9.4, using the extended central
limit theorem (9.23). The random variables X1, . . . , Xn in (9.23) are identically
distributed with a random variable X with cumulative distribution function

F (x) =

{
0 for x < A1/α

1−Ax−α for x ≥ A1/α.
(9.26)

Its probability density function is

f(x) =

{
0 for x < A1/α

Aαx−α−1 for x ≥ A1/α,

and its mean is

µ =

∫ ∞

A1/α

xAαx−α−1dx = A1/α α

α− 1
.

To simulate the random variable X, we will use the inverse cumulative distri-
bution method developed in Example 9.3. Set y = F (x) = 1−Ax−α and invert
to get

x = F−1(y) =

(
A

1− y

)1/α

and then take X = F−1(U), where U is uniform on (0, 1). To confirm that X
has the desired distribution, write

Pr{X ≤ x} = Pr

{(
A

1− U

)1/α

≤ x

}
= Pr

{
U ≤ 1−Ax−α

}
= 1−Ax−α

when x ≥ A1/α, so that 0 < 1−Ax−α < 1.
For the particle tracking model, assume that each particle makes a small

random movement v∆t+(∆t)1/αXi over a small time interval ∆t = t/n, where

Xi =

(
A

1− Ui

)1/α

−A1/α α

α− 1

and U1, . . . , Un are independent uniform (0, 1) random variables. Use the ex-
tended central limit theorem (9.23) with µ = 0 to see that X1 + · · · + Xn ≈
n1/αZα for large n. Since t = n∆t, we have(
v∆t+ (∆t)1/αX1

)
+· · ·+

(
v∆t+ (∆t)1/αXn

)
≈ vt+(n∆t)1/αZα = vt+t1/αZα.



9.5. FRACTIONAL DIFFUSION 339

The distribution function of Zα is

G(x) =

∫ x

−∞
g(u) du

and so the distribution function of the limit vt+ t1/αZα is

Pr{vt+ t1/αZα ≤ x} = Pr

{
Zα ≤

x− vt

t1/α

}
=

∫ t−1/α(x−vt)

−∞
gα(u) du

=

∫ x

−∞
gα(t

−1/α(y − vt))t−1/αdy

using the substitution u = t−1/α(y − vt) in the last line. Then the density of
vt+ t1/αZα has Fourier transform

Ĉ(k, t) =

∫ ∞

−∞
e−ikxg(t−1/α(y − vt))t−1/αdy

=

∫ ∞

−∞
e−ik(vt+t1/αu)gα(u) du

= e−ikvt

∫ ∞

−∞
e−i(kt1/α)ugα(u) du

= e−ikvt+Dt(ik)α

using the same substitution u = t−1/α(y − vt) again, along with (9.24). Since
this is identical to (9.22), it follows that C(x, t) solves the fractional diffusion
equation with drift (9.21). Hence a relative frequency histogram of particle
locations will approximate the probability density curve C(x, t) that gives the
theoretical relative concentration for an infinite number of particles.

The α-stable curve in Figure 9.28 was obtained by numerically inverting
the Fourier transform (9.22) for the stable density, using a fitted velocity of
v = 0.12 m/day. The robustness of this velocity assumption will be discussed
later in this section. The stable index α = 1.1 was chosen to give a spreading
rate of t1/1.1 ≈ t0.9. The fitted value of α was also verified by checking the
rate of peak concentration decline, and the leading tail of the concentration
curve. Figure 9.30 shows the same tracer data from Figure 9.28 on a log-log
scale, along with the fitted Gaussian and stable models. The α-stable density
C = C(x, t) has the property that C ≈ tαAx−α−1 for x sufficiently large, so that
logC ≈ log(tαA)− (α+1) log x. Hence a log-log plot of the fitted stable density
will appear linear for large x. (The slope of this line can be used to estimate
the parameter α.) The fact that the concentration data also follows this line
provides additional evidence in favor of the fractional diffusion model. Since the
normal estimate of tracer concentration is too low by a factor of 106 at the plume
leading edge, the traditional diffusion model seriously under-estimates the risk



340 CHAPTER 9. SIMULATION OF PROBABILITY MODELS

10-0

10-2

10-4

10-6

10-8

10-10

1                         10                        100

plume data

α-stable

Gaussian

Longitudinal Distance (meters)

N
o

rm
al

iz
ed

 M
as

s

a) Snapshot 3 (day #224)

Figure 9.30: Tracer data and fitted models from Figure 9.28 on a log-log scale,
to show the power law leading tail.

of downstream contamination. The fractional dispersivity D = 0.14 mα/day
in (9.21) was chosen to give the best fitting stable density curve for all time.
(Data was collected at day 27, 132, 224, and 328). This lead to an estimate
A = 0.0131 for the particle jumps, using the formula A = D(α − 1)/Γ(2 − α)
from Theorem 3.41 in Meerschaert and Sikorskii (2012). The gamma function
is discussed in Exercise 23 at the end of this chapter.

The code for our particle tracking simulation is listed in Figure 9.31. The
code is similar to Figure 9.23, with a few modifications. The total mass of the
particles is P0 = 540 Ci, and the target concentration is 2 Ci. The tritium con-
centration at location x = 20 is estimated by counting the number of particles
in the interval 15 < x ≤ 25, and then dividing by the length of this interval. The
two distribution parameters are also listed. The parameter α governs the tail,
and then A determines the scale, e.g., the mean value is proportional to A1/α.
Since P0 = 540 Ci of tritium were injected, we model the tritium concentration
using P (x, t) = P0C(x, t).

Before proceeding to Step 4, we tested the code in Figure 9.31, to see if we
could reproduce the concentration curve in Figure 9.28. Figure 9.32 shows a
relative frequency histogram of the locations S(i,M) of particles i = 1, . . . , N at
time T = t(M) = 224 days from a particle tracking simulation with N = 10, 000
particles and M = 100 time steps, based on a computer implementation of the
code in Figure 9.31. We are satisfied that the histogram of particle locations in
Figure 9.32 matches the α-stable density curve in Figure 9.28 reasonably well.

Step 4 is to solve the model. Figure 9.33 summarizes the results of running
the code in Figure 9.31 with N = 10, 000 particles, with a final time of T = 4000
days and M = 100 time steps. The graph could be made smoother by increasing
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Algorithm: PARTICLE TRACKING CODE (Example 9.6)

Variables: N = number of particles
T = time of final particle jump (days)
M = number of particle jumps
t(j) = time of jth jump (days)
P (j) = tritium concentration after j jumps (Ci)
P max = maximum tritium concentration (Ci)
T max = time of maximum concentration (hrs)
Tsafe = time concentration falls to 2.0 Ci (hrs)
A = 0.0131 scale parameter in Eq. (9.26)
α = 1.1 tail parameter in Eq. (9.26)

Input: N , T , M

Process: Begin
∆t← T/M
∆P ← 540/N
for j = 1 to M do

t(j)← j∆t
P (j)← 0

for i = 1 to N do
S(i, 0)← 0
for j = 1 to M do
U ← Random(0, 1)
X ← (A/(1− U))1/α −A1/αα/(α− 1)
S(i, j)← S(i, j − 1) + 0.12∆t+∆t1/αX
if 15 < S(i, j) ≤ 25 then P (j) = P (j) + ∆P/10

T max← 0
P max← 0
Tsafe← 0
for j = 1 to M do

if P (j) > P max then
P max← P (j)
T max← t(j)

if P (j) > 2.0 then Tsafe = t(j) + ∆t
End

Output: T max, P max, Tsafe

Figure 9.31: Pseudocode for particle tracking simulation of the fractional diffu-
sion problem in Example 9.6.
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Figure 9.32: Results of particle tracking simulation for the fractional diffusion
problem of Example 9.6 at time t = 224 days. The histogram approximates the
solution C(x, t) to the fractional diffusion equation with drift (9.21).

the number of particles. The maximum concentration of P max = 9.14 Ci
occurred at time T max = 1080 days. It took Tsafe = 2840 days for the
tritium level to fall back below 2 Ci.

Step 5 is to answer the question. We estimate that the maximum concen-
tration of tritium at a point x = 20 meters downstream of the injection site will
occur in approximately 3 years. At that time, the estimated concentration will
be around 9 Curies. It will take almost 8 years for the tritium concentration at
this point to fall back below 2 Curies, as the tritium plumes is carried down-
stream by the underground water. Figure 9.33 illustrates the predicted tritium
concentration levels over time at the point x = 20 meters downstream, starting
at the time of injection. The dotted line in that figure indicates the nominal
level of 2 Curies. It is also relevant to note that the predicted tritium plume is
stretched out in the direction of the ground water flow. Figure 9.32 illustrates
the predicted plume shape 224 days after injection.

Since the results reported in Step 5 come from a Monte Carlo simulation,
it is important to explore the sensitivity to random factors. We repeated the
simulation 30 times with N = 1, 000 particles, with a final time of T = 4000
days and M = 100 time steps. These are the same values as in Step 4, except
that we decreased the number of particles per run, in order to speed up the
simulation. The resulting values of the three MOP are P max = 9.6 ± 0.6,
T max = 944±125, and Tsafe = 2830±110, where we report the sample mean
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Figure 9.33: Estimated tritium levels at location x = 20 meters downstream of
the injection point, for the water pollution problem of Example 9.6.

± the sample standard deviation. Since the mean values from our 30 simulations
are consistent with the values reported in Step 5, and the standard deviations
are less than one unit (Curies or years), we conclude that the values reported
in Step 5 are reliable, to the accuracy stated there.

Next we want to consider the robustness of the estimation procedure for the
mean particle velocity. Recall that the velocity v = 0.12 m/day was estimated
based on the mean (weighted average) of concentration measurements. Since
the concentration curve is highly skewed, the mean (plume center of mass) is far
from the mode (point of highest concentration). For example, at time t = 224
days, the mean is x = vt = (0.12)(224) = 26.88 meters. However, the peak of the
α-stable density curve in Figure 9.28 lies far to the left of this point. The mean
deviates significantly from the mode, because the concentration curve has a
heavy tail. Consider the histogram in Figure 9.32. For the N = 10, 000 particles
simulated, the sample mean location was 18.5 meters, and the sample standard
deviation was 355.2 meters in that Monte Carlo simulation. This absurdly
large sample standard deviation is due to the fact that the theoretical standard
deviation is infinite (since the second moment does not exist). Hence the sample
standard deviation provides no useful information, other than to highlight the
fact that there is a considerable spread in the particle location data. In fact,
particle locations ranged from -8.45 to 28,352.3 meters. A very small number
of particles travel a very long distance. Recall that the probability of jumping
more than r meters downstream falls off proportional to r−α in our particle
jump model. Since α ≈ 1, this means that about 1 out of 10,000 particles will
jump 10,000 times farther than usual. In statistics, these extreme data points
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are called outliers.
In the presence of outliers, the mean can be an unreliable estimator of typical

behavior. Consider a company in which the owner nets 1,000,000 per year, and
each of 20 employees makes 50,000 per year. The average salary, including the
owner, is (2, 000, 000)/21 ≈ 95, 000 per year, but this is hardly a good indicator
of a typical salary. Likewise, the average particle location in the tritium plume
is not a reliable indicator of plume center, because a small number of outliers
inflate the average. The median of particle location is around 2.0 meters (50%
of particles travel further downstream). The median is a more reliable measure
of center than either the mean or the peak (mode), since it is not affected by
outliers. However, there is no simple way to relate the median to the parameters
in the model (9.21).

Note that the concentration readings in Figure 9.28 were all taken within
approximately 300 meters of the injection site. This measurement procedure
truncates the concentration plume. What affect does this have on the estimated
velocity? Recall that the N = 10, 000 particle locations from Figure 9.28 had
a sample mean of 18.5 meters, which is not too far from the theoretical mean
of 26.88 meters (considering the huge sample standard deviation). We sorted
this location data, and found that 58 out of 10,000 data points exceeded 300
meters. Then we recomputed the mean particle location, omitting these values
from the calculation (i.e., we added up the remaining data values, and divided
by 9942). The resulting mean particle location was 8.33 meters, less than half
the overall average of 18.5 meters. Although we used 99.4% of all the data
values, the remaining 0.6% have a profound effect on the mean particle location.
Since this calculation was based on a Monte Carlo simulation, we repeated this
process several more times. The resulting mean location for all particles varied
significantly. The standard deviation, and the location of the largest particle,
varied widely. However, the mean location of those particles that end up less
than 300 m downstream was always around 8 m. When the velocity parameter
v was estimated from the concentration data in Figure 9.28 (and three other
snapshots), this truncation effect was taken into account. In fact, the mean
value estimated from the data in Figure 9.28 is 8.0 meters. The Gaussian curve
in Figure 9.28 has a mean of approximately 8 m, since the truncation effect is
negligible for this normal probability density function.

In modeling, the estimated parameter values in a given model must never be
confused with the actual “truth” about these parameters. While both the tradi-
tional and fractional diffusion models contain velocity parameters, the meaning
of those parameters can vary in the context of an application. For this reason,
it would be a mistake to estimate the velocity parameter in the context of one
model (traditional diffusion) and assume the same value is valid for a different
model (fractional diffusion). The same applies to all model parameters. For
example, it is not appropriate to estimate the tail parameter α in the power
law model (9.26), and then assume that the same parameter value pertains to
the stable model. In the finance literature, this simple truth has caused some
serious confusion, see McCulloch (1997) for further details.

We conclude this example with a few comments about the connection be-
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tween fractional derivatives, power law jumps, and fractals. We have already
seen that the fractional diffusion equation, with a fractional derivative of order
α, governs the sum of random power law jumps, where the number α is also
the tail index of the power law jump probability. The probability model with
power law jumps gives a concrete understanding of the fractional derivative. A
good way to think about what the fractional derivative means is to consider
the particle tracking model for a diffusion. The second derivative codes particle
jumps with mean zero and finite variance. The fractional derivative codes power
law jumps.

In Section 7.4, we derived the traditional diffusion equation (7.28) by ap-
plying the conservation of mass equation (7.26) along with Fick’s Law (7.27).
Recall that Fick’s Law is empirical, i.e., it is based on observations of real world
data in certain controlled experimental settings. The fractional diffusion equa-
tion can be derived in a similar manner, using a fractional Fick’s law. In the
fractional Fick’s Law, the particle flux

q = −D∂α−1C

∂xα−1
(9.27)

is based on empirical observations from chaotic dynamical systems. There the
proportion of particles that jump across j boxes of size ∆x during one time step
∆t falls off like a power law. This deterministic model for fractional diffusion is
closely connected to the particle tracking model, based on random jumps with
a power law distribution. See Meerschaert and Sikorskii (2012) for more details.

In Section 6.4 we discussed the interesting subject of fractals. Particles
traces in both traditional and fractional diffusion are also random fractals. The
right panel in Figure 9.26 shows some representative particle traces, obtained
by plotting S(n) versus t(n) where

S(n) =

n∑
j=1

(
v∆t+

√
D∆t Zj

)
, (9.28)

and Zj are independent standard normal random variables with mean zero and
variance 1. The sum S(n) has a normal distribution with mean vt and variance
Dt, where t = n∆t. As n→∞, the discrete time stochastic process with value
S(n) at time t(n) converges to a Brownian motion with drift B(t) + vt. The
Brownian motion B(t) is a Markov process whose state space is the entire real
line. Its density functions C(x, t) solve the diffusion equation (7.28). Particle
traces of a Brownian motion are random fractals with dimension d = 3/2. If we
replace the normal random variables in (9.28) with any other random variables
with the same mean and variance, the central limit theorem still applies, and we
get the same Brownian motion process in the limit. In two or more dimensions,
the particle traces of a Brownian motion are random fractals with dimension
d = 2. Although the dimension is an integer, these particle trajectories are still
fractals, since their dimension is not equal to one.

Figure 9.34 shows a typical particle trace of Brownian motion. Since the
particle trace is a fractal, zooming in on one portion of the graph will reveal
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Figure 9.34: Particle tracking simulation of Brownian motion, a random fractal
of dimension d = 2.

additional structure, similar to the larger picture. This is related to the self-
similarity property of Brownian motion: The process B(ct) at time scale c > 0
is probabilistically identical to the process c1/2B(t). Decreasing the time scale c
decreases the spatial scale c1/2, which is equivalent to zooming in on the graph.

If we replace the normal random variables in (9.28) with power law jumps
that follow distribution (9.26) with 1 < α < 2, the extended central limit
theorem shows that the limit is stable with index α. As n → ∞, the discrete
time stochastic process with value S(n) at time t(n) converges to a stable Lévy
motion with drift L(t) + vt. The stable Lévy motion L(t) is a close cousin of
the Brownian motion. Its density functions C(x, t) solve the fractional diffusion
equation (9.21) with v = 0. In two or more dimensions, the particle traces of a
α-stable Lévy motion are random fractals with dimension d = α. Figure 9.35
shows a typical particle trace of stable Lévy motion, with α = 1.8 in this case.
The picture is similar to Brownian motion, except for occasional large jumps.
The behavior is somewhat similar to the weather problem of Example 6.6. The
trajectory remains localized for a period of time, and then jumps quickly to a
different neighborhood. The process L(ct) at time scale c > 0 is probabilistically
identical to the process c1/αL(t). As the fractal dimension α decreases, the graph
becomes smoother. In summary, the parameter α codes the power law jumps,
the order of the fractional derivative, and the fractal dimension of the particle
traces.
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Figure 9.35: Particle tracking simulation of stable Lévy motion, a random fractal
of dimension d = α = 1.8.

9.6 Exercises

1. A simple game of chance is played by flipping a coin. The house flips
a coin and the player calls it in the air. If the coin lands the way the
player called it, the house pays the player $1; otherwise, the player pays
the house $1. The player begins with $10.

(a) What are the odds that the player will go broke before he doubles his
money? Use the five-step method, and model using a Monte Carlo
simulation.

(b) How long on average does the game described in part (a) last?

(c) How much on average does the player have after 25 coin flips?

2. On a roll of two dice, a total of seven occurs with probability 1/6.

(a) In 100 rolls of the dice, what is the probability that five consecutive
rolls of seven will occur? Use the five-step method, and model using
Monte Carlo simulation.

(b) What is the average number of rolls until a roll of seven occurs? Use
any method.

3. Reconsider the inventory problem of Example 8.1. In the text we stated
that if the time between customer arrivals is exponential with mean one,
the distribution of the number of arrivals in one week is Poisson with mean
one.
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(a) Use Monte Carlo simulation to model one week of arrivals. Assume
that the time between arrivals is exponential with mean one. Simu-
late to determine the mean number of arrivals in one week.

(b) Modify the simulation program to keep track of the fraction of the
simulated weeks in which there were 0, 1, 2, 3, or more than 3 arrivals.
Compare with the Poisson probabilities given in Section 8.1.

4. (a) Repeat Exercise 3, but now assume that the time between customer
arrivals is uniformly distributed between 0 and 2 weeks.

(b) Use the probabilities from your computer program output to modify
the state transition probabilities for the Markov chain in Example
8.1.

(c) Solve π = πP for the steady–state probabilities, assuming a uniform
customer interarrival time.

(d) Determine the steady–state probability that demand exceeds supply
for this modified example.

(e) Compare the results of (d) to the calculations of Section 8.1, and
comment on the robustness of our original model with respect to the
assumption of random arrivals.

5. Reconsider the docking problem of Example 9.3, but now assume that the
time to make a control adjustment is uniformly distributed between 4 and
6 seconds.

(a) Modify the algorithm in Fig. 9.10 to reflect this change in the distri-
bution of cn.

(b) Implement the algorithm in part (a) on a computer.

(c) Make 20 simulation runs with k = 0.02, and tabulate your results.
Estimate the mean time to dock.

(d) Compare the results of (c) to those obtained in Section 9.2. Would
you say that the model is robust with respect to the assumption that
cn is normally distributed?

6. Reconsider the docking problem of Example 9.3.

(a) Implement the algorithm in Fig. 9.10 on a computer. Make a few
model runs, and compare with the results in the text.

(b) Vary the parameter k to determine the optimal value of this control
parameter. You will need to make several model runs for each value
of k to determine average behavior.

(c) Explore the sensitivity of your answer in part (b) to the initial velocity
of the spacecraft, which we assumed to be 50 m/sec.

(d) Explore the sensitivity of your answer in (b) to the docking threshold,
which we assumed was 0.1 m/sec.
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7. Reconsider the rainy day problem of Example 9.1, but now assume that
if today is rainy, there is a 75% chance that tomorrow will be rainy, and
likewise, if today is sunny, there is a 75% chance that tomorrow will be
sunny. The day we arrived on vacation was sunny (X0 = 0).

(a) Determine the steady–state probability that any future day will be
rainy. Model {Xt} as a Markov chain.

(b) Estimate the probability of three consecutive days of rain using a
Monte Carlo simulation.

8. Reconsider the cell division problem of Exercise 11 in Chapter 8.

(a) Use a Monte Carlo simulation to model the cell division process. How
long will it take on average for one cell to grow to 100 cells?

(b) What is the probability that the family line of one cell will die out
before reaching 100 cells?

9. (Continuation of Chapter 7, Exercise 8) Simulate a random arrival pro-
cess with an arrival rate of five minutes using the Monte Carlo method.
Determine the average time between the last arrival prior to t = 1 hour
and the next arrival after t = 1 hour.

10. (Continuation of Chapter 7, Exercise 9) Simulate the supermarket check-
out stand problem. Draw a random number to represent your service time,
and then see how many random numbers it takes to exceed that. Repeat
the simulation a large number of times and determine the average number
it takes to find a random number that exceeds yours. Justify the differ-
ence between your answer and the one obtained in part (c) of Chapter 7,
Exercise 9.

11. Reconsider the inventory problem of Example 8.1, and determine the av-
erage number of lost sales per week.

(a) Assume that on each day a customer arrives with probability 0.2.
Construct a Monte Carlo simulation based on a time step of one day
to simulate one week of sales activity. For a beginning inventory of
1, 2, or 3 aquariums determine the average number of lost sales by
repeated simulation.

(b) Combine the results of part (a) with the steady–state probabilities
calculated in Section 8.1 to determine the overall average number of
lost sales per week.

12. This exercise explains the binomial model. Suppose m independent ran-
dom trials are conducted, each of which has a probability q of success.
Let Xi = 1 if the ith trial is successful, and Xi = 0 otherwise. Then
X = X1 + · · ·+Xm is the number of successes.
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(a) Show that EX = mq and V X = mq(1 − q). [Hint: First show that
EXi = q and V Xi = q(1− q).]

(b) Explain why there are
(
m
i

)
possible ways for X = i to occur and why

each one has probability qi(1− q)m−i.

(c) Explain why Eq. (9.14) in the text represents the probability of i
successes in m trials.

13. Reconsider the bombing run problem of Example 9.4. Modify the model
to print out the expected number of aircraft lost during this mission. Take
into account the possibility that additional planes are lost after the attack
is concluded, as the bombers are leaving the target area.

(a) How many planes on average are lost during the mission if N = 15
are sent?

(b) Perform a sensitivity analysis with respect to N .

(c) What happens if we can use advanced bombers that fly at 1,200
miles/hour and only need to loiter in the target area for 15 seconds?

(d) Perform a sensitivity analysis on the probability q that one missile
kills one plane. Consider q = 0.4, 0.5, 0.6, 0.7, and 0.8. State your
general conclusions. Under what circumstances would a responsible
commander order his pilots to fly this mission?

14. Reconsider the bombing run problem of Example 9.4. Suppose that su-
perior technology allows most bombers to get through the air defense
undetected.

(a) Suppose that four aircraft are detected. Let Y denote the number of
these aircraft that survive eight shots by the air defense. Determine
the probability distribution of Y and calculate the mean number of
aircraft lost prior to completion of the attack. Use a Monte Carlo
simulation based on a Markov chain model, as discussed at the end
of Section 9.3.

(b) Repeat part (a), but now use an analytic simulation.

(c) Suppose that you were required to incorporate the possibility of mul-
tiple shots at a single aircraft into the model of Example 9.4. You
have two options available to you. You may write a purely analytic
simulation incorporating the results of part (b), or you may use a
generalized version of the Monte Carlo simulation model of part (a)
to obtain the probability distribution of Y for d = 1, . . . , 7 aircraft
detected, and incorporate these results into the model as data. Which
option would you choose? Explain.

15. (Hard problem) Carry out the model enhancements described in problem
14(c).
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16. Reconsider the bombing run problem of Example 9.4.

(a) Use a Monte Carlo simulation to find the probability of mission suc-
cess if N = 15 aircraft are sent.

(b) Perform a sensitivity analysis on N . Determine the approximate
probability of mission success for N = 12, 15, 18, and 21.

(c) Compare the relative advantages of Monte Carlo and analytic sim-
ulations in terms of the difficulty of both model formulation and
sensitivity analysis.

17. Reconsider the bombing run problem of Example 9.4. This problem shows
how the binomial formula

(a+ b)n =

n∑
i=0

(
n

i

)
aibn−i

can be used to simplify the analytic simulation model presented in the
text.

(a) Use the binomial formula to derive the equation

S = 1− (1− p)N−m(q + (1− p)(1− q))m.

(b) Show that the number N of planes required to ensure a success prob-
ability S is the smallest integer greater than or equal to

N = log

[
(1− S)(1− p)m

(q + (1− p)(1− q))m

]
/ log(1− p).

(c) Use this formula to verify the sensitivity analysis results reported in
Fig. 9.17.

18. A radio communications channel is active 20% of the time and idle 80%
of the time. The average message lasts 20 seconds. A scanning sensor
monitors the channel periodically in an attempt to detect the location
of emitters using this channel. An analytic simulation model of scanner
performance is to be constructed. It would greatly simplify the model if
it were at least approximately true that the state of the channel (busy or
idle) when one scan is made is independent of the state found during the
previous scan. Model the channel using a two–state Markov process and
use an analytic simulation to determine how long it takes until the process
settles down into steady state. After this point the process essentially
forgets its original state.

(a) Determine the steady–state distribution for this Markov process.

(b) Derive the set of differential equations satisfied by the state proba-
bilities Pt(i) = Pr{Xt = i}. See Section 8.2.
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(c) If Xt = 0 (channel idle), how long does it take for the state proba-
bilities to get within 5% of their steady–state values?

(d) Repeat part (c), assuming that Xt = 1 (channel busy).

(e) How far apart should successive scans be in order for the Markov
property to apply (at least approximately) for this model?

19. This problem suggests a way to solve the rainy day problem of Example
9.1 using an analytic model.

(a) Let Ct denote the number of consecutive rainy days by day t. Show
that {Ct} is a Markov chain. Write down the transition diagram and
the transition matrix for this Markov chain.

(b) We are interested in the probability that max{C1, . . . , C7} ≥ 3. Al-
ter the Markov chain model from part (a) by restricting the state
space to just {0, 1, 2, 3}. Change the state transition probabilities
so that 3 is an absorbing state; i.e., set

Pr{Ct+1 = 3|Ct = 3} = 1.

Explain why the probability of at least three consecutive rainy days
this week is the same as Pr{C7 = 3|C0 = 0}.

(c) Use the methods of Chapter 8 to calculate the probability of at least
three consecutive rainy days in one week, assuming a 50% chance of
rain each day.

(d) Perform a sensitivity analysis on the 50% assumption. Compare with
the results shown in Fig. 9.5.

(e) Compare this analytic model to the Monte Carlo model used in Sec-
tion 9.1. Which do you prefer, and why? If you had just now come
across this problem, which modeling approach would you have se-
lected?

20. Use the method of particle tracking to solve the pollution problem of
Example 7.5.

(a) Implement the particle tracking code in Figure 9.23. Run the code,
and verify that the outputs are reasonably consistent with those re-
ported in Example 9.5 of the text.

(b) Modify the code so that the velocity v = 3.0 km/hr is a constant.
Repeat part (a), and compare to the results of Example 7.5. Are the
results consistent with those reported in the text?

(c) Perform a sensitivity analysis on the Monte Carlo simulation results
in part (b), to determine how the three measures of performance
T max, P max and Tsafe depend on random factors. How confident
are you of the results reported in part (b)?
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(d) Perform a sensitivity analysis on the plume velocity. Repeat the sim-
ulation of part (b) several times for each value of v in Table 7.1, and
use the average to reproduce the results in Table 7.1. How confident
are you of the tabulated results?

(e) Compare this Monte Carlo simulation model to the analytical model
used in Section 7.4. Which do you prefer, and why? If you had just
now come across this problem, which modeling approach would you
have selected?

21. Reconsider the pollution problem of Example 7.5, but now assume that
the wind speed v (km/hr) is given by the formula

v = 3 +
M − 3

1 + 0.1d 2
(9.29)

where d (km) is the distance from the center of town, and M = 8 km/hr
is the wind speed in the center of town.

(a) Plot the new wind speed function together with the wind speed func-
tion from Example 7.5. Do they seem comparable?

(b) Implement the particle tracking code in Figure 9.23. Run the code,
and verify that the outputs are reasonably consistent with those re-
ported in Example 9.5 of the text.

(c) Modify the code in part (b) using the new wind speed. Repeat part
(b) and compare the results. Is the model of Example 7.5 robust
with respect to the assumed wind speed function?

(d) Perform a sensitivity analysis on the maximum wind speed in town.
Repeat part (c) for M = 4, 6, 8, 10, 12 km/hr. How sensitive are the
three measures of performance, T max, P max and Tsafe, to the
maximum wind speed?

22. This problem investigates a power law model for dispersivity in the pol-
lution problem of Example 7.5.

(a) Implement the particle tracking code in Figure 9.23. Run the code,
and verify that the outputs are reasonably consistent with those re-
ported in Example 9.5 of the text.

(b) Modify the code in part (a) to compute the sample variance s2(j)
of the particle location {S(i, j) : 1 ≤ i ≤ N} at each time t(j), for
j = 1, 2, . . . ,M .

(c) Plot the variance s2(j) versus time t(j) from part (b), similar to
Figure 9.27. Comment on main features of the graph.

(d) Make a log-log plot of the variance s2(j) versus time t(j) from part
(b). That is, plot log s2(j) versus log t(j). Do the points on this
log-log plot seem to follow a straight line?
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(e) Fit a power law model σ = Ctp to the results of part (b). One way
to do this is to apply linear regression to the log-transformed data,
compare Exercise 18 in Chapter 8. Plot the power law model from
part (e) together with the variance data from part (c). Is it reasonable
to adopt a power law model for the variance of the particle plume?
What is the practical utility of this model?

23. This problem introduces the gamma function, and the Laplace transform,
in the context of fractional derivatives. The gamma function is defined by

Γ(b) =

∫ ∞

0

xb−1e−xdx

for b > 0. The Laplace transform of a function f(x) is defined by

F (s) =

∫ ∞

0

e−sxf(x) dx.

(a) Use integration by parts to show that Γ(b + 1) = bΓ(b). Conclude
that Γ(n+ 1) = n!

(b) Use a substitution y = sx to show that the function f(x) = xp has
Laplace transform s−p−1Γ(p+ 1).

(c) Use integration by parts to show that sF (s) − f(0) is the Laplace
transform of the first derivative f ′(x).

(d) The Caputo fractional derivative of order 0 < α < 1 has Laplace
transform sαF (s)− sα−1f(0). Use this formula to show that f(x) =
xp has fractional derivative

Γ(p+ 1)

Γ(p+ 1− α)
xp−α.

(e) Explain why the same formula also holds for positive integers α.

24. This problem introduces two integral formulas for fractional derivatives.
The Riemann-Liouville fractional derivative of order n − 1 < α < n is
defined by

1

Γ(n− α)

dn

dxn

∫ ∞

0

f(x− y)yn−α−1dy, (9.30)

using the gamma function introduced in Exercise 23. The Caputo frac-
tional derivative of order n− 1 < α < n is defined by

1

Γ(n− α)

∫ ∞

0

dn

dxn
f(x− y)yn−α−1dy, (9.31)

by moving the derivative inside the integral.

(a) Apply the formula (9.30) to compute the Riemann-Liouville frac-
tional derivative of the function f(x) = eax for a > 0.
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(b) Explain why the resulting formula is also true for positive integers α.

(c) Apply the formula (9.31) to compute the Caputo fractional derivative
of the function f(x) = eax for a > 0. Compare with the answer in
part (a).

(d) Apply the formula (9.30) to compute the Riemann-Liouville frac-
tional derivative of the constant function f(x) = 1 for all x ≥ 0.

(e) Apply the formula (9.31) to compute the Caputo fractional derivative
of the constant function f(x) = 1 for all x ≥ 0. Compare with the
answer in part (d). Which formula agrees with the case where α is a
positive integer?

25. Reconsider the water pollution problem of Example 9.6, and now consider
a simple analytical model for downstream contamination at early time.

(a) Implement the particle tracking code in Figure 9.31. Run the code,
and verify that the outputs are reasonably consistent with those re-
ported in Example 9.6 of the text.

(b) Modify the code to estimate the earliest time T risk that downstream
concentration at the point x = 20 m downstream exceeds 2 Ci.

(c) Repeat part (b) several times to get an average value for T risk. How
accurate is this value?

(d) Repeat part (c) for x = 25, 30, 35, 40 m downstream. Plot T risk
versus x.

(e) It was stated in the text that the α-stable density C(x, t) ≈ tαAx−α−1

for x sufficiently large. Use this asymptotic approximation to esti-
mate T risk. Compare to the results of the Monte Carlo simulation.
Does the analytical formula provide a reasonable estimate?

26. Reconsider the water pollution problem of Example 9.6, and perform a
sensitivity analysis on the tail parameter α.

(a) Implement the particle tracking code in Figure 9.31. Run the code,
and verify that the outputs are reasonably consistent with those re-
ported in Example 9.6 of the text.

(b) Repeat part (a) with α = 1.2, 1.3, 1.5, 1.8. How sensitive are the
results to the tail parameter α?

(c) Repeat part (b) several times for each value of α = 1.1, 1.2, 1.3, 1.5, 1.8.
Tabulate the average value of each measure of performance, T max,
P max and Tsafe.

(d) Give an accuracy estimate for the numbers you tabulated in part (c).

(e) Estimate the sensitivities S(T max, α), S(P max, α) and S(Tsafe, α),
and interpret in the context of this problem.
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27. Reconsider the water pollution problem of Example 9.6. Some scientists
believe that there is a natural upper bound to the magnitude of particle
jumps.

(a) Implement the particle tracking code in Figure 9.31. Run the code,
and verify that the outputs are reasonably consistent with those re-
ported in Example 9.6 of the text.

(b) Modify the code to enforce a maximum particle jump which is J =
100 times the average jump size. Repeat part (a) and compare the
results.

(c) Repeat part (b) several times, and tabulate the average value of each
measure of performance, T max, P max and Tsafe.

(d) Repeat part (c) with J = 25. How does the maximum jump size
affect the results?

28. Reconsider the water pollution problem of Example 9.6, and consider how
the tail parameter α affects the distribution of particle location.

(a) Implement the particle tracking code in Figure 9.31. Run the code,
and verify that the outputs are reasonably consistent with those re-
ported in Example 9.6 of the text.

(b) Plot a relative frequency histogram of particle locations at time t =
224 days, similar to Figure 9.32. Repeat several times, and comment
on how the histogram shape varies depending on random factors.

(c) Repeat part (b) for α = 1.2, 1.3, 1.5, 1.8. How does the distribution
of particle locations vary with the tail parameter α?

(d) Repeat part (b) with α = 4. How does the resulting histogram shape
compare?

(e) What does the central limit theorem of Section 7.3 imply about the
distribution of particle location in part (d)?

29. This problem explores the fractal particle traces discussed in Section 9.5.

(a) Implement the particle tracking code in Figure 9.31 with N = 20 to
obtain simulated particle locations S(i, j) at times t(j) for particles
i = 1, 2, . . . , N .

(b) Use the results of part (a) to plot the particle traces for N = 20
particles, similar to Figure 9.26. Comment on the features of these
plots. How do they compare to the particle traces in Figure 9.26?

(c) Repeat part (b) for α = 1.2, 1.3, 1.5, 1.8, and recall from Section 9.5
that each graph is a fractal of dimension 2−1/α. How does the graph
vary with the parameter α?

(d) Modify the code to produce two sets of traces for each particle, rep-
resenting the x and y coordinates of particle location. Plot the y
location versus the x location, to get a graph similar to Figure 9.35.
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(e) Repeat part (d) for α = 1.2, 1.3, 1.5, 1.8, and recall from Section 9.5
that each graph is a fractal of dimension α. How does the appearance
of the graph change as α increases?
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Afterword

Mathematics is the language of problem solving. It is at the heart of all science
and technology. The beauty of an education in mathematics is that it gives
you the freedom to pursue just about any technical career you can imagine.
In the next few pages we will provide a brief discussion of some of the more
common career opportunities for students with advanced mathematical train-
ing. This advice applies to, but is not limited to, those students who earn a
degree in mathematics. It is also relevant to students who choose to gain ad-
vanced training in mathematics while they earn degrees in other areas. We will
also provide some suggestions about how to achieve success in a job that uses
mathematics to solve real–world problems. The number one question in the
mind of most students is whether to go directly to work, or whether to pursue
another, more advanced degree. We will begin by describing the most plentiful
job opportunities for bachelor’s and master’s degree mathematics graduates.

Computer jobs are the number–one job opportunity for students with ad-
vanced mathematical training. Students who combine advanced mathematics
with courses in computing, including advanced programming, operating sys-
tems, and data structures, will find a variety of opportunities for jobs in the
industry. In fact, as the job market in computing becomes more competitive,
the savvy computer student will seek out complementary areas of expertise to
enhance their resume, and mathematics is one of the best ways to do this. It
is also important to make sure that your computer studies include commonly
useful programming languages like Java and C. Computing is a marketable skill
that can open many doors for you. After you get a job and prove yourself, you
will find that many other opportunities present themselves.

Another good job opportunity for mathematics students is actuarial work.
Actuarial firms will often hire a good mathematics major just on the basis of his
or her academic record, but if you are really interested, it is a good idea to take
the first actuarial exam (covering probability) before you graduate. To become
a full–fledged actuary requires passing a series of exams. There are graduate
courses in actuarial science that will help you to prepare for the exams, or
you can study on your own. If you have the ability and self-discipline, you
can rise rapidly to the top of a very interesting and lucrative profession. Most
Fortune 500 companies have at least one vice president who is an actuary, not
to mention the opportunities at insurance companies and independent actuarial
firms. Actuaries do the mathematical modeling for these firms. This is an
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especially good track for people with a strong interest in business, but you
do not need to have any course work in business, economics, or accounting to
qualify.

Many students choose to combine their degree in mathematics with a second
degree in engineering, computer science, or accounting. Of course, a good stu-
dent in one of these areas will have no problem landing a respectable job. One
question he or she may have is to what extent that job will use the full measure
of his or her knowledge in mathematics. To be honest, there is good news and
bad news here. The bad news is that during the first year or two of employment,
there may be little opportunity to use much college–level mathematics. Every-
body has to start somewhere, and most people have to start at the bottom.
The important thing to remember is to perform with energy, enthusiasm, and
accuracy. Look at this part of your working career as a test to see whether you
are ready for a more sophisticated job. The good news is that once you get past
the opening stanza, there will be a wealth of genuine opportunities to put your
math to work on significant and interesting problems. Of course, you will have
to prove that you can handle the challenge.

Next, we will discuss some of the opportunities for mathematics students who
intend to pursue an advanced degree. Students with advanced mathematical
training are welcome in virtually every graduate program, especially in science
and engineering. When you look at the kind of work being done at the advanced
levels in most of these areas, you will find that it involves a lot of mathematics.
There is not enough room here to describe the incredible variety of opportunities
available. We will concentrate on those fields primarily concerned with the
mathematical aspects of solving real–world problems.

Advanced graduate education in mathematics is an obvious choice for some-
one with a degree in mathematics. If you are interested in solving real–world
problems, you should look for a graduate school that offers a program in ap-
plied mathematics, statistics, or operations research. Computer science is an-
other attractive choice, for reasons stated earlier. Bright mathematics majors
with a good background in computing will find ample opportunity to use their
mathematical skills during computer science graduate school. After graduation,
these folks will possess a powerful combination of mathematical and computer
skills that can be brought to bear on a wide variety of fascinating real–world
problems. Statistics is another good option. Most statisticians started out by
earning a degree in mathematics. There are plenty of job openings, and the
work is much more varied than most people believe. Some of the most interest-
ing work in mathematical modeling is done by statisticians. In fact, the author
of this textbook is now employed in a statistics department!

Operations research is a very broad field of study that encompasses much
of what we usually think of as mathematical modeling. It includes the study of
problems in optimization, queuing theory, and inventory theory. It is possible
to enter the field with a degree in mathematics, but it is better to start with an
advanced degree in the field of operations research. The biggest problem here
is to find the right program. Mathematics, statistics, computer science, engi-
neering, and even MBA programs often offer a major or a concentration in this
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area. Choose any one you like; it does not make too much difference which de-
partment grants the degree. Different schools have different philosophies about
where such a program belongs. Another confusing problem is the name of the
program. Operations research, operations management, management science,
and systems science are all different names for essentially the same thing. Once
again, it does not really matter which one of these appears on your degree.

If you are interested in research and teaching, consider a doctoral program.
A doctorate in mathematics is one of the more marketable degrees in academics,
and a doctorate in some branch of applied mathematics (e.g., numerical analy-
sis or partial differential equations) can lead to a very good job in an industry
research laboratory. These jobs are also very marketable in academics, since ap-
plied mathematicians are valuable both to teach applied courses and to partici-
pate in interdisciplinary research projects. If you are interested in an academic
job, you should also consider earning your doctorate in statistics, computer sci-
ence, or operations research. You will find that the work is mostly math, the
job market is better, and the salaries are higher. In fact, a doctoral program in
almost any field of science or engineering can provide a wealth of opportunities
to use mathematics to solve real–world problems. You should not be afraid
to pursue anything that captures your imagination. Finally, do not overlook
the possibility of a combined doctorate. Programs in mathematical physics,
mathematical biology, mathematical psychology, and mathematical economics
offer unique challenges. You may also want to begin thinking about the choice
between an academic job and an industry job. While academic jobs offer much
in the way of lifestyle benefits, industry jobs typically pay about twice as much.
You will want to be in a position to choose.

Further Reading

1. 101 Careers in Mathematics, edited by Andrew Sterrett, Mathematical
Association of America, 1529 18th Street NW, Washington DC 20036–
1385, www.maa.org/careers

2. Careers in Applied Mathematics, Society for Industrial and Applied Math-
ematics, 3600 Market Street, 6th Floor, Philadelphia, PA 19104-2688,
www.siam.org/careers/

3. Careers in Operations Research, Institute for Operations Research and the
Management Sciences, 7240 Parkway Drive, Suite 300, Hanover MD 21076
USA, www.informs.org/Build-Your-Career/INFORMS-Student-Union/

4. Careers in Statistics, American Statistical Association, 732 North Wash-
ington Street, Alexandria VA 22314-1943, www.amstat.org/careers

5. Occupational Outlook Handbook, Computer and Mathematical Occupa-
tions, U.S. Bureau of Labor Statistics, Office of Occupational Statistics
and Employment Projections, PSB Suite 2135, 2 Massachusetts Avenue
NE, Washington DC 20212-0001, www.bls.gov/oco/
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6. Mathematical Sciences Career Information, American Mathematical Soci-
ety, 201 Charles Street, Providence RI 02904-2294, www.ams.org/careers

7. The Actuarial Profession, Society of Actuaries, 475 North Martingale Rd.,
Schaumburg IL 60173–2226, www.soa.org/careers
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eigenvalue, 140, 201
eigenvalue method, 140, 146
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electrical circuit, 150
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ergodic Markov process, 266
Euler method, 186
expected value, 224, 229
exponential distribution, 229
exponential random variable, 311
extended central limit theorem, 337
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farm problem, 75, 91
feasible region, 38
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Fick’s Law, 237, 345
first passage time, 311
five-step method, 4, 25
flood problem, 292
forklift problem, 261
Fourier transform, 325, 336
fractals, 191, 195, 334, 345, 346
fractional calculus, 335
fractional derivative, 336
fractional diffusion equation, 336

goodness of fit, 274
gradient vector, 33
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grid search, 68

heart attack problem, 245
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heavy tail, 343
home mortgage problem, 271, 295, 296
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house fire problem, 231, 243

independent random variables, 226
inductor, 150
infectious disease problem, 136, 208
integer programming, 92
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Kirchoff’s current law, 151
Kirchoff’s voltage law, 151
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linear programming, 75
linear regression, 273

Markov chain, 252
Markov decision theory, 260
Markov process, 261, 292
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Measures of performance, 302, 309, 310
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Monte Carlo simulation, 302, 323, 325
multiple regression, 296
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Murphy’s Law, 244, 269
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Newton’s method, 62, 72
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objective function, 34
one–variable optimization, 6
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particle tracking, 324
pendulum problem, 214
phase portrait, 152
pig problem, 4, 16, 18, 57, 102, 103
Poisson distribution, 243, 252
Poisson process, 231
pollution problem, 236, 248, 249, 324
polynomial least squares, 296
predator-prey problem, 135, 165, 211
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queuing model, 270
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random search, 68
random variable, 310
range of normal variation, 234
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residual, 278, 283
resistor, 150
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robustness, 14
Runge–Kutta method, 215

sample mean, 330
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sample standard deviation, 331
sample variance, 330
scanning sensor problem, 246, 351
self–similar, 195
sensitivity, 12, 65
sensitivity analysis, 9
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simplex method, 77
slack variable, 77
spreadsheet, 83, 100, 189
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stable distribution, 336
stable motion, 346
standard normal distribution, 233
state space, 117, 127
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state transition matrix, 253
state transition probability, 253
state variable, 117, 127
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steady state, 116
steady–state distribution, 255
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strange attractor, 205
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332
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Surface–to–air missile, 317

taxicab problem, 244, 349
time series model, 279
tree problem, 116, 132, 133, 139, 166,

169, 211
truncation effect, 344

unconstrained optimization, 22
uniform distribution, 311

v-i characteristic, 151
variance, 232
vector field, 122
velocity vector, 122
voltage, 151

war problem, 135, 172, 206, 207

water pollution problem, 335
weather problem, 200, 218
whale problem, 17, 50, 51, 104, 121,
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