

Lecture Notes in Computer Science 7000
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Gul Agha Olivier Danvy
José Meseguer (Eds.)

Formal Modeling:
Actors, Open Systems,
Biological Systems

Essays Dedicated to Carolyn Talcott
on the Occasion of Her 70th Birthday

13

Volume Editors

Gul Agha
José Meseguer
University of Illinois
Thomas M. Siebel Center for Computer Science
201 N. Goodwin Avenue, MC 258, Urbana, IL 61801, USA
E-mail: {agha,meseguer}@illinois.edu

Olivier Danvy
Aarhus University
Department of Computer Science
Åbogade 34, 8200 Aarhus N, Denmark
E-mail: danvy@cs.au.dk

The illustration appearing on the cover of this book is the work of Daniel Rozenberg
(DADARA).

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-24932-7 e-ISBN 978-3-642-24933-4
DOI 10.1007/978-3-642-24933-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011938996

CR Subject Classification (1998): D.2, F.3, D.3, C.2, D.2.4, C.2.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Dr. Carolyn Talcott

Preface

This volume contains the papers presented at a symposium in honor of Carolyn
Talcott held during November 3–4, 2011 in Menlo Park, California.

Carolyn Talcott, who celebrated her 70th birthday in 2011, is a leading re-
searcher and mentor of international renown among computer scientists. Dr.
Talcott has made key contributions to a number of areas of computer science
including:

1. Semantics and verification of programming languages
2. Foundations of Actor-based systems
3. Middleware and meta-architectures
4. Maude and rewriting logic
5. Computational biology

Dr. Talcott’s earliest contributions to the semantics and verification of program-
ming languages started with her PhD thesis and continued with her work on
the Actor model. Her thesis addressed the challenging problem of formalizing
reasoning about state change in high-level languages like LISP. The proof meth-
ods she developed for reasoning about state change are widely cited; she was
recognized as a leading figure in the field, serving in key positions such as Co-
Editor-in-Chief of Springer’s journal LISP and Symbolic Computation and then
Higher-Order and Symbolic Computation (HOSC), and in roles such as chair or
co-organizer of many scientific meetings in the field.

Dr. Talcott made substantial contributions to advancing the formal develop-
ment of the Actor model. Actors are a foundational model of concurrency; they
capture the asynchronous nature of parallel and distributed systems, and pro-
vide the flexibility needed to build open, extensible concurrent systems. In recent
years, the Actor model has acquired increasing importance and use, providing
a basis for a number of programming languages and frameworks. The growth of
the model is due to the fact that Actors go a long way toward addressing the
challenges of programmability in systems such as Web services, cloud comput-
ing and scalable multicore processor architectures. Her seminal contributions to
the foundations and formal reasoning techniques for Actors not only defines the
state of the art today but provides the foundation for future developments in
this field.

Computer systems and applications are not only increasingly distributed,
they also need to deal with changing physical constraints such as energy and
real-time requirements, sensing and actuation control loops, as well as secu-
rity, reliability, etc. Designing such systems so that they can flexibly adapt to
changing conditions and remain resilient and safe is an enormous challenge. Dr.
Talcott’s contributions address this challenge by developing methods for reason-
ing about novel distributed object reflection techniques whereby “meta-objects”
can monitor and control the runtime state of other objects (which could in turn

VIII Preface

themselves be meta-objects controlling lower-level meta-objects). The techiques
she developed are not only mathematically well-founded, they provide practi-
cal methods for building adaptive middleware. In particular, her work on the
Two-Level Actor Machine (TLAM) model, and on the “Russian Dolls” model of
distributed reflection is well known. These methods are having, and will continue
to have, a significant impact in the emerging area of cyber-physical systems.

During her tenure as a senior scientist at Stanford University, Dr. Talcott be-
gan research which has led to a series of key conceptual contributions to rewrit-
ing logic and Maude–arguably the most advanced executable formal specification
language currently available. These contributions included definition of the se-
mantics of Actors and Actor languages in rewriting logic, and the development
of formal reasoning systems. After her retirement from Stanford, Dr. Talcott
moved to SRI in 2001 to head the Maude team and her contributions have been
even more significant. Thanks in no small part to these contributions, Maude
has gained a scientific network consisting of several universities across Europe,
as well as institutions in the USA. A Springer LNCS Tutorial volume on Maude
was published in 2007, with significant contributions to this volume made by
Dr. Talcott. She has also been an important contributor to many of the new
releases of the Maude software; such releases are regularly made as new features
are incorporated. The field of rewriting logic is now firmly established with reg-
ular scientific conferences as well as hundreds of peer-reviewed publications in
the area.

Dr. Talcott’s move to SRI has been fruitful for the area of computational bi-
ology: at SRI, she has led a remarkably productive collaboration between molec-
ular biologists and computer scientists. Specifically, Dr. Talcott has played a
key leadership role in advancing this entire field by the application of formal
methods to systems biology. She has initiated the Pathway Logic Project which
has made many contributions, not only conceptual ones, but also by developing
practical tools that biologists find easy to understand and use; these tools enable
visualization and efficient formal analysis of biological systems.

Over the years, Dr. Talcott has collaborated with a large number of re-
searchers across the globe, among them the editors of this volume. Not sur-
prisingly, some of the papers we were able to include in this volume have their
genesis in such collaborations. Her impact, beyond her technical contributions,
includes the scores of researchers in the computer science community whom she
has inspired over the years.

It is our good fortune to be able to organize this Festschrift in honor of Dr.
Carolyn Talcott and we look forward to many more years of her leadership as
an innovative researcher, valued colleague and inspiring mentor.

August 2011
Gul Agha

Olivier Danvy
José Meseguer

Table of Contents

Essays on Carolyn Talcott

Two PhD Students for the Price of One . 1
Solomon Feferman

Honoring Carolyn Talcott’s Contributions to Science 4
Sylvan Pinsky

Actors and Programming Languages

Ten Years of Analyzing Actors: Rebeca Experience 20
Marjan Sirjani and Mohammad Mahdi Jaghoori

Mathematical Models of Object-Based Distributed Systems 57
Carlos Henrique C. Duarte

From Explicit to Symbolic Types for Communication Protocols in
CCS . 74

Hanne Riis Nielson, Flemming Nielson, Jörg Kreiker, and
Henrik Pilegaard

Abstract LR-Parsing . 90
Kyung-Goo Doh, Hyunha Kim, and David A. Schmidt

Cyberphysical Systems

Fractionated Software for Networked Cyber-Physical Systems: Research
Directions and Long-Term Vision . 110

Mark-Oliver Stehr, Carolyn Talcott, John Rushby, Pat Lincoln,
Minyoung Kim, Steven Cheung, and Andy Poggio

Model Feasible Interactions in Distributed Real-Time Systems 144
Shangping Ren, Yue Yu, and Miao Song

Middleware and Meta-architectures

Puff, The Magic Protocol . 169
Farhad Arbab

A Formal Methodology for Compositional Cross-Layer Optimization 207
Minyoung Kim, Mark-Oliver Stehr, Carolyn Talcott, Nikil Dutt, and
Nalini Venkatasubramanian

X Table of Contents

From Service Identification to Service Selection: An Interleaved
Perspective . 223

Devis Bianchini, Francesco Pagliarecci, and Luca Spalazzi

Towards a System Model for Ensembles . 241
Matthias Hölzl and Martin Wirsing

Algorithmic Aspects of Risk Management . 262
Ashish Gehani, Lee Zaniewski, and K. Subramani

Formal Methods and Reasoning Tools

Parameterized Metareasoning in Membership Equational Logic 277
Manuel Clavel, Narciso Mart́ı-Oliet, and Miguel Palomino

Fast Sort Computations for Order-Sorted Matching and Unification 299
Steven Eker

Solving the First Verified Software Competition Problems Using PVS . . . 315
Sam Owre and Natarajan Shankar

Towards a Maude Formal Environment . 329
Francisco Durán, Camilo Rocha, and José Maŕıa Álvarez

Multisimulations: Towards Next Generation Integrated Simulation
Environments . 352

Leila Jalali, Sharad Mehrotra, and Nalini Venkatasubramanian

Semantics, Simulation, and Formal Analysis of Modeling Languages for
Embedded Systems in Real-Time Maude . 368

Peter Csaba Ölveczky

Computational Biology

Computational Biology: A Programming Perspective 403
Lars Hartmann, Neil D. Jones, Jakob Grue Simonsen, and
Søren Bjerregaard Vrist

Applications of Pathway Logic Modeling to Target Identification 434
Anupama Panikkar, Merrill Knapp, Huaiyu Mi, Dave Anderson,
Krishna Kodukula, Amit K. Galande, and Carolyn Talcott

Author Index . 447

Publications of Dr. Carolyn Talcott

(Note - some publications as C.T. Williamson)

[1] Abate, A., Bai, Y., Sznajder, N., Talcott, C., Tiwari, A.: Quantitative and prob-
abilistic modeling in Pathway Logic. In: IEEE 7th International Symposium on
Bioinformatics and Bioengineering, pp. 922–929. IEEE (2007)

[2] Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: Towards a theory of actor
computation. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp.
565–579. Springer, Heidelberg (1992)

[3] Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor com-
putation. Journal of Functional Programming 7, 1–72 (1997)

[4] Amaral, A.M.S.C., Linnett, J.W., Williamson, C.T.: The double bond in ethy-
lene. Theoretical Chimica Acta 16, 249–262 (1970)

[5] Arbab, F., Talcott, C. (eds.): COORDINATION 2002. LNCS, vol. 2315. Springer,
Heidelberg (2002)

[6] Bronstein, A., Talcott, C.L.: Formal verification of pipelines based on string-
functional semantics. In: IFIP International Workshop on Applied Formal Meth-
ods for Correct VLSI Design, Leuven, Belgium (1989)

[7] Bronstein, A., Talcott, C.L.: Formal verification of synchronous circuits based
on string-functional semantics: The 7 paillet circuits in boyer-moore. In: Sifakis,
J. (ed.) CAV 1989. LNCS, vol. 407, pp. 317–333. Springer, Heidelberg (1990)

[8] Burgoyne, N., Williamson, C.: Some computations involving simple lie algebras.
In: Proceedings of the Second ACM Symposium on Symbolic and Algebraic
Manipulation, pp. 162–171 (1971)

[9] Burgoyne, N., Williamson, C.: Semi-simple classes in chevalley type groups. Pa-
cific Journal of Mathematics 70, 83–100 (1977)

[10] Clavel, M., Durán, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Tal-
cott, C.: Maude 2.0 Manual (2003), http://maude.cs.uiuc.edu

[11] Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Tal-
cott, C.L.: The Maude 2.0 system. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS,
vol. 2706, pp. 76–87. Springer, Heidelberg (2003)

[12] Clavel, M., Durán, F., Eker, S., Escobar, S., Lincoln, P., Mart́ı-Oliet, N.,
Meseguer, J., Talcott, C.: Unification and narrowing in maude 2.4. In: Treinen,
R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 380–390. Springer, Heidelberg (2009)

[13] Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Tal-
cott, C.: All About Maude - A High-Performance Logical Framework. How
to Specify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350.
Springer, Heidelberg (2007)

[14] Coglio, A., Giunchiglia, F., Meseguer, J., Talcott, C.L.: Composing and Control-
ling Deduction in Reasoning Theories Using Mappings. In: Kirchner, H. (ed.)
FroCos 2000. LNCS, vol. 1794, pp. 200–216. Springer, Heidelberg (2000)

[15] Coglio, A., Giunchiglia, F., Pecchiari, P., Talcott, C.L.: A logic level specification
of the NQTHM simplification process. Technical report, IRST, University of
Genova, Stanford University (1997)

[16] Denker, G., Garćıa-Luna-Aceves, J.J., Meseguer, J., Ölveczky, P.C., Raju, J.,
Smith, B., Talcott, C.L.: Specifications and analysis of a reliable broadcasting
protocol in Maude. In: Hajek, B., Sreenivas, R.S. (eds.) 37th Allerton Conference
on Communication, Control, and Computing, pp. 738–747 (1999) Case study
details, http://maude.csl.sri.com/casestudies/rbp/

XII Publications of Dr. Carolyn Talcott

[17] Denker, G., Meseguer, J., Talcott, C.L.: Protocol specification and analysis in
Maude. In: Workshop on Formal Methods and Security Protocols (June 1998),
http://www.cs.bell-labs.com/who/nch/fmsp/index.html

[18] Denker, G., Meseguer, J., Talcott, C.L.: Rewriting Semantics of Distributed Meta
Objects and Composable Communication Services (1999) (submitted)

[19] Denker, G., Meseguer, J., Talcott, C.L.: Formal specification and analysis of ac-
tive networks and communication protocols: The Maude experience. In: DARPA
Information Survivability Conference and Exposition (DISCEX 2000), vol. 1, pp.
251–265. IEEE (2000)

[20] Denker, G., Meseguer, J., Talcott, C.L.: Rewriting semantics of distributed meta
objects and composable communication services. In: Third International Work-
shop on Rewriting Logic and Its Applications (WRLA 2000), Kanazawa, Japan,
September 18-20. Electronic Notes in Theoretical Computer Science, vol. 36.
Elsevier (2000), http://www.elsevier.nl/locate/entcs/volume36.html

[21] Denker, G., Talcott, C.L.: Formal checklists for remote agent dependability. In:
Fifth International Workshop on Rewriting Logic and Its Applications (WRLA
2004). Electronic Notes in Theoretical Computer Science. Elsevier (2004)

[22] Denker, G., Talcott, C.L.: A formal framework for goal net analysis. In: Workshop
on Verification and Validation of Planning Systems. AAAI (2005)

[23] Denker, G., Talcott, C., Ghanadan, R., Kumar, S.: An architecture for policy-
based cognitive tactical networking. In: Military Communications Conference,
MILCOM (2006)

[24] di Blasio, P., Fisher, K., Talcott, C.: A control-flow analysis for a calculus of
concurrent objects. Transactions in Software Engineering, TSE (2000)

[25] di Blasio, P., Fisher, K., Talcott, C.L.: A control-flow analysis for a calculus of
concurrent objects. In: Bowman, H., Derrick, J. (eds.) Formal Methods for Open
Object-based Distributed Systems, vol. 2, pp. 73–88. Chapman & Hall (1997)

[26] Dill, D.L., Knapp, M.A., Gage, P., Talcott, C., Lincoln, P., Laderoute, K.: The
pathalyzer: A tool for analysis of signal transduction pathways. In: Eskin, E.,
Ideker, T., Raphael, B., Workman, C. (eds.) RECOMB 2005. LNCS (LNBI),
vol. 4023, pp. 11–22. Springer, Heidelberg (2007)

[27] Donaldson, R., Talcott, C., Knapp, M., Calder, M.: Understanding signalling net-
works as collections of signal transduction pathways. In: Computational Methods
in Systems Biology (2010)

[28] Duarte, C.H.C., Talcott, C.L.: Clara: An actor language for high performance
distributed computing. In: Proc. Brazilian Symposium on Computer Architec-
ture – High Performance Computing (SBAC-PAD 2000), Sao Pedro, SP, Brazil
(2000)

[29] Duran, F., Eker, S., Escobar, S., Meseguer, J., Talcott, C.: Variants, unification,
narrowing, and symbolic reachability in maude 2.6. In: Rewriting Techniques
and Applications (2011)

[30] Eker, S., Laderoute, K., Lincoln, P., Sriram, M.G., Talcott, C.: Representing and
simulating protein functional domains in signal transduction using MAUDE. In:
Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 164–165. Springer, Heidelberg
(2003)

[31] Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Talcott, C.: Pathway Logic:
Executable models of biological networks. In: Fourth International Workshop on
Rewriting Logic and Its Applications (WRLA 2002), Pisa, Italy, September 19-
21. Electronic Notes in Theoretical Computer Science, vol. 71, Elsevier (2002),
http://www.elsevier.nl/locate/entcs/volume71.html

Publications of Dr. Carolyn Talcott XIII

[32] Ekins, S., Freundlich, J.S., Choi, I., Sarker, M., Talcott, C.: Computational
databases, pathway and cheminformatics tools for tuberculosis drug discovery.
Trends in Microbiology 19(2) (February 2011)

[33] Galbiati, L., Talcott, C.L.: A Simplifier for Untyped Lambda Expressions. In:
Okada, M., Kaplan, S. (eds.) CTRS 1990. LNCS, vol. 516, pp. 342–353. Springer,
Heidelberg (1991)

[34] Galbiati, L., Talcott, C.L.: A simplifier for untyped lambda expressions. Techni-
cal Report STAN-CS-90-1337, Computer Science Department, Stanford Univer-
sity (1990)

[35] Giunchiglia, F., Pecchiari, P., Talcott, C.L.: Reasoning theories: Towards an
architecture for open mechanized reasoning systems. Technical Report 9409-
15, IRST, Also appears as Stanford University Computer Science Department
Technical Note STAN-CS-94-TN-15 (November 1994)

[36] Giunchiglia, F., Pecchiari, P., Talcott, C.L.: Reasoning theories: Towards an
architecture for open mechanized reasoning systems. In: Workshop on Frontiers
of Combining Systems FROCOS 1996 (1996)

[37] Giunchiglia, F., Pecchiari, P., Talcott, C.L.: Reasoning theories: Towards an
architecture for open mechanized reasoning systems (1996) (submitted for pub-
lication)

[38] Higher Order Operational Techniques in Semantics II, Electronic Notes in The-
oretical Computer Science. Elsevier (1998),
http://www.elsevier.nl/locate/entcs/volume10.html

[39] Greco, M.A., Murray, J., Talcott, C.: Modeling sleep-related activities from ex-
perimental observations - initial computational frameworks for understanding
sleep function(s). In: AHFE. Taylor and Francis, LLC (2010)

[40] Gutierrez-Nolasco, S., Venkatasubramanian, N., Stehr, M.-O., Talcott, C.L.: To-
wards adaptive secure group communication: Bridging the gap between formal
specification and network simulation. In: 12th IEEE Pacific Rim International
Symposium on Dependable Computing (PRDC 2006), pp. 113–120. IEEE Com-
puter Society (2006)

[41] Gutierrez-Nolasco, S., Venkatasubramanian, N., Talcott, C., Stehr, M.-O.: Tai-
loring group membership consistency for mobile networks. In: CTS (2011)

[42] Heiser, L.M., Wang, N.J., Talcott, C.L., Laderoute, K.R., Knapp, M., Guan, Y.,
Hu, Z., Ziyad, S., Weber, B.L., Laquerre, S., Jackson, J.R., Wooster, R.F., Kuo,
W.-L., Gray, J.W., Spellman, P.T.: Integrated analysis of breast cancer cell lines
reveals unique signaling pathways. Genome Biology 10, R31 (2009)

[43] Honsell, F., Mason, I.A., Smith, S.F., Talcott, C.L.: A theory of classes for a
functional language with effects. In: Martini, S., Börger, E., Kleine Büning, H.,
Jäger, G., Richter, M.M. (eds.) CSL 1992. LNCS, vol. 702, pp. 309–326. Springer,
Heidelberg (1993)

[44] Honsell, F., Mason, I.A., Smith, S.F., Talcott, C.L.: A variable typed logic of
effects. Information and Computation 119(1), 55–90 (1995)

[45] Iida, S., Denker, G., Talcott, C.: Document logic: Risk analysis of business pro-
cesses through document authenticity. In: DDBP. IEEE Digital Library (2009)

[46] Iida, S., Denker, G., Talcott, C.: Document logic: Risk analysis of business pro-
cesses through document authenticity. Journal of Research and Practice in In-
formation Technology (2011)

[47] Iyengar, S.M., Talcott, C., Mozzachiodi, R., Cataldo, E., Baxter, D.A.: Exe-
cutable symbolic models of neural processes. In: Network Tools and Applications
in Biology, NETTAB 2007 (2007)

XIV Publications of Dr. Carolyn Talcott

[48] Jones, N., Talcott, C. (eds.): Proceedings of The Atlantique Workshop on Seman-
tics Based Program Manipulation, University of Copenhagen DIKU Technical
Report 94/12 (1994)

[49] Katz, T.J., Talcott, C.L.: The cyclononatetraene anion radical. Journal of the
Amermican Chemical Society 88, 4732 (1966)

[50] Khakpour, N., Jalili, S., Talcott, C., Sirjani, M., Mousavi, M.R.: Pobsam: Policy-
based managing of actors in self-adaptive systems. In: Formal Aspects of Compo-
nent Software (FACS). Electronic Notes in Theoretical Computer Science (2009)

[51] Kim, M., Stehr, M.-O., Talcott, C.: A distributed logic for networked cyber-
physical systems. In: Foundations of Software Engineering. LNCS. Springer,
Heidelberg (2011)

[52] Kim, M., Stehr, M.-O., Talcott, C., Dutt, N., Venkatasubramanian, N.: Combin-
ing formal verification with observed system execution behavior to tune system
parameters. In: Formal Methods for Open Object-based Distributed Systems.
Springer, Heidelberg (2007)

[53] Kim, M.-Y., Stehr, M.-O., Talcott, C., Dutt, N., Venkatasubramanian, N.: A
probabilistic formal analysis approach to cross layer optimization in distributed
embedded systems. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007.
LNCS, vol. 4468, pp. 285–300. Springer, Heidelberg (2007)

[54] Kim, M., Stehr, M.-O., Talcott, C., Dutt, N., Venkatasubramanian, N.:
Constraint refinement for online verifiable cross-layer system adaptation. In:
IEEE/ACM Design Automation and Test in Europe (DATE 2008). IEEE/ACM
(2008)

[55] Kim, M., Stehr, M.-O., Talcott, C., Dutt, N., Venkatasubramanian, N.: xtune: A
formal methodology for cross-layer tuning of mobile embedded systems. Trans-
actions on Embedded Computing Systems (2011)

[56] Lincoln, P.D., Talcott, C.: Symbolic systems biology and pathway logic. In: Iyen-
gar, S. (ed.) Symbolic Systems Biology. Jones and Bartlett (2010)

[57] Mason, I.A., Pehoushek, J.D., Talcott, C.L., Weening, J.S.: A Qlisp Primer.
Technical Report STAN-CS-90-1340, Department of Computer Science, Stanford
University (1990)

[58] Mason, I.A., Smith, S.F., Talcott, C.L.: From Operational Semantics to Domain
Theory. Information and Computation 128(1), 26–47 (1996)

[59] Mason, I.A., Talcott, C.L.: Memories of S-expressions: Proving properties of
Lisp-like programs that destructively alter memory. Technical Report STAN-
CS-85-1057, Department of Computer Science, Stanford University (1985)

[60] Mason, I.A., Talcott, C.L.: Axiomatizing operational equivalence in the presence
of side effects. In: Fourth Annual Symposium on Logic in Computer Science.
IEEE (1989)

[61] Mason, I.A., Talcott, C.L.: Programming, transforming, and proving with func-
tion abstractions and memories. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-
Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 574–588. Springer,
Heidelberg (1989)

[62] Mason, I.A., Talcott, C.L.: A sound and complete axiomatization of operational
equivalence between programs with memory. Technical Report STAN-CS-89-
1250, Department of Computer Science, Stanford University (1989)

[63] Mason, I.A., Talcott, C.L.: Program transformation for configuring components
(1990)

[64] Mason, I.A., Talcott, C.L.: Reasoning about programs with effects. In: Deransart,
P., Ma�luszyński, J. (eds.) PLILP 1990. LNCS, vol. 456, pp. 189–203. Springer,
Heidelberg (1990)

Publications of Dr. Carolyn Talcott XV

[65] Mason, I.A., Talcott, C.L.: Equivalence in functional languages with effects. Jour-
nal of Functional Programming 1, 287–327 (1991)

[66] Mason, I.A., Talcott, C.L.: Program transformation for configuring components.
In: ACM/IFIP Symposium on Partial Evaluation and Semantics-based Program
Manipulation (1991)

[67] Mason, I.A., Talcott, C.L.: Program transformation via constraint propagation
(1991)

[68] Mason, I.A., Talcott, C.L.: Inferring the equivalence of functional programs that
mutate data. Theoretical Computer Science 105(2), 167–215 (1992)

[69] Mason, I.A., Talcott, C.L.: References, local variables and operational reasoning.
In: Seventh Annual Symposium on Logic in Computer Science, pp. 186–197.
IEEE (1992)

[70] Mason, I.A., Talcott, C.L.: Program transformation via contextual assertions.
In: Jones, N.D., Hagiya, M., Sato, M. (eds.) Logic, Language and Computation.
LNCS, vol. 792, pp. 225–254. Springer, Heidelberg (1994)

[71] Mason, I.A., Talcott, C.L.: Reasoning about object systems in VTLoE. Interna-
tional Journal of Foundations of Computer Science 6(3), 265–298 (1995)

[72] Mason, I.A., Talcott, C.L.: A semantically sound actor translation. In: Degano,
P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256,
pp. 369–378. Springer, Heidelberg (1997)

[73] Mason, I.A., Talcott, C.L.: Landin-feferman logic. In: The Fourteenth Workshop
on the Mathematical Foundations of Programming Semantics, MFPS 14 (1998)

[74] Mason, I.A., Talcott, C.L.: Actor languages: Their syntax, semantics, translation,
and equivalence. Theoretical Computer Science 220, 409–467 (1999)

[75] Mason, I.A., Talcott, C.L.: Simple network protocol simulation within Maude. In:
Third International Workshop on Rewriting Logic and Its Applications (WRLA
2000), Kanazawa, Japan, September 18-20. Electronic Notes in Theoretical Com-
puter Science, vol. 36. Elsevier (2000),
http://www.elsevier.nl/locate/entcs/volume36.html

[76] Mason, I.A., Talcott, C.L.: Feferman–Landin Logic. In: Sieg, W., Sommer, R.,
Talcott, C.L. (eds.) Reflections on the Foundations of Mathematics: Essays in
Honor of Solomon Feferman. Lecture Notes in Logic, pp. 299–344. Association
of Symbolic Logic (2002)

[77] Mason, I.A., Talcott, C.L.: IOP: The InterOperability Platform & IMaude: An
interactive extension of Maude. In: Fifth International Workshop on Rewrit-
ing Logic and Its Applications (WRLA 2004). Electronic Notes in Theoretical
Computer Science. Elsevier (2004)

[78] Mason, I.A., Talcott, C.: Actors and logical analysis of interactive system. In: Vi-
roli, M. (ed.) Foundations of Interactive Computation (FInCo 2005). Electronic
Notes in Theoretical Computer Science, vol. 141. Elsevier (2005)

[79] Maurer, W.D., Williamson, C.T.: Algorithm verification applied to the todd-
coxeter algorithm. Technical Report ERL-M317, Electronics Research Lab., Col-
lege of Engineering, U.C. Berkeley (1971)

[80] Meseguer, J., Olveczky, P.C., Stehr, M.-O., Talcott, C.L.: Maude as a wide-
spectrum framework for formal modeling and analysis of active networks. In:
DARPA Active Networks Conference and Exposition (DANCE), pp. 494–510.
IEEE (May 2002)

[81] Meseguer, J., Talcott, C.L.: Rewriting logic and secure mobility. In: NPS Work-
shop on Active Networks, Monterey, CA (February 1997)

XVI Publications of Dr. Carolyn Talcott

[82] Meseguer, J., Talcott, C.L.: Formal foundations for compositional software archi-
tectures. Position paper for Workshop on Compositional Software Architectures,
Monterey, CA (January 1998)

[83] Meseguer, J., Talcott, C.L.: Mapping OMRS to Rewriting Logic. In: Kirchner,
C., Kirchner, H. (eds.) 2nd International Workshop on Rewriting Logic and Its
Applications, WRLA 1998. Electronic Notes in Theoretical Computer Science,
vol. 15. Elsevier (1998), http://www.elsevier.nl/locate/entcs/volume15.

html
[84] Bevilacqua, V., Talcott, C.: A Partial Order Event Model for Concurrent Ob-

jects. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp.
415–430. Springer, Heidelberg (1999)

[85] Meseguer, J., Talcott, C.L.: Semantic models for distributed object reflection. In:
Deng, T. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 1–36. Springer, Heidelberg
(2002)

[86] Meyers, R.J., Talcott, C.L.: Electron spin resonance of the radical anions of
pyridine and related nitrogen heterocyclics. Molecular Physics 12, 549–567 (1967)

[87] Montanari, U., Talcott, C.L.: Can actors and π-agents live together? In: Higher
Order Operational Techniques in Semantics II. Electronic Notes in Theoretical
Computer Science. Elsevier (1997), http://www.elsevier.nl/locate/entcs/

volume10.html
[88] Nagayama, M., Talcott, C.: An nqthm mechanization of “an exercise in the ver-

ification of multi-process programs”. Technical Report STAN-CS-91-1370, Com-
puter Science Department, Stanford University (1991)

[89] Ölveczky, P.C., Keaton, M., Meseguer, J., Talcott, C., Zabele, S.: Specification
and analysis of the AER/NCA active network protocol suite in real-time maude.
In: Hussmann, H. (ed.) FASE 2001. LNCS, vol. 2029, pp. 333–347. Springer,
Heidelberg (2001), http://maude.csl.sri.com/papers

[90] Ölveczky, P.C., Meseguer, J., Talcott, C.: Specification and analysis of the
AER/NCA active network protocol suite in Real-Time Maude. In: Formal Meth-
ods in System Design (2006)

[91] Pagliarecci, F., Spalazzi, L., Stehr, M.-O., Talcott, C.: Formal specification of
agent-object oriented programs. In: Symposium on Collaborative Technologies
and Systems (2008)

[92] Santiago, S., Talcott, C., Escobar, S., Meadows, C., Meseguer, J.: A graphical
user interface for Maude-NPA. In: Spanish Conference on Programming and
Computer Languages (PROLE). ENTCS (2009)

[93] Sarker, M., Chopra, S., Mortelmans, K., Kodukula, K., Talcott, C., Galande,
A.K.: Systems level in silico pathway analysis predicts metabolites that are po-
tential antimicrobial targets. Journal of Computer Science and Systems Biology
(accepted, April 2011)

[94] Shmatikov, V., Talcott, C.: Reputation-based trust management. In: 2003 IFIP
WG 1.7, ACM SIGPLAN and GI FoMSESS Workshop on Issues in the Theory
of Security, WITS 2003 (2003)

[95] Shmatikov, V., Talcott, C.: Reputation-based trust management. Journal of
Computer Security (2004)

[96] Sieg, W., Sommer, R., Talcott, C. (eds.): Reflections on the Foundations of Math-
ematics: Essays in honor of Solomon Feferman. Lecture Notes in Logic, vol. 15.
Association for Symbolic Logic (2002)

[97] Sieg, W., Sommer, R., Talcott, C. (eds.): Reflections on the Foundations of Math-
ematics: Essays in Honor of Solomon Feferman. LNL, vol. 15. Association for
Symbolic Logic (2002)

Publications of Dr. Carolyn Talcott XVII

[98] Smith, S.F., Talcott, C.L.: Modular reasoning for actor specification diagrams.
In: Ciancariani, P., Fantechi, A., Gorrieri, R. (eds.) Formal Methods for Open
Object-based Distributed Systems, pp. 313–330. Kluwer (1999)

[99] Smith, S.F., Talcott, C.L. (eds.): Formal Methods for Open Object-based Dis-
tributed Systems, vol. 4. Kluwer (2000)

[100] Smith, S.F., Talcott, C.L.: Specification diagrams for actor systems. Higer-Order
and Symbolic Computation 15(4), 301–348 (2002)

[101] Stehr, M.-O., Kim, M., Talcott, C.: Toward distributed declarative control of
networked cyber-physical systems. In: Yu, Z., Liscano, R., Chen, G., Zhang, D.,
Zhou, X. (eds.) UIC 2010. LNCS, vol. 6406, pp. 397–413. Springer, Heidelberg
(2010)

[102] Stehr, M.-O., Talcott, C.: PLAN in Maude: Specifying an active network pro-
gramming language. In: Fourth International Workshop on Rewriting Logic and
Its Applications (WRLA 2002), Pisa, Italy, September 19-21. Electronic Notes in
Theoretical Computer Science, vol. 71, Elsevier (2002), http://www.elsevier.
nl/locate/entcs/volume71.html

[103] Stehr, M.-O., Talcott, C.: Practical techniques for language design and prototyp-
ing. In: Farwer, B., Moldt, D. (eds.) Object Petri Nets, Processes, and Object
Calculi, University of Hamburg (2005), Technical Report FBI-HH-B-265/05

[104] Stehr, M.-O., Talcott, C.: Planning and learning algorithms for routing in
disruption-tolerant networks. In: MILCOM 2008. IEEE (2008)

[105] Talcott, C., Eker, S., Knapp, M., Lincoln, P., Laderoute, K.: Pathway logic mod-
eling of protein functional domains in signal transduction. In: Proceedings of the
Pacific Symposium on Biocomputing (January 2004)

[106] Talcott, C.L.: The essence of Rum: A theory of the intensional and extensional
aspects of Lisp-type computation. PhD thesis, Stanford University (1985)

[107] Talcott, C.L.: Rum: An intensional theory of function and control abstractions.
In: Foundations of Logic and Functional Programming. LNCS, vol. 306, pp. 1–44.
Springer, Heidelberg (1986)

[108] Talcott, C.L.: Algebraic methods in programming language theory. In: First In-
ternational Conference on Algebraic Methodology and Software Technology, Iowa
City, Iowa, AMAST 1989 (1989)

[109] Talcott, C.L.: Programming and proving with function and control abstractions.
Technical Report STAN-CS-89-1288, Stanford University Computer Science De-
partment (1989)

[110] Talcott, C.L.: Binding structures. In: Lifschitz, V. (ed.) Artificial Intelligence
and Mathematical Theory of Computation. Academic Press (1991)

[111] Talcott, C.L.: Towards a framework for specifying components of automated
reasoning systems: A report on work in progress. In: TTCP XTP-1 Workshop
on Effective Use of Automated Reasoning Technology in System Development,
EUARTSD (1992)

[112] Talcott, C.L.: Sketch of an architecture for reasoning systems (1993)
[113] Talcott, C.L.: A theory for program and data specification. Theoretical Com-

puter Science 104, 129–159 (1993)
[114] Talcott, C.L.: A theory of binding structures and its applications to rewriting.

Theoretical Computer Science 112, 99–143 (1993)
[115] Talcott, C.L.: Mathematical foundations for survivable systems. In: Proceedings

of IMACS 1994 Workshop on New Mathematics for Computer Science (1994)
[116] Talcott, C.L.: Reasoning specialists should be logical services, not black boxes.

In: Proceedings of CADE-12 workshop on Theory Reasoning in Automated De-
duction, pp. 1–6 (1994)

XVIII Publications of Dr. Carolyn Talcott

[117] Talcott, C.L.: Reasoning about programs. Notes from Invited Talk for the
Dagstuhl Workshop on New Trends in Integration of Paradigms and Coordi-
nation. Dagstuhl, Germany (September 1995)

[118] Talcott, C.L.: An actor rewriting theory. In: Meseguer, J. (ed.) Proc. 1st Intl.
Workshop on Rewriting Logic and Its Applications. Electronic Notes in Theo-
retical Computer Science, vol. 4, pp. 360–383. Elsevier (1996),
http://www.elsevier.nl/locate/entcs/volume4.html

[119] Talcott, C.L.: Interaction semantics for components of distributed systems. In:
Najm, E., Stefani, J.-B. (eds.) 1st IFIP Workshop on Formal Methods for Open
Object-based Distributed Systems, FMOODS 1996 (1996); Proceedings pub-
lished in 1997 by Chapman & Hall

[120] Talcott, C.L.: Reasoning about functions with effects. In: Higher Order Opera-
tional Techniques in Semantics. Cambridge University Press (1996)

[121] Talcott, C.L.: Reflection in actor systems. Paper presented at the Workshop on
New Mathematics for Computer Science – Computational Models and Semantics
Session (October 1996)

[122] Talcott, C.L.: Composable semantic models for actor theories. In: Abadi, M.,
Ito, T. (eds.) TACS 1997. LNCS, vol. 1281, pp. 321–364. Springer, Heidelberg
(1997)

[123] Talcott, C.L.: Interaction Semantics for Components of Distributed Systems.
In: Najm, E., Stefani, J.-B. (eds.) Formal Methods for Open Object-based Dis-
tributed Systems, pp. 154–169. Chapman & Hall (1997)

[124] Talcott, C.L.: Composable semantic models for actor theories. Higher-Order and
Symbolic Computation 11(3), 281–343 (1998)

[125] Talcott, C.L.: Reasoning about programs with effects. In: 2nd NSF-CNPq Work-
shop on Semantics. Electronic Notes in Theoretical Computer Science. Elsevier
(1998)

[126] Talcott, C.L.: Towards a toolkit for actor system specification. In: Rus, T. (ed.)
AMAST 2000. LNCS, vol. 1816, pp. 391–406. Springer, Heidelberg (2000)

[127] Talcott, C.L.: Actor theories in rewriting logic. Theoretical Computer Sci-
ence 285(2) (2002)

[128] Talcott, C.L., Weyhrauch, R.W.: Partial evaluation, higher–order abstractions,
and reflection principles as system building tools. In: Bjorner, D., Erschov,
A.P. (eds.) IFIP TC2 Working Conference on Partial and Mixed Computation,
Ebberup, Denmark. North-Holland (1987)

[129] Talcott, C.L., Weyhrauch, R.W.: Towards a theory of mechanized reasoning I:
FOL contexts, an extensional view. In: Proc. of the 8th European Conference on
Artificial Intelligence (ECAI 1990), pp. 634–639 (1990)

[130] Talcott, C.: Electron Spin Resonance Studies of Radicals Produced by Electrol-
ysis. PhD thesis, University of California, Berkeley (1967)

[131] Talcott, C.: Coordination models based on a formal model of distributed object
reflection. In: 1st International Workshop on Methods and Tools for Coordinating
Concurrent, Distributed and Mobile Systems, MTCoord 2005 (2005)

[132] Talcott, C.: Formal executable models of cell signaling primitives. In: Margaria,
T., Philippou, A., Steffen, B. (eds.) 2nd International Symposium On Leveraging
Applications of Formal Methods, Verification and Validation ISOLA 2006, pp.
303–307 (2006)

[133] Talcott, C.: Policy-based coordination in pagoda: A case study. In: 2nd Inter-
national Workshop on Methods and Tools for Coordinating Concurrent, Dis-
tributed and Mobile Systems (MTCoord 2006). ENTCS, vol. 181(7) (2006)

Publications of Dr. Carolyn Talcott XIX

[134] Talcott, C.: Symbolic modeling of signal transduction in pathway logic. In: Per-
rone, L.F., Wieland, F.P., Liu, J., Lawson, B.G., Nicol, D.M., Fujimoto, R.M.
(eds.) 2006 Winter Simulation Conference, pp. 1656–1665 (2006)

[135] Talcott, C.: A formal framework for interactive agents. In: Arbab, F., Golden, D.
(eds.) Foundations of Interactive Computation (FInCo 2007). Electronic Notes
in Theoretical Computer Science, vol. 203, pp. 95–106. Elsevier (2007)

[136] Talcott, C.: Pathway logic. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.)
SFM 2008. LNCS, vol. 5016, pp. 21–53. Springer, Heidelberg (2008)

[137] Talcott, C., Dill, D.L.: The pathway logic assistant. In: Plotkin, G. (ed.) Third
International Workshop on Computational Methods in Systems Biology, pp. 228–
239 (2005)

[138] Talcott, C., Dill, D.L.: Multiple representations of biological processes. In: Pri-
ami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI.
LNCS (LNBI), vol. 4220, pp. 221–245. Springer, Heidelberg (2006)

[139] Talcott, C., Lincoln, P.: Towards a semantic framework for secure agents: Ex-
tended abstract. In: High Confidence Software and Sytems, HCSS 2003 (April
2003)

[140] Talcott, C., Sirjani, M., Ren, S.: Comparing three coordination models: Reo,
arc, and rrd. In: Formal Methods for Open Object-based Distributed Systems.
Springer, Heidelberg (2007)

[141] Talcott, C., Sirjani, M., Ren, S.: Comparing three coordination models: Reo, arc,
and rrd. Science of Computer Programming (2009)

[142] Tiwari, A., Talcott, C.: Analyzing a discrete model of aplysia central pattern
generator. In: Heiner, M., Uhrmacher, A. (eds.) CMSB 2008. LNCS (LNBI),
vol. 5307, pp. 347–366. Springer, Heidelberg (2008)

[143] Tiwari, A., Talcott, C., Knapp, M., Lincoln, P., Laderoute, K.: Analyzing path-
ways using SAT-based approaches. In: Anai, H., Horimoto, K., Kutsia, T. (eds.)
Ab 2007. LNCS, vol. 4545, pp. 155–169. Springer, Heidelberg (2007)

[144] Venkatasubramanian, N., Agha, G., Talcott, C.L.: Scalable distributed garbage
collection for systems of active objects. In: Bekkers, Y., Cohen, J. (eds.) IWMM-
GIAE 1992. LNCS, vol. 637, pp. 134–147. Springer, Heidelberg (1992)

[145] Venkatasubramanian, N., Agha, G., Talcott, C.L.: Composable QoS-based dis-
tributed resource management. Position paper for Workshop on Compositional
Software Architectures, Monterey, CA (January 1998)

[146] Venkatasubramanian, N., Agha, G., Talcott, C.L.: A metaobject framework for
qos-based distributed resource management. In: Third International Symposium
on Computing in Object-Oriented Parallel Environments, ISCOPE 1999 (1999)

[147] Venkatasubramanian, N., Agha, G., Talcott, C.: A formal model for reasoning
about adaptive QoS-enabled middleware. In: Oliveira, J.N., Zave, P. (eds.) FME
2001. LNCS, vol. 2021, pp. 197–221. Springer, Heidelberg (2001)

[148] Venkatasubramanian, N., Agha, G., Talcott, C.L.: Formal reasoning for QoS-
enabled middleware. ACM Transactions on Software Engineering and Method-
ology (2004) (accepted for publication)

[149] Venkatasubramanian, N., Talcott, C.L.: A metaarchitecture for distributed re-
source management. In: Hawaii International Conference on System Sciences,
HICSS-26 (January 1993)

[150] Venkatasubramanian, N., Talcott, C.L.: Reasoning about meta level activities
in open distributed systems. In: Principles of Distributed Computation (PODC
1995), pp. 144–153. ACM (1995)

XX Publications of Dr. Carolyn Talcott

[151] Venkatasubramanian, N., Talcott, C.L.: A reflective framework for providing safe
qos-enabled customizable middleware. In: Workshop on Reflective Middleware,
RM 2000 (2000)

[152] Venkatasubramanian, N., Talcott, C.L.: A semantic framework for modeling and
reasoning about reflective middleware (2001)

[153] Wang, A., Talcott, C., Jia, L., Loo, B.T., Scedrov, A.: Analyzing BGP instances
in maude. In: Bruni, R., Dingel, J. (eds.) FORTE 2011 and FMOODS 2011.
LNCS, vol. 6722, pp. 334–348. Springer, Heidelberg (2011)

[154] Weyhrauch, R.W., Cadoli, M., Talcott, C.L.: Using abstract resources to control
reasoning. Journal of Logic Language and Information 7, 77–101 (1998)

[155] Weyhrauch, R.W., Talcott, C.L.: The logic of FOL systems: Formulated in set
theory. In: Hagiya, M., Jones, N.D., Sato, M. (eds.) Logic, Language and Com-
putation. LNCS, vol. 792, pp. 119–132. Springer, Heidelberg (1994)

[156] Wilkins, D., Denker, G., Stehr, M.-O., Elenius, D., Senanayake, R., Talcott, C.:
Coral - policy language and reasoning techniques for spectrum policies. In: Policy
2007 (2007)

[157] Wilkins, D., Denker, G., Stehr, M.-O., Elenius, D., Senanayake, R., Talcott, C.:
Policy-based cognitive radios. IEEE Wireless Communications (2007); Special
Issue on Cognitive Wireless Networks (to appear)

[158] Wirsing, M., Denker, G., Talcott, C., Poggio, A., Briesemeister, L.: A rewriting
logic framework for soft constraints. In: Sixth International Workshop on Rewrit-
ing Logic and Its Applications (WRLA 2006). Electronic Notes in Theoretical
Computer Science. Elsevier (2006)

[159] Yu, Y., Ren, S., Talcott, C.: Coordinating asynchronous and open distributed
systems under semiring-based timing constraints. In: Canal, C., Poizat, P., Sir-
jani, M. (eds.) Foundations of Coordination Languages and Software Architec-
tures FOCLASA 2008 (2008)

Two PhD Students for the Price of One

Solomon Feferman

Stanford University, Stanford CA 94305, USA
feferman@stanford.edu

Carolyn Talcott received her PhD in Computer Science at Stanford under my
nominal direction in 1985; thereby hangs a tale. A year later, largely under her
tutelage and again under my nominal direction, Ian Mason received his PhD in
the Special Program in Logic, Philosophy of Language and the Philosophy of
Science at Stanford; thereby hangs a subsidiary tale.

Carolyn first attended my graduate courses at Stanford on mathematical logic
and the foundations of mathematics in the spring quarter of 1978. One of those
was on set theory; more significantly for our future connections, the other course
was on my “Explicit Mathematics” approach to the formalization of the modern
development of constructive mathematics due to Errett Bishop. Though she
apparently had no substantial background in logic I took special note of her
quick absorption of the material presented in those classes. Carolyn continued to
follow my graduate courses through the next academic year 1978–79, concluding
in the spring of 1979 with one on constructive and effective algebra. Among
her contributions to that was an excellent presentation of a paper on Bishop-
style constructive algebra, plus a valuable resource bibliography of computational
algebra. Even more than before, I was very impressed at that point with her
ready understanding and command of research level ideas and results. I was on
leave for the academic year 1979–80, so our contact didn’t resume until after my
return in the fall of 1980.

As I got to know Carolyn better, I learned that her general background was
quite advanced and diverse, that she had already received a PhD in Chemistry
at UC Berkeley in the mid 1960s and that she had much preferred the pro-
gramming aspects of her research to lab work with “smelly” chemicals. During
a post-doc year at Cambridge University, she expanded her programming ex-
perience with work on mathematical questions on finite groups that could be
dealt with computationally. Carolyn told me that for personal reasons she had
then spent the years 1969–1975 teaching mathematics as a TA and RA at UC
Santa Cruz. Seeing this as a dead-end, she decided to enter graduate work in
computer science at Stanford in 1977, during which her main research interests
increasingly concentrated on the formal foundations of LISP style programming
languages under the direction of John McCarthy. Though I had (and still have)
only a superficial knowledge of LISP and knew nothing about its ins and outs
in practice, in 1981 Carolyn asked me whether I would be willing to be her PhD
supervisor. Of course it would not have been appropriate to have a spouse in that
capacity, but (as she tells me) she was also influenced by my way of doing things
in the formulation of proof systems for the foundations of constructive mathe-
matics and in particular with the formal handling of its intensional aspects. In

G. Agha, O. Danvy, and J. Meseguer (Eds.): Talcott Festschrift, LNCS 7000, pp. 1–3, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 S. Feferman

any case, I readily agreed because it was very clear by then that Carolyn was
already working at a high level and had definite plans as to the kind of thing
she aimed to accomplish; I knew I could rely on her to carry those through in
a professional way. Though I saw my role as largely nominal, it was actually
not entirely so, since we met with some regularity during the following years
in order that I might be apprised of her ongoing research and for me to offer
occasional input as to content and exposition. As I had expected, the subject
matter of her PhD thesis and its detailed development was entirely her own; it
concerned an expansion of the Lisp language and its semantics to a new language
baptized Rum (in honor of her favorite ice cream, Rum Raisin), devised to cover
functional and control abstractions, program transformations, closures, and con-
tinuation structures. Entitled The Essence of Rum: A theory of the intensional
and extensional aspects of Lisp-type computation (Talcott 1985), her thesis was
a substantial achievement that marked the beginning of a new career.

In the meantime, I had agreed to supervise the doctoral work of Ian Mason,
who had arrived from Australia as a graduate student in the Philosophy De-
partment in 1981. Ian’s strong interests in logic were clear from the start and,
in his eagerness to move along, he soon took advantage of the existence of the
Special Program in Logic within Philosophy to concentrate his studies in that
direction. Besides taking my courses, in which he was regularly in the group of
top students, I began meeting with him regularly as his advisor by the spring
of 1982. In the following year or two I suggested several possible dissertation
topics, mostly in the area of abstract model theory. However, none of these re-
ally grabbed him and only one thing came out of those explorations, the quite
nice paper Mason (1985) on the undecidability of a formalized metatheory of
the propositional calculus. But during the same period, Ian was talking more
and more to Carolyn about her work, and that did engage him so thoroughly
that he decided, with my approval, to change his thesis direction to follow the
route prepared by her. That eventuated in his fine dissertation, The Semantics
of Destructive Lisp (1986), in which, among other things, he accounted at a
theoretical level for the operation of Lisp-type programs in the application of
which memory is subject to mutation.

Thus it was that I gained two PhD students for the price of one. And, as
it turned out, this was the beginning of a joint research program by Mason
and Talcott, a very active and productive collaboration that has continued until
this day.1 Of personal interest to me was their paper, Feferman-Landin Logic
(Mason and Talcott 2002), contributed to the “Feferfest” held in my honor at
Stanford in 1998. In that paper, a quite general logic for Landin-type imperative
functional programming languages is presented that incorporates features of my
theories of explicit mathematics for operations and classes (aka variable types).
Though I have not otherwise been able to follow Carolyn’s and Ian’s subsequent

1 Following his PhD, Mason returned to Australia where he held academic positions
for a number of years. He was able eventually to obtain a research position in Palo
Alto and, by means of that and subsequent such positions, he and Talcott have been
able to continue their collaboration at close hand.

Two PhD Students for the Price of One 3

research, I have maintained warm personal relations with both of them over
the years since they completed their respective doctoral theses. In particular, in
the years that Carolyn stayed on at Stanford as a Research Associate and then
moved over to the Stanford Research Institute (SRI), she was helpful to me in
a variety of ways and I always appreciated her unfailing good humor and quiet
effectiveness. Among other things, she was one of the organizers—along with two
other of my former students, Jon Barwise and Wilfried Sieg, together with my
close colleague Richard Sommer—of the 1998 Feferfest. That owed its success in
no small measure to her extensive work on that event.

Now, suddenly, here we are at a Festschrift for Carolyn Talcott herself. Cliché
or not—how the time does fly! But given her vitality and productivity, I hope
she’ll see that as just another way-station at which to mark the continued
progress of her fine career. And for me it is an occasion to be grateful once
more for my rare good fortune in having had her as a student who could stand
so readily and so assuredly on her own, and to then having had her significant
help in launching Ian Mason’s career at just the right time in just the right place.

References

Feferman, S.: A language and axioms for explicit mathematics. In: Crossley, J.N. (ed.)
Algebra and Logic. Lecture Notes in Mathematics, vol. 450, pp. 87–139. Springer,
Berlin (1975)

Mason, I.A.: The metatheory of the classical propositional calculus is not axiomatizable.
J. Symbolic Logic 50, 451–457 (1985)

Mason, I.A.: The Semantics of Destructive Lisp. PhD Dissertation, Stanford University
(1986)

Mason, I.A., Talcott, C.L.: Feferman-Landin logic. In: Sieg, W., Sommer, R., Talcott,
C. (eds.) Reflections on the Foundations of Mathematics, Association for Symbolic
Logic, Urbana, IL. Lecture Notes in Logic, vol. 15, pp. 293–328. A K Peters, Ltd.,
Natick (2002)

Talcott, C.L.: The Essence of Rum: A theory of the intensional and extensional aspects
of Lisp-type computation. PhD Dissertation, Stanford University (1985)

Honoring Carolyn Talcott’s

Contributions to Science

Sylvan Pinsky

SRI International, Menlo Park, CA 94025, USA

Abstract. This paper describes both Carolyn Talcott’s technical and
leadership contributions to formal methods, cryptographic protocol anal-
ysis, and systems biology. Carolyn has played a vitally important leader-
ship role in protocol analysis through her signicant research and bring-
ing together leading members of the protocol analysis community. Her
efforts have resulted in a unified, cohesive, and flexible foundation for the
interoperation of maturing tools and techniques for designing and eval-
uating a wide range of protocols. As the leader of the Symbolic Systems
Technology Group at SRI she has been a visionary manager with excep-
tionally strong technical skills who has guided, advised and mentored
numerous scientists in the use of formal methods and other computa-
tional tools for modeling or solving diverse biological problems in cancer
biology, signal transduction research, neuroscience, and infectious disease
research.

1 Introduction

I have extensive experience in formal methods and computer security at the
National Security Agency (NSA) starting in 1984. For almost half of that time,
I have had the pleasure of being a sponsor and colleague of Carolyn’s work
in formal methods, rewrite logic, and protocol analysis. This is an area where
formal methods are used to identify and fix weaknesses in existing communi-
cations protocols and design new protocols that meet security requirements. I
hosted quarterly meetings to bring together the leading researchers and develop-
ers of protocol analysis tools. Typical representation included the Naval Research
Laboratory (NRL), NSA, MITRE, SRI, Kestrel Institute, Stanford University,
University of Pennsylvania, University of Illinois at Urbana-Champaign, Naval
Postgraduate School, Carnegie Mellon University, and other organizations. Car-
olyn played a key role in integrating the capabilities of the major tools by devel-
oping a common framework and language to describe the inputs, algorithms, and
outputs for each tool. This effort resulted in a major advance in the interoper-
ability of protocol analysis tools. It reflects Carolyn’s impressive leadership capa-
bilities, scientific knowledge, and ability to creatively solve challenging problems,
and communicate approaches to other researchers. Her success was based on the
Maude system, and since several participants were unfamiliar with this tool and
environment, she gave several presentations on this subject. She educated oth-
ers, answered difficult and insightful questions with ease, and encouraged active
interaction among all participants.

G. Agha, O. Danvy, and J. Meseguer (Eds.): Talcott Festschrift, LNCS 7000, pp. 4–19, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Honoring Carolyn Talcott’s Contributions to Science 5

I learned about systems biology from Pat Lincoln, the Director of the Com-
puter Science Laboratory (CSL) at SRI and many conversations with Carolyn
regarding her work in pathway logic, an approach to modeling biological systems
and processes based on rewriting logic. I retired from NSA and joined Carolyn’s
symbolic systems technology group at SRI in 2008. She has an excellent ability
to explain concepts on many levels of complexity in a very positive, intuitive and
nurturing manner. A major reason for coming to SRI was to have the opportu-
nity to work with Carolyn. As a supervisor and mentor, she has demonstrated
exceptionally strong technical leadership and the ability to inspire, encourage,
and support others. For substantive issues in understanding the complexities
of biological systems, she provides clear explanations, appropriate references or
recommends individuals to see for more detailed conversations. Although I have
been at SRI for a relatively short time, I view Carolyn as having been my mentor
in systems biology for several years.

2 Formal Methods and Protocol Analysis

The design and analysis of cryptographic protocols has a long history of activity.
Protocols have subtle errors unless special techniques are used for their discov-
ery. The Needham-Schroeder protocol [1] is a three line protocol developed in
1978 that took about seventeen years before a flaw was discovered. An important
element in protocol analysis is a model of the intruder. The Dolev-Yao model
[2] quickly became the standard for modeling the capabilities of the intruder
and played a significant role in the early automated tools for protocol analy-
sis; specifically Jonathan Millen’s Interrogator [3] and Cathy Meadow’s NRL
Protocol Analyzer [4]. These tools and studies by Dick Kemmerer and Cathy
Meadows ([5], [6]) and Mart́ın Abadi and Roger Needham [7] generated interest
in applying formal methods to protocol analysis. Significant research in apply-
ing formal methods to this domain specific area continue to be presented at
the Symposium on Security and Privacy and the Computer Security Founda-
tion Workshop. Carolyn Talcott and her colleagues Grit Denker, José Megeguer,
Peter Ölvezky, and others ([8], [9], [10], [11]) have contributed to the litera-
ture by applying Maude ([12], [13]) to the specification and analysis of active
networks.

The National Computer Security Center and the Research and Evaluation
Groups at NSA have sponsored research in formal methods and applications
of protocol analysis. They have supported the Interrogator model, the strand
space theory developed at MITRE by Joshua Guttman, Javier Thayer Fábrega,
and Jonathon Herzog ([14], [15], [16]), and the enhancement of protocol analysis
tools through PVS and Maude techniques. Meetings with MITRE researchers
and Cathy Meadows, Paul Syverson, and Iliano Cervesato of NRL were orga-
nized by NSA and later expanded to include Carolyn Talcott, Mark-Oliver Stehr,
José Meseguer, Andre Scedrov, John Mitchell, and other researchers active in

6 S. Pinsky

protocol analysis. These informal gatherings became regular quarterly meetings
with the group expanding to include other active researchers in the field. Iliano
Cersesato initiated the first Protocol eXchange website in 2003 which is now
being hosted by George Dinolt at the winter meetings held at the Naval Post-
graduate School (NPS). The use of model checking ([17], [18]) , the maturing of
strand space theory and multiset rewriting for protocol analysis developed by
Illiano Cersato, Nancy Durgin, Pat Lincoln, John Mitchell, and Andre Scedrov
[19] and the introduction of the Protocol Derivation Assistant (PDA) by Dusko
Pavlovic [20] prompted a unified approach to tool development and methodology.
I asked Carolyn to take the lead in this effort by using the best features of PVS
[21] and Maude [13] as an underlying framework for protocol analysis. The idea
was to use formal mappings between PVS and Maude in order to provide the
best of both worlds for a wide range of formal modeling and analysis problems.
She presented an excellent approach to a Maude-PVS tool for strand spaces
[22] starting with an informal strand space description and using tools to in-
put the specification and provide visualization of bundles based on strand space
structures defined in Maude. Carolyn and Sam Owre [23] subsequently defined
strand spaces, penetrators, and proved most of the Needham-Schroeder-Lowe
protocol in PVS by taking the MITRE work on skeletons and homomorphisms
and proving TCCs and associated lemmas. They also used PVS and Maude to
represent the terms, actions, events, and processes and semantics for ground and
symbolic execution of Dusko’s PDA approach. Carolyn demonstrated impressive
leadership qualities in providing the framework for developing cryptographic pro-
tocol analysis algorithms. The framework was designed to be applicable to the
MITRE Cryptographic Protocol Shape Analyzer (CPSA), the Kestrel Protocol
Derivation Assistant, and the NRL Protocol Analyzer written in Maude (NPA-
Maude). The initial idea was to specify and prototype in Maude and verify in
PVS. Formal representations of strand spaces and strand space protocols would
be developed in Maude and PVS with mappings between representations. Car-
olyn then expanded the vision for the framework to include semantically sound
interoperation of tools for the design and analysis of cryptographic protocols.
The following schematic from [24] depicts her vision of the role of PVS and
Maude for the interoperability and coordination between the tool developers at
MITRE, Kestrel, and NRL.

At the Protocol eXchange meeting at NPS in 2007, Sam Owre [25] explained
the PVS-Maude connection by describing the PVS protocol analysis specifica-
tion and showing that it is a theory interpretation of the Maude specification
where the axioms are mapped to proof obligations. Providing these proofs guar-
antee that the interpretation is sound. He also talked about the translation of
the strand space specification developed by Carolyn. At this meeting and later
ones ([26], [27]), Carolyn described the semantics and algebra for the interop-
eration of protocol analysis tools and the simulation and analysis of protocol
specifications.

Honoring Carolyn Talcott’s Contributions to Science 7

Carolyn has played a vitally important leadership role in protocol analysis
through her significant research and bringing together leading members of the
protocol analysis community. Her efforts have resulted in a unified, cohesive, and
flexible foundation for the interoperation of maturing tools and techniques for
designing and evaluating a wide range of protocols.

3 Carolyn’s Leadership at SRI

Carolyn is the leader of the Symbolic Systems Technology Group of the
Computer Science Laboratory at SRI. When I joined her group in 2008, it
immediately became clear that the entire team had great respect for her as
an outstanding manager, group leader, and mentor. She has continually been
and excellent and visionary researcher with exceptionally strong technical skills
who is a warm, caring, energetic, positive and supportive person who will always
go the extra mile, not only for her group members but colleagues working in her
field or interested in learning more about her field. Her devotion to deliver the
best work possible has inspired and motivated the group to operate at its maxi-
mum effort. Carolyn is a real team player who always contributes to the solution
in a highly constructive and strongly encouraging manner. She is a role model
for integrity, trust, openness, and respect for others in a professional working
environment. Carolyn has been very generous in her professional interactions

8 S. Pinsky

with scientific collaborators. She has demonstrated exceptional dedication to
helping her staff and colleagues succeed, mentoring younger staff and partner-
ing with more senior staff members. Her upbeat can-do attitude is infectious,
and she has led her team to a series of successes in winning business, inventing,
achieving new scientific understanding, and developing well-engineered software.
She has guided, advised, or mentored numerous scientists in the use of formal
methods and other computational tools for modeling or solving diverse biologi-
cal problems (e.g., in cancer biology signal transduction research, neuroscience,
and infectious disease research). We have always been impressed with Carolyn’s
patience as she works with biologists, particularly those with limited computer
skills, enabling them to glimpse some of the power of modern approaches to
computational modeling. She was instrumental in hosting weekly meetings with
other SRI organizations such as the Artificial Intelligence Center and the Bio-
Sciences Division to find areas of interest for mutual collaboration and they
have expressed high praise for Carolyn’s teaching skills and cheerful willingness
to help. She provides opportunities and support to young scientists and shows
fairness and equity in resolving issues. As a mentor, she has successfully encour-
aged professional development for many researchers. The best part about her is
her ability to maintain open lines of communication with her staff and colleagues
which has enhanced SRI’s long-term success

The great thing about Carolyn is that she is always available if you need help
or advice (and she always has a solution), but she also enables and encourages
members of her group to work entirely independently. It is very clear that Car-
olyn’s deep professional interest is in research, and she understands that while
doing an excellent job in managing people and resources. Carolyn is a great role
model for a successful researcher and manager. Different from most, she does not
get caught in a particular mindset nor does she constrain herself to one narrow
research topic, but she is a tremendously open-minded, interdisciplinary person
and can easily grasp the essence of new research problems, which makes it simply
great fun to work and learn with her. Her devotion to hard and productive work
is also a great inspiration and goes beyond almost anybody that we know.

Carolyn has very deep knowledge in a multitude of fields including logic,
chemistry, biology, and at the same time is humble to admit where she thinks
other people know more, which encourages and hugely impacts team play. If
SRI’s strength is an interdisciplinary approach then Carolyn is synonymous with
SRI. Multiple organizations at SRI have said that research wise, her colleagues
are highly inspired by her view of systems biology as an application of logic, and
it is not an exaggeration to say that we have learned from her and her systems
biology group an entirely new interpretation of computer science.

4 Symbolic Systems Biology

Computational modeling techniques are providing scientists with the tools to
address complex biological networks and their interacting sub-networks. The
field of systems biology offers capabilities for developing a systems-level knowl-
edge and understanding of the interaction and complexity of gene regulatory

Honoring Carolyn Talcott’s Contributions to Science 9

networks and metabolic and signaling pathways that control cellular behaviors
and interactions. New approaches in systems biology and computational biol-
ogy that include reducing complexity by using abstraction and simulation tech-
niques to analyze quotient spaces are the forerunners of an enabling technology
that will eventually transform traditional experimental (reductionist) biology
into a predictive science. A central element in accelerating progress is the use
of an interdisciplinary approach to coupling classical mathematics with formal
methods techniques to develop new mathematical concepts that enable model-
ing and prediction of behavior in large-scale networks that evolve over time,
such as those occurring in the biological and communication sciences. Sym-
bolic systems biology, which is the qualitative and quantitative study of bio-
logical process as an integrated system, will play a key role in this process.
It is intended to model networks of biological processes in a logical frame-
work with the capability to compute and analyze networks. Diverse models
from finite automata theory, stochastic models, differential equations, dynami-
cal systems, and control theory can be integrated using symbolic and qualitative
reasoning.

Carolyn was the inspiration and driving force behind pathway logic [28], an
approach to modeling biological systems and processes based on rewriting logic.
Pathway logic uses rewrite theories to formalize the informal models that biolo-
gists commonly use to explain biological processes. As a computational science
([29], [30]), it provides researchers with powerful tools to facilitate the under-
standing of complex biolgocial systems and accelerate the design of experiments
to test hypotheses about their functions in vivo.

An important goal of systems biology is to build diverse models that are
consistent with each other and with the biology, to integrate theses models,
and to analyze the aggregated information (structures organized at multiple
levels of complexity and diversity including molecular, cellular, and organism
levels).

The need for combining formal methods techniques with classical mathemat-
ics is emphasized when considering differential equations or difference equations
which naturally arise in modeling biological systems ([31], [32]). Analytical and
numerical studies of such models frequently present interesting and challenging
dynamical system questions. Modeling neurons is an excellent example. Neu-
rons are highly specialized cells capable of communicating with each other by
means of electrical and chemical signaling. Eugene Izhikevich [33] addressed the
computational inefficiency of some of the most useful models of spiking and
bursting neurons. The large scale simulation of cortical neural networks quickly
becomes computationally infeasible due to the nonlinearity of the neuron equa-
tions. Ashish Tiwari and Carolyn Talcott [34] bypassed this roadblock by prov-
ing properties of a discrete abstraction of this system using model checking tech-
niques. Many biological systems are described by nonlinear differential equations
which require numerical solutions. For example, the spread of infectious diseases
is described by the standard Susceptible-Infected-Recovered (SIR) model ([31],
[32]) for the three groups of individuals using the notation:

10 S. Pinsky

S(t) = number of susceptible individuals in the population at time t

I(t) = number of infected individuals in the population at time t

R(t) = number of recovered individuals in the population at time t

N = population size.

The system of differential equations is given by

dS

dt
= −βSI

dI

dt
= βSI − νI (1)

dR

dt
= νI.

We note that S(t) + I(t) + R(t) is the constant N , the total population; conse-
quently, we need to solve only the first two equations for S and I as a function
of time since R(t) = N − S(t) − I(t). We do not have to rely on numerical so-
lutions to obtain the relationship between infected and susceptible individuals.
The derivative of S with respect to I is obtained by dividing dS

dt by dI
dt from

equation 1. If I �= 0, this reduces to

dS

dI
= − βS

βS − ν

Honoring Carolyn Talcott’s Contributions to Science 11

and separating variables results in
(
−1 +

ν

β

1
S

)
dS = dI

producing the solution
(

ν
β ln(S) − S

) ∣∣∣∣
t

0

= I(u)
∣∣∣∣
t

0

that simplifies to

I(t) = I0 + (S0 − S(t)) +
ν

β
ln

(
S(t)
S0

)
.

The phase portrait {(S(t), I(t)) | t ≥ 0} is constrained to lie on the curve

I(S) = C − S +
ν

β
ln(S) (2)

where C = I0 + S0 − ν
β ln(S0). This abstraction removes time and provides

an over-approximation for solutions to equation 1. Since S(t) is a decreasing
function, the solution starts at S0 and moves to the left as time increases. The
following figure demonstrates this behavior for S0 = 5, I0 = 1, ν = 1, and β = 1.

The difficult task is to assemble a synergistic team of mathematicians, bi-
ologists, and computer scientists who will collaborate to formulate mathemati-
cal structures to model biologically relevant networks, modules and functional
subnets, their interactions and interdependencies. Carolyn is one of those rare
individuals who has the ability, insight, energy, and desire to find opportunities
to develop interdisciplinary approaches to address key challenges in biology. The

12 S. Pinsky

capability to extract and organize crucial information, and discover hidden struc-
tures in biological networks will provide insights that could accelerate research
in biology with applications to medicine.

5 New Insights for Network Science

In February 2010, Andy Poggio’s idea to experiment with discrete biological
systems to gain insights into network science was funded by the Office of Naval
Research (ONR) [35]. The research was designed to model various aspects of
biology at several levels of organization (genome, cell, organism, and colony)
to understand how networks form, are controlled, and adapt to changes, and
finally determine the ways in which those insights apply to computer networks.
Andy argued that network science examines interconnections and interactions
among different networks, and as such, is an interdisciplinary field in search of
its foundations as a new discipline that focuses more on integration rather than
reduction, on emergent properties rather than continuity of the same. This ef-
fort naturally fell under Carolyn’s direction where systems biology and systems
chemistry would drive new understanding of computer networks, cyberspace,
and cyber-physical space. Fred Vigneault, a microbiologist from the Shenan-
doah Valley facility of SRI, collected weekly H1N1 virus data reported at the
national, regional, and state levels by the CDC. His objective was to analyze
the 2009 H1N1 Pandemic in the United States. My participation in the project
was to model the overall spread of infectious diseases for a network consisting of
states, territories, and regions, and determine how to measure each element of
the network and their interaction, aggregation, and influence on the total system
behavior.

Carolyn served in her typical role of providing leadership and inspiration
when issues emerged that needed resolution. Fred had considerable CDC data
that represented the number of infected individuals by state and region. The
issue was how to make sense of this “heatmap” data (see the following figure)
and determine the influence of airline travel on the spread of disease across
the regions. Carolyn, Fred, and I had regular discussions to address various
approaches to understanding, modeling, and analyzing the data. Carolyn was
tremendously effective in identifying stumbling blocks, carefully listening to our
ideas, encouraging alternative approaches, providing insightful comments and
suggestions, and keeping us focused.

Legend for spread and severity of influenza infection in the United States:
0 = No Activity (no laboratory-confirmed cases of influenza and no reported
increase in the number of cases of ILI),
1 = Sporadic (small numbers of laboratory-confirmed influenza cases or a single
laboratory-confirmed influenza outbreak has been reported, but there is no in-
crease in cases of ILI),
2 = Local (outbreaks of influenza or increases in ILI cases and recent laboratory-
confirmed influenza in a single region of the state),
3 = Regional (outbreaks of influenza or increases in ILI and recent laboratory

Honoring Carolyn Talcott’s Contributions to Science 13

confirmed influenza in at least two but less than half the regions of the state
with recent laboratory evidence of influenza in those regions),
4 = Widespread (outbreaks of influenza or increases in ILI cases and recent
laboratory-confirmed influenza in at least half the regions of the state with re-
cent laboratory evidence of influenza in the state). States are ranked according
to HHS regions 1 to 10.

The model we selected consisted of state and territories as nodes, which are
aggregated to form regions, which are aggregated in turn to form the national
network. At each node we used the SIR model ([31], [32]).

We addressed the airline transportation network [36] and the influence of its
structure on measures of the SIR model [37]. The air transportation network
[38] is a weighted graph with N vertices representing airports and edges whose
weights wij account for the passenger flow between airports i and j. The number
of connections that airport has to other airports is called its degree. A way to
determine the effect of the network structure is to compare a network measure
of the SIR model for the actual network with a randomly connected network.
Entropy is a measure of uncertainty or disorder that can be used to distinguish
homogeneous systems from heterogeneous systems. The basis for such an analysis
was the 2002 database from the International Air Transport Association, which
contains 3,880 airports and 18,810 flows between airports. Colizza [36] used the

14 S. Pinsky

largest airports, which represent 99% of this data, to compare the behavior of
three networks:

WAN : worldwide airline transportation network
HOMN : homogeneous Erdos-Rényi random graph
HETN : random graph with the same topology as WAN

The Erdos-Rényi model has the same number of vertices as the WAN with
edges (i, j) drawn from a uniform distribution using the average degree from the
WAN ; whereas the HETN model uses the actual degree determined from the
WAN for each edge . Each city has a SIR model and the fraction of infections
ij(t) = Ij(t)/Nj is normalized using ρj = ij/Σkik to obtain the total entropy-like
function:

H(t) = − 1
ln(N)

Σjρj(t) ln(ρj(t)).

Although H(t) has a shape similar to the entropy of each node of the WAN
network, the random graphs have longer time periods where the entropy is near
its maximum value. The shaded region in the above figure, reproduced from
Colizza [36], corresponds to H > 0.9.

Once we developed a mathematical model that reflected the data, Carolyn
was especially helpful in identifying implications for communications networks
that would be of interest to ONR. The modeling approach can be applied to
analyzing and predicting the behavior in large-scale communications networks
that evolve over time. We also recommended that open systems should be stud-
ied for application to networks. Open systems continually interact with their
environment through exchanges of energy, materials, and information to reach a

Honoring Carolyn Talcott’s Contributions to Science 15

steady state and can evolve toward states of greater complexity and differentia-
tion. In contrast to closed systems where the laws of thermodynamics constrain
entropy to increase, the continual interchange of materials for open systems pro-
vides a richer framework for identifying entropy-like functions for designing and
analyzing dynamic networks. The next section describes our effort to encourage
interdisciplinary research in open systems.

6 Open Systems

Carolyn and I had several interactions with Harvey Rubin at the University of
Pennsylvania (Penn) to determine the best forum to bring experts from diverse
fields together to define the challenging problems in the biological sciences and
identify how systems biology could provide insights into their solutions. Mo-
tivated by her work in open distributed systems, she suggested connections to
biological systems and recommended that SRI and Penn jointly organize a work-
shop in open systems. Helen Gill of the National Science Foundation and Brad
Martin of NSA sponsored the workshop we organized and hosted at Penn in
May 2010.

Open systems maintain themselves in an ongoing build up and break down
of components and are capable of self-regulation and adapting to circumstances
by changing the structure and process of their internal components. Examples
of open systems include both natural and man-made. Biological systems such as
immune systems and microbial systems are open, non-equilibrium systems that
are embedded in a changing and often hostile environment exchanging energy
and molecular species with its surroundings. The web services, social networking,
and the Internet itself are examples of man-made open systems. Cyber physical
systems that involve close interaction between computational and physical sys-
tems include a wide variety of open systems, including: medical devices, robotics
swarms, sensor/actor systems, smart buildings, pervasive spaces, energy systems,
transportation systems, agriculture and food systems, and supply networks.

The analysis and modeling of non-equilibrium (open) biologic systems that
are capable of withstanding stress and of auto-regulating across multiple scales
of time and space may be part of a useful strategy in the innovative design of
more robust (high confidence) cyber-physical systems. Furthermore, enhanced
understanding of the dynamics of pathologic biologic systems may motivate new
quantitative measures to forecast the breakdown of man-made systems.

The goals of the workshop were to: assess the current state-of-the art in sys-
tem modeling and analysis; identify the limitations and critical gaps in existing
theories and modeling formalisms; develop benchmark challenge problems whose
solutions could have high impact on the design, analysis, and maintainability of
critical systems and the understanding of complex natural systems; recommend
a research agenda for developing new technologies to enable more rapid advance
in areas such as biological science and the science of cyber-physical systems;
recommend new directions in education.

Workshop participants included leading researchers in mathematics, biology,
formal methods, computer science, chemistry, physics, control theory, and en-

16 S. Pinsky

gineering. The workshop agenda included invited presentations on a variety of
topics related to open systems, followed by several open discussion sessions prob-
ing issues raised and identifying potential grand challenge problems.

Several basic concepts and questions were suggested by the organizers as topics
to be addressed at the workshop.

1. How do we decompose entropy into extensive and nonextensive elements
and what are their effects on a). open vs. closed systems b). reversible vs. irre-
versible components/systems?

2. What are the advantages of Tsallis entropy [39] over other forms of entropy
such as Boltzmann-Gibbs entropy, especially with respect to our open vs. closed
system questions?

3. What are the properties and constraints of the stochastic processes that
are fundamental to open systems?

4. What do measures such as entropy, energy, and correlations tell us about
a system? How can we use these concepts to design, analyze, and understand
complex systems such as biological systems or cyber-physical systems?

5. How can methods for managing complexity, such as abstraction and com-
posability, be applied in the context of open systems?

The group identified challenges in constructing a transformative agenda for open
systems. They recommended the development of a combined mathematical and
logical framework for modeling the behavior of open dynamic networks that
evolve over time. The framework would provide a unified approach to build
diverse top down and bottom up models that are consistent with each other
and with the system (biological, cyber-physical, or other) being modeled. The
identification of a family of properties and functions of open systems that can
account for the organization and ability for self-regulation, maintainability, and
adaptability is a key to designing and composing systems in principled ways.

Bruce Alberts [40], the past President of the National Academy of Sciences,
stated in 1998 that “the education that we are offering today to young biologists
in our colleges and universities is seriously in need of a major rethinking ... the
result is a major mismatch between what todays students who are interested in
biology should be learning and the actual course offerings that are available to
them.”

It seems that significant educational progress has not been made since Alberts
identified the problem. Effort remains to determine what preparation in physics,
chemistry, and mathematics is most appropriate for either the research biologists
or the medical doctors who will be working in the coming decades. A similar
situation is occurring in the emerging field of cyber-physical systems.

It is important to provide students with cross disciplinary courses and projects
that encourage (even require) exploration of new ways of thinking and problem
solving. An important example is combining computational thinking/modeling
using multiple methods with experimental science topics. This should include
principles for designing and building computation models, articulating the
questions a model should try to answer, and deciding the appropriate math-
ematical/logical tools to bring to bear. In addition, learning methods for model

Honoring Carolyn Talcott’s Contributions to Science 17

validation is crucial and will lead to important critical thinking skills. Validation
should be taken in a broad sense to include questions such as: is the model right;
does it capture what was intended, does it exhibit behavior consistent with ex-
perimental observations and intuitions; why does it work, i.e. how does it explain
the system being modeled?

At the center of the open systems challenge is the realization that modern sci-
ence has progressed to studying complex processes that dynamically change by
continually interacting with their environment. The multi-scale approach devel-
oped to address this complexity relies on modeling assumptions, and the appro-
priateness of a model depends on the appropriateness of these assumptions. Con-
tinuous deterministic differential equations arise from discrete (particle-based)
probabilistic models, and moving between these two extremes is often subtle and
poorly understood; especially the relationship between rare events, determinism,
and nonextensive entropy. New mathematical methods will arise by combining
diverse techniques using scientific methodologies, computer science, and engi-
neering. New forms of interaction with evolutionary biological networks will be
key in the discovery process. Challenge problems such as high confidence sup-
ply networks and medical device systems as well as mathematical models of the
immune system exhibit these complex behaviors. In particular, the design and
evaluation of medical device systems present challenges in systems integration,
critical infrastructure, embedded real-time systems design, and their validation
and certification. The corresponding research directions to meet these challenges
address infrastructure for medical device integration and interoperation, model-
based development, component-based design frameworks, patient modeling and
simulation, adaptive patient-specific algorithms, and user-centered design. In-
sights into these challenges and the search for a unifying set of principles for
open systems that bring these issues together have potential impact for signifi-
cantly influencing new directions in research and education.

Acknowledgements. We thank Carolyn’s CSL colleagues at SRI for sharing
their experiences with her as a leader and mentor. In particular, the section on
Carolyn’s leadership at SRI was based on input provided by Linda Briesemeister,
Grit Denker, Ashish Gehani, Keith Laderoute, Patrick Lincoln, Merrill Knapp,
Andy Poggio, Malabika Sarker, Rukman Senanayake, Mark-Olliver Stehr, and
Ashish Tiwari. A special thanks goes to Grit Denker for providing input, or-
ganizing and coordinating comments from her coworkers, and serving as the
chair for local arrangements. We also thank Gul Agha, Olivier Danvy, and José
Meseguer for organizing the Festschrift 2011 Sympoium, a well deserved tribute
to Carolyn.

References

1. Needham, R., Schroeder, M.: Using encryption for authentication in large networks
of computers. Communications of the ACM (1978)

2. Dolev, D., Yao, A.C.: On the Secruity of Public Key Protocols, STAN-CS-81-854
(1981)

18 S. Pinsky

3. Millen, J.: The Interrogator: A Tool for Cryptographic Protocol Security. In: Pro-
ceedings 1884 Symposium on Security and Privacy. IEEE Computer Security So-
ciety, Los Alamitos (1984)

4. Meadows, C.: The NRL Protocol Analyzer: An overview. Journal of Logic Pro-
gramming (1996)

5. Kemmerer, R.: Analyzing Encryption Protocols Using Formal Verification Tech-
niques. IEEE Journal Selected Areas in Communication 7(4) (1989)

6. Meadows, C.: Applying formal methods to the analysis of a key management pro-
tocol. The Journal of Computer Security 1(1) (1992)

7. Abadi, M., Needham, R.: Prudent engineering practice for cryptographic protocols.
IEEE Transactions on Software Engineering 22(1) (1996)

8. Denker, G., Megeguer, J., Talcott, C.: Protocol Specification and Analysis in
Maude. In: Workshop on Formal Methods and Security Protocols (1998)

9. Denker, G., Garćıa-Luna-Aceves, J.J., Megeguer, J., Ölvezky, P., Raju, J., Smith,
B., Talcott, C.: Specifying a Reliable Broadcasting Protocol in Maude. In: Work-
shop on Formal Methods and Security Protocols (1998)

10. Denker, G., Megeguer, J., Talcott, C.: Formal Specification and Analysis of Ac-
tive Networks and Communication Protocols: The Maude Experience. In: DARPA
Information Survivability Conference and Exposition (2000)

11. Ölvezky, P., Megeguer, J., Talcott, C.: Specification and analysis of the AER/NCA
active network protocol suite in Real-Time Maude. In: Formal Methods in System
Design (2006)

12. Mason, I., Talcott, C.: Simple Network Protocol Simulation within Maude. In:
Third International Workshop in Rewriting Logic and Its Applications. Electronic
Notes in Theoretical Computer Science (2000)

13. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Megeguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. How to Spec-
ify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer,
Heidelberg (2007)

14. Fábrega, J.T., Herzog, J., Guttman, J.: Strand Spaces: Proving Security Protocols
Correct. Journal of Computer Security 7 (1999)

15. Guttman, J., Fábrega, J.T.: Authentication Tests and the Structure of Bundles.
Theoretical Computer Science (2001)

16. Guttman, J., Fábrega, J.T.: The sizes of skeletons: security goals are decidable,
MITRE Technical Report 05B09 (2005)

17. Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-Key Protocol using
FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055. Springer,
Heidelberg (1996)

18. Rushby, J.: The Needham-Schroeder Protocol in SAL, Computer Science Labora-
tory, SRI International (2005)

19. Cervesato, I., Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: A comparison
between Strand Spaces and Multiset Rewriting for Security Protocol Analysis. In:
Software Security - Theories and Systems - ISSS (2002)

20. Anlauff, M., Pavlovic, D., Waldinger, R., Westfold, S.: Proving Authentication
Properties in the Protocol Derivation Assistant, Kestrel Institute (2006)

21. Owre, S., Shankar, N., Rushby, J.: PVS: A Prototype Verification System. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992)

22. Talcott, C.: A Maude-PVS tool for Strand Spaces, Protocol eXchange (2004)
23. Talcott, C., Owre, S.: CPSA + Maude + PDA + PVS, Protocol eXchange (2005)

Honoring Carolyn Talcott’s Contributions to Science 19

24. Talcott, C.: S-expressions & Maude + PVS, Protocol eXchange (2006)
25. Owre, S.: Maude2PVS, Protocol eXchange (2007)
26. Talcott, C.: TOOLIP Semantics & TOOLIP - Maude NPA, Protocol eXchange

(2007)
27. Talcott, C.: TOOLIP Semantics & Interoperation, Protocol eXchange (2008)
28. Talcott, C.: Pathway Logic. In: Bernardo, M., Degano, P., Tennenholtz, M. (eds.)

SFM 2008. LNCS, vol. 5016, pp. 21–53. Springer, Heidelberg (2008)
29. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Talcott, C.: Pathway Logic: Ex-

ecutable Models of Biological Networks. In: Fourth International Workshop in
Rewriting Logic and Its Applications. Electronic Notes in Theoretical Computer
Science (2004)

30. Talcott, C., Eker, S., Knapp, M., Lincoln, P., Laderoute, K.: Pathway Logic Mod-
eling of Protein Functional Domains in Signal Transduction. In: Proceedings of the
Pacific Symposium on Biocomputing (2004)

31. Edelstein-Keshet, L.: Mathematical Models in Biology. McGraw-Hill, New York
(1988)

32. Sontag, E.: Lecture Notes on Mathematical Systems Biology, Rutgers University
(2009),
http://www.math.rutgers.edu/ sontag/FTP/ DIR/systems biology notes.pdf

33. Izhikevich, E.: Which Model to Use for Cortical Spiking Neurons? IEEE Transac-
tions on Neural Networks 15(5) (2004)

34. Tiwari, A., Talcott, C.: Analyzing a Discrete Model of Aplysia Central Pattern
Generator. Computational Methods in Systems Biology (2008)

35. Poggio, A.: New Insights for Network Science: Discrete Mathematical Models of
Biological Systems, Computer Science Laboratory, SRI International: ECU 09-
416R (2010)

36. Colizza, V., Barrat, A., Barthélemy, M., Vespignani, A.: The role of the airline
transportation network in the prediction and predictability of global epidemics.
Proceedings of the National Academy of Sciences 103(7) (2006)

37. Grais, R., Ellis, J.: Modeling the spread of annual Influenza epidemics in the U.S.:
the potential role of air travel. Health Care Management Science 7 (2004)

38. Barrat, A., Barthélemy, M., Pastor-Satorras, R., Vespignani, A.: The architec-
ture of complex weighted networks. Proceedings of the National Academy of Sci-
ences 101(11) (2006)

39. Tsallis, C.: Is the entropy Sq extensive or nonextensive? Astrophysics Space Sci-
ences 305 (2006)

40. Alberts, B.: The Cell as a Collection of Protein Machines: Preparing the Next
Generation of Molecular Biologists. Cell 92 (1998)

Ten Years of Analyzing Actors:

Rebeca Experience

Marjan Sirjani1,2 and Mohammad Mahdi Jaghoori3

1 School of Computer Science, Reykjavik University, Reykjavik, Iceland
2 University of Tehran, Tehran, Iran

3 CWI, Amsterdam, The Netherlands
marjan@ru.is, jaghouri@cwi.nl

Abstract. In this paper, we provide a survey of the different analysis
techniques that are provided for the modeling language Rebeca. Rebeca
is designed as an imperative actor-based language with the goal of pro-
viding an easy to use language for modeling concurrent and distributed
systems, with formal verification support. Throughout the paper the lan-
guage Rebeca and the supporting model checking tools are explained.
Abstraction and compositional verification, as well as state-based reduc-
tion techniques including symmetry, partial order reduction, and slicing
of Rebeca are discussed. We give an overview of a few extensions of
Rebeca. For example, we present the modular schedulability analysis of
timed actor-based models and formal techniques to check correctness of
self-adaptive systems using Rebeca. A summary of design decisions and
a brief general comparison of the analysis methods are provided at the
end of the paper while specific sections are accompanied with examples
and corresponding related work.

Keywords: Actors, Rebeca, Concurrency, Formal Verification, Model
Checking, Reduction Techniques, Abstraction.

1 Introduction

As information networks are becoming increasingly important in our society, the
number of distributed heterogeneous software systems is rapidly growing. Dis-
tributed systems consist of multiple cooperating components where the
components are typically encapsulated systems or objects spread over a net-
work, interacting via asynchronous communication. Web-service applications
and applications based on wireless network technologies are examples of such
distributed and asynchronous applications. Such technologies are now used in
a vast variety of applications, such as medical systems, transportation systems,
and the significant business of online gaming.

The actor model is among the pioneering ones to address concurrent and
distributed applications. The actor language was originally introduced by He-
witt [44] as an agent-based language for programming distributed systems, and
was later developed by Agha [3,4,5] into a concurrent object-based model. Valu-
able work has been done on formalizing the actor model by Talcott et al.

G. Agha, O. Danvy, and J. Meseguer (Eds.): Talcott Festschrift, LNCS 7000, pp. 20–56, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Ten Years of Analyzing Actors: Rebeca Experience 21

[5,81,113,114]. The actor model has been used both as a framework for the-
oretical understanding of concurrency, and as the theoretical basis for several
practical implementations of concurrent and distributed systems.

In the actor model, actors are the universal primitives of concurrent computa-
tion: in response to a message that it receives, an actor can make local decisions,
create more actors, send more messages, and determine how to respond to the
next message that it receives. Actors have encapsulated states and behavior, and
are capable of creating new actors and redirecting communication links through
exchange of actor identities.

Different interpretations, dialects and extensions of the actor model are pro-
posed in several domains, for example, designing embedded systems [78] and
wireless sensor networks [19]. The actor model is further claimed to be the
suitable model of computation for the most dominating application domains of
multi-core programming and web services [45,17,16]. Compared to mathematical
modeling languages, like process algebras, actors are more natural for designers,
software engineers, modelers and programmers. Compared to process-oriented
models, like Petri nets, the actor model has the advantages of an object-based
language, like encapsulation of data and process, and more decoupled modules.
Moreover, the formal semantics of actor-based languages builds a firm foundation
for formal analysis and verification.

The actor model of concurrency is getting more and more popular in practice
[64,46,47]; as a few examples Erlang [37] and Scala [98] are two programming
languages that have applied the actor model of concurrency and are now getting
widely used. The Asynchronous Agents Library is an actor-based framework
that is added to Microsoft Visual Studio 2010 [85]. Actors have been used in
real-world applications like Twitter’s message queuing system, and Vendetta’s
game engine (in 2010) [76].

Applying formal methods in software engineering is an important step to-
wards building more reliable and robust systems. In the more than twenty-five
years since its invention, model checking has achieved multiple breakthroughs,
bridging the gap between theoretical computer science and practical computer
engineering. Today, model checking is extensively used in the hardware industry,
and has also become feasible for verification of many types of software [22]. State
space explosion is the dominant problem for model checking; investigating new
abstraction and reduction techniques is the leading edge in this research area.

Reactive Objects Language, Rebeca [102,106], is an operational interpre-
tation of the actor model with formal semantics and model checking tools. In
a Rebeca model, system components are sets of reactive objects, called rebecs,
which communicate with each other and with their environment, through mes-
sage passing. Message passing is asynchronous and fair. Messages related to each
rebec are stored in the message queue of the rebec. The computation takes place
by taking the message at the head of the message queue and executing the
corresponding message server [106].

22 M. Sirjani and M.M. Jaghoori

Ten years ago we noticed the urgent need for a formal tool that could be easily
used by software engineers. By observing the increasing number of concurrent
and distributed systems on one hand, and popularity and efficacy of object-
oriented approaches on the other hand, we identified the actor model as the best
candidate to be the basis of our research. So, Rebeca was designed to bridge
the gap between formal methods and software engineering. In Rebeca, reactive
objects are units of concurrency. Compared to thread-based concurrent program-
ming, Rebeca makes the modeling of concurrency more natural and less error-
prone. Moreover, it brings transparency by removing the difference between local
and non-local concurrency in a distributed system. The recent widespread use
of actors in different areas and applications, like in distributed applications, or
safe/sound programming of emerging multicore hardware, clearly demonstrates
its power as a computational model [45,47].

To the best of our knowledge, the first attempt to provide compositional verifi-
cation and model checking support for an imperative actor-based language is the
introduction of Rebeca in 2001 [102,103,104]. We defined the language Rebeca
and its formal semantics, developed its model checking tools, and provided a com-
positional verification theory and abstraction techniques. We have been actively
and successfully investigating specialized reduction techniques for formal verifi-
cation of Rebeca models, namely, symmetry, partial order, and slicing, that are
all based on the formal semantics of the language [107,105,108,58,56,48,97,96].
Rebeca with its simple message-driven object-based computational model, Java-
like syntax, and the associated set of verification tools, is an interesting and
easy-to-learn model for students, software engineers, and practitioners.

In this paper, we present a survey of the different analysis techniques that are
developed for Rebeca. We1 first started model checking using back-end model
checking tools of Spin [111] and NuSMV [88], and then proceeded to develop
direct model checking tools (Section 3). To tackle the state space explosion
problem, we developed a theory for abstraction and compositional verification
of Rebeca models (Section 4). Then we moved towards investigating and applying
reduction techniques in model checking, including symmetry and partial order
reduction (Section 5), and slicing (Section 6). Our focus has been on finding
specific reduction techniques that exploit the specific features of Rebeca models.
In our techniques for symmetry reduction, partial order reduction, slicing and
distributed model checking, we perform static analysis on the model and use the
results to tackle the state space explosion problem.

The language Rebeca is used in different research and application areas. We
established schedulability analysis for real-time actor-based models and used
Rebeca to represent our approach (Section 7). We have also extended Rebeca to
serve as a policy-based coordination language in modeling self-adaptive systems,
and we have established corresponding techniques to check their correctness
(Section 8).

1 Please note that the word we in this paper refers to all those who have contributed
and are working on designing and developing Rebeca, and the related theories, tools,
applications, and extensions.

Ten Years of Analyzing Actors: Rebeca Experience 23

2 Rebeca Syntax and Semantics

Rebeca [104,105,106] is a modeling language with a formal semantics based on an
operational interpretation of the actor model [44,4]. The definition of a Rebeca
model consists of a set of reactive classes plus an initial configuration in its main

section where a set of rebecs (reactive objects) are created as instances of reactive
classes (see Fig. 1 for the syntax of Rebeca). Each rebec has a single thread of
execution. The behavior of a Rebeca model is defined by the fair and interleaved
execution of the rebecs.

Rebecs communicate only through asynchronous message passing and have
unbounded buffers for automatically storing the incoming messages, i.e., there is
no statement in Rebeca syntax to explicitly wait for receiving a message. When a
rebec is scheduled to run, the message at the head of the queue is taken out and
processed. Each message that can be serviced by a rebec has a corresponding
message server, which is given in the definition of the reactive class denoting
the type of the rebec. Message servers are executed atomically, thus, Rebeca is
said to have coarse-grained (“big-step”) interleaving. Although each rebec has
one queue, we can model multiple reception queues between different rebecs by
adding an extra rebec to represent each reception queue.

A reactiveclass definition takes an integer argument to denote an upper-
bound on the length of the message queue; this is used in model checking and
can be increased in the case of a queue overflow. The body of the reactiveclass

consists of three parts: the known rebecs section includes a set of rebec identifiers
and as such forms the initial communication topology of the system; variables
constitute the local state of a rebec; and, message servers (also called methods)
define the behavior. Each message server may declare local variables and further
contains a sequence of statements, including assignments, if statements, rebec
creation (new), and method calls. A method call is equivalent to sending an
asynchronous message that invokes the corresponding message server (method).
By sending rebec variables around (i.e., the variables holding a rebec identifier),

Model ::= Class∗ Main
Class ::= reactiveclass C(Nat)

{KRs Vars MsgSrv ∗}
KRs ::= knownrebecs { 〈Vdcl ; 〉∗ }
Vars ::= statevars { 〈Vdcl ; 〉∗ }
Vdcl ::= T 〈v〉+,
MsgSrv ::= msgsrv M(〈T v〉∗,) {Stmt∗}

Stmt ::= v = e; | v = new C(〈e〉∗,);
| Call(〈e〉∗,);
| if (e) MSt [else MSt]

Call ::= v.M | self .M | sender.M
Mst ::= {Stmt∗} | Stmt
Main ::= main { Reb∗ }
Reb ::= T r(〈T r〉∗) : (〈T e〉∗);

Fig. 1. BNF grammar for Rebeca classes. Angle brackets 〈...〉 are used as meta paren-
theses, square brackets [...] for optional parts, superscript + for repetition more than
once, superscript * for repetition zero or more times, whereas using 〈...〉, with repeti-
tion denotes a comma separated list. Identifiers C, T , M , r and v denote class, type,
message server, rebec and variable names, respectively; Nat denotes a natural number;
and, e denotes an (arithmetic, boolean or nondeterministic choice) expression.

24 M. Sirjani and M.M. Jaghoori

1 reactiveclass Sender(4) { 1’ reactiveclass Receiver(4) {
2 knownrebecs { 2’ knownrebecs {
3 Receiver r; 3’ Sender s;
4 } 4’ }
5 statevars { 5’ statevars {
6 int req; 6’ int msg;
7 boolean pass; 7’ boolean isFinal;
8 } 8’ }
9 msgsrv initial() { 9’ msgsrv initial() {
10 req = 1; 10’ isFinal = false;
11 r.receiveReq(req); 11’ }
12 } 12’ msgsrv receiveReq(int m) {
13 msgsrv sendNextReq() { 13’ msg = m;
14 pass = ?(true,false); 14’ if(msg == 4)
15 if(pass) req = req + 1; 15’ isFinal = true;
16 if(req == 5) req = 1; 16’ else
17 r.receiveReq(req); 17’ isFinal = false;
18 } 18’ s.sendNextReq();
19 } 19’ }
20 main() { 20’ }
21 Sender s(r):();
22 Receiver r(s):();
23 }

Fig. 2. The Rebeca code of the sender/receiver example

the topology can change dynamically. In each reactive class, there is at least one
message server, called ‘ initial ’; this is responsible for initialization tasks (like
‘constructors’ in object oriented programming languages). Each rebec receives
this message implicitly upon creation. The system continues running as long as
there is at least one message to be processed. To instantiate a reactiveclass in
the main section, one should provide first the bindings of the knownrebecs and
then the parameters to the initial message server (if any).

2.1 A Sender/Receiver Example

As a running example, we use a simple model of a sender and receiver (shown
in Fig. 2). We use slightly different versions of this example in different sections
to demonstrate how the techniques in that section can be used in practice. This
example is similar to the alternating bit protocol, but we simplified it by putting
a nondeterministic assignment (line 14) instead of getting a real acknowledgment
from the receiver.

There is a rebec in this example that acts as a sender and sends a number
of messages (four here) to a receiver (the other rebec). Based on the nondeter-
ministically chosen value of the variable pass (line 14), the sender rebec either
sends a new message (line 15) or repeats the previous one. The happy scenario is
when the receiver receives all four messages, after which isFinal , a state variable
of the receiver, is set to true (line 15’). Every time receiveReq is executed by the
receiver, a sendNextReq is sent back to the sender asking for the next message
(line 18’). After receiving the last message by the receiver this scenario starts
over again.

Ten Years of Analyzing Actors: Rebeca Experience 25

Fig. 3. The architecture of Rebeca Model Checker (RMC) — the solid arrows show
calling another component (control dependencies), and dashed arrows show flow of
data (input/output of the tool and the data dependencies)

A possible interesting property for this example is G(F(isFinal == true))
which checks whether the last message is always finally received by the receiver.
The property is an LTL (Linear Temporal Logic) formula [35] where G denotes
globally and F denotes finally. In addition, the example can be verified against
deadlock. Deadlock occurs for example if we remove line 18’ from the model.

3 Model Checking Tools

Since 2005, Rebeca has a custom-made explicit-state model checker [56,58] im-
plemented in C++. The advantage of a tailor-made tool is that it can take into
account the intrinsic features and the nature of the concurrency model of Re-
beca. This amounts to a more efficient tool, provided that it is debugged as any
other software and it is maintained and kept up-to-date with respect to the state
of the art in tools and algorithms. However, model checking Rebeca has been
possible since 2003; before the development of the custom model checking tool,
this was achieved by translation into the input languages of famous and promi-
nent model checkers [103,110,107,48], namely, SMV [20], Promela (SPIN) [49]
and later mCRL2 [42]. The main advantage of using such translations is that
we can benefit from the maturity of the back-ends of established tools. In this
section, we give an overview of the tools developed for model checking Rebeca
directly.

Fig. 3 shows the architecture of Rebeca Model Checker (RMC) which is
composed of loosely coupled components. The main component is Modere, the
Model-checking Engine of Rebeca. A model checking engine is in essence a highly

26 M. Sirjani and M.M. Jaghoori

optimized and memory efficient search algorithm, e.g., DFS or BFS, which is
extended to check for temporal properties specified, e.g., in LTL or CTL (Com-
putational Tree Logic) [35]. Modere was first developed as an LTL model checker;
Vardi [118] argues that LTL as a linear-time temporal logic is more expressive
and intuitive and supports compositional reasoning, unlike CTL as a branching
time temporal logic. Nevertheless, CTL is advantageous, for example, in speci-
fying reachability goals. Modere can now check for properties in both LTL and
CTL, thus, it can fulfill the needs of a wide range of practitioners. It also has
implementations of both DFS and BFS based search algorithms. The modular
architecture of the RMC tool-set has allowed us to make these extensions to
Modere while reusing the other components, e.g., Rebeca to C++ converter.

The rebec manager component in RMC is model dependent and is created by
a Rebeca to C++ translator (see Fig. 3), it contains a C++ equivalent of the
reactive class definitions and the instantiation of these classes as specified in the
Rebeca model. During model checking, Modere repeatedly puts the rebecs in a
specific state and asks the rebec manager to run one rebec, the rebec manager
returns the resulting state(s) afterwards. A possible extension point of the tool-
set is to replace the rebec manager with a process/object manager for another
language with a similar actor-based computational model.

3.1 Bounded Model Checking

Bounded model checking has also been studied for Rebeca using the SMT (Sat-
isfiability Modulo Theories) solver tool Yices [33]. Such a tool checks the sat-
isfiability of a given formula; this is in theory NP-hard, but there are several
efficient heuristics for this problem that work in practice and many tools have
been developed. This approach is particularly useful to model check Rebeca for
data-centric applications.

To use an SMT-solver, first the general concurrency and communication model
of Rebeca needs to be defined as a set of formulas [59]. And then given a specific
model to be verified, the model needs to be translated into compatible formulas.
Finally, the desired property is also turned into formulas, such that the con-
junction of these three sets of formulas: “RebecaConcurrency∧RebecaModel∧
Property” is satisfiable if and only if the given property holds for the given
model.

Table 1. Defining Rebeca concepts as formulas

Rebeca Concept type description

(isActiveRebec i t) bool Rebec i is active at step t
(isActiveMsgsrv j i t) bool Message server j of rebec i is active at step t
(qSize i t) int The size of queue of rebec i at step t
(queue i j t) int Element i in queue of rebec j at step t.

Ten Years of Analyzing Actors: Rebeca Experience 27

To encode the general concurrency model of Rebeca, we first need to model
the basic concepts of a Rebeca model. A possible encoding for this is shown in
Table 1. In this encoding, all messages are represented as integers (cf. the type
of queue elements in Table 1). The parameter t in this encoding models the
execution steps; for example, to send a message at step t to rebec i, we need to
make sure that it exists in the queue of rebec i at step t + 1 and furthermore, it
should hold that (qSize i t + 1) = (qSize i t) + 1.

As the next step, to encode a specific model, we need to set up some constants,
like the number of rebecs in the system, as well as translate the class and message
server definitions. The latter is achieved again by defining the changes that need
to take place as a transition from step t to step t + 1.

Encoding temporal properties, e.g., LTL, is done by unfolding the property.
For example a property Gp is translated to p(0)∧. . .∧p(k) where p(t) asserts the
satisfiability of p at step t and k is the bound we assume on the number of steps
in bounded model checking. If a counter-example is obtained with this bound, we
know that the desired property does not hold for the system. But the satisfiability
of the desired property up to k steps cannot guarantee the correctness of the
model in general. One can increase this bound to obtain more general results as
far as the physical (memory and time) restrictions of the hardware allow it.

3.2 Domain Specific Model Checking: SystemC Designs

SystemC [89] is an object-oriented language that has emerged lately as the lead-
ing language for system-level modeling. In the project Sysfier [2], a tool is in-
tegrated into Rebeca model checking tools to map SystemC designs to Rebeca
models and then use Rebeca verification tool-set to verify LTL and CTL prop-
erties [10,92]. Many examples are translated from SystemC to Rebeca and are
model checked against LTL and CTL properties.

To model SystemC designs, Rebeca is extended by adding global variables and
wait statements. Global variables are used in a very limited way to model events
and signals. A wait statement is used when a process needs to wait for a specific
event before it can continue. The simulation kernel of SystemC is mapped to a
rebec which plays the role of a synchronizer.

The inherent similarities of the two languages prevents any unwanted overhead
or additional states. As a matter of fact, the theories in abstraction and com-
positional verification of Rebeca and the tools and techniques for state space
reduction can be applied to SystemC verification, too. Moreover, the Rebeca
model checkers are equipped with different policies based on the semantics of
SystemC to reduce the state space. One policy that considerably reduces the size
of the generated state space is to mimic the behavior of the SystemC simulation
kernel and consider the sequential execution of rebecs instead of all possible inter-
leavings. This policy works when verifying race-free SystemC designs. Another
policy is to apply partial order reduction based on SystemC semantics.

28 M. Sirjani and M.M. Jaghoori

4 Compositional Verification and Abstraction

In a broad sense, compositional verification tackles the state-space explosion
problem by verifying the constituent components of a system in isolation: since
these components are smaller in size, they are more amenable to computerized
analysis, e.g., model checking. The correctness properties of the system are then
derived from the properties of its individual components [21,73,83].

In general, compositional verification may be exploited more effectively when
the model is naturally decomposable [95]. Actor-based models provide such in-
herently independent modules because there are no shared variables, but explicit
non-blocking send operations are the only way of communication.

In compositional verification of Rebeca [106], we follow a top-down approach,
where components are sub-models and are the result of decomposing a closed
model. To this end, we take one part of the closed model as an open component
and the rest of the model is assumed to be the environment. With such decom-
position, the rebecs in the selected component will be modeled with their state
and behavior, whereas the state-space of the external rebecs, i.e., those in the
environment, is not modeled because their methods are not executed. External
rebecs are only modeled as their potential in sending messages.

In an unrestricted environment, the general so-called environment problem
arises, which states that the reachable state space of an open component, as
described above, may in fact be much larger than that of the original closed
model. In fact, putting the messages sent from external rebecs into the queues
will immediately overflow the queues. To alleviate this problem, we model a
reduced environment which can be considered as a compositional minimization.
To do so, we consider the set of external messages always enabled, and consider
a fair choice between executing these messages and the message on the top of the
queue. This way we also avoid explicitly modeling the environment, for example,
as another rebec.

In order to prove certain properties, we may need some assumptions about the
environment, but in general we do not apply assume/guarantee reasoning. Our
compositional verification generates an over-approximation of the behavior of the
components. We proved a weak simulation relation between any closed model
including the component and the component composed with the abovementioned
environment, and hence we can claim that safety properties are preserved [106].

Another view to compositional verification is a bottom-up approach. In [108],
we discuss such an approach along the lines of modular verification where the
concept of a component is an independent module with a well-defined interface.
Such notion of a component represents a re-usable off-the-shelf module. Once
verified, this module has a fixed proven specification and then it can be used to
build reliable systems. In [108], this modular verification technique for Rebeca
is presented. In the both approaches described above, although the strategy in
abstraction techniques is the same, the technical details (to keep the theory
valid) are quite different.

Ten Years of Analyzing Actors: Rebeca Experience 29

5 Symmetry and Partial Order Reduction

Two of the most widely used state-space reduction techniques in explicit-state
model checking are symmetry [36,51,25,86] and partial order reduction [41,117].
These two are the first reduction techniques implemented in the model checking
engine of Rebeca (Modere) [58,56] because they fit naturally the asynchronous
object model of Rebeca and yield reasonable reductions.

5.1 Partial Order Reduction

The idea of partial order reduction (POR) is that it is not always necessary to
consider all of the possible interleaved sequences of the enabled actions. Instead,
the execution of some of them can be postponed to a future state without af-
fecting the validity of the correctness property. This way, the full interleaving of
those actions is avoided and the size of the explored state space is reduced.

A popular approach to implementing POR is based on statically detecting
safe actions, called static POR. This approach is applicable to Rebeca only in
absence of dynamic rebec creation or change of topology. The characteristics of
safe actions are described in the following. The first characteristic is invisibility,
i.e., not changing the satisfiability of the correctness property. In the sender/re-
ceiver example in Fig. 2, assume the correctness property is G(F(isFinal ==
true)). The message server sendNextReq is then invisible as it does not change
the variable isFinal . In addition, the initial message servers are also by definition
invisible [56], because variables are uninitialized before that.

Two actions are said to be independent if one cannot disable the other; an
action that is independent of all other actions is called globally independent.
Due to absence of shared variables, assignments are local and hence globally
independent; therefore, independence of a message server depends only on its
send statements (recall that no new statement is allowed in static POR). Sending
a message from r1 to r2 is globally independent if r1 is the only rebec that may
send messages to r2 [56]. In the sender/receiver example, since only s sends
messages to r and vice versa, i.e., there are even no self calls, all rebec actions
in this example are globally independent.

An action is safe if it is safe and globally independent. The model checker
can execute a safe action without considering its interleaving with other actions.
The initial message servers as well as sendNextReq correspond to safe actions in
our example.

Considering the coarse-grained interleaving of Rebeca, an action corresponds
to a message server; therefore, POR amounts to a considerable reduction when
applicable. Furthermore, as mentioned above the initial message server is always
invisible. This makes direct application of POR in Modere more efficient than
translating for example to Promela where you will lose such useful information.

5.2 Symmetry Reduction

The symmetry reduction technique views the state space as a graph: the states
are the vertices and the transitions are the edges. The idea then is to partition

30 M. Sirjani and M.M. Jaghoori

2 reactiveclass SenderRece iver (4){
3 knownrebecs {
4 SenderRece iver peer ;
5 }
6 statevars {
7 int req ;
8 boolean pass ;
9 int msg ;

10 boolean i s F i n a l ;
11 }
12 msgsrv i n i t i a l () {
13 req = 1 ;
14 peer . rece iveReq (req) ;
15 i s F i n a l = f a l s e ;
16 }
17 msgsrv sendNextReq() {
18 pass = ?(true , f a l s e) ;

20 i f (pass) req = req + 1 ;
21 i f (req == 5) req = 1 ;
22 peer . rece iveReq (req) ;
23 }
24 msgsrv rece iveReq (int m) {
25 msg = m;
26 i f (msg == 4)
27 i s F i n a l = true ;
28 else
29 i s F i n a l = f a l s e ;
30 sender . sendNextReq () ;
31 }
32 }
33 main () {
34 SenderRece iver sr1 (sr2) : () ;
35 SenderRece iver sr2 (sr1) : () ;
36 }

Fig. 4. A symmetric sender/receiver reactive class

the state space into equivalence classes corresponding to isomorphic graphs and
use one state as the representative of each equivalence class. The problem in
symmetry reduction is that calculating the representative states, known as the
‘constructive orbit problem,’ is NP-hard [23]. This is usually alleviated by first
specifying or detecting the symmetry among higher-level constructs (such as pro-
cesses or objects) using some static analysis and then applying it in solving the
orbit problem. The most popular approach to explicitly specify symmetry in a
system is the notion of scalar sets, proposed by Ip and Dill [51], which is also
later used by others, e.g., [13], [43].

In Rebeca, since rebecs instantiated from the same reactive class exhibit sim-
ilar behavior, any symmetry in the communication structure of a model leads
to symmetry in the underlying state-space graph; we call this inter-rebec sym-
metry. Detecting such symmetries does not rely on any symmetry-related input
from the modeler. In [58] we proposed a polynomial-time solution for detecting
structural symmetry without requiring any change in the syntax. The sender/
receiver example in Fig. 2 is not symmetric because the rebecs in the model are
of different types. We revisit the example in this section by merging the two re-
activeclasses thus enabling a rebec to act both as a sender and a receiver, shown
in Fig. 4. The composition of the two rebecs, specified in the main section, is
now symmetric, i.e., by swapping the names of the rebecs we obtain:

main {
SenderRece ive r sr2 (sr1) : () ;
SenderRece ive r sr1 (sr2) : () ;

}

which can be changed into the original bindings by reordering the lines. This
can be contrasted to the example in Fig. 5, where there is a central receiver with
three senders. In this case, swapping the names of the rebecs of type Sender does
not yield any symmetry, because this changes the knownrebecs binding of the
Receiver rebec.

Ten Years of Analyzing Actors: Rebeca Experience 31

2 reactiveclass Rece ive r (4) {
3 knownrebecs {
4 Sender s [i : 1 . . 3] ;
5 }
6 statevars {
7 int msg [i] ;
8 boolean i s F i n a l [i] ;
9 }

10 . . .
11 }

13 reactiveclass Sender (4) {
14 knownrebecs { Rece ive r r ; }
15 . . .
16 }
17 main{
18 Sender s1 (r) : () ;
19 Sender s2 (r) : () ;
20 Sender s3 (r) : () ;
21 Rece ive r r (s1 , s2 , s3) : () ;
22 }

Fig. 5. A symmetric star topology

The example in Fig. 5 is still symmetric if we make sure the implementation of
the Receiver class is internally symmetric. We extended our automatic symme-
try detection further to also consider intra-rebec symmetries [57]. In intra-rebec
symmetry, we propose to use scalar-sets but for a different purpose from its usual
use, i.e., we use scalar sets locally for each class to specify the symmetric behav-
ior of that class with respect to its known rebecs (when applicable), rather than
specifying the symmetry in the whole system, as in e.g. [52,14]. Our use of scalar
sets is in line with the modular modeling encouraged by the actor model. This
way we can consider the internal symmetry of rebecs along with the symmetry
in their communication structure.

One of the topologies where intra-rebec symmetry can be used is a star net-
work. Fig. 5 shows an example of sender and receiver reactive classes that are
instantiated in a star topology. The definition of the Receiver class uses a scalar
set i in defining the known rebecs. This implies that the definition of the reac-
tiveclass must be symmetrical which is guaranteed by syntactical restrictions;
for example, the state variables in this class definition are defined per known re-
bec. Rebeca compiler will check statically whether the model is symmetric and
in that case, it will generate the necessary information for the model-checking
engine (Modere) to apply symmetry reduction.

5.3 Applicable Properties

When using POR, the model checker may only consider Linear Temporal Logic
without the next operator (LTL-X) [41,117]; as we mentioned above, POR re-
duces the state space by postponing the execution of certain actions. This intu-
itively means that the ‘next-state’ behavior of the system is not preserved. When
using symmetry, all temporal operators are allowed but the correctness property
must also be symmetric. For example, with two instances of the SenderReceiver
class (Fig. 4), the property asserting whether only sr1 can reach the goal, i.e.,
isFinal = true, is not symmetric; rather, we must check whether both sr1 and
sr2 could reach this goal.

32 M. Sirjani and M.M. Jaghoori

5.4 Related Work

The closest work to our inter-rebec symmetry detection is that of Donaldson,
Miller and co-authors, who independently from our work, have proposed several
techniques for detecting symmetry in similar models of computation (mainly
Promela) [14,29,30,31,32]. To be able to automatically detect symmetries in
Promela, they need to assume a communication pattern like that of Rebeca,
namely using static channels. Another similar work is by Leuschel and Massart
[79] where there is no need to extend the syntax of B to specify symmetry, be-
cause a built-in construct, called deferred sets, gives rise to symmetric data values
in a way similar to scalar sets. Symmetry detection still depends on the proper
use of deferred sets by the modeler, whereas in Rebeca, symmetry detection is
based on the intrinsic communication mechanism of the language.

Basset [77], is a general framework for testing actor systems compiled to Java
bytecode. Basset employs heap symmetry reduction which is based on data sym-
metries and is thus orthogonal to the structural symmetry reduction technique
that we have applied. On the other hand, Basset implements a dynamic POR
technique based on the happens-before relation and the causality among mes-
sage send and receive events. There is no need for such heavy-weight dynamic
POR in Rebeca due to the stronger assumptions of coarse-grained interleaving
and FIFO ordering of messages. Unlike in Modere, the reported implementation
of Basset has not yet combined the use of symmetry and POR.

6 Slicing

Program slicing is a program analysis technique with applications in various soft-
ware engineering activities such as program understanding, debugging, testing,
program maintenance, and complexity measurement [87]. Slicing can be used
together with model checking and is orthogonal to a number of other reduction
techniques. In [34] a significant reduction is reported by slicing concurrent object-
oriented source code, and slicing is recommended because of its automation and
low computational cost. In this section, we review slicing of Rebeca codes and
its specific features and data dependencies, which are reported in detail in [96]
and [97].

Static slicing [120] extracts statements from a program which have a direct or
indirect effect on computations of other statements. More specifically, a program
slice consists of the parts of a program that potentially affect the values computed
at some statement of interest (referred to as the slicing criterion). A slicing
criterion is usually denoted by 〈p, V 〉, where p is a program statement and V is
a set of variables.

The main challenge in this area is to efficiently build a precise slice. One of
the main approaches to slicing is using reachability analysis on a program de-
pendence graph. A program dependence graph consists of nodes representing
the statements of a program, and edges representing the control and data de-
pendencies. There is a control dependency between two statement nodes if one
statement controls the execution of the other. Data dependency exists between

Ten Years of Analyzing Actors: Rebeca Experience 33

two statement nodes if the change made to a variable at one statement might
reach the usage of the same variable at the other statement. The general ap-
proach to slicing is to find all paths in the graph that affect a specific variable in
a specific statement. We build all such paths, and hence the slice, by following
the dependency edges backward from the given statement.

In a simple sequential program without procedures, the slicing method is
trivial. Applying the same simple method to programs with procedures, may
build paths that are not realizable. By realizable we mean those paths that
show a possible execution of the program. In order to remove the unrealizable
paths, we need a context-sensitive analysis: the computation of a slice must
preserve the calling context of the called procedures, and ensure that only paths
corresponding to the legal call-return sequences are considered. Context-sensitive
slicing can be done by generating summary edges at call sites: summary edges
represent the transitive dependence edges of called procedures at call sites [70].

In concurrent programs with shared variables another type of dependence
arises: interference. Interference occurs when a variable is defined in one thread
and used in a concurrently executing one. Like above, a simple traversal of
interference dependence edges during slicing can produce unrealizable paths and
make the slice imprecise. To solve this problem, we need to consider the valid
execution chronology [71]. Considering the chronological order of statements
within a thread is not enough to build precise slices. The reason is that it is in
general not possible to determine whether a definition reaches the statement of
interest (slicing criterion), or it is always killed (disabled) by other definitions.
As a result, we may mistakenly consider the statement including that definition
in the slice. So, the interference dependency is not transitive.

Slicing object-oriented programs presents new challenges which are not en-
countered in traditional program slicing [87]. To slice an object-oriented pro-
gram, features such as classes, dynamic binding, encapsulation, inheritance, mes-
sage passing and polymorphism need to be considered carefully. Although the
concepts of inheritance and polymorphism are strengths of object-oriented pro-
gramming languages, they pose special challenges in program slicing. Due to
inheritance and dynamic binding in object-oriented programs, the process of
tracing dependencies becomes more complex than that in a procedural program.

6.1 Slicing Rebeca

In [97,96] we proposed slicing techniques for Rebeca which are based on Rebeca’s
actor-based computational model. We introduced a specialized control graph for
Rebeca to capture its reactive behavior. One can perform data flow analysis on a
Rebeca model by iterating over its control flow graph. Rebeca dependence graph
is then introduced to represent different dependencies including control, data,
intra-rebec, parameter-in, activation, member, and known-rebec dependencies.
These two types of graphs are explained below.

A Rebeca control flow graph (RCFG) is defined based on the atomic execution
of message servers and the reactive behavior of the rebecs. The control flow of
the body of each message server is trivial but determining the control flow among

34 M. Sirjani and M.M. Jaghoori

Fig. 6. RCFG of the sender/receiver model (from [96]). Line numbers refer to Fig. 2.

the message servers themselves is difficult. The control flow of a Rebeca model
is different from that of multi-threaded concurrent programs due to its reactive
and event-based nature. In Rebeca, method calls are different from regular pro-
cedure calls or initiating a thread. A method call is performed by sending an
asynchronous message; the body of the corresponding message server is guaran-
teed to execute later atomically. A method call does not transfer the execution
control from the caller to the callee nor does it generate a new concurrent thread.
The main issue here is to determine which message servers can potentially exe-
cute after a given message server has finished. This depends on the messages on
top of the queues of all rebecs at that time. As an over-approximation, one can
assume that after the execution of a message server is over, all message severs
potentially have a chance for execution. For a more precise approximation, one
can use the causality relations.

As Rebeca is a well-structured language, control dependence can be computed
during the traversal of the abstract syntax tree. The above approximation implies
that the last definition of each variable in a message server can reach the first
statements of all message servers. However, there are no shared variables in
Rebeca, therefore, the only manifestation of this approximation is that a change
in the value of a state variable within a rebec, reaches the other message servers
of the same rebec. Figure 6 shows the RCFG of the sender and receiver example.

The Rebeca Dependence Graph (RDG) captures the features of Rebeca as fol-
lows (see Figure 7): Each reactive class is modeled as a class-object node. Each
message server is modeled by an entry node, a set of nodes representing its state-
ments, and data dependence edges and control dependence edges modeling the
existing dependencies within the body of the message server. The set of message

Ten Years of Analyzing Actors: Rebeca Experience 35

Fig. 7. RDG of the sender/receiver example (from [96]). Line numbers refer to Fig. 2.

servers of a reactive class are connected to the corresponding class-object node
by member dependence edges. The member dependence edges ensure that a reac-
tive class will be included in a slice if at least one of its message servers or state
variables is included in that slice. Putting a message in a queue is represented
by an activation node. In addition, an activation edge is used to connect the ac-
tivation node to the entry node of the related message server and a known-rebec
dependence edge is used to connect the activation node to the corresponding
known rebec. Parameters of messages are modeled using formal-in and actual-in
nodes along with parameter-in edges.

36 M. Sirjani and M.M. Jaghoori

State variables are not shared among rebecs, but the message servers of each
rebec share the state variables in the rebec. Therefore, there is a dependency be-
tween every message server using a variable and other message servers that assign
a value to that variable. So, we introduce the notion of intra-rebec dependency
to represent these kinds of dependencies. Considering the atomic execution of
message servers, this dependency exists between the last statement of a message
server assigning a value to a variable and the first use of that variable in other
message servers (if the value of that variable is not changed in the body of the
second message server before the first use).

To compute a slice from the resulting graph, four different algorithms are pre-
sented in [97,96]. The first one is the traditional reachability algorithm which is
used for static slicing, and the second algorithm is checking a model for dead-
lock. The third and forth techniques are based on iterative approximation and
refinement of the model. In these techniques, an initial over-approximation of the
original model is computed, and the model is subsequently refined based on the
results of verification (alike in counter-example guided abstraction refinement -
CEGAR [24]). The goal of these techniques is to find the minimal specification
that satisfies a property, or otherwise a non-spurious counter-example. The re-
duced model is verified; if a spurious counter-example is found, then the model
is refined to include more variables and the verification-refinement cycle is re-
peated. The step-wise slicing, starts with a reduced model including only the
variables that construct the property, and the bounded slicing, is based on the
nondeterministic assignments in Rebeca and user knowledge.

6.2 Related Work

A thorough general survey of slicing methods is provided in [70], and a survey of
slicing techniques for object oriented programs is provided in [87]. In [34] slicing
for concurrent object oriented programs is evaluated.

Compared to existing dependence graphs, the Rebeca dependence graph is
simpler in several ways due to the asynchronous nature of communication, atomic
execution of message servers, absence of shared data, and absence of procedure
calls. In addition, Rebeca is an object-based language (as apposed to object-
oriented), e.g., inheritance and polymorphism are not included in the language.
So, we do not need to deal with the complexities of dependence graphs designed
for object-oriented languages.

We introduced a new type of dependency for message servers within a rebec,
called intra-rebec dependency. This dependency cannot be captured as inter-
procedure dependency because the sequence of execution of the message servers
is not deterministic. It is also different from interference dependency because
concurrency does not exist within a rebec. This dependency captures the con-
currency in Rebeca, and unlike interference dependence in multi-threaded con-
currency, it is transitive.

Ten Years of Analyzing Actors: Rebeca Experience 37

7 Schedulability Analysis for Timed Actors

Besides functional analysis of systems, it is also necessary to make sure that
systems preserve a certain level of quality-of-service. In standard Rebeca, each
rebec by default assumes a “First-Come, First-Served (FCFS)” strategy to run
the messages in its queue. This is, however, not optimal when there are other
measures like priorities or response time that play a role in the QoS. To opti-
mize QoS, we enable rebecs to specify local scheduling strategies, e.g., based on
fixed priorities, earliest deadline first, or a combination of such policies. Rebecs
may require certain customized scheduling strategies in order to meet their QoS
requirements.

In real-time modeling, a task specification indicates its execution time besides
generation of other tasks; further, tasks have deadlines before which they must be
scheduled and executed. Analyzing schedulability of a real time system consists
of checking whether all tasks are accomplished within their deadlines. In Rebeca,
message servers can be considered tasks and deadlines are associated to messages,
as sending a message in this setting generates a new task.

We employed automata theory [53,55] to provide a high-level framework for
modular schedulability analysis of asynchronous reactive objects with local sched-
ulers. In this framework, reactive objects are modeled abstractly using Timed
Automata [8] so that analysis can be done in existing tools for example Up-
paal [75]. At this level of abstraction, a method definition may abstract from
the real computation and replace it by passage of time (as explained later in the
example in Fig. 9).

In modular analysis, we analyze rebecs individually. To analyze a rebec in
isolation, we need to restrict the possible ways in which its methods may be
called; to this end, we make use of behavioral interfaces for rebecs. A behavioral
interface specifies at a high level and in the most general terms how a rebec may
be used. As in modular verification [72], which is based on assume-guarantee
reasoning, individually schedulable rebecs can be used in systems compatible with
their behavioral interfaces. Schedulability of such systems is then guaranteed.
Compatibility being subject to state space explosion can be efficiently tested [55].

7.1 Real-Time Classes and Rebecs in Timed Automata

Modeling Behavioral Interfaces. The abstract behavior of a rebec is speci-
fied in its behavioral interface. This interface consists of the messages the rebec
may receive and send and provides an overview of the rebec behavior in a single
automaton. A behavioral interface can also be seen as an abstraction (over-
approximation) of the environments that can communicate with the rebec. A
behavioral interface abstracts from specific method implementations, the queue
in the rebec and the scheduling strategy.

In our example of sender-receiver, there are two interfaces (see Fig. 8). In this
section, we use the shortened names ‘receive’ and ‘next’ instead of ‘receiveReq’
and ‘sendNextReq’, respectively. The Sender interface starts by outputting a
‘receive’ message; message communication is written in Uppaal as ‘invoke[m][r]’

38 M. Sirjani and M.M. Jaghoori

invoke[next][self]!
deadline = XD

invoke[receive][other]?

invoke[next][other]?

invoke[receive][self]!
deadline = MD

Fig. 8. Sender (left) and Receiver (right) Behavioral Interfaces

where ‘m’ denotes the message name and ’r’ identifies the receiver. As dual to
Sender, the Receiver interface inputs a ‘receive’ message at the beginning, which
has a deadline ‘MD’; to specify a deadline for a message we use a global variable
which will be used by the scheduler automaton (described below after classes).
Considering the symmetric model in Fig. 4, a reactiveclass may implement both
of these interfaces.

To formally define a behavioral interface, we assume a finite global set M
for method names. Sending and receiving messages are written as m! and m?,
respectively. A behavioral interface B providing a set of method names MB ⊆
M is a deterministic timed automaton over alphabet ActB such that ActB is
partitioned into two sets of actions:

– rebec outputs received by the environment: ActBO = {m?|m ∈ M∧m �∈ MB}
– rebec inputs sent by the environment: ActBI = {m(d)!|m ∈ MB ∧ d ∈ N}

The integer d associated to input actions represents a deadline. A correct
implementation of the rebec should be able to finish method m before d time
units. The methods MB must exist in the classes implementing the interface B.
Other methods are sent by the rebec and should be handled by the environment.

Modeling Classes. One can define a class as a set of methods implementing
a specific behavioral interface. A class R implementing the behavioral interface
B is a set {(m1, A1), . . . , (mn, An)} of methods, where

– MR = {m1, . . . , mn} ⊆ M is a set of method names such that MB ⊆ MR;
– for all i, 1 ≤ i ≤ n, Ai is a timed automaton representing method mi with

the alphabet Acti = {m!|m ∈ MR}∪ {m(d)! | m ∈ M∧ d ∈ N}∪ {t?|t ∈ T };

Classes have an initial method which is implicitly called upon initialization
and is used for the system startup. Method automata only send messages or
wait for replies while computations are abstracted into time delays. Receiving
messages (and buffering them) is handled by the scheduler automata explained
next. Sending a message m ∈ MR is called a self call. Self calls may or may
not be assigned an explicit deadline. The self calls with no explicit deadline are
called delegation. Delegation implies that the internal task (triggered by the self
call) is in fact the continuation of the parent task; therefore, the delegated task
inherits the (remaining) deadline of the task that triggers it. This mechanism is
also handled by the scheduler.

Fig. 9 depicts the timed automata modeling the abstract behavior of the meth-
ods of a sender-receiver class. This class implements both the Sender and the

Ten Years of Analyzing Actors: Rebeca Experience 39

c<=1

finish!

invoke[receive][other]!
deadline = MD

start[initial]?
c:=0

c <= 4
invoke[next][other]!
deadline = XD

finish!
start[receive]?

c := 0

c<=2
invoke[receive][other]!
deadline = MD

finish!
start[next]?

c := 0

Fig. 9. Methods of a sender-receiver class

Receiver interfaces in Fig. 8, therefore it needs to implement both ‘receive’ and
‘next’ methods (in addition to the ‘initial’ method). To enable starting and stop-
ping method executions, all these method automata start by a synchronization
on the ‘start’ channel and end by ‘finish’ channel. In between, in this example,
each method only sends a message while the rest of the method is abstracted
away into a time delay.

Error

Running

tail == 1
finish [self] ?
shift()

start[q[run]][self] !

i : int[0,MAX-1]
{guard on i}
finish [self] ?
shift(),
run = {based on i}

msg : int[0,MSG]
delegate[msg][self] ?
q[tail] = msg, ca[tail] = ca[run],
counter[ca[tail]] ++, tail ++

tail > MAX
i : int[0,MAX-1]

counter[i] > 0 &&
 x[i] > d[i]

msg : int[0,MSG],
sender : int [0,OBJ-1],
c : int[0,MAX-1]
counter[c] == 0
invoke[msg][self][sender] ?
q[tail] = msg, ca[tail] = c,
x[c] = 0, d[c] = deadline,
counter[c] = 1, tail++

Fig. 10. A general scheduler automaton

Modeling Schedulers. Fig. 10 shows the general structure of a scheduler
automaton. The only thing not specified in this picture is the scheduling strategy.
This automaton has the functionalities described below.

Queue. The queue is modeled using arrays in Uppaal. For a message stored in
q[i], the deadline is stored at d[ca[i]] and the clock x[ca[i]] keeps track of how
long it has been in the queue. Delegation is modeled by reusing ca. The variable
counter[i] holds the number of tasks that use clock x[i]. A clock is free if its
counter is zero. When delegation is used, the counter becomes greater than one.

Input-enabledness. In this general scheduler automaton, there is an edge (left
down in the picture) that allows receiving (at any time) a message on the invoke

channel (from any sender). To allow any message and sender, select expressions
are used. The expression msg : int [0,MSG] nondeterministically selects a value
between 0 and MSG for msg. This is equivalent to adding a transition for each
value of msg. Similarly, any sender (sender : int[0,OBJ−1]) can be selected. The
selected message is put at the tail of the queue (q[tail] = msg), a free clock

40 M. Sirjani and M.M. Jaghoori

(counter[c] == 0) is assigned to it (ca[tail] = c) and reset (x[c] = 0), and the
deadline value is copied (d[c] = deadline).

A similar transition accepts messages on the delegate channel. In this case, the
clock already assigned to the currently running task (parent task) is assigned to
the internal task (ca[tail] = ca[run]). In a delegated task, no sender is specified
(it is always self).

Context-switch is performed in two steps (without letting time pass). When a
method is finished (synchronizing on finish channel), it is taken out of the queue
(by shift ()). If it is not the last in the queue, the next method to be executed
should be chosen based on a specific scheduling strategy (by assigning the right
value to run). For a concrete scheduler, the guard and update of run should be
well defined. If run is always assigned 0 during context switch, the automaton
serves as a First Come First Served (FCFS) scheduler. An Earliest Deadline
First (EDF) scheduler can be encoded using a guard like:

i < tail && i != run &&
forall (m : int[0,MAX-1])
((m == run) ||
(x[ca[i]] - x[ca[m]] >= d[ca[i]] - d[ca[m]])

)

and assigning run = (i < run) ? i : i−1 (because i is selected before shifting).
The guard x[a] − x[m] >= d[a] − d[m] makes sure that the remaining deadline
of a, i.e., x[a]− d[a], is bigger than or equal to the remaining deadline of m. The
rest ensures that an empty queue cell (i < tail) or the currently finished method
(run) is not selected.

If the currently running method is the last in the queue, nothing needs to be
selected (i.e., if tail == 1 we only need to shift). The second step in context-
switch is to start the method selected by run. Having defined start as an urgent
channel, the next method is immediately scheduled (if queue is not empty).

Error. The scheduler automaton moves to the Error state if a queue overflow
occurs (tail >MAX) or a deadline is missed (x[i]>d[i]). The guard counter[i]>0

checks whether the corresponding clock is currently in use, i.e., assigned to a
message in the queue.

7.2 Modular Schedulability Analysis

An rebec is an instance of a class together with a scheduler automaton. To an-
alyze a rebec in isolation, we need to restrict the possible ways in which the
methods of this rebec could be called. Therefore, we only consider the incom-
ing method calls specified in its behavioral interface. Receiving a message from
another rebec (i.e., an input action in the behavioral interface) creates a new
task (for handling that message) and adds it to the queue. The behavioral inter-
face doesn’t capture (internal tasks triggered by) self calls. In order to analyze
the schedulability of a rebec, one needs to consider both the internal tasks and
the tasks triggered by the (behavioral interface, which abstractly models the
acceptable) environment.

Ten Years of Analyzing Actors: Rebeca Experience 41

We can generate the possible behaviors of a rebec by making a network of
timed automata consisting of its method automata, behavioral interface automa-
ton B and a concrete scheduler automaton. The inputs of B written as m! will
match with inputs in the scheduler written as m? and the outputs of B written
as m? will match outputs of method automata written as m!.

An rebec is schedulable, i.e., all tasks finish within their deadlines, if and only if
the scheduler cannot reach the Error location with a queue length of
dmax/bmin�,
where dmax is the longest deadline for any method called on any transition of the
automata (method automata or the input actions of the behavioral interface) and
bmin is the shortest termination time of any of the method automata [53]. We can
calculate the best case runtime for timed automata as shown by Courcoubetis
and Yannakakis [28].

Once a rebec is verified to be schedulable with respect to its behavioral inter-
face, it can be used as an off-the-shelf component. To ensure the schedulability
of a system composed of individually schedulable rebecs, we need to make sure
their real use is compatible with their expected use specified in the behavioral in-
terfaces. The product of the behavioral interfaces, called B, shows the acceptable
sequences of messages that may be communicated between the rebecs. Compat-
ibility is defined as the inclusion of the visible traces of the system in the traces
of B [55].

To avoid state-space explosion, we test compatibility. A trace is taken from
B and turned into a test case by adding Fail, Pass and Inconc locations.
Deviations from the trace either lead to inconclusive verdict Inconc (meaning
that no conclusions can be drawn from this test) when the step is allowed in B,
or otherwise lead to Fail (meaning that a counter-example to compatibility is
found). The submission of a test case consists of having it synchronize with the
system. This makes the system take the steps specified in the original trace. The
Fail location is reachable if and only if the system is incompatible with B along
this trace. This testing method is sound and complete [55].

7.3 Related Work

Schedulability has usually been analyzed for a whole system running on a single
processor, whether at modeling [38,7] or programming level [27,69]. We address
distributed systems where each rebec has a dedicated processor and schedul-
ing policy. We propose a modular approach to schedulability analysis similar to
the ideas of modular model checking [72]. The work in [40] is also applicable
to distributed systems but is limited to rate monotonic analysis. Our analysis
being based on automata can handle non-uniformly recurring tasks as in Task
Automata [38]. In Task automata, however, a task is purely specified as compu-
tation times and therefore it cannot create sub-tasks.

RT-Synchronizers [93] are designed for declarative specification of timing con-
straints over groups of untimed actors. Therefore, they do not speak of schedu-
lability of the actors themselves; in fact, a deadline associated to a message is
for the time before it is executed and therefore cannot deal with the execution
time of the task itself or sub-task generation.

42 M. Sirjani and M.M. Jaghoori

In our approach, behavioral interfaces are key to modularity. A behavioral
interface models the most general message arrival pattern for a rebec. In the
literature, a model of the environment is usually the task generation scheme in
a specific situation. However, a behavioral interface in our analysis covers all
allowable scenarios of using the rebec, which in turn adds to the modularity
of our approach; every use of the rebec foreseen in the interface is verified to
be schedulable. Comparatively, for instance in TAXYS [27], this model of the
environment can also be general enough to cover all uses of the program but it
is used to analyze a complete program and is not used modularly.

In [12,54], an extension to our approach is applied to accommodate explicit
release statements and replies of the Creol language. Creol [61,60] is a concur-
rent object-based language where the core of the language is similar to Rebeca
and objects communicate only via asynchronous message passing. Asynchronous
message passing in Creol is augmented with return values. Furthermore, Creol
has explicit synchronization mechanisms, e.g., after sending a message, the caller
may wait for a return value from the callee. A running method can decide to
voluntarily release the control over processor, e.g., if the return values of a call
are not yet available.

8 Extending Rebeca: Analyzing Self-adaptive Models

Software systems are steadily becoming larger, more heterogeneous and long-
lived. Flexible and scalable approaches are required for developing today’s com-
plex and evolving software-intensive systems. Hard-coded mechanisms make tun-
ing and adapting long-run systems complicated. A prosperous practice is to en-
able such systems to continually evolve and adapt to situations not anticipated
at development time.

In order to obtain adaptation, a major concern is Flexibility. Recently, the use
of policies has been recognized as a powerful mechanism to achieve flexibility in
adaptive and autonomous systems. With policies, one can “dynamically” specify
the requirements in terms of high level goals. A policy is a rule describing the
conditions under which a specified subject must, may or may not perform an
action on a specific object.

Since self-adaptive systems are often complex and have a great degree of
autonomy, it is more difficult to ensure that they behave as intended. Hence,
it is of great practical importance to provide rigorous mechanisms for checking
their correctness. To this end, model-driven approaches and formal methods can
play a key role.

PobSAM (Policy-based Self-Adaptive Model) [67] is a flexible formal model to
develop, specify and verify self-adaptive systems. It uses Rebeca as the language
for specifying the functional behavior of systems. In order to build self-adaptive
models, PobSAM adds two layers of views and managers on top of the actor
layer. Analysis methods based on Rebeca model checking tools are proposed to
check behavioral correctness, consistency of policies, and safety in the adaptation
phase. Theories for checking behavioral equivalence and substitutability of two

Ten Years of Analyzing Actors: Rebeca Experience 43

components are established. A mapping to Maude [82] is developed (not yet
published) for more effective analysis of the models.

8.1 Motivating Example: Smart Home

As a motivating example, we describe a smart home based on the the example
in [67]. In a home automation system, sensors are devices that provide a smart
home with information about the physical properties of the environment. In
addition, actuators are physical devices that can change the state of the world
in response to these sensed data. The system processes the data gathered by the
sensors, then it activates the actuators to alter the user environment according
to the predefined set of policies. Smart homes can have different features, for
example: (1) The lighting control can switch the lights on/off automatically,
or adjust their intensity based on their placement in a room and according to
the predefined policies. (2) Doors/Windows management controls windows and
doors automatically. For instance, if windows have blinds, these should be rolled
up and down automatically. (3) Heating control allows the inhabitants to adjust
the house temperature to their preferred value. The heating control will adjust
itself automatically in order to save energy.

The smart home system is required to adapt its behavior according to the
changes in the environment. A typical system runs in normal, vacation and fire
modes, and in each mode, it enforces different sets of policies to adapt to the
current conditions. As some examples the policies defined for the lighting control
module while the system runs in normal and fire modes can be as follows:

Defined Policies in the Normal Mode

P1 Turn on the lights automatically when night begins.
P2 Whenever someone enters an empty room, the light setting must be set to

default.
P3 When the room is reoccupied within T1 minutes after the last person has

left the room, the last chosen light setting has to be reestablished.
P4 The system must turn the lights off, when the room is unoccupied.

Defined policies in the Fire Mode

P1 Turn on the emergency light.
P2 Disconnect power outlets.
P3 When the fire is extinguished, turn off the emergency light.

8.2 PobSAM Outline

A PobSAM model is the composition of three layers:

– The actors layer describes the functional behavior of the system and contains
the computational entities. Rebeca is used to model these actors.

44 M. Sirjani and M.M. Jaghoori

– The managers layer contains the autonomous managers. Managers are re-
sponsible for managing actors’ behavior according to the predefined policies.

– The view layer is composed of a set of views that provide an abstraction of
the actors’ state for the managers. A view is a state variable, a function or
a predicate applied to the state variables of actors.

The managers monitor the actors through views. Views provide managers with
the required information about the actors. Each manager has a set of configura-
tions containing adaptation policies and governing policies. The actors’ behav-
ior is directed by sending messages to them according to the governing policies.
Adaptation policies are used for dynamic adaptation in response to the changing
circumstances by switching between configurations.

In our example, actors are used at the functional level and model the sensors
and actuators (e.g., the light actuator). The manager layer includes the policies
in each configuration (e.g., the light controller would be a manager with the
different policies for normal, fire and vacation configurations). The view layer
acts as an abstract interface of the actors for the managers (e.g., a variable
showing the intensity of each light and a variable showing the total intensity).

In this model, a new mode of operation, called the adaptation mode, is in-
troduced to control the adaptation phase. Whenever an event which requires
adaptation occurs, the relevant managers are informed. However, adaptation is
not done immediately and the managers run in adaptation mode before switching
to the next configuration. When the system reaches a safe state, the managers
switch to the new configuration. This feature allows us to guide the adaptation
process safely. There are two kinds of adaptation, called loose adaptation and
strict adaptation. Under loose adaptation, the manager enforces old governing
policies, whereas in strict adaptation, all events are ignored until the system
passes the adaptation mode and reaches a safe state.

PobSAM has a formal foundation that employs an integration of algebraic
formalisms and actor-based models. While the computational (functional) model
of PobSAM is based on the actor-based semantics of Rebeca, the Configuration
Algebra (CA) is proposed to specify the configurations of managers. A manager
is formally defined as a tuple consisting of the set of possible configurations,
the initial configuration, and the set of observable views for the manager. A
configuration is defined as a set of governing policies and a set of adaptation
policies.

A governing policy consists of a priority, an event, a condition (a Boolean
term) and an action. Events are generated when the execution of a message
server is completed, when a message is sent, when a new actor is created, and
when a specific condition in the system becomes true. The action part of a
governing policy is specified using an algebraic theory in which the primitive
action is sending a message to an actor (rebec). Action terms may be guarded;
complex actions are constructed by sequential or parallel composition or by a
nondeterministic choice among multiple actions. Whenever a manager receives
an event, it identifies all the governing policies that are activated by that event.

Ten Years of Analyzing Actors: Rebeca Experience 45

For each of the activated policies, if the policy condition evaluates to true, its
action is triggered by sending a message to the relevant actors.

An adaptation policy is a prioritized rule that whenever triggered, drives the
manager to the adaptation mode. The manager will switch to the new configu-
ration after a safe state is reached. An adaptation policy consists of the priority
of the policy, the triggering event, the condition of triggering the policy, the
condition of applying the policy, the adaptation type (loose or strict), and the
new configuration. Adaptation takes place in two phases. The adaptation policy
implies that when the specified event occurs, and the triggering condition holds,
if there is no other triggered adaptation policy with a higher priority, then the
manager evolves to the strict or loose adaptation modes based on its type. When
the condition of applying adaptation becomes true, the manager will perform
adaptation and switch to the specified configuration.

8.3 Formal Analysis

We can perform different kinds of analysis on PobSAM models. In general, prop-
erties to be checked about an adaptive system can be categorized as adaptation
properties, functional properties or a composition of both. Correctness properties
of the functional layer (actors) of PobSAM models are application-specific. Cor-
rectness properties of the managers layer are related to the adaptation concerns
(i.e., adaptation policies) or behavioral concerns (i.e., governing policies). Par-
ticularly, as policies direct the system behavior, it is required to understand and
control the overall effect of governing policies on the system behavior. Governing
policies often interact with each other and can cause undesirable effects. Hence,
it is crucial to provide mechanisms to detect different kinds of policy conflicts.
Furthermore, the correctness of the adaptation process of the PobSAM models,
especially its stability, is an important property that needs to be verified.

In [68], we model PobSAM using Rebeca where actors and managers are
modeled as rebecs, and views are modeled using global variables (as explained
in Section 3.2 global variables are added to Rebeca for modeling system-level
designs and can be used in a controlled way here, too). To enforce governing
policies, a message server named enforce is considered for each manager rebec,
which receives and handles events by interpreting the governing policies of the
current configuration of the manager. While a manager is in normal or loose
adaptation mode, it handles events by enforcing the triggered governing policies
based on the priority of the policies. Governing policies are expressed as a set of
rules in the body of enforce. The conditional part of a governing policy is defined
as a guarded expression. The policy context is defined in terms of the global state
variables associated with the view layer. Moreover, a new generic classification
of the conflicts that may exist among governing policies is introduced, and LTL
patterns are proposed to express each type of these conflicts. A number of cor-
rectness properties of the adaptation process are also introduced. We use the
model checking tools of Rebeca to detect policy conflicts and check the correct-
ness of the adaptation phase. In addition to model checking, an approach based
on static analysis of adaptation policies is presented to check system stability: if

46 M. Sirjani and M.M. Jaghoori

an adaptation by a manager leads to another adaptation, and this continues in
a cycle then it causes an unstable state for the system which can be detected by
a graph analysis technique.

Later, in [66], a behavioral equivalence theory is presented which helps in
substitution of components and compositional reasoning. In dynamic environ-
ments such as the ubiquitous computing world, many systems must cope with
variable resources, system faults and changing user priorities. In such environ-
ments, the system required to continue running with minimal human interven-
tion, and the component assessment and integration process must be carried
out automatically. Component assessment is identifying a component with the
desired behavior that can replace another one. A possible solution to this prob-
lem relies on detecting the behavioral equivalence of components. Generally,
we categorize behavioral equivalence of two components as context-independent
or context-specific. Two components that are context-independent equivalent
behave equivalently in any environment, whereas equivalence of two context-
specific equivalent components depends on the environments in which they are
running.

In [66], we present a context-independent behavioral equivalence theory to
reason about managers, configurations, policies and policy actions. We develop
semantic theories based on the notion of splitting bisimulation [11] and present
sound and complete axiomatizations for this kind of bisimulation with respect
to policy actions and governing policies. Furthermore, we introduce a new type
of bisimilarity, called prioritized splitting bisimulation, to describe the behav-
ioral equivalence of adaptation policies, configurations and managers. In [65], we
develop an equational theory to analyze the context-specific behavioral equiva-
lence of manager components based on a notion of behavioral equivalence, called
state-based bisimulation. The view layer (i.e., the context) of the system is spec-
ified by a labeled state transition system. We extend our Configuration Algebra
with new operators to consider the interaction of managers and the context and
present the axioms of those operators. An important advantage of this equa-
tional theory is that it analyzes the behavioral equivalence of the manager layer
using the view layer and independently from the actor layer.

8.4 Related Work

Dynamic adaptation is a very diverse area of research and different communities
are concerned with this issue including autonomic computing, component-based
systems, software architecture, coordination models, agent-based systems, etc.
Structural adaptation has been given strong attention in the research commu-
nity, and formal techniques have been extensively used to model and analyze
dynamic structural adaptation (see [15]). Structural adaptation (or dynamic re-
configuration) is usually modeled using graph-based approaches (e.g. [112,84])
or ADL-based approaches (e.g. [80,90]).

Behavioral adaptation focuses on modifying the functionalities of the compu-
tational entities. Formal modeling and verification of adaptive systems at be-
havioral level is a young research area [18] and only a few research groups have

Ten Years of Analyzing Actors: Rebeca Experience 47

already focused on this topic. As part of the RAPIDware project, Zhang et al.
[123] proposed a model-driven approach for developing adaptive systems. In this
approach, different contexts in which an adaptive program may run are specified
by a formalism like temporal logic. The local properties of the program in each
context are described formally. Then, a state-based model of the program in each
context as well as the adaptation models for the adaptations of the program from
one context to another are built. Different behavioral variants of a program are
modeled as Petri Nets in [123]. Furthermore, they extend LTL with an “adapt”
operator called A-LTL to specify adaptation requirements before, during and
after adaptation [122] and introduce a model checking approach to verify the
program formally. In another work [124], they propose a modular approach to
verify adaptive programs.

Schneider et al. [100] present a method to describe adaptation behavior at
an abstract level. After deriving transition systems from the system description,
the system properties are verified using model checking techniques. In their later
work [1], they propose a framework, MARS, for model-based development of
adaptive embedded systems in which a model consists of a set of modules. A
module may have different guarded configurations which are selected dependent
on the current situation of the modules environment. The system is specified
using Synchronous Adaptive Systems (SAS) [99] and is verified using theorem
proving, model checking and specialized verification methods.

RAPIDware and MARS are on a different level of abstraction comparing to
PobSAM. In these works, the system is described using a semantic-level state-
based formalism while PobSAM uses high-level policies to control the system
behavior and provide a high-level language to specify policies formally. Moreover,
unlike PobSAM, configurations and the adaptation logic are fixed in RAPIDware
and MARS. The ability to change configurations and the adaptation logic is vital
to be able to model evolving adaptive systems. An act of adaptation in [122]
results in a completely new program, but adaptation in PobSAM influences only
the managers layer and the actors keeps running normally during adaptation.
Thus, the adaptation semantics of PobSAM differs from that of A-LTL, however,
both approaches consider safe adaptation.

A close area of research is coordination in which the interaction of objects
can be controlled to achieve adaptation. While coordination models aim at de-
coupling interactions from computation and controlling interactions, PobSAM is
concerned with controlling objects through controlling their behavior and decou-
ples the behavioral choices and adaptation issues from the computational envi-
ronment. ARC (Actor-Role-Coordinator)[94] and PAGODA (Policy And GOal
based Distributed Architecture) [115,116] are two actor-based coordination mod-
els in which meta-actors control interactions of actors. ARC controls objects
interactions by manipulating message delivery, for instance via rerouting and
reordering messages. In PAGODA, each coordinator is provided with a set of
policies to coordinate actors where a simple policy may reorder messages, seri-
alize requests and maintain a history of events.

48 M. Sirjani and M.M. Jaghoori

9 Conclusion and Future Work

Several actor languages have been developed [91,37,93,121,119], and some of
these languages are supported by model checking or testing tools [39,101,77].
In this paper, we focused on the imperative actor-based modeling language Re-
beca, which has been designed in 2001 with the goal of providing a language for
modeling concurrent and distributed systems with formal verification support.
Throughout the paper, the language Rebeca and the supporting tools and tech-
niques for analyzing Rebeca models are explained. Here, we will summarize our
main design decisions in the language, its extensions and analysis techniques.
We will also address some of the ongoing and future work. This list is far from
complete.

The Language and its Extensions. The general design strategy of Rebeca has
been to keep the language a pure actor-based modeling language with no syn-
chronous communication. Rebeca is designed based on an operational view of
the actor model introduced in [6,5,81]. The kernel of the Rebeca language is kept
simple and only supports asynchronous non-blocking message passing. This has
allowed us to provide powerful analysis methods based on specialized abstrac-
tion and reduction techniques. On the other hand, we extended Rebeca for a
few specific domains, e.g., for hardware-software co-design (Section 3.2) [63,92],
and for globally asynchronous, locally synchronous systems (GALS) [108,109].
To be used as a hardware-software co-design language, we added global variables
in order to model events and signals in a system design, and wait statements
to model the situations when a process in the system is waiting for a specific
event. Our reduction techniques are extended to cover this extension of Rebeca.
The same extension of Rebeca is used in designing self-adaptive policy-based
systems (explained in Section 8). In the extension for modeling GALS, we added
a formal notion of components to the language. Components interact only by
asynchronous messages, while within each component, the reactive objects may
communicate by synchronous messages. This offers a general framework which
integrates, in a formally consistent manner, both synchrony and asynchrony.
Our formal verification approach is adjusted to reason about the open compo-
nents. Certain properties are proven to be preserved when the model checked
components are composed with other arbitrary components, and so, they can be
plugged in a model relying on their behavior.

Analysis. Actor programming avoids the bugs inherent in shared-memory pro-
gramming, but problems in incorrect sequential code within an actor, and prob-
lems in sequence of message passing still exist. These can cause deadlocks, race
conditions, or bugs in the desired protocol. The biggest problem in analyzing
actors is the growing number of sent messages (can be seen as events) that are
not yet handled; this can quickly cause state-space explosion. In our tools, we
allow the user to check the queue overflow condition and increase the size of the
queue. In certain models the size of the queue is not bounded; in such situa-
tions, we need to have the option of running the system despite queue overflow.

Ten Years of Analyzing Actors: Rebeca Experience 49

To handle an overflow, different policies can be taken, e.g., to overwrite the old
messages or purge the new ones.

Rebeca has FIFO queues for the pending messages, which pose stronger or-
dering constraints in comparison to message bags used in many other actor
languages. This preserves the happens-before relation [74,77] while at the same
time we consider all the possible interleavings for the execution of the rebecs. In
our model, we have fewer message interleavings: for example between any pair of
actors, the messages are processed in sending order, which is not the case for the
models using bags. We consider atomic execution of methods, which is in line
with the macro-step semantics of [5]. The combination of atomic execution and
FIFO message queues causes even less message interleavings, for example, in the
case where within a method we have more than one messages sent to the same
rebec. These situations can be found by a simple static analysis of the code and
if necessary be taken care of by a fine-grained execution of methods, or having
a rebec in the middle that plays the role of a bag for the messages.

In analyzing Rebeca, we generally do not need to deal with the complications
of programming languages, like complex data structures, or implementation de-
tails like managing the thread pools.

Future Work. The semantics and the established theories for Rebeca include
dynamic creation of rebecs and dynamic topology, but the tools have to be
extended to support these features of the language.

An ongoing work is a distributed implementation of the model checker. The
BFS algorithm is especially suitable for parallel model checking [9]. This exten-
sion will distribute the state space across multiple computers, which will result
in the ability to handle much bigger systems. In this work, we are investigating
the applicability of call dependency graphs of Rebeca code which are similar to
event diagrams of Clinger [26] but are derived using static analysis. Another ap-
proach to improve efficiency is using heuristics in model checking Rebeca. We are
working on the application of best-first search algorithms using heuristics based
on information from the message queues. Preliminary experimental results show
the efficacy of the technique for some models [50].

A possible extension of Modere is to replace the rebec manager with a pro-
cess/object manager for another language with a similar actor-based concurrency
model. An ongoing work is integrating a Creol [62,60] interpreter with Modere.
Creol is based on concurrent objects (similar to actors). Creol has fine-grained
interleaving and assumes no order on executing messages from the message bags.
The semantics of Creol is implemented in the rewrite engine of Maude and as a
result, execution and simulation of Creol models are currently possible. To the
best of our knowledge, there exists however no efficient model checking tool for
Creol. We expect that the state-space reduction techniques already developed in
Modere could also be applicable to Creol (possibly with some adjustments) due
to the similar concurrency model.

Acknowledgement. We wish to thank all the present and past members of
the Rebeca group for their enthusiasm and hard work. In particular, we thank

50 M. Sirjani and M.M. Jaghoori

Hamideh Sabouri and Narges Khakpour for their help in writing the sections
on slicing and self-adaptive models (respectively). Furthermore, we would like
to thank Luca Aceto, Farhad Arbab and Mohammad Reza Mousavi for their
comments on this paper. The work of the second author is supported by the EU
FP7-231620 project called HATS.

References

1. Adler, R., Schaefer, I., Schuele, T., Vecchié, E.: From model-based design to for-
mal verification of adaptive embedded systems. In: Butler, M., Hinchey, M.G.,
Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS, vol. 4789, pp. 76–95. Springer,
Heidelberg (2007)

2. Afra: a SystemC verifier, http://ece.ut.ac.ir/FML/afra.htm
3. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge (1990)
4. Agha, G.: The structure and semantics of actor languages. In: de Bakker, J.W.,

Rozenberg, G., de Roever, W.-P. (eds.) REX 1990. LNCS, vol. 489, pp. 1–59.
Springer, Heidelberg (1991)

5. Agha, G., Mason, I., Smith, S., Talcott, C.L.: A foundation for actor computation.
Journal of Functional Programming 7, 1–72 (1997)

6. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: Towards a theory of actor
computation. In: Cleaveland, R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 565–
579. Springer, Heidelberg (1992)

7. Altisen, K., Gößler, G., Sifakis, J.: Scheduler modeling based on the controller
synthesis paradigm. Real-Time Systems 23(1-2), 55–84 (2002)

8. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126,
183–235 (1994)

9. Barnat, J., Cerná, I.: Distributed breadth-first search ltl model checking. Formal
Methods in System Design 29(2), 117–134 (2006)

10. Behjati, R., Sabouri, H., Razavi, N., Sirjani, M.: An effective approach for model
checking systemc designs. In: Billington, J., Duan, Z., Koutny, M. (eds.) Proc.
8th International Conference on Application of Concurrency to System Design
(ACSD 2008), pp. 56–61. IEEE (2008)

11. Bergstra, J.A., Middelburg, C.A.: Preferential choice and coordination conditions.
J. Log. Algebr. Program. 70(2), 172–200 (2007)

12. de Boer, F., Chothia, T., Jaghoori, M.M.: Modular schedulability analysis of
concurrent objects in Creol. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS,
vol. 5961, pp. 212–227. Springer, Heidelberg (2010)

13. Bosnacki, D., Dams, D., Holenderski, L.: Symmetric SPIN. International Journal
on Software Tools for Technology Transfer (STTT) 4(1), 92–106 (2002)

14. Bošnački, D., Donaldson, A.F., Leuschel, M., Massart, T.: Efficient approximate
verification of promela models via symmetry markers. In: Namjoshi, K.S., Yoneda,
T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 300–315.
Springer, Heidelberg (2007)

15. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A survey of self-
management in dynamic software architecture specifications. In: Proc. 1st ACM
SIGSOFT Workshop on Self-Managed Systems, WOSS 2004, pp. 28–33 (2004)

16. Chang, P.H., Agha, G.: Supporting reconfigurable object distribution for cus-
tomized Web applications. In: The 22nd Annual ACM Symposium on Applied
Computing (SAC 2007), pp. 1286–1292 (2007)

Ten Years of Analyzing Actors: Rebeca Experience 51

17. Chang, P.H., Agha, G.: Towards context-aware web applications. In: Indulska, J.,
Raymond, K. (eds.) DAIS 2007. LNCS, vol. 4531, pp. 239–252. Springer, Heidel-
berg (2007)

18. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J.,
Becker, B., Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar,
S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M.,
Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw,
M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J.: Software Engineering for Self-
Adaptive Systems: A Research Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese,
H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems.
LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

19. Cheong, E., Lee, E.A., Zhao, Y.: Viptos: a graphical development and simulation
environment for tinyOS-based wireless sensor networks. In: Proc. 3rd Interna-
tional Conference on Embedded Networked Sensor Systems, SenSys 2005, pp.
302–302 (2005)

20. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An openSource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

21. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (2000)
22. Clarke, E.M.: The birth of model checking. In: Proc. Symposium on “25 Years

of Model Checking”, Federated Logic Conference (FLOC 2006) affiliated with
CAV 2006, pp. 1–26 (August 2006)

23. Clarke, E.M., Emerson, E.A., Jha, S., Sistla, A.P.: Symmetry reductions in model
checking. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 147–158. Springer,
Heidelberg (1998)

24. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counter-example-guided
abstraction refinement for symbolic model checking. J. ACM 50, 752–794 (2003)

25. Clarke, E.M., Jha, S., Enders, R., Filkorn, T.: Exploiting symmetry in temporal
logic model checking. Formal Methods in System Design 9(1/2), 77–104 (1996)

26. Clinger, W.D.: Foundations of actor semantics. Tech. rep., Cambridge, MA, USA
(1981)

27. Closse, E., Poize, M., Pulou, J., Sifakis, J., Venter, P., Weil, D., Yovine, S.:
TAXYS: A tool for the development and verification of real-time embedded sys-
tems. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp.
391–395. Springer, Heidelberg (2001)

28. Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in
real-time systems. Formal Methods in System Design 1(4), 385–415 (1992)

29. Donaldson, A.F., Miller, A.: Automatic symmetry detection for model checking
using computational group theory. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A.
(eds.) FM 2005. LNCS, vol. 3582, pp. 481–496. Springer, Heidelberg (2005)

30. Donaldson, A.F., Miller, A.: Extending symmetry reduction techniques to a realis-
tic model of computation. Electronic Notes in Theoretical Computer Science 185,
63–76 (2007)

31. Donaldson, A.F., Miller, A., Calder, M.: Finding symmetry in models of concur-
rent systems by static channel diagram analysis. Electr. Notes Theor. Comput.
Sci. 128(6), 161–177 (2005)

32. Donaldson, A.F., Miller, A., Calder, M.: Spin-to-Grape: A tool for analysing
symmetry in Promela models. Electronic Notes in Theoretical Computer Sci-
ence 139(1), 3–23 (2005)

52 M. Sirjani and M.M. Jaghoori

33. Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for dpll(t). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

34. Dwyer, M.B., Hatcliff, J., Hoosier, M., Ranganath, V., Robby, Wallentine, T.:
Evaluating the effectiveness of slicing for model reduction of concurrent object-
oriented programs. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp.
73–89. Springer, Heidelberg (2006)

35. Emerson, E.A.: Temporal and Modal Logic. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science, pp. 996–1072. Elsevier Science Publishers, Am-
sterdam (1990)

36. Emerson, E.A., Sistla, A.: Symmetry and model checking. Formal Methods in
System Design 9(1-2), 105–131 (1996)

37. Erlang Programming Language Homepage, http://www.erlang.org
38. Fersman, E., Krcal, P., Pettersson, P., Yi, W.: Task automata: Schedulability,

decidability and undecidability. Information and Computation 205(8), 1149–1172
(2007)

39. Fredlund, L.Å., Svensson, H.: Mcerlang: a model checker for a distributed func-
tional programming language. SIGPLAN Not 42(9), 125–136 (2007)

40. Garcia, J.J.G., Gutierrez, J.C.P., Harbour, M.G.: Schedulability analysis of dis-
tributed hard real-time systems with multiple-event synchronization. In: Proc.
12th Euromicro Conference on Real-Time Systems, pp. 15–24. IEEE (2000)

41. Godefroid, P.: Using partial orders to improve automatic verification methods.
In: Clarke, E., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 176–185.
Springer, Heidelberg (1991)

42. Groote, J.F., Mathijssen, A., Reniers, M.A., Usenko, Y.S., van Weerdenburg, M.:
The formal specification language mcrl2. In: Brinksma, E., Harel, D., Mader,
A., Stevens, P., Wieringa, R. (eds.) MMOSS. Dagstuhl Seminar Proceedings,
vol. 06351. Internationales Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl (2006)

43. Hendriks, M., Behrmann, G., Larsen, K.G., Niebert, P., Vaandrager, F.W.:
Adding symmetry reduction to UPPAAL. In: Larsen, K.G., Niebert, P. (eds.)
FORMATS 2003. LNCS, vol. 2791, pp. 46–59. Springer, Heidelberg (2004)

44. Hewitt, C.: Description and theoretical analysis (using schemata) of PLANNER:
A language for proving theorems and manipulating models in a robot. MIT Ar-
tificial Intelligence Technical Report 258, Department of Computer Science, MIT
(April 1972)

45. Hewitt, C.: What Is Commitment? Physical, Organizational, and Social (Revised).
In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara,
N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, pp. 293–307. Springer,
Heidelberg (2007)

46. Hewitt, C.: Orgs for scalable, robust, privacy-friendly client cloud computing.
IEEE Internet Computing 12(5), 96–99 (2008)

47. Hewitt, C.: Actorscript(tm): Industrial strength integration of local and nonlocal
concurrency for client-cloud computing. CoRR abs/0907.3330 (2009)

48. Hojjat, H., Sirjani, M., Mousavi, M., Groote, J.: Sarir: A Rebeca to mCRL2
translator (tool paper). In: Proc. 7th International Conference on Application of
Concurrency to System Design (ACSD 2007) (July 2007)

49. Holzmann, G.J.: The model checker SPIN. Software Engineering 23(5), 279–295
(1997)

50. IceRose homepage - projects,
http://en.ru.is/icerose/applying-formal-methods/projects

Ten Years of Analyzing Actors: Rebeca Experience 53

51. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in
System Design 9(1-2), 41–75 (1996)

52. Ip, C.N.: State Reduction Methods for Automatic Formal Verification. Ph.D.
thesis, Department of Computer Science, Stanford University (1996)

53. Jaghoori, M.M., de Boer, F.S., Chotia, T., Sirjani, M.: Schedulability of asyn-
chronous real-time concurrent objects. Journal of Logic and Algebraic Program-
ming 78(5), 402–416 (2009)

54. Jaghoori, M.M., Chothia, T.: Timed automata semantics for analyzing Creol.
In: Proc. Foundations of Coordination Languages and Software Architectures
(FOCLASA 2010). EPTCS, vol. 30, pp. 108–122 (2010)

55. Jaghoori, M.M., Longuet, D., de Boer, F.S., Chothia, T.: Schedulability and com-
patibility of real time asynchronous objects. In: Proc. 2008 Real-Time Systems
Symposium (RTSS), Barcelona, pp. 70–79. IEEE Computer Society (2008)

56. Jaghoori, M.M., Movaghar, A., Sirjani, M.: Modere: the model-checking engine
of Rebeca. In: Haddad, H. (ed.) Proc. ACM Symposium on Applied Computing
(SAC 2006), Dijon, France, April 23-27, pp. 1810–1815. ACM (2006)

57. Jaghoori, M.M., Sirjani, M., Mousavi, M., Khamespanah, E., Movaghar, A.: Sym-
metry and partial order reduction techniques in model checking Rebeca. Acta
Informatica 47, 33–66 (2010)

58. Jaghoori, M.M., Sirjani, M., Mousavi, M.R., Movaghar, A.: Efficient symmetry
reduction for an actor-based model. In: Chakraborty, G. (ed.) ICDCIT 2005.
LNCS, vol. 3816, pp. 494–507. Springer, Heidelberg (2005)

59. Jahania, M.: Using SAT-Solvers to model check Rebeca for data-centric applica-
tions - Master thesis, Sharif University of Technology (2008)

60. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)

61. Johnsen, E.B., Owe, O., Arnestad, M.: Combining active and reactive behavior
in concurrent objects. In: Langmyhr, D. (ed.) Proc. of the Norwegian Informatics
Conference (NIK 2003), pp. 193–204. Tapir Academic Publisher (November 2003)

62. Johnsen, E.B., Owe, O., Yu, I.C.: Creol: A type-safe object-oriented model for
distributed concurrent systems. Theoretical Computer Science 365(1-2), 23–66
(2006)

63. Kakoee, M.R., Shojaei, H., Ghasemzadeh, H., Sirjani, M., Navabi, Z.: A new
approach for design and verification of transaction level models. In: International
Symposium on Circuits and Systems (ISCAS 2007), pp. 3760–3763 (2007)

64. Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the JVM platform:
a comparative analysis. In: PPPJ 2009: Proc. 7th International Conference on
Principles and Practice of Programming in Java, pp. 11–20. ACM, New York
(2009)

65. Khakpour, N., Jalili, S., Sirjani, M., Goltz, U.: Context specific behavioral equiv-
alence of policy-based self-adaptive systems. In: Proc. 13th International Confer-
ence on Formal Engineering Methods (ICFEM 2011) (to appear, 2011)

66. Khakpour, N., Jalili, S., Talcott, C.L., Sirjani, M., Mousavi, M.R.: Formal model-
ing of evolving adaptive systems. In: Science of Computer Programming - Special
issue of FACS 2009 (2009) (accepted)

67. Khakpour, N., Jalili, S., Talcott, C.L., Sirjani, M., Mousavi, M.R.: PobSAM:
Policy-based managing of actors in self-adaptive systems. Electr. Notes Theor.
Comput. Sci. 263, 129–143 (2010)

68. Khakpour, N., Khosravi, R., Sirjani, M., Jalili, S.: Formal analysis of policy-
based self-adaptive systems. In: Proc. 25nd Annual ACM Symposium on Applied
Computing (SAC 2010), pp. 2536–2543 (2010)

54 M. Sirjani and M.M. Jaghoori

69. Kloukinas, C., Yovine, S.: Synthesis of safe, QoS extendible, application specific
schedulers for heterogeneous real-time systems. In: Proc. 15th Euromicro Con-
ference on Real-Time Systems (ECRTS 2003), Portugal, pp. 287–294. IEEE CS
(2003)

70. Krinke, J.: Advanced Slicing of Sequential and Concurrent Programs. Ph.D. the-
sis, Universitat Passau, Fakaltat fr Mathematic und Informatik (April 2003)

71. Krinke, J.: Context sensitive slicing of concurrent programs. ACM SIGSOFT
Software Engineering Notes, 178–187 (2003)

72. Kupferman, O., Vardi, M.Y., Wolper, P.: Module checking. Information and Com-
putation 164(2), 322–344 (2001)

73. Lamport, L.: Composition: A way to make proofs harder. In: de Roever, W.-P.,
Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp. 402–407.
Springer, Heidelberg (1998)

74. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21, 558–565 (1978)

75. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. Journal on Software
Tools for Technology Transfer (STTT) 1(1-2), 134–152 (1997)

76. Lauterburg, S., Karmani, R., Marinov, D., Agha, G.: Evaluating ordering heuris-
tics for dynamic partial-order reduction techniques. In: Rosenblum, D., Taentzer,
G. (eds.) FASE 2010. LNCS, vol. 6013, pp. 308–322. Springer, Heidelberg (2010)

77. Lauterburg, S., Karmani, R.K., Marinov, D., Agha, G.: Basset: a tool for system-
atic testing of actor programs. In: SIGSOFT FSE, pp. 363–364 (2010)

78. Lee, E.A., Neuendorffer, S., Wirthlin, M.J.: Actor-oriented design of embed-
ded hardware and software systems. Journal of Circuits, Systems, and Comput-
ers 12(3), 231–260 (2003)

79. Leuschel, M., Massart, T.: Efficient approximate verification of B via symmetry
markers. In: Proc. of the International Symmetry Conference, Edinburgh, UK,
pp. 71–85 (2007)

80. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: Proc.
Fourth ACM SIGSOFT Symposium on the Foundations of Software Engineering
(1996)

81. Mason, I.A., Talcott, C.L.: Actor languages: Their syntax, semantics, translation,
and equivalence. Theoretical Computer Science 220(2), 409–467 (1999)

82. Maude Homepage, http://maude.cs.uiuc.edu
83. McMillan, K.L.: A methodology for hardware verification using compositional

model checking. Science of Computer Programming 37(1–3), 279–309 (2000)
84. Metayer, D.L.: Describing software architecture styles using graph grammars.

Software Engineering, IEEE Transactions on 24(7), 521–533 (1998)
85. Microsoft: Asynchronous agents library,

http://msdn.microsoft.com/en-us/library/dd492627(VS.100).aspx

86. Miller, A., Donaldson, A.F., Calder, M.: Symmetry in temporal logic model check-
ing. ACM Comput. Surv. 38(3) (2006)

87. Mohapatra, D., Mall, R., Kumar, R.: An overview of slicing techniques for object-
oriented programs. Informatica (Slovenia), 253–277 (2006)

88. NuSMV user manual,
http://nusmv.irst.itc.it/NuSMV/userman/index-v2.html

89. Open SystemC Initiative: IEEE 1666: SystemC Language Reference Manual
(2005), www.systemc.org

90. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evo-
lution. In: International Conference on Software Engineering, pp. 177–186 (1998)

Ten Years of Analyzing Actors: Rebeca Experience 55

91. Ptolemy homepage, http://ptolemy.berkeley.edu/ptolemyII
92. Razavi, N., Behjati, R., Sabouri, H., Khamespanah, E., Shali, A., Sirjani, M.:

Sysfier: Actor-based formal verification of systemc. ACM Trans. Embed. Comput.
Syst. 10, 19:1–19:35 (2011)

93. Ren, S., Agha, G.: RTsynchronizer: language support for real-time specifications
in distributed systems. ACM SIGPLAN Notices 30(11), 50–59 (1995)

94. Ren, S., Yu, Y., Chen, N., Marth, K., Poirot, P.E., Shen, L.: Actors, roles and
coordinators — A coordination model for open distributed and embedded systems.
In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol. 4038,
pp. 247–265. Springer, Heidelberg (2006)

95. de Roever, W.P., Langmaack, H., Pnueli, A. (eds.): COMPOS 1997. LNCS,
vol. 1536. Springer, Heidelberg (1998)

96. Sabouri, H., Sirjani, M.: Actor-based slicing techniques for efficient reduction of
Rebeca models. Sci. Comput. Program. 75(10), 811–827 (2010)

97. Sabouri, H., Sirjani, M.: Slicing-based reductions for Rebeca. Electr. Notes Theor.
Comput. Sci. 260, 209–224 (2010)

98. Scala Programming Language Homepage, http://www.scala-lang.org
99. Schaefer, I., Poetzsch-Heffter, A.: Using abstraction in modular verification of syn-

chronous adaptive systems. In: Autexier, S., Merz, S., van der Torre, L.W.N., Wil-
helm, R., Wolper, P. (eds.) Trustworthy Software. OASICS, vol. 3. Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl
(2006)

100. Schneider, K., Schuele, T., Trapp, M.: Verifying the adaptation behavior of em-
bedded systems. In: Proc. 2006 International Workshop on Self-Adaptation and
Self-Managing Systems, SEAMS 2006, pp. 16–22. ACM, New York (2006)

101. Sen, K., Agha, G.: Cute and jcute: Concolic unit testing and explicit path model-
checking tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp.
419–423. Springer, Heidelberg (2006)

102. Sirjani, M., Movaghar, A.: An actor-based model for formal modelling of reactive
systems: Rebeca. Tech. Rep. CS-TR-80-01, Tehran, Iran (2001)

103. Sirjani, M., Movaghar, A., Iravanchi, H., Jaghoori, M., Shali, A.: Model check-
ing Rebeca by SMV. In: Proc. Workshop on Automated Verification of Critical
Systems (AVoCS 2003), Southampton, UK, pp. 233–236 (April 2003)

104. Sirjani, M., Movaghar, A., Mousavi, M.: Compositional verification of an object-
based reactive system. In: Proc. Workshop on Automated Verification of Critical
Systems (AVoCS 2001), Oxford, UK, pp. 114–118 (April 2001)

105. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.: Model checking, automated
abstraction, and compositional verification of Rebeca models. Journal of Universal
Computer Science 11(6), 1054–1082 (2005)

106. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.: Modeling and verification of
reactive systems using Rebeca. Fundamenta Informatica 63(4), 385–410 (2004)

107. Sirjani, M., Shali, A., Jaghoori, M., Iravanchi, H., Movaghar, A.: A front-end tool
for automated abstraction and modular verification of actor-based models. In:
Proceedings of Fourth International Conference on Application of Concurrency
to System Design (ACSD 2004), pp. 145–148. IEEE Computer Society (2004)

108. Sirjani, M., de Boer, F.S., Movaghar, A.: Modular verification of a component-
based actor language. Journal of Universal Computer Science 11(10), 1695–1717
(2005)

56 M. Sirjani and M.M. Jaghoori

109. Sirjani, M., de Boer, F.S., Movaghar, A., Shali, A.: Extended Rebeca: A
component-based actor language with synchronous message passing. In: Proceed-
ings of Fifth International Conference on Application of Concurrency to System
Design (ACSD 2005), pp. 212–221. IEEE Computer Society (2005)

110. Sirjani, M., Movaghar, A., Iravanchi, H., Jaghoori, M.M., Shali, A.: Model check-
ing in Rebeca. In: Arabnia, H.R., Mun, Y. (eds.) Proc. International Conference
on Parallel and Distributed Processing Techniques and Applications, vol. 4, pp.
1819–1822. CSREA Press (2003)

111. Spin: Spin User Manual, http://spinroot.com/spin/Man/Manual.html
112. Taentzer, G., Goedicke, M., Meyer, T.: Dynamic change management by dis-

tributed graph transformation: Towards configurable distributed systems. In:
Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS,
vol. 1764, pp. 179–193. Springer, Heidelberg (2000)

113. Talcott, C.L.: Composable semantic models for actor theories. Higher-Order and
Symbolic Computation 11(3), 281–343 (1998)

114. Talcott, C.L.: Actor theories in rewriting logic. Theoretical Computer Sci-
ence 285(2), 441–485 (2002)

115. Talcott, C.L.: Coordination models based on a formal model of distributed object
reflection. Electr. Notes Theor. Comput. Sci. 150, 143–157 (2006)

116. Talcott, C.L.: Policy-based coordination in PAGODA: A case study. Electr. Notes
Theor. Comput. Sci. 181, 97–112 (2007)

117. Valmari, A.: A stubborn attack on state explosion. In: Clarke, E., Kurshan, R.P.
(eds.) CAV 1990. LNCS, vol. 531, pp. 156–165. Springer, Heidelberg (1991)

118. Vardi, M.Y.: Branching vs. linear time: Final showdown. In: Margaria, T., Yi, W.
(eds.) TACAS 2001. LNCS, vol. 2031, pp. 1–22. Springer, Heidelberg (2001)

119. Varela, C., Agha, G.: Programming dynamically reconfigurable open systems with
SALSA. ACM SIGPLAN Notices 36(12), 20–34 (2001)

120. Weiser, M.: Program slicing. In: Proc. 5th International Conference on Software
Engineering, pp. 439–449 (1981)

121. Yonezawa, A.: ABCL: An Object-Oriented Concurrent System. Series in Com-
puter Systems. MIT Press (1990)

122. Zhang, J., Cheng, B.H.C.: Specifying adaptation semantics. ACM SIGSOFT Soft-
ware Engineering Notes 30(4), 1–7 (2005)

123. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive
software. In: Proc. 28th International Conference on Software Engineering,
ICSE 2006, pp. 371–380. ACM, New York (2006)

124. Zhang, J., Goldsby, H.J., Cheng, B.H.: Modular verification of dynamically adap-
tive systems. In: Proc. 8th ACM International Conference on Aspect-Oriented
Software Development, AOSD 2009, pp. 161–172. ACM, New York (2009)

Mathematical Models of Object-Based Distributed
Systems

Carlos Henrique C. Duarte�

BNDES, Av. República do Chile 100, Rio de Janeiro, RJ, 20001-970, Brazil
carlos.duarte@computer.org

http://chcduarte.webs.com

Abstract. We propose an alternative characterisation of object-based distributed
systems in terms of algebraic structures and topological spaces. Some examples
are given in order to attest the adequacy of this approach to the subject. We also
illustrate a method of transference of results from these mathematical theories
that can further contribute to the advancement of distributed systems theory.

Keywords: Algebraic Structures, Topological Spaces, Distributed Systems, Soft-
ware Development.

1 Introduction

Distributed systems are hard to design and understand because we lack intuition for
them [24]. Although this was pointed out almost two decades ago, it appears that the
theory and practice of distributed systems development has not evolved sufficiently
since then so as to completely unravel the inherent complexity of the notion of distribu-
tion. On the contrary, diverse formalisms and technologies proliferate, usually adding
more complexity to this problem.

A plausible and frequently adopted approach for obtaining a better intuition concern-
ing distributed systems consists in developing an abstract and faithful representation of
such systems, notably by adopting a class of mathematical structures that allows us to
represent and analyse any property of interest. Here, such mathematical structures are
called distributed system formal models.

It has been a longstanding tradition in Computer Science, and more generally in
Logic, to adopt algebraic structures as the underlying mathematical entities against
which the satisfiability of logically formulated properties is inspected [26]. The for-
mal models usually adopted in distributed systems development are not different: (fair)
transition systems [21], I/O automata [17], edge reversing graphs [5], event structures
[19] and many others are defined as algebraic structures.

By no means we need to restrict ourselves to the algebraic character of mathemat-
ical structures in the study of distributed systems. In this paper, in particular, our aim

� The definitions and results in this paper can be regarded as an attempt to obtain more general
axiomatic theories than those developed by Carolyn Talcott and her colleages over the past
two decades on the theory of asyncronous object-based distributed systems.

G. Agha, O. Danvy, and J. Meseguer (Eds.): Talcott Festschrift, LNCS 7000, pp. 57–73, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

58 C.H.C. Duarte

is precisely to propose a novel characterisation of distributed systems in terms of a di-
verse mathematical theory: topological spaces. In fact, this approach is not entirely new:
Alpern and Schneider provided a topological characterisation of safety and liveness
properties of concurrent and distributed systems in [3], while Herlihy, Shavit, Saks and
Zaharoglou gave in [14,23] a topological characterisation of the class of decision prob-
lems that can be solved using asynchronous wait-free deterministic distributed shared
memory computation. Here, our purpose is to widen this approach in order to cover not
only distributed computing but also distributed systems development in general, includ-
ing the specification and verification of their structural and behavioural properties.

The proposed characterisation of distributed systems yields a method of transference
of results from the underlying mathematical theories. Frequently adopted by mathe-
maticians, such method consists in a scheme to transpose verified results concerning a
well established theory to another one which is still in development. In this paper, we
also illustrate this method, which we believe can further contribute to the advancement
of distributed systems theory.

We regard our algebraic and topological characterisation of distributed systems to
be the main original contribution reported in this paper. The corresponding theoretical
results are important towards establishing a framework for the analysis and simulation
of distributed system behaviours, facilitating their comprehension. They also establish
a general formal foundation for the definition of logical systems devoted to the compo-
sitional development of object-based distributed systems.

The remainder of the paper is organised as follows: Section 2 introduces the relevant
distributed system notions; Section 3 presents the underlying algebraic structures that
are used throughout the paper; while Section 4 develops a topological characterisation
and analysis of distributed systems. We conclude the paper commenting on related and
future work.

2 Distributed System Notions

Distributed systems can be identified in many different contexts. A computer network of
a corporation can be regarded as a distributed system. Software applications providing
support to electronic commerce, distance education and electronic government, through
widely distributed computer networks such as the Internet, can also be considered as
examples of this family of systems. Moreover, postal systems in which the dispatch,
processing and delivery of letters is manually performed are inherently distributed.

It is very hard to propose an exact definition of distributed systems considering that
our aim is to capture with such a definition the aforementioned examples. Consequently,
we will consider sufficient throughout this text to say that a distributed system is a set
of at least loosely coupled autonomous objects potentially situated at distinct localities.

Here, the term object corresponds to an abstraction, which can represent distinct
types of entities, such as humans, intelligent agents, software components or processing
units. The assumption that objects are at least loosely coupled captures, on the one
hand, the intuition that completely disconnected sets of objects define in fact separated
(sub-)systems, and, on the other hand, that fully coupled objects cannot present any
autonomous behaviour.

Mathematical Models of Object-Based Distributed Systems 59

The term location denotes a reference to the physical or virtual position of each ob-
ject and is perhaps what fundamentally distinguishes our definition from others avail-
able in the literature. We find it convenient to presume that objects are situated (even
if we frequently forget this), since, whenever this is identified as a requirement in a
particular development, it is a sufficient condition to characterise the system as inher-
ently distributed, in opposition to systems which are made distributed due to a decision
adopting a distribution technology.

With the notions defined above, it is already possible to express many distributed
system conceptual models, capturing distinct sets of choices concerning the modes of
object creation, configuration, interaction and failure that regulate the structure and be-
haviour of a family of distributed systems. In the present paper, we recurrently rely
on examples of dynamically configured asynchronous message passing and statically
configured distributed shared memory systems.

We adopt the Actor Model [1] as a reference to message passing systems. Actors are
independent units of interaction and computation. They interact solely via asynchronous
point-to-point message passing. The delivery of messages is guaranteed and, as a result
of consuming a message, an actor may change its local state, create finitely many objects
and dispatch a finite number of messages to the actors which became known at creation
time or through message consumption.

Concerning distributed shared memory systems, we adopt Unity [6] as a reference
model. Objects in Unity are defined in terms of memories denoted by variables and also
by multiple assignments. They interact among themselves and with their environment
by reading and writing on shared memories, possibly synchronising on such occur-
rences. Unity adopts a weak fairness assumption requiring that continuously enabled
assignments eventually occur. It is only due to such occurrences that variables defining
object states can change.

Conceptual models such as Actors and Unity are formulated to enable the specifica-
tion and verification of distributed systems. We use here the financial systems domain
to contrast the respective modelling approaches. Two types of objects are postulated to
exist: persons, active objects capable of receiving and disbursing amounts of money,
and accounts, passive objects over which credit and debt operations can be performed.
Typical relationships between these objects are those of deposit and withdrawal. We
also allow persons and accounts to exchange money directly among themselves.

Persons and accounts are seen here as object types of the same kind. We consider that
they are both money repositories and take advantage of this consideration to propose
a unique specification for their kind. We present in Fig. 1 their specification according
to the Actor Model and in Fig. 2 according to Unity. We should point out that the get
and put actions in these specifications should be respectively read as a reception and a
disbursement of money whenever repositories are seen as persons. The same rationale
applies to accounts, credits and debts.

We use a a temporal logic language in these specifications [10], instead of the usual
declarative ones [1,6], to specify local object behaviours. The conditions in each spec-
ification are usually called local constraints, since they restrict the set of life cycles
admissible for each object. For instance, (i) if we get some amount of money from a
repository, this amount will be deduced from the respective balance in a moment strictly

60 C.H.C. Duarte

Actor AMONEYREP

data types Addr,Float
attributes bal : Float
messages get?(Addr,Float),get!(Addr,Float),put?(Addr,Float),put!(Addr,Float)
axioms m,n : Addr;k,x,y : Float

(get? n x)∧bal =k→(¬((get? m y)∨(put? m y)))Û(send n (get! self x)∧bal =k−x) (1.1)
(put? n x)∧bal =k→(¬((get? m y)∨(put? m y)))Û(send n (put! self x)∧bal =k+x) (1.2)
get? n x → bal ≥ x (1.3)

Fig. 1. Actor-based specification of money repositories

Process UMONEYREP

data types Float
memories bal : Float
actions get(Float),put(Float)
axioms k,x,y : Float

get(x)∧bal = k → (¬(get(y)∨put(y)))Û(bal = k−x) (2.1)
put(x)∧bal = k → (¬(get(y)∨put(y)))Û(bal = k +x) (2.2)
get(x) → bal ≥ x (2.3)

Fig. 2. Unity-based specification of money repositories

in the future1 and no other event is allowed to happen until then (1.1 and 2.1); (ii) this is
only allowed to happen if the current balance is greater or equal to the required amount
(1.3 and 2.3).

The differences in modelling style are apparent in our specifications: whereas ac-
tors interact by receiving, consuming and sending back asynchronous messages from/to
their clients, Unity processes are synchronous, in the sense that events and variable
changes are perceived to happen simultaneously by the participant objects. We should
stress that, even using a particular specification formalism, the respective objects com-
ply with the semantics of the corresponding conceptual models. For instance, a with-
drawal represented in the standard Unity notation by a guarded assingment of a value x
to an account balance shared variable is represented in specification UMONEYREP by
the action identifier get(x) and two axioms are used to express its pre and post condi-
tions: axiom (2.3) defines the assingment guard while axiom (2.1) defines its results.

In order to address the configuration and correlation of local object behaviours, co-
ordination specifications are adopted. Instead of proposing textual specifications for the
aforementioned types of distributed objects in particular operation contexts, we per-
form this task diagrammatically: Fig. 3 details a possible message-based scenario for
the behaviour of a financial system, whereas Fig. 4 uses a shared-memory state-based
notation. These specifications are formulated using UML [20].

1 It is important to mention that the standard semantics of these models also prevent two local
events of the same object to happen concurrently.

Mathematical Models of Object-Based Distributed Systems 61

�

�

�

�

�

�

�

<<create>>

<<person>><<person>>

<<account>>

deposit? n k

deposit! c k

withdraw? m v

withdraw! c v

withdraw! c v’

m:Parent

c:BankAcc

n:Child

withdraw? m v’

Fig. 3. Message-based scenario for a financial system behaviour

��

�

�

� �

�

�

�

�� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

<<person>>
i:Investor

<<account>>
c:InvestAcc

after(1year)/
deposit(
6%balance) withdraw(v)/

[balance>0]
Invested

Invested

New [v<balance]

withdraw(
balance)/

c.withdraw(
c.balance)/

c.deposit(k)/

Fig. 4. Shared-memory state-based specification for financial system behaviours

3 Algebra

3.1 Time Frames

A central issue in distributed systems formal modelling consists in the identification of
the structure and role of time, since different families of distributed systems appear to
require distinct time structures in order to express the relatively autonomous behaviour
of their constituent objects. In view of this diversity, we define here time structures in a
very general manner and study afterwards how the usually adopted time frames can be
derived. The role of time in distributed systems modelling is discussed in Section 3.2.

62 C.H.C. Duarte

Definition 1 (Time Frame). A time frame is a(n algebraic) structure 〈〈T,≤〉,L〉:
– T is a non-empty set defining a time domain;
– ≤ ⊆ T×T is a(n order) relation, with 〈T,≤〉 satisfying the following axioms:

(R1) Reflexivity: For every x ∈ T, x ≤ x ;
(R2) Anty-symmetry: For every {x,y} ⊆ T, x ≤ y∧ y ≤ x → x = y ;
(R3) Transitivity: For every {x,y,z} ⊆ T x ≤ y∧ y ≤ z → x ≤ z; (transitivity)

– L is a set of linear time flows: every λ ∈ L is a function with dom λ ∈ P+(T) and
cod λ ∈ I+(L)2, for some fixed 〈L,�〉3 satisfying (R1-3) and
(LIN) Linearity: For every {x,y,z} ⊆ L, x � y → z � x∨ y � z;
and each λ satisfying the following axioms:
(OO) Injectivity: For every {x,y}⊆dom λ λ (x) = λ (y) → x = y;
(OT) Surjectivity: For every y ∈ cod λ , ∃x · x ∈ dom λ ∧λ (x) = y;
(MO) Monotonicity: For every {x,y}⊆dom λ , x ≤ y → λ (x) � λ (y).

The discrete time frames usually adopted in concurrent and distributed systems de-
velopment can be classified according to their linear or branching nature. Branching
time has been considered a convenient framework not only for the implementation of
model checking tools but also for the specification of one kind of enabledness property
which expresses what may be happening at the current time instant [10]. On the other
hand, linear time is the mainstream assumption, due to its simplicity, but nevertheless
allows one to express enabledness as the satisfaction of sufficient pre-conditions for a
specific imminent occurrence [15].

Definition 1 easily captures linear or branching time frames. In particular, the as-
sumption of linearity is captured whenever L is postulated to be a singleton. The fact
that L and T are left unspecified in such kind of postulate makes it possible to ex-
press discrete or dense time extra assumptions. We do not, however, require that 〈T,≤〉
obeys only such restrictions taking into account inherently distributed physical systems
for which the idealised time frame is imaginary.

In fact, the adoption of linearisation functions in L can be viewed precisely as a mech-
anism to map higher-dimensional time structures into the forth dimension of space-time,
which corresponds to our standard linear intuition concerning time flows. Incidentally,
we capture the existence of initial time instants in all time flows by postulating that each
λ ∈ L is bounded below.

3.2 Distributed System Formal Models

The role of time in distributed systems development consists precisely in allowing the
association of autonomous objects to corresponding behaviours and placements. The
following definition captures this intuition:

Definition 2 (Object Structure). An object structure is a 5-tuple 〈T ,V ,S ,B,P〉 de-
fined in terms of the disjoint non-empty sets T, Ev and Loc, where:

2 We denote by P (X) the set of all subsets of X and by I (X) the set of all (open and closed)
intervals defined in terms of X . Moreover, whenever we use the symbol + as a subscript, the
elements of these sets are non-empty.

3 By abuse of notation, we put dom L def= T and cod L def= L.

Mathematical Models of Object-Based Distributed Systems 63

– T = 〈〈T,≤〉,L〉 is a time frame;
– V is an event structure, defined in terms of an event domain Ev;
– S is a location structure, defined in terms of a location domain Loc;
– B : Ev → P

(
I+(cod L)

)
defines a behaviour4;

– P : Loc → P
(
I+(cod L)

)
defines a placement;

provided that the following axiom is satisfied:

(MAX) Maximality: For every e∈Ev and s∈Loc, ((∩ B(e)) = {})∧((∩ P(s)) = {}).
Structures as defined above are said to be partial order based in [22], since they

rely on the definition of underlying partial-order relations as their time frames, T .
The time flows derived from these frames, L, are used in the assignment of a time
dependent interpretation to events and locations, through B and P respectively. We leave
the event and location structures V and S partially unspecified, since they are quite
dependent upon the application domain at hand: events may carry values and locations
may have hierarchical structure, for instance to represent realistic patterns of interaction
and nested geographic regions respectively.

Concerning our financial information system specifications, the events that populate
Ev are represented by get and put (along with their variations formed by the use of the
suffixes ? and !). Therein, we could have postulated that objects are explicitly located.
In that case, the values populating Loc would define a domain on their own, specified
according to an enumeration such as the following one:

Loc def= HOME | ATM | AGENCY

In this context, it makes sense to talk about a new requirement concerning transaction
costs depending on the client location. For instance, transactions performed at an agency
would be ten times more expensive than the others. In order to treat this requirement in
our specifications, not only would we have to define Loc as above, but we would also
have to add a new parameter to each event and modify all the axioms to deduce the cost
from the account balance whenever performing any transaction. Note that systems with
location dependent requirements are regarded as inherently distributed.

Our example can be further extended so that we can illustrate the definition above.
Suppose now that the aforementioned client is in fact a bank employer with a daily
regular behaviour pattern: every day, he (i) leaves home early in the morning and comes
back at night; (ii) stays in his agency during the whole day, and (iii) withdraws some
money before working and deposits the remaining amount after work, both using an
ATM. Considering the previous definitions, the following could be a possible object
structure for this behaviour:

P(HOME) = {[0′,8′], [20′,24′]}
P(AGENCY) = {[9′,19′]}
P(ATM) = {[8′30”], [19′30”]}

B(withdraw) = {[8′30”]}
B(deposit) = {[19′30”]}

This example shows that, even if we forget locations, our previous definition is far more
general than those found in the literature. For example, events may be durative. This is

4 Note that, since cod L is totally ordered, an interval S of cod L is a subset of cod L such that,
whenever {x,y} ⊆ S, ∀z ∈ cod L · x ≤ z ≤ y → z ∈ S.

64 C.H.C. Duarte

accomplished by requiring that each event be assigned by B to the set of time intervals
during which the event occurs in a time flow. The usually adopted instantaneous events
[10] can be obtained by postulating that each occurrence is represented by a singleton,
something captured by an axiom such as (INS) below. The local structures proposed in
[22] are obtained by additionally requiring each object structure to obey sequentiality
(SEQ) in a linear time structure. If we further require discreteness, as in [7], this can
be captured by the assumption of yet another axiom, (DISC). Concerning localities,
(XOR) may be postulated to ensure that two of them are never occupied at the same
instant by a single object:

(INS) Instantaneity: For every e ∈ Ev and x ∈ P
(
I+(cod L)

)
,

x ∈ B(e) → (∀y,z · y ∈ x∧ z ∈ x → y = z);
(SEQ) Sequentiality: For every distinct {e1,e2} ⊆ Ev,

(∪B(e1))
⋂

(∪B(e2))={};
(DISC) Discreteness: For every {x,y} ⊆ T,

x ≤ y→∃z · (x ≤ z∧/∃u · x ≤ u∧u ≤ z)∧∃w · (w ≤ y∧/∃u ·u ≤ y∧w ≤ u);
(XOR) Orthogonality: For every distinct {s1,s2} ⊆ Loc,

(∪P(s1))
⋂

(∪P(s2))={};

Given two object structures, we could have naively proceeded to attempt to define
diverse modes of interaction. For instance, we could have stated that two objects syn-
chronise at an event occurrence if the event belongs to their structures and its inter-
pretations according to B in each of these structures have a time instant in common.
However, this definition would not be sufficiently general to encompass the postulation
of durative events. Worse, the involved structures could have time frames with distinct
order-theoretic characters. In fact, such diversity reflects the nonexistence of universally
valid time frames, a consequence of the acceptance of the theory of relativity governing
inherently distributed systems.

Considering this rationale, the definition of distributed system (formal) models must
be relational, in view of the necessity to establish correspondences between the time
frames of each pair of objects, as well as the boundary of each (sub-)system in relation
to its environment:

Definition 3 (Distributed System Model). A distributed system model is a 4-tuple
〈O,E, I,C〉, where:

– O is an object universe, a countable set of object structures;
– E : O → Bool is an environment identification function;
– I : O → Bool is an internal object identification function;
– C : O →O is a partial map which induces a family of time correlation functions: for

each o = 〈T ,V ,S ,B,P〉, o∈ domC, such that, if there is o′ = 〈T ′,V ′,S ′,B′,P′〉
with C(o) = o′, then there are also κo : T →T′ and κo′ : T′ → T both obeying (MO).

such that the following axiom is satisfied:

(SEP) Separation: For every o ∈ O , E(o) →¬ I(o).

The structural interface of a distributed system model – O , E and I – is rather con-
ventional and attempts to generalise the structures proposed in [2,25]: O captures an

Mathematical Models of Object-Based Distributed Systems 65

universe of distributed objects, E identifies the objects which belong to the environment
(those external to the modelled system(s)), whereas I spots the internals, objects which
cannot directly interact with the environment. Such interfaces will play a central role in
the definition of model composition below.

It is important to point out that, since we do not make any assumption concerning (the
existence of) real physical locations of distributed objects (if we had, we could also have
proposed a metric establishing the distance between distributed objects), we cannot
presume a fixed relationship between their respective time frames. In particular, since
objects may have a strictly logical character, they are not obliged to follow relativistic
correlations between time and space. Of course, in most cases object locations are given
in terms of spatial coordinates and, in these cases, the respective structures will have to
respect further spatio-temporal constraints.

The relational character of C is a consequence of the assumptions above. This map is
important, however, not only to correlate object structure time frames but also to avoid
violations in temporal causality chains (time travel), something prevented by the order
preserving requisite (monotonicity) posed on this relationship.

3.3 Interaction and Composition

We are now able to formalise the distinction between synchronous and asynchronous
modes of interaction, in the sense of [13]. Provided an object structure O , we denote
by EvO the set of events of the underlying event structure VO . Given E ⊆ EvO , we
say that an occurrence D of the events in E is totally synchronous if D belongs to the
interpretation of each event in E , that is ∀e · e ∈ E → D ∈ B(e). This mode of inter-
action is unrealistic and used only in idealised models of distributed systems. There-
fore, partial synchrony is usually adopted instead, which is defined by the existence
of a common time point t in the given occurrences D ∈ B(e) of each event e, that is
∃t ·∀e ·e ∈ E ∧D ∈ B(e)→ t ∈ D. Clearly, these definitions concern only to intra-object
interaction, but they can be extended to inter-object interaction by considering that the
involved objects all belong to the same distributed system model and are time corre-
lated. Consequently, we say that objects interact in (partially) synchronous mode if
(partial) event synchronisation is adopted as the sole mode of interaction.

The definition of synchrony above provides a sufficient characterisation of this no-
tion but not a necessary one. A sufficient and necessary characterisation is obtained
by asserting that objects rely on an upper bound on interaction delays, clock drifts or
relative object speeds [13]. The usual way of guaranteeing this interaction pattern is to
require that objects communicate using a blocking scheme. Objects rely on this kind of
synchronisation information by referring to facilities provided by their (operational) en-
vironment, whose existence is presumed or defined in linguistic terms during the system
development. In Section 3.4, we address the specification of such facilities.

The messages exchanged between persons and accounts illustrate point-to-point asyn-
chronous interaction. In particular, the semantics of these events can be defined in terms
of time intervals that capture the periods of time in which messages remain in transit.
On the other hand, deposit and withdraw actions performed simultaneously by investors
and their accounts are instances of synchronous interaction.

66 C.H.C. Duarte

The semantics of interaction outlined above captures the view that only time corre-
lated objects of the same model are able to interact. Now we wish to generalise this view
to take into account a design method in which distinct distributed systems are modelled
by isolated structures and are composed afterwards. The composition of distributed sys-
tem models is defined below:

Definition 4 (Composability). Two distributed system models Mi =〈Oi,Ei, Ii,Ci〉, i ∈
{0,1}, are composable if and only if, given that O = O0 ∪O1, the following axiom is
satisfied:

(DISJ) Disjointedness: For every o ∈ O , ¬(I0 ↑O(o)∧ I1 ↑O(o)) 5;

Definition 5 (Model Composition). A distributed system model M = 〈O,E, I,C〉 is
the composition of composable distributed system models Mi = 〈Oi,Ei, Ii,Ci〉, i∈{0,1},
if the following axioms are satisfied:

(GEN) Generalisation: O = O0 ∪O1;
(EXT) Scoping: For every o ∈ O , E(o) → E0↑O(o)∨E1↑O(o);
(IN) Internalisation: For every o ∈ O , I0 ↑O(o)∨ I1 ↑O(o) → I(o);
(COR) Correlation: For every i ∈ {0,1} and o ∈ O , Ci(o) = o′ →C(o) = o′.

Much in the way that identifying an object in different models is an important part of
the composition activity, particularly in order to ensure the satisfiability of the axioms
above, the formulation of time correlation functions is also part of this activity. Note,
however, that no new such function is required to exist in a composed model, since its
components are not obliged to maintain between themselves time correlated objects.

A model composition example is obtained by considering as sub-systems a parent
with an external bank account object, a child with its external account and the account
itself, a sub-system composed by this single object. By composing these sub-systems
pairwise, presuming that all their objects are time correlated and that the account be-
comes an internal object in the composition, we obtain a configuration having as a
possible behaviour that described by Fig. 3. Note that the composition of these sub-
systems is not unique, since we can also define a composed system with all the objects
as internals, a so-called closed system [1].

3.4 Distributed System Representations

We study in this section distributed system representations, such as the specifications
presented in Section 2. We are not, however, concerned here with the syntax of the
adopted formal languages, since there are many available alternatives. A possibility is
the use of the languages proposed in [22], which are layered: there is a local tempo-
ral language for defining objects and another language for expressing global system
properties. Another possibility is the adoption of a single language with different usage
contexts [9]: the local view of each object is captured by object specifications, whereas

5 f ↑G / f ↓H denote the generalisation / particularisation of the boolean valued function f to the

set G / H, with dom f ⊆ G, H ⊆ dom f and f ↑G(x) def=

{
f (x), for x ∈ dom f
FALSE, otherwise.

Mathematical Models of Object-Based Distributed Systems 67

system configurations and global properties are represented in the context of coordina-
tion specifications.

The semantics of such representations can be given in terms of object structures and
(composed) distributed system models. We have already sketched how message and
action symbols can be interpreted using such structures. The semantics of states and
memory values can be given in the same predicative way.

Some semantically rich symbols are often found in such representations:

self: The immutable unique identification of an object;
loc: The current location (set) of an object;
acq: The current set of acquaintances of an object – the (identities of the) objects that

became known at creation time or through object interaction;

Distributed system classifications are formulated in terms of the potential knowledge
of these notions by the respective objects. If self is available, the system is said to be
identified, or else it is said to be anonymous [4]. Whenever loc is available, the system is
said to be location aware. If the interpretation of this symbol is not constant, the system
objects are said to be mobile [8]. Moreover, if T is accessible by some objects, then
we are dealing with temporised systems. By referring directly or indirectly to T, object
computation and communication can be defined to happen more or less synchronously.
We postpone the presentation of the classification corresponding to acq to Section 4.2.

It is important to distinguish if the above notions belong to the underlying models
or are definable in terms of other notions. For this purpose, it becomes necessary to in-
troduce the semantic notions of interpretation, satisfaction, truth and consequence [12].
Given a collection of specification symbols Δ (a signature) whose generated language
is denoted by lang(Δ), we postulate the existence of an interpretation of Δ , a map [[·]]
that, provided an object structure o, assigns each symbol in Δ to an event or location of
o. Note that Δ may be partitioned in action/message and state symbols and that lang(Δ)
may have other logical symbols such as the above, which are not part of signatures. The
satisfaction o |=t

λ p of a sentence p ∈ lang(Δ) in a moment t ∈ dom λ of a time flow
λ ∈ L, a component of T of a structure o = 〈T ,V ,S ,B,P〉, is defined by recursion
on the structure of lang(Δ). The base cases of this definition in terms of Δ are:

– o |=t
λ s iff ∃d ·d ∈ B([[s]]o)∧ t ∈ d, if [[s]]o ∈ Evo;

– o |=t
λ s iff ∃d ·d ∈ P([[s]]o)∧ t ∈ d, if [[s]]o ∈ Loco;

A sentence p ∈ lang(Δ) is locally true in o and λ (o |=λ p) whenever o |=t
λ p for every

t ∈ dom λ . Whenever this is the case for every λ , p is simply true in o (o |= p). A
sentence is valid if it is true in any such structure for Δ (|= p). A consequence relation
Ψ |= p between a set of sentences Ψ and a sentence p can be defined by stating that
o |= p whenever o |= q, for every q ∈Ψ and any admissible object structure o for Δ .

4 Topology

Since this section relies on topology, we present below the relevant definitions.
The aggregate of elements of a family of subsets FX of a given set X is a topological

space TX whenever it satisfies the following axioms:

68 C.H.C. Duarte

(T1) {} ∈ FX and X ∈ FX ;
(T2) X1 ∩ . . .∩Xn ∈ FX for any n ∈ N and every Xi ∈ FX , 1 ≤ i ≤ n;
(T3)

⋃
Xi∈P Xi ∈ FX for every P ⊆ FX ;

Elements of X are called points, elements of FX are entitled opens and FX is named a
topology on X .

Given a topological space TX = (X ,FX), the complement of A under X is denoted by
A′ (that is, A′ def= X −A). Closed sets are complements of opens in FX .

4.1 Behavioural Properties

Here we recast the topological characterisation of safety and liveness properties of con-
current and distributed systems of [3] in terms of our own formal framework.

We first provide necessary and sufficient logical characterisations for safety and
liveness. Given a signature Δ and an object structure o = 〈T ,V ,S ,B,P〉 for Δ , p ∈
lang(Δ) is said to be a safety (liveness) property if and only if:

(SAFE) Safety: For every λ ∈ LT ,
(¬(o |=λ p) ⇒ (∃t ∈ dom λ · ∀λ ′ ∈ LT ·λ �o

t λ ′ → ¬(o |=λ ′ p))) 6

(LIVE) Liveness: For every λ ∈ LT , (∃λ ′ ∈ LT ; t ∈ dom λ ·λ �o
t λ ′ ∧o |=t

λ ′ p);

The first axiom states that, if we are not dealing with a safety property, it is possible to
identify an instant in which a “bad thing” falsifies the property. On the other hand, the
second axiom states that a liveness property guarantees the occurrence of a “good thing”
at some instant. Examples of these properties are respectively that a withdrawal cannot
happen if the account does not hold the required funds and that investors eventually
demand repayment of the invested amounts.

Taking advantage of the necessary and sufficient characters of the above definitions
and of the fact that object behaviours and placements are completely determined by
their underlying time flows when related by �, from now on we deal with distributed
system properties by relying on the corresponding sets of time flows. That is, we use
P def= {λ ∈ LT |o |=λ p} instead of p.

Now we adopt these sets to provide a topological characterisation for safety and
liveness properties. First note that �o

x obeys (R1) and (R3) for each x ∈ T, that is, �o
x is

a pre-order. Given X ⊆ LT , we define the following operators:

– Int(X) def= {λ ′ ∈ LT |∃λ ∈ X ;x ∈ dom λ ·λ �o
x λ ′};

– Cl(X) def= {λ ∈ LT |∃λ ′ ∈ X ;x ∈ dom λ ′ ·λ �o
x λ ′};

Int(X) is a set of time flows with common prefixes in X . As in [3], these sets are consid-
ered to be opens. They correspond exactly to liveness properties here. Cl(X) is a closed
set and corresponds to a safety property. It is not difficult to see that opens obey (T1),
(T2) and (T3). Therefore, their family Int(X), X ⊆ LT , defines a topology.

6 We denote by λ �o
t λ ′ the dominance of a function λ by another one λ ′ of the same type in

an object structure o up to t. It is defined by:

λ �o
x λ ′ def= ∀y · y ≤ x →

(∀e ·λ−1(y) ∈ B(e) → λ ′−1(y) ∈ B(e) ∧
∀s ·λ−1(y) ∈ P(s) → λ ′−1(y) ∈ P(s)

)

Mathematical Models of Object-Based Distributed Systems 69

Notice that the indexed sequences of program states used in [3], determined by our
time flows λ and λ ′ in (LIVE), are respectivelly required to be finite and infinite. Conse-
quently, liveness properties are characterised as dense sets therein. We do not consider
this to be a reasonable requirement in a general temporal setting (so long as we maintain
that “something good” eventually happens) and, as a result of this abstraction, obtain a
characterisation in which the following holds:

Lemma 1. Liveness properties are closed under arbitrary intersections.

This is a direct consequence of the set-theoretic definition of Int. Consequently, by
duality, safety properties are closed under arbitrary unions.

The main result concerning safety and liveness can be formulated as follows:

Theorem 1 (Behavioural Characterisation). Every property is an intersection of a
safety and a liveness property.

Proof: Given a signature Δ and an object structure o = 〈T ,V ,S ,B,P〉 for Δ , it suffices
to show, for P ⊆ LT representing p ∈ lang(Δ), that P ⊆ Int(X)∩Cl(Y) for some X ∪
Y ⊆ LT . But, for each β ∈ P, β ∈ Int({β})∩Cl({β}). Therefore:

P ⊆ ⋃
β∈P(Int({β})∩Cl({β})) ⊆ (

⋃
β∈P Int({β}))∩ (

⋃
β∈PCl({β}))

⊆ Int(
⋃

β∈P {β})∩Cl(
⋃

β∈P{β}) ⊆ Int(P)∩Cl(P)

4.2 Structural Properties

In this section, we show that structural properties of distributed systems can also be
characterised in topological terms.

Given an object structure o = 〈T ,V ,S ,B,P〉 and a countable value domain Addr,
we postulate the existence of {self(Addr),acq(Addr)} ⊆ Evo and that these events re-
spectively capture the semantics of self and acq if available in the adopted representa-
tion language7. The configuration of the respective object for λ ∈ LT and t ∈ dom λ is
defined by the following function:

Con fλ (t) def= {i : Addr|t ∈ ∪B(acq(i))}
This notion can be generalised to each object o ∈ O of a distributed system model
M = 〈O,E, I,C〉 as follows:

Con f o
λ (t) def= {i : Addr|t ∈ ∪Bo(acq(i))∧C(o) = o′ ∧κo(t) ∈ ∪Bo′(self(i))}

Without loss of generality, we deal with objects themselves in place of their identifica-
tions, since these are unique and immutable. Concerning each distributed system X ⊆O
that M represents, we say that it has a static configuration if and only if, for each o∈X ,
Con f o

λ (t) is constant over t ∈ dom λ , for every λ ∈ LT . Otherwise, it is said to have a
dynamic configuration.

7 Moreover, that ∀x : Addr · self(x) → acq(x).

70 C.H.C. Duarte

Going back to Section 3.3, it is easy to see that the example system composed by
three objects has a static configuration whenever the unique allowed interaction pattern
is that described by Fig. 3. On the other hand, if child or parent objects are allowed to
interact with the external environment, the system will have a dinamic configuration.

It is the open and closed character of some distributed system configurations that is
subject to a topological definition. Towards this, we need two further generalisations
of distributed system configuration notions, respectively without any reference to the
passage of time and covering sets of objects instead of single objects. The corresponding
definitions are presented below:

Con f (o) def=
⋃

t ∈ dom λ
λ ∈ LT

Con f o
λ (t); Con f (X) def=

⋃
o∈X Con f (o)

Given X ⊆ O , Con f (X) is considered to be an open. Again, opens obey (T1), (T2)
and (T3) and the family Con f (X), X ⊆ O , defines a topology. Moreover,

Lemma 2. Configurations are closed under arbitrary intersections.

The following is a structural counterpart to our behavioural characterisation:

Theorem 2 (Structural Characterisation). Every object universe is an union of open
and closed disjoint sets of objects.
Proof: Given a model M =〈O,E, I,C〉, let the set of internals be J def= {o ∈ O|I(o)}, the
externals set be F def= {o ∈ O|E(o)} and R def= O − J−F . Hence:

1. The open set containing all the objects directly reachable from the environment is
Con f (F). Therefore, Con f (F)′ is the closed set corresponding to J;

2. The open set of objects corresponding to R is Con f (J)∩Con f (F);
3. The closed set corresponding to F is (Con f (J)∪ (Con f (J)∩Con f (F)))′.

These three sets are disjoint and their union corresponds to O .

It is interesting to mention that the set R above corresponds precisely to the receptionist
objects of [1] and, more generally, to the objects reachable from the environment. These
are the central objects in each distributed system model.

It is not surprising to reach the conclusion above, since it captures the standard in-
tuition in distributed systems development that internals are substitutable and the envi-
ronment uncertain. The theorem shows in particular that, if we ignore the empty sets
that determine trivial distributed system models and adopt the terminology mentioned
in Section 3.3, each single closed system corresponds precisely to a closed object set
in our topology: it determines the set of internals of the model, whereas the sets of
externals and receptionists are empty in this case.

4.3 Transference of Results

Now we show how results on topological spaces can be transfered directly to distributed
system theory. We focus our attention in the problem of determining the class of dis-
tributed system models in which external objects not able to reach the modelled systems
have been eliminated therein.

Mathematical Models of Object-Based Distributed Systems 71

Due to the nature of this problem, we are obliged to introduce other topological
notions. We say that f : A → B is continuous if the inverse images of closed sets under f
are closed. In a topological space TX = (X ,FX), a sub-set Y ⊆ X is said to be connected
if there is no way to define Y as a union of two disjoint nonempty open sets. The
connected component of p ∈ X is a sub-set Cp ⊆ X such that p ∈ Cp, Cp is connected
and, if p ∈C for some connected C ⊆ X , C ⊆Cp. The connected components of TX are
the respective sets that partition X . The following result is used in the sequel:

(CC) The connected components of a topological space are closed sets;

Let us spell out what we mean by an operation of restriction (modulo equivalence).
This and other operations on models can be represented by means of injective set in-
clusion functions on objects whose inverse images map safety properties and internals
into similar entities and also preserve separation and correlation. Note that the inverse
image of these functions map closed sets (safety properties and internal objects) into
closed sets, characterising them to be continuous.

Theorem 3 (Model Restriction). Each distributed system model can be restricted to
an equivalent model without disconnected externals.
Proof: Given M = 〈O, I,E,C〉, let A = {Ai|Ai ⊆ O} be the family of connected com-
ponents of the topological space (O,{Con f (X)|X ⊆ O}). Due to Theorem 2, we know
that O = J ∪R∪F for some closed J and F and some open R sets as defined therein.
By (CC), we know that each Ai is a closed set. If |A| = 0, M is the trivial model which
is clearly equivalent to itself. Alternatively, if |A| ≥ 1, due to the dual of Lemma 2,
D =

⋃
Ai⊆F Ai is the closed set of disconnected externals.

Put O ′ def= O−D and M ′ def= 〈O ′, I ↓O ′,E ↓O ′,C ↓O ′〉. Clearly, the function f : O ′ →O
defined by the identity on O ′ satisfies all the requirements to be considered a restriction.
Consequently, M ′ is the representative of the class of models equivalent to M .

The result above illustrates how to take advantage of topology results, namelly (CC), to
develop distributed systems theorems. If it is proven to be decidable for some class of
models, it can be used to develop static analyses of distributed system representations
that may suggest simplifications to software engineers. With a bit of ingenuity, it can
also be extended to formalise distributed garbage collection.

5 Concluding Remarks

In the present paper, we proposed a novel characterisation of object-based distributed
systems in terms of algebraic structures and topological spaces. Although there seems
to exist a growing consensus concerning the importance of topological methods in dis-
tributed computing, we are not aware of other research efforts that address their whole
development process in this way.

The proposed algebraic structures are sufficiently general to express most distributed
system notions, such as diverse modes of object creation, configuration, interaction and
timing usually found in the literature. In particular, they are a generalisation of the
algebraic notions first developed in [2,25]. The topological analysis of these structures

72 C.H.C. Duarte

allowed us to recast here behavioural results of [3], to develop similar results concerning
distributed system configurations and also to exemplify how topological results can
be transfered to distributed systems theory. We consider these to be the main original
contribution of our research.

The reported research yields a general foundation for the definition of logical systems
devoted to the compositional development of object-based distributed systems. It is
also important towards establishing a semantically rich framework for the analysis and
simulation of distributed system behaviours, facilitating their comprehension.

We expect to refine in the future the connections of the reported research with our
previous work on object-based mobility [8], specification [9] and implementation [11].
It is in perspective an extension of this work towards applying the theory of dynamical
systems to distributed systems development. Another interesting direction for future
work is to formalise the method of transference of results from the aforementioned
mathematical theories to distributed systems theory using Institutions [12].

Acknowledgement. The author gladly acknowledges that the remaks from an anony-
mous referee contributed to improve the readability of this paper.

References

1. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press
(1986)

2. Agha, G., Mason, I., Smith, S., Talcott, C.: A foundation for actor computation. Journal of
Functional Programming 7(1), 1–72 (1997)

3. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters 21(4), 181–
185 (1985)

4. Attiya, H., Snir, M., Warmuth, M.: Computing on an anonymous ring. Journal of the
ACM 35(4), 845–876 (1988)

5. Barbosa, V., Gafni, E.: Concurrency in heavily loaded neighborhood-constrained systems.
ACM Transactions on Programming Languages and Systems 11, 584–592 (1989)

6. Chandy, K.M., Misra, J.: Parallel Program Design, A Foundation. Addison-Wesley (1988)
7. Denker, G., Ehrich, H.D.: Specifying distributed information systems: Fundamentals of an

object-oriented approach using distributed temporal logic. In: Bowman, H., Derrick, J. (eds.)
Prof. 2nd IFIP Workshop on Formal Methods for Open Object-Based Distributed Systems
Conference (FMOODS 1997), vol. 2, pp. 89–104. Chapman and Hall (1997)

8. Duarte, C.H.C.: A proof-theoretic approach to the design of object-based mobility. In: Bow-
man, H., Derrick, J. (eds.) Proc. 2nd IFIP Conference on Formal Methods for Open Object-
Based Distributed Systems (FMOODS 1997), pp. 37–53. Chapman and Hall (July 1997)

9. Duarte, C.H.C., Maibaum, T.: A rely-guarantee discipline for open distributed systems de-
sign. Information Processing Letters 74(1-2), 55–63 (2000)

10. Duarte, C.H.C., Maibaum, T.: A branching-time logical system for open distributed systems
development. Electronic Notes on Theoretical Computer Science 67 (2002)

11. Duarte, C.H.C., Talcott, C.: Clara: An actor language for high performance distributed com-
puting. In: Proc. 12th Symposium on Computer Architecture and High Performance Com-
puting (SBAC-PAD 2000), pp. 20–37 (October 2000)

12. Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification and pro-
gramming. Journal of the ACM 39(1), 95–146 (1992)

Mathematical Models of Object-Based Distributed Systems 73

13. Hadzilacos, V., Toueg, S.: Fault-tolerant broadcasts and related problems. In: Distributed
Systems, pp. 97–145. Addison-Wesley (1993), ch. 5 of [18]

14. Herlihy, M.P., Shavit, N.: The topological structure of asynchronous computation. Journal of
the ACM 46, 856–923 (1999)

15. Lamport, L.: The temporal logic of actions. ACM Transactions on Programming Languages
and Systems 16(3), 872–923 (1994)

16. Lefschetz, S.: Algebraic Topology. American Mathematics Society (1942)
17. Lynch, N.: Distributed Algorithms. Morgan Kaufmann (1996)
18. Mullender, S. (ed.): Distributed Systems, 2nd edn. Addison-Wesley (1993)
19. Nielsen, M., Plotkin, G., Winskel, G.: Petri-nets, event-structures and domains - part I. The-

oretical Computer Science 13, 85–108 (1981)
20. O. M. G. Unified Modelling Language Specification. Object Management Group — OMG,

Version 1.3 (June 1999)
21. Plotkin, G.: A structural approach to operational semantics. Technical Report DAIMI FN-19,

Computer Science Department, University of Aahus (1981)
22. Ramanujam, R.: Locally linear time temporal logic. In: Proc. 11th IEEE Symposium on

Logic in Computer Science, pp. 118–127. IEEE Computer Society Press (1996)
23. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: The topology of public

knowledge. Siam Journal on Computing 29, 1449–1483 (2000)
24. Schneider, F.B.: What good are models and what models are good. In: Distributed Systems,

pp. 17–26. Addison-Wesley (1993), ch. 12 of [18]
25. Talcott, C.: Composable semantic models for actor theories. Higher-Order and Symbolic

Computation 11(3), 281–343 (1998)
26. Tarski, A.: Logics, Semantics and Metamathematics. Oxford Publishing Company (1956)

From Explicit to Symbolic Types for

Communication Protocols in CCS

Hanne Riis Nielson1, Flemming Nielson1, Jörg Kreiker2, and Henrik Pilegaard2

1 DTU Informatics, Technical University of Denmark, Denmark
{riis,nielson}@imm.dtu.dk

2 Institut für Informatik, Technische Universität München, Germany
joba@model.in.tum.de, henrik@pilegaard.org

Abstract. We study communication protocols having several rounds
and expressed in value passing CCS. We develop a type-based analysis
for providing an explicit record of all communications and show the usual
subject reduction result. Since the explicit records can be infinitely large,
we also develop a type-based analysis for providing a finite, symbolic
record of all communications. We show that it correctly approximates
the explicit record and prove an adequacy result for it.

1 Introduction

Motivation. Modern IT Systems are complex and contain a number of challenges:
concurrency, distribution and secure communcation over insecure networks to
name but a few. One approach to designing and analysing such systems is
through the use of high-level models of the underlying computational paradigms
— these can then be scrutinized using a number of formal approaches or by
studing the performance of concrete prototypes. The number of such paradigms
is vast but in our view the focus on distributed and concurrent processes is
evident in calculi such as Actors (e.g. [1]), Obliq [6], and Klaim (e.g. [12]).

Adapting static analysis techniques to apply to such calculi is no trivial pur-
suit1 although many useful approaches have emerged. Some of us have been
actively involved in pursuing the use of Type and Effect Systems [13] together
with process calculi and in the development of Flow Logic for programming lan-
guages and process calculi [16,17]. Apart from ensuring semantic correctness and
algorithmically tractable ways of obtaining “best” analysis results we also con-
sider it important to strive for approaches that find the proper balance between
precision (using state-of-the-art methods and techniques) and technical detail
(to allow to be assimilated by the community).

The problem. In this paper we study the key challenge of secure communication
over an insecure network. One of the key challenges of communication protocols
1 The first two authors worked with Carolyn Talcott and Chris Hankin during the

Atlantique-project in the mid 1990’es on developing static analysis for a fragment of
Obliq but this work did not go much further than indentifying the key obstacles.

G. Agha, O. Danvy, and J. Meseguer (Eds.): Talcott Festschrift, LNCS 7000, pp. 74–89, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

From Explicit to Symbolic Types for Communication Protocols in CCS 75

is that the desired communication is indeed exchanged between the intended
participants. Often communication takes place in a number of rounds where it is
essential that information pertaining to one round does not interact with other
rounds. In short, the private messages exchanged between the participants in
one round should not erroneously show up in another round. We show how to
develop a static analysis for verifying this property.

To express the communication protocols we use a simple value passing variant
of Milner’s CCS (as in Chapter 4 of [11] but with replication instead of recur-
sion as well as polyadic name passing) rather than the more complex calculi men-
tioned above. For a concrete example consider the value passing CCS expressions
P1 = ! (νn) (νm) (n〈m〉 | n(x)) and P2 = (νn) ! (νm) (n〈m〉 | n(x)). In both cases,
a number of rounds is carried out, as indicated by the replication operator ! , and
in each round a fresh name m is output on a channel n and subsequently input on
the same channel and bound to a variable x. The difference between the two pro-
cesses is that in the case of P1 a fresh channel is used in each round whereas in
the case of P2 the same global channel is used in all rounds. Consequently, only in
P1 is there no interaction between rounds whereas this is possible in P2. Our type
based analysis will be able to pinpoint this difference between P1 and P2.

To facilitate the development of a static analysis that is able to pinpoint this
difference between P1 and P2 we introduce a value passing variant of CCS, which
incorporates round information on the replication operators and on names and
variables introduced within the “scope” of such replication operators. In this
notation the examples from above read

P1 = !a:1 (νna:?) (νma:?) (na:?〈ma:?〉 | na:?(xa:?))
P2 = (νnε) !a:1 (νma:?) (nε〈ma:?〉 | nε(xa:?))

The superscripts are called round indicators and the identifiers in front of the
colons are called round identifiers. They indicate syntactically, which unfolding
instance of a replication a name or variable belongs to.

Overview. In Section 2, our value passing CCS is equipped with a fairly standard
reaction semantics and a structural congruence – however, while we allow to
unfold replication we shall not allow to fold it back.

Our first static analysis, in Section 3, is a type system that gives an explicit
record of the data communicated and bound to variables. It is precise in recording
the round information that pertains to the data and variables. This is achieved by
ensuring that names and variables bound within the scope of several replication
operators are all indexed by sequences of values corresponding to sequences of
round indicators as already illustrated in the syntax of P1 and P2 above. We
prove the correctness of this analysis using a standard subject reduction result.
The analysis suffices for pinpointing the difference between P1 and P2.

The main drawback of this analysis is its use of an infinite set of rounds and
therefore the explicit record is necessarily infinite. In Section 4, we therefore
show how to develop a type system that gives a symbolic record of the solutions
prescribed by our analysis. We design it so as to accurately track the identities

76 H. Riis Nielson et al.

Table 1. The action prefixes, π, of value passing CCS

π ∈ Act ::= Action prefixes
τ Internal action
n〈ū〉 Output action
n(x̄) Input action

of round information (whereas more powerful techniques would be needed for
expressing affine relationships between various rounds, e.g. [9]). To this end
we use simple equations between symbolic round indicators, thereby effectively
partitioning the round indicators into equivalence classes belonging to the same
round. We then show that the analysis results presents an overapproximation,
expressed using a suitable concretisation function, of the explicit types prescribed
by the previous type system. Our adequacy result shows that our analysis is able
to prove that programs adhere to a novel notion of round consistency defined in
Definition 1 in Section 2.

We sketch a worked example in Section 5 based on the Diffie-Hellman key
exchange protocol [7], and conclude in Section 6 by discussing related work and
the challenges posed by distribution and discussing possible extensions of our
approach to more expressive calculi and more demanding analyses.

2 Value Passing CCS

Communication protocols often consist of a number of rounds. In the presence
of several concurrent instances of the same process, one needs to ensure that
there is no cross-over talk between instances belonging to different rounds. In
Definition 1, we shall capture this by a notion of round consistency. In order to
concentrate on this critical aspect, we shall base our developments on a puristic
process algebraic model of concurrent systems. In the following we shall therefore
present a polyadic value-passing variant of Milner’s CCS (Chapter 4 of [11]) that
shall serve as the basis for the developments of later sections.

2.1 Syntax

The fundamental data entities of the language are names, n, m ∈ Name. Fur-
thermore, the language has variables, x, y ∈ Var, that act as placeholders for
names. When an entity can be either a name or a variable we use metavariables
u, v ∈ (Name ∪ Var).

The operational activity primitives of the language are actions as defined by
Table 1. Such an action may be either some internal activity, τ , the polyadic
output, n〈ū〉, of a data tuple, ū = u1 · · · uk, over a channel, n, or the polyadic
input, n(x̄), of polyadic data received via a channel, n, into a tuple of variables,
x̄ = x1 · · · xk.

The programs of the language are processes as defined by Table 2. The guarded
sum,

∑k
i=1 πi . Pi can choose non-deterministically between k processes that are

From Explicit to Symbolic Types for Communication Protocols in CCS 77

Table 2. The processes, P, of value passing CCS

P ∈ Proc ::= Processes

| ∑k
i=1 πi . Pi Guarded sum

| P1 | P2 Concurrent composition
| (νn)P Scope restriction
| !β:k P Process replication

each a sequential composition of an action prefix, πi, and a continuation, Pi. In
the nullary and unary special cases this construct specialises to the nil process,
0, and the ordinary sequential composition, π . P, respectively. Processes, P1 and
P2 executing in parallel are composed by concurrent composition, P1 | P2. A
name, n, is made private to a subsystem, P, by scope restriction, (νn)P. Finally,
a process, P, is replicated as many times as necessary by process replication,
!β:k P, where we explain the purpose of the superscript below.

In order for the type systems of Sections 3 and 4 to ensure round consis-
tency (formally defined in Definition 1), it must be possible to unambiguously
relate names and variables to a unique round, i.e. a particular recursive process
instance. Therefore, each process replication, !β:k P, is annotated by a round
indicator, β : k, where β ∈ IId denotes a round identifier that is unique for
this particular process replication and k ∈ N indicates that the next replication
instance will be the kth.

In turn, these indicators are used to annotate names and variables and,
thereby, associate them to a particular recursive instance. More specifically, each
name, n, is really a composition, ne ∈ NId × Ind, where n ∈ NId is a name
identifier and e ∈ Ind = (IId × (N ∪ {?}))� is a round expression. The same is
true for variables, where Var = VId× Ind.

The importance of the round expression, being a sequence of indicators cor-
responding to a nesting of replicated processes, is that it uniquely identifies the
originating recursive instance. We shall write ε for the empty sequence. Further-
more, whenever e is a round expression and β is a round indicator having a
unique occurrence in e, we shall write e.β for the corresponding value in N∪{?}.

Table 3. Directed congruence, �, of value passing CCS

parUnit P | 0 ≡ P
parComm P1 | P2 ≡ P2 | P1

parAssoc P1 | (P2 | P3) ≡ (P1 | P2) | P3

sumReord
∑k

i=1 πi . Pi ≡ ∑k
i=1 πσ(i) . Pσ(i)

scpExtr (νn) (P1 | P2) ≡ P1 | (νn)P2 if n /∈ fn(P1)
scpUnit (νn)0 � 0

scpReord (νne) (νmf) P ≡ (νmf) (νne)P if n �= m
repUnfol !β:k P � P{β:k/β:?} | !β:k+1 P

α-equiv P1 ≡�α� P2 ⇒ P1 ≡ P2

78 H. Riis Nielson et al.

Name and variables bound within a replicated process, e.g. (νn)P1 occurring
within !β:k P, are initially indexed with a ’?’ in the corresponding position, i.e.
n = neβ:?f, as will become clear when we define our notion of well-formed and
strongly well-formed processes.
Running Example. Our running example, the two processes P1 and P2, was
already presented in this annotated form in the Introduction.

2.2 Reaction Semantics

We now define a reaction semantics for the language in the style of the chemical
abstract machine [3]. As is customary for this style of semantics we define two
binary relations on processes as explained in the sequel.

Usually, a symmetric structural congruence relation, ≡, relates processes that
are considered identical up to trivial syntactic restructuring. We shall use the
directed variant, �, defined as the least substitutive relation defined by the ax-
ioms and rules of Table 3, where we write P1 ≡ P2 as a shorthand for P1 � P2

and P2 � P1. The desirability of having a directed version is due to the pres-
ence of round expressions. The directed relation prevents arbitrary new round
identifiers to be introduced by a backwards application of rules scpUnit and
repUnfol. The structural congruence relation normally includes a notion of
α-equivalence, ≡α, and therefore names have no syntactic representation that is
stable under evaluation. This means that names are not suitable for the represen-
tation of static information, and when we later define the type systems, stable
representations are mandatory. We shall therefore make the assumption that
each statically occurring name identifier, n, is associated with a corresponding
canonical name identifier, �n�, that is invariant under α-renaming. This leads
to a more restrictive notion of canonical α-equivalence, ≡�α�, under which re-
naming can only take place between name identifiers with the same canonical
representation.

The reaction relation, −→, relates processes that evolve into one another by
a single semantic transition. It is defined as the least relation adhering to the
axioms and rules of Table 4, where we write {m̄/x̄}P for the process that is
as P except that every free occurrence of x1, . . . , xk is replaced by m1, . . . , mk.
The axiom tau allows a process to advance by the consumption of a τ . The
axiom react allows two concurrent processes to advance by the consumption
of matching input and output actions, thereby causing a synchronising data-
exchange between them. The rules par and res assert that reaction may take
place in an immediate sub-context of parallel composition and restriction, re-
spectively. Finally, the struct rule tells us that we may rely on the directed
congruence to bring processes on the form required by tau or react.

Well-formed Processes. In the sequel, we assume processes to be well-formed :

– Different occurrences of replications use different round identifiers.
– Whenever a round expression, e, is used for annotating variable and name

identifiers we have e.β =? if and only if e is “in scope” of a replication !β:k

(for some k).

From Explicit to Symbolic Types for Communication Protocols in CCS 79

Table 4. Reaction relation, −→, of value passing CCS

tau τ . P + M −→ P

react (n(x̄) . P1 + M) | (n〈m̄〉 . P2 + N) −→ {m̄/x̄}P1 | P2 if |m̄| = |x̄|

par P1 −→ P2

P1 | P3 −→ P2 | P3

res P1 −→ P2

(νn)P1 −→ (νn)P2

struct P1 � P2 ∧ P2 −→ P3 ∧ P3 � P4

P1 −→ P4

A process is strongly well-formed if additionally it is the case that:

– All replications !β:k have k = 1.
– Whenever a round expression, e, is used for annotating variable and name

identifiers we have e.β =? (for all round identifiers, β, occurring in e).
– All names and variables occur in their canoncial form.

Well-formedness is preserved under reduction unlike strong well-formedness.

Round Consistency. The notion of round consistency defined below is parametric
in a round identifier, β. It states, that all bindings of a variable to a name,
which are both defined under the replication annotated by β, occur only between
instances of the same round, e.g., the i-th instance of x will only be bound to
i-instances of name identifiers. Effectively, this will exclude harmful cross-talk.

Definition 1 (Round Consistency). Let P be a well-formed process and β
be a round identifier. Process P is β-round consistent iff for all processes P ′ and
P ′′ such that

– P −→∗ P ′ −→ P ′′

– P ′ −→ P ′′ is due to a communication involving ne(xf) and ne〈mg〉.
it holds that f.β = g.β.

Running Example. Note that process P1 of our running example is in fact a-
round consistent, while P2 is not. The latter is the case, because there may be,
e.g., a binding of xa:2 to na:3.

3 Explicit Types

We now develop an analysis that gives a global record of all the communications
taking place within a process in value passing CCS. The basic idea is to consider
each !β:k P as being a shorthand for the infinite parallel composition P{β:k/

β:?} | · · · | P{β:k+n/β:?} | · · · where P{β:i/β:?} denotes the result of replacing

80 H. Riis Nielson et al.

all occurrences of β :? in P by β : i. This transformation results in an infinite
process without any replication operators (and where names and variables could
be renamed to get rid of round expressions). Next, we perform a type based
analysis mimicking a standard 0CFA analysis, e.g., like in [5], of this potentially
infinite process to obtain an explicit record of all communications that may
take place and of all variable bindings that may arise. Finally, the challenge of
Section 4 then is to obtain a finite specification using symbolic round expressions
and constraints over them.

Analysis Domains. The analysis is defined over the following domains:

– The explicit channel environment, K̂ ⊆ K̂ = Name+, will contain an ex-
plicit record of all tuples 〈n, m1, · · · , mk〉 such that an output of m1, · · · , mk

might be performed over the channel n during the execution of the analysed
program.

– The explicit environment, R̂ ⊆ R̂ = Var × Name, will contain an explicit
record of all pairs 〈x, n〉 such that an input over some channel might give rise
to the name n being bound to the variable x.

We shall arrange that all variables and names only occur in their canoncial form.

Acceptability Judgement. The acceptability judgement takes the following form:

(K̂, R̂) �� P

It expresses that the explicit record given by (K̂, R̂) correctly describes the be-
haviour of the well-formed process P as well as of all its descendants, i.e. all
processes P ′ such that P −→∗ P ′, and it is defined in Table 5. We explain its
key components in the sequel and shall ensure that all variables and names in
P occur in their canonical form; hence for an “arbitrary” process P we shall
perform the analysis on �P �.

The inference rules for summation and parallel composition are straightfor-
ward: we just make sure to analyse each component. Similarly, the rules for fresh
names and for τ are straightforward. The rule for replication generates an infi-
nite obligation to correctly type all possible instances leaving us with the axiom
schemes for output and input.

The axiom scheme for output first determines the set 〈R̂〉(uei

i) of values that
can be output in the i’th position of the current output. In case uei

i is a variable x,
〈R̂〉(uei

i) is simply the set of values R̂(x) = {n | 〈x, n〉 ∈ R̂}. In case uei

i is a name
n, 〈R̂〉(uei

i) is the singleton set {n}. The axiom scheme then takes the combination
of all such values, using the Cartesian product RR = 〈R̂〉(ue1

1)× . . .× 〈R̂〉(uek

k),
and records those as being part of what is communicated over the channel ne;
to be specific, RR ⊆ K̂(ne) abbreviates {ne} × RR ⊆ K̂.

For input, the set K̂i(ne) = {mi | 〈ne, m1, · · · , mk〉 ∈ K̂} determines those
values that can be received in the i’th position of the current input over the
channel ne. The axiom scheme records all those values as being part of what the
corresponding input variable can be bound to. As above, K̂i(ne) ⊆ R̂(xei

i) is a
shorthand for {xei

i } × K̂i(ne) ⊆ R̂.

From Explicit to Symbolic Types for Communication Protocols in CCS 81

Table 5. The acceptability judgement, (K̂, R̂)

 P , of the explicit analysis

∀i ≤ k : (K̂, R̂)

 πi ∧ (K̂, R̂)

 Pi

(K̂, R̂)

k∑

i=1

πi . Pi

(K̂, R̂)

 P1 (K̂, R̂)

 P2

(K̂, R̂)

 P1 | P2

(K̂, R̂)

 P

(K̂, R̂)

 (νn)P

∀i ≥ k : (K̂, R̂)

 P{β:i/β:?}
(K̂, R̂)

 !β:k P

(K̂, R̂)

 τ

〈R̂〉(ue1
1) × . . . × 〈R̂〉(uek

k) ⊆ K̂(ne)

(K̂, R̂)

 ne〈ue1
1 , . . . , uek

k 〉
∀i ≤ k : K̂i(n

e) ⊆ R̂(xei
i)

(K̂, R̂)

 ne(xe1
1 , . . . , xek

k)

Correctness Properties. We now establish the subject reduction result, which
establishes the “internal consistency” of the type system, leaving the adequacy
result to the next section.

Theorem 1 (Subject Reduction). Let P and Q be well-formed processes. If
there exists (K̂, R̂) such that P −→ Q and (K̂, R̂) �� �P � then (K̂, R̂) �� �Q�.
Proof. The theorem is proved by induction on P −→ Q and makes uses of the
following standard lemmas. �

Lemma 1 (Substitution). Let P be a well-formed process such that there ex-
ists (K̂, R̂) with (K̂, R̂) �� �P � and let �(x, n)� ∈ R̂. Then (K̂, R̂) �� �P{n/x}�.
Lemma 2 (Structural). Let P and Q be well-formed processes such that there
exists (K̂, R̂) with (K̂, R̂) �� �P �. If P � Q then (K̂, R̂) �� �Q�.

Running Example. Recall the two processes:

P1 = !a:1 (νna:?) (νma:?) (na:?〈ma:?〉 | na:?(xa:?))
P2 = (νnε) !a:1 (νma:?) (nε〈ma:?〉 | nε(xa:?))

The least analysis result that is acceptable for P1 is given by:

K̂1 = {(na:i, ma:i) | i ≥ 1} R̂1 = {(xa:i, ma:i) | i ≥ 1}
Similarly, the least analysis result that is acceptable for P2 is given by:

K̂2 = {(nε, ma:j) | j ≥ 1} R̂2 = {(xa:i, ma:j) | i, j ≥ 1}
This clearly shows the ability of our type based explicit analysis to pinpoint the
important difference in behaviour between whether or not local channels or one
common global channel is used in the various rounds. Also, it establishes the
a-round consistency of P1 and that this property might not hold for P2.

82 H. Riis Nielson et al.

4 Symbolic Types

Type inference for the explicit types of Section 3 is hard due to the construction
of infinite solutions and infinite proof obligations. In this section, we develop
a symbolic variant of the explicit system yielding an implementable inference
algorithm. Explicit and symbolic types will be formally related in Theorem 2
using a concretisation function. In combination with Theorem 1, this will estab-
lish the soundness of the symbolic type system. We will conclude this section
showing our adequacy result in Theorem 3, which shows that the analysis is
precise enough to ensure round consistency.

Analysis Domains. The symbolic analysis domains are derived from the explicit
ones by substituting natural numbers occurring in round expressions by symbolic
constraint identifiers as the ι in β : ι. The domain of constraint identifiers is
written CId and ι, j, κ represent elements of CId. Furthermore, we record
equality constraints among constraint identifiers, that we shall write as ι = j.
Formally, we define the following symbolic variants of Name and Var, where
CInd are symbolic round expressions:

CInd = (IId × CId)�

CName = NId× CInd
CVar = VId × CInd

We shall use symbols ẽ, f̃ and g̃ to denote symbolic round expressions. The
symbolic channel environment K̃ and the symbolic environment R̃ are then
defined like their explicit counterparts with the addition of equality constraints,
which effectively define an equivalence relation on constraint identifiers:

K̃ ⊆ K̃ = CName+ × P(CId × CId)
R̃ ⊆ R̃ = CVar × CName× P(CId × CId)

Once more we shall arrange that all variables and names only occur in their
canoncial form.

The relation between symbolic and explicit types is formally specified in terms
of concretisation. Intuitively, an explicit type is a concretisation of a symbolic
one, whenever the concrete natural numbers denoting rounds in an explicit round
expression satisfy the constraints specified in the symbolic type. For example,
the concretisation of the symbolic channel environment {(na:ι, ma:j, {ι = j})} will
be the explicit channel environment {(na:i, ma:i) | i ≥ 1}.

The formal definition of concretisation

γ : K̃ × R̃ → K̂ × R̂
takes the form γ(K̃, R̃) = (γ1(K̃), γ2(R̃)). We first define an auxiliary function,
γ′
1, which is, for simplicity, only defined on tuples of length 2 of symbolic names

(instead of sequences of arbitrary length):

γ′
1(nẽ , mf̃ , C) = {(ne, mf) | e, f ∈ (IId × N)�, ẽ#e, f̃#f,

∀β : ∀(ι = j) ∈ C : ẽ.β = ι ∧ f̃.β = j ⇒ e.β = f.β}

From Explicit to Symbolic Types for Communication Protocols in CCS 83

Table 6. The acceptability judgement, (K̃, R̃)

g P , of the symbolic analysis

∀i ≤ k : (K̃, R̃)

g πi ∧ (K̃, R̃)

g Pi

(K̃, R̃)

g
k∑

i=1

πi . Pi

(K̃, R̃)

g P1 (K̃, R̃)

g P2

(K̃, R̃)

g P1 | P2

(K̃, R̃)

g P

(K̃, R̃)

g (νn)P
(K̃, R̃)

g τ

(K̃, R̃)

gβ:? P

(K̃, R̃)

g !β:k P

∀g̃, f̃, f̃1, n
g̃1
1 , . . . , f̃k, n

g̃k
k :

g̃#g ∧ f̃#e ∧ ∧
i f̃i#ei ∧ ∧

i(u
f̃i
i , ng̃i

i , Ci) ∈ 〈R̃〉
⇒ (nf̃ , ng̃1

1 , . . . , n
g̃k
k , C) ∈ 〈K̃〉

where C = close{f̃,g̃1,...,g̃k}(
⋃

i Ci ∪ f̃
.
= e{g̃/g} ∪ ⋃

i f̃i
.
= ei{g̃/g})

(K̃, R̃)

g ne〈ue1
1 , . . . , u

ek
k 〉

∀g̃, f̃, f̃1, n
g̃1
1 , . . . , f̃k, ng̃k

k :

g̃#g ∧ f̃#e ∧ ∧
i f̃i#ei ∧ (nf̃ , ng̃1

1 , . . . , ng̃k
k , C) ∈ 〈K̃〉

⇒ ∧
i(u

f̃i
i , ng̃i

i , Ci) ∈ 〈R̃〉
where Ci = close{f̃i,g̃i}(C ∪ f̃

.
= e{g̃/g} ∪ f̃i

.
= ei{g̃/g})

(K̃, R̃)

g ne(xe1
1 , . . . , xek

k)

Here we used ẽ#e to indicate that the sequence of round identifiers occurring
before the colon’s are equal in ẽ and e, e.g. (β : ι)#(β : 7). Next, the mapping
γ1 is the extension of γ′

1:

γ1(K̃) =
⋃

(nẽ ,mf̃ ,C)∈K̃ γ′
1(n

ẽ , mf̃ , C)

The extension to arbitrary sequences of symbolic names and the definition of γ2

are straightforward.

Acceptability Judgement. The acceptability judgement, defined by Table 6, takes
the form

(K̃, R̃) ��g P

where P is assumed to be strongly well-formed and where the round expression,
g ∈ (IId×{?})�, on the double turnstile records the replications met during the
traversal of the syntax tree of the analysed program.

Intuitively, the idea is to “push” the generation of the infinitely many proof
obligations from the rule for replication down to the “leaves” of the process,
where they are dealt with symbolically. Hence, whenever we pass a replication,
it is recorded in the turnstile annotation, yielding the replication context, in
which a program is analysed. Consequently, the rules for τ , summation, parallel

84 H. Riis Nielson et al.

composition and name restriction are much as in the explicit case. This leaves
us with the axiom schemes for output and input.

To deal with output and input independent of particular choices of constraint
identifiers, we define the closure, 〈R̃〉, under consistent renaming of constraint
identifiers; furthermore, it contains all pairs of equal symbolic names (just like
for 〈R̂〉 in the explicit case). Formally, we have

〈R̃〉 = {(xẽθ, nf̃θ, Cθ) | (xẽ , nf̃ , C) ∈ R̃, θ : CId → CId}
∪ {(n, n, ∅) | n ∈ CName}

where θ : CId → CId denotes a substitution of symbolic constraint indentifiers
for symbolic constraint identifiers; this corresponds to the fact that all symbolic
constraint identifiers occurring in (xẽ , nf̃ , C) are in fact implicitly universally
quantified.

In the case of output, we transfer data from the environment to the channel
environment by looking up recorded bindings of symbolic variables to symbolic
names. We do this by determining all potential bindings of variable (or name)
identifiers ui in 〈R̃〉 and putting the corresponding tuples into K̃. To ensure that
K̃ remains finite we do not add a tuple to K̃ if it is a consistent renaming of a
tuple already in K̃. To express this succinctly we define

〈K̃〉 = {(mẽθ, · · · , nf̃θ, Cθ) | (mẽ , · · · , nf̃ , C) ∈ K̃, θ : CId → CId}

To construct the equality constraints we make use of the .= operator that tracks
relations among constraint identifiers of symbolic round expressions:

ẽ
.= f̃ = {ι = j | ∃β : ẽ.β = ι ∧ f̃.β = j}

The symbolic substitution Θ̃ = {g̃/g} is defined much as for the explicit case:
ẽΘ̃ denotes the result of replacing all occurrences of β :? in ẽ by β : ι, whenever
g̃.β = ι. It takes care of tracking equalities across the channel name and the
output names/variables. Since the quantification over round expressions may
have introduced a number of auxiliary variables, we reduce the constraint set C
tracked in K̃ to those constraint identifiers actually occurring in the symbolic
round expressions of the looked up names. To this end, we define the closure
operator, close{ẽ···f̃}(C), as the combination of symmetric, transitive closure
on the relation on constraint identifiers induced by C and the restriction to
constraint identifiers in ẽ · · · f̃. Informally, we set

close{ẽ···f̃}(C) = (C+,sym) ∩ (ind(ẽ · · · f̃) × ind(ẽ · · · f̃))

where ind(ẽ · · · f̃) = {g̃.β | g̃ occurs in ẽ · · · f̃, β ∈ IId} is the set of constraint
identifiers occurring in ẽ · · · f̃.

The case of input works dually to the output transferring data from the sym-
bolic channel environment to the symbolic environment, where the same opera-
tions on round expressions are applied.

From Explicit to Symbolic Types for Communication Protocols in CCS 85

Correctness Properties. We first prove a Soundness Theorem (Theorem 2 below)
that relates the explicit and the symbolic type system using concretisation as
defined above. Together with the Subject Reduction Theorem of the explicit type
system (Theorem 1 of Section 3) it establishes the soundness of the symbolic
system.

Theorem 2 (Soundness). Let P be a strongly well-formed process and (K̃, R̃)
an analysis estimate such that (K̃, R̃) ��ε P . We then have γ(K̃, R̃) �� P .

Proof. We prove the following stronger result by structural induction in P . Let
P be a strongly well-formed process, g ∈ (IId × {?})� a round expression, and
let (K̃, R̃) be chosen such that (K̃, R̃) ��g P . We then have γ(K̃, R̃) �� P{h/g}
for all h ∈ (IId× N)� such that h#g. �

We next prove a Type Adequacy Result showing that our symbolic analysis is
able to ensure round adequacy as defined in Definition 1.

Theorem 3 (Adequacy). Let P be a strongly well-formed process and let
(K̃, R̃) be chosen such that (K̃, R̃) ��ε P . If for all (xg̃ , nf̃ , C) ∈ R̃ it holds
that (g̃.β = f̃.β) ∈ C then P is β-round-consistent.

Proof. Let P and (K̃, R̃) be as stated and let P ′, P ′′, ne, xf be arbitrary such
that P −→∗ P ′ −→ P ′′, where P ′ −→ P ′′ is due to a communication involving
ne(xf) and ne〈mg〉. As we assume (K̃, R̃) ��ε P , we can apply Theorem 2 to
obtain γ(K̃, R̃) �� P and, by Theorem 1, γ(K̃, R̃) �� �P ′�. As P ′ −→ P ′′ is due
to a communication involving ne(xf) and ne〈mg〉, this implies

γ(K̃, R̃) �� �ne(xf)� (1)
γ(K̃, R̃) �� �ne〈mg〉� (2)

By (2), we can deduce �(ne, mg)� ∈ γ1(K̃), which, by (1), leads to �(xf , mg)� ∈
γ2(R̃). Given the assumption about (xg̃ , nf̃ , C) ∈ R̃, we can thus conclude f.β =
g.β establishing β-round consistency of P . �

Running Example. Recall the processes P1 and P2 of our running example. The
least symbolic analysis results that are acceptable for these processes are:

K̃1 = {(na:ι, mb:j, {ι = j})} R̃1 = {(xa:ι, mb:j, {ι = j})}
K̃2 = {(nε, ma:ι, ∅)} R̃2 = {(xa:ι, ma:j, ∅)}

Using the adequacy result of Theorem 3, this shows the a-round consistency of
the process P1.

5 The Diffie-Hellman Key Agreement Protocol

As an application we shall consider the Diffie-Hellman Key Agreement protocol
[7]. It assumes two principals A and B that want to establish a shared secret.

86 H. Riis Nielson et al.

They do so by first agreeing publicly on an element g. Then they individually
select random values rA and rB, calculate the values grA and grB and exchange
them; after that they will share the secret grArB(= (grA)rB = (grB)rA).

We can easily encode this simple protocol in our calculus. To do so we assume
the existence of two global channels cAB and cBA used for communication between
the principals. We shall first consider a variant of the protocol where A and B
establish secrets in a number of rounds using different values of g:

(νcAB
ε) (νcBA

ε) !a:1(νga:?) (νrA
a:?)(cAB

ε〈(ga:?)rA
a:?〉 | cBA

ε(xA
a:?))

| (νrB
a:?)(cBA

ε〈(ga:?)rB
a:?〉 | cAB

ε(xB
a:?))

An alternative version of the protocol uses the same value of g for all the rounds

(νcAB
ε) (νcBA

ε) (νgε) !a:1 (νrA
a:?)(cAB

ε〈(gε)rA
a:?〉 | cBA

ε(xA
a:?))

| (νrB
a:?)(cBA

ε〈(gε)rB
a:?〉 | cAB

ε(xB
a:?))

Protocols where the principals need to generate several consecutive shared se-
crets – such as the Diffie-Hellmann Key Agreement Protocol – demonstrate the
usefulness of, and the need for, the notion of round-consistency. It is easy to see,
that round-consistency ensures the absence of replay attacks. In fact, our analysis
is able to establish a-round consistency for the first version of the protocol. How-
ever, the second version is not a-round consistent, and indeed, a replay attack
exists exploiting the “global” channel g.

The probably most well-known attack on the Diffie-Hellmann protocol is a
man-in-the-middle attack, which we can detect, too. In order to do so, we need
to encode potential attackers into our model of the protocol as was done for
the π-calculus in [5]. This is, however, a standard technique not using round
information and we refrain from elaborating on it here.

6 Conclusion

Summary. In this paper we have shown how to develop a value passing CCS
with explicit information about rounds. We introduced the notion of round
consistency to formally capture well-formed behaviour of round-based proto-
cols/processes. Based on this we developed a type system for making an explicit
record of all communication (including round information) that can take place
in the system proving subject reduction as usual. To cater for the possibility
of implementing the system we also developed a type system giving a symbolic
record — and showed this to be a correct overapproximation to the explicit sys-
tem in Theorem 2. Our key result shows that the symbolic analysis is indeed
able to statically determine the round consistency of a protocol. We illustrated
the usefulness of this analysis on an example: a communication protocol based
on Diffie-Hellman key exchange, where also the notion of round consistency is
naturally motivated as characterising the absence of replay attacks.

From Explicit to Symbolic Types for Communication Protocols in CCS 87

Perspective. The present research is part of an initiative to bring more powerful
static analysis techniques within the reach of being applied to process calculi.
In particular to extend the current repertoire of techniques in the Flow Logic
approach [16,17].

A lot of inspiration for the overall approach comes from Type Systems. The use
of constraints as part of types is reminiscent of [19], where polymorphic languages
with subtyping are studied. Moreover, our close{·}(·) operator reminds of the
transitive reduction of [19]. Similar techniques are used also in analyses based
on Type and Effect Systems [13].

The work by Venet [20] and later by Feret [8] established a benchmark in the
world of static analysis of process calculi using techniques from Abstract Interpre-
tation. In fact, Feret’s approach works on a large subset of the π-calculus and is
able to infer strongly relational properties, including sophisticated numerical do-
mains. These are properties that are out of scope of our approach presented here.
Nonetheless, we claim a number of benefits of our approach as compared to theirs:

– Portability: We rely on a fully standard syntax of the considered language.
In contrast, guarded replication is a syntactic restriction used by [8], which
considerably simplifies reasoning about the relation among replication in-
stances. It works by tying together reception and replication, such that a
new instance is only unfolded on reception of a message. We deal with the
more general approach, where all instances are implicitly there at any time.
Furthermore, instead of intricate instrumented semantics, which is the basis
of the abstract interpretation in [8], our analysis works for the standard
reaction semantics. This enables us to transfer our results much more easily
to other calculi (as validated in our work [14] on adapting an analysis for π to
a Fusion like [18] calculus). In this work, we show that also round information
can be conservatively added to existing analyses testifying to the flexibility
of our approach.

– Lightweight: In contrast to heavy abstract interpretation machinery using
sophisticated abstract domains, a simple type-based, syntax-driven scheme
suffices for our approach.

– Separation of Concerns: The analysis in [8], is full-fledged in terms of
being relational and numerical. This generates quite some complexity. We
chose the opposite approach of separating dimensions. Due to the use of our
syntax-driven approach, it becomes a mere technical exercise of combining
the various dimensions. We have explored the “relational” dimension in [14]
and the dimension incurred by fusion-like name binding in [2]. Here, we add
yet another dimension, rounds.

– Implementation: Additionally, separation of concerns facilitates the im-
plementation of analyses. Code can be re-used easily, and specification and
solutions of analyses are separated enabling the use of off-the-shelf solvers,
e.g., the Succinct Solver [15].

Future Work. Looking at our concrete appliation, that of communication proto-
cols, the notion of round consistency as defined here is a rather strong require-
ment. Therefore one may consider to relax it to reason about particular name

88 H. Riis Nielson et al.

and variable identifiers at particular program points only. Similarly, one may
want to impose round-consistency only on subprocesses of the overall process.

Another possible dimension is the inclusion of terms instead of names. This
will allow for the more precise modelling and analysis of security protocols, very
much in the spirit of analyses of the LySa calculus [4]. Our ultimate goal is thus
to present a general framework that allows for the automatic combination of
dimensions for a given calculus. To this end we would target modern service-
oriented languages like COWS [10], possibly equipped with terms to encode
security.

We believe that lightweight tailored solutions that are freely combinable pro-
duce more (re-)usable, understandable, and reliable results than a fully inte-
grated general purpose approach. Indeed, simple analyses in terms of only one
dimension may suffice for many applications avoiding the overhead of a full-blown
analysis like the one in [8]. The long term goal is to ensure that the methods de-
veloped here will scale up to more process calculi embodying different and more
complex computational paradigms, including Actors, Obliq, Klaim and COWS.

Acknowledgement. This works has been partially supported by MT-LAB, a
VKR Centre of Excellence.

References

1. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for Actor compu-
tation. J. Funct. Program. 7(1), 1–72 (1997)

2. Bauer, J., Nielson, F., Riis Nielson, H., Pilegaard, H.: Relational analysis of corre-
lation. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 32–46.
Springer, Heidelberg (2008)

3. Berry, G., Boudol, G.: The chemical abstract machine. Theor. Comput. Sci. 96(1),
217–248 (1992)

4. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Riis Nielson, H.: Static validation
of security protocols. J. Comput. Secur. 13(3), 347–390 (2005)

5. Bodei, C., Degano, P., Nielson, F., Riis Nielson, H.: Static analysis for the π-
calculus with applications to security. Information and Computation 168, 68–92
(2001)

6. Cardelli, L.: A language with distributed scope. In: POPL, pp. 286–297 (1995)

7. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory IT-22(6), 644–654 (1976)

8. Feret, J.: Dependency analysis of mobile systems. In: Le Métayer, D. (ed.)
ESOP 2002. LNCS, vol. 2305, pp. 314–329. Springer, Heidelberg (2002)

9. Karr, M.: Affine relationships among variables of a program. Acta Inf. 6, 133–151
(1976)

10. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web ser-
vices. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer,
Heidelberg (2007)

11. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press (1999)

From Explicit to Symbolic Types for Communication Protocols in CCS 89

12. Nicola, R.D., Gorla, D., Hansen, R.R., Nielson, F., Riis Nielson, H., Probst, C.W.,
Pugliese, R.: From flow logic to static type systems for coordination languages. Sci.
Comput. Program. 75(6), 376–397 (2010)

13. Nielson, F., Riis Nielson, H.: Type and Effect Systems. In: Olderog, E.-R., Stef-
fen, B. (eds.) Correct System Design. LNCS, vol. 1710, pp. 114–136. Springer,
Heidelberg (1999)

14. Nielson, F., Riis Nielson, H., Bauer, J., Rosenkilde Nielsen, C., Pilegaard, H.:
Relational analysis for delivery of services. In: Barthe, G., Fournet, C. (eds.)
TGC 2007. LNCS, vol. 4912, pp. 73–89. Springer, Heidelberg (2008)

15. Nielson, F., Riis Nielson, H., Sun, H., Buchholtz, M., Hansen, R.R., Pilegaard,
H., Seidl, H.: The Succinct Solver Suite. In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 251–265. Springer, Heidelberg (2004)

16. Riis Nielson, H., Nielson, F.: Flow Logic: a multi-paradigmatic approach to static
analysis. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence
of Computation. LNCS, vol. 2566, pp. 223–244. Springer, Heidelberg (2002)

17. Riis Nielson, H., Nielson, F., Pilegaard, H.: Flow logic for process calculi. ACM
Computing Surveys (to appear 2010)

18. Parrow, J., Victor, B.: The fusion calculus: Expressiveness and symmetry in mobile
processes. In: LICS, pp. 176–185 (1998)

19. Smith, G.: Polymorphic type inference with overloading and subtyping. In: Gaudel,
M.-C., Jouannaud, J.-P. (eds.) TAPSOFT 1993. LNCS, vol. 668, pp. 671–685.
Springer, Heidelberg (1993)

20. Venet, A.: Automatic determination of communication topologies in mobile sys-
tems. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 152–167. Springer, Heidel-
berg (1998)

Abstract LR-Parsing

Kyung-Goo Doh1,�, Hyunha Kim1,�, and David A. Schmidt2,��

1 Hanyang University, Ansan, South Korea
2 Kansas State University, Manhattan, Kansas, USA

Abstract. We explain and illustrate abstract parsing, a static-analysis
technique based on abstract interpretation, LR-parsing, and partial eval-
uation for validating PHP-like scripts that generate HTML/XML-style
documents. A validated script is guaranteed to generate documents
that are well formed with respect to the document language’s LR(k)-
grammar. In this way, abstract parsing resembles compiler data-type
checking: a validated script will “not go wrong” and output a malformed,
dynamically generated document.

After presenting abstract parsing for LR(k)-grammars, we handle
these important extensions: (i) String-replacement operations are an-
alyzed by composing the finite-state automaton defined by a string
replacement with the finite-state control of the LR(k)-parser. (ii)
Conditional-test expressions are implemented by filter automata, which
are also composed with the parser’s finite-state control. (iii) Dynamically
supplied and potentially malicious user input is predicted by characteriz-
ing it with an LR(k)-grammar and analyzing the strings generated by the
grammar. (iv) Synthesized-attribute grammars are employed to calculate
the semantics of the dynamically generated documents.

1 Introduction

Scripting languages use strings as a “universal data structure” to communicate
documents, data structures, and programs. For example, a PHP script might
assemble within one long string an entire HTML page or an XML document
or an SQL query. An incorrectly assembled string-document might later cause
failure when it is supplied as input to its intended processor (a web browser or
database engine). Worse still, the string-document might contain textual input
supplied by a malicious user and initiate a cross-site-scripting or injection attack
[20].

To prevent such failures and attacks, the well-formedness of dynamically
generated string-documents should be checked with respect to the document’s

� doh@hanyang.ac.kr Supported by R01-2006-000-10926-0, the Basic Research Pro-
gram of the Korea Science and Engineering Foundation and by the Engineering
Research Center of Excellence Program of Korea Ministry of Education, Science
and Technology (MEST)/Korea Science and Engineering Foundation(KOSEF) R11-
2008-007-01003-0.

�� das@ksu.edu Supported by NSF CNS-0939431.

G. Agha, O. Danvy, and J. Meseguer (Eds.): Talcott Festschrift, LNCS 7000, pp. 90–109, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Abstract LR-Parsing 91

context-free reference grammar (for HTML or XML or SQL) before the string-
document is supplied to its processor. Better still, the document generator script
itself should be analyzed to validate that all its generated string-documents are
well formed with respect to the reference grammar, much like an application
program is type checked in advance of execution.

In this paper, we marry techniques from LR-parsing theory, abstract interpre-
tation, and partial evaluation to formulate a static analysis that validates that
the string-documents generated by a script are grammatically well formed with
respect to the reference grammar. We call the analysis abstract parsing because
it is an abstract interpretation of the script conducted simultaneously with the
LR-parsing of the string-documents generated by the script.

The meaning of each potentially generated string-document is not a set of
strings or a regular expression but is (an approximation of) the parse stack
that the LR-parser would generate when it parsed the string-document — the
parse stack encodes both the string and its context-free structure, thus provid-
ing greater precision than techniques that approximate the string via regular
expressions.

The paper proceeds as follows. After presenting abstract parsing for LR(0)
and general LR(k) grammars, we handle these important extensions:

– String-replacement operations are analyzed by composing the finite-state au-
tomaton defined by a string replacement with the finite-state control of the
LR(k)-parser.

– Conditional-test expressions are implemented by filter automata, which are
also composed with the parser’s finite-state control.

– Dynamically supplied, potentially malicious, user input is predicted and pro-
cessed by characterizing it by an LR(k)-grammar and analyzing the strings
generated from by grammar.

– Attribute grammar technology is added to calculate the semantic properties
of dynamically generated string output.

2 Background Example

Say that a script must generate output strings that conform to this grammar,

S → a | [S]

where S is the only nonterminal. (HTML, XML, and SQL are such bracket lan-
guages.) The grammar is LR(0), but it can be difficult to enforce even for simple
programs, like the one in Figure 1, left column. Perhaps the example program
should print only well-formed S-phrases — the occurrence of x at “print x” is
a “hot spot,” where we must analyze x’s possible values. Three approaches have
been proposed to do this:

1. An analysis based on type checking assigns types (reference-grammar non-
terminals) to the program’s variables and uses them to validate that the
program is well typed. The occurrences of x should be data-typed as S, but
r has no data type that corresponds to a nonterminal.

92 K.-G. Doh, H. Kim, and D.A. Schmidt

x = ’a’

r = ’]’

while ...

x = ’[’ . x . r

print x

X0 = a

R =]

X1 = X0 � X2
X2 = [· X1 · R
X3 = X1

(Read . as an infix string-append operation.)

Fig. 1. Sample program and its flow equations

2. An analysis based on regular expressions [2–6, 14, 15, 19] solves the program-
flow equations shown in Figure 1’s right column in the domain of regular
expressions, determining that the hot spot’s (X3’s) values conform to the
regular expression, [∗ · a ·]∗, but this does not validate the assertion. Im-
provement in precision can be obtained with parenthesis grammars [13, 17],
which generate good regular-expression approximations of simple bracket
grammars but fail to express general context-free structure.

3. A grammar-based analysis [18] treats the flow equations as a set of grammar
rules, and a language-inclusion check tries to prove that all X3-generated
strings are S-generable. A useful instance of this technique is due to Møller
and Schwarz, who check language inclusion with the more restrictive but
useful SGML DTD [9] for HTML documents [16].

Our approach solves the program-flow equations in Figure 1 in the domain of
parse stacks — X3’s meaning is the set of parse stacks of the strings that might
be denoted by x. Our technique simultaneously unfolds and LR-parses the strings
defined by X3, computing a parse stack that expresses both the structure in the
flow equations and that of the reference grammar.

The technique is implemented by a partial-evaluation-style specialization of
the program’s flow equations applied to the LR-parser. When the specialized,
residual flow equations are “executed” (solved with a least-fixed semantics), they
generate (sets of) parse stacks as their answers.

Of course, a program might generate infinitely many different strings and
therefore the analysis might compute an infinite set of parse stacks. We finitely
approximate an infinite set of parse stacks by exploiting this key feature of LR-
parse theory: Each parse stack is exactly a finite path through the LR-parser’s
finite-state control automaton and can be approximated by the smallest sub-
graph of the automaton that covers the path. The smallest-subgraph approxi-
mation is computed merely by folding the parse stack on its repeating state(s).

3 Abstract LR(0)-Parsing

We present the technique via the example program in Figure 1. For the example
grammar, S → a | [S], Figure 2 gives the LR(0)-parse-controller automaton
and a parse of the string, [[a]]. The parse-controller automaton is presented

Abstract LR-Parsing 93

[

. S
S .[S]

.aS

s
0 S [.]S

S .[S]
.aS

s
1

.S
s5

S a.
s2

S [S.]
s3

S [S].
s4

[S

S
a

]

a

Shift transitions:
[[↪→ s0] ⇒ s0 :: [s1] [[↪→ s1] ⇒ s1 :: [s1]
[S ↪→ s0] ⇒ [s5] [a ↪→ s1] ⇒ s1 :: [s2]
[a ↪→ s0] ⇒ s0 :: [s2] [S ↪→ s1] ⇒ s1 :: [s3]

[] ↪→ s3] ⇒ s3 :: [s4]

Reduce transitions:
s :: [s2] ⇒ [S ↪→ s]
si :: sj :: sk :: [s4] ⇒ [S ↪→ si]

parse stack (top lies at right) input sequence (front lies at left)

[s0] [[a]]

[[↪→ s0] [a]]

s0 :: [s1] [a]]

s0 :: [[↪→ s1] a]]

s0 :: s1 :: [s1] a]]

s0 :: s1 :: [a ↪→ s1]]]

s0 :: s1 :: s1 :: [s2]]] (reduce:S → a)
s0 :: s1 :: [S ↪→ s1]]]

s0 :: s1 :: s1 :: [s3]]]

s0 :: s1 :: s1 :: [] ↪→ s3]]

s0 :: s1 :: s1 :: s3 :: [s4]] (reduce:S → [S])
s0 :: [S ↪→ s1]]

s0 :: s1 :: [s3]]

s0 :: s1 :: [] ↪→ s3]
s0 :: s1 :: s3 :: [s4] (reduce:S → [S])
[S ↪→ s0]
[s5] (finished)

Fig. 2. Parse controller for S → [S] | a and an example parse of [[a]]

graphically, and its transitions are coded as shift/reduce rewriting rules, which
we use to parse the string. The current state, [si], of the parse appears as the
top state in the parse stack, s0 :: s1 :: · · · :: [si]. Input symbols, i, are supplied
to state, s, in the format, [i ↪→ s]. The parser’s start state is [s0].

Say that we must validate that the program in Figure 1 prints only S-
structured phrases. To analyze the program’s hot spot at X3, we must
LRparse(X3, s0), which we portray as a function call, X3[s0] — we treat the
program-flow equations in Figure 1 as functions defined in combinator notation
and we specialize (apply) a flow equation to the state used to parse it.

94 K.-G. Doh, H. Kim, and D.A. Schmidt

The flow equation, X3 = X1, generates this call step:

X3[s0] = X1[s0]

which demands a parse of the strings generated at point X1 from parse state s0:

X1[s0] = X0[s0] ∪X2[s0]

The union of the parses of strings at X0 and X2 from s0 must be computed.
(Important: this computes a set of parse stacks. In this example, all the sets are
singletons, and we omit the set braces to reduce notational clutter.) We consider
first X0[s0]:

X0[s0] = a[s0] = [a ↪→ s0]⇒ s0 :: [s2]⇒ [S ↪→ s0]⇒ [s5].

That is, a parse of ’a’ from s0 generates the one-element stack, s5 (actually,
{[s5]}) — all strings denoted by X0 are S-phrases. Next,

X2[s0] = ([·X1 ·R)[s0] = [[↪→ s0]⊕ (X1 · R)
⇒ (s0 :: [s1])⊕ (X1 · R)
= s0 :: (X1 ·R)[s1] = s0 :: (X1[s1]⊕R)

The ⊕ is a “continuation operator”: For parse stack, st, and combinator expres-
sion, E, define st ⊕ E = tail(st) :: E[head(st)]. That is, stack st’s top state
feeds to E. (More generally, for a set of stacks, S, define S ⊕ E = {tail(st) ::
E[head(st)] | st ∈ S}.)

Next, X1[s1] = X0[s1] ∪ X2[s1] computes to s1 :: [s3] (as explained below,
the recursion generated by X2[s1] is resolved by least-fixed-point iteration), so

X2[s0]=s0 :: (X1[s1] ⊕ R)=(s0 :: s1 :: [s3]) ⊕ R=s0 :: s1 :: R[s3]=s0 :: s1 :: [] ↪→ s3]
⇒ s0 :: s1 :: s3 :: [s4] ⇒ [S ↪→ s0] ⇒ [s5]

That is, X2[s0] built the stack, s0 :: s1 :: s3 :: [s4], denoting a parse of [S],
which reduced to S, giving s5.

Here is the list of residual equations generated from the partial evaluation of
the initial call, X3[s0]:

X3[s0] = X1[s0]
X1[s0] = X0[s0] ∪X2[s0]
X0[s0] = [s5]
X2[s0] = s0 :: (X1[s1]⊕R)
X1[s1] = X0[s1] ∪X2[s1]
X0[s1] = s1 :: [s3]
X2[s1] = s1 :: (X1[s1]⊕R)
R[s3] = s3 :: [s4] (generated while X2[s1] is solved)

Each Xi[sj] = Eij is a first-order equation whose answer is a set of parse stacks.

Abstract LR-Parsing 95

The equations for X1[s1] and X2[s1] are mutually recursively defined, and
their solutions are computed by least-fixed-point iteration. Here are the solutions:

X1[s1] = X0[s1] ∪X2[s1] = (s1 :: [s3]) ∪ (s1 :: [s3]) = s1 :: [s3]
X2[s1] = s1 :: (X1[s1]⊕R)⇒ s1 :: s1 :: R[s3]⇒ s1 :: [s3]

X2[s0] = s0 :: (X1[s1]⊕R)⇒ s0 :: s1 :: R[s3] = s0 :: s1 :: s3 :: [s4]⇒ [s5]
X1[s0] = X0[s0] ∪X2[s0] = [s5] ∪ [s5] = [s5]

X3[s0] = X1[s1] = [s5] validates that the strings printed at the hot spot must be
S-phrases. (Note again: these answers are really sets, that is, X3[s0] = {[s5]}.)
The algorithm that generates the residual equations and simultaneously solves
them is a worklist algorithm like those used for demand-driven data-flow analyses
[1, 8, 10]; it also resembles minimal function-graph semantics [12].

Figure 3 shows the worklist algorithm applied to the example. The algorithm
uses three data structures: the worklist of unresolved calls, Xi[sj]; a Cache
(“seen-before list”) that maps each call to its current (partial) solution (a set of
abstract parse stacks); and the graph of call dependencies, which is dynamically
constructed.

The initialization step places initial call, X0[s0], into the worklist and into the
dependency graph and assigns to the cache the partial solution, Cache[X0[s0]] =
∅. The iteration step repeats the following until the worklist is empty:

Worklist,
processed from
top to bottom:

X3[s0]
X1[s0]
X0[s0]
X2[s0]
X1[s0]
X1[s1]
X3[s0]
X0[s1]
X2[s1]
X1[s1]
X2[s0]
X2[s1]
R[s3]
X2[s0]
X2[s1]
X1[s0]
X1[s1]

Cache updates, inserted from top to bottom

X3[s0] = ∅
X1[s0] = ∅
X0[s0] = ∅
X2[s0] = ∅
X0[s0] = {[a ↪→ s0]} = {s0 :: [s2]} = {[S ↪→ s0]} = {[s5]}
X1[s1] = ∅
X1[s0] = X0[s0] ∪ X2[s0] = {[s5]}
X0[s1] = ∅
X2[s1] = ∅
X3[s0] = X1[s0] = {[s5]}
X0[s1] = {[a ↪→ s1]} = {s1 :: [s2]} = {[S ↪→ s1]} = {s1 :: [s3]}
X1[s1] = X0[s1] ∪ X2[s1] = {s1 :: [s3]}
R[s3] = ∅
R[s3] = {[] ↪→ s3]} = {s3 :: [s4]}
X2[s0] = {([· X1 · R)[s0]} = {s0 :: (X1(s1) ⊕ R)} = {s0 :: ({s1 :: [s3]} ⊕ R)}

= {s0 :: s1 :: R[s3]} = {s0 :: s1 :: {s3 :: [s4]}} = {s0 :: s1 :: s3 :: [s4]}
= {[S ↪→ s0]} = {[s5]}

X2[s1] = {([· X1 · R)[s1]} = · · · = {s1 :: [s3]}

Generated dependency graph:

0X3 ()

s
1X2 ()

s
3

()R
s
0X1 ()

s
0X2 ()

s
0X0 ()

s
1X1 ()

s
1X0 ()

s

Fig. 3. Worklist-algorithm calculation of call, X3[s0], in Figure 1

96 K.-G. Doh, H. Kim, and D.A. Schmidt

– Extract the front call, X [s], from the worklist, and for its corresponding flow
equation, X = E, compute E[s], a set, using the parser’s shift/reduce rules:

1. While computing E[s], if a call, X ′[s′] is encountered, (i) add the depen-
dency, X ′[s′]→ X [s], to the dependency graph (if not already present);
(ii) if there is no entry for X ′[s′] in the cache, then assign Cache[X ′[s′]] =
∅ to the cache and add X ′[s′] to the end of the worklist; (iii) use
Cache[X ′[s′]] as the meaning of X ′[s′] in the computation of E[s].

2. When E[s] computes to an answer set, P , and P contains a parse stack
not already listed in Cache[X [s]], then set Cache[X [s]] = Cache[X [s]]∪
P and add to the end of the worklist all X ′′[s′′] such that X [s]→ X ′′[s′′]
appears in the dependency graph.

4 Abstract Parse Stacks

In the previous example, the result for each Xi[sj] was a single stack. In general,
a set of parse stacks can result, e.g., for

x = ’[’
while ...
x = x . ’[’

x = x . ’a’ . ’]’

X0 = [
X1 = X0 �X2
X2 = X1 · [
X3 = X1 · a ·]

at conclusion, x holds zero or more left brackets and an S-phrase, and X3[s0] is
the infinite set, {[s5], s1 :: [s3], s1 :: s1 :: [s3], s1 :: s1 :: s1 :: [s3], · · ·}.

To bound the set, we abstract it by “folding” its stacks so that no state repeats
in a stack. A stack segment like s1 :: s1 :: [s3] is a graph, 1 s1

s3[]s ;

the folded stack merges identical states:
1 s3[]s . Since the set of

parse-state names is finite, folding produces a finite set of finite-sized stacks
(that contain cycles). For the previous example, the worklist algorithm calcu-
lates X3[s0] = {[s5], s+

1 :: [s3]}. As noted earlier, each parse stack is a finite
path through the LR-parser’s finite-state controller automaton, and folding the
parse stack generates the smallest subgraph of the automaton that covers the
path.

Stack folding can be profitably delayed when straightline code is analyzed,
so we fold stacks only if there is backwards control flow: When calculating
a call, Xi[si] = · · ·Xj[sj] · · · , if Xj −→ Xi is a “back arc” in the pro-
gram’s control flow (that is, j ≥ i), only then we fold the set of stacks de-
fined by Xj[sj] to compute Xi[si]. This way, we lose precision exactly when the
source program’s control flow itself loses precision. Again, finite convergence is
guaranteed.

Abstract LR-Parsing 97

5 LR(k) Grammars Are Accommodated the Same Way

Abstract parsing also applies to LR(k) grammars, for k > 0. Figure 4 presents
an LR(1) grammar, its controller, and an example parse. The parse states have

Parser for LR(1) grammar, S → aS | a Input and lookahead symbols are saved
in the current state:

a!. S
S . Sa

.aS

s
0

.S
s4

S a.S
S .a S

.aS

s
2 S a .S

s3

S a.
s1

S!

la

laS!

a!

Shift transitions:
[� ↪→ a ↪→ s0] ⇒ s0 :: [� ↪→ s2]
[! ↪→ a ↪→ s0] ⇒ s0 :: [! ↪→ s1]
[! ↪→ S ↪→ s0] ⇒ [s4]
[� ↪→ a ↪→ s2] ⇒ s2 :: [� ↪→ s2]

[! ↪→ a ↪→ s2] ⇒ s2 :: [! ↪→ s1]
[! ↪→ S ↪→ s2] ⇒ s2 :: [! ↪→ s3]
Reduce transitions:
si :: [� ↪→ s1] ⇒ [� ↪→ S ↪→ si]
si :: sj :: [� ↪→ s3] ⇒ [� ↪→ S ↪→ si]

where ! denotes end of input and � denotes any non-! input symbol.

parse stack input sequence

[s0] aa!

[a ↪→ s0] a!

[a ↪→ a ↪→ s0] ! (next, do shift transition)
s0 :: [a ↪→ s2] !

s0 :: [! ↪→ a ↪→ s2] (do shift transition)
s0 :: s2 :: [! ↪→ s1] (reduce S → a; pop one state and insert S)
s0 :: [! ↪→ S ↪→ s2] (do shift transition)
s0 :: s2 :: [! ↪→ s3] (reduce S → aS; pop two states and insert S)
[! ↪→ S ↪→ s0] (do final transition)
[s4] (finished)

Fig. 4. An LR(k) grammar uses a state of form, [�k ↪→ �k−1 ↪→ · · · ↪→ �0 ↪→ s]

form, [�j ↪→ · · · ↪→ �0 ↪→ s], where 0 ≤ j ≤ k + 1. When a program is statically
parsed with an LR(k) grammar, k > 0, the first-order residual equations have
form,

Xi[�j ↪→ · · · ↪→ �0 ↪→ s] = E

for 0 ≤ j ≤ k. (Alas, this means a residual-equation set of order (k + 1)!.) For
this program,

x = ’a’
while ...
x = ’a’ . x . ’a’

print x !

X0 = a
X1 = X0 �X2
X2 = a ·X1 · a
X3 = X1 · !

98 K.-G. Doh, H. Kim, and D.A. Schmidt

its partial evaluation proceeds as follows:

X3[s0] = (X1 · !)[s0] = X1[s0]⊕ !
X1[s0] = X0[s0] ∪X2[s0]
X0[s0] = a[s0] = {[a ↪→ s0]}
X2[s0] = (a ·X1 · a)[s0] = a[s0]⊕ (X1 · a)

= {[a ↪→ s0]} ⊕ (X1 · a) = {X1[a ↪→ s0]⊕ a}
X1[a ↪→ s0] = X0[a ↪→ s0] ∪X2[a ↪→ s0]
X0[a ↪→ s0] = {[a ↪→ s0]} = {[a ↪→ a ↪→ s0]} ⇒ {s0 :: [a ↪→ s2]}
X2[a ↪→ s0] = (a ·X1 · a)[a ↪→ s0] = [a ↪→ a ↪→ s0]⊕ (X1 · a)

= {s0 :: [a ↪→ s2]} ⊕ (X1 · a)} = {s0 :: X1[a ↪→ s2]⊕ a}
X1[a ↪→ s2] = X0[a ↪→ s2] ∪X2[a ↪→ s2]
X0[a ↪→ s2] = a[a ↪→ s2] = {[a ↪→ a ↪→ s2]} = {s2 :: [a ↪→ s2]}
X2[a ↪→ s2] = (a ·X1 · a)[a ↪→ s2] = [a ↪→ a ↪→ s0]⊕ (X1 · a)

= {s2 :: [a ↪→ s2]} ⊕ (X1 · a) = {s2 :: (X1[a ↪→ s2]⊕ a)}
X1[a ↪→ s2] = {s2 :: [a ↪→ s2]} ∪ {s2 :: (X1[a ↪→ s2]⊕ a)}

The residual equations are solved by least-fixed point calculation; X1[a ↪→ s2]
computes to {si

2 :: [a ↪→ s2] | i ∈ 1, 3, 5, · · ·}, which our analysis approximates
by {s+

2 :: [a ↪→ s2]}. Using this result, we obtain

X1[a ↪→ s2] = {s+
2 :: [a ↪→ s2]}

X2[a ↪→ s0] = {s0 :: s+
2 :: [a ↪→ s2]}

X1[a ↪→ s0] = {s0 :: s∗2 :: [a ↪→ s2]}
X2[s0] = {s0 :: s+

2 :: [a ↪→ s2]}
X1[s0] = {[a ↪→ s0]} ∪ {s0 :: s+

2 :: [a ↪→ s2]}
X3[s0] = {[! ↪→ a ↪→ s0]} ∪ {s0 :: s+

2 :: [! ↪→ a ↪→ s2]} = {[s4]}
since {[! ↪→ a ↪→ s0]} = {s0 :: [! ↪→ s1]} = {[! ↪→ S ↪→ s0]} = {[s4]}
and {s0 ::s+

2 :: [! ↪→ a ↪→ s2]}={s0 ::s+
2 :: [! ↪→ s1]}(s+

2 ::s2 is approximated to s+
2)

= {s0 :: s∗2 :: [! ↪→ S ↪→ s2]} (reduce S → a)
= {s0 :: s+

2 :: [! ↪→ s3]}
= {[! ↪→ S ↪→ s0], s0 :: s∗2 :: [! ↪→ S ↪→ s2]} (reduce S → aS)
= {[s4]} (second set element adds nothing to the fixed point)

This proves that all possible string values of x at the end are well-structured
S-phrases.

6 Abstract Parsing with String-Replacement Operations

Because of the state explosion that arises with LR(k) grammars, our implemen-
tation uses LALR(k) grammars instead. The reason we introduced the LR(1)
example was to generalize the parse state to hold multiple input symbols, which
we now use to process string-update operations.

Abstract LR-Parsing 99

Scripting languages support string updates of this form,

y = replace ’bb’ by ’a’ in x

where the pattern (here, bb) can be a regular expression. The update operation
defines an automaton (more precisely, a transducer):

α0 α1

’b’ : ’a’

’b’ : ε

l != ’b’ : l

l != ’b’ : ’b’. l

b ↪→ α0 → α1 : ε
� �= b ↪→ α0 → α0 : �
b ↪→ α1 → α0 : a
� �= b ↪→ α1 → α0 : b · �

Both graphical and linear codings are displayed here. We use : e to mean “emit
e as output.” When a replace operation appears in a program that is analyzed,
the transducer, α, defined by replace is composed with the parser automaton —
a state configuration now holds two states:

[�new ↪→ αm, �j ↪→ · · · ↪→ �0 ↪→ s]

Here, αm is the current state of the transducer and s is the current state of the
parser. A new input, �new, submits first to αm, which transits and possibly emits
input for s:

[αn, �j+1 ↪→ �j ↪→ · · · ↪→ �0 ↪→ s]

In this way, strings are updated by replace before they are parsed. The assign-
ment,

x = replace S1 by S2 in E

generates the flow equation

X = insertα · E · eraseα

where α0 names the start state of transducer α generated from patterns S1 and
S2 and

insertα[· · · s]⇒ [α0, · · · s]
eraseα[αi, · · · s]⇒ [· · · s]

Here is a small example, worked with the above transducer and the parser in
Figure 2:

y = ’bb]’
x = ’[’.(replace ’bb’ by ’a’ in y)

Y = b · b ·]
X = [· (insertα · Y · eraseα)

100 K.-G. Doh, H. Kim, and D.A. Schmidt

The abstract parse of X [s0] proceeds like this:

X[s0] = [[↪→ s0] ⊕ (insertα · Y · eraseα) = s0 :: (insertα · Y · eraseα)[s1] (i)
= s0 :: (Y · eraseα)[α0, s1] = s0 :: (Y [α0, s1] ⊕ eraseα)

Y [α0, s1] = (b · b ·])[α0, s1] = [b ↪→ α0, s1] ⊕ (b ·]) = [α1, s1] ⊕ (b ·]) (ii)
= [b ↪→ α1, s1] ⊕] = [α0, a ↪→ s1] ⊕] (iii)
= s1 :: ([α0, s2] ⊕]) (iv)
= [α0, S ↪→ s1] ⊕] = s1 :: [α0, s3] ⊕] = s1 :: [] ↪→ α0, s3]
= s1 :: [α0,] ↪→ s3] = s1 :: s3 :: [α0, s4]

So,
X[s0] = s0 :: (Y [α0, s1] ⊕ eraseα) = s0 :: (s1 :: s3 :: [α0, s4] ⊕ eraseα)

= s0 :: (s1 :: s3 :: eraseα[α0, s4]) (v)
= s0 :: (s1 :: s3 :: [s4]) = [S ↪→ s0] = [s5]

At point (i), input symbol [is supplied directly to the parser. The trans-
ducer’s start state is then added to the state configuration, and the string gen-
erated by Y is supplied to the transducer before Y ’s string is parsed — see (ii).
At point (iii), the sequence bb causes the transducer state to emit a, which is
supplied to the parser state. Once the parser reduces a to nonterminal S, the
transducer state is carried along in the state configuration; see (iv). At (v), the
string transducer has finished its effects and is erased.

The composition of transducer with parser in our demand-driven, backwards,
precondition-style analysis means there is no backtracking and reparsing because
of string updates — there is only the one parse of the appropriately altered string.

There is a last, important, technical point: a string-replacement transducer
must finish its work in a final state, e.g., for

y = replace ’bb’ by ’a’ in ’bbb’

where transducer α has α0 as its final state, the processing of ’bbb’ causes α to
finish in state α1, implicitly holding ’b’ in its state. The ’b’ must be ”flushed”,
so we add this last transition to α:

eos ↪→ α1 → α0 : b

Where eos denotes “end of string.” This transition is enacted by the eraseα

operation.
The embedding of the transducer state in the parse configuration does not af-

fect the least-fixed point machinery for computing the solutions to the residual
equations. (But a state explosion can result.) In addition, the residual-equation-
least-fixed-point-calculation allows string replacements within loop bodies, avoid-
ing difficulties encountered in related techniques [4, 5, 14].

7 Other Applications of String Transducers

Transducers have other applications in abstract parsing; here are two.

Composing a Scanner with the Parser. The basic abstract-parsing algo-
rithm does “scannerless parsing” — the characters of a string are input one at a

Abstract LR-Parsing 101

time to the parser state, which must parse characters into words and words into
phrases. We have found the technique acceptable in practice for HTML gram-
mars, but for theoretical or practical reasons, one might wish to scan characters
into tokens before parsing them.

A scanner defined as a transducer, σ, can be added to the state configuration
so that abstract parsing is undertaken with configurations of the form, [σi, �j ↪→
· · · ↪→ �0 ↪→ sj], where σi is the state of the scanner, �i are the generated tokens,
and sj is the state of the parser. There is no resulting state explosion, since
a scannerless parser must hold the same scanner-state information within its
parse state, anyway, and there is the advantage that scanning and parsing can
be defined separately.

String Filtering through Conditional Commands. A technique needed
for taint analysis [19–21] is filter functions that model the tests of conditional
commands. For example, a script might contain a conditional command that
filters untrusted user input:

read x
if isAllDigits(x) :
then · · · assert here that x holds all digits · · ·

The test expression, isAllDigits(x), is defined as a transducer that reads string
x and emits failure (⊥) if a character is a nondigit. A failure means that x’s
value is filtered from entering the conditional’s then-arm. The filter transducer
for isAllDigits(x) appears:

β fail

l ε’0’..’9’ : l
β0

l ε’0’..’9’ :/ fail
l ε’0’..’9’ :/ fail

: faileos

: faill

β1
l ε’0’..’9’ : l

The transducer emits fail when its input fails the boolean test. The complement
automaton, ¬β, merely swaps the outputs, � and fail.

Our approach to analyzing conditional statements goes as follows:

For the conditional,
if B(x):
then · · ·x · · ·
else · · ·x · · ·

generate these flow equations:
XB = insertβ ·X · eraseβ

· · ·XB · · ·
X¬B = insert¬β ·X · erase¬β

· · ·X¬B · · ·
where β is the transducer that implements test B and ¬β implements ¬B.

The fail character is special — when processed as an input, it causes the parse
to denote ⊥ (empty set in the powerset lattice): [· · · , fail , · · ·] = ⊥. For example,

x = ’a’
if isAllDigits(x):

print x

X0 = a
X1 = insertβ ·X0 · eraseβ

X2 = X1 · !

102 K.-G. Doh, H. Kim, and D.A. Schmidt

and

X2[s0] = X1[s0]
X1[s0] = X0[β0, s0]⊕ eraseβ

X0[β0, s0] = a[β0, s0] = [a ↪→ β0, s0] = [β0, fail ↪→ s0] = ⊥
Hence,

X1[s0] = eraseβ⊥ = ⊥ = X2[s0]

The analysis correctly predicts that nothing prints within the body of the

conditional.

8 Modelling Global Variables and User Input by
Nonterminals

An abstract parser can process a grammar’s nonterminal symbols as input just
like terminal symbols: the symbol is supplied to the parse state, which shifts it.
Say that a module uses a string-valued global variable that is initialized outside
of the module. If we can assume the global variable’s value has the structure
named by a nonterminal, then the global variable can be used in an abstract
parse. For example, assume global variable g holds an S-structured string:

x = ’[’.g .’]’
print x

G = S
X = [·G ·]

We readily compute the abstract parse for X [s0], using Figure 2:

X[s0]=([· G · ’]’)[s0] = [[↪→ s0] ⊕ (G · ’]’)=s0 :: (G[s1] ⊕]) = s0 :: ([S ↪→ s1] ⊕])
= s0 :: (s1 ::][s3]) = s0 :: s1 :: [] ↪→ s3] = s0 :: s1 :: s3 :: [s4] = · · · = [s5]

In a similar way, user input can be assumed to have structure named by a
nonterminal, and abstract parsing can be undertaken:

g = readS()
x = ’[’.g. ’]’
print x

G = S
X = [·G ·]

Of course, we must supply a script that parses the input at runtime, to ensure
that the input assumption is not violated.

But there is a rub — the program might contain string-replacement opera-
tions, which cannot process nonterminals. We solve this problem by unfolding
the nonterminal, supplying the generated strings to the string-replacement trans-
ducer (recall that S → a | [S]):

Abstract LR-Parsing 103

g = readS()
y = replace ’[’ by ’[[’ in g
print y

S = a � [· S ·]
G = S
Y = insertγ ·G · eraseγ

where transducer γ is the obvious one-state transducer. The analysis proceeds
like this:

Y [s0] = G[γ0, s0]⊕ eraseγ

G[γ0, s0] = S[γ0, s0]
S[γ0, s0] = (a[γ0, s0]) ∪ ([· S ·][γ0, s0])

The last residual equation, for S[γ0, s0], shows how nonterminal S is unfolded
and its symbols fed to γ. There is a tedious but finitely computable solution:

S[γ0, s0] = (a[γ0, s0] ∪ ([· S ·][γ0, s0])
= {[γ0, s5]} ∪ {s0 :: s1 :: S[γ0, s1]⊕]

The partial evaluation of S[γ0, s1] unfolds almost identically, producing

S[γ0, s1] = (a[γ0, s1] ∪ ([· S ·][γ0, s1])
= {s1 :: [γ0, s3]} ∪ ([· S ·][γ0, s1])
= {s1 :: [γ0, s3]} ∪ {s1 :: s1 :: [γ0, s1]⊕ (S ·])}
= {s1 :: [γ0, s3]} ∪ {s+

1 :: (S[γ0, s1] ·])}

The least fixed-point solution of S[γ0, s1] is {s+
1 :: [γ0, s3]}, which gives Y [s0] =

{[s5], s+
1 :: [s3]}.

With the technique just illustrated, we can show the correctness of input-
validation codings. For example, a script that goes

x = readS()
if isAllDigits(x):
then · · ·

can be analyzed with respect to the automaton defined by isAllDigits and
this reference grammar:

S ::= C | CS
C ::= D |N

D ::= 0 · · · 9
N ::= all characters not in D

9 Abstract Parsing with Semantic Processing

Since we can predict the syntax of dynamically generated strings, we should be
able to predict the semantics as well by adapting attribute-grammar techniques.

104 K.-G. Doh, H. Kim, and D.A. Schmidt

.0D

.D 1
B . BD
B .D

.0D

.1D

. BDB

DB B .
s4B . BD

B .D
.0D
.1D

. B

B D .
B .s6

s
0 l0

l1

!D
s5

s
2

s1

lD

s3
l0

l1

!D

!B

lD

!B

Shift transitions:
[� ↪→ 0 ↪→ s0] ⇒ s0 :: [� ↪→ s1]
[� ↪→ 1 ↪→ s0] ⇒ s0 :: [� ↪→ s2]
[� ↪→ D ↪→ s0] ⇒ s0 :: [� ↪→ s3]
[! ↪→ D ↪→ s0] ⇒ s0 :: [! ↪→ s5]
[! ↪→ B ↪→ sb

0] ⇒ [sb
6]

[� ↪→ 0 ↪→ s3] ⇒ s3 :: [� ↪→ s1]
[� ↪→ 1 ↪→ s3] ⇒ s3 :: [� ↪→ s2]
[� ↪→ D ↪→ s3] ⇒ s3 :: [� ↪→ s3]
[! ↪→ D ↪→ s3] ⇒ s3 :: [! ↪→ s5]
[! ↪→ B ↪→ s3] ⇒ s3 :: [! ↪→ s4]

Reduce transitions:
s :: [� ↪→ s1] ⇒ [� ↪→ D ↪→ strue]

s :: [� ↪→ s2] ⇒ [� ↪→ D ↪→ sfalse]
si :: sb

j :: [� ↪→ s4] ⇒ [� ↪→ B ↪→ sb
i]

sb
i :: [� ↪→ s5] ⇒ [� ↪→ B ↪→ sb

i]

where ! denotes end of input and � denotes any non-! input symbol.

parse stack (top lies at right) input sequence

[s0] 101!

[1 ↪→ s0] 01!

[0 ↪→ 1 ↪→ s0] 1! (shift)
s0 :: [0 ↪→ s2] 1! (reduce D → 1)

s0 :: [D ↪→ s
false
0] 1! (shift)

s
false
0 :: [0 ↪→ s3] 1!

s
false
0 :: [1 ↪→ 0 ↪→ s3] ! (shift)

s
false
0 :: s3 :: [1 ↪→ s1] ! (reduce D → 0)

s
false
0 :: [1 ↪→ D ↪→ strue

3] ! (shift)

s
false
0 :: strue

3 :: [1 ↪→ s3] !

s
false
0 :: strue

3 :: [! ↪→ 1 ↪→ s3] (shift)

s
false
0 :: strue

3 :: s3 :: [! ↪→ s2] (reduce D → 1)

s
false
0 :: strue

3 :: [! ↪→ D ↪→ s
false
3] (shift)

s
false
0 :: strue

3 :: s
false
3 :: [! ↪→ s5] (reduce B → D)

s
false
0 :: strue

3 :: [! ↪→ B ↪→ s
false
3] (shift)

s
false
0 :: strue

3 :: s
false
3 :: [! ↪→ s4] (reduce B → D B)

s
false
0 :: [! ↪→ B ↪→ s

false
3] (shift)

s
false
0 :: s

false
3 :: [! ↪→ s4] (reduce B → D B)

[! ↪→ B ↪→ s
false
0] (shift)

[sfalse
6] (finished)

Fig. 5. Syntax-directed semantic processing for LR(1) grammar, B → DB | D,
D → 0 | 1

Here is a simple but useful example. Binary numerals are generated by this
LR(1) grammar,

B → D B |D
D → 0 | 1

where B stands for the set of binary numerals and D stands for the set of
binary digits. The semantics of binary numerals can be specified with attributes
associated with the grammar symbols and semantics rules associated with the
productions. Suppose we want to know whether or not a binary numeral is even-
valued. The semantic rules associated with the productions below specify how
to calculate the answer:

Abstract LR-Parsing 105

production semantic rule
→ B ! answer = B.even
B → D B1 B.even = B1.even
B → D B.even = D.even
D→ 0 D.even = true
D→ 1 D.even = false

Here, each nonterminal, B and D, has a synthesized attribute, even, which has
value true if the binary numeral generated by the nonterminal is an even number,
false otherwise.

Since the grammar is LR(1) and only associated with synthesized attributes,
the semantic rules can be computed during LR-parsing, as seen in Figure 5. When
a reduce transition occurs, its corresponding semantic rule is computed. The
computed result is annotated to its corresponding state, shown as a superscript
in our notation. In the example in Figure 5, the computed attribute values are
annotated only to the states, s0 and s3. For the example binary numeral, 101,
the computed result is false, as expected. For this program,

x = ’0’
while ...

x = readD() · x
print x · !

X0 = 0
X1 = X0 �X2
X2 = D ·X1
X3 = X1 · !

its abstract parsing with synthesized-attribute computing proceeds as follows:

X3[s0] = (X1 · !)[s0] = X1[s0]⊕ !
X1[s0] = X0[s0] ∪X2[s0]
X0[s0] = 0[s0] = {[0 ↪→ s0]}
X2[s0] = (D ·X1)[s0] = [D ↪→ s0]⊕X1 = X1[D ↪→ s0]

= X0[D ↪→ s0] ∪X2[D ↪→ s0]
X0[D ↪→ s0] = {[0 ↪→ D ↪→ s0]} ⇒ {s0 :: [0 ↪→ s3]}
X2[D ↪→ s0] = (D ·X1)[D ↪→ s0] = [D ↪→ D ↪→ s0]⊕X1

⇒ {s0 :: [D ↪→ s3]} ⊕X1 = {s0 :: X1[D ↪→ s3]}
X1[D ↪→ s3] = X0[D ↪→ s3] ∪X2[D ↪→ s3]
X0[D ↪→ s3] = {[0 ↪→ D ↪→ s3]} ⇒ {s3 :: [0 ↪→ s3]}
X2[D ↪→ s3] = (D ·X1)[D ↪→ s3] = [D ↪→ D ↪→ s3]⊕X1

⇒ {s3 :: [D ↪→ s3]} ⊕X1 = {s3 :: X1[D ↪→ s3]}

Now we have a recursive equation to solve:

X1[D ↪→ s3] = {s3 :: [0 ↪→ s3]} ∪ {s3 :: X1[D ↪→ s3]}
= {s+

3 :: [0 ↪→ s3]}

106 K.-G. Doh, H. Kim, and D.A. Schmidt

Using this result, we obtain:

X2[D ↪→ s0] = {s0 :: s+
3 :: [0 ↪→ s3]}

X2[s0] = {s0 :: [0 ↪→ s3], s0 :: s+
3 :: [0 ↪→ s3]}

X1[s0] = {[0 ↪→ s0], s0 :: [0 ↪→ s3], s0 :: s+
3 :: [0 ↪→ s3]}

X3[s0] = {[! ↪→ 0 ↪→ s0], s0 :: [! ↪→ 0 ↪→ s3], s0 :: s+
3 :: [! ↪→ 0 ↪→ s3]}

= {[strue
6]}

since {[! ↪→ 0 ↪→ s0]} ⇒ {s0 :: [! ↪→ s1]} ⇒ {[! ↪→ D ↪→ strue
0]}

⇒ {strue
0 :: [! ↪→ s5]} ⇒ {[! ↪→ B ↪→ strue

0]} ⇒ {[strue
6]}

and {s0 :: [! ↪→ 0 ↪→ s3]} ⇒ {s0 :: s3 :: [! ↪→ s1]} ⇒ {s0 :: [! ↪→ D ↪→ strue
3]}

⇒ {s0 :: strue
3 :: [! ↪→ s5]} ⇒ {s0 :: [! ↪→ B ↪→ strue

3]}
⇒ {s0 :: strue

3 :: [! ↪→ s4]} ⇒ {[! ↪→ B ↪→ strue
0]} ⇒ {[strue

6]}
and {s0 :: s+

3 :: [! ↪→ 0 ↪→ s3]} ⇒ {s0 :: s+
3 :: s3 :: [! ↪→ s1]}

⇒ {s0 :: s+
3 :: [! ↪→ D ↪→ strue

3]} ⇒ {s0 :: s+
3 :: strue

3 :: [! ↪→ s5]}
⇒ {s0 :: s+

3 :: [! ↪→ B ↪→ strue
3]} ⇒ {s0 :: s+

3 :: strue
3 :: [! ↪→ s4]}

⇒ {s0 :: [! ↪→ B ↪→ strue
3], s0 :: s+

3 :: [! ↪→ B ↪→ strue
3]}

(second set element adds nothing to fixed point)
⇒ {s0 :: strue

3 :: [! ↪→ s4]} ⇒ {[! ↪→ B ↪→ strue
0]} ⇒ {[strue

6]}

This proves that all possible string values of x at the end are well-structured B-
phrases and even-valued. The approach is well suited to “type checking” XML-
like documents; this application is currently under investigation.

10 Conclusion

The worklist algorithm for abstract parsing discussed in this paper has been im-
plemented for PHP applications that dynamically generate HTML documents. A
scannerless LALR(1) parsing table for an HTML grammar written up to character
level is automatically generated by a parser generater, and a set of flow equations
are generated from the PHP application to be analyzed. Our abstract parser then
takes the flow equations, the parsing table, and a hot spot and parses the set of all
documents dynamically generated at the given hot spot. In addition, our abstract
parser builds a set of abstract syntax trees of the documents for the use of further
analyses. The current implementation has been applied to a suite of PHP appli-
cations publicly available and has successfully identified multiple parse erorrs in
a reasonable execution time with a few predictable false positives [7].

The extensions proposed in this paper, such as dealing with destructive string
operators, composing scanner with the parser, modular abstract parsing with
the existence of unknown string variables, string filtering through conditionals,
and semantic processing such as type checking and taint analysis, are currently
being implemented or are planned for implementation in the near future. The
extensions are expected to remove false positives observed from our initial im-
plementation and to make abstract parsing more practical and useful.

Acknowledgements. We thank Carolyn Talcott for her decades of leadership
in programming-languages research and dedicate this paper to her on the occa-
sion of her 60th birthday.

Abstract LR-Parsing 107

Conversations with Anders Møller, Se-won Kim, and Kwangkuen Yi and his
group at Seoul National University have been helpful. We thank GTOne’s Soo-
Yong Lee for his inspiration and support.

References

1. Agrawal, G.: Simultaneous demand-driven data-flow and call graph analysis. In:
Proc. Int’l. Conf. Software Maintenance, Oxford (1999)

2. Brabrand, C., Møller, A., Schwartzbach, M.I.: The <bigwig> project. ACM Trans.
Internet Technology 2 (2002)

3. Choi, T.-H., Lee, O., Kim, H., Doh, K.-G.: A practical string analyzer by the
widening approach. In: Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp.
374–388. Springer, Heidelberg (2006)

4. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Static analysis for dynamic
XML. In: Proc. PLAN-X 2002 (2002)

5. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Extending Java for high-level
web service construction. ACM TOPLAS 25 (2003)

6. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string ex-
pressions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer,
Heidelberg (2003)

7. Doh, K.-G., Kim, H., Schmidt, D.A.: Abstract parsing: static analysis of dynami-
cally generated string output using lr-parsing technology. In: Palsberg, J., Su, Z.
(eds.) SAS 2009. LNCS, vol. 5673, pp. 256–272. Springer, Heidelberg (2009)

8. Duesterwald, E., Gupta, R., Soffa, M.L.: A practical framework for demand-driven
interprocedural data flow analysis. ACM TOPLAS 19, 992–1030 (1997)

9. Goldfarb, C.F.: The SGML Handbook. Oxford Univ. Press (1991)
10. Horwitz, S., Reps, T., Sagiv, M.: Demand interprocedural dataflow analysis. In:

Proc. 3rd ACM SIGSOFT Symp. Foundations of Software Engg. (1995)
11. Jones, N., Nielson, F.: Abstract interpretation: a semantics-based tool for program

analysis. In: Abramsky, S., Gabbay, D., Maibaum, T. (eds.) Handbook of Logic in
Computer Science, vol. 4, pp. 527–636. Oxford Univ. Press (1995)

12. Jones, N.D., Mycroft, A.: Data flow analysis of applicative programs using minimal
function graphs. In: Proc. 13th Symp. POPL, pp. 296–306. ACM Press (1986)

13. Kirkegaard, C., Møller, A.: Static analysis for Java Servlets and JSP. In: Yi, K.
(ed.) SAS 2006. LNCS, vol. 4134, pp. 336–352. Springer, Heidelberg (2006)

14. Minamide, Y.: Static approximation of dynamically generated web pages. In: Proc.
14th ACM Int’l Conf. on the World Wide Web, pp. 432–441 (2005)

15. Minamide, Y., Tozawa, A.: XML validation for context-free grammars. In:
Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 357–373. Springer, Heidel-
berg (2006)

16. Møller, A., Schwarz, M.: HTML validation of context-free languages. Technical
report, Computer Science Dept., Aarhus University (2010)

17. Nishiyama, T., Minamide, Y.: A translation from the HTML DTD into a regu-
lar hedge grammar. In: Ibarra, O.H., Ravikumar, B. (eds.) CIAA 2008. LNCS,
vol. 5148, pp. 122–131. Springer, Heidelberg (2008)

18. Thiemann, P.: Grammar-based analysis of string expressions. In: Proc. ACM Work-
shop Types in Languages Design and Implementation, pp. 59–70 (2005)

19. Wassermann, G., Gould, C., Su, Z., Devanbu, P.: Static checking of dymanically
generated queries in database applications. ACM Trans. Software Engineering and
Methodology 16(4), 14:1–14:27 (2007)

108 K.-G. Doh, H. Kim, and D.A. Schmidt

20. Wassermann, G., Su, Z.: The essence of command injection attacks in web appli-
cations. In: Proc. 33d ACM Symp. POPL, pp. 372–382 (2006)

21. Wassermann, G., Su, Z.: Sound and precise analysis of web applications for injec-
tion vulnerabilities. In: Proc. ACM PLDI, pp. 32–41 (2007)

Appendix: Concrete, Collecting, and Abstract Semantics

A source program computes an output store that maps variables to strings.
The concrete collecting semantics [11] defines a set of stores for each program
point (command line); the collecting semantics is then abstracted in the usual
fashion so that it computes, for each program point, a single store that maps
each variable to a set of strings. For the example in Figure 1, we have

p0 == x → {’a’}
pr == x → {’a’}, r → {’]’}
p1 == x → {’[’i’a’’]’i | i ≥ 0}, r → {’]’}
p2 == p1 == p3

The collecting semantics is overapproximated by the data-flow semantics, which
uses flow equations to define the set of strings denoted by each variable at each
program point. In Figure 1, the listed data-flow equations are a shorthand for
this fuller form:

X0 = a
Rr =] Xr = X0
X1 = Xr �X2 R1 = Rr
X2 = [·X1 ·] R2 = R1
X3 = X1 R3 = R1

The least-fixed-point solution is computed in the domain of sets of strings. Since
the example ignores the loop test, the data-flow semantics computes the same
sets as the collecting semantics.

Let Σ name the states in the LR(k)-parser’s controller. A parse stack has
form, s1 :: s2 :: · · · :: sj :: [c], j ≥ 0, where each si ∈ Σ, and the top, current
parse state, [c] ∈ Configuration, has the form, [�j ↪→ · · · ↪→ �0 ↪→ s], 0 < j < k,
where the �is are input symbols and s ∈ Σ.

Function γ : ParseStack → (Σ × P(String)) concretizes a parse stack into
the start state and the string(s) that generate the stack:

γ(st) = (s0, T) such that LRparse(t, s0) = st and t ∈ T

The function, γ∗ : P(ParseStack)→ P(Σ × String), is the induced lift.
The abstract-parse interpretation, X , computes the set of parse stacks denoted

by each variable at each program point: For flow equation, Xi = Ei, the function,
Xi : Configuration→ P(ParseStack), is defined Xi[s] = [[Ei]][c], where

Abstract LR-Parsing 109

[[a]][c] = {rewrite[a ↪→ c]}, where a is a terminal symbol

[[E1 � E2]][c] = [[E1]][c] ∪ [[E2]][c]

[[Xj]][c] = [[Ej]][c], where Xj = Ej is the flow equation for Xj

[[E1 · E2]][c] = {rewrite(p′) | p′ ∈ ([[E1]][c]⊕ [[E2]])},
where S ⊕ g = {tail(p) :: g(head(p)) | p ∈ S}, S ∈ P(ParseStack)

where rewrite(st) repeatedly applies the shift/reduce rules, ⇒, to st until a
normal form is achieved.

Using γ, we can prove the abstract-parse interpretation sound with respect to
the concrete collecting semantics.

The abstract-parse interpretation is made finitely convergent by abstracting
the domain, P(ParseStack), into the domain of sets of subgraphs of the LR(k)-
parser automaton: Represent a stack, st = s1 :: s2 :: · · · :: sj :: [c], as the linked
path, pathst = ← s1 ← s2 ← · · · ← sj ← [c] ←. Define fold : ParseStack →
ParserSubgraph as fold(pathst) = ←1 G←j [c]←, where G is the smallest
subgraph in the parser automaton that covers the path from s1 to sj; ←1 is an
out-arc from node s1; and ←j is an in-arc into node sj . The answer graph is
computed by folding repeating states in the argument path and preserving all
arcs.

fold ’s definition is easily generalized from folding paths to folding graphs —
merge repeating nodes and retain the arcs.

The finitely convergent abstract-parse interpretation is defined in terms of
fold ; we modify the semantics of this one clause of the abstract-parse interpre-
tation:

[[Xj]][c] = fold∗([[Ej]][c]), where Xj = Ej is the flow equation for Xj
and fold∗(T) = {fold(t) | t ∈ T }

A set of subgraphs might be further abstracted into a single graph by unioning
the graphs in the set into one graph — merge the graphs’ like-named nodes and
preserve the edges.

Fractionated Software for

Networked Cyber-Physical Systems:
Research Directions and Long-Term Vision

Mark-Oliver Stehr, Carolyn Talcott, John Rushby, Pat Lincoln,
Minyoung Kim, Steven Cheung, and Andy Poggio

SRI International
{stehr,clt,rushby,lincoln,mkim,cheung,poggio}@csl.sri.com

Abstract. An emerging generation of mission-critical systems employs
distributed, dynamically reconfigurable open architectures. These sys-
tems may include a variety of devices that sense and affect their envi-
ronment and the configuration of the system itself. We call such systems
Networked Cyber-Physical Systems (NCPS). NCPS can provide complex,
situation-aware, and often critical services in applications such as dis-
tributed sensing and surveillance, crisis response, self-assembling struc-
tures or systems, networked satellite and unmanned vehicle missions, or
distributed critical infrastructure monitoring and control.

In this paper we lay out research directions centered around a new
paradigm for the design of NCPS based on a notion of software fraction-
ation that we are currently exploring which can serve as the basis for
a new generation of runtime assurance techniques. The idea of software
fractionation is inspired by and complementary to hardware fractiona-
tion — the basis for the fractionated satellites of DARPA’s F6 program.
Fractionated software has the potential of leading to software that is more
robust, leveraging both diversity and redundancy. It raises the level of
abstraction at which assurance techniques are applied. We specifically
propose research in just-in-time verification and validation techniques,
which are agile — adapting to changing situations and requirements, and
efficient — focusing on properties of immediate concern in the context of
locally reachable states, thus largely avoiding the state space explosion
problem. We propose an underlying reflective architecture that main-
tains models of itself, the environment, and the mission that is key for
adaptation, verification, and validation.

1 Introduction and Motivation

The increasing availability of systems and devices that can sense and affect
their environment in different ways and with different levels of sophistication
is the starting point for development of a new generation of Networked Cyber-
Physical Systems (NCPS). Such systems provide complex, situation-aware, and
often safety- or mission-critical services. Examples include traffic control (air and
ground), medical systems, smart power grids, flexible manufacturing systems, au-
tomated laboratories, microclimate control in buildings, structural monitoring

G. Agha, O. Danvy, and J. Meseguer (Eds.): Talcott Festschrift, LNCS 7000, pp. 110–143, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Fractionated Software for Networked Cyber-Physical Systems 111

and control, self-assembling structures or systems, unmanned vehicles (including
autonomous robots and UAVs), networked satellite missions (including future
fractionated designs), deep space exploration vehicles, instrumented spaces for
surveillance and emergency response, and ad hoc combat teams (on the ground
and airborne). Especially interesting and challenging examples are complex het-
erogeneous networked systems with humans and (automomous) agents in the
loop, such as vehicular networks, mobile social networks, or the global network
of financial markets.

A number of special-purpose solutions exist for different aspects of NCPS.
However, general principles and tools for building robust, effective NCPS appli-
cations/services using individual cyber-physical devices as building blocks are
missing. Furthermore, the verification and validation of NCPS is notoriously
difficult and conventional techniques are too expensive, which is a serious prob-
lem because the capabilities and the flexibility of NCPS are urgently needed for
today’s complex mission-critical applications. Factoring out the minimal func-
tionality common to NCPS is a first step toward making verification feasible,
because the cost of verification can be amortized over many instantiations of
the common framework. This is far from enough, however, because mission-
specific properties and performance metrics will require verification, too, and the
mission-specific software will typically be much more complex than the minimal
framework. Furthermore, conventional verification cannot enable rapid deploy-
ment at acceptable cost.

We propose to tackle this problem by considering the notion of software frac-
tionation, which is directly inspired by hardware fractionation, specifically the
idea of fractionated satellites [9] that is the basis for DARPA’s F61 program. We
believe that software fractionation has the potential of leading to software that is
more robust and can be designed to be verified at reasonable cost by raising the
level of abstraction at which verification is applied. We will argue, however, that
verification in the conventional sense is not a sensible solution for the flexible,
dynamically reconfigurable, mission-critical NCPS, which will lead us to propose
new research opportunities in a hardly explored direction of runtime assurance.

Challenges and Opportunities in Networked Cyber-Physical Systems. Many chal-
lenges exist in the context of NCPS. They have a wide range of assurance require-
ments, operate in a distributed environment, and unlike pure sensor networks
they can perform physical actions and are usually characterized by (distributed)
control loops through which the environment provides essential feedback. There
is a large overlap between NCPS and wireless sensor networks augmented with
actuators, also known as sensor/actor networks [4,19], but it should be noted
that, in NCPS, node and communication capabilities can vary significantly. For
instance, in addition to resource-constrained embedded sensor/actuator nodes,
devices carried by humans (e.g., PDAs), energy-rich nodes attached to vehicles
(e.g., laptops), resource-constrained UAVs, solar-powered satellites of different

1 Future, Fast, Flexible, Formation-Flying, Fractionated Spacecraft united by Infor-
mation eXchange.

112 M.-O. Stehr et al.

sizes (including pico-satellites such as Cubesats), as well as nodes with contin-
uous Internet connectivity (e.g., ground stations and computationally powerful
grid nodes) can all be part of the same NCPS.

In addition to the real-time, resource-limited, reactive aspects of traditional
embedded systems, an NCPS must embody a situation awareness that reflects
the overall distributed system and its environment. Local situation awareness
of a network node is not sufficient. Each node must maintain a model of its
local, directly observable situation together with models about the rest of the
network. Models must also account for uncertainty, partial knowledge, and bad
or stale information. Furthermore, different nodes may have different degrees of
awareness according to their capabilities. Asynchronous actions must achieve a
desired overall coherent effect. An NCPS needs to be open in the sense that nodes
may come and go. In fact, a system may assemble ‘on the fly’ for a given pur-
pose. Mission-critical systems may be scaled up or down depending on mission
requirements.

An advantage of multiple distributed nodes is that resources can be pooled
and limitations can be partially overcome by cooperation. To realize the poten-
tial benefits of pooling resources (energy, CPU cycles, memory, bandwidth, sen-
sors/actuators) it is necessary for the different processes/layers on each node to
adapt resource usage (setting parameters, choosing policies) to achieve system-
wide objectives, not just local goals.

From Networked to Fractionated Cyber-Physical Systems. The networked struc-
ture of NCPS normally arises as a by-product of their required capabilities (e.g.,
the need to perform distributed sensing) and is usually seen as an inconvenience
for engineering, a challenge for verification, and even a hazard to the operation of
the system. In this paper, we propose to view distribution as an opportunity (and
in some sense as a necessity) rather than an obstacle for building high-assurance
systems. In fact, we propose what seems to be counterintuitive — namely, to
even further increase the degree of distribution and nondeterminism by moving
toward systems that are fractionated by design not only in terms of their hard-
ware but also at the software level. Hardware and software fractional elements
or fracments, as we call them, are very different from traditional components,
in that they do not have to correctly perform a well-defined function. Instead,
reliable functionality is achieved by a group of such fracments interacting in an
opportunistic fashion.

The idea of achieving robustness through diversity and redundancy seems
to be a fundamental underlying principle of biological systems. The natural
exposure to faults has not only enabled evolution as a mechanism for progress
in many dimensions, but has been turned into an advantage by favoring more
robust designs. For instance, the human immune system is an example of an
effective NCPS. Characteristics of the immune system include robustness, generic
and adaptive responses to events, distributed knowledge, diversity, authentica-
tion and integrity checking mechanisms, adaptive control, autonomous
operation, and heterogeneous actuators. It is a system with continual deploy-
ment of novel entities, intermittent connectivity, exchange of information among

Fractionated Software for Networked Cyber-Physical Systems 113

heterogeneous entities, such as the nervous and metabolic system components,
and uninterrupted operation. There is dynamic optimization, for example, in
the crucial balance between quick generic action and deliberate, aggressive spe-
cialized actions. The global behavior of the system emerges from predominantly
local actions and asynchronous propagation of information.

Diversity and redundancy have also been successfully employed for risk reduc-
tion in finance, although the recent financial crisis shows that alone they are not
sufficient to prevent systemic failures. Hardware and software fault tolerance is
another area where these concepts have been exploited, but their use is mostly
coarse grained, with limited degrees of diversity and redundancy, and applied to
specific components or subsystems rather than used as an overall design prin-
ciple. In fault-tolerant or disruption-tolerant networking, the loss of nodes (or
connectivity) can be overcome, but a natural question is whether software can
be designed so that this tolerance emerges as a special case of more fine-grained
general design principles.

Why is this related to verification and validation? The simple answer is that
an inherently fault-tolerant architecture raises the level of abstraction to a point
where verification and validation becomes interesting and worthwhile. We pro-
pose to steer away from low-level code verification and to focus the verification
effort mainly on system properties. In our view, code verification is too expensive
for what it provides — namely, local correctness properties against detailed and
possibly incorrect/incomplete specifications that are based on many assumptions
about the environment and the underlying hardware and software. For instance,
in challenging environments where failures in processors, memory, networking,
sensors, firmware, and drivers are common, the benefit of maximum assurance
for just one aspect — namely, the code — is economically questionable. To ob-
tain a precise understanding of the benefits and trade-offs, an economic theory of
high assurance design (and possibly beyond) would be needed, for instance along
the lines of Rushby’s suggested science of certification [69] taking into account
possible trade-offs between confidence and degree of correctness [8]. A key idea
elaborated in [70] is that at some level of abstraction formal methods are able to
provide a notion of possible perfection enabling compositional arguments about
system reliability.

Fractionated software represents a potential paradigm shift, but the high level
of abstraction enabled by fractionated design is where the real challenges start.
Conventional verification techniques will not be suitable for the mission-driven
dynamically reconfigurable cyber-physical systems that we envision in the future.
System requirements and configuration are usually not known at design time,
which requires us to shift most of the verification activities to the time when
sufficient information is available. Typically, this will be after the deployment,
that is, at system runtime.

From Design-Time to Runtime Assurance. To our knowledge the provocative
possibility of just-in-time certification of cyber-physical systems was first raised
in [69]. In fact, just-in-time certification is one step beyond just-in-time verifica-
tion in the sense that an explicit certificate is generated at runtime as evidence

114 M.-O. Stehr et al.

for system correctness. In general, it may not be necessary to generate an ex-
plicit certificate, but the core idea of just-in-time certification — namely, the
application of design-time formal methods at runtime — is an opportunity that
we suggest exploring systematically. Hence, a few key arguments from the above-
mentioned paper are worthwhile to summarize. Standards-based certification as
it is mostly practiced today in the United States (using a standard such as DO-
178B for airborne software) does not provide a clear link between the required
artifact and the system requirements. The choice of methods has to rely on
extensive expert knowledge and experience, which means that the application
to novel circumstances is nearly impossible, making it a barrier to innovation.
Usually, the conservative design practices that are required (e.g. limitations on
scheduling and memory management) are at odds with innovative architectures
such as those needed for today’s flexible mission-critical systems. Future sys-
tems exist in many configurations, are reconfigurable, and undergo evolution
during their lifetime. The number of possible configurations can be enormous
(e.g., 50000 lines of XML for an airplane). Since the final configuration is de-
termined after the design and most configurations are never used, just-in-time
certification would be a perfectly adequate solution.

We suggest going one step further by looking at systems, like fractionated
spacecrafts, that are dynamically reconfigurable and extensible so that the con-
sequent generalization of this idea is to view verification as an ongoing process
during the entire lifetime of the system that can be carried out by the system
itself. The need for rapid instantiation and deployment of a system for a new
possibly unanticipated mission (e.g., within hours) dictates that the verification
process must be automated and needs to be executable under critical time and
resource constraints. Yet another argument for runtime methods is simply the
expectation that future systems will be highly flexible and possibly universal to
capture the diversity of possible missions, and the requirements can rarely be
stated at design time. A related issue that is often neglected is the validation
of specifications, to answer the question if the specification, which will be typi-
cally derived from the mission objective, is sensible and captures the intentions.
In line with the previous arguments, the most essential validation tasks should
also be performed just-in-time — namely, whenever the system interacts with
the operator and is tasked with a new mission. The result of a failed validation
might mean that the system must be scaled up (e.g., extended) or the objectives
need to be scaled down. Clearly, modifications of a mission and changes of the
system need to be revalidated, which is why just-in-time validation needs to be,
like verification, an ongoing process, which in a similar way takes advantage of
(partial) knowledge about the current system configuration.

Overview of this Paper. To build systems that satisfy requirements (verify) and
perform their intended mission (validate) under a wide range of possible system
configurations and with potentially degraded resources, we propose the reflec-
tive system architecture depicted in Fig. 1 and outline key research directions.
The architecture has three main components: (1) A fractionated software ker-
nel with a reflective simulation capability that is a crucial building block for

Fractionated Software for Networked Cyber-Physical Systems 115

R
u

n
t
im

e

A
s
s
u

r
a

n
c
e

Model Synthesis and Adaptation via Distributed Monitoring

Reflective Simulation Capability

Distributed, Quantitative, and Scalable Logical Framework

Fractionated Software Kernel

D
e

c
la

r
a

t
iv

e

F
o

u
n

d
a

t
io

n

R
e

fl
e

c
t
iv

e

A
r
c
h

it
e

c
t
u

r
e

 Distributed On-demand Deductive Synthesis

Model-based Distributed Control and Optimization

Probabilistic Runtime Testing and Verification

 Predictive Just-in-Time Validation

Fig. 1. Stylized System architecture

runtime assurance. (2) A declarative foundation for NCPS in the form of a dis-
tributed logical framework that is quantitative and scalable. The logic supports
reasoning in the context of system goals and models maintained via distributed
monitoring. (3) A new generation of runtime assurance techniques, including
novel probabilistic runtime testing and verification methods such as predictive
analysis, integration of symbolic and simulation-based techniques, adaptive run-
time abstraction, resource- and situation-aware runtime assurance, and learning
from the system dynamics. System adaptation through model-based distributed
control and optimization is at the core of this set of techniques. We illustrate
these ideas using examples centered around fractionated satellite networks, which
originally served as an inspiration for the overall approach.

The stylized system architecture illustrates how the different techniques dis-
cussed in this paper can work together. For clarity we used a one-dimensional
presentation, showing how different levels of runtime assurance can be built on
top of each other and ultimately on top of our proposed reflective fractionated
software architecture. This is by no means the only way to integrate the differ-
ent techniques, and not all layers will be equally important or even needed for
all NCPS. The architecture clearly distinguishes between the logical framework
that provides a declarative view of the NCPS and the runtime assurance layers.
Declarative and executable models of the physical world and of the system frac-
ments are maintained and continuously adapted while the system evolves. The
logical framework enables a rich set of possible behaviors of the NCPS, whereas

116 M.-O. Stehr et al.

the control and optimization strategy restricts the evolution of the NCPS by
exploiting models, invoking runtime assurance techniques, and taking into ac-
count the overall system goal, which is represented in the language of the logical
framework. On-demand synthesis produces solutions (plans) for complex tasks
that require transitioning the system though a series of intermediate goals. Just-
in-time validation, finally, is concerned with the validation of mission goals in
the context of other applicable policies.

Guided by this architecture, we will address each for the following research
directions in a subsequent section, followed by an illustration of these ideas in
the domain of fractionated satellites and by a discussion of some related work.

– Software Fractionation
• provides high level of abstraction from low-level failures
• leverages diversity, redundancy, distribution, and nondeterminism
• covers wide spectrum of autonomy and cooperation

– Distributed Logical Foundation for NCPS
• expresses degrees of satisfaction and uncertainty
• supports distributed robust dynamic proofs
• enables adaptive models with multilevel abstraction

– Runtime Assurance with Distributed Declarative Control
• covers runtime validation, synthesis, verification, testing
• integrates proof and optimization strategies
• balances system and assurance goals through agile adaptation

2 A Reflective Architecture for Fractionated Software

To provide a suitable level of abstraction for the new set of runtime verification
and related techniques that we propose to explore, we assume that software
consists of fracments that are running on top of a fractionated software kernel, a
minimalistic framework that enables the fracments to interact. Since a common
aspect of all our proposed verification techniques is the capability of the system
to analyze its own behavior, we factor out a reflective simulation capability as
an intermediate layer directly on top of the kernel.

2.1 Fractionated Software Kernel

Like a biological cell, a software fracment does not have to make sense in isola-
tion, but its interesting properties may emerge only at a higher level of abstrac-
tion where multiple fracments interact with each other. The emerging properties
are the ones that we are interested in verifying. How they are established is less
important as long as we can quantify their probabilities.

By enabling verifiable software, the objectives of the fractionated software
kernel are similar to those of a separation kernel [67] and robust partitioning
[68] in integrated modular avionics. The fractionated software kernel, however,

Fractionated Software for Networked Cyber-Physical Systems 117

is conceptually distributed over many nodes and exploits distribution to achieve
a new dimension of decoupling, diversity, and redundancy. Each node could be
running a separation kernel, but this may not be necessary in highly fractionated
systems where sufficient probabilistic separation guarantees between fracments
are provided by their random distribution over the nodes and hence by the
distributed nature of the system alone. Like a separation kernel, the fractionated
software kernel should be minimalistic so that trust in it can be established
once and for all with acceptable cost. The fracments will be required to be self-
coordinating so that global coordination, a bottleneck, and a potential point of
failure in component-based approaches to fault tolerance, would not be needed.

To exploit distribution, the kernel will also provide minimal but robust
networking capabilities so that, disregarding possible networking delays, local
fracments can interact with nonlocal fracments just as if they were local. The
interaction will be delay tolerant and no upper bounds on delays will be assumed
because network disruptions (including intermittent or episodic connectivity)
are assumed to be part of the normal operation. To ensure maximal decou-
pling between the fracments, the interactions will not be direct (unlike remote
procedure calls and the message-passing paradigm used for instance in today’s
service-oriented architectures) but rather enabled by partially ordered knowl-
edge sharing. The idea, which has been successfully used in sensor networks and
in disruption-tolerant networking (DTN), specifically in our work [75], is that
each node has a local knowledge base, which local fracments can access and
which is shared across the network using a peer-to-peer knowledge dissemina-
tion protocol. A general framework, which serves as a prototype to experiment
with the partially ordered knowledge-sharing model, has been presented in [42]
and used as the basis of a distributed logical framework in [74]. This loosely
coupled paradigm resembles that of a distributed blackboard (generalizing the
well-known blackboard paradigm for multiagent systems) and distributed tuple
spaces (e.g., [61]) with the important difference that no global coordination and
no consistency guarantees are required. Instead, fracments are engineered to be
delay insensitive and tolerant to inconsistent and incomplete knowledge. Similar
to the paradigm of content-centric networking [79], the fracments operate at a
level of abstraction in what might be called a knowledge-centric approach, where
they are not concerned with protocols and message flow (and resulting synchro-
nization problems) but only with the question of how to use the knowledge once
it becomes available.

In a fractionated networked system, software fracments solving the same or
similar problems will be distributed over the networked nodes with a suitable
degree of diversity and redundancy. Various approaches developed for software
fault tolerance [78,54] can be utilized and combined to achieve diversity of frac-
ments, in particular distributed n-way redundancy and n-version design [12].
We additionally propose to use randomization (exploiting both non determin-
ism and concurrency) as an important source of diversity. Individual fracments
should be self-checking [54] (in a rigorous sense) but thanks to fracment diversity
and redundancy do not have to be self-correcting. Nevertheless, checkpointing,

118 M.-O. Stehr et al.

restart, and recovery block techniques [78,54] can be used locally at the fracment
level to improve robustness, but not at the distributed system level, where in-
consistent knowledge is accepted as a normal operating condition. Furthermore,
diversity does not have to be confined to the implementation level. Fracments
(e.g., parameterized by complexity levels) that can accomplish similar functions
with possibly different resource requirements are also desirable and have the
advantage of providing not only diversity but also a potentially continuous high-
dimensional trade space for system optimization. In spite of each individual frac-
ment being bound to a fixed location, this approach with transparent knowledge
sharing leads to location independence of the function provided by the fracments
as a group. Note that this approach does not rely on any form of code or agent
mobility (such as [61], which comes with its own set of problems, especially in
networks that are dynamic and unreliable).

We envision fractionated software to be continuously maintained and evolving
at runtime. In fact, complex and expensive future systems (such as fractionated
satellites) may not only be deployed incrementally but design and deployment
will likely become concurrent incremental activities to enable risk and cost reduc-
tion through partial deployment and early testing. Hence, beyond the addition
of new nodes, the fractionated software kernel needs to support removal and in-
stallation of software fracments on existing nodes without system interruption.
Since a new fracment will typically be installed remotely (e.g., from a ground
station in the case of a satellite network) and on many nodes, the dissemina-
tion of fracments can utilize the same mechanism that is used to disseminate
knowledge. Clearly, an asynchronous system cannot be upgraded globally in one
step, but with a sufficient amount of diversity and redundancy an incremental
distributed upgrade should be possible even without risking the interruption of
an ongoing mission.

2.2 Reflective Simulation Capability

To support runtime assurance and related techniques efficiently we envision that
a reflective simulation capability will be directly built as a layer on top of the
fractionated software kernel. In our context, reflection means that software frac-
ments and their encapsulated hardware are reflected as models that can support
reasoning and optimization activities. Models are not constrained to a single
level of abstraction. Furthermore, models can be executable and can themselves
be viewed as fracments that can be composed to larger models. Executability of
models is essential to enable the predictive runtime verification techniques dis-
cussed in the next section. Computational reflection is a well-known concept in
computer science that has many applications [55]. It has been successfully imple-
mented as part of the Maude system [16]. The importance of runtime reflection
as an enabler of traditional (monitoring-based) runtime verification for safety-
critical systems has already been recognized [50]. Here, we propose to generalize
runtime reflection to open distributed systems, to multiple levels of abstraction,
and to use it systematically as a basis for the implementation of a wide range of
runtime assurance techniques.

Fractionated Software for Networked Cyber-Physical Systems 119

3 A Declarative Foundation for Cyber-Physical Systems

A logical framework should serve as a uniform declarative interface to all capa-
bilities of the NCPS. At the same time it should provide a semantically well-
founded way to represent, manipulate, and share knowledge across the network.
The logical framework should also serve as a basis for abstract models that
take the form of logical theories and are continuously adapting to new incoming
knowledge resulting from local or nonlocal observations.

3.1 Distributed, Quantitative, and Scalable Logical Framework

Various kinds of knowledge need to be expressed including models, facts, goals,
and proofs — i.e., derivations of goals from facts. In NCPS, facts can represent
sensor readings at specific locations, and goals can represent queries for infor-
mation or requests to actors or actuators to perform certain actions. Although
there are cases where a goal can be directly satisfied by a single local action, it
is typically the case that distributed actions are needed and the more relevant
feedback will be conveyed via a feedback loop through the environment. Such
indirect feedback can consist of facts (representing observations) from multiple
sensors that together can measure the progress toward reaching the original high-
level goal. As a consequence, rigid top-down or bottom-up approaches are not
sufficient for NCPS. Furthermore, models can have many different flavors rang-
ing from precise physical models to qualitative commonsense models, and can
include approximate and partial models of the real world based on observations.
Combinations of different flavors are usually needed. For instance, a satellite as
part of a network could utilize an approximate model for network connectivity
combined with a precise orbit model based on Kepler’s laws and knowledge gath-
ered by active exploration (e.g., beaconing for neighbor discovery) and passive
observations (e.g., attitude determination).

A Logical View of Cyber-Physical Systems. Apart from a few notable excep-
tions such as cyberlogic [66], it is interesting to note that the distributed nature
of today’s problems is rarely considered in the design of logical frameworks. For
cyber-physical systems it is essential, since carrying out proofs may require coop-
eration across multiple nodes. In many cases, goals and facts cannot be matched
locally. Consider an example of gathering certain information from a particular
area under observation (e.g., from a sensor network on the ground that is part
of a global network of UAVs and satellites). In an interest-driven routing proto-
col, such as directed diffusion [38], a node expresses interest for specific data by
sending requests into the network. Data matching the interest is then drawn to-
ward the node from which the interest originates. From a logical point of view, a
goal, representing an information request, is injected and disseminated through
the network. The goal is a logical formula expressing that the information needs
to be of the required kind (content subgoal) and be delivered at the requesting
node (delivery subgoal). A fact representing the presence of information at the
source will match or satisfy part of the goal — namely, the content subgoal. Now

120 M.-O. Stehr et al.

there is an incentive to route the partially satisfied goal with the requested con-
tent toward the interested application, since this will incrementally increase the
degree of satisfaction of the overall goal and eventually complete the distributed
proof. In other words, an interest-driven routing and many similar processes can
be seen as distributed proofs and optimization strategies that try to bring facts
and goals together.

To serve as a formal framework for NCPS, the logic must have the capability
to express degrees of satisfaction so that both search and optimization become
instances of a generalized notion of deduction. As a starting point, we propose
to use a version of first-order logic with equality, real arithmetic, and degrees
of confidence. The specific application domain will be reflected in the back-
ground theory relative to which the reasoning takes place and can also influence
the search, reasoning, and optimization strategies employed at the higher layers
(see Section 4). Due to the resource-constrained nature of many cyber-physical
systems, trade-offs between expressiveness and efficiency need to be considered
and a scalable logic — i.e., a logic with sublanguages and inference systems of
adjustable complexity — would be the ideal solution. The language needs to
go beyond propositional and Horn clause logic, since a functional sublanguage
representing cost and utility functions with discrete and continuous parameters
and functional parts of the models will be essential. Furthermore, predicates
with discrete and continuous parameters are important to support predicate
abstraction [31]. To support functional computation as part of reasoning and
optimization strategies, the logic should be equipped with operational semantics
— e.g., based on conditional term rewriting similar to that of equational specifi-
cation languages such as Maude [16], which is key to combining abstract logical
models with an efficient notion of execution.

The logical view of NCPS allows us to recast information collection, control,
and decision problems as logical problems that are primarily centered around
the duality of two kinds of knowledge: facts and goals. Various classes of dis-
tributed algorithms can be declaratively expressed using this duality. Proactive,
data-driven, or optimistic algorithms are mostly concerned with the establish-
ment of new facts from existing facts, hoping to satisfy the goal but considering
it as a secondary aspect. Reactive, demand-driven, or pessimistic algorithms are
primarily goal oriented, meaning that during their execution new subgoals are
established based on existing goals, which eventually can be directly established
using the facts. It is noteworthy, however, that many interesting practical algo-
rithms (e.g., hybrid routing for sensor nets) are a mixture of different paradigms.
Hence, in our logical framework, both facts and goals need to be treated on an
equal footing together with corresponding forward and backward inference rules.

Toward a Robust Logic of Degree and Uncertainty. A logical model is an in-
stance from a fixed model class represented by a common background theory.
In most applications, we are concerned with incomplete information, and the
model of the real world is not entirely characterized. Hence, we are almost al-
ways concerned with an entire class of models that are consistent with the facts
to various degrees. Apart from the natural incompleteness of knowledge due to

Fractionated Software for Networked Cyber-Physical Systems 121

partial observability, many sources of uncertainty exist in cyber-physical sys-
tems, including environmental noise, measurement errors, system perturbations,
sensor and actuator delays, and clock drift. Networked systems exhibit further
sources of uncertainty caused by delayed, outdated, incomplete, or inconsistent
knowledge. Furthermore, uncertainties play a natural role in information fu-
sion and probabilistic algorithms. The consideration of a class of models also
allows standard logics to represent certain aspects of uncertainty, but the de-
gree of uncertainty is not explicitly represented. A natural solution would be to
use an instance of many-valued logic [30] that is sufficiently constrained to be
consistent with common probabilistic [22,24], stochastic [17], and quantitative
interpretations [81]. To enable expression of priorities between goals or their rel-
ative importance (e.g. to differentiate between hard and soft constraints), we
furthermore need weighted formulas.

In cyber-physical systems, models, facts, and goals are continuously chang-
ing. Therefore, it will be essential to design a robust logical framework that
can gracefully, incrementally, and efficiently deal with such changes. One pos-
sible approach is to maintain proofs explicitly at a suitable level of abstraction
— e.g., as partial orders (as opposed to sequential proofs) capturing all depen-
dencies between facts and goals. Proof maintenance will take advantage of the
locality of changes and hence can improve the efficiency of automated deduc-
tion and constraint solving/optimization. For instance, an explicit partial-order
representation of dependencies enables more sophisticated search and optimiza-
tion strategies, such as conflict-driven backtracking and logical state composition
strategies that do not assume centralized control (see Section 4.2).

Depending on the nature of changes, proofs can either remain valid, require lo-
cal adjustments, or become entirely invalid. Clearly, the former case is preferred,
which is why we suggest complementing proof maintenance with a notion of proof
robustness that, when used as an optimization criterion, allows us to avoid frag-
ile proofs whenever possible. Proofs can be fragile because they are based on
rapidly changing or unstable facts or because they lack redundancy. Consider,
for instance, the goals of maintaining network connectivity or sensor coverage.
Clearly, proofs representing solutions that rely on stable facts about the neigh-
borhood of a node are preferred. Furthermore, in dynamic environments, proofs
can be carried out in a robust way that instead of relying on an individual fact,
which could become a single point of failure, relies on an abstraction — e.g., a
disjunction of independent facts representing coverage or connectivity via several
neighbors that remains invariant under a larger set of network perturbations.

3.2 Model Synthesis and Adaptation via Distributed Monitoring

Models in our approach come in two flavors — namely simulation and logical.
Simulation models are executable and represented by a set of software fracments.
Such fracments can be direct reflections of implementation fracments, but they
can also represent a more abstract version of the implementation. Additional
simulation fracments can capture executable models of the environment of the
NCPS, which for instance includes node mobility and networking capability.

122 M.-O. Stehr et al.

Logical models are represented by a background theory together with facts that
further narrow the relevant class of models, — e.g., by fixing or constraining
model parameters. Depending on its level of abstraction, a logical model can
have an underlying executable model.

In most cases, the models cannot be fully characterized in advance and can
change while the system is in operation, which is why model adaptation is an
essential ingredient of our architecture. Models (or their characteristic parame-
ters) are shared just like other forms of knowledge, and this process is subject to
the limitations of network connectivity and bandwidth, which leads to additional
possibilities for delays, incompleteness, and inconsistencies.

Model synthesis and adaptation go hand in hand. Lacking other knowledge,
the system can start with a default model (e.g., a single node cluster/constellation
in our satellite application), which is incrementally refined during operation of
the system. Knowledge can be passively accumulated by observations — e.g.,
from cyber-physical sensors — while the system is executing its primary func-
tion or mission, or it can be actively pursued by exploration, which may require
physical actions. Often, combinations of the passive and active modes of model
adaptation will be needed for acceptable performance with low exploration over-
head. The specific exploration strategy is part of the system strategy so that
trade-offs between exploration and exploitation of knowledge can be expressed as
part of the overall system goal. The trade-offs between exploration and exploita-
tion (of accumulated knowledge) are well known in the context of reinforcement
learning [76], but are more challenging in our context due to constraints imposed
by the model and goals, by resource limitations, and by the distributed nature
of NCPS. In the case of satellites, even a relatively minor form of physical ex-
ploration by means of orbit adjustments can require significant resources (e.g.,
energy, time) and can be in conflict with the primary goal (e.g., maintenance of
network connectivity). Network beaconing or probing (for node discovery or per-
formance estimation) can be seen as another less expensive form of exploration
of the environment.

In addition to these trade-offs at the strategy level, there are trade-offs that
need to be considered when developing the models themselves. Even logical mod-
els can be executable in a sense. In fact, suitable abstract models can take
advantage of the fragment of logic that supports symbolic execution, efficient
deduction, search, and optimization. In the context of model adaptation, there
is another reason why abstract models are often preferable as a basis for sys-
tem control. In principle, models can try to precisely capture the reality such as
mechanical models of motion or the path loss models used for wireless commu-
nication, but the parameter estimation needed to adapt such models to reality
can be expensive or infeasible given the amount of data and sensing capabilities
of cyber-physical systems. Indeed, in machine learning the notion that precise
system identification is necessary for best performance has mostly been rejected
[13]. Adaptation of simpler models has the advantage of requiring fewer data
points, but predictions will be necessarily less precise. Still simpler models of-
ten lead to superior performance, because their lack of precision is compensated

Fractionated Software for Networked Cyber-Physical Systems 123

for by their robustness under noise and their capability to generalize to new
situations.

4 A New Generation of Runtime Assurance Techniques

A major hurdle in traditional system verification is the explosion of possible
cases to consider due to lack of knowledge at design time about the particular
system state or configuration at runtime. The flexibility offered by dynamic
reconfiguration and retasking further exacerbates this problem. Furthermore, the
typical NCPS we are interested in should support unanticipated missions which
means that even the specification is not known at design time. To tackle these
problems, we propose validation, synthesis, and verification techniques that can
take place at system runtime when the best possible knowledge about the system
state and the mission goals is available. Such runtime assurance techniques can
exploit the knowledge about the current system state to focus the verification
on what is currently relevant or relevant in the near future. Due to their very
focused nature, the potential for state space explosion is significantly reduced
and the savings in terms of resources can be substantial.

To avoid confusion, we should point out that the techniques we propose as re-
search opportunities are significantly more dynamic than ongoing research in the
field of (monitoring-based) runtime verification [51,1,11]. This area is not so much
concerned with shifting design-time methods to system runtime, but mostly with
a much more specific problem — namely, the construction of efficient (possibly
distributed) monitors for a given fixed property. The property is known before
the system is instrumented for monitoring, and it remains fixed during system
runtime. Instead of considering self-verifying systems, the verifier is usually ex-
ternal to the system that is monitored, or more precisely is assumed not to have
an impact on its behavior, an assumption that we cannot make for the resource-
constrained systems in which we are interested. Furthermore, the properties of
interest are expressed in a relatively weak temporal logic and intended to cap-
ture only specific aspects (e.g., null-pointer dereferencing or race conditions) of
a software system. These state-of-the-art runtime verification techniques can be
used offline (at design time) and online (during normal system operation). They
have been implemented in various frameworks, such as Pathexplorer [65], Eagle
[5], and MaC [47], and have been very successful in finding subtle software bugs.
Most current techniques appear to be focusing on the code level. Interesting and
notable exceptions are the component-based architecture [6] and AMOEBA-RT
[27], which can verify adaptation properties of systems that transition between
different regimes. Unfortunately, these techniques are not sufficiently expressive
and dynamic for our purposes, where system properties and goals are very com-
plex and constantly evolving. The approach [29] of using runtime monitoring
to correct the global dynamics of systems (UAV swarms in this case) evolving
according to the local rules of an artificial physics model is quite close to the
spirit of fractionated software, except that the assumption of a global view and
global control needs to be relaxed.

124 M.-O. Stehr et al.

4.1 Probabilistic Runtime Testing and Verification

We sketch several new runtime testing and verification techniques that can pro-
vide probabilistic assurance that current and future states of the system satisfy
the system goals. These can include specific mission goals, intermediate goals, and
general or specific policy constraints and performance requirements. We envision
runtime testing and verification techniques to be invoked by higher layers. Specif-
ically, the distributed control and optimization strategy can be used to verify the
violation or near-violation (e.g., by means of a slightly stronger property) of crit-
ical properties at present or future states. The set of future states will typically
be bounded by a state- and property-dependent look-ahead horizon so that state
space explosion can be kept under control. Given that runtime verification can be
invoked repeatedly on the trajectory of the system, a tightly bounded look-ahead
horizon is acceptable as long as it is sufficient to take corrective actions if the need
arises. Runtime verification needs to be complemented by just-in-time validation
(see Section 4.4), which will be applied at longer time scale.

Randomized Symbolic Verification. The most basic form of runtime verification
without prediction can focus all resources on the present state. It uses the formal
model together with the current goal to detect violations or near violations of
critical invariants. The verification will typically involve global system proper-
ties, but it will be based on local knowledge (about local and remote states and
about the state of the environment). As an extension of the basic technique,
we propose to take into account the imprecision or lack of knowledge about the
global state of a distributed system. To this end, one might consider performing
runtime verification on a (symbolically represented) envelope (i.e., set of states)
around the system state derived from the best knowledge available. Efficient
symbolic SMT (satisfiability modulo theories) solving techniques such as those
used in Yices [20] and efficient symbolic computation and deduction by condi-
tional rewriting (modulo theories) as in Maude [59,16] are mature technologies
on which to build on. If the symbolic representation reaches a certain complexity
threshold, probabilistic assurance can be obtained by lifting the basic verification
techniques to the set of states using sampling techniques. Each sample can be an
entire symbolic region (a possibly infinite set of states) so that high coverage can
be achieved with a relatively small number of samples. This probabilistic use of
symbolic solvers opens a rich set of possibilities that to our knowledge have not
been investigated in the past. Other very promising approaches to the integra-
tion of logic and sampling-based analysis techniques are Markov Logic Networks
[64] as, for instance, implemented in the Probabilistic Consistency Engine [3]
(PCE), which can be used to quantify the probability that a property holds or
that the system is in a certain state (e.g., based on partial observations).

Dynamic Runtime Model Checking. A complementary direction is to exploit
the time dimension by using available computational resources to predict the
future evolution of the system up to a certain time horizon, which needs to
be short enough to avoid state space explosion. One category of prediction-
based assurance methods would use model checking at runtime. Model checking

Fractionated Software for Networked Cyber-Physical Systems 125

can be directly applied to executable logical models as the Maude LTL model
checker [23] demonstrates. Some early work exists on runtime model checking
of safety properties for multithreaded programs [86], which incorporates inter-
esting ideas on dynamic partial-order reduction (to further reduce the state
space to be explored). There is also work on guiding a model checker based on
a runtime analysis of programs [35], and a next consequent step would be to
perform both analysis and model checking at runtime. Lifting these ideas from
program code to higher levels of abstraction is an opportunity worth explor-
ing. Model checking would be performed locally but based on the continuously
adapting models of local and nonlocal behavior. Since the time horizon is limited,
bounded-model checking techniques, which can be implemented using efficient
SAT solvers, would be of interest as well. Furthermore, statistical model check-
ing techniques [48] that can deal with probabilistic models (e.g., represented
as Markov chains) and probabilistic properties could be applied at runtime. A
major challenge with all these approaches is to develop efficient runtime algo-
rithms that can scale with the available resources and to explore how model
checking can be distributed (some ideas from [72] about distributing formulas
can be useful in this context) and take advantage of the fractionated nature of
our systems.

Dynamic Directed Monte Carlo Analysis. Simulation-based methods for dis-
tributed systems are well suited for quantitative analysis, but since they do not
provide full coverage, they are inherently probabilistic in nature. Monte Carlo
techniques can be used to account for imprecision of models and of the global
state. The advantage of using such techniques at runtime rather than design
time is the potential for a much more directed application exploiting the addi-
tional knowledge available, which directly translates into resource savings and/or
precision improvements. Furthermore, by generalizing statistical verification via
hypothesis testing, the number of samples can be dynamically adjusted based on
the actually required confidence that may be known only at runtime. Black box
statistical model checking generalizes hypothesis testing to temporal properties
[73,88], has been extended to quantitative properties [80], and has been applied to
verifiable cross-layer adaptation in our own work [44,43]. In a fractionated archi-
tecture, Monte Carlo techniques such as these will naturally scale, and the preci-
sion improves (or alternatively the local load will be reduced) with the number of
nodes. Several unexplored extensions of this scalable simulation-based approach
will also be of interest. First, the use of the current state as a starting point
can be relaxed, by focusing the verification on interesting, critical, or recurring
states. Machine learning techniques could acquire such states (and their distribu-
tion) during the lifetime of the system. Monte Carlo simulations on such states
can then be continuously executed in the background, possibly controlled by re-
source availability. Monte Carlo simulation can furthermore be biased to explore
performance extremes (runtime stress testing), rare (e.g., black swan) events, or
high-risk situations (based on runtime risk assessment). Markov-Chain Monte
Carlo (MCMC) techniques, which are at the core of PCE [3], are of interest as

126 M.-O. Stehr et al.

well due to their capability to efficiently sample from complex joint distributions.
By making the temporal dimension explicit in the model, a tool such as PCE can
also be used to perform temporal analysis (with a reasonably short look-ahead
horizon).

Integrating Formal Methods and Simulation. Given that deduction, model check-
ing, and simulation-based techniques each have their own advantages, a natural
question is if these approaches could be integrated into a single hybrid runtime
verification technique. One possibility is through executable formal methods such
as Maude [16], an idea that we explored under the name formal prototyping in
the context of fault-tolerant middleware [33] and security [28]. Another unex-
plored possibility is based on a notion of abstraction. An abstraction essentially
replaces subsets of system states by representatives so that the complexity of
verification is further reduced. Given such an abstraction we can use simulation-
based techniques to evaluate the performance of a system in each abstract state
(or a relevant subset) by using detailed simulation models. Model checking and
similar formal methods can then take place at the abstract level, and verify
properties such as if a certain level of performance can always be maintained in
certain situations that can be expressed logically. A more intelligent integration
might trigger the underlying simulation on the fly only for states that the model
checker explores. Furthermore, the number of samples could be determined by
the required confidence level, which essentially means that resources are directed
to the properties that matter. It should also be noted that model checking can
naturally be used as part of a deductive system [71] and hence fits naturally with
the higher-layer runtime assurance techniques that we will discuss subsequently.

Adaptive and Probabilistic Runtime Abstraction. We have seen that runtime as-
surance can greatly benefit from knowledge that is not available at design time.
Learning the reachable or relevant states of the system is just one dimension
to exploit. A second dimension is concerned with the problem that the proper-
ties that need to be verified may become available or sufficiently concrete only
at runtime. A third orthogonal dimension is to use runtime information to de-
termine and adjust at runtime the level of abstraction where other techniques
are applied. For instance, the combination of model checking with abstraction
[15] has attracted a lot of attention for the purpose of design-time verification.
Finding the right abstraction, however, is not easy, and currently done by re-
peated model checking with counterexamples-guided refinement. Without being
confined to model checking, a yet unexplored but related idea of violation-driven
refinement could be used at runtime to choose a suitable level of abstraction for
monitoring properties of interest. Runtime techniques would furthermore enable
an alternative and more efficient approach to learning or synthesizing abstrac-
tions from observations of real system dynamics. The key idea is that states with
similar observable properties at runtime do not have to be distinguished even if
there is a theoretical possibility that they behave differently under some condi-
tion that the system will never reach. More generally, verification techniques can
benefit from a notion of probabilistic runtime abstraction, where the correctness

Fractionated Software for Networked Cyber-Physical Systems 127

of the abstraction (and corresponding abstract models) is empirically established
with quantifiable probability and confidence.

Resource- and Situation-aware Runtime Assurance. Based on the environment,
available resources, or timing, one may employ different runtime verification
strategies. A flexible, fractionated architecture together with model-based dis-
tributed control and optimization strategies can facilitate switching among them.
The general idea is to focus on features that matter in a particular situation but
also partition the resources between the primary function of the system and
the different runtime assurance techniques in a way that takes into account the
various trade-offs in this space. For example, when a system (e.g., a spacecraft)
is launched for the first time, one may allocate more resources for performing
runtime monitoring, testing, and verification to ensure that the system functions
properly. At a later stage, when the system has run for some time without is-
sues, one may reduce the frequency or depth of runtime assurance to conserve
resources or to reallocate them for other purposes. Another example of situation-
aware runtime assurance is that the amount of runtime monitoring, testing, and
verification (e.g., of security policies) performed may depend on perceived threats
(e.g., attacks from adversaries). Based on the threat level, one may reconfigure
the system to deploy a more comprehensive monitoring posture and, possibly
additional, what may be called defensive fracments.

Learning from Failures and Near Failures. Failures of software fracments and vi-
olations of properties at runtime, even if corrected, can tell us a lot about future
risks. Near failures and near violations (whether they are determined with or
without prediction) are another possible source of critical states that should not
be ignored. Reachable and critical states (and possibly their distribution) can
be learned at runtime and analyzed in the background using directed runtime
simulation and verification techniques. However, there is another unexplored op-
portunity here — namely to learn how to recognize similar critical situations and
use runtime state avoidance techniques to circumvent them in the future (at least
during a critical mission). The distributed learning of such states can happen as
a generalization of distributed monitoring, which is needed in a mission-critical
system for many reasons, but in particular to guide the continuous maintenance,
improvement, and evolution of the system over its lifetime and over future gener-
ations. More generally, machine learning (especially statistical learning theory)
is an area with a rich set of techniques that can contribute to new runtime
assurance techniques in many ways (e.g., learning of specifications and model-
based prediction), but we have touched upon only a few examples due to space
limitations.

4.2 Model-Based Distributed Control and Optimization

System control and optimization in NCPS is challenging. The control of runtime
assurance techniques and the consideration of the trade-offs of potential adapta-
tions and countermeasures must be performed in context of the overall system

128 M.-O. Stehr et al.

goal, in which quantitative aspects will typically play an important role. Tradi-
tional optimization techniques that strive for optimal solutions based on precise
models are not suitable for most NCPS, where models have many dimensions
of uncertainty, and optimality in the strict sense is neither desirable nor achiev-
able. What is needed in practice are strategies to find acceptable and robust
solutions, sufficient to achieve the goal while taking into account the limitations
of the models and available resources.

On the other hand, the fractionated nature of our system offers many advan-
tages including fault tolerance, distributed sensing, coordinated actions, and in-
herent parallelism for computational processes that should be exploited not only
for the primary function of the system but also by the runtime assurance tech-
niques, and in particular the control and optimization strategies. Clearly, a top-
down decomposition of the overall goal in a divide-and-conquer fashion is not a
viable approach, because solutions may require ad hoc cooperation across layers
and across nodes. This and related problems of strictly layered approaches have
led to the recent trend of cross-layer design and optimization in networking (and
especially sensor networks). Among other sources (see Section 6), our xTune archi-
tecture for cross-layer control and optimization based on the runtime application
of formal methods has served as an inspiration for the following ideas.

Closely related to the idea of combining runtime verification and model-based
control is the area of model predictive control also known as receding horizon con-
trol. In a discrete setting, it has been successfully applied, for instance, in NASA’s
Livingstone [83], a kernel for a self-reconfiguring, reactive, and autonomous sys-
tem. It combines model-based diagnosis and a propositional controller, an idea
that has been further generalized to model-based programming in [82], based
on a language that can be compiled into hierarchical constraint automata. An-
other model-based architecture that was the basis for our framework [18] for
goal-oriented operation of remote agents [62] is JPL’s Mission Data System [21],
a unified flight-ground control and data system. Protection against faults and
dealing state uncertainty are noteworthy features. None of these architectures,
however, were aiming at loosely coupled, highly distributed and fractionated
NCPS that lead to many new challenges as we explain below.

Control and Optimization as Logical Strategies. Mathematically, the logical
framework and its underlying fractionated computing paradigm allow a rich set
of conceivable behaviors that need to be constrained to a subset that satisfies the
system objectives. We suggest developing strategies that control and optimize the
operation of NCPS based on its declarative representation in the logical frame-
work with the idea that the generated control actions are correct by construction.
These strategies will be resource-aware and adaptive. For example, in homoge-
neous scenarios, our strategies can exploit the parallelism of many nodes so that
resource consumption at each node can be low. In heterogeneous cases, they can
exploit powerful or energy-rich nodes that perform heavy computations so that
low-power nodes can save their resources. Nodes will try to share knowledge and
cooperate while communication conditions are good, but if communication is im-
paired or disrupted, nodes will tend to operate more autonomously. If knowledge

Fractionated Software for Networked Cyber-Physical Systems 129

including facts, goals, and solutions can be shared using a framework based on
partially ordered knowledge sharing such as [42], the location of computations is
flexible to a large degree and limited only by the communication and node capabil-
ities. A distributed logical framework that could serve as a basis for this approach
is currently being explored in [74] and [46].

Ideally, the strategy exploits parallelism inherent in search and optimization
problems, by allowing nodes to sample the search space independently. Unlike
numerical approaches, sampling can be done symbolically, by randomly gener-
ating new subgoals that represent entire regions of potential solutions in a finite
way. The sampling heuristics can be biased by a nonuniform distribution to ex-
press locality and preference for solutions that can be reached more easily or with
lower cost. In addition, the cost of reaching a solution can be explicitly quantified
and constrained by the system goal. The best stable solution will be shared op-
portunistically across the nodes and is ultimately used to drive the local actions
of NCPS. The symbolic sampling strategy explores the search space of potential
solutions, but conflicts can arise, possibly after several subsequent reasoning or
constraint-refinement (i.e., narrowing down the solution region) steps performed
using the logical framework. Conflicts can manifest themselves either as logical
inconsistencies or nonacceptable solutions. One possibility to deal with conflicts
is by local randomized backtracking driven by the conflict itself, exploiting the
dependencies maintained by the underlying logical framework. A randomized
approach to search and optimization tends to avoid redundant computations
(i.e., the same computation at several nodes) under cooperative conditions, but
would not rule out redundant computations that are essential for progress if
nodes need to operate autonomously.

In traditional approaches to planning and optimization, the process termi-
nates when an acceptable solution is found and leaves it to lower layers to take
the actions to implement and fine-tune the solution. NCPS, however, need to be
continuously controlled and optimized. The continuous optimization will con-
sider the most recent known state of the distributed system and hence can
quickly adapt to changing facts and goals. Even if actions have been already
taken toward the transition into an acceptable solution region, a significantly
better solution might emerge either because the solution was not explored until
now due to computational resource limitations or because it arises due to new
unexpected conditions, including failures preventing the system from reaching
the solution it was aiming at in the first place.

Abstraction as the Key to Robustness and Composability. A logical approach to
optimization would also enable the composition of (partial) solutions. Rather
than aiming at a numerical point solution each node narrows down the goal to
one or multiple solution regions represented by logical formulas. If two nodes
establish connectivity, the goals will be composed by a logical conjunction re-
sulting in a goal that semantically corresponds to the intersection of solutions
acceptable for both nodes. The approach can be generalized to entire groups of
nodes that merge due to a network topology modification. There is a natural
connection between abstraction, robustness, and composability. Composability

130 M.-O. Stehr et al.

is enabled by a suitable level of abstraction that avoids over-constrained point
solutions. In other words, solutions are robust enough to accommodate, at least
to some degree, the needs of other nodes. The use of an abstract solution region
reduces the likelihood of conflicts in the case of composition, but clearly cannot
exclude this possibility entirely. Conflicts caused by composition can be treated
just like any other conflicts arising during search and optimization.

4.3 Distributed On-demand Deductive Synthesis

Techniques to synthesize software based on a declarative specification have a
long tradition in what is sometimes called automated software engineering.
NASA’s Amphion [53] is one of the well-known projects where automated syn-
thesis has had a large impact in the reduction of labor-intensive software en-
gineering activities. The Amphion system, which is still in use at NASA to-
day, generates scientific programs as a composition of subroutine libraries. Since
synthesis is based on deduction in a sound logic, in this case the first-order
logic of the SNARK [2] automated theorem prover, the solutions are correct by
construction.

As with the other proposed techniques, we propose to shift the synthesis pro-
cess to system runtime. More specifically, we propose on-demand synthesis when-
ever a new mission or policy goal requires a solution that cannot be implemented
by a single (coordinated) action but requires a certain degree of planning with
intermediate goals. The solution would consist of a set of activities or compo-
nents suitably instantiated, parameterized, and composed to achieve the overall
goal. The bigger challenge is, however, to perform the synthesis, like control and
optimization, in a process that exploits the loosely coupled fractionated comput-
ing paradigm, and furthermore the solution generated by the synthesis should
be distributed in the same sense.

To illustrate the logical inferences in a distributed deductive synthesis pro-
cess, consider a greatly simplified example of intelligent surveillance. Assume
that each satellite in a fractionated system is equipped with only one kind of
capability, either a high-resolution camera or a motion sensing capability that
is implemented on the basis of measurements received from a sensor network on
the ground. Assume that predicates Motion(a, t) and Pattern(a, t) are true if
a movement or a particular pattern has been detected in an area a at time t
(approximately). Assume furthermore that Image(I, a, t, t′) means I is an im-
age of area a taken in the interval t, ..., t′, and Delivered(I, r) means that the
information I has been delivered at r. Now the following goal is injected at a
ground node r:

Motion(a, t) ∨ Pattern(a, t) ⇒
∃I : Image(I, a, t, t + Δt) ∧ Delivered(Extract(Abstract(I)), r)

It expresses that an image needs to be taken of a specific area a with maximum
delay Δt after a motion has been sensed or a visual pattern has been recognized.
The image then should be delivered to r after abstraction and feature extraction.
After the goal is disseminated in the network, each node tries to solve the goal.

Fractionated Software for Networked Cyber-Physical Systems 131

Let us now assume that a node above area a generates a fact Motion(a, t) that
can be used by another node that is monitoring that area and is equipped with
a high-resolution camera to simplify the goal to

Image(I, a, t, t + Δt) ∧ Delivered(Extract(Abstract(I)), r)

so that the only way to make progress is to take an image i to satisfy Image(i, a, t,
t + Δt) leading to the remaining goal

Delivered(Extract(Abstract(i))), r)

Let us assume that the abstraction i′ = Abstract(i) can be performed imme-
diately after taking the image but feature extraction will be performed at a
more powerful node, say at the ground station, because it is computationally
expensive. This node will then simplify

Delivered(Extract(i′), r)

after performing the computation i′′ = Extract(i′) to Delivered(i′′, r), which
can be incrementally solved by moving Delivered(i′′, r) closer to r, the request-
ing ground node, where it is finally realized by a delivery action.

A similar but more detailed example of a logical theory for distributed surveil-
lance using a team of mobile robots can found in [74]. In spite of its simplicity,
this example exploits three dimensions (computation, abstraction, and commu-
nication) of distributed computing, and yields a solution that is synthesized on
the fly and correct by construction based on the soundness of the underlying
logical framework. It furthermore illustrates the combination of logical infer-
ence and partial evaluation and their generalization to the distributed setting
in which goals and facts can be bound to actions at different locations in the
cyber-physical world. In a more complex example, we might easily imagine that
Motion(a, t) and Pattern(a, t) cannot be satisfied using the current distribution
of nodes so that some nodes will have to adjust orbits to achieve sufficient cover-
age of area a. Clearly, this opens a rich trade space of possible solutions, which
can be tackled by the combined capabilities of distributed deductive synthesis
and the distributed control and optimization strategies discussed previously.

4.4 Predictive Just-in-Time Validation

It is well-known (but often forgotten) that the correctness of a system w.r.t. its
specification is not sufficient to guarantee that the system operates as expected
and is suitable for a given mission. The problem is that a high-level specifi-
cation of the system goals, even if it is declarative and far less complex than
the implementation, is complex enough that it is difficult for humans to judge
whether it captures their intent. Inconsistencies (e.g., logical contradictions in
the extreme case) or incompleteness (e.g., missing key properties) are very com-
mon. Hence, verification needs to be complemented by validation techniques that
can increase the users’ confidence in the specification. Clearly, another level of

132 M.-O. Stehr et al.

verification relative to even higher-level specifications cannot be the answer, be-
cause the fundamental problem would be just postponed. Instead, we propose
a simulation-based approach, which includes the runtime assurance techniques
of all layers and as motivated earlier would be executed just in time, whenever
the system goals are modified as a consequence of user interactions. Just-in-time
validation has the advantage that the specification can be very specific to a
particular mission, eliminating many possible use cases of the system that are
simply not relevant. Thanks to its simulation-based nature, the results of the
validation will be quantitative rather than simple yes/no answers. Quantities
are not limited to probabilities of properties being satisfied but can include ex-
pected performance metrics and bounds. Furthermore, counterexamples in terms
of property-violating (or just risky) executions can be fed back to the user who
then has many options to respond, ranging from adjusting or replanning the
mission to reallocating resources or scaling up the system capabilities (e.g. by
additional launches in the case of a fractionated satellite mission). Since the
simulation is performed by the highest layer, it may include the execution of
the embedded runtime assurance techniques, and as a consequence its coverage
and capability to detect problems is higher then that of conventional simulation
techniques without embedded verification.

Predictive just-in-time validation has to cover the entire distributed system as
well as all layers of the architecture with a time horizon that covers or is at least
representative for the entire mission. Hence, predictive just-in-time validation
can be computationally resource intensive and probabilistic simulation-based
techniques are preferable. Given that mission validation can be time critical,
the parallel nature of probabilistic simulation techniques will be an important
advantage. As with all runtime assurance techniques, a fractionated software
architecture leaves a lot of freedom regarding where the actual simulation is
carried out. In case of a networked satellite mission, it would make sense to
utilize a computing grid on the ground to perform a large number of such sim-
ulations around an approximation of the current state of the system, which is
always available by means of adaptive models. In other words, we continuously
maintain a virtual approximation of the real system that is used for just-in-time
validation whenever the system needs to be configured for a new mission. Clearly,
multiple concurrent overlapping missions by multiple users of the cyber-physical
infrastructure are particularly interesting, because the effects of sharing limited
resources will be predicted by the validation process, and the injection of a new
mission into the system may be rejected because of resource limitations.

Since predictive just-in-time validation can also be applied at design time
(although at a higher computational cost due to the more limited knowledge
about the future system state and configuration), it should be general enough
to subsume existing validation and performance evaluation techniques, namely
discrete-event (network) simulation and hardware-in-the-loop simulation tech-
niques. The current practice is still centered around the use of a variety of
simulation tools (such as Mathlab, Qualnet, or the STK satellite modeling
toolkit) to capture different aspects of the system under evaluation. However, the

Fractionated Software for Networked Cyber-Physical Systems 133

diversity of tools and their different levels of abstraction often leave a significant
gap between the real system and the model that is evaluated. Keeping the simu-
lation models in sync with the actual code is a labor-intensive and failure-prone
task and the confidence that the simulation captures all important aspects is
usually based on experience and subjective judgment. In our proposed reflec-
tive architecture, simulation models are first-class concepts, so that runtime and
design-time validation and evaluation can use the same set of models, which at
the lowest level of abstraction can be identical to the actual implementation,
thereby reducing the modeling gap.

5 Illustrating Example: Fractionated Satellite Networks

Consider a network of fractionated satellites that has already been deployed in
space and needs to be retasked rapidly, i.e., within hours, for surveillance of a
particular geographic region during a crisis. To accomplish this, the satellites
need to perform coordinated orbit adjustment maneuvers to provide sufficiently
good coverage of the areas of interest with a frequency that satisfies the mission
requirements. Specifically, we chose a primary goal, such as the collection of
information (e.g., images) from a particular area, that can be achieved only
by actively morphing and expanding the network topology — e.g., by tethering
(stretching the network in a particular direction) possibly with some redundancy
to reduce the likelihood and duration of disconnections. Various essential policy
and system goals concerning sensor coverage, network connectivity, or energy
consumption can be active at the same time in addition to the primary user
objective.

Now suppose there exists a (previously) unknown bug in the image processing
software that manifests itself when it processes data pertaining to a very small
number of (geographical) coordinates. Using runtime verification, the satellite
may be able to discover the bug and take corrective actions to avoid the problem.
Specifically, based on the current coordinate of the satellite and its trajectory,
the runtime verification system discovers that the image processing software fails
when it reaches a certain coordinate. The satellite finds several possible solutions
to mitigate the problem. First, the satellite may change its trajectory to avoid
the problematic coordinate. Second, the satellite may stop functioning temporar-
ily when it reaches the problematic coordinate, while having other satellites to
handle the area it is supposed to cover. Third, the satellite has another imple-
mentation of the image processing software module that does not have the bug,
and the satellite replaces the faulty software with it. After evaluating the costs
and benefits of the options, the satellite chooses the most cost-effective one.

Several variations of this sample mission would lead to more challenging test
cases pushing runtime assurance techniques to their limits. Hardware and soft-
ware fracments could be instrumented to fail continuously with unusually high
rates during the mission (simulating a combination of software and hardware
faults), and the high-level system objective and performance still needs to be
maintained without interruption by agile system adaptation. Also, the dynamic

134 M.-O. Stehr et al.

improvement of the capabilities by launching new nodes, as well as simulated
network partitioning, merging, perturbations, and the loss of nodes, is a rich
source of test cases for system robustness. Other possibilities include consider-
ing more complex system goals with partially conflicting multiuser objectives,
policies, and corresponding trade-offs. In addition to energy, system goals can
involve timing constraints, quantification of QoS and robustness (e.g., of net-
work connectivity), and consideration of risks (e.g., of losing nodes) and options
(e.g., flexibility to react to new mission goals). Finally, the resource-adaptive dis-
tributed operation in a nonhomogeneous global network — e.g., a combination
of small satellites, UAVs, a ground sensor net, a ground station network (with
fixed and mobile nodes), and powerful grid nodes in the Internet — would be
an ultimate test case in system-of-systems interoperation.

6 Background and Related Work

For an up-to-date overview of our ongoing work on Networked Cyber-Physical
Systems and a large body of background literature that is beyond the scope of
this paper we refer to [63]. In the following we limit ourselves to a few selected
research directions and projects that had a significant influence on our suggested
approach.

Delay- and Disruption-Tolerant Networking (DTN) and Sensor Networks. DTN
[25] enables communication in challenging environments where many NCPS are
deployed. Underwater sensor networks [32], wildlife tracking [58], vehicular net-
works [52], satellite networking [39], and interplanetary deep space networking
[10] are just a few examples demonstrating the wide range of applications. By
combining network caching and routing on an equal footing, DTN can over-
come intermittent connectivity, such as in highly dynamic networks of mobile
nodes or in sensor networks that are scheduled for energy efficiency. Space-Time
Adaptive Networking Architecture (STAN), which we have recently proposed as
a small-footprint solution for small satellite networks (such as those based on
the Cubesat [77] platform), further improves upon existing DTN architectures.
STAN is a true cross-layer architecture that leverages adaptive and predictive
models for intelligent power-management, caching, and routing. The example
used in this paper captures several interesting aspects of DTN and STAN if
applied to fractionated satellite networks. In a limited form, some of the ideas
proposed as research opportunities in this paper are present in our earlier work in
the context of DTN. For instance, our reflective routing algorithm [75] increases
the probability of delivery based on a reflective and predictive logical model
of the distributed system. Furthermore, a special kind of runtime abstraction,
coined self-organizing abstraction, of dynamic networks has been used in our
recent work to increase performance of disruption-tolerant routing.

Constraint Solving, Optimization, and Distributed Approaches. The borderline
between constraint satisfaction and optimization has mostly disappeared due to

Fractionated Software for Networked Cyber-Physical Systems 135

the need to judge the quality of solutions for efficient search. Recent advances in
SAT solving also show that logical approaches to SAT solving can be naturally
extended to optimization problems such as MaxSAT [49] and MiniMaxSAT [36],
which supports weighted clauses. Much progress has been made on moving from
propositional logic to more expressive fracments of first-order logic as witnessed
by recent SMT solvers such as Yices [20]. Unlike this line of work, which aims at
completeness and optimality, our approach aims at sufficiently good results for
more expressive fracments of first-order logic and our quantitative extension. In
spite of their limited expressiveness, modern SAT/SMT solvers became powerful
enough to realize the idea of viewing planning as a satisfiability and optimization
problem [41,34]. Some evidence that higher expressiveness can be very practical
with acceptable trade-offs is provided by our work on software-defined radios, in
which we developed a policy logic and a constraint-based reasoner for dynamic
spectrum access [84].

Some recent research has been conducted on parallelizing SAT solving [7],
GridSAT [14] being one implementation. In earlier work, randomized backtrack-
ing has been proposed as a mechanism for a parallel Prolog implementation [40].
These parallel approaches are mainly concerned with performance gain, possibly
fault tolerance, but do not cope with the inherently distributed nature of the
problem, which is crucial in many NCPS.

It seems, however, that distributed algorithms offer this promise. Distributed
constraint satisfaction (DisCSP) and optimization (DisCOP) problems have been
investigated in the context of multiagent systems [87]. Some common algorithms
are distributed versions of their centralized counterparts, like local annealing
[26], distributed hill climbing [56], distributed stochastic search and distributed
breakout [89], or ADOPT [60], which performs distributed depth-first backtrack-
ing based on a fixed variable ordering. One of the most interesting algorithms
is OptAPO [57], which is not simply the adaptation of a centralized algorithm,
but is based on a dynamically selected mediator, which internalizes a larger
part of the problem and helps to solve conflicts. In spite of their asynchronous
nature, all algorithms use classical multimessage protocols. A bigger problem is
that the DisCSP/DisCOP assumptions (finite domains, reliable communication)
are not satisfied for many NCPS. Nevertheless, there are interesting aspects of
DisCSP/DisCOP solutions with potential to generalize. For instance, the idea of
mediation-based cooperation has served as another source of inspiration for our
loosely coupled approach, where every agent internalizes (part of) the problem
and can therefore act as a mediator and disseminate the new solution state. The
difference is that in our approach this happens opportunistically (and using an
expressive logical framework) rather than as part of a multimessage mediation
protocol.

Compositional Cross-layer Optimization. It is widely accepted that cross-layer
optimization, e.g., involving physical, medium access, and routing layers, is a key
technology for resource-efficient networking. The idea of using formal methods
at system runtime has recently been applied to compositional cross-layer opti-
mization [45] in the context of the xTune framework [85]. In xTune, we have the

136 M.-O. Stehr et al.

classical optimization objective of finding suitable parameter settings at each
component based on a utility function capturing the effectiveness of the settings
relative to the user and system objectives. For example, utility can be a function
of energy consumption, timeliness of operation, quality of service, bandwidth
demand, and buffer capacity requirements. In xTune, we achieved cross-layer
optimization by constraining the behavior of local optimizers working at all
abstraction layers (application, middleware, operating system, hardware archi-
tecture) that are connected by a vertical composition. Each local optimizer uses
the other optimizer’s refinement results as its constraints. Thus, the constraint
language serves as a common interface among different local optimizers, leading
to improvements of solution quality, robustness, and speed of convergence. Com-
positional optimization through constraint refinement enables a controller to co-
ordinate existing local optimizers, which can accommodate different objectives,
by treating them as black boxes. The control and optimization strategies that
we discussed in this paper can be seen as a generalization of the compositional
constraint-refinement approach to include horizontal composition capturing the
distributed nature of NCPS.

Constraint-based optimization can be entirely generic or guided by a model of
the system to optimize. Aiming at the latter case, we can build on our experience
with probabilistic runtime analysis [44] and tuning of abstract cross-layer mod-
els [37,45,43] specified in the formal modeling framework Maude [59,16] that is
based on the notion of executable specifications. Statistical analysis techniques
have also recently been integrated into our cyber-application framework [42]. In
this paper, we propose to move from purely local reasoning, statistical analy-
sis, and model checking techniques toward distributed compositional techniques
that integrate randomization and symbolic reasoning. Compared with our ear-
lier work [45] the constraint language would become part of an expressive logical
framework that can support strategies for distributed cooperative constraint re-
finement.

7 Conclusion

It is our belief that traditional techniques for the verification and validation
of complex distributed software systems are trapped in an unsatisfactory local
optimum, and significant progress is possible only by fundamentally rethinking
the way distributed software is designed. Today’s distributed software, in the
best case, is based on a rigid composition of relatively tightly interacting coarse-
grained components. This makes the entire system prone to low-level faults of
many different kinds, and the sheer number of possibilities to consider (not only
due to faults) makes verification and validation prohibitively expensive. The
discrete and nonscalable nature of conventional software makes it furthermore
difficult to build trustable distributed systems that are adaptive and dynamically
reconfigurable in a flexible manner. The intuition behind fractionated software
is to transform software into a more fine-grained, more continuous form (figura-
tively speaking, more like a flexible fluid than a rigid composition of bricks) that

Fractionated Software for Networked Cyber-Physical Systems 137

like biological systems leverage diversity and redundancy to achieve a high level
of robustness against low-level faults. As a by-product, fractionated software can
also be better distributed, scaled, controlled, and optimized especially as part of
NCPS that need to interact with the continuous physical world.

The biggest challenge in moving from the traditional coarse-grained to ex-
tremely fine-grained concurrency with self-coordination is the overhead asso-
ciated with the mapping of a large number of small concurrent computation
threads and their interaction on today’s computer and network architectures.
First experimental results with a prototype implementation of our partially or-
dered knowledge-sharing model have been reported in [42]. This prototype makes
use of thread pools, shared memory and multicast capabilities of the network to
support a large number of distributed fracments. Using a case study of evolu-
tionary optimization algorithms we evaluated the scalability of our model using
a small number of PlanetLab multi-core hosts, but the granularity of concur-
rency needs to be further decreased to approach the vision of truly fractionated
software. At the same time the number of fracments will increase, and technical
solutions (ideally at the OS level) need to be developed to more efficiently map
a large number of threads to a large number of computing cores connected at
various levels (ranging from shared memory to potentially unreliable network-
ing technologies). Considerations of efficient use of caching (in the precense of
a large number of threads) as well as low-overhead networking protocols that
implement the knowledge-sharing paradigm in a more direct way would be im-
portant to explore in the future.

Once a foundation for fractionated software is available, trustable systems
can be built by applying suitable verification and validation techniques at the
right level of abstraction and at the right time. We have argued that the right
level of abstraction for such systems is the macroscopic level of system prop-
erties rather than the microscopic code level that is encapsulated in software
fracments, which becomes nearly invisible if the degree of diversification and re-
dundancy is sufficiently high. The right time is the system runtime for the flexible
mission-critical systems of interest, when the best possible knowledge is avail-
able. Hence, we have suggested numerous research opportunities for new runtime
assurance techniques that cover the entire spectrum from validation to synthe-
sis, verification, and testing. Different from today’s practice, which mostly relies
on subjective judgment, confidence in critical properties should be probabilis-
tically quantified, whether empirically or through models, should be explicitly
maintained, and needs to flow through the system along with the invocation of
assurance techniques at runtime.

An explicit declarative representation not only of the mission objective, poli-
cies, intermediate goals, and performance requirements, but also of the NCPS
and its models, is a key feature of our suggested approach, because it allows us
to use runtime techniques to generate solutions or actions that are correct by
construction. We view correctness as just one dimension in a high-dimensional
trade space among many other performance metrics, and we accept that it can
be achieved at reasonable cost only by a dynamically balanced set of techniques.

138 M.-O. Stehr et al.

Hence, it is essential that distributed control and optimization strategies steer
the application of runtime assurance techniques as part of the primary system
function in a rational way, enabling the system to operate and respond based on
available resources, performance goals, and trade-offs. As a illustrating example
we have used the mission-driven operation of a fractionated satellite network
because it comes with many facets and challenges, especially in terms of fault
tolerance and dynamic reconfigurability, that are far beyond the scope of today’s
verification and validation techniques.

With the idea of fractionated software we are prepared to exploit the grow-
ing trend of distributed and parallel hardware, e.g., in the form of large-scale
networks of powerful many-core (rather than multicore) processors. With frac-
tionated software we would also be prepared for a possible future where hard-
ware becomes much less reliable — e.g., due to further miniaturization down
to the nanoscale or, more speculatively, where reliability is given up completely
as a hardware design goal in favor of extreme parallel performance and/or en-
ergy efficiency. On the other hand, a much more concrete opportunity can be
found in the domain of our proposed case study. For reliability reasons, space-
craft are usually based on previous generation low-performance processors (of-
ten radiation hardened), but the combination of fractionated hardware and
fractionated software, which does not rely on the reliability of its fracments,
would open an entirely new space of exciting possibilities in terms of cost and
performance.

Acknowledgments. Support from National Science Foundation Grant 0932397
(A Logical Framework for Self-Optimizing Networked Cyber-Physical Systems)
and Office of Naval Research Grant N00014-10-1-0365 (Principles and Founda-
tions for Fractionated Networked Cyber-Physical Systems) is gratefully acknowl-
edged. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views
of NSF or ONR.

References

1. http://runtime-verification.org/

2. http://www.ai.sri.com/~stickel/snark.html/

3. PCE User Guide, Version 1.0. Technical manual, Computer Science Laboratory,
SRI International (July 2009)

4. Akyildiz, I.F., Kasimoglu, I.H.: Wireless sensor and actor networks: Research chal-
lenges. Ad Hoc Networks 2(4), 351–367 (2004)

5. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004)

6. Belhaouari, H., Peschanski, F.: A lightweight container architecture for runtime
verification. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289, pp. 173–187. Springer,
Heidelberg (2008)

Fractionated Software for Networked Cyber-Physical Systems 139

7. Blochinger, W.: Towards robustness in parallel SAT solving. In: Parallel Comput-
ing: Current & Future Issues of High-End Computing, Proc. Int. Conf. ParCo 2005,
pp. 301–308 (2005)

8. Bloomfield, R.E., Littlewood, B., Wright, D.: Confidence: Its role in dependabil-
ity cases for risk assessment. In: 37th Annual IEEE/IFIP Int. Conf. Dependable
Systems and Networks, DSN 2007, pp. 338–346 (2007)

9. Brown, O., Eremenko, P.: Fractionated space architectures: A vision for responsive
space. In: 4th Responsive Space Conf. (2006)

10. Burleigh, S.: Interplanetary overlay network: An implementation of the DTN bun-
dle protocol. In: Consumer Communications and Networking Conf. (2007)

11. Watterson, C., Heffernan, D.: Runtime verification and monitoring of embedded
systems. IET Software 1(5), 172–179 (2007)

12. Chen, L., Avizienis. A.: N-version programming: A fault-tolerance approach to
reliability of software operation. In: Twenty-Fifth International Symposium on
Fault-Tolerant Computing, 1995, ‘Highlights from Twenty-Five Years’ (1995)

13. Cherkassky, V., Mulier, F.M.: Learning from Data: Concepts, Theory, and Meth-
ods, 2nd edn. Wiley-IEEE Press (2007)

14. Chrabakh, W., Wolski, R.: GridSAT: A Chaff-based distributed SAT solver for the
Grid. In: SC 2003: Proc. 2003 ACM/IEEE Conf. Supercomputing, p. 37. IEEE
Computer Society, Washington (2003)

15. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

16. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. How to Spec-
ify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer,
Heidelberg (2007)

17. James, C.: Stochastic logic programs: Sampling, inference and applications. In: UAI
2000: Proc. 16th Conf. Uncertainty in Artificial Intelligence, pp. 115–122. Morgan
Kaufmann Publishers Inc., San Francisco (2000)

18. Denker, G., Talcott, C.L.: A formal framework for goal net analysis. In: Workshop
on Verification and Validation of Planning Systems. AAAI (2005)

19. Dressler, F.: Self-Organization in Sensor and Actor Networks. Wiley (2008)
20. Dutertre, B., de Moura, L.: The YICES SMT solver (August 2006), tool paper

http://yices.csl.sri.com/tool-paper.pdf
21. Dvorak, D., Rasmussen, R., Reeves, G., Sacks, A.: Software architecture themes in

JPL’s Mission Data System. In: IEEE Aerospace Conf. USA (2000)
22. Adams, E.W.: A primer of probability logic. CSLI Publications (1998)
23. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker

and its implementation. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS,
vol. 2648, pp. 230–234. Springer, Heidelberg (2003)

24. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities.
Information and Computation 87, 78–128 (1990)

25. Farrell, S., Cahill, V.: Delay- and Disruption-Tolerant Networking. Artech House,
Inc., Norwood (2006)

26. Gerkey, B.P., Mailler, R., Morisset, B.: Commbots: Distributed control of mo-
bile communication relays. In: Proc. AAAI Workshop on Auction Mechanisms for
Robot Coordination (AuctionBots), Boston, MA, pp. 51–57 (July 2006)

27. Goldsby, H.J., Cheng, B.H., Zhang, J.: AMOEBA-RT: run-time verification of
adaptive software. In: Models in Software Engineering: Workshops and Symposia
at MoDELS 2007, Reports and Revised Selected Papers, pp. 212–224. Springer,
Heidelberg (2008)

140 M.-O. Stehr et al.

28. Goodloe, A., Gunter, C.A., Stehr, M.-O.: Formal prototyping in early stages of
protocol design. In: Meadows, C. (ed.) Proc. POPL 2005 Workshop on Issues in
the Theory of Security, WITS 2005, pp. 67–80 (2005)

29. Gordon, D., Spears, W., Sokolsky, O., Lee, I.: Distributed spatial control, global
monitoring and steering of mobile physical agents. In: Proc. IEEE Int. Conf. In-
formation, Intelligence, and Systems, pp. 681–688 (1999)

30. Gottwald, S.: A Treatise on Many-Valued Logics. Research Studies Press (2001)

31. Susanne, G., Hassen, S.: Construction of abstract state graphs with PVS. In: Grum-
berg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

32. Guo, Z., Colombi, G., Wang, B., Cui, J.-H., Maggiorini, D., Rossi, G.P.: Adap-
tive Routing in Underwater Delay/Disruption Tolerant Sensor Networks. In: Fifth
IEEE/IFIP Annual Conf. on Wireless On Demand Network Systems and Services,
WONS 2008 (2008)

33. Gutierrez-Nolasco, S., Venkatasubramanian, N., Stehr, M.-O., Talcott, C.L.: To-
wards adaptive secure group communication: Bridging the gap between formal
specification and network simulation. In: 12th IEEE Pacific Rim International Sym-
posium on Dependable Computing (PRDC 2006), December 18-20, pp. 113–120.
University of California, Riverside (2006)

34. Kautz, H.: Satplan04: Planning as satisfiability. In: IPC4, ICAPS (2004)

35. Havelund, K.: Using runtime analysis to guide model checking of Java programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
245–264. Springer, Heidelberg (2000)

36. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSat: A new weighted Max-SAT solver.
In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 41–55.
Springer, Heidelberg (2007)

37. http://xtune.ics.uci.edu

38. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., Silva, F.: Directed
diffusion for wireless sensor networking. IEEE/ACM Trans. Netw. 11(1), 2–16
(2003)

39. Ivancic, W., Eddy, W., Wood, L., Stewart, D., Jackson, C., Northam, J., da Silva
Curiel, A.: Delay/disruption-tolerant network testing using a LEO satellite. In:
Eighth Annual NASA Earth Science Technology Conf. (2008)

40. Janakiram, V.K., Agrawal, D.P., Mehrotra, R.: A randomized parallel backtracking
algorithm. IEEE Trans. Comput. 37(12), 1665–1676 (1988)

41. Kautz, H., Selman, B.: Pushing the envelope: Planning, propositional logic, and
stochastic search. In: Shrobe, H., Senator, T. (eds.) Proc. Thirteenth National
Conf. Artificial Intelligence and the Eighth Innovative Applications of Artificial
Intelligence Conf., pp. 1194–1201. AAAI Press, Menlo Park (1996)

42. Kim, M., Stehr, M.-O., Kim, J., Ha, S.: An application framework for loosely
coupled networked cyber-physical systems. In: Proc. 8th IEEE Intl. Conf. on Em-
bedded and Ubiquitous Computing, EUC 2010 (2010)

43. Kim, M., Stehr, M.-O., Talcott, C., Dutt, N., Venkatasubramanian, N.: Combin-
ing formal verification with observed system execution behavior to tune system
parameters. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS,
vol. 4763, pp. 257–273. Springer, Heidelberg (2007)

44. Kim, M., Stehr, M.-O., Talcott, C., Dutt, N., Venkatasubramanian, N.: A proba-
bilistic formal analysis approach to cross layer optimization in distributed embed-
ded systems. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS,
vol. 4468, pp. 285–300. Springer, Heidelberg (2007)

Fractionated Software for Networked Cyber-Physical Systems 141

45. Kim, M., Stehr, M.-O., Talcott, C., Dutt, N., Venkatasubramanian, N.: Constraint
refinement for online verifiable cross-layer system adaptation. In: DATE 2008: Proc.
Design, Automation and Test in Europe Conference and Exposition (2008)

46. Kim, M., Talcott, C.L., Stehr, M.-O.: A distributed logic for networked cyber-
physical systems. To appear in Proc. Intl. Conf. on Fundamentals of Software
Engineering (FSEN 2011). LNCS (2011)

47. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-mac: A run-time
assurance approach for Java programs. Form. Methods Syst. Des. 24(2), 129–155
(2004)

48. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking
with PRISM: A hybrid approach. Int. J. Softw. Tools Technol. Transf. 6(2), 128–
142 (2004)

49. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient max-sat solving.
Artif. Intell. 172(2-3), 204–233 (2008)

50. Leucker, M.: Checking and enforcing safety: Runtime verification and runtime re-
flection. ERCIM News (75), 35–36 (2008)

51. Leucker, M., Schallhart, C.: A brief account of runtime verification. Logic and
Algebraic Programming 78(5), 293–303 (2009)

52. Li, X., Shu, W., Li, M., Huang, H., Wu, M.-Y.: DTN routing in vehicular sensor
networks. In: Global Telecommunications Conf., IEEE GLOBECOM 2008i, pp.
1–5 (2008)

53. Lowry, M.R., Philpot, A., Pressburger, T., Underwood, I.: A formal approach to
domain-oriented software design environments. In: KBSE, pp. 48–57 (1994)

54. Lyu, M.R. (ed.): Software Fault Tolerance. John Wiley and Sons, Inc. (1995)
55. Maes, P.: Concepts and experiments in computational reflection. SIGPLAN

Not. 22(12), 147–155 (1987)
56. Mailler, R.: Using prior knowledge to improve distributed hill climbing. In: IAT

2006: Proc. IEEE/WIC/ACM Int. Conf. Intelligent Agent Technology, pp. 514–
521. IEEE Computer Society, Washington, DC (2006)

57. Mailler, R., Lesser, V.: Solving distributed constraint optimization problems using
cooperative mediation. In: AAMAS 2004: Proc. Third Int. Joint Conf. Autonomous
Agents and Multiagent Systems, pp. 438–445. IEEE Computer Society, Washing-
ton, DC (2004)

58. Martonosi, M.: ZebraNet and beyond: Applications and systems support for mobile,
dynamic networks. In: CASES 2008: Proc. 2008 Int. Conf. Compilers, Architectures
and Synthesis for Embedded Systems, p. 21. ACM, New York (2008)

59. Maude System, http://maude.csl.sri.com.
60. Modi, P.J., Tambe, M., Yokoo, M.: Adopt: Asynchronous distributed constraint

optimization with quality guarantees. Artificial Intelligence 161, 149–180 (2005)
61. Murphy, A.L., Picco, G.P., Roman, G.-C.: Lime: A coordination model and

middleware supporting mobility of hosts and agents. ACM Trans. Softw. Eng.
Methodol. 15(3), 279–328 (2006)

62. Muscetolla, N., Pandurang, P., Pell, B., Williams, B.: Remote Agent: To Boldly
Go Where No AI System Has Gone Before. Artificial Intelligence 103(1-2), 5–48
(1998)

63. Networked Cyber-Physcial Systems at SRI, http://ncps.csl.sri.com
64. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107–

136 (2006)
65. Rosu, G., Havelund, K.: Monitoring Java programs with Java PathExplorer. In:

Proc. Runtime Verification (RV), pp. 97–114. Elsevier (2001)

142 M.-O. Stehr et al.

66. Rueß, H., Shankar, N.: Introducing Cyberlogic (2003)
67. Rushby, J.: The design and verification of secure systems. In: Eighth ACM Sympo-

sium on Operating System Principles (SOSP), Asilomar, CA, pp. 12–21 (December
1981); ACM Operating Systems Review 15(5)

68. Rushby, J.: Partitioning for Avionics Architectures: Requirements, Mechanisms,
and Assurance. NASA Contractor Report CR-1999-209347, NASA Langley Re-
search Center (June 1999), also to be issued by the FAA as DOT/FAA/AR-99/58
http://www.tc.faa.gov/its/worldpac/techrpt/ar99-58.pdf

69. Rushby, J.: Just-in-time certification. In: 12th IEEE Int. Conf. Engineering of
Complex Computer Systems (ICECCS), Auckland, New Zealand, pp. 15–24. IEEE
Computer Society (2007),
http://www.csl.sri.com/~rushby/abstracts/iceccs07

70. Rushby, J.: Software verification and system assurance (invited paper). SEFM
(2009)

71. Säıdi, H., Shankar, N.: Abstract and model check while you prove. In: Halbwachs,
N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 443–454. Springer, Heidelberg
(1999)

72. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient decentralized monitoring of
safety in distributed systems. In: 26th Int. Conf. Software Engineering (ICSE 2004),
pp. 418–427 (2004)

73. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
202–215. Springer, Heidelberg (2004)

74. Stehr, M.-O., Kim, M., Talcott, C.: Toward distributed declarative control of net-
worked cyber-physical systems. In: Yu, Z., Liscano, R., Chen, G., Zhang, D., Zhou,
X. (eds.) UIC 2010. LNCS, vol. 6406, pp. 397–413. Springer, Heidelberg (2010)

75. Stehr, M.-O., Talcott, C.: Planning and learning algorithms for routing in
disruption-tolerant networks. In: Proc. IEEE Military Communications Confer-
ence, MILCOM 2008 (2008)

76. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An introduction. MIT Press
(1998)

77. Toorian, S., Diaz, K., Lee, S.: The CubeSet approach to space access. In: IEEE
Aerospace Conf. (2008)

78. Torres-Pomales, W.: Software Fault Tolerance: A Tutorial. Technical report, NASA
(October 2000)

79. Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N., Braynard,
R.: Networking named content. In: Fifth ACM Int. Conf. Emerging Networking
EXperiments and Technologies, CoNEXT 2009 (2009)

80. VeStA Tool, http://osl.cs.uiuc.edu/~ksen/vesta2
81. Wang, G., Zhou, H.: Quantitative logic. Inf. Sci. 179(3), 226–247 (2009)
82. Williams, B.C., Ingham, M., Chung, S.H., Elliott, P.H.: Model-based programming

of intelligent embedded systems and robotic space explorers. Proc. IEEE 91(3),
212–237 (2003)

83. Williams, B.C., Pandurang Nayak, P.: A model-based approach to reactive self-
configuring systems. In: Proc. AAAI 1996, pp. 971–978 (1996)

84. XG Reasoner, http://www.springerlink.com/content/25021851k303tlu0
85. xTune Framework, http://xtune.ics.uci.edu

Fractionated Software for Networked Cyber-Physical Systems 143

86. Yang, Y., Chen, X., Gopalakrishnan, G., Kirby, R.M.: Runtime Model Checking
of Multithreaded C/C++ Programs. Technical report, University of Utah (March
2007)

87. Yokoo, M.: Distributed constraint satisfaction: Foundations of cooperation in
multi-agent systems. Springer, London (2001)

88. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking
with a focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409
(2006)

89. Zhang, W., Wang, G., Xing, Z., Wittenburg, L.: Distributed stochastic search
and distributed breakout: Properties, comparison and applications to con-
straint optimization problems in sensor networks. Artif. Intell. 161(1-2), 55–87
(2005)

Model Feasible Interactions in Distributed

Real-Time Systems�

Shangping Ren, Yue Yu��, and Miao Song

Computer Science Department
Illinois Institute of Technology

Chicago, IL 60616
{ren,yyu8,msong8}@iit.edu

Abstract. When a distributed system contains only causal relations
from input events to output events, an interaction diagram (id) provides
a convenient mechanism to study observable behaviors of the system
as all events can be mapped to a set of global times that preserve the
initial causal relations. However, the interaction diagram focuses only
on causal orders among distributed events, which is not sufficient for
most real-time applications. Furthermore, in real-time context, a feasi-
ble interaction is the one that satisfies not only causal constraints and
precedence constraints, but also real-time constraints. However, feasi-
bility checking for a given set of real-time constraints is asymptotically
harder than for causal or precedence constraints. In this paper, we first
extend the interaction diagram with precedence constraints and develop
a mechanism that allows order preserving composition of the extended
interaction diagram (eid) with timing constraint graph (tcg). The com-
position of the extended interaction diagram and timing constraining
graph is called timed interaction diagram (tid). To reduce the time com-
plexity differences between the two different feasibility checkings, event
bundling is introduced to partition timed interaction diagrams. We show
that a lattice of bundled interaction diagrams (bid) can be derived from
a given timed interaction diagram to improve the efficiency of feasibility
checking for arbitrary real-time constraints.

1 Introduction

In distributed real-time applications, such as multidimensional battlefield control
systems and airport tracking systems, distributed entities usually expose a high
degree of concurrency and autonomy. Basing the semantics of distributed real-
time systems on conventional notions of states or state transitions introduces
unnecessary nondeterminism, impedes the understanding of the systems. Such
models in general are problematic and fail to be compositional [10].

� This research is supported in part by NSF under grants CNS 0746643, CNS 1018731,
and CNS 1035894

�� The work is done when he was a ph.d student at IIT. Dr. Yue Yu is currently working
at the China Bond Insurance Co., Ltd

G. Agha, O. Danvy, and J. Meseguer (Eds.): Talcott Festschrift, LNCS 7000, pp. 144–168, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Model Feasible Interactions in Distributed Real-Time Systems 145

As an example, consider the actor model [1]. In the actor model, actors are
concurrent and autonomous objects. They interact with each other through asyn-
chronous messages. Individual actors are sequential, since each actor has a single
thread of execution. Unprocessed messages are buffered in the receiver actor’s
mailbox. The actor model provides a simple abstraction for open distributed
systems and fosters the construction of highly concurrent applications.

Conventionally, the behavior of an actor system is defined by system state
transitions [1, 3, 2], where the state is expressed via a high ordered structure
called a configuration, which is an instantaneous global snapshot of individual
actor states (α) and pending message sets (μ), denoted as 〈〈α | μ〉〉. However,
this notion of system states is not well defined in a real-time environment for
the following reasons.

– A global snapshot of the internal states of asynchronous entities is difficult
to achieve in real-time settings. It highly depends upon the precisions of
individual clocks.

– Messages sent from actors may be in transit for some time before they are
ready to be chosen as the next transition for execution. However, the μ
definition does not differentiate the subtle but crucial state difference among
the yet to be processed messages.

In contrast, interface-based and interaction-based semantic models, such as event
diagrams [6], abstract behavior types [5], and interaction semantics [15, 11, 4],
avoid unnecessary assumptions about the internal states of distributed enti-
ties and the states of unprocessed messages. The semantic foundations of these
models are based on events, inputs/outputs, interactions, and other externally
observable sorts.

For instance, Talcott et. al shows in [15,16,4] how interaction paths in actor-
based systems can be defined as an observable projection of individual compu-
tation paths. While a computation path is based on labeled transitions of actor
system configurations, the internal state-based transitions are removed. As a re-
sult, the observable behaviors of the systems are used as the only criterion for
defining the meaning of the systems.

In concurrent systems, the observables, such as the interactions, may occur
concurrently. The interaction path is then in fact a linearization of the observ-
ables. The same set of observables may have different sets of linearizations. Hence
the notion of equivalence is introduced to study the relations of different sets of
linearizations.

In [4], three different types of equivalences are defined based on the observ-
ables of an actor system, namely, must, may and convex equivalences. Note that
for purposes of observation a closed system is assumed. To define equivalences,
observations are made in the computation paths of all possible closing contexts.
In particular, two actor systems are must equivalent if the nonoccurrence of an
observable event in one system’s computation paths implies the nonoccurrence
of the observable event in the other system’s computation path; and vice versa.
The may equivalence states that if an observable event occurs in some of one

146 S. Ren, Y. Yu, and M. Song

system’s computation paths, it must also occur in some of the other system’s
computation paths; and vice versa. Two actor systems are convex equivalent if
they are both must and may equivalent. The must and convex equivalences are
proven to be identical when fairness is assumed, i.e, messages sent to an actor
will eventually be processed by the receiving actor. These equivalence relations
are rather weak and may not be sufficient under real-time settings, since they
require only that the observables occur either in both or in neither computation
paths. The occurrence order and timing relations of the observables are irrelevant
in the equivalence definitions.

J.Jiang and J.Wu pointed out in [8] that causally independent (neither causally
related nor causally conflicted) observables form an equivalence class. Observ-
ables in an equivalence class can be bundled as a single event. Furthermore,
all causally independent relation sets form a partition of the observables set.
When causally independent observables are bundled as a single event, the set of
observables becomes totally ordered in the logical time domain.

However, in real-time applications, coordination constraints such as real-time
constraints may further restrict the allowed interaction paths. Two equivalent
interactions may become inequivalent when we take into account the real-time
aspects of the two interactions. Therefore, for real-time systems, we need stronger
equivalence classes to categorize equivalent behaviors.

A constraint graph is commonly used as a tool to study real-time constraints.
For a given set of timing constraints, we can construct a constraint graph by
denoting each constraint as a directed weighted edge connecting the two con-
strained events (nodes). Furthermore, any implicit constraints that are implied
by the given constraint set are derivable from the graph. When a constraint
graph is augmented with all implicit constraint edges, we obtain a precedence-
preserving graph [13]. Two real-time computations are equivalent if they have
equivalent interaction paths that also preserve the precedence order defined in
the precedence-preserving graph.

It is well known that the validity of a computation graph can be decided by
testing the existence of a causality loop in the graph, while the feasibility of a
set of timing constraints can be determined by checking if a negative cycle exists
in the deadline/delay graph [13, 9, 12, 17]. However, since testing for negative
weight cycles in a directed weighted graph is asymptotically harder than test-
ing for cycles in a directed unweighted graph, feasibility checkings for real-time
constraints are harder than for causal constraints. However, if we utilize the fact
that timing constraints are imposed on its corresponding computation graph,
the efficiency of feasibility checking can be improved.

The rest of the paper is organized as follows. Section 2 gives basic definitions
of the interaction semantics that will be used throughout the paper. Section 3
introduces extended interaction diagrams and discusses the feasibility issues of
given extended interaction diagram. In section 4, we introduce timed interaction
diagram and discuss interaction semantics under real-time constraints. Section 5
introduces the lattice of bundled interaction diagrams derived from a timed inter-
action diagram. We show that interaction equivalence is preserved under bundled

Model Feasible Interactions in Distributed Real-Time Systems 147

interaction diagram before and after timing constraints are imposed. More im-
portantly, we show that for a real-time application, timing constraint feasibility
checking can be done locally within each bundle of a bundled interaction dia-
gram, eliminating the global checking of a timed interaction diagram, and hence
improving the efficiency of feasibility checking. Finally, Section 6 concludes the
paper and discusses our future work.

2 Interaction Diagram

To facilitate our discussion, we assume the actor model [1] is used to model dis-
tributed real-time systems. For completeness, we first re-state the key concepts
about interaction diagrams defined in [16] (Definition 1 through Definition 6).
We then discuss partial orders in individual interaction diagrams and their com-
positions.

2.1 Definitions

Definition 1. Interaction diagrams (id) are structures of the form

id = (ρ, χ)(I, O,≺) (1)

where (ρ, χ) 1 is an interface consisting of a set of receptionists, ρ, which specifies
the actors within the system that are visible to the environment, and a set of
externals, χ, which specifies the names of actors in the environment known to
actors of the system. I is a set of input events and O is a set of output events.
The sets I and O are disjoint and ≺ ⊆ I × O is the visible combined ordering
restricted to input and output events. �

To make the definition more concrete, consider a matrix multiplication example.

Example 1. A matrix multiplier (with address m) is an actor that multiplies
two matrices MA×B and MB×C sent from a customer (with reply address c) in
two separate messages. It then replies the customer with the result MA×C . The
interaction diagram representation of the matrix multiplier is given below:

id = ({m}, {c})(I, O,≺)
where

I = {e1, e2}
O = {e3}
≺ = {(e1, e3), (e2, e3)}

1 The actor interface does not play an important role in our discussions. However, to
be consistent with the original interaction diagram theories and to facility our future
work, we keep the interface part in all the following discussions.

148 S. Ren, Y. Yu, and M. Song

where the packet function for the multiplier events is:

pkt(e1) = m � MA×B

pkt(e2) = m � MB×C

pkt(e3) = c � MA×C

The graphic representation of interaction diagram for the matrix multiplier is
illustrated in Fig. 1. �

Fig. 1. Interaction Diagram for Matrix Multiplier

Given that the set of input and output event sets I and O, a global time map,
g : I ∪ O

inj−−→ N , is an order preserving injective function from the event sets
to the set of natural numbers.

Definition 2. Global Time for Interaction Diagram: given an interaction
diagram id = (ρ, χ)(I, O,≺), the set of global times for the id is defined as
following:

GT (id) ={g : I ∪O
inj−−→ N | ∀e1, e2 ∈ I ∪O, e1 ≺ e2 ⇒ g(e1) < g(e2)} (2)

�

Interaction paths are event paths in which the domain of the global time map
contains no internal events. Interaction paths model possible global times and
abstract completed computations.

Definition 3. Interaction Path: given an interaction diagram (ρ,χ)(I, O,≺),
the interaction paths are structures of the form

(ρ, χ)g (3)

where g is a global time mapping for the interaction diagram, and Dom(g) ⊆
(I ∪O). �

Model Feasible Interactions in Distributed Real-Time Systems 149

Definition 4. Interaction Equivalence Systems: two actor systems are said
to be interaction equivalent if they have the same set of interaction paths. �

In [16], two interaction diagrams can be composed by linking and hiding synchro-
nization points between two diagrams. Intuitively, the synchronization points of
((ρ0, χ0)g0, (ρ1, χ1)g1) are the time points when one path outputs a message
whose target is a receptionist of the other path. Synchronization points are de-
fined as

sync((ρ0, χ0)g0, (ρ1, χ1)g1) =

{i| ∃j < 2, e ∈ I ∪O, s.t.g−1
j (i) = out(e) ∧ g−1

1−j(i) = in(e)} (4)

The composition of interaction paths and interaction diagrams is defined as
follows.

Definition 5. Composition of Interaction Paths: the composition of in-
teraction paths (ρ0, χ0)g0 and (ρ1, χ1)g1 is a structure of the form (ρ, χ)g of
which:

(ρ, χ)g = (ρ0, χ0)g0 ◦ (ρ1, χ1)g1 (5)

where

ρ = ρ0 ∪ ρ1,

χ = χ0 ∪ χ1 − ρ,

Dom(g) = Dom(g0) ∪Dom(g1)−
⋃

i∈sync((ρ0,χ0)g0,(ρ1,χ1)g1)

(g−1
0 (i) ∪ g−1

1 (i)),

g(e) = gj(e) if e ∈ Dom(gj) j = 0, 1 ��

Definition 6. Composition of Interaction Diagrams: the parallel composi-
tion of interaction diagrams ((ρ0, χ0)(I0, O0,≺0), g0) and ((ρ1, χ1)(I1, O1,≺1), g1)
is a structure of the form ((ρ, χ)(I, O,≺), g) of which

((ρ, χ)(I, O,≺), g) =
((ρ0, χ0)(I0, O0,≺0), g0) ◦ ((ρ1, χ1)(I1, O1,≺1), g1) (6)

where

(ρ, χ)g =(ρ0, χ0)g0 ◦ (ρ1, χ1)g1

I =Dom(g) ∩ (I0 ∪ I1)
O =Dom(g) ∩ (O0 ∪O1)
≺=(≺0 ∪ ≺1) ↓ (I ×O) ∪ {(in(e), out(e′))|∃e′′, j < 2,

in(e) ≺j out(e′′) ∧ in(e′′) ≺1−j out(e′) ∧ gj(out(e′′)) = g1−j(in(e′′))}

and (≺0 ∪ ≺1) ↓ (I ×O) restricts (≺0 ∪ ≺1) to I ×O. �

150 S. Ren, Y. Yu, and M. Song

2.2 Validity of Interaction Diagram

An interaction path of an interaction diagram is defined as a global time mapping
g together with the interface (ρ, χ) of the interaction diagram. Note that the
sufficient condition for an interaction diagram to have a global time mapping g
is that the interaction diagram is a DAG since the existence of a causality loop
C indicates that ∀e ∈ C, e ≺ e. In other words, events on a cycle cannot be
mapped to natural numbers that preserves the ≺ relation.

Definition 7. A valid interaction diagram is the one that contains no causal-
ity loop.

The following theorems state that interaction diagrams given by Definition 1 or
Definition 6 are valid.

Theorem 1. Let id be an interaction diagram that satisfies Definition 1. The id
is valid and thus a non-empty set of global time mappings exist for the diagram. �

Proof. Suppose to the contrary that a causality loop C exists, where C = e1 ≺
e2 ≺ ... ≺ en ≺ e1. Since ≺ ⊆ I ×O, it must be that

e1 ∈ I, e2 ∈ O

e2 ∈ I, e3 ∈ O

...
en ∈ I, e1 ∈ O

which contradict that I and O are disjoint. Therefore, id is a DAG, and a
topological sort algorithm can give a global time mapping for events in the id.

Theorem 2. The composition of two interaction diagrams is valid if and only
if the two composing interaction diagrams are valid. �

Proof. The composition of two interaction diagrams is accomplished by hiding
events at synchronization points (so that these events become internal) and keep-
ing the remaining input and output events (which remain external). In the com-
posed interaction diagram, causal relations are defined as ≺ ⊆ I × O . As shown
in Theorem 1, no causal loop exists among the external events. Since the causal
relation defined between events at synchronization points can be explained as≺′⊆
O×I, it may be possible to introduce a causality loop that contains internal events.
Therefore, we only need to prove that such possibility does not exist.

Suppose to the contrary that, the composition of two causality loop free inter-
action diagrams (ρ0, χ0)(I0, O0,≺0) and (ρ1, χ1)(I1, O1,≺1) produce a causality
loop C = out(e) ♦ in(e) ≺1 ... ≺1 out(e′) ♦ in(e′) ≺0 ... ≺0 out(e), where
out(e) ∈ O0, in(e) ∈ I1, out(e′) ∈ O1, in(e′) ∈ I1, and “♦ ”denotes synchroniza-
tion points as illustrated in Fig. 2.

Model Feasible Interactions in Distributed Real-Time Systems 151

Fig. 2. Composition of Interaction Diagram

By the definition of the causal relations “≺1” and “≺2” in the two individual
components, we have

⎧
⎪⎪⎨

⎪⎪⎩

in(e)≺1 · · · ≺1︸ ︷︷ ︸
0 or more

out(e′)⇒ g1(in(e)) ≤ g1(out(e′))

in(e′)≺0 · · · ≺0︸ ︷︷ ︸
0 or more

out(e′)⇒ g0(in(e′)) ≤ g0(out(e)) (7)

By the definition of synchronization points between the two components, we

have ⎧
⎪⎪⎨

⎪⎪⎩

g0(out(e)), g1(in(e)) ∈ synch(ρ0, χ0)g0, (ρ1, χ1)g1)
⇒ g0(out(e)) = g1(in(e))
g1(out(e′)), g0(in(e′)) ∈ synch(ρ0, χ0)g0, (ρ1, χ1)g1)
⇒ g1(out(e′)) = g0(in(e′))

(8)

From (7) and (8), we have

g0(out(e)) = g1(in(e)) = g1(out(e′)) = g0(in(e′)) (9)

Note the following property of ≺

(∀e1, e2, e1 ≺ · · · ≺︸ ︷︷ ︸
0 or more

e2)⇒ g(e1) = g(e2) iff e1 = e2 (10)

From (9) and (10), we have

in(e) = out(e′) ∧ in(e′) = out(e)

which contradicts that I and O are disjoint.

From Theorem 1 and Theorem 2 and the induction proof, it is clear that interac-
tion diagrams composed of individual components complying with Definition 1
are causality loop free and thus global time mappings exist for incrementally
defined interaction diagrams.

152 S. Ren, Y. Yu, and M. Song

3 Extended Interaction Diagram

Interaction diagrams abstract the actor model of computation by hiding internal
events of event diagrams, and keeping the induced causal orders among events
that occur at the interfaces of the actor system. Our observation is that the
current interaction diagram theory may not be sufficient to model distributed
real-time systems for the following reasons:

1. According to the Definition 1, ≺ ⊆ I × O is the set of causal orders from
input events to output events. However, there are cases where precedence
constraints ≺′⊆ (I∪O)×(I∪O) are necessary. For instance, a computational
unit could require its input events to come in a certain order and thus ≺′⊆
I × I are inevitable.

2. Since the basic interaction diagrams consider only logical times (causal or-
ders), the timing properties that are important for distributed real-time sys-
tems are not directly supported. For instance, in a distributed environment,
in order for a decision unit to take critical actions, the data from two differ-
ent sources must arrive at the requester within a limited time frame. In this
case, we have to timely constraint the two input events.

To overcome the issues discussed above, we extend the interaction diagram by
broadening ≺ ⊆ I ×O to ≺ ⊆ (I ∪O)× (I ∪O).

3.1 Extended Interaction Diagram

In order to model individual components with precedence relations among their
events, we extend the interaction diagram(id) to allow precedence constraints
among any pairs of events. The formal definition of extended interaction diagram
is given below:

Definition 8. Extended interaction diagrams (eid) are structures of the
form

eid = (ρ, χ)(I, O,≺) (11)

where ρ, χ, I, and O are the same as given in Definition 1. ≺ ⊆ (I ∪O)× (I∪O)
is the set of partial orders between event pairs. �

As given in the definition, the extended interaction diagram only concerns the
orderings between event pairs and boundaries of input events and output events
are diminished from the diagram. The extended interaction diagram for Exam-
ple 1 given in Section 2.1 shown in Fig. 3.

In Section 2.2, we showed that an interaction diagram defined by Definition 1
does not have causality loops and thus a non-empty set of global time map-
pings always exists for the diagram. However, when precedence constraints are
added, the existence of a global time mapping is not guaranteed and thus validity
checking must be conducted.

Model Feasible Interactions in Distributed Real-Time Systems 153

Fig. 3. Extended Interaction Diagram for Matrix Multiplier

3.2 Validity of Extended Interaction Diagram

Although the extended interaction diagram, we are able to model individual
components with precedence relations among their events, this flexibility comes
at the cost of additional complexity. With our extension, it is not hard to see that
Theorem 1 becomes invalid in the context of eid. By allowing≺⊆ (I∪O)×(I∪O),
we do not distinguish input and output events. Therefore, it is possible that a
component modeled by an extended interaction diagram contains precedence
loop and thus does not have a global time mapping.

Besides, Theorem 2 no longer holds for extended interaction diagrams since
precedence orders between arbitrary pairs of events are allowed in the extended
interaction diagrams. Therefore, even if two extended interaction diagrams are
valid (precedence loop free), it is possible that their compositions may contain
precedence loops and thus does not have a global time mapping. Fig. 4 shows
an example.

Fig. 4. Composition of Extended Interaction Diagrams

Therefore, for a given extended interaction diagram, we must conduct validity
checking. A valid or feasible interaction is the one without precedence loop. A
depth first search algorithm can be applied on the extended interaction diagram
to check for loops, and it runs in optimized time of O(|I ∪O|+ | ≺ |).

4 Timed Interaction Diagram

In this section, we study the real-time extension of the extended interaction
diagram, i.e., timed interaction diagram, and its interaction semantics.

154 S. Ren, Y. Yu, and M. Song

4.1 Composing Extended Interaction Diagram with Timing
Constraint Graph

Definition 9. A timing constraint among events is a function δ : E×E → IR

where E is a set of events and IR denotes the set of continuous subsets (i.e.,
intervals) of the set of real numbers. A timing constraint is of the form

δ(ei, ej) = [tmin, tmax]⇔ ei + tmin ≤ ej ≤ ei + tmax (12)

Two events are unconstrained if and only if δ(ei, ej) = (−∞, +∞).
�

Definition 10. A timing constraint graph (tcg) is a directed weighted graph
(E, δ) which satisfies the following conditions:

– The vertex set of tcg is E.
– For each pair of events ei, ej(i �= j), the edge between ei and ej and its

weight is defined as

if ¬(tmin = −∞∧ tmax = +∞) δ(ei, ej) = [tmin, tmax]⇔ ei
[tmin,tmax]−−−−−−−→ ej

(13)

and there is no edge between ei, ej if δ(ei, ej) = (−∞, +∞), i.e., ei and ej

are unconstrained.
– The co-domain of δ satisfies (14) is:

∀δ(ei, ej) =[tmin, tmax] : tmin ∈ R
+ ∪ {−∞} ∧ tmax ∈ R

+ ∪ {+∞} (14)

�

Note that the restriction of δ in the definition does not restrict the expressive-
ness power of linear timing constraints. Given a timing constraint δ′(ei, ej) with
arbitrary intervals, it can be transformed to comply with the restriction in the
following way:

δ′(ei, ej) = [tmin, tmax]⇔

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ(ej , ei) = [−tmax,−tmin]⇔
ei

[−tmax,−tmin]←−−−−−−−−− ej if tmin ≤ 0 ∧ tmax ≤ 0
δ(ei, ej) = [0, tmax] ∧ δ(ej , ei) = [0,−tmin]⇔
ei

[0,tmax]−−−−−→ ej ∧ ei
[0,−tmin]←−−−−−− ej if tmin ≤ 0 ∧ tmax > 0

(15)

Therefore, in the following, we restrict our discussions to timing constraints of
the form

δ ∈ E × E → {[tmin, tmax]| tmin ∈ R
+ ∪ {−∞} ∧ tmax ∈ R

+ ∪ {+∞}}

Model Feasible Interactions in Distributed Real-Time Systems 155

It is easy to see that precedence relations in extended interaction diagram ≺
⊆ (I ∪ O) × (I ∪ O) can be generalized as a special case of timing constraint
δ′ : (I ∪O)× (I ∪O)→ {[ε, +∞)|ε→ 0+} ∪ {(−∞, +∞)}2:

ei ≺ ej ⇔ ei + ε ≤ ej(ε→ 0+)⇔ ei
[ε,+∞)−−−−→ ej

This provides a basis for defining the composition of extended interaction dia-
gram and timing constraint graph. The composition of the two event structures,
the timed interaction diagram, has the set of all events as its vertices and the
edges from both event structures. In the case where multiple edges exist from
one vertex to another in the composition, we merge the edges and take the in-
tersection of the ranges defined on these edges.The formal definition is given
below:

Definition 11. A timed interaction diagram (tid) is a composition of an
extended interaction graph (ρ, χ)(I, O,≺) and a feasible timing constraint graph
(I ∪O, δ). It has the structure of the form

tid = (ρ, χ)(I, O, Δ) (16)

where ρ,χ,I, and O are defined the same as in Definition 1.≺: (I ∪ O) × (I ∪
O) → {[ε, +∞)|ε → 0+} ∪ {(−∞, +∞)} is the partial orders between visible
event pairs. δ : (I ∪ O) × (I ∪ O) → {[tmin, tmax]|tmin ∈ R

+ ∪ {−∞} ∧ tmax ∈
R

+ ∪ {+∞}}, is the timing constraint function restricted to input and output
events. The composed order function Δ : (I∪O)×(I∪O)→ {[tmin, tmax]|tmin ∈
R

+ ∪ {−∞} ∧ tmax ∈ R
+ ∪ {+∞}}, is defined as:

Dom(Δ) = (I ∪O)× (I ∪O)
Δ(ei, ej) =≺ (ei, ej) ∩ δ(ei, ej)

(17)

�

For graphical representation purposes, we use different arrows to differentiate
the relationships in extended integration diagram (eid), time constraint graph
(tcg), and timed integration diagram (tid). In particular, we use ➝ to represent
≺ in eid, � for δ in tcg, and � for Δ in tid, respectively.

The following theorem states that the timed interaction diagram neither relax
nor tighten the original timing constraints on the set of input and output events.

Theorem 3. Given an extended interaction diagram (ρ, χ)(I, O,≺) and a tim-
ing constraint graph (I ∪ O, δ), the composed diagram, i.e., timed interaction
diagram, (ρ, χ)(I, O, Δ), preserves ≺ and δ. �

Proof. Based on Definition 11, there are four cases as shown in Fig. 5 between
any two pair of events ei and ej when composing an extended interaction diagram
and a timing constraint graph:
2 ε is a small real number larger than 0 as the global time mapping must map two

causally related events to different time points.

156 S. Ren, Y. Yu, and M. Song

Fig. 5. Constructing Timed Interaction Diagram

Case 1: ≺ (ei, ej) = (−∞, +∞) ∧ δ(ei, ej) = (−∞, +∞) i.e., when there is
no precedence, nor timing constraints between e1 and e2, then in the timed
interaction graph, Δ(ei, ej) = (−∞, +∞), i.e., the two events are unconstrained,
and thus there will be no edge between them (Fig. 5(a)).

Case 2: ≺ (ei, ej) = [ε, +∞)∧ δ(ei, ej) = (−∞, +∞) i.e., when there is a prece-
dence constraint between e1 and e2, but no timing constraints, then in the timed
interaction graph, Δ(ei, ej) = [ε, +∞) which maintains the same precedence con-
straint direction (Fig. 5(b)).

Case 3: ≺ (ei, ej) = (−∞, +∞) ∧ δ(ei, ej) = [tmin, tmax] where ¬(tmin =
−∞ ∧ tmax = +∞), i.e., when there is a timing constraint, but no precedence
constraints between e1 and e2, then in the timed interaction graph, Δ(ei, ej) =
[tmin, tmax] and there will be an edge which maintains both the constraint di-
rection and the constraint weight (Fig. 5(c)).

Case 4: ≺ (ei, ej) = [ε, +∞) ∧ δ(ei, ej) = [tmin, tmax] where ¬(tmin = −∞ ∧
tmax = +∞), i.e., when there is both precedence and timing constraints between
e1 and e2, there will be an edge with weight equals to [ε, +∞) ∩ [tmin, tmax]
(Fig. 5(d)). Note that:

Δ(ei, ej) =≺ (ei, ej) ∩ δ(ei, ej)
⇔ ej − ei ∈ [max{ε, tmin}, min{tmax, +∞}]
⇔ ej − ei ∈ [ε, +∞) ∧ ej − ei ∈ [tmin, tmax]
⇔ ≺ (ei, ej) = [ε, +∞) ∧ δ(ei, ej) = [tmin, tmax]

(18)

Therefore, the composition preserves constraint information.

Model Feasible Interactions in Distributed Real-Time Systems 157

4.2 Validity of Timed Interaction Diagram

As shown in various literatures [13, 9, 12, 17], timing constraints in distributed
real-time systems are either deadline or delay constraints, where

– A deadline constraint is of the form

ej − ei ≤ dk(dk ≥ 0)

– A delay constraint is of the form

ej − ei ≤ −dk(dk ≥ 0)

A directed weighted constraint graph (we call it deadline/delay graph to distin-
guish it from tcg defined in the previous subsection) can be defined from the
two types of constraints in a similar way as the previous subsection. The the-
ory about constraint satisfaction feasibility is well-established for deadline/delay
graph thus defined. It states that a negative cycle in the graph means that the
set of timing constraints is not feasible.

In fact, the timing constraint graph (and timed interaction diagram) and
the deadline/delay graph have the same expressiveness and are mutually trans-
formable. This is shown in the Fig. 6.

Fig. 6. Deadline/Delay Constraints

Therefore, feasibility checking of the timed interaction diagram can be done
by transforming the tid to a deadline/delay graph and checking for negative
weight cycles in the graph. Bellman-Ford algorithm can be used to implement
the feasibility checking which runs in time O(|I ∪ O| · |Δ|). Also note that in
the Section 3, we pointed out that an extended interaction diagram needs to
be a DAG in order to have a non-empty set of global time mappings. This
can be viewed as a special case in the context of deadline/delay graph where a

158 S. Ren, Y. Yu, and M. Song

precedence constraint is a special case of delay constraint which is represented
as a negative weight edge. Thus a precedence loop in an extended interaction
diagram is a negative cycle in the deadline/delay graph which means that the
set of timing constraints is not feasible [13].

5 Bundled Interaction Diagrams and Their Properties

In the previous section, we show that an interaction diagram (ρ, χ)(I, O,≺) can
be composed with a timing constraint graph (I × O, δ) to yield a timed inter-
action diagram (ρ, χ)(I, O, Δ). We have also shown that the timed interaction
graph preserves both the causal order (≺) and the timing constraints (δ) de-
fined in both graphs. Let IPSet(eid), IPSet(tcg), and IPSet(tid) denote the sets
of interaction paths of an extended interaction diagram eid, a feasible timing
constraint graph tcg, and the timed interaction diagram tid composed from id
and tcg, respectively. It is easy to see that

IPSet(eid) ∩ IPSet(tcg) = IPSet(tid) (19)

Therefore, some interaction paths that are valid in the interaction diagrams
may be invalid in timed interaction diagrams. Moreover, since the interaction
diagram contains only partial orders , theories developed for the interaction
diagram are based on causality. Therefore, it is important for us to see the
invariant of an interaction diagram when timing constraints are imposed, that
is, the event structures that are preserved after timing constraints are imposed.
As shown in this section, if we bundle events in an interaction diagram into “big
events” when forming the timed interaction diagram such that the relations
between bundles are only of acyclic causal orders, interaction paths valid for
such event structures under the interaction diagram remains valid when timing
constraint are imposed.

On the other hand, from an algorithmic perspective, determining the fea-
sibility of an extended interaction diagram can be reduced to the problem of
checking for cycles in a directed unweighted graph, and determining the feasi-
bility of a timed interaction diagram can be reduced to the problem of checking
for negative weight cycles in a directed weighted graph. However, checking for
negative cycle in a directed weighted graph G(V, E) is asymptotically harder
than checking for cycles in a directed unweighted graph G′(V ′, E′). To check
for negative cycle in a directed weighted graph, Bellman-Ford algorithm could
be run on the graph which runs in time O(|V | · |E|); while to check for cycle
in a directed unweighted graph, a depth first search suffices which only runs in
time O(|V ′| + |E′|). A careful observation of the event structure of the timed
interaction diagram unveils that if we bundle its events into “big events” such
that the relations between bundles are only of acyclic partial orders, the time
consuming negative-weight-cycle checking can be restricted within bundles so
that the complexity of feasibility checking can be dramatically reduced.

Model Feasible Interactions in Distributed Real-Time Systems 159

5.1 Bundled Interaction Diagram

Before we present the bundled interaction diagram, consider the following
examples:

Example 2. Given an extended interaction diagram and a timing constraint
graph shown in Fig. 7(a) and 7(b), respectively. In Fig. 7, m, c donates different
actors, the solid circles donate input or output events within actors. Composing
these two diagrams, we obtain the timed interaction diagram shown in Fig. 7(c).
Note that the weight [ε, +∞) on the edges of the timed interaction diagram
which inherit from the causal relations in the original interaction diagram are
ignored in Fig. 7(c).

Fig. 7. Bundling Timely Constrained Events

As can be seen, valid interaction paths of (a) may not be valid for (c). For ex-
ample, a valid global time mapping for the actor system before timing constraints
are imposed could be g(e4) = 1, g(e1) = 2, g(e5) = 3, g(e2) = 4, g(e3) = 5, g(e6)
= 6. However, when timing constraints are added, g(e3) = 5 and g(e1) = 2
violates the delay constraint e1 + 4 ≤ e6 because delay constraints are more

160 S. Ren, Y. Yu, and M. Song

strict than causal order constraints (note that precedence constraint e1 ≺ e6

in Fig. 7(a) is overridden by the delay constraint e1 + 4 ≤ e6 when the timed
interaction diagram is constructed). Moreover, g(e4) = 1 and g(e5) = 3 violates
the deadline constraint e5 − e1 ≤ 0.5.

Intuitively, bundling timely constrained events in the underlying timing con-
straint graph of a timed interaction diagram will result in an event structure con-
sisting of only acyclic precedence orders. In this example, the events in the timed
interaction diagram in Fig. 7(c) can be partitioned into {{e4, e5}, {e1, e2, e3},
{e6}}, where B1 = {e4, e5}, B2 = {e1, e2, e3}, B3 = {e6} as shown in Fig. 7(d).
The allowed interaction path for Fig. 7(a) before timing constraints are added
is ({m, c}, φ)[B1, B2, B3] and it remains the same when timing constraints are
imposed. �

Fig. 7(d) shows the event structure when events are bundled. We call it bundled
interaction diagram which is formally defined below.

Definition 12. Bundled Interaction Diagram: for a timed interaction di-
agram tid = (ρ, χ)(I, O, Δ) composed from an extended interaction diagram
(ρ, χ)(I, O,≺) and a feasible timing constraint graph (I ∪ O, δ), the bundled in-
teraction diagram of bid is defined as

bid = (B,≺≺) (20)

where B = {Bi|i = 1, · · · , n} is a set of n bundles. A bundle Bi of B is a pair
(Ei, Δi) where

– Ei ⊆ I ∪O ∧{Ei|i = 1, · · · , n} is a partition of I ∪O such that ∀e ∈ Ei, e
′ ∈

Ej , i�= j: δ(e, e′) = δ(e′, e) = (−∞, +∞)
– Δi ⊆ Δ, Δ is a set of constraint functions restricted to event pairs in Ei :
∀(e, e′) ∈ Dom(Δi) : e ∈ Ei ∧ e′ ∈ Ei

– ≺≺ is the set of precedence orders between bundles such that (Ei, Δi) ≺≺
(Ej , Δj), iff ∃e ∈ Ei, e

′ ∈ Ej :≺ (e, e′)�= (−∞, +∞)

(B,≺≺) is a directed acyclic graph. �

Note that at the end of Definition 12, we require (B,≺≺) to be a DAG. The
reason will become clear in the following subsection.

5.2 A Lattice of Bundled Interaction Diagrams and Its Properties

In the previous subsection, we show that all events in a timed interaction diagram
can be partitioned such that the resultant event structure contains only acyclic
precedence orders between bundles. In fact, given a timed interaction diagram,
all bundled interaction diagrams satisfying Definition 12 forms a lattice with
infimum given by Algorithm 3 shown later in this subsection and supremum given
by bundling all events. For instance, with Example 2, the minimum bundling is
{{e4, e5}, {e1, e2, e3}, {e6}}, the maximum bundling is {{e1, e2, e3, e4, e5, e6}},
and all valid partitions forms a lattice as shown in Fig. 8.

Model Feasible Interactions in Distributed Real-Time Systems 161

Fig. 8. A Lattice of Bundled Interaction Diagrams

As mentioned at the beginning of this section, checking for negative cycle in
a directed weighted graph is asymptotically harder than checking for cycles in
a directed unweighted graph. However, through bundling, we are able to reduce
the time complexity by running the more time consuming algorithm on smaller
problem sets. Algorithm 1 gives the details:

Algorithm 1. Feasibility-Checking (tid = (ρ, χ)(I, O, Δ))

compute the bundled interaction diagram (B,≺≺) of tid such that the1

relations between bundles are only of acyclic causal orders;
if ∀Bi ∈ B is feasible then2

tid is feasible;3

else4

tid is not feasible;5

end6

The correctness of the algorithm is supported by Theorem 4 below.

Theorem 4. A timed interaction diagram is feasible if and only if every bundle
in its corresponding bundled interaction diagram is feasible. �

Proof. 1. Every bundle in bid is feasible implies that tid is feasible:
Prove by construction. Since every bundle in a bid is feasible, for every
bundle Bi = (Ei, Δi) of B there is a “local time mapping”(in contrast to

global time mapping) gi : E
inj−−→ R which preserves Δi:

gi(ei1) = ti1
...

gi(eik
) = tik

162 S. Ren, Y. Yu, and M. Song

Without loss of generality, suppose ti1 > 0, · · · , tik
> 0 (this can be guar-

anteed by shifting every local time by | min
j=1···k

(tij)|+ ε which does not affect

the preservation of Δi).
Since (B,≺≺) is a directed acyclic graph, there exist a topologically sorted

order of all bundles in B. The global time mapping gi : E
inj−−→ R for the origi-

nal timed interaction diagram can be constructed by the following algorithm
(Algorithm 2):

Algorithm 2. Construct-Global-Time-Mapping (B,≺≺)

foreach bundle Bi = (Ei, Δi) in topologically sorted order from low to high do1

for ∀Bm1 ≺≺ Bi, . . . , Bmn ≺≺ Bi do2

foreach eij ∈ Ei do3

g(eij) = gi(eij) + max
Em∈{Em1 ...Emn}

(
max

ek∈Em

g(ek)

)

4

end5

end6

end7

As the local times for every event in a bundle is consistently shifted by the
same amount, hence the time change will not affect the feasibility within
the bundle. Moreover, since the last line of the algorithm guarantees that
events in a bundle of higher topologically sorted order have larger global
times of events than events in a bundle of smaller topologically sorted order,
causal relations between bundles are satisfied. Therefore, all constraints in
the original timed interaction diagram are satisfied.

2. tid is feasible implies that every bundle in bid is feasible
Prove the contrapositive. It suffices to prove that if some bundle in bid is
not feasible, then tid is not feasible. This follows from the fact that for a
bundle Bi = (Ei, Δi), we have that Ei ⊆ I ∪O and Δi ⊆ Δ where I, O and
Δ are the input events, output events and constraints defined in tid.

From the theorem, we can see that the feasibility checking process yields both
positive and negative answers. Note that Algorithm 2 not only gives a proof
of the correctness of checking with positive answers, but also gives a way to
obtain a global time mapping from a set of local time mappings. For instance,
in Example 1, one set of local time mappings for the three bundles could be:

B1 : g1(e4) = 1, g1(e5) = 1.3
B2 : g2(e1) = 1, g2(e2) = 2, g2(e3) = 6
B3 : g3(e6) = 1

Model Feasible Interactions in Distributed Real-Time Systems 163

And the algorithm will run for each bundle in global topologically sorted order
B1, B2, B3 and find a global time mapping:

g(e4) = 1, g(e5) = 1, 3, g(e1) = 2.3,

g(e2) = 3.3, g(e3) = 7.3, g(e6) = 8.3

which satisfies all constraints.
By reducing the problem of feasibility checking of a timed interaction diagram

to the problem of feasibility checking of individual bundles of the corresponding
bundled interaction diagram, the complexity of the former can be dramatically
reduced since the time-consuming Bellman-Ford algorithm need only be run
within bundles. More specifically, assume a bundled interaction diagram has
n bundles: (E1, Δ1), (E2, Δ2), · · · , (En, Δn). The time complexity for feasibility
checking in the bundled interaction diagram is:

Tbid =
n∑

i=1

O(|Ei| · |Δi|) (21)

while the time complexity for feasibility checking in the original timed interaction
diagram is:

Ttid = O(|E| · |Δ|)

= O((
n∑

i=1

|Ei|) · (
n∑

i=1

|Δi|)) (22)

=
n∑

i=1

O(|Ei| · |Δi|) +
n∑

i=1

O(|Ei| ·
∑

j�=i

|Δj |)

which is
n∑

i=1

O(|Ei| ·
∑
j�=i

|Δj |) larger. For example, in average case, a balanced

partition would have

|E1| = |E2| = · · · = |En| = 1
n
|E|

|Δ1| = |Δ2| = · · · = |Δn| = 1
n
|Δ|

Thus, the complexity for feasibility checking in the bundled interaction diagram
is O(|E| · |Δ|/n) while the complexity for feasibility checking in the timed inter-
action diagram is O(|E| · |Δ|). Therefore, the more bundles formed (larger n),
the faster the feasibility checking can be done.

The worst case is when the bundle is the supremum of the lattice. In other
words, all events are in the same bundle. In this case, n = 1 and the time
complexity of Algorithm 1 becomes the same as the feasibility checking on the
original timed interaction diagram. Another extreme would be n = |E|, this will
imply that each bundle contains a single event. This can happen only when all
constraints between events (Δ) are causal constraints. And the problem reduces

164 S. Ren, Y. Yu, and M. Song

to feasibility checking of extended interaction diagram. However, given any timed
interaction diagram, it is rarely possible that all constraints are causal, and thus
the number of bundles can rarely be |E|.

Fig. 9. Computing the Minimum Bundled Interaction Diagram

The following algorithm finds the infimum of the lattice of bundled interaction
diagrams for a given timed interaction diagram. As we can see, the infimum has
the maximum number of bundles so that the complexity of feasibility checking
is minimized.

The following example illustrates the execution of the algorithm:

Example 3. In Fig. 9, idc is obtained by bundling {e1} to B1, {e2, e5} to B2,
{e3} to B3, {e4} to B4, {e6, e7, e8} to B5 respectively. For simplicity of the
presentation, constraints within bundles are not shown. The bid is obtained
by bundling the strongly connected component {B2, B3, B4, B5} in idc to B6.

Model Feasible Interactions in Distributed Real-Time Systems 165

Algorithm 3. Minimum-Bundle (tid = (ρ, χ)(I, O, Δ), tcg = (I, O, δ))

foreach weakly connected component in tcg do1

shrink events in the component into a ”big event”;2

//We call the intermediate diagram idc, which contains only3

causal constraints between "big events";
merge causal constraints between ”big events”;4

end5

foreach strongly connected component in idc do6

bundle ”big events” in the component;7

merge causal constraints between bundles to form a bid;8

end9

B1 does not change. It is noticeable in Fig. 9 that there exist constraint loops
which indicate the feasibility checking process will yield negative answers. How-
ever, at this point, we only concern about the procedure of minimum bundling,
the feasibility checking problems will be left within the bundles after the bundles
have been constructed. �
Since the complexity of computing both weakly and strongly connected com-
ponent of a graph G(V, E) is O(|V | + |E|), the minimum bundled interaction
diagram can be obtained is O(|I∪O|+ |Δ|) which can be ignored compared with
the feasibility checking processes.

The following theorem shows that given a timed interaction diagram and its
underlying timing constraint graph, the bundled interaction diagram constructed
by Algorithm 3 is unique.

Theorem 5. The bundled interaction diagram constructed by Algorithm 3 is
unique for a given timed interaction diagram tid and its underlying timing con-
straint graph tcg. �
Proof. To prove the theorem, it suffices to prove that

1. The intermediate diagram (idc) that only contains causal constraints be-
tween “big events” in Algorithm 3 can be uniquely constructed from tid and
tcg.
This is true since the set of weakly connected components in tcg is unique,
thus partition of events in tid according to weakly connected components in
tcg is unique.

2. bid in Algorithm 3 can be uniquely constructed from idc
This is true since the set of strongly connected component in idc is unique,
thus partition of “big events” in idc according to its strongly connected
components is unique.

An alternative way of constructing bid from idc can be done by contracting
cycles in idc cumulatively, i.e., up till idc is left with no more cycles, iterate over
by contracting a cycle and look for another. This leads to a DAG. The resultant
DAG is unique independent of the order in which we contract the cycles. This
can be proven using cut-and-paste argument [7].

166 S. Ren, Y. Yu, and M. Song

In Example 3, e2 through e8 are bundled. It seems that Algorithm 3 may
produce large bundles of events such that the resultant bundled event structure
is too coarse. However, as shown in the following theorem, such partition is
necessary and minimal.

Theorem 6. The bundled interaction diagram constructed by Algorithm 3 forms
a partition of events in an interaction diagram id. The bundling is minimal to
ensure the correctness of the feasibility checking process in Algorithm 3. �

Proof. Prove by contradiction.

1. Suppose that two events in a weakly connected component in tcg are in two
bundles B1 and B2 in bid. Then there must be at least one timing constraint
between B1 and B2, thus the two bundles are timing constrained. Therefore,
local feasibility checking within bundles is not sufficient to guarantee the
feasibility of the original timed interaction diagram.

2. Suppose that two events in a strongly connected component in idc are in
two bundles B1 and B2 in bid. Then there must be at least one precedence
constraint path from B1 to B2 and at least one precedence constraint path
from B2 to B1. This forms a precedence constraint loop so that topological
sorted order in Algorithm 1 is not obtainable.

Therefore, the bundling is minimal in the sense that any further partitions of
any bundle in the bundled interaction diagram given by Algorithm 3 will either
break the preservation of valid bundled interaction path under timing constraint
or produce a non-feasible precedence constrained event structure.

Theorem 5 and 6 together imply that the bundled interaction diagram con-
structed by Algorithm 3 is a unique infimum of the lattice of bundled interaction
diagrams. In fact, all the other bundled interaction diagrams of a given timed
interaction diagram subject to Definition 12 can be obtained by further merging
some bundles that does not introduce precedence loops in the infimum. This can
be proven in a similar way as Theorem 6.

As shown above, the infimum in the lattice of bundled interaction diagram
offers the largest improvement of the feasibility checking while the supremum
offers the least improvement (since the complexity is the same as that without
bundling). It is also easy to show that the complexities of feasibility checking
of bundled interaction diagrams comply with the partial order of the lattice:
two bundled interaction diagrams bid1 = {(E1, Δ1), (E2, Δ2), · · · , (En, Δn)} and
bid2 = {(E1 ∪ E2, Δ1 ∪Δ2), · · · , (En ∪ En, Δn ∪ Δn)} would have bid1 ≺ bid2

in the lattice (if further bundling of some bundles in bid1 to form bid2 does not
introduce precedence loop; also note that ≺ is overloaded here to denote partial
orders in the lattice) and feasibility checking in bid2 would take longer time than
in bid1 since

Tbid2 − Tbid1 = O(|E1| · |Δ2|+ |E2| · |Δ1|).

Model Feasible Interactions in Distributed Real-Time Systems 167

6 Conclusion

In distributed real-time systems, it is crucial to be able to reason about whether
two systems have equivalent behaviors. Instead of using traditional system state-
based transition systems to study the properties of distributed real-time systems,
we base our formal reasoning on the observable interactions among distributed
entities. A timed interaction graph is defined to represent the systems both
functional (observable) properties and timing properties. Based on the timed
interaction graph, we have shown that:

– The basic interaction diagram is not sufficient for describing distributed real-
time systems. However, extensions to it will require feasibility checking on
the new event structures.

– Given an interaction graph (ρ, χ)(I, O,≺) and a feasible timing constraint
graph (I ∪ O, δ), the composed diagram, i.e., timed interaction diagram
(ρ,χ)(I, O, Δ), preserves both precedence constraints ≺ and real-time con-
straints δ .

– By bundling events in a timed interaction diagram, we obtain an event struc-
ture called bundled interaction diagram whose interaction paths defined on
bundled events preserve validity after timing constraints are added to the
original interaction diagram.

– Instead of checking the entire timed interaction diagram, we show that the
feasibility checking can be done within each bundle in the bundled interaction
diagram so that the efficiency of feasibility checking can be improved.

– All bundled interaction diagrams of a given timed interaction diagram satis-
fying Definition 12 form a lattice with a unique infimum given by Algorithm 3
and a unique supremum given by bundling all events. If bid1 ≺ bid2 in the
lattice, feasibility checking using bid1 takes less time than using bid2.

The discussion in this paper has been on the semantics and feasibility problems
when the precedence/real-time constraints are directly imposed upon computa-
tional units. However, when computational units are clustered into groups based
on their functional behaviors, and the precedence/real-time constraints are im-
posed upon those groups instead of directly upon individual units, the feasibil-
ity problems become different since infeasible timed interaction diagrams may
become feasible by replicating and actively coordinating computational units
within each groups. Our immediate future work is to investigate the feasibility
problems in a simple three-tier coordination model [14] and the relationship be-
tween bundling based on timing properties and grouping based on behaviors.
We will further look into the role of grouping and the role of coordinating of ho-
mogeneous behaviors within a group as well as heterogeneous behaviors among
different groups.

168 S. Ren, Y. Yu, and M. Song

References

1. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT
Press, Cambridge (1986)

2. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: Towards a theory of actor com-
putation. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 565–579.
Springer, Heidelberg (1992)

3. Agha, G.A., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor com-
putation. J. Funct. Program. 7, 1–72 (1997),
http://portal.acm.org/citation.cfm?id=969900.969901

4. Agha, G.A., Thati, P., Ziaei, R.: Actors: a model for reasoning about open dis-
tributed systems, pp. 155–176. Cambridge University Press, New York (2001),
http://portal.acm.org/citation.cfm?id=566795.566806

5. Arbab, F.: Abstract behavior types: a foundation model for components and
their composition. Science of Computer Programming 55(1-3), 3–52 (2005), for-
mal Methods for Components and Objects: Pragmatic aspects and applications

6. Clinger, W.D.: Foundations of Actor Semantics. Ph.D. thesis (1981), aI-TR-633
7. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,

2nd edn. McGraw-Hill Higher Education (2001)
8. Jiang, J., Wu, J.: The preservation of interleaving equivalences. In: Proceedings

of the 10th IEEE International Conference on Engineering of Complex Computer
Systems, pp. 580–589. IEEE Computer Society, Washington, DC, USA (2005)

9. Lee, C.G., Mok, A.K., Konana, P.: Monitoring of timing constraints with confidence
threshold requirements. IEEE Trans. Comput. 56, 977–991 (2007),
http://dx.doi.org/10.1109/TC.2007.1026

10. Lee, E.A.: Concurrent semantics without the notions of state or state transitions.
In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 18–31.
Springer, Heidelberg (2006)

11. Mason, I.A., Talcott, C.L.: Actor languages. their syntax, semantics, translation,
and equivalence. Theor. Comput. Sci. 220, 409–467 (1999),
http://portal.acm.org/citation.cfm?id=308049.308053

12. Mok, A.K., Liu, G.: Efficient run-time monitoring of timing constraints. In: Pro-
ceedings of the 3rd IEEE Real-Time Technology and Applications Symposium
(RTAS 1997), p. 252. IEEE Computer Society, Washington, DC, USA (1997),
http://portal.acm.org/citation.cfm?id=523983.828388

13. Raju, S., Rajkumar, R., Jahanian, F.: Monitoring timing constraints in distributed
real-time systems. In: Real-Time Systems Symposium, 1992, pp. 57–67 (December
1992)

14. Ren, S., Yu, Y., Chen, N., Marth, K., Poirot, P.-E., Shen, L.: Actors, roles and
coordinators! a coordination model for open distributed and embedded systems.
In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol. 4038,
pp. 247–265. Springer, Heidelberg (2006)

15. Talcott, C.L.: Interaction semantics for components of distributed systems. In: 1st
IFIP Workshop on Formal Methods for Open Object-based Distributed Systems,
FMOODS 1996 (1996)

16. Talcott, C.L.: Composable semantic models for actor theories. Higher Order Sym-
bol. Comput. 11, 281–343 (1998)

17. Yu, Y., Ren, S., Frieder, O.: Prediction of timing constraint violation for real-time
embedded systems with known transient hardware failure distribution model. In:
27th IEEE International on Real-Time Systems Symposium, RTSS 2006, p. 454–
466 (December 2006)

Puff, The Magic Protocol

Farhad Arbab1,2

1 Foundations of Software Engineering, CWI, Science Park 123, 1098 XG Amsterdam
2 Leiden Institute for Advanced Computer Science, Leiden University,

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
farhad@cwi.nl

Abstract. Traditional models of concurrency resort to peculiarly indi-
rect means to express interaction and study its properties. Formalisms
such as process algebras/calculi, concurrent objects, actors, agents,
shared memory, message passing, etc., all are primarily action-based
models that provide constructs for the direct specification of things that
interact, rather than a direct specification of interaction (protocols).
Consequently, interaction in these formalisms becomes a derived or sec-
ondary concept whose properties can be studied only indirectly, as the
side-effects of the (intended or coincidental) couplings or clashes of the
actions whose compositions comprise a model.

Treating interaction as an explicit first-class concept, complete with
its own composition operators, allows to specify more complex interac-
tion protocols by combining simpler, and eventually primitive, protocols.
Reo [20,11,12,6] serves as a premier example of such an interaction-
based model of concurrency. In this paper, we describe Reo and its
support tools. We show how exogenous coordination in Reo reflects an
interaction-centric model of concurrency where an interaction (protocol)
consists of nothing but a relational constraint on communication actions.
In this setting, interaction protocols become explicit, concrete, tangi-
ble (software) constructs that can be specified, verified, composed, and
reused, independently of the actors that they may engage in disparate
applications.

Puff, the magic dragon ad-libbed concurrency,

As he frolicked through the mist of code disguised invisibly.

Little Jackie Paper loved that rascal Puff,

And brought him threads and semaphores and other fancy stuff. Oh ...

¬PeterPaulAndMary

1 Introduction

Concurrency is inherently difficult because it involves complex interaction pro-
tocols. Yet, it is always possible to make already difficult subjects even more
difficult by increasing the complexity of their treatment. We take full advantage
of this fact in cryptography by seeking easy disguising transformations whose

G. Agha, O. Danvy, and J. Meseguer (Eds.): Talcott Festschrift, LNCS 7000, pp. 169–206, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

170 F. Arbab

inverses are so complex as to make them prohibitively difficult (if not impossible)
to perform, without knowing a key (piece of information). We use unnecessary
complexity to disguise things for entertainment, as in puzzles, for instance, as
well. In most other situations, though, we do not choose to increase the com-
plexity of a problem; at least not intentionally. However, it seems to me that the
historically justifiable optimum path that led us out of the realm of sequential
programming, into the new world of concurrency, has hindered us from realiz-
ing how our old-country world view unnecessarily increases the complexity of
life in this new world. Once we had mastered the skills to navigate through the
realm of sequential programming, the simplest models of concurrency seemed
to require only the addition of a few new constructs to our models of sequen-
tial programming: a befitting selection of locks, semaphores, mutual exclusion,
monitors, send/receive primitives, message passing, rendezvous, etc., would do.
Refinements in concurrency theory abstracted away inconsequential sequential
computations to offer process calculi and algebras. In many ways, these models
are indeed simple. Alas, simple models are not always simple to use.

With the availability of today’s low-cost multicore commodity hardware that
can scale up to offer massively parallel computing platforms, high-speed commu-
nication networks that interconnect the globe, plus every indication that both
of these phenomena constitute trends that will continue in the future, the need
for programming techniques to harness the massive concurrency that they offer
has become more vivid than ever. The inadequacy of traditional models for pro-
gramming of concurrent systems to serve this purpose stems from the fact that
the way in which they express interaction protocols generally does not scale up.

In spite of the fact that interaction constitutes the most challenging aspect of
concurrency, traditional models of concurrency predominantly treat interaction
as a secondary or derived concept. Shared memory, message passing, calculi such
as CSP [50], CCS [83], the π-calculus [84,97], process algebras [33,25,46], and
the actor model [8] represent popular approaches to tackle the complexities of
constructing concurrent systems. Beneath their significant differences, all these
models share one common characteristic, inherited from the world of sequential
programming: they all constitute action-based models of concurrency.

For example, consider developing a simple concurrent application with two
producers, which we designate as Green and Red, and one consumer. The con-
sumer must repeatedly obtain and display the contents alternately made avail-
able by the Green and the Red producers.

Figure 1 shows the pseudo code for an implementation of this simple applica-
tion in a Java-like language. Lines 1-4 in this code declare four globally shared
entities: three semaphores and a buffer. The semaphores greenSemaphore and
redSemaphore are used by their respective Green and Red producers for their
turn keeping. The semaphore bufferSemaphore is used as a mutual exclusion
lock for the producers and the consumer to access the shared buffer, which
is initialized to contain the empty string. The rest of the code defines three
processes: two producers and a consumer.

Puff, The Magic Protocol 171

Global Objects: Green Producer:
1 private final Semaphore greenSemaphore = new Semaphore(1); 14 while (true) {
2 private final Semaphore redSemaphore = new Semaphore(0); 15 sleep(5000);

3 private final Semaphore bufferSemaphore = new Semaphore(1); 16 greenText = ...;

4 private String buffer = EMPTY; 17 greenSemaphore.acquire();

18 bufferSemaphore.acquire();

19 buffer = greenText;

20 bufferSemaphore.release();

21 redSemaphore.release();

22 }

Consumer: Red Producer:
5 while (true) { 23 while (true)

6 sleep(4000); 24 sleep(3000);

7 bufferSemaphore.acquire(); 25 redText = ...;

8 if (buffer != EMPTY) { 26 redSemaphore.acquire();

9 println(buffer); 27 bufferSemaphore.acquire();

10 buffer = EMPTY; 28 buffer = redText;

11 } 29 bufferSemaphore.release();

12 bufferSemaphore.release(); 30 greenSemaphore.release();

13 } 31 }

Fig. 1. Alternating producers and consumer

The consumer code (lines 5-13) consists of an infinite loop where in each
iteration, it performs some computation (which we abstract as the sleep on line
6), then it waits to acquire exclusive access to the buffer (line 7). While it has
this exclusive access (lines 8-11), it checks to see if the buffer is empty. An empty
buffer means there is no (new) content for the consumer process to display, in
which case the consumer does nothing and releases the buffer lock (line 12). If
the buffer is non-empty, the consumer prints its content and resets the buffer to
empty (lines 9-10).

The Green producer code (lines 14-22) consists of an infinite loop where in
each iteration, it performs some computation and assigns the value it wishes
to produce to local variable greenText (lines 14-15), and waits for its turn
by attempting to acquire greenSsemaphore (line 17). Next, it waits to gain
exclusive access to the shared buffer, and while it has this exclusive access, it
assigns greenText into buffer (lines 18-20). Having completed its turn, the
Green producer now releases redSemaphore to allow the Red producer to have
its turn (line 21).

The Red producer code (lines 23-31) is analogous to that of the Green pro-
ducer, with “red” and “green” swapped.

This is a simple concurrent application whose code has been made even sim-
pler by abstracting away its computation and declarations. Apart from their
trivial outer infinite loops, each process consists of a short piece of sequential
code, with a straight-line control flow that involves no inner loops or non-trivial
branching. The protocol embodied in this application, as described in our prob-
lem statement, above, is also quite simple. One expects it be easy, then, to answer
a number of questions about what specific parts of this code manifest the various
properties of our application. For instance, consider the following questions:

172 F. Arbab

1. Where is the green text computed?
2. Where is the red text computed?
3. Where is the text printed?

The answers to these questions are indeed simple and concrete: lines 16, 25, and
9, respectively. Indeed, the “computation” aspect of an application typically
correspond to coherently identifiable passages of code. However, the perfectly
legitimate question “Where is the protocol of this application?” does not have
such an easy answer: the protocol of this application is intertwined with its
computation code. More refined questions about specific aspects of the protocol
have more concrete answers:

1. What determines which producer goes first?
2. What ensures that the producers alternate?
3. What provides protection for the global shared buffer?

The answer to the first question, above, is the collective semantics behind lines
1, 2, 17, and 26. The answer to the second question is the collective semantics
behind lines 1, 2, 17, 26, 21, and 30. The answer to the third question is the
collective semantics of lines 3, 18, 20, 27, and 29. These questions can be answered
by pointing to fragments of code scattered among and intertwined with the
computation of several processes in the application. It is far more difficult to
identify other aspects of the protocol, such as possibilities for deadlock or live-
lock, with concrete code fragments. While both concurrency-coordinating actions
and computation actions are concrete and explicit in this code, the interaction
protocol that they induce is implicit, nebulous, and intangible. In applications
involving processes with even slightly less trivial control flow, the entanglement
of data and control flow with concurrency-coordination actions makes it difficult
to determine which parts of the code give rise to even the simplest aspects of
their interaction protocol.

When the protocol in a typical concurrent application consists of 623 send
and receive (or lock/unlock, etc.) primitives, sprinkled over 783,961 lines of C
code, chopped up into 387 different source files, how simple is it to understand
this protocol, reason about its properties, debug it, adapt it, or imagine reusing
it in another application? How can a hapless programmer (who may very well
be the original author of the code, six months down the road) even see what this
protocol actually does before he can contemplate to do anything with it? Even in
the case of our simple program in Figure 1, which we just examined, do we see all
of its properties? We asked about and identified the buffer protection mechanism
in this application. But does this mechanism provide adequate protection that
we expect?

It is only tactful of me to say that I am sure all my readers have already
spotted what may be considered a bug in this code that may in fact remain
undetected in practice for a very long time, depending on the circumstances
that determine the relative speeds of the producer and consumer threads in this
application. There is no protection in this code preventing the producers from
over-writing each other in the buffer, regardless of whether or not their output

Puff, The Magic Protocol 173

Green Producer: Red Producer:
14 while (true) { 28 while (true)

15 sleep(5000); 29 sleep(3000);

16 greenText = ...; 30 redText = ...;

17 greenSemaphore.acquire(); 31 redSemaphore.acquire();

18 while (greenText !=EMPTY) { 32 while (redText !=EMPTY) {
19 bufferSemaphore.acquire(); 33 bufferSemaphore.acquire();

20 if (buffer == EMPTY) { 34 if (buffer == EMPTY) {
21 buffer = greenText; 35 buffer = redText;

22 greenText = EMPTY; 36 redText = EMPTY;

23 } 37 }
24 bufferSemaphore.release(); 38 bufferSemaphore.release();

25 } 39 }
26 redSemaphore.release(); 40 greenSemaphore.release();

27 } 41 }

Fig. 2. Busy waiting consumer

has actually been consumed by the consumer. Strictly speaking, the original
statement of our requirements does not forbid this behavior, so whether this is
a bug (in the specification or implementation) is unclear. Suppose the intention
in fact was for the consumer to alternately consume what the two producers
produce, which means the implementation in Figure 1 is incorrect and we need
to alter it.

One solution is to make the producers sensitive to the emptiness of the buffer.
The code for the new producers appears in Figure 2. A disadvantage of this code
is that it more heavily uses the busy-waiting mechanism that already existed in
the consumer code in Figure 1. A better alternative is to use a different protocol
that explicitly respects the turn taking, as described below.

In the program shown in Figure 3, the consumer too has its own turn-taking
semaphore, the new blueSemaphore (line 3), which is initialized to be locked,
just as the redSemaphore, because initially, there is nothing for the consumer
to do before any of the producers produces something. The initialization of the
bufferSemaphore is also changed (line 4), making the buffer initially locked on
behalf of the first producer. The consumer and the two producers all can proceed
until each reaches its own turn-taking lock on lines 8, 15, and 24, respectively.
The consumer and the Red producer suspend themselves on their turn-taking
locks, but the Green producer can proceed beyond its turn-taking lock (line 15),
where it fills the buffer (line 16), releases the turn-taking lock of the consumer
(line 17), and suspends itself on the buffer lock (line 18). Only the consumer can
now proceed, printing the content of the buffer (line 9), and releasing the buffer
lock (line 10), after which it proceeds with its next iteration in which it suspends
itself on its turn-taking lock (line 8). Only the Green producer can now proceed,
having obtained the buffer lock. It now completes its iteration by releasing the
turn-taking lock of the Red producer (line 19), and starts its next iteration in
which it suspends itself on its own turn-taking lock (line 15). Now, only the Red

174 F. Arbab

Global Objects: Green Producer:
1 private final Semaphore greenSemaphore = new Semaphore(1); 12 while (true) {
2 private final Semaphore redSemaphore = new Semaphore(0); 13 sleep(5000);

3 private final Semaphore blueSemaphore = new Semaphore(0); 14 greenText = ...;

4 private final Semaphore bufferSemaphore = new Semaphore(0); 15 greenSemaphore.acquire();

5 private String buffer = EMPTY; 16 buffer = greenText;

17 blueSemaphore.release();

18 bufferSemaphore.acquire();

19 redSemaphore.release();

20 }

Consumer: Red Producer:
6 while (true) { 21 while (true)

7 sleep(4000); 22 sleep(3000);

8 blueSemaphore.acquire(); 23 redText = ...;

9 println(buffer); 24 redSemaphore.acquire();

10 bufferSemaphore.release(); 25 buffer = redText;

11 } 26 blueSemaphore.release();

27 bufferSemaphore.acquire();

28 greenSemaphore.release();

29 }

Fig. 3. Revised alternating producers and consumer

producer can proceed to fill the buffer (line 25), release the turn-taking lock
of the consumer (line 26), and suspend itself on the buffer lock (line 27). The
consumer now goes through another iteration, at the end of which it releases the
buffer lock, allowing only the Red producer to proceed. The Red producer now
releases the turn-taking lock of the Green producer (line 29), and starts its next
iteration in which it suspends itself on its own turn-taking lock (line 24) again.

Now that we have a correct protocol (if we indeed do) that does what we
expect it to do (if it indeed does), what can we do with this protocol? How easy
is it, for instance to reuse this same protocol in a more elaborate application
where the control flow of the processes is more complex than the essentially
linear, sequential flow of these simple processes? Is it possible to bundle up this
protocol and parameterize it such that we can instantiate the protocol with
arbitrary numbers of and computation code for processes, the same way that we
can package a piece of code into a parameterized function to compute the inverse
of a matrix of any size, or find the minimum element in a list of any size? It would
certainly help in software development for multicore platforms, for instance, if
we could simply specify the desired numbers and participants for an abstract
parameterized protocol, as easily as passing arguments in a function call, to
tailor the desired concurrency on the available cores. How easy is it to alter this
protocol to change the imposed ordering or to allow a pair of considerably fast
producers go as fast as they wish, while the slower consumer merely samples
their output? Such manipulations are difficult with this and similar incarnations
of a protocol because they require seeing and touching the protocol as a tangible
concrete entity.

Seeing concurrency protocols through the mist of source code, reminds me of
my experience with autostereograms that suddenly burst into popularity in the
1990’s in Magic Eye books. In fact, there are different types of autostereograms

Puff, The Magic Protocol 175

and this particular type is called random dot autostereograms which hide a 3D
image behind a pattern of seemingly random dots. The hidden 3D image emerges
and becomes perceptible only when the incoherent 2D picture of random dots is
viewed just the right way. To accomplish this feat, one needs to learn the skill to
overcome the brain’s normally automatic coordination between its mechanisms
for the eyes’ focus and vergence. With the correct vergence, the 3D scene sud-
denly pops into existence, but let the normal brain mechanism that ties vergence
to focus take over, and puff, it’s gone! It is inaccurate to call this phenomenon
an optical illusion, because the 3D image is really there: all the depth informa-
tion as well as its other characteristics truly exist embedded within the mist of
random dots. It is nontrivial to learn the skill to see these 3D images because to
do so is contrary to how our brains are wired to tell each eye where to look as
we focus on what we see.

The protocol in a concurrent program is as real as the 3D image in a ran-
dom dot autostereogram: all information necessary for its manifestation really
exists, scattered, embedded within the bulk of the source code, most of which
is just as irrelevant to the protocol and hinders its recognition as the random
dots are to the 3D image and hinder its recognition. Seeing the protocol requires
nontrivial skills that defy our natural balance of mental vergence and focus of
attention. Constructing a random dot autostereogram requires intricate math-
ematical models and sophisticated calculations that do not resemble anything
like sculpting or drawing a 3D image. Constructing a protocol in this form re-
quires intricate mathematical models and sophisticated calculations that do not
resemble anything like sequential programming. The 2D picture of a random dot
autostereogram only indirectly contains its embedded 3D image, whose mani-
festation requires the active participation of an observer. The source code of a
concurrent program only indirectly contains its embedded protocol, whose man-
ifestation requires the active participation of a human or computer observer.
Both the 3D images of random dot autostereograms and the protocols of con-
current programs can be constructed and manipulated only indirectly, through
generally non-intuitive manipulations of seemingly unrelated tangible concrete
objects scattered throughout the scene. Even the simplest manipulations of an
autostereogram, such as scaling, can change the 3D image non-intuitively and
produce strange unexpected results. It is just as perilous and misguided to try
to alter a protocol or reuse (perhaps a part of) it in another program by directly
manipulating or copying source code, as it is to try to alter a 3D image or reuse
(perhaps a part of) it in another autostereogram by directly manipulating or
copying random dots.

Process algebraic models of concurrency fair only slightly better in this regard
than, e.g., programming with threads: they too embody an action-based model
of concurrency. Figure 4 shows a process algebraic model of our alternating pro-
ducers and consumer application. This model consists of a number of globally
shared names, i.e., g, r, b, and d. Generally, these shared names are consid-
ered as abstractions of channels and thus are called “channels” in the process
algebra/calculi community. However, since these names in fact serve no purpose

176 F. Arbab

Global Names: Green Producer:
synchronization-points g, r, b, d G := genG(t) . ?g(k) . !b(t) . ?d(j) . !r(k) . G

Consumer: Red Producer:
B := ?b(t) . print(t) . !d("done") . B R := genR(t) . ?r(k) . !b(t) . ?d(j) . !g(k) . R

Application:
G | R | B | !g("token")

Fig. 4. Alternating producers and consumer in a process algebra

other than synchronizing the I/O operations performed on them, and because
we will later use the term “channel” to refer to entities with more elaborate
behavior, we use the term “synchronization points” here to refer to “process
algebra channels” to avoid confusion.

A process algebra consists of a set of atomic actions, and a set of composition
operators on these actions. In our case, the atomic actions include the primitive
actions read ? () and write ! () defined by the algebra, plus the user-defined
actions genG(), genR(), and print(), which abstract away computation.
Typical composition operators include sequential composition . , parallel
composition | , nondeterministic choice + , definition := , and im-
plicit recursion.

In our model, the consumer B waits to read a data item into t by synchronizing
on the global name b, and then proceeds to print t (to display it). It then writes a
token "done" on the synchronization point d, and recurses. The Green producer
G first generates a new value in t, then waits for its turn by reading a token value
into k from g. It then writes t to b, and waits to obtain an acknowledgment j
through d, after which it writes the token k to r, and recurses. The Red producer
R behaves similarly, with the roles of r and g swapped. The application consists
of a parallel composition of the two producers and the consumer, plus a trivial
process that simply writes a "token" on g to kick off process G to go first.

Observe that a model is constructed by composing (atomic) actions into (more
complex) actions, called processes. True to their moniker, such formalisms are
indeed algebras of processes or actions. Just as in the version in Figure 3, while
communication actions are concrete and explicit in the incarnation of our ap-
plication in Figure 4, interaction is a manifestation of the model with no direct
explicit structural correspondence. Nevertheless, process algebraic incarnations
of concurrency protocols are obviously simpler and more concise than their in-
carnations in typical programming languages, primarily because they abstract
away the clutter of computation.

Returning to our autostereogram analogy, it is as if we compare a random
dot autostereogram with a so-called wallpaper autostereogram. A wallpaper au-
tostereogram is the simplest type of autostereogram and consists of a horizon-
tally repeating pattern of nearly identical pictures. Roughly, it is the random dot
autostereogram with the cluttering random dots peeled off, which allows even
casual observers to get a good idea of what the 3D image is all about, with-
out requiring them to exert their perception skills to actually experience the 3D

Puff, The Magic Protocol 177

image. The individually identifiable repeating patterns of a wallpaper autostere-
ogram seem more concrete, and in some sense more well-packaged and more
reusable than the almost amorphous expanse of a random dot autostereogram.
Nevertheless, a cavalier attempt to edit or cut and paste parts of a wallpaper
autostereogram is no more likely to produce the desired alteration to its 3D im-
age than in the case of a random dot autostereogram. Successful alteration of a
process algebraic specification requires the same unnatural detachment of focus
(on local manipulation) and vergence (to see its global effects) as is required to
successfully alter the protocol of a concurrent C or Java application.

Indeed, in all action-based models of concurrency, interaction becomes a by-
product of processes executing their respective actions: when a process A hap-
pens to execute its ith communication action ai on a synchronization point, at
the same time that another process B happens to execute its jth communication
action bj on that same synchronization point, the actions ai and bj “collide”
with one another and their collision yields an interaction. Manifested this way,
an interaction protocol consists of a desired temporal sequence of such (coinci-
dental or planned) collisions. It is non-trivial to distinguish between the essential
and the coincidental collision sequences, when the protocol itself is only such an
ephemeral manifestation.

Generally, the reason behind the specific collision of ai and bj remains debat-
able. Perhaps it was just dumb luck. Perhaps it was divine intervention. Some
may prefer to attribute it to intelligent design! What is not debatable is the
fact that, a split second earlier or later, perhaps in another run of the same
application, completely random cosmic rays may zap a memory bit and trigger
the automatic hardware error correction of the affected memory cell, and thus
change the relative timing of the running processes, making ai and bj collide not
with each other, but with two other actions (of perhaps other processes) yield-
ing completely different interactions. Action based models of concurrency make
protocols more difficult than necessary to specify, manipulate, verify, debug, and
next to impossible to reuse.

Instead of explicitly composing (communication) actions to indirectly specify
and manipulate implicit interactions, is it possible to devise a model of concur-
rency where interaction (not action) is an explicit, first-class construct? We tend
to this question in the next section and in the remainder of this paper describe
a specific language based on an interaction-centric model of concurrency. We
show that making interaction explicit leads to a clean separation of computa-
tion and communication, and produces reusable, tangible protocols that can be
constructed and verified independently of the processes that they engage.

2 Interaction Centric Concurrency

The most salient characteristic of interaction is that it transpires among two or
more actors. This is in contrast to action, which is what a single actor manifests.
In other words, interaction is not about the specific actions of individual actors,
but about the relations that (must) hold among those actions. A model of in-
teraction, thus, must allow us to directly specify, represent, construct, compose,

178 F. Arbab

decompose, analyze, and reason about those relations that define what tran-
spires among two or more engaged actors, without the necessity to be specific
about their individual actions. Making interaction a first-class concept means
that a model must offer (1) an explicit, direct, concrete representation of the in-
teraction among actors, independent of their (communication) actions; (2) a set
of primitive interactions; and (3) composition operators to combine (primitive)
interactions into more complex interactions.

Wegner has proposed to consider coordination as constrained interaction [101].
We propose to go a step further and consider interaction itself as a constraint
on (communication) actions. Features of a system that involve several entities,
for instance the clearance between two physical objects, cannot conveniently be
associated with any one of those entities. It is quite natural to specify and rep-
resent such features as constraints. The interaction among several active entities
has a similar essence: although it involves them, it does not belong to any one of
those active entities. Constraints have a natural formal model as mathematical
relations, which are non-directional. In contrast, actions correspond to functions
or mappings which are directional, i.e., transformational.

A constraint declaratively specifies what must hold in terms of a relation.
Typically, there are many ways in which a constraint can be enforced or violated,
leading to many different sequences of actions that describe precisely how to
enforce or maintain a constraint. Action-based models of concurrency lead to
the precise specification of how in terms of sequences of actions interspersed
among the active entities involved in a protocol. In an interaction-based model of
concurrency, only what a protocol represents is specified as a constraint over the
(communication) actions of some active entities; as in constraint programming,
the responsibility of how the protocol constraints are enforced or maintained is
relegated to an entity other than those active entities.

Generally, composing the sequences of actions that manifest two different
protocols does not yield a sequence of actions that manifests a composition
of those protocols. Thus, in action-based models of concurrency, protocols are
not compositional. Represented as constraints, in an interaction-based model of
concurrency, protocols can be composed as mathematical relations.

Banishing the actions that comprise protocol fragments out of the bodies
of processes produces simpler, cleaner, and more reusable processes. Expressed
as constraints, pure protocols become first-class, tangible, reusable constructs in
their own right. As concrete software constructs, such protocols can be embodied
into architecturally meaningful connectors.

In this setting, a process (or thread, component, service, actor, agent, etc.)
offers no methods, functions, or procedures for other entities to call, and it
makes no such calls itself. Moreover, processes cannot exchange messages through
targeted send and receive actions. In fact, a process cannot refer to any foreign
entity, such as another process, the mailbox or message queue of another process,
shared variables, semaphores, locks, etc. The only means of communication of
a process with its outside world is through blocking I/O operations that it may
perform exclusively on its own ports, producing and consuming passive data.

Puff, The Magic Protocol 179

A port is a construct analogous to a file descriptor in a Unix process, except that
a port is unidirectional, has no buffer, and supports blocking I/O exclusively.

If i is an input port of a process, there are only two operations that the
process can perform on i: (1) blocking input get(i, v) waits indefinitely or
until it succeeds to obtain a value through i and assigns it to variable v; and
(2) input with time-out get(i, v, t) behaves similarly, except that it unblocks
and returns false if the specified time-out t expires before it obtains a value to
assign to v. Analogously, if o is an output port of a process, there are only two
operations that the process can perform on o: (1) blocking output put(o, v)
waits indefinitely or until it succeeds to dispense the value in variable v through
o; and (2) output with time-out put(o, v, t) behaves similarly, except that it
unblocks and returns false if the specified time-out t expires before it dispenses
the value in v.

P C

Fig. 5. Protocol in a connector

Inter-process communication is possible only by mediation of connectors. For
instance, Figure 5 shows a producer, P and a consumer C whose communication
is coordinated by a simple connector. The producer P consists of an infinite
loop in each iteration of which it computes a new value and writes it to its
local output port (shown as a small circle on the boundary of its box in the
figure) by performing a blocking put operation. Analogously, the consumer C
consists of an infinite loop in each iteration of which it performs a blocking
get operation on its own local input port, and then uses the obtained value.
Observe that, written in an imperative programming language, the code for P
and C is substantially simpler than the code for the Green/Red producers and
the consumer in Figures 1, 2, and 3: it contains no semaphore operations or any
other inter-process communication primitives.

The direction of the connector arrow in Figure 5 suggests the direction of the
dataflow from P to C. However, even in the case of this very simple example, the
precise behavior of the system crucially depends on the specific protocol that
this simple connector implements. For instance, if the connector implements a
synchronous protocol, then it forces P and C to iterate in lock-step, by synchroniz-
ing their respective put and get operations in each iteration. On the other hand
the connector may have a bounded or an unbounded buffer and implement an
asynchronous protocol, allowing P to produce faster than C can consume. The
protocol of the connector may, for instance enable it to replicate data items,
e.g., the last value that it contained, if C consumes faster and drains the buffer.
The protocol may mandate an ordering other than FIFO on the contents of the
connector buffer, perhaps depending on the contents of the exchanged data. It
may retain only some of the contents of the buffer (e.g., only the first or the last

180 F. Arbab

item) if P produces data faster than C can consume. It may be unreliable and
lose data nondeterministically or according to some probability distribution. It
may retain data in its buffer only for a specified length of time, losing all data
items that are not consumed before their expiration dates. The alternatives for
the connector protocol are endless, and composed with the very same P and C,
each yields a totally different system.

A number of key observation about this simple example are worth noting.
First, Figure 5 is an architecturally informative representation of this system.
Second, banishing all inter-process communication out of the communicating
parties, into the connector, yields a “good” system design with the beneficial
consequences that:

– changing P, C, or the connector does not affect the other parts of the system;
– although they are engaged in a communication with each other, P and C are

oblivious to each other, as well as to the actual protocol that enables their
communication;

– the protocol embodied in the connector is oblivious to P and C.

In this architecture, the composition of the components and the coordination of
their interactions are accomplished exogenously, i.e., from outside of the compo-
nents themselves, and without their “knowledge”1. In contrast, the interaction
protocol and coordination in the examples in Figures 1, 2, 3, and 4 are endoge-
nous, i.e., accomplished through (inter-process communication) primitives from
inside the parties engaged in the protocol. It is clear that exogenous composition
and coordination lead to simpler, cleaner, and more reusable component code,
simply because all composition and coordination concerns are left out. What
is perhaps less obvious is that exogenous coordination also leads to reusable,
pure coordination code: there is nothing in any incarnation of the connector in
Figure 5 that is specific to P or C; it can just as readily engage any producer and
consumer processes in any other application.

Obviously, we are not interested in only this example, nor exclusively in con-
nectors that implement exogenous coordination between only two communicat-
ing parties. Moreover, the code for any version of the connector in Figure 5,
or any other connector, can be written in any programming language: the con-
cepts of exogenous composition, exogenous coordination, and the system design
and architecture that they induce constitute what matters, not the implemen-
tation language. Focusing on multi-party interaction/coordination protocols re-
veals that they are composed out of a small set of common recurring concepts.
They include synchrony, atomicity, asynchrony, ordering, exclusion, grouping, se-
lection, etc. Compliant with the constraint view of interaction advocated above,
these concepts can be expressed as constraints, more directly and elegantly than
as compositions of actions in a process algebra or an imperative programming

1 By this anthropomorphic expression we simply mean that a component does not
contain any piece of code that directly contributes to determine the entities that it
composes with, or the specific protocol that coordinates its own interactions with
them.

Puff, The Magic Protocol 181

language. This observation behooves us to consider the interaction-as-constraint
view of concurrency as a foundation for a special language to specify multi-party
exogenous interaction/coordination protocols and the connectors that embody
them, of which the connector in Figure 5 is but a trivial example. Reo, described
in the next section, is a premier example of such a language.

3 An Overview of Reo

Reo [20,11,12,6] is a channel-based exogenous coordination language wherein
complex coordinators, called connectors, are compositionally built out of simpler
ones. Exogenous coordination imposes a purely local interpretation on each inter-
components communication, engaged in as a pure I/O operation on each side,
that allows components to communicate anonymously, through the exchange of
untargeted passive data. We summarize only the main concepts in Reo here.
Further details about Reo and its semantics can be found in the cited references.

Complex connectors in Reo are constructed as a network of primitive binary
connectors, called channels. Connectors serve to provide the protocol that con-
trols and organizes the communication, synchronization and cooperation among
the components/services that they interconnect. Formally, the protocol embod-
ied in a connector is a relation, which the connector imposes as a constraint on
the actions of the communicating parties that it inter-connects.

A channel is a medium of communication that consists of two ends and a
constraint on the dataflows observed at those ends. There are two types of chan-
nel ends: source and sink. A source channel end accepts data into its channel,
and a sink channel end dispenses data out of its channel. Every channel (type)
specifies its own particular behavior as constraints on the flow of data through
its ends. These constraints relate, for example, the content, the conditions for
loss, and/or creation of data that pass through the ends of a channel, as well
as the atomicity, exclusion, order, and/or timing of their passage. Reo places no
restriction on the behavior of a channel and thus allows an open-ended set of
different channel types to be used simultaneously together.

Although all channels used in Reo are user-defined and users can indeed define
channels with any complex behavior (expressible in the semantic model) that
they wish, a very small set of channels, each with very simple behavior, suffices
to construct useful Reo connectors with significantly complex behavior. Figure 6
shows a common set of primitive channels often used to build Reo connectors.

A Sync channel has a source and a sink end and no buffer. It accepts a data
item through its source end iff it can simultaneously (i.e., atomically) dispense
it through its sink.

P

Filter(P)AsyncDrainSyncDrainFIFO1LossySyncSync

Fig. 6. A typical set of Reo channels

182 F. Arbab

A LossySync channel is similar to a synchronous channel except that it always
accepts all data items through its source end. This channel transfers a data item
if it is possible for the channel to dispense the data item through its sink end;
otherwise the channel loses the data item. Observe that the behavior of this
channel if fully deterministic; the channel is never free to choose between passing
or losing a data item: if it is possible for a data item to be consumed through
its sink end, the channel must pass the data item exactly as a Sync. Thus, the
context of (un)availability of a ready consumer at its sink end determines the
(context-sensitive) behavior a LossySync channel.

A FIFO1 channel represents an asynchronous channel with a buffer of capacity
1: it can contain at most one data item. In the graphical representation of an
empty FIFO1 channel, no data item is shown in the box (this is the case in Figure
1). If the buffer of a FIFO1 channel contains a data element d, then d appears
inside the box in its graphical representation. When its buffer is empty, a FIFO1
channel blocks I/O operations on its sink, because it has no data to dispense. It
dispenses a data item and allows an I/O operation at its sink to succeed, only
when its buffer is full, after which its buffer becomes empty. When its buffer is
full, a FIFO1 channel blocks I/O operations on its source, because it has no more
capacity to accept the incoming data. It accepts a data item and allows an I/O
operation at its source to succeed, only when its buffer is empty, after which its
buffer becomes full.

More exotic channels are also permitted in Reo, for instance, synchronous and
asynchronous drains. Each of these channels has two source ends and no sink
end. No data value can be obtained from a drain channel because it has no sink
end. Consequently, all data accepted by a drain channel are lost. SyncDrain is a
synchronous drain that can accept a data item through one of its ends iff a data
item is also available for it to simultaneously accept through its other end as
well. AsyncDrain is an asynchronous drain that accepts data items through its
source ends and loses them exclusively one at a time, but never simultaneously.

For a filter channel, or Filter(P), its pattern P ⊆ Data specifies the type of
data items that can be transmitted through the channel. This channel accepts a
value d ∈ P through its source end iff it can simultaneously dispense d through
its sink end, exactly as if it were a Sync channel; it always accepts all data items
d �∈ P through its source end and loses them immediately.

Synchronous and asynchronous Spouts are the duals of their respective drain
channels, as each has two sink ends through which it produces nondeterministic
data items. Further discussion of these and other primitive channels is beyond
the scope of this paper.

Mixed nodeSink NodeSource node

Fig. 7. Reo nodes

Puff, The Magic Protocol 183

Complex connectors are constructed by composing simpler ones via the join
and hide operations. Channels are joined together in nodes, each of which consists
of a set of channel ends. A Reo node is a logical place where channel ends coincide
and coordinate their dataflows as prescribed by its node type. Figure 7 shows
the three possible node types in Reo. A node is either source, sink, or mixed,
depending on whether all channel ends that coincide on that node are source
ends, sink ends, or a combination of the two. Reo fixes the semantics of (i.e., the
constraints on the dataflow through) Reo nodes, as described below. The hide
operation is used to hide the internal topology of a Reo connector. A hidden
nodes can no longer be accessed or observed from outside.

The source and sink nodes of a connector are collectively called its boundary
nodes. Boundary nodes define the interface of a connector. Processes (or com-
ponents, actors, agents, etc.) connect to the boundary nodes of a connector and
interact anonymously with each other through this interface. Connecting a pro-
cess to a (source or sink) node of a connector consists of the identification of one
of the (respectively, output or input) ports of the component with that node. At
most one process can be connected to a (source or sink) node at a time. Pro-
cesses interact by performing their blocking I/O operations on their own local
ports, which trigger dataflow through their respectively identified nodes of the
connector(s): the get and put operations mentioned in the description of the
components in Figure 5 trigger write and take operations of Reo on the channel
ends of their respective nodes.

A component can write data items to a source node that it is connected to.
The write operation succeeds only if all (source) channel ends coincident on
the node accept the data item, in which case the data item is transparently
written to every source end coincident on the node. A source node, thus, acts as
a synchronous replicator.

A component can obtain data items, by an input operation, from a sink node
that it is connected to. A take operation succeeds only if at least one of the
(sink) channel ends coincident on the node offers a suitable data item; if more
than one coincident channel end offers suitable data items, one is selected non-
deterministically. A sink node, thus, acts as a nondeterministic merger.

A mixed node nondeterministically selects and takes a suitable data item
offered by one of its coincident sink channel ends and replicates it into all of its
coincident source channel ends. Note that a component cannot connect to, take
from, or write to mixed nodes.

Because a node has no buffer, data cannot be stored in a node. Specifically, a
mixed node cannot take a data item out of one of its coincident sink channel ends,
unless it can atomically replicate and write it into all of its coincident source
channel ends. Hence, nodes instigate the propagation of synchrony and exclusion
constraints on dataflow throughout a connector. Deriving the semantics of a
Reo connector amounts to resolving the composition of the constraints of its
constituent channels and nodes [43]. This is not a trivial task. In the sequel,
we present examples of Reo connectors that illustrate how non-trivial dataflow
behavior emerges from composing simple channels using Reo nodes. The local

184 F. Arbab

constraints of individual channels propagate through (the synchronous regions
of) a connector to its boundary nodes. This propagation also induces a certain
context-awareness in connectors. See [41] for a detailed discussion of this.

Reo has been used for composition of Web services [65,77,21], modeling and
analysis of long-running transactions in service-oriented systems [69], coordina-
tion of multi-agent systems [13], performance analysis of coordinated composi-
tions [23,16,17,86,87], modeling of business processes and verification of their
compliance [98,68,19], and modeling of coordination in biological systems [40].

Reo offers a number of operations to reconfigure and change the topology of a
connector at run-time: operations that enable the dynamic creation of channels,
splitting and joining of nodes, hiding internal nodes. The hiding of internal
nodes allows to permanently fix the topology of a connector, such that only its
boundary nodes are visible and available. The resulting connector can then be
viewed as a new primitive connector, or primitive for short, since its internal
structure is hidden and its behavior is fixed.

4 Examples

Recall our alternating producers and consumer example of Section 1. We revise
the code for the Green and Red producers to make them suitable for exogenous
coordination (which, in fact, makes them simpler). Similar to the producer P in
Figure 5, this code now consists of an infinite loop, in each iteration of which the
producer computes a new value and writes it to its output port. Analogously,
we revise the consumer code, fashioning it after the consumer C in Figure 5.
Figure 8 shows this code.

Consumer: Green Producer: Red Producer:
1 while (true) { 6 while (true) { 11 while (true)

2 sleep(4000); 7 sleep(5000); 12 sleep(3000);

3 get(input, displayText); 8 greenText = ...; 13 redText = ...;

4 print(displayText); 9 put(output, greenText); 14 put(output, redText);

5 } 10 } 15 }

Fig. 8. Generic reusable producers and consumer

In the remainder of this section, we present a number of protocols to imple-
ment different versions of the alternating producers and consumer example of
Section 1, using the producers and consumer processes in Figure 8. These ex-
amples serve three purposes. First, they show a flavor of programming of pure
interaction coordination protocols as Reo circuits. Second, they present a num-
ber of generically useful circuits that can serve as connectors in many other
applications, or as sub-circuits in the circuits for construction of many other
protocols. Third, they illustrate the utility of exogenous coordination by show-
ing how trivial it is to change the protocol of an application, without altering
any of the processes involved.

Puff, The Magic Protocol 185

A

B

CA

B

C

(b)

CC

(d)

(c)

A3

A2

A1 A1

A2

A3

A4

(a)

Fig. 9. Reo circuits for Alternators

4.1 Alternator

The connector shown in Figure 9(a) is an alternator that imposes an ordering
on the flow of the data from its input nodes A and B to its output node C.
The SyncDrain enforces that data flow through A and B only synchronously
(i.e., atomically). The empty buffer of the the FIFO1 channel together with the
SyncDrain guarantee that the data item obtained from A is delivered to C while
the data item obtained from B is stored in the FIFO1 buffer. After this, the buffer
of the FIFO1 is full and data cannot flow in through either A or B, but C can
dispense the data stored in the FIFO1 buffer, which makes it empty again. Thus,
subsequent take operations at C obtain the data items written to A, B, A, B, ...,
etc.

The connector in Figure 9(b) has an extra Sync channel between node B and
the FIFO1 channel, compared to the one in Figure 9(a). It is trivial to see that
these two connectors have the exact same behavior. However, the structure of
the connector in Figure 9(b) allows us to generalize its alternating behavior to
any number of producers, simply by replicating it and “juxtaposing” the top
and the bottom Sync channels of the resulting copies, as seen in Figure 9(c) and
Figure 9(d).

The two SyncDrain channels in the connector shown in Figure 9(c) require
data to flow through A1, A2, and A3 only simultaneously (i.e., atomically). The
empty buffers of the FIFO1 channels, together with these SyncDrain channels
guarantee that the data item obtained from A1 is delivered to C while the data
items obtained from A2 and A3 are stored in the buffers of their respective
FIFO1 channels. Subsequently, as long as the buffer of at least one of the FIFO1
channels remains full, no data can flow through any of the nodes A1, A2, and
A3, but C can dispense the data stored in the buffers of the FIFO1 channels,
with their order preserved. Thus, the first 3 take operations on C deliver the
data items obtained through A1, A2, and A3, in that order. At this point, all
FIFO1 buffers become empty and the next round of input becomes possible.

The connector in Figure 9(d) is obtained by replicating the one in Figure 9(b)
3 times. Following the reasoning for the connector in Figure 9(c), it is easy to
see that the connector in Figure 9(d) delivers the data items obtained from A1,
A2, A3,and A4 through C, in that order.

186 F. Arbab

A version of our alternating producers and consumer example of Section 1 can
now be composed by attaching the output port of the revised Green producer
in Figure 8 to node A, the output port of the revised Red producer in Figure 8
to node B, and the input port of the consumer in Figure 8 to node C of the Reo
circuit in Figure 9(a).

A closer look shows, however, that the behavior of this version of our example
is not exactly the same as that of the one in Figures 3 and 4. As explained
above, the Reo circuit in Figure 9(a) requires the availability of a pair of values
on A (from the Green producer) and B (from the Red producer) before it allows
the consumer to obtain them, first from A and then from B. Thus, if the Green
producer and the consumer are both ready to communicate, they still have to
wait for the Red producer to also attempt to communicate, before they can
exchange data. The versions in Figures 3 and 4 allow the Green producer and
the consumer to go ahead, regardless of the state of the Red producer. Our
original specification of this example in Section 1 was abstract enough to allow
both alternatives. A further refinement of this specification may indeed prefer
one and disallow the other. If the behavior of the connector in Figure 9(a) is not
what we want, we need to construct a different Reo circuit to impose the same
behavior as in Figures 3 and 4. This is precisely what we describe below.

4.2 Sequencer

Figure 10(a) shows an implementation of a sequencer by composing five Sync
channels and four FIFO1 channels together. The first (leftmost) FIFO1 channel
is initialized to have a data item in its buffer, as indicated by the presence of the
symbol e in the box representing its buffer cell. The actual value of the data item
is irrelevant. The connector provides only the four nodes A, B, C and D for other
entities (connectors or component instances) to take from. The take operation
on nodes A, B, C and D can succeed only in the strict left-to-right order. This
connector implements a generic sequencing protocol: we can parameterize this
connector to have as many nodes as we want simply by inserting more (or fewer)
Sync and FIFO1 channel pairs, as required.

Figure 10(b) shows a simple example of the utility of the sequencer. The
connector in this figure consists of a two-node sequencer, plus a SyncDrain and
two Sync channels connecting each of the nodes of the sequencer to the nodes
A and C, and B and C, respectively. Similar to the circuit in Figure 9(a), this
connector imposes an order on the flow of the data items written to A and B,
through C: the sequence of data items obtained by successive take operations

e

A B C D

Sequencer

(a) (b)

A
B

C

Fig. 10. Sequencer

Puff, The Magic Protocol 187

on C consists of the first data item written to A, followed by the first data item
written to B, followed by the second data item written to A, followed by the
second data item written to B, and so on. However, there is a subtle difference
between the behavior of the two circuits in Figures 9(a) and 10(b). The alternator
in Figure 9(a) delays the transfer of a data item from A to C until a data item is
also available at B. The circuit in Figure 10(b) transfers from A to C as soon as
these nodes can satisfy their respective operations, regardless of the availability
of data on B.

We can obtain a new version of our alternating producers and consumer ex-
ample by attaching the output port of the Green producer in Figure 8 to node
A, the output port of the Red producer in Figure 8 to node B, and the input
port of the consumer in Figure 8 to node C. The behavior of this version of our
application is now the same as the programs in Figure 4 and in Figure 1 (after
replacing its producers with the ones in Figure 2). The circuit in Figure 10(b)
embodies the same protocol that is implicit in Figure 4.

A characteristic of this protocol is that it “slows down” each producer, as
necessary, by delaying the success of its data production until the consumer
is ready to accept its data. Our original problem statement in Section 1 does
not explicitly specify whether or not this is a required or permissible behavior.
While this may be desirable in some applications, slowing down the producers to
match the processing speed of the consumer may have serious drawbacks in other
applications, e.g., if these processes involve time-sensitive data or operations.
Perhaps what we want is to bind our producers and consumer by a protocol
that decouples them such as to allow each process to proceed at its own pace.
We proceed, below, to present a number of protocols that we then compose to
construct a Reo circuit for such a protocol.

in

outo

A

B C

M

(a) (b)

Fig. 11. An exclusive router and a ShiftLossyFIFO1

4.3 Exclusive Router

The connector shown in Figure 11(a) is a binary exclusive router : it routes data
from A to either B or C (but not both). This connector can accept data only
if there is a write operation at the source node A, and there is at least one
taker at the sink node B or C. If both B and C can dispense data, the choice

188 F. Arbab

of routing to B or C follows from the non-deterministic decision by the mixed
node M : it can accept data only from one of its sink ends, excluding the flow of
data through the other, which forces the latter’s respective LossySync to lose
the data it obtains from A, while the other LossySync passes its data as if it
were a Sync.

By connecting the source node of a binary exclusive router to one of the sink
nodes of another binary exclusive router we obtain a ternary exclusive router.
This is possible in Reo because synchrony and exclusion constraints propagate
through its nodes. More generally, an n-ary exclusive router (with a single source
and n sink ends) can be composed out of n−1 binary exclusive routers. Because
the exclusive routers are so commonly useful, we use a graphical short-hand to
represent them in circuits. The crossed circle shown on the right-hand side of
Figure 11(a) is the symbol that we use to represent a generic n-ary exclusive
router.

4.4 Shift-Lossy FIFO1

Figure 11(b) shows a Reo circuit for a connector that behaves as a lossy FIFO1
channel with a shift loss-policy. This channel is called shift-lossy FIFO1
(ShiftLossyFIFO1). This connector is composed of an exclusive router (shown
in Figure 11(a)), an initially full FIFO1 channel, two initially empty FIFO1 chan-
nels, and four Sync channels. Intuitively, it behaves as a normal FIFO1 channel,
except that if its buffer is full then the arrival of a new data item deletes the
existing data item in its buffer, making room for the new arrival. As such, this
channel implements a “shift loss-policy” losing the older contents in its buffer
in favor of the newer arrivals. This is in contrast to the behavior of an overflow-
lossy FIFO1 channel, whose “overflow loss-policy” loses the new arrivals when
its buffer is full. See [31] for a more formal treatment of the semantics of this
connector.

The ShiftLossyFIFO1 circuit in Figure 11(b) is indeed so frequently useful as
a connector in construction of more complex circuits, that it makes sense to have
a special graphical symbol to designate it as a short-hand. The symbol shown on
the right-hand side of Figure 11(b) is the what we use to represent this circuit,
and also take the liberty to refer to it as a ShiftLossyFIFO1 “channel”. This
symbol is intentionally similar to that of a regular FIFO1 channel, because the
behavior of this circuit closely resembles that of a regular FIFO1 channel. The
dashed sink-side half of the box representing the buffer of this channel suggests
that it loses the older values to make room for new arrivals, i.e., it shifts to lose.

4.5 Decoupled Alternating Producers and Consumer

Figure 12(a) shows how the ShiftLossyFIFO1 circuit of Figure 11(b) can be
used to construct a version of the example in Figure 5, where the producer and
the consumer are partially decoupled from one another. Whenever, as initially is
the case, the ShiftLossyFIFO1 buffer is empty, the consumer has no choice but
to wait for the producer to place a value into this buffer. However, the producer

Puff, The Magic Protocol 189

never has to wait for the consumer: it can work at its own pace and write to the
connector whenever it wishes. Every write by the producer replaces the current
contents of the ShiftLossyFIFO1 buffer. A subsequent take by the consumer
obtains the current value out of ShiftLossyFIFO1 buffer and makes it empty.
The producer never has to wait for the consumer, but if the consumer is faster
than the producer, it has to wait for the next data item to arrive. It is instructive
to compare the behavior of this system with that of a single LossySync channel
connecting a producer and a consumer: the two are not exactly the same.

(b)(a)

Sequencer

producer
Red

Green
producer

Consumer

ConsumerProducer

Fig. 12. Decoupled producers and consumer

The connector in Figure 12(b) is a small variation of the Reo circuit in Fig-
ure 10(b), with two instances of the ShiftLossyFIFO1 circuit of Figure 11(b)
spliced in. In this version of our alternating producers and consumer, these three
processes are partially decoupled: each producer runs at its own pace, never hav-
ing to wait for any of the other two processes. Every take by the consumer, always
obtains and empties the latest value produced by its respective producer. If the
consumer runs slower than a producer, the excess data that they produce is lost
in the producer’s respective ShiftLossyFIFO1, which allows the consumer to
effectively “sample” the data generated by this producer. If the consumer runs
faster than a producer, it will block on its respective empty ShiftLossyFIFO1
until a new value becomes available.

4.6 Dataflow Variable

The Reo circuit in Figure 13 implements the behavior of a dataflow variable.
It uses two instances of the ShiftLossyFIFO1 connector shown Figure 11(b),
to build a connector with a single input and a single output nodes. Initially,
the buffers of its ShiftLossyFIFO1 channels are empty, so an initial take on its
output node suspends for data. Regardless of the status of its buffers, or whether
or not data can be dispensed through its output node, every write to its input
node always succeeds and resets both of its buffers to contain the new data item.
Every time a value is dispensed through its output node, a copy of this value is

190 F. Arbab

“cycled back” into its left ShiftLossyFIFO1 channel. This circuit “remembers”
the last value it obtains through its input node, and dispenses copies of this
value through its output node as frequently as necessary: i.e., it can be used as
a dataflow variable.

out

in

Fig. 13. Dataflow variable

The variable circuit in Figure 13 is also very frequently useful as a connector in
construction of more complex circuits. Therefore, it makes sense to have a short-
hand graphical symbol to designate it with as well. The symbol shown on the
right-hand side of Figure 13 is the what we use to represent this circuit, and also
take the liberty to refer to it as a Variable “channel”, or just a “variable” for
short. This symbol is intentionally similar to that of a regular FIFO1 channel,
because the behavior of this circuit closely resembles that of a regular FIFO1
channel. We use a rounded box to represent its buffer: the rounded box hints at
the recycling behavior of the variable circuit, which implements its remembering
of the last data item that it obtained or dispensed.

4.7 Fully Decoupled Alternating Producers and Consumer

Figure 14(a) shows how the variable circuit of Figure 13 can be used to construct
a version of the example in Figure 5, where the producer and the consumer are
fully decoupled from one another. Initially, the variable contains no value, and
therefore, the consumer has no choice but to wait for the producer to place its
first value into the variable. After that, neither the producer, nor the consumer
ever has to wait for the other one. Each can work at its own pace and write to
or take from the connector. Every write by the producer replaces the current
contents of the variable, and every take by the consumer obtains a copy of
the current value of the variable, which always contains the most recent value
produced.

The connector in Figure 14(b) is a small variation of the Reo circuit in Fig-
ure 10(b), with two instances of the variable circuit of Figure 13 spliced in. In
this version of our alternating producers and consumer, these three processes are
fully decoupled: each can produce and consume at its own pace, never having to
wait for any of the other two. Every take by the consumer, always obtains the
latest value produced by its respective producer. If the consumer runs slower
than a producer, the excess data is lost in the producer’s respective variable,

Puff, The Magic Protocol 191

(b)(a)

Sequencer

producer
Red

Green
producer

Consumer

ConsumerProducer

Fig. 14. Fully decoupled producers and consumer

and the consumer will effectively “sample” the data generated by this producer.
If the consumer runs faster than a producer, it will read (some of) the values of
this producer multiple times.

4.8 Flexibility

Figures 9(a), 10(b), 12(b), and 14(b) show four different connectors, each im-
posing a different protocols for the coordination of two alternating producers
and a consumer. The exact same producers and consumer processes can be com-
bined with any of these circuits to yield different applications. It is instructive
to compare the ease with which this is accomplished in our interaction-centric
world, with the effort involved in modifying the action-centric incarnations of
this same example in Figures 3 and 4, which correspond to the protocol of the
circuit in Figure 10(b), in order to achieve the behavior induced by the circuit
in Figure 9(a), 12(b), or 14(b).

For the sake of completeness, the behavior of the protocol in Figures 1 cor-
responds to the behavior of the connector in Figure 15. Just as in the case of
the program in Figures 1, this connector allows the producers at nodes A and
B alternate and over-write each other in buffer of the ShiftLossyFIFO1. The
consumer at C can obtain only the latest value produced by either of the pro-
ducers.

Sequencer

A
B

C

Fig. 15. Alternating and over-writing

192 F. Arbab

The Reo connector binding a number of distributed processes, such as Web
services, can even be “hot-swapped” while the application runs, without the
knowledge or the involvement of the engaged processes. A prototype platform
to demonstrate this capability is available at [3].

5 Semantics

Reo allows arbitrary user-defined channels as primitives; arbitrary mix of syn-
chrony and asynchrony; and relational constraints between input and output.
This makes Reo more expressive than, e.g., dataflow models, Kahn networks,
synchronous languages, stream processing languages, workflow models, and Petri
nets. On the other hand, it makes the semantics of Reo quite non-trivial.

Variousmodels for the formalsemanticsofReohavebeendeveloped,eachtoserve
some specific purposes. In the rest of this section,we brieflydescribe the main ones.

5.1 Timed Data Streams

The first formal semantics of Reo was formulated based on the coalgebraic model
of stream calculus [95,94,96]. In this semantics, the behavior of every connector
(channel or more complex circuit) and every component is given as a (maximal)
relation on a set of timed-data-streams [24]. This yields an expressive compo-
sitional semantics for Reo where coinduction is the main definition and proof
principle to reason about properties involving both data and time streams. The
timed-data-stream model serves as the reference semantics for Reo.

Table 1. TDS Semantics of Reo primitives

Sync 〈α, a〉Sync〈β, b〉 ≡ α = β ∧ a = b

LossySync

〈α, a〉 LossySync 〈β, b〉 ≡{
β(0) = α(0) ∧ 〈α′, a′〉 LossySync 〈β′, b′〉 if a(0) = b(0)
〈α′, a′〉 LossySync 〈β, b〉 if a(0) < b(0)

empty
FIFO1

〈α, a〉FIFO1〈β, b〉 ≡ α = β ∧ a < b < a′

FIFO1 ini-
tialized
with x

〈α, a〉FIFO1(x)〈β, b〉 ≡ α = x.β ∧ b < a < b′

SyncDrain 〈α, a〉SyncDrain〈β, b〉 ≡ a = b

AsyncDrain 〈α, a〉SyncDrain〈β, b〉 ≡ a �= b

Filter(P)

〈α, a〉 Filter(P) 〈β, b〉 ≡{
β(0) = α(0) ∧ b(0) = a(0) ∧ 〈α′, a′〉 Filter(P) 〈β′, b′〉 if α(0) � P
〈α′, a′〉 Filter(P) 〈β, b〉 otherwise

Merge

Mrg(〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡{
α(0) = γ(0) ∧ a(0) = c(0) ∧ Mrg(〈α′, a′〉, 〈β, b〉; 〈γ′, c′〉) if a(0) < b(0)
β(0) = γ(0) ∧ b(0) = c(0) ∧ Mrg(〈α, a〉, 〈β′, b′〉; 〈γ′, c′〉) if a(0) > b(0)

Replicate Rpl(〈α, a〉; 〈β, b〉, 〈γ, c〉) ≡ α = β ∧ α = γ ∧ a = b ∧ a = c

Puff, The Magic Protocol 193

A stream over a set X is an infinite sequence of elements x ∈ X . The set
of data streams DS consists of all streams over an uninterpreted set of Data
items. A time stream is a monotonically increasing sequence of non-negative
real numbers. The set TS represents all time streams2. A Timed Data Stream
(TDS) is a twin pair of streams 〈α, a〉 in TDS = DS × TS consisting of a data
stream α ∈ DS and a time stream a ∈ TS, with the interpretation that for all
i ≥ 0, the observation of the data item α(i) occurs at the time moment a(i). We
use a′ to represent the tail of a stream a, i.e., the stream obtained after removing
the first element of a; and x.a to represent the stream whose first element is x
and whose tail is a.

Table 1 shows the TDS semantics of the primitive channels in Figure 6, as
well as that of the merge and replication behavior inherent in Reo nodes. The
semantics for every primitive is expressed as a binary (in the case of channels)
or ternary (for the merger and the replicator) relation on timed-data-streams
that represent the observations at their respective source and sink ends. We
can use relational composition to combine the semantics of these primitives to
obtain the semantics of more complex connectors. For instance, by composing
the relation that defines a binary merger in Table 1 with that of another, we
can obtain the semantics for a ternary merger. Thus, the semantics of an m-ary
sink node in Reo can be obtained as the composition of m − 1 binary mergers.
Analogously, the semantics of and n-are source node in Reo can be obtained as
the composition of n− 1 binary replicators. The semantics of a Reo mixed node
with m coincident sink and n coincident source channel ends is obtained as the
relational composition of m − 1 binary mergers and n − 1 binary replicators.

The semantics of a Reo circuit is the relational composition of the relations
that represent the semantics of its constituents (including the merge and replica-
tion inherent in its nodes). This compositional construction for instance, yields

XRout(〈α, a〉; 〈β, b〉, 〈γ, c〉) ≡{
α(0) = γ(0) ∧ a(0) = c(0) ∧ XRout(〈α′, a′〉, 〈β, b〉; 〈γ′, c′〉) if a(0) < b(0)
β(0) = γ(0) ∧ b(0) = c(0) ∧ XRout(〈α, a〉, 〈β′, b′〉; 〈γ′, c′〉) if a(0) > b(0)

as the semantics of the circuit in Figure 11(a).

5.2 Constraint Automata

Constraint automata provide an operational model for the semantics of Reo
circuits [31]. The states of an automaton represent the configurations of its cor-
responding circuit (e.g., the contents of the FIFO channels), while the transitions
encode its maximally-parallel stepwise behavior. The transitions are labeled with
the maximal sets of nodes on which dataflow occurs simultaneously, and a data
constraint (i.e., boolean condition for the observed data values). For example,
Figure 16 shows the constraint automata semantics for some of the common Reo
primitives.
2 The real numbers that appear in a time stream must also satisfy an additional

technical condition to prevent Zeno’s paradox, but for simplicity, we ignore this
condition here.

194 F. Arbab

P

{A,B}, d(A)=d(B)

{A
}, true

{A}, d(A)=X’

{B}, d(B)=X

{A,B}, d(A)=d(B) {A,B}, d(A)=d(B) ^ d(A) # P

{A
}, d(A

) !# P
Filter(P)AsyncDrainSyncDrainFIFO1LossySyncSync

A B A B A B A B A B A B

{A,B}, true

{A
}, true

{B}, true

Fig. 16. Constraint automata of some typical Reo Channels

The constraint automaton for the Sync channel consists of a single state. It
has only a single transition, labeled by the pair of synchronization constraint, and
data constraint. The synchronization constraint {A, B} states that this transition
is possible iff both nodes A and B can fire synchronously (i.e., atomically),
allowing their respective pending I/O operations to succeed. The data constraint
d(A) = d(B) states that this transition is possible iff the data observed at
node A is identical to the data observed at node B. Because these two nodes
are respectively the source and the sink nodes (of the Sync channel), this data
constraint requires a transfer of data from A to B.

The constraint automaton for the LossySync channel in fact expresses the
semantics of a nondeterministic LossySync channel, not that of our context
sensitive LossySync described in Section 3. The difference is significant, but it
is not important for our purposes in this paper.3 This automaton has a single
state and two transitions. One of these transitions is identical to that of the Sync
channel, modeling its identical behavior. The other, labeled by {A}, true simply
states that the automaton can make this transition iff A can fire by itself and
imposes no constraint of the data of A: this data is lost.

The constraint automaton for the FIFO1 channel has two states, representing
its empty (initial) and full states. To simplify our presentation, we consider a
variant of constraint automata that allow states to have local memory variables.
The label {A}, d(A) = X ′ of the transition that takes the automaton from its
empty to its full state allows it to make this transition iff node A can fire by
itself, and the new value of the memory variable X in the target state (identified
by X ′ in the data constraint) is the same as the data value observed on node A:
the value obtained from the source node A gets assigned to the X variable of the
target state to satisfy this constraint. The label {B}, d(B) = X of the transition
that takes the automaton from its full to its empty state allows it to make this
transition iff node B can fire by itself, and the value of the memory variable X
in the source state (identified by X in the data constraint) is the same as the
data value observed on node B: the value of the X variable of the source state
is dispensed through the sink node B to satisfy this data constraint.

3 In fact, constraint automata do not have the expressiveness required to directly
represent context sensitivity. Other more expressive semantic models, including more
sophisticated automata models, have been devised for this purpose [35,44]. A recent
work shows that, although constraint automata cannot directly represent context
sensitivity, it is possible to encode context sensitivity using constraint automata as
well [56,70].

Puff, The Magic Protocol 195

The constraint automaton for the SyncDrain channel has a single state and
a single transition, whose constraints require its ends to fire synchronously
({A, B}), but imposes no constraints (true) on their data. Because these are
both source ends, their data are simply lost.

The constraint automaton for the AsyncDrain channel has a single state and
two transitions, each of which allow it to fire and lose the data obtained through
one of its ends (but never both synchronously).

The constraint automaton for the Filter(P) channel has a single state and
two transitions. If source node A can fire and its data value does not match
the filter pattern P, then the data value of A is simply lost. If the data value
available on the source node A matches the filter pattern P, then the only possible
transition is one similar to that of the Sync channel, by which the data value of
A is transferred to the sink node B.

{A,C}, d(A)=d(C) {B
,C

}, d(B
)=

d(C
)

BA

C

{A,C}, d(A)=d(C) {A
,B

}, d(A
)=

d(B
)

Exclusive router

{C}, d(C)=X

{A,B,C}, d(A)=d(C) ^ d(B) = X’

{B}, d(B)=X

{A}, d(A) = X’

{A
}, true

{B}, d(B)=X

{A}, d(A) = X’ {A
}, d(A

) =
 X

’

Binary Merger

(a) (b)

Alternator Shift−Lossy FIFO1Overflow−Lossy FIFO1

(c) (d) (e)

Fig. 17. Constraint automata of a binary merger and some example connectors

The semantics of a Reo circuit is derived by composing the constraint au-
tomata of its constituents, through a special form of synchronized product of
automata, which automatically accommodates the replication semantics of Reo
nodes [31]. The nondeterministic n-ary merge semantics inherent in Reo nodes
needs to be made explicit as a (product) composition of n − 1 nondeterminis-
tic binary merge primitives. Figure 17(a) shows the constraint automaton for a
nondeterministic binary merge primitive.

Figure 17(b) shows the constraint automaton representing the semantics of the
exclusive router Reo circuit of Figure 11(a), which is obtained as the product
of the constraint automata of its constituents: 5 Sync channels, 2 LossySync
channels, a SyncDrain channel, and a merger.

Figure 17(c) shows the constraint automaton representing the semantics of
the alternator circuit of Figure 9(a), obtained as the product of the constraint
automata of its constituent Sync channel, SyncDrain channel, FIFO1 channel,
and merger.

Figure 17(d) shows the constraint automaton representing the semantics of
an overflow lossy connector, which can be easily composed by connecting the
sink end of a LossySync to the source end of a FIFO1. Although this is the
semantics that must be obtained, the product of simple constraint automata
in Figure 16 does not yield this automaton. This automaton can be obtained

196 F. Arbab

using more sophisticated variants of constraint automata [35,44], or an encoding
technique [56] which can handle context sensitivity.

Figure 17(e) shows the constraint automaton representing the semantics of
the ShiftLossyFIFO1 circuit of Figure 11(b), which is obtained as the product
of the constraint automata of its constituents.

Constraint automata have been used for the verification of protocols through
model-checking [7,62,34,28,61,30,29,48]. Results on equivalence and containment
of the languages of constraint automata [31] and failure based equivalences [54]
provide opportunities for analysis and optimization of Reo circuits.

A constraint automaton essentially captures all behavior alternatives of a Reo
connector. Therefore, it can be used to generate a state-machine implementing
the behavior of Reo connectors, in a chosen target language, such as Java or C.
The constraint automata semantics of Reo is used to generate executable code
for Reo [18].

Variants of the constraint automata model have been devised to capture time-
sensitive behavior [14,58,59], probabilistic behavior [26], stochastic behavior [32],
context sensitive behavior [35,44,52], fairness [53,36], resource sensitivity [79],
and the QoS aspects [80,16,17,87,86] of Reo connectors and composite systems.

5.3 Connector Coloring

The Connector Coloring (CC) model describes the behavior of a Reo circuit in
terms of the detailed dataflow behavior of its constituent channels and nodes [41].
The semantics of a Reo circuit is the set of all of its dataflow alternatives. Each
such alternative is a consistent composition of the dataflow alternatives of each
of its constituent channels and nodes, expressed in terms of (solid and dashed)
colors that represent the basic flow and no-flow alternatives.

AsyncDrainSyncDrain

A B A B

LossySyncSync

A B A B A B A B
x

empty FIFO1 full FIFO1

Fig. 18. Connector Coloring semantics of some typical Reo Channels

Figure 18 shows the two-color semantics of some common Reo primitives.
The Sync channel has two alternative colorings, each representing one possible
behavior: either flow on both of its ends (the solid line) or no flow on both
ends (the dashed line). The (nondeterministic) LossySync has three alternative
colorings: it either behaves as the Sync channel (the full solid and the full dashed
lines), or it allows flow at its source end, with no flow at its sink end (the half-
solid-half-dashed line). A FIFO1 channel has two sets of colorings, one for each
of its two states: empty and full. In its empty state, it can allow flow only at
its source end (with no flow at its sink), after which it becomes full. In its full

Puff, The Magic Protocol 197

state, it can allow flow only at its sink node (with no flow at its source), which
makes it empty. A SyncDrain channel has the same coloring as a Sync channel:
it can allow flow only through both of its ends simultaneously. An AsyncDrain
allows flow through only one of its ends at a time.

CB

ABA

C

A

CB

(a) (b) (c)

Fig. 19. Connector Coloring semantics for merger, replicator, and exclusive router

To express the semantics of a Reo circuit, the replicator and the merger be-
havior inherent in Reo nodes must also be explicitly modeled as colorings. Fig-
ure 19(a) shows the three alternatives for the behavior of a merger: the merger
nondeterministically chooses to allow flow either theough its left source and sink,
or through its right source and sink, or there is no flow on any of its ends. Fig-
ure 19(b) shows the two alternatives for the behavior of a replicator: either there
is flow on its source and both sinks, or there is no flow through any of its nodes
at all.

The coloring semantics of a Reo circuit can be composed out of the coloring
alternatives of its constituents, subject to the obvious requirement that each
node in the circuit can either have flow or not, and therefore, the colors of the
behavior alternatives of all constituents that coincide on a node must be the
same: either dashed or solid. For example, the coloring alternatives of the exclu-
sive router circuit of Figure 11(a) is obtained by matching the alternative colors
of its constituent channels, replicators, and merger, as shown in Figure 19(c). As
expected, this circuit as a whole allows flow through either its right-hand side,
or its left-hand side, exclusively, or there is no flow through the circuit at all.

A more sophisticated model using three colors is necessary to capture the
context sensitive behavior of primitives such as the LossySync channel. The
CC model is primarily used in the implementation of a visualization tool that
produces Flash animations depicting the behavior of a connector [44,91,75]. Con-
nector coloring and constraint automata are related [55]. It has been shown that
it is possible to encode context sensitive behavior in the two-color CC model as
well, using hypothetical extra nodes [56].

Finding a consistent coloring for a circuit amounts to constraint satisfaction.
Constraint solving techniques [10,102] have been applied using the CC model
to search for a valid global behavior of a given Reo connector [42,43]. In this
approach, each connector is considered as a set of constraints, representing the
colors of its individual constituents, where valid solutions correspond to a valid

198 F. Arbab

behavior for the current step. Distributed constraint solving techniques can be
used to adapt this constraint based approach for distributed environments.

The CC model is at the center of the distributed implementation of Reo [2,91,93]
where several engines, each executing a part of the same connector, run on differ-
ent remote hosts. A distributed protocol based on the CC model guarantees that
all engines running the various parts of the connector agree to collectively manifest
one of its legitimate behavior alternatives.

5.4 Other Models

Other formalisms have also been used to investigate the various aspects of the
semantics of Reo. Plotkin’s style of Structural Operational Semantics (SOS) is
followed in [89] for the formal semantics of Reo. This semantics was used in a
proof-of-concept tool developed in the rewriting logic language of Maude, using
the simulation toolkit.

The Tile Model [47] semantics of Reo offers a uniform setting for representing
not only the ordinary dataflow execution of Reo connectors, but also their dy-
namic reconfigurations [15]. An abstraction of the constraint automata is used
in [74] to serve as a common semantics for Reo and Petri nets. The application
of intuitionistic temporal linear logic (ITLL) as a basis for the semantics of Reo
is studied in [38], which also shows the close semantic link between Reo and the
zero-safe variant of Petri nets. A comparison of Orc [85,60] and Reo appears
in [92], and the authors of [99] compare Reo with ARC and PBRD coordination
models.

The semantics of Reo has also been formalized in the Unifying Theories of
Programming (UTP) [51]. The UTP approach provides a family of algebraic
operators that interpret the composition of Reo connectors more explicitly than
in other approaches [81]. This semantic model can be used for proving properties
of connectors, such as equivalence and refinement relations between connectors
and as a reference document for developing tool support for Reo. The UTP
semantics for Reo opens the possibility to integrate reasoning about Reo with
reasoning about component specifications/implementations in other languages
for which UTP semantics is available. The UTP semantics of Reo has been used
for fault-based test case generation [9].

Automatic translation of an automata-based semantics of Reo into its equiv-
alent process algebraic specification is the basis of another input-output confor-
mance testing of protocols specified in Reo [70].

Reo offers operations to dynamically reconfigure the topology of its coordina-
tor circuits, thereby changing the coordination protocol of a running application.
A semantic model for Reo cognizant of its reconfiguration capability, a logic for
reasoning about reconfigurations, together with its model checking algorithm, are
presented in [39]. Graph transformation techniques have been used in combina-
tion with the connector coloring model to formalize the dynamic reconfiguration
semantics of Reo circuits triggered by dataflow [64,63,76,75].

Puff, The Magic Protocol 199

6 Tools

Tool support for Reo consists of a set of Eclipse plug-ins that together comprise the
Extensible Coordination Tools (ECT) visual programming environment [3]. The
Reo graphical editor supports drag-and-drop graphical composition and editing of
Reo circuits. This editor also serves as a bridge to other tools, including animation
and code generation plug-ins. The animation plug-in automatically generates a
graphical animation of the flow of data in a Reo circuit, which provides an intuitive
insight into their behavior through visualization of how they work. This tool maps
the colors of the CC semantics to visual representations in the animations, and
represents the movement of data through the connector [44,91].

Another graphical editor in ECT supports drag-and-drop construction and
editing of constraint automata and its variants. It includes tools to perform
product and hiding on constraint automata for their composition. A converter
plug-in automatically generates the CA model of a Reo circuit.

Several model checking tools are available for analyzing Reo. The Vereofy
model checker, integrated in ECT, is based on constraint automata
[7,34,62,27,28,61,30,29,48]. Vereofy supports two input languages: (1) the Reo
Scripting Language (RSL) is a textual language for defining Reo circuits, and
(2) the Constraint Automata Reactive Module Language (CARML) is a guarded
command language for textual specification of constraint automata. Properties
of Reo circuits can be specified for verification by Vereofy in a language based
on Linear Temporal Logic (LTL), or on a variant of Computation Tree Logic
(CTL), called Alternating-time Stream Logic (ASL). Vereofy extends these log-
ics with regular expression constructs to express data constraints. Translation of
Reo circuits and constraint automata into RSL and CARML is automatic, and
the counter-examples found by Vereofy can automatically be mapped back into
the ECT and displayed as Reo circuit animations.

Timed Constraint Automata (TCA) were devised as the operational seman-
tics of timed Reo circuits [14]. A SAT-based bounded model checker exists for
verification of a variant of TCA [58,59], although it is not yet fully integrated in
ECT. It represents the behavior of a TCA by formulas in propositional logic with
linear arithmetic, and uses a SAT solver for their analysis. A tool is available
to translate (timed) Reo circuits into models for verification using the Uppaal
model checker.

Another means for verification of Reo is made possible by a transformation
bridge into the mCRL2 toolset [4,49]. The mCRL2 verifier relies on the pa-
rameterized boolean equation system (PBES) solver to encode model checking
problems, such as verifying first-order modal-calculus formulas on linear process
specifications. An automated tool integrated in ECT translates Reo models into
mCRL2 and provides a bridge to its tool set. This translation and its applica-
tion for the analysis of workflows modeled in Reo are discussed in [67,72,71].
Through mCRL2, it is possible to verify the behavior of timed Reo circuits,
or Reo circuits with more elaborate data-dependent behavior than Vereofy sup-
ports. The resulting labeled transformation systems can also be used for analysis
by a number of tools in the CADP tool set [1].

200 F. Arbab

A CA code generator plug-in produces executable Java code from a constraint
automaton as a single sequential thread. A C/C++ code generator is under de-
velopment. In this setting, components communicate via put and get operations
on so-called SyncPoints that implement the semantics of a constraint automa-
ton port, using common concurrency primitives. The tool also supports loading
constraint automata descriptions at runtime, useful for deploying Reo coordina-
tors in Java application servers, e.g., Tomcat, for applications such as mashup
execution [66,78].

A distributed implementation of Reo exists [2] as a middleware in the actor-
based language Scala [90], which generates Java source code. A preliminary
integration of this distributed platform into ECT provides the basic functionality
for distributed deployment through extensions of the Reo graphical editor [91].

A set of ECT plug-in tools are under development to support coordination
and composition of Web Services using Reo. ECT plug-ins are available for
automatic conversion of coordination and concurrency models expressed as UML
sequence diagrams [21,22], UML activity diagrams, BPMN diagrams [19], and
BPEL source code into Reo circuits [37].

Tools are integrated in ECT for automatic generation of Quantified Intentional
Constraint Automata (QIA) from Reo circuits annotated with QoS properties,
and subsequent automatic translation of the resulting QIA to Markov Chain
models [16,17,87,86]. A bridge to Prism [5] allows further analysis of the result-
ing Markov chains [23]. Of course, using Markov chains for the analysis of the
QoS properties of a Reo circuit (and its environment) is possible only when the
stochastic variables representing those QoS properties can be modeled by expo-
nential distributions. The QIA, however, remain oblivious to the (distribution)
types of stochastic variables. A discrete event simulation engine integrated in
ECT supports a wide variety of more general distributions for the analysis of
the QoS properties of Reo circuits [57,100].

Based on algebraic graph transformations, a reconfiguration engine is available
as an ECT plug-in that supports dynamic reconfiguration of distributed Reo cir-
cuits triggered by dataflow [18,63,75]. It currently works with the Reo animation
engine in ECT, and will be integrated in the distributed implementation of Reo.

7 Concluding Remarks

Action and interaction offer dual perspectives on concurrency. Execution of ac-
tions involving shared resources by independent processes that run concurrently,
induces pairings of those actions, along with an ordering of those pairs, that we
commonly refer to as interaction. Dually, interaction can be seen as an external
relation that constrains the pairings of the actions of its engaged processes and
their ordering. The traditional action-centric models of concurrency generally
make interaction protocols intangible by-products, implied by nebulous specifi-
cations scattered throughout the bodies of their engaged processes. Specification,
manipulation, and analysis of such protocols are possible only indirectly, through
specification, manipulation, and analysis of those scattered actions, which is of-
ten made even more difficult by the entanglement of the data-dependent control

Puff, The Magic Protocol 201

flow that surrounds those actions. The most challenging aspect of a concur-
rent system is what its interaction protocol does. In contrast to the how which
an imperative programming language specifies, declarative programming, e.g.,
in functional and constraint languages, makes it easier to directly specify, ma-
nipulate, and analyze the properties of what a program does, because what is
precisely what they express. Analogously, in an interaction-centric model of con-
currency, interaction protocols become tangible first-class constructs that exist
explicitly as (declarative) constraints outside and independent of the processes
that they engage. Specification of interaction protocols as declarative constraints
makes them easier to manipulate and analyze directly, and makes it possible to
compose interaction protocols and reuse them.

The coordination language Reo is a premier example of a formalism that em-
bodies an interaction-centric model of concurrency. We used examples of Reo cir-
cuits to illustrate the flavor programming pure interaction protocols. Expressed
as explicit declarative constraints, protocols espouse exogenous coordination.
Our examples showed the utility of exogenous coordination in yielding loosely-
coupled flexible systems whose components and protocols can be easily modified,
even at run time. We described a set of prototype support tools developed as
plug-ins to provide a visual programming environment within the framework of
Eclipse, and presented an overview of the formal foundations of the work behind
these tools.

A dragon lives forever, but not so little boys. Nevertheless, the ecology of
today’s society has left no secluded cave for our Puff to sadly slip into. The
protocols that our magic dragon manifests in its wake as it frolics through the
lines of code of concurrent applications will likely touch many aspects of the
daily life of every adult Jackie Paper. We have grown to know our magic dragon
well through the intimacy of the childhood games we played with it. Scaled
up versions of those games have become integral to the proper functioning of
our lives as grownups. Wish as we may to make way for other toys, we cannot
abandon this magic dragon any more. We need to develop concise languages to
directly communicate with our dragon in concrete terms of a structured dialog
that explicitly conveys the constraints of acceptable behavior in the context of
our requirements. Reo is a particular dialect of one such language.

References

1. 7CADP home page, http://www.inrialpes.fr/vasy/cadp/
2. Distributed Reo,

http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/Redrum/

BigPicture

3. Extensible Coordination Tools home page,
http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/Tools

4. mCRL2 home page, http://www.mcrl2.org
5. Prism, http://www.prismmodelchecker.org
6. Reo home page, http://reo.project.cwi.nl
7. Vereofy home page, http://www.vereofy.de/

202 F. Arbab

8. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press (1986)

9. Aichernig, B.K., Arbab, F., Astefanoaei, L., de Boer, F.S., Meng, S., Rutten,
J.J.M.M.: Fault-based test case generation for component connectors. In: Chin,
W.-N., Qin, S. (eds.) TASE, pp. 147–154. IEEE Computer Society (2009)

10. Apt, K.: Principles of Constraint Programming. Cambridge University Press,
Cambridge (2003)

11. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical. Structures in Comp. Sci. 14(3), 329–366 (2004)

12. Arbab, F.: Abstract Behavior Types: a foundation model for components and
their composition. Sci. Comput. Program. 55(1-3), 3–52 (2005)

13. Arbab, F., Aştefănoaei, L., de Boer, F.S., Dastani, M.M., Meyer, J.-J., Tinner-
meier, N.: Reo Connectors as Coordination Artifacts in 2APL Systems. In: Bui,
T.D., Ho, T.V., Ha, Q.T. (eds.) PRIMA 2008. LNCS (LNAI), vol. 5357, pp. 42–53.
Springer, Heidelberg (2008)

14. Arbab, F., Baier, C., de Boer, F.S., Rutten, J.J.M.M.: Models and temporal log-
ical specifications for timed component connectors. Software and System Model-
ing 6(1), 59–82 (2007)

15. Arbab, F., Bruni, R., Clarke, D., Lanese, I., Montanari, U.: Tiles for Reo. In:
Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 37–55.
Springer, Heidelberg (2009)

16. Arbab, F., Chothia, T., Meng, S., Moon, Y.-J.: Component connectors with QoS
guarantees. In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS,
vol. 4467, pp. 286–304. Springer, Heidelberg (2007)

17. Arbab, F., Chothia, T., van der Mei, R., Meng, S., Moon, Y.-J., Verhoef, C.: From
coordination to stochastic models of QoS. In: Field, Vasconcelos (eds.) [45], pp.
268–287

18. Arbab, F., Koehler, C., Maraikar, Z., Moon, Y.-J., Proença, J.: Modeling, testing
and executing Reo connectors with the Eclipse Coordination Tools. Tool demo
session at FACS 2008 (2008)

19. Arbab, F., Kokash, N., Meng, S.: Towards using Reo for compliance-aware busi-
ness process modeling. In: Margaria, T., Steffen, B. (eds.) ISoLA. CCIS, vol. 17,
pp. 108–123. Springer, Heidelberg (2008)

20. Arbab, F., Mavaddat, F.: Coordination Through Channel Composition. In:
Arbab, F., Talcott, C. (eds.) COORDINATION 2002. LNCS, vol. 2315, pp. 22–39.
Springer, Heidelberg (2002)

21. Arbab, F., Meng, S.: Synthesis of Connectors From Scenario-Based Interaction
Specifications. In: Chaudron, M.R.V., Szyperski, C.A., Reussner, R. (eds.) CBSE
2008. LNCS, vol. 5282, pp. 114–129. Springer, Heidelberg (2008)

22. Arbab, F., Meng, S., Baier, C.: Synthesis of Reo circuits from scenario-based
specifications. Electr. Notes Theor. Comput. Sci. 229(2), 21–41 (2009)

23. Arbab, F., Meng, S., Moon, Y.-J., Kwiatkowska, M.Z., Qu, H.: Reo2MC: a tool
chain for performance analysis of coordination models. In: van Vliet, H., Issarny,
V. (eds.) ESEC/SIGSOFT FSE, pp. 287–288. ACM (2009)

24. Arbab, F., Rutten, J.J.M.M.: A Coinductive Calculus of Component Connectors.
In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755,
pp. 34–55. Springer, Heidelberg (2003)

25. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge University Press
(1990)

26. Baier, C.: Probabilistic models for Reo connector circuits. Journal of Universal
Computer Science 11(10), 1718–1748 (2005)

Puff, The Magic Protocol 203

27. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: Formal Verification for Com-
ponents and Connectors. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.)
FMCO 2008. LNCS, vol. 5751, pp. 82–101. Springer, Heidelberg (2009)

28. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: A uniform framework for
modeling and verifying components and connectors. In: Field, Vasconcelos (eds.)
[45], pp. 247–267

29. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S., Leister, W.: Design and Veri-
fication of Systems with Exogenous Coordination Using Vereofy. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 97–111. Springer, Heidelberg
(2010)

30. Baier, C., Klein, J., Klüppelholz, S.: Modeling and Verification of Components
and Connectors. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659,
pp. 114–147. Springer, Heidelberg (2011)

31. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component con-
nectors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113
(2006)

32. Baier, C., Wolf, V.: Stochastic Reasoning About Channel-Based Component Con-
nectors. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS,
vol. 4038, pp. 1–15. Springer, Heidelberg (2006)

33. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. In-
formation and Control 60, 109–137 (1984)

34. Blechmann, T., Baier, C.: Checking equivalence for Reo networks. Electr. Notes
Theor. Comput. Sci. 215, 209–226 (2008)

35. Bonsangue, M.M., Clarke, D., Silva, A.: Automata for context-dependent connec-
tors. In: Field, Vasconcelos (eds.) [45], pp. 184–203

36. Bonsangue, M.M., Izadi, M.: Automata based model checking for Reo connec-
tors. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961, pp. 260–275.
Springer, Heidelberg (2010)

37. Changizi, B., Kokash, N., Arbab, F.: A unified toolset for business process model
formalization. In: Proc. of the 7th International Workshop on Formal Engineer-
ing approaches to Software Components and Architectures, FESCA 2010 (2010);
satellite event of ETAPS

38. Clarke, D.: Coordination: Reo, Nets, and Logic. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp. 226–
256. Springer, Heidelberg (2008)

39. Clarke, D.: A basic logic for reasoning about connector reconfiguration. Fundam.
Inform. 82(4), 361–390 (2008)

40. Clarke, D., Costa, D., Arbab, F.: Modelling Coordination in Biological Systems.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS, vol. 4313, pp. 9–25.
Springer, Heidelberg (2006)

41. Clarke, D., Costa, D., Arbab, F.: Connector colouring I: Synchronisation and
context dependency. Sci. Comput. Program. 66(3), 205–225 (2007)

42. Clarke, D., Proença, J., Lazovik, A., Arbab, F.: Deconstructing Reo. Electr. Notes
Theor. Comput. Sci. 229(2), 43–58 (2009)

43. Clarke, D., Proença, J., Lazovik, A., Arbab, F.: Channel-based coordination via
constraint satisfaction. Sci. Comput. Program. 76(8), 681–710 (2011)

44. Costa, D.: Formal Models for Context Dependent Connectors for Distributed
Software Components and Services. PhD thesis, Vrije Universiteit Amsterdam
(2010), http://dare.ubvu.vu.nl//handle/1871/16380

45. Field, J., Vasconcelos, V.T. (eds.): COORDINATION 2009. LNCS, vol. 5521, pp.
225–246. Springer, Heidelberg (2009)

204 F. Arbab

46. Fokkink, W.: Introduction to Process Algebra. Texts in Theoretical Computer
Science, An EATCS Series. Springer, Heidelberg (1999)

47. Gadducci, F., Montanari, U.: The tile model. In: Plotkin, G.D., Stirling, C., Tofte,
M. (eds.) Proof, Language and Interaction: Essays in Honour of Robin Milner,
pp. 133–166. MIT Press, Boston (2000)

48. Grabe, I., Jaghoori, M.M., Aichernig, B.K., Baier, C., Blechmann, T., de Boer,
F.S., Griesmayer, A., Johnsen, E.B., Klein, J., Klüppelholz, S., Kyas, M., Leister,
W., Schlatte, R., Stam, A., Steffen, M., Tschirner, S., Xuedong, L., Yi, W.: Credo
methodology: Modeling and analyzing a peer-to-peer system in credo. Electr.
Notes Theor. Comput. Sci. 266, 33–48 (2010)

49. Groote, J.F., Mathijssen, A., Reniers, M.A., Usenko, Y.S., van Weerdenburg, M.:
The formal specification language mCRL2. In: Brinksma, E., Harel, D., Mader,
A., Stevens, P., Wieringa, R. (eds.) MMOSS. Dagstuhl Seminar Proceedings,
vol. 06351. Internationales Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl (2006)

50. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)

51. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice Hall,
London (1998)

52. Izadi, M., Bonsangue, M.M., Clarke, D.: Modeling component connectors: Syn-
chronisation and context-dependency. In: Cerone, A., Gruner, S. (eds.) SEFM,
pp. 303–312. IEEE Computer Society (2008)

53. Izadi, M., Bonsangue, M.M., Clarke, D.: Büchi automata for modeling component
connectors. Software and System Modeling 10(2), 183–200 (2011)

54. Izadi, M., Movaghar, A.: Failure-based equivalence of constraint automata. Int.
J. Comput. Math. 87(11), 2426–2443 (2010)

55. Jongmans, S.-S.T.Q., Arbab, F.: Correlating formal semantic models of Reo con-
nectors: Connector coloring and constraint automata. In: Silva, A., Bliudze, S.,
Bruni, R., Carbone, M. (eds.) ICE. EPTCS, vol. 59, pp. 84–103 (2011)

56. Jongmans, S.-S.T.Q., Krause, C., Arbab, F.: Encoding context-sensitivity in Reo
into non-context-sensitive semantic models. In: Meuter, Roman (eds.) [82], pp.
31–48

57. Kanters, O.: QoS analysis by simulation in Reo (2010)

58. Kemper, S.: SAT-based Verification for Timed Component Connectors. Electr.
Notes Theor. Comput. Sci. 255, 103–118 (2009)

59. Kemper, S.: Compositional Construction of Real-Time Dataflow Networks. In:
Clarke, D., Agha, G. (eds.) COORDINATION 2010. LNCS, vol. 6116, pp. 92–
106. Springer, Heidelberg (2010)

60. Kitchin, D., Quark, A., Cook, W.R., Misra, J.: The Orc Programming Lan-
guage. In: Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS 2009. LNCS,
vol. 5522, pp. 1–25. Springer, Heidelberg (2009)

61. Klein, J., Klüppelholz, S., Stam, A., Baier, C.: Hierarchical Modeling and Formal
Verification. An Industrial Case Study Using Reo and Vereofy. In: Salaün, G.,
Schätz, B. (eds.) FMICS 2011. LNCS, vol. 6959, pp. 228–243. Springer, Heidelberg
(2011)

62. Klüppelholz, S., Baier, C.: Symbolic model checking for channel-based component
connectors. Electr. Notes Theor. Comput. Sci. 175(2), 19–37 (2007)

63. Koehler, C., Arbab, F., de Vink, E.P.: Reconfiguring Distributed Reo Connectors.
In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 221–
235. Springer, Heidelberg (2009)

Puff, The Magic Protocol 205

64. Koehler, C., Costa, D., Proença, J., Arbab, F.: Reconfiguration of Reo connectors
triggered by dataflow. In: Ermel, C., Heckel, R., de Lara, J. (eds.) Proceedings of
the 7th International Workshop on Graph Transformation and Visual Modeling
Techniques (GT-VMT 2008), vol. 10, pp. 1–13 (2008); Home Page, http://www.
easst.org/eceasst/, ECEASST ISSN 1863-2122

65. Koehler, C., Lazovik, A., Arbab, F.: ReoService: Coordination modeling tool. In:
Krämer, et al. (eds.) [73], pp. 625–626

66. Koehler, C., Lazovik, A., Arbab, F.: ReoService: Coordination Modeling Tool. In:
Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749,
pp. 625–626. Springer, Heidelberg (2007)

67. Kokash, N., Krause, C., de Vink, E.P.: Data-aware design and verification of
service compositions with Reo and mCRL2. In: SAC 2010: Proc. of the 2010 ACM
Symposium on Applied Computing, pp. 2406–2413. ACM, New York (2010)

68. Kokash, N., Arbab, F.: Formal behavioral modeling and compliance analysis for
service-oriented systems. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.)
FMCO 2008. LNCS, vol. 5751, pp. 21–41. Springer, Heidelberg (2009)

69. Kokash, N., Arbab, F.: Applying Reo to service coordination in long-running
business transactions. In: Shin, S.Y., Ossowski, S. (eds.) SAC, pp. 1381–1382.
ACM (2009)

70. Kokash, N., Arbab, F., Changizi, B., Makhnist, L.: Input-output conformance
testing for channel-based service connectors. In: Aceto, L., Mousavi, M.R. (eds.)
PACO. EPTCS, vol. 60, pp. 19–35 (2011)

71. Kokash, N., Krause, C., de Vink, E.P.: Verification of Context-Dependent
Channel-Based Service Models. In: de Boer, F.S., Bonsangue, M.M., Hallerst-
ede, S., Leuschel, M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 21–40. Springer,
Heidelberg (2010)

72. Kokash, N., Krause, C., de Vink, E.P.: Time and data-aware analysis of graphical
service models in Reo. In: Fiadeiro, J.L., Gnesi, S., Maggiolo-Schettini, A. (eds.)
SEFM, pp. 125–134. IEEE Computer Society (2010)

73. Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.): ICSOC 2007. LNCS, vol. 4749.
Springer, Heidelberg (2007)

74. Krause, C.: Integrated structure and semantics for Reo connectors and Petri nets.
In: ICE 2009: Proc. 2nd Interaction and Concurrency Experience Workshop. Elec-
tronic Proceedings in Theoretical Computer Science, vol. 12, p. 57 (2009)

75. Krause, C.: Reconfigurable Component Connectors. PhD thesis, Leiden University
(2011), https://openaccess.leidenuniv.nl/handle/1887/17718

76. Krause, C., Maraikar, Z., Lazovik, A., Arbab, F.: Modeling dynamic reconfigura-
tions in Reo using high-level replacement systems. Sci. Comput. Program. 76(1),
23–36 (2011)

77. Lazovik, A., Arbab, F.: Using Reo for service coordination. In: Krämer, et al.
(eds.) [73], pp. 398–403

78. Maraikar, Z., Lazovik, A.: Reforming mashups. In: Proceedings of the 3rd Eu-
ropean Young Researchers Workshop on Service Oriented Computing (YR-SOC
2008). Imperial College London (June 2008)

79. Meng, S., Arbab, F.: On Resource-Sensitive Timed Component Connectors. In:
Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp.
301–316. Springer, Heidelberg (2007)

80. Meng, S., Arbab, F.: QoS-driven service selection and composition. In: Billington,
J., Duan, Z., Koutny, M. (eds.) ACSD, pp. 160–169. IEEE (2008)

81. Meng, S., Arbab, F.: Connectors as designs. Electr. Notes Theor. Comput.
Sci. 255, 119–135 (2009)

206 F. Arbab

82. De Meuter, W., Roman, G.-C. (eds.): COORDINATION 2011. LNCS, vol. 6721.
Springer, Heidelberg (2011)

83. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

84. Milner, R.: Elements of interaction - turing award lecture. Commun. ACM 36(1),
78–89 (1993)

85. Misra, J., Cook, W.R.: Computation orchestration. Software and System Model-
ing 6(1), 83–110 (2007)

86. Moon, Y.-J.: Stochastic Models for Quality of Service of Component Connectors.
PhD thesis, Leiden University (2011)

87. Moon, Y.-J., Silva, A., Krause, C., Arbab, F.: A compositional semantics for
stochastic Reo connectors. In: Mousavi, Salaün (eds.) [88], pp. 93–107

88. Mousavi, M.R., Salaün, G. (eds.): Proceedings Ninth International Workshop on
the Foundations of Coordination Languages and Software Architectures. EPTCS,
vol. 30 (2010)

89. Mousavi, M.R., Sirjani, M., Arbab, F.: Formal semantics and analysis of compo-
nent connectors in Reo. Electr. Notes Theor. Comput. Sci. 154(1), 83–99 (2006)

90. Odersky, M.: Report on the programming language Scala (2002), http://lamp.
epfl.ch/~odersky/scala/reference.ps

91. Proença, J.: Synchronous Coordination of Distributed Components. PhD thesis,
Leiden University (2011), https://openaccess.leidenuniv.nl/handle/1887/

17624

92. Proença, J., Clarke, D.: Coordination models Orc and Reo compared. Electr.
Notes Theor. Comput. Sci. 194(4), 57–76 (2008)

93. Proença, J., Clarke, D., de Vink, E.P., Arbab, F.: Decoupled execution of syn-
chronous coordination models via behavioural automata. In: Mousavi, M.R.,
Ravara, A. (eds.) FOCLASA. EPTCS, vol. 58, pp. 65–79 (2011)

94. Rutten.: Behavioural differential equations: A coinductive calculus of streams,
automata, and power series. TCS: Theoretical Computer Science, 308 (2003)

95. Rutten, J.J.M.M.: Elements of stream calculus (an extensive exercise in coinduc-
tion). Electr. Notes Theor. Comput. Sci., 45 (2001)

96. Rutten, J.J.M.M.: A coinductive calculus of streams. Mathematical Structures in
Computer Science 15(1), 93–147 (2005)

97. Sangiorgi, D., Walker, D.: PI-Calculus: A Theory of Mobile Processes. Cambridge
University Press, New York (2001)

98. Schumm, D., Turetken, O., Kokash, N., Elgammal, A., Leymann, F., van den
Heuvel, W.-J.: Business Process Compliance Through Reusable Units of Compli-
ant Processes. In: Daniel, F., Facca, F.M. (eds.) ICWE 2010. LNCS, vol. 6385,
pp. 325–337. Springer, Heidelberg (2010)

99. Talcott, C.L., Sirjani, M., Ren, S.: Comparing three coordination models: Reo,
ARC, and PBRD. Sci. Comput. Program. 76(1), 3–22 (2011)

100. Verhoef, C., Krause, C., Kanters, O., van der Mei, R.: Simulation-based perfor-
mance analysis of channel-based coordination models. In: Meuter, Roman [82],
pp. 187–201

101. Wegner, P.: Coordination as comstrainted interaction (extended abstract). In:
Ciancarini, P., Hankin, C. (eds.) COORDINATION 1996. LNCS, vol. 1061, pp.
28–33. Springer, Heidelberg (1996)

102. Yokoo, M.: Distributed Constraint Satisfaction: Foundations of Cooperaton in
Multi-Agent Systems. Springer Series on Agent Technology. Springer, New York
(2000) NTT

A Formal Methodology for Compositional

Cross-Layer Optimization�

Minyoung Kim1, Mark-Oliver Stehr1, Carolyn Talcott1

Nikil Dutt2, and Nalini Venkatasubramanian2

1 SRI International, USA
{mkim,stehr,clt}@csl.sri.com

2 University of California, Irvine, USA
{dutt,nalini}@ics.uci.edu

Abstract. The xTune framework employs iterative tuning using light-
weight formal verification at runtime with feedback for dynamic adapta-
tion of mobile real-time embedded systems. To enable trade-off analysis
across multiple layers of abstraction and predict the possible property
violations as the system evolves dynamically over time, an executable
formal specification is developed for each layer of the system under con-
sideration. The formal specification is then analyzed using statistical
analysis, to determine the impact of various policies for achieving a vari-
ety of end-to-end properties in a quantifiable manner. The integration of
formal analysis with dynamic behavior from system execution results in
a feedback loop that enables model refinement and further optimization
of policies and parameters. Finally, we propose a composition method
for coordinated interaction of optimizers at different abstraction layers.
The core idea of our approach is that each participating optimizer can
restrict its own parameters and exchange refined parameters with its as-
sociated layers. We also introduce sample application domains for future
research directions.

1 Vision

An overarching characteristic of next-generation mobile applications is that they
are often data intensive and rich in multimedia content with images, video,
and audio data that is fused together from disparate distributed information
sources. The content-rich data is expected to be obtained from, delivered to,
and processed on resource-constrained devices (sensors, PDAs, cellular handsets)
carried by users in highly dynamic environments (e.g., delay, jitter, erroneous
transmission). Clearly, in such a scenario, the dual goals of ensuring adequate
application QoS (Quality of Service) and optimizing resource utilization in the
network, devices, and content servers present significant challenges.
� Support from National Science Foundation Grant 0932397 (A Logical Framework

for Self-Optimizing Networked Cyber-Physical Systems) is gratefully acknowledged.
Any opinions, findings, and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the views of NSF.

G. Agha, O. Danvy, and J. Meseguer (Eds.): Talcott Festschrift, LNCS 7000, pp. 207–222, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

208 M. Kim et al.

Specific adaptations have been developed within each abstraction layer (ap-
plication, middleware, OS, hardware) to perform the QoS provision on resource
limited devices. For example, the OS adaptations typically change the allocation
and scheduling in response to application and resource variations [21,4]. We refer
to these individual adaptation techniques as policies. Next, we identify param-
eters to manipulate the behavior of a policy. For example, the OS layer policy
can be fine tuned by selecting the appropriate tolerance level of QoS in terms of
task completion that satisfies its deadline [4].

Understanding interactions across layers and exploiting them in such systems
is essential since policy/parameter settings at one layer can have a significant
impact on the behavior at other layers. A cross-layer approach is needed to deal
with complexity of such systems and the dynamic environment in which such
applications execute. Our prior experience (FORGE [3,13]) with developing algo-
rithms for cross-layer adaptation based on QoS/energy trade-offs in distributed
mobile multimedia applications has given us valuable insights into the issues to
be addressed. In particular, the middleware framework DYNAMO [14] performs
joint adaptation at the proxy server to drive on-device adaptation for end-to-
end adaptations such as dynamic video transcoding and traffic shaping. GRACE
[22] also aims to trade off multimedia quality against energy by introducing a
hierarchy of global (i.e., coordinating all layers) and internal (i.e., within the
individual layers) adaptation.

While existing work has shown the effectiveness of cross-layer adaptation,
many of these efforts try to address the average case behavior without verifiable
guarantees on their solutions. As the system evolves dynamically over time, the
applications need a mechanism that can be used to formally prove various prop-
erties pertaining to energy usage, delays, and so on for any given configuration
of policies/parameters to derive, analyze, and validate cross-layer adaptation.
Our hypothesis is that a comprehensive design methodology based on a formal
reasoning framework will provide an effective basis for tuning mobile embedded
systems under a multitude of constraints.

To illustrate the challenges introduced by the cross-layer nature of mobile real-
time embedded applications, consider the scenario of a mobile device executing
a video conferencing application carried by a user moving from Zone0 to Zone4

in Figure 1. The objective is to support QoS needs by instantiation and tuning
of the appropriate policy at each layer with its parameter values (complexity). In
particular, we strive to achieve quantifiable guarantees with regard to the quality
of selected policies and parameters (verification). Last, when a user moves to a
different zone, we need a way of reflecting it for iterative tuning as well as
static instantiation of policies and parameters (dynamicity). We elaborate these
challenges below.

– Complexity: Given a set of application needs and a system configuration,
we need to choose appropriate operating points, through selection of both
the policy and the parameter settings at each layer as depicted in Figure 1.
Considering the composite effect of multiple policies at each layer demands
a cross-layer approach. A holistic approach to understanding cross-layer

A Formal Methodology for Compositional Cross-Layer Optimization 209

network status,
mobility,
residual energy,
…

policy_a (parameter_i)
policy_b (parameter_j)

Changing

Adapting

Zone 1

network staChanging

Zone 0

 Zone 3

Zone 2

 Zone 4

APP
MW
OS
HW

–  with quantifiable guarantee on solution quality

Fig. 1. Challenges: Instantiation and tuning of the appropriate polices and correspond-
ing parameter values (complexity) with quantifiable guarantee (verification) while re-
flecting changes in the system and environment (dynamicity)

interaction in such systems is essential, since policies made at one layer can
(sometimes adversely) affect behavior at other layers.

– Verification: During this process, we need to generate a set of candidate
policies with possible parameter settings based on the trade-off analysis to
determine the best feasible choice among these candidates. If no policy can
satisfy the requirements, we must determine how to relax the constraints and
may need to repeat policy selection. For such informed selection, it is essential
to perform bound/sensitivity analysis on the impact of the policy/parameter
that can provide some notion of guarantee on the solution.

– Dynamicity: The system and environment may keep evolving as a user
moves from one zone to another as depicted in Figure 1, requiring dy-
namic policy/parameter analysis and tuning. During operation, policy se-
lection and parameter tuning requires the procedure to determine (i) which
changes demand our attention, (ii) if it has a significant impact on tim-
ing/QoS/performance, and (iii) how the policy/parameter should be
recomputed.

To ensure adequate application QoS and resource utilization with timing and
reliability concerns, the ability to compensate on the fly for property violations
at different layers of abstraction is of paramount importance since there are
several sources of unpredictability (e.g., delay, packet drop, user mobility) in a
mobile embedded system that introduce nondeterminism. Furthermore, system-
level optimizations for effective utilization of distributed resources can interfere
with the properties of executing applications. For instance, dynamic voltage
scaling (DVS) mechanisms slow down processors to achieve power savings, but
at the cost of increased execution times for tasks. Many applications have flexible
QoS needs that dictate how tolerant they are to delays and errors — the lack of
stringent timing needs can be adaptively exploited for better end-to-end resource
utilization.

210 M. Kim et al.

We enumerate sample questions we would like to answer:

1. How does one decide what policies and parameters to assign to each ab-
straction layer to minimize the overall energy consumption while providing
a sufficient level of QoS with verifiable/quantifiable solution quality? This
must be achieved for an energy-constrained mobile embedded device dealing
with displaying delay-sensitive multimedia data over a lossy network.

2. How can we exploit system state for dynamic adaptations? When the system
evolves over time, how can we accommodate it? We need a way of reflecting
dynamics. Specifically, this requires determining which attribute can be a
trigger for adaptations and how to refine our model.

3. How can we support cross-layer adaptation while individual policies perform
their own optimization? Unlike existing research literature that relies on a
global coordinator at a certain layer, we address the issue of how to support
cross-layer adaptation while allowing autonomy of individual layers’ policies.

To lend focus, we (i) choose mobile multimedia as an application domain, and
(ii) select performance criteria that require adaptations such as device residual
energy, application QoS/timing needs, and reliable content delivery. A prelim-
inary study [5] demonstrated the need for integration of formal methods with
experimentally based cross-layer optimization techniques [3,13] for such applica-
tion domain and performance criterion. Within the xTune framework, we support
compositional online optimization of individual policies at each layer [11]. xTune
employs statistical formal methods to analyze given cross-layered optimization
policies with a quantifiable guarantee on the solution quality [10].

2 Overview of Technical Approach

Our approach starts with a formal specification of the abstraction layers and
subsequent statistical evaluation to verify probabilistic properties. We propose
a lightweight formal methodology in the sense that we exploit statistical tech-
niques on a system model represented in an executable formal specification. The
proposed approach provides statistically meaningful answers from on-demand
trace generation rather than keeping the entire spectrum of possible traces.

Our approach supports iterative tuning and compositional cross-layer opti-
mization and can deal with quantifiable guarantees, dynamicity, and complexity
issues:

– Quantifiable Solution Quality: Our work examines the impact of vari-
ous resource management techniques on end-to-end timing/QoS properties
based on statistical evaluation for verifiable/quantifiable solutions, and en-
ables informed selection of resource management policies along with rules
for instantiation of parameters that derive the policies.

– Iterative Tuning: We enhance such lightweight formal modeling and anal-
ysis by integrating it with observations of system execution behavior to
achieve adaptive reasoning by providing more precise information on cur-
rent execution and future state.

A Formal Methodology for Compositional Cross-Layer Optimization 211

Monitoring
System

Tuning
Module

Verification
Engine

xTune

network Deploying
System

Fig. 2. xTune Cross-layer System Tuning Framework

– Compositional Cross-Layer Optimization: We propose a compositional
approach for the cross-layer optimization that avoids high overhead intro-
duced by traditional global approaches; our compositional approach allows
sublayers’ optimization results to be used by the other sublayer optimizers
as constraints.

Our work is validated and tested in the context of distributed mobile multi-
media applications that have wide consumer interest. Using multimedia as a
demonstrator, we have developed general principles and a framework. In many
contexts, enabling verifiable adaptation in terms of timing/QoS guarantees pro-
vides an additional degree of confidence to improve other cross-layer reliability
measures in the context of multimedia applications.

3 Supporting Model-Based Composition with xTune

The xTune framework uses iterative system tuning to support adaptations. In
particular, our approach tunes the parameters in a compositional manner allow-
ing coordinated interaction among sublayer optimizers. The xTune framework
initially performs property checking and quantitative analysis of candidate pol-
icy/parameter settings via formal executable specifications followed by statistical
techniques. Iterative tuning allows model refinement from up-to-date and contin-
uous observations of system execution behavior. Furthermore, the results can be
used to improve adaptation by verifying given system properties or by relaxing
constraints.

Figure 2 presents the overall flow of our approach. Box A represents the for-
mal modeling. The core of our formal modeling approach is to develop formal
executable models of system components at each layer of interest. These models
express functionality, timing, and other resource considerations at the appro-
priate level of detail and using appropriate interaction mechanisms (clock ticks,

212 M. Kim et al.

synchronous or asynchronous messages). Models of different layers are analyzed
in isolation and composed to form cross-layer specifications. We use the Maude
system for developing and analyzing formal specifications. One advantage of
formal executable models is that they can be subjected to a wide range of for-
mal analysis, including single execution scenarios, search for executions leading
to states of interest, and model checking to understand properties of execution
paths.

Box B in Figure 2 shows the evaluation phase of given specifications to gener-
ate statistics for properties and values of interest. Specifically, we have developed
new analysis techniques (statistical model checking and statistical quantitative
analysis) that combine statistical and formal methods, and applied them to a
case study of a videophone application [10]. We have developed a compositional
cross-layer optimization by coordinated interaction among local (sublayer) opti-
mizers through constraint refinement. The constraint refinement allows encapsu-
lation of detailed system state information. In compositional optimization, each
local optimizer uses refinement results of other optimizers as its constraints. The
constraint representation can be used as the generic interface among different
local optimizers, leading to substantial improvement of solution quality at low
complexity.

Using such models and analysis, tools can be developed to achieve adaptive re-
finement of an end-to-end system specification into appropriate policy/parameter
settings. We use an iterative tuning strategy that combines formal methods (veri-
fication) with dynamic system execution behavior (obtained by either simulation
or implementation). The execution behavior from system realization (Box C in
Figure 2) is fed back into the formal modeling to refine the executable spec-
ification (model refinement). In addition, we can assure the quality of a new
policy/parameter constructed by the controller. In Figure 2, pre-testing on a
system realization can lead to improvements because typically the formal model
cannot cover all the possible implementation details of a real system.

4 Model-Based Compositional Cross-Layer Optimization

4.1 Understanding the Issue of Cross-Layer Optimization

To enhance system utility capturing the effectiveness of the settings relative to
the user and system objectives in the context of mobile applications, researchers
have proposed a wide variety of techniques at different system layers. Note that
one key performance metric for such techniques is how well they manage utility
under a multitude of constraints in a dynamic situation. Since utility comes
with cost in terms of performance, energy consumption, storage requirements,
and bandwidth used, one needs to optimize utility in the context of the operating
conditions. However, most optimization techniques consider only a single system
layer, remaining unaware of the strategies employed in the other layers. A cross-
layer approach that is cognizant of features, limitations, and dynamic changes
at each layer enables better optimization than a straightforward composition
of individual layers, because solutions for each individual layer can be globally

A Formal Methodology for Compositional Cross-Layer Optimization 213

suboptimal. To coordinate the individual techniques in a cross-layer manner
based on the operating condition, one needs to

– Quantify the effect of various optimization policies at each layer on system
properties

– Explore methods of taking the impact of each policy into account and com-
pensating for it at other layers

Abstraction and Model Refinement. We develop a formal methodology to
specify and analyze features/constraints/needs at each layer and to correlate
them across layers to realize cross-layer tuning. Our approach is to start with an
executable formal model based on rewriting logic specifying a space of possible
behaviors. In [10,9,11], we use the Maude [2] rewriting logic formalism to develop
executable specifications of each layer in isolation and in composition as well as
representing their timed behavior.

In most cases, the model cannot be fully characterized in advance and can
change while the system is in operation, which is why model refinement is an
essential component of our architecture. To reflect execution dynamics, we per-
form model refinement from observed system execution behavior by equipping
the controller with a feedback loop to experiment with the system realization [9].
The system can start with a default model (e.g., a model with default parame-
ters about execution times), which is incrementally refined during the operation
of the system. Models can be passively refined by observations — e.g., from
CPU usage, while the system is executing its primary function or mission — or
it can be actively pursued by exploration, which may require physical actions.
Often, combinations of the passive and active modes of model refinement will be
needed for acceptable performance with low exploration overhead. Within our
framework, there are at least two roles for feedback from observation of system
execution behavior: it can be used to improve the model (to make it more accu-
rately match the real environment) and it can be used to directly improve the
policy. We define the former as long-term tuning, and the latter as short-term
tuning. In the xTune framework, we support long-term tuning through model
refinement without active exploration.

Statistical Analysis. To analyze the behavior of the system (e.g., in terms of
discrete or continuous observable properties) in a probabilistic sense, we have im-
plemented two lightweight formal analysis techniques: statistical model checking
and statistical quantitative analysis. To formally verify certain properties, tradi-
tional approaches maintain tree-like structures of the entire spectrum of possible
traces with probability measures and exhaustively evaluate the system, which
leads to excessive memory requirements that limit scalability of the solution.
In contrast, the xTune approach is a lightweight formal method, since the opti-
mization problem for adaptation does not require an exact solution. This allows
us to generate traces on demand and provide statistically meaningful answers,
unlike exhaustive numerical methods, which aim at exact solutions.

214 M. Kim et al.

In [10], we extended the quantitative approach of [1] by an on-demand sample
generation that can compute the sample size sufficient to reach confidence in the
normality of data, and then utilize the normal distribution to obtain the error
bound and confidence interval for quantitative analysis. The xTune framework
also implements two statistical model-checking techniques: the sequential prob-
ability ratio test [20] and black-box testing [16]. Given a property, the sequential
probability ratio test [20] continues sample generation until its answer about
accepting or rejecting the hypothesis can be guaranteed to be correct within the
required error bounds. Black-box testing [16] instead computes the statistical
significance (p-value) for a given number of samples without having any control
over the execution. These statistical techniques can be used to quantify statisti-
cal performance (e.g., execution times) with a specific confidence and to verify
properties (e.g., battery depletion), which may be satisfied only in a probabilistic
sense. They provide a quantifiable solution to enable policy-based operation and
adaptation as well as parameter setting and adjustment for selected policies.

4.2 Constraint Refinement and Composition

In the xTune framework, constraint-based optimization is guided by a model of
the system to be optimized. The compositional optimization is purely generic in
the sense that we can construct an interface language for generic composition
(e.g., negotiation and contract), which can be used with heterogeneous applica-
tion specifications. An interesting extension would be distributed compositional
techniques that integrate randomization and symbolic reasoning. For that pur-
pose, the constraint language needs to be expressive enough to support strategies
for distributed cooperative optimization.

In the following, we describe our composition method. First, we explain the
idea of constraint refinement for robust optimization. Then, we define our compo-
sitional cross-layer optimization based on this representation. Our experiments
show that the encapsulation of the local optimization at each sublayer leads to
substantial improvement of solution quality at low complexity [11].

Constraint Refinement. Given an optimization problem with the model M

and the parameter space P, our approach attempts to quickly find a region
P ∈ R(P)1 containing a nearly optimal solution by the following heuristics:

1. Recursive Resampling: We obtain observables by Monte Carlo sampling
over the current region Pi ∈ R(P) using the model M. Subsequently, we
refine Pi to Pi+1 such that the utility is maximized based on the samples
available, and size(Pi+1) = size(Pi) · τi, where τi (0.0 < τi < 1.0) represents
the i-th refinement ratio. The new region Pi+1 is then used as the current
region and the process is repeated.

1 Region P ∈ R(P) ⇐⇒ P ⊆ P is a closed convex set, (i.e., if (x, z ∈ P)
∧

(x < y < z),
then (y ∈ P)) and P is finitely representable (e.g., interval-based).

A Formal Methodology for Compositional Cross-Layer Optimization 215

P2

P1

P0

P = Pt

..

Iteration

Opt.
Layer
OS

Opt.
Layer
App.

.

Only restrict
OS layer
parameters

App. layer
parameters

Only restrict

(a)

Application
Subsystem

Middleware
Subsystem

OS
Subsystem

Hardware
Subsystem

Control ConstraintsObservables

Optimizer

OS
Optimizer

Hardware
Optimizer

Middleware

Application
Optimizer

(b)

Fig. 3. Constraint Refinement for Composition (a) Parallel Composition of Layers, (b)
Compositional Cross-layer Optimization

2. Interval-based Description: For simplicity we use regions defined by the
Cartesian product of intervals for each of the parameters. For example, an
application layer region might be

PApp = [Param1min ,Param1max] × [Param2min ,Param2max].

More expressive constraint languages are possible in our framework and
should be investigated in the future.

3. Generic Constraint-based Interface: The input (Pi) and output (Pi+1)
of each refinement step are regions (infinite sets), and our approach lifts the
level of abstraction by treating Pi as constraints (finite symbolic represen-
tations) when we restrict the resampling space to find Pi+1.

The process of constraint refinement can be stated as a chain

P = P0 ⊇ P1 ⊇ P2 ⊇ · · · ⊇ Pt = P

where P is the set of admissible parameter settings at termination after t itera-
tions.

Our experimental results indicate that the constraint refinement can be ef-
fectively used for robust parameter selection by refining spectrum of reliable
policies and parameters. One key feature of this approach is that we can co-
ordinate parallel composition of individual optimizers as illustrated in Figure
3(a). Each sublayer optimizer controls a subset of parameters. For instance, the
application layer optimizer only restricts its own parameters (PApp), while the
OS layer optimizer only restricts OS-related parameters (POS). The constraints
Pi are used as inputs and outputs of individual (sublayer) optimizers.

Composition through constraint refinement reduces the possibility of con-
flicts because of the more general notion of a solution compared with traditional
single-point optimizers. More important, constraint refinement enables simple
yet powerful cross-layer optimization via composition (Figure 3(b)), as discussed
below.

216 M. Kim et al.

Application
Subsystem

OS

Hardware

Middleware

Application
Middleware
Subsystem

OS
Subsystem

Hardware
Subsystem

ControlObservables

Optimizer
Global

(a)

Application
Subsystem

Middleware
Subsystem

OS
Subsystem

Hardware
Subsystem

ControlObservables

Optimizer

OS
Optimizer

Hardware
Optimizer

Middleware

Application
Optimizer

(b)

Fig. 4. Comparison among Online Optimizations (a) Global Cross-layer Optimization,
(b) Without Cross-layer Optimization

Online Cross-Layer Optimization. The primary goal of our framework is
to enable online cross-layer optimization that provides the refined parameter
settings from which a system can select any suitable operating point within the
region as explained above. The constraint refinement allows encapsulation of
detailed system optimization information. This opens up the possibility of co-
ordinated interaction (composition) instead of relying on a global view. Figures
4(a), 4(b), and 3(b) compare the global vs. local vs. compositional approach
for cross-layer optimization, respectively. The key idea underlying the composi-
tional optimization is to exchange the local optimizer’s decision for an informed
selection. This allows us to achieve a balance between global optimization’s full
awareness with high overhead and local optimization’s minimal complexity with
poor solution quality.

The sampling strategy explores the search space of potential solutions by
constraining the behavior of local optimizers in accordance with the other opti-
mizers’ refinement results. Thus, the constraint language can serve as a generic
interface among different local optimizers, leading to improvements of solution
quality and convergence speed. In comparison, a global cross-layer optimizer that
resides at a certain layer that is fully aware of the complex system dynamics can
introduce unacceptable overhead.

A similar strategy can be applied to other optimization techniques (e.g., sim-
ulated annealing [12]). The strict convergence to a single point, however, may
not be achievable in the sense that at each step the intermediate parameter set-
tings may be totally different from the previous iteration. These types of abrupt
and/or constant parameter changes are not desirable in practice. Constraint re-
finement can still undergo constant parameter changes, but with lower impact
since any parameter settings (pi) within the region (Pi) can be chosen, and the
probability that pi is valid after the next iteration (pi ∈ Pi+1) is proportional to
the refinement ratio. We can also easily see that the situation will worsen with
conflicting local objectives.

Our approach is not limited to a specific constraint refinement protocol scheme.
Compositional optimization through constraint refinement enables a controller

A Formal Methodology for Compositional Cross-Layer Optimization 217

to coordinate existing optimizers (possibly distributed) that can accommodate
different objectives by treating them as black boxes, which in turn permits them to
operate in parallel.Different solutions obtained concurrently can be unified by tak-
ing the intersection, which corresponds to the conjunction at the symbolic level.

4.3 Integration of Formal Analysis with System Dynamics

To reflect execution dynamics, the xTune framework performs model refinement
from observed system execution behavior by equipping the controller with a
feedback loop to experiment with the system realization as highlighted in Figure
2. Within our framework, there are two roles for feedback from observation of
system execution behavior: it can be used to improve the model (to make it more
accurately match the real environment) as we presented in [9], and it can also be
used to directly improve the policy. In [9] the formal specification is refined by
replacing timing information with observations from dynamic system execution
either by system realization (e.g., simulator) or real implementation, in order
to more realistically reflect the actual executions characterizing the system in
practice such as data dependent execution times.

5 Sample Application Domains

Here we lay out possible future research directions that we believe can benefit
from model-based compositional cross-layer optimization.

5.1 Networked Cyber-Physical Systems

As elaborated in [18], system control and optimization in networked cyber-
physical systems (NCPS) is a challenging task. Traditional optimization tech-
niques that strive for optimal solutions based on precise models are not suitable
for most real-world problems, where models have many dimensions of uncer-
tainty, and optimality is neither desirable nor achievable. What is needed in
practice are strategies to find acceptable and robust solutions that are sufficient
to achieve the goal while taking into account the limitations of the models and
of the available resources. Capabilities to explore the state space of NCPS have
fundamental limitations. The exploration can be expensive in terms of compu-
tation, and physical actions can be costly in terms of time, energy, and other
resources or even harmful to humans or to the environment.

Furthermore, the overall goal of NCPS cannot be simply decomposed top-
down into goals that are optimized locally at each node and each layer, because
solutions may require cooperation across layers and across nodes. It is important
to keep in mind that even abstract models can be quite complex with multiple
and nonoverlapping regions of potential solutions so that purely local gradient-
based optimization strategies are clearly insufficient. Given that modifications
in parameters (e.g., node position) cannot always be achieved instantaneously,
reaching a new improved solution may require transition through intermediate

218 M. Kim et al.

states with lower utility (e.g., lower performance). The distributed nature of
NCPS, the limited communication capabilities, the uncertainties in the environ-
ment, and the possibility of failures further exacerbate this situation, because
system operation is inherently asynchronous.

On the other hand, NCPS with a large number of nodes offers many ad-
vantages including fault tolerance, distributed sensing, coordinated actions, and
inherent parallelism for computational processes. Technically, a vast range of ca-
pabilities is already available at the hardware level, but the challenge to design a
software architecture that can exploit those capabilities and to present them as
a single cyber-physical system is far from being met. In this regard, [7] provides
a prototype of a distributed logical framework based on the partially ordered
knowledge-sharing model and an API for cyber-physical devices that enables
interaction with the physical world (see http://ncps.csl.sri.com for details).
The proposed API provides a uniform abstraction for a wide range of NCPS
applications, especially those concerned with distributed sensing, optimization,
and control. Using the API with or without a distributed logic, NCPS can be
programmed to adapt to a wide range of operating points between autonomy
and cooperation to overcome limitations in connectivity and resources, as well
as uncertainties and failures [7,17,8]. Along this line of research, our method-
ology can be extended to consider multiple distributed cyber-physical nodes as
local optimizers (horizontal composition in addition to vertical (layered) com-
position). To capture the distributed and heterogeneous nature of NCPS, the
compositional optimization strategies need to be generalized to include com-
position among various local optimizers across layers as well as across nodes,
leading us to distributed cooperative constraint refinement.

5.2 Dependable Instrumented Cyber-Physical Spaces

The ability to integrate sensing and communication platforms with large-scale
distributed storage/computing facilities and software services enables the cre-
ation of instrumented cyber-physical spaces (ICPS). Applications dictate
application-specific constraints on the timeliness and accuracy/quality at which
information must be captured and delivered from the infrastructure. Repur-
posing the infrastructure and its software/hardware resources dynamically to
realize different application functionalities presents challenges. In this context,
it is natural to develop a framework that can customize the operation of ICPS to
meet the varying needs of applications and users, based on an observe-analyze-
adapt philosophy [6]. The xTune formal modeling and analysis framework can
be extended to support specification of properties at both infrastructure and
application levels, including multidimensional QoS properties and the relation-
ships among them. Tuning processes at both the application and infrastructure
levels can use compositional optimization to derive and validate the tuning and
adaptation factors (sensors, policies, parameters).

Among many crosscutting concerns (e.g., security, privacy), let us take an ex-
ample of cross-layer and end-to-end dependability issues. ICPS should be depend-
able despite disruptions/failures in sensing, communication, and computation.

A Formal Methodology for Compositional Cross-Layer Optimization 219

Dependability of ICPS thus includes attributes such as availability, reliability,
maintainability, safety, and integrity [15]. Realizing dependability requires mon-
itoring and management of parameters at different layers of the system. Com-
position of nonfunctional needs such as dependability cannot be addressed in a
single layer or device due to the inherent dependencies/trade-offs among them
(e.g., techniques at any layer to improve dependability usually have implications
on timing and power.). At the infrastructure level, a broad array of devices is in-
terconnected by various communication channels (e.g., Ethernet, cellular, Wi-Fi)
with distributed middleware support to execute cyber-physical applications. We
view each device as a vertically layered architecture consisting of application, mid-
dleware, network, OS, and hardware layers. At each layer, the system can enforce
policies that are (i) independent of other layers, (ii) a vertical composition of poli-
cies on the device across layers, and (iii) a horizontal composition of policies dis-
tributed across nodes.

To illustrate dependability across layers, consider the following example. If
the data has high importance with a short expiration time, the middleware layer
must adjust the frequency of dissemination appropriately. Similarly, CPU slow-
down to control thermal runaway (hotspot) at the hardware layer may increase
deadline misses in the OS task scheduling layer; this anomaly bubbles up to
the application layer and is manifested as a failure to provide up-to-date data.
Furthermore, deadline misses may lead to the delayed delivery of the network
packets, which in turn results in a failure for timely delivery of messages. From a
dependability perspective, both permanent and transient errors need to be mod-
eled and mitigated. For instance, heavy utilization of the device hardware (e.g.,
for peak performance) can result in excessively high temperatures that may cause
thermal errors; to alleviate this, we may trigger task replication or re-execution
at the OS layer. The mitigation strategy might cause packet loss due to buffer
overflow, since it requires more processing time. Under such circumstances, the
dynamic choice of routing algorithms and their parameters needs to consider
higher-layer QoS constraints, (partial) knowledge about the network (e.g., sen-
sor density, coverage), heterogeneous devices (with different error sources), and
operational context (e.g., prioritizing information flow).

5.3 Physical Infrastructure Protection

Physical infrastructure availability relies on the process control systems that can
gather, handle, and share real-time data on critical processes from and to net-
worked entities. For example, wireless sensor networks are now being applied
in the industrial automation to lower systems and infrastructure costs, improve
process safety, and guarantee regulatory compliance. Harsh environments such
as remote areas with potential toxic contamination where mobile ad hoc net-
works can be the only viable means for communications and information access
often necessitate the use of mobile nodes (e.g., surveillance robots with cam-
era and position-changing capability). Optimized control based on continuous
observation is an integral part because availability is becoming a fundamental
concern to reduce the vulnerabilities of such systems.

220 M. Kim et al.

Let us take an example of a surveillance system, consisting of a collection
of sensors deployed at fixed locations together with mobile nodes, that moni-
tors critical national infrastructure by distributed sensing and actuating. Due
to possible jamming attacks and mobility of nodes, the wireless sensors and
mobile nodes need to communicate via opportunistic links that enable the shar-
ing and evaluation of data such as video streams in the presence of unstable
connectivity. The challenge here is enabling networked entities to respond to
dynamic situations in an informed, timely, and collaborative manner so that the
physical infrastructure can safely recover after a cyber-disruption. The idea of
automated verification and configuration of situation- and resource-aware cross-
layer security needs to be investigated since security goals at each layer can be
counterproductive and even harmful.

Furthermore, the implementation of security goals is constrained by the avail-
able resources. Various solutions ranging from event-driven or on-demand power
cycling to reduce transmission power are possible, but the security effects cannot
be understood at a single layer. This is why security should be viewed as a mul-
tidimensional cross-layer objective for which reasonable trade-offs must be found
in a situation- and resource-aware manner. The resources of the wireless sensors
and mobile nodes need to be provisioned to ensure a certain level of security while
avoiding the depletion of residual energy and avoiding congestion. This requires
the dynamic configuration of individual (seemingly independent) techniques to
compose the appropriate protection against attack situations while also mak-
ing optimal use of resources. By supporting specification of security properties
across layers and exploiting the composition methods among them, the response
to cyber-disruption is adapted to the situation and resource constraints.

6 Concluding Remarks

We have elaborated on the need for a unified framework for analyzing, deriv-
ing, and validating cross-layer adaptations for mobile applications operating in
highly dynamic environments. Specifically, we have presented the design princi-
ples and implementation of the xTune framework [19]. We have developed formal
analytical methods for understanding cross-layer optimization issues in mobile
real-time embedded systems that incorporate resource-limited devices, and to in-
tegrate these methods into the design and adaptation processes for such systems.
We have focused on the primary problem of identifying how to tune policies and
parameters for cross-layer adaptation that aims to manage resource usage, and
to satisfy the multifaceted constraints while providing a sufficient level of QoS
with a verifiable/quantifiable solution quality.

We have presented our approach of iterative system tuning for mobile real-
time embedded systems that has been applied in a case study treating the video-
phone mode of a multimode multimedia terminal. The integration of lightweight
formal methods with the observation of dynamic system execution results in
a feedback loop that includes the formal models, simulation, and monitoring of
running systems. Within the xTune framework, we proposed compositional cross-
layer optimization to achieve robust and sufficiently good parameter settings

A Formal Methodology for Compositional Cross-Layer Optimization 221

with low overhead by coordinated interaction among local optimizers through
refinement of constraints that can be used further as a basis of local optimization.

The underlying formal executable models are moderately simple to develop,
and their analysis is feasible. The experiments on a fairly complex case study
demonstrate the applicability of our framework to cross-layer adaptation of mo-
bile real-time embedded systems. The work on xTune complements our previous
work on experimentally based cross-layer strategies (FORGE [3]) and conclu-
sively shows that the xTune framework provides a uniform methodology for
deriving, analyzing, and validating cross-layer adaptation.

The xTune framework essentially combines simulation, monitoring, and ex-
ecution with formal methods. Lightweight formal analysis seems sufficient for
multimedia applications in general. However, in the presence of mission-critical
applications, context awareness and situation awareness (e.g., live video feed
should be undisturbed in case of emergency evacuation) need to be further ex-
plored. Even though our current study using the xTune framework has produced
encouraging results, the discussions in Section 5 present strong motivation for
future work as mentioned in the sample application domains.

References

1. Agha, G., Meseguer, J., Sen, K.: PMaude: Rewrite-based specification language
for probabilistic object systems. In: 3rd Workshop on Quantitative Aspects of Pro-
gramming Languages, QAPL 2005 (2005)

2. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. How to Spec-
ify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer,
Heidelberg (2007)

3. Forge Project, http://forge.ics.uci.edu
4. Hua, S., Qu, G., Bhattacharyya, S.S.: Energy reduction techniques for multimedia

applications with tolerance to deadline misses. In: Proceedings of the 40th Confer-
ence on Design Automation (DAC 2003), pp. 131–136 (2003)

5. Kim, M., Dutt, N., Venkatasubramanian, N.: Policy construction and validation
for energy minimization in cross layered systems: A formal method approach. In:
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS
2006) Work-in-Progress Session (2006)

6. Kim, M., Massaguer, D., Dutt, N., Mehrotra, S., Ren, M.-O.S.S., Talcott, C.,
Venkatasubramanian, N.: A semantic framework for reconfiguration of instru-
mented cyber physical spaces. In: Workshop on Event-based Semantics (WEBS
2008), CPS Week (2008)

7. Kim, M., Stehr, M.-O., Kim, J., Ha, S.: An application framework for loosely-
coupled networked cyber-physical systems. In: 8th IEEE/IFIP Int. Conf. Embed-
ded and Ubiquitous Computing, EUC 2010 (2010)

8. Kim, M., Stehr, M.-O., Talcott, C.: A distributed logic for networked cyber-physical
systems. In: IPM Int. Conf. Fundamentals of Software Engineering, FSEN 2011
(2011)

9. Kim, M.-Y., Stehr, M.-O., Talcott, C., Dutt, N., Venkatasubramanian, N.:
Combining Formal Verification with Observed System Execution Behavior to Tune
System Parameters. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007.
LNCS, vol. 4763, pp. 257–273. Springer, Heidelberg (2007)

222 M. Kim et al.

10. Kim, M.-Y., Stehr, M.-O., Talcott, C., Dutt, N., Venkatasubramanian, N.:
A Probabilistic Formal Analysis Approach to Cross Layer Optimization in Dis-
tributed Embedded Systems. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS
2007. LNCS, vol. 4468, pp. 285–300. Springer, Heidelberg (2007)

11. Kim, M., Stehr, M.-O., Talcott, C., Dutt, N., Venkatasubramanian, N.: Constraint
refinement for online verifiable cross-layer system adaptation. In: Design, Automa-
tion and Test in Europe Conference and Exposition, DATE 2008 (2008)

12. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science (4598), 671–680 (1983)

13. Mohapatra, S., Cornea, R., Oh, H., Lee, K., Kim, M., Dutt, N.D., Gupta, R.,
Nicolau, A., Shukla, S.K., Venkatasubramanian, N.: A cross-layer approach for
power-performance optimization in distributed mobile systems. In: IEEE 19th In-
ternational Parallel and Distributed Processing Symposium, IPDPS 2005 (2005)

14. Mohapatra, S., Dutt, N., Nicolau, A., Venkatasubramanian, N.: Dynamo: A cross-
layer framework for end-to-end QoS and energy optimization in mobile handheld
devices. IEEE Journal on Selected Areas in Communications 25(4), 722–737 (2007)

15. IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance,
http://www.dependability.org/wg10.4/

16. Sen, K., Viswanathan, M., Agha, G.: Statistical Model Checking of Black-Box
Probabilistic Systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 202–215. Springer, Heidelberg (2004)

17. Stehr, M.-O., Kim, M., Talcott, C.: Toward Distributed Declarative Control of
Networked Cyber-Physical Systems. In: Yu, Z., Liscano, R., Chen, G., Zhang, D.,
Zhou, X. (eds.) UIC 2010. LNCS, vol. 6406, pp. 397–413. Springer, Heidelberg
(2010)

18. Stehr, M.-O., Talcott, C., Rushby, J., Lincoln, P., Kim, M., Cheung, S., Poggio, A.:
Fractionated software for networked cyber-physical systems: Research directions
and long-term vision. In: Agha, G., Danvy, O., Meseguer, J. (eds.) Festschrift to
the Honor of Carolyn Talcott. LNCS, vol. 7000, pp. 111–144. Springer, Heidelberg
(2011)

19. xTune Framework, http://xtune.ics.uci.edu
20. Younes, H.: Ymer: A statistical model checker. In: Etessami, K., Rajamani, S.K.

(eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005),
http://www.tempastic.org/ymer

21. Yuan, W., Nahrstedt, K.: Energy-efficient soft real-time CPU scheduling for mobile
multimedia systems. In: 9th ACM Symposium on Operating Systems Principles
(SOSP 2003), pp. 149–163. ACM Press (2003)

22. Yuan, W., Nahrstedt, K., Adve, S.V., Jones, D.L., Kravets, R.H.: Grace-1:
Cross-layer adaptation for multimedia quality and battery energy. IEEE Trans-
actions on Mobile Computing 5(7), 799–815 (2006)

From Service Identification to Service Selection:

An Interleaved Perspective

Devis Bianchini1, Francesco Pagliarecci2, and Luca Spalazzi2

1 Dipartimento di Ingegneria dell’Informazione
Universita’ degli Studi di Brescia, Via Branze, 38, 25123 Brescia

bianchin@ing.unibs.it
2 Dipartimento di Ingegneria Informatica, Gestionale e dell’Automazione
Universita’ Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona

{pagliarecci,spalazzi}@univpm.it

Abstract. Business process implementation can be fastened by identi-
fying component services that can be used to implement one or more
process tasks and by selecting them from a repository of already im-
plemented services. In this paper, we provide an iterative procedure to
address this issue, by combining the two macro-phases of service identi-
fication and service selection. Starting from a workflow-based specifica-
tion of the business process, service identification is firstly executed. The
result of this phase is a decomposition tree, where basic process tasks
are progressively organized into sub-processes (the candidate services)
by applying an agglomerative clustering algorithm, based on cohesion
and coupling metrics. Within the decomposition tree, a set of candidate
services that minimize the coupling/cohesion ratio for the overall pro-
cess is chosen. The service selection phase works on this decomposition
and looks for available services. If the service selection phase fails for
some candidate services, a revised set of candidate services is selected by
leveraging on the decomposition tree.

1 Introduction

Business process implementation can be fastened by identifying component ser-
vices that can be used to implement one or more process tasks and by selecting
them from a repository of already implemented services. Service identification is
a debated topic in the recent literature. It is defined as a procedure which starts
from the business process specification and decomposes it into candidate com-
ponent services, that can be used to implement one or more process tasks [1,4].
Candidate services can be either retrieved among existing ones or implemented
from scratch. According to this perspective, service identification comes before
service selection or service implementation and precedes service invocation and
deployment. Service identification and service selection are mainly considered as
distinct phases, sequentially executed.

In this paper, we investigate a different perspective, where the service identifi-
cation and selection phases are more interleaved. Starting from the methodology

G. Agha, O. Danvy, and J. Meseguer (Eds.): Talcott Festschrift, LNCS 7000, pp. 223–240, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

224 D. Bianchini, F. Pagliarecci, and L. Spalazzi

presented in [4], service identification is firstly executed. The result of this phase
is a decomposition tree, where basic process tasks are progressively organized
into sub-processes (the candidate services) by applying an agglomerative clus-
tering algorithm, based on cohesion and coupling metrics inspired by analogous
metrics in the software engineering field. Within the decomposition tree, a set
of candidate services that minimize the coupling/cohesion ratio for the overall
process is chosen. The service selection phase starts from this decomposition and
looks for available services. If the service selection phase fails for some candi-
date services, a feedback is propagated back to the service identification phase,
that proposes a revised set of candidate services by relying on the decomposition
tree. The result is a business process decomposition that takes into account both
given guidelines for service design, such as high cohesion and low coupling (to-be
perspective) and concrete services actually available and already implemented,
among which candidate services must be selected (as-is perspective). The main
contribution of this paper is the proposal of the decomposition tree structure
and of an algorithm based on the tree to enable a combined application of the
service identification and selection phases.

The paper is organized as follows: in the next section some related work are
discussed; in Section 3 we present the problem statement with the help of an
application scenario; Section 4 briefly introduces the semantic annotation of
processes; Section 5 summarizes the service identification phase and introduces
the decomposition tree; Section 6 describes the service selection phase; Section 7
describes the iterative combination of the two phases; finally, Section 8 closes
the paper.

2 Related Work

Service indentification. Ghosh et al. [14] listed three kinds of service identifica-
tion approaches:

– top-down, also known as domain decomposition, which focuses on analy-
sis of business domains and business process modeling to identify services,
components and flows; key elements are the business entities and business
functionalities and roles responsible for those entities; process modeling and
decomposition offer also the opportunity not only to identify services, but
also the service flows that will be used to orchestate them;

– bottom-up, IT-centric approach focusing on discovery and characterization
of existing IT assets and services; quantitative metrics such as cohesion,
coupling, service reusability are used to evaluate the quality of existing assets
and, eventually, to perform reengineering strategies;

– meet-in-the-middle, referred to as goal-service modeling, where a generalized
statement of business goals relevant to the scope of the business process
is decomposed into subgoals that must be met by existing IT assets and
services.

From Service Identification to Service Selection: An Interleaved Perspective 225

In [29] a top-down methodology in which several methods are combined in
order to identify services starting from the analysis of organizational domain
and processes is proposed. Authors guide the service designer by suggesting the
order through which the different techniques should be used and provide some
tips for the evaluation of the results. In [18] authors define a set of heuristics
to support service identification, but do not propose any quantitative models to
efficiently support the analysis.

Examples of bottom-up approaches have been described in [15,23,28,30]. In [30]
the authors design and execute business processes by using Web services. To de-
fine a Web service as part of a process, the main issue is the identification of the
actual Web services that match the specification of the designer. Furthermore,
taking a conceptual modeling approach, the relationships between ontology con-
cepts and syntactic Web services should be identified. The enrichment of the
process description is also addressed by [15], in which authors state that busi-
nesses lack a machine readable representation of their process space as a whole
on a semantic level. They explain how the use of an appropriate language (i.e.,
WSMO) can provide a unified view on business processes in a form that allows
querying process spaces by logical expressions and easily link process activities
to services. In [23] an abstract process represents a Web process whose control
and data flow are defined at design time, but the actual services are not chosen
until run-time. Run-time service selection can be automated with the semantic
representation of the knowledge of the domain experts in ontologies and rules
(semantic Web processes). In [28] the notion of process template is introduced.
Process templates are reusable business process skeletons that are devised to
reach particular goals and are made up of states and transitions. A state corre-
sponds to the execution of a service (called component service) that is member
of a Web service community. A community is a collection of services with a com-
mon functionality, but different non functional properties such as different QoS
parameters, that are exploited to select the most suitable service at run-time.

The recommendation given in [14] is to follow a meet-in-the-middle strategy.
The last step is a service refactoring and rationalization step, based on the Ser-
vice Litmus Test. The refactoring is performed by grouping lower-level services
that have some kind of logical affinity. Subsequently, the SLT (rationalization) is
applied as a set of criteria to resolve whether a candidate service should be ex-
posed, based on the evaluation of business alignment, composability, externalized
service description, redundancy elimination. However, bottom and meet-in-the-
middle strategies are especially useful in environments where component services
are relatively fixed and processes are designed on the basis of the available ser-
vices.

Service lifecycle is thoroughly presented in [26], which discusses how business
processes should be described so that services can be properly identified and pro-
vides strategies and principles regarding functional and non-functional aspects
of Web service design. Furthermore, in [25] authors propose a methodology that
aims at defining a foundation of development principles for Web services based
on which business processes can be assembled into business scenarios. Birkmeier

226 D. Bianchini, F. Pagliarecci, and L. Spalazzi

et al. [5] classify existing approaches for systematic service identification along
a series of dimensions that include availability of procedural guidelines, develop-
ment direction (top-down, bottom-up, meet-in-the-middle), use of quantitative
techniques, metrics to evaluate the phases of service identification procedure,
tool support, quality assessment and validation techniques. The result of the
analysis given in [5] asserts that none of the existing approaches fulfills all the
criteria.

Service Selection. Service-Oriented Architectures follow the find-bind-execute
paradigm in which service providers register their services in public or private
registries, which clients use to locate web services. Service selection mechanisms
plays an essential role in Service-Oriented Architectures, because most of the
applications want to use services that accurately meet their requirements. The
increasing availability of Web services that offer similar functionalities with dif-
ferent characteristics increases the need for more sophisticated selection pro-
cesses to match user requests. Most of the existing techniques rely on syntactic
descriptions of service interfaces to find web services with disregard to non-
functional service parameters. Previous research demonstrates how this situa-
tion generates major problems [20,22]. To solve some of problems, Web service
descriptions are enhanced with annotations of ontological concepts, semantic
matching and by considering non-functional properties (NFPs) [8,9]. Several
QoWS based service selection techniques have been investigated [34,33]. The
service selection problem is investigated in [34] by using a combinatorial model
and a graph model. In [33], a formal service model is defined and then a dynamic
programming based approach is proposed to select the best service providers.

Our Contribution. With respect to existing approaches, we follow a meet-in-the-
middle perspective where the service identification phase is strictly related to the
service selection one. In particular, the decomposition tree structure proposed in
this paper is meant to enable a better interaction of these phases, ensuring the
maximal exploitation of existing implemented services from one hand and the
selection of a set of services that are featured as much as possible by high cohesion
and low coupling, according to recommended guidelines in the literature.

3 Problem Statement

Processes are usually expressed using a workflow-based notation (e.g., BPMN [7]),
independent from implementation technologies and platforms. A business pro-
cess BP can be represented as a set of simple tasks, combined through control
flow structures (e.g., sequence, choice, cycle or parallel) and specified through
the performed operations and I/O data flow between them. We define an I/O
parameter as a pair 〈n,P〉, where n is the I/O name and P = {pi} a set of I/O
properties. Collaborative business processes are designed as processes spanning
over different actors. Actors are represented as abstract entities that interact

From Service Identification to Service Selection: An Interleaved Perspective 227

each other as responsible of one or more simple tasks. Beyond the platform-
independent implementation of the collaborative business process BP , we con-
sider a repository of implemented services S, represented at the process level
(based on BPEL) with minimal semantic annotations and a language that can
express requirements on the behavior of the service that has to be selected. The
business process BP can be decomposed into a set of subprocesses S, that can
be totally or partially implemented through the services in the repository. Let’s
denote with S′ the subprocesses which can be implemented through one of the
services in the repository. The problem we address in this paper is the iden-
tification of the set S such that the exploitation of the available services S in
the repository is maximized, that is: S′⊆S and it does not exist another S′′⊆S
such that S′⊆S′′ (Constraint 1). The set S′ is the maximum set of component
services which have a corresponding service implemented in the repository. On
the other hand, as highlighted in [4], component services are a particular kind of
sub-process, where the following properties hold: (i) services are self-contained
and interact each other using decoupled message exchanges, that is, present high
cohesion and low coupling (Constraint 2); (ii) each service is the minimal set of
tasks that performed together create an output that is a tangible value for one
of the actors involved in the overall process execution (Constraint 3). A value
has been defined as an intermediary process output that is not used as input of
another task of the same actor in the process (for example, in the considered
case study, the invoice issued by the external supplier is a value for the retailer).
All the constraints 1, 2 and 3 must be pursued as much as possible.

As a case study, we consider an application from the computer supplying
domain. A computer retailer receives computer orders and, after their approval,
generates the bill of materials (BOM) and sends orders for components to his/her
suppliers. Some suppliers have an arrangement with the retailer, while other
suppliers are external to the retailer business network. The procedure to order
components is different depending on the type of the suppliers. In
particular, for external ones, an invoice is prepared and sent to the retailer.
After receiving all the components, the retailer assembles the computer, pre-
pares the final invoice and ships the product to the client. The described process
is shown in the upper part of Figure 1. In the process, different candidate com-
ponent services can be identified taking into account quality criteria such as
internal service cohesion and coupling between distinct services [31]. Among the
identified component services, redundancies can be detected. For example, the
{OrderComponent,ShipComponent} and the {SalesOrder} subprocesses per-
form similar functionalities and can be implemented by the same service. After
identification, candidate services must be selected from a repository of avail-
able ones. The decomposition shown in Figure 1 not always reflects the services
available in the repository. For example, if the {IssuePurchase,Approved} sub-
process cannot be found as an implemented service in the repository, an efficient
procedure is necessary to relax the decomposition with respect to high cohesion
and low coupling criteria, by further splitting the considered process (this could
decrease coupling) or by aggregating it with other tasks (this could decrease

228 D. Bianchini, F. Pagliarecci, and L. Spalazzi

Fig. 1. Running example

cohesion) in order to find services in the repository which implement the new
subprocess. In the following, we describe how the identification and selection
phases are performed and how they interact to address these issues.

4 Semantic Annotation of Business Processes

Automatic service identification and selection require that both the business
process BP (represented using BPMN) and the services S in the repository
(represented using BPEL) are semantically described. We do this by extending
the BPMN and BPEL with semantic annotations.

The semantics of the application domain is formally modelled as a Domain
Ontology and, following the mainstream, this ontology is described by means of
a language belonging to the Description Logic family [2]. In this work it has been
used a subset of wsml [32], namely wsml-core that is a subset of SHIQ(D).
The ontology consists of all the terms that can be used and are relevant for the
application domain to be modeled. It should be a unique, commonly accepted
formalization of the given domain. This is indeed a strong assumption, but it
is supported by the recent trend. As a matter of fact, several companies and
organizations have already defined standard ontologies for some specific domains

From Service Identification to Service Selection: An Interleaved Perspective 229

(e.g. airline and travel companies [24], economics and accounting [17], cultural
heritage information [16], geopolitical information [13]) or are defining them
(e.g. railway systems [19]). Nevertheless, many organizations have their own
ontologies. Therefore, a problem of ontology matching or ontology integration
arises. In the field of Artificial Intelligence, these problems have received a great
deal of attention, but they are out of the scope of this paper. In the rest of the
paper it is assumed that there is just one shared domain ontology.

The semantic annotations to link Functionality and Behavior of a given busi-
ness process or service with ontology elements (wsml) are defined according to
the Semantic Web Service Annotation Language (swsal) proposed in [10,11].
The language is based on XML and the links are represented by means of xpath
expressions. From a theoretical point of view, it belongs to the assertional part
of a Description Logic. This approach has several advantages. First of all, it
preserves the original syntax of standard languages as BPMN or BPEL, thus
allowing the service description to be compatible with the most popular devel-
opment environments. Second, swsal can be easily extended to semantically
annotate any kind of xml-based process or service description language, e.g.
ws-cdl, ws-policy, and so on. Third, swsal allows to annotate only what it is
needed. Finally, as presented in [6], it has been developed a plug-in for Eclipse
that allows to perform the annotation by means of a graphical interface. This
tool allows to load and browse an ontology, to draw a bpel or bpmn diagram,
and to annotate them by means of a “drag-and-drop” action.

5 Service Identification

A service identification methodology, called P2S (Process-to-Services) method-
ology, has been extensively described in [4]. The core phases of the P2S method-
ology are the following:

– semantic process annotation - in a distributed heterogeneous environment,
where different IEs provide independently developed process representations,
business process elements (inputs and outputs, task names) must be seman-
tically annotated with concepts extracted from shared ontologies;

– identification of candidate services - candidate component services must be
identified ensuring the same decomposition granularity, thus enabling better
service comparison for sharing and reuse purposes;

– reconciliation of similar services - component services must be clustered on
the basis of the similarity of their tasks and I/O data, in order to identify
similar services on different processes and enable the design of reusable com-
ponent services (for example, the {OrderComponent,ShipComponent} and
the SalesOrder subprocesses in the application scenario).

In particular, to enable homogeneous identification of services by analyzing pro-
cess description, the identification of candidate services is performed in two steps:
(i) value-based candidate service identification, in which value exchanges are

230 D. Bianchini, F. Pagliarecci, and L. Spalazzi

identified throughout the process flow and the process is split into a prelimi-
nary list of candidate services; (ii) refinement of process decomposition through
service cohesion/coupling evaluation. The goal of the P2S methodology was to
support the identification of candidate services to guide their design according
to best granularity, cohesion, coupling and reuse criteria. The result was a port-
folio of identified services, to be discovered among available ones within public
or private registries or to be developed from scratch. Therefore, the perspective
of the P2S methodology is the one of a top-down approach, according to the
definition given in Section 2.

In this paper, we work under a different perspective, where we try to exploit
the set of concrete services actually available and already implemented, among
which identified services must be selected, ensuring at the same time as much as
possible the guidelines for service design suggested by the P2S methodology. Our
perspective in this paper is a meet-in-the-middle one, where we will relax the
optimal decomposition of the original business process to meet the real availabil-
ity of concrete services. To this aim, we will rely on a decomposition structure,
called decomposition tree, based on cohesion and coupling metrics: this structure
will guide the service selection phase which will follow the service identification
one. Hereafter, we will focus on the cohesion and coupling evaluation. Value-
based analysis and reconciliation of similar services, that are core phases of the
P2S methodology, can be integrated with the phases described in this paper as
well, but are not addressed here and are left as future work. We proceed now by
summarizing the cohesion and coupling metrics detailed in [4].

5.1 Cohesion and Coupling Evaluation

As for the P2S methodology, the business process must be semantically anno-
tated to identify correspondences among heterogeneous task names and I/Os.
The ontological (semantics) part of the specification is expressed here by means
of semantic annotations written in swsal [10], as explained in Section 4.

As explained above, actors participating in the collaborative business process
agree on a common Domain Ontology, that provides atomic concept definitions
and equivalence/subsumption relationships between them. However, in a dis-
tributed and heterogeneous environment, local terms used by different actors for
business process elements do not necessarily coincide with atomic concepts in the
Domain Ontology or they may suffer from terminological discrepancies (e.g., syn-
onymies or homonymies). To solve these heterogeneities, the Domain Ontology is
extended with a Thesaurus, extracted from a lexical system (e.g., WordNet [12]),
where terms are related each other and with the names of ontological concepts
by means of terminological relationships. A weight σrel ∈ (0, 1] is associated with
each kind of relationship. The following terminological relationships are defined:
(i) synonymy (syn), with σSY N = 1.0, established between two terms that can
be used in an interchangeable way in the process (e.g., ShippingAddress syn

Address); (ii) narrower/broader term (bt/nt), with σBT/NT = 0.8, established
between a term n1 and another term n2 that has a more generic (resp., spe-
cific) meaning (e.g., InvoicedQuantity nt Quantity); (iii) related term rt,

From Service Identification to Service Selection: An Interleaved Perspective 231

with σRT = 0.5, established between two terms whose meaning is related in
the considered application scenario (e.g., Order rt Invoice). In [3] techniques
apt to guide the process designer in the construction of the Thesaurus and its
combined use with a Domain Ontology are detailed. Starting from process de-
scriptions, it is possible to make semantic analysis in order to identify similarity
correspondences between inputs requested in a given task and outputs provided
in another task. These correspondences are the basis for the identification of
component services. Specifically, ontological and terminological relationships are
used to define different kinds of affinity functions applied to process elements,
as formally defined in Table 1.

Table 1. Name and structural affinity coefficients

Name affinity function

NAff(n1, n2) =

⎧
⎨

⎩

1 if n1 = n2
maxm(ρ(n1 →m n2)) if n1 �= n2 ∧ maxm(ρ(n1 →m n2)) ≥ α
0 otherwise

where α is an affinity threshold, that is used to filter out names with high affinity values
Structural affinity function

SAff(d1, d2) = 1
2 ·

[

NAff(n1, n2) +
2· ∑

p1,p2
NAff(p1,p2)

|P1|+|P2|

]

∈ [0, 1]

where d1 = 〈n1, P1〉 and d2 = 〈n2,P2〉 (either input or output of simple tasks)

Definition 1 (Name Affinity). Given two terms n1 and n2 used as names
of I/O parameters, I/O properties or process tasks, the Name Affinity NAff
between n1 and n2 is defined on the basis of the existence of a path of m termi-
nological relationships between n1 and n2, denoted with n1 →m n2. In particular,
NAff is based on the strength of the path n1 →m n2, denoted with ρ(n1 →m n2),
computed as the product of the weights associated to the relationships belonging
to the path itself.

Definition 2 (Structural Affinity). Given a pair of I/O parameters d1 =
〈n1,P1〉 and d2 = 〈n2,P2〉, the Structural Affinity function combines the affinity
between the I/O names with the affinity between each pair of properties p1 ∈ P1

and p2 ∈ P2, as shown in Table 1.
The total Structural Affinity AffTOT (D1, D2) between two sets of I/O data

D1 and D2 is defined as the sum of Structural Affinity for each pair of items
d1 ∈ D1 and d2 ∈ D2, normalized with respect to the cardinality of D1 and D2.

Name and Structural Affinity are the basis for evaluating the tasks cohesion and
coupling. The adopted cohesion/coupling metrics have been inspired by their
well-known application in software engineering field [21,31]. They have been
detailed in [4] and are summarized in Table 2. The cohesion coefficient evaluates
how much tasks within a single service contribute to obtain a service output.
The coupling coefficient evaluates how much tasks belonging to different services
need to interact.

232 D. Bianchini, F. Pagliarecci, and L. Spalazzi

Table 2. Cohesion and coupling coefficients

Task dependency coefficient

τ(ti, tj) =

⎧
⎪⎪⎨

⎪⎪⎩

AffT OT (OUT (tj), IN(ti))) if tj �→ ti

AffT OT (IN(tj), OUT (ti))) if ti �→ tj
AffT OT (IN(ti),IN(tj)))+AffT OT (OUT (ti),OUT (tj)))

2 if ti||tj

0 otherwise

where: ti �= tj , ti �→ tj means that there is a data dependency from ti to tj (see [4] for a formal
definition of data dependency between tasks) and ti||tj means that ti and tj are executed in two
parallel branches of the business process.
Service cohesion coefficient

coh(S) =

{

2 ·
∑

i,j τ(ti,tj)
|S|·(|S|−1) ∀ ti, tj ∈ S |S| > 1

1 |S| = 1

where |S| is the number of tasks in S
Service coupling coefficient

coup(S1,S2) =

∑
i,j τ(ti,tj)
|S1|·|S2| ∀ ti ∈ S1 ∧ tj ∈ S2, S1 �= S2

5.2 Decomposition Tree

Starting from the definition of tasks cohesion and coupling, our identification
methodology applies an agglomerative clustering of tasks according to their cou-
pling. The result is a decomposition tree (DT), where leaves are single tasks and
intermediate nodes are subprocesses collecting tasks which present high coupling.
The decomposition tree is constructed as follows. The agglomerative clustering
algorithm starts from the single tasks that are the leaves of the tree and merges
first those tasks that present the highest coupling. Merging at intermediate lev-
els is performed similarly: two subprocesses are merged if these are two tasks,
one from the first subprocess and one from the second subprocess, which present
the highest coupling. Merging continues until all the tasks are grouped together,
that is, the root of the tree represents the overall process. The decomposition
tree for the running example is shown in Figure 2 and can be formalized as
follows.

Definition 3 (Decomposition Tree). A decomposition tree DT is defined as

DT = 〈r, Σ, Λ〉 (1)

where r is the root of the decomposition tree, that is, the initial collaborative

business process BP , Σ is the set of all the tree nodes, which are possible sub-
processes of BP , Λ = Σ×Σ is a set of edges between the tree nodes, such that
(S1,S2)∈Λ means that S2 is a subprocess of S1 or, equivalently, S1 is decomposed,
amongst the others, into S2.

From Service Identification to Service Selection: An Interleaved Perspective 233

Fig. 2. Decomposition tree for the running example

The nodes of the decomposition tree are all potential services that could be
identified. Given a decomposition of the business process BP , we define the
coupling/cohesion ratio Γ as

Γ =
pcoup(BP)
pcoh(BP)

=

∑
i,j coup(S1,S2)

|BP |·(|BP |−1)
∑

i coh(Si)

|BP |
=

∑
i,j coup(S1,S2)

(|BP | − 1)
∑

i coh(Si)
(2)

where |BP | represents the actual number of candidate component services in
the process. The best decomposition presents the minimum value for Γ . Each
time a node in the decomposition tree is decomposed into its children, there is
a variation in the ratio Γ . We define a Weighted Decomposition Tree WDT as
a decomposition tree where each node is weighted with the variation of ratio Γ
caused by the split of the node into its children.

Definition 4 (Weighted Decomposition Tree). A Weighted Decomposition
Tree WDT obtained starting from a DT = 〈r, Σ, Λ〉 is defined as follows:

WDT = 〈r,WΣ, Λ〉 (3)

where WΣ = �×Σ; given an element 〈w,S〉∈WΣ, w is the delta of ratio Γ
associated to the decomposition of S∈Σ. The leaves nodes are associated to a
weight w=0, since they cannot be further decomposed.

234 D. Bianchini, F. Pagliarecci, and L. Spalazzi

Fig. 3. Weighted decomposition tree for the running example

Figure 3 shows the WDT associated to the DT in Figure 2. A negative weight
means that the split of the node into its children decreases the ratio Γ . For
example, if the mode S4567 is split into its children S45 and S67 the ratio Γ is
decreased by 0.25. A positive weigth means that the split of the node into its chil-
dren increases the ratio Γ . If the children are aggregated into their parent node,
the variation of the ratio Γ is equal to the weight associated to the parent node
considered with negative sign. For example, if nodes S45 and S67 are aggregated
to form S4567, the ratio Γ is equal to -(-0.25), that is, Γ is increased by 0.25. The
best set of candidate component services (highlighted through a dashed line in
Figure 3) is identified by the P2S methodology by minimizing the ratio Γ . In the
following, we will show how this optimal solution can be relaxed by exploiting the
structure of WDT to take into account the real availability of implemented ser-
vices to be selected. Decisions on how to move throughout the WDT are made
taking into account the weights associated to the nodes of the tree.

6 Service Selection

Generally speaking, service selection consists in finding, among a set of services,
the service that satisfy certain requirements. This problem can be considered
by two different perspectives: a functional perspective and a structural (process
level) perspective. According to the functional perspective, each service is de-
scribed by its functionality and quality of service, its preconditions and effects,

From Service Identification to Service Selection: An Interleaved Perspective 235

its input and output. Unfortunately, this knowledge is not enough to under-
stand whether a given service can be used to implement a certain business (sub-
)process. Indeed, that process is known only through its behavior. According to
the structural (process level) perspective, each service is described in terms of its
structure, its “behavior”; i.e. in terms of state transitions or activities performed.
This is a sort of white-box description. This perspective starts from the obser-
vation that processes are stateful (each action depends on the state where the
process is), their behavior may be nondeterministic (e.g. the search for an item
to add to the cart may fail), and they may exchange messages asynchronously.
Taking into account the above observations, our approach is therefore based on
the following key ideas:

Specification - the requirements about the behavior is expressed by means of
a bpmn diagram where tasks are semantically annotated (Section 4). This
language allows a user to specify which tasks a service must implement and
in which order they must be executed. Notice that this introduce a partial
order relationship among tasks. Indeed, with such a kind of requirement, a
user states that it does not care what the service to select does between a task
and another one. This requirement can be easily (automatically) translated
into a temporal logic specification. In our approach, we use the Computation
Tree Logic (ctl) enriched with (concept and role) assertions of a Description
Logic (assertions are used instead of atomic propositions as in the traditional
ctl). This logic is called Annotated ctl (anctl) [27].

Service - service behavior is represented by means of the bpel language where
activities are semantically annotated (Section 4). This service behavior can
be easily (automatically) modeled as a state transition system with semantic
annotation. This kind of model is called Annotated State Transition Systems
(asts) [27].

Semantic Model Checking - The problem of verifying whether a service (mod-
eled as an asts) satisfies a specification (represented by an anctlformula)
can be solved by means of the algorithm of Semantic Model Checking that
has been defined in [27]. This algorithm has been proved to be sound and
complete. Its complexity depends on the expressiveness of the description
logic that has been used and ranges from Ptime to coNP.

As a consequence, the input of a selection problem consists of (1) a domain
ontology (denoted by T), (2) a set of annotated services described by means of
their behavior, and (3) a specification, represented by the (annotated) process
that must be implemented by the selected service. Formally, this problem can
be defined as follows:

Definition 5 (Selection Problem). Let S1, . . . ,Sn be a set of services an-
notated according to the same terminology T . Let S be a process. Let φ(S) the
anctl formula derived by S. Then the process-level service selection problem,
denoted by σS(S1, . . . ,Sn), is the problem of finding an annotated service Si

such that
Si |= φ(S).

236 D. Bianchini, F. Pagliarecci, and L. Spalazzi

Notice that, φ(S) is obtained by the description of S by means of appropri-
ate translation rules, where S is represented as bpmn process. Consider that,
basically, a bpmn process is a diagram with activities: atomic tasks and sub-
processes; and control structures: sequence, choice (called decision gateway),
fork (called parallel gateway), and iterations. Therefore, the translation rules to
derive the related anctl formula are reported in Figure 4. The translation rules

1. Let t be an atomic task. Let ann(t) be the set of semantic annotations
denoting the situation after the execution of t.
Then φ(t) = AFann(t).

2. Let a1; a2 be the sequence of two activities a1 and a2.
Then φ(a1; a2) = AG(φ(a1) → AFφ(a2)).

3. Let a1 ∪ a2 be the decision gateway for two activities a1 and a2.
Then φ(a1 ∪ a2) = EFφ(a1) ∧ EFφ(a2).

4. Let a1||a2 be the parallel gateway for two activities a1 and a2.
Then φ(a1||a2) = AF(φ(a1) ∧ φ(a2)).

5. Let a∗ be the iteration of activity a.
Then φ(a∗) = AFφ(a).
Notice that φ(a) must be an invariant, i.e. it must hold at each step of the
iteration.

Fig. 4. Rules for deriving an anctl formula from a bpmn file

of Figure 4 are sound, as stated by the following lemma:

Lemma 1. Let S be a process. Let φ(S) be the related anctl formula derived
according to the rules of Figure 4. Then

S |= φ(S).

Proof (Hint).
This is a straightforward consequence of the operational semantics of a bpmn

process (represented as a Kripke structure) and the semantics of anctl [27].

At this point, it is possible to apply the sound and complete semantic model
checking algorithm defined in [27] to a given service Si in order to verify whether
it satisfies the specification φ(S) (this is denoted as Si � φ(S)). If so, that service
can be considered a solution for the selection problem. This result is based on
the following theorem.

Theorem 1 (Selection). Let σS(S1, . . . ,Sn) be a selection problem. Let Si be
a service such that

Si � φ(S).

Then Si is a solution for the selection problem.

Proof (Hint)
This is a strightforward consequence of the soundness and completeness theorem
for the semantic model checking algorithm reported in [27].

From Service Identification to Service Selection: An Interleaved Perspective 237

Algorithm

input : Δ = Σ − Φ /* Set of not found services */
output: Φ′ /* Set of found services */

{ Φ′ := Φ;
while Δ �= ∅ do
{ Υ := ∅; /* Set of services to be found */

for each S ∈ Δ
{ Ψ(S) := ∅; /* Set of siblings of service S */
Ω(S) := ∅; /* Set of not found siblings of service S */
Ψ(S) := SIBLING(S);
if (Ψ(S) �= ∅) ∧ (γp > γc) do
{ for each ψ ∈ Ψ

if ψ ∈ Δ do Ω(S) := Ω(S)
⋃{ψ};

if (Ω(S) ≡ Ψ(S)) ∧ (Ω(S) ⊆ Δ) do
{ Υ := Υ

⋃
PARENT(S);

Δ := Δ−Ω(S) }
}
else if ¬ LEAF(S) ∧ (γp < γc) do
{ Υ := Υ

⋃
CHILDREN(S);

Δ := Δ− {S} }
}
SELECTION(Υ)
{ Φ′ := Φ′ ⋃Φ;
Δ := Υ − Φ }

}
return Φ′

}

Fig. 5. The algorithm

7 Feedback Strategy

The output of service identification phase is the list of candidate component
services which minimize the ratio Γ and the weighted decomposition tree. In
our scenario, the candidate component services are Σ = {S01, S2, S3, S45, S67,
S89}, as shown in the tree in Figure 3.

We use the bpmn workflow and the semantic annotations introduced in Sec-
tion 4 to generate semantically annotated BPMN specifications of candidate
component services, that we use to check if there is an implemented service in
the repository which satisfies each specification (by applying the selection pro-
cedure presented in Section 6). If the Semantic Model Checking fails for some
specifications, the algorithm proposed in Figure 5 is applied.

The algorithm implements two different strategies: decomposition and aggre-
gation. Given a candidate component service Sx that has no implementations in
the repository, according to the decomposition strategy, the selection procedure

238 D. Bianchini, F. Pagliarecci, and L. Spalazzi

is applied to Sx children in order to find them. On the contrary, according to
the aggregation strategy, the selection procedure is applied to the parent node of
Sx. The choice among decomposition and aggregation strategies is made taking
into account the weights on the Weighted Decomposition Tree.

Let Sx be the candidate component service that we haven’t found, Sy its
parent node, {Si} the direct children of Sx and {Sj} the other direct children
of Sy in the tree. We apply the decomposition strategy if the variation of ratio
Γ between Sx and Si (γc) is smaller than variation of ratio Γ between Sx and
Sy (γp), Sx is not a leaf node and, during a previous selection, we have find the
service for the specifications connected with Sj . In all the other cases, if γp is
smaller than γc, Sx is a leaf node and/or we haven’t found the service for some
specifications connected with Sj , we apply the aggregation strategy.

In our scenario the service selection phase performed with Σ has found four
services Φ = {S01, S2, S3, S89} and has not found any service that accurately
meet with processes S45 and S67. We apply the algorithm and, according to
aggregation strategy, the output is Φ′ = {S01, S2, S3, S4567, S89}. The algorithm
stops if all the candidate component services have been found or the whole
Weighted Decomposition Tree has been inspected.

8 Conclusion

The methodology presented in this paper aims at constituting a interleaved
approach from service identification to service selection. The result is a meet-in-
the-middle business process decomposition that takes into account both given
guidelines for service design, such as high cohesion and low coupling, and the
availability of concrete services already implemented, among which candidate
services can be selected. Currently, single modules that implement the identi-
fication and selection phases have been developed and tested in [4] and [27],
respectively. The test of their interleaved application in a real case scenario are
being under development. The proposed approach will be the basis for an im-
proved design tool that supports the business process designer in the identifica-
tion and selection of services to implement a collaborative process, avoiding the
development from scratch of all the process elements. it is necessary to integrate
them and properly test the resulting application.

References

1. Amsden, J.: Modeling SOA: Part 1. Service identification. Technical report,
IBM Technical report (2007), http://www.ibm.com/developerworks/rational/

library/07/-1002amsden/

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

3. Bianchini, D., De Antonellis, V., Melchiori, M.: Flexible Semantic-based Service
Matchmaking and Discovery. World Wide Web Journal 11(2), 227–251 (2008)

From Service Identification to Service Selection: An Interleaved Perspective 239

4. Bianchini, D., Cappiello, C., De Antonellis, V., Pernici, B.: P2S: A methodology
to enable inter-organizational process design through web services. In: van Eck,
P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 334–348.
Springer, Heidelberg (2009)

5. Bieberstein, N., Laird, R.G., Jones, K., Mitra, T.: Executing SOA: A practical
guide for the service-oriented architecture. Pearson Education, Boston (2008)

6. Boaro, L., Glorio, E., Pagliarecci, F., Spalazzi, L.: A business process design frame-
work for b2b collaboration. In: The 2011 International Conference on Collaboration
Technologies and Systems (2011)

7. BPMI. Business Process Modeling Notation (BPMN) Version 1.0., http://www.

bpmi.org/downloads/BPMN-V1.0.pdf

8. Chun, S.A., Atluri, V., Nabil, Adam, R.: Using semantics for policy-based web
service composition. Distributed and Parallel Databases 18 (2005)

9. Comerio, M., De Paoli, F., Maurino, A., Palmonari, M.: Nfp-aware semantic web
services selection. In: IEEE International on Enterprise Distributed Object Com-
puting Conference, p. 484 (2007)

10. Di Pietro, I., Pagliarecci, F., Spalazzi, L.: SWSAL: Semantic Web Service Annota-
tion Language. no. 2008004453, SIAE Sezione Opere Inedite, Roma (October 15,
2008)

11. Di Pietro, I., Pagliarecci, F., Spalazzi, L.: Semantic Annotation for Web Service
Processes in a Pervasive Computing. In: Hassanien, A.E., Abraham, A., Hagras, H.,
Abawajy, J.H. (eds.) Pervasive Computing: Innovations in Intelligent Multimedia
and Applications. Springer, Berlin (2009)

12. Fellbaum, C.: Wordnet: An Electronic Lexical Database. MIT Press (1998)
13. Food and Agriculture Organization of United Nations. Geopolitical Ontology ver-

sion 1.1 (November 2010), http://www.fao.org/countryprofiles/geopol_v11/

index.html

14. Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., Holley, K., Arsanjani, A.:
SOMA: A method for developing service-oriented solutions. IBM Systems Jour-
nal 47, 377–396 (2008)

15. Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic Business
Process Management: A Vision Towards Using Semantic Web Services for Busi-
ness Process Management. In: Proc. of the IEEE Int. Conference on e-Business
Engineering (ICEBE 2005), Beijing, China, pp. 535–540 (2005)

16. International Organization for Standardization. Information and documentation
— A reference ontology for the interchange of cultural heritage information.
ISO 21127:2006 (September 2006), http://www.iso.org/iso/iso_catalogue/

catalogue_tc/catalogue_detail.htm?csnumber=34424

17. International Organization for Standardization. Information Technology —
Business Operational View — Part 4: Business Transaction Scenarios
— Accounting and Economic Ontology. ISO/IEC 15944-4:2000(E) (Novem-
ber 2007), http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_

detail.htm?csnumber=34424

18. Kaabi, R.S., Souveyet, C., Rolland, C.: Eliciting service composition in a goal
driven manner. In: Proc. of the 2nd Int. Conference on Service Oriented Computing
(ICSOC 2004), New York, NY, USA, pp. 308–315 (2004)

19. Köpf, H., et al.: InteGrail ? Publishable Final Activity Report. Technical Re-
port IGR-P-DAP-156-07, InteGrail ? Intelligent Integration of Railway Systems -
Project no. FP6 - 012526 (April 2010), http://www.integrail.info/documenti/
InteGRail_Final_Project_Report.pdf

240 D. Bianchini, F. Pagliarecci, and L. Spalazzi

20. Kritikos, K., Plexousakis, D.: Semantic qos metric matching. In: ECOWS 2006,
pp. 265–274 (2006)

21. Ma, Q., Zhou, N., Zhu, Y., Wang, H.: Evaluating Service Identification with Design
Metrics on Business Process Decomposition. In: Proc. of the 2009 IEEE Int. Con-
ference on Service Computing (SCC 2009), Bangalore, India, pp. 160–167 (2009)

22. Michael Maximilien, E., Singh, M.P.: Toward autonomic web services trust and
selection, pp. 212–221. ACM Press (2004)

23. Mulye, R., Miller, J., Verma, K., Gomadam, K., Sheth, A.: A Semantic Template
Based Designer for Web Processes. In: Proc. of the Third International Conference
on Web Services, pp. 461–469 (2005)

24. OpenTravel Alliance, Boxborough, MA, USA. OpenTravel Implementation Guide
— Version 1.5 (2010)

25. Papazoglou, M.P., Willem-Jan, H.: Service oriented architectures: approaches, tech-
nologies and research issues. VLDB Journal 16(3), 389–415 (2007)

26. Papazoglou, M.P., Yang, J.: Technologies for E-Services, pp. 175–233. Springer,
Heidelberg (2002)

27. Di Pietro, I., Pagliarecci, F., Spalazzi, L.: Model checking semantically annotated
services. IEEE Transactions on Software Engineering (2011)

28. Sheng, Q.Z., Benatallah, B., Maamar, Z., Dumas, M., Ngu, A.H.H.: Enabling per-
sonalized composition and adaptive provisioning of web services. In: Persson, A.,
Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 322–337. Springer, Heidelberg
(2004)

29. Shirazi, H.M., Fareghzadeh, N., Seyyedi, A.: A Combinational Approach to Service
Identification in SOA. Journal of Applied Sciences 5(10), 1390–1397 (2009)

30. Toch, E., Gal, A., Dori, D.: Automatically Grounding Semantically-Enriched Con-
ceptual Models to Concrete Web Services. In: Delcambre, L.M.L., Kop, C., Mayr,
H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 304–319.
Springer, Heidelberg (2005)

31. Vanderfeesten, I., Reijers, H.A., van der Aalst, W.M.P.: Evaluating workflow pro-
cess designs using cohesion and coupling metrics. Computer in Industry 59(5),
420–437 (2008)

32. de Bruijn, J., Lausen, H. (eds.) W3C Member Submission. Web Service Modeling
Language (WSML) (June 2005), http://www.w3.org/Submission/WSML/

33. Yu, Q., Bouguettaya, A.: Framework for web service query algebra and optimiza-
tion. ACM Trans. Web 2, 6:1–6:35 (2008)

34. Yu, T., Lin, K.-J.: Service selection algorithms for composing complex services
with multiple qoS constraints. In: Benatallah, B., Casati, F., Traverso, P. (eds.)
ICSOC 2005. LNCS, vol. 3826, pp. 130–143. Springer, Heidelberg (2005)

Towards a System Model for Ensembles

Matthias Hölzl and Martin Wirsing

Institut für Informatik, Ludwig-Maximilians-Universität München
{matthias.hoelzl,martin.wirsing}@ifi.lmu.de

Dedicated to Carolyn Talcott

Abstract. Ensembles—software-intensive systems with massive num-
bers of nodes or complex interactions between nodes, operating in
open and non-deterministic environments and dynamically adapting to
changes in their environment or requirements—pose many challenges to
software development. We present first steps towards a system model for
ensembles that allows us to express requirements using a wide variety
of logics and fitness criteria over arbitrary preorders. Using this system
model we then give a precise definition of “black-box” adaptation and
show how this naturally leads to a preorder of adaptability on ensembles.

1 Introduction

The increasing miniaturization and decreasing cost of computers and microcon-
trollers has enabled the nearly ubiquitous adoption of software-driven devices
that interact with their physical environment, ranging from smartphones to in-
dustrial controllers and smart robots. We want these devices to work without
the need for user configuration and to exploit local resources as well as “the
cloud,” and we expect them to do so without compromising our privacy or secu-
rity. None of the terms that we currently use—such as software-intensive systems
or cyber-physical systems—encompasses the whole range of these new systems.
The InterLink project [1] has therefore coined the term “ensemble” to describe
them [2]:

Ensembles are software-intensive systems with massive numbers of nodes or
complex interactions between nodes, operating in open and non-deterministic
environments in which they have to interact with humans or other software-
intensive systems in elaborate ways. Ensembles have to dynamically adapt to
new requirements, technologies or environmental conditions without redeploy-
ment and without interruption of the system’s functionality, thereby blurring
the distinction between design-time and run-time.

One of the most important and challenging duties when engineering ensembles
is to ensure that an ensemble can continue to work reliably in spite of unfore-
seen changes in its environment and requirements, and that adaptation does not
lead to the system becoming inoperable, unsafe or insecure. To achieve this goal,
the ASCENS project researches ways of building ensembles that combine tradi-
tional software engineering approaches and techniques from autonomic, adaptive,

G. Agha, O. Danvy, and J. Meseguer (Eds.): Talcott Festschrift, LNCS 7000, pp. 241–261, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

242 M. Hölzl and M. Wirsing

knowledge-based and self-aware systems with the assurance about functional and
non-functional properties provided by formal methods. The different disciplines
involved in the project use different formalisms and techniques that have to
be related in a single framework in order to present ensemble engineers with a
unified development approach. In this paper we present a first step toward a
common system model for ensembles that can integrate different models, logics
and objectives, and therefore serve as foundation of our approach to ensemble
engineering.

While the meaning of “adaptivity” may seem intuitively obvious, various com-
munities use different and incompatible definitions of the term, and surprisingly
few generally applicable, precise definitions are available in the literature. Based
on our system model for ensembles we define a notion of “black-box” adaptation
that gives rise to a preorder of adaptivity on ensembles based on their ability to
satisfy goals or maximize a performance measure in different environments.

In the next section we present related work, then we introduce a mathematical
model of ensembles and their composition. Building on this model we propose
a definition of one view of adaptivity, the “black-box” view of adaptivity to a
range of environments or goals. The final section concludes.

Personal Note: We have both known Carolyn for a long time, and we have
both had the opportunity to stay with her research group at SRI for several
weeks or months, and to work with her in the InterLink project. This has led
to many interesting research results, e.g., the application of soft constraints to
software-defined radios [3], the theory of monoidal soft constraints [4], and the
prototype of the ConstraintMuse system [5]. Cooperating with Carolyn has al-
ways been an enjoyable experience, not only because of the extensive knowledge
and excellent ideas that she contributed, but also because of her unpretentious
and kind personality. We are looking forward to further stimulating scientific
exchanges with Carolyn.

2 Related Work

Various approaches to develop generally applicable formal theories of systems
have been presented in the literature. Among the most elegant and epistemo-
logically satisfying ones is Goguen’s categorical approach to general systems [6]
which represents objects as functors satisfying the so-called sheaf condition, sys-
tems as diagrams and behaviors of systems as limits. However, this definition of
behavior is rather abstract and difficult to understand for software engineers.

We have chosen a more concrete approach which describes systems directly
by their input/output behavior. Our approach is related to the set-theoretic
formalization of General Systems Theory introduced by Mesarovic [7,8], therefore
some of the results derived in [7] are also valid for our definition of ensembles.
However, in order to accomodate, e.g., distributed systems where a linear notion
of time may not be an appropriate model, we define time systems for preordered
time structures, whereas Mesarovic requires a total order. Therefore results for
timed and dynamic systems do not immediately apply to ensembles.

Towards a System Model for Ensembles 243

Another system model based on Mesarovic’s theory and notation is gMobS [9]
which models object-based systems as hierarchical compositions of input/output
relations. Since gMobS is mainly used to investigate properties of I/O descrip-
tions it models only time systems whose components are connected by message
passing, does not define notions of goal satisfaction or fitness, and has no general
concept of combination operators.

A system model for component-oriented software and systems engineering
based on the notion of streams has been proposed by Broy [10,11]. This ap-
proach is similar to our time ensembles in providing a denotational view of
systems; however whereas our aim is to provide a generally applicable model
for ensembles and adaptation, Broy’s goal is to formalize the typical steps of a
development process. A similar difference can also be seen in Broy’s approach
to adaptation [12], which only considers system that can be represented by in-
put/output streams, and mostly deals with the handling of non-determinism in
such systems.

A large number of component frameworks and interconnection mechanisms
have been proposed, e.g., [13] or, based on Goguen’s categorical approach to
systems mentioned above, [14], but they either do not deal with adaptation at
all, or only in the form of reconfiguration.

Gul Agha’s actor model is an important formalism for specifying concurrent
distributed systems [15,16]. It represents systems as collections of actors, which
can exhibit behavior, communicate with other actors and spawn new actors.
Communication is asynchronous and reliable. Non-deterministic term rewriting
as exemplified by Meseguer’s Maude language [17] is an algebraic approach to
describing dynamically evolving concurrent systems. The Maude system, devel-
oped in the research groups of Meseguer at UIUC and Talcott at SRI, has proven
to be well-suited for specifying, prototyping and analyzing real-time and proba-
bilistic scenarios [18,19]. The actor model and Maude are leading candidates for
operationally realizing and analyzing models which are denotationally specified
using our approach.

There is a large amount of research about adaptation in various areas, e.g., in
control theory, dynamical systems, machine learning and artificial intelligence,
and many notions of adaptivity have been defined in the literature, see [20]
for an overview. Many of these results have influenced the present work; we
are, however, not aware of other approaches that try to precisely specify an
observational notion of adaptation for general systems.

We have based the term “heterostatic system” on Klopf’s heterostatic theory
of adaptive systems [21], but our system is quite different from Klopf’s and
the impact of his theory on ours is more indirect and mostly through later
developments in reinforcement learning.

3 Ensembles

The description of ensembles given in the introduction is not precise enough
to serve as a foundation of a rigorous system development process or to allow

244 M. Hölzl and M. Wirsing

a meaningful definition of adaptation. To be useful, a formal definition has to
be general enough to capture the various kinds of ensembles that appear when
building practical systems. No notion of ensemble based on a concrete behav-
ioral model, such as state machines, term rewriting or differential equations, is
sufficiently general to serve this purpose; in practice many ensembles consist of
subsystems that are specified using different mathematical methods. As an ex-
ample, it is common to describe physical parts of an ensemble using differential
equations but to model controllers using state machines; any meaningful math-
ematical theory of ensembles has to be able to accomodate the integration of
such widely different modeling and analysis techniques. Therefore, we describe
ensembles and their constituent parts abstractly as relations on sets which we
often regard as relations between inputs and outputs.

In the following we write F [A → B] for the set of all functions from A to
B. If {Ui | i ∈ I} is a set of sets we write U =

∏
{Ui | i ∈ I} =

∏
i∈I Ui for

the product of the Ui, i.e., the set of all functions x ∈ F [I →
⋃

i∈I Ui] such
that x(i) ∈ Ui; if there is no risk of confusion we sometimes abbreviate this
to

∏
Ui. We often write elements x ∈ U in the form (xi)i∈I , and we denote

the k-th projection by prk, i.e., prkx = x(k). Therefore, prk(xi)i∈I = xk. We
generalize the projection operation to sets of indices, so that for J ⊆ I we
have prJ(xi)i∈I = (xj)j∈J . If I = {1, . . . , n} we write U = U1 × · · · × Un and
(xi)i∈{1,...,n} = (xi)1≤i≤n = (x1, . . . , xn); we also use this notation for finite
index sets which are not subsets of the integers. If f : A → B and A′ ⊆ A we
write f |A′ : A′ → B for the restriction of f to values in A′.

Let I be a set and (Vi)i∈I be a family of sets indexed by I. We write R((Vi)i∈I),
or R(Vi) if I is clear from the context, for the set of all relations over (Vi)i∈I , i.e.,
the powerset of the product, P

(∏
i∈I Vi

)
. For any R ∈ R((Vi)i∈I) we call (Vi)i∈I

its type or schema; if J ⊆ I we call (Vj)j∈J a subtype of (Vi)i∈I and (Vi)i∈I a
supertype of (Vj)j∈J ; we say that R ∈ R((Vi)i∈I) is an extended relation over
(Vj)i∈J . We extend the projection operator to relations and write prJR for the
projection {(vj)j∈J | (vi)i∈I} = {prJr | r ∈ R}. We often write R(r) instead of
r ∈ R.

3.1 General Ensembles

Formally we do not distinguish ensembles, other systems and components, but in
general we only call a system an ensemble if it is the combination of many inter-
acting parts (using combination operators as described below), and we generally
do not call systems components if they are combinations of subsystems.

Definition 1. Let I be a (finite or infinite) set, and let V = (Vi)i∈I be a family
of sets. An ensemble or (general) system or component of type V is a relation
S of type V. ��

The use of infinite index sets allows us to model ensembles with dynamically
changing size, since we can have an arbitrary number of “inactive” compo-
nents (e.g., denoted by the special value �) which can be activated during the
computation.

Towards a System Model for Ensembles 245

In the most general case, there is no unique notion of “input” or “output”
to a system. For example, if S(w, p) is the relation between a robot’s wheel
movements and its position (in a given environment) we may regard w as input
and p as output when simulating the robot’s movement, and we may regard p as
input and w as output when computing the control for a desired path. A single
component may even serve as input and output simultaneously: if we consider
a clutch for clasping objects as a system in its own right, then the position of
the clutch can simultaneously serve as input (as it is determined by the robot
to which the clutch is attached) and as output (as it determines the position of
a clasped object, provided that this object is light enough to be moved by the
robot).

While they are not system-inherent properties it is in many cases helpful to
regard some of the sets Vi ∈ V as inputs and others as outputs. We can do so
by defining an isomorphism which, roughly speaking, divides V into inputs X
and outputs Y , and identifies S with a relation of type (X, Y). More precisely:
Let IX , IY ⊆ I with IX ∪ IY = I, let IXY = IX ∩ IY , X = (Vj)j∈IX and
Y = (Vk)k∈IY . We define a relation Si/o of type (X, Y) as follows:

Si/o =
{(

(vj)j∈IX , (vk)k∈IY

) ∣
∣ (vi)i∈I ∈ S

}

To illustrate this concept we consider the clutch described above. Ignoring the
passage of time and rotational degrees of freedom, we assume that the clutch can
be at any location in space, and either open or closed: Sclutch ∈ R(Vpos, Vclosed) =
R(�3,�). If we take IX = {pos}, IY = {pos, closed}, we obtain

Si/o ∈ R(Vpos, Vpos × Vclosed)

Si/o =
{(

x, (x, b)
) ∣

∣ x ∈ �3, b ∈ �
}

i.e., the input and output position are equal for each element of Si/o. It is easy
to see that it is necessary to use the same value for all occurrences of elements
of IXY : if we defined Si/o without equating the shared inputs and outputs we
would obtain

Swrong
i/o =

{(
x, (y, b)

) ∣
∣ x, y ∈ �3, b ∈ �

}

where the input and output positions could take their values independently,
which clearly contradicts the physical reality.

Since Si/o and S are obviously isomorphic, we often identify them and say
that S has or can be given input/output configuration (X, Y) or simply that S
has configuration (X, Y). We call X the input set or inputs of the configuration
and Y the output set or outputs of the configuration. A configuration for which
IX = ∅ so that X = {∅} is called input-free, a configuration with IY = ∅ and
thus Y = {∅} is called output-free. If the configuration is clear from the context
we sometimes call X and Y the inputs and outputs of S, and we say S itself is
input-free or output-free. If S is a function from X to Y we call it a functional
system or functional ensemble (for that input/output configuration).

It is generally neither feasible nor desirable to specify the behavior of an
ensemble as a single relation that captures all relationships between inputs and

246 M. Hölzl and M. Wirsing

outputs. When building or analyzing ensembles the interesting questions are
often how the observed behavior of an ensemble arises from the behaviors of its
components, or how a desired behavior can be synthesized by combining simpler
components. To achieve this we will later introduce operators that combine a
family of systems S = (Sl)l∈L where each Sl has configuration (Xl, Yl) into
a larger system by connecting some output ports of ensembles (Sl)l∈L′ where
L′ ⊆ L to appropriate output ports of (the same or other) ensembles in S. Since
these connections are usually only concerned with a subset of the available inputs
and outputs of each Sl it is again convenient to distinguish the “ports” that
should be connected by an operator from those that should stay unconnected.
Using the technique described in the previous paragraphs we divide each Xl into
the input ports X in

l and the non-connectible inputs Xnc
l , and similarly Yl in the

output ports Y out
l and the non-connectible outputs Y nc

l . We again identify each
Sl ∈ R(Xl, Yl) with S′

l ∈ R(Xnc
l , X in

l , Y nc
l , Y out

l).

3.2 Modal and Time Ensembles

In most cases we are interested in modeling ensembles which change their be-
havior over time; this can be achieved by considering modal systems and time
systems. Recall that a preorder � on a set U is a binary relation that is reflexive
and transitive, i.e., for all x, y, z ∈ U we have x � x and x � y∧y � z =⇒ x � z.
If � is antisymmetric, i.e., if x � y ∧ y � x =⇒ x = y it is called a (partial)
order ; if for all x, y ∈ U we have x � y ∨ y � x then � is a total order. We
say that a partial order on an ordered monoid (T,×) is Archimedean if for all
x, y ∈ T there exist an integer n such that n × x � y; elements for which this
property does not hold are called infinitesimal relative to each other.

Definition 2. Let T , the possible worlds or time structure, be a set, let R be
a binary relation on T , (Ai)i∈I a family of sets, and let Vi = F [T → Ai].
A modal system or modal ensemble over (Ai)i∈I with possible worlds T is a
general system S over (Vi)i∈I . If R is a preorder we call T a time system or
time ensemble over (Ai)i∈I with time structure T . ��

If the sets Ai can be interpreted as sets of atoms in a (modal) logic, modal
systems give rise to Kripke structures for that logic as follows [22,23]: The pair
(T, R) defines a Kripke frame with worlds T and relation R; a canonical labeling
function can be defined by mapping each t ∈ T to the set of all elements (ai)i∈I

for which an element (vi)i∈I ∈ S exists with vi(t) = ai for all i ∈ I.
Similarly, if T is preordered it can be seen as a very weak model of time and

the system can be interpreted as Kripke model for a temporal logic. Since some
models of distributed systems may not provide any stronger guarantees about
their temporal behavior we require neither antisymmetry nor a semigroup or
monoid structure in the definition and state these requirements explicitly when
they are necessary. Note that even if the time structure is an ordered monoid but
not Archimedean the system may exhibit unintuitive characteristics, for example
Zeno behaviors [24,25]: if t1 is infinitesimal relative to t2, then time t2 cannot
be reached by performing any finite number of steps of duration t1.

Towards a System Model for Ensembles 247

Fig. 1. Simulation of the ensemble of solar-powered robots described in Example 1
using MarXbots [26] running in the Argos simulator [27]. Since neither the real nor the
simulated robot have solar cells the light distribution is simulated by the floor color
which can be measured using the MarXbot’s ground sensor. In this image, the white
circle on the left hand side represents a circular light source.

Example 1 (Robot swarm). Suppose that we have a swarm of n solar-powered
robots where each robot has to recharge its battery by staying in bright light for
a certain time, see Fig. 1. We make the following assumptions: (1) the robots
rest on a flat surface and stay inside a fixed arena with coordinates in the unit
square I2 = {(x, y) | 0 ≤ x, y ≤ 1}, (2) the battery charge of each robot at
each moment in time is represented as a number in the unit interval I = [0, 1],
(3) the light intensity in the arena at each moment in time can be described by
a function I2 → I, (4) the physical characteristics of the solar cell and battery
are known and can be described by functions fcharge and fdis (see below), (5) the
robots are cylindrical with a fixed radius, and (6) all robots follow the same fixed
(but possibly non-deterministic) algorithm progd. One possible way to model the
robot swarm is as time system over the time structure �:

Srsw
1 ∈ R(Xlight, Ypos, Ybat)

where the sets are defined as

Alight = F [I2 → I] Apos = (I2)n Abat = In

Xlight = F [�+ → Alight] Ypos = F [�+ → Apos] Ybat = F [�+ → Abat]

and where the relation Srsw
1 (xlight, ypos, ybat) holds iff

1. ypos is a function �+ → Apos such that ypos(0) is a tuple of valid initial
positions for the robots (i.e., a vector of positions such that no two robots
overlap) and ypos(t) is consistent with all robots starting in ypos(0) and
moving according to progd, and

2. ybat is the function

t �→
(∫ t

t′=0

fcharge

(
xlight(t′)

(
yi
pos(t

′)
))

− fdis

(
yi
pos, t

′)dt′ + e0
i

)

1≤i≤n

248 M. Hölzl and M. Wirsing

where fcharge is the function that describes how light falling on the robot’s
solar cell charges the battery, fdis is the function describing the discharge of
the battery due to the robot’s movement and possibly self-discharge, e0

i is
the initial charge status of the battery for robot i, and yi

pos = pri ◦ypos. Note
that the i-th component of ybat is a function of xlight and yi

pos, representing
the fact that the energy level of each robot depends both on the distribution
of light in the arena and on the movement of the robot. The value xlight(t′)
is the light distribution function for time t′, hence xlight(t′)

(
yi
pos(t′)

)
is the

intensity of the light shining on the i-th robot at time t′.

Srsw
1 is not a functional ensemble even if progd and the behaviors of colliding

robots are deterministic, since every light distribution is related to the move-
ments of the robots in all valid starting positions. To obtain a functional system
for ensembles with deterministic movements we could add the initial positions
of the robots as additional input xpos0 and restrict the resulting relation Srsw

1′ to
tuples (xlight, xpos0, ypos, ybat) where ypos satisfies ypos(0) = xpos0.

If the robots can independently be switched between different programs progk

taken from a set of programs Aprog, then we can model the ensemble by a system
Srsw

2 as follows:

Aprog = {progk | k ∈ Kprog}n

Xprog = F [�+ → Aprog]
Srsw

2 ∈ R(Xprog, Xlight, Ypos, Ybat)

with the definition of Srsw
2 (xprog, xlight, ypos, ybat) similar to the one for Srsw

1 given
above, but instead of requiring ypos to model the robot’s movement according to
the algorithm progd we now take into account the changes in movement strategies
described by the input xprog. ��

It is easy to see that this notion of system generalizes many of the definitions
of “system” or “dynamical system” found in the literature; e.g., by using the
positive real numbers or the integers for T and choosing complete metric spaces
for X and Y which satisfy the axioms given by Chueshov, we obtain the definition
of dynamical systems given in [28]. Similarly, we can express many properties
commonly found in component systems for software in the formalism defined in
this section.

3.3 Goal Satisfaction and Fitness

When engineering ensembles we are often interested in systems which perform
a certain function as well as possible while satisfying given requirements and
remaining in a consistent state. Therefore we proceed with definitions for in-
consistency, goal satisfaction and fitness. Since different formal methods require
different logics and models, we want to be able to specify different properties
of the same ensemble using different logical systems. The following definition of
goal satisfaction is parametric in the logic used for the specification.

Towards a System Model for Ensembles 249

We identify inconsistency with systems that do not specify any input-output
relation, i.e., a system S ∈ R(V) is inconsistent if S is empty. In that case we
write S |= ⊥, otherwise S �|= ⊥.

In the following we define a model-theoretic notion of a system satisfying a
goal γ, where γ is expressed as a predicate in a suitable logic L with signature Σ.
We write F for the set of all formulae of Σ and M for the class of all structures
of Σ. Furthermore, we assume that a set Aux of auxiliaries and a satisfaction
relation |= is defined, such that M, α |= γ iff M is a model of γ given α ∈ Aux.
The auxiliaries can be used to expose parts of the internal formation of M when
the relationship between M and the system S is established. In the case of first-
order logic, the set Aux is usually the set of all substitutions for variables in Σ,
and M, α |= γ is the relation that γ is true in M given substitution α. Similarly,
in temporal logics, Aux will often be defined as the set of all states and M, α |= γ
then means that γ holds for M when the system is in state α.

Since our goal is for formulae of L to express properties of S, it is necessary to
relate (the interpretations of) some formulae in F with the system S. To achieve
this, we assume that a nonempty subset FS ⊆ F is given that contains formulae
whose interpretation in a structure M characterizes the relevant properties of S,
i.e., FS should contain a subset of F so that fixing the meaning of all formulae
in FS in a structure ensures that this structure also satisfies all properties of S
that can be expressed in Σ.

To fix the interpretation of formulae in FS in structures of Σ, we assume
that for each structure M of Σ we have a map TM : FS × Aux → �. If S |= ⊥
we require TM(P, α) = false for all P , α. If for all sentences P in FS and all
auxiliaries α the relation

M, α |= P ⇐⇒ TM(P, α) (1)

holds, we say M characterizes S (for TM) and write charTM
(M, S) or, if TM is

clear from the context, char(M, S). Let γ be a formula in F . If for all structures
M and all auxiliaries α we have

charTM
(M, S) =⇒ M, α |= γ (2)

we say that S satisfies goal γ and write S |=TM
γ or S |= γ. Note that if S |= ⊥

and FS �= ∅ then according to our restriction on TM we have M �|= S and hence
S |= γ for all goals γ.

Example 2 (First-order model of a robot swarm). Let L be multi-sorted first-
order predicate logic with equality and let Σ be a signature that contains sorts
τprog, τlight, τpos and τbat, a relation symbol S of sort τprog × τlight× τpos× τbat and
free variables xp, xl, yp, yb. Let FS = {S(xp, xl, yp, yb)}, let M be a structure of
Σ that interprets τprog as Vprog, τlight as Vlight etc., let Aux be all substitutions α
of xp, xl, yp, yb in their respective domains, and let

TM(S(xp, xl, yp, yb), α) = Srsw
2 (α(xp), α(xl), α(yp), α(yb))

It is clear that M characterizes Srsw
2 iff SM, the interpretation of S in M, is equal

to Srsw
2 .

250 M. Hölzl and M. Wirsing

If we want to specify the property that no robot runs out of energy before t0
we can define γ1 as:

∀xp, xl, yp, yb : S(xp, xl, yp, yb) =⇒ ∀i ∈ [1, n] : ∀t ∈ [0, t0] : yb(i)(t) > 0

Let M be a structure of Σ that characterizes Srsw
2 , so that SM = Srsw

2 . Then
SM contains configurations which start with battery levels of 0 and so we have
M �|= γ1. Hence γ1 is not satisfied by Srsw

2 . If we make the assumption that
prog0 is the program that does not move the robot at all and that the energy
consumption fdis is 0 in that case, and if we restrict the predicate γ2 to inputs
xp mapping all times before t0 to prog0 and to initial positions with positive
battery charge, we obtain γ2 as

∀xp,xl, yp, yb : S(xp, xl, yp, yb) =⇒
∀i ∈ [1, n] : ∀t ∈ [0, t0] : yb(i)(0) > 0 ∧ (∀t′ ∈ [0, t] : xp(t′) = prog0) =⇒

yb(i)(t) > 0

It is easy to see that in this case every model satisfying equation (1), i.e.,

M, α |= S(xp, xl, yp, yb) ⇐⇒ Srsw
2 (α(xp), α(xl), α(yp), α(yb))

also satisfies M, α |= γ2 for all α, hence we have Srsw
2 |= γ2. ��

Sometimes we not only want to satisfy a given goal, we want to pick the best
solution that satisfies the given goal according to some objective function or fit-
ness function. To this end we define a heterostatic system as a quadruple of a
system S in input/output configuration (X, Y), a goal γ, a partially ordered set
(G,≤) and a fitness function φ : X × Y → G. Heterostatic systems can be com-
pared according to their “fitness for a goal” using different notions of ordering.
In the following we define the weak heterostatic order � which corresponds to
the “relational ordering” of domain theory; another suitable ordering would be
the stronger Egli-Milner ordering [29,30].

Two heterostatic systems H1 = (S1, γ1, G, φ1) and H2 = (S2, γ2, G, φ2) with
the same configuration (X, Y) and the same range of the fitness functions G
are called assimilable. We write H1 � H2 if for all (x, y) ∈ S1 that satisfy γ1

there is (x, y′) ∈ S2 satisfying γ2 with φ1(x, y) ≤ φ2(x, y′). We write H1 ≺ H2

if H1 � H2 and H2 �� H1, i.e., if for at least one (x, y) ∈ S2 satisfying γ2 there
is no y′ ∈ Y such that (x, y′) ∈ S1, (x, y′) satisfies γ1 and φ2(x, y) ≤ φ1(x, y′).
Intuitively, H1 ≺ H2 if they work on the same inputs and H2 performs at least
as well as H1 on all inputs but strictly better than H1 on at least one input, or
if H2 works on a larger subset of the possible inputs, and performs at least as
well as H1 on the shared inputs. We usually only compare heterostatic systems
if φ1 = φ2.

Note that in the definition of fitness we distinguish between inputs and out-
puts, since the ability to perform on a wider range of inputs seems to justify
a higher fitness rating, whereas the ability to generate more behaviors for the
same input without being able to improve the fitness value for that input does

Towards a System Model for Ensembles 251

not seem to be a worthwhile property. If unpredictability is a desired feature (as
it would be, e.g., for a poker-playing system), then it would be more appropriate
to model the outputs, e.g., as probability distributions and to rate the fitness
according to the expected value.

Our definition of fitness is an “optimistic” one, since we only judge fitness
according to the best possible behavior, without taking into account whether
the ensemble will actually exhibit that behavior, as can be seen in the following
example:

Example 3 (Fitness function). Let X ={x1, x2}, Y ={y1, y2, y3}, S1 ={(x1, y2)},
S2 = {x1} × Y , S3 = {(x1, y2), (x2, y2)}, γ = true, and φ : X × Y → � with

φ(x1, y1) < φ(x1, y2) < φ(x1, y3)

Let Hi = (Si, γ,�, φ) for 1 ≤ i ≤ 3. Then H1 ≺ H2 and H1 ≺ H3. H2 and H3

are assimilable, but not comparable: H2 �≺ H3, since there is no (x1, y
′) ∈ H3

such that φ(x1, y3) ≤ φ(x1, y
′), and H3 �≺ H2 since the domain of H2 does not

contain x2, i.e., there is no y′ such that (x2, y
′) ∈ H2. Therefore H3 is defined on

a larger domain but its maximum performance on the values it shares with H2

is worse than H2. Note that in practice H2 may perform worse than either H1

or H3, since H2 may always perform (x1, y1) which has a lower objective value
than the value (x1, y2) performed by H1 and H3. ��

Example 4 (Fitness for robot ensembles). Let S1 be Srsw
2 from Ex. 1 with the

set Vprog = {prog0, prog1} consisting of two algorithms with different behaviors,
let γ = γ2 from Ex. 2, and let

φ =
∑

i∈I

(∫ t0

t=0

yi
batdt

)

Let S2 be the restriction of S1 to the single algorithm prog0, and let S3 be the
restriction of S1 to those ypos maximizing the fitness for some xprog and xlight.
Let Hi = (Si, γ2,�, φ). Then, since the algorithms are inputs, H1 ≺ H2, but
since the ypos are outputs and H3 can by definition achieve the same fitness as
H1 for any input, we have H1 � H3 and H3 � H1. ��

This last example shows that fitness is only a preorder on ensembles with the
same behavioral domain, not a partial order.

3.4 Combination Operators

When developing software for ensembles it is in general not desirable to regard
the ensemble as a single entity; usually the ensemble consists of a hierarchy
of systems, and we frequently have to change focus from the overall ensemble
to one of its components or sub-components and back. To formalize this nested
structure of ensembles we define combination operators that build larger systems
out of smaller components.

252 M. Hölzl and M. Wirsing

In the simplest case we have systems that don’t interact with each other,
or that are composed in sequence, so that the outputs of system S0, serve as
input to system S1. In many cases, however, compositions of systems exhibit
more complex behaviors. For example, some outputs of a system S may be
connected to some of its inputs, resulting in a feedback loop. In addition, the
connections between systems may themselves exhibit complex behaviors, e.g.,
when mobile robots are connected via a wireless network. However, even these
complex combinations of systems can be represented by defining those parts of
the connection which exhibit complex behaviors as systems in their own right
and combining several of these systems via combination operators or connectors.

Intuitively, a combination operator ⊗ builds a new system that preserves all
the non-connectible inputs and outputs, but it may additionally add new inputs
X⊗ and outputs Y⊗ that influence the properties of the connection itself; and
⊗ may also make some or all of the connected inputs and outputs available for
further interaction with the environment.

More precisely, let S = (Sl)l∈L be a family of systems where each Sl can be
given input/output configuration (Xl, Yl). A combination operator for systems
in configuration ((Xl, Yl))l∈L is then a function ⊗ mapping the Sl to a new
system S such that

S ∈ R
((∏

l∈L

Xnc
l × X⊗

)
,
(∏

l∈L

Y nc
l × Y⊗

))

X⊗ and Y⊗ are the new inputs and outputs introduced by the operator and may
contain some of the connected inputs and outputs. If the Sl are modal or time
systems we assume that they are over the same possible worlds or time structure
T and that the sets X⊗ and Y⊗ are also sets of functions over T .

Since unconnected inputs and outputs play no role for the connection operator
we can usually ignore them in the definition and write the type of ⊗ as

S ∈ R(X⊗, Y⊗)

with the convention that ⊗ is applicable to any system configuration that is a
supertype of ((X in

j)j∈J , (Y out
k)k∈K) and that ⊗ retains the unconnected inputs

and outputs.
Consider, for example the cascade operator � shown in Fig. 2 which connects

the (connectable) outputs of system S1 with the (connectable) inputs of S2

(see [7], p. 171). This operator can be defined as follows:

S1 ∈ R(Xnc
1 , (Y nc

1 × Y out
1))

S2 ∈ R((Xnc
2 × X in

2), Y nc
2)

Y out
1 = X in

2

((x1, x2), (y1, y2)) ∈ S1 � S2 ⇐⇒
∃z ∈ Y out

1 : (x1, (y1, z)) ∈ S1 ∧ ((x2, z), y2) ∈ S2

Towards a System Model for Ensembles 253

S1

S2

X1
nc

X2
nc

Y1
nc

Y2
nc

Y1
out = X2

in

Fig. 2. Cascade operator �

Example 5 (Cascade operator). Let progd ∈ Aprog be the algorithm used by the
robots in Srsw

1 (see Ex. 1), and let Sprog = Y out
1 = {t �→ (progd)1≤i≤n}. Setting

S2 = Srsw
2 , Xnc

2 = Xlight, X in
2 = Xprog, Y2 = Ypos × Ybat we obtain

Srsw
1 = Sprog � Srsw

2 ��

The cascade operator defined above is only one way of modeling the sequential
connection of inputs and outputs. If S2|X in

2 ⊂ S1|Y out
1 , then whether the cascade

operation corresponds to a correct model of the connection between S1 and S2

depends on the actual systems modeled. If we connect, e.g., two mechanical
systems with a rigid connector then the cascade may in many cases be a faithful
representation of the joint behavior. If, on the other hand, S1 is a computer
program that generates values in Sout

1 as output, it has no way of knowing which
of its possible outputs can be accepted by S2. Therefore the joint behavior is
not correctly modeled by a cascade which assumes that S1 will necessarily only
select outputs that S2 can accept as inputs. This, however, is not a flaw of the
model; rather it represents a property of the real system: we sometimes have to
feed-back explicit information about connections or outputs of components to
other parts of the system.

Let us, therefore, briefly look at a straightforward example of this happening: a
simple feedback loop for a single component arises when the connectable outputs
of S are connected to its connectable inputs, see Fig. 3. This operator θ can be
described by

S ∈ R((Xnc × X in), (Y nc × Y out))

X in = Y out

(x, y) ∈ θ(S) ⇐⇒ ∃z ∈ Y out : ((x, z), (y, z)) ∈ S

When looking at real-world examples of ensembles, we see that there are many
cases, where the interaction of smaller systems leads to more pervasive changes
in the states and behaviors of the resulting system. If we consider, for example,
a single robot R moving in a flat arena, we can describe its state by a two-
dimensional vector for its position and an angle for its orientation. Rotating the
wheels will result in corresponding changes in position and orientation (assuming
that the friction between wheels and ground is sufficiently high). If R is part of an

254 M. Hölzl and M. Wirsing

S

Xnc

Xin

Ync

Yout

Fig. 3. Feedback loop θ

ensemble these assumptions may no longer be true. For example, another robot
in the ensemble may be lifting R, so R’s position in three-dimensional space has
to be described by three positional and three angular parameters. Furthermore,
rotating the wheels may now not have any effect, or a strongly reduced effect if
R is attached to another robot. The above definition of combination operators
allows for these kinds of complex and non-compositional effects.

4 Adaptation

Having defined the basic notion of ensembles we now turn our attention to
adaptation. There are several notions of adaptation which take into account
increasingly large amounts of knowledge about the system’s internals and its
implementation. We restrict the following observations to the most abstract view
that regards the system as a “black box.”

4.1 Network and Environment

In the rest of this section we assume that a combination operator ⊗ is given; this
operator combines three systems (which may themselves be composed of simpler
systems): an environment η which we regard as mostly outside the control of the
system designer, a “network” or sensor/actuator system ν which simulates or
represents the connection of the ensemble to the environment, and the system
S. We assume that S is designed by the software developer and that it has to
achieve a certain goal in the given environment or in a range of environments
in order to be considered successful. To simplify the notation we often write
η, ν, S for ⊗(η, ν, S), and we assume that all systems involved can be given the
input/output configuration required by ⊗.

Example 6 (Robots operating in an environment). For ensembles S that can be
given the input/output configuration of Srsw

1 in Ex. 1 we can define ⊗ that com-
bines an environment η ∈ R(Ylight) by building a cascade of the environment’s
output with the input Xlight of S ∈ R(Xlight, Ypos × Ybat) while ignoring the
network ν:

⊗ : R(Ylight) × {∅} ×R(Xlight, Ypos × Ybat) → R(Ypos, Ybat)
⊗(η, ∅, S) = η � S

Towards a System Model for Ensembles 255

In the following we write ηP
r for the environment containing the single function

μP
r : �+ → (I2 → I) defined as

μP
r (t)(x, y) =

{
1 if d((x, y), P) < r

0 otherwise

The function μP
r illuminates a circle of radius r around P during the whole

duration of the experiment. Then, using the component Sprog from Ex. 5 that
causes each robot to run with fixed algorithm prog, the system

ηP
r , ∅, Sprog � Srsw

2

models running the robots with fixed algorithm prog in an environment in which
the light source is fixed in a circle with radius r around P .

For given values of P and r the environment ηP
r is a system that exhibits

a single deterministic, time-invariant behavior. Often we are interested in envi-
ronments that allow more variety, either by changing over time or by allowing
several different behaviors to occur. Both extensions can easily be achieved in
our model:

If P and r are not constant but functions of t we obtain a deterministic,
dynamically changing environment where the location of the light source and
its radius may vary over time. If we define η≥r(P1, . . . , Pn) as the relation that
contains all μPi

ρ for 1 ≤ i ≤ n and ρ ≥ r we obtain an environment that models
all time-invariant circular light distributions with radius at least r around one
of the points Pi. By combining these two extensions we obtain an environment
which is neither deterministic nor time invariant. ��

The ability to model non-determinism in a system and in its environment is im-
portant even for systems without physical components. For example, in the actor
model [15] non-determinism may arise because the arrival-order of messages does
not necessarily correspond to the order in which they were sent.

Consider a system S which is executed in environment η with network ν.
In order to realize the given specification or goal γ the system has to satisfy
following properties:

η, ν, S �|= ⊥ (3)
η, ν, S |= γ (4)

Property (3) is necessary since an inconsistent systems vacuously satisfies any
goal γ, property (4) immediately expresses the fact that the system satisfies the
goal in question.

Example 7 (Goal satisfaction in an environment). If S = Sprog � Srsw
2 satisfies

ηP
r , ∅, S �|= ⊥ (5)

ηP
r , ∅, S |= γ2 (6)

256 M. Hölzl and M. Wirsing

(see Ex. 1 and 2), the ensemble can adapt to the goal that no robot runs out of
energy before t0 in an environment where the light is concentrated in a circle of
radius r around P when all robots use algorithm prog. If S satisfies equations (5)
and (6) with η≥r(P1, . . . , Pn) instead of ηP

r , it can adapt to goal γ2 for infinitely
many environments. ��

Example 8 (Sensor accuracy in robot swarms). To illustrate the effects of the
network, we now suppose that the swarm of solar-powered robots should not only
ensure that the robots are charged all the time, but we also give the robots the
task of cleaning up the environment: We assume that there are boxes randomly
distributed throughout the environment and that the robots should move all
boxes into a corner of the arena. Therefore η now contains distributions of boxes
in addition to light distributions, and the robots contain an additional input
Xbox representing the location of the boxes. In practice Xbox is obtained by
sensors which give only partial information about the true location of boxes in
the environment, depending on the quality of the robot’s sensors, the interference
with other sensors, the weather conditions, etc. This can easily be modeled by
the sensor/actuator system ν: let νrange

err be such a system that provides as input
to each robot the location of all boxes within range units of distance, with an
error distribution err . Varying the values of these parameters while keeping the
environment constant gives again rise to a preorder that specifies how well an
ensemble of robots can perform in a single environment using different sensors
or in different weather conditions. ��

4.2 Adaptation Space

Usually we do not speak of adaptation when a system works in just a single,
deterministic environment; we expect an adaptive system to work in a variety of
different situations. We have seen in Ex. 6 that this can be achieved by having
an environment with non-deterministic and time-invariant behavior. However it
often simplifies the comparison and analysis of different systems if we do not
merge different behaviors into a single environment and instead model adapta-
tion by having several environments, e.g., η and η′ such that the system satisfies
the goal for all environments:

η, ν, S |= γ and η′, ν, S |= γ

Different network conditions may be modeled in a similar way.
Adaptation to a new environment or network is not the only possible kind

of adaptation; it might also be necessary to change the goals that an ensemble
pursues while leaving the environment constant, or, in other words, the system
may have to adapt to new requirements. In that case we obtain the adaptation
condition

η, ν, S |= γ′

If the new goal γ′ is implied by the old goal γ, any system satisfying γ already
satisfies γ′. Otherwise it is, in general, not possible for a system to adapt to

Towards a System Model for Ensembles 257

new goals unless this goal is communicated to the system, either by one of
the unconnected inputs of the system or, more frequently, by changes in the
environment. For example, we might change the color of a beacon from green to
red to signal to a foraging robot that we want it to stop foraging and return to
the base station. Therefore, it is usually not sensible to request that a system
can adapt to any change in environment and goals, we rather have to restrict
adaptation to these scenarios where the goal is correctly communicated to the
ensemble.

To formalize these notions we define an adaptation domain A that describes a
range of environments E , networks N and goals G, to which we want the system
to adapt and define the notion S can adapt to A, written S � A:

A ⊆ E ×N × G
S � A ⇐⇒ ∀(η, ν, γ) ∈ A : η, ν, S |= γ

The adaptation space A is a set of adaptation domains, A ⊆ P(E × N × G). It
is partially ordered by inclusion; for any adaptation space we define a preorder
of adaptivity for systems as follows:

S � S′ ⇐⇒ ∀A ∈ A : S � A =⇒ S′ � A

In that case we say that S′ is at least as adaptive as S (with respect to A). If
S � S′ and there is an adaptation domain A ∈ A for which S′ � A but S �� A
then we say that S is less adaptive than S′ or that S′ is more adaptive than S
(with respect to A) and write S � S′.

Example 9 (Adaptivity to different environments). Let Ar be the set containing
all environments that shine a circular light with radius at least r at a fixed spot
P , i.e., Ar = {(ηP

ρ , ∅, γ2) | ρ ≥ r}. Let A = {Ar | r > 0} and let S1 and S2 be two
robots swarms with input/output configurations (Xlight, Ypos ×Ybat). Obviously
for all ensembles S with this configuration we have the following property: if
r1 > r2 and S � Ar2 then also S � Ar1 . Suppose there is a value r0 such that
S1 � Ar0 but S2 �� Ar0 . Then S1 is more adaptive than S2. ��
If we are not only interested in systems satisfying a specification but rather in
systems that additionally maximize some performance criteria, we can extend A
to

A ⊆ P(E × N × G × F⊗)

where F⊗ is a set of objective functions with suitable domain for ⊗. We write
dom(φ) for the domain and cod(φ) for the range of φ ∈ F⊗. For (η, ν, γ, φ) =
A ∈ A ∈ A we write H(A, S) for the heterostatic system

H
(
(η, ν, γ, φ), S

)
=

(
⊗(η, ν, S), γ, cod(φ), φ

)

Using the previously defined weak heterostatic preorder � we can then define a
preorder � for the adaptive sets

S � S′ ⇐⇒ ∀A ∈ A : ∀A ∈ A : H(A, S) � H(A, S′)

with the obvious condition for S � S′.

258 M. Hölzl and M. Wirsing

Example 10 (Fitness in different environments). Let φ : Ypos × Ybat → I be the
function that returns the fraction of robots whose battery level never reaches 0
in the interval [0, t0], let Ar = {(ηP

ρ , ∅, true, φ) | ρ ≥ r} and let A = {Ar | r > 0}.
This definition is similar to Ex. 9, but now the requirement that no robot stops
working because of an empty battery is a soft constraint that influences our
evaluation of the fitness. Given robot swarms S1, S2, we have S1 � S2 if for all
Ar and all A ∈ Ar we have H(A, S1) � H(A, S2), i.e., if for all radii r at least
as many robots in S1 as in S2 fail because of an empty battery. ��

By equipping the space of environments E with a topology we can define a pre-
order on ensembles that expresses the sensitivity of an ensemble’s adaptivity to
small changes in each environment in a similar way; if we introduce a unifor-
mity (or a metric) on E we can compare ensembles by their global sensitivity to
changes across environments. Similarly, we can vary N to compare the sensitivity
of ensembles to errors in the sensor readings.

5 Conclusions and Further Work

We have presented a model for systems that can represent a wide range of
different ensembles in a uniform manner, that allows the description of system
goals and requirements using a wide variety of different logics and that can be
used to define and compare the fitness of ensembles using arbitrary preorders.
Using this model we have defined the notion of “black-box adaptivity” and shown
that this gives rise to a preorder of adaptivity (to a range of environments,
networks or sensors/actuators, and requirements) among ensembles.

The work presented in this paper is only a first step toward a comprehen-
sive system model for ensembles, with many theoretical and practical questions
remaining future research: A variety of important topics, such as temporal de-
terminacy, sensitivity to changes in the environment or network, controllability,
and stability have not been mentioned at all or only been hinted at. We will
investigate how existing approaches can be transferred to our system model as
well as some new approaches to these questions that might be made possible by
our approach. Another interesting question is reflexivity: currently introspection
and reflexivity are implicit in the definition of the relations; given the importance
of “self-awareness” for ensembles a more explicit treatment might be desirable.

While our approach allows the representation of non-deterministic ensembles
and environments it does not directly support probabilistic behaviors. Various
existing approaches for stochastic modeling exist and have proven their useful-
ness in the specification of systems, e.g., PEPA [31], StoKLAIM/MoSL [32,33] or
PMaude [34]. We plan to extend our approach to probabilistic models by defin-
ing an additional joint probability distributions over the system sets (Vi)i∈I .
Another possibility could be to use stochastic relations [35].

In the current paper we have presented the theory without using catego-
rial concepts. This “concrete” presentation could be streamlined, at the cost
of some additional abstraction, by rephrasing the theory in the language of
categories. In particular, since we allow different logics for the specification of

Towards a System Model for Ensembles 259

properties, exploring the relationship of our approach with heterogeneous insti-
tutions [36,37,38] would be an obvious possibility for generalization.

For lack of space we have only introduced the notion of black-box adaptation
in this paper; in the future we will also define models for adaptation that take
into account more internals of the ensemble under consideration—gray-box and
white-box adaptation.

On the more practical side we will investigate connections between the deno-
tational model presented in this paper and operational models and tools, such
as process calculi and model checkers. Another important task for practical ap-
plications is the definition of a language that allows the expression of ensemble
models in a more concise manner than purely mathematical notation.

Acknowledgements. We are grateful to Gul Agha, Olivier Danvy and José
Meseguer for inviting us to contribute to this volume. Our thanks go to Franco
Zambonelli for inspiring discussions about adaptation, and to the anonymous
referees and Gul Agha for their helpful comments on a draft version of this
paper.

This work has been partially sponsored by the EU project ASCENS, 257414.

References

1. InterLink Project, http://interlink.ics.forth.gr/central.aspx (last accessed
2011-05-10)

2. Hölzl, M., Rauschmayer, A., Wirsing, M.: Engineering of software-intensive sys-
tems: State of the art and research challenges. In: Wirsing, M., Banâtre, J.-P.,
Hölzl, M., Rauschmayer, A. (eds.) Soft-Ware Intensive Systems. LNCS, vol. 5380,
pp. 1–44. Springer, Heidelberg (2008)

3. Wirsing, M., Denker, G., Talcott, C.L., Poggio, A., Briesemeister, L.: A rewriting
logic framework for soft constraints. ENTCS 176(4), 181–197 (2007)

4. Hölzl, M., Meier, M., Wirsing, M.: Which soft constraints do you prefer?
ENTCS 238(3), 189–205 (2009)

5. Hölzl, M., Denker, G., Meier, M., Wirsing, M.: Constraint-Muse: A soft-constraint
based system for music therapy. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.)
CALCO 2009. LNCS, vol. 5728, pp. 423–432. Springer, Heidelberg (2009)

6. Goguen, J.A.: Sheaf semantics for concurrent interacting objects. Mathematical
Structures in Computer Science 2(2), 159–191 (1992)

7. Mesarović, M.D., Takahara, Y.: General Systems Theory: Mathematical Founda-
tions. Mathematics in Science and Engineering, vol. 113. Academic Press, New
York (1975)

8. Mesarović, M.D.: Mathematical theory of general systems. In: Chillingworth, D.
(ed.) Proceedings of the Symposium on Differential Equations and Dynamical Sys-
tems. Lecture Notes in Mathematics, vol. 206, pp. 14–15. Springer, Heidelberg
(1971)

9. Naundorf, H.: A general model for object-based systems. Preprint, Univer-
sität Paderborn (July 1995), http://www-math.uni-paderborn.de/preprints/

preprints_data/Naundorf/naungMobS1.ps.gz

260 M. Hölzl and M. Wirsing

10. Broy, M.: Mathematical system models as a basis of software engineering. In: van
Leeuwen, J. (ed.) Computer Science Today. LNCS, vol. 1000, pp. 292–306. Springer,
Heidelberg (1995)

11. Broy, M.: A logical basis for component-oriented software and systems engineering.
Comput. J. 53(10), 1758–1782 (2010)

12. Broy, M., Leuxner, C., Sitou, W., Spanfelner, B., Winter, S.: Formalizing the notion
of adaptive system behavior. In: Shin, S.Y., Ossowski, S. (eds.) SAC, pp. 1029–
1033. ACM (2009)

13. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical. Structures in Comp. Sci. 14, 329–366 (2004)

14. Lopes, A., Fiadeiro, J.L.: Revisiting the categorical approach to systems. In:
Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 426–440.
Springer, Heidelberg (2002)

15. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
The MIT Press Series in Artificial Intelligence. MIT Press (1986)

16. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor compu-
tation. J. Funct. Program. 7(1), 1–72 (1997)

17. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L. (eds.): All About Maude - A High-Performance Logical Framework. How
to Specify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350.
Springer, Heidelberg (2007)

18. Kim, M., Stehr, M.O., Talcott, C.L., Dutt, N.D., Venkatasubramanian, N.: A prob-
abilistic formal analysis approach to cross layer optimization in distributed embed-
ded systems. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS,
vol. 4468, pp. 285–300. Springer, Heidelberg (2007)

19. Ölveczky, P.C., Meseguer, J., Talcott, C.L.: Specification and analysis of the
AER/NCA active network protocol suite in Real-Time Maude. Formal Methods in
System Design 29(3), 253–293 (2006)

20. Brock, J.P.: The Evolution of Adaptive Systems: The General Theory of Evolution.
Academic Press (2000)

21. Klopf, A.H.: Brain function and adaptive systems—a heterostatic theory. Special
Report 133, Air Force Cambridge Res. Lab., USAF (March 1972)

22. Schütte, K.: Vollständige Systeme modaler und intuitionistischer Logik. Ergebnisse
der Mathematik und ihrer Grenzgebiete, vol. 42. Springer, Heidelberg (1968)

23. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about
Systems, 2nd edn. Cambridge University Press, New York (2004)

24. Kosiuczenko, P., Wirsing, M.: Timed rewriting logic with an application to object-
based specification. Sci. Comput. Program. 28(2-3), 225–246 (1997)

25. Lamport, L.: Specifying Systems. In: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002)

26. Bonani, M., Longchamp, V., Magnenat, S., Rtornaz, P., Burnier, D., Roulet, G.,
Vaussard, F., Bleuler, H., Mondada, F.: The MarXbot, a Miniature Mobile Robot
Opening new Perspectives for the Collective-robotic Research. In: Int. Conf. on
Intel. Robots and Systems (IROS), pp. 4187–4193. IEEE Press (2010)

27. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M.,
Mathews, N., Ferrante, E., Caro, G.D., Ducatelle, F., Stirling, T., Gutiérrez, A.,
Gambardella, L.M., Dorigo, M.: ARGoS: a modular, multi-engine simulator for
heterogeneous swarm robotics. Technical Report TR/IRIDIA/2011-009, IRIDIA,
Université Libre de Bruxelles, Brussels, Belgium (2011)

28. Chueshov, I.D.: Introduction to the Theory of Infinite-Dimensional Dissipative
Systems. Acta (2002)

Towards a System Model for Ensembles 261

29. Plotkin, G.D.: Domains (Pisa Notes) (1983)
30. Plotkin, G.D.: A powerdomain construction. SIAM J. of Computing (1976)
31. Hillston, J.: Process algebras for quantitative analysis. In: LICS. IEEE Computer

Society, pp. 239–248 (2005)
32. De Nicola, R., Katoen, J.P., Latella, D., Massink, M.: STOKLAIM: A Stochastic

Extension of KLAIM. Technical Report 2006-TR-01, DSIF, Firenze (2006)
33. De Nicola, R., Katoen, J.P., Latella, D., Loreti, M., Massink, M.: MoSL: A Stochas-

tic Logic for StoKlaim. Technical Report ISTI-06-35, DSIF, Firenze (2006)
34. Agha, G.A., Meseguer, J., Sen, K.: Pmaude: Rewrite-based specification language

for probabilistic object systems. Electr. Notes Theor. Comput. Sci. 153(2), 213–239
(2006)

35. Doberkat, E.E.: Stochastic Relations: Foundations for Markov Transition Systems.
Studies in Informatics. Chapman & Hall/CRC (2007)

36. Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification
and programming. J. ACM 39(1), 95–146 (1992)

37. Mossakowski, T.: Heterogeneous Specification and the Heterogeneous Tool Set.
Habilitation thesis, Universität Bremen (2005)

38. Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A heterogeneous approach
to UML semantics. In: Degano, P., Nicola, R.D., Meseguer, J. (eds.) Concurrency,
Graphs and Models. LNCS, vol. 5065, pp. 383–402. Springer, Heidelberg (2008)

Algorithmic Aspects of

Risk Management

Ashish Gehani1, Lee Zaniewski2, and K. Subramani2

1 SRI International
2 West Virginia University

Abstract. Risk analysis has been used to manage the security of sys-
tems for several decades. However, its use has been limited to offline risk
computation and manual response. In contrast, we use risk computation
to drive changes in an operating system’s security configuration. This
allows risk management to occur in real time and reduces the window of
exposure to attack. We posit that it is possible to protect a system by
reducing its functionality temporarily when it is under siege. Our goal is
to minimize the tension between security and usability by trading them
dynamically. Instead of statically configuring a system, we aim to mon-
itor the risk level, using it to drive the tradeoff between security and
utility. The advantage of this approach is that it provides users with the
maximum possible functionality for any predefined level of risk tolerance.

Risk management can be framed as an exercise in managing the con-
straints on edge and vertex weights of a tripartite graph, with the par-
titions corresponding to the threats, vulnerabilities, and assets in the
system. If a threat requires a specific permission and affects a particular
asset, an edge is added between the threat and the permission that medi-
ates access to the vulnerable resource. Another edge is added between the
permission and the asset. The presence of a path from a threat, through
a permission check, to an asset contributes an element of risk. Risk can
be reduced by denying access to a resource that contains a vulnerability
or activating data protection measures. We analyze some of the problems
that form the algorithmic underpinnings of optimal risk management.

1 Introduction

The frequency of attacks faced by the average host connected to the Internet
remains elevated, making reliance on manual intervention for response decreas-
ingly tenable. Operating system and application based mechanisms for auto-
mated response have increasing utility in this context. We analyze algorithmic
aspects of a framework for systematic fine-grained response that is achieved by
dynamically controlling the host’s exposure to perceived threats and limiting the
consequences of security breaches.

Maintaining the security of a host requires it to be continually monitored.
When there is suspicion that an attack may be underway, it is prudent to effect
a response. The first course of action would be to interrogate the runtime en-
vironment to obtain finer-grain data to cross-check the audit information that

G. Agha, O. Danvy, and J. Meseguer (Eds.): Talcott Festschrift, LNCS 7000, pp. 262–276, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Algorithmic Aspects of Risk Management 263

raised the alarm. If the suspicion remains, the next step would be to reconfigure
the system (potentially reducing functionality) to limit the exposure of portions
that may be vulnerable to the attack in progress. Data that may be affected
by the attack should be safeguarded. Measures should be taken to ensure the
confidentiality, integrity, and availability of the data after a successful attack.
Finally, an effort should be made to gather and preserve forensic information
from the environment that may not be available later.

Threat

Vulnerabilities

Assets

Risk

Risk

Threshold
Consequences

Safeguards

Likelihood

YesReconfigure

Fig. 1. Risk can be analyzed as a function of the threats, their likelihood, vulnerabili-
ties, safeguards, assets, and consequences. Risk can be managed by using the safeguards
to control the exposure of vulnerabilities and manipulating the assets to limit the
consequences.

We equate protecting a system with minimizing the risk it faces. The risk
is dependent on three factors. The first is the set of threats it faces and their
likelihood of occurring. If there are no threats to the system, then it is not at
risk. The second factor is the set of vulnerabilities that exist in the system, along
with the probability of these being exposed. If there are no vulnerabilities, then
even in the presence of a threat, no risk is posed to the system. The third factor
is the consequence of an attack succeeding. If there is no consequence, then the
system is not at risk.

Whereas threats are under the control of the attacker, vulnerabilities and
consequences are within the control of, and can therefore be managed by, the
defender. In contrast to previous approaches, we assume that a computation of
risk will be used to drive changes in a system’s security posture, as depicted
in Figure 1. This allows risk management to occur in real time to reduce the
window of exposure. We posit that it is possible to protect a system by reducing

264 A. Gehani, L. Zaniewski, and K. Subramani

its functionality. Our goal is to minimize the tension between security and us-
ability by trading them dynamically. Instead of statically configuring a system,
we aim to monitor the risk level, using it to drive the tradeoff between security
and utility. The advantage of this approach is that it provides users with the
maximum possible functionality for any predefined level of risk tolerance.

2 Risk Model

We now describe some aspects of our risk model, omitting several algorithmic
issues covered in previously published work [9] [10] [11] [13], where we discussed
mechanisms to efficiently recalculate the risk, subtle reasons for modeling risk
tolerance the way we do, how to track the costs and benefits in real time, and how
to adapt the model for risk relaxation to improve system performance without
exceeding the threshold of risk tolerance.

2.1 Runtime Risk Factors

We model risk as the flow between the first and last partitions in a tripartite
graph, depicted in Figure 2, where T is a partition of vertices ti each represeting
a unique threat, W is a partition of vertices wj each representing a specific
weakness in the system, and O is the partition of assets, with the vertices ok

each representing a data object.
Analyzing the risk that a system is faced with requires knowledge of a number

of factors. Below we describe each of these factors along with its associated
semantics. We define these in the context of the operating system paradigm
since our goal is to manage the risk of a host.

Threats. A threat is an entity that can cause harm to an asset in the system. We
define a threat to be a specific attack against any of the application or system
software that is running on the host. It is characterized by an intrusion detection
signature. The set of threats is denoted by T = {t1, t2, . . .}, where tα ∈ T is an
intrusion detection signature. Since tα is a host-based signature, it is composed
of an ordered set of events S(tα) = {s1, s2, . . .}. If this set occurs in the order
recognized by the rules of the intrusion detector, it signifies the presence of an
attack.

Likelihood. The likelihood of a threat is the hypothetical probability of its oc-
curring. If a signature is partially matched, the extent of the match predicts the
chance that it will lster be completely matched. A function μ is used to com-
pute the likelihood of threat tα. μ can be threat-specific and depends on the
history of system events that are relevant to the intrusion signature. Thus, if
E = {e1, e2, . . .} denotes the ordered set of all events that have occurred, then

T (tα) = μ(tα, E
≺
∩ S(tα)) where

≺
∩ yields the set of all events that occur in the

same order in each input set.

Algorithmic Aspects of Risk Management 265

W

w1

w2

w3

o

o2

o3

O

t1

t2

t3

t4

T

w5

w4

1

Fig. 2. Operating system risk can be modeled in terms of its constituent components.
The threats, weaknesses (corresponding to specific vulnerabilities), and objects (that
are the assets) form three disjoint sets. An edge between vertices represents a contribu-
tion to the system risk. The system’s risk is the total flow between the first and third
sets.

Assets. An asset is an item that has value. We define the assets as the data
stored in the system. In particular, each file is considered a separate object
oβ ∈ O, where O = {o1, o2, . . .} is the set of assets. A set of objects A(tα) ⊆ O
is associated with each threat tα. Only objects oβ ∈ A(tα) can be harmed if the
attack that is characterized by tα succeeds.

Consequences. A consequence is a type of harm that an asset may suffer. Three
types of consequences can impact the data. These are the loss of confiden-
tiality, integrity, and availability. If an object oβ ∈ A(tα) is affected by the
threat tα, then the resulting costs due to the loss of confidentiality, integrity,
and availability are denoted by c(oβ), i(oβ), and a(oβ) respectively. Any of
these values may be 0 if the attack cannot effect the relevant consequence.
However, all three values associated with a single object cannot be 0, since
in that case oβ ∈ A(tα) would not hold. Thus, the consequence of a threat tα is
C(tα) =

∑
oβ∈A(tα) c(oβ) + i(oβ) + a(oβ).

By removing an asset from the system, the consequences it faces can be cur-
tailed [13]. In the case of data availability, replication serves this purpose, while
in the case of confidentiality and integrity, cryptographic operations can be used.
For the purpose of estimating risk, a consequence curtailment effectively removes
the asset from the analysis.

266 A. Gehani, L. Zaniewski, and K. Subramani

Vulnerabilities. A vulnerability is a weakness in the system. It results from an
error in the design, implementation, or configuration of either the operating
system or application software. The set of vulnerabilities present in the system
is denoted by W = {w1, w2, . . .}. W (tα) ⊆ W is the set of weaknesses exploited
by the threat tα to subvert the security policy.

Safeguards. A safeguard is a mechanism that controls the exposure of the sys-
tem’s assets. The reference monitor’s set of permission checks P = {p1, p2, . . .}
serve as safeguards in an operating system. Since the reference monitor mediates
access to all objects, a vulnerability’s exposure can be limited by denying the
relevant permissions. The set P (wγ) ⊆ P contains all the permissions that are
requested in the process of exploiting vulnerability wγ .

The static configuration of a conventional reference monitor either grants
or denies access to a permission pλ. This exposure is denoted by v(pλ), with
the value being either 0 or 1. An active reference monitor [11][12] allows each
permission to be associated with an independent set of constraints that are
verified at runtime before granting the permission. By limiting the circumstances
under which the permission will be granted, the exposure of the resource being
protected is reduced by a predetermined fraction.

The active reference monitor can therefore reduce the exposure of a stati-
cally granted permission to v′(pλ), a value in the range [0, 1]. This reflects the
nuance that results from evaluating predicates as auxiliary safeguards. Thus, if
all auxiliary safeguards are used, the total exposure to a threat tα is V(tα) =∑

pλ∈P̂ (tα)
v(pλ)×v′(pλ)

|P̂ (tα)| where P̂ (tα) =
⋃

wγ∈W (tα) P (wγ).

In practice, since the set of threats cannot be altered by the response apparatus,
we can merge the first partition, which contains the threats, into the second
by scaling each permission’s weight (which represents its probability of being
granted) with the sum of the threat likelihoods that have incident edges on the
permission.

2.2 Risk Management

The risk to the host is the sum of the risks that result from each of the threats
that it faces. The risk from a single threat is the product of the chance that the
attack will occur, the exposure of the system to the attack, and the cost of the
consequences of the attack succeeding [18]. Thus, the cumulative risk faced by
the system is R =

∑
tα∈T T (tα) × V(tα) × C(tα).

If the risk posed to the system is to be managed, the current level must be
continuously monitored. When the risk rises past the threshold that the host
can tolerate, the system’s security must be tightened. Similarly, when the risk
decreases, the restrictions can be relaxed to improve performance and usability.

Algorithmic Aspects of Risk Management 267

The system’s risk can be reduced either by reducing the exposure of vulner-
abilities or by limiting the consequences to the data in the event of a successful
attack. The former is effected through the use of auxiliary safeguards before
granting a permission. The latter is realized by cryptographically protecting and
remotely replicating threatened files. Both approaches may also be used simul-
taneously.

The set of permissions P is kept partitioned into two disjoint sets, Ψ(P)
and Ω(P), that is, Ψ(P) ∩Ω(P) = φ and Ψ(P) ∪Ω(P) = P . The set Ψ(P) ⊆ P
contains the permissions for which auxiliary safeguards are currently active. The
remaining permissions Ω(P) ⊆ P are handled conventionally by the reference
monitor, using only static lookups rather than evaluating associated predicates
before granting these permissions. Similarly, the set of files O is kept partitioned
into two disjoint sets, Ψ(O) and Ω(O), where Ψ(O) ∩ Ω(O) = φ and Ψ(O) ∪
Ω(O) = O. The set Ψ(O) ⊆ O contains the files that are currently inaccessible
and unmodifiable due to their cryptographic encapsulation. The remaining files
Ω(O) ⊆ O are transparently accessible and modifiable.

At any given point, when safeguards Ψ(P) and curtailments Ψ(O) are in use,
the current risk R′ is calculated with R′ =

∑
tα∈T T (tα)×V ′(tα)×C′(tα) where

V ′(tα) =
∑

pλ∈P̂ (tα)∩Ω(P)

v(pλ)
|P̂ (tα)|

+
∑

pλ∈P̂ (tα)∩Ψ(P)

v(pλ) × v′(pλ)
|P̂ (tα)|

and

C′(tα) =
∑

oβ∈A(tα)∩Ω(O)

c(oβ) + i(oβ) + a(oβ).

2.3 Response Selection

The risk level after an event occurs is denoted by Ra. If this increases past the
threshold of risk tolerance R0, the goal of the response engine is to reduce the
risk by δg ≥ Ra −R0 to a level below the threshold. To do this, it must select
a subset of permissions ρ(Ω(P)) ⊆ Ω(P) and a subset of objects ρ(Ω(O)) ⊆
Ω(O), such that adding safeguards and curtailments respectively to the two sets
will reduce the risk to the desired level. The resulting risk level is reduced to
R′′ =

∑
tα∈T T (tα) × V ′′(tα) × C′′(tα) where the new vulnerability measure is

V ′′(tα)=
∑

pλ∈(P̂ (tα)∩Ω(P)−ρ(Ω(P)))

v(pλ)
|P̂ (tα)|

+
∑

pλ∈(P̂ (tα)∩Ψ(P)∪ρ(Ω(P)))

v(pλ) × v′(pλ)
|P̂ (tα)|

and the new consequence measure is

C′′(tα) =
∑

oβ∈(A(tα)∩Ω(O)−ρ(Ω(O)))

c(oβ) + i(oβ) + a(oβ).

268 A. Gehani, L. Zaniewski, and K. Subramani

2.4 Performance Sensitivity

The choice of safeguards and curtailments also impacts the performance of the
system. Evaluating predicates before granting permissions introduces latency in
system calls. Cryptographically protecting objects decreases usability. Hence,
the choice of subsets ρ(Ω(P)) and ρ(Ω(O)) or subsets ρ(Ψ(P)) and ρ(Ψ(O)) is
subject to the secondary goal of minimizing the overhead introduced.

The adverse impact of a safeguard or curtailment is proportional to the fre-
quency with which it is used in the system’s workload. Given a typical workload,
we can count the frequency f(pλ) with which permission pλ is requested in the
workload. Similarly, we can count the frequency f(oβ) with which file oβ is ac-
cessed in the workload. This can be done for all permissions and files. The cost
of using subsets ρ(Ω(P)) and ρ(Ω(O)) for risk reduction can then be calculated
with

ζ(ρ(Ω(P)), ρ(Ω(O))) =
∑

pλ∈ρ(Ω(P))

f(pλ) +
∑

oβ∈ρ(Ω(O))

f(oβ).

2.5 Abstracting the Problem

The ideal choice of safeguards and curtailments minimizes the safeguards’ and
curtailments’ impact on performance, while simultaneously ensuring that the
risk remains below the threshold of tolerance. Thus, for risk reduction we wish
to find:

minimize: ζ(ρ(Ω(P)), ρ(Ω(O)))
subject to: R′′ ≤ R0

Risk management can be viewed as an exercise in picking vertices from the
second and third partitions of Figure 2, that need to be protected. Since the
set of threats and their likelihoods cannot be altered by the response apparatus,
we can merge the first partition, which contains the threats, into the second by
scaling each vulnerability’s weight with the sum of the threat likelihoods that
have incident edges on it. We note that the semantics of risk management require
that at each step, the risk must be reduced below the threshold of tolerance. This
precludes optimization strategies such as minimizing a weighted sum of risk and
runtime performance.

3 On the Hardness of Risk Management

We describe results that provide insights into the algorithmic hardness of the
risk management problem.

3.1 Integral Costs and Benefits

When performance-sensitive runtime risk management is viewed as a 0/1 integer
nonlinear programming problem with a linear objective function and a quadratic

Algorithmic Aspects of Risk Management 269

constraint, it gives rise to a range of related graph problems. For example, consider
the problem of selecting a set of responses such that the total cost of effecting
them is below a threshold T1, and simultaneously ensuring that the residual risk
is below T2 when the costs and benefits are integers. Since the costs correspond
to the frequency with which a resource is accessed in the workload, the costs are
positive integers. In scenarios where the risk associated with each edge is derived
by counting the frequency with which the asset (associated with one vertex that
the edge is incident upon) is accessed through the permission (associated with
the other vertex that the edge is incident upon), the edge weights are also positive
integers. This can be defined as the following problem P1:

Problem 1 (P1). Given a graph G = 〈V, E, p, w〉 with V denoting the set
of vertices, E denoting the set of edges, w : V → Z denoting a weighting
function from the vertices to the set of positive integers, and p : E → Z
denoting a weighting function from the set of edges to the set of positive
integers, a vertex threshold T1 and an edge threshold T2, is there a subset
of vertices V ′ such that

∑
v∈V ′ w(v) ≤ T1 and

∑
e=(u,v); u,v�∈V ′ p(e) ≤ T2?

Alternatively, the risk management algorithm could attempt to select a set
of responses that would impose a cost less than the threshold T1 but subject
to the constraint that the resulting risk reduction would exceed threshold T2

(where any response primitive chosen would eliminate all risk contributions that
depended on access to the targeted permission or asset). This can be formulated
as the problem P2:

Problem 2 (P2). Given a graph G = 〈V, E, p, w〉 with V denoting the
set of vertices, E denoting the set of edges, w : V → Z denoting a
weighting function from the vertices to the set of positive integers, and
p : E → Z denoting a weighting function from the set of edges to the
set of positive integers, a vertex threshold T1 and an edge threshold
T2, is there a subset of vertices V ′ such that

∑
v∈V ′ w(v) ≤ T1 and∑

e=(u,v); u∈V ′ or v∈V ′ p(e) ≥ T2?

The two problems P1 and P2 can be seen to be identical. Implementing
a solution for one therefore immediately provides a mechanism to address the
other. The equivalence can be seen since an instance of P1 can be represented
as an instance of P2 by replacing T2 with

∑
e∈E w(e) − T2 and vice versa. An

important point to note about P2 is that if a vertex in V − V ′ does not have
any incident edges, then it is automatically included in V ′.

3.2 Independent Vulnerabilities and Consequences

In our initial investigation, we found that even simplifications of the performance-
sensitive runtime risk management problem are algorithmically hard to solve. For

270 A. Gehani, L. Zaniewski, and K. Subramani

example, consider the case where every attack relies on a single vulnerability and
affects a single asset. The corresponding graph is a matching. Optimal response
selection in this scenario is algorithmically expensive as shown below:

Theorem 1. P2 is NP-complete even if G is a matching.

Proof. We reduce the 0/1 knapsack problem to P2. The knapsack problem is
known to be NP-complete [8].

An instance of the knapsack problem is characterized by n objects
O = {o1, o2, . . . , on} with respective profits {p1, p2, . . . , pn} and respective in-
teger weights {w1, w2, . . . , wn}, a knapsack capacity W and a profit target T .
The goal is to pack objects into the knapsack so as to obtain a profit of at least T ,
while ensuring that the sum of the weights of the objects is at most W . Without
loss of generality, we can assume that the weights are even integers.

Given the knapsack instance, we construct the following instance of P2. Cor-
responding to object Oi, create two vertices vi and vn+i and an edge connecting
them with weight pi. The two vertices are given weight wi

2 each. The vertex
threshold is set at W and the edge threshold is set at T .

We claim that the knapsack instance is a “yes” instance if and only if the P2
instance is.

Assume that the given knapsack instance is a “yes” instance, i.e., there is a
set of objects O′ ⊆ O, such that

∑
y:y∈O′ w(y) ≤ W and

∑
y:y∈O′ p(y) ≥ K.

Pick the vertices in the P2 instance that correspond to these objects. As per the
construction, the vertex threshold of these vertices is at most W and the edge
threshold is at least T .

Now assume that the P2 instance is a “yes” instance, i.e., there is a collection
of vertices whose combined weight is at most W and the sum of the weights
of the edges connected to these vertices is at least K. As per the construction
of the P2 instance, if vertex vi is picked, then so is vertex vn+i. Further, the
contribution of these two vertices to the vertex threshold is wn+i and to the edge
threshold is pi. Consider the objects corresponding to the picked vertex pairs.
As per the construction, their weights sum to at most W and their profits sum
to at least K. ��

3.3 Qualitative Exposures and Consequences

Instead of considering the case when each vulnerability affects a different asset
in the system, we extended the scope of the problem to consider the result
when each vulnerability could affect multiple assets and each asset could be
affected by multiple vulnerabilities. We restrict the problem to the case where
only qualitative knowledge about the vulnerabilities and consequences in the
system is available, with the result that a vertex exists for each vulnerability
and asset in the system, but it is unweighted.

Algorithmic Aspects of Risk Management 271

Since only their absence or presence is known, an unweighted edge between the
permission guarding a vulnerability and the object affected by the consequence
is inserted only when the vulnerability and consequence are both present. To
ensure that the risk remains below a predefined threshold, vertices can be re-
moved by deactivating the corresponding permissions or curtailing the relevant
consequences. The result is that an edge incident on any of the removed vertices
would itself be removed from the graph, reducing the risk. This is formulated as
problem P3:

Problem 3 (P3). Given a bipartite graph with unweighted vertices and
unweighted edges, find the smallest set of vertices, subject to the con-
straint that the number of edges remaining after the vertices are removed
is below a predefined threshold.

3.4 Known Workloads

The formulation of P3 did not account for the frequency with which each re-
sponse primitive occurs in the workload. In practice, the frequency with which
the safeguard or data protection primitive is invoked affects its impact on perfor-
mance. Picking primitives with lower frequencies is therefore preferable. When
a workload is known in advance, the problem can be formulated as P4:

Problem 4 (P4). Given a bipartite graph with weighted vertices and un-
weighted edges, find the set of vertices with the lowest sum of vertex
weights, subject to the constraint that the number of edges remaining
after the vertices are removed is below a predefined threshold.

3.5 Dynamic Application Workloads

We can generalize the risk model from the case where exposure and consequences
are considered only qualitatively – that is, only their presence or absence is
known, to the case where an estimate of their degree is known. If the degree
is estimated with an integer, then the risk contributed by the presence of each
exposure and consequence pair is also an integer (since it is the product of two
integers). Therefore the edges in the bipartite graph constructed to represent
the risk has integer weights.

In general, if the target application workload is known a priori, information
gleaned from it can be used to optimize the choice of risk management responses.
The approach comes with the caveat that predicting a target workload may be
nontrivial. In particular, past workloads may not be available and even if they
are, they may not be representative of future tasks. Additionally, if the tar-
get workload has high variance – that is, if it dynamically and significantly
changes its characteristics, then the use of average frequencies for vertex weights

272 A. Gehani, L. Zaniewski, and K. Subramani

can result in distorted tradeoffs between cost and benefit estimates of selecting
specific responses. In such a situation, we can factor out performance sensitivity
by using unweighted vertices. The corresponding formulation is P5:

Problem 5 (P5). Given a bipartite graph with unweighted vertices and
weighted edges, find the set of vertices with the lowest sum of vertex
weights, subject to the constraint that the number of edges remaining
after the vertices are removed is below a predefined threshold.

We show P5 is NP-complete by reducing the vertex cover problem to it. Re-
call that this determines whether it is possible to construct a cover of a specified
size, where a cover is a subset of vertices with the property that every edge in
the graph has at least one end incident upon one of the vertices in the cover.

Theorem 2. P5 is NP-complete.

Proof. Assume we wish to check whether a cover of size k exists for graph G.
We construct a bipartite graph B with disjoint partitions π1 and π2 as follows.

For each vertex vi in G, we add four vertices, vi,1, vi,2, vi,3, and vi,4 to B. vi,1

and vi,3 are inserted in π1 while vi,2 and vi,4 are inserted in π2. An edge between
vi,3 and vi,4 is added to B and given weight 1. A second edge, between vi,1 and
vi,4, and a third edge, between vi,2 and vi,3, are also added to B. The second
and third edges are each given weight k + 1.

For each edge (vi, vj) in G, we add two edges with weight k+1 to B. The first
is between vi,1 and vj,2 and the second is between vi,2 and vj,1. This is illustrated
in Figure 3.

The target number of vertices to be removed is set to ρ = |π1|+|π2|
2 , that is,

half the total number of vertices in B. We run our algorithm for P5 on B with
threshold k. If we can remove ρ vertices subject to the constraint that the total
weight of the remaining edges is below the threshold k, then there exists a vertex
cover of size k for G.

The reason the reduction holds is as follows. Since the edges connecting vi,1 to
vi,4 and vi,2 to vi,3 have weights that exceed the threshold, either vi,1 or vi,4 and
either vi,2 or vi,3 must be removed for the total weight of the remaining edges
to be below the threshold. Since half of the vertices can be removed from the
graph, exactly one vertex is removed from each of the pairs. To remain below
the threshold, it is necessary to remove all the edges in B that were added in
correspondence to the edges in G. Specifically, if vi is a vertex in the cover of
G, then vi,1 and vi,2 must be removed from B for the threshold constraint to be
maintained. Since only one of the vertices vi,1 and vi,4 and only one of vi,2 and
vi,3 can be removed, if vi,1 and vi,2 are selected for removal, then vi,3 and vi,4

must remain in B along with the edge between the two. Conversely, any group

Algorithmic Aspects of Risk Management 273

of four vertices (vi,1, vi,2, vi,3, and vi,4) in B that corresponds to a vertex vi in
G that is not in the cover can have either vi,2 or vi,3 removed without increasing
the total weight of the edges. Thus, the only way half the vertices of B can be
removed while the total weight of the edges remains below the threshold k is if
the corresponding vertices in G form a cover of size k. ��

v {1 , 1 }
v {1 , 2 }

v {1 , 3 } v {1 , 4 }

k + 1k + 1

1

v {2 , 1 } v {2 , 2 }

v {2 , 3 } v {2 , 4 }

k + 1k + 1

1

k + 1k + 1

Fig. 3. Given a graph with two vertices, v1 and v2, and an edge between them, this is
the corresponding bipartite graph

4 Open Questions

Although problems P1, P2, and P3 are the minimally and maximally con-
strained versions of P4 and P5, the complexity of P1, P2, and P3 remains to
be analyzed. In addition, efficient solutions (and approximation algorithms, as
needed) must be designed for these problems. Further, variants of the problems
where edges (representing risk) can have real values instead of integers when an
active monitor (modeled in Section 2) is used to dynamically limit the exposure
of the system, or the consequences are estimated with fractional values.

Cascading Dependencies

Our experience developing a prototype risk manager for the operating system
paradigm uncovered the problem of cascading dependencies. If the semantics

274 A. Gehani, L. Zaniewski, and K. Subramani

of risk reduction through edge removal requires both vertices that the edge is
incident upon to also be removed, then the effect may be a cascade of edge
removal. The total risk reduction that results by selecting a set of responses is
not just the risk reduction corresponding to the sum of the edge weights of the
induced subgraph. Instead, it also includes the risk from the sum of the edges
that have a single end incident on any vertex in the set of selected responses.
This significantly complicates the problem, since it may potentially introduce a
cascading set of dependencies, all of which must be examined to determine the
optimal choice of edges. Figure 4 illustrates the issue.

Part o
f th

e induced su
bgraph.

f(p)
4

f(o)
3

w(p , o)
4 3

f(p)
1

f(p)
2

f(p)
3

f(o)
2

f(o)
1

f(p)
5

f(p)

f(o)

4

3

3 3

w(p , o)
1 3

w(p , o)

Fig. 4. When edge (p4, o3) is removed, if the semantics require that both vertices that
it is incident upon must be inactivated, then the dependency cascade would leave only
p5 operational

5 Related Work

The effort to manage the risk of information systems can be traced to the use
of the Annual Loss Expectancy (ALE) metric [6][7] by large data processing
centers. The use of the ALE paradigm by commercial tools [19], coupled with
a focused research effort [2][3][4][5], resulted in improvements in risk modeling.
Although risk analysis has been used to manage the security of systems for sev-
eral decades [6], its use has been limited to offline risk computation and manual
response. SooHoo [20] proposed a general model using decision analysis to es-
timate computer security risk and automatically update input estimates. Bilar
[1] used reliability modeling to analyze the risk of a distributed system. Risk is
calculated as a function of the probability of faults being present in the system’s

Algorithmic Aspects of Risk Management 275

constituent components. Risk management is framed as an integer linear pro-
gramming problem, aiming to find an alternate system configuration, subject to
constraints such as acceptable risk level and maximum cost for reconfiguration.

Problems P1 through P5 are being proposed for the first time, although vari-
ants have been studied and described earlier. The 0/1 1-dimensional knapsack
problem is called a weakly NP-complete problem, since it admits algorithms
whose running times are polynomial if the problem parameters are represented
in unary. Such algorithms are called pseudo-polynomial algorithms. Ibarra and
Kim presented a pseudo-polynomial time algorithm [14] for the knapsack prob-
lem that has been used as the basis for the design of an efficient fully polynomial
approximation scheme for the knapsack problem. Efficient approaches to unidi-
mensional and multidimensional variants of the knapsack have also been devel-
oped [17][16]. This paper shows that problems P1 through P5 are NP-complete.

In the prototype implemented [9], a heuristic was used to guarantee that
the risk is maintained below a threshold. Although approximation algorithms
exist [15], they were not employed since the choices had to be made in real
time. The heuristic used is based on the greedy algorithm for the 0-1 Knapsack
Problem that yields a solution that is always within a factor of 2 of the optimal
choice [8]. When the risk needs to be reduced, the heuristic uses the greedy
strategy of picking the response primitive with the highest benefit-to-cost ratio
repeatedly until the constraint is satisfied. By maintaining the choices in a heap
data structure keyed on the benefit-to-cost ratio, each primitive in the response
set can be chosen in O(1) time. This is significant, since implementing a single
response primitive is often sufficient to disrupt an attack in progress. A separate
heap is used to maintain the active safeguards keyed by the cost-to-benefit ratio
instead. When the risk needs to be relaxed, the active safeguards with the highest
cost-to-benefit ratios can be selected, since these yield the best improvement to
system performance. A future avenue of research is empirical comparison of the
approximation and NP-complete algorithms to the heuristic.

6 Conclusion

We note that the semantics of risk management require that the risk be reduced
below the threshold of tolerance each time it is found to exceed it. Risk can
be reduced by denying access to a resource that contains a vulnerability or by
activating data protection measures. This is modeled as the removal of edges
representing risk in the aforementioned graph. Depending on whether the risk
estimates are integers or reals, whether the vulnerabilities and consequences are
independent or conditional, whether the application workload is known in ad-
vance, whether the workload is stable or changing rapidly, and depending on the
semantics of response selection, there are different underlying graph problems.
We analyzed some of the problems that form the algorithmic underpinnings of
optimal risk management.

276 A. Gehani, L. Zaniewski, and K. Subramani

References

1. Bilar, D.: Quantitative Risk Analysis of Computer Networks, Ph.D. Thesis, Dart-
mouth College (2003)

2. 1st Computer Security Risk Management Model Builders Workshop, Martin Ma-
rietta, Denver, Colorado, National Bureau of Standards (May 1988)

3. 2nd Computer Security Risk Management Model Builders Workshop, AIT Cor-
poration, Ottawa, Canada, National Institute of Standards and Technology (June
1989)

4. 3rd International Computer Security Risk Management Model Builders Workshop,
Los Alamos National Laboratory, Santa Fe, New Mexico, National Institute of
Standards and Technology (August 1990)

5. 4th International Computer Security Risk Management Model Builders Workshop,
University of Maryland, College Park, Maryland, National Institute of Standards
and Technology (August 1991)

6. Guidelines for Automatic Data Processing Physical Security and Risk Manage-
ment, National Bureau of Standards (1974)

7. Guidelines for Automatic Data Processing Risk Analysis, National Bureau of Stan-
dards (1979)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

9. Gehani, A.: Support for Automated Passive Host-based Intrusion Response, PhD
thesis, Duke University (2003)

10. Gehani, A.: Performance-sensitive Real-time Risk Management is NP-Hard. In:
Workshop on Foundations of Computer Security affiliated with the 19th IEEE
Symposium on Logic in Computer Science (2004)

11. Gehani, A., Kedem, G.: RheoStat: Real-time Risk Management. In: Jonsson, E.,
Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 296–314. Springer,
Heidelberg (2004)

12. Gehani, A., Kedem, G.: Real-time Access Control Reconfiguration. In: Interna-
tional Infrastructure Survivability Workshop affiliated with the 25th IEEE Inter-
national Real-Time Systems Symposium (2004)

13. Gehani, A., Chandra, S., Kedem, G.: Augmenting Storage with an Intrusion Re-
sponse Primitive to Ensure the Security of Critical Data. In: 1st ACM Symposium
on Information, Computer and Communications Security (2006)

14. Ibarra, O., Kim, C.: Fast Approximation Algorithms for the Knapsack and Sum
of Subset Problems. Journal of the ACM 22(4) (1975)

15. Kellerer, H., Pferschy, U.: A new fully polynomial approximation scheme for the
knapsack problem. In: Jansen, K., Rolim, J.D.P. (eds.) APPROX 1998. LNCS,
vol. 1444, pp. 123–134. Springer, Heidelberg (1998)

16. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg
(2004)

17. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implemen-
tations. John Wiley and Sons, New York (1990)

18. Guidelines for Automatic Data Processing Physical Security and Risk Manage-
ment, National Institute of Standards and Technology (1996)

19. Description of Automated Risk Management Packages that NIST/NCSC Risk
Management Research Laboratory Has Examined, National Institute of Standards
and Technology (1991)

20. Hoo, K.S.: Guidelines for Automatic Data Processing Physical Security and Risk
Management, Ph.D. Thesis, Stanford University (2002)

Parameterized Metareasoning in Membership

Equational Logic�

Manuel Clavel, Narciso Mart́ı-Oliet, and Miguel Palomino

Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid, Spain
{clavel,narciso,miguelpt}@sip.ucm.es

Abstract. Basin, Clavel, and Meseguer showed in [1] that membership
equational logic is a good metalogical framework because of its initial
models and support of reflective reasoning. A development and an appli-
cation of those ideas was presented later in [4]. Here we further extend
the metalogical reasoning principles proposed there to consider classes
of parameterized theories and apply this reflective methodology to the
proof of different parameterized versions of the deduction theorem for
minimal logic of implication.

1 Motivation

A reflective logic is a logic in which important aspects of its metalogic can
be represented at the object level in a consistent way, so that the object-level
representations correctly simulate the relevant metalogical aspects. As a conse-
quence, in a reflective logic, metatheorems involving families of theories can be
represented and logically proved as theorems about its universal theory. Basin,
Clavel, and Meseguer showed in [1] that logical frameworks can be good metalog-
ical frameworks when their theories always have initial models and they support
reflective and parameterized reasoning; they also showed that membership equa-
tional logic is a particular logical framework that satisfies these requirements.
In this paper, we extend their ideas and apply them to the (parameterized)
deduction theorem.

Basin and Matthews have shown in [2] how metatheories based on inductive
definitions can be used to formalize metatheorems that are parameterized with
their scope of application. As a case study, they formalize different parameterized
versions of the deduction theorem in the theory FS0 [8]; we will use the same
case study to motivate the developments of the following sections.

We can use membership equational logic (described in more detail in Sec-
tion 2) to represent theoremhood in a logic as a sort in a theory. Conditional
membership axioms then directly support the representation of rules as schemas,
which is typically used in presenting logics and formal systems. Similarly, we can

� Research supported by Spanish projects DESAFIOS10 TIN2009-14599-C03-01 and
PROMETIDOS S2009/TIC-1465.

G. Agha, O. Danvy, and J. Meseguer (Eds.): Talcott Festschrift, LNCS 7000, pp. 277–298, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

278 M. Clavel, N. Mart́ı-Oliet, and M. Palomino

represent theoremhood in a parameterized family of logics as a sort in a param-
eterized theory. A sort in a parameterized membership equational theory can
be used to represent theoremhood in a family of logics if and only if there is a
correspondence between logics in the family and instances of the parameterized
theory. Moreover, this correspondence has to be such that theoremhood in a logic
in the family can be represented as membership in this sort in the corresponding
instance of the parameterized theory.

We shall now illustrate the above idea using minimal logic (of implication)
as a running example. Representing minimal logic in membership equational
logic entails defining a theory T that conservatively represents minimal logic’s
theoremhood. The formulae of minimal logic correspond to members of the set
built from the binary connective → (written infix, associating to the right) and
sentential constants. Theorems correspond to members of a second set, and are
either instances of the standard Hilbert axiom schemas K,

A→ B → A,

and S,
(A→ B) → (A→ B → C) → (A→ C),

fth MINIMAL is

kind Symbol[].

kind Expression[SentConstant Formula Theorem].

** kinds

*** *** Symbol

op <ASCII-identifiers> : -> Symbol .

*** *** Expression

op <integer> : -> Expression .

op [_,_,_] : Symbol Expression Expression -> Expression .

vars A B C : Expression .

** sorts

*** *** SentConstant

mb <integers> : SentConstant .

*** *** Formula

cmb A : Formula if A : SentConstant .

cmb [->, A, B]: Formula if A : Formula /\ B : Formula .

*** *** *** Theorem

cmb [->, A, [->, B, A]] : Theorem

if A : Formula /\ B : Formula .

cmb [->, [->, A, B], [->, [->, [A, [->, B, C]]], [->, A, C]]] : Theorem

if A : Formula /\ B : Formula /\ C : Formula .

cmb B : Theorem

if A : Formula /\ B : Formula

/\ A : Theorem /\ [->, A, B]: Theorem .

endfth

Fig. 1. The theory MINIMAL

Parameterized Metareasoning in Membership Equational Logic 279

or are generated by applying the modus ponens rule,

A A→ B

B
.

Then, the deduction theorem for minimal logic is a metatheorem that states that

if �A B then � A→ B,

where � denotes that a formula can be deduced in minimal logic from the rules
above and �A is provability when A is considered to be an additional axiom.
Since A is arbitrary, this result is a statement about a family of logics (or the-
ories); actually, the result is also parametric in another sentence since it holds
for extensions of minimal logic with additional connectives, like the standard
conjunction.

The theory MINIMAL—in short, ML—in Figure 1 represents minimal logic in
membership equational logic using the above idea. The lines starting with kind
declare the kinds and their associated sorts; for the time being, kinds can be
safely ignored. The sort Formula represents the well-formed formulae in minimal
logic, in the sense that any formula in minimal logic can be represented as a
term of this sort and vice versa. For example, if A,B are sentential constants
represented respectively by 1 and 2, then (A → B) is represented by the term
[->, 1, 2] of sort Formula. Similarly, the sort Theorem represents the theorems
in minimal logic, so that any theorem in minimal logic can be represented as a
term of this sort, and vice versa.

Consider now the task of representing not just minimal logic, but the family of
logics that includes any extension of minimal logic with respect to its language—
connectives and syntactic rules—and proof system—axioms and inference rules.
A solution to this is given by the parameter theory EXTENDED-MINIMAL—in short,
EML—in Figure 2. The parametric sort @NewSynRule allows us to capture the
extensions of minimal logic’s language with new binary connectives. For example,
the extension of minimal logic’s language with the ∧-operator corresponds to the
instantiation of EML with the following membership axiom Ax(@NewSynRule)
associated to @NewSynRule:

mb [[/\, A, B], A, B]: @NewSynRule .

Similarly, the parametric sorts @NewAxiom and @NewInfRule allow us to cap-
ture the extensions of minimal logic’s proof system with new axioms and/or new
inference rules of two premises. For example, the extension of minimal logic’s
proof system with the axiom schemas for the binary connective ∧ corresponds
to the instantiations of EML with the following membership axioms associated to
@NewAxiom:

mb [->, A, [->, B, [/\, A, B]]]: @NewAxiom .

mb [->, [/\, A, B], A]: @NewAxiom .

mb [->, [/\, A, B], B]: @NewAxiom .

280 M. Clavel, N. Mart́ı-Oliet, and M. Palomino

fth EXTENDED-MINIMAL is

including MINIMAL .

kind Expression[@NewAxiom] .

kind Rule[@NewSynRule @NewInfRule] .

** kinds

*** *** Rule

op [_,_,_] : Expression Expression Expression -> Rule .

vars A B C : Expression .

** sorts

*** *** Formula

cmb A : Formula

if [A, B, C] : @NewSynRule

/\ B : Formula /\ C : Formula .

*** *** Theorem

cmb A : Theorem if A : @NewAxiom /\ A : Formula .

cmb A : Theorem

if [A, B, C] : @NewInfRule

/\ A : Formula /\ B : Formula /\ C : Formula

/\ B : Theorem /\ C : Theorem .

** parameters

op @A : -> Expression .

mb @A : Formula .

endfth

Fig. 2. The theory EXTENDED-MINIMAL

fth EXTENDED-MINIMAL-DT[EXTENDED-MINIMAL] is

including EXTENDED-MINIMAL .

mb @A : Theorem .

endfth

Fig. 3. The theory EXTENDED-MINIMAL-DT[EXTENDED-MINIMAL]

Now, let @A be the parametric constant that appears (as a subscript of �) in the
deduction theorem. The parameterized theory in Figure 3—in short, DT[EML]—
can be used to represent any extension of minimal logic with respect to its
language and proof system.

With this example in mind, our objectives in this paper move at two different
levels. First, we want to design a metareasoning principle over parameterized
theories in membership equational logic; a concrete application of this principle
would be a proof of the fact that the deduction theorem holds for every pos-
sible instantiation of DT[EML]. Secondly, and foremost, we intend to reify both
parameterized theories and the metareasoning principle in the universal theory
UMEL of membership equational logic [6]; that is, our goal is to define rep-
resentation functions to reify parameterized theories as terms in UMEL and the

Parameterized Metareasoning in Membership Equational Logic 281

metareasoning principle as a formula over UMEL. As a concrete application, we
will show that the parameterized deduction theorem can be proved by showing
that a certain formula holds in UMEL.

2 Membership Equational Logic

Membership equational logic is an expressive version of equational logic. A full
account of the syntax and semantics of membership equational logic can be found
in [3,10]. Here we define the basic notions needed in this paper.

A signature in membership equational logic is a triple Ω = (K,Σ, S) with
K a set of kinds, Σ a K-kinded signature Σ = {Σk1...kn,k}(k1...kn,k)∈K∗×K , and
S = {Sk}k∈K a pairwise disjoint K-kinded family of sets. We call Sk the set of
sorts of kind k and write [s] for the kind of a sort s. The pair (K,Σ) is what is
usually called a many-sorted signature of function symbols; however we call the
elements of K kinds because each kind k now has a set Sk of associated sorts,
which in the models will be interpreted as subsets of the carrier for the kind.

The atomic formulae of membership equational logic are equations t = t′,
where t and t′ are Σ-terms of the same kind, and membership assertions of the
form t : s, where the term t has kind k and s ∈ Sk. Sentences are Horn clauses
on these atomic formulae, i.e., sentences of the form

∀(x1, . . . , xm). A0 if A1 ∧ . . . ∧An

where each Ai is either an equation or a membership assertion, and each xj is
a K-kinded variable. A theory in membership equational logic is a pair (Ω,E),
where E is a finite set of sentences in membership equational logic over the
signature Ω. We write (Ω,E) � φ to denote that (Ω,E) entails the sentence φ.

We employ standard semantics concepts from many-sorted logic. Given a sig-
nature Ω = (K,Σ, S), an Ω-algebra A is a many-kinded Σ-algebra (that is, a
K-indexed-set A = {Ak}k∈K together with a collection of appropriately kinded
functions interpreting the operators in Σ) and an assignment that associates to
each sort s ∈ Sk a subset As ⊆ Ak. As usual, we denote by TΩ the K-kinded
algebra of ground (K,Σ)-terms, and by TΩ(X) the algebra of (K,Σ)-terms on
the K-kinded set of variables X . An algebra A and a valuation σ, assigning to
variables of kind k values in Ak, satisfy an equation (∀X) t = t′ iff σ(t) = σ(t′),
where we overload notation by identifying σ with its unique homomorphic ex-
tension to terms. We write A, σ |= (∀X) t = t′ to denote such a satisfaction.
Similarly, A, σ |= (∀X) t :s holds iff σ(t) ∈ As.

Note that an Ω-algebra is a K-kinded first-order model with function symbols
Σ and a kinded alphabet of unary predicates {Sk}k∈K . We can then extend the
satisfaction relation to Horn and first-order formulae φ over the atomic formulae
in the standard way. We write A |= φ when the formula φ is satisfied for all
valuations σ, and then say that A is a model of φ. As usual, we write (Ω,E) |= φ
when all the models of the set E of sentences are also models of φ.

Theories in membership equational logic have initial models [10]. This pro-
vides the basis for reasoning by induction. In the initial model of a membership

282 M. Clavel, N. Mart́ı-Oliet, and M. Palomino

equational theory, sorts are interpreted as the smallest sets satisfying the axioms
in the theory, and equality is interpreted as the smallest congruence satisfying
those axioms. Given a theory (Ω,E), we denote its initial model by TΩ/E . In
particular, when E = ∅ we obtain the term algebra TΩ. We write (Ω,E) |	 φ
to denote that the initial model of the membership equational theory (Ω,E) is
also a model of φ, that is, that the satisfaction relation TΩ/E |= φ holds.

2.1 Reflection in Membership Equational Logic

A reflective logic is a logic in which important aspects of its metalogic can be
represented at the object level in a consistent way, so that the object-level repre-
sentation correctly simulates the relevant metalogical aspects. More concretely,
a logic is reflective when there exists a universal theory in which we can rep-
resent and reason about all finitely presentable theories in the logic, including
the universal theory itself [5]. As a consequence, in a reflective logic, metathe-
orems involving families of theories can be represented and proved as theorems
about its universal theory [1]. A universal theory UMEL for membership equa-
tional logic is described in [6], along with a representation function (�) that
encodes pairs, consisting of a finitely presentable membership equational theory
with nonempty kinds and a sentence in it, as sentences in UMEL. The signature of
UMEL contains constructors to represent operators, variables, terms, kinds, sorts,
signatures, axioms, and theories. In particular, the signature of UMEL includes
the kinds [Op], [Var], [Term], [TermList], [Kind], [Sort], and [Theory] for
terms representing, respectively, operators, variables, terms, lists of terms, kinds,
sorts, and theories. In addition, it contains three Boolean operators1

op _::_in_ : [Term] [Kind] [Theory] -> [Bool] .

op _:_in_ : [Term] [Sort] [Theory] -> [Bool] .

op _=_in_ : [Term] [Term] [Theory] -> [Bool] .

to represent, respectively, that a term is a ground term of a given kind in a
membership equational theory, and that a membership assertion or an equation
holds in a membership equational theory.

The representation function (�) is defined in [6] as follows: for all finitely
presentable membership equational theories with nonempty kinds R, and atomic
formulae φ over the signature of R,

R � φ �
{

(t : s in R) = true if φ = (t :s)
(t = t′ in R) = true if φ = (t = t′),

where () is a representation function defined recursively over theories, signa-
tures, axioms, and so on. In particular, to represent terms the signature of UMEL

contains the constructors
1 The operator declarations have been changed slightly from those in [6] to better

match their use in this work.

Parameterized Metareasoning in Membership Equational Logic 283

op _[_] : [Op] [TermList] -> [Term] .

op nil : -> [TermList] .

op _,_ : [TermList] [TermList] -> [TermList] .

and the representation function () is defined as follows:

t �

⎧⎪⎨
⎪⎩
c if t = c is a constant
x if t = x is a variable
f[t1, . . . ,tn] if t = f(t1, . . . , tn).

(1)

For example, the term s(0) of kind Num is represented in UMEL as the term s[0]
of kind [Term]. Constants, operators, variables, kinds, and sorts are represented
using strings of ASCII characters preceded by a quote. For example, s(0) can be
represented in UMEL as the term ’s[’0]. It is convenient to represent variables
along with their kinds using a binary constructor

op _|_ : [Var] [Kind] -> [Term] .

For example, s(N) is represented in UMEL as the term ’s[’N|’Num].
The following results state the main properties of UMEL as a universal theory

and are proved in [6]. We assume a finitely presentable membership equational
theory R = (Ω,E) with nonempty kinds, and with Ω = (K,Σ, S).

Proposition 1. For all terms t in TΩ, and kinds k in K,

t ∈ (TΩ)k ⇐⇒ UMEL � (t :: k in R) = true.

Furthermore, for all ground terms u of kind [Term], if

UMEL � (u :: k in R) = true ,

then there is a term t ∈ (TΩ)k such that t = u.

Proposition 2. For all terms t, t′ in (TΩ)k and sorts s in Sk,

R � t : s ⇐⇒ UMEL � (t : s in R) = true
R � t = t′ ⇐⇒ UMEL � (t = t′ in R) = true.

Note that this proposition says that there exists a logical proof of t : s (resp. of
t = t′) in a membership equational theory R if and only if there exists also a
logical proof of (t : s in R) = true (resp. of (t = t′ in R) = true) in the
universal membership equational theory UMEL.

Finally, not only can the theory UMEL represent and reason about the en-
tailment relation of any other theory but also about their own structure. In
particular, we can define an operator

op _spec_in_ : [AxiomSet] [Sort] [Signature] -> [Bool] .

that distinguishes those axioms that specify a sort in a signature, in the following
sense:

284 M. Clavel, N. Mart́ı-Oliet, and M. Palomino

Proposition 3. For any membership equational signature Ω = (K,Σ, S), any
set of sentences Ax, and any sort s in some Sk, the following are equivalent:

– UMEL � (Ax spec s in Ω) = true.
– Ax is a set of sentences over Ω that specify the sort s.

Proposition 4. For any ground terms u, z, and M in UMEL, if

UMEL � (u spec z in M) = true,

then there is a membership equational signature Ω, a sort s over Ω, and a set
of sentences Ax in Ω specifying s, such that Ω = M , Ax = u, and s = z.

The proofs for these results would follow easily by mimicking the techniques for
Propositions 1 and 2.

2.2 Reflecting an Inductive Principle

We need to introduce here some additional notation. For all terms t ∈ TΩ(X),
we denote by t

[X] the reflective representation of t defined in (1), except that
now variables x ∈ X are replaced by variables x[X] = x of the kind [Term], and
we denote by X

[X]
the set X

[X] � {x[X] | x ∈ X}. The key difference between t
and t

[X] is that t is a ground term, whereas t[X] is a term of kind [Term] with
variables of the kind [Term].

In addition, for all membership assertions t :s, with t in TΩ(X) and s in some
Sk,

t :s[R,X] � (t[X] : s in R) = true,

and, similarly, for all equations t = t′, with t, t′ in TΩ(X),

t = t′
[R,X] � (t[X]

= t′
[X]

in R) = true.

Now we can define a representation function for metalogical statements that
satisfies the expected property. Let {R1, . . . , Rp} be a set of membership equa-
tional theories, {k1, . . . , kn} a finite multiset of kinds in {R1, . . . , Rp}, x =
{x1, . . . , xn} a finite set of variables, with each xi of kind ki, and τ a meta-
logical statement of the form

∀t1 ∈ (TΩ1)k1 ∀tn ∈ (TΩn)kn . bexp(R1 � φ1(t), . . . , Rp � φp(t)), (2)

where each φl(x) is an atomic Ωl-formula with free variables in x and bexp is a
Boolean expression. Then,

τ � ∀x1. . . . ∀xn. (((x1 :: k1 in R1) = true ∧ · · · ∧ (xn :: kn in Rn) = true)

=⇒ bexp(φ1(x)
[R1,x]

, . . . , φp(x)
[Rp,x]

)) ,

where {x1, . . . , xn} are now variables of the kind [Term]. Now, the main result
in [4] was:

Theorem 1. Let τ be a metalogical statement of the form (2). Then, τ holds
iff UMEL |	 τ .

Parameterized Metareasoning in Membership Equational Logic 285

3 Parameterization

In the previous section we have recalled an inductive principle to reason about
terms in a family of theories, which constitutes both an application of the ideas
introduced in [1] as well as a generalization.2 In this section we turn our attention
to parameterization, which was already studied in [1] using the deduction theo-
rem as a case study. Here we consider a generalization of the parameter theories
and of the corresponding inductive principle, and we use them to formalize two
versions of the deduction theorem not expressible in the formalisms presented
in [1,4].

3.1 (Some) Parameterized Membership Equational Theories

As pointed out by Goguen and Burstall [9], a parameterized theory can be defined
for logics in general as a pair of theories: the parameter P and the body T , that
are related by a theory map J : P → T which is typically a theory inclusion.
To instantiate such a parameterized theory, the key data needed is a theory
morphism H : P → Q from the parameter theory to another theory Q. The
instantiation by H is then defined as the pushout commutative diagram

T
HT

�� T [H]

P

J

��

H
�� Q

JQ

��

in the category Th of theories and theory maps [9], when such a pushout exists.
Now we employ an instance of the previous construction to define, for each

appropriate parameter theory P , a class PP of membership equational theories
parameterized by P and a class VP of theory morphisms that instantiate param-
eterized theories in PP . For that, given two membership equational signatures
Ω and Ω′, we will write Ω ∪ Ω′ for the signature whose set of kinds is the set-
theoretic union of those of Ω and Ω′, and whose operators and sorts are those
of Ω and Ω′.

Then, we consider parameter theories P of the form

P = (Ω ∪ V ∪ Z,E ∪ Mb(V));

that is, P ’s signature is built from

– a finite signature Ω = (K,Σ, S),
– a finite signature of parameters V = (K, {Vλ,k}k∈K , ∅), consisting of a pair-

wise disjoint K-kinded family of constants which satisfies that, for all k ∈ K,
Σλ,k ∩ Vλ,k = ∅, and

2 The result proved in [4] also allowed to reason about equivalence classes of terms,
which were not considered in [1].

286 M. Clavel, N. Mart́ı-Oliet, and M. Palomino

– a finite signature of parameters Z = (K, ∅, {Zk}k∈K), consisting of a pairwise
disjointK-kinded family of sets which satisfies that, for all k ∈ K, Sk∩Zk =∅;

and P ’s axioms consist of

– a finite set of sentences E on terms in TΩ(X), and
– a finite set of membership assertions Mb(V) that specify a sort (possibly in
Z) for each v in V .

Moreover, we consider theory maps P −→ T which are theory inclusions and,
for this reason, we usually denote parameterized theories by T [P]. Specifically,
we define PP as the class of parameterized theories T [P] of the form

T [P] = (Ω′ ∪ V ∪ Z,E ∪G ∪Mb(V)),

where Ω ⊆ Ω′ and G is a finite set of additional axioms (which extend P ’s
axioms). Note that for all parameter theories P there is a trivial extension P [P]
of P , namely, P [P] = P .

Now, let Inst(P) be the class of theories

Q = (Ω ∪ V ∪ Z,E ∪ Eq(V) ∪ Ax(Z)),

where

– Eq(V) is a finite set of equations of the form

v = t (v ∈ V),

assigning to each constant v ∈ V a ground term t ∈ TΩ such that Q � t : s,
where s is the sort assigned to v in Mb(V), and

– Ax(Z) is a finite set of membership axioms of the form

∀(x1, . . . , xm). t : z if A1 ∧ . . . ∧An,

where z ∈ Zk for some kind k ∈ K, t is a term over the signature Ω, and Ai

is an atomic formula over the same signature, for i = 1, . . . , n. We collect all
the axioms specifying a sort z ∈ Zk in a set Ax(z).

We define VP as the class of theory morphisms β : P −→ Q such that Q ∈
Inst(P) and β is the identity signature morphism. Note that the set VP is in
bijective correspondence with the set Inst(P).

The above defines a notion of instantiation for parameterized theories that,
for any T [P] ∈ PP and β ∈ VP , specializes the pushout construction to

T [P] �� T [β]

P

��

β
�� Q

��

where T [β] = (Ω′ ∪ V ∪ Z,E ∪G ∪ Eq(V) ∪ Ax(Z)).

Parameterized Metareasoning in Membership Equational Logic 287

One of the key ideas behind our use of theory morphisms is the following.
Although β is the identity morphism on signatures, it identifies terms in Q,
and hence in T [β], by adding equations of the form v = t. This has an effect
equivalent to mapping constants to terms. More formally, suppose T [P] ∈ PP

and β ∈ VP . For all terms t ∈ TΩ∪V (X), we denote by tβ the term in TΩ(X) that
results from replacing all parameters v in t by their instantiations in Eq(V). We
can extend this notion of term replacement to atomic formulae in the standard
way: (t : s)β � tβ : s and (t = t′)β � tβ = t′β . Note then that for all atomic
formulae φ over the signature of T [β], and due to the equations in Eq(V), it
holds that

T [β] � φ ⇐⇒ T [β] � φβ . (3)

4 Induction Principles for Parameterized Theories

We next introduce an inductive metareasoning principle over parameterized the-
ories. First, we need the following definition.

Definition 1. Let P = (Ω ∪ V ∪ Z,E ∪ Mb(V)) be a parameter theory with
Ω = (K,Σ, S), let P = {R1[P], . . . , Rp[P]} be a finite multiset of parameterized
theories in PP , and e ∈ [1..p]. We say that P is coherent modulo Re[P] if

1-a. every term t of kind k ∈ K in Re[P] is also a term of kind k in Rl[P] for
1 ≤ l ≤ p, and

1-b. for all theory morphisms β : P −→ Q in VP , all terms t and t′ of kind
k ∈ K in Re[P], and all 1 ≤ l ≤ p, it holds that

Re[β] � t = t′ =⇒ Rl[β] � t = t′.

That is, we assume that among the parameterized theories in P there is one
that is “equationally generic” in the sense that, if an equation holds in any of
its instances, then it also holds in the corresponding instance of any of the rest
of the parameterized theories in P . We can then use this distinguished theory
to reason inductively about the whole family.

Proposition 5. Let P = {R1[P], . . . , Rp[P]} be a finite multiset of parameter-
ized theories in PP that is coherent modulo Re[P]. Let Re[P] = (Ω′

e ∪V ∪Z,E ∪
Ge ∪ Mb(V)), let s be a sort in some Sk, and let C[Re[P],s] = {C1, . . . , Cn} be
those sentences in E ∪Ge that specify the sort s, i.e., those Ci of the form

∀(x1, . . . , xri). A0 if A1 ∧ . . . ∧Aqi ,

where, for some term w of kind k, A0 is w :s.
Then, for all finite multisets of atomic formulae {φl(x)}l∈[1..p] with free vari-

able x of kind k, and Boolean expressions bexp, the following metalogical state-
ment holds:

∀β ∈ VP .(ψ1 ∧ · · · ∧ ψn)
=⇒
∀β ∈ VP .

(∀t ∈ TΩ.(Re[β] � t : s =⇒ bexp(R1[β] � φ1(t)β , . . . , Rp[β] � φp(t)β))
)

288 M. Clavel, N. Mart́ı-Oliet, and M. Palomino

where, for 1 ≤ i ≤ n and Ci in C[Re[P],s], ψi is

∀t1 ∈ (TΩ)ki1
. . . .∀tri ∈ (TΩ)kiri

.[A1]# ∧ · · · ∧ [Aqi]
=⇒ [A0]#

and, for 0 ≤ j ≤ qi,

[Aj]� �
{

bexp (R1[β] � φ1(u(t)), . . . , Rp[β] � φp(u(t))) if Aj = u :s
Re[β] � Aj(t) otherwise.

Actually, this proposition is a particular case of the following, more general one,
that will be needed for the deduction theorem.

Proposition 6. Let P = {R1[P], . . . , Rp[P]} be a finite multiset of parameter-
ized theories in PP that is coherent modulo Re[P]. Let Re[P] = (Ω′

e ∪V ∪Z,E ∪
Ge ∪ Mb(V)), let s be a sort in some Sk, and let C[Re[P],s] = {C1, . . . , Cn} be
those sentences in E ∪Ge that specify the sort s, i.e., those Ci of the form

∀(x1, . . . , xri). A0 if A1 ∧ . . . ∧Aqi ,

where, for some term w of kind k, A0 is w :s.
Then, for all finite multisets of atomic formulae {φl(x)}l∈[1..p] with free vari-

able x of kind k, and Boolean expressions bexp, the following metalogical state-
ment holds:

∀β ∈ VP .(UMEL |	β(γ) =⇒ ψ1) ∧ · · · ∧ ∀β ∈ VP .(UMEL |	 β(γ) =⇒ ψn)
=⇒
∀β ∈ VP .

(
UMEL |	 β(γ) =⇒

∀t ∈ TΩ.(Re[β] � t : s =⇒ bexp(R1[β] � φ1(t)β , . . . , Rp[β] � φp(t)β))
)

where, for 1 ≤ i ≤ n and Ci in C[Re[P],s], ψi is

∀t1 ∈ (TΩ)ki1
. . . .∀tri ∈ (TΩ)kiri

.[A1]# ∧ · · · ∧ [Aqi]
=⇒ [A0]#

and, for 0 ≤ j ≤ qi,

[Aj]� �
{

bexp (R1[β] � φ1(u(t)), . . . , Rp[β] � φp(u(t))) if Aj = u :s
Re[β] � Aj(t) otherwise.

Proof. Let β ∈ VP be such that UMEL |	 β(γ) and let t be such that Re[β] � t : s.
Then, we have to show that bexp(R1[β] � φ1(t)β , . . . , Rp[β] � φp(t)β) is true.

We proceed by structural induction on the derivation of Re[β] � t : s. There
exists a sentence Ci in C[Re[P],s] and a substitution σ : {x1, . . . , xri} −→ TΩe ,
such that

– Re[β] � t = σ(w), and
– Re[β] � σ(Aj), for 1 ≤ j ≤ qi.

Parameterized Metareasoning in Membership Equational Logic 289

By hypothesis, UMEL |	 β(γ) =⇒ ψi, and since we are assuming UMEL |	β(γ),
ψi must hold. But then, in particular, it also holds [A1]�σ ∧ . . .∧ [Aqi]�σ =⇒ [A0]�σ,
where, for 0 ≤ j ≤ qi,

[Aj]�σ �
{

bexp (R1[β] � φ1([σ(u)]Re), . . . , Rp[β] � φp([σ(u)]Re)) if Aj = u :s
Re � σ(Aj) otherwise.

Note now that, for 1 ≤ j ≤ qi,

– If Aj = (u :s), then [Aj]�σ holds by induction hypothesis, since Re[β] � σ(u) :
s.

– If Aj �= (u :s), then [Aj]�σ holds by assumption.

Hence, [A0]�σ, that is, bexp(R1[β] � φ1(σ(w)), . . . , Rp[β] � φp(σ(w)), also holds.
Finally, since Re[β] � t = σ(w) and P is coherent modulo Re[P], we have that
bexp(R1[β] � φ1(t), . . . , Rp[β] � φp(t)) as required. ��
We will be mainly interested in those γ such that UMEL |	β(γ) is equivalent to
imposing some restrictions on the instances β at the object level. This will be
illustrated in Section 6.

5 Reflected Parameterized Induction

In this section we explain how the inductive principle for reasoning about param-
eterized theories introduced in Section 4 can be reflected. To accomplish this,
the key ideas are the following.

– Parameterization is reflected as quantification over (meta)variables repre-
senting the parameters. In particular, parameterized atomic formulae are
represented as atomic formulae which contain free (meta)variables repre-
senting the parameters.

– Instantiation requirements are reflected as a formula (γ), which contains
also free (meta)variables representing the parameters. The idea is that all
substitutions of the (meta)variables representing the parameters must satisfy
this formula.

5.1 Representing Parameterized Theories

We first need to further extend the notation introduced in Section 2.2 to deal
with parameters. Let P = (Ω ∪ V ∪ Z,E ∪ Mb(V)) be a parameter theory with
Ω = (K,Σ, S). For all terms t ∈ TΩ∪V (X), we will denote by t[V,X] its reflective
()-representation except that now parameters v ∈ V and variables x ∈ X are
replaced by (meta)variables v and x of the kind [Term]. For t a ground term,
we shall simply write t[V]. Similarly, if t ∈ TΩ∪Z(X) we shall write t[X] as we
did in Section 2.2. Also, for any sort z in Zk, k ∈ K, we will denote by z[Z] a
(meta)variable of the kind [AxiomSet]. In addition, we will denote by V

[V]
the

290 M. Clavel, N. Mart́ı-Oliet, and M. Palomino

set V
[V] � {v[V] | v ∈ V }, and by Z

[Z]
the set Z

[Z] � {z[Z] | z ∈ Zk, k ∈ K}, and
assume that they are disjoint.

Finally, for any theory morphism β : P −→ Q in VP , with Q = (Ω∪V ∪Z,E∪
Eq(V)∪Ax (Z)), we will denote by β the ground substitution β : V

[V] ∪Z [Z] −→
TUMEL , defined as follows: β(v[V]) � t, if (v = t) ∈ Eq(V), and β(z[Z]) � Ax(z),
if z ∈ Zk.

Proposition 7. For all theory morphisms β : P −→ Q in VP and all terms
t ∈ TΩ∪V (X),

β(t[V,X]) = tβ
[X]
.

Proof. By structural induction on t. ��
We now define a generic representation function ()

P
for parameterized mem-

bership equational theories. Let P = (Ω ∪ V ∪ Z,E ∪ Mb(V)) be a parameter
theory with Ω = (K,Σ, S), K = {k1, . . . , km} and Mb(V) = {v1 :s1, . . . , vn :sn}.
Then, for any parameterized theory T [P] = (Ω′ ∪ V ∪Z,E ∪G∪Mb(V)) in PP ,

T [P]
P � (Ω′ ∪ V ∪ Z,E G Mb(V)

P
Z

P
),

where

– Mb(V)
P

is the term

Mb(V)
P � (eq v1 = v1[V] . · · · eq vn = vn

[V] .),

and

– Z
P

is the term
Z

P � (Zk1

P
. . . Zkm

P
)

where, for any ki ∈ K, if Zki = {zi1, . . . , ziqki
}, then Zki

P
is the term

Zki

P � (zi1
[Z] . . . ziqki

[Z]).

Intuitively, Z
P

is a term representing all possible instantiations of the set of
axioms defining the sorts in Z.

Proposition 8. For any parameterized membership equational theory T [P] ∈
PP , T [P] = (Ω′∪V ∪Z,E ∪G∪Mb(V)), and any theory morphism β : P −→ Q
in VP , it holds that

β(T [P]
P
) = T [β].

Proof. By definition of substitution application and β we have

β(T [P]
P
) = (Ω′ ∪ V ∪ Z,E G β(Mb(V)

P
) β(Z

P
))

= (Ω′ ∪ V ∪ Z,E G (eq v1 = t1 . · · ·eq vn = tn .)
(Ax (z11) · · ·Ax(zmqkm

)))

which, by the definition of T [β], yields the desired result. ��

Parameterized Metareasoning in Membership Equational Logic 291

5.2 Representing Parameterized Atomic Formulae

We now define a generic representation function ()
[,]

for atomic formulae over
parameterized membership equational theories. Note that we use the same no-
tation as in Section 2.2.

For P = (Ω ∪ V ∪ Z,E ∪ Mb(V)) with Ω = (K,Σ, S), any parameterized
theory T [P] ∈ PP , and any membership assertion t :s,

t :s[T [P],X] � (t[V,X] : s in T [P]
P
) = true.

Similarly, for any equation t = t′,

t = t′
[T [P],X] � (t[V,X]

= t′
[V,X]

in T [P]
P
) = true.

Proposition 9. For all ground atomic formulae φ over the signature of the
parameterized theory T [P] and all theory morphisms β : P −→ Q in VP ,

UMEL |	 β(φ
[T [P],∅]

) ⇐⇒ T [β] � φβ .

Proof. Let φ = t :s (the proof is analogous for φ = (t = t′)). Notice that by the
definition of substitution application and Propositions 7 and 8,

β(t :s[T [P],∅]) = (β(t[V] : s in T [P]
P
) = true)

= (β(t[V]) : s in β(T [P]
P
) = true)

= (tβ : s in T [β] = true).

Thus, since (tβ : s in T [β] = true) is a ground atomic formula, due to the
soundness and completeness of membership equational logic we can reduce the
problem to proving that

UMEL � (tβ : s in T [β]) = true ⇐⇒ T [β] � φβ ,

which holds by Proposition 2. ��

Corollary 1. For P a parameter theory with Mb(V) = {v1 :s1, . . . , vn :sn}, and
β : P −→ Q in VP ,

UMEL |	 β(vi :si
[P,∅]) (1 ≤ i ≤ n).

Proof. Notice that in this case the parameterized theory T [P] is P [P] = P , and
hence T [β] is Q. Then, by Proposition 9,

UMEL |	 β(vi :si
[P,∅]) ⇐⇒ Q � (vi :si)β , (1 ≤ i ≤ n)

and the righthand side entailments hold by definition of Q. ��

292 M. Clavel, N. Mart́ı-Oliet, and M. Palomino

5.3 Representing Requirements

We will need to impose, at the metalevel, that the parameters in the theory P
are correctly instantiated. For that, if Mb(V) = {v1 :s1, . . . , vn : sn}, we define

Mb(V)
C(P) � ((v1[V] :: k1 in P) = true ∧ · · · ∧ (vn

[V] :: kn in P) = true ∧
v1 :s1[P,∅] ∧ · · · ∧ vn :sn

[P,∅]),

where ki is the kind of si for i = 1, . . . , n. It immediately follows from Proposi-
tion 1 and Corollary 1 that

Proposition 10. For P = (Ω ∪ V ∪ Z,E ∪ Mb(V)) a parameter theory, and
β : P −→ Q in VP ,

UMEL |	β(Mb(V)
C(P)

).

The formula Mb(V)
C(P)

will be used to impose that the parameters in V are
instantiated with ground terms of the appropriate sort. Analogously, we will
also require that the variables in Z

[Z]
are correctly instantiated (that is to say,

with membership axioms specifying the sorts in Z), and for that we will use a
new representation function ()

D(P)
, defined over sorts in Z as follows:

zD(P) � (z[Z] spec z in Ω ∪ Z) = true (z ∈ Zk).

Proposition 11. For P = (Ω ∪ V ∪ Z,E ∪ Mb(V)), any sort z ∈ Zk for some
kind k, and β : P −→ Q in VP ,

UMEL |	 β(zD(P)).

Proof. By definition of substitution application and β,

β(zD(P)) = (β(z[Z]) spec z in Ω ∪ Z = true)
= (Ax (z) spec z in Ω ∪ Z = true),

and hence the result follows from Proposition 3 by soundness of membership
equational logic. ��

The representation function ()
D(P)

is extended to Z in the obvious way by

Z
D(P) �

∧
z∈Zk

zD(P).

Corollary 2. For P = (Ω ∪ V ∪ Z,E ∪ Mb(V)) a parameter theory and β :
P −→ Q in VP ,

UMEL |	 β(Z
D(P)

).

Parameterized Metareasoning in Membership Equational Logic 293

5.4 Reflecting Parameterized Induction Principles

We now define a representation function for metalogical statements. Let P =
{R1[P], . . . , Rp[P]} be a finite multiset of parameterized theories in PP that is
coherent modulo Re[P], {k1, . . . , kn} a finite multiset of kinds, and τ a metalog-
ical statement of the form

∀β ∈ VP .
(
UMEL |	 β(γ) =⇒

∀t1 ∈ (TΩ1)k1 ∀tn ∈ (TΩn)kn .bexp(R1[β] � (φ1(t))β , . . . , Rp[β] � (φp(t))β)
)

where each φl(x) is an atomic formula with free variables in x, each xi of kind
ki. Then, τ is defined as

∀V [V]
.∀Z [Z]

.
(
(Mb(V)

C(P) ∧ ZD(P) ∧ γ) =⇒
∀x1. . . . ∀xn.((x1 :: k1 in R1[P]) = true ∧ · · · ∧ (xn :: kn in Rn[P]) = true)

=⇒ bexp(φ1(x)
[R1[P],x]

, . . . , φp(x)
[Rp[P],x]

)
)

where {x1, . . . , xn} are now variables of the kind [Term].
The following auxiliary result is needed in the proof of our main theorem.

Proposition 12. For P = (Ω ∪ V ∪ Z,E ∪ Mb(V)) a parameter theory with
Mb(V) = {v1 : s1, . . . , vn : sn}, and any ground substitution h : V

[V] ∪ Z [Z] −→
TUMEL such that

UMEL |	 h(Mb(V)
C(P) ∧ ZD(P)

),

there is a theory morphism β : P −→ Q in VP , with Q = (Ω∪V ∪Z,E∪Eq(V)∪
Ax(Z)), such that β is the ground substitution h.

Proof. By definition of substitution application, for 1 ≤ i ≤ n,

h(vi
[V] :: ki in P = true) = (h(vi

[V]) :: ki in P = true).

The hypothesis implies UMEL |	 h(vi
[V] :: ki in P = true) for each vi, 1 ≤ i ≤ n,

and by Proposition 1, using the completeness of membership equational logic
and the fact that h(vi

[V] :: ki in P = true) is a ground atomic formula, it
follows that there are ground terms ti ∈ (TΩ)ki such that ti = h(vi

[V]).
Similarly, from UMEL |	 h(Z

D(P)
), by Proposition 4, it follows that there are

sets of axioms Ax(z) specifying z in Ω ∪ Z for each z ∈ Zk, k ∈ K, such that
h(z[Z]) = Ax(z).

Let Q = (Ω ∪V ∪Z,E ∪{v1 = t1, . . . , vn = tn}∪
⋃

z∈Zk
Ax(z)). By definition

of substitution application,

h(vi :si
[P,∅])

= (h(vi
[V,∅] : si in P

P
) = true)

= (h(vi
[V]) : si in (Ω ∪ V ∪ Z,E eq v1 = h(v1[V]) . · · · eq vn = h(vn

[V]) .
h(z11[Z]) · · ·h(zmqkm

[Z])) = true)

= (ti : si in Q = true).

294 M. Clavel, N. Mart́ı-Oliet, and M. Palomino

Since h(vi :si
[P,∅]) is an atomic ground formula and UMEL |	 h(vi :si

[P,∅]), by
Proposition 2 and completeness of membership equational logic we have Q �
ti : si, 1 ≤ i ≤ n. Then, the identity signature morphism β : P −→ Q satisfies
the requirements to be in VP . ��

Theorem 2. Let τ be a metalogical statement of the above form. Then, τ holds
iff UMEL |	 τ .

Proof. Assume that τ holds and let h : V
[V] ∪ Z

[Z] −→ TUMEL be such that
UMEL |	 h(Mb(V)

C(P) ∧ Z
D(P) ∧ γ). By Proposition 12 there is β ∈ VP with

β = h, so our task is reduced to proving that

∀x1. . . . ∀xn.((x1 :: k1 in R1[P]) = true ∧ · · · ∧ (xn :: kn in Rn[P]) = true)
=⇒ β(bexp(φ1(x)

[R1[P],x]
, . . . , φp(x)

[Rp[P],x]
))

holds in the initial model of UMEL. So let σ : {x1, . . . , xn} −→ TUMEL be a
substitution such that

(σ(x1) :: k1 in R1[P]) = true ∧ · · · ∧ (σ(xn) :: kn in Rn[P]) = true

holds in TUMEL ; by Proposition 1 we know that, for i = 1, . . . , n, σ(xi) = wi for
some wi ∈ (TΩi)ki . By the definition of substitution application and Proposi-
tions 7 and 8, for 1 ≤ l ≤ p and φl = (tl :sl) (similarly for φl = (tl = t′l)),

σ(β(φl(x)
[Rl[P],x]

)) = σ(β(tl(x) :sl
[Rl[P],x]

))

= σ(β(tl(x)
[V,x]

: sl in Rl[P]
P

= true))

= (σ(β(tl(x)
[V,x]

)) : sl in β(Rl[P]
P
) = true)

= (σ((tl(x))β
[x]

) : sl in Rl[β] = true)

= (σ((tl(x))β) : sl in Rl[β] = true)

= ((tl(σ(x)))β : sl in Rl[β] = true)

= (β(tl(w)
[V]

) : sl in β(Rl[P]
P
) = true)

= β(tl(w) :sl
[Rl[P],∅]

)

= β(φl(w)
[Rl[P],∅]

).

Hence, by Proposition 9, UMEL |	σ(β(φl(x)
[Rl[P],x]

)) iff Rl[β] � φl(w)β . But
then, since τ holds and we are assuming that UMEL |	 β(γ), we have bexp(R1[β] �
(φ1(t))β , . . . , Rp[β] � (φp(t))β) for all t, in particular for w, and the result fol-
lows.

We have just shown the implication from left to right. A careful examination
reveals that all the implications are in fact equivalences and hence this proves
the theorem. ��

Parameterized Metareasoning in Membership Equational Logic 295

In particular, Theorem 2 can be applied to the inductive principle

∀β ∈ VP .(UMEL |	 β(γ) =⇒ ψ1) ∧ · · · ∧ ∀β ∈ VP (UMEL |	β(γ) =⇒ ψn)
=⇒
∀β ∈ VP .

(
UMEL |	 β(γ) =⇒

∀t ∈ TΩ .(R0[β] � t : s =⇒ bexp(R1[β] � φ1(t)β , . . . , Rp[β] � φp(t)β))
)

by replacing each metalogical statement φ by its logical representation φ to get
an inductive principle for UMEL.

6 The Deduction Theorem Revisited

6.1 Formalizing the Deduction Theorem

The parameterized versions of the deduction theorem can now be expressed as
metatheoretic statements relating the initial models of all the different instan-
tiations of DT[EML] and EML that satisfy certain requirements. In its standard
form, the deduction theorem can be formalized as follows:

∀β ∈ V1
EML. ∀t ∈ TEML. (DT[β] � t :Theorem ⇒ EML[β] � [->,@A,t]β :Theorem),

(4)
where

V1
EML = {β ∈ VEML |Ax (@NewAxiom)∪Ax (@NewSynRule)∪Ax(@NewInfRule) = ∅} .

Note that {DT[EML], EML[EML]} is coherent module DT[EML].
However, the deduction theorem also holds for all extensions of minimal logic’s

language and minimal logic’s axioms, which can be formalized as follows:

∀β ∈ V2
EML. ∀t ∈ TEML. (DT[β] � t :Theorem ⇒ EML[β] � [->,@A,t]β :Theorem),

(5)
where V2

EML = {β ∈ VEML | Ax (@NewInfRule) = ∅}.
Furthermore, the deduction theorem can also be verified for all extensions of

minimal logic’s language, axioms, and two-premise rules (this can be generalized
to finitely many assumptions), provided that all new rules of the form

B C

D

are such that, for all formulae A, if (A → B) and (A→ C) are theorems in the
corresponding extension of minimal logic, then (A → D) is also a theorem [2].
This version of the deduction theorem can be formalized as follows:

∀β ∈ V3
EML. ∀t ∈ TEML. (DT[β] � t :Theorem ⇒ EML[β] � [->,@A,t]β :Theorem),

(6)
where

V3
EML = {β ∈ VEML | ∀x1.∀x2.∀x3.∀x4. (DT[β] � [x4,x2,x3] :@NewInfRule

⇒ EML[β] � [->,x1,x2] :Theorem ⇒ EML[β] � [->,x1,x3] :Theorem
⇒ EML[β] � [->,x1,x4] :Theorem)}.

296 M. Clavel, N. Mart́ı-Oliet, and M. Palomino

6.2 Proving the Deduction Theorem

In what follows, we denote by V-EM and Z-EM, respectively, the sets of parameters
{@A} and {@NewAxiom, @NewSynRule, @NewInfRule}, and by MB-V-EM the set of
axioms {mb @A : Formula .}. Using the results of Section 5 we can formalize
the different versions of the deduction theorem, (4), (5), and (6), as theorems
about UMEL. All these theorems have a common structure

∀V-EM[V-EM]
.∀Z-EM[Z-EM]

. ((MB-V-EMC(EML) ∧ Z-EM
D(EML) ∧ γ) =⇒ (7)

∀x. ((x :: Expression in EML = true) =⇒
(x :Theorem[DT[EML],x] ⇒ [->,@A,x]:Theorem

[EML,x]
))),

but differ in the definition of γ. Note that this is in direct correspondence with
the fact that the metatheoretic statements (4), (5), and (6) only differ in the
requirements imposed over the instantiations β ∈ VEML. Concretely, for (4), (5),
and (6) the formula γ is defined, respectively, as:

γ1 � (@NewAxiom[Z-EM] = none ∧ @NewSynRule
[Z-EM] = none ∧

@NewInfRule
[Z-EM] = none),

γ2 � (@NewInfRule[Z-EM] = none),

γ3 � (∀x1.∀x2.∀x3.∀x4. [x4, x2, x3] :@NewInfRule
[DT[EML],x]

⇒ [->,x1,x2] :Theorem
[EML,x] ⇒ [->,x1,x3] :Theorem

[EML,x]

⇒ [->,x1,x4] :Theorem
[EML,x]

).

By Theorem 2, (7) implies, for each definition of γ, the corresponding param-
eterized version of the deduction theorem. The correctness of the above formal-
izations follows from the following remark: for all theory morphisms β ∈ VEML,

β ∈ Vi
EML ⇐⇒ UMEL |	β(γi) i = 1, 2, 3.

Finally, to prove each version of (7) in UMEL we apply the reflected version
of the induction principle for the sort Theorem in the parameterized theory
DT[EML]. The proofs mirror the standard proof of the deduction theorem: we
show A→ B by induction on the structure of possible derivations of B when A
is assumed as an axiom. Note, however, that to prove the deduction theorem for
all extensions of minimal logic’s language and minimal logic’s axioms we have
to consider as an additional base case of the inductive proof when B is one of
the new axioms. Moreover, to prove the deduction theorem for all extensions
of minimal logic’s language, axioms, and two-premise rules satisfying the above
mentioned requirement, we also have to consider as an additional step case of
the inductive proof when B follows by an application of one of the new rules.
By using the reflected version of the induction principle for the sort Theorem
in the parameterized theory DT[EML], all these considerations are appropriately
mirrored in our proofs.

Parameterized Metareasoning in Membership Equational Logic 297

7 Conclusion

Based on the ideas introduced in [1] by Basin, Clavel, and Meseguer about
reflective metalogical frameworks, and about membership equational logic as
one of them, we have further explored the capabilities of membership equational
logic as a logic to reason about logics and about relationships between logics.

In this paper we have extended the notion of parameterized membership equa-
tional theories and of reflected parameterized induction introduced in [1]. By
doing this, we are able to formalize and prove a wider class of metatheorems:
for example, the parameterized versions (5) and (6) of the deduction theorem
cannot be formalized in [1,4]. Our experiments show that one can prove metathe-
orems similar to those provable in logical frameworks based on parameterized
inductive definitions [2]. In essence, we can do this because the requirements
that such metatheorems pose on the metatheory—namely, that one can build
families of sets using parameterized inductive definitions and that one can rea-
son about their elements by induction—are realizable in membership equational
logic using parameterization and reflection.

This work can be extended in a number of directions, both theoretical and prac-
tical. From the theoretical side, a research line would be to investigate how to
reflect induction principles other than structural induction, e.g., induction over
an arbitrary, user-definable well-founded order; also, our notion of parameterized
membership equational theories and of their instantiations could be further gen-
eralized. From the practical side, the obvious application would be to extend the
ITP theorem prover [7] with reflected parameterized induction principles so as to
carry out inductive proofs of metatheorems; however, the development of the tool
has changed hands and gone undercover, so it is not clear how it will evolve.

Acknowledgments. We thank David Basin and José Meseguer for many dis-
cussions on using reflection for metareasoning.

References

1. Basin, D., Clavel, M., Meseguer, J.: Reflective metalogical frameworks. ACM
Transactions on Computational Logic 5(3), 528–576 (2004)

2. Basin, D., Matthews, S.: Structuring metatheory on inductive definitions. Infor-
mation and Computation 162(1/2), 80–95 (2000)

3. Bouhoula, A., Jouannaud, J.-P., Meseguer, J.: Specification and proof in member-
ship equational logic. Theoretical Computer Science 236, 35–132 (2000)

4. Clavel, M., Mart́ı-Oliet, N., Palomino, M.: Formalizing and proving semantic rela-
tions between specifications by reflection. In: Rattray, C., Maharaj, S., Shankland,
C. (eds.) AMAST 2004. LNCS, vol. 3116, pp. 72–86. Springer, Heidelberg (2004)

5. Clavel, M., Meseguer, J.: Axiomatizing reflective logics and languages. In: Kiczales,
G. (ed.) Proceedings of Reflection 1996, San Francisco, California, pp. 263–288
(April 1996)

6. Clavel, M., Meseguer, J., Palomino, M.: Reflection in membership equational logic,
many-sorted equational logic, Horn-logic with equality, and rewriting logic. Theo-
retical Computer Science 373(1-2), 70–91 (2007)

298 M. Clavel, N. Mart́ı-Oliet, and M. Palomino

7. Clavel, M., Palomino, M., Riesco, A.: Introducing the ITP tool: A tutorial. Jour-
nal of Universal Computer Science 12(11), 1618–1650 (2006); Special issue with
extended versions of selected papers from PROLE 2005: The Fifth Spanish Con-
ference on Programming and Languages

8. Feferman, S.: Finitary inductively presented logics. In: Ferro, R., Bonotto, C.,
Valentini, S., Zanardo, A. (eds.) Logic Colloquium 1988, pp. 191–220. North-
Holland (1989)

9. Goguen, J., Burstall, R.: Institutions: Abstract model theory for specification and
programming. Journal of the Association for Computing Machinery 39(1), 95–146
(1992)

10. Meseguer, J.: Membership algebra as a logical framework for equational speci-
fication. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61.
Springer, Heidelberg (1998)

Fast Sort Computations for Order-Sorted

Matching and Unification

Steven Eker

Computer Science Laboratory, SRI International
Menlo Park, CA 94025, USA

eker@csl.sri.com

Abstract. Given a preregular order-sorted signature, we consider two
closely related problems. The first arises in matching where we need to
compute the least sort of a ground term in order to decide whether it
is less or equal to the sort of a variable to which we wish to bind it.
The second arises in unification where we have computed an unsorted
unifier and we want to compute any corresponding order-sorted unifiers
by finding order-sorted renamings of the unsorted free variables occurring
in the unifier such that for each bound variable, the least sort of the term
to which it is bound becomes less than or equal to its own sort.

We present a fast solution to the first problem, based on compiling
the overloaded declarations for each operation in to a decision diagram.
We then show how this method can be lifted to the variable case using
a BDD encoding to represent computations with unknown sorts in order
to solve the second problem. We also discuss some extensions of the
techniques.

1 Introduction

Order-sorted term algebra is a useful extension of classical unsorted term algebra
and many sorted term algebra. It formed the semantic underpinnings of the OBJ3
language [10], while the membership equational logic fragment of the Maude
language [7] is implemented as an extension of order-sorted term rewriting.

Two of the most fundamental computations that are performed with terms are
matching, which is a key step in term rewriting, and unification which a key step
in completion and narrowing [8]. In this paper we describe the algorithms used
for the sort computation part of order-sorted matching and unification in the
Maude 2 interpreter. Concrete examples will be presented in syntax of Maude.

1.1 Matching

With matching we have a distinct pattern term and a distinct subject term where
the subject term is not allowed to contain variables. Order-sorted matching can
be done in a manner similar to unsorted matching, except for the binding of
variables. When a variable x of sort s is to be bound to a ground term t, the
least sort, s′, of t must be calculated and compared to the sort s. If s′ ≤ s then

G. Agha, O. Danvy, and J. Meseguer (Eds.): Talcott Festschrift, LNCS 7000, pp. 299–314, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

300 S. Eker

the variable can be bound and the matching process proceeds as normal. If not,
this branch of the matching process fails.

Thus for matching we essentially need two pieces of functionality: computing
the sort of a ground term and comparing the two sorts. The former can be done
bottom-up, so at each subterm the task becomes to compute the least sort of
f(t1, . . . , tn) given the least sorts of t1, . . . , tn. The latter can be done using any
convenient representation of the partial order on sorts. For example we can index
the sorts and for each sort s keep an array of Booleans encoding those sorts that
are less or equal to s. Then checking whether some sort s′ is less or equal to s
can be done with a simple array lookup.

1.2 Unification

Unification is rather more difficult. Although sort information can often be
usefully incorporated into an existing unsorted unification algorithm to prune
branches that must fail due to sort considerations, the design, and more impor-
tantly the combination, of order-sorted unification algorithms appears difficult,
as constraints on the sort of a fresh variable can arise in multiple unification
subproblems. Little has been written on the subject, where by contrast unsorted
unification algorithms and their combination have a rich literature, for example:
[12,6,16,4,2,3].

The approach developed in the literature is to use an unsorted unification al-
gorithm (or in the case of unification modulo equational theories, a combination
unsorted unification algorithms) to generate a complete set of unifiers, (or pos-
sibly a reduced set of unifiers, where some unifiers that could not give rise to an
order-sorted unifier are opportunistically culled), where each unifier is expressed
in terms of free unsorted variables. Then a second phase takes each unsorted
unifier and generates zero or more order-sorted unifiers by finding injective re-
namings ρ that map the free unsorted variables in the unifier to fresh sorted
variables, such that for each bound variable x ← t in the unsorted unifier, the
least sort of tρ is less or equal to the sort of x. Under certain criteria, Meseguer
et al. [13] show that this approach can generate a complete set of order-sorted
unifiers. There are problems with certain natural order-sorted signatures that
do not satisfy these criteria, however Hendrix and Meseguer [11] show how at
least one important case can be handled by translating the unification problem
into a extended signature that does satisfy the criteria.

In this paper we ignore problematic special cases, assume that the criteria
for completeness and correctness have been met and focus on algorithms for
performing the sort computations that are fast in practice.

2 Preliminaries

Our notation closely follows that of Hendrix and Meseguer [11]. Formally our
order-sorted computations will take place with respect to an order-sorted signa-
ture Σ = 〈S, F,≤〉 where S is a set of sorts, F = {Fw,s | (w, s) ∈ S∗ × S} is a

Fast Sort Computations for Order-Sorted Matching and Unification 301

family of sets of operators and ≤ is a partial order on S. Here an operator f may
appear in several different sets Fw,s, as long as all the w have the same length,
in which case it is said to be overloaded.

Let X = {Xs | s ∈ S} be a family of disjoint sets of variables. The Σ-
terms with variables X form a family TΣ(X) =

⋃
s∈S TΣ(X)s where TΣ(X)s is

defined inductively: Xs ∪ Fλ,s ⊆ TΣ(X)s and f(t1, . . . , tn) ∈ TΣ(X)s if there
exists (s1 . . . sn), (s′1 . . . s′n) and f ∈ Fs1...sn,s′ such that s′ ≤ s and for each
i ∈ {1, . . . , n}, s′i ≤ si, and ti ∈ TΣ(X)s′

i
. The set of variables occurring in

t ∈ TΣ(X) are denoted vars(t).
Given t ∈ TΣ(X), the sorts of t form a set sorts(t) = {s | t ∈ TΣ(X)s}. If

this set has a unique least element l, we say t has a least sort, ls(t) = l. For
the purposes of this paper we are only interested is signatures Σ where each
t ∈ TΣ(X) has a least sort. Such signatures are called preregular [9].

In computing on a partially ordered set of sorts, 〈S,≤〉 it is convenient to
have a top sort, 	 such that s ≤ 	 for all s ∈ S. We will assume that such a
sort exists or has been added.

For s, s′ ∈ S, we write s < s′ as an abbreviation for s ≤ s′ and s
= s′.
For each natural number n ≥ 2 we extend the ordering ≤ pointwise to Sn; i.e.
u1 . . . un ≤ v1 . . . vn iff for all i ∈ {1, . . . , n}, ui ≤ vi.

For an operator f , we call the collection of pairs Df = {(w, s) | f ∈ Fw,s} the
declarations of f . For ease of reading we will write a declaration (w, s) using the
more suggestive notation w → s where w is called the domain and s is called
the range. The declarations of f induce a function

lsf : Sn → S

where lsf (u) is the the least sort s such for some w ∈ Sn, with u ≤ w, (w →
s) ∈ Df or 	 if there is no such sort. The preregularity of the signature ensures
if such sorts exists, there is a unique least such sort and thus lsf is well defined.

It is easy to see that lsf is monotonic, i.e. if u ≤ v then lsf (u) ≤ lsf (v). It is
this monotonicity that allows us to compute the least sort of a term f(t1, . . . , tn)
bottom-up, by evaluating lsf on the least sorts of t1, . . . , tn.

2.1 Connected Components

The partially ordered set of sorts, 〈S,≤〉, can be view as a digraph G with nodes
labeled by sorts and an arc from the node labeled by s1 to the node labeled by
s2 iff s2 ≤ s1. For order-sorted signatures used in programming and specifica-
tion, it is typically the case that G consists of multiple connected components,
representing unrelated hierarchies of sorts. Consider the following example:

fmod NUMBERS-AND-SHAPES is
sorts NzNat Nat NzInt Int .
subsorts NzNat < Nat NzInt < Int .
sorts Square Rectangle Rhombus Parallelogram Quadrilateral Triangle Polygon .
subsorts Square < Rectangle Rhombus < Parallelogram < Quadrilateral .
subsorts Quadrilateral Triangle < Polygon .

endfm

Here there are two connected components of sorts, one representing a hierarchy
of integers and one representing a hierarchy of polygons.

302 S. Eker

If S can be partitioned into multiple, mutually disjoint connected components
K1, . . . , Km we can gain some efficiency by computing with the partially ordered
sets 〈Ki,≤〉 rather than 〈S,≤〉. In this case we add a top sort 	K to each con-
nected component K. In Maude these connected components are called kinds and
the top sorts are called error sorts, though in practice an error sort 	K is often
understood as a special sort that represents its kind K in sort computations.

Normally if f ∈ Fu1...un,s1 and f ∈ Fv1...vn,s2 , we expect that for i ∈ {1, . . . , n},
ui and vi belong to the same connected component. If this property holds, pre-
regularity implies that s1 and s2 are in the same connected component. If this
property does not hold then we can treat f as multiple distinct operators that
just happen to have the same name. We call this kind of overloaded ad hoc
overloading.

For the purposes of exposition, we will mostly ignore the partition of S into
its connected components, however a practical implementation of the algorithms
we present will work with the connected components rather than S and it is the
size of these connected components rather than the size of S that is important
for measuring time and space requirements.

3 Computing the Least Sort of a Term

As mentioned in the previous section, the least sort of a term f(t1, . . . , tn) can be
computed by applying lsf to the least sorts of t1, . . . , tn, so the problem reduces
to evaluating lsf on some u ∈ Sn given the declarations Df .

A näıve method of computing lsf (u) is to preprocess Df by sorting it into
a list (w1 → s1), . . . , (wd → sd) such that si < sj implies i < j. To compute
lsf (u) we find the first i such that u ≤ wi and return si or 	 if there is no such
i. This method requires only modest preprocessing and consumes no additional
space over that required to store the declarations of f , however each comparison
u ≤ wi requires O(n) evaluations of the partial ordering on sorts, and we may
need to examine all d declarations for a running time of O(n.d). In practice this
approach is quite slow however it important to note that both the preprocessing
and evaluation phases are polynomial time.

We assume that the signature is preregular, but for a practical implementation
it is useful to be able to check that this property holds. For the näıve algorithm
we can check the preregularity of lsf on a single input vector u the following
method. If we find a first i such that u ≤ wi, we check for all j ∈ {i + 1, d}
that u ≤ wj implies si ≤ sj otherwise we have found a counterexample to the
preregularity condition.

A method that is faster at runtime is to use the näıve method to fill out an
n-dimensional lookup table. In filling out the table for each operator f we can
check the preregularity of lsf over all input vectors and thus the preregularity
of the entire signature Σ. Using a lookup table requires O(n) time for each
lookup. However the lookup table for f requires O(|S|n) storage and O(n.d.|S|n)
initialization time.

This method was in fact used in an early implementation of Maude. However
as Maude specifications became more complex, operators with arity greater than

Fast Sort Computations for Order-Sorted Matching and Unification 303

NzNat Nat Error

1

2 2 2

3 3 3

N

N

N

E

E

E

E

*

*

E

N

N

Nz

Nz

Nz Nz

Nz

Fig. 1. Decision diagram for lsmadd

6, and sort hierarchies with more than 20 sorts became common, and the space
and initialization time requirements of this method became impractical.

Given the way lsf is defined it will have a very regular structure and it is
natural to consider representing it as a decision diagram. We illustrate the idea
by way of a concrete example. Consider the signature:

fmod MULTIPLY-AND-ADD is
sorts Nat NzNat .
subsort NzNat < Nat .
op madd : NzNat NzNat Nat -> NzNat .
op madd : Nat Nat NzNat -> NzNat .
op madd : Nat Nat Nat -> Nat .

endfm

Here madd is the operation that multiplies its first two arguments and adds the
result to a third, and the declarations for it capture its behavior with respect to
sorts on natural and nonzero natural numbers. We assume a top sort is added,
which for convenience we call Error and abbreviate the sort names NzNat, Nat
and Error, to Nz, N and E where necessary for sake of space. The decision
diagram we construct for lsmadd is shown in Figure 1. Our decision diagram
consists of a directed acyclic graph with root node at the top and the remaining
nodes organized into n layers. General decision diagrams label each non-leaf node
with a test, each arc with a test result and each leaf node with an outcome [14].
For our purpose, each non-leaf node is labeled with an argument to test, each

304 S. Eker

arc with a possible value that the argument may have and each leaf node with
the value of lsmadd(u) where u is obtained by concatenating the arc labels on
any path to that leaf node.

Given a decision diagram of this form, the lsf (s1, . . . , sn) is evaluated by
starting at the root node and iterating the following step: from a node with
label j, follow the outgoing arc labeled by the sort sj . When a leaf is reached
the label of the leaf is the value of lsf (s1, . . . , sn).

Though in principle there is no need to consider the arguments in left to
right order, or even in the same order along each path from root to leaf, in
practice, it simplifies the evaluation of lsf . Notice that in Figure 1, two nodes
are show in dashed outline with all of their notional outgoing arcs represented
by a single arc labeled “*”. Strictly speaking these nodes are redundant since the
argument they test will have no effect on the value of lsmadd . However including
them makes for a uniform decision diagram where each path from root to leaf is
exactly n arcs, which again make the evaluation simpler at runtime. These two
decisions trade potentially larger decision diagram size against the speed of the
evaluation code in an interpreter, where the same executable code handles sort
computations for different operators and the decision diagram is considered data.
For the purposes of compiling order-sorted term rewriting systems to executable
code, dedicated code to evaluate lsf for each operator f might be generated from
the decision diagram for lsf , and then minimizing the most likely path length
becomes important.

3.1 Efficient Sort Decision Diagram Construction

We will only consider the construction of uniform decision diagrams when the ar-
guments of lsf are considered left to right. Removing redundant nodes is a trivial
transformation, while the effect of alternative traversal sequences for arguments
is a more subtle issue which we do not consider here.

In constructing our decision diagrams we would like to check the preregularity
of each n-ary operator on all |S|n possible input vectors however we want to
avoid explicitly considering those vectors. The key idea is that each node N is
associated with the set of non-redundant declarations that is “still alive” along all
paths to N . This bounds the number of nodes in each layer by 2|Df |. For Maude
programs composed in a structured way, the size of the S (or in practice the
size of the connected components) tends to grow large as more sorts are added
to existing connected components by later modules, whereas the number n of
arguments per operator seldom rises above 15-20, and the number of declarations
for each operator is typically small. Thus our algorithm is adequate in practice.

We say a declaration s1 . . . sn → s0 subsumes a declaration s′1 . . . s′n → s′0
from i onwards if s′i . . . s′n ≤ si . . . sn and s0 ≤ s′0. The intuition is that if we
have dealt with all the arguments prior to the ith then declarations that are
subsumed from i onwards are in some sense redundant.

We want to define a family of functions mini on sets of declarations to re-
move declarations that are considered redundant during the decision diagram
construction. To deal the issue of mutual subsumption between declarations we

Fast Sort Computations for Order-Sorted Matching and Unification 305

index the declarations and use the index to break ties. Given a set of declarations
D = {dj | j ∈ {1, . . . , m}} we define simplify i(D) to contain all dj ∈ D such
that for all dk ∈ D at least one of the following properties holds:

1. dk does not subsume dj from i onwards; or
2. j ≤ k and dj subsumes dk from i onwards.

Note that (2) is needed to handle mutual subsumption including self
subsumption.

The basic algorithm constructs the decision diagram for lsf top-down as a
sequence of n + 1 layers starting with the first layer that just contains the root
node, and completing each layer before starting the next. The root node is labeled
“1” and is associated with the full set of declarations, Df . For each node N in
the ith layer associated with the set of declarations DN , and each sort s we
compute a set of non-redundant live declarations as follows: starting with DN

we discard any declarations s1 . . . sn → s0 such that s
≤ si to get a new set DN,s

of live declarations. We then apply simplify i+1 to form a set of non-redundant
live declarations ̂DN,s = simplify i+1(DN,s).

We now check to see if we have already constructed node N ′ in the (i + 1)th
layer whose associated set of declarations is ̂DN,s. If so we just add an arc labeled
s from N to N ′. Otherwise we create a new node N ′ labeled i+1 in the (i+1)th
layer whose associated set of declarations is ̂DN,s, and then add the arc.

When we reach the (n + 1)th layer each node should be associated with set
of declarations that is either singleton or empty. If the singleton case, the range
sort of the single declaration provides the label for the leaf node, while in the
empty case the label is 	.

If the there is a node in the final layer with multiple declarations, these dec-
larations must have incomparable range sorts, and thus we have a witness to
non-preregularity. Conversely, if we have minimal witness to non-preregularity,
i.e. some term f(t1, . . . , tn) with at two incomparable least sorts, s1 and s2, while
for i ∈ {1, . . . , n}, each ti has a unique least sort, we can trace the sorts of the
ti’s through the decision diagram and arrive at a leaf node where declarations
for both s1 and s2 must still be alive. Thus by constructing the decision diagram
for each operator f , we also test the signature for preregularity.

4 Computing Order-Sorted Unifiers from Unsorted
Unifiers

A order-sorted substitution is a map θ : Y → TΣ(X) where Y is a finite subset
of X such that for x ∈ Y ∩Xs, ls(θ(x)) ≤ s. The range variables of θ are defined
by rvars(θ) =

⋃
x∈Y vars(θ(x)).

Given t, t′ ∈ TΣ(X), an order-sorted unifier of t and t′ is an order-sorted
substitution θ : vars(t) ∪ vars(t′) → TΣ(X) such that tσ = t′σ and rvars(θ) is
disjoint from vars(t) ∪ vars(t′). This disjointness condition prevents cycles and
implicitly enforces the so called “occurs check”.

306 S. Eker

Regular unsorted unification can be solved in linear time [15] and yields a
single most general unifier. Given that the free theory meets technical conditions
of [9] for extracting order-sorted unifiers from unsorted unifiers to be a correct
and complete method for obtaining the order-sorted unifiers, if there were an
polynomial time algorithm even for testing whether an order-sorted unifier could
be extracted from an unsorted unifier we would expect to be able to decide the
existence of order-sorted unifiers in polynomial time in the free theory. We now
show that order-sorted unification in the free theory is NP-complete, and thus a
polynomial time algorithm for extracting order-sorted unifiers from an unsorted
unifier is unlikely.

4.1 NP-Completeness

Given a two free-theory terms t1, t2 from a preregular order-sorted signature,
deciding where they are unifable, t1 =? t2, is NP-complete.

To see that the problem is in NP we note that given a putative order-sorted
unifier σ:

1. t1σ = t2σ can be checked in linear time by instantiation.
2. The least sort of a term t can be computed in polynomial time by proceeding

bottom-up and at each operator occurrence, using the näıve algorithm from
the previous section.

3. Thus for each assignment x← t in σ we can check in polynomial time that
ls(t) is less or equal to the sort of x.

To prove NP harness we reduce the classical NP-complete problem of Boolean
satisfiability to order-sorted unification by encoding the truth tables of common
Boolean operators by subsort overloaded operators in the following signature.

fmod ENCODE is
sorts True False Value .
subsort True False < Value .
op true : -> True .
op false : -> False .
op not : True -> False .
op not : False -> True .
op and : True True -> True .
op and : True False -> False .
op and : False True -> False .
op and : False False -> False .
op or : True True -> True .
op or : True False -> True .
op or : False True -> True .
op or : False False -> False .

endfm

Let φ be any propositional formula over propositions p1, . . . , pn. We translate
φ into a term t over the signature ENCODE using the following rules:

– Proposition pi is replaced by a variable xi of sort Value.
– Each propositional connective is replaced by the corresponding operator.

Let y be a variable of sort True. Then the order-sorted unification problem
y =? t has a solution iff φ is satisfiable, since y and t are unifiable iff there
is an assignment of sorts to x1, . . . , xn such that t has sort True and the sort
declarations exactly mirror the semantics of the propositional connectives.

Fast Sort Computations for Order-Sorted Matching and Unification 307

4.2 Order-Sorted Unifier Extraction

In order to conveniently represent unsorted unifiers in our order-sorted frame-
work will assume that the poset of sorts 〈S,≤〉 is enriched with a top element 	
and the family of sets of variables X is enriched with a set X�. Each operator
f ∈ Σs1...sn,s is lifted to f ∈ Σ�n,� so that every syntactically well-formed term
belongs at least to TΣ(X).

We use variables from X� to represent unsorted variables. An unsorted unifier
will be a substitution υ : Y → TΣ(X�) such that rvars(υ) is disjoint from Y .

An order-sorted renaming of υ is a injective map ρ : rvars(υ) → X \ Y such
that for each x ∈ Y , ls(tυρ) ≤ ls(x). Intuitively ρ provides sorts for the variables
in the unsorted unifier, allowing the composition ρ ◦ υ to meet the requirements
of an order-sorted unifier.

In fact we are not interested in all such order-sorted renamings. Given two
order-sorted renamings ρ, ρ′ : Z → X for some finite Z ⊂ X�, ρ is more general
than ρ′, denoted ρ′ � ρ iff for all x ∈ Z, ls(ρ′(x)) ≤ ls(ρ(x)). What we really
want is a set R of order-sorted renamings for υ such that for every order-sorted
renaming ρ of υ, there is some ρ′ ∈ R such that ρ′ is more general that ρ.

The method of computing such sets of renamings proposed in [11] is essentially
top-down constraint propagation, where the sort of each x ∈ Y provides a con-
straint on the sort of each υ(x) and these constraints are percolated down into
the subterms using the declarations for each operator until a set of constraints
is found for the sort of each variable in rvars(υ). The set of constraints on the
sort of each variable x determine if there is a valid sort that can be used in the
construction of an order-sorted renaming. Where an operator has multiple dec-
larations or when greatest lower bound of a pair of sorts is non-unique, multiple
paths may have to be followed, leading to multiple order-sorted renamings.

4.3 Bottom-up Symbolic Sort Computation

Although the problem is expressed in terms of finding order-sorted renamings,
the names of the new variables are unimportant and the core issue is to find
mappings from rvars(υ) to S that give suitable sorts to the range variables of an
unsorted unifier. Since rvars(υ) is finite, each such mapping can be represented
as a vector of sorts. We treat these vectors of sorts as unknowns that have to be
computed.

Our approach is to lift our bottom-up scheme for computing the sorts of
ground terms to a bottom-up scheme for computing sort functions on open
terms, where the unknown sorts of the variables are represented symbolically.
We then build symbolic constraints that assert that for each bound variable
x ∈ Y , ls(υ(x)) ≤ ls(x). We then form the conjunction of theses constraints and
compute the solutions of this conjunction that are maximal on the assignment
of sorts to free variables.

The set of sorts S and the sort functions lsf that operate on it can be consid-
ered a finite data type and we need a symbolic representation of this data type
on which we can perform the above manipulations.

308 S. Eker

4.4 Boolean Decision Diagrams

Boolean Decision Diagrams (BDDs) can be viewed as compressed truth tables.
For random Boolean functions they are less compact than truth tables. How-
ever Boolean functions of interest often have a lot of structure and in practice
BDDs can be much more compact than truth tables — perhaps even exponen-
tially so if we lucky. Many useful operations such as combination by an arbitrary
Boolean connective, composition, remapping of variables and variable elimina-
tion by instantiation, universal quantification or existential quantification can
be performed efficiently [5]. BDDs are a standard tool in hardware design and
verification and several implementations available as open source libraries.

We encode each sort s ∈ S (where S is assumed to include a top sort) by
a binary code of length l = �log2(|S|)� and unknown sorts by vectors of BDD
variables of length l. Since remapping BDD variables, and composing BDDs are
standard BDD operations, for the purposes of exposition we will treat BDDs as
functions and operations on BDDs as functors that return new functions, with
the technical details of remapping BDD variables and composing BDDs largely
hidden by function notation.

4.5 Precomputations

We precompute a number of BDDs based on the signature. We start with two
families of structures that are constructed directly from primitive BDD opera-
tions. For each sort s ∈ S we construct:

1. The vector of constant BDDs, bddvecs, corresponding to the binary code of s.
2. A BDD isSorts : Bl → B, where isSorts(b) is true if b is the binary code of

s and false otherwise.

The remaining BDD structures we need are constructed by applying standard
BDD operations to these initial structures.

For each sort s ∈ S, we compute a BDD leqs : Bl → B,

leqs(b) =
∨

s′≤s

isSorts′(b)

by a succession of disjunction operations. Intuitively this captures the notion
that b encodes a valid sort s′ and that s′ ≤ s.

We compute a BDD gt : Bl ×Bl → B,

gt(b, b′) =
∨

s∈S

(isSorts(b) ∧ ¬isSorts(b′) ∧ leqs(b
′))

by a succession of disjunctions of conjunctions. Intuitively this captures the
notion that b and b′ encode valid sorts s and s′ such that s > s′.

In order to compute a BDD representation of lsf we need to generate a vector
of BDDs which we view as a function lsf : (Bl)n → Bl. If f has m declarations
we construct lsf by a series of approximations, A0, A1, . . . , Am, starting with

Fast Sort Computations for Order-Sorted Matching and Unification 309

A0 = bddvec�. For the jth declaration of f , (s1 . . . sn)→ s, we compute a BDD
applicablej : (Bl)n → B,

applicablej(b1, . . . , bn) =
∧

i∈1,...,n

leqsi
(bi)

by a succession of conjunctions. This captures the notion of sorts encoded by
b1, . . . , bn being less or equal to (s1 . . . sn). We also compute a BDD notGreaterj :
(Bl)n → B,

notGreaterj = ¬(leqs ◦ Aj−1)

using vector composition and negation. This captures the notion that s is not
greater than the sort that would be computed by the previous approximation
Aj−1. Finally we compute the new approximation Aj : (Bl)n → Bl using the
BDD ite (or “if then else”) operator which is applied pointwise to the vectors
bddvecs and Aj−1,

Aj = ite(applicable ∧ notGreater, bddvecs, Aj−1)

When all m declarations for f have been processed, we have lsf = Am.
It is important to realize than in these computations we are applying func-

tors to Boolean functions and thus (symbolically) performing computations on
all possible arguments to those functions. In particular the test applicablej ∧
notGreaterj is neither true nor false but is a function dependent on its inputs.

4.6 Unification-Time Computations

We start with an unsorted unifier υ : Y → TΣ(X�) such that rvars(υ) =
{x1, . . . , xm} is disjoint from Y . We want to find most general order-sorted re-
namings ρ : rvars(υ)→ X such that for each y ∈ Y , ls(yυρ) ≤ ls(y).

For each i ∈ {1, . . . , m} we allocate a vector zi of l BDD variables, that will
encode the new sort that xi will receive when it is renamed by a generic renaming
ρ : rvars(υ) → X . In order to ensure that the value of the BDD vector always
corresponds to a valid sort (since |S| might not be a power of 2, there may be
some unused codes) we need to enforce the constraint that leq� ◦ zi is true.

For each y ∈ Y ∩ Xs we perform a bottom-up computation on the term yυ
to generate a vector Ly of BDDs which encodes ls(yυρ). In the base case we
have either a constant c ∈ Fλ,s′ in which case the required vector is bddvec ′

s or
a variable xi in which case the required vector is zi. In the induction case if we
have a term t = f(t1, . . . , tn) and we have computed vectors of BDDs, q1, . . . , qn

encoding ls(t1ρ), . . . , ls(tnρ), we generated the vector of BDDs for t by the BDD
vector composition

lsf ◦ (q1, . . . , qn)

In order to ensure that ls(yυρ) ≤ s we enforce a constraint that leqs ◦Ly is true.

310 S. Eker

Forming a conjunction of of both kinds of constraints we end up with a BDD
osr : (Bl)m → B,

osr =

⎛

⎝
∧

i∈{1,...,m}
leq� ◦ zi

⎞

⎠ ∧
⎛

⎝
∧

y∈Y ∩Xs

leqs ◦ Ly

⎞

⎠

This BDD is true exactly on those valuations of the vectors of BDD variables
zi that correspond to order-sorted renamings. However the number of these
valuations will in most cases be very large; what we really want is another BDD
mostGeneral which is true on exactly on those valuations of the vectors of BDD
variables zi that correspond to most general order-sorted renamings.

Suppose some order-sorted renaming ρ is not a most general order-sorted re-
naming. Then there must be some order-sorted renaming ρ′ that is strictly more
general. Because of the monotonicity of the sort functions lsf , there must exist
a order-sorted renaming ρ′′ such that exactly one variable, xi, has ls(ρ′′(xi)) >
ls(ρ(xi)). We capture this notion with the BDD moreGenerali : (Bl)m → B,

moreGenerali(z1, . . . , zm) = ∃q. [gt(q, zi) ∧ osr(z1, . . . , zi−1, q, zi+1, . . . , zm)]

This construction is done by introducing a new vector q of BDD variables to com-
pute the function inside the existential quantification via BDD variable remap-
ping and then using the BDD operation of variable elimination by quantification
to eliminate these new BDD variables.

Finally we capture the notion of a most general order-sorted renaming as a
order-sorted renaming such that there is not a strictly more general order-sorted
renaming by conjuncting osr with the constraint that moreGenerali be false for
all i ∈ {1, . . . , m}. This yields the BDD we want, mostGeneral : (Bl)m → B,

mostGeneral = osr ∧
∧

i∈{1,...,m}
¬moreGenerali

by a succession of conjunctions.
Having computed the BDD mostGeneral we now have a representation of all

most general order-sorted renamings. The renamings themselves are recovered
by finding the valuations of the BDD variables {zi | i ∈ {1, . . . , m}} that make
mostGeneral evaluate to true. Given such a valuation, the value of each vector
zi corresponds to the binary code of a sort si and the corresponding renaming
should map xi to a fresh variable of that sort.

The extraction of such valuations from a BDD depends on the technical details
of BDDs but is straightforward:

– We trace the from the root of the BDD to the true terminal.
– Each such path corresponds to one or valuations, given by the labels on arcs

taken.
– Where some BDD variable is not mentioned on a path, both the true and

false values must be used, giving rise to multiple valuations.

Each valuation is extracted using time that is linear in the number of BDD
variables.

Fast Sort Computations for Order-Sorted Matching and Unification 311

5 Extensions

We now briefly describe some useful algorithms based on simple extensions of
the algorithms presented so far.

5.1 Congruence Class Checks

Congruence class matching, unification and rewriting are much studied topics
[8,1]. Notionally rather than computing with terms t these techniques compute
with congruence classes of terms, [t]E , under some equational theory E. In prac-
tice, since the congruence classes can be large or even infinite, implementations
work with a chosen representatives rather than the actual congruence classes.

While they are beyond the scope of this paper, the order-sorted extensions
of these techniques typically require some restrictions on the sort structure of
the order-sorted signature. In this section we consider how such checking such
restrictions can be sped up using sort decision diagrams.

Permutative theories are those where every equational axiom is permutative.
An equation is permutative if the multiset of variables and functions symbols
occurring in the left-hand side is equal to the multiset of variables and functions
symbols occurring in the right-hand side. In practice the two most importa-
tion permutative axioms are commutativity, f(x, y) = f(y, x) and associativity
f(f(x, y), z) = f(x, f(y, z)).

For ordered sorted computations on congruence classes it is convenient if all
members of a congruence class have the same least sort, so that the selection of
congruence class representatives is independent of order-sortedness. This can be
ensured by requiring the sort function lsf for each function f with axioms to
satisfy those axioms.

For commutativity, this can be ensured by commutative completion on the
signature before a sort decision diagram is constructed; for each f ∈ Fs1s2,s we
add f to Fs2s1,s.

For associativity, we need to check the associativity of lsf . For an operation
f that is associative-commutative we do the commutative completion first and
check the lsf corresponding to the completed signature. The näıve solution is just
to compare lsf (lsf (u, v), w) and lsf (u, lsf (v, w)) for each triple of sorts (u, v, w)
using the sort decision diagram for each evaluation of lsf . This requires O(|S|3)
time.

Let L be the set of nodes in the second layer of the sort decision diagram
for lsf . Clearly |L| ≤ |S| and in practice L is often significantly smaller than S,
especially for large S. A more sophisticated algorithm performs the associativity
check in O(|L|.|S|2) time.

The key idea is that each element of l ∈ L represents a partial evaluation
of lsf ; that is ls l(s) = lsf (c, s) for some sort c. To check lsf (lsf (u, v), w) =
lsf (u, lsf (v, w)) for each triple of sorts (u, v, w) it suffices to check lsf (ls l(v), w) =
ls l(lsf (v, w)) for each l ∈ L and each pair of sorts (v, w). Furthermore by keeping
a map which takes each l ∈ L to some sort s such there is a arc from the root
node to l labeled by s, if an inequality is discovered, an example triple can be

312 S. Eker

exhibited. Also by keeping a map which takes each l ∈ L to a count of the
number of arcs from the root node to l, each time an inequality is discovered,
the relevant count can be added to a total so that a final total of the number of
triples on which lsf fails the associativity test is computed.

5.2 Towers of Function Symbols

The standard way to represent natural numbers in an algebraic specification is
with successor notation. This is convenient for writing rewrite rules, however for
large numbers the terms become unwieldy. Maude provides a special internal
representation for huge stacks of unary symbols where the height of the stack is
represented by a arbitrary precision number, and special matching and unifica-
tion algorithms maintain the illusion that the virtual stack of unary operators
is really there. However this means that matching and unification sort compu-
tations must be percolate through these huge virtual stacks of unary symbols
efficiently.

The key observation is that the set of sorts is finite, and typically quite small,
and thus when we look a stack fn(t) of n unary function symbols f above some
term t for increasing values of n, there must be some point at which a sort
repeats (if n is large enough) and there after cycles with some period p. So we
merely have to keep track of the sorts up to and including the first cycle.

For each sort s we compute and store a vector of sorts s1, s2, . . . , sk where
si = ls(f i(x)) for x ∈ Xs, and i is the smallest integer such that ls(f i+1(x)) = sr

for some r ≤ i. Thereafter the sorts will cycle with period i + 1− r.
To compute ls(fn(t)) for n ≤ i we simply get the vector of sorts for s = ls(t)

and look up the entry sn; for n > i we look up the entry sc where c = r + ((n−
r) mod (i + 1− r)).

For unification we need to lift this computation to ls(fn(t)) where ls(t) is
given by a vector of L of BDDs over some vector of BDD variables z. We want
to compute a vector M of BDDs over the same vector of BDD variables such
that for each valuation of z where L evaluates to the binary code of a valid sort
s, M evaluates to the binary code of ls(fn(x)) where x ∈ Xs. Since we do not
know n in advance we cannot precompute a vector of BDDs representing the sort
mapping induced by fn and perform a vector composition with L. Also since n
can be arbitrarily large it is not practical to precompute lsf as we did in §4.5
and perform an iterative vector composition.

Instead we expect |S| to be relatively small (at least compared to n) and build
up M by considering each sort s in turn, at runtime. For each s ∈ S we compute
s′ = ls(fn(x)) where x ∈ Xs, using the method given above and construct a
vector of BDDs

mapSorts = ite(isSorts ◦ L, bddvecs′ , falsel)

The intuition is that mapSorts returns the binary code for s′ exactly when the L
evaluates to the binary code of s, and returns a vector of false BDDs otherwise.

Fast Sort Computations for Order-Sorted Matching and Unification 313

We then form M as a disjunction

M =
∨

s∈S

mapSorts

so that all sorts s ∈ S are handled.

6 Final Remarks

We have described an algorithm for compiling the declarations of an operator
f into a decision diagram encoding the least sort function lsf for that oper-
ation that allows lsf to be evaluated in linear time. We have shown how lsf

and relations on sorts can encoded using BDDs so that given an unsorted uni-
fier, a Boolean function that evaluates to true on exactly those valuations that
correspond to most general order-sorted renamings of the free variables can be
constructed, and how the most general order-sorted renamings can be extracted.
We have also shown how the decision diagram can be used to accelerate asso-
ciativity checks on lsf and how both the least sort computation and the BDD
based computation of most general order-sorted renamings can be efficiently ex-
tended towers of unary operators where the tower height is given by an arbitrary
precision number.

References

1. Baader, F., Snyder, W.: Unification theory. In: Robinson, A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, vol. 1, ch. 8, pp. 445–532. Springer, Berlin
(2001)

2. Boudet, A.: Unification in a combination of equational theories: an efficient algo-
rithm. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 292–307. Springer,
Heidelberg (1990)

3. Boudet, A.: Competing for the AC-unification race. Journal of Automated Rea-
soning 11, 185–212 (1993)

4. Boudet, A., Contejean, E., Devie, H.: A new AC-unification algorithm with a new
algorithm for solving diophantine equations. In: Proceedings of the 5th IEEE Sym-
posium on Logic in Computer Science, pp. 289–299. IEEE Computer Society Press
(1990)

5. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 35, 677–691 (1986)

6. Bürckert, H.-J., Herold, A., Kapur, D., Siekmann, J.H., Stickel, M.E., Tepp, M.,
Zhang, H.: Opening the AC-unification race. Journal of Automated Reasoning 4,
465–474 (1988)

7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. How to Spec-
ify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer,
Heidelberg (2007)

8. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, vol. B, pp. 243–320. MIT Press, Cambridge
(1990)

314 S. Eker

9. Goguen, J.A.: Order-sorted algebra I: Equational deduction for multiple inheri-
tance, overloading, exceptions and partial operations. Theoretical Computer Sci-
ence 105, 217–273 (1992)

10. Goguen, J.A., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.-P.: Intro-
ducing OBJ. Technical Report SRI-CSL-92-03, SRI International (March 1992)

11. Hendrix, J., Meseguer, J.: Order-sorted equational unification revisited. In: Pro-
ceedings of RULE 2008. Electronic Notes in Theoretical Computer Science, Elsevier
Science (2008)

12. Herold, A.: Combination of unification algorithms. In: Siekmann, J.H. (ed.)
CADE 1986. LNCS, vol. 230, pp. 450–469. Springer, Heidelberg (1986)

13. Meseguer, J., Goguen, J.A., Smolka, G.: Order-sorted unification. Journal Symbolic
Computation 8, 383–413 (1989)

14. Moret, B.M.E.: Decision trees and diagrams. ACM Computing Surveys 14, 593–623
(1982)

15. Paterson, M.S., Wegman, M.N.: Linear unification. Journal of Computer and Sys-
tem Sciences 16(2), 158–167 (1978)

16. Schmidt-Schauß, M.: Unification in a combination of arbitrary disjoint equational
theories. Journal of Symbolic Computation 8(1-2), 51–99 (1989)

Solving the First Verified Software Competition
Problems Using PVS�

Sam Owre and Natarajan Shankar

Computer Science Laboratory,
SRI International, Menlo Park CA 94025 USA

shankar@csl.sri.com
http://www.csl.sri.com/˜shankar/

For Carolyn, inspiring teacher, mentor, and colleague

Abstract. The first Verified Software Competition (VSComp) was held in Au-
gust 2010 as part of the third conference on Verified Software: Theories, Tools,
and Experiments. The competition consisted of five problems of varying diffi-
culty. These problems have been useful for illustrating the strengths and weak-
nesses of different verification methods. We present solutions to these problems
using the SRI’s Prototype Verification System (PVS). We also discuss how certain
features of PVS were exploited in these exercises.

1 Introduction

Verification technology has reached a level of maturity where we can expect programs
to be developed along with their specification and proofs of correctness. The Veri-
fied Software Grand Challenge initiated by Tony Hoare [Hoa03] has as its goal the
widespread adoption of formal verification technology in the development of large-scale
software systems. The conference Verified Software: Theories, Tools, and Experiments
(VSTTE) is a forum for addressing this grand challenge. As a step toward measuring
progress, the Verified Software Competition (VSComp) [KMS+11] was initiated at the
2010 VSTTE conference in Edinburgh, Scotland. This competition was used to evaluate
the effectiveness with which verification tools could be used to specify and verify soft-
ware. Since the competition, several research groups have used the challenge problems
from the compeition to evaluate their verification systems. We report on such an eval-
uation for SRI’s Prototype Verification System (PVS) [ORSvH95]. The experiments
here benchmark the capabilities of PVS as a specification/verification environment and
suggest avenues for improvement. Our presentation can also be seen as a tutorial on the
application of PVS in verification.

Eleven teams participated in the first Verified Software Competition (VSComp).
Each team could contain at most three members, but many teams had just one or two
members. Five problems were posed together with pseudocode by the organizers Peter
Müller and Natarajan Shankar (with help from Valentin Wüstholz). After a thinking

� This research was supported by NSF Grants CSR-EHCS(CPS)-0834810 and CNS-0917375
and by NASA Cooperative Agreement NNX08AY53A.

G. Agha, O. Danvy, and J. Meseguer (Eds.): Talcott Festschrift, LNCS 7000, pp. 315–328, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

316 S. Owre and N. Shankar

period of four hours, the participants were given two hours to solve as many of these
problems as well as they could. Twenty-one solutions (some partial) were presented
and evaluated by the judges (Gary Leavens, Peter Müller, and Natarajan Shankar). Af-
ter the competition, several research groups completed the verification of many of the
problems. A report [KMS+11] summarizing the results from the VSComp competition
appears in the Proceedings of the conference on Formal Methods (FM2011).

We describe PVS solutions to these five problems. None of the teams appearing in
the competition used PVS, but four of the five problems were solved using PVS prior to
the competition. Several of the teams in the competition used tools for assertional pro-
gram verification where the proof obligations were discharged using simplifiers such as
those based on solvers for satisfiability modulo theories (SMT) [dMDS07, BTSS09].
Other teams used interactive theorem provers such as HOL 4 [GM93, SN08] and Is-
abelle [NPW02]. PVS is closer to the latter style of formalization, but the automation
in PVS exploits proof obligation generation where the proof obligations are proved us-
ing simplifiers based on SMT solvers. The PVS formalization highlights the interplay
between the specification language and the inference mechanisms. We use the PVS
solutions to discuss the opportunities and challenges for verification technology.

Section 2 gives a brief overview of PVS. In Sections 3 to 7, we present the PVS
solutions for each of the five problems in the competition. In Sec 8, we use the results
to discuss the strengths and weaknesses of PVS.

2 Prototype Verification System

PVS is an interactive verification system developed and maintained by the SRI Inter-
national Computer Science Laboratory. It was first released in 1993, and PVS version
5.0 is the latest version of this system. In PVS, both specifications and programs are
written in higher-order logic. The simple types in the system include tuples, records,
and functions built from primitive types like the Booleans and numbers. More complex
types can be defined as

1. Predicate subtypes, e.g., the type of even numbers or order-preserving maps
2. Structural subtypes, e.g., records with additional fields
3. Dependent function, tuple, and record types, e.g., a stack represented as a pair con-

sisting of a size field and an elements field that is an array with indices ranging from
0 to size − 1

4. Recursive and co-recursive datatypes, e.g., lists, trees, and streams.

Typechecking expressions relative to predicate subtypes and dependent types can trig-
ger the generation of proof obligations (called Type Correctness Conditions or TCCs).
Checking the well-typedness of expressions relative to simple types is decidable, but
since any formula can be employed in the predicate part of a predicate subtype, the
resulting TCCs need not be in a decidable class.

PVS specifications are given in the form of theories that contain a list of constant and
formula declarations. Theories can have parameters, so that one can, for example, define
list operations over an unspecified element type. Theory interpretations [OS01] can be

Solving the First Verified Software Competition Problems Using PVS 317

used to interpret theories to either demonstrate the consistency of an axiomatic theory
or to build a concrete instance of an abstract theory. The system has extensive libraries
of theories covering algebra, analysis, trigonometry, measure theory, and probability.

Much of the PVS specification language is executable as a functional programming
language. There are code generators that transform the specifications to code in Com-
mon Lisp [Ste90] and the Clean programming language [PvE99]. The code generator
employs update analysis to identify safe, destructive updates so that the generated code
is efficient in both time and space performance. PVSio [Muñ03] is a plug-in for using
the generated code in evaluating ground expressions within proofs as well as in software
development.

PVS features an interactive theorem prover that can be used to compose proofs by
combining various forms of automated inference. A typical proof is constructed by a
human user providing the induction, case analysis, and quantifier instantiations, and
suggesting lemmas, while the automation takes care of the Boolean and arithmetic sim-
plification using binary decision diagrams and SMT solvers, heuristic quantifier in-
stantiation, and rewriting with definitions and rewrite rules. Users can also write proof
strategies that capture typical patterns of inference. In addition to proving theorems, In-
teractive proofs in PVS are used for exploring mathematical concepts and conjectures.

3 Problem 1: Summation and Maximum

The first problem in VSComp-1 is to write a program that computes the sum and maxi-
mum of the elements in an array a of N elements. Given that N ≥ 0 and a[i] ≥ 0 for
0 ≤ i < N, the verification task is to prove termination and establish the post-condition
that sum ≤ N ∗ max.

In PVS, this is formalized in the theory SumMax. This theory has a parameter N
of type nat, the subtype consisting of non-negative integers. Arrays are just functions
where the domain type is below(N), the subtype of natural numbers below N. Note
that the type below(N) could be empty in the case when the parameter N is zero.
Types are not assumed to be nonempty. Two variables A and B are declared to range
over this array type. The function SumMax is defined recursively. This operation takes
two arguments: the array A and an index i in the subrange from 0 to N . The range
type of the function is a dependent tuple. The first component of this tuple is a natural
number representing the maximal element in the array segment for the indices below i.
The second component represents the sum of the array elements A(0) to A(i). The
predicate subtype upto(i * max) restricts the second component to be at most i *
max, where max is the first component of the tuple. The SumMax function is defined
as the tuple (0, 0) when i is 0 since the maximum and summation are both 0 in this
case. When i is greater than 0, the LET construct pattern-matches the result (m, s)
from the recursive invocation of SumMax. The first component of the result is A(i-1)
if A(i-1) is greater than m, and is m, otherwise. The second component of the result
is A(i) + s. The recursive definition is given a termination measure, the parameter
i, that is required to decrease with each recursive invocation.

318 S. Owre and N. Shankar

SumMax [N: nat] : THEORY

BEGIN

A, B: VAR [below(N) -> nat]

SumMax(A, (i: upto(N))): RECURSIVE
[max: nat,

upto(i*max)] =
IF i = 0

THEN (0, 0)
ELSE (LET (m, s) = SumMax(A, i-1)

IN ((IF m < A(i-1) THEN A(i-1) ELSE m ENDIF),
A(i-1) + s))

ENDIF
MEASURE i

AvgMax: LEMMA
SumMax(A, N)‘2 <= N * SumMax(A, N)‘1

END SumMax

This definition generates six TCCs, two of which are subsumed by others. Of the
four remaining TCCs, the first requires that i - 1 in the expression A(i - 1) is
in the expected subrange below(N), i.e., that the array-bounds check is valid. The
third TCC checks that the occurrence of i-1 in SumMax(A, i-1) is in the expected
subtype upto(N). The fourth TCC checks that the termination measure applied to the
recursive call, i.e., i-1, is smaller than the parameter i in the left-hand-side of the def-
inition. The above TCCs are all proved by the default strategy. The second TCC checks
that the result, the pair ((IF m < A(i-1) THEN A(i-1) ELSE m ENDIF),
A(i-1) + s), is in the dependent tuple type [max: nat, upto(i*max)].
In this case, we have as an antecedent the information that the pair (m, s) is already
of the required type. This way, a property that would normally require an explicit in-
duction is being proved implicitly using proof obligations generated from the definition.
This TCC is the only one that requires an interactive proof of three steps, one of which
suggests a lemma from the nonlinear arithmetic library in the PVS prelude library.

The property of interest can then be proved from the typing of the function SumMax
in the lemma AvgMax. This lemma is proved automatically with a single grind com-
mand which repeatedly applies a series of strategies that introduce Skolem constants
for quantifiers of universal strength, instantiate existential strength quantifiers, and ap-
ply simplification using decision procedures and rewrite rules. The type information is
used implicitly in the proof, since it is passed on to the decision procedures used by
PVS.

The proof above illustrates the use of dependent/predicate subtyping in ensuring that
any array indices are within bounds and for implicitly performing induction through
type constraints.

4 Problem 2: Inverting an Array

The second problem is that of inverting an injective array A on N elements in the
subrange from 0 to N − 1 so that the output array B is such that B[A[i]] = i for
0 ≤ i < N . In the competition, it was okay to assume that an injective array from

Solving the First Verified Software Competition Problems Using PVS 319

0..N − 1 to 0..N − 1 is also surjective. Bonus points were given for proving that the
inverted array B is also injective.

The inversion operation is defined recursively by the function inverse rec which
takes an array f and an index i and returns an array where the first i elements of f
have been inverted, i.e., an array g where g(f(j)) = j for 0 ≤ j < i. The “post-
condition” on the result g is captured by the predicate inverse below? which is
used in the range type of the function invert rec. In the base case, this function
returns an array where each element is 0. This raises a couple of questions. One, what
happens when N is 0, and the array/function type [below(N) -> below(N)] has
an empty domain and range? Types can be empty in PVS. A function with an empty
domain cannot be applied to an argument, and hence the empty range does not pose
a problem. Two, could the return value in the base case have been replaced with the
argument f? Indeed, it can be replaced and verified in the same way.

The definition of invert rec generates five TCCs, of which only the implicit
induction proof obligation triggered by the post-condition requires a short interac-
tive proof of five steps. The remaining TCCs are proved by their respective default
strategies.

inversion : THEORY

BEGIN

N : VAR nat

inverse_below?(N)(f, g: [below(N) -> below(N)])(i: upto(N)): bool =
(FORALL (j: below(i)): g(f(j)) = j)

invert_rec(N)(f: (injective?[below(N), below(N)]),
i: upto(N)): RECURSIVE

{g : [below(N) -> below(N)] | inverse_below?(N)(f, g)(i)} =
(IF i = 0

THEN (LAMBDA (j: below(N)): 0)
ELSE (LET g = invert_rec(N)(f, i-1)

IN g WITH [(f(i-1)) := i-1])
ENDIF)
MEASURE i

.

.

.

END inversion

The operation invert invokes invert rec with N for i. The claim that
invert(N)(A) is injective is established by the lemma injective invert. This
theorem requires a fairly interactive proof with about seventeen steps. This proof uses a
corollary to the pigeonhole principle which asserts that any injection on below(N)
must be a surjection. Once we know that A is a surjection, then to any x and y
in below(N), there are x’ and y’ such that A(x’) = x and A(y’) = y. By
the type constraint on invert rec, we have that invert(N)(A)(x) = x’ and
invert(N)(A)(y) = y’, so if x’ = y’, then x = A(x’) = A(y’) = y
must hold.

320 S. Owre and N. Shankar

invert(N)(A: (injective?[below(N), below(N)]))(i: below(N)): below(N) =
invert_rec(N)(A, N)(i)

IMPORTING pigeon

injective_invert: LEMMA
(FORALL (A: (injective?[below(N), below(N)])):

injective?(invert(N)(A)))

5 Problem 3: Searching in a List

The third problem is to write a function that finds the index of the first element in a
linked list representation of a list of integers that is equal to 0. If there is no 0 in the
list, then the function returns the length of the list. The task is to show that when the list
does not contain 0, the function returns the length of the list, and when it contains 0, the
function returns the index of the first such occurrence. The PVS formalization below
solves the general problem of finding the index of the first occurrence of an element in
a list.

PVS has a facility for defining recursive datatypes like lists, trees, and ordinals in
terms of constructors, accessors, and recognizers. These definitions generate theories
with predefined operations. The PVS prelude contains further definitions of list opera-
tions such as length and append. In particular, it contains that operation nth such
that nth(LL, i) is the element at position i in the list starting from position 0. The
theory list index takes the element type T as a parameter. The function find is
defined recursively to find the index of an element l in the list LL. The range type
of this function is dependent on the input values LL and l with a type constraint that
ensures that the result is an index of value at most the length(LL) such that all the
elements preceding the element at the result index in list LL are different from l, and
unless the result is the length of the list, the element at the result index is l. The defini-
tion generates five TCCs, and the implicit induction proof obligation generated by the
type constraint on the range requires seven interactions.

list_index [T: TYPE]
: THEORY

BEGIN

l, m, n: VAR T
LL, MM, NN: VAR list[T]

find(LL, l) : RECURSIVE
{i: upto(length(LL)) | (FORALL (j: below(i)): nth(LL, j) /= l)

AND (i < length(LL) => nth(LL, i) = l)}
= (CASES LL OF

null: 0,
cons(m, MM): IF m = l THEN 0 ELSE 1 + find(MM, l) ENDIF
ENDCASES)

MEASURE length(LL)

END list_index

The lemmas below are all proved with a single strategy that first simplifies the goal
using the grind strategy, then explicitly introduces type constraints on subterms into
the sequent before applying grind once more.

Solving the First Verified Software Competition Problems Using PVS 321

find_length: LEMMA
(FORALL (j: below(length(LL))): nth(LL, j) /= l)
IMPLIES find(LL, l) = length(LL)

find_first: LEMMA
(FORALL (j: below(find(LL, l))): nth(LL, j) /= l)

find_finds: LEMMA
find(LL, l) < length(LL) => nth(LL, find(LL, l)) = l

6 Problem 4: N-Queens

The fourth problem in the competition is to write (and verify) a program to place N
queens on an N ×N chess board so that no queen can capture another one with a legal
move. For a given N , the algorithm must return a valid solution if there is one, and a
flag if there is no such solution. This was, by quite a margin, the most interesting and
challenging of the problems in the competition. None of the teams attempted it during
the competition. The solution in PVS again exploits the combination of higher-order
types and predicate subtypes. Here, we solve the more general problem of finding an
assignment satisfying any given predicate, and not just the N-Queens condition.

The theory nqueens takes a parameter N representing the number of rows/columns
in the chess board. The board is represented as an array from below(N) to itself so
that a board queen(i) indicates that row number of the queen position on the i’th
column. The predicate extends holds of an index i and two boards A and queen iff
these boards agree on their first i elements.

nqueens [N: nat]
: THEORY

BEGIN

board : TYPE = [below(N)->below(N)]
A, B, queen, new_queen: VAR board

i, j, k: VAR upto(N)

extends(i, A, queen): bool =
(FORALL (j: below(i)): A(j) = queen(j))

p: VAR [board -> bool]

.

.

.

END nqueens

The type lift[T] for any type T is a datatype with two constructors: bottom,
which represents a failure flag or an undefined value, and up(X) for an expression X of
type T. A higher-order predicate qlift? is defined to apply to a predicate p on boards
and a lifted board x so that when input x is bottom, it must be the case that there is no
board satisfying the predicate p, and when the input is of the form up(queen), then
p(queen) holds. A board B is said to be a good extension of a board A with respect
to index i and predicate p if p(B) holds and A and B agree on the first i entries.

322 S. Owre and N. Shankar

qlift?(p)(x : lift[board]): bool =
CASES x OF
bottom: (FORALL queen: NOT p(queen)),
up(queen): p(queen)

ENDCASES

%A good extension is one that satisfies p

good_extension?(i, A, p)(B): bool =
(p(B) AND extends(i, A, B))

The assignment of queens is performed by two functions search and scan that
search for an assignment extending a partial assignment of queens to columns. The
scan operation iterates over columns. In each column i, it invokes the search op-
eration to iterate over the row positions to find a row index j that can be extended to
a valid N-Queens assignment. Both operations return a lifted board such that when the
board is defined, it is a good extension of the given board with respect to index i. The
invariant captured by the dependent type for search is critical to the correctness ar-
guments. It asserts that given a column index i, a partially assigned board A, and the
predicate p

1. The argument j representing the row index along column i must be such that for
every row index k smaller than j, there is no good extension of board A with the
queen for the i’th positioned at row k.

2. The operation f must be capable of extending a partially assigned board B to a
good extension, if there is one. Thus, search updates A at column i to the row
index j to obtain board B. The operation f is invoked on B, and if it fails to yield a
good board, then search is invoked recursively with the parameter j incremented
by one.

3. The use of the higher-order argument f allows the scan operation to invoke
search with the recursive call scan(i+1, p), the operation that continues
the iteration over columns from column i+1, as the actual argument. This allows
the mutual recursion between scan and search to be defined using the recursive
invocation of scan to be passed as a higher-order parameter, similar to a continu-
ation, to the invocation of search from scan.

4. The dependent type for scan can be used to ensure that this actual parameter
matches the expected type for the formal parameter f.

5. The result returned by search is a good extension of A if there is one.

search((i: below(N)), A, p,
(j | (FORALL (k: below(j), B):

NOT good_extension?(i+1, A WITH [i:= k], p)(B))),
(f: [B: board -> (qlift?(good_extension?(i+1, B, p)))])): RECURSIVE

(qlift?(good_extension?(i, A, p))) =
(IF j = N THEN bottom

ELSE LET B = A WITH [i := j]
IN CASES f(B) OF

bottom: search(i, A, p, j+1, f),
up(C): up(C)

ENDCASES
ENDIF)
MEASURE N - j

Solving the First Verified Software Competition Problems Using PVS 323

The proof obligations for the dependent type corresponding to the scan operation
can be discharged using the declared type for search. The use of the higher-order
parameter f in search allows the termination arguments for search and scan to be
performed independently. It also allows the correctness property of the scan operation
to be used as an “induction” hypothesis in verifying the search operation.

scan(i, p)(queen): RECURSIVE (qlift?(good_extension?(i, queen, p)))
=

(IF i = N THEN IF p(queen) THEN up(queen) ELSE bottom ENDIF
ELSE search(i, queen, p, 0, scan(i+1, p))
ENDIF)
MEASURE N - i

The findboard operation then returns a lifted board where the result is either
bottom or of the form up(X), where X is a board satisfying p. The goodqueen?
predicate is used to check if a particular board is a valid N-Queens configuration so that
the actual program is findboard(goodqueen?).

findboard(p): (qlift?(p)) =
scan(0, p)(LAMBDA (i: below(N)): 0)

goodqueen?(queen): bool =
(FORALL (i, j: below(N)): i /= j IMPLIES

(queen(i) /= queen(j) AND
(i - j /= queen(i) - queen(j)) AND
(j - i /= queen(i) - queen(j))))

The theory generates twenty TCCs of which four are subsumed by other TCCs,
twelve are proved by the default strategies, and the remaining seven require proofs
with a small number of interactions to make type constraints explicit and to manually
instantiate quantifiers.

7 Problem 5: Amortized Queue Implementation

The fifth problem in VSComp 2010 is to implement an applicative queue with a good
amortized complexity using linked lists. The queue structure must support the opera-
tions of enqueueing an element at the rear of the list, dequeueing an element from the
front of the list, and returning the first element of the list. The queue itself must be
implemented with two fields, the head and the tail, that are both linked lists. The im-
plementation must maintain an invariant that the tail list must not be any longer than
the head list, so that the first element is always on the head list. The implementation of
the operations of enqueueing, dequeueing, and computing the first element of the queue
must be shown to respect their contracts relative to an abstract version of the queue.

The theory appqueue contains the implementation of applicative queues. The
appqueue type (with the name overloaded) is defined as a record with two list fields:
head and tail, and two numeric fields hdl and tll containing the lengths of
the head and tail lists, respectively. The constraints on the hdl and tll fields
is captured by the dependent typing of the appqueue record type. The hdl field is
constrained to contain the length of the list in the head field, and the tll field is
constrained to contain the length of the tail field, which must be no more than the
contents of the hdl field.

324 S. Owre and N. Shankar

appqueue [T: TYPE]
: THEORY

BEGIN

A, B, C: VAR list[T]
x, y, z: VAR T

appqueue: TYPE = [# head: list[T], tail: list[T],
hdl: {i: nat | i = length(head)},
tll: {i: nat | i = length(tail) AND i <= hdl} #]

Aq, Bq, Cq: VAR appqueue

.

.

.
END appqueue

We then define the contents of a queue Aq by the list given by contents(Aq)
which is defined to be the result of concatenating the head field with the reversal of
the tail field of Aq. We also define predicates empty? and nonempty? to indicate
when a queue is empty or nonempty, respectively. By the invariant on appqueue, it is
enough to check that the hdl field is 0 to determine if a queue is empty.

contents(Aq): list[T] = append(Aq‘head, reverse(Aq‘tail))

empty?(Aq): bool = (Aq‘hdl = 0)

nonempty?(Aq): bool = NOT empty?(Aq)

The function enq captures the operation of enqueueing an element x to the back of
queue Aq. If the hdl and tll fields of Aq are equal, then in order to preserve the in-
variant, the contents of tail along with the new elementx are (reversed and) appended
to the head list, the tail field is emptied, and the lengths are adjusted accordingly.
Otherwise, the new element is added to the tail list and tll is incremented by one.

enq(x, Aq): appqueue =
(IF Aq‘hdl = Aq‘tll
THEN Aq WITH [‘head := append(Aq‘head, reverse(cons(x, Aq‘tail))),

‘tail := null,
‘hdl := Aq‘hdl + Aq‘tll + 1,
‘tll := 0]

ELSE Aq WITH [‘tail := cons(x, Aq‘tail),
‘tll := Aq‘tll + 1]

ENDIF)

The deq operation dequeues an element from a nonempty queue Aq by dropping
the first element of the head list of the queue representation. As with enq, in order to
preserve the invariant when the head and tail lists are of equal length, the contents
of the tail list are reversed and appended to the modified head list. The first
operation is defined to compute the first element of a nonempty queue.

Solving the First Verified Software Competition Problems Using PVS 325

deq((Aq | nonempty?(Aq))): appqueue =
(IF Aq‘hdl = Aq‘tll
THEN Aq WITH [‘head := append(cdr(Aq‘head), reverse(Aq‘tail)),

‘tail := null,
‘hdl := Aq‘hdl + Aq‘tll - 1,
‘tll := 0]

ELSE Aq WITH [‘head := cdr(Aq‘head),
‘hdl := Aq‘hdl - 1]

ENDIF)

first(Aq | nonempty?(Aq)): T =
car(Aq‘head)

The contractual properties of the three operations are stated in terms of the ab-
stract queue given by the contents operation in the theorems contents enq,
contents deq, and contents first below. These operations are proved by a
strategy similar to the one used with Problem 3 using two invocations of grind sep-
arated by the introduction of type predicates for the subexpressions, but with the addi-
tional invocation of rewrite rules for some of the list operations. The proof generates
eleven TCCs all of which are discharged by the above proof strategy.

contents_enq: LEMMA
contents(enq(x, Aq)) = append(contents(Aq), (cons(x, null)))

contents_deq: LEMMA
nonempty?(Aq) IMPLIES
contents(deq(Aq)) = cdr(contents(Aq))

contents_first: LEMMA
nonempty?(Aq) IMPLIES first(Aq) = car(contents(Aq))

8 Discussion

The solutions that we have presented for the five VSComp problems can be used to
discuss a number of different aspects of verification technology.

The Computational Sapir–Whorf Hypothesis. The Sapir–Whorf hypothesis states that
language influences thought, and that the presence or absence of certain features in a
language influence thought, or more strongly, determine thought. In linguistics, this is
a controversial proposition, but in formal language, the language constraints certainly
affect the felicity with which concepts can be expressed and manipulated. The language
and inference mechanism in PVS are designed to operate in tandem. The type system al-
lows arbitrary formulas to be used as constraints, so that type correctness requires proof
obligations to be discharged. This makes the type system expressive, but verifying type
correctness is undecidable since any formula could be generated as a proof obligation.
We have also seen how the specification of an operation can be captured by its type. The
proof obligations can typically be discharged automatically by a default proof strategy,
or proved using a small number of interactions. PVS also contains a number of other
features for automatically propagating type information and managing proof obliga-
tions. In the first four problems, type constraints on recursive operations were used to
verify their correctness by implicit induction. In the fifth problem, the datatype invari-
ants on the queue are encoded using subtypes. In PVS, typing judgements are used to

326 S. Owre and N. Shankar

propagate type constraints through expressions and operations, to infer, for example,
that the product of two even numbers is an even number. The PVS typechecker rapidly
catches a large number of common specification errors so that definitions can be effi-
ciently debugged as they are being written.

Automated versus Interactive Proof Construction. PVS admits both automated proof
steps both through primitive proof steps as well as defined proof strategies. The primi-
tive proof steps include those that invoke SAT/SMT solvers, rewriters, and model check-
ers. Defined proof strategies such as grind and induct-and-simplify offer ro-
bust automation for discharging proof obligations. These automated proof steps can
also be used within an interactive development. The ability to invoke powerful automa-
tion within an interactive proof development is quite important. PVS is mainly used
for exploring and experimenting with specifications and proofs. For such experimen-
tation, it is useful to be able to vary the level of automation. For example, if a proof
does not succumb to an automated strategy, then the user needs to either examine the
resulting subgoals, or investigate why the strategy failed. The latter outcome could be
because of incorrect or poorly stated definitions and conjectures. The interaction has
to support such exploration. With PVS, there has been a concerted effort to develop
interactive proof steps that approximate the level of detail in an informal proof. The
proof steps are designed to either succeed or generate sensible subgoals. When a pat-
tern of proof emerges, this pattern can be embedded within a strategy for future use.
This way proofs that have been found with careful interactive exploration can be redone
using proof strategies that are more robust to changes in the definitions and theorems.
User-defined proof strategies are useful in building custom-built inference patterns for
specific classes of problems by using existing proof strategies as building blocks. Since
proofs using strategies can be rerun using only the primitive inference steps, only the
latter steps need to be trusted.

Programs versus Specifications. The PVS specification language is based on higher-
order logic to support the development of proofs. This language is designed to be con-
venient for expressing mathematical concepts, and PVS features well-developed formal
libraries of mathematics and program semantics. Programs can be represented in a vari-
ety of ways within the PVS logic. The most direct way is to use a fragment of the higher-
order logic as a functional programming language. This fragment contains nearly all of
the logic except equality on higher types, which also includes quantification. Predicate
subtypes ensure that well-typed programs can never fail, by ruling out division by zero,
numeric overflows and underflows, out-of-bounds array indices, and other sources ex-
ecution failure. Structural subtypes exploit the polymorphism of the update operation
for records, tuples, and functions, in defining operations work uniformly over a sub-
hierarchy of types. Update analysis is used to detect those updates that can be safely
executed in-place, i.e., destructively [Sha02]. All of the programs in five exercises are
executable as defined, but the update analysis is too weak to detect the possibility of
executing the invert operation destructively. The N-Queens solution is also not ex-
ecuted destructively since the update operations occur in a higher-order setting within
scan. Some of the VSComp solutions directly verified imperative programs for these
problems with the added complexity of maintaining frame conditions.

Solving the First Verified Software Competition Problems Using PVS 327

Level of Effort. Obviously, the solutions described here were not obtained under compe-
tition conditions with a given time limit. We did not exactly measure the amount of time
taken to obtain these solutions. Of these, only the N-Queens problem can be considered
nontrivial. We estimate that the other problems could be solved by an expert PVS user
in about half an hour to an hour. The N-Queens problem required some creativity in
inventing the qlift? predicate and the corresponding subtype and in constructing the
good extension? predicate for capturing the invariant for the search and scan
operations. The N-Queens exercise took less than two hours of effort with PVS, where a
third of the time was spent in designing the approach, another third in fixing minor type
errors and other bugs in the definition, and the final third in completing the correctness
proof.

In all of the problems, the type system is very helpful in quickly identifying both triv-
ial and deep programming errors mostly through the generation of unprovable TCCs.
As programmers, we often wish we could do our programming in PVS so that we
can specify preconditions, post-conditions, invariants, and proofs hand-in-hand with
the definitions. However, PVS still needs many more features before it can be seen as a
facile program development framework.

9 Conclusions

The first Verified Software Competition is a step toward measuring the progress in
computer-aided software verification. The organizers of this competition have encour-
aged the submission of solutions to these problems by groups that did not participate
in actual event. We have described one way of approaching these problems using the
combination of expressiveness, automation, and interaction in PVS. The exercise has
highlighted both the strengths and weaknesses of PVS. In particular, we have seen the
need for better simplification with nonlinear arithmetic constraints, better quantifier in-
stantiation, and more aggressive exploitation of type information.

The report [KMS+11] on the first Verified Software Competition summarizes the
solutions presented by eleven groups. None of the groups finished all five problems dur-
ing the competition, and none of the participants successfully completed the N-Queens
problem. Subsequent to the competition, six groups completed all five problems. The
solutions to these problems displayed a range of techniques from heavily interactive
proof to automation based on SMT solving and first-order theorem proving. Nearly all
of the participants were expert users of their chosen verification tools. It is clear that we
need a better understanding of the balance between interaction and automation that can
be employed most productively by expert and non-expert users.

Carolyn Talcott has been a mentor to both authors and her influence on this work
is considerable. She pioneered operational approaches to program correctness, and the
implicit induction techniques used here can be seen as an instance of this approach.
PVS was developed to address problems of partial and total correctness developed in
her book on Lisp: Programming and Proving [MT78] with John McCarthy. PVS itself
is a Lisp program built using the principles of functional programming pioneered in the
McCarthy/Talcott book.

We thank the anonymous referees for their helpful comments and Yannick Moy of
AdaCore for his insightful feedback on an earlier draft.

328 S. Owre and N. Shankar

References

[BTSS09] Barrett, C., Tinelli, C., Sebastiani, R., Seshia, S.: Satisfiability modulo theories.
IOS Press (2009)

[dMDS07] de Moura, L., Dutertre, B., Shankar, N.: A tutorial on satisfiability modulo the-
ories. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp.
20–36. Springer, Heidelberg (2007)

[GM93] Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving
Environment for Higher-Order Logic. Cambridge University Press, Cambridge
(1993), HOL home page
http://www.cl.cam.ac.uk/Research/HVG/HOL/

[Hoa03] Hoare, C.A.R.: The verifying compiler: A grand challenge for computing re-
search. Journal of the ACM 50(1), 63–69 (2003)

[KMS+11] Klebanov, V., Müller, P., Shankar, N., Leavens, G.T., Wüstholz, V.,
Alkassar, E., Arthan, R., Bronish, D., Chapman, R., Cohen, E., Hillebrand, M.,
Jacobs, B., Leino, K.R.M., Monahan, R., Piessens, F., Polikarpova, N., Ridge,
T., Smans, J., Tobies, S., Tuerk, T., Ulbrich, M., Weiß, B.: The 1st verified
software competition: Experience report. In: Butler, M., Schulte, W. (eds.) FM
2011. LNCS, vol. 6664, pp. 154–168. Springer, Heidelberg (2011), materials
www.vscomp.org

[MT78] McCarthy, J., Talcott, C.: Lisp: Programming and proving (1978)
[Muñ03] Muñoz, C.: Rapid Prototyping in PVS. National Institute of Aerospace, Hamp-

ton, VA (2003), http://research.nianet.org/˜munoz/PVSio/
[NPW02] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant

for Higher-Order Logic. Springer, Heidelberg (2002), Isabelle home page
http://isabelle.in.tum.de/

[ORSvH95] Owre, S., Rushby, J., Shankar, N., von Henke, F.: Formal verification for
fault-tolerant architectures: Prolegomena to the design of PVS. IEEE Trans-
actions on Software Engineering 21(2), 107–125 (1995), PVS home page
http://pvs.csl.sri.com

[OS01] Owre, S., Shankar, N.: Theory interpretations in PVS. Technical Report SRI-
CSL-01-01, Computer Science Laboratory, SRI International, Menlo Park, CA
(April 2001)

[PvE99] Plasmeijer, R., van Eekelen, M.: Functional programming: Keep it CLEAN: A
unique approach to functional programming. ACM SIGPLAN Notices 34(6),
23–31 (1999)

[Sha02] Shankar, N.: Static analysis for safe destructive updates in a functional language.
In: Pettorossi, A. (ed.) LOPSTR 2001. LNCS, vol. 2372, pp. 1–24. Springer,
Heidelberg (2002)

[SN08] Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz,
C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer,
Heidelberg (2008)

[Ste90] Steele Jr., G.L.: Common Lisp: The Language, 2nd edn. Digital Press, Bedford
(1990)

Towards a Maude Formal Environment

Francisco Durán1, Camilo Rocha2, and José Marı́a Álvarez1

1 Universidad de Málaga, Spain
2 University of Illinois at Urbana-Champaign, IL, USA

Abstract. Maude is a declarative and reflective language based on rewriting
logic in which computation corresponds to efficient deduction by rewriting. Be-
cause of its reflective capabilities, Maude has been useful as a metatool in the
development of formal analysis tools for checking specific properties of Maude
specifications. This includes tools for checking termination, confluence, and in-
ductive properties of rewrite theories. Nevertheless, most of these tools have been
designed to work in isolation, making it difficult, for instance, to exchange data
between them and inconvenient to switch between their environments. This paper
presents the Maude Formal Environment (MFE), an executable formal specifica-
tion in Maude within which a user can interact with tools to mechanically verify
properties of Maude specifications. One important aspect of this work is that the
MFE has been designed to be easily extended with tools having highly hetero-
geneous designs whilst creating synergy among them. As a proof of concept, we
report on the integration of five commonly used formal analysis tools for Maude
specifications into MFE and illustrate their interoperability with an example.

1 Introduction

There is a great deal of interest today in developing multipurpose environments that
combine declarative programming with specification languages and useful formal anal-
ysis tools (see, e.g., [23,16,18,1,2]). Maude [3,4] is a reflective declarative language
and system based on rewriting logic in which computation corresponds to efficient de-
duction by rewriting. Maude has been successfully used as a metatool in the creation
of tools for verifying properties of Maude specifications [5,6]. Nevertheless, these tools
work in isolation, making it inconvenient to switch between their environments and dif-
ficult to exchange data between them. In this sense, despite its title, previous work pre-
sented in [6] does not conform to the notion of formal tool environment discussed here.
In response to these limitations, we present the Maude Formal Environment (MFE), an
executable and highly extensible software infrastructure within which a user can interact
with several tools to mechanically verify properties of Maude specifications. In MFE,
tool interoperability allows for discharging proof obligations of different nature without
switching between different tool environments. The integration of different tools inside
MFE’s common environment presents the user with a consistent user interface, a mech-
anism to keep track of pending proof obligations, and allows the execution of several
instances of each tool, among other features.

The purpose of MFE is to support interactive formal analysis of Maude specifica-
tions, and therefore the integration of tools within MFE revolves around Maude mod-
ules. MFE is naturally modeled in Maude as an object-based system in which the tools

G. Agha, O. Danvy, and J. Meseguer (Eds.): Talcott Festschrift, LNCS 7000, pp. 329–351, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

330 F. Durán, C. Rocha, and J.M. Álvarez

are objects and their communication mechanism is message passing. User interaction is
available through Full Maude [11,4], an extension of Maude that has become a common
base on top of which tools can be built, offering a modular design for easily integrating
other tools written in Maude (see, e.g., [15] for a guide on how to extend Full Maude).

One of the most interesting challenges was to make the MFE design highly extensi-
ble and amenable to tool interoperability. In MFE, there is no constraint on how each
tool should model its particular domain or how it maintains its internal state. We im-
plemented an object-based version of the model-view-controller pattern to separate the
modeling of the domain for each tool, the presentation of information, and the actions
based on user input into separate objects. This pattern isolates the application logic
for the user from the user input and presentation, permitting independent development,
testing and maintenance of each. We also followed good object-oriented design prac-
tices that kept the cohesion high and the coupling low among objects. In our experience,
these good design practices proved key for the integration of tools in MFE.

We report here on the integration of five tools with highly different designs and im-
plementations in MFE. Namely, the Maude Termination Tool (MTT) [8], the Church-
Rosser Checker (CRC) [13,14], the Coherence Checker (ChC) [12,14], the Sufficient
Completeness Checker (SCC) [20,21], and Maude’s Inductive Theorem Prover (ITP)
[7,19]. Despite their heterogeneousness and isolated conception, these tools were inte-
grated in MFE with very few code alterations, many of these due to renaming of sorts
and operators. For tools which depend on external utilities not directly available from
Maude such as MTT and SCC, we have extended the Maude system to a non-official
distribution with built-in operators associated with appropriate C++ code that interacts
with the external tools. A similar extension was already performed for SCC [19].

MFE, with these five tools, as well as some examples and some preliminary docu-
mentation, is available at http://maude.lcc.uma.es/MFE.

Outline of the Paper. Section 2 gives a summarized account of Maude’s object-based
programing and support for user interoperability. Section 3 discusses the main design
aspects of MFE. Section 4 describes the tools available from the current version of MFE.
Section 5 illustrates how to extend MFE with a concrete tool and Section 6 presents a
case study in which a user interacts with several tools within MFE. Finally, Section 7
presents related and future work, and some concluding remarks.

2 Object-Based Programming and User Interfaces in Maude

We assume that the reader is familiar with the basics of rewriting logic and Maude, and
refer to [4] for an introduction to these.

Maude can be used not only to define domain-specific languages or tools, but also to
build environments for such languages and tools. In such applications, the predefined
LOOP-MODE module can be used to handle the input/output and to maintain the persistent
state of the language environment or tool. This section explains some basic background
on how object-based systems, which naturally model distributed systems in Maude,
and the LOOP-MODE module are used to define MFE’s interactive infrastructure as an
extension of Full Maude.

Towards a Maude Formal Environment 331

Object-based Programming. Maude supports the modeling of object-based systems
in the predefined CONFIGURATION module that declares sorts representing the essential
concepts of object, message, and configuration, along with notation for object syntax
that serves as a common language for specific object-based systems. The basic sorts
defined in CONFIGURATION are Object, Msg, and Configuration. A configuration is a
multiset of objects and messages that represent a possible system state. Configurations
are formed by multiset union, represented by empty syntax __, starting from singleton
objects and messages. The empty configuration is represented by the constant none.

sort Configuration .
subsorts Object Message < Configuration .
op none : -> Configuration [ctor] .
op __ : Configuration Configuration -> Configuration

[ctor assoc comm id: none] .

In general, a rewrite rule for an object-based system has the form

crl [r] :
Obj1 . . . Objm Msg1 . . . Msgn
=> Obj′1 . . . Obj′j Objm+1 . . . Objp Msg

′
1 . . . Msg′q

if Cond .

where objects Obj′1 . . .Obj′j are updated versions of objects Obj1 . . .Objm, for j ≤ m,
Objm+1 . . .Objp are newly created objects, Msg1 . . .Msgn are consumed messages, and
Msg′1 . . .Msg′q are new messages.

The user is free to define any object or message syntax that is convenient. How-
ever, for uniformity in identifying objects and message receivers, the adopted conven-
tion is that the first argument of an object constructor should be its identifier, and the
first argument of a message constructor should be the identifier of its addressee. Mod-
ule CONFIGURATION provides an object syntax that serves as a common notation that
can be used by developers of object-based system specifications, as is the case in Full
Maude. This module introduces sorts Oid for object identifiers, Cid for class identifiers,
Attribute for named elements of an object’s state, and AttributeSet for multisets
of attributes. In this syntax, objects have the general form < O : C | a1:v1, ..., an:vn >
where O is an object identifier, C is a class identifier, and the ai:vi are pairs of an
attribute name ai and a value vi, for 1 ≤ i ≤ n.

Full Maude provides convenient notation for object-oriented modules in which
classes are declared with the syntax

class C | a1 : S1, ..., an : Sn .

where C is the name of the class, the ai are attribute identifiers, and the Si are the sorts of
the corresponding attributes. Class inheritance is directly supported by Maude’s order-
sorted type structure. A subclass declaration

subclass C < C’ .

is just a particular case of a subsort declaration C < C’. The effect of a subclass decla-
ration is that the attributes, messages, and rules of all the superclasses, together with the

332 F. Durán, C. Rocha, and J.M. Álvarez

newly defined attributes, messages, and rules of the subclass, characterize the structure
and behavior of the objects in the subclass. In what follows, we use this convenient
object-oriented notation for defining classes. See [4] for further details on this notation
and on the transformation of object-oriented modules into system modules.

User Interfaces. Module LOOP-MODE specifies in Maude a general input/output facility
by a read-eval-print loop using object-based concepts. A loop object is a term of the
form [In,St,Out] where In is an input stream, Out is an output stream, and St is
its state. One can think of the input and output events as implicit rewrites that transfer
the input and output data between two objects, namely the loop object and the user (or
terminal) object.

Loop objects are constructed with the operator

op [_,_,_] : QidList State QidList -> System [...] .

Besides having input and output streams, terms of sort System give a generic way for
maintaining a state in its second component. In fact, sort State in LOOP-MODE does not
have any constructors, giving complete flexibility for defining the terms we want to have
for representing the state of the loop. In MFE, we represent state terms as configurations
of objects and messages, by declaring sort Configuration as subsort of State.

Rewrite rules define the interaction of the state with the loop and the changes pro-
duced in the state by the actions requested by the user. In order to generate in Maude
an interface for interacting with an application, the language for interaction needs to be
defined by a data type for commands and other constructs. In this way, a rule can detect
when a valid request has been introduced by the user, and if the state of the system
allows it, passes it as the next action to be attempted. For the other direction of interac-
tion, a rule detects when the state has a response to be output and, in that case, it places
it in the output component of the loop object.

Full Maude. In Full Maude, the persistent state of the read-eval-print loop provided
by module LOOP-MODE is given by a single object of class DatabaseClass. Objects
of this class have: an attribute db of sort Database to keep the actual database where
all the modules entered to the system are stored, an attribute default denoting the
name of the current default module, and attributes input and output that simplify
the communication between the read-eval-print loop and the database object. Using the
above syntactic sugar for object-oriented modules, we can declare such a class as:

class DatabaseClass |
db : Database, default : ModName, input : TermList, output : QidList .

Inputs from the user into Full Maude are parsed using the built-in metaParse function.
For such parsing, Full Maude uses the FULL-MAUDE-SIGN module, in which we can
find the declarations so that any valid input can be parsed. In particular, we find in
these modules, among others, sorts @Module@, @ModExp@, and @Command@, of modules,
module expressions, and commands, respectively, and syntax declarations such as:

op select_. : @ModExp@ -> @Command@ .
op show module_. : @ModExp@ -> @Command@ .

Towards a Maude Formal Environment 333

op mod_is_endm : @Interface@ @SDeclList@ -> @Module@ .
op omod_is_endom : @Interface@ @ODeclList@ -> @Module@ .

for commands select and show module, and for system and object-oriented modules.
The behavior of Full Maude upon the reception of new inputs from the user is spec-

ified by rewrite rules. For the different commands, different actions are accomplished.

3 The Design of MFE

The object-oriented model of MFE consists of three classes: the class Proof of proof
objects that keep the state of specific proof requests, the class Tool of tool objects
that manage proof objects, and a class Controller that inherits from the Full Maude’s
DatabaseClass and provides a centralized entry point for handling requests to the
formal environment.

The Controller object orchestrates the behavior of the environment with the user
and of the environment with its tools. The user interacts with the environment via com-
mands that are encapsulated as messages in the object configuration. Each tool object
and the controller object have a module defining the grammar of the commands it can
handle. The controller handles any command it can parse; since this object extends Full
Maude, it handles its own commands and Full Maude ones. If the controller receives
a command it cannot parse, it will delegate it to the current active tool. If the active
tool can parse the delegated command, then it notifies the controller and handles the
command. Otherwise, it notifies the failure to the controller that in turn will notify the
failure to the requester.

Classes Proof and Tool define some basic functionality for tools and, as we will see
in Section 5 for a sample tool, are provided to simplify the task of incorporating new
tools to the environment. However, tools can be added to the environment by defining
the expected interaction with the controller object without using classes Proof and
Tool. This was the case, for example, with the ITP tool that does not use in MFE the
infrastructure provided by classes Proof and Tool.

In the following subsections we describe in more detail the object-based model of
MFE and its interaction mechanism.

3.1 Proof Objects

Proof objects maintain the state of specific proof requests to a tool object. Every proof
object maintains in its state the information of the module associated to the proof obli-
gation and a set of object identifiers corresponding to the objects submitting the proof
obligation.

class Proof | module : Module, requester : Set{Oid} .

The concept of a proof object representing the state of a proof requirement, is key for
enabling tools in MFE with support for multiple proof requirements. Namely, handling
a “new proof” command corresponds to instantiating a proof object with the appropriate
attribute data. Commands that incrementally modify the status of a proof obligation

334 F. Durán, C. Rocha, and J.M. Álvarez

result in updates to the attributes of the proof object. For example, a CRC proof object
will keep track of confluence and/or sort-decreasingness checks, and will be updated
every time a new proof obligation is discharged; when all proof obligations have been
proved, it will realize the check’s completion and will inform all its requesters.

A subclass of Proof may be defined for each tool in the environment, adding the ad-
ditional attributes and behavior required by the specific tool. Proof obligation objects,
for instance, can be extended with additional attributes for keeping track of dependen-
cies of subgoals that should be handled by other tools, timeouts, number of attempts, or
any other required information.

3.2 Tool Objects

A tool object is responsible for maintaining the life cycle of its proof objects. When a
tool object receives a request for a new proof, it tries to create a new proof object for
it and, if successful, it sets the new proof object as active so that any command from
the user or message from other tools in the environment are forwarded to it. There is
exactly one tool object for each tool in the formal environment.

Every tool object has an attribute grammar that defines the grammar of user com-
mands the tool can handle. Tools may rely on other tools, hence a tool object has at-
tribute tools with a map from tool names to the object identifiers of the corresponding
tools in the environment. If proof obligations are due, this attribute will be used to sub-
mit them to the appropriate tools. The references of proof objects associated to a tool
object are maintained with a map from module names to object identifiers in attribute
reg. In MFE, a tool may perform several analyses on a module, so that the information
of such analyses is kept in the attributes of the corresponding proof object. A tool object
also keeps in attribute current a reference to one of its proof objects, if any, which is
referred by the tool as its active proof obligation.

class Tool | grammar : Module,
tools : Map{ToolName, Oid},
reg : Map{ModuleName, Oid},
current : Oid,
index : Nat .

Integration and interoperability of tools within MFE revolves around modules, and
therefore, typically, the “new goal” commands have a module expression as parame-
ter, although in general commands may have other parameters. For example, a check
of the Church-Rosser property would take just the module to be checked as parame-
ter. However, one can perform checks of coherence in the coherence checker with the
option of checking coherence or ground coherence via an additional parameter. The de-
cision of whether a new proof object is generated or not for a module when attempting
different kinds of checks is up to the tool developer.

Despite this flexibility, in the general approach a tool object will create a new proof
object for a module M whenever there is no record of M being previously handled by
the tool, namely, if name of module M is not in the domain of the reg attribute. More
precisely, when a proof is requested, the reg attribute is checked: if there is a proof
for a module with such a name, then the module itself is compared with the current

Towards a Maude Formal Environment 335

one, to make sure that the module has not changed. In case there is some parameter, as
for example an alternative transformation for a termination proof, if the proof has not
succeeded before then the check is attempted: the existing proof object is replaced with
the one corresponding to the new proof.

The different tools may perform tool specific checks on a parameter module M and
if these checks succeed, then a new proof object is instantiated with a unique object
identifier, with M as associated module (in attribute module), and the corresponding
reference of the requesting object (in attribute requester). The remaining attributes of
the proof object are set according to the purpose of the tool.

See Section 5 for an example of this behavior in the case of SCC.

3.3 The Controller Object

The task of the controller object is twofold: it provides a centralized entry point for
handling user requests and it manages the tools that are available in the environment.

The Controller class inherits from Full Maude’s DatabaseClass, and in addition
to its module database and all the functionality for handling all Full Maude commands,
the controller object stores information on the tools available in MFE. This is achieved
by using the attribute tools that is a map from tool names into object identifiers. In the
attribute current-tool the controller object maintains a reference to the active tool:

class Controller | current-tool : Oid, tools : Map{ToolName, Oid} .
subclass Controller < DatabaseClass .

The controller object is the singleton instance mfe of class Controller. To handle
a command, the object mfe first tries using its grammar (which extends that of Full
Maude). If the command can be parsed with its grammar, then mfe handles the request.
Otherwise, it delegates the command to the active tool and waits for an answer. The
user can select the active tool via a “select” command. The answer to the delegated
request can be either affirmative or not, meaning that the tool can parse the command
and will handle it, or that the given command does not conform to the grammar and
therefore cannot be handled by the tool. Because of the way user and tool interaction
has been designed and implemented in MFE, there is no need to enforce a policy of
uniqueness of commands among its tools: if two tools share a command syntax, then
such command will be handled by the controller object or else by the active tool. This
simplifies the integration of existing tools, because most of their implementations can
directly be used and because all proof scripts available are still usable after adding the
appropriate selection and submission commands.

The Controller class adds the following commands to those available in Full
Maude:

(select tool <tool-name> .) sets the tool <tool-name> as active tool.
(MFE help .) shows information on the commands available.
(show global state .) shows the state of the framework.

336 F. Durán, C. Rocha, and J.M. Álvarez

To illustrate the way in which the behavior of the controller object works, we present
the select-tool rewrite rule that implements tool selection in MFE for the controller:

var X@Controller : Controller . var Ct : Constant .
var TS : Map{ToolName, Oid} . var QIL : QidList .
var Atts : AttributeSet . var O : Oid .

crl [select-tool] :
< mfe : X@Controller | input : (’select‘tool_.[Ct]),

output : QIL,
current-tool : O,
tools : TOOLS,
Atts >

=> < mfe : X@Controller | input : nilTermList,
output : QIL ’The getName(Ct) ’has ’been ’set ’as ’active ’tool.,
current-tool : TOOLS[qid2tool(getName(Ct))],
tools : TOOLS,
Atts >

if TOOLS[qid2tool(getName(Ct))] =/= null .

When the result of parsing a “select tool” command in the grammar of the controller is
placed in the input attribute of the mfe object, and it corresponds to a tool in the en-
vironment (see the condition in rule select-tool), then such a tool is set as the active
one. Functions getName and qid2tool return the name of a given constant and trans-
forms a quoted identifier into a tool name, respectively. A second rule (omitted here)
handles the case in which the argument of the select command does not correspond to a
tool in the environment; this rule reports on the situation by creating an error message.

3.4 User Interaction and Tool Interoperability

In the object configuration of MFE, user interaction is achieved via commands and
tool interoperability via messages. Upon successful parsing, commands are converted
into messages. With this approach, requests from users and from tools are handled in a
uniform manner by just distinguishing the requester.

MFE internal messages identify their contents with “to-from” information and name
the different operations offered by the tools and their answers. Using the following
syntax for messages, each tool defines its corresponding message bodies.

sort MFEMsgBody .
op to_from_:_ : Oid Oid MFEMsgBody -> Msg [ctor] .

If a user command parses in the controller’s grammar, then the controller handles the
command. If it fails, then the input is submitted to the active tool. The tool is expected
to return an “input parsed” message indicating whether or not it is able to parse the
command or not. Rewrite rule input, below, defines the behavior of a tool object that is
able to parse the input command. Observe that when a tool object can parse a command,
it sends two messages. Namely, it creates a copy of the original message but with a
parsed version of the input command and it sends the requester an output message
indicating that the input can be parsed.

Towards a Maude Formal Environment 337

var X@Tool : Tool . vars O O’ : Oid .
var Atts : AttributeSet . var QIL : QidList .
var G : Module .

crl [input] :
< O : X@Tool | grammar : G, Atts >
(to O from O’ : input(QIL))
=> < O : X@Tool | grammar : G, Atts >

(to O from O’ : getTerm(metaParse(G, QIL, ’@Input@)))
(to O’ from O : input-parsed(QIL, true))

if RP:ResultPair := metaParse(G, QIL, ’@Input@) .

If the tool cannot parse the input, then another rule (omitted here) sends the requester
an input-parsed message with its second argument set to false. When the controller
receives the input-parsed message, with true or false, it proceeds either by letting
the corresponding tool resolve the command or by displaying an error message.

4 Tools in MFE

Five formal analysis tools are available in the current release of MFE. The Maude
Termination Tool (MTT) can be used to prove termination of functional and system
modules, the Church-Rosser Checker (CRC) can be used to check the Church-Rosser
property of functional modules, the Coherence Checker (ChC) can be used to check
the coherence of system modules, the Inductive Theorem Prover (ITP) can be used
to verify inductive properties of functional modules, and the Sufficient Completeness
Checker (SCC) can be used to check completeness of functional modules and deadlock
freedom of system modules. One important aspect in the integration task is the inter-
action complexity due to the nontrivial dependencies among tools. Figure 1 depicts the
tool-dependency graph for these five tools.

MTT

ITP

CRC

SCCChC

Fig. 1. Tool-dependency graph in MFE

In the following paragraphs we summarize the main features and dependencies of the
five tools available in MFE. For further details on these tools, including user manuals,
restrictions, and examples, we refer the reader to the given references and web sites.

338 F. Durán, C. Rocha, and J.M. Álvarez

4.1 The Maude Termination Tool

Maude has expressive features including advanced typing constructs with sorts, sub-
sorts, kinds, and memberships; matching modulo axioms; evaluation strategies for both
equations and rewrite rules; and very general conditional equations and rewrite rules.
Proving termination of programs having such features is nontrivial. Furthermore, some
of these features are not supported by standard termination methods and tools. Yet, the
use of such features may be essential to ensure termination. MTT uses several non-
termination preserving theory transformations [9,10] which are applied in a kind of
pipeline to a module M, obtaining a module M′ in such a way that a proof termina-
tion of M′ witnesses the termination of M. For instance, by sequentially using four
theory transformations, a conditional order-sorted context-sensitive system module can
be transformed into an unconditional unsorted context-sensitive term rewrite system,
which can be handled by the back-end tools.

The Maude Termination Tool (MTT) is a tool that checks the termination of (possibly
conditional) order-sorted Maude functional or system modules. The current implemen-
tation takes a module as input and tries to prove its termination by applying theory
transformations and then invoking back-end termination tools, such as MU-TERM [22]
and AProVE [17], that can prove termination of (variants of) rewriting. For the current
version of MFE, a new “hook” to a C++ library was included in non-official distribution
of Core Maude for invoking these back-end termination tools. MTT is the only tool in
the MFE that does not depend on any other tool in the environment.

A stand-alone version of MTT, with a graphical user interface, is available from
http://www.lcc.uma.es/˜duran/MTT/.

4.2 The Church-Rosser Checker

The Church-Rosser Checker (CRC) checks the Church-Rosser property of Maude
functional (possibly conditional) order-sorted modules. For order-sorted modules, being
Church-Rosser and terminating means not only confluence, but also a sort-decreasingness
property: each normal form has the least possible sort among those of all equivalent terms.
CRC depends on MTT for checking termination assumptions and on ITP for inductive
theorem proving (see Section 4.5). Some of the proof obligations are not currently han-
dled by any tool. We will se in Section 6 that although they are submitted to ITP, these
proofs may be “trusted” by the user.

CRC can be used to check equational specifications (Σ,E ∪Ax) with an initial se-
mantics that have already been proved terminating and need to be checked (ground)
Church-Rosser. The tool performs both a local confluence check by computing all
(conditional) critical pairs of the equations E modulo the structural axioms Ax and
a sort-decreasingness test in the form of membership assertions for each equation in
E modulo Ax. If the (conditional) critical pairs or the sort decreasingness tests cannot
be discharged by CRC, proof obligations are displayed as a guide to the user. In MFE,
CRC can submit these proof obligations to ITP for inductive reasoning.

CRC, with its documentation and some examples, is available from http://maude.
lcc.uma.es/CRChC/.

Towards a Maude Formal Environment 339

4.3 The Coherence Checker

(Ground) coherence allows reducing the problem of computing rewrites of the form
[t]E∪Ax → [t ′]E∪Ax that in general is undecidable, to the much simpler and decidable
problem of computing rewrites of the form [t]Ax → [t ′]Ax, for t and t ′ any (ground) Σ-
terms. Intuitively, coherence means that rewriting with R modulo E∪Ax can be achieved
by adopting the strategy of first simplifying to canonical form with E modulo Ax and
then applying a rule in R modulo Ax.

The Coherence Checker (ChC) is a tool that provides a (ground) coherence decision
procedure for order-sorted system modules R = (Σ,E ∪Ax,R). The tool calculates the
set of critical pairs between the equations E and the rewrite rules R modulo the structural
axioms Ax, whose equational validity guarantees the (ground) coherence of R . ChC
depends on MTT for termination assumptions and on CRC for the equations E being
Church-Rosser. Since this property is inductive, in some cases ITP can be used to prove
some proof obligations.

ChC, with its documentation and some examples, is available from http://maude.
lcc.uma.es/CRChC/.

4.4 The Sufficient Completeness Checker

Maude Sufficient Completeness Checker (SCC) is a tree automata based tool for check-
ing sufficient completeness and deadlock freedom of terminating and sort-decreasing
Maude modules. Both sufficient completeness and deadlock freedom are relative to
constructor subsignatures. For R = (Σ,E,R), a signature pair (ϒ,Ω), with ϒ ⊆ Ω ⊆ Σ,
is a pair of constructors for R if for each sort s in Σ and each ground Σ-term with sort s,
(i) there is a Ω-ground term u with sort s satisfying the equality t = u in E , and (ii) there
is a ground ϒ-term v with sort s satisfying the sequent t → v in R. Intuitively, sufficient
completeness is the property that every operation in a specification is equationally de-
fined for all inputs, and deadlock freedom is the property that every nondeterministic
computation leads to a terminal state [24,19].

Sufficient completeness and deadlock freedom are important properties both for de-
velopers of specifications, to check that they have not missed a case in defining opera-
tions, and to inductive theorem provers, to check the soundness of a proposed induction
scheme. In the case of equational specifications, SCC assumes the input specification
is ground sort-decreasing and terminating; in the case of rewrite specifications, SCC
assumes the input specification is ground sort-decreasing, terminating, Church-Rosser,
and coherent.

The tool is designed for unparameterized, order-sorted, left-linear, and unconditional
Maude specifications that are ground terminating and Church-Rosser. It is a decision
procedure for this class of specifications when every associative symbol is also commu-
tative. For associative symbols that are not commutative it uses machine learning tech-
niques that work well in practice. If the specification is not sufficiently complete, SCC
returns a counterexample to aid the user in identifying errors. The tool is not complete
for specifications with non-linear or conditional axioms, but nevertheless has proven
useful in identifying errors in such specifications. SCC accepts interactive commands

340 F. Durán, C. Rocha, and J.M. Álvarez

to check the sufficient completeness of a Maude module, and internally constructs a
propositional tree automaton whose language is empty if and only if the Maude module
is sufficiently complete. The emptiness check is performed by a C++ tree automata
library named CETA.

The tool also supports several important completeness and freeness problems of
context-sensitive specifications involving both equations and rewrite rules [24,19].

SCC is available from its website at http://maude.cs.uiuc.edu/tools/scc.

4.5 The Maude Inductive Theorem Prover

The Maude Inductive Theorem Prover (ITP) is an experimental proof assistant aiding
in the task of proving inductive properties of the initial algebra associated to a mem-
bership equational theory. It is based on Membership Equational Logic, a good fit for
reasoning inductively about functions and data structures involving partiality, subsorts,
and conditions. ITP supports proofs by structural induction and complete induction, in
which operations need not be completely specified. Goals are either conditional equa-
tions or conditional memberships, and inference steps are available through a series of
user commands. ITP depends on MTT for checking termination assumptions, on SCC
for checking sufficient completeness and freeness of equational constructors, and on
CRC for checking the Church-Rosser property of the equations.

The ITP tool, documentation, and some examples are available from http://maude.
cs.uiuc.edu/tools/itp/.

5 Extensibility by Example: The Integration of SCC

In this section we present a brief overview of the steps undergone to integrate SCC in
MFE. In order to take as much advantage as possible of the infrastructure offered by
MFE, some classes offered by MFE such as Tool and Proof are specialized with new
attributes and behavior specific to SCC. In this way, SCC inherits the behavior defined
already for these classes in MFE. Internal messages defining SCC’s public interface
are created and the rewrite rules defining SCC’s behavior are updated so they fit into
MFE’s message passing interaction mechanism. Also, the controller object is modified
to account for SCC in the object-based configuration of the formal environment.

5.1 SCC Proof Objects

An SCC proof object is an instance of class SCCProof, which is a subclass of Proof:

class SCCProof | sc-result : SCCResult,
terminating : 3Bool,
sort-dec : 3Bool,
sound : Bool,
complete : Bool,
trusted : Bool .

subclass SCCProof < Proof .

Towards a Maude Formal Environment 341

Attribute sc-result registers the sufficient completeness result of sort SCCResult.
If the emptiness test is successful, it holds the value empty; if it is unsuccessful, it
holds a counter-example for sufficient completeness. A counter-example for sufficient
completeness is a ground irreducible term that does not belong to the subsignature of
constructors. Sort Bool is Maude’s predefined sort for Boolean values and operations,
and sort 3Bool is an extension of sort Bool with a third “undefined” value.

Ground termination and ground sort-decreasingness are assumed in SCC’s stand-
alone version. An SCC proof object in MFE registers the ground termination and ground
sort-decreasingness status of its associated module in the three-valued attributes termi-
nating and sort-dec, respectively, so that it can be checked whether these assump-
tions hold (indicated by value true), do not hold (indicated by value false), or have
not been submitted (indicated by value maybe). Thanks to the interoperability offered
by MFE and as explained in Section 4, there are tools in MFE that can check for ground
termination and ground sort-decreasingness of Maude specifications. Therefore, SCC
proof objects can always submit these checks to the corresponding tools.

In some situations, some SCC’s requirements such as left-linearity of equations can
be relaxed. For instance, if the emptiness check is successful when ignoring the non left-
linear equations in a Maude module, then this module is sufficiently complete with all
its equations. However, a counter-example to the sufficient completeness in the reduced
module is not necessarily a sufficient completeness counter-example for the module
with all its equations. SCC offers checks for these two properties and, in MFE, SCC
proof object registers the information with Boolean attributes sound and complete.
SCC proof objects define the Boolean valued attribute trusted for supporting a “trust”
command for sufficient completeness proofs. This is useful for dealing with modules
that are not supported by SCC or for sufficient completeness proofs that are obtained
outside SCC.

5.2 The SCC Tool Object

The SCC tool object is an instance of class SCCTool, which is a subclass of MFE’s
Tool. Class SCCTool does not declare any new attributes.

class SCCTool .
subclass SCCTool < Tool .

The functional module SCC-SIGN defines the grammar of the user commands supported
by the SCC tool object. These are the commands available from SCC’s stand-alone
version in addition to a new one for showing the state of SCCProof objects.

fmod SCC-SIGN is
including FULL-MAUDE-SIGN .
op scc_. : @ModExp@ -> @Command@ .
op submit . : -> @Command@ .
op trust . : -> @Command@ .
op show state . : -> @Command@ .
op SCC help . : -> @Command@ .
...

endfm

342 F. Durán, C. Rocha, and J.M. Álvarez

The command (scc MN.) checks the sufficient completeness of module with name
MN. The command (submit .) submits the termination and sort-decreasingness proof
obligations to the corresponding tools in MFE for the active SCC proof object, if any.
The command (trust .) trusts the sufficient completeness proof for the active SCC
proof object, if any. The command (show state .) displays the state of each SCC
proof object, and command (SCC help .) displays the help menu of Maude’s SCC.

Two bodies for internal messages are defined. Namely, a message body for check-
ing sufficient completeness and a message body for acknowledging that a module is
sufficiently complete. The latter type of message is only created when the sufficient
completeness check has been successful, and the termination and sort-decreasingness
assumptions have been checked.

op check sc_ : Module -> MFEMsgBody .
op module_is sufficiently complete : Module -> MFEMsgBody .

Observe that command (scc _.) and internal message body check sc_ refer to the
same functionality offered by the SCC tool object, but with different inputs: the former
takes a module expression as input, while the latter takes a module as input. Regardless
of this typing difference, it is convenient to have exactly one entry point for commands
referring to the same functionality. On the one hand it facilitates source code main-
tainability and debugging. On the other hand, it helps to avoid repetition of significant
amounts of source code. To address this issue, the SCC tool object exclusively han-
dles internal messages while it rewrites user commands in parsing messages to internal
messages: it amounts to evaluating the module expression given by the user to a mod-
ule in the database of modules and, if successful, to creating an internal message with
the module and with the “from-to” data of the parsing message. There is an additional
rule handling the case in which the module expression in the parsing message cannot
be evaluated for a module, notifying the failure to the user. These rules correspond to
updated versions of previously existing rules that handled user commands in SCC.

Rewrite rule check-sc below specifies the creation of an SCC proof object for
checking the sufficient completeness of a module M. Here, function processSCCheck
encapsulates the calls to functionality already available from SCC for the sufficient
completeness check, and function createSCCProof encapsulates the instantiation of
the new SCC proof object and updates to the attributes of the SCC tool object.

var X@SCCTool : SCCTool . vars O O’ : Oid . var M : Module .
var Atts : AttributeSet . var MNReg : Map{ModuleName, Oid} .

crl [check-sc] :
< O : X@SCCTool | reg : MNReg, Atts > (to O from O’ : check sc M)
=> if not isParameterized?(M) and-else not M :: STheory

then createSCCProof(O’, < O : SCCTool | reg : MNReg, Atts >,
processSCCheck(M))

else < O : SCCTool | reg : MNReg, Atts >
(to O’ from O : output(

mfe-error(’SCC ’cannot ’check ’parameterized ’modules
’or ’theories. ’\n)))

fi if not getName(M) in domain of MNReg .

Towards a Maude Formal Environment 343

SCC operates on unparameterized modules with initial semantics. If module M con-
forms to these two constraints, then a new SCC proof object is instantiated with the
emptiness result of the corresponding automaton. The registry attribute reg of the SCC
tool object is updated with the name of module M and the unique object identifier of the
newly created proof object. In the case that module M does not conform to these con-
straints, an error message is issued to the user, no SCC proof obligation is instantiated,
and the SCC tool object remains unchanged (this is done by a rule omitted here).

Dependencies. The SCC tool object depends on termination and sort-decreasingness
checks by MTT and CRC tool objects. In general, tool dependencies can be resolved at
instantiation, for which the controller object provides information of the tools available
in the environment (including itself).

The SCC tool object is instantiated by defining an instantiation token that takes a map
representing the available tools as input and by a rewrite rule that creates the instance of
the tool object with the information provided in the map. The map in the instantiation
token identifies a (tool) name TN with a (tool) object identifier O whenever the tool
object for TN has object identifier O. Observe that this instantiation mechanism with
a map as a parameter benefits the modularity and extensibility of MFE: if more tools
become available in MFE, there is no need to modify the way tool objects are currently
instantiated in MFE.

A new SCC tool object is created by a term init-scc(TS) of sort Configuration,
with TS a term of sort Map{ToolName, Oid}. The following rewrite rule init-scc-to
instantiates the SCC tool object and creates a message to display.

op init-scc : Map{ToolName, Oid} -> Configuration .

var TS : Map{ToolName, Oid} .

rl [init-scc-to] :
init-scc(TS)
=> < TS["SCC"] : SCC |

tools : TS,
grammar : SCC-GRAMMAR,
current : null-oid,
index : 0,
reg : empty >

(to TS["MFE"] from TS["SCC"] : output(string2qidList(scc-banner))) .

The tool map TS is used to assign the object identifier to the SCC tool object, namely,
the object identifier with associated tool name "SCC". Tool names are globally known
and the controller is responsible for their uniqueness. Since SCC proof objects do not
exists when the SCC tool object is created, attribute index is set to value 0 and attribute
reg is set to value empty. As the result of the SCC tool object successful creation, an
output message is sent to the controller object with a welcoming message, here encoded
by constant term scc-banner.

344 F. Durán, C. Rocha, and J.M. Álvarez

5.3 Making SCC Operational in MFE

In order to make the SCC tool object operational in MFE, it needs to be registered
with the controller object and added to the object configuration. A unique tool name
and a unique object identifier are required for registering the SCC tool object with the
controller object. In MFE, the string "SCC" is the global tool name for the SCC tool
object and scc its object identifier. Therefore, the tools map in the controller object is
updated with the pair "SCC" |-> scc.

The SCC tool object is added to the initial configuration of MFE by means of the
initialization token init-scc(T), with the updated tools map T .

op TOOLS+SCC : -> Map{ToolName, Oid} .
eq TOOLS+SCC = (TOOLS, "SCC" |-> scc) .

rl [init] :
init
=> [nil,

< mfe : Controller |
db : initialDatabase, input : nilTermList, output : nil,
default : ’CONVERSION, current-tool : mfe, tools : TOOLS+SCC >

...
init-scc(TOOLS+SCC),
nil] .

6 Using MFE

In this section, we illustrate some features and commands of MFE on the classical
example of the readers and writers, using a slightly modified version of the presentation
in [4, Sections 12.3 and 12.4].1 In fact, a similar proof can be found in [4], but using the
tools in isolation and with no support for keeping track of the pending proof obligations.

In this specification, a state is represented by a term < R, W > where R and W are,
respectively, the number of readers and writers accessing a critical resource. In the
system, there should not be more than one writer, or writers and readers at the same
time. To obtain this behavior, a writer can only access the critical resource if no nobody
else is using it, and a reader can gain access to the critical resource only if there are no
writers using it. Readers and writers can leave the critical resource at any time.

The following modules MBOOL and MNAT define, respectively, sorts MBool and MNat
of Boolean values and natural numbers.

(fmod MBOOL is
sort MBool .
ops true false : -> MBool [ctor] .

endfm)

1 The changes introduced are due to the different treatment of built-ins by the different tools. To
avoid conflicts we do not use any built-in in the example. We set the automatic inclusion of the
BOOL module off and, although not used, the automatic inclusion of module TRUTH-VALUE on.

Towards a Maude Formal Environment 345

(fmod MNAT is
sort MNat .
op 0 : -> MNat [ctor] .
op s : MNat -> MNat [ctor] .

endfm)

The readers-writers system can be specified as follows.

(mod READERS-WRITERS is
protecting MNAT .
sort Config .
op <_‘,_> : MNat MNat -> Config [ctor] .
vars R W : MNat .
rl [wrt+] : < 0, 0 > => < 0, s(0) > .
rl [wrt-] : < R, s(W) > => < R, W > .
rl [rdr+] : < R, 0 > => < s(R), 0 > .
rl [rdr-] : < s(R), W > => < R, W > .

endm)

Before reducing or rewriting any term in this module, we must check the expected
execution requirements, namely, the equations being ground terminating and Church-
Rosser, and the rules being ground coherent with respect to the equations. We can per-
form all these checks in MFE. During the verification process, tools keep record of
pending proof obligations, are able to submit them to appropriate tools in the environ-
ment, and complete their proofs upon reception of messages announcing the discharg-
ing of assumptions. In fact, we can choose to complete the proof in different orders. For
example, we could check first the termination, then the Church-Rosser property, and
then its coherence, or we could choose to directly attempt the coherence proof and let
the submission of the proof obligations help in the process.

Let us do first the Church-Rosser proof. To carry such a check we first select the
CRC tool.

Maude> (select tool CRC .)
CRC has been set as current tool.

Since there are no equations in READERS-WRITERS, this module is trivially (ground)
Church-Rosser.

Maude> (check Church-Rosser .)
Church-Rosser check for READERS-WRITERS

There are no critical pairs.
The specification is confluent.
The module is sort-decreasing.
Success: The module is therefore Church-Rosser.

We now check module READERS-WRITERS ground coherent. We select the ChC tool:

Maude> (select tool ChC .)
ChC has been set as current tool.

346 F. Durán, C. Rocha, and J.M. Álvarez

and then issue the checking command:

Maude> (check coherence .)
Coherence checking of READERS-WRITERS

All critical pairs have been rewritten and no rewrite with rules
can happen at non-overlapping positions of equations left-hand sides.
The termination and Church-Rosser properties must still be checked.

The coherence property assumes the ground termination and ground Church-Rosser
properties of equations in module READERS-WRITERS. We use command (submit .)
to ask the environment to submit the pending proof obligations to the corresponding
tools.

Maude> (submit .)
The Church-Rosser goal for READERS-WRITERS has been submitted to CRC.
The termination goal for the functional part of READERS-WRITERS has been

submitted to MTT.
Success: The functional part of module READERS-WRITERS is terminating.
Church-Rosser check for READERS-WRITERS

There are no critical pairs.
The specification is confluent.
The module is sort-decreasing.
Success: The module is therefore Church-Rosser.

The functional part of module READERS-WRITERS has been checked terminating.
The module READERS-WRITERS has been checked Church-Rosser.
Success: The module READERS-WRITERS is coherent.

The ground termination and Church-Rosser properties of the functional part of module
READERS-WRITERS are checked, answers to the requests are received, and the coherence
checker automatically completes the proof and sends to the controller object the success
message. The proof of the Church-Rosser property was already in the environment, and
therefore the answer is directly returned without further checking. When requested, the
termination proof is attempted and it succeeds. When ChC receives all the messages
informing of successful discharging of both proof obligations, it completes the proof
and sends the corresponding success message.

We are now ready to prove some properties of module READERS-WRITERS. For in-
stance, we verify mutual exclusion in READERS-WRITERS, that is, at most one reader
or one writer uses the critical resource at a particular time. We could do this by using
Maude’s search command or its LTL model checker. However, since the reachable
state space is infinite for any initial state, we first need to define an abstraction of the
system and proof its correctness. We use the following predicates and abstraction, in
which all states having readers are collapsed to a simpler state (it is not relevant to
know how many readers are using the critical resource, but whether there is any or not
using the critical resource).

(mod READERS-WRITERS-PREDS is
protecting MBOOL .
protecting READERS-WRITERS .
ops mutex one-writer : Config -> MBool [frozen] .

Towards a Maude Formal Environment 347

vars M N : MNat .
eq mutex(< s(N), s(M) >) = false .
eq mutex(< 0, N >) = true .
eq mutex(< N, 0 >) = true .
eq one-writer(< N, s(s(M)) >) = true .
eq one-writer(< N, s(0) >) = true .
eq one-writer(< N, 0 >) = true .

endm)

(mod READERS-WRITERS-ABS is
including READERS-WRITERS-PREDS .
var N : MNat .
eq [abs] : < s(s(N)), 0 > = < s(0), 0 > .

endm)

To check both the execution and the invariant-preservation properties of this abstraction,
we need to check: the equations being ground confluent, sort-decreasing, and terminat-
ing; the equations being sufficiently complete; and the rules being ground coherent with
respect the equations.

The use of CRC, ChC, SCC, and MTT to carry on these proofs is presented in [4,
Section 12.4]. Here we show how the different proofs can be completed inside the
environment without the need of switching between execution environments.

We start by checking the sufficient completeness of READERS-WRITERS-ABS:

Maude> (select tool SCC .)
SCC has been set as current tool.

Maude> (scc READERS-WRITERS-ABS .)
Checking sufficient completeness of READERS-WRITERS-ABS ...
To complete the proof the specification must be proved ground
sort-decreasing and weakly-terminating.

We then submit these assumptions to other tools in the environment.

Maude> (submit .)
The sort-decreasingness goal for READERS-WRITERS-ABS has been submitted

to CRC.
The termination goal for the functional part of READERS-WRITERS-ABS has

been submitted to MTT.
Success: Module READERS-WRITERS-ABS is sort-decreasing.
Success: The functional part of module READERS-WRITERS-ABS is terminating.
Success: Module READERS-WRITERS-ABS is sufficiently complete.

CRC has not requested a termination proof for READERS-WRITERS-ABS, and therefore
has not been informed of the result of the termination proof. Let us just do that. We first
select the CRC tool as active tool.

Maude> (select tool CRC .)
CRC has been set as current tool.

348 F. Durán, C. Rocha, and J.M. Álvarez

By requesting the CRC’s, we realize that the check was completed, and that only ground
termination is necessary to complete the ground confluence proof and, with it, obtain a
ground Church-Rosser proof for READERS-WRITERS-ABS.

Maude> (show state .)
State of the tool:
- Church-Rosser check for READERS-WRITERS :

There are no critical pairs.
The specification is confluent.
The module is sort-decreasing.
The module is therefore Church-Rosser.

- Church-Rosser check for READERS-WRITERS-ABS :
All critical pairs have been joined.
The specification is locally-confluent.
The module is sort-decreasing.

We submit the pending proof obligation.

Maude> (submit .)
The termination goal for the functional part of READERS-WRITERS-ABS has

been submitted to MTT.
The functional part of module READERS-WRITERS-ABS has been checked

terminating.
Success: The module READERS-WRITERS-ABS has been checked Church-Rosser.

Then, we check module READERS-WRITERS-ABS ground coherent.

Maude> (select tool ChC .)
ChC has been set as current tool.

Maude> (check ground coherence READERS-WRITERS-ABS .)
Ground coherence checking of READERS-WRITERS-ABS
The following critical pairs cannot be rewritten:
cp READERS-WRITERS-ABS1 for abs and rdr-

< s(0),0 >
=> < s(#1:MNat), 0 > .

The termination and Church-Rosser properties must still be checked.

A critical pair is returned by the ChC tool in the form of a reachability goal. Also,
ground termination and Church-Rosser proofs must be obtained. Some of these proofs
have already been found, but ChC has not been informed. We submit the pending proof
obligations.

Maude> (submit .)
The Church-Rosser goal for READERS-WRITERS-ABS has been submitted to CRC.
The goal for critical pair READERS-WRITERS-ABS1 has been submitted to ITP.
The termination goal for the functional part of READERS-WRITERS-ABS has

been submitted to MTT.
The module READERS-WRITERS-ABS has been checked Church-Rosser.
The functional part of module READERS-WRITERS-ABS has been checked

terminating.

Towards a Maude Formal Environment 349

The ITP does not provide methods to prove the joinability of critical pairs. However,
we can carry on a proof by reasoning by cases and using Maude’s searching command
as in [4, Section 12.4]. We can then use the (trust .) command to inform the tool
that the proof was completed out of the ITP.

Maude> (select tool ITP .)
ITP has been set as current tool.

Maude> (trust .)
Eliminated current goal.
The critical pair READERS-WRITERS-ABS1 has been trusted.
Success: The module READERS-WRITERS-ABS is ground-coherent.

Now that the abstraction has been proved correct, we can check both invariants:

Maude> (search in READERS-WRITERS-ABS :
< 0, 0 > =>* C:Config
such that mutex(C:Config) = false .)

No solution.

Maude> (search in READERS-WRITERS-ABS :
< 0, 0 > =>* C:Config
such that one-writer(C:Config) = false .)

No solution.

7 Conclusion

The Maude Formal Environment is an executable and highly extensible software in-
frastructure written in Maude within which a user can interact with several tools to
mechanically verify properties of Maude specifications. MFE exploits Maude as a re-
flective declarative language and system based on rewriting logic in which computation
corresponds to efficient deduction by rewriting. We have explained the main design de-
cisions in MFE and integrated, as a proof of concept, five important formal analysis
tools with highly heterogeneous designs: namely, Maude’s Termination Tool, Church-
Rosser Checker, Coherence Checker, Sufficient Completeness Checker, and Inductive
Theorem Prover. We also presented a brief overview of the steps underwent to integrate
Maude’s SCC in MFE and explained how MFE’s design decisions allowed for an easy
integration. It is important to highlight that the approach taken here for extending MFE
with the SCC is one of many possible ways to benefit from the software infrastructure
offered by MFE. Finally, we gave a fair overview of some of the features and commands
of MFE on the classical example of the readers and writers.

Much work remains ahead. First of all, more tools such as Maude’s LTL and LTLR
Model Checkers, Maude’s Invariant Analyzer Tool, and Real-Time Maude could be in-
tegrated in MFE. This will result in a more interesting environment with features for
handling broader applications with less effort for the user. One could also think of han-
dling proof obligations such as those for the protecting and extending importations of
modules, for the instantiation of parameterized modules, or simply the termination and

350 F. Durán, C. Rocha, and J.M. Álvarez

Church-Rosser assumptions for equational simplification. More ambitiously, a graphi-
cal user interface and support for better interoperability will enhance the user experience
with the formal environment. The graphical user interface could be developed, for in-
stance, as a plugin in the Eclipse environment. IMaude and the IOP platform might also
be a good candidates for improving tool interoperability and providing the environment
with a graphical user interface.

Acknowledgements. The authors would like to thank the anonymous referees for com-
ments that helped to improved the paper. The first author has been partially supported
by Spanish Research Projects TIN2008-03107 and P07-TIC-03184. The second author
has been partially supported by NSF grants CNS 07-16638 and CCF 09-05584.

References

1. User interfaces for theorem provers, http://www.informatik.uni-bremen.de/uitp/
2. Aspinall, D., Lüth, C.: Special issue on user interfaces in theorem proving. Journal of Auto-

mated Reasoning 39(2) (2007)
3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Quesada, J.: Maude:

Specification and programming in rewriting logic. Theoretical Computer Science 285, 187–
243 (2002)

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Talcott, C.: All
About Maude - A High-Performance Logical Framework: How to Specify, Program, and
Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer, Heidelberg (2007)

5. Clavel, M., Durán, F., Eker, S., Meseguer, J., Stehr, M.O.: Maude as a formal meta-tool. In:
Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1709, pp. 1684–1703.
Springer, Heidelberg (1999)

6. Clavel, M., Durán, F., Hendrix, J., Lucas, S., Meseguer, J., Ölveczky, P.: The Maude formal
tool environment. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007.
LNCS, vol. 4624, pp. 173–178. Springer, Heidelberg (2007)

7. Clavel, M., Palomino, M., Riesco, A.: Introducing the ITP tool: a tutorial. Journal of Univer-
sal Computer Science 12(11), 1618–1650 (2006)

8. Durán, F., Lucas, S., Bevilacqua, V.: MTT: The Maude termination tool (system description).
In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195,
pp. 313–319. Springer, Heidelberg (2008)

9. Durán, F., Lucas, S., Meseguer, J.: Methods for proving termination of rewriting-based
programming languages by transformation. Electronic Notes in Theoretical Computer Sci-
ence 248, 93–113 (2009)

10. Durán, F., Lucas, S., Meseguer, J.: Termination modulo combinations of equational theories.
In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 246–262. Springer,
Heidelberg (2009)

11. Durán, F., Meseguer, J.: Maude’s module algebra. Science of Computer Programming 66(2),
125–153 (2007)

12. Durán, F., Meseguer, J.: A Church-Rosser checker tool for conditional order-sorted equa-
tional Maude specifications. In: Ölveczky, P. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 69–85.
Springer, Heidelberg (2010)

13. Durán, F., Meseguer, J.: A Maude coherence checker tool for conditional order-sorted rewrite
theories. In: Ölveczky, P. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 86–103. Springer, Hei-
delberg (2010)

Towards a Maude Formal Environment 351

14. Durán, F., Meseguer, J.: On the Church-Rosser and coherence properties of conditional order-
sorted rewrite theories. Journal of Logic and Algebraic Programming (submitted for publi-
cation, 2011)

15. Durán, F., Ölveczky, P.C.: A guide to extending Full Maude illustrated with the implementa-
tion of Real-Time Maude. Electronic Notes in Theoretical Computer Science 238(3), 83–102
(2009)

16. Franssen, M., van den Brand, M.: Design of a proof repository architecture. In: Proceedings
of the 1st Workshop on Modules and Libraries for Proof Assistants (MLPA 2009), pp. 19–23.
ACM (2009)

17. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination proofs
in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

18. Hemer, D., Long, G., Strooper, P.: Plug-in proof support for formal development envi-
ronments. In: Proceedings of the 2005 Australasian Symposium on Theory of Computing
(CATS 2005), pp. 69–79. Australian Computer Society, Inc. (2005)

19. Hendrix, J.: Decision Procedures for Equationally Based Reasoning. Ph.D. thesis, University
of Illinois at Urbana-Champaign (2008)

20. Hendrix, J., Clavel, M., Bevilacqua, V.: A sufficient completeness reasoning tool for par-
tial specifications. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 165–174. Springer,
Heidelberg (2005)

21. Hendrix, J., Meseguer, J., Ohsaki, H.: A sufficient completeness checker for linear order-
sorted specifications modulo axioms. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130, pp. 151–155. Springer, Heidelberg (2006)

22. Lucas, S.: MU-TERM: A tool for proving termination of context-sensitive rewriting. In: van
Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 200–209. Springer, Heidelberg (2004)

23. Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set, Hets. In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Hei-
delberg (2007)

24. Rocha, C., Meseguer, J.: Constructors, sufficient completeness and deadlock freedom of
rewrite theories. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp.
594–609. Springer, Heidelberg (2010)

G. Agha, O. Danvy, and J. Meseguer (Eds.): Talcott Festschrift, LNCS 7000, pp. 352–367, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Multisimulations: Towards Next Generation Integrated
Simulation Environments

Leila Jalali, Sharad Mehrotra, and Nalini Venkatasubramanian

University of California at Irvine, USA
{ljalali,sharad,nalini}@ics.uci.edu

Abstract. In this paper, we consider the challenge of designing a reflective
middleware to integrate multiple autonomous simulation models into an
integrated simulation environment (multiasimulation) wherein we can model
and execute complex scenarios involving multiple simulators. One of the
limitations of the simulators is that they are developed by domain experts who
have an in-depth understanding of the phenomena being modeled and typically
designed to be executed and evaluated independently. Therefore, the grand
challenge is to facilitate the process of pulling all of independently created
models together into an interoperating multisimulation model where decision
makers can explore different alternatives and conduct low cost experiments. We
aim to build such integrated simulation environments by creating a loosely
coupled federation of pre-existing simulators. We evaluate our proposed
methodology via a detailed case study from the emergency response domain by
integrating three disparate pre-existing simulators – a fire simulator (CFAST),
an evacuation simulator (Drillsim) and a communication simulator (LTEsim).

Keywords: Reflective Middleware, Simulation Integration, Metamodels,
Methodology.

1 Motivation

In this paper, we consider the challenge of designing a reflective middleware to
integrate multiple autonomous simulation models into an integrated environment
wherein we can model and execute complex scenarios involving multiple simulators.
Modelling and simulation is an important methodology to address a variety of real-
world problems; it offers numerous advantages instead of experimenting with the real
system itself. Simulation is cheaper, quicker, and enables what-if analyses for better
system design [7].

This is particularly true in domains such as emergency response where response
plans and methods are validated by simulating disasters and their impact on people
and infrastructure. A variety of simulators; e.g., loss estimation tools (HAZUS [13],
INLET [14], CAPARS [15], CFD [12]), fire spread simulators (CFAST [10], CCFM
[19]), evacuation simulators (DrillSim [9], SDSS [11]), transportation simulators
(VISIM [17], PARAMICS [18]) etc., that model different aspects of disasters, their
impacts, and response/mitigation processes have been developed. While these
simulators are individually important in understanding disasters, their integrated and

 Multisimulations: Towards Next Generation Integrated Simulation Environments 353

concurrent execution can significantly enhance the understanding of the phenomena
and interdependencies between multiple aspects of the complex processes. Consider,
for instance, a fire simulator, CFAST, that simulates the impact of fire and smoke in a
specific region and calculates the evolving distribution of smoke. Since fire and
smoke can affect health conditions of individuals in the region of fire, one may wish
to further study its impact on the evacuation process as captured within an evacuation
simulator, e.g. DrillSim. Similarly, the progress of fire (captured by CFAST) may
create infeasible paths/exits for evacuation (as captured by DrillSim). Such what-if
analyses can significantly improve the understanding of adverse impacts such as
increase in evacuation times or increased exposure to undesired particulates enabling
intelligent decision making to improve the response. Not only do we need to
understand how will fire and smoke distribute in a specific region, we also need to
plan what traffic routes will people use to evacuate the affected regions, what
demands will be placed on the hospital services in the region, etc. The individual
simulation models such as those for studying the impact of fire and smoke need to be
integrated with those analyzing the traffic movement through the highways and
arteries of the affected area, and with those analyzing the resource constraints of
hospital systems among others.

The need for integrated execution of simulators is well recognized and is the main
driver of U. S. Department of Defense (DoD) High Level Architecture (HLA)
initiative [4] which has become the de-facto standard technical architecture for
military simulations. HLA aims to promote interoperability and reusability among
simulators. While HLA is suited to developing new simulators that can be easily
integrated, its broader applicability to combining pre-existing simulators is
questionable [21]. HLA forces developers to provide a particular functionality or to
conform to specific standards in order to participate in the integration process; the
rigid assumptions and limitations on participants makes it difficult to integrate pre-
existing simulators without significant modification (especially in non-military
domains).

In this paper, we consider the problem of integration of pre-existing simulators. We
refer to such an integrated simulation environment as a multisimulation. We aim to
build multisimulations by creating a loosely coupled federation of pre-existing
simulators. We explore a reflective middleware approach to address challenges of
integrated simulation environments in which interoperability of different simulators
can be ultimately achieved in a flexible and efficient manner. Unlike the significant
code rewrite required in the HLA case, our multisimulation framework permits
individual simulators to maintain their autonomy (i.e. retain their internal
representations of time/state etc.), thereby avoiding the need for rigid common
interfaces across simulators.

This paper is organized as follows. In Section 2, we discuss our multisimulation
architecture and the main challenges. In Section 3 we discuss our methodology for
simulation integration that supports the interoperability of multiple existing
simulation models. In Section 4 we discuss the implementation of our system
prototype. We evaluate our proposed approach via a detailed case study that integrates
multiple real world simulators. Finally we draw conclusions.

354 L. Jalali, S. Mehrotra

2 Multisimulation A

We propose a reflective
development of integrated
using structural reflection
components of the underlyi
existing) simulators that mu
of different simulators ca
specifying/modeling the pro
interactions among the dif
simulators; reification of b
modified features of these s
to the base-level. A closer
the structural aspects of th
code, backend databases
aspects of the simulators th
be many kinds of meta-leve

Given the potential black
domains, we believe that ac
of simulators is a very di
modest– we intend to deve
integration with a wide ra
expose their interfaces and
developers to adhere to a st
styles - the ability to flexibl

By using the metamod
integrated can be extract
the metamodel that capt
mechanism for data excha
express interest in aspects

F

a, and N. Venkatasubramanian

rchitecture

e middleware architecture (Figure 1) to support
simulation platforms. Our initial efforts [24] focused
[1] to reify (abstract out) the structure of objects

ing simulators. The base-level consists of the various (p
ust be integrated. In the proposed architecture, integrat

an be ultimately achieved by using the meta-level
operties of the different simulators and reasoning about
fferent simulators. The meta-level is built on base-le
base-level entities yield data structures at the meta-le
structures that implement the integration are then reflec
look at the base-level simulators themselves reveals t

he simulation application are not merely in the simula
and models stored in domain-specific formats cont

hat may need to be explored as well. In general, there
el entities to cover various integration aspects.
k-box nature of simulators developed by experts in dive
chieving a completely automated plug-and-play integrat
ifficult, if not infeasible challenge. Our goals are m
lop enabling tools that will simplify the task of simulat

ange of simulators that vary in the degree to which t
implementations. Our solution does not require simula

trict programming interface or conform to particular des
ly interoperate with multiple simulators is our goal.
deling capability the model elements that need to
ted. In other words, in our approach, we formu
tures concepts of interest using a publish- subscr
nge – here, subscribers (the simulation integration tas

s that they want to observe (implemented by base-le

Fig. 1. Multisimulation Architecture

the
d on
and
pre-
tion
for
the

evel
vel,
cted
that
ator
tain
can

erse
tion

more
tion
they
ator
sign

be
ulate
ribe
sks)
evel

 Multisimulations: Towards Next Generation Integrated Simulation Environments 355

simulators) – when changes in these monitored aspects occur at the base simulators,
the meta-level entities receive information or updates of interest via publishers. A
pre-existing set of ontology models assist in the matching process for the pub-sub
implementation of the simulation integration task; these include domain ontologies
that are representations of knowledge in a well-circumscribed domain.
Interoperability of different simulators can be achieved by sharing and understanding
the metamodels. Implementing the semantic constraints for simulation integration is a
human in the loop process which results in the annotations that are invisible to base-
level computation and are provided to the meta-level.

In contrast to prior work on simulation integration (e.g. HLA) [4], [2], [3], [5], [27]
in our architecture we do not need to integrate simulations tightly into a common
framework, but we make it feasible to semi-automatically compose simulation models
via a looser coupling approach that avoids the need to adhere to a rigid common
interface, which can hinder leveraging prior work. We explore a reflective
architecture to address challenges of integrated simulation environments in which
interoperability of different simulators can be ultimately achieved in a flexible and
efficient manner while preserving the autonomy of the individual simulators.

3 Integration Methodology

In this section, we describe the general structure of our methodology and its relevant
issues. The complex process of integration is decomposed in several phases, and for
every phase several tasks are specified, with the strategies to be followed. We
describe step by step, different phases, making use of an example to make it easy to
understand.

Figure 2 demonstrates the basic steps of methodology for simulation integration.
The first step is to extract metadata from basic simulators and to describe it using
metamodels. Next is to analyze metamodels to discover inter-dependencies between
simulators. The first two steps are pre-processing steps that are human-in-loop
process. When federation runs, meta-level modules ensure the correctness until the
end of simulation. In the following we describe each step in details.

3.1 Preprocessing Steps: Extract Simulators’ Metadata and Dependencies

The first step is to extract simulator-related meta-data and describe it at meta-level
using metamodels. Metamodels are abstracts of lower-level details of integration and
interoperability which make the underlying simulator more understandable. Figure 3
shows our meta-model. There are several key classes in the metamodel: model type,
actions, model elements (data items) which could be local data or shared data, input
or output parameters, actions, and constraints. We construct our metamodel using
UML (Unified Modeling Language).

Model type includes information about the type of simulation model. In general
simulators can be categorized into Discrete-event, Agent-based, System dynamics.
They also can be categorized based on the time management mechanism that they
employ as time stepped simulators or event based simulators [1, 7]. In time stepped

356 L. Jalali, S. Mehrotra

Fig

simulators, for each exec
incremented by one quant
execution is driven by an e
preserving) and the simula
without representing all the
agent-based and time-step a

Model elements are the
the interfaces, the source co
simulator information as m
consist of simulation mode
currently we only use struct
also take behavioral feature
future. We implemented a
to extract the entities and
simulator’s source code,
information into features to
into the same class if they a

Since our metamodel ne
the metamodel should be c
consider input and output

a, and N. Venkatasubramanian

g. 2. The Basic Steps of Methodology

ution of the main control loop the simulation time
tum of time Δt. In the case of event based simulat
event list, each event has a time stamp (usually causa
ation time jumps from one event time stamp to the n
e values in between. For example for Drillsim [9] we h
as model type.

main elements of a simulation and can be captured fr
ode, or databases. We develop a set of tools to extract

metamodels from the base-level simulators. Model eleme
el features. Since we are interested in structural reflecti
tural features which include classes and attributes. We m
es into account to represent operations and association
parser using a tool for large scale code repositories sea
attributes from a complex and large simulators using
interfaces, and databases. Then we group extrac

o capture the structure of the simulator. The features are
are considered equivalent.
eeds to take several domain expert simulators into accou
comprehensive, yet extensible. In our metamodel, we a

parameters. The careful examination of the features

Fig. 3. Basic Metamodel

e is
tors,
ality
next
have

rom
the

ents
ion,
may
s in
arch
the

cted
put

unt,
also
s in

 Multisimulations: Toward

various simulators of the d
common features using key
the simulation parameters
examples of metamodels in

In the second step, we a
between simulators. We u
between a data item in si
on ′ need to be reflec
dependency notion is direc
simulator. Here, and ′ ar
than one dependency betw
relationships. A dependenc
items values. At each iterat
function :
simulators such a dependen

3.2 Run Federation

We consider each simulato
stepped simulators or event
their set of actions indepen
uncoordinated way. To par
be modified, i.e. the introd
needs to stop processing its
be synchronized with other

Simulators are interfac
determines the external act
meta-level and sends them t
at least one data item which
between this data item and
such actions from a simul
dependent simulators.

Fig. 4. Base-level f

ds Next Generation Integrated Simulation Environments

ifferent domains has allowed us to identify and categor
y classes. Finally, constraints are the number of limits
s in the simulation model. We will discuss comp
n our case study later.
analyze the metamodels to discover the interdependenc
use dependency descriptors to specify the depende
mulator and a data item ′ in simulator when upda
ted into : , ′ , . Note t
ctional. is the supplier simulator, is the consum
re interdependent data items. In general, there can be m

ween two simulators describing multiple aspects of th
cy function, f, defines the relationship between two d
tion, the new value of is determined by the depende

, that is . For each dependency betw
ncy function is defined at meta-level.

or’s execution as a sequence of actions (time steps in ti
ts in event based simulators). Typically simulators exec
ndently from the beginning to the end of simulation in
rticipate in a federation, each of these simulators needs
duction of synchronization points at which the simulati
s actions and communicate with the meta-level in orde
simulators.

ced with met-level by using wrappers. The wrap
tions for which the simulator needs to communicate w
to meta-level. External actions are those actions that acc
h is an interdependent data item (there exists a depende
d another data item in another simulator). Upon receiv
lator, the meta-level generates meta-actions to notify

federates, wrapper, and meta level interactions (step 3)

357

rize
for

lete

cies
ency
ates
that
mer

more
heir
data
ency
ween

ime
cute
n an
s to
ions
er to

pper
with
cess
ency
ving
y its

358 L. Jalali, S. Mehrotra, and N. Venkatasubramanian

Figure 4 shows the details of Step 3 in our methodology. First, the wrapper sends a
request for connection to the meta-level. The meta-level confirms the connection and
sends information about interdependent data items and dependencies to the wrapper.
Once simulation starts, the wrapper determines the external actions and sends
corresponding requests to the meta-level. Upon receiving a request, the meta-level
modules evaluate the dependencies and respond to the wrapper with a decision (allow,
rollback, or delay) based on the scheduling approach used (which will be discussed in
the next section). It also sends to the wrapper meta-actions that contain the updates by
other simulators. The wrapper reflects the received meta-actions on the execution of
the underlying simulator. This loop is continued until the end of simulation.

4 Challenges

There are several challenges in integrating multiple autonomous simulation models.
The first challenge arises from modeling complex scenarios using multiple simulation
models and the analysis of cause-effect relationships between those models. Given the
potential black-box nature of simulators developed by experts in diverse domains we
believe that achieving a completely automated plug-and-play integration of simulators
is a very difficult, if not infeasible challenge. Our goals are more modest – we intend
to develop enabling tools that will simplify the task of simulation integration with a
wide range of simulators that vary in the degree to which they expose their interfaces
and implementations. We do not want to require simulator developers to adhere to a
strict programming interface or conform to particular design styles - the ability to
flexibly interoperate with multiple simulators is our goal. Another challenge arises
from the fact that each simulator uses its own models and entities; these must now be
integrated in the context of a single simulation. The simulators need to exchange the
data and have a correct interpretation of the data they send and receive. Time
synchronization is yet another challenge. When integrating simulators, there is a need
for synchronization of time between the different models. In the following we discuss
the details:

(a) Managing Complexity of Interoperating Systems. Integration of independently
created models can lead to a complex interoperating system of systems that need to be
managed efficiently. Understanding the interoperability issues that arise in this
context is the main aim of multisimulations. In our proposed approach, we use meta
models to describe simulator-related meta-data; a way to infer data transformations,
and a means of specifying and automatically executing orchestration. Metamodels can
make the underlying simulator more understandable. Additionally, metamodels are
abstracts of lower-level details of integration and interoperability. Other challenges
arise from heterogeneity of the data that simulation models need to exchange. Since
we are working with existing simulation models, it is necessary to analyze the data
types used internally by the simulators. It might be possible to adapt prior work on
data transformation and integration [26]. We plan to investigate whether such
techniques can be extended to account for or detect potential data exchange issues that
will arise.

 Multisimulations: Towards Next Generation Integrated Simulation Environments 359

(b) Correctness. Another challenge in integrated simulation environments is to
ensure the correctness of multisimulations (e.g. preserving causality among different
simulation models). In particular, we focus on time synchronization and data
consistency as critical problems that must be addressed to ensure the correct
interoperability of the concurrently executing simulators. The simulation clock that
controls simulation time during execution of a simulation resides within each
simulator itself. Time synchronization mechanisms are needed to ensure causal
correctness for models that use different time advancement mechanisms. Most of
available synchronization methods need the participants to agree on a common
interpretation of time and a common time advancement method. Our goal is to
leverage existing simulators, as is, while enabling data interchange between them and
to accommodate multiple time management and advancement mechanisms
implemented internally in participating simulators, preserving the autonomy of the
individual simulators. We need to describe the semantics of the internal time
advancement in different simulation models (e.g., whether it is a continuous-time
model with observations made at regular time intervals, a discrete-time model with
observations only at “ticks,” or a discrete-event model with observations only at
irregularly spaced event-occurrence times). The spatial coordinate system must also
be specified so that different models can be spatially aligned. We came across both
issues in our exercise and resolved them with appropriate interpolations of data and
transformations to overcome mismatches.

(c) Scalability. Accurate modeling and analysis of large scale and complex scenarios
presents a scalability challenge. Modeling such complex scenarios places
considerable stress on the system resources. Such scenarios involve a lot of entities,
e.g. agents with complex behavior operating on dynamic environments. In this paper
we focus on interoperability and correctness issues. Scalability is currently another
ongoing topic of research on multisimulations [25]

We focus on time synchronization and data consistency as critical problems that
must be addressed to ensure the correct interoperability of the concurrently executing
simulation models. In the following we discuss the details of our approach for
federation time synchronization and data consistency.

4.1 Time Synchronization

Time synchronization services is a research area with a very long history. In general
the time synchronization mechanisms can fall into two different categories: 1)
conservative, and 2) optimistic [16]. A conservative strategy ensures the legality of
simulator actions by delaying the actions such that the dependencies are preserved in
the concurrent execution of actions of different simulators. This approach prevents
action roll-backs. A simulator can proceed if the synchronizer can guarantee that by
executing its external action, no dependencies will be violated. In the optimistic
strategy, we accept the fact that violations occur, but instead of trying to prevent them
by delaying the actions, we simply choose to detect them after the action has executed
and then resolve the violation when it does occur; by aborting the actions that caused
the violation.

We categorize simulators based on the time management mechanism that they
employ as being time stepped or event based (Table 1)[7]. In time stepped simulators,

360 L. Jalali, S. Mehrotra, and N. Venkatasubramanian

Table 1. Time-stepped and Event-based Simulators

Time-stepped simulator Event-based simulator
while (simulation in progress) do
 for each tick do
 read data;
 modify data;
 time = time + Δt;
 end for
end while

while (simulation in progress)do
 Event e= nextEvent;
 while(e!=null)do
 process(e);
 time= timestampe(e);
 e= nextEvent;
 end while
end while

for each execution of the main control loop the simulation time is incremented by one
quantum of time Δt. In the case of event based simulators, execution is driven by an
event list, | 1,2, … , each event has a time stamp (usually causality
preserving) and the simulation time jumps from one event time stamp to the next
without representing all the values in between. For every two events and we
have the following property: when . We
allow different simulators to have different levels of granularity in their events or
timestamps.

Just as in any concurrency controller, the synchronizer can follow a conservative or
optimistic strategy for scheduling actions.

Conservative approach. A conservative strategy ensures the legality of schedules by
delaying the actions such that the dependencies are preserved in the concurrent
execution of actions of simulators. The delay will cause the simulator to freeze until
the synchronizer allows it to proceed. This approach prevents action roll-backs. A
simulator can proceed if the synchronizer can guarantee that by executing its action,
no dependencies will be violated; otherwise, the action will be delayed.

Optimistic approach. In some applications it is quite common to be in a situation
where although simulators are working simultaneously on interdependent data,
violations are infrequent and dependencies continue to be preserved. When this is the
case, an optimistic strategy becomes efficient. In the optimistic approach, we accept
the fact that violations occur, but instead of trying to prevent them by delaying the
actions, we choose to detect them after the action has executed and resolve the
violation when it does occur; by aborting the actions that caused the violation.

Above strategies may become more (or less) effective as a multisimulation
progresses. The efficacy of a specific strategy at a point in time is a factor of the
underlying dependencies and actions taken by the concurrently executing simulators.
Initially, the cost of abort is small, so the optimistic strategy will be preferred.
However, as the simulator proceeds, aborts costs become increasingly high.
Therefore, the conservative strategy becomes more effective. We plan to propose a
hybrid approach that combines the benefits of both the optimistic and conservative
strategies by considering the underlying dependencies and the costs of delays and
aborts to make an informed decision for an action.

4.2 Data Transformation

In general, the data management module provides data transfer that preserves the
meaning and relationships of the data exchanged between two simulators. Since we

 Multisimulations: Toward

F

are working with existing
common representation of d
which can not be easily m
dependencies between fede
they can provide immediate

To integrate a simulator
The purpose of developing
implement a standard inter
controlling the data exchan
for transforming data value
of entities of another simul
other simulators on traffic c
other simulators use a diff
value on the first geography

We plan to adapt prio
transformation mapping fr
investigate whether such m
for or detect potential time-
issues that may arise. In a
required for the majority o
and space interpolations a
Future work includes identi
library. Such transformatio
standard transformations c
different social networks i
household caloric intake am

5 Prototype System I

In this section we discuss th
and the implementation o
different modules in the
design philosophy, the de

ds Next Generation Integrated Simulation Environments

Fig. 5. Multisimulation Framework

g simulators, we cannot use the methods based on
data. Each simulator may have its own data representat

modified. We used data translators that work based on
erates. If the data translators are implemented correc
e conduits to publish or subscribe to information.
to the multisimulation, adaptors components need to bu

g the adaptors is to provide a descriptor of a simulator
rface that makes the run-time multisimulation capable
nge between multiple simulators. Adaptors are responsi
es of entities of one simulator to the corresponding val
lator. For instance, a traffic simulator provides updates
congestion values for the links in the network geography
ferent geography, a conversion must take place to ma
y to one or more values on other geographies.
or work on data exchange [26], which infers a def
om a source schema to a target schema. Our goal is

mapping-generation algorithms can be extended to acco
-management, geometry-management, and unit-convers
any case, there are standard transformations that will
of model mash-ups. These include unit conversions, ti
and aggregations, and database join-operations on fi
ifying the set of such functions and establishing a stand
on functions will need to be highly scalable. Other n
can be quite challenging (e.g., aligning or combin
in multiple agent-based simulation models, or allocat

mong household members).

Implementation

he general structure of our methodology, its relevant issu
f a prototype multisimulation system. Figure 5 sho
prototype system. Consistent with our metaarchitect
esign aims to separate the base level aspects of e

361

the
tion
the

ctly,

uilt.
r to
e of
ible
lues
for

y. If
ap a

fault
s to
ount
sion
l be
ime
iles.
dard
non-
ning
ting

ues,
ows
ture

each

362 L. Jalali, S. Mehrotra, and N. Venkatasubramanian

simulator (this includes the simulator code, the backend databases and models stored
in domain-specific formats) from the meta-level synchronization and adaptation
mechanisms. Base-meta interactions occur through simulator wrappers that handle the
processing of external actions in each simulator by forwarding requests to meta-level.
There are 3 key modules at meta-level: (a) a Synchronizer which uses the proposed
approaches to monitor and control concurrent execution in the multisimulation. This
module also makes use of a lock manager to coordinate concurrent access to
simulators data items. (b) an Analyzer which analyzes the interactions between
simulators using meta-models to capture the dependencies which stored in a separate
table and indexed by its corresponding interdependent data items. (c) an Adaptor
which manages the data exchange and adapts information that is passed between
simulators through the design of wrapper modules for each simulator.

In the initialization steps the wrapper sends a request for connection to the
synchronizer. The synchronizer confirms the connection and sends information about
interdependent data items and dependencies to the wrapper. Once simulation starts,
the wrapper determines which actions are external actions and sends corresponding
requests to the synchronizer. Upon receiving a request, the meta-level modules
evaluate the dependencies and respond to the wrapper with a decision (allow,
rollback, or delay) based on the scheduling approach used. It also sends to the
wrapper meta-actions that contain the updates by other simulators. The wrapper
reflects the received meta-actions on the execution of the underlying simulator. This
loop is continued until the end of simulation.

The implementation of allow and delay in the wrapper is straightforward; it will
proceed or freeze the simulation respectively. In the case of rollback, associated with
the rollback notification from synchronizer is a time, t, which indicates the time in the
past to which simulation needs to be rolled back. One option is to start the simulation
from time t, initialize all the interdependent and local data items values to the values
that they had in time t, and run the simulation – obviously this involves a high
overhead for storing/checkpointing the data item values at each instance of time,
especially when working with pre-existing simulators. In the case of simulators when
it is not possible to start a simulation from a random time in the past, we will be
required to rerun the simulation from its start time until it reaches time t.

5.1 Integrating Real-World Simulators

To ground our work in reality, we develop a case study for simulation integration
using three pre-existing real world simulators from the emergency response domain –
the primary goal is to validate our approach and synchronization solutions and
understand issues in its realization. The specific simulators are (1) CFAST, a fire
simulator that simulates the effects of fire and smoke inside a building and (2)
Drillsim, an activity simulator that model a response activity evacuation and (3)
LTESim, a communication simulator for the next generation wireless network
infrastructure. Table 1 summarizes the three simulators and their properties. In our
case study, we focus primarily on integrating simulation and models aimed at
informing emergency response policy decision making, but we expect our framework
and methods will be applicable to other complex problem domains.

 Multisimulations: Towards Next Generation Integrated Simulation Environments 363

Table 2. Three Real-World Simulators

Evacuation Simulator Communication Simulator Fire Simulator

♦ DrillSim [9],Time stepped
♦ Open source (in Java)

♦ Parameters: health profile,
visual distance, speed of
walking, num. of ongoing
call, etc. Output: num. of
evacuees, injuries, etc.

♦ LTESim [20], Event based
♦ Open source (in Matlab)

♦ Parameters: num. of transmit and
receive antennas, uplink delay,
network layout, channel model,
bandwidth, frequency, etc.
Output: pathloss, throughput, etc.

♦ CFAST [10], Time stepped
♦ Black-box (no access to source)

♦ Parameters: bldg geometry,
materials of construction, fire
properties, etc. Output:
temperatures, pressure, gas
concentrations: CO2, etc.

1) Fire simulator: CFAST, the Consolidated Model of Fire and Smoke Transport, is a
simulator that simulates the impact of fires and smoke in a specific building
environment and calculates the evolving distribution of smoke, fire gases, and
temperature [10]. CFAST has several interfaces to input the parameters that contain
information about the building geometry, fire properties, and etc. The simulator
produces outputs that contain information about temperatures, ignition times, gas
concentrations, and etc.
2) Activity simulator: Drillsim is a multi-agent that plays out the activities of a crisis
response process, e.g. building evacuation in response to an evolving fire hazard.
Drillsim simulates human behavior in a crisis at fine granularities [9] - agents
represent an evacuee, a building captain, etc. Every agent has a set of properties
associated with it, such as physical perceptual profile (e.g., range of sight, speed of
walking) and the current health status of the agent (e.g. injured, unconscious).
3) Communication simulator: LTEsim, the communication simulator in our case
study, is a LTE System Level simulator [20] which abstracts the physical layer and
performs network level simulations of 3GPP Long Term Evolution with lower
complexity. We chose LTEsim because the LTE standard has several improvements
in capacity, speed, and latency and will be the technology of choice for most existing
3GPP mobile operators [8]. LTEsim considers several parameters to model the
communication infrastructure (such as number of transmit and receive antennas,
network layout, bandwidth, pathloss, and etc.).

In our integration scenario, the fire simulator, CFAST, is used to simulate the
impact of fire and smoke in a specific region and calculates the evolving distribution
of smoke; fire and smoke can affect evacuation process, e.g. people’s health
condition, in the evacuation simulator, Drillsim, which has impacts on communication
patterns in communication simulator, LTEsim. Such integration is useful to conduct
better what-if analyses and understand various factors that can adversely delay
evacuation times or increase exposure and consequently used to make decisions that
can improve safety and emergency response times. The first step is to specify meta-
models for the three base level simulators and dependencies across them (see
Appendix). The following are the examples of information interchanged among
simulators:

• A harmful condition in CFAST can affect an individual’s health in Drillsim.
• Smoke in CFAST can decrease an agent’s visual distance in Drillsim.

364 L. Jalali, S. Mehrotra, and N. Venkatasubramanian

Fig. 6. (a) Average synchronization overhead (b) Total execution time vs. the number of
actions

• The number of ongoing communications in Drillsim can affect network pathloss
and throughput in LTEsim.

• Pathloss in LTEsim can be used to determine connectivity/coverage in Drillsim.

In our current implementation, several such dependencies specified (the actual
number of dependencies required was in the range of 10-50 for most situations).

5.2 Initial Results

Our experiments are based on the case study described above where we integrate 3
real world simulators. In our experiments, we implemented techniques for
synchronization across the three simulators: We implemented three different solutions
for time synchronization across the three simulators: Lock-step approach (LS),
conservative approach (CS), and optimistic approach (OS). Lock-step approach is the
most conservative approach for the purpose of evaluating the other two approaches,
by having a lock step schedule. All simulators advance step by step, and at any step
they synchronize by locking at data item level until the next step. The lock table is
maintained at meta-level. By locking shared data in the beginning of action and
releasing the locks at the end, we can prevent deadlocks. In OS, we consider wait time
before each rollback to be 0.5 s.

Table 3. Comparison between HLA and Multisimulation Architecture

Criterion HLA Multisimulation Architecture
Objective ─ Interoperability

─ Reusability
─ Semantic Interoperability, Reusability
─ Flexibility

Domain ─ Defense ─ Flexible via use of domain ontologies

Complexity
─ Low level knowledge needed
─ Lack of semantic

interoperability

─ No need to conform the internal properties
─ Semantic constraints implemented at the

metalevel
Time
Management

─ Optimistic and conservative
methods

─ Optimistic and conservative methods

Separation of
Concerns

─ Merges domain-specific and
integrated simulation aspects

─ Separate concerns related to simulation domain
to those related to integration mechanisms

 Multisimulations: Towards Next Generation Integrated Simulation Environments 365

We studied the synchronization overhead and the total execution time using
different techniques. We measure synchronization overhead by adding the
synchronization overhead in all simulators. In CS, we considered the total delay time,
i.e. the duration a simulator is blocked and the locking overhead, i.e. the time needed
for acquiring or releasing locks, to calculate the synchronization overhead. In OS, we
considered the total rollback time. Figure 6-a and 6-b illustrate the average
synchronization overhead per time step and average execution time for different
numbers of actions. In our base case, the number of dependencies betweens
simulators is 30 (a reasonably large number for our case study). The synchronization
overhead in CS is much lower as compared to OS during later phases of execution.
This is due to the high rollback time in OS.

Table 3 presents a brief comparison of the reflective architecture to HLA. Using
HLA outside the defense domain such as our case study is very complex, if not
impossible. In HLA low level knowledge needed from participants. Each simulator
must use the common data format that leads to simulations that are very closely
coupled to an underlying database. Since the HLA environment is a fully distributed
simulation environment, the simulators must fully conform to the designated features
of the HLA standard. Note that transforming existing simulators to conform to the
standard may not always be feasible. In our reflective architecture each simulator can
have its own data representation, internal time management, and data management.
Therefore, we do not force the simulators to change their internal properties. Another
advantage of our reflective architecture is separation of concerns, that is, separate the
concerns related to the simulation domain from those related to the integration
mechanisms. Additionally it provides a design that is more adaptable, flexible and
easier to extend.

6 Related Work and Conclusions

To best of our knowledge, simulation integration has been studied in two domains –
(a) military command-and-control [4], [2], [5], [27], and (b) games and virtual
environments [3]. The U.S. Department of Defense (DoD) has promoted the
development of standards to provide a common framework in which simulators can
be integrated. These include standards such as SIMulator NETworking (SIMNET)
[27], Distributed Interactive Simulation (DIS) [5], Aggregate Level Simulation
Protocol (ALSP) [2], High Level Architecture (HLA) [4]. These standards provide
specific services for interoperability in niche applications, for example DIS for
human-in-the-loop simulators or ALSP for war games. The recent HLA effort has
become the defacto standard technical architecture for military simulations – it aims
to promote interoperability and reusability between simulators.

While HLA is suited to developing new simulators that can be easily integrated, its
broader applicability to combine pre-existing simulators is questionable [6], [21]. It is
a complex standard designed specifically for the military domain and is not
transparent enough – too much low level knowledge is needed from the practitioner.
HLA forces developers to provide a particular functionality or to conform to specific
standards in order to participate in the integration process; the rigid assumptions and
limitations on participants makes it difficult to integrate pre-existing simulators

366 L. Jalali, S. Mehrotra, and N. Venkatasubramanian

without significant modification (especially in non-military domains). As in the case
with the HLA architecture, solutions in the game community are also prescriptive -
they force the developers to provide a particular functionality to participate in the
integration process and have different assumptions/limitations on how participants
interact. Such methods are unsuited to the integration of pre-existing simulators.

In this paper we proposed a reflective middleware architecture for simulation
integration that implements structural reflection to alleviate the flexibility issues in
current simulation integration techniques. In this architecture, the meta-level is
structured as a series of metamodels representing the various simulators. We have
implemented a detailed case study from the emergency response domain by
integrating 3 disparate simulators: a fire simulator (CFAST), an evacuation simulator
(Drillsim) and a communication simulator (LTEsim). Future research will focus on
addressing challenges in the complexity associated with generalizing the meta-models
for simulators, integrating simulators in other domains including earthquake and
transportation simulators, and addressing the challenges of data transformation in
multisimulations.

References

[1] Kon, F., Costa, F., Blair, G., Campbell, R.H.: The Case for Reflective Middleware.
Communications of the ACM 45(6), 33–38 (2002)

[2] Weatherly, R., Seidel, D., Weissman, J.: Aggregate Level Simulation Protocol. In:
Summer Computer Simulation Conference, pp. 953–958 (1991)

[3] Jain, S., McLean, C.R.: Integrated simulation and gaming architecture for incident
management training, Simulation. In: Proc. of the Winter Simulation, pp. 904–913
(2005)

[4] Kuhl, F., Weatherly, R., Dahmann, J.: Creating Computer Simulation Systems: An
Introduction to the High Level Architecture. Prentice-Hall, New Jersey (1999)

[5] Davis, P.K.: Distributed Interactive Simulation (DIS) in the Evolution of DoD Warfare
Modeling and Simulation. Proceedings of the IEEE 83(8), 1138–1155 (1995)

[6] Boer, C., Bruin, A., Vebraeck, A.: Distributed simulation in industry- a survey: part 2 –
experts on distributed simulation. In: Winter Simulation Conference, pp. 1061–1068
(2006)

[7] Fujimoto, M.R.: Parallel and Distributed Simulation Systems. John Wiley Inc. (2000)
[8] Mcqueen, D.: 3GPP LTE: the momentum behind LTE adoption. IEEE

Communication 47, 44–45 (2009)
[9] Balasubramanian, V., Massaguer, D., Mehrotra, S., Venkatasubramanian, N.: DrillSim:

A Simulation Framework for Emergency Response Drills. ISI, 237–248 (2006)
[10] Peacock, R., Jones, W., Reneke, P., Forney, G.: CFAST– Consolidated Model of Fire

Growth and Smoke Transport (Version 6) User’s Guide, NIST Special Publication
(2005)

[11] De Silva, F.N., Eglese, R.W.: Integrating Simulation Modeling and GIS: Spatial Decision
Support Systems for Evacuation Planning. JORS 51(4), 423–430 (2000)

[12] Abanades, A., Sordo, F., Lafuente, A., Martinez-Val, J.M., Munoz, J.: Application of
computational fluid dynamics (CFD) codes as design tools. In: 5th Int. Conf. on ISFA
(2007)

[13] HAZUS-MH: Multi-hazard Loss Estimation Methodology. User Manual (2003)

 Multisimulations: Towards Next Generation Integrated Simulation Environments 367

[14] Cho, S., Huyck, C.K., Ghosh, S., Eguchi, R.T.: Development of a Web-based
Transportation Modeling Platform for Emergency Response. In: 8th Conf. on Earthquake
Eng. (2006)

[15] CAPARS, http://www.alphatrac.com/PlumeModelingSystem
[16] Jefferson, D.: Virtual Time. ACM Trans. Programming Lang. Sys. (3), 404–425 (1985)
[17] Verkehr, A.: VISIM V3.6 Innovative Transportation (2001)
[18] Cameron, G., Wylie, B., McArthur, D.: PARAMICS- Moving Vehicles on the

Connection Machine. In: Conf. on High Performance Networking and Computer, pp.
291–300 (1994)

[19] Cooper, L.Y, Forney, G.P.: The consolidated compartment fire model (CCFM) computer
code application CCFM.VENTS - Part I: Physical basis. NISTIR 4342 (1990)

[20] LTE System Level Simulator, https://www.nt.tuwien.ac.at/
[21] Boer, C., Bruin, A., Vebraeck, A.: Distributed Simulation in Industry - a survey, part 3-

the HLA standard in industry. In: Proc. of the 40th Conf. on Winter Sim, pp. 1094–1102
(2008)

[22] Huang, J., Tung, M., Hui, L.: Ming-Che Lee An Approach for the Unified Time
Management Mechanism for HLA Source Simulation, vol. 81(1), 45–56 (2005)

[23] Ramamritham, K., Calton, P.: A Formal Characterization of Epsilon Serializability. IEEE
Transactions (1995)

[24] Jalali, L., Venkatasubramanian, N., Mehrotra, S.: Reflective Middleware Architecture for
Simulation Integration. In: ARM 2009, Urbana Champaign, Illinois (2009)

[25] Balasubramanian, V., Kalashnikov, D., Mehrotra, S., Venkatasubramanian, N.: Efficient
and scalable multi-geography route planning. In: EDBT 2010, Switzerland (2010)

[26] Haas, L. M., Hernández, M.A., Ho, H., Popa, L., Roth, M.: Clio Grows Up: From
Research Prototype to Industrial Tool. In: Proc. ACM SIGMOD, pp. 805–810 (2005)

[27] Pope, A.: The SIMNET Network and Protocols, Technical Report 7102. BBN, MA
(1989)

Semantics, Simulation, and Formal Analysis of

Modeling Languages for Embedded Systems in
Real-Time Maude

Peter Csaba Ölveczky

Department of Informatics, University of Oslo

Abstract. This survey paper presents an overview of how Real-Time
Maude has been used to provide a formal semantics and formal analysis
capabilities to a wide range of modeling languages for embedded systems,
namely, a behavioral subset of the avionics modeling standard AADL, a
synchronous version of AADL, the discrete-event models of the powerful
graphical modeling language Ptolemy II, two very different approaches
to extend model transformations with time, and an imperative language
for handset software.

1 Introduction

Real-time embedded systems (RTESs)—such as automotive, avionics, and med-
ical systems—are hard to design correctly, since subtle timing aspects impact
system functionality, yet are safety-critical systems whose failures may cause
great damage to persons and/or valuable assets. However, most modeling lan-
guages for RTESs that are used in industry currently lack a formal semantics,
which not only limits unambiguous communication between model developers,
but also implies that models described in such languages cannot be subjected
to formal analysis to prove safety properties or identify security vulnerabilities.
Furthermore, some modeling languages are not executable, which limits the pos-
sibility to even simulate their models. There is therefore a clear need for:

– A formal semantic framework in which the precise semantics of a modeling
language for RTESs can be defined in a natural way; and

– associated simulation and formal analysis tools which support the automated
formal analysis of models in such languages.

Furthermore, to be useful for model-based system engineering in practice, the
formal analysis framework should also:

1. Allow model developers to define analysis commands without understanding
the formal language or the formal representation of their models; and

2. provide formal analysis results, such as counterexamples in temporal logic
model checking, that the model developer can easily understand.

G. Agha, O. Danvy, and J. Meseguer (Eds.): Talcott Festschrift, LNCS 7000, pp. 368–402, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Formal Semantics and Analysis for Modeling Languages 369

A number of advanced modeling tools provide a code generation infrastructure
to support the generation of deployment code from a design model. Once the
formal semantics of a modeling language has been defined, we can leverage this
code generation infrastructure to automatically synthesize a formal verification
model from the informal design model, enabling a formal model engineering pro-
cess that combines the convenience of modeling using an informal but intuitive
modeling language with formal analysis.

There exist a number of formal analysis tools for real-time systems (see [49]).
However, there is a significant gap between the formalisms of these tools, such as
timed automata [3] or timed Petri nets [14,46], that sacrifice expressiveness for
decidability, and the expressiveness of modeling languages for industrial RTESs.

In contrast to such formal tools, Real-Time Maude [40]—which extends the
rewriting-logic-based Maude system [15] to support the formal specification, sim-
ulation, and model checking of real-time systems—emphasizes expressiveness
and ease of specification over algorithmic decidability of key properties. In Real-
Time Maude, the state space and the functional properties of the system are
defined as an equational specification, the instantaneous local transitions are
modeled as rewrite rules, and time advance is modeled by tick rewrite rules.
Real-Time Maude is particularly suitable for modeling real-time systems in an
object-oriented style. Because of its expressiveness, Real-Time Maude has been
successfully applied to a wide range of advanced state-of-the-art systems that
are beyond the pale of timed automata, including wireless sensor networks algo-
rithms [21,42], scheduling algorithms that require unbounded queues [36], and
large multicast protocols [41,23]. It is also worth pointing out that, although key
properties for Real-Time Maude are in general undecidable, they are decidable
under conditions that are satisfied by many systems encountered in practice [38].

Real-Time Maude’s natural model of time, together with its expressiveness,
should make it a suitable semantic framework for modeling languages for RTESs.
Such languages then also get the following formal analysis capabilities for free:

– simulation;
– reachability analysis;
– linear temporal logic (LTL) model checking for for untimed LTL properties,

as well as time-bounded LTL model checking for analyzing systems with an
infinite reachable state space; and

– TCTL≤,≥ model checking of timed CTL formulas [22].

Real-Time Maude addresses the desiderata (1) and (2) above as follows:

1. A key Real-Time Maude1 feature that makes it easy for the user to define
his/her analysis queries, without having to understand Real-Time Maude or
the formal representation of his/her model, is the possibility to equationally
define parametric atomic state propositions (and “state patterns” for reach-
ability analysis). This allows us to define a useful set of parametric state

1 Most of the appealing features of Real-Time Maude mentioned in this paper are
inherited from the Maude system that Real-Time Maude extends.

370 P. C. Ölveczky

propositions in the Real-Time Maude interpreter of a language, making it
easy for the user to define both search patterns and temporal logic formulas.

2. A key requirement to (i) understanding the results of Real-Time Maude
analyses, and (ii) being able to map them back into the original modeling
formalism is to have, respectively, a small representational distance between
the original models and their formal counterparts, and a one-to-one corre-
spondence between these models. Given that hierarchical composition and
encapsulation play key roles in modeling languages for industrial systems,
the possibility of defining hierarchical objects enable us to achieve both small
representational distance and the above one-to-one correspondence.

In this survey paper, we illustrate the use of Real-Time Maude as both a semantic
framework and a simulation and formal model checking tool for modeling lan-
guages for RTESs by summarizing recent such applications of Real-Time Maude
on the following modeling languages:

1. A behavioral subset of the AADL [45] modeling standard for avionics and
embedded automotive systems.

2. The Synchronous AADL modeling language [4] that can be used to define
synchronous system designs in AADL.

3. Ptolemy II discrete-event (DE) models. Ptolemy II [18] is a well established
graphical modeling and simulation tool used in industry. The Ptolemy II
DE modeling language is fairly challenging as it combines a synchronous
fixed-point semantics with time and hierarchical models.

4. A real-time extension of the MOMENT2 model transformation framework
[9,8] that supports the formal specification and verification of model-based
real-time and embedded systems within the Eclipse Modeling Framework.

5. The eMotions [44,43] framework for defining domain specific visual modeling
languages, which provides powerful high-level constructs for defining the
timed behaviors of the visual models.

6. An SDL-inspired modeling language for handsets, developed at DOCOMO
Labs, which has more expressive timer features than Erlang [19].

To illustrate this use, we give, for each modeling language, a brief overview of
the language, a (part of a) small example of a model, an overview and some
fragments of the Real-Time Maude semantics, and an overview of the formal
analysis support provided by Real-Time Maude for the language. The definition
of the Real-Time Maude semantics of each of the above modeling languages has
been published separately elsewhere [34,5,11,43,1]. A brief overview of the use of
Real-Time Maude for formal model engineering of embedded systems, that does
not discuss the semantics of modeling languages, appears in [33].

Related Work. That rewriting logic is a suitable semantics framework in which
a range of formal models of concurrency can be naturally represented was shown
already in [24,25,27]. The rewriting logic semantics project [29] provides rewrit-
ing logic semantics and Maude analysis to an impressive set of programming
languages, including Java, Beta, Haskell, Lisp, Python, and Smalltalk. Further-
more, it has been shown that real-time rewrite theories are a natural semantic

Formal Semantics and Analysis for Modeling Languages 371

framework for real-time systems in which a range of formal models for such
systems, including timed and hybrid automata, timed Petri nets, timed Actors,
etc., can be represented [37,17].

Paper Structure. Section 2 briefly introduces Real-Time Maude. Sections 3 to 8
present the six modeling languages are their Real-Time Maude semantics and
analysis, and Section 9 gives some concluding remarks.

2 Real-Time Maude

A rewrite theory [24,13] is a tuple (Σ, E∪A, R), where (Σ, E∪A) is a membership
equational logic theory [26] with E a set of possibly conditional equations and
membership axioms, and A a set of equational axioms such as associativity, com-
mutativity, and identity, so that equational deduction is performed modulo the
axioms A. The theory (Σ, E∪A) specifies the system’s state space as an algebraic
data type. R is a collection of labeled conditional rewrite rules specifying the sys-
tem’s local transitions, each of which has the form2 [l] : t −→ t′ if

∧m
j=1 uj = vj ,

where l is a label. Such a rule specifies a one-step transition from a substitution
instance of t to the corresponding substitution instance of t′, provided the con-
dition holds. The rules are universally quantified by the variables appearing in
the Σ-terms t, t′, uj , and vj , and are applied modulo the equations E ∪ A.3

A Real-Time Maude timed module specifies a real-time rewrite theory [37],
that is, a rewrite theory R = (Σ, E ∪ A, R), such that:

1. (Σ, E ∪ A), where E is terminating and confluent modulo A, contains a
specification of a sort Time defining the (discrete or dense) time domain.

2. The rules in R are decomposed into:
– “ordinary” rewrite rules that model instantaneous change, and
– tick (rewrite) rules that model the elapse of time in a system. Such tick

rules have the form [l] : {t}
u−→ {t′} if cond, where { } is a constructor

of a new sort GlobalSystem and u is a term of sort Time denoting the
duration of the rewrite. In Real-Time Maude, tick rules are written

crl [l] : {t} => {t′} in time u if cond .

The initial state of a system must be equationally reducible to a term {t0}. The
form of the tick rules then ensures uniform time elapse in all parts of a system.

We briefly summarize the syntax of Real-Time Maude and refer to [15] for
more details. Operators are introduced with the op keyword: op f : s1 . . . sn -> s.
2 In general, the condition may also contains rewrites wi −→ w′

i and memberships
tk : sk; however, this paper does not use that extra generality. Furthermore, in Maude
and Real-Time Maude, an equational condition ui = wi can also be a matching
equation, written ui:= wi, which instantiates the variables in ui to the values that
make ui = wi hold, if any. See [15] for further explanations.

3 Operationally, a term is reduced to its E-normal form modulo A before any rewrite
rule is applied in Real-Time Maude. Under the coherence assumption [48] this is a
complete strategy to achieve the effect of rewriting in E ∪ A-equivalence classes.

372 P. C. Ölveczky

They can have user-definable syntax, with underbars ‘_’ marking the argument
positions. Some operators can have equational attributes, such as assoc, comm,
and id, stating, for example, that the operator is associative and commutative
and has a certain identity element. Such attributes are used by the Maude engine
to match terms modulo the declared axioms. Equations and rewrite rules are
introduced with, respectively, keywords eq, or ceq for conditional equations,
and rl and crl. The mathematical variables in such statements are declared
with the keywords var and vars. An equation f(t1, . . . , tn) = t with the owise
(for “otherwise”) attribute can be applied to a subterm f(. . .) only if no other
equation with left-hand side f(u1, . . . , un) can be applied.4

In object-oriented Real-Time Maude modules, a class declaration

class C | att1 : s1, ... , attn : sn .

declares a class C with attributes att1 to attn of sorts s1 to sn. An object of class
C in a given state is represented as a term < O : C | att1 : val1, ..., attn : valn >
of sort Object, where O, of sort Oid, is the object’s identifier, and where val1
to valn are the current values of the attributes att1 to attn. In a concurrent
object-oriented system, the state is a term of the sort Configuration. It has
the structure of a multiset made up of objects and messages. Multiset union
for configurations is denoted by a juxtaposition operator (empty syntax) that
is declared associative and commutative, so that rewriting is multiset rewriting
supported directly in Real-Time Maude. Since a class attribute may have sort
Configuration, we can have hierarchical objects which contain a subconfigura-
tion of other (possibly hierarchical) objects and messages.

The dynamic behavior of concurrent object systems is axiomatized by speci-
fying each of its transition patterns by a rewrite rule. For example, the rule

rl [l] : < O : C | a1 : 0, a2 : y, a3 : w, a4 : z > =>

< O : C | a1 : T, a2 : y, a3 : y + w, a4 : z >

defines a parameterized family of transitions (one for each substitution instance)
which can be applied whenever the attribute a1 of an object O of class C has
the value 0, with the effect of altering the attributes a1 and a3 of the object.
“Irrelevant” attributes (such as a4, and the right-hand side occurrence of a2)
need not be mentioned in a rule (or equation).

A subclass inherits all the attributes and rules of its superclasses.

Formal Analysis in Real-Time Maude. To cover all time instants, in particular
for dense time domain, the tick rules typically have the form

crl [tick] : {t} => {t′} in time x if x <= u /\ cond .

where x is a new variable of sort Time not occurring in t and not initialized by
matching equations in cond. This ensures that time can advance by any amount
4 A specification with owise equations can be transformed to an equivalent system

without such equations [15].

Formal Semantics and Analysis for Modeling Languages 373

less than or equal to u. Such tick rules are called time-nondeterministic and are
not directly executable, since many choices are possible for instantiating x. In
contrast to, e.g., timed automata, where the restrictions in the formalism allow
the discretization of the dense time domain by defining “clock regions,” so that
all states in the same clock region satisfy the same properties [3], for the more
expressive Real-Time Maude formalism there is not such a “quotient.” Instead,
Real-Time Maude executes time-nondeterministic tick rules by offering a choice
of different time sampling strategies [39], so that only some moments in the time
domain are visited. The choice of such strategies includes advancing time by a
fixed amount Δ in each application of a tick rule, or advancing time to the next
moment when some action must be taken.

Taking a selected time sampling into account, a Real-Time Maude specifi-
cation is executable under reasonable conditions, such as the equations being
confluent and terminating, possibly modulo some structural axioms [15], and
the theory being coherent [48].

We summarize below the Real-Time Maude analysis commands. All Real-
Time Maude analysis commands and their semantics are explained in [39].

Real-Time Maude’s timed fair rewrite command simulates one behavior of
the system up to a certain duration. It is written with syntax

(tfrew t in time <= timeLimit .)

where t is the term to be rewritten (“the initial state”), and timeLimit is a ground
term of sort Time. Real-Time Maude extends Maude’s search command—which
uses a breadth-first strategy to search for states that are reachable from the initial
state, match the search pattern, and satisfy the search condition—to search for
states that can be reached within a given time interval from the initial state.
The unbounded search command is written

(utsearch [1] t =>* pattern such that cond .)

Real-Time Maude extends Maude’s linear temporal logic model checker to check
whether each behavior, possibly “up to a certain time,” satisfies a temporal
logic formula. State propositions, possibly parametrized, should be declared as
operators of sort Prop, and their semantics is defined by equations of the form

ceq {statePattern} |= prop = b if cond

for b a term of sort Bool, which defines the state proposition prop to hold in all
states {t} such that {t} |= prop evaluates to true. A temporal logic formula
is constructed by state propositions and temporal logic operators such as True,
False, ~ (negation), /\, \/, -> (implication), [] (“always”), <> (“eventually”),
U (“until”), and W (“weak until”). The command

374 P. C. Ölveczky

(mc t |=u formula .)

then checks whether the temporal logic formula formula holds in all behaviors
starting from the initial state t. Unbounded model checking is guaranteed to
terminate if the state space reachable from the initial state t is finite. When the
reachable state space is infinite, time-bounded (search and) LTL model checking,
in which each behavior is starting in t is only analyzed up to a certain time bound,
can be used to ensure termination of the model checking.

Real-Time Maude has also recently been equipped with a model checker for
timed computation tree logic (TCTL≤,≥) properties [22]. TCTL≤,≥ formulas
are defined with the usual CTL operators True, ~, /\, . . . , E (where Eϕ means
that there exists a path from the state in which the path formula ϕ holds), A
(where Aϕ means that the path formula ϕ holds in each path path from the
state), but where the until operator U is indexed with a time bound ∼ r, for
∼∈ {<,≤,≥, >}, so that the path formula φ1U∼rφ2 holds in a path iff a state
satisfying the state formula φ2 can be reached in time r′ with r′ ∼ r, and so
that φ1 holds in all states up to that φ2-state.

Since the model checking commands execute time-nondeterministic tick rules
according to the chosen time sampling strategy, only a subset of all possible
behaviors is analyzed. Therefore, Real-Time Maude analysis are in general not
sound and complete for a given property. However, the reference [38] gives easily
checkable conditions that are satisfied by many large Real-Time Maude appli-
cations and that ensure that Real-Time Maude analysis are indeed sound and
complete for reachability and untimed LTL properties.

3 AADL

The Architecture Analysis & Design Language (AADL) [45] is an industrial stan-
dard used in avionics, aerospace, automotive, medical devices, and robotics com-
munities to describe a performance-critical embedded real-time system as an
assembly of software components mapped onto an execution platform.

The AADL standard is defined using English prose, which makes it ambiguous
and also fails to make explicit important assumptions. In joint work with José
Meseguer, I have defined the Real-Time Maude semantics of a subset of the
software components of AADL [34]. This subset defines the architectural and
behavioral specification of a system as a set of hierarchical components with
ports and connections, with the behaviors defined by Turing-complete transitions
systems. Together with Artur Boronat, we have also developed an OSATE plug-
in that generates a Real-Time Maude specification from an AADL model.

Overview of AADL. An AADL model describes a system as a hierarchy
of hardware and software components. Hardware components include: proces-
sor components that schedule and execute threads; memory components; de-
vice components; and bus components that interconnect processors, memory,
and devices. Software components include thread components that model the

Formal Semantics and Analysis for Modeling Languages 375

application software to be executed using AADL’s behavior annex [20]. The OS-
ATE modeling environment provides a set of plug-ins for front-end processing
of AADL models on top of Eclipse.

In the behavioral subset of AADL for which we have a defined a Real-Time
Maude semantics, a component type specifies the component’s interface and
properties, and a component implementation specifies the internal structure of
the component in terms of a set of subcomponents and a set of connections
linking the ports of the subcomponents. System components are the top level
components, and a set of thread components define their dynamic behaviors.
The dispatch protocol of a thread determines when the thread is executed. For
example, a periodic thread is activated at time intervals of the specified period,
and an aperiodic thread is activated when an event arrives at one of its ports.

The behavior of a thread is defined by a set of guarded state transitions.
The actions that are performed when a transition is applied may update local
state variables, generate new outputs, and/or suspend the thread for a given
amount of time. Actions are built from such basic actions using sequencing,
conditionals, and finite loops. When a thread is activated, an enabled transition is
nondeterministically selected and applied; if the resulting state is not a complete
state, another transition is applied, until a complete state is reached (or the
thread is suspended).

An AADL Example. For an AADL example, consider a network of medical
devices, consisting of a controller, a ventilator machine that assists a patient’s
breathing during surgery, and an X-ray device [32]. Whenever a button is pushed
to take an X-ray, the ventilator machine waits one second and then pauses for
two seconds, and the X-ray should be taken after two seconds. To execute the
system, we add a test activator that pushes the button every second.

The entire system Wholesys is a closed system that does not have any features
(i.e., ports) to the outside world. Hence, its type (interface) is empty:

system Wholesys

end Wholesys;

The implementation of the entire system describes the architecture of the system,
with four subcomponents and the connections linking these subcomponents:

system implementation Wholesys.imp

subcomponents TestActivator: system TA.impl; Xray: system XM.impl;

Controller: system CTRL.impl; Ventilator: system VM.impl;

connections

event data port Controller.xmContrOutput -> Xray.ctrlInput;

event data port Controller.vmContrOutput -> Ventilator.ctrlInput;

event data port Ventilator.feedback -> Controller.feedback;

event data port TestActivator.pressEvent -> Controller.commandInput;

end Wholesys.imp;

The test activator system, which generates an event every second, contains a
single thread TestActivator that is an instance of the following taThread.impl:

376 P. C. Ölveczky

thread taThread

features pressEvent: out event data port Behavior::integer;

properties Dispatch_Protocol => periodic; Period => 1 sec;

end taThread;

thread implementation taThread.impl

annex behavior_specification {**

states s0: initial complete state;

transitions s0 -[]-> s0 {pressEvent!(1);}; **};

end taThread.impl;

The thread is dispatched every second; it then applies the transition once (since
s0 is a complete state), and outputs the value 1 through the port pressEvent.

Real-Time Maude Semantics of Behavioral AADL. The references [34,35]
explain the Real-Time Maude semantics for the targeted fragment of AADL in
detail. The semantics of a component-based language can naturally be defined
in an object-oriented style, where each component instance is modeled as an
object, and where the hierarchical structure of components is reflected in the
nested structure of objects. An AADL component instance is represented as an
object instance of a subclass of the following class Component:

class Component | features : Configuration, subcomponents : Configuration,

properties : Properties, connections : ConnectionSet, ...

The attribute features denotes the ports of a component; subcomponents de-
notes its subcomponents; properties denotes its properties ; and connections
denotes its port connections. The Thread class is declared as follows:

class Thread | behavior : ThreadBehavior, status : ThreadStatus, ...

subclass Thread < Component .

The behavior attribute denotes the transition system of the thread, and status
indicates its current execution status (active, completed, etc.).

A type declaration of a component (System, Process, or Thread)

system typeName [features: ports] [properties: properties] end typeName;

maps typeName to a set of ports and a set of properties. We therefore consider
system as a function that maps a type name to the type’s interface; hence the
above AADL declaration translates to the equation

eq system(typeName) = features portsRTM properties propertiesRTM .

where portsRTM denotes the Real-Time Maude representation of ports. Likewise,
an AADL component implementation declaration, such as

system implementation typeName.implName
...

end typeName.implName;

Formal Semantics and Analysis for Modeling Languages 377

translates to an equation

var INSTANCE-NAME : Oid .

eq INSTANCE-NAME system typeName . implName
= < INSTANCE-NAME : System | features : features(system(typeName)),

properties : properties(system(typeName)), ... >

A component declaration instanceName: system typeName.implName in
AADL then translates to the Real-Time Maude term

instanceName system typeName . implName.

For example, the above AADL definition of Wholesys.imp is translated to

eq INSTANCE-NAME system Wholesys . imp

= < INSTANCE-NAME : System |

features : features(system(Wholesys)),

properties : properties(system(Wholesys)),

subcomponents :

(TestActivator system TA . impl) (Xray system XM . impl)

(Controller system Controller . impl) (Ventilator system VM . impl),

connections :

(Controller . xmContrOutput --> Xray . ctrlInput) ;

(Controller . vmContrOutput --> Ventilator . ctrlInput) ;

(Ventilator . feedback --> Controller . feedback) ;

(TestActivator . pressEvent --> Controller . commandInput) > .

The test activator thread taThread and its implementation taThread.impl are
translated as follows:

eq thread(taThread) = features (pressEvent out event data thread port)

properties DispatchProtocol(Periodic); Period(1 Sec).

eq INSTANCE-NAME thread taThread . impl

= < INSTANCE-NAME : Thread |

features : features(thread(taThread)),

subcomponents : none, connections : none,

properties : properties(thread(taThread)), ...

behavior : states initial: s0 complete: s0

transitions s0 -[]-> s0 {(pressEvent ! (1))} > .

The real-time concurrent semantics is defined by equations and rewrite rules
specifying “message” transportation, mode switches, thread dispatch, thread
execution, and timed behavior. For example, the following rewrite rule specifies
the execution of an active thread. If the thread is in state L1, and there is a
transition from L1 whose guard evaluates to true, then the transition is executed.
The resulting status is sleeping(...) if the statement list SL contains delay
statements; otherwise, the thread is completed if the resulting state L2 is a
complete state, and remains active if L2 is not a complete state:

378 P. C. Ölveczky

crl [apply-transition] :

< O : Thread | status : active , features : PORTS,

behavior :

states current: L1 complete: LS1 others: LS2

state variables VAL

transitions (L1 -[GUARD]-> L2 {SL}) ; TRANSITIONS >

=>

< O : Thread | status : (if SLEEP then sleeping(SLEEP-TIME) else

(if (L2 in LS1) then completed else active fi) fi),

features : NEW-PORTS,

behavior :

states current: L2 complete: LS1 others: LS2

state variables NEW-VALUATION

transitions (L1 -[GUARD]-> L2 {SL}) ; TRANSITIONS >

if evalGuard(GUARD, PORTS, VAL)

/\ transResult(NEW-PORTS, NEW-VALUATION, SLEEP-TIME) :=

executeTransition(L1 -[GUARD]-> L2 {SL}, PORTS, VAL)

/\ SLEEP := SLEEP-TIME > 0 .

The function executeTransition executes a given transition in a state with a
given set PORTS of ports and assignment VAL of the state variables. The function
returns a triple transResult(p, σ, t), where p is the state of the ports after the
execution, σ denotes the resulting values of the state variables, and t is the sum
of the delays in the transition actions. The transitions are modeled as a multiset
of single transitions; therefore, any enabled transition can be applied in the rule.

Formal Analysis of Behavioral AADL Models in Real-Time Maude.
Our AADL2Maude OSATE plug-in uses OSATE’s code generation facility to
automatically generate Real-Time Maude specifications from AADL models. To
allow the user to conveniently define his/her search and model checking com-
mands without knowing Real-Time Maude or the Real-Time Maude representa-
tion of AADL models, we have defined some useful functions and parametrized
state propositions. For example, the term

value of v in component fullComponentName in globalComponent

gives the value of the state variable v in the thread identified by the full compo-
nent name fullComponentName in the system globalComponent . Likewise,

location of component fullComponentName in globalComponent

gives the current location/state in the transition system in the given thread.
In the medical example, if MAIN is a system component name, the initial

state is {MAIN system Wholesys . impl}, and MAIN -> Xray -> xmPr -> xmTh
denotes the full component name of the xmTh thread. The ventilator machine
must be pausing when an X-ray is being taken, so that the X-ray is not blurred.
The following search command checks whether an undesired state, where the
X-ray thread xmTh is in state xray while the ventilator thread vmTh is not in

Formal Semantics and Analysis for Modeling Languages 379

state paused, can be reached from the initial state (the unexpected result shows
a concrete unsafe state that can be reached from the initial state):

Maude> (utsearch [1]

{MAIN system Wholesys . impl} =>* {C:Configuration}

such that

((location of component (MAIN -> Xray -> xmPr -> xmTh)

in C:Configuration) == xray

and (location of component (MAIN -> Ventilator -> vmPr -> vmTh)

in C:Configuration) =/= paused) .)

Solution 1 C:Configuration --> ...

For LTL model checking purposes, our tool has pre-defined useful parametric
atomic propositions, such as full thread name @ location, which holds when the
thread is in state location, and value of variable in component full thread name
is value, which holds if the current value of the local transition system variable
variable in the given thread equals value. The first of these parametric atomic
state propositions is defined as follows:

op _@_ : PathName Location -> Prop .

var SYSTEM : Configuration . var L : Location . var PN : PathName .

eq {SYSTEM} |= PN @ L = (L == location of component PN in SYSTEM) .

We can use time-bounded LTL model checking to verify that an X-ray must be
taken within three seconds of the start of the system (this command returned a
counter-example revealing a subtle and previously unknown design error):

Maude> (mc {MAIN system Wholesys . impl} |=t

<> ((MAIN -> Xray -> xmPr -> xmTh) @ xray) in time <= 3 .)

Result ModelCheckResult : counterexample(...)

4 Synchronous AADL

In a number of systems targeted by AADL, such as integrated modular avionics
systems and distributed control systems in motor vehicles, the system design
is essentially a synchronous design that must realized in an asynchronous dis-
tributed setting. The key idea of the PALS architectural pattern [28,30] is to
reduce the design, verification, and implementation of a distributed real-time
system to that of its much simpler synchronous version, provided that the net-
work infrastructure guarantees bounds on the messaging delays and the skews of
the local clocks. For a synchronous design SD and network bounds Γ , we then
have a semantically equivalent asynchronous distributed design PALS(SD , Γ).
Not only is this important from a system design perspective, but it also makes
model checking verification feasible. For example, in [28] we show that for an
avionics system developed at Rockwell-Collins, the synchronous design model has

380 P. C. Ölveczky

185 reachable states and can be model checked in less than a second, whereas—
even in an optimal setting with perfect local clocks, no message delays, and
no execution times—the corresponding asynchronous model has more than 3
million reachable states and can be model checked in 2000 seconds. If we allow
the message delay to be either 0 or 1 time unit, then no model checking is
feasible.

To allow modelers to take advantage of PALS while using AADL, I have, in
joint work with Kyungmin Bae, José Meseguer, and Abdullah Al-Nayeem, iden-
tified a “synchronous subset” of behavioral AADL, called Synchronous AADL,
that is suitable to define the synchronous PALS designs in AADL [4].

In Synchronous AADL, we consider a number of deterministic components
(i.e., threads) that work together with a nondeterministic environment that can
nondeterministically generate any Boolean outputs that satisfy the environment
constraint. Such a collection has a synchronous semantics : all components per-
form a transition simultaneously, and whenever a component has a feedback
connection to itself and/or to any other component, then the corresponding
output becomes an input for any such component at the next step.

Synchronous AADL components are formalized in Real-Time Maude in the
same way as ordinary AADL components. A synchronous step of the system is
formalized in Real-Time Maude by the following tick rewrite rule:

var SYSTEM : Object . var VAL : Valuation . var VALS : ValuationSet .

crl [syncStepWithTime] :

{SYSTEM}

=> {applyTransitions(transferData(applyEnvTransitions(VAL, SYSTEM)))}

in time period(SYSTEM)

if containsEnvironment(SYSTEM) /\ VAL ;; VALS := allEnvAssignments(SYSTEM).

The function allEnvAssignments uses Maude’s SAT solver to find all val-
uations of the Boolean variables in the environment thread that satisfy the
environment constraint. The union operator _;;_ is declared to be associa-
tive and commutative; therefore, any of these valuations is nondeterministi-
cally assigned to the variable VAL in the matching condition VAL ;; VALS :=
allEnvAssignments(SYSTEM). The function applyEnvTransitions then per-
forms the environment transition that outputs the values of the variables given
by the selected valuation VAL. The function transferData then transfers the
data from the output ports to the receiving input ports and then clears the out-
put ports. Finally, the function applyTransitions applies transitions in each
non-environment thread until a complete state is reached in the thread. The
function period extracts the period of the system.

The SynchAADL2Maude tool is an OSATE plug-in that supports both the
generation of a Real-Time Maude model from an Synchronous AADL model,
and the formal analysis of the synthesized Real-Time Maude model from within
OSATE. SynchAADL2Maude inherits the predefined atomic propositions from
our AADL analysis library, and also allows the modeler to define new formulas
and LTL model checking commands in XML within OSATE.

Formal Semantics and Analysis for Modeling Languages 381

We have used SynchAADL2Maude to verify (in less than 10 seconds for each
property) a Synchronous AADL model of the avionics system mentioned above.
Figure 1 shows the SynchAADL2Maude window for this example. Real-Time
Maude code generation and model checking are performed by clicking on the
Code Generation button and the Do Verification button, respectively. The
LTL properties that the avionics system should satisfy have been entered into
the tool, and are shown in the “AADL Property Requirement” table. The Do
Verification button has been clicked and the results of the model checking are
shown in the “Maude Console.”

Fig. 1. SynchAADL2Maude window in OSATE

The properties to be verified are managed by the associated XML property
file. For example, to add an LTL model checking command to verify a property
R1 defined as the LTL formula below, we just add the following command tag to
the property file:

<command>

<name>R1</name>

<value type = "ltl">

[] (noChangeAssumptionNextState

-> O (agreeOnActiveSide \/ O (noSideFailed -> agreeOnActiveSide))).

</value>

</command>

382 P. C. Ölveczky

5 Ptolemy II Discrete-Event Models

Ptolemy II [18] is a well established graphical modeling and simulation tool for
real-time and embedded systems that is used in industry. In Ptolemy II, real-
time systems are modeled as discrete-event (DE) models. Like many graphical
modeling languages, Ptolemy II DE models lack formal verification capabilities.

In each iteration of the system, all componentswith input execute synchronously.
Unlike in Synchronous AADL, connections between two components are not de-
layed by one round. That is, since connections are instantaneous and the compo-
nents execute in lock-step, we must compute the fixed point of the input for each
component in the round before its execution; this input comes from the output of
another actor’s execution in the same synchronous round.

Real-Time Maude code generation and verification has been integrated into
Ptolemy II by Kyungmin Bae, so that a large subset of Ptolemy II DE models can
be verified from within Ptolemy II. The paper [5] explains the Real-Time Maude
semantics and formal analysis support for Ptolemy II DE models in detail.

Ptolemy II DE Models. A Ptolemy II model consists of a set of actors with
input ports and output ports, where communication channels pass events from
one port to another. Such a model can be encapsulated as a composite actor,
which may also have input and output ports. Each event has two components:
a tag and a value. A tag t is a pair (τ, n) ∈ R≥0 × N, where τ is the timestamp
denoting the model time at which the event occurs, and n is the microstep index.

The operational semantics of DE in Ptolemy II can be explained with the
following pseudo-code:

Q := empty; // Initialize the global event queue

for each actor A do A.init(); // Possibly add initial events to Q

while Q is non-empty {

E := set of all simultaneous events at the head of Q;

remove E from Q;

initialize ports with values in E or "unknown";

while port values changed {

for each actor A do A.fire(); // May change port values

} // Fixed-point reached for the current tag

for each actor A do

A.postfire(); // Update actor state; may also generate new events

}

An event queue is used for the execution. Events in the event queue are ordered
by their tags. In each iteration of the system, the events with the smallest tag are
extracted from the event queue and presented to the actors that receive them.
All other outputs are first set to unknown. Then, the actors receiving events or
input are fired in an arbitrary order, possibly repeatedly, until a fixed-point of
all output values is reached. Finally, when the fixed-point for the port values
has been found, the actors that have received input or have been fed events are
executed, in the sense that their states are updated and that they may generate
future events that are inserted into the event queue (postfire).

Formal Semantics and Analysis for Modeling Languages 383

A Ptolemy II DE model can contain many different kinds of actors, including
clocks that generate events, different kinds of timers, delay actors that output
their input event after a fixed delay, and finite state machine (FSM) actors, that
are similar to the the transition systems of AADL threads. Ptolemy II assumes
that actor behaviors are deterministic.

Example. Figure 2 shows a hierarchical Ptolemy II model of a fault-tolerant
traffic light system at a pedestrian crossing, consisting of one car light and one

TrafficLight

TrafficLight

Error

Normal

Decision

HierarchicalTrafficLight

Fig. 2. A hierarchical fault-tolerant traffic light system in Ptolemy II

pedestrian light. Each light is represented by a set of set variable actors (Pred
and Pgrn represent the pedestrian light, and Cred, Cyel, and Cgrn represent
the car light). A light is on iff the corresponding variable has the value 1. As-
suming that the clock actor generates an event every time unit, the FSM actor
Decision “generates” failures and repairs by alternating between staying in lo-
cation Normal for 15 time units and staying in location for Abnormal for 5 time
units, and by sending events to the TrafficLight through its Error and Ok ports
accordingly. During normal operations, the lights are controlled by the FSM ac-
tors CarLight and PedestrianLight that send values to set the variables; in

384 P. C. Ölveczky

addition, CarLight sends signals to the PedestrianLight actor through its Pgo
and Pstop output ports. Figure 3a shows the FSM actor PedestrianLight. This
actor has three input ports (Pstop, Pgo, and Sec), two output ports (Pgrn and
Pred), three internal states, and three transitions. It reacts to signals from the
car light by turning the pedestrian lights on and off. For example, if the actor
is in local state Pred and receives input through its Pgo port, then it goes to
state Pgreen, outputs the value 0 through its Pred port, and outputs the value 1
through its Pgrn port. Figure 3b shows the FSM actor CarLight. Whenever the

(a) PedestrianLight (b) CarLight

Fig. 3. The FSM actors for pedestrian lights and car lights

TrafficLight model operates in error mode, all lights are turned off, except
for the yellow light of the car light, which is blinking.

Real-Time Maude Semantics. The Real-Time Maude semantics is defined
in an object-oriented style, where the global state has the form of a multiset

{actors connections < global : EventQueue | queue : event queue >}

where actors are objects modeling the actor instances in the Ptolemy model,
connections are its connections, and event queue denotes the global event queue.

Each Ptolemy II actor is modeled in Real-Time Maude as an object instance
of a subclass of the class Actor, that contains the ports and the parameters of
the actor. Composite actors add an attribute, innerActors, denoting its inner
actor objects and connections:

class Actor | ports : Configuration, parameters : Configuration .

class CompositeActor | innerActors : Configuration .

class AtomicActor .

subclass CompositeActor AtomicActor < Actor .

For example, the class Delay, that models Delay actors that output any received
event after a fixed delay, given as a parameter, and the class CurrentTime, that
models Current Time actors that output the current time when given some
input, are declared as follows:

Formal Semantics and Analysis for Modeling Languages 385

class CurrentTime | currentTime : Time .

class Delay .

subclass Delay CurrentTime < AtomicActor .

A port is represented as an object, with a name (the identifier of the port object),
a status (unknown, present, or absent, denoting the “current” knowledge about
whether there is input/output in the current iteration), and a value:

class Port | status : PortStatus, value : Value .

class InPort . class OutPort . subclass InPort OutPort < Port .

sort PortStatus .

ops unknown present absent : -> PortStatus [ctor] .

Our semantics has three rewrite rules: the first rule is a tick rule that advances
time until the first events in the event queue are scheduled (and reduces the
remaining time of the other events according to the elapsed time), and the second
rule (not shown) is a “microstep tick rule” that advances “time” with some
microsteps if needed to enable the first event in the event queue:

vars SYSTEM PORTS PARS : ObjectConfiguration . var O : Oid .

vars P P’ : PortId . var PS : PortStatus . vars V TV : Value .

var EVTS : Events . var QUEUE : EventQueue . var T : Time .

var NZT : NzTime . var N : Nat .

rl [tick] :

{SYSTEM < global : EventQueue | queue : (EVTS ; NZT ; N) :: QUEUE >}

=>

{delta(SYSTEM, NZT)

< global : EventQueue | queue : (EVTS ; 0 ; N) :: delta(QUEUE, NZT) >}

in time NZT .

The following rewrite rule performs a synchronous step of the system when the
remaining timer and microstep of the first events in the event queue are zero:

rl [executeStep] :

{SYSTEM < global : EventQueue | queue : (EVTS ; 0 ; 0) :: QUEUE >}

=>

{< global : EventQueue | queue : QUEUE >

postfire(portFixPoints(releaseEvt(EVTS) clearPorts(SYSTEM)))} .

The function clearPorts sets the status of each port to unknown. The function
releaseEvt takes all the ripe events and puts them into the corresponding out-
put ports. This is done by “messages” that percolate down to the appropriate
port. The function portFixPoints computes all the port values in this round.
All ports’ status is unknown in the beginning of the iteration. Then, the out-
put ports that got events from the event queue have status present (as well as
a value in the port). All ports connected to the ports with events will also get the

386 P. C. Ölveczky

output, and set their port status to present. Furthermore, when the status
and values of a subset of an actor’s input ports are known, it can decide whether
or not it will generate output in this iteration. Some actors, like current time
actors, always generate immediate output when receiving input; some actors,
like delay actors, never generate new immediate output upon receiving input,
while some actors, like FSM actors, may or may not generate immediate output
through a given port – depending on its current state and its inputs.

The idea behind the definition of portFixPoints is simple. The state has the
form portFixPoints(objects and connections). For each case when the status of
an unknown port can be set to either present or absent, there is an equation

eq portFixPoints(< O : ... | ports : < P : Port | status : unknown > PORTS, ... >

connections and other objects)
= portFixPoints(< O : ... | ports : < P : Port | status : present , value : ... >

PORTS, ... >

connections and other objects) .

(and similarly for deciding that input/output will be absent). The fixed-point
is reached when no such equation can be applied. Then, the portFixPoints
operator is removed by using the owise construct of Real-Time Maude:

eq portFixPoints(OBJECTS) = OBJECTS [owise] .

In addition to generic equations, such as transferring an event from a port to
a connecting port, portFixPoints must be defined for each kind of actor. For
example, when the current time actor gets an input, it outputs the current model
time, and when its input port is absent, its output port is set to absent:

ceq portFixPoints(< O : CurrentTime | currentTime : T,

ports : < P : InPort | status : PS >

< P’ : OutPort | status : unknown > >

REST)

= portFixPoints(< O : CurrentTime | ports : < P : InPort | >

< P’ : OutPort | status : PS, value : T > >

REST)

if PS =/= unknown .

Computing fixed-points for hierarchical models is nontrivial. The main idea is
that CompositeActors apply the portFixPoints operator to its innerActors
configuration only if it transmits a new present/absent value to its inner actors,
or if there are untreated events from the event queue among its inner actors, or
further down in the actor hierarchy. See [5] for details.

Finally, postFire “executes” the step on the computed fixed points by chang-
ing the states of the objects and by generating new events that are sent to the
global event queue. For example, if a time delay actor has input in its ’input
port, it generates an event with delay equal to the current value of the ’delay
parameter. If this delay is 0, the microstep is 1, otherwise the microstep is 0:

Formal Semantics and Analysis for Modeling Languages 387

eq postfire(< O : Delay | status : enabled,

parameters : < ’delay : Parameter | value : TV > PARS,

ports : < ’input : InPort | status : present, value : V >

< ’output : OutPort | > PORTS >)

= schedule-evt(event(O ! ’output, V), TV, if TV == 0 then 1 else 0 fi)

< O : Delay | > .

Formal Verification of Ptolemy II DE Models in Ptolemy II. We have
used Ptolemy II’s very nice code generation infrastructure to integrate both
the synthesis of a Real-Time Maude verification model from a Ptolemy II design
model as well as Real-Time Maude model checking of the synthesized model into
Ptolemy II itself. When the blue RTMaudeCodeGenerator button in a Ptolemy II
DE model is double-clicked, Ptolemy II opens a dialog window (shown in Fig. 4)
which allows the user to start code generation and to give model checking com-
mands to formally analyze the generated model.

Fig. 4. Dialog window for the Real Time Maude code generation and analysis

We have also predefined in our model checker useful atomic propositions sim-
ilar to those in our AADL model checker. For example, the proposition

actorId | var1 = value1, . . . , varn = valuen

388 P. C. Ölveczky

holds in a state if the value of the parameter vari of the actor actorId equals
valuei for each 1 ≤ i ≤ n, where actorId is the global actor identifier of a given
actor. Similarly, actorId | port p is value and actorId | port p is status
hold if, respectively, the port p of actor actorId has the value value and status
status. For FSM actors and modal models, the proposition actorId @ location
is satisfied if and only if the actor actorId is in “local state” location .

In the traffic light system, the following timed CTL property states that the
car light will turn yellow, and only yellow, within 1 time unit of a failure:

AG ((’HierarchicalTrafficLight . ’Decision | port ’Error is present)

=> AF[<= 1] (’HierarchicalTrafficLight | ’Cyel = 1, ’Cgrn = 0, ’Cred = 0))

Model checking this property returns a previously unknown counter-example
which shows that, after a failure, the car light may show red or green in addition
to blinking yellow. We could observe this undesired behavior also during simu-
lations of the model in Ptolemy II (after we had been made aware of the flaw
during Real-Time Maude verification).

6 Timed Model Transformations in MOMENT2

The MOMENT2 [9,10] formal model transformation framework is based on a
formalization of MOF meta-models in rewriting logic. The static semantics of a
system is given as a class diagram (or meta-model) describing the set of valid sys-
tem states (or models) that are represented as object diagrams, and the dynamics
of a system is defined as an in-place model transformation. In joint work with
Artur Boronat, I have extended MOMENT2 to support the definition of timed
behaviors by providing a set of basic constructs such as clocks and timers [11].

Timed Model Transformations in MOMENT2. In MOMENT2, a model
transformation is defined as a set of production rules. Each such rule

rl l { nac dl nacl { NAC } such that cond ;...

lhs { dl { L } }; rhs { dl { R } }; when cond; ... }

has a left-hand side L, a right-hand side R, a set of (possibly conditional) neg-
ative application conditions NAC , and a condition with the when clause. L,
R, and NAC contain model patterns, where nodes are object patterns and
unidirectional edges are references between objects. For instance, in the pat-
tern A : Class1 { a = V, r = B : Class2 { .. },.. } an object A of type
Class1 has an attribute a, whose value is bound to the variable V, and has a
reference r that points to an object B of type Class2. Several models can be
manipulated with a single production rule in MOMENT2. The identifier dl is
used to identify which model should be matched by a given model pattern.

To add timed behaviors to models transformations we provide a small set of
built-in types for defining clocks, timers, and timed values, which are clocks that

Formal Semantics and Analysis for Modeling Languages 389

increase with a given rate. The Ecore metamodel for these constructs is given
in Fig. 5. A Timer whose on attribute is true decreases its value according to
the elapsed time. When the value reaches 0, time advance is blocked, forcing
the use of a model transformation rule which also modifies the timer by either
turning off the Timer (that is, the on attribute is set to false), or by resetting
its value. The value of a Clock is increased according to the elapsed time, and
the value of a TimedValue object is increased by the elapsed time multiplied
with the rate.

Fig. 5. Ecore metamodel of the predefined timed constructs

A Round Trip Time Example. Consider a very simple protocol for finding
the round trip time between two neighboring nodes in a network; that is, the
time it takes for a message to travel from source to destination, and back. The
initiator starts a round of this protocol by sending a request message to the other
node and recording the time at which it sent the request. When the responder
receives the request message, it immediately sends back a reply message. When
the initiator receives the reply message, it can easily compute the round trip time
using its local clock. Since the network load may change, and messages may get
lost, the initiator starts a new round of the protocol every 100 time units. We
assume that the message transmission time is between 5 and 20 time units.

Figure 6 shows the structural Ecore model for this example. The attribute
rtt of a Node denotes the latest computed round trip time value; lastSentTime
denotes the time that the last request message was sent; roundTimer points to
the timer upon whose expiration the node starts another round of the RTT pro-
tocol; and the Clock denotes the local clock of the node. To model transmission
delay, each message has an associated clock (to avoid that the message is read
too early) and a timer (to ensure that the message is not read too late).

The following rule models the transformation when an active round timer of a
node A expires (that is, equals 0). The node then sets the value of lastSentTime
to the current time (as given by its local clock), resets its timer to 100, and
generates a request message. This message sets its age clock to 0, and sets its
timer to 20, ensuring that the message is read (or lost) within 20 time units5:

5 Variable names are capitalized in our model transformation rules.

390 P. C. Ölveczky

Fig. 6. Class diagram for the RTT example

rl sendRequest {

lhs { model {

A : Node { clock = C : Clock { value = TIME },

neighbor = B : Node { },

roundTimer = RT : Timer { value = 0 , on = true } } } };

rhs { model {

A : Node { clock = C : Clock { value = TIME },

neighbor = B : Node { },

roundTimer = RT : Timer { value = 100, on = true },

lastSentTime = TIME }

M : Message { age = MA : Clock { value = 0 },

sender = A : Node { },

receiver = B : Node { },

remMaxDelay = RMD : Timer { value = 20, on = true },

type = "request" } } }; }

The next rule models the reception (and consumption) of a request message.
Since message transmission takes at least 5 time units, this can only happen
when the age clock of the message is greater than or equal to 5. As a result of
applying this rule, a reply message is created, and sent back to the node A:

rl replyRequest {

lhs { model {

B : Node { }

M : Message { age = MA : Clock { value = MSGAGE },

sender = A : Node { },

receiver = B : Node { },

type = "request" } } };

rhs { model {

B : Node { }

NEW-MSG : Message { age = MA2 : Clock { value = 0 },

sender = B : Node { },

receiver = A : Node { },

remMaxDelay = T : Timer { value = 20, on = true },

type = "reply" } } };

when MSGAGE >= 5; }

Formal Semantics and Analysis for Modeling Languages 391

The model transformation rules for reading a reply message and for modeling
message losses are not shown.

Non-intrusive Timed Specifications. The above approach requires changing
the structural design of the application, so that timer and clock objects can be
defined in the state. However, one can also define a timed system in a non-
intrusive way, in which the user-defined metamodel of the system is not modified,
by having another model that contains the timed constructs. The timed behavior
of the system is defined with a multi-model transformation with two domains,
one for the model and one for the time model that extends the initial model.
See [11] for details.

Formal Semantics. The Real-Time Maude semantics of timed model trans-
formations extends the rewriting logic semantics of model transformations given
in [8]. In particular, the rewrite rules defining the semantics of model trans-
formations are inherited and are considered to be instantaneous rewrite rules
modeling instantaneous change. The real-time rewrite semantics adds the single
“standard object-oriented” tick rule (see [39])

crl [tick] : {<< OC >>} => {<< delta(OC, X) >>} in time X if X <= mte(OC)

where OC is a variable denoting multisets of objects representing instances of
classes, and X is a variable of sort Time.

As usual in Real-Time Maude specifications, the function delta defines the
effect of time elapse on a system, and the function mte defines the maximum
t ime elapse possible in a system before some action must be taken. In this
case, delta decreases the value of each active timer in OC according to the
elapsed, increases the values of the clocks and timed values accordingly, and
leaves the non-timed-constructs unchanged. The function mte just returns the
smallest value of any active timer. These functions are defined in the usual
Real-Time Maude style and their definitions are therefore not given here.

Formal Analysis. Since the MOMENT2 currently uses Maude as its execution
engine, MOMENT2 provides the usual untimed Maude analysis methods. Never-
theless, we can also easily perform time-bounded analyses by just adding a single
unconnected Timer—whose initial value is the time bound—to the initial state.
When this timer expires, time will not advance further in the system, since no
rule resets or turns off the timer. The ability to perform time-bounded analysis
is not only useful per se, but also makes (time-bounded) LTL model checking
analysis possible for systems with an infinite reachable state space, such as our
RTT example, that can otherwise not be subjected to LTL model checking.

MOMENT2 provides convenient syntax for specifying search patterns. For
example, the following search command searches for a reachable “bad” state

392 P. C. Ölveczky

where the recorded rtt value is not within the desired set of values; that is, by
searching for a node N : Node { rtt = RTT } whose round trip time value is
RTT <> 0 and (RTT < 10 or RTT > 40). We search for one counterexample,
and without any bound on the depth of the search tree ([1,unbounded]):

search [1,unbounded] =>* domain model { N : Node { rtt = RTT } }

such that RTT <> 0 and (RTT < 4 or RTT > 16)

7 Domain-Specific Visual Languages in e-Motions

The e-Motions model transformation framework [44] for domain-specific visual
languages is also based on EMF, with Ecore meta-models defining the abstract
syntax of the language, and where the concrete syntax maps elements of the
abstract syntax onto graphical objects. Although the specification of behaviors
is based on in-place model transformations, the approach to timed behaviors is
different from the one taken in MOMENT2. e-Motions does not add constructs
such as clocks and timers to support timed model transformations because:

– Since e-Motions does not support multimodel transformations, adding such
constructs would necessitate intrusive modifications of the user-defined meta-
models to define timed behaviors.

– The use of the timed constructs is considered a very low-level way of spec-
ifying timed model transformations; akin to “assembly programming” for
model transformations. Since e-Motions focuses on making the framework
appealing to domain-specific developers, e-Motions tries to make the defini-
tion of timed model transformations as intuitive and high-level as possible.

Therefore, e-Motions provides a powerful high-level way of defining timed be-
haviors by providing different kinds of timed model transformation rules.

Overview of e-Motions. A basic atomic timed model transformation rule has
the form

l : [NAC]∗ × LHS
[tmin,tmax]−→ RHS

where l is the rule’s label; LHS (its left-hand side), RHS (its right-hand side),
and the optional NAC s (negative application conditions) are model patterns that
represent state fragments. The NAC and LHS patterns express the precondition
for the rule to be applied, whereas RHS represents the effect of the action. The
interval [tmin, tmax] defines the range of the possible durations of the rule, which
is executed as follows:

– For any combination of models elements, a rule instance is triggered as soon
the elements match the LHS and do not match any NAC .

– At any time t ∈ [tmin, tmax] after the instance of the rule is triggered, it is
executed; i.e., the model fragment is replaced by the corresponding instance
of RHS , as long as all the model elements of the triggering match are still
present in the model.

Formal Semantics and Analysis for Modeling Languages 393

An atomic rule can also be declared to be soft, which means that it is not
triggered eagerly, and/or may be declared to be periodic, in which case it is
triggered periodically (for each instance) as long it is enabled. In addition to
atomic rules, there are also ongoing rules that do not have a fixed duration
but are applied as long as the precondition holds. Such rule model continuous
actions. These are powerful high-level constructs that typically imply that many
different timed rules are being applied simultaneously to an object.

An Example. I again use the round trip time example in Section 6. Its abstract
syntax is shown in Fig. 7, and Fig. 8 shows the concrete syntax, mapping each class
to a visual object. Figure 9 shows a periodic atomic rule with duration 0, and pe-
riod 100. It models the sending of a RequestMessage with time stamp requestTime
equal to the current value of the clock c of node n1. The message is sealed when
sent, and the atomic rule with duration in [5, 20] shown in Fig. 11 models the mes-
sage transfer time, when any message goes from sealed to unsealed message. The
instantaneous atomic rule shown in Fig. 10 models the response of this message,
which results in a ResponseMessage with the original time stamp being sent back
immediately. The rule that assigns the rtt value when receiving the response mes-
sage is not shown. Finally, the ongoing rule shown in Fig. 12 models each clock
being continuously updated according to the elapsed time T .

Fig. 7. Meta-model for the RTT example

Fig. 8. Concrete syntax for the RTT example

394 P. C. Ölveczky

Fig. 9. Periodic instantaneous rule initiating a round of the RTT protocol

Real-Time Maude Semantics. I focus on the real-time aspects and refer
to [43] for an explanation of how to specify meta-models, models, and in-place
model transformations in Maude. A model is represented in Real-Time Maude
as a set of objects. The main idea of the semantics is to split timed model trans-
formations into two parts: the triggering of a rule instance, and the ensuing
execution of the triggered rule instance. When a rule instance is triggered, the
system adds a new ActionExec object to the state, with information about the
participating objects, the label of the action, and two timers denoting, respec-
tively, the smallest time until the action can be executed and the maximum time
remaining until the action must be executed. After the first of these timers has
expired, and not later than the expiration of the later timer, and the objects
involved in the action remain in the state, the action is executed: The objects in
the rule instance’s left-hand side are replaced by the corresponding instance of
the rule’s right-hand side.

Fig. 10. Responding to a request

Formal Semantics and Analysis for Modeling Languages 395

Fig. 11. Modeling message transfer

In addition to the rules treating the triggering and execution of rule instances,
the Real-Time Maude semantics has the standard tick rule for object-oriented
Real-Time Maude specifications:

crl [tick] : {MODEL} => {delta(MODEL,T)} in time T if T <= mte(MODEL) .

where delta increases the value of the system clock, modifies the system values
according to the ongoing rules, and decreases the timers of the actionExec
objects. As usual, the mte function gives the value until an actionExec objects
must be executed, and is 0 whenever a non-soft atomic rule instance that does
not already have an actionExec object in the state is enabled.

Formal Verification of e-Motions Model Transformations. Model trans-
formations can be simulated visually in the e-Motions tool, which is available as
an Eclipse plug-in. For reachability and LTL model checking analyses, however,
the tool generates the corresponding Maude model, and the analysis has to be
done at the Maude level, albeit with support for the main Real-Time Maude time
sampling strategies. The operator <<_;_>> can be used to define analysis com-
mands without knowing the Real-Time Maude representation of an e-Motions
model. The term << ocl-expr ; model >> evaluates the OCL expression ocl-expr
in the model model. To search for a model that satisfies the OCL expression
ocl-expr and is reachable from an initial model myModel, we use the command

search [1] init(myModel) =>* {MODEL:@Model} in time T:Time

such that << ocl-expr ; MODEL:@Model >> .

For example, the following command checks whether a model with a node whose
rtt attribute is set to a value outside the interval [10, 40] can be reached:

search [1] init(rttpModel) =>* { MODEL:@Model } in time T:Time

such that

<< Node@rttp . allInstances -> exists (n |

(n . rtt@OCLSf > 40) or (n . rtt@OCLSf < 10)) ; MODEL:@Model >> .

396 P. C. Ölveczky

Fig. 12. Ongoing rule modeling the advance of the clock

8 A Modeling Language for Handset Software

In [1], Musab AlTurki and researchers at DOCOMO USA Labs describe a simple
but powerful specification language, called L, that is claimed to be well suited for
describing a spectrum of behaviors of various software systems. The language
provides flexible SDL-inspired timing constructs that yield a more expressive
language for timed behaviors than Erlang [19], since some nested timing patterns,
which can be expressed in L, are not expressible in Erlang [1].

The language has an expression language, imperative features for describing
sequential computations, and asynchronously communicating processes that can
be dynamically created or destroyed. It is worth remarking that just the dynamic
process creation places L outside the class of systems that can be represented as
timed automata; so does its expression language and imperative features which
make L Turing-complete.

The Language L. A command in L can be an assignment statement, a vari-
able declaration using a let statement, or the usual conditional or while loop
statements. The language also has a few process-level commands, which include
creating a new process, destroying the current process, and sending and receiv-
ing messages to/from a process. The timed behaviors can be specified with two
timer constructs: set starts a timer, and release drops a timer. The expiration
of a timer triggers a signal that can be checked by a receive command.

Example. Figure 13 shows an example of an L specification that specifies the
“initiator” in our round trip time example. The variable rtt denotes the com-
puted RTT value, and clock denotes the time since the last request was sent by
the initiator. Since L, as given in [1], does not have clocks, we encode this clock
by increasing its value by one whenever the tickTimer expires. A round of the
protocol starts when the initiator receives a “computeRTT” message. It then
resets rtt and clock and starts the tickTimer and the resendTimer. As long as
an RTT value is not found, the node waits for signals/messages from the timers
or the environment. If it receives a signal that its tickTimer expired, it increases
the clock and resets the tickTimer. If it receives an “RTTresponse” message, its

Formal Semantics and Analysis for Modeling Languages 397

sets rtt to the current value of clock and turns off the two timers. If the resend-
Timer expires, the initiator sends another request, sets the clock to zero, and
resets its resentTimer. Other signals/messages are ignored.

module initiator is
let rtt = 0, clock = 0 in

while (true)
receive “computeRTT” in { — find the RTT value

send “RTTrequest” to “responder”;
set tickTimer to 1;
set resendTimer to 60;
rtt := 0; clock := 0;
while (rtt == 0) — current RTT not found

receive m in {
case tickTimer : {clock := clock + 1; set tickTimer to 1};
case “RTTresponse” :

{rtt := clock ; release tickTimer ; release resendTimer};
case resendTimer :

{send “RTTrequest” to “responder”; clock := 0;
set resendTimer to 100};

default : { }; }} — ignore other signals

Fig. 13. An L specification of the initiator of the round trip time protocol

Real-Time Maude Semantics. The formal semantics of L is given as an
object-oriented Real-Time Maude specification, in which each process is repre-
sented by an object

< id : Process | name : x, env : env, program : p, timers : timers, msgs : msgs >

where env is the current valuation of the variables, p is the statements the process
should execute, timers is a set of active timers, each of which is represented as a
name/time pair, and msgs is a queue of incoming messages. Program statements
are executed as instantaneous rewrite rules. For example, the following rewrite
rule specifies the execution of the statement set x to t, which sets a timer x to t:

rl [setTimer] :

< P : Process | env : E, program : set x to t ; S, timers : TIMERS >

=>

< P : Process | program : S, timers : (TIMERS ; timer(x, eval(t, E))) >.

This rule adds a new timer/time-to-expiration pair to the set of timers, where
the expression t is evaluated in the environment E. The tick rule is the “stan-
dard” tick rule for object-oriented systems, augmented with a test for whether
a statement is enabled and must be executed before time advances:

398 P. C. Ölveczky

crl [tick] :

{SYSTEM} => {delta(SYSTEM,T)} in time T

if T <= mte(SYSTEM) /\ inactive(SYSTEM) .

where, as expected, mte returns the smallest timer value in the system, and
delta decreases all timer values in the state according to elapsed time.

Formal Analysis Support. The Real-Time Maude definition of the semantics
of L also provides a prototype analysis tool for L, and the paper [1] shows
model checking of fairly complex temporal logic properties. However, there does
not seem to be any support for automatically translating L specifications into
Real-Time Maude models. Therefore, the user must define the initial state init
corresponding to the Real-Time Maude representation of the initial state and
program of the specification; the search for bad RTT values is then done in
Real-Time Maude in the usual way:

(utsearch init =>* {< P:Oid : Process | env : (’rtt |-> N:Nat) VAL:Valuation >

REST:Configuration}

such that N:Nat > 0 and (N:Nat < 10 or N:Nat > 40) .)

9 Concluding Remarks

This survey paper has shown how Real-Time Maude has been used to provide
a formal semantics and formal model checking capabilities for a wide range of
modeling languages for embedded systems. These modeling languages include
(subsets of) an industrial modeling standard for avionics and automotive sys-
tems, a powerful synchronous graphical modeling language used in industry, two
very different approaches to add timed behaviors to EMF-based model transfor-
mation frameworks, and an imperative language for handset applications.

To give the reader an impression of the source modeling languages and their
complexity, as well as of their Real-Time Maude semantics, I briefly introduced
the modeling languages and provided a small example for each of them. A main
conclusion that can be drawn these languages is that they are based on Turing-
complete expression and transition languages, and that as part of defining the
semantics of a modeling language, there is a need to define an interpreter for ex-
pressions and local transitions. This is done in the formal semantics in this paper
by a combination of rewrite rules and the use of equationally defined functions
to compute the effect of single transitions, fixed points, etc. This need to define
an interpreter for Turing-complete parts should make it hard or impossible to
define the semantics of such languages not only in languages based on timed
automata or timed Petri nets, but also in more expressive real-time languages
such as IF [12] and BIP [6].

The paper has also described how a model could be formally analyzed in
Real-Time Maude, preferably by automatically synthesizing a Real-Time Maude
model from the given model, and using predefined atomic propositions that

Formal Semantics and Analysis for Modeling Languages 399

makes it easy to define suitable analysis queries. This enables a formal model en-
gineering that combines the convenience of modeling using an intuitive domain-
specific modeling language with automated formal analysis. Again, a necessary
condition for this to be possible is that the expressive (Real-Time) Maude system
provides model checkers despite being based on Turing-complete formalisms.

Some distinguished modeling languages for embedded systems, such as SDL,
timed extensions of UML, and Erlang, have not yet been given a Real-Time
Maude semantics; however, subsets of SDL have been given a timed rewriting
logic semantics [47] and untimed core Erlang models have been giving rewriting
logic semantics [31]. Since this survey paper focuses on modeling languages that
are also aimed at embedded systems, I have not included the very nice work
by AlTurki and Meseguer on the formal semantics, analysis, and distributed
implementation for the Orc web services orchestration language [2] or the Real-
Time Maude formalization of a timed extension of the Creol language [7].

Acknowledgments. I thank the Festschrift editors for giving me the opportu-
nity to honor Carolyn Talcott. I have had the great pleasure to work together
with Carolyn from my early days as a Ph.D. student, when we worked together
on using a prototype of Maude to invalidate a communication protocol in what
may well have been the first time Maude was used to break a protocol [16], to
our present collaboration on defining the formal semantics of Timed Rebeca.
Furthermore, the work presented in this paper, in particular the work on the
actor-based Ptolemy II language, builds on Carolyn’s work on the formal se-
mantics of actors as well as on her work as the leader of the Maude group at
SRI. I am grateful to you, Carolyn, for your kindness, encouragement, and excel-
lent scientific advice during my years as a researcher. Finally: thanks for a very
pleasant day (re)discovering my home town, Budapest, together during ETAPS
2008. Happy Birthday, Carolyn!

I am also grateful to José Meseguer for our work together on most of the work
summarized in this paper. I also thank the other collaborators on these efforts:
Abdullah Al-Nayeem, Kyungmin Bae, Artur Boronat, Paco Durán, Edward Lee,
and Stavros Tripakis, as well as Musab AlTurki for discussions on the language
L. Thanks are also due to the anonymous reviewer for many helpful comments
on an earlier version of this paper. Finally, I gratefully acknowledge financial
support from The Research Council of Norway through the Rhytm project.

References

1. AlTurki, M., Dhurjati, D., Yu, D., Chander, A., Inamura, H.: Formal specification
and analysis of timing properties in software systems. In: Chechik, M., Wirsing,
M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 262–277. Springer, Heidelberg (2009)

2. AlTurki, M., Meseguer, J.: Real-time rewriting semantics of Orc. In: Proc. PPDP
2007. ACM, New York (2007)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

400 P. C. Ölveczky

4. Bae, K., Ölveczky, P.C., Al-Nayeem, A., Meseguer, J.: Synchronous AADL and
its formal analysis in Real-Time Maude. In: Proc. ICFEM 2011. LNCS. Springer,
Heidelberg (to appear, 2011)

5. Bae, K., Ölveczky, P.C., Feng, T.H., Lee, E.A., Tripakis, S.: Verifying hierarchical
Ptolemy II discrete-event models using Real-Time Maude. Science of Computer
Programming (to appear, 2011), doi:10.1016/j.scico.2010.10.002

6. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.H., Sifakis,
J.: Rigorous component-based system design using the BIP framework. IEEE Soft-
ware 28(3), 41–48 (2011)

7. Bjørk, J., Johnsen, E.B., Owe, O., Schlatte, R.: Lightweight time modeling in
Timed Creol. In: Proc. RTRTS 2010 (2010)

8. Boronat, A., Heckel, R., Meseguer, J.: Rewriting logic semantics and verification
of model transformations. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS,
vol. 5503, pp. 18–33. Springer, Heidelberg (2009)

9. Boronat, A., Meseguer, J.: An algebraic semantics for MOF. In: Fiadeiro, J.L.,
Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 377–391. Springer, Heidelberg
(2008)

10. Boronat, A., Meseguer, J.: Algebraic semantics of OCL-constrained metamodel
specifications. In: Oriol, M., Meyer, B. (eds.) TOOLS EUROPE 2009. LNBIP,
vol. 33, pp. 96–115. Springer, Heidelberg (2009)

11. Boronat, A., Ölveczky, P.C.: Formal real-time model transformations in MO-
MENT2. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013,
pp. 29–43. Springer, Heidelberg (2010)

12. Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J.: The IF toolset. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 237–267. Springer,
Heidelberg (2004)

13. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theoretical Computer Science 360(1-3), 386–414 (2006)

14. Cerone, A., Maggiolo-Schettini, A.: Time-based expressivity of time Petri nets for
system specification. Theoretical Computer Science 216(1-2), 1–53 (1999)

15. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. How to Spec-
ify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer,
Heidelberg (2007)

16. Denker, G., Garćıa-Luna-Aceves, J.J., Meseguer, J., Ölveczky, P.C., Raju, Y.,
Smith, B., Talcott, C.: Specification and analysis of a reliable broadcasting proto-
col in Maude. In: 37th Annual Allerton Conference on Communication, Control,
and Computation. University of Illinois (1999)

17. Ding, H., Zheng, C., Agha, G., Sha, L.: Automated verification of the dependability
of object-oriented real-time systems. In: Proc. WORDS 2003. IEEE (2003)

18. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity—the Ptolemy approach. Proceedings
of the IEEE 91(2), 127–144 (2003)

19. Erlang home page, http://www.erlang.org/
20. França, R., Bodeveix, J.P., Filali, M., Rolland, J.F., Chemouil, D., Thomas, D.:

The AADL behaviour annex - experiments and roadmap. In: Proc. ICECCS 2007.
IEEE (2007)

21. Katelman, M., Meseguer, J., Hou, J.: Redesign of the LMST wireless sensor pro-
tocol through formal modeling and statistical model checking. In: Barthe, G.,
de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 150–169. Springer,
Heidelberg (2008)

Formal Semantics and Analysis for Modeling Languages 401

22. Lepri, D., Ölveczky, P.C., Ábrahám, E.: Timed CTL model checking in Real-Time
Maude (submitted for publication)

23. Lien, E., Ölveczky, P.C.: Formal modeling and analysis of an IETF multicast pro-
tocol. In: Proc. SEFM 2009. IEEE Computer Society (2009)

24. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96, 73–155 (1992)

25. Meseguer, J.: Rewriting logic as a semantic framework for concurrency: a progress
report. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp.
331–372. Springer, Heidelberg (1996)

26. Meseguer, J.: Membership algebra as a logical framework for equational speci-
fication. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61.
Springer, Heidelberg (1998)

27. Meseguer, J.: Research directions in rewriting logic. In: Berger, U., Schwichtenberg,
H. (eds.) Computational Logic, NATO Advanced Study Institute, Marktoberdorf,
Germany, July 29-August 6. NATO ASI Series F: Computer and Systems Sciences,
vol. 165, pp. 347–398. Springer, Heidelberg (1998)

28. Meseguer, J., Ölveczky, P.C.: Formalization and correctness of the PALS archi-
tectural pattern for distributed real-time systems. In: Dong, J.S., Zhu, H. (eds.)
ICFEM 2010. LNCS, vol. 6447, pp. 303–320. Springer, Heidelberg (2010)

29. Meseguer, J., Rosu, G.: The rewriting logic semantics project. Theoretical Com-
puter Science 373(3), 213–237 (2007)

30. Miller, S.P., Cofer, D.D., Sha, L., Meseguer, J., Al-Nayeem, A.: Implementing
logical synchrony in integrated modular avionics. In: Proc. DASC 2009. IEEE
(2009)

31. Neuhäußer, M.R., Noll, T.: Abstraction and model checking of core Erlang pro-
grams in Maude. Electronic Notes in Theoretical Computer Science 176(4), 147–163
(2007)

32. Ölveczky, P.C.: Towards formal modeling and analysis of networks of embedded
medical devices in Real-Time Maude. In: Proc. SNPD 2008. IEEE (2008)

33. Ölveczky, P.C.: Formal model engineering for embedded systems using Real-Time
Maude. Electronic Proceedings in Theoretical Computer Science 56, 3–13 (2011)

34. Ölveczky, P.C., Boronat, A., Meseguer, J.: Formal semantics and analysis of behav-
ioral AADL models in Real-Time Maude. In: Hatcliff, J., Zucca, E. (eds.) FMOODS
2010. LNCS, vol. 6117, pp. 47–62. Springer, Heidelberg (2010)

35. Ölveczky, P.C., Boronat, A., Meseguer, J., Pek, E.: Formal semantics and analysis
of behavioral AADL models in Real-Time Maude (2010), report

36. Ölveczky, P.C., Caccamo, M.: Formal simulation and analysis of the CASH schedul-
ing algorithm in Real-Time Maude. In: Baresi, L., Heckel, R. (eds.) FASE 2006.
LNCS, vol. 3922, pp. 357–372. Springer, Heidelberg (2006)

37. Ölveczky, P.C., Meseguer, J.: Specification of real-time and hybrid systems in
rewriting logic. Theoretical Computer Science 285, 359–405 (2002)

38. Ölveczky, P.C., Meseguer, J.: Abstraction and completeness for Real-Time Maude.
Electronic Notes in Theoretical Computer Science 176(4), 5–27 (2007)

39. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)

40. Ölveczky, P.C., Bevilacqua, V.: The Real-Time Maude tool. In: Ramakrishnan,
C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 332–336. Springer, Hei-
delberg (2008)

41. Ölveczky, P.C., Meseguer, J., Talcott, C.L.: Specification and analysis of the
AER/NCA active network protocol suite in Real-Time Maude. Formal Methods in
System Design 29(3), 253–293 (2006)

402 P. C. Ölveczky

42. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and
model checking of wireless sensor network algorithms in Real-Time Maude. Theo-
retical Computer Science 410(2-3), 254–280 (2009)

43. Rivera, J.E.: On the Semantics of Real-Time Domain Specific Modeling Languages.
Ph.D. thesis, Universidad de Málaga (2010)

44. Rivera, J.E., Durán, F., Vallecillo, A.: On the behavioral semantics of real-time
domain specific visual languages. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS,
vol. 6381, pp. 174–190. Springer, Heidelberg (2010), see also the e-Motions web
page http://atenea.lcc.uma.es/index.php/Main_Page/Resources/E-motions

45. SAE AADL Team: AADL homepage (2009), http://www.aadl.info/
46. Srba, J.: Comparing the expressiveness of timed automata and timed extensions

of petri nets. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp.
15–32. Springer, Heidelberg (2008)

47. Steggles, L.J., Kosiuczenko, P.: A timed rewriting logic semantics for SDL: A case
study of the alternating bit protocol. In: Proc. WRLA 1998. Electronic Notes in
Theoretical Computer Science, vol. 15, Elsevier (1998)

48. Viry, P.: Equational rules for rewriting logic. Theoretical Computer Science 285,
487–517 (2002)

49. Wang, F.: Formal verification of timed systems: A survey and perspective. Pro-
ceedings of the IEEE 92(8), 1283–1307 (2004)

Computational Biology: A Programming

Perspective

Lars Hartmann, Neil D. Jones, Jakob Grue Simonsen,
and Søren Bjerregaard Vrist

Department of Computer Science (DIKU), University of Copenhagen, Denmark
{hartmann,neil,simonsen,seet}@diku.dk

DIKU URL: http://www.diku.dk

Abstract. Computation via biological devices has been the subject of
close scrutiny since von Neumann’s early work some 60 years ago. In
spite of the many relevant works in this field, the notion of programming
biological devices seems to be, at best, ill-defined. While many devices
are claimed or proved to be computationally universal in some sense, the
full step to a bona fide programming language is rarely taken, and one
question is noticeable by its absence: If the device is universal, where are
the programs?

We begin with an extensive review of the literature on programming-
related biocomputing; and briefly identify some strengths and shortcom-
ings from a programming perspective. To show concretely what one could
see as programming in biocomputing, we outline (from recent work) a
computation model and a small programming language that are biolog-
ically more plausible than existing silicon-inspired models. Whether or
not the model is biologically plausible in an absolute sense, we believe
it sets a standard for a biological device that can be both universal and
programmable.

1 Context

The terms “biocomputing” and “systems biology”, taken in their broadest senses,
span many fields and areas of research: biology, chemistry, physics, mathematics,
electrical engineering and computer science among others. Two major subareas:

– Computer modeling of biological and biomolecular processes
– Biological hardware for computation

The terms “biomolecular computation” and “biomolecular computational model”
occur with both meanings in the literature (see Section 4), sometimes referring
to the one and sometimes the other subarea. This paper emphasises the second.
More precisely: we take a synthetic viewpoint, concerned with building things as
in the engineering and computer sciences. This is in contrast to the inevitable
and ubiquitous analytic viewpoint common to the natural sciences, concerned
with finding out how naturally evolved things work.

G. Agha, O. Danvy, and J. Meseguer (Eds.): Talcott Festschrift, LNCS 7000, pp. 403–433, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

404 L. Hartmann et al.

We ask: What can be done or built or constructed; and not: how does nature
work? (Caveat: just as in engineering, one will need to understand nature’s
cause-and-effect sufficiently well to be able to modulate it, i.e., to use nature to
effectively serve our purposes.)

1.1 A Theme: Biological Problem-Solving

Our main aim is thus to use the biological world as a computational medium.
From a programming perspective, the main goal is problem-solving by writing
programs. This section thus refers to solving problems by biology, not solving
problems about biology or in biology.

Given: a computational problem. To find: a biological solution. Further,
problem-solving by a program means finding a general solution (and not just
one run of one algorithm on one input data instance).

A top-down approach is to devise a model of computation that

– satisfies requirements for computer science/engineering
– that could conceivably be realised in a biological medium
– in which programs are clearly visible, and programming can be done
– is a framework in which it is possible, at least in principle, to say when a

problem has been solved

A bottom-up approach is to develop biological toolkits and environments in
which such engineering can be done. Examples include: synthetic biology; DNA
computing; membrane computing; and other computation models, e.g., peptides,
whole cell computing, bio quantum computing and many others seen in the
literature. Some of these toolkits and environments are already well-started and
others just beginning.

A reservation: our impression is that many exciting papers have been written
on computational biology, but there seem to be relatively few and small actual
realisations with concrete, reproducible, automatable results. There are many
possible reasons for this: intractability of physical biological media, difficulty of
carrying out experiments, difficulty of measuring success, liberal funding, jour-
nalistic appeal, etc.

1.2 Anticipated Difficulties in Practical Computational Biology

Our main goal is to find a way to incorporate programming concepts into a
biological context. In this paper we will sidestep some anticipated difficulties
including

Instrumentation: In a laboratory setting (with test tubes, Petri dishes,
chemical solutions, . . .) one would need to

1. put an experimental set-up into a known initial state
2. put input values into it
3. recognise when a computation has finished (or run “long enough”)
4. read output values out from it

Computational Biology: A Programming Perspective 405

Although these challenging problems are important, our approach is synthetic
and top-down. Future work would be to integrate our approach with a bottom-up
approach, and to realise the ideas in a biochemical laboratory.

Stochastic factors: Another dimension of difficulties that we will abstract
away from is how to deal with the nondeterminism that seems built-in to nature,
for example Brownian motion, noise (in an engineering sense), quantum state
transitions, and many others.

Researchers have worked to alleviate these real problems, studying error-
correcting processes from a theoretical viewpoint, and in nature as well (e.g., DNA
repair).

1.3 About the Scientific Method and Automatability

From the analytic viewpoint: natural science is strongly based on the principle
of reproducibility: if someone reports something in a scientific report, it should
be possible for the readers (if sufficiently determined) to reproduce the results
by running the same experiments themselves. This approach has had many suc-
cesses, and some highly visible failures (e.g., cold fusion).

From the synthetic viewpoint: reproducibility is relatively easy to achieve in
computer science. Computers have been carefully designed and built to be de-
terministic and predictable (else there is a bug in the computer’s construction),
so reproducing a result can consist of just running the program again.

Reproducibility is much harder in biological frameworks. There is typically
no program to run, but rather long and complex experimental processes involv-
ing significant hand work, and human participation and/or evaluation. Further,
randomness is real: what works in one experimental setting may not work in
another, for reasons mentioned above. Much research has been aimed at just
this problem: ensuring predictable behavior; and many reported experimental
results seem to suffer from it.

A measure of progress in both analytic and synthetic work is automatability. A
well-known real-world example: the rapid advances made in DNA analysis, e.g.,
for identification of people in legal or criminal settings. In computer science and
engineering, the goal is a framework to make experimentation automatable so an
experiment can be carried out a hundred or a thousand times. Further, there is
an a priori desired known relation between input and output of the experiment:
a relation that can be reliably expected to hold in all conceivable instances
of just this experiment (else the hypothesis/principle/program is insufficient,
incomplete, or just plain wrong).

This approach stands in great contrast to the analytical framework. Phrased
somewhat strongly: if the expected output is fully known in advance, one is
working not on an experiment, but on development rather than research. (To
be fair: the synthetic approach is aimed at development, not at discovering new
scientific truths.)

406 L. Hartmann et al.

2 Motivation

2.1 Biocomputation

An initial hope biocomputing was to overcome some of the limiting factors of
conventional microchip-based computers, similar to the hopes for quantum com-
putation: can we break through the barrier of polynomial running time [5,1,17]?

A dream: instead of a computer built from microchips and based on electrical
signals, a biocomputer would run on “hardware” based on biological materials
with some biochemical or biological equivalent of electrical signals. The hope
is that a completely new paradigm might yield an advantage over conventional
computing by putting radically different constraints on computation. Advan-
tages may arise from the mere difference of scale of materials, and complexity
of computation possible for basic blocks of a biomolecular computer.

Research in the 1990s focused on exploring such possibilities. Adleman made
a groundbreaking proof of concept in 1994: a DNA based computer that solved
an instance of a special case of the traveling salesman problem with 7 cities [1].
Several other possible advantages of a biocomputer were theorized—including
biology-inspired properties such as autonomy, self-assembly, self-repair, high in-
formation density [57,54], and advantages due to inherent parallellism:

In a world where parallel computing is in focus, molecular interactions
like communication over noisy media and load balancing are inherent in
the structure of molecules refined by evolution.

Garzon and Deaton, [57]

As many different molecules can be synthesized at low cost and exist abun-
dantly around us [57], natural resources are plentifully available for biocomputa-
tion. Another great potential lies in the fact that a biocomputer can in principle
interact directly with other biological material, including the cells in the human
body [11]. Numerous researchers [23,114,9,7] mention the possibility for direct
interactions with live cells in one way or another.

Some Remarks by Benenson [11] First, on the issue of generality:

Unlike a silicon computer that can be reprogrammed with a few hits on
a keypad, a biomolecular computer is really a set of design tools which,
when provided with a description of a computational task, generates
a blueprint of a molecular network that can implement this task. One
important challenge is to make sure that these tools are flexible enough
to enable a sufficient variety of tasks.

Second, on universal biological machines:

In theoretical computer science this problem was solved by the inven-
tion of universal models of computation, such as the Turing machine.

Computational Biology: A Programming Perspective 407

Although it seems unlikely that similarly universal approaches could be
realized with biomolecular building blocks anytime soon, biocomputer
architectures could, and should, aspire to at least some degree of gener-
ality in the computational sense.

2.2 Biomolecular Algebras and Calculi

Formalisms have been devised to do computer modeling (from an analytical
viewpoint) of observed biomolecular processes. Examples include the κ-calculus
[39,36], BioAmbients [100], Biochemical Ground form [26,25], Strand Algebra
[22], and Pathway Logic [123,31].

A natural next step is to think of these formalisms synthetically, e.g., to reduce
the need for expensive laboratory experiments.

2.3 Programming

In research on biomolecular computation the words “programming” and “cal-
culus”are often used; for example, [65,9,57,96] all mention programming as part
of their title. This is not the same as the “programming” familiar to computer
scientists: writing a program in a programming language. Instead, the papers
cited use the word “programming” to describe the process of designing biolog-
ical devices in a setup that will carry out one computation or simulation of
biomolecular interactions, and not a generic program that can be run on many
inputs.

Program Text 1.1. Program that appends two lists, in Standard ML syntax

fun append (a : : as) bs = a : : append as bs
| append [] bs = bs

For example, take a simple “append” program as in Program text 1.1. Any
computer scientist would recognize this as a program. Compare this with, for
example, the κ-calculus from [39,36]:

κ is a formalism for modeling molecular biology where molecules are
terms with internal state and with sites, bonds are represented by names
that label sites, and reactions are represented by rewriting rules. For
example, EGFR[tk0](1z) represents a molecule of species EGFR that
is not phosphorylated - the internal state tk is 0 - and that is bond to
another molecule - its site 1 is labeled with a name z.

and a κ rule as seen in Figure 1. In our opinion, the connection to conventional
programming, in the sense of solving a problem or writing an algorithm, is not
obvious.

408 L. Hartmann et al.

Fig. 1. κ rule defining the first step of Receptor Tyrosine Kinase from [44]

Figure 2 shows another example, used by Yin et al in [133] to illustrate “Path-
way programming”. Here, the “programming” is in the process of designing the
DNA to react and function in a specific way, and is not analogous to Program
text 1.1.

Fig. 2. From [133]. Images showing steps to construct a “molecular executable”.

Figure 3 illustrates the molecular implementation of a propositional logic
query as presented by Ran, Kaplan and Shapiro in [98]. Both the “program”
and the input are represented as specific molecular “objects”:

A compiler translates facts, rules and queries into their molecular rep-
resentations and subsequently operates a robotic system that assembles
the logical deductions and delivers the result.(Ran, Kaplan and Shapiro
[98])

This version of biomolecular programming is closer to the idea of programming
as in Program text 1.1, but it still conflicts with a key concept of conventional
programming, e.g., as we say later:

A program is software, not hardware. Thus a program should itself be a
concrete data object that can be replaced to specify different actions.

The central question: can program execution take place in a biological con-
text? Evidence for “yes” includes many analogies between biological processes
and the world of programs: program-like behavior, e.g., genes that direct protein
fabrication; “switching on” and “switching off”; processes; and reproduction.

Computational Biology: A Programming Perspective 409

Fig. 3. Ran, Kaplan and Shapiro [98]: the molecular representation of a simple logic
query

3 Biochemical Universality and Programming

We begin in Section 4, by evaluating some established results on biomolecular
computational completeness from a programming perspective; and then con-
structively provide an alternative solution in Section 5. The new model seems
biologically plausible, and usable for solving a variety of problems of computa-
tional as well as biological interest.

3.1 Baseline: Program Execution

What do we mean by a program (roughly)? An answer: a set of instructions that
specify a series (or set) of actions on data. Actions are carried out when the

410 L. Hartmann et al.

instructions are executed (activated,. . .) Further, a program is software, not
hardware. Thus a program should itself be a concrete data object that can be
replaced to specify different actions.

Program execution: we write [[program]] to denote the meaning or net effect
of running program. A program meaning is often a function from data input
values to output values. The program is activated (run, executed) by applying
the semantic function [[]]. The task of programming is, given a desired semantic
meaning, to find a program that computes it. Some mechanism is needed to exe-
cute program, i.e., to compute [[program]]. This can be done either by hardware
or by software.

3.2 Turing Completeness of Computational Models

Turing completeness of a computation framework is typically shown by
reduction from another problem already known to be Turing complete. Notation:
let L and M denote languages (biological, programming, whatever), and let [[p]]L

denote the result of executing L-program p, for example an input-output function
computed by p. Say that language M is at least as powerful as L if

∀p ∈ L−programs ∃q ∈ M−programs ([[p]]L = [[q]]M)

A popular choice (for proving universality) is to let L be some very small
Turing complete language, for instance Minsky register machines or two-counter
machines (2CM). The next step is to let M be a biomolecular system of the
sort being studied. The technical trick is to argue that, given any L-instance of
(say) a 2CM program, it is possible to construct a biomolecular M -system that
faithfully simulates the given 2CM. This discussion brings up a central issue:

Simulation as Opposed to Interpretation. Arguments to show Turing
completeness are (as just described) usually by simulation: For each problem
instance (say a 2CM program) one constructs (using any available method) a
biomolecular system that solve the problem. However in many papers the con-
struction of the simulator is done by hand by the author, and each problem
instance require a new hand coded simulator. In effect the existential quantifier
in ∀p∃q([[p]]L = [[q]]M) is computed by hand. This phenomenon is clearly visible
in papers on cellular computation models: completeness is shown by simulation
rather than by interpretation.

In contrast, Turing’s original “Universal machine” realises p’s computation by
means of interpretation: a stronger form of imitation, in which the existential
quantifier is realised by machine. Turing’s “Universal machine” is capable of
executing an arbitrary Turing machine program, once that program has been
written down on the universal machine’s tape in the correct format, and its input
data has been provided. Our research follows the same line, applied in a biological
context: we show that simulation can be done by general interpretation, rather
than by one-problem-at-a-time constructions as mentioned by Benenson in [11],
quoted in Section 2.1 of this paper.

Computational Biology: A Programming Perspective 411

3.3 Programs in a Biochemical World

Our goal is to express programs in a biochemical world. Programming assump-
tions based on silicon hardware must be radically re-examined to fit into a bio-
chemical framework. We briefly summarize some qualitative differences.

– There can be no pointers to data, i.e., no addresses, links, or unlimited
list pointers. In order to be acted upon, a data value must be physically adja-
cent to some form of actuator. A biochemical form of adjacency: a chemical
bond between program and data.

– There can be no action at a distance: all effects must be achieved via
chains of local interactions. A biological analog: signaling.

– There can be no nonlocal control transfer, e.g., no analog to GOTOs
or remote function/procedure calls. However control loops can be accepted,
provided the “repeat point” is (physically) near the loop end. A biological
analog: a bond between different parts of the same program.

– On the other hand there exist available biochemical resources to tap, i.e.,
free energy so actions can be carried out, e.g., to construct local data, to
change the program control point, or to add local bonds into an existing
data structure. Biological analogs: Brownian movement, ATP, oxygen.

The first three points above are very different from basic architecture currently
used in a silicon based computers: the addressing unit and the address decoder
are built around the ideas of unbounded pointers to both data and program:
“random access memory” and control transfers.

4 History and Literature Review

4.1 History

Our brief survey of historical developments is not in any way exhaustive, but
should “scratch-the-surface” enough to give a feeling for the different aspects of
the field. Some good overviews for further reading include Benenson [10], and
Kari and Rozenberg [76,78].

Background. Nature-inspired models of computation can demonstrate both
how nature inspires computation models, and how complexity can emerge from
seemingly simple rules in nature. Examples include cellular automata, neural
computation, evolutionary programming, swarm intelligence, artificial life, mem-
brane computing, and amorphous computing [78].

Cellular Automata
These were considered in the early 1950s as a possible idealized model of biology
[131, page 48]. The work of Von Neumann and Burks on a “universal constructor”
[93] was inspired by self-reproduction both for biology and computers.

412 L. Hartmann et al.

Roughly, a cellular automaton is a grid of cells, typically 2-dimensional, in
which each cell is in one of a fixed finite set of states. First, the initial state (t = 0)
is set up by choosing an initial assignment of states to cells. The next state of any
cell, at time t+1, is determined by applying a predetermined transition function
to current state of the given cell and its immediate neighbors. For example “Any
white cell with exactly three black-neighbors becomes a black cell.”1.

The perhaps most famous cellular automaton is Game Of Life, the two-state
two-dimensional cellular automaton by John Conway [55] which has exactly four
rules. Figure 4 illustrates2 the initial generation and four following generations
of a Game Of Life cellular automaton. In [15] it is shown that universal com-
putation is possible with the Game Of Life, and an actual implementation was
demonstrated in [28]. Concretely, this means that for any Turing machine, an
initial state exists, from which the Game Of Life will faithfully simulate the
Turing machine.

(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 3 (e) t = 4

Fig. 4. Five steps of a Game Of Life life form called “glider” [15]. Notice that the
last image contains the same shape as the first image. This means that the glider will
continue to fly until it hits something.

Cellular automata are homogeneous, parallel, and all interactions are local.
Further, it is possible to obtain natural physical properties such as reversibility
and conservation laws by choosing local update rules properly [76]. This connec-
tion would be especially interesting if it is possible to let nature simulate cellular
automata, and thereby prove that nature can obtain the Turing completeness
properties as demonstrated for cellular automata [76]:

. . . then perhaps we eventually succeed to harness physical reactions of
microscopic scale to execute massively parallel computations by run-
ning a computationally universal CA. . . . While such truly programmable
matter may be decades away, its potential is great

Wang Tiles
These were introduced by Hao Wang in 1961 [125]. A tiling system is a finite set
of tile types. The tiles are equal-sized squares, with a color on each edge. A tiling
is a two-dimensional arrangement (without rotation or reflection of the tiles) of
1 Rule from Game Of Life.
2 Images generated via http://www.onderstekop.nl/GoF.php - 2010-02-07

Computational Biology: A Programming Perspective 413

tiles, such that the touching edges of adjacent tiles must have the same color.
Figure 5(a) shows a set of Wang tiles and 5(b) shows a tiling. It is undecidable,
given a finite set of Wang tiles, whether they can tile the plane [14]: any Turing
machine can be emulated by Wang tiles in such a way that if the tiles tile the
plane, the Turing Machine never terminates [103].

Figure 5(b) shows3 an encoding of Wang tiles that represents the calculation
of 5 + 9 with the result of 14.

(a) Wang tiles used (b) The tiles types assembled into a pattern representing 5+9 =
14. Notice the three special tiles with the circle in the middle in
the top row. The two black ones represent the input numbers, and
the green one represents the answer. For this set of tiles, addition
with input and output is the only possible way to assemble them.

Fig. 5. Based on a diagram from “Tilings and Patterns” by Grunbaum and Shephard

Biocomputers. The idea of a biocomputer was first suggested by Feynman in
1959, and theoretically discussed through the eighties and beginning of the 1990s
[54], for example in the visionary paper by Michael Conrad,“On design principles
for a molecular computer” [33]. It was argued that the natural concurrency
present in biocomputing could be used to solve difficult combinatorial problems,
e.g., NP-complete problems.

In a landmark 1994 paper, Adleman demonstrated how a biological system
can use reactions to solve a Directed Hamiltonian Path problem with DNA
hybridization [1].

The advantage of such a “biocomputer” is potentially massive parallelism:
the theoretical ability of DNA to contain data is 1021 bits per gram, and the
energy requirement is low: 2∗1019 operations are theoretically possible per joule
[54]. Lipton found theoretical methods for solving NP-complete problems in gen-
eral using DNA computers [82], and several enhancements were provided, e.g.
Adleman et al discovered the solution to a 20-variable 3-SAT problem [18], and
Winfree et al devised ways to use single strand DNA as memory [107,108].

Based on this research, several ways were devised to compute other search prob-
lems such as linear optimization problems [126], and Boolean search type satis-
fiability such as 3-coloring [27, sec 2.2]. The parallels between DNA-processing
3 Images in Figure 5 from http://seemanlab4.chem.nyu.edu/XOR.html

414 L. Hartmann et al.

reactions and “forbidding/enforcing systems” further led to the usage of DNA-
processing to solve these kinds of problems as well [3]. DNA-based arithmetic was
developed in [62,27]. Further developments include the breaking of DES encryp-
tion with DNA [17], DNA Computer based on Biochips [137], playing TicTacToe
against DNA [90], DNA encoded with finite automata for medical purposes [9,7],
and molecular implementation of simple logic programs [98].

However, while the generation of all paths in Adleman’s original experiment
took less than a second, it took weeks of manual lab work to extract the poten-
tial solutions from the DNA cocktail. The method is further hampered by the
exponential growth of the size of the solutions: The weight of the DNA needed to
represent the state space explored to find the solution of a 200 city Hamiltonian
Path Problem would exceed the weight of the Earth itself [95].

Why DNA? Though the term “biocomputer” does not specify the specific
computation medium, by far the most common medium is Nucleic Acids: the
NA in DNA and RNA. This is possibly due to the fact that nucleic acids have
a predictable “base pairing property” which makes them a powerful tool for
biomolecular engineering [136]. In practice it seems that DNA and RNA behave
“more deterministically” than other biological media (perhaps for evolutionary
reasons).

Thus in the literature the terms “biocomputation” and “biocomputers” are
often used interchangeably with “DNA Computer.” (Exceptions: [11] uses RNA;
and there are articles on “peptide computing”, “whole cell computing” and
“Quantum Molecular Computing”: [71], [118], [34].) Following the general trend,
in this section we will assume unless stated otherwise that a biocomputer is based
on DNA.

4.2 Computational Universality of DNA Computers

Universality and self-reproduction. Several articles argue “universality”
by showing (in several ways) that Turing machines can be simulated. Oddly,
articles we have seen do not mention self-reproduction, even though DNA is the
key to biological self-reproduction. Further, self-reproduction was a major goal
of von Neumann and Burks [93]. (That pathbreaking work did indeed show how
to simulate a universal Turing machine; but this was only incidental, as a means
to establish that cellular automata did not “reproduce” in some trivial way, e.g.,
as in the growth of crystals.)

Several different approaches have been taken to represent Turing machine
operations by DNA operations or collection of operations (e.g., hybridization,
annealing, ligation or polymerization). A partial list follows. The different articles
use different terminology, notations and degrees of formalism, so we choose to
quote their claims directly, rather than paraphrase and interpret their results:

– [12,13]: Discuss the theoretical possibility of RNA/DNA: “The enzyme may
thus be compared to a simple tape-copying Turing machine that manufac-
tures” its output tape rather than merely writing on it.

– [119] : Shows how to create “a non-deterministic Turing machine” (one spe-
cific Turing Machine at that)

Computational Biology: A Programming Perspective 415

– [5] Discusses a design method to simulate a Turing Machine via a technique
for “text-insertion” that “provides a basis for implementing general Turing
Machines”

– [104] : “ [we] propose an encoding for the transition table of a Turing ma-
chine in DNA oligonucleotides and a corresponding series of restrictions and
ligations of those oligonucleotides that, when performed on circular DNA
encoding of an instantaneous description of a Turing machine, simulate the
operation of the Turing machine encoded in those oligonucleotides”

– [135] Proposes a new “splicing model” and “show that they have the same
computational power as a Turing machine”

– [114]: A physical model (See figure 6) showing what a mechanical Turing
machine on a biomolecular level could look like.

– [79,80] This reports that DNA mutagenesis “is theoretically universal by
showing how Minsky’s 4-symbol 7-state Universal Turing Machine can be
implemented”.

– [134] designs a complete “autonomous device capable of universal computa-
tion and universal translational motion”

Self assembly. Self assembly is a process whereby DNA can arrange itself in a
shape without outside involvement. An example is the formation of double helix

Fig. 6. From Shapiro and Benenson [113]

416 L. Hartmann et al.

DNA from individual strands.It has been shown that DNA can do self assembly
in a “programmable” way . Here “programmable” means that the final outcome
of the self assembly process can be guided into an arbitrary two-dimensional
shape, decided before the self assembly process begins.

The mechanism uses a concept of “sticky ends” of DNA structures [128,127].
An example is the famous nano scale “smiley” of [106].

Based on the Wang tiling properties of DNA, [129] shows a way to simulate
one-dimensional cellular automata, and [85] shows a way - via Wang tilings - to
do a logical cumulative XOR. Figure 7 illustrates the principle of DNA tiling to
realise a cumulative XOR gate. Figure 7(a) shows the building blocks used, and
figure 7(b) shows how these can be tiled together to get the result of Y = 1011
when X = 1110.

Winfree and coworkers used and extended the similarity between Wang tiles
and DNA with sticky ends. Using known abilities of Wang tiles, they did a
proof for universal computation abilities within self assembly of DNA [129]. Even
though the theoretical computational power is unlimited, the practical usage of
these powers is hampered by the difficulty of controlling the geometry and the
specificity of binding interactions [105].

4.3 On Error Correction in Biological Contexts

In Section 1.2 we mentioned that “work has been done” to alleviate the stochastic
factors when dealing with biomolecular computers. This section contains some
references and quotes from the published research on the subject.

– Early work by Bennett [13,12] considered theoretical bounds in DNA com-
putation: “The minimum error rate (equal to the product of the error rates
of the writing and proofreading steps) is obtained when both reactions are
driven strongly forward, as they are under physiological conditions.”

– Chiniforooshan et al [29]: “We achieve this by designing a single-input, single-
output restoration gate”

– Roweis et al [107]: “we discuss several methods for achieving acceptable
overall error rates for a computation using basic operations that are error
prone.”

– Shlyahovsky et al [117] : “Finally, although the gate configuration consists of
a complex structure composed of nine components, we find that the precise
steps to set up the system and its activation at the defined conditions allow
the result to be reproduced within a 15% error.”

– Winfree at al [120]: “The correctness of our systematic construction was
predicated on several idealizations of DNA behavior, and it is worth consid-
ering the deviations that we would expect in practice”

– Rothemund et al [104] discuss in detail possible errors.
– Reif and LaBean [102]Future Work ”such as error correction and self-repair

at the molecular scale“
– Murata and Stojanovich [91] discuss “error supression and correction”

Computational Biology: A Programming Perspective 417

(a) Translation of the a DNA with sticky ends to tile-like
building blocks. Notice the different shapes and the ends
of the blocks only allowing specific pairings of blocks. Xi

blocks encode the input number, where Yi encodes the
output number, all written in the middle.

(b) The dna-blocks assembled with Xi blocks put to-
gether to represent X = 1110. As the blocks can only
be assembled in a specific way the result in is encoded in
Yi as Y = 1011

(c) Blocks as DNA structure

Fig. 7. Images from [85]

418 L. Hartmann et al.

4.4 Process Calculus and Formal Methodology

Process calculi are concerned with providing formal specifications of concurrent
processes.

An early process calculus was CCS as defined by [70], later followed by much
research including the π-calculus [86,110].

Several calculi have been proposed for biomolecular modeling, both to describe
natural biological systems, and to model how the entities in these system interact.
Process calculi are the “other side of things” in relation to DNA computers and
biocomputing: how do we provide an abstraction for biomolecular systems that
allows for quick and effective sharing, comparison, and correction of scientific
knowledge? Regev and Shapiro [99] published a landmark paper postulating
the design of a “language for the cell” built on the insights of the articles [51]
(where Fontana et al use the λ-calculus to describe natural systems) and [101]
(where Shapiro et al use the π-calculus for biological modeling). Proposed calculi
include4:

– π-calculus for biology [101] as just mentioned.
– BioAmbients - Extension of the above bio-π-calculus [100].
– Brane Calculi - based on membranes considered as active elements, with the

whole computation happening on the membrane [20].
– CSS-R - Formal biology done in CCS-R [38].
– Bio-PEPA - Extension of the known process algebra PEPA [58], designed

for biochemical networks [30].
– κ-calculus [39,36].
– Biochemical Ground Form [26,25].

The basic idea is to provide means, via formal calculus, to describe and design
biomolecular setups with formal rules. In a larger setting this field is known as
“Systems Biology.” At its core lie the fields of:

– Mathematical modeling, for example in terms of differential equations. This
is a classical way to model biology.

– Computational modeling where the concepts of algebras [22,101,30], abstract
interpretation [36,21] and process calculi [63] are used.

Computational modeling of biology, or the more apt “executable cell biology”
[49], is a contemporary approach that uses computational power of conventional
computers to reason about biomolecular systems.

Computational Power Often it is the case that these calculi are proven Turing
complete, for example:

– π-calculus: proven by Milner by emulation of the λ-calculus [87].
– CCS [121].
– Brane Calculi [19].

4 Based on the survey by [63].

Computational Biology: A Programming Perspective 419

– κ-calculus [36].

As noted by Fontana et al. ([36] page 2), the fact that a biological representation
language is Turing complete need not imply that biological reactions per se are
Turing complete.

Applications to the building “biocomputers” or parts thereof is a pop-
ular recent research direction. For example, [22,96] use a theoretical algebra to
as a tool for defining and designing biomolecular gates for specific setups. This
provides a way to design a “biomolecular computer” from the basis of Boolean
networks or Petri nets. From there, they compile into an intermediate “Strand
Algebra” that can be translated further into a specific DNA Strand mixture.
The authors claim that this mixture could potentially simply be mail-ordered
from a bio company, at relative low cost.

That approach effectively combines the area of biocomputing with the tech-
niques (and benefits) of biomolecular calculi. A computer scientist’s way to look
at these biomolecular calculi could be as “a domain specific language for model-
ing biomolecular “things,” rather than a general purpose programming language
like Python, C, or Java. The same connection can be seen in the title of [45] -
A Domain-Specific Language for Programming in the Tile Assembly Model -
for modeling “tiles” which can be used to direct DNA self-assembly into tile
structure (similar to Winfree’s approach [127]).

4.5 Recent Developments

In recent years, it has become evident that biocomputing is perhaps not the an-
swer to obtain fast solutions to computationally intractable problems (Parker,
Cardelli [95,24]). Nevertheless, other potentials of a biocomputer in some form
still interesting, e.g., self-replication, self-correction, massive parallelism, minus-
cule size, filters, ready availability, interfaces with other biological elements like
humans. Several techniques to exploit the computational power of biomolecular
systems are being explored, including cross-over from nano-research for tiling
self-assembly [132,127], and a wide variety of specific proof-of-concept setups
performing some specific computations.

Some recent research focuses on the abilities to create “biomolecular gates”
in some form or the other. For example

– Papers [112,120,97,111,29,136] propose designs for DNA Strand displacement
based gates (sequence based, enzyme free). Paper [29], building on the others,
provides a design with four “desirable properties: scalable, time-responsive,
energy-efficient and digital.”[29]

– Papers [117,48] manually design DNA gates for AND, OR, XOR by
“DNA scaffolding”, report on the construction of a DNA based “library” of
“DNAzymes”, and demonstrate how to create composite gates as well, partly
based on the DNA Strand Displacement techniques as described above.

420 L. Hartmann et al.

– Paper [60] proposes a way to create logic gates (enzymatic) that can be used
repeatedly, as opposed to the use-once gates of DNA Strand Displacement
as mentioned in the previous two items.

– Paper [11] reviews recent advances for using RNA as logic gates and the abil-
ity to do “molecular logic”. It describes the usage of RNA for computation
in yeast and mammalian cells and notes that future work needs to address
the bioengineering foundations of building these systems.

– Paper [81] reports on a successful coupling of molecular based logic gates,
with silicon based microchips used to digitally read results of biomolecular
computations. They claim that “the developed systems are the first exam-
ples of enzyme-based biocomputing systems interfaced with ordinary silicon-
based electronics.”

With biological gates at hand it should be possible to develop “wetware hard-
ware” for executing computations but “the state of the art in biomolecular cir-
cuits remains far behind its electronic equivalent”[29].

In [98] Ran, Kaplan and Shapiro take the design of logic gates a step further
and use the gates for specific “systems”. Paper [98] addresses the issue that in
general, all encoding and decoding of input and output is done manually in the
lab for each problem, by developing a “compiler” that translates first-order logic
statements and queries into the specific DNA strands that encode the input and
the gates needed for calculating the result. Figure 3 shows a translation of a
logic query into DNA structures.

In another direction, Winfree et al in [84] show how to use DNA origami
[106] to direct a “molecular spider” to autonomously carry out sequences like
“start,”follow“, ”turn“ and ”stop“. This could be imagined to be used as a way
to implement ”Turing-universal algorithmic behavior”[84].

4.6 Conclusion

Research in the area of biocomputing, biomolecular algebras/calculi has been
massive. Although still very much work in progress, the possibility of biomolec-
ular computers holds great promise. That being said, even though some concepts
and words known from computer software engineering, and computer sciences,
are also seen in biocomputer design and research, a gap remains to be filled. The
ultimate goal for a programming language on a biomolecular platform would
be the ability to abstract away unnecessary details about the biological “hard-
ware” and to be able to focus on writing algorithms and solving problems. The
programming niche of the field of biomolecular computer research is still, as
indicated by this literature survey, very much relevant and mostly unexplored.

Our work is a step towards bridging the aforementioned gap.

5 The Blob Model of Programmed Universal
Computation

We take a very simplified view of a (macro-)molecule and its interactions, with
abstraction level similar to the Kappa model [40,26,44]. To avoid misleading de-

Computational Biology: A Programming Perspective 421

tail questions about real molecules we use the generic term “blob” for an abstract
molecule. A collection of blobs in the biological “soup” may be interconnected
by two-way bonds linking the individual blobs’ bond sites.

A program p is (by definition) a connected assembly of blobs. A data value
d is (also) by definition a connected assembly of blobs. At any moment during
execution, i.e., during computation of [[p]](d) we have:

– One blob in p is active, known as the active program blob or APB.
– One blob in d is active, known as the active data blob or ADB.
– A bond *, between the APB and the ADB, is linked at a specially designate

bond site, bond site 0, of each.

The main idea is to keep both program control point and the current data
inspection site always close to a focus point where all actions occur. This can be
done by continually shifting the program or the data, to keep the active program
blob (APB) and active data blob (ADB) always in reach of the focus. The picture
illustrates this idea for direct program execution.

Program p Data d

APB: :ADB*

Running program p, i.e., computing [[p]](d)

= Focus point for control and data

(connects the APB and the ADB)

* = program-to-data bond

The data view of blobs: A blob in our model have four bond sites, identified
by numbers 0, 1, 2, 3. At any instant during execution, each can hold a bond –
that is, a link to a (different) blob; or a bond can hold ⊥, indicating unbound.

In addition each blob has 8 cargo bits of local storage containing Boolean
values, and also identified by numerical positions: 0, 1, 2, . . . , 7. (A biological
analog to bits 1 or 0 is “phosphorylated” or “unphosphorylated”.)

A blob with 3 bond sites bound and one unbound:

0
1⊥ 2

3

Since bonds are in essence two-way pointers, they have a “fan-in” restriction: a
given bond site can contain at most one bond (if not ⊥).

The program view of blobs: Blob programs are sequential. There is no
structural distinction between blobs used as data and blobs used as program.
A single, fixed set of instructions is available for moving and rearranging the
cursors, and for testing or setting a cargo bit at the data cursor. Novelties from
a computer science viewpoint: there are no explicit program or data addresses,

422 L. Hartmann et al.

just adjacent blobs. At any moment there is only a single program cursor and a
single data cursor, connected by a bond written * above.

Instructions, in general. The blob instructions correspond roughly to “four-
address code” for a von Neumann-style computer. An essential difference, though,
is that a bond is a two-way link between two blobs, and is not an address at all.
It is not a pointer; there exists no address space as in a conventional computer.
A blob’s 4 bond sites contain links to other instructions, or to data via the
APB-ADB bond.

For program execution, one of the 8 cargo bits is an “activation bit”; if 1, it
marks the instruction currently being executed. The remaining 7 cargo bits are
interpreted as a 7-bit instruction so there are 27 = 128 possible instructions in
all. An instruction has an operation code (around 15 possibilities), and 0, 1 or 2
parameters that identify single bits, or bond sites, or cargo bits in a blob. See
the table below for some current details. For example, SCG v c has 16 different
versions since v can be one of 2 values, and c can be one of 8 values.

Why exactly 4 bonds? The reason is that each instruction must have a bond
to its predecessor; further, a test or “jump” instruction will have two successor
bonds (true and false); and finally, there must be one bond to link the APB and
the ADB, i.e., the bond * between the currently executing instruction and the
currently visible data blob. The FIN instruction is a device to allow a locally
limited fan-in.

A specific instruction set (a bit arbitrary). In [67,68] we propose a specific
instruction set. Here we include a subset of the instructions for illustration.

On the insert instruction INS. This creates a new blob, linked with the cur-
rent ADB. Analogy: thinking of a blob as a cell or molecule (whichever paradigm
seems natural), we are implicitly assuming that blobs are swimming in a ”bio-
logical soup”, so INS just reconfigures a nearby element. From one viewpoint,
this action resembles detaching a new cell from the freelist (the list of available
cells used in Lisp/Scheme implementations).

Instruction Description Informal semantics

SCG v c Set CarGo bit ADB.c := v; APB := APB.2
JCG c Jump CarGo bit if ADB.c = 0

then APB := APB.3 else APB := APB.2
JB b Jump Bond if ADB.b = ⊥

then APB := APB.3 else APB := APB.2
CHD b CHange Data ADB := ADB.b; APB := APB.2
INS b1 b2 INSert new bond new.b2 bound to ADB.b1;

new.b1 bound to ADB.b1.bs; APB := APB.2
“new” is a fresh blob, “bs” is
the bond site that ADB.b1 was
bound to before INS b1 b2.
...

FIN Fan IN APB := APB.2

Computational Biology: A Programming Perspective 423

On the need for a fan-in instruction. The point with FIN (short for“fan-
in”) is that in blob code, unlike say Scheme, there cannot exist an unbounded
number of pointers to a given blob (since every pointer corresponds to a bond
site, and every blob has only 4 bond sites). So to achieve the effect of, say, 5
pointers to a blob instruction in a program, one can use a fan-in tree where each
blob in the tree has at most 4 bond sites.
An example in detail: the instruction SCG 1 5, as picture and as a
rewrite rule. SCG stands for “set cargo bit”. The effect of instruction SCG 1
5 is to change the 5-th cargo bit of the ADB (active data blob) to 1. First, an
informal picture to show its effect:

APB APBa
1

⊥
APB′ APB′a

0

*

S

?
5 ADB ADB

⇒
⊥a

0

a
1

*
S

1
5

Program Data Program Data

Note: the APB-ADB bond * has moved: Before execution, it connected APB
with ADB. After execution, it connects APB′ with ADB, where APB′ is the
next instruction: the successor (via bond S) of the previous APB. Also note that
the activation bit has changed: before, it was 1 at APB (indicating that the APB
was about to be executed) and 0 at ADB′. Afterwards, those two bit values have
been interchanged.

5.1 The Blob World from a Computer Science Perspective

First, an operational image: Any well-formed blob program, while running, is
a collection of program blobs that is adjacent to a collection of data blobs,
such that there is one critical bond (*) that links the APD and the ADB (the
active program blob and the active data blob). As the computation proceeds, the
program or data may move about, e.g., rotate as needed to keep their contact
points adjacent (the APB and the ADB). For now, we shall not worry about the
thermodynamic efficiency of moving arbitrarily large program and data in this
way; for most realistic programs, we assume them to be sufficiently small (on
the order of thousands of blobs) that energy considerations and blob coherence
are not an issue.

5.2 The Blob Language

It is certainly small: around 15 operation codes (for a total of 128 instructions if
parameters are included). Further, the set is irredundant in that no instruction’s
effect can be achieved by a combination of other instructions. There are easy
computational tasks that simply cannot be performed by any program without,
say, SCG or FIN.

424 L. Hartmann et al.

There is a close analogy between blob programs and a rudimentary machine
language. However a bond is not an address, but closer to a two-way pointer.
On the other hand, there is no address space, and no address decoding hardware
to move data to and from memory cells. An instruction has an unusual format,
with 8 single bits and 4 two-way bonds. There is no fixed word size for data,
there are no computed addresses, and there are no registers or indirection.

The blob programs have some similarity to LISP or SCHEME, but: there are
no variables; there is no recursion; and bonds have a “fan-in” restriction.

5.3 What Can Be Done in the Blob World?

In principle the ideas presented and further directions are clearly expressible
and testable in Maude or another tool for implementing term rewriting systems,
or the kappa-calculus [26,31,40,44]. Recent work involves programming a blob
simulator, and execution visualiser. Prototype implementations of both have
been made, described in [67,68].

The usual programming tasks (appending two lists, copying, etc.) can be
solved straightforwardly, albeit not very elegantly because of the low level of
blob code.

Fig. 8. The main interface of the blob visualiser. 1) visualisation area, 2) Zoom buttons,
3) Connectivity filter, 4) force-directed layout start/pause button, 5) blob program
controls. Program blobs are green, data blobs red; the APB and ADB are emphasized
by brighter colours and thicker bond lines.

Computational Biology: A Programming Perspective 425

It seems possible to make an analogy between universality and self-reproduc-
tion that is tighter than seen in the von Neumann and other cellular automaton
approaches. It should now be clear that familiar Computer Science concepts such
as interpreters and compilers also make sense also at the biological level, and
hold the promise of becoming useful operational and utilitarian tools.

5.4 Blob Instruction Interpreter and Visualization Tool

We have developed an interpreter and visualization tool for the blob instruction
set. Figure 8 shows an example of such an illustration. At http://blobvis.
appspot.com the program and source code can be downloaded as well as several
videos and images demonstrating programs and the usage of the visualization
tool.

6 Conclusions

Computation via biological devices has been the subject of diverse and close
scrutiny for many years. We have given a review of the literature on programming-
related biocomputing and briefly identified some strengths and shortcomings
from a programming perspective. Given the vast amount of work done in this
field to date, the notion of programming the system or devices presented still
seems to be ill-defined. Many models are claimed to be computationally uni-
versal in some sense. This universality prompted us to ask the question Where
are the programs? Our recent work [67,68] tries to answer this question, where
we presented the outline of a computation model that seems biologically more
plausible than existing silicon-inspired models. We hope that it sets a standard
for a biological device that can be both universal and programmable.

References

1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems.
Science 266(11), 1021–1024 (1994)

2. Adleman, L.M.: On constructing a molecular computer. DIMACS: series in Dis-
crete Mathematics and Theoretical Computer Science, pp. 1–21. American Math-
ematical Society (1996)

3. Amos, M., Paun, G., Rozenberg, G., Salomaa, A.: Topics in the theory of DNA
computing. Theor. Comput. Sci. 287(1), 3–38 (2002)

4. Backofen, R., Clote, P.: Evolution as a computational engine. In: Proceedings of
the Annual Conference of the European Association for Computer Science Logic,
pp. 35–55. Springer, Heidelberg (1996)

5. Beaver, D.: Computing with dna. Journal of Computational Biology 2(1), 1–7
(1995)

6. Beaver, D.: Computing with DNA. Journal of Computational Biology 2(1), 1–7
(1995)

7. Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z., Shapiro, E.: Dna molecule
provides a computing machine with both data and fuel. Proc Natl Acad Sci U S
A 100(5), 2191–2196 (2003), http://dx.doi.org/10.1073/pnas.0535624100

426 L. Hartmann et al.

8. Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z., Shapiro, E.: DNA molecule
provides a computing machine with both data and fuel. In: Noltemeier, H. (ed.)
WG 1980. LNCS, vol. 100, pp. 2191–2196. Springer, Heidelberg (1981)

9. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.:
Programmable and autonomous computing machine made of biomolecules. Na-
ture 414(1), 430–434 (2001), http://www.nature.com/nature/links/011122/

011122-2.html

10. Benenson, Y.: Biocomputers: from test tubes to live cells. Molecular BioSys-
tems 5(7), 675–685 (2009), http://dx.doi.org/10.1039/b902484k

11. Benenson, Y.: RNA-based computation in live cells. Current Opinion in Biotech-
nology 20(4), 471–478 (2009), http://www.sciencedirect.com/science/

article/B6VRV-4X4BR27-2/2/0133dc1fc3a23441b6aa9bab4115fc11, protein
technologies / Systems and synthetic biology

12. Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and
Development 17(6), 525–532 (1973)

13. Bennett, C.H.: The thermodynamics of computation – a review. International
Journal of Theoretical Physics 21(12), 905–940 (1982), http://dx.doi.org/10.
1007/BF02084158

14. Berger, R.: The undecidability of the domino problem. Memoirs American Math-
ematical Society 66 (1966)

15. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for your Mathematical
Plays, vol. 2, ch. 25. Academic Press (1982) ISBN 0-12-091152-3

16. Bohringer, K.-F., Paulisch, N.F.: Using constraints to achieve stability in auto-
matic graph layout algorithms. In: Proceedings of ACM CHI 1990 Conference on
Human Factors in Computing Systems, pp. 43–51. Constraint Based UI Tools
(1990)

17. Boneh, D., Dunworth, C., Lipton, R.J.: Breaking DES using a molecular com-
puter. In: Lipton, E.B.B.R.J. (ed.) DNA Based Computers. DIMACS: Series
in Discrete Mathematics and Theoretical Computer Science, vol. 27, pp. 37–66.
American Mathematical Society (1995)

18. Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.:
Solution of a 20-variable 3-sat problem on a dna computer. Science 296, 499–502
(2002)

19. Cardelli, P.: An universality result for a (mem)brane calculus based on mate/drip
operations. IJFCS: International Journal of Foundations of Computer Science 17
(2006)

20. Cardelli, L.: Brane calculi. In: Danos and Schächter [14], pp. 257–278,
http://springerlink.metapress.com/openurl.asp?genre=article&

issn=0302-9743&volume=3082&spage=257

21. Cardelli, L.: Abstract machines of systems biology. In: Priami, C., Merelli, E.,
Gonzalez, P., Omicini, A. (eds.) Transactions on Computational Systems Biology
III. LNCS (LNBI), vol. 3737, pp. 145–168. Springer, Heidelberg (2005)

22. Cardelli, L.: Strand algebras for DNA computing. In: Deaton and Suyama [42],
pp. 12–24

23. Cardelli, L.: Molecular programming tutorial, microsoft research, cambridge
(February 2010),
http://lucacardelli.name/Talks/2010-02-11%20Molecular%20Programming%

20Tutorial.pdf

24. Cardelli, L.: Biocomputers is not a good idea of solving np complete problems.
said during presentation of strand algebra, CS2Bio, Amsterdam (2010)

Computational Biology: A Programming Perspective 427

25. Cardelli, L., Zavattaro, G.: On the computational power of biochemistry. In:
Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008.
LNCS, vol. 5147, pp. 65–80. Springer, Heidelberg (2008)

26. Cardelli, L., Zavattaro, G.: Turing universality of the biochemical ground form.
Mathematical Structures in Computer Science 19 (2009)

27. Chang, W.L., Ho, M.H., Guo, M.: Molecular solutions for the subset-sum problem
on DNA-based supercomputing. Biosystems 73, 117–130(14) (2004), http://

www.ingentaconnect.com/content/els/03032647/2004/00000073/00000002/

art00225

28. Chapman, P.: Life universal computer (November 2002), http://www.igblan.

free-online.co.uk/igblan/ca/

29. Chiniforooshan, E., Doty, D., Kari, L., Seki, S.: Scalable, time-responsive, dig-
ital, energy-efficient molecular circuits using DNA strand displacement. CoRR
abs/1003.3275 (2010)

30. Ciocchetta, F., Hillston, J.: Bio-PEPA: An extension of the process algebra PEPA
for biochemical networks. Electr. Notes Theor. Comput. Sci. 194(3), 103–117
(2008), http://dx.doi.org/10.1016/j.entcs.2007.12.008

31. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J.,
Talcott, C. (eds.): All About Maude - A High-Performance Logical Framework,
How to Specify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350.
Springer, Heidelberg (2007)

32. Condon, A., Rozenberg, G. (eds.): DNA 2000. LNCS, vol. 2054. Springer, Heidel-
berg (2001)

33. Conrad, M.: On design principles for a molecular computer. Commun. ACM 28(5),
464–480 (1985)

34. Conrad, M.: Quantum molecular computing: The self-assembly model. Interna-
tional Journal of Quantum Chemistry. Quantum Biology Symposium: Proceedings
of the International Symposium on Quantum Biology and Quantum Pharmacol-
ogy, vol. 19, pp. 125–143 (1992)

35. Danchin, A.: Bacteria as computers making computers. FEMS Microbiology Re-
views 33(1), 3–26 (2008)

36. Danos, V., Feret, J., Fontana, W., Krivine, J.: Abstract interpretation of cellular
signalling networks. In: Logozzo, et al [83], pp. 83–97

37. Danos, V., Feret, J., Fontana, W., Krivine, J.: Abstract interpretation of cellular
signalling networks. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008.
LNCS, vol. 4905, pp. 83–97. Springer, Heidelberg (2008)

38. Danos, V., Krivine, J.: Formal molecular biology done in CCS-R. Electr. Notes
Theor. Comput. Sci. 180(3), 31–49 (2007), http://dx.doi.org/10.1016/j.

entcs.2004.01.040

39. Danos, V., Laneve, C.: Formal molecular biology. Theor. Comput. Sci. 325(1),
69–110 (2004)

40. Danos, V., Laneve, C.: Formal molecular biology. Theor. Comp. Science 325, 69–
110 (2004)

41. Danos, V., Schachter, V. (eds.): CMSB 2004. LNCS (LNBI), vol. 3082. Springer,
Heidelberg (2005)

42. Deaton, R., Suyama, A. (eds.): DNA 15. LNCS, vol. 5877. Springer, Heidelberg
(2009)

43. Degano, P., Gorrieri, R. (eds.): CMSB 2009. LNCS, vol. 5688. Springer, Heidelberg
(2009)

428 L. Hartmann et al.

44. Delzanno, G., Giusto, C.D., Gabbrielli, M., Laneve, C., Zavattaro, G.: The kappa-
lattice: Decidability boundaries for qualitative analysis in biological languages. In:
Degano and Gorrieri [43], pp. 158–172

45. Doty, D., Patitz, M.J.: A Domain-Specific Language for Programming in the Tile
Assembly Model, pp. 25–34. Springer, Heidelberg (2009)

46. Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160
(1984)

47. Eades, P., Lai, W., Misue, K., Sugiyama, K.: Preserving the mental map of a
diagram. In: COMPUGRAPHICS 1991, vol. I, pp. 34–43 (1991)

48. Elbaz, J., Lioubashevski, O., Wang, F., Remacle, F., Levine, R.D., Willner, I.:
DNA computing circuits using libraries of DNAzyme subunits. Nat. Nanotech-
nol. 5(6), 417–422 (2010), http://dx.doi.org/10.1038/nnano.2010.88

49. Fisher, J., Henzinger, T.A.: Executable cell biology. Nature Biotechnology 25(11),
1239–1249 (2007), http://dx.doi.org/10.1038/nbt1356

50. Fleischer, R., Hirsch, C.: Graph drawing and its applications. In: Kaufmann,
M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 1–22. Springer,
Heidelberg (2001)

51. Fontana, W., Buss, L.: The barrier of objects: From dynamical systems to bounded
organizations. Working Papers wp96027, International Institute for Applied Sys-
tems Analysis (March 1996), http://ideas.repec.org/p/wop/iasawp/wp96027.
html

52. Frick, A., Ludwig, A., Mehldau, H.: A fast adaptive layout algorithm for undi-
rected graphs. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp.
388–403. Springer, Heidelberg (1995), http://dblp.uni-trier.de/db/conf/gd/
gd94.html#FrickLM94

53. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed place-
ment. Software: Practice and Experience 21(11), 1129–1164 (1991), citeseer.

ist.psu.edu/fruchterman91graph.html

54. Fu, P.: Biomolecular computing: Is it ready to take off? Biotechnology Jour-
nal 2(1), 91–101 (2007), http://dx.doi.org/10.1002/biot.200600134

55. Gardner, M.: The fantastic combinations of John Conway’s new solitaire game
“life”. Scientific American 223, 120–123 (1970)

56. Gardner, M.: Mathematical recreations. Scientific American (October 1970)
57. Garzon, M.H., Deaton, R.J.: Biomolecular computing and programming. IEEE

Trans. Evolutionary Computation 3(3), 236–250 (1999)
58. Gilmore, S., Hillston, J.: The PEPA Workbench: A Tool to Support a Process

Algebra-based Approach to Performance Modelling. In: Haring, G., Kotsis, G.
(eds.) TOOLS 1994. LNCS, vol. 794, pp. 353–368. Springer, Heidelberg (1994)

59. Giral, U.D.E., Cetintas, A., Civril, A., Demir, E.: A compound graph layout
algorithm for biological pathways. In: Pach [94], pp. 442–447, http://dblp.

uni-trier.de/db/conf/gd/gd2004.html#DogrusozGCCD04

60. Goel, A., Ibrahimi, M.: Renewable, time-responsive DNA logic gates for scalable
digital circuits. In: Deaton and Suyama [42], pp. 67–77

61. Goel, A., Simmel, F.C., Sośık, P. (eds.): DNA Computing. LNCS, vol. 5347.
Springer, Heidelberg (2009)

62. Guarnieri, F., Fliss, M., Bancroft, C.: Making DNA add. Science 273(5272), 220–
223 (1996)

Computational Biology: A Programming Perspective 429

63. Guerriero, M.L., Prandi, D., Priami, C., Quaglia, P.: Process calculi abstrac-
tions for biology. Tech. rep., CoSBi (Center for Computational and Systems Biol-
ogy), University of Trento (January 01, 2006), http://eprints.biblio.unitn.
it/archive/00001704/, http://eprints.biblio.unitn.it/archive/00001704/
01/TR-13-2006.pdf

64. Guerriero, M.L., Prandi, D., Priami, C., Quaglia, P.: Process calculi
abstractions for biology. Tech. rep., University of Trento, Italy (Jan-
uary 01, 2006), http://eprints.biblio.unitn.it/archive/00001704/, http://
eprints.biblio.unitn.it/archive/00001704/01/TR-13-2006.pdf

65. Hagiya, M.: From molecular computing to molecular programming. In: Con-
don and Rozenberg [32], pp. 89–102, http://link.springer.de/link/service/
series/0558/bibs/2054/20540089.htm

66. Hagiya, M.: Designing chemical and biological systems. New Generation Com-
put. 26(3), 295 (2008)

67. Hartmann, L., Jones, N., Simonsen, J.: Programming in biomolecular computa-
tion. In: CS2BIO 2009: Proceedings of the 1st International Workshop on Inter-
actions between Computer Science and Biology. Electronic Notes on Theoretical
Computer Science series. Elsevier (2010), http://dx.doi.org/10.1016/j.entcs.
2010.12.008

68. Hartmann, L., Jones, N., Simonsen, J., Vrist, S.: Programming in biomolec-
ular computation: Programs, self-interpretation and visualisation. To appear
in Scientific Annals of Computer Science, http://dk.diku.blob.blobvis.s3.

amazonaws.com/blobiasi.pdf
69. Heer, J.: Prefuse: a software framework for interactive information visualization.

Master’s thesis, University of California, Berkeley (2004), http://jheer.org/

publications/2004-Heer-prefuse-MastersApp.pdf
70. Hoare, C.A.R.: Communicating sequential processes. Communications of the

ACM 21(8), 666–677 (1978)
71. Hug, H., Schuler, R.: Strategies for the development of a peptide computer. Bioin-

formatics 17(4), 364–368 (2001), http://bioinformatics.oxfordjournals.org/
content/17/4/364.abstract

72. Jones, J.E.: On the determination of molecular fields. ii. from the equation of
state of a gas. Proceedings of the Royal Society of London. Series A 106(738),
463–477 (1924), http://dx.doi.org/10.1098/rspa.1924.0082

73. Jones, N., Gomard, C., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice Hall International Series in Computer Science. Prentice-Hall
(1993)

74. Jones, N.D.: Computability and complexity: from a programming perspective.
MIT Press, Cambridge (1997)

75. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs.
Information Processing Letters 31(1), 7–15 (1989)

76. Kari, J.: Theory of cellular automata: A survey. Theoretical Computer Sci-
ence 334(1-3), 3–33 (2005), http://www.sciencedirect.com/science/article/
B6V1G-4FDS8HM-2/2/7bdf589f505353432c8447e06f491ceb

77. Kari, L.: Biological computation: How does nature compute? Tech. rep., Univer-
sity of Western Ontario (2009)

78. Kari, L., Rozenberg, G.: The many facets of natural computing. Commun.
ACM 51(10), 72–83 (2008)

79. Khodor, J.: DNA-based string rewrite computational systems. Ph.D. thesis, Mas-
sachusetts Institute of Technology, Dept. of Electrical Engineering and Computer
Science (2002), http://hdl.handle.net/1721.1/8339

430 L. Hartmann et al.

80. Khodor, J., Gifford, D.K.: Programmed mutagenesis is universal. Theory Com-
put. Syst. 35(5), 483–500 (2002), http://dblp.uni-trier.de/db/journals/mst/
mst35.html#KhodorG02

81. Krämer, M., Pita, M., Zhou, J., Ornatska, M., Poghossian, A., Schöning, M.J.,
Katz, E.: Coupling of biocomputing systems with electronic chips: Electronic
interface for transduction of biochemical information. The Journal of Physi-
cal Chemistry C 113(6), 2573–2579 (2009), http://pubs.acs.org/doi/abs/10.
1021/jp808320s

82. Lipton, R.J.: Using DNA to solve NP-complete problems. Science 268, 542–545
(1995)

83. Logozzo, F., Peled, D., Zuck, L.D. (eds.): VMCAI 2008. LNCS, vol. 4905. Springer,
Heidelberg (2008)

84. Lund, K., Manzo, A.J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave,
J., Taylor, S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.:
Molecular robots guided by prescriptive landscapes. Nature 465(7295), 206–210
(2010), http://dx.doi.org/10.1038/nature09012

85. Mao, C., Labean, T.H., Reif, J.H., Seeman, N.C.: Logical computation using al-
gorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496
(2000)

86. Milner, R.: Communication and concurrency. Prentice-Hall, Inc., Upper Saddle
River (1989)

87. Milner, R.: Functions as processes. Research Report 1154, INRIA (1990)

88. Minsky, M.: Computation: finite and infinite machines. Prentice-Hall, Englewood
Cliffs (1967)

89. Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental
map. Journal of Visual Languages and Computing 6(2), 183–210 (1995),
http://www.sciencedirect.com/science/article/B6WMM-45PVMS3-13/2/

0f1f0f6cf4f49a7892fb6064751b128c

90. Stojanovic, M.N., Stefanovic, D.: A deoxyribozyme-based molecular automaton.
Nature Biotechnol. 21(9), 1069–1074 (2003)

91. Murata, S., Stojanovic, M.N.: DNA-based nanosystems. New Generation Com-
put. 26(3), 297–312 (2008)

92. Nehaniv, C.L.: Asynchronous automata networks can emulate any synchronous
automata network. International Journal of Algebra and Computation 14(5-6),
719–739 (2004)

93. von Neumann, J., Burks, A.W.: Theory of Self-Reproducing Automata. Univ.
Illinois Press (1966)

94. Pach, J. (ed.): GD 2004. LNCS, vol. 3383. Springer, Heidelberg (2005)

95. Parker, J.: Computing with DNA. EMBO Rep. 4(7), 7–10 (2003)

96. Phillips, A., Cardelli, L.: A programming language for composable DNA circuits.
Journal of the Royal Society Interface 6(S4) (2009)

97. Qian, L., Winfree, E.: A simple DNA gate motif for synthesizing large-scale cir-
cuits. In: Goel, et al [61], pp. 70–89

98. Ran, T., Kaplan, S., Shapiro, E.: Molecular implementation of simple logic pro-
grams. Nat. Nano. 4(10), 642–648 (2009), http://dx.doi.org/10.1038/nnano.
2009.203

99. Regev, A., Shapiro, E.Y.: Cells as computation. In: Priami, C. (ed.) CMSB 2003.
LNCS, vol. 2602, pp. 1–3. Springer, Heidelberg (2003), http://link.springer.
de/link/service/series/0558/bibs/2602/26020001.htm

Computational Biology: A Programming Perspective 431

100. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: Bioambients:
An abstraction for biological compartments. TCS: Theoretical Computer Sci-
ence 325 (2004)

101. Regev, A., Silverman, W., Shapiro, E.Y.: Representation and simulation of bio-
chemical processes using the pi-calculus process algebra. In: Pacific Symposium
on Biocomputing, pp. 459–470 (2001), http://helix-web.stanford.edu/psb01/
regev.pdf

102. Reif, J.H., LaBean, T.H.: Autonomous programmable biomolecular devices using
self-assembled DNA nanostructures. Commun. ACM 50(9), 46–53 (2007), http://
dblp.uni-trier.de/db/journals/cacm/cacm50.html#ReifL07

103. Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Inv.
Math. 12, 117–209 (1971)

104. Rothemund, P.W.K.: A DNA and restriction enzyme implementation of Turing
machines. In: Lipton, E.B.B.R.J. (ed.) DNA Based Computers. DIMACS: Series
in Discrete Mathematics and Theoretical Computer Science, vol. 27, pp. 75–120.
American Mathematical Society (1995)

105. Rothemund, P.W.K.: Using lateral capillary forces to compute by self-assembly.
Proceedings of the National Academy of Sciences of the United States of Amer-
ica 97(3), 984–989 (2000), http://www.pnas.org/content/97/3/984.abstract

106. Rothemund, P.: Folding DNA to create nanoscale shapes and patterns. Na-
ture 440, 297–302 (2006)

107. Roweis, S., Winfree, E., Burgoyne, R., Chelyapov, N.V., Goodman, M.F.,
Rothemund, P.W.K., Adleman, L.M.: A sticker based model for DNA com-
putation. In: Landweber, L., Baum, E. (eds.) DNA Based Computers II. DI-
MACS: Series in Discrete Mathematics and Theoretical Computer Science, vol. 44,
American Mathematical Society (1996), ftp://hope.caltech.edu/pub/roweis/
DIMACS/stickers.ps

108. Roweis, S.T., Winfree, E., Burgoyne, R., Chelyapov, N.V., Goodman, M.F.,
Rothemund, P.W.K., Adleman, L.M.: A sticker-based model for DNA compu-
tation. Journal of Computational Biology 5(4), 615–630 (1998)

109. Sander, G.: Graph layout for applications in compiler construction. Theor. Com-
put. Sci. 217(2), 175–214 (1999), http://dblp.uni-trier.de/db/journals/tcs/
tcs217.html#Sander99

110. Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. Cam-
bridge University Press (2001)

111. Seelig, G., Soloveichik, D.: Time-Complexity of Multilayered DNA Strand Dis-
placement Circuits, pp. 144–153. Springer, Heidelberg (2009)

112. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-Free Nucleic Acid
Logic Circuits. Science 314(5805), 1585–1588 (2006), http://www.sciencemag.

org/cgi/content/abstract/314/5805/1585
113. Shapiro, B.: Bringing DNA computers to life. SCIAM: Scientific American 294

(2006)
114. Shapiro, E.: Mechanical Turing machine: Blueprint for a biomolecular computer.

Tech. rep., Weizmann Institute of Science (1999)
115. Shapiro, E.: Mechanical Turing machine: Blueprint for a biomolecular computer.

Tech. rep., Weizmann Institute of Science (1999)
116. Shapiro, E., Benenson, Y.: Bringing DNA computers to life. Scientific Ameri-

can 294, 44–51 (2006)
117. Shlyahovsky, B., Li, Y., Lioubashevski, O., Elbaz, J., Willner, I.: Logic gates

and antisense DNA devices operating on a translator nucleic acid scaffold. ACS
Nano 3(7), 1831–1843 (2009), http://dx.doi.org/10.1021/nn900085x

432 L. Hartmann et al.

118. Simpson, M.L., Sayler, G.S., Fleming, J.T., Applegate, B.: Whole-cell biocomput-
ing. Trends Biotechnol. 19(8), 317–323 (2001), http://www.biomedsearch.com/
nih/Whole-cell-biocomputing/11451474.html

119. Smith, W.D.: DNA computers in vitro and vivo. In: Lipton, E.B.B.R.J. (ed.)
DNA Based Computers. DIMACS: Series in Discrete Mathematics and Theo-
retical Computer Science, vol. 27, pp. 121–186. American Mathematical Society
(1995)

120. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical
kinetics. In: Goel et al [61], pp. 57–69

121. Stefansen, C.: SMAWL: A SMAll workflow language based on CCS. In: Belo,
O., Eder, J. (eds.) CAiSE 2005. CAiSE Forum, Short Paper Proceedings. CEUR
Workshop Proceedings, vol. 161, CEUR-WS.org (2005), http://www.ceur-ws.

org/Vol-161/FORUM_10.pdf

122. Storey, M.A.D., Fracchia, F., Müller, H.: Customizing a Fisheye View Algorithm
to Preserve the Mental Map. Journal of Visual Languages and Computing 10(3),
245–267 (1999)

123. Talcott, C.: Pathway logic. In: Bernardo, M., Degano, P., Tennenholtz, M. (eds.)
SFM 2008. LNCS, vol. 5016, pp. 21–53. Springer, Heidelberg (2008)

124. Turing, A.: On computable numbers with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society 42(2), 230–265
(1936-1937)

125. Wang, H.: Proving theorems by pattern recognition ii. Bell System Technical
Journal 40, 1–40 (1961)

126. Wang, S., Yang, A.: DNA solution of integer linear programming. Applied Math-
ematics and Computation 170(1), 626–632 (2005)

127. Winfree, E.: Toward molecular programming with DNA. SIGOPS Oper. Syst.
Rev. 42(2), 1–1 (2008)

128. Winfree, E., Eng, T., Rozenberg, G.: String tile models for DNA computing by
self-assembly. In: Condon, A., Rozenberg, G. (eds.) DNA 2000. LNCS, vol. 2054,
pp. 63–88. Springer, Heidelberg (2001)

129. Winfree, E., Yang, X., Seeman, N.C.: Universal computation via self-assembly of
DNA: Some theory and experiments. In: DNA Based Computers II. DIMACS,
vol. 44, pp. 191–213. American Mathematical Society (1996)

130. Winfree, E., Yang, X., Seeman, N.C.: Universal computation via self-assembly of
DNA: Some theory and experiments. In: DNA Based Computers II. DIMACS,
vol. 44, pp. 191–213. American Mathematical Society (1996)

131. Wolfram, S.: A New Kind of Science. Wolfram Media (January 2002), http://
www.amazon.com/exec/obidos/ASIN/1579550088/ref=nosim/rds-20

132. Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., Labean, T.H.:
DNA-templated self-assembly of protein arrays and highly conductive nanowires.
Science 301(5641), 1882–1884 (2003), http://dx.doi.org/10.1126/science.

1089389

133. Yin, P., Choi, H.M.T., Calvert, C.R., Pierce, N.A.: Programming biomolecular
self-assembly pathways. Nature 451(7176), 318–322 (2008), http://dx.doi.org/
10.1038/nature06451

134. Yin, P., Turberfield, A.J., Sahu, S., Reif, J.H.: Design of an autonomous DNA
nanomechanical device capable of universal computation and universal transla-
tional motion. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS,
vol. 3384, pp. 426–444. Springer, Heidelberg (2005)

Computational Biology: A Programming Perspective 433

135. Yokomori, T., Kobayashi, S., Ferretti, C.: On the power of circular splicing sys-
tems and DNA computability. In: IEEE International Conference on Evolution-
ary Computation (1997), http://ylab-gw.cs.uec.ac.jp/../Papers/yokomori/
cssfinal.ps.gz

136. Zhang, D.Y.: Dynamic DNA strand displacement circuits. Ph.D. thesis, California
Institute of Technology (2010), http://resolver.caltech.edu/CaltechTHESIS:
05262010-173410602

137. Zhu, Y., Ding, Y., Li, W., Kemp, G.: A proposed modularized dna computer,
based on biochips. In: GEC 2009: Proceedings of the first ACM/SIGEVO Summit
on Genetic and Evolutionary Computation, pp. 773–780. ACM, New York (2009)

G. Agha, O. Danvy, and J. Meseguer (Eds.): Talcott Festschrift, LNCS 7000, pp. 434–445, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Applications of Pathway Logic Modeling to Target
Identification

Anupama Panikkar1, Merrill Knapp3, Huaiyu Mi2, Dave Anderson1,
Krishna Kodukula1, Amit K. Galande1, and Carolyn Talcott2

1 Center for Advanced Drug Research, SRI International, Harrisonburg, Virginia 22802
{anupama.panikkar,david.anderson,krishna.kodukula,

amit.galande}@sri.com

2 Computer Science Lab, SRI International, Menlo Park, CA 94025
mi@ai.sri.com, clt@csl.sri.com

3 Biosciences Division, SRI International, Menlo Park, CA 94025
merrill.knapp@sri.com

Abstract. To explore the role of proteases in pathogenesis and as potential drug
targets we need to elucidate their function and effect on biological networks. In
this paper, we describe the application of Pathway Logic (PL)
(http://pl.csl.sri.com/) to the symbolic modeling of the interaction networks of
proteases of Gram-positive bacteria and the use of Pathway Logic Assistant tool
(PLA) to browse and query these models. Pathway Logic is a systems biology
approach to biological processes as integrated systems rather than isolated parts
based on formal methods and rewriting logic. These models are developed us-
ing Maude, a formal language and tool set based on rewriting logic. We show
how this approach can be used to represent and analyze systems at multiple
levels of details. The Pathway Logic Assistant tool enables us to identify key
proteases and regulatory molecules – ‘choke points’ by comparing different
pathways or networks within and across species and to predict how these mole-
cules, if inhibited or avoided would affect the pathway or network.

1 Introduction

The emergence of Gram-positive drug resistant bacteria such as methicillin-resistant
Staphylococcus aureus (MRSA), Streptococcus pneumoniae and Enterococcus
represent a serious public health problem. This might be resolved by using a new
generation of antibiotics with a different mechanism of action. Proteases (also termed
peptidases or proteinases) are enzymes that break down proteins by hydrolysis of
peptide bonds in the proteins. Bacterial proteases are implicated in virtually every
important biological process related to colonization and evasion of host immune de-
fenses, acquisition of nutrients for growth and proliferation, or tissue damage during
infection. Thus, bacterial proteases represent suitable drug targets and inhibition of
these enzymes would retard the growth and proliferation of invading pathogens [1–3].
It is critical to understand the role of proteases by modeling them in the context of
multiple components such as protein signaling networks and complex biochemical
pathways that can influence their activity. In this study, we use the Pathway Logic

 Applications of Pathway Logic Modeling to Target Identification 435

(PL) [4–6] framework to symbolically model the protease networks and pathway in-
terconnectivity of multiple Gram-positive bacteria including pathogenic and non-
pathogenic species in an effort to develop a comprehensive computational model.

Pathway Logic is a symbolic systems approach to the modeling and analysis of mo-
lecular and cellular processes based on rewriting logic [7]. Symbolic systems biology
is the qualitative and quantitative study of biological processes as integrated systems
rather than as isolated parts. An important objective of Pathway Logic is to reflect the
ways that biologists think about problems using informal models, and to provide
bench biologists with tools for computing with and analyzing these models. Symbol-
ic/logical models allow one to represent partial information and to model and analyze
systems at multiple levels of details, depending on information available and ques-
tions to be studied.

Pathway Logic models are curated from the literature, and written and analyzed us-
ing Maude [8], [9] (http://maude.cs.uiuc.edu/), a rewriting-logic-based formalism.
The Rewriting logic formalism is based on states of a system represented as elements
of an algebraic data type and the behavior of a system given by local transitions be-
tween states described by rewrite rules. A rewrite rule has the form t => t' if c where t
and t' are patterns (terms possibly containing place holder variables) and c is a condi-
tion (a boolean term). Such a rule applies to a system in state s if t can be matched to a
part of s by supplying the right values for the place holders, and if the condition c
holds when supplied with those values. The process of application of rewrite rules
generates computations (also thought of as deductions) and in case of biological
processes these computations correspond to pathways. In Pathway Logic, algebraic
data types are used to represent concepts from cell biology needed to model signaling
processes, including intracellular proteins, biochemicals such as second messengers,
extracellular stimuli, biochemical modification of proteins, protein association, and
cellular compartmentalization of proteins. Rewrite rules describe the behavior of pro-
teins and other components depending on modification state and biological context.
Each rule represents a step in a biological process such as metabolism or intra/inter-
cellular signaling. A specific model is assembled by specifying an initial state (called
a dish): the cells, their components, and entities such as ligands in the supernatant.
Pathway Logic models are executable – hence they can be used for simulation. In
addition, the Maude system provides search and model-checking capabilities. Using
the search capability all possible future states of a system can be computed to show its
evolution from a given initial state (specified by the states of individual components)
in response to a stimulus or perturbation. Using model-checking a system in a given
initial state can be shown to never exhibit pathways with certain properties, or the
model-checker can be used to produce a pathway with a given property (by trying to
show that no such pathway exists).

A Pathway Logic knowledge base includes data types representing cellular compo-
nents such as proteins, small molecules, complexes, compartments/locations protein
state, and post-translational modifications. Modifications can be as being activated,
inhibited, phosphorylated, degraded or anchored. It also enables one to collect, store
and retrieve curated information represented as metadata so that it can be understood
and shared by a community of experimental biologists.

436 A. Panikkar et al.

The Pathway Logic Assistant (PLA) [10] provides an interactive visual representa-
tion of PL models. Using the Pathway Logic Assistant (PLA) one can display path-
ways of interest, compare two pathways, search for cross talk between subsystems by
exploring subnets, map gene expression data onto signaling networks and compute
the effects of system perturbations by single or double knockouts (omission of indi-
vidual or pairs of proteins that prevents reaching a specified state).

The remainder of the paper is organized as follows. The basic ideas of Pathway
Logic are presented in §2, and illustrated with fragments from a model of heme trans-
port in Staphylococcus aureus. Use of the Pathway Logic Assistant tool to browse and
query models is discussed in §3. Applications of Pathway Logic in target discovery
are shown by few examples in §4. The paper concludes with a discussion of future
directions in §5.

2 Pathway Logic Basics

Pathway Logic models are structured in four layers: (1) sorts and operations, (2) com-
ponents, (3) rules, and (4) dishes and queries. The sorts and operations layer declares
the main sorts and subsort relations, the logical analog to ontology or class hierarchy.
The sorts of entities include Chemical, Protein, Gene, Complex, Location (cellular
compartments), and Cell. These are all subsorts of the sort, Soup that represents ‘liq-
uid’ mixtures, as multisets (unordered collections) of entities. The sort Modification is
used to represent post-translational protein modifications and gene regulations includ-
ing up-regulation and down-regulation in the bacteria. They can be abstract, to specify
that a protein is activated, inhibited, bound, anchored, degraded, phosphorylated,
dephosphorylated, or more specific, for example, phosphorylation at a particular site.
Gene up-regulation specifies increased expression of genes and their encoded protein
and gene down-regulation indicates decreased gene and corresponding protein expres-
sion. Modifications are applied using the operator [–]. For example the term [IsdA
– anchored] represents the iron-responsive surface determinant A (IsdA) protein
in an anchored state and [ClpP-gene – on] represents ClpP gene in its ‘on’
state (upregulated).

 A cell state is represented by a term of the form
 [cellType | locs]

where cellType specifies the type of cell and locs represents the contents of a
cell organized by cellular location. Each location is represented by a term of the form
{ locName | components } where locName identifies the location. In
gram-positive bacteria the locations defined are

 CLm for cell membrane
 CLc for cytosol
 CLw for cell wall
 Xout for outside of the bacterial cell and
components stands for the mixture of proteins, genes and other compounds in

that location.

 Applications of Pathway Logic Modeling to Target Identification 437

The components layer specifies particular entities (proteins, genes, chemicals) and
introduces additional sorts for grouping proteins in families. The rules layer contains
rewrite rules specifying individual reaction steps. In the case of signal transduction,
rules represent processes such as activation, phosphorylation, complex formation, or
translocation. The sorts and operations, components, and rules layers make up a
Pathway Logic knowledge base. The dishes and queries layer specifies initial states,
relative to which queries can be answered, and properties of states to be used in for-
mulating queries. Initial states are in silico Petri dishes containing a cell, with its
components, and ligands of interest in the supernatant.

We give a brief overview of the representation in Maude of bacterial intracellular
processes, illustrated using a model of heme transport involving the membrane cyste-
ine protease-transpeptidases Sortase A (SrtA) and Sortase B (SrtB) in the pathogenic
bacterium S. aureus in the following §2.1.

2.1 Modeling Heme Transport Involving SrtA and SrtB
Protease-Transpeptidases in Pathway Logic

Pathogenic bacteria require iron as a source of nutrient during the infection process. S.
aureus utilizes heme (a non-protein chemical compound that contains an iron atom)
as a source of iron for its growth during infection. It acquires heme from the host
environment and transports it across the cell wall into the cytoplasm by the heme-
binding Isd proteins. The passage of heme also requires two sortases namely SrtA and
SrtB that anchor these heme-binding Isd proteins to the cell wall. SrtA anchors IsdA,
IsdB and IsdH proteins and SrtB anchors IsdC protein to the cell wall. As shown in
Fig. 2, the heme binds to IsdA, IsdB, IsdC and IsdH proteins, which is then trans-
ported to the membrane transport system composed of IsdDEF into the cytoplasm. In
the cytoplasm the heme is degraded by the IsdG and IsdI heme monooxygenases,
releasing the free iron for use by the bacterium as a nutrient source. The Pathway
Logic model of heme transport in S. aureus was curated based on papers from Olaf
Schneewind’s lab [11–13] and many other references (cited as metadata associated
with individual rules). In the following we show an initial state for study of heme
transport and examples of rules and briefly sketch some of the ways one can compute
with the model. The initial state (called Hemetransport) is a dish PD(...)
with a single cell represented by the following

Dish: PD([Cell |

 {XOut | Heme}
 {CLm | IsdD IsdE IsdF SrtA SrtB}
 {CLc | IsdG IsdI}
 {CLw | IsdA IsdB IsdC IsdH}])

Here, the dish contains Heme in the outside environment (location tag XOut). The
cell membrane (tag CLm) has proteins IsdD, IsdE, IsdF, SrtA and SrtB. The cell wall
(tag CLw) contains IsdA, IsdB, IsdC, and IsdH. The cytosol (tag CLc) contains pro-
teins IsdG and IsdI.

438 A. Panikkar et al.

The following is an example of the rule representing heme uptake by IsdB.

rl[5]:
 {XOut | xout Heme }
 {CLw | clw [IsdB - anchored] }
 =>
 {XOut | xout }
 {CLw | clw ([IsdB - anchored] : Heme) } .

As shown in Fig. 2, applying rules 1-4 to the initial dish results in a dish with IsdA,
IsdB, IsdC and IsdH anchored, and applying rule 5 to this dish results in

Dish: PD([Cell |
 {XOut | empty}
 {CLm | IsdD IsdE IsdF SrtA SrtB}
 {CLc | IsdG IsdI}
 {CLw | (Heme : [IsdB - anchored]) [IsdA – an
 chored] [IsdC - anchored][IsdH – an
 chored]}])

Maude [8], [9] can be used to find some execution, or to search for a state; for exam-
ple, a state with Fe3+ in the CLc. However, the textual representation of cell states
and pathways quickly becomes difficult to use as the size of a model grows, and an
intuitive graphical representation becomes increasingly important. In addition, it be-
comes important to take advantage of the simple structure of PL models when search-
ing for paths and carrying out other analyses. In the next section we show how the
Pathway Logic Assistant can be used to visualize a model as a network of reaction
rules, to browse the network, and to specify and execute queries.

3 The Pathway Logic Assistant

The Pathway Logic Assistant (PLA) [10] provides an interactive graphical view of a PL
knowledge base. A PL knowledge base uses the Petri net transition representation of the
Maude rules. A model is then generated by specifying a dish (initial state). Petri nets
have a natural graphical representation, and additionally, there are very efficient tools
for analyzing the Petri net models generated by PLA. Our Petri net models are a special
case of Place-Transition Nets given by a set of occurrences (places in Petri net terminol-
ogy) and a set of transitions [14]. Occurrences can be thought of as atomic propositions
asserting that a protein (in a given state) or other component occurs in a given compart-
ment. For example Heme outside a bacterial cell is represented by the occurrence
<Heme, Xout> and IsdB anchored in the cell wall is represented by <[IsdB -
anchored], CLw>. A system state is represented as a set of occurrences (called a
marking in Petri net terminology), giving the propositions that are true. A transition is a
pair of sets of occurrences. A transition can fire if the state contains the first set of oc-
currences. In which case the first set of occurrences is replaced by the second set. For
example the rule labeled [5] shown in §2 becomes the transition

 pnTrans[5]:

<Heme,XOut> <[IsdB - anchored],CLw>
=>
<Heme :[IsdB - anchored],CLw > .

 Applications of Pathway Logic Modeling to Target Identification 439

In PLA goal properties are Petri net properties expressed as occurrences that must be
present (places to be marked) and avoids properties are occurrences that must not
appear (places not to be marked) in a computation. Paths leading from an initial state
to a state satisfying a set of goals can be represented compactly as a Petri net consist-
ing of the transitions fired in the path, thus giving query results a natural graphical
representation. Execution of the path net starting with the initial state, leads to a state
satisfying the goals, and the net representation makes explicit the dependency rela-
tions between transitions: some can fire concurrently (order doesn’t matter), and some
require the output of other transitions to be enabled.

Fig. 1 shows a screen shot of the Petri net model of the protease network generated
by PLA. Ovals are occurrences, with initial occurrences darker. Rectangles are transi-
tions. Dashed arrows indicate an occurrence that is both input and output. The thumb
nail sketch in the upper right shows the full network. The main frame shows a magni-
fied version of the portion of the network in the red rectangle. The Finder in the lower
right allows one to locate occurrences and rules by name, and center the view on the
selected node. To make a query, goals and avoids can be specified either by clicking

Fig. 1. Protease network model as Petri net viewed in PLA. Ovals are occurrences, with initial
occurrences darker. Rectangles are transitions. Dashed arrows indicate an occurrence that is
both input and output. The full protease net is shown in the upper right thumbnail. A magnified
view of the portion in the red rectangle is shown in the main view.

440 A. Panikkar et al.

Fig. 2. Heme transport pathway in S. aureus. This pathway shows the transfer of heme by the
Sortase anchored Isd proteins from outside of the bacterial cell to the cytosol and subsequent
release of Fe3+ in the cytosol for use by the bacterium as a nutrient source.

on the occurrence and selecting goal or avoid in the selection window that appears, or
by using the selection window directly. Once goals and avoids have been specified
the user can ask to see the relevant subnet or to find a path. The relevant subnet con-
tains all of the rules needed for any (minimal) pathway satisfying the query, while the
path is just the first path found by the analysis tool. Fig. 2 shows the path found in
response to the query in which the goal is Fe3+ in the cytosol (<Fe3+, CLc>) and
there are no avoids.

 Applications of Pathway Logic Modeling to Target Identification 441

4 Applications of Pathway Logic in Target Discovery

We describe here a few applications of Pathway Logic in target discovery. Identifying
choke points or key molecules in the pathogens can accelerate the process of drug
discovery. Choke points are critical points in a network and inactivation of choke
points may lead to an organism’s failure to produce or consume particular metabo-
lites, which could cause serious problems for fitness or survival of the organism [15].
Potential drug targets are proposed based on the analysis of these choke points in the
bacterial network.

4.1 Comparative Network Analysis and Target Inhibition

In Pathway Logic, one can identify choke points or key molecules by comparing dif-
ferent pathways or networks within and across species and target these molecules

Fig. 3. Comparison of two pathways from S. aureus and C. diphtheriae - the heme transport
(purple/darker color), and the pilus assembly (blue-green/lighter color). The common part
(SrtA) is peach colored.

442 A. Panikkar et al.

participating in pathogenesis. In addition to generating subnets and pathways, two
subnets and/or pathways can be compared. For this, the two networks are merged into
one and color-coded. Fig. 3 shows the result of comparing two pathways from two-
bacterial species - the heme transport in S. aureus [12], [13] and the pilus assembly in
Corynebacterium diphtheriae [16]: the heme transport (purple/darker color), and pilus
assembly (blue-green/lighter color). The common part (SrtA) is peach colored.

The observed sharing of SrtA suggests asking: what happens if it is removed?
Fig. 4 shows the subnet with SrtA avoided and viewing the result in the context of the
heme-pilus subnet. The model shows inhibition of SrtA affects the heme transport
pathway in S. aureus. This inhibition model corroborated with an earlier study show-
ing that inactivation of SrtA lead to a decrease in the amount of iron associated with
S. aureus cells. Biological studies have shown that the knockout mutation of SrtA
gene in S. aureus greatly reduces the capacity of the pathogen to establish an acute
infection in mice [17], [18]. Thus, in the growing antibiotic resistant scenario, SrtA
may prove exciting new target of anti-infective therapy [19]. SrtA did not inhibit the
pili formation due to the occurrence of another redundant pathway in which SrtF, a
house keeping sortase, is involved in the Spa pili assembly.

IsdB-CLw

Heme-XOutIsdH-anchored-CLw

Heme:IsdH-anchored-CLw

Heme:IsdA-anchored-CLw

Heme:IsdC-anchored-CLwIsdE-CLm

IsdB-anchored-CLw

Heme:IsdB-anchored-CLw

IsdI-CLc IsdD-CLm Heme:IsdE-CLm IsdF-CLm IsdG-CLc

Heme:IsdG-CLcHeme:IsdI-CLc

Fe3+-CLc

IsdA-anchored-CLw

2 3 1 22 23

246

7

13

9

1012

16 15

17 18

5

11

48 14

IsdH-CLw SrtA-CLm IsdA-CLw SpaA-CLw SrtF-CLm

SpaB-CLw

IsdC-CLw SrtB-CLm

IsdC-anchored-CLw

SpaA-anchored-CLw SpaC-CLw

SpaABC-pilus-Sig

Fig. 4. Avoids query demonstrating single knockout of SrtA and its inhibitory effect on the
heme transport in S. aureus.

 Applications of Pathway Logic Modeling to Target Identification 443

4.2 Protease Interconnectivity Network

Pathway Logic models can be used to explore possible cross talks between proteases
and identify key regulatory proteases. Insights into possible interactions among mul-
tiple processes involving proteases will give a better understanding to the underlying
mechanisms and help develop specific inhibitors.

We show in Fig. 5, the interconnectivity between three proteases namely mem-
brane serine protease HtrA, Group A streptococcus exotoxin B, SpeB (a cysteine
protease) and membrane Type II SPase Lsp by setting these proteases as goals and
generating the subnet (all the three protease are green/lighter color). We are able to
show the direct and indirect influence they may have on each other. We show the
influence of HtrA and Lsp in the processing and activation of SpeB [20–25]. The
network also shows CiaRH and RopB upregulating HtrA and proSpeB (inactive pre-
cursor form) expression respectively.

Fig. 5. The protease interconnectivity network. The three proteases (green/lighter color) within
a larger protease network are shown to be interconnected in the process of SpeB activation.

5 Conclusions

We have described the Pathway Logic approach to modeling protease networks based
on rewriting logic and the use of the Pathway Logic Assistant to browse and analyze
these models. An important feature of PLA is the ability to generate pathways as
query results. The current state of Pathway Logic is one step towards the grander
vision of symbolic systems biology. Future challenges include developing such ex-
ecutable models of pathway interaction networks of proteases from both Gram-
positive and Gram-negative bacteria to understand the underlying regulatory mechan-
isms for cell survival and pathogenicity leading to drug discovery. Another direction
is to apply the basic approach to different types of systems, such as gene-regulation
networks, or multi-cellular systems, and to integrate models of different types of sys-
tems to develop a systems level view.

Acknowledgements. This work is supported by funding to SRI International from the
Commonwealth of Virginia. The authors would like to thank Festschrift organizers
for inviting this paper; and members of the Pathway Logic team for their contribu-
tions to the development of modeling techniques and the analysis and visualization
tools. Encouragement and guidance from Dr. Walter Moos, Vice President of Bios-
ciences at SRI, are gratefully acknowledged.

444 A. Panikkar et al.

References

1. Supuran, C.T., Scozzafava, A., Clare, B.W.: Bacterial Protease Inhibitors. Med. Res.
Rev. 22(4), 329–372 (2002)

2. Travis, J., Potempa, J.: Bacterial Proteinases as Targets for the Development of Second-
Generation Antibiotics. Biochim. Biophys. Acta 1477, 35–50 (2000)

3. Miyoshi, S.I., Shinoda, S.: Bacterial Metalloprotease as the Toxic Factor in Infection. J.
Toxicol. Toxin. Rev. 16, 177–194 (1997)

4. Talcott, C., Eker, S., Knapp, M., Lincoln, P., Laderoute, K.: Pathway Logic Modeling of
Protein Functional Domains in Signal Transduction. In: Proceedings of the Pacific Sym-
posium on Biocomputing, vol. 9, pp. 568–580 (2004)

5. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sonmez, K.: Pathway Log-
ic: Symbolic Analysis of Biological Signaling. In: Proceedings of the Pacific Symposium
on Biocomputing, vol. 7, pp. 400–412 (2002)

6. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Talcott. C.: Pathway Logic: Executable
Models of Biological Networks. In: Fourth International Workshop on Rewriting Logic
and Its Applications. Electronic Notes in Theoretical Computer Science, vol. 71 (2002)

7. Meseguer, J.: Conditional Rewriting Logic as a Unified Model of Concurrency. Theoreti-
cal Computer Science 96(1), 73–155 (1992)

8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All
About Maude - A High-Performance Logical Framework. How to Specify, Program and
Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer, Heidelberg (2007)

9. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.L.:
The Maude 2.0 system. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 76–87.
Springer, Heidelberg (2003)

10. Talcott, C., Dill, D.L.: The Pathway Logic Assistant. Proceedings of Computational Me-
thods in Systems Biology, 228–239 (2005)

11. Marraffini, L.A., DeDent, A.C., Schneewind, O.: Sortases and the Art of Anchoring Pro-
teins to the Envelopes of Gram-Positive Bacteria. Microbiol. Mol. Biol. Rev. 70(1), 192–
221 (2006)

12. Skaar, E.P., Gaspar, A.H., Schneewind, O.: IsdG and IsdI, Heme-Degrading Enzymes in
the Cytoplasm of Staphylococcus aureus. J. Biol. Chem. 279(1), 436–443 (2004)

13. Skaar, E.P., Schneewind, O.: Iron-Regulated Surface Determinants (Isd) of Staphylococ-
cus aureus: Stealing Iron from Heme. Microbes. Infect. 6(4), 390–397 (2004)

14. Stehr, M.O.: A Rewriting Semantics for Algebraic Nets. In: Girault, C., Valk, R. (eds.)
Petri Nets for System Engineering - A Guide to Modelling, Verification, and Applications
(2000)

15. Yeh, I., Hanekamp, T., Tsoka, S., Karp, P.D., Altman, R.B.: Computational Analysis of
Plasmodium falciparum metabolism: Organizing Genomic Information to Facilitate Drug
Discovery. Genome Res. 14(5), 917–924 (2004)

16. Ton-That, H., Schneewind, O.: Assembly of Pili on the Surface of Corynebacterium diph-
theriae. Mol. Microbiol. 50(4), 1429–1438 (2003)

17. Mazmanian, S.K., Liu, G., Jensen, E.R., Lenoy, E., Schneewind, O.: Staphylococcus au-
reus Sortase Mutants Defective in the Display of Surface Proteins and in the Pathogenesis
of Animal Infections. Proc. Natl. Acad. Sci. U S A 97(10), 5510–5515 (2000)

18. Mazmanian, S.K., Ton-That, H., Su, K., Schneewind, O.: An Iron-Regulated Sortase Anc-
hors a Class of Surface Protein During Staphylococcus aureus Pathogenesis. Proc. Natl.
Acad. Sci. U S A 99(4), 2293–2298 (2002)

 Applications of Pathway Logic Modeling to Target Identification 445

19. Maresso, A.W., Schneewind, O.: Sortase as a Target of Anti-infective Therapy. Pharma-
col. Rev. 60(1), 128–141 (2008)

20. Cole, J.N., Aquilina, J.A., Hains, P.G., Henningham, A., Sriprakash, K.S., Caparon, M.G.,
Nizet, V., Kotb, M., Cordwell, S.J., Djordjevic, S.P., Walker, M.J.: Role of Group A
Streptococcus HtrA in the Maturation of SpeB Protease. Proteomics 7(24), 4488–4498
(2007)

21. Ma, Y., Bryant, A.E., Salmi, D.B., Hayes-Schroer, S.M., McIndoo, E., Aldape, M.J.,
Stevens, D.L.: Identification and Characterization of Bicistronic speB and prsA Gene Ex-
pression in the Group A Streptococcus. J. Bacteriol. 188(21), 7626–7634 (2006)

22. Tjalsma, H., Kontinen, V.P., Pragai, Z., Wu, H., Meima, R., Venema, G., Bron, S., Sarvas,
M., van Dijl, J.M.: The Role of Lipoprotein Processing by Signal Peptidase II in the
Gram-positive Eubacterium Bacillus subtilis. Signal peptidase II is Required for the Effi-
cient Secretion of Alpha-amylase, a Non-lipoprotein. J. Biol. Chem. 274(3), 1698–1707
(1999)

23. Sutcliffe, I.C., Harrington, D.J.: Pattern Searches for the Identification of Putative Lipo-
protein Genes in Gram-positive Bacterial Genomes. Microbiology 148(7), 2065–2077
(2002)

24. Sebert, M.E., Palmer, L.M., Rosenberg, M., Weiser, J.N.: Microarray-Based Identification
of htrA, a Streptococcus pneumoniae Gene that is Regulated by the CiaRH Two-
Component System and Contributes to Nasopharyngeal Colonization. Infect. Im-
mun. 70(8), 4059–4067 (2002)

25. Hollands, A., Aziz, R.K., Kansal, R., Kotb, M., Nizet, V., Walker, M.J.: A Naturally Oc-
curring Mutation in ropB Suppresses SpeB Expression and Reduces M1T1 Group A
Streptococcal Systemic Virulence. PLoS One 3(12), e4102 (2008)

Author Index

Álvarez, José Maŕıa 329
Anderson, Dave 434
Arbab, Farhad 169

Bianchini, Devis 223

Cheung, Steven 110
Clavel, Manuel 277

Doh, Kyung-Goo 90
Duarte, Carlos Henrique C. 57
Durán, Francisco 329
Dutt, Nikil 207

Eker, Steven 299

Feferman, Solomon 1

Galande, Amit K. 434
Gehani, Ashish 262

Hartmann, Lars 403
Hölzl, Matthias 241

Jaghoori, Mohammad Mahdi 20
Jalali, Leila 352
Jones, Neil D. 403

Kim, Hyunha 90
Kim, Minyoung 110, 207
Knapp, Merrill 434
Kodukula, Krishna 434
Kreiker, Jörg 74

Lincoln, Pat 110

Mart́ı-Oliet, Narciso 277
Mehrotra, Sharad 352
Mi, Huaiyu 434

Nielson, Flemming 74
Nielson, Hanne Riis 74

Ölveczky, Peter Csaba 368
Owre, Sam 315

Pagliarecci, Francesco 223
Palomino, Miguel 277
Panikkar, Anupama 434
Pilegaard, Henrik 74
Pinsky, Sylvan 4
Poggio, Andy 110

Ren, Shangping 144
Rocha, Camilo 329
Rushby, John 110

Schmidt, David A. 90
Shankar, Natarajan 315
Simonsen, Jakob Grue 403
Sirjani, Marjan 20
Song, Miao 144
Spalazzi, Luca 223
Stehr, Mark-Oliver 110, 207
Subramani, K. 262

Talcott, Carolyn 110, 207, 434

Venkatasubramanian, Nalini 207, 352
Vrist, Søren Bjerregaard 403

Wirsing, Martin 241

Yu, Yue 144

Zaniewski, Lee 262

	Cover
	Front matter
	1. Two PhD Students for the Price of One
	Two PhD Students for the Price of One
	References

	2. Honoring Carolyn Talcottâ•Žs Contributions to Science
	Honoring Carolyn Talcott’s Contributions to Science
	Introduction
	Formal Methods and Protocol Analysis
	Carolyn's Leadership at SRI
	Symbolic Systems Biology
	New Insights for Network Science
	Open Systems
	References

	3. Ten Years of Analyzing Actors: Rebeca Experience
	Ten Years of Analyzing Actors: Rebeca Experience
	Introduction
	Rebeca Syntax and Semantics
	A Sender/Receiver Example

	Model Checking Tools
	Bounded Model Checking
	Domain Specific Model Checking: SystemC Designs

	Compositional Verification and Abstraction
	Symmetry and Partial Order Reduction
	Partial Order Reduction
	Symmetry Reduction
	Applicable Properties
	Related Work

	Slicing
	Slicing Rebeca
	Related Work

	Schedulability Analysis for Timed Actors
	Real-Time Classes and Rebecs in Timed Automata
	Modular Schedulability Analysis
	Related Work

	Extending Rebeca: Analyzing Self-adaptive Models
	Motivating Example: Smart Home
	PobSAM Outline
	Formal Analysis
	Related Work

	Conclusion and Future Work
	References

	4. Mathematical Models of Object-Based Distributed Systems
	Mathematical Models of Object-Based Distributed Systems
	Introduction
	Distributed System Notions
	Algebra
	Time Frames
	Distributed System Formal Models
	Interaction and Composition
	Distributed System Representations

	Topology
	Behavioural Properties
	Structural Properties
	Transference of Results

	Concluding Remarks
	References

	5. From Explicit to Symbolic Types for Communication Protocols in CCS
	From Explicit to Symbolic Types for Communication Protocols in CCS
	Introduction
	Value Passing CCS
	Syntax
	Reaction Semantics

	Explicit Types
	Symbolic Types
	The Diffie-Hellman Key Agreement Protocol
	Conclusion
	References

	6. Abstract LR-Parsing
	Abstract LR-Parsing
	Introduction
	Background Example
	Abstract LR(0)-Parsing
	Abstract Parse Stacks
	LR(k) Grammars Are Accommodated the Same Way
	Abstract Parsing with String-Replacement Operations
	Other Applications of String Transducers
	Modelling Global Variables and User Input by Nonterminals
	Abstract Parsing with Semantic Processing
	Conclusion
	References

	7. Fractionated Software for Networked Cyber-Physical Systems: Research Directions and Long-Term Vision
	Fractionated Software for Networked Cyber-Physical Systems: Research Directions and Long-Term Vision
	Introduction and Motivation
	A Reflective Architecture for Fractionated Software
	Fractionated Software Kernel
	Reflective Simulation Capability

	A Declarative Foundation for Cyber-Physical Systems
	Distributed, Quantitative, and Scalable Logical Framework
	Model Synthesis and Adaptation via Distributed Monitoring

	A New Generation of Runtime Assurance Techniques
	Probabilistic Runtime Testing and Verification
	Model-Based Distributed Control and Optimization
	Distributed On-demand Deductive Synthesis
	Predictive Just-in-Time Validation

	Illustrating Example: Fractionated Satellite Networks
	Background and Related Work
	Conclusion
	References

	8. Model Feasible Interactions in Distributed Real-Time Systems
	Model Feasible Interactions in Distributed Real-Time Systems
	Introduction
	Interaction Diagram
	Definitions
	Validity of Interaction Diagram

	Extended Interaction Diagram
	Extended Interaction Diagram
	Validity of Extended Interaction Diagram

	Timed Interaction Diagram
	Composing Extended Interaction Diagram with Timing Constraint Graph
	Validity of Timed Interaction Diagram

	Bundled Interaction Diagrams and Their Properties
	Bundled Interaction Diagram
	A Lattice of Bundled Interaction Diagrams and Its Properties

	Conclusion
	References

	9. Puff, The Magic Protocol
	Puff, The Magic Protocol
	Introduction
	Interaction Centric Concurrency
	An Overview of Reo
	Examples
	Alternator
	Sequencer
	Exclusive Router
	Shift-Lossy FIFO1
	Decoupled Alternating Producers and Consumer
	Dataflow Variable
	Fully Decoupled Alternating Producers and Consumer
	Flexibility

	Semantics
	Timed Data Streams
	Constraint Automata
	Connector Coloring
	Other Models

	Tools
	Concluding Remarks
	References

	10. A Formal Methodology for Compositional Cross-Layer Optimization
	A Formal Methodology for Compositional Cross-Layer Optimization
	Vision
	Overview of Technical Approach
	Supporting Model-Based Composition with xTune
	Model-Based Compositional Cross-Layer Optimization
	Understanding the Issue of Cross-Layer Optimization
	Constraint Refinement and Composition
	Integration of Formal Analysis with System Dynamics

	Sample Application Domains
	Networked Cyber-Physical Systems
	Dependable Instrumented Cyber-Physical Spaces
	Physical Infrastructure Protection

	Concluding Remarks
	References

	11. From Service Identification to Service Selection: An Interleaved Perspective
	From Service Identification to Service Selection: An Interleaved Perspective
	Introduction
	Related Work
	Problem Statement
	Semantic Annotation of Business Processes
	Service Identification
	Cohesion and Coupling Evaluation
	Decomposition Tree

	Service Selection
	Feedback Strategy
	Conclusion
	References

	12. Towards a System Model for Ensembles
	Towards a System Model for Ensembles
	Introduction
	Related Work
	Ensembles
	General Ensembles
	Modal and Time Ensembles
	Goal Satisfaction and Fitness
	Combination Operators

	Adaptation
	Network and Environment
	Adaptation Space

	Conclusions and Further Work
	References

	13. Algorithmic Aspects of Risk Management
	Algorithmic Aspects of Risk Management
	Introduction
	Risk Model
	Runtime Risk Factors
	Risk Management
	Response Selection
	Performance Sensitivity
	Abstracting the Problem

	On the Hardness of Risk Management
	Integral Costs and Benefits
	Independent Vulnerabilities and Consequences
	Qualitative Exposures and Consequences
	Known Workloads
	Dynamic Application Workloads

	Open Questions
	Related Work
	Conclusion
	References

	14. Parameterized Metareasoning in Membership Equational Logic
	Parameterized Metareasoning in Membership Equational Logic
	Motivation
	Membership Equational Logic
	Reflection in Membership Equational Logic
	Reflecting an Inductive Principle

	Parameterization
	(Some) Parameterized Membership Equational Theories

	Induction Principles for Parameterized Theories
	Reflected Parameterized Induction
	Representing Parameterized Theories
	Representing Parameterized Atomic Formulae
	Representing Requirements
	Reflecting Parameterized Induction Principles

	The Deduction Theorem Revisited
	Formalizing the Deduction Theorem
	Proving the Deduction Theorem

	Conclusion
	References

	15. Fast Sort Computations for Order-Sorted Matching and Unification
	Fast Sort Computations for Order-Sorted Matching and Unification
	Introduction
	Matching
	Unification

	Preliminaries
	Connected Components

	Computing the Least Sort of a Term
	Efficient Sort Decision Diagram Construction

	Computing Order-Sorted Unifiers from Unsorted Unifiers
	NP-Completeness
	Order-Sorted Unifier Extraction
	Bottom-up Symbolic Sort Computation
	Boolean Decision Diagrams
	Precomputations
	Unification-Time Computations

	Extensions
	Congruence Class Checks
	Towers of Function Symbols

	Final Remarks
	References

	16. Solving the First Verified Software Competition Problems Using PVS
	Solving the First Verified Software Competition Problems Using PVS
	Introduction
	Prototype Verification System
	Problem 1: Summation and Maximum
	Problem 2: Inverting an Array
	Problem 3: Searching in a List
	Problem 4: N-Queens
	Problem 5: Amortized Queue Implementation
	Discussion
	Conclusions
	References

	17. Towards a Maude Formal Environment
	Towards a Maude Formal Environment
	Introduction
	Object-Based Programming and User Interfaces in Maude
	The Design of MFE
	Proof Objects
	Tool Objects
	The Controller Object
	User Interaction and Tool Interoperability

	Tools in MFE
	The Maude Termination Tool
	The Church-Rosser Checker
	The Coherence Checker
	The Sufficient Completeness Checker
	The Maude Inductive Theorem Prover

	Extensibility by Example: The Integration of SCC
	SCC Proof Objects
	The SCC Tool Object
	Making SCC Operational in MFE

	Using MFE
	Conclusion
	References

	18. Multisimulations: Towards Next Generation Integrated Simulation Environments
	Multisimulations: Towards Next Generation Integrated Simulation Environments
	Motivation
	Multisimulation Architecture
	Integration Methodology
	Preprocessing Steps: Extract Simulators’ Metadata and Dependencies
	Run Federation

	Challenges
	Time Synchronization
	Data Transformation

	Prototype System Implementation
	Integrating Real-World Simulators
	Initial Results

	Related Work and Conclusions
	References

	19. Semantics, Simulation, and Formal Analysis of Modeling Languages for Embedded Systems in Real-Time Maude
	Semantics, Simulation, and Formal Analysis of Modeling Languages for Embedded Systems in Real-Time Maude
	Introduction
	Real-Time Maude
	AADL
	Synchronous AADL
	Ptolemy II Discrete-Event Models
	Timed Model Transformations in MOMENT2
	Domain-Specific Visual Languages in e-Motions
	A Modeling Language for Handset Software
	Concluding Remarks
	References

	20. Computational Biology: A Programming Perspective
	Computational Biology: A Programming Perspective
	Context
	A Theme: Biological Problem-Solving
	Anticipated Difficulties in Practical Computational Biology
	About the Scientific Method and Automatability

	Motivation
	Biocomputation
	Biomolecular Algebras and Calculi
	Programming

	Biochemical Universality and Programming
	Baseline: Program Execution
	Turing Completeness of Computational Models
	Programs in a Biochemical World

	History and Literature Review
	History
	Computational Universality of DNA Computers
	On Error Correction in Biological Contexts
	Process Calculus and Formal Methodology
	Recent Developments
	Conclusion

	The Blob Model of Programmed Universal Computation
	The Blob World from a Computer Science Perspective
	The Blob Language
	What Can Be Done in the Blob World?
	Blob Instruction Interpreter and Visualization Tool

	Conclusions
	References

	21. Applications of Pathway Logic Modeling to Target Identification
	Applications of Pathway Logic Modeling to Target Identification
	Introduction
	Pathway Logic Basics
	Modeling Heme Transport Involving SrtA and SrtB Protease-Transpeptidases in Pathway Logic

	The Pathway Logic Assistant
	Applications of Pathway Logic in Target Discovery
	Comparative Network Analysis and Target Inhibition
	Protease Interconnectivity Network

	Conclusions
	References

	Back matter

