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Preface

Uncertainties and risks have always been, and will remain, present; both in
everybody’s life and in policy making. This presence is not always recognized
because humans tend to perceive the world in a deterministic way, and in most
cases succeed in somehow dealing with uncertainties. However, ignoring un-
certainties often results in serious problems that could at least be mitigated
if the uncertainties were properly handled. The importance of the proper
treatment of uncertainties is growing because the consequences of inadequate
treatments are more and more costly, both in social and environmental terms.
This is caused by the quickly changing world where one of the dominating
driving forces is efficiency, which has led to globalization, increased interde-
pendencies amongst more and more diversified socio-economic, technological
and environmental systems, a reduction in many safety (both technological
and social) margins, a concentration of assets in risk prone areas, and other
factors which progressively contribute to the increasing vulnerability of the
societies.

These ongoing global changes create fundamentally new scientific prob-
lems which require new concepts, methods, and tools. A key issue concerns a
vast variety of practically irreducible uncertainties, which challenge our tradi-
tional models and require new concepts and analytical tools. This uncertainty
critically dominates a number of policy making issues, e.g., the climate change
debates. In short, the dilemma is concerned with enormous costs vs massive
uncertainties of potentially extreme and/or irreversible impacts.

Traditional scientific approaches usually rely on real observations and ex-
periments. Yet no sufficient observations exist for new problems, and ”pure”
experiments and learning by doing may be very expensive, dangerous, or sim-
ply impossible. In addition, available historical observations are often contam-
inated by ”experimentator”, i.e., our actions, policies. The complexity of new
problems does not allow to achieve enough certainty just by increasing the
resolution of models or by bringing in more links. They require explicit treat-
ment of uncertainties using ”synthetic” information composed of available
”hard” data from historical observations, results of possible experiments, and
scientific facts as well as ”soft” data from experts’ opinions, scenarios, stake-
holders, and public opinion. As a result of all of these factors, our assessment
will always have poor estimates. Finally, the role of science for new problems
will increasingly deviate from traditional ”deterministic predictions” analysis
to the design of robust strategies against involved uncertainties and risks.

Addressing the new challenges of the proper treatment of uncertainties
was the main aim of the workshop Coping with Uncertainty held at the In-
ternational Institute for Applied Systems Analysis (IIASA), Laxenburg, Aus-
tria, on December 13-16, 2004. The workshop provided researchers and prac-
titioners from different areas with an interdisciplinary forum for discussing
various ways of dealing with uncertainties in various areas, including envi-
ronmental and social sciences, economics, policy-making, management, and
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engineering. Presentations were prepared for an interdisciplinary audience,
and addressed: open problems, limitations of known approaches, novel meth-
ods and techniques, or lessons from the applications of various approaches.
The workshop contributed to a better understanding between practitioners
dealing with the management of uncertainty, and scientists working on either
corresponding modeling approaches that can be applied for improving under-
standing or management of uncertainty. In particular, the workshop focused
on the following issues:

• modeling different types of uncertainty (probabilistic and non-probabilistic),
• the formulation of appropriate deterministic substitute problems for dif-

ferent types of uncertainty,
• the robustness of optimal solutions with respect to uncertainties,
• relevant solution techniques and approximation methods,
• open problems in the adequate treatment of uncertainties,
• concrete applications in economics, finance, engineering, energy, popula-

tion, air quality, climate change, ecology, forestry, and other environmen-
tal problems.

The workshop was organized jointly by:

• IIASA - International Institute for Applied Systems Analysis, Laxenburg,
Austria;

• Federal Armed Forces University Munich, Germany;
• Department of Statistics and Decision Support, University of Vienna,

Austria.

The scientific Program Committee included: Yuri Ermoliev, IIASA, Lax-
enburg (A); Sjur Flam, University of Bergen (N); Leen Hordijk, IIASA, Lax-
enburg (A); Peter Kall, University of Zürich (CH); Marek Makowski, IIASA,
Laxenburg (A); Kurt Marti, Federal Armed Forces University Munich (D);
Georg Pflug, University of Vienna (A); Gerhard I. Schuëller, University of
Innsbruck (A); and Roger Wets, University of California (USA).

The organizers gratefully acknowledge the support of:

• BMBF - the Federal Ministry of Education and Research, Germany;
• GAMM - International Association of Applied Mathematics and Mechan-

ics;
• IFIP - International Federation for Information Processing;
• ÖFG - Österreichische Forschungsgemeinschaft.

Their generous support enabled the participation of many researchers who
otherwise could not have attended the Workshop.

This volume is composed of chapters based on selected presentations from
the Coping with Uncertainty Workshop. The contributions are organized into
five parts:
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1. Uncertainty and decisions presents the methodology for finding robust
decisions, introduces new approaches to the evaluation of extreme risks,
and discusses the opportunities of applying structured modeling technol-
ogy to modeling endogenous uncertainties.

2. Modeling stochastic uncertainty presents different approaches to modeling
structural reliabilities and catastrophic events, and discusses probabilistic
modeling of scenes with Bayesian networks.

3. Non-probabilistic uncertainty deals with spatial and social heterogene-
ity, and discusses the applicability of the downscaling methods in econ-
omy and land-use; it also presents different approaches to addressing
uncertainties in control processes, and their applications in industry and
medicine.

4. Applications of stochastic optimization discusses the uncertainty impacts
on sustainable energy development and climate change, in energy system
planning, and in project planning; it also considers algorithmic issues of
nonlinear stochastic programming.

5. Policy issues under uncertainty deals with the role of learning in the
treatment of endogenous risks in climate change policy making, and risk
pricing in related projects; finally, it discusses the public willingness to
accept the costs of averting uncertain dangers.

We express our gratitude to all referees, and we thank all authors for
the timely delivery of the final version of their contributions to this volume.
Furthermore, we thank Ms Elisabeth Lößl of the Federal Armed Forces Uni-
versity Munich for her support in the preparation of this volume. Finally, we
thank Springer-Verlag for including the Proceedings in the Springer Lecture
Notes Series ”LNEMS”.

Kurt Marti, Munich July, 2006
Yuri Ermoliev, Laxenburg
Marek Makowski, Laxenburg
Georg Pflug, Vienna
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Uncertainty and Decisions



Facets of Robust Decisions

Y. Ermoliev and L. Hordijk

Institute for Applied Systems Analysis, Laxenburg, Austria

Abstract. The aim of this paper is to provide an overview of existing concepts of
robustness and to identify promising directions for coping with uncertainty and risks
surrounding on-going global changes. Unlike statistical robustness, general decision
problems may have rather different facets of robustness. In particular, a key issue
is the sensitivity of decisions with respect to low-probability catastrophic events.
That is, robust decisions in the presence of catastrophic events are fundamentally
different from decisions ignoring them. Specifically, proper treatment of extreme
catastrophic events requires new sets of feasible decisions, adjusted to risk perfor-
mance indicators, and new spatial, social and temporal dimensions. The discussion
is deliberately kept at a level comprehensible to a broad audience through the use
of simple examples that can be extended to rather general models. In fact, these
examples often illustrate fragments of models that are being developed at IIASA.

Key words: Robustness, decisions, uncertainty, stochastic optimization, dis-
counting, downscaling, catastrophe modeling, extreme events, simulation.

1 Introduction

An alarming global tendency is the increasing vulnerability of our society.
A thorough scientific policy analysis of related socio-economic, technolog-
ical and environmental global change processes raises new methodological
problems that challenge traditional approaches and demonstrate the need
for new methodological developments. A key issue is the vast variety of in-
herent, practically irreducible uncertainties and ”unknown” risks that may
suddenly affect large territories and communities [13], [14], [21]. Traditional
approaches usually rely on real observations and experiments. Yet, there are
no adequate observations for new problems, responses of involved processes
may have long term delays, and learning-by-doing experiments may be very
expensive, dangerous, or simply impossible.

Large-scale catastrophic impacts and the magnitudes of the uncertainties
that surround them particularly dominate the climate-change policy debates
[2],[7], [8], [30], [34], [35], [37], [49]. The exact evaluation of overall global cli-
mate changes and vulnerability requires not only a prediction of the climate
system, but also an evaluation of endogenous socioeconomic, technological,
and environmental processes and risks. The main issue is the lack of historical
data on potential irreversible changes occurring on large spatial, temporal,
and social scales. The inertia of the overall climate change system, delayed re-
sponses, and the possibility of abrupt catastrophic changes [2] restricts purely
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adaptive wait-and-see approaches. Moreover, extreme events of heavy conse-
quences playing such a decisive role are, on average, evaluated as improbable
events during a human lifetime. A 500-year disaster (e.g., an extreme flood
that occurs on average once in 500 years) may, in fact, occur next year.

The evaluation of complex heterogeneous global-change processes on ”av-
erage” can be dramatically misleading. However, it is impossible to research
all the details connected with these processes in order to achieve evaluations
required by the traditional models in economics, insurance, risk-management,
and extreme value theory. For example, standard insurance theory essentially
relies on the assumption of independent, frequent, low-consequence (conven-
tional) risks, such as car accidents, for which decisions on premiums, claims
estimates and the likelihood of insolvency can be calculated via rich historical
data. Existing extremal value theory [11] deals primarily with the maximum
of also independent variables quantifiable by a single number (e.g., money).
Catastrophes are definitely not quantifiable events in this sense. They have
different patterns, spatial and temporal dimensions and induce heterogeneity
of losses and gains which exclude the use of average characteristics. Globally,
an average resident may even benefit from some climate-change scenarios,
while some regions may be simply wiped out.

Under inherent uncertainty and heterogeneity of global processes the role
of global change models rests on the ability to guide comparative analysis of
the feasible decisions. Although exact evaluations are impossible, the prefer-
ence structure among decisions can be a stable basis for a relative ranking of
alternatives in order to design robust policies. As we know, finding out which
of two parcels is the heavier without having the exact measurements is easier
than saying how much heavier that parcel is.

Sections 2 and 3 analyze the known concepts of robustness in statistics,
deterministic control theory and classical optimization. Global change deci-
sion problems call for new approaches. Sections 3 and 4 show that, contrary to
the standard expected utility maximization, stochastic optimization (STO)
models allow in a natural manner to represent different endogenous uncer-
tainties and risks, spatial and temporal dependencies, equity constraints and
abrupt changes. The ability of STO models to incorporate both anticipative
ex-ante and adaptive ex-post decisions induces risk aversion among ex-ante
decisions that implicitly depends on input data and goals and that practi-
cally cannot be characterized by an exogenous standard utility function [18].
In particular, even in the simplest linear model (Example 4), the co-existence
of ex-ante and ex-post decisions induces VaR and CVaR type risk measures.
Section 4 also indicates the misleading character of average characteristics,
e.g., hazard maps, which are often used in the analysis of spatial exposures
and vulnerability. This emphasizes the importance of distributional aspects,
and the use of quantiles instead of average values. Unfortunately, the straight-
forward application of quantiles destroy additivity and concavity (convexity)
of models and it makes the applicability of standard decomposition schemes



Facets of Robust Decisions 5

problematic (Example 2). Section 5 introduces concepts of STO robustness.
In particular, it shows that models with quantiles can be equivalently sub-
stituted by specific STO models preserving concavity (convexity). Section 6
emphasizes the role played by downscaling and catastrophe modeling to rep-
resent spatial and temporal distributions and vulnerability. Section 7 outlines
the main ideas behind STO methods, especially, fast adaptive Monte Carlo
optimization procedures which can be incorporated into catastrophe models
and vulnerability analysis in order to evaluate robust strategies. Section 8
discusses the sensitivity of robust strategies with respect to extreme events.
It introduces the concept of a stopping time which allows to focus the analysis
on the most distractive potential extreme events (random scenarios). Com-
bined with the catastrophe modeling, this concept opens up new approaches
to spatio-temporal discounting in the presence of extreme events. Section 9
provides concluding remarks.

2 Concepts of Robustness

2.1 Statistical Robustness

The term ”robust” was introduced into statistics in 1953 by Box and acquired
recognition only after the publication of a path-breaking paper by Huber [28]
in 1964. As Huber admits, researchers had long been concerned with the sen-
sitivity of standard estimation procedures to ”bad” observations (outliers),
and the word ”robust” was loaded with many, sometimes inconsistent con-
notations, frequently for the simple reason of confering respectability on it.
According to Huber ([28], pp. 5, 6), ”... any statistical procedure ... should
be robust in the sense that small deviations from the model assumptions
should impair the performance only slightly ...” This concept of robustness,
in fact, corresponds to standard mathematical ideas of continuity: when dis-
turbances become small, the performance of the perturbed and initial models
also deviate slightly.

2.2 Bayesian Robustness

The concept of robustness was also introduced into Bayesian statistics [29]
primarily as the insensitivity of statistical decisions to the uncertainty of prior
probability distribution. A Bayesian sampling model P is often parameter-
ized by a vector θ of unknown parameters. Let ξ be the observable random
variables from P with true unknown parameters θ = θ∗ that have to be re-
covered from observations of ξ. In contrast to classical statistical models, it
is assumed that there is a prior (probability) distribution π(·) characterizing
the degree of beliefs about true vector θ∗, which in the presence of new in-
formation is updated by the Bayesian rule. In this case a statistical decision
(estimate) about the true parameter θ∗ can be characterized by an expected
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distance (loss function) EL(x, θ) =
∫
L(x, θ)π(dθ) from x to admissible θ.

The efficiency of x is calculated by the posterior expected distance

E(L(x, θ|ξ) =
∫
L(x, θ)π(dθ|ξ), π(dθ|ξ) =

P (ξ|θ)π(dθ)∫
P (ξ|θ)π(dθ)

, (1)

where ξ is a given sample of data from P (ξ|θ∗). Bayesian robustness is char-
acterized by the range of posterior expected distance, as the prior π(·) varies
over the elicited class P . An alternative approach is to choose a hyper-prior
on the class of P and the standard Bayesian model.

2.3 Non-Bayesian Minimax Robustness

A probabilistic minimax robustness [29] consists of choosing x with respect
to a worst-case distribution: minimize maxπ∈P

∫
d(x, θ)π(dθ|ξ). This type of

minimax ranking of x does not correspond to the Bayesian ranking w.r.t. a
single distribution in P . The worst-case distribution π ∈ P depends on x
and ξ, i.e., it is a random endogenous distribution. Besides the probabilistic
robustness we can distinguish also a stochastic minimax robustness (Section
5.5).

2.4 Deterministic Control Theory

As statistical robustness is similar to the local stability of dynamic systems,
the robustness in deterministic control theory [43] was introduced as an ad-
ditional requirement on the stability of optimal trajectories. In other words,
additional constraints were introduced in the form of a stability criterion.

2.5 Robust Deterministic Optimization

Optimization theory provides tools for analyzing and solving various deci-
sion making problems. A standard deterministic problem is formulated as
the maximization (minimization) of a function f0(x, ω) subject to constraints
fi(x, ω) ≥ 0, i = 0, 1, ...,m, where x = (x1, ..., xn) is a vector of decisions and
ω are fixed variables characterizing the structure of the model, including
the input data. Functions fi(x, ω), i = 0, 1, ...,m, are assumed to be exactly
known and analytically tractable, and ω belongs to an explicitly given set Ω
of admissible scenarios, ω ∈ Ω. Robustness is defined [4] as the maximization
of minω∈Ω f0(x, ω) over solutions x that satisfy all admissible values of uncer-
tainty fi(x, ω) ≥ 0, i = 1, ...,m, ω ∈ Ω. The set Ω is often characterized by
a finite number of scenarios or simple sets such as intervals or ellipsoidal un-
certainty Ω =

{
αl +

∑
k δlkωk :

∑
k ω

2
k ≤ 1

}
. These sets, in a sense, attempt

to substitute for normal probability distributions in a simple but inconsistent
with statistical analysis manner, which can be misleading (Section 4). It is
clear that this type of deterministic worst-case robustness leads to extremely
conservative decisions.



Facets of Robust Decisions 7

3 Decision Problems Under Uncertainty

Statistical decision theory deals with situations in which the model of un-
certainty and the optimal solution are defined by a sampling model with an
unknown vector of ”true parameters” θ∗. Vector θ∗ defines the desirable opti-
mal solution, its performance can be observed from the sampling model and
the problem is to recover θ∗ from these data. Potential estimates of θ∗ define
feasible solutions x of the statistical decision problem. It is essential that x
does not affect the sampling model so that the optimality and robustness of
solutions can be evaluated by posterior distance (1).

The general problems of decision making under uncertainty deal with fun-
damentally different situations. The model of uncertainty, feasible solutions,
and performance of the optimal solution are not given and all of these have to
be characterized from the context of the decision making situation, e.g., socio-
economic, technological, environmental, and risk considerations. As there is
no information on true optimal performance, robustness cannot be also char-
acterized by a distance from observable true optimal performance. Therefore,
the general decision problems, as the following Sections illustrate, may have
rather different facets of robustness.

3.1 Expected Utility Maximization

Standard policy analysis, as a rule, uses a utility (disutility) maximization
(minimization) model for the evaluation of desirable decisions. In the pres-
ence of uncertainty, any related decision x results in multiple outcomes char-
acterized by functions g1(x, ω), ..., gK(x, ω) such as costs, benefits, damages,
and risks, as well as indicators of fairness, equity, and environmental impacts.
They depend on x, x ∈ Rn and uncertainty from a set of admissible scenarios
Ω, ω ∈ Ω.

A given decision x for different scenarios ω may have rather contradictory
outcomes. In 1738 the mathematician Daniel Bernoulli introduced the con-
cept of expected utility maximization as a rule for choosing decisions under
multiple outcomes. It is assumed that all outcomes g1(x, ω), ..., gK(x, ω)
can be converted in a single index of preferability q(x, ω), say, a mone-
tary payoff. The standard expected utility model suggests that the choice
of decision x maximizing an expected utility function U(x) = Eu(q(x, ω)) =∫
u(q(x, ω))P (dω), where u(·) is a utility associated with an aggregate out-

come q(x, ω). The shape of u defines attitudes to risks. This model presup-
poses that, in addition to the knowledge of Ω, one can rank the alternative
scenarios ω according to weights - objective or subjective probability measure
P . The use of a probability measure as a degree of belief was formalized by
Ramsey (1926). Savage (1954) published a thorough treatment of expected
utility maximization based on subjective probability as a degree of belief (see
discussion in [24]). As a result of this work the use of probability measure



8 Y. Ermoliev and L. Hordijk

became a standard approach for modeling uncertainty by using ”hard” ob-
servations and soft public and expert opinions in a consistent way within a
single model.

3.2 Stochastic Optimization (STO) Model

The shortcomings of the expected utility maximization model are well known.
Generally speaking, it is practically impossible to find a utility function that
enables the aggregation of various attributes in one preferability index, in-
cluding attitudes to different risks, the distributional aspects of gains and
losses, the rights of future generations, and responsibilities for environmental
protection. It is natural that, for complex problems, nonsubstitutable indi-
cators should exist that have to be controlled separately in the same way as
indicators of, say, health (e.g., temperature and blood pressure). Moreover, it
is often practically impossible to identify exactly subjective (and objective)
probability as a degree of beliefs. Most people cannot clearly distinguish [45]
between probability ranging roughly from 0.3 to 0.7. Decision analysis often
has to rely [9] on imprecise statements, for example, that event e1 is more
probable than event e2, or that the probability p1, p2 of event e1 or of event
e2 is greater than 50 percent and less than 90 percent. These statements may
be represented by inequalities such as p1 ≥ p2, 0.5 ≤ p1 +p2 ≤ 0.9. A number
of models with imprecise probabilities have been suggested (see, e.g., [44])
and these models were later integrated into classical probability theory.

The expected utility model is a specific case of STO [6], [20], [33], [40],
[46] models that use various performance indicators fi(x, ω), i = 1, ...,m, one
of which can be the expected utility (disutility). These indicators depend on
outcomes gk(x, ω), k = 1, ...,K, on x and ω, i.e., fi(x, ω) := qi(g1, ..., gk, x, ω).
A rather general STO problem is formulated as the maximization (minimiza-
tion) of the expectation function F0(x) = Ef0(x, ω) =

∫
f0(x, ω)P (dθ), sub-

ject to constraints Fi(x) = Efi(x, ω) =
∫
fi(x, ω)P (dθ) ≥ 0, i = 1, ...,m. The

choice of proper indicators fi(x, ω) and outcomes gk(x, ω), k = 1, ...,K, is es-
sential for the robustness of x. Globally or regionally aggregated outcomes are
less uncertain but they may not reveal potentially dramatic heterogeneities
induced by global changes on individuals, governments, and the environment.
For instance, an aggregate income or growth indicators may not reveal an
alarming gap between poor and rich regions, which may cause future insta-
bilities. By choosing appropriate functions gk(x, ω) and fi(x, ω), STO models
allow in a natural and flexible way to represent various risks, spatial, social,
and temporal heterogeneities, and the sequential resolution of uncertainty
in time. Often, as in Example 1, fi(x, ω) are analytically intractable, non-
smooth, and even discontinuous functions [17], and probability measure P
is unknown, or only partially known, and may depend on x (Section 5, 6),
which is essential for modeling endogenous catastrophic risks, e.g., due to
increasing returns leading to concentrations of values in risk prone areas.
Moreover, decisions x can be composed of anticipative ex-ante and adaptive
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ex-post components, which allows to model dynamic decision making pro-
cesses with flexible adaptive adjustments of decisions when new information
is revealed. The main challenge confronted by STO theory is that it is prac-
tically impossible in general to evaluate exact values of Fi(x), i = 0, 1, ...,m,
see, e.g., Example 1. As ”deterministic” is a degenerated case of ”stochastic”,
STO methods allow to deal with problems which are not solved by standard
deterministic methods.

Example 1. Safety constraints: pollution control problems. A
common feature of most models used in designing pollution-control policies
[1] is the use of transfer coefficients aij that link the amount of pollution xj

emitted by source j to the pollution concentrations gi(x, ω) at the receptor
location i as gi(x, ω) =

∑n
j=1 aijxj , i = 0, 1, ...,m. The coefficients are of-

ten computed with Gaussian type diffusion equations. These equations are
solved over all possible meteorological conditions, and the outputs are then
weighted by the frequencies of meteorological inputs over a given time inter-
val, yielding average transfer coefficients aij . Deterministic models ascertain
cost-effective emission strategies xj , j = 1, ..., n subject to achieving exoge-
nously specified environmental goals, such as ambient average standard bi
at receptors i = 1, ...,m. These models can be improved by the inclusion of
safety constraints that account for the random nature of coefficients aij and
ambient standards bi to reduce impacts of extreme events:

Fi(x) = Prob[
n∑

j=1

aijxj ≤ bi] ≥ pi, i = 1, ...m, (2)

namely, the probability that the deposition level in each receptor (region,
grid, or country) i will not exceed uncertain critical load (threshold) bi at a
given probability (acceptable safety level) pi.

Ignorance of risks defined by constraints (2) may cause irreversible catas-
trophic events. Although an average daily concentration of a toxicant in a
lake is far below a vital threshold, real concentrations may exceed this thresh-
old for only a few minutes and yet be enough to kill off fish. Constraints of
the type (2) are important for the regulation of stability in the insurance in-
dustry, known as the insolvency constraints. The safety regulation of nuclear
reactors requires pi = 1 − 10−7, i.e., a major failure occurs on average only
once in 107 years. Stochastic models do not, however, exclude the possibility
that a disaster may occur next year.

Remark 1. The constraints (2) are known as chance constraints [6], [20],
[33], [40]. They can be written in the form of the standard STO model with
discontinuous functions: fj(x, ω) = 1−pi if

∑n
j=1 aijxj−bi ≤ 0 and fj(x, ω) =

−pi, otherwise. If pi = 1, i = 1, ...,m, the constraints (2) are reduced to
constraints of deterministic robustness (Section 2.5).

The main computational complexity confronted by STO methods is the
lack of explicit analytical formulas for goal functions Fi(x), i = 0, 1, ,m.
For example, consider constraints (2). If there is a finite number of possible
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scenarios ω = (aij , bi, i = 1,m, j = 1, n) reflecting, say, prevailing weather
conditions, then Fi(x) are discontinuous piecewise constant functions, i.e.,
gradients of Fi(x) are 0 almost everywhere. Hence, the straightforward con-
ventional optimization methods cannot be used. Yet, it is possible to trans-
form them into well defined convex (concave) optimization problems ([14],
[18], Sections 5.2, 5.3)

4 Uncertainty Modeling

As discussed in Section 3, traditional statistical decision theory deals with
situations where the model of uncertainty and the performance of optimal
solution are given by a sampling model. In general decision problems the
uncertainty, decisions and interactions among them have to be characterized
from the context of the decision making situation.

Any relevant decision in the presence of essential uncertainty leads to
multiple outcomes with potentially positive and negative consequences. A
trade-off between them has to be properly evaluated which represents a chal-
lenging counterintuitive task. This is often used as a reason to ignore un-
certainty with a plea for simple models or for postponing decisions until full
information is available. The purpose of this section is to provide important
motivations for the appropriate treatment of uncertainty.

4.1 Adaptive Control

Adaptive feedback control is often suggested as a way of dealing with the ”un-
foreseen surprises” (ignored uncertainties) of deterministic models. A feed-
back control strategy depends on the current state of the system; therefore,
when the state is perturbed, the strategy proceeds the control from a new
state. The main issue in this approach is the inherent uncertainty, the delayed
responses of socio-economic and environmental systems, and irreversibilities.
The real consequences of decisions may remain invisible for long periods of
time; thus, purely adaptive deterministic approaches can be compared to
driving a car in the mountains on a foggy day facing backwards.

4.2 Simple Models

As the assumption of deterministic models about exact input data is often
unrealistic, a number of simple models of uncertainty have been used. Simple
models that provide an impression of explicit treatment of uncertainty may,
in fact, produce misleading or wrong conclusions. One of the most popular
ideas is to model uncertainty by a finite number of scenarios or states of the
world. All members (agents) of the society know these states and their proba-
bilities, i.e., they know ”what-and-when” happens and can thus easily design
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compensation schemes or securities to spread risks around the world. As Ar-
row admits [3], catastrophes do not exist in such models (see also discussion
in [7], [14]). Moreover, any of these scenarios in reality has the probability of
0.

4.3 Mean-Variance Analysis

This analysis substitutes real distributions by normal probability distribu-
tions. The following example illustrates its main danger. As discussed in [27],
trajectories of the average annual atmospheric CO2 changes were obtained
from various monitoring stations. Analysts suggested characterizing the vari-
ability of these trajectories by calculating the sample mean, the standard
deviation, and associated 95 percent confidence interval, which, in fact, con-
tains only 13 percent of the observable CO2 changes. The reason for this is
that the histogram of the changes has a multimodal character that is fun-
damentally different from the normal distribution defined by the calculated
sample mean and standard deviation. Multimodal distributions are typically
used for characterizing the beliefs (opinions) of different political parties or
movements, and heterogeneities induced by catastrophic events (see Fig. 5, 7
in [14]). In finance, a distribution of portfolio returns can be multimodal due
to the contribution of different assets and asset classes.

4.4 Using Average Values

Average income, growth, daily pollutant concentration, average losses, ex-
pected utility, or expected returns may have a rather misleading character.

The projected global mean temperature changes fall within the differ-
ence between the average temperature of cities and their surrounding rural
areas. Therefore, global climate change impacts can be properly evaluated
only in terms of local temperature variability and related extreme events, in
particular, heat waves, floods, droughts, windstorms, diseases, and sea level
rise. The proper treatment of indicators with nonnormal, especially multi-
modal distributions requires special attention. The mean value of a multi-
modal distribution can be even outside the support of a distribution (the set
of admissible values). Therefore, the use of average values orients the analy-
sis on inadmissible values. Still, this value can be reasonably interpreted in
the case of frequent repetitive observations. Subjective multimodal probabil-
ity distributions and rare extreme events call for the use of quantiles, e.g.,
the median. Unfortunately, this destroys the additive structure and concav-
ity (convexity) of standard models, as (in contrast to the average value)
median

∑
l vl �=

∑
l median(vl) for random variables vl. As a result this

makes the applicability of well-known decomposition schemes and optimiza-
tion methods problematic. Sections 5.2, 5.3 indicate a promising approach
for dealing with arising problems.
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Example 2. Optimal control problems. Discrete-time optimal control
can be viewed as a specific case of STO models. In this case, x is composed
of state variables z(t), and control variables u(t), that is,
x = {z(t), u(t), t = 0, 1, ..., T}, where T is a given time horizon. Functions
fi(x, ω) are additive: fi(x, ω) =

∑T
t=1 gi(z(t), u(t), ωt, t), where ωt is a stochas-

tic disturbance at time t. Therefore, the use of median(fi(x, ω)) destroys the
additive structure of optimal control problems essentially utilized in the Pon-
triagin’s Maximim Principle and Bellman’s recursive equations.

4.5 Deterministic Versus Stochastic Optimization

Deterministic decision problems are formulated in two steps. First of all,
statistical procedures are used to estimate average values ω of input data
ω. After this intermediate task is performed, the deterministic problem with
goal functions fi(x, ω), i = 0, 1, ...,m is solved. The use of ω for multimode
distributions orients decision analysis even on inadmissible scenarios. As well
as for nonlinear fi(x, ω), Efi(x, ω) �= fi(x, ω). For example, if ω is uniformly
distributed on [−1, 1], then ω = 0 and E(ωx)2 > (ωx)2 = 0.

STO methods deal directly with the variability of fi(x, ω) affected by the
variability of ω and decisions x, i.e., they deal simultaneously with uncer-
tainty and decision analysis. Some decisions x can considerably reduce the
variability of indicators fi(x, ω), despite significant variability of ω, e.g., de-
cisions x1 = 0, x2 = 0 for function ω1x1 + ω2x2. Besides, uncertainties often
cancel each other for some decisions, e.g., decisions x1 = 1, x2 = 1 in the
case of negatively correlated ω1, ω2. The later is especially important for op-
timization of insurance portfolios under catastrophic risks [13], [14], [21]). As
a result, STO models can significantly reduce requirements on data quality
in contrast to disconnected from decisions standard uncertainty analysis (see
also Section 4.6).

The use of average values often smoothes the problem, but this may lead
to wrong conclusions. The following simple model with abrupt changes shows
that the use of average characteristics converts this model to a smooth and
even linear deterministic version. Combined with sensitivity analysis, the
resulting linear deterministic model is not able to detect abrupt changes: it
plays a misleading role and can easily provoke an environmental collapse.

Example 3. Abrupt changes. Global changes with possible dramatic
interactions among humans, nature and technology call for nonsmooth mod-
els. Nonsmooth and discontinuous processes are typical for systems undergo-
ing structural changes and developments. In risk management, the possibility
of an abrupt change is, by its very nature, present in the problem. The concept
of nonsmooth and abrupt change is emphasized in the study of environmen-
tal and anthropogenic systems by such notions as critical load, surprise, and
time bomb phenomena [1], [8], [17]. There are a number of methodological
challenges involved in the policy analysis of nonsmooth processes. Traditional
local or marginal analysis cannot be used because continuous derivatives do
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not exist, i.e., a nonsmooth, even deterministic, system cannot be predicted
(in contrast to classical smooth systems) outside an arbitrary small neigh-
borhood of local points.

The concentration of a pollutant rt = r0 − xt+
∑N(t)

k=1 ek, where {ek} is a
sequence of emissions from extreme episodes in interval [0, t], N(t), t ≥ 0, is
a counting process for the number of episodes in [0, t], x is a rate of emission
reduction, and r0 is an initial concentration. The rate x pushes rt down,
whereas the random flow of emissions pushes rt up. The main problem is
to reduce the probability of a catastrophe associated with crossing a vital
threshold ρ by rt, rt > ρ. The random jumping process rt is often substituted
by the expected concentration rt = r0 + (αe− x)t, where αe is the emission
rate with intensity α and the emission mean value e. That is, complex random
jumping process rt, is simply replaced by a linear function that decreases in
time for x > αe. Thus, deterministic model rt suggests, that if x slightly
exceeds the average emission rate αe, then rt decreases in time, which is the
wrong conclusion. The sensitivity analysis of the linear deterministic model
rt under different scenarios for α and e produces the same trivial conclusions
that robust x has to slightly exceed αe.

4.6 Probabilistic and Stochastic Models

There are two fundamental approaches to modeling uncertainty in probabil-
ity theory, namely, probabilistic and stochastic models. Probabilistic models
attempt to characterize processes completely and explicitly in terms of proba-
bility distributions or some of their characteristics. If one can evaluate explic-
itly multidimentional integrals Fi(x) = Efi(x, ω) =

∫
Ω fi(x, ω)P (dω), then

the STO problem is reduced to a standard deterministic optimization model.
Even the simplest situations illustrate difficulties. Thus, for two random vari-
ables ω1, ω2 with known probability distribution functions, the evaluation of
probability distribution ω1 + ω2 is already an analytically intractable (in
general) task requiring the evaluation of an integral. In addition, the distri-
bution of fi(x, ω), say, ω1x1 +ω2x2 significantly depends on x, e.g., compare
x1 = 0, x2 = 1 and x1 = 1, x2 = 0. Exponential increase of computations
occurs when one uses probability trees, transition probabilities, and variance-
covariance matrices to represent the dynamics of uncertainties. The number
of states of even the simplest discrete event systems (see, e.g., [17]) can be too
large for complete explicit representations of them by matrices of transition
probabilities. The computational ”explosion” of probabilistic models, similar
to the well-known ”curse of dimensionality” of Bellmans equations, restricts
their practical applicability for large scale global change problems.

Stochastic models deal directly with random variables fi(x, ω) without the
exact evaluation of Fi(x). In combination with fast Monte Carlo simulations,
some of the STO methods lead only to a linear increase of computations
w.r.t. uncertain variables ω. In this case, goal functions are characterized
by random laws (rules) and random processes (e.g., stochastic differential
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equations) rather than by transition probabilities, variance-covariance matri-
ces, and partial differential equations. In fact, fast Monte Carlo procedures
(Example 7) combine probabilistic and stochastic submodels, i.e., functions
Fi(x), in general, may have well defined analytical blocks.

5 Robust Stochastic Optimization

Although STO models allow to represent interdependencies among decisions,
uncertainties and risks, yet inappropriate treatment of the variability of in-
dicators fi(x, ω) can be rather misleading.

5.1 Portfolio Selection

The Nobel prize laureate Markowitz [32] proposed the following mean-variance
approach for designing robust portfolios of financial assets (and others, e.g.,
portfolios of technologies). Assume that ωj is the expected value of random
returns ωj from asset j, j = 1, ..., n, and xj is a fraction of this asset in the
portfolio,

∑n
j=1 xj = 1, xj ≥ 0, j = 1, ..., n. The maximization of expected

return r(x) =
∑n

j=1 ωxj from a portfolio x = (x1, ..., xn) yields a trivial non-
robust solution: to invest all capital in the asset with the maximal expected
return. The main idea [32] to achieve diversified robust portfolio is to con-
sider a trade-off between expected returns and their variability characterized
by the variance of returns V arρ(x, ω), i.e., to maximize r(x) − μV arρ(x, ω),
ρ(x, ω) =

∑n
j=1 ωjxj , where μ is a trade-off (risk) parameter. Let us note

that this approach requires that returns from portfolio
∑n

j=1 ωjxj have nor-
mal distribution.

Remark 2. The most important concerns in the case of more general port-
folio selection problems are those related to the overestimation of real returns
ρ(x, ω) by maximizing expected returns r(x), i.e., when ρ(x, ω) < r(x). This
calls for the maximization of a trade-off between expected returns and the
risk of overestimation:
r(x)+μE min {0, ρ(x, ω)− r(x)}. It is easy to see that when the distribution
of random returns ρ(x, ω) is normal, then the maximization of this func-
tion is equivalent to the maximization of the mean-variance criterion, as
the absolute values of asymmetric risk function Emin {0, ρ(x, ω)− r(x)} are
constant multiples of the standard deviation. Unfortunately, for nonlinear
concave function r(x) the straightforward application of the mean-variance
approach leads to nonconcave optimization. The next section maneuvers this
obstacle for rather general optimization problems.

5.2 Robust Utility Maximization

Consider the maximization of utility function U(x) = Eu(q(x, ω)), (e.g., re-
turns r(x)). If the distribution of random outcome u(q(x, ω)) is not normal,



Facets of Robust Decisions 15

for example, when the policy analysis involves the polarized beliefs of differ-
ent communities, then the average value U(x) may not belong to the set of
attainable values f(x, ω) for ω ∈ Ω. Instead of U(x) we can use a quantile
Up(x) of u(q(x, ω)) defined as maximal v such that
Prob[u(q(x, ω)) ≤ v] ≤ p, for 0 < p < 1. The robust utility maximization
problem can be formulated as the maximization of an adjusted to risk util-
ity function Up(x) + μEmin {0, u(q(x, ω))− Up(x))}, which is not a concave
function. As Remark 2 indicates, for normal distributions and p = 1/2, this
is equivalent to the mean-variance approach. Similar to Example 4, Section
5.4, one can conclude that the formulated problem is equivalent to the fol-
lowing concave STO optimization problem: maximize w.r.t. (x, z) function
ϕ(x, z) = z + μEmin {0, β − z}, β = u(q(x, ω)), μ = 1/p.

Remark 3. This important fact can be seen from the following simple ob-
servations (see also Example 4):

∫ z

0
(p−Prob[β ≤ v])dv = pz+Emin {0, β − z}

for a random variable β with density. Let us also notice that for μ = 1/p we
have Up(x) + μEmin {0, u(q(x, u))− Up(x)} = (1/p)

∫
u(q(x,ω))≤Up(x) U(q(x,

ω))dP = E[u(q(x, ω))|u(q(x, ω)) ≤ U(x)], i.e., the adjusted to risk utility
function equals to the so-called expected shortfall (see, e.g., [11], [42]).

5.3 General STO Model

Similarly, a robust STO model can be written in the form: maximize w.r.t.
(x, z) function z0 + μ0Emin {0, f0(x, ω)− z0} subject to
zi+μiEmin {0, fi(x, ω)− zi} ≥ 0, i = 1, ...,m, where μi are weights. Compo-
nents z∗i , i = 0, 1, ...,m, of optimal solution (x∗, z∗) are quantiles of fi(x∗, ω).
The proof follows from the positivity of the Lagrange multipliers and Remark
3. Depending on the case, the robust model can also be formulated by using
safety (Example 1) constraints Prob[fi(x, ω) ≥ 0] ≥ pi in combination, say,
with constraints Efi(x, ω) + μiEmin {0, fi(x, ω)} ≥ 0, i = 1, ...,m and other
possible options [36].

5.4 Flexibility of Robust Strategies

The standard expected utility maximization model suggests two types of deci-
sions in the response to uncertainty: either risk averse or risk prone decisions.
These two options also dominate the climate change policy debates [34], [37],
emphasizing either ex-ante anticipative emission reduction programs or ex-
post adaptation to climate changes when full information becomes available.
Clearly, a robust policy must include both options, i.e., the robust strategy
must be flexible enough to allow for later adjustments of earlier decisions. The
so-called (two-stage and multistage) recourse models of stochastic optimiza-
tion [6], [20], [36], [46] incorporate both fundamental ideas of anticipation and
adaptation within a single model and allow for a trade-off between long-term
anticipatory strategies and related short-term adaptive adjustments. There-
fore, the adaptive capacity can be properly designed ex-ante say, through
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emergency plans and insurance arrangements. The following example shows
that the explicit incorporation of ex-ante and ex-post decisions induces risk
aversion measures that cannot, in general, be imposed exogenously by a stan-
dard utility function.

Example 4. Mitigation versus adaptation: CVaR Risk measure.
A stylized static model of a climate stabilization problem [38] can be for-

mulated as follows: let x denote an amount of emission reduction and let a
random variable β denote an uncertain critical level of required emission re-
duction. Ex-ante emission reductions x ≥ 0 with costs cx may underestimate
β, x < β. It generates a linear total adaptation cost az + dy, where y is an
ex-post adaptation, y ≤ z with cost dy; z is an ex-ante developed adaptive
capacity with cost az.

To illustrate the main idea, let us assume that ex-post adaptive capacity
is unlimited, z = ∞, and c < d. A two-stage stochastic optimization model
is formulated as the minimization of expected total cost cx+ dEy subject to
the constraint x + y ≥ β. This problem is equivalent to the minimization of
function F (x) = cx+Emin {dy|x+ y ≥ β} or F (x) = cx+dEmax {0, β − x},
which is a simple stochastic minimax problem. Optimality conditions for
these types of STO minimax problems show (see, e.g., [16], [17], [20], pp.
107, 416, [42] see also Remark 3) that the optimal ex-ante solution is the
critical quantile x∗ = βp satisfying the safety constraint Prob[x ≥ β] ≥ p for
p = 1 − c/d. This is a remarkable result: highly non-linear and even often
discontinuous safety or chance constraint of type (2) is derived (justified) from
an explicit introduction of ex-post second stage decisions y. Although the two
stage model is linear in variables (x, y), the ex-post decisions y induce strong
risk aversion among ex-ante decisions characterized by the critical quantile
βp.

Remark 4. If c/d < 1, then x∗ > 0, i.e., it calls for coexistence of ex-ante
and ex-post decisions. The optimal value F (x∗) = dEβI(β > x∗), where I(·)
is the indicator function. Again, according to Remark 3, this is the expected
shortfall or Conditional Value-at-Risk (CVaR) risk measure [11], [42].

Remark 5. In more general two-stage models [14], [38], the risk aversion
is not necessarily induced in the form of the critical quantile and CVaR
risk measure. Despite this, the structure of robust policy remains the same.
Only partial commitments are made ex-ante whereas other options are kept
open until new information is revealed. In a sense, such flexible decisions
incorporate both risk-averse and risk-prone components according to different
”slices” of risks.

5.5 Uncertain Probability Distributions

Models of Section 3 assume that P (dω) is known exactly. However, only some
of its characteristics may be known. The elicited class P for admissible P is
often given by constraints

∫
ϕk(ω)P (dω) ≥ 0, k = 1,K,

∫
P (dω) = 1; for ex-

ample, constraints on joint moments cs1,...,sl
≤ ∫

ωs1
1 ...ωsl

l P (dω) ≤ Cs1,...,sl
,
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where cs1,...,sl
, Cs1,...,sl

are given constants. The robust STO problem can
be formulated similar to Section 2.3 as a probabilistic maximin problem:
maximize F0(x) = minp∈P

∫
f0(x, ω)P (dω) subject to general constraints of

Section 3.2. This probabilistic maximin approach was first initiated in STO
in [12], [15], [50]. For specific sets P , the solution of the inner minimization
problem has a simple analytical form [29], [31]. For example, it is concen-
trated only in a finite number ([12], [15], [31], and Example 5) of admissible
scenarios from Ω. Numerical methods for general problems were developed
in [12], [15], [25], [26], [29].

Example 5. Robust stabilization and CVaR. The simple emission
stabilization problem is defined (Example 4) by the minimization of
cx+dE max {0, β − x} = z+d

∫∞
z

(β−x)P (dβ). The robust stabilization prob-
lem with unknown P can be defined by minimization cx+ dmaxp∈P

∫∞
x

(β−
x)P (dβ). To illustrate this possibility, suppose that β is a scalar random
variable, Ω = [a, b], and an additional condition that defines the class P is
Eβ = μ. It is easy to see that the worst-case distribution is concentrated only
in points a, b, with the probability mass p(a) = b−μ

b−a , p(b) = μ−a
b−a . Hence, the

robust model is reduced to replacing the set of all admissible scenarios Ω by
only two extreme scenarios a and b with probabilities p(a), p(b).

5.6 Stochastic Maximin Model

Probabilistic maximin robustness may not be sufficient to properly address
the effects of extreme events. The classical extreme value theory [11] anal-
yses so-called extreme value distributions, i.e., distributions of extreme val-
ues mins βs or, equivalently, maxs βs of independent identically distributed
(iid) random variables βs(ω), s = 1, 2, .... Consider a more general prob-
lem. Let β1(ω), β2(ω),..., be a set of random variables affected by some
decisions. Stochastic maximin models ([16]-[20]) attempt to maximize, in
a sense, the extreme value distribution, e.g., its mean value Emins βs =∫

mins β(ω)P (dω). In contrast, the probabilistic maximin model deals with
the maximization of the extreme mean value mins Eβs or, equivalently, with
the maximization of mins

∫
βPs(dβ), where Ps(·) is the probability distribu-

tion of βs. Therefore, this model evaluates impacts of extreme events (scenar-
ios) s = 1, 2, ..., by extreme mean value, what may significantly underestimate
them (Sections 4, 6).

A more general approach would be the combination of a probabilistic and
a stochastic maximin model with F0(x) = minp∈P Eminz∈Z f0(x, y, z, ξ),
where ω is represented by variables y, z, ξ, ω = (y, z, ξ). Z is a set of
variables z which are there to take into account potential extreme random
scenarios, as in the extreme value theory [11]; the x variables are them-
selves decision variables; the y, y ∈ Y variables correspond to uncertainty
ranked by an objective or subjective probability measure P from P ; and
ξ variables are ranked by a fixed probability measure as in the basic STO
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models. Thus in this model the worst case situation is evaluated with re-
spect to the worst-case distribution for some uncertain variables y, whereas
for other uncertain variables z it is evaluated from potential extreme ran-
dom scenarios. In particular, this class of models includes purely stochastic
maximin models with F0(x) = Eminy∈Y f0(x, y, ξ) as well as models with
F0(x) = miny∈Y Ef(x, y, ξ) combining the worst-case and the Bayesian ap-
proaches of Sections 2.2, 2.5 (see also discussion in [19], [20], pp. 105-106).

6 Temporal, Spatial and Social Heterogeneities

The significance of extreme events arguments in global climate changes has
been summarized in [48] as follows: Impacts accrue ... not so much from slow
fluctuations in the mean, but from the tails of the distributions, from extreme
events. Catastrophes do not occur on average with average patterns. They
occur as ”spikes” in space and time. In other words, the distributional aspects,
i.e., temporal and spatial distributions of values and risks are key issues to
capture the main sources of vulnerability for designing robust policies.

6.1 Temporal Heterogeneity

Extreme events are usually characterized by their expected arrival time, for
example, as a 1000-year flood, that is, an event that occurs on average once
in every 1000 years. Accordingly, these events are often ignored as they are
evaluated as improbable during a human lifetime. In fact, a 1000-year flood
may occur next year. For example, floods across Central Europe in 2002 were
classified as 1000-, 500-, 250-, and 100-year events. Another tendency is to
evaluate potential extreme impacts by using so-called annualization, i.e., by
spreading losses from a potential, say, 30-year catastrophe, equally over 30
years. In this case, roughly speaking, a potential 30-year crash of an airplane
is evaluated as a sequence of independent annual crashes: one wheel in the
first year, another wheel in the second year, and so on, until the final crash of
the navigation system in the 30th year. The main conclusion from this type of
deterministic analysis is that catastrophes do not exist. Section 8.1 introduces
the notion of stopping time and related new approaches to discounting that
allow for addressing the temporal variability of extreme events.

6.2 Spatial and Social Heterogeneity

A similar common tendency is the ignorance of real spatial patterns of catas-
trophes. A general approach is to use so-called hazard maps, i.e., maps show-
ing catastrophe patterns that will never be observed as a result of a real
episode, as a map is the average image of all possible patterns that may
follow catastrophic events. Accordingly, social losses in affected regions are
evaluated as the sum of individual losses computed on a location-by-location
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rather than pattern-by-pattern basis w.r.t. joint probability distributions.
This highly underestimates the real impacts of catastrophes, as the following
simple example shows.

Example 6. Social and individual losses. In a sense, this example

shows that 100 �
100︷ ︸︸ ︷

1 + 1 + . . .+ 1. Assume that each of 100 locations has an
asset of the same type. An extreme event destroys all of them at once with
probability 1/100. Consider also a situation without the extreme event, but
with each asset still being destroyed independently with the same probability
1/100. From an individual point of view, these two situations are identical:
an asset is destroyed with probability 1/100, i.e., individual losses are the
same. Collective (social) losses are dramatically different. In the first case
100 assets are destroyed with probability 1/100, whereas in the second case
100 assets are destroyed only with probability 100−100, which is practically 0.
This example also illustrates the potential exponential growth of vulnerability
from increasing network-interdependencies.

6.3 Downscaling, Upscaling and Catastrophe Modeling

So-called downscaling (see discussion in [5], [23]) and catastrophe modeling
[47] are becoming increasingly important for estimating spatio-temporal vul-
nerability and catastrophic impacts. The aim of catastrophe models is to
generate spatio-temporal patterns of potential catastrophic events and sam-
ples of mutually dependent losses. The designing of a catastrophe model is a
multidisciplinary task requiring the joint efforts of environmentalists, physi-
cists, economists, engineers and mathematicians. To characterize ”unknown”
catastrophic risks, that is, risks with the lack of historical data and large
spatial and social impacts, one should at least characterize the random pat-
terns of possible disasters, their geographical locations, and their timing.
One should also design a map of values and characterize the vulnerabilities
of buildings, constructions, infrastructure, and activities. Catastrophe models
allow to derive histograms of mutually dependent losses for a single location,
a particular hazard-prone zone, a country, or worldwide from fast Monte
Carlo simulations rather than real observations [13], [14], [47].

The development of catastrophe models can be considered as a key risk
management policy providing information for decision analysis in the absence
of historical observations, in particular, on impacts of known events for new
policies and potential extreme events that have never occurred in the past.
This often raises new estimation problems. Traditional statistical methods are
based on the ability to obtain observations from unknown true probability
distributions, whereas new problems require information to be recovered from
only partially observable or even unobservable variables. Rich data may exist
on occurrences of natural disasters, incomes, or production values on global
and national levels. Downscaling and upscaling methods in this case must -
by using all available objective and subjective information - make plausible



20 Y. Ermoliev and L. Hordijk

evaluations of local processes consistent with available global data, as well as,
conversely, with global implications emerging from local data and tendencies.

7 STO Methods for Robust Solutions

7.1 Scenario Analysis

Outcomes of Monte Carlo simulations for a STO model are random sample
functions f0(x, ω), f1(x, ω), ..., fm(x, ω), that depend on the simulation run
ω and a given vector of decisions x. Therefore, for a given x, outcomes vary at
random from one simulation to another. The estimation of their mean values,
variances, and other moments or histograms is time consuming in the presence
of rare extreme events that require developments of specific fast Monte Carlo-
type sampling procedures. Moreover, a change in policy variables x affects
the probabilistic characteristics of outcomes and requires a new sequence of
Monte Carlo simulations to estimate their new values. If functions fi(x, ω),
i = 0, 1, ...,m, have well defined analytical structure with respect to x for
each simulated ω, then the following scenario analysis is often used. The
Monte Carlo simulations generate scenarios ω1, ω2, ..., ωN for each of which
optimal solutions x(ω1), x(ω2), ..., x(ωN ) of the deterministic optimization
model are calculated. Any of these solutions calculated for one scenario may
not be feasible for other scenarios. The number of possible combinations of
potential scenarios ω and decisions increases exponentially. Thus, with only 10
feasible decisions, for instance, levels of emission reductions in a given region,
10 regions and 10 possible scenarios for all of them, the number of ”what-
if” combinations is 1011. The straightforward evaluation of these alternatives
would require more than 100 years if a single evaluation takes only a second.
Besides, the probability of each scenario ωl, l = 1, ...,K, is in general, equal
to 0. Therefore, the choice of final robust decisions is unclear and is not
explicitly addressed.

7.2 Sample-Mean Approximations

STO models of Sections 3.2, 5 are able to explicitly characterize robustness
by using proper indicators of different risks, flexible decisions and various
equity and fairness constraints as goals of desirable policy. The main chal-
lenge is to design a search procedure that enables to find policy decisions
specified by these goals. STO methods, in particular, adaptive Monte Carlo
(AMC) optimization methods [14], avoid exact evaluations of all feasible al-
ternatives. The problem confronted by STO methods is to estimate the max-
imum F0(x∗) of F0(x) subject to constraints Fi(x) ≥ 0, Fi(x) = Efi(x, ω),
i = 1, ...,m, by making use of only random outcomes from simulations
fi(x, ω), i = 0, 1, ...,m. Standard Monte Carlo methods can be regarded as
estimating the value of multidimensional integrals Fi(x) =

∫
fi(x, ω)P (dω),
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i = 0, 1, ...,m, for fixed x. In particular, this can be done by using a sam-
ple mean FN

i (x) = 1/N
∑N

k=1 fi(x, ωk). If functions fi(x, ω) are analytically
tractable w.r.t. x, then FN

i (x) can be used to find an approximate solution
of the STO problem, assuming that FN

i (x) sufficiently approximates Fi(x),
i = 1, ...,m. Although in this case the original STO model is approximated
by a deterministic optimization problem, its solution often requires new de-
terministic large-scale optimization methods (see, e.g., [6], [20], [33], [40],
[46]), as well as the sample size N reduction techniques and fast Monte Carlo
simulations. A principle complexity (Sections 5, 8) is that the measure P
is often analytically intractable, that it may depend on x as in Section 5.5,
and that samples are affected by current x and rare catastrophic events. In
addition, the sample mean approximations FN

i (x) may destroy the concavity
(convexity) of functions Fi(x). For example, the expectation function ax2,
a = p1ω1 + p2ω2 > 0, ω1 > 0, ω2 < 0 is the convex function, but its sam-
ple mean approximation ( 1

N

∑N
k=1 ω

k)x2 may be the concave function even
for rather large N in the case of a small probability p1 and a large impact
ω1 > 0. In these cases, in general, only AMC optimization is applicable. The
asymptotic (N → ∞) rate of convergence for STO procedures is related to
the properties of the sample mean estimates.

7.3 Adaptive Monte Carlo Optimization

An ”Adaptive Monte Carlo” simulation [41] is a technique that makes on-
line use of sampling information to sequentially improve the efficiency of the
sampling itself. The notion ”Adaptive Monte Carlo” optimization is used
[14], [21] in a rather broad sense, where improvements of the sampling pro-
cedure with respect to the variability of estimates may be only a part of the
improvements with respect to other goals of robust decisions.

Remark 6. A counterintuitive fact is that the estimation of a robust so-
lution x∗ and F0(x∗) starting from an initial solution x0 often requires ap-
proximately the same (or an even smaller) number of simulations than the
estimation of only F0(x0) for fixed initial x0. This is because of two forces.
First of all, robust solutions x∗ reduce risks and, hence, the variability of
F0(x); therefore, movements toward F0(x∗) according to STO methods are
themselves a variance-reducing process (see, e.g., numerical calculations in
[21]). In contrast, F0(x0) may have considerable variability due to the effects
of extreme events; therefore, its estimation requires large samples. Secondly,
the variance reductions can also be achieved by deliberate switches in the
importance sampling.

Example 7. Environmental collapse. Let us illustrate the main idea of
fast sample mean approximations and AMC optimization by a modification
of Example 3. The concentration of a global pollutant at time t is calculated
as rt = r0 +

∑t
t=0 xtet, where xt is the rate of global emission et reduction,

0 ≤ xt ≤ 1, and e0, e1, ... are random dependent variables. At a random time
moment τ , the critical threshold β for rt is revealed and a collapse occurs
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when rt > β. Assume that β is characterized by a probability distribution
B(z) = Prob[β < z] and Prob[τ = t] = p(1− p)t, t = 0, 1, ..., where probabil-
ity p is characterized by a probability distribution in an interval [p∗, p∗]. The
probability of a collapse Ψ(x) = E

∑∞
t=0 I(β < rt), where I(β < rt) = 1 or 0

if β < rt or β ≥ rt, respectively. Equivalently,

Ψ(x) = E

∞∑
t=0

E[p(1− p)t]B(r0 +
t∑

t=0

xtet) = E

τ∑
t=0

EB(r0 +
t∑

t=0

xtet). (3)

The probabilistic model is described by the analytically intractable func-
tion Ψ(x). Moreover, an emission path e0, e0, ... is usually generated by
solving a global energy/economy model, and et is a complex function of an
emission reduction policy. The stochastic model in this example is described
by the right hand side of (3) including the process rt, the probability distri-
bution for τ , and a stochastic generator of dependent emission path, (e.g.,
using global energy/economy model).

It is possible to use a straightforward Monte Carlo simulation to estimate
Ψ(x) for a fixed x. A simulation run s, s = 1, 2, ... consists of sampling
ps ∈ [p∗, p∗]; τ = τs; a path es

t , t = 0, 1, ..., τs and βs. The value Ψ(x) is
estimated as ΨN (x) =

∑N
s=1 I(β

s < rs)/N . If ps is a small probability then
this straightforward approach requires large N . A stochastic model (3) allows
much faster sample mean evaluations of Ψ(x) and fast AMC optimization
procedures [18], [21]. Conceptually, AMC optimization involves the following
steps. An initial solution x0 is fixed; p0, τ0, e00, e

0
1, ..., e0τ0 are simulated. On

this basis, by using known function B(z), a so-called stochastic gradient is
calculated allowing for adaptive adjustment of x0 to x1. For x1, a new sample
p1, τ1, e10, e

1
1, ..., e1τ1 is calculated, and x1 is adaptively adjusted in the same

manner as x2, and so on. It is important that evaluation of robust strategy
in this manner proceeds with simulations s = 1, 2, ... without intermediate
evaluations of ΨN (x). Details of this solution technique for rather general risk
processes are discussed in [14], [18]. In parallel with adjustments of solutions
xs, the AMC optimization is able to change the sampling procedure [21] itself
(importance sampling).

8 Sensitivity of Robust Strategies

Robust strategies for global changes require a proper focus on potential ex-
treme events. As a result, the robust strategy with a small ε > 0 probability
of extreme events can be significantly different from the policy that ignores
these events by using ε = 0. Formally speaking, this is evident from Section
5.3, when ε > 0 results in shifts of ranges fi(x, ω) to include potential catas-
trophic impacts (say, ranges of required emission reductions β in Example 4)
that suddenly disappear for ε = 0. Informally speaking, the explicit introduc-
tion of extreme events with ε > 0 requires new sets of feasible decisions, new
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spatial, temporal, and social dimensions which suddenly disappear for ε = 0.
Next Section shows that a key issue is the proper treatment of discounting
and random time horizons of extreme events.

8.1 Extreme Events and Discounting

How can we justify strategies that may possibly turn into benefits over long
and uncertain time horizons in the future? For example, how can we justify
investment, say, in a flood defense system to cope with foreseen extreme 100-,
250-, 500- and 1000- year floods? A common approach is to discount future
costs and benefits using a geometric (exponential) discount factors with the
prevailing market interest rate as V =

∑∞
t=0 dtVt, where dt = (1+r)−t, r is a

discount rate, Vt = Eνt for some random variables νt, t = 0, 1, .... An infinite
deterministic stream of values Vt, t = 0, 1, ..., can represent a cash-flow stream
of a long-term investment activity. In economic growth models and integrated
assessment models (see, e.g., [37]) the value Vt represents utility U(xt) of an
infinitely living representative agent with consumptions xt .

The infinite time horizon in V creates an illusion of truly long-term anal-
ysis. The choice of discount rate r as a prevailing interest rate within a time
horizon of existing financial markets is well established. Uncertainties, espe-
cially related to extreme events, challenge the possibility of markets to offer
proper rates. The following simple fact shows [22] that the standard discount
factors obtained from markets orient policy analysis only on few decades,
what precludes to properly address catastrophic impacts. It also indicates an
important alternative approach to discounting.

Let p = 1 − d, d = (1 + r)−1, q = 1 − p, and let τ be a random variable
with the geometric probability distribution P [τ = t] = pqt. It is easy to see
that

∞∑
t=0

dtVt = E

τ∑
t=0

νt, (4)

where dt = dt, t = 0, 1, .... This is also true for general discounting dt =
(1+ rt)−t with increasing positive rt, where the stopping time τ is defined as
P [τ ≥ t] = dt.

That is, any discounted sum can be viewed as an expected value of the
undiscounted sum within a random interval [0, τ ]. We can think of τ as a ran-
dom ”stopping time” associated with the first occurrence of an extreme stop-
ping time (killing) event. The expected duration of τ , Eτ = 1/p = 1 + 1/r ≈
1/r for small r. The same holds for the standard deviation σ =

√
q/p. There-

fore, for the interest rate of 3.5 percent, r ≈ 0.035, the expected duration
is Eτ ≈ 30 years, i.e., this rate orients the policy analysis on an expected
30-year time horizon. The bias in favor of the present in discounting with
the rate of 3.5 percent is easily illustrated [39]. For a project with long-run
benefits or costs, 1 Euro of benefits or costs in years 50, 100, and 200, has a
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present value respectively of 0.18, 0.003, and 0 Euros. Definitely, this rate
has no correspondence with how society has to deal with a 200-year flood.

The equation (4) provides an alternative approach to discounting in the
presence of catastrophic events: the use of the right hand side of (4) with
τ defined by the arrival times of potential catastrophic events rather than
by horizons of market interests. This also allows to address the variability of
the value stream ν0, ν1,... by analyzing quantiles of random sum

∑τ
t=0 νt (or∑τ

t=0 Vt for deterministic flows V0, V1,...), e.g., as in Section 5. This approach
was used in [13], [14], [21].

Example 8. Catastrophic risk management. The implications of
(4) for long-term policy analysis are rather straightforward. It is realistic
to assume [39] that typical cash-flow investment in a new nuclear plant has
the following average time horizons: without a disaster, the first six years
of the stream reflect the costs of constructions and commissioning, followed
by 40-years of operating life when the plant is producing positive cash flows
and, finally, a 70-year period of expenditure on decommissioning. The flat
discount rate of 5 percent, according to (4), orients the analysis on a 20-year
time horizon. It is clear that a lower discount rate places more weight on
distant costs and benefits. For example, the explicit treatment of a potential
200-year disaster would require a discount rate of at least 0.5 percent instead
of 5 percent. Similar examples are investments in mitigations to cope with
climate change related extreme events. A rate of 3.5 percent, as is often used
in integrated assessment models [37], [49] is definitely not appropriate.

Example 9. Time varying discounting. The use of undiscounted eval-
uation V = E

∑τ
t=0 νt instead of V =

∑∞
t=0 dtVt, as (4) shows, induces any

standard exogenous discounting. This example shows that the induced dis-
counting can be of a rather general form. Multipliers E[p(1− p)t] in (3) with
random p can be viewed as time-varying discount factors. It is easy to see
that the asymptotic of these multipliers are dominated by the least-probable
extreme events. Indeed, assume that there is only a finite number of scenar-
ios p1 < p2 < ... < pL ranked by probability weights v1, v2, ..., vL. Then
E[p(1− p)t] = (1− p1)t[v1p1 +

∑L
s=2(

1−ps

1−p1
)t] ∼ v1p1(1− p1)t.

Therefore, a given exogenous standard discount rate cannot match, in
general, rather different sets of extreme events. This calls for the explicit
introduction of stopping time τ and the use of random criterion E

∑τ
t=0 νt.

As decisions affect the occurrence of extreme events (τ), this approach, in
fact, is equivalent to using implicit spatio-temporal endogenous discounting.
This approach allows also to treat distributional aspects by using quantiles
of random sum

∑τ
t=0 vt, Vt = Evt and STO methods (Section 5.2, 5.3).

8.2 Stopping Time and Stochastic Minimax

As Section 8.1 shows, the concept of stopping time allows to focus the anal-
ysis on the least-probable and the most destructive (killing) extreme events.
There are strong connections [18] between the stopping time- and stochastic
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maximin type-problems defined in Section 5.5. These connections can be used
for designing optimization methods [18] for stopping time problems.

The stopping time is often associated with the likelihood of some pro-
cesses crossing ”vital” thresholds. Consider a random process Rt(x) and the
threshold defined by a random β. Let us define the stopping time τ as the
first time moment t when Rt(x) is above β, that is,
τ(x) = max {t ∈ [0, T ] : Rs(x) ≤ β, 0 ≤ s ≤ t} . For example, climate change
mitigations x deal with preventing the global temperature, say, Rt, from
crossing its critical level β. In this case, the safety constraint can be de-
fined by probability Prob[τ(x) ≥ T ], where T is a given horizon. Explicit
analytical evaluation of this probability is practically impossible even for
the simplest insurance risk processes [11]. This precludes the use of stan-
dard optimization methods. A promising idea is to use connections with
stochastic minimax problems (see, e.g., [18]. Assume that rt and β are one
dimensional random variables, β is independent of rt, H(y) = Prob[β ≥ y],
and the performance indicators of the general STO problem depend on t,
fi(t, x, ω), i = 0, 1, ...,m. The robustness can be defined as in [14] by func-
tions Efi(t, x, ω) at t = τ(x), Fi(x) = Efi(τ(x, ω), x, ω). Functions Fi(x)
can be written [18] as Fi(x) = E

∑T
t=0 fi(t, x, ω)H(max0≤s≤t Rs(x, ω)), i.e.,

a stopping time problem with implicit and, in general, discontinuous random
function τ(x) is equivalently transformed into a stochastic minimax problem
that can be solved by different methods [17].

9 Concluding Remarks

In the absence of sufficient information, models play a key role in compara-
tive analysis of alternative solutions for designing robust policies. Any policy
analysis focuses attention on situations where processes can be changed by
decisions that should be selected in the best possible manner. In this paper
we discussed various facets of robustness assuming that the policy analysis
includes optimization models with given sets of goals and feasible decisions.
In reality these sets are also uncertain and they can be specified through a
dialogue of users with models, where optimization models create only some
blocks of the overall decision support system. Advances in modeling and com-
putational methods allow us to create a ”laboratory world” [10], where we can
test new policies never implemented in reality. This ”learning-by-modeling”
dialogue with models requires specific robust optimization methods which
are able to maintain a consistency of outcomes under the changing environ-
ment of the ”laboratory world” where goals and sets of feasible solutions are
subject to modifications by users, new information and gained experience.
In particular, the evaluation of robust policies often requires specific robust
optimization methods that are able to correctly detect the effects of rare
extreme events. A discussion of these is beyond the scope of this paper. At
least, they require the development of specific fast Monte Carlo procedures
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(see, e.g., [18]). The use of quantiles, thresholds, and stopping times requires,
in general, specific non-smooth stochastic optimization methods [13], [14],
[17], [18]. Since the notion of robustness depends on the nature of decision
problems, it is hopeless to provide a complete overview of all its feasible
facets. Therefore, in this paper we have primarily focused on issues relevant
to on-going modeling of global change processes at IIASA.
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16, 2004, IIASA) and the anonymous referees for their critical and construc-
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Stress Testing via Contamination
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Abstract. When working with stochastic financial models, one exploits various
simplifying assumptions concerning the model, its stochastic specification, parame-
ter values, etc. In addition, approximations are used to get a solution in an efficient
way. The obtained results, recommendations for the risk and portfolio manager,
should be then carefully analyzed. This is done partly under the heading “stress
testing”, which is a term used in financial practice without any generally accepted
definition. In this paper we suggest to exploit the contamination technique to give
the “stress test” a more precise meaning. Using examples from portfolio and risk
management we shall point out the directly applicable cases and will discuss also
limitations of the proposed method.

Key words: Scenario-based stochastic programs, stress testing, contamination
bounds, portfolio management, CVaR

AMS subject classification: 90C15, 90C31, 91B28

1 Introduction

In stochastic programming problems one aims at selection of the “best” de-
cision or action which fulfills given “hard” constraints, say x ∈ X , accepting
that the outcome of this decision may be influenced by a realization of a ran-
dom event ω. The realization of ω is not known at the time of decision making
and to get the decision one uses the knowledge of the probability distribution
P of ω. The random outcome of a decision x ∈ X is quantified as f(x, ω).
Moreover, also “soft” constraints on x may be considered and their violation
if ω occurs may be included into the random objective function f or treated
separately in the form of probability constraints, such as P{g(x, ω) ≥ 0} ≥ p
with p a given probability.

In the sequel we shall focus mainly on stochastic programs which may be
written (after a suitable reformulation) in the following form: Given
X �= ∅, closed, X ⊂ Rn,
ω ∈ Ω ⊂ Rm random with probability distribution P known, independent

of decision x ∈ X ,
f : X ×Ω → R1 measurable, with finite EP f(x, ω)∀x ∈ X

minimize F (x, P ) := EP f(x, ω) =
∫

Ω

f(x, ω)dP (ω) on the set X . (1)

The optimal value of (1) will be denoted ϕ(P ), the set of its optimal solutions
X ∗(P ).
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With P known the main stumbling block for an algorithmic solution of
such stochastic programs is the necessity to compute repeatedly at least the
values of the multidimensional integrals in (1) of functions which themselves
need not be defined explicitly. Various approximation schemes were designed.
The prevailing approach is to solve a scenario-based form of (1) with P a dis-
crete probability distribution which is carried by a finite number of points,
say ω1, . . . , ωS with probabilities p1, . . . , pS . The atoms of this discrete distri-
bution are called scenarios and the scenario-based formulation of (1) reads:

minimize
S∑

s=1

psf(x, ωs) on the set X . (2)

There is an extensive evidence of successful applications of scenario-based
stochastic programs in financial modeling, pricing and designing decision
strategies, cf. [29], [30], and in other areas, cf. [28]. The origin of scenar-
ios can be very diverse. They can be atoms of a known genuine discrete
probability distribution, can be obtained in the course of a discretization or
approximation scheme, by simulation or by a limited sample information.
They can result from recognized regulations or from a preliminary analysis
of the problem and probabilities of their occurrence may reflect an ad hoc
belief or a subjective opinion of an expert; see Chapter II.5 in [14]. Under
“scenario” one may also understand a single deterministic realization of all
uncertainties and parameters up to the horizon; this setting covers not only
a certain realization of ω or a choice of various input parameters but it may
be also related to a specific macroeconomic or demographic situation.

Already the early applications of stochastic programming were aware of
the fact that the obtained solution or policy can be influenced by the choice
and an approximation of the probability distribution P . To analyze the re-
sults, the main tool has been sensitivity analysis via repeated runs of the
optimization problem with a changed input, see e.g. [21].

Also possible simplifications of the model, e.g. using multiperiod two-stage
program instead of a multistage one or relaxation of integrality constraints,
misspecification of the approximated “true” probability distribution P or er-
rors in estimating various input parameters may influence substantially the
results; see e.g. [2], [3], [4], [19]. These are additional reasons for designing
suitable validation techniques and tests. One may exploit parametric pro-
gramming results, statistical methods, various sampling and simulation tech-
niques, multimodeling, etc. The choice of the approach depends essentially
on the structure of the solved problem, on the origin of scenarios and reflects
sources of possible errors and misspecifications.

To validate results of financial applications, one uses mostly historical and
empirical backtesting, stress testing and out-of-sample analysis. We suggest
to complement these numerical techniques by the contamination approach
which provides bounds to the errors. We shall explain the basic ideas of
contamination technique and illustrate its application on a bond portfolio
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management problem and on CVaR criterion risk management. Finally, pos-
sible extensions and limitations of the proposed approach approach will be
discussed.

2 Motivation: Stochastic Dedicated Bond Portfolio
Management

Assuming known future short-term reinvestment interest rates it for period
(t, t+ 1), the dynamic dedicated bond portfolio model can be formulated as
follows:

minimize
N∑

n=1

cnxn + y+
0

subject to

N∑
n=1

fntxn + (1 + it−1)y+
t−1 − y+

t = lt, t = 1, . . . , T, x ≥ 0, y+ ≥ 0.

Here x = (x1, . . . , xn)� is composition of the portfolio, c = (c1, . . . , cn)� is
the vector of acquisition prices and the T -vectors fn, n = 1, . . . , N, l and y+

stand for the cash flows, liabilities and surpluses.
In reality, the future short-term reinvestment rates are hardly known. We

assume instead that ι = (i0, . . . , iT−1) are random and that their probability
distribution has been approximated by a discrete probability distribution P
carried by a finite number of scenarios ιs, s = 1, . . . , S with probabilities
ps. In addition, we allow for short-term shortfalls; this means that for some
scenarios and time periods (except for the last one) nonzero discrepancies

y−s
t =

(
lt −

∑
n

fntxn − (1 + ist−1)y
+s
t−1 + y+s

t

)+

may occur. In such case, the investor borrows this amount and is obliged to
repay it including the interest rate (higher than ist for a positive spread δ
between the short-term reinvestment and borrowing rates) in the next pe-
riod. For each s, t we consider now the cash flow constraints which include
scenario dependent surpluses y+s

t and shortfalls y−s
t . In addition, there is a

penalty
∑

s psq
s�y−s for borrowing included into the objective function. The

resulting problem is

minimize c�x + y+
0 +

∑
s

psq
s�y−s

subject to

N∑
n=1

ftnxn+(1+ist−1)y
+s
t−1−y+s

t −(1+ist−1+δ)y
−s
t−1+y

−s
t = lt, ∀s, t = 1, . . . , T−1
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T∑
n=1

fTnxn + (1 + isT−1)y
+s
T−1 − y+s

T − (1 + isT−1 + δ)y−s
T−1 = lT ∀s

with y+s
0 = y+

0 , y
−s
0 = 0 ∀s and nonnegativity of all variables x,y+s,y−s, s =

1, . . . , S. Evidently, the optimal solution and the minimal cost depend on
scenarios ιs, on their probabilities and on spread δ.

This problem can be further generalized to accommodate random (sce-
nario dependent) cash flows, liabilities and spread, to include trading possi-
bilities and additional decision stages. To solve it, one has to generate sensible
scenarios and provide other model parameters. To rewrite it in the form (2),
with a fixed set of feasible first-stage decisions, we define the minimum cost
for covering the discrepancies when the first-stage decision x, y+

0 is selected
and scenario ιs occurs:

us(x, y+
0 ) = min qs�y−s

subject to

N∑
n=1

ftnxn +(1+ ist−1)y
+s
t−1− y+s

t − (1+ ist−1 + δ)y−s
t−1 + y−s

t = lt, 1 ≤ t ≤ T −1

T∑
n=1

fTnxn + (1 + isT−1)y
+s
T−1 − y+s

T − (1 + isT−1 + δ)y−s
T−1 = lT

with y+s
0 = y+

0 , y
−s
0 = 0 and y+s

t ≥ 0, y−s
t ≥ 0 ∀t.

The full scenario-based problem reads now

minimize c�x + y+
0 +

∑
s

psu
s(x, y+

0 ) (3)

with respect to x ≥ 0, y+
0 ≥ 0.

In the general case of a T -stage problem a sequence of decisions is built
along each of considered data trajectories in such a way that decisions based
on the same partial trajectory, on the same history, are identical (nonantic-
ipativity) and the expected outcome (e.g., the expected gain or cost) of the
decision process at time T is the best possible.

3 Contamination and Stress Testing

3.1 Basic Ideas

“Stress testing” is a term used in financial practice without any generally
accepted definition. It appears in the context of quantification of losses or
risks that may appear under special, mostly extremal circumstances. Such
circumstances are frequently described by certain scenarios which may come
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from historical experience or may be judged possible in future given changes
of macroeconomic, socioeconomic or political factors. The performance of
the obtained optimal decision is then evaluated along these scenarios or the
model is solved with an alternative input. We shall indicate now how it is
possible to quantify such “stress testing” results.

Assume that the stochastic programming model for ALM, such as the
stochastic dedicated bond portfolio management introduced in Section 2,
was solved for a fixed set of scenarios ωs, s = 1, . . . , S, and that the influence
of including other out-of-sample or stress scenarios should be considered.
One could rewrite the program for the extended set of scenarios (and also
constraints) and solve it. Another way is to think of this program put into
the form

min
x∈X

∑
s

psu
s(x)

with a fixed set X of scenario-independent (first-stage) feasible solutions (the
initial investments) and with performance measures u dependent on scenarios,
compare with (3).

Denote by P the probability distribution concentrated on ωs, s = 1, . . . , S
with probabilities ps > 0,

∑
s ps = 1, by ϕ(P ) the optimal value of the prob-

lem and assume that the set of optimal solutions is nonempty and bounded;
let x∗(P ) be one of optimal solutions. Inclusion of additional scenarios means
to consider another discrete probability distribution, say Q, carried by the
out-of-sample or stress scenarios indexed by σ = 1, . . . , S′, with probabilities
qσ > 0,

∑
σ qσ = 1. Degenerated probability distribution Q carried only by

one “stress” scenario is a special case. To quantify the consequences, one may
construct the contaminated distribution

Pλ = (1− λ)P + λQ (4)

with a parameter 0 ≤ λ ≤ 1. The contaminated probability distribution
Pλ is carried by the pooled sample of the S + S′ scenarios that occur with
probabilities (1− λ)p1, . . . , (1 − λ)pS , λq1, . . . , λqS′ .

The optimal value ϕ(λ) = ϕ(Pλ) for the pooled sample is a finite concave
function of λ on [0, 1], it equals the initial value ϕ(P ) for λ = 0, and ϕ(Q) for
λ = 1. Moreover, under mild assumptions, see e.g. [8], one gets its continuity
at λ = 0. An upper bound on its directional derivative at λ = 0+ equals the
difference between the value of the objective function

∑
σ qσu

σ(x∗(P )) for
the out-of-sample or stress scenarios evaluated at the optimal solution x∗(P )
of the initial problem and ϕ(P ).

The bounds for the optimal value ϕ(Pλ) of the problem based on the
pooled sample follow from concavity of ϕ(λ) :

ϕ(P ) + λϕ′(0+) ≥ ϕ(Pλ) ≥ (1 − λ)ϕ(P ) + λϕ(Q), 0 ≤ λ ≤ 1. (5)

Their final form results by substituting for ϕ′(0+) :

(1− λ)ϕ(P ) + λ
∑

σ

qσu
σ(x∗(P )) ≥ ϕ(Pλ) ≥ (1 − λ)ϕ(P ) + λϕ(Q) (6)



34 J. Dupačová

and is valid for all λ ∈ [0, 1].

The additional numerical effort consists of

• Solving the problem
min
x∈X

∑
σ

qσu
σ(x) (7)

for the probability distribution Q carried by the out-of-sample, stress
scenarios, the optimal decision is denoted x∗(Q).
In some papers stress testing is cut down to this procedure, i.e. to obtain-
ing the optimal value ϕ(Q) and comparing it with ϕ(P ). Such compari-
son may be a cause of misleading conclusions. Assume for example that
ϕ(P ) = ϕ(Q). With exception of the constant contaminated objective
function ϕ(Pλ) = ϕ(P )∀λ ∈ [0, 1], the concavity arguments imply that
there exist values of λ for which ϕ(Pλ) > ϕ(P ).

• Evaluation and averaging the S′ function values uσ(x∗(P )) for the new
stress scenarios at the already obtained optimal solution.
This appears under the heading “stress testing” as well: one evaluates
only the average performance of the obtained optimal solutions under
the stress scenarios.

The assumption of discrete probability distributions P and/orQ is not im-
portant for derivation of contamination bounds. For example, for the general
form (1), the average performance

∑
σ qσu

σ(x∗(P )) of the optimal solution
x∗(Q) in (6) is replaced by the expectation

∫
Ω
f(x∗(P ), ω)dQ(ω).

Provided that the set of optimal solutions of (7) is nonempty and bounded,
similar bounds on the optimal value ϕ(Pλ) may be also created by starting
from the newly considered probability distribution Q and contaminating it
by the initial one:

λϕ(Q) + (1− λ)
∑

s

psu
s(x∗(Q)) ≥ ϕ(Pλ) ≥ (1 − λ)ϕ(P ) + λϕ(Q) (8)

for all λ ∈ [0, 1]. Together with the original bounds (6) one gets a tighter
upper bound

min{(1− λ)ϕ(P ) + λ
∑

σ

qσu
σ(x∗(P )), λϕ(Q) + (1− λ)

∑
s

psu
s(x∗(Q))}

for ϕ(Pλ). The cost is to evaluate also the performance of the optimal solution
x∗(Q) of (7) along the initial S scenarios and averaging the results. See Figure
1 for illustration of these bounds.

Details can be found in [8], [10], for an application in ALM and in bond
portfolio management see [12], [13], [15] and Chapter II.6 of [14].

Example 1. In the context of the stochastic bond portfolio management
problem assume that the initial scenarios ιs, s = 1, . . . , S are equiprobable,
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. 1. Contamination bounds

i.e. ps = 1/S ∀s and that experts agreed on one additional interest rate
scenario ι∗ capturing an extremal event. This scenario is the only atom of
the degenerated contaminating probability distribution Q and its probability
q = 1. The contaminated distribution is carried then by the initial scenarios
ιs, s = 1, . . . , S and by the new scenario ι∗. Their probabilities are now 1−λ

S
for s = 1, . . . , S and λ, respectively.

The best investment strategy x∗(Q) under contaminating scenario ι∗ re-
quired in (8) can be found as an optimal solution of the corresponding de-
terministic program, which is a linear program in case of the linear utility
function; its optimal value equals ϕ(Q).

The next step reduces to evaluation of the performance of the initial opti-
mal decision x∗(P ) under the new scenario ι∗; the obtained value u∗(x∗(P ))
appears in (6) at the place of

∑
σ qσu

σ(x∗(P )).
Probability λ assigns a weight to the view of experts and the bounds

(6), (8) are valid for all 0 ≤ λ ≤ 1. They indicate how much the weight
λ, interpreted as the degree of confidence to the experts’ view, affects the
outcome of the investment decision.

The above results are then exploited to quantify the deviations in the
performance of the obtained decision when new, extremal circumstances are
taken into account, which is a true robustness result.

Also the impact of a modification of every single scenario according to
the experts’ views on the performance of the portfolio can be studied in a
similar way. One uses the initial distribution P contaminated by Q which is
carried now by equiprobable scenarios ι̂s = ιs + δs, s = 1, . . . , S, and δs de-
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notes the suggested (additive) modification of scenario ιs. The contamination
parameter λ relates again to the degree of confidence to the experts’ view.

Contamination technique can be useful in postoptimality analysis with re-
spect to inclusion of out-of-sample scenarios obtained by simulation or under
disparate alternative input data, such as volatility curves in [12] or changed
assumptions about behavior of insured in [15], for emphasizing the impor-
tance of a scenario by increasing its probability, in stress testing, and also in
various stability studies, e.g. with respect to the assigned probabilities ps. It
is valid for multistage problems and may be also used to quantify changes
due to inclusion of additional stages of the decision process, cf. [9].

Before the contamination technique can be applied the problem must
be reformulated so that the set of feasible decisions is independent of P,
see (3), continuity of the optimal value function ϕ(λ) = ϕ(Pλ) at λ = 0
and existence of the directional derivative ϕ′(0+) must be proved and the
form of the derivative which appears in the bounds must be derived. Solving
the stochastic program of the same form for an alternative scenario-based
probability distribution Q and evaluation the derivative means to apply a
known procedure, usually for smaller optimization problems.

3.2 Comments and Extensions

Contamination technique was initiated in mathematical statistics as one of
the tools for analysis of robustness of estimators with respect to deviations
from the assumed probability distribution and/or its parameters. It goes back
to von Mises and the concepts are briefly described e.g. in [27]. In stochastic
programming it was developed first in [7] for stochastic programs written in
the form (1)

min
x∈X

F (x, P ) :=
∫

Ω

f(x, ω)dP (ω).

It helps to reduce the robustness analysis with respect to changes in P to a
much simple analysis with respect to a scalar parameter λ : Possible changes
in the probability distribution P are modeled using contaminated distribu-
tions (4) with λ ∈ [0, 1] and Q another probability distribution under con-
sideration. Due to this reduction, the results are directly applicable but they
are less general than quantitative stability results with respect to arbitrary
(but small) changes in P summarized in [25].

Being an expectation, the objective function in (1) is linear in P, hence

F (x, λ) :=
∫

Ω

f(x, ω)dPλ(ω) = (1− λ)F (x, P ) + λF (x, Q)

is linear in λ and its derivative with respect to λ equals F (x, Q)− F (x, P ).
We suppose that for all considered distributions, stochastic program (1)

has an optimal solution. It is easy to prove that the optimal value function

ϕ(λ) := min
x∈X

F (x, λ)
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is concave for λ ∈ [0, 1]. This guarantees its continuity and existence of direc-
tional derivatives in the open interval (0, 1), whereas continuity at the point
λ = 0 is a property related with stability results for the stochastic program in
question. In general, one needs a nonempty, bounded set of optimal solutions
X ∗(P ) of the initial stochastic program (1). Various sets of assumptions are
summarized in [8], the two most frequently used cases are listed below:

• Nonempty, compact X and F (x, P ), F (x, Q) finite, continuous in x;
• Convex, closed X , F (x, Q) convex in x for all considered probability

distributions (or f(x, ω) in (1) a convex function of x) and the set of
optimal solutions X ∗(P ) �= ∅, bounded.

These assumptions together with stationarity of derivatives

dF (x, λ)
dλ

= F (x, Q)− F (x, P )

are used to derive the form of the directional derivative

ϕ′(0+) = min
x∈X ∗(P )

F (x, Q)− ϕ(0), (9)

which enters the upper bound for the concave function ϕ(λ) in (5), cf. [8],
[10] and references therein. If x∗(P ) is the unique optimal solution of (1),

ϕ′(0+) = F (x∗(P ), Q)− ϕ(0),

i.e., the local change of the optimal value function caused by a small change
of P in direction Q − P is asymptotically the same as that of the objective
function at x∗(P ). If there are multiple optimal solutions of (1), each of them
leads to an upper bound

ϕ′(0+) ≤ F (x(P ), Q)− ϕ(0), x(P ) ∈ X ∗(P ).

Contamination bounds (6), and similarly also (8), can be then rewritten as

(1 − λ)ϕ(P ) + λF (x(P ), Q) ≥ ϕ(Pλ) ≥ (1 − λ)ϕ(P ) + λϕ(Q)

valid for an arbitrary x(P ) ∈ X ∗(P ) and λ ∈ [0, 1].

Concavity of the optimal value function ϕ(λ) is important for constructing
the above global bounds which hold true for all λ ∈ [0, 1]. It cannot be
obtained, in general, when the set X depends on the probability distribution
P. In such cases and under additional assumptions, only local stability results
can be proved. On the other hand the results can be generalized to objective
functions F (x, P ) convex in x and concave in P —the case appearing in the
context of the mean-variance objective function and in robust optimization
formulated in [22]; see [10], [11] for the related contamination results. To
get these generalizations, it is again necessary to analyze persistence and
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stability properties of the parametrized problems minx∈X F (x, Pλ) and to
derive the form of the directional derivative. Under the assumptions listed
above, the optimal value function ϕ(λ) remains concave on [0, 1]. Additional
assumptions are needed to get the existence of the derivative

ϕ′(0+) = min
x∈X ∗(P )

d

dλ
F (x, Pλ)|λ=0+ .

Example 2. Consider the mean-variance objective function

F (x, P ; �) := −EP r(x, ω) + �varP r(x, ω) (10)

with r(x, ω) the random return of an investment x ∈ X attained when the
realization ω occurs; � > 0 is a fixed parameter. By minimization of (10) for
changing values of the parameter ρ one gets mean-variance efficient solutions
and the points on the mean-variance frontier of the corresponding Markowitz
model.

The variance of return for the contaminated probability distribution Pλ

varPλ
r(x, ω) = EPλ

r2(x, ω)− (EPλ
r(x, ω))2

= (1− λ)EP r
2(x, ω) + λEQr

2(x, ω)− ((1 − λ)EP r(x, ω) + λEQr(x, ω))2

is a concave function of λ for λ ≥ 0. Its derivative

dvarPλ
r(x, ω)
dλ

|λ=0 = varQr(x, ω)− varP r(x, ω) + (EQr(x, ω)−EP r(x, ω))2.

The objective function (10) for the contaminated probability distribution
Pλ is

F (x, Pλ; �) = −(1− λ)EP r(x, ω)− λEQr(x, ω) + �varPλ
r(x, ω)

and its directional derivative

dF (x, Pλ; �)
dλ

|λ=0+ = F (x, Q; �)− F (x, P ; �) + �(EQr(x, ω)− EP (r(x, ω))2.

The optimal value function of the contaminated problem,

ϕ(λ; �) := min
x∈X

F (x, Pλ; �)

is a concave function of λ and ϕ(0; �) coincides with the optimal value ϕ(P ; �)
of (10) on the set X . Under similar conditions as for the expected value
objective function in (1), its one-sided derivative exists,

ϕ′(0+; �) ≤ F (x(P ), Q; �)− ϕ(P ; �) + �(EQr(x(P ), ω)− EP (r(x(P ), ω))2

and the contamination bounds of the type (6) follow.
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Even without convexity with respect to x one may be able to prove the
needed stability results, such as the joint continuity of F (x, P ), and apply
Theorem 7 in [8] to get the existence and the form of the directional deriva-
tive. This was examined for two-stage stochastic integer programs, see e.g.
[6].

We shall see in the next Section that an application of the above results to
stability analysis and stress testing for the Conditional Value at Risk (CVaR)
is straightforward.

There exist results for optimal solutions of contaminated stochastic pro-
grams and for the case that also constraints depend on P , but these results
are not yet ready for a direct practical exploitation.

4 Contamination and Stress Testing for CVaR

4.1 Basic Formulas

Value at Risk (VaR) was introduced and recommended as a generally ap-
plicable risk measure to quantify, monitor and limit financial risks and to
identify losses which occur with an acceptably small probability.

Denote

• g(x, ω) the loss if x ∈ X is selected and realization ω occurs,
• P{ω : g(x, ω) ≤ k} := G(x, P ; k) the distribution function of the loss

connected with a fixed decision x,
• α ∈ (0, 1) a selected confidence level.

Then the Value at Risk at the confidence level α is defined as

VaRα(x, P ) = min{k ∈ R : G(x, P ; k) ≥ α} (11)

or
VaR+

α (x, P ) = inf{k ∈ R : G(x, P ; k) > α}.
Hence, random losses greater than VaR occur with probability 1 − α. This
interpretation is well understood in the financial practice.

It turns out, however, that there are various weak points of the recom-
mended VaR methodology. To settle these problems new risk measures have
been introduced. Here we shall discuss one of them—the Conditional Value
at Risk.

The Conditional Value at Risk—CVaRα is the mean of the α-tail
distribution Hα of g(x, ω) defined as

Hα(x, P ; k) = 0 for k < VaRα(x, P )

Hα(x, P ; k) = G(x,P ;k)−α
1−α for k ≥ VaRα(x, P ). (12)
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Assume that EP |g(x, ω)| <∞∀x ∈ X and define

Φα(x, ψ, P ) = ψ +
1

1− α
EP (g(x, ω)− ψ)+. (13)

The fundamental minimization formula in [24] helps to evaluate CVaR
and to analyze its stability including stress testing.

Theorem [24]. As a function of ψ, Φα(x, ψ, P ) is finite and convex
(hence continuous) with

min
ψ

Φα(x, ψ, P ) = CVaRα(x, P ) (14)

and
argmin

ψ
Φα(x, ψ, P ) = [VaRα(P,x),VaR+

α (x, P )]. (15)

The auxiliary function Φα(x, ψ, P ) is linear in P and convex in ψ. To get
persistence and stability properties with respect to P, it is enough to assume
that the set (15) of optimal solutions of the simple stochastic program (14)
is nonempty and bounded—a natural request concerning the quantiles of the
probability distribution G(x, P ; •).

There are various papers discussing properties of VaR, CVaR and re-
lations between CVaR and VaR, see e.g. [5], [23]. We shall focus on the
contamination-based stress testing for CVaR. The presence of probability
constraints in definition of VaR requires that various distributional and struc-
tural properties are fulfilled, namely, for the unperturbed problem. These re-
quirements rule out direct applications of contamination technique in case of
empirical VaR whereas for normal distribution and parametric VaR one may
exploit stability results valid for quadratic programs. Some related results on
stress testing for VaR can be found e.g. in [16], [20].

4.2 Stress Testing for CVaR

Let P be a discrete probability distribution concentrated on ω1, . . . , ωS with
probabilities ps > 0, s = 1, . . . , S and x a fixed element of X . Then the
program (14) has the form

min
ψ

ψ +
1

1− α

∑
s

ps(g(x, ωs)− ψ)+ (16)

and can be further rewritten as

min
ψ,y1,...,yS

{ψ +
1

1− α

∑
s

psys : ys ≥ 0, ys + ψ ≥ g(x, ωs)∀s}.

Consider now a stress test of CVaRα(x, P ), i.e., of the optimal value of
(16). Let ψ∗ = ψ∗(x, P ) be an optimal solution of (16) and ω∗ be the stress
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scenario. We apply the contamination technique and proceed as explained in
Example 1.

The CVaRα(x, Q) value for the degenerated probability distribution Q
carried by the stress scenario ω∗ equals g(x, ω∗), the value Φα(x, ψ∗, Q) =
ψ∗ + 1

1−α (g(x, ω∗) − ψ∗)+. Hence, the bounds for the CVaRα for the con-
taminated probability distribution Pλ carried by the initial scenarios ωs, s =
1, . . . , with probabilities (1− λ)ps and by the stress scenario ω∗ with proba-
bility λ have the form

(1 − λ)CVaRα(x, P ) + λΦα(x, ψ∗, Q) = Φα(x, ψ∗, Pλ) ≥ (17)

≥ CVaRα(x, Pλ) ≥ (1− λ)CVaRα(x, P ) + λCVaRα(x, Q)

and are valid for all λ ∈ [0, 1]; compare with (6). The difference between the
upper and lower bound equals

λ[Φα(x, ψ∗, Q)−CVaRα(x, Q)] = λ[ψ∗ +
1

1− α
(g(x, ω∗)− ψ∗)+ − g(x, ω∗)].

As the next step, let us discuss briefly optimization problems with
the CVaRα(x, P ) objective function

minimize CVaRα(x, P )

on a closed, nonempty set X ∈ Rn, cf. [1]. Using (14), the problem is

min
x,ψ

Φα(x, ψ, P ), x ∈ X . (18)

For convex X and convex loss functions g(•, ω) for all ω, Φα(x, ψ, P ) is convex
in (x, ψ) and standard stability results apply. Moreover, if P is the considered
discrete probability distribution, g(•, ω) a linear function of x and X convex
polyhedral, we get a linear program

min
ψ,y1,...,yS,x

{ψ+
1

1− α

∑
s

psys : ys ≥ 0, x�ωs−ψ−ys ≤ 0 ∀s, x ∈ X}. (19)

Let ψ∗(P ), x∗(P ) be an optimal solution of (18) and denote ϕCα(P ) the
optimal value. To get contamination bounds for the optimal value of (18)
with P contaminated by a stress probability distribution Q it is sufficient
to assume a compact set of optimal solutions of (18). An evident instance is
compact X and bounded interval (14). The bounds follow the usual pattern,
compare with (6):

(1−λ)ϕCα(P )+λΦα(x∗(P ), ψ∗(P ), Q) ≥ ϕCα(Pλ) ≥ (1−λ)ϕCα(P )+λϕCα(Q).

To apply them one has to evaluate Φα(x∗(P ), ψ∗(P ), Q) and to solve (18)
for the stress distribution Q. See Figure 2 for an example of contamination
bounds obtained in the numerical example from [16].
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Fig. 2. Contamination bounds for CVaR

The values for λ = 0 and λ = 1 correspond to minimal CVaRs for dis-
tributions P and Q, respectively, both of them carried by different 5184
equiprobable scenarios. The optimal CVaR for the pooled sample of 10368
equiprobable scenarios lies in the interval [0.0175, 0.0195] which corresponds
to λ = 1/2. If the bounds are acceptably tight, the optimal CVaR for the
pooled sample need not be computed.

4.3 Stress Testing for CVaR-Mean Return Efficient Problem

Similarly as for the Markovitz mean-variance problem, one considers two
criteria – minimize CVaRα(x, P ) and maximize expected return EP r(x, ω)
on a set X . Two reformulations of this bi-criterial problem provide efficient
solutions:

min
x∈X

CVaRα(x, P )− kEP r(x, ω) (20)

with k ≥ 0 a parameter, compare with (10), or

min CVaRα(x, P ) s.t. x ∈ X , EP r(x, P ) ≥ r (21)

with parameter r(≥ r0).
Optimal solutions x∗

k(P ), x∗
r(P ) of (20) and (21) depend on the tradeof

parameter values k and r, respectively.



Stress testing via Contamination 43

The second reformulation is favored in the practice. Solving (21), one gets
directly points [CVaRα(x∗

r(P ), P ), r] on the CVaR-mean efficient frontier in
dependence on the specified value of parameter r.

Dependence of the set of feasible solutions of (21) on P means that in
general, the optimal value for contaminated Pλ is not concave in λ. On the
other hand, the set of feasible decisions of (20) is fixed, independent of the
distribution, hence, contamination bounds for the optimal value function can
be constructed as for CVaR evaluation or optimization. These, however, are
not the bounds around the efficient frontier.

To trace out the CVaR-mean return efficient frontier one may solve
(20) or (21) for many different values of k, r, respectively, or rely on para-
metric programming techniques. In the sequel we shall assume that g(x, ω) =
−r(x, ω) = x�ω, X is a convex polyhedral set and P is a discrete probabil-
ity distribution. Then both (20), (21) may be solved via parametric linear
programming techniques, cf. [26].

Contamination of probability distribution P introduces an additional pa-
rameter λ into (20) and (21). As a consequence, nonlinearity with respect
to k, λ appears in the objective function of (20) whereas both the objective
function and the set of feasible solutions of (21) depend linearly on parame-
ters.

Example 3. Assume in addition that EPω = EQω = ω̄. Then the set of
feasible decisions of (21) does not depend on λ, and the contamination bounds
apply. Such assumption appears when scenarios are generated by the moment
fitting method, see e.g. [18]. In this case, the nonlinear dependence of k and
λ in the objective function of the contaminated program (20) disappears and
contamination bounds for the CVaR-mean return problem can obtained by
solving (21).

For solving the contaminated problem (21) one may apply the simplex
based techniques of [17]. The problem is a linear parametric program with
two independent parameters, λ in the objective function and r on the right-
hand sides of constraints. Let us mention some favorable properties of such
parametric programs related with their general form

min
{

(c + λĉ)�x : Ax = b + rb̂,x ≥ 0
}

(22)

with (r, λ) ∈ A, a nonempty, closed two-dimensional interval, cf. Theorem
3.2 in [17].

In our CVaR-mean return problem , λ ∈ [0, 1], c comes from P , ĉ from the
“direction” Q−P and r ∈ [rL, rU ] appears only in the mean return constraint
ω̄�x ≥ r; we have obviously

rL = min{ω̄�x∗(P ), ω̄�x∗(Q)}, rU = max
x∈X

ω̄�x.

The assumption about A := [0, 1] × [rL, rU ] is fulfilled if rL < rU . In such
case, existence of optimal solution of (22) is guaranteed for all (r, λ) ∈ A and
for optimal solutions, the mean return constraint is active. Moreover,
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• The optimal value function ϕ(r, λ) is continuous on A, convex in r,
concave in λ.
• The two-dimensional interval A can be decomposed in a finite number

of closed intervals, say, Ah
(r,λ) such that there exist optimal solution x∗

r(Pλ)
of (22) which is linear on Ah

(r,λ) and the optimal value function is linear there
in r and in λ. See Figure 3.

Fig. 3. Decomposition of set A

The simplex-based algorithm detailed in Section 3.3 of [17] uses two
columns for solution components and two rows for the criterium. The critical
boundaries of intervals Ah

(r,λ) are obtained by discussion of feasibility and
optimality conditions with respect to parameters r, λ.

These properties and Figure 3 indicate that for values of λ ≤ λ1, λ1 > 0
small enough, the efficient solutions of the contaminated problem are equal
to optimal solutions of the noncontaminated problem (21), i.e., they do not
depend on λ :

x∗
r(Pλ) = x∗

r(P )∀r ∈ [rl, rU ]

and ϕ(r, λ), the optimal contaminated value CVaRα(x∗
r(Pλ), Pλ) with a fixed

mean return r, is linear in λ.
Hence, under assumptions of the example small contamination of P does

not influence composition of CVaR-mean return efficient portfolios.

5 Conclusions

The contamination technique is presented as a tool suitable for postopti-
mality and sensitivity analysis of the optimal value with respect to various
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input perturbations. For scenario-based stochastic programs, it is easily ap-
plicable in out-of-sample analysis and stress testing for portfolio management
models of the recourse and robust optimization type. This extends also to
mean-variance and CVaR optimization whereas its application for CVaR-
mean efficient portfolios is more involved.
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2. Bertocchi, M., Dupačová, J., Moriggia, V. (2000) Sensitivity of bond portfolio’s
behavior with respect to random movements in yield curve: A simulation study.
Ann. Oper. Res. 99, 267–286
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14. Dupačová, J., Hurt, J., Štěpán, J. (2002) Stochastic Modeling in Economics
and Finance, Part II. Kluwer Acad. Publ.. Dordrecht
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16. Dupačová, J., Poĺıvka, J. (2005) Stress testing for VaR and CVaR. SPEPS
2005–01 (downloadable from http://dochost.rz.hu-berlin.de/speps)

17. Guddat, J., Guerra Vasquez, F., Tammer, K., Wendler, K. (1986) Multi-
objective and Stochastic Optimization Based on Parametric Optimization.
Akademie-Verlag, Berlin

18. Høyland, K., Wallace, S. W. (2001) Generating scenario trees for multistage
decision problems. Manag. Sci. 47, 295–307

19. Kaut, M., Vladimirou, H., Wallace, S. W., Zenios, S. A. (2003) Stability anal-
ysis of a portfolio management model based on the conditional value-at-risk
measure. Submitted

20. Kupiec, P. (2002): Stress testing in a Value at Risk framework. In: Dempster,
M. A. H. (ed.) Risk Management: Value at Risk and Beyond. Cambridge Univ.
Press, 76–99

21. Kusy, M. I., Ziemba, W. T. (1986) A bank asset and liability management
model. Oper. Res. 34, 356–376

22. Mulvey, J. M., Vanderbei, R. J., Zenios, S. A. (1995) Robust optimization of
large scale systems. Oper. Res. 43, 264–281

23. Pflug, G. Ch. (2001) Some remarks on the Value-at-Risk and the Conditional
Value-at-Risk. In: Uryasev, S. (ed.) Probabilistic Constrained Optimization,
Methodology and Applications. Kluwer Acad. Publ., Dordrecht, 272–281

24. Rockafellar, R. T., Uryasev, S. (2001) Conditional value-at-risk for general loss
distributions. J. of Banking and Finance 26, 1443–1471

25. Römisch, W. (2003) Stability of stochastic programming problems. Chapter 8
in: Ruszczynski, A., Shapiro, A. (eds.) Handbook on Stochastic Programming.
Elsevier, Amsterdam, 483–554
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Abstract. Uncertainty is a key issue in many public debates and policy making,
including climate change, pension systems, and integrated management of catas-
trophic risks. Rational treatment of uncertainty in many such situations requires
new methods not only for the appropriate handling of endogenous uncertainties but
also for modeling complex problems.

The paper first outlines the key issues related to uncertainties and risks, includ-
ing some pitfalls of using traditional methods in situations when they are inappro-
priate. Then, new methods of modeling endogenous uncertainties and catastrophic
risks are summarized. Next, structured modeling technology developed for handling
the whole modeling process of model-based support for solving complex problems
is discussed.

The development of the presented methods has been motivated by actual policy-
making issues, and the methods have been applied to complex problems. However,
the presentation is deliberately kept at a level comprehensible to a broad audience.

Key words: endogenous uncertainty, catastrophic risk, structured modeling,
decision-making support, mathematical modeling, integrated model analysis, opti-
mization.

1 Introduction

In reality everybody has to cope with uncertainty and manage diversified
risks in both their private and professional lives. People routinely accommo-
date uncertainties with diversified rational or accepting responses, in most
cases successfully and unconsciously; this proliferates a popular feeling that
on average uncertainties and risks are easy to handle. Only in those much less
frequent situations (when something unexpected happens) one realizes that
uncertainties and risks play an important role. A closer look at the unexpected
usually shows that one should have considered such an outcome, and could
have implemented measures to at least mitigate the consequences. Analysis
of such situations is obviously much easier for personal decision-making than
for complex problems where decisions potentially affect large communities
and/or have long-term (often irreversible) consequences. Such problems are
typically characterized by uncertain time-delays (between decisions and con-
sequences) and/or rather complex relations between decision-making and the
resulting consequences (in particular resulting from rare events) that occur
at a random time or place.
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Rational decision-making should be based on science, i.e. on organized
knowledge.1 Yet science is no different to all other areas of human activi-
ties:2 uncertainties are certainly present in science as well (although often
ignored or denied). Unfortunately, rational decision-making processes as well
as public policy debates are hindered by inadequate representations, com-
munication and the perception of diverse types of uncertainties and risks.
Bertrand Russell summarized this with: The whole problem with the world is
that fools and fanatics are always so certain of themselves, with wiser people
so full of doubts.

The truth is that there are no certain (undoubted, definite) answers/solu-
tions for/to uncertain problems. Nevertheless science can support rational
decision-making (also despite uncertainties) by identifying so-called robust
solutions (see [15]) that are not only good for most (unknown) futures (i.e.
many scenarios describing various futures) but also sensitive to extreme sce-
narios. This truth is hardly recognized in public debates. People simply pre-
fer (over)-simplified deterministic representations of complex problems, and
easy to understand solutions. We discuss just three explanations for this situ-
ation. Firstly, in a non-scientific discussion it is virtually impossible to amply
present a model adequately representing a complex problem. Thus the dis-
cussed problem is typically illustrated by an oversimplified3 representation
of the model, e.g., averages are used instead of (spatial, temporal, social)
distributions, only selected scenarios are outlined, and simplified relations
between decisions and consequences are considered. Secondly, humans natu-
rally tend to perceive the world in deterministic terms; it is commonly known
that perception, especially of ”medium” and low probabilities (in the range
of 0.3-0.7, and smaller than 0.01, respectively), is rather poor (this also ap-
plies to most scientists). Thirdly, public discussions are typically dominated
by presentations and defense of arguments justifying one of the extremes:4

(1) Do nothing, wait, and react/adapt to the consequences, or (2) Plan for
the worst case. During such discussions it is often ”forgotten” that in the
presence of uncertainties one can easily select two subsets of scenarios that
justify (separately) each of these extremes.

This chapter aims at combining the knowledge and experience of re-
searchers working in various fields (including mathematics, operational re-
search, and social science) with practitioners (including researchers) expe-
rienced in applying diversified methods of uncertainty treatment in a wide
spectrum of fields. One of the many divisions in science is that between the

1 Knowledge is understood here as being composed of facts and rules.
2 Recall e.g., In this world, nothing is certain but death and taxes (Benjamin

Franklin).
3 In the sense of the ability to present all key characteristics of the problem.
4 Although an extreme solution is rarely the best one, see e.g., [36]. This observation

not only can be derived from the properties of the classical two-stage stochastic
control problem; in most cases it can be simply justified by a common sense.
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deterministic and stochastic views of a problem. This chapter is written from
a deterministic perspective, by the author who has developed modeling tech-
nology for complex deterministic models, and extensively participated in the
development of such models. However, the author has also been collaborating
with colleagues working with complex stochastic models, and thanks to their
friendly attitude has developed a reasonable understanding of novel methods
for the treatment of uncertainties and risks. This has resulted in on-going
activities directed at extending the capability of the structured modeling
technology developed for deterministic models to handle stochastic models
as well. Currently we only have a sort of gangway between the deterministic
and stochastic modeling technology; the chances are good however, that this
foot-bridge will soon extend into a full size bridge allowing for truly com-
prehensive problem analysis by integrating pertinent methods developed for
both deterministic and stochastic approaches.

2 Context

Decision making is becoming more and more difficult because decision prob-
lems are no longer well-structured problems that are easy to solve by intuition
or experience supported by relatively simple calculations. Even the same type
of problems that used to be easy to define and solve, are now much more com-
plex because of the globalization of the economy, and a much greater aware-
ness of its linkages with various environmental, social, and political issues.
Moreover, decision-making is done for the future, which is actually always
uncertain. Thus, any decision-maker needs to cope with various uncertainties
in order to rationally manage corresponding risks.

Many decision problems have a lot in common, and sets of such problems
can be identified by different distinct problem characteristics. The varied
contexts of decision problems has important implications on the decision
making support (see e.g., [20]) and the development of the corresponding
models (see e.g., [30]). The latter in turn implies that mathematical modeling
has been, and will continue to be, a combination of science and craft [37].

Rational decision making typically requires, see e.g. [28]:

• a mathematical model adequately representing the relationships between
decisions and outcomes (the consequences of applying a decision), includ-
ing an assessment of the temporal and spatial consequences of implement-
ing a selected decision;

• understanding the uncertainties related to various representations of such
relationships;

• a representation of preferential structures (a measure of the trade-offs be-
tween various outcomes) of the stake holders (persons and/or institutions
affected by the consequences of implementing decisions);
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• criteria for the evaluation of various risks related to either implementing
a (best at the moment) decision or postponing making a decision (until
a possibly better decision can be made); and

• a procedure (conventionally called DMP – Decision Making Process) for
selecting the best solution (decision), including a process for involving
stake holders in the DMP.

It is not practicable to attempt to deal with all these issues for any given
decision problem. Each of these elements has a large number of methods
and corresponding tools and an attempt to fully exploit the capabilities of
many of them for a given problem is doomed to failure. Different decision
problems and the associated DMPs have different characteristics, which call
for focusing on the implementation of a selection of methods and tools.

There are however some issues common to many such methods and which
are therefore interesting for a broad audience. In particular we focus on chal-
lenging problems involving endogenous uncertainties and catastrophic risks;
the analysis of such problems requires complex models which in turn de-
mand new modeling technology. Therefore, the two sets of corresponding
issues, namely those related to (1) uncertainty and risk, and (2) modeling
technology are discussed in the remaining part of this chapter.

3 Uncertainty and Risk

3.1 General Comments on Uncertainty

One distinguishes between two types of uncertainty related to a considered
phenomena:

• epistemic uncertainty: due to incomplete knowledge (which ranges from
deterministic knowledge to total ignorance) of the phenomena,

• aleatory (variability) uncertainty: due to the inherent variability (i.e.,
natural randomness) of the phenomena, e.g., natural processes; human
behavior; social, economic, technological dynamics; and discontinuities
(or fast changes) in some of these processes.

The epistemic uncertainty can be reduced provided that there is time and the
resources to do so. Also in some cases better characteristics of the aleatory
uncertainty can be obtained by additional observations and/or experiments.
However, during the time needed for reducing any of these uncertainties, the
decision space can be substantially reduced, or even irreversible changes in
the system under consideration may occur. This problem is discussed in more
detail in [36].

The most common treatment of the uncertainty is through one of the
following three paradigms of probability defined as:

• the ratio of favorable events to the total number of equally likely events
(Laplace),
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• the long-run frequency of the event, if the experiment was repeated many
times (von Mises),

• a measure of a subjective degree of certainty about the event (Ram-
sey [38], Bayes, Keynes).

The first two paradigms assume that probability is an attribute of the corre-
sponding event (or object), the third one is based on beliefs.

There are at least three pitfalls when using one of the established paradigms
for supporting decision making under uncertainty:

• Incorrect calculation of probabilities, e.g. applying the Laplace’s paradigm
to events that are not equally likely; or violating the assumption of
von Mises by: counting frequency from observations of events that oc-
curred under different conditions, or by using a small sample of data,
or by interpreting as data results provided by various models based on
related data, or by multiple use of the same data each interpreted5 as in-
dependent events. Probability defined as the relative frequency is equal to
the limit of an infinite sequence; however, in practice it is rarely proved to
what extent the probability actually corresponds to the relative frequency
(which in real applications has to be inferred from a finite, often rather
small, subset of the infinite sequence). For such cases distribution-free
approaches6 or “uncertain”-distribution methods are actually required.

• Correct probabilities provide a good basis for frequently repeated decision-
making provided neither the probability distribution nor payoffs change
”substantially”7 (because this is a condition for a good approximation
of an infinite sequence of decisions by a finite subsequence), and one
wants to optimize a total expected outcome (defined as a sum of pay-
offs weighted by their probabilities). However, as demonstrated already
in 1739 by Bernoulli’s St Petersburg paradox (see for e.g., [3]), maxi-
mization of an expected outcome (or utility) is not rational for situations
where a decision is made only once, or when, for a sequence of decisions,
the consequences of each decision should be evaluated separately.

• The fact that the vast majority of experts is certain about the validity of a
statement/theory does not make it true. For example, over 600 years ago
it was commonly agreed that the Earth was the center of the Universe.

Of course, the well established paradigms of uncertainty treatment have
been successfully used in countless applications in science and industry, and
will continue to be a major method for dealing with uncertainty. The above
summary aims to highlight that in many other situations the well established
methods cannot provide useful results. This is caused by either the nature of
5 Wittgenstein described this as buying several copies of a newspaper to increase

a probability that a news is true.
6 Methods that do not postulate specific a priori distributions.
7 Note that this condition can hardly be met for observations spanned over long

time periods.
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the underlying uncertainties or an inadequate set of data. In such situations
proper robust approaches have to deal with sufficiently large sets of possible
future scenarios rather than with only one (e.g., either negotiated or believed
to be most likely) scenario.

Rational analysis of, and decision-making support for, problems involving
some types of uncertainties and risks require novel approaches. In particu-
lar, proper treatment of endogenous uncertainties and/or catastrophe risks
demands new methodology and corresponding software tools. Such problems
are characterized by a vast variety of inherent, practically irreducible uncer-
tainties and/or ”unknown” risks, and/or by spatial, temporal or social het-
erogeneity, see e.g., [5,13,17]. The risks often involve events with catastrophic
consequences due to either irrecoverable shocks (e.g., insolvency), or a mag-
nitude of impact that may affect at once large territories and communities
(e.g., natural or man-made catastrophes).

Such a methodology, called Robust Decisions, is presented in [15]. Thus,
below we only outline the basic characteristics of endogenous uncertainties
and catastrophe risks in order to illustrate the complexity of the correspond-
ing models, which in turn need new modeling technology.

3.2 Endogenous Uncertainty

Traditional models in economics, insurance, risk-management, and extreme
value theory require evaluations based on corresponding assumptions and
large-enough sets of data. For example, standard insurance theory essen-
tially relies on the assumption of independent, frequent, low-consequence
(conventional) risks, such as car accidents, and extensive sets of data about
accidents/losses, owners, etc. Thus insurance companies use well established
models (exploiting rich sets of historical data) for making decisions on premi-
ums, estimating claims and the likelihood of insolvency. However, such data
are not available for new8 problems or for problems involving rare events. Ex-
periments aiming at collecting data, even if possible, may be very expensive
and/or dangerous. Moreover, in many situations, especially in policy-making
and management, experiments are simply impossible.

In particular, traditional approaches are not applicable to problems in-
volving catastrophes (understood as rare events with large consequences).
Catastrophes typically result in abrupt irreversible changes occurring on
extremely large spatial, temporal, and social scales. Large-scale potential
catastrophic impacts, and the magnitudes of the uncertainties that surround
them in particular, are critically important for the climate-change policy de-
bates and the associated decision-making processes, see e.g., [26,31,34,35,42].

8 New also represents old/known types of problems which, however, are not station-
ary, i.e., whose parameters change over time. This in turn may imply that even
large existing sets of data are not adequate for the identification of parameters
of models representing such problems.



Structured Modeling for Coping with Uncertainty 53

A more detailed discussion of the relevance of a proper treatment of uncer-
tainty to policy-making is presented in [25].

Traditional risk analysis (based on the concept of expected cost-benefit
analysis) practically ignores catastrophic events. Thus, extreme events are
treated as improbable during a human lifetime, and consequently are not
rationally considered in decision-making processes. However, a 1000-year dis-
aster9 may actually occur at any time, e.g., next year, or even tomorrow,
or in many years, or not within our planning time horizon. Moreover, even
ex-post evaluations of extreme events are often difficult. For example, the
flood of 1997 in Western Poland has been evaluated (by different scientists)
as a 300-, 500-, 1000-, or even 3000-year flood.

The extremal value theory can hardly help in the analysis of catastrophic
events because it deals with independent events and assumes that they are
quantifiable by an aggregate (a single number, e.g., loss value) [12]. Such
a characteristic cannot be provided in a verifiable way for catastrophes. More-
over, it is impossible to properly evaluate complex heterogeneous processes
on ”average”. Such processes have significantly diversified spatial and tem-
poral patterns and induce heterogeneity of losses and gains which make it
inappropriate to use average (aggregate) characteristics. For example, on av-
erage, residents may even benefit from some climate-change scenarios, while
some regions may incur dramatic losses.

3.3 Catastrophe Risks

A common way to deal with risks is to purchase an insurance. However, al-
though this is a very popular approach to risk management, for many risks
buying insurance alone is not necessarily a rational solution. By purchas-
ing an insurance one actually buys the rights to a capital for covering the
consequences of the insured event; however, it is actually a rather expensive
solution (although not commonly recognized as such) because the insurance
premium is higher (often much higher) than the expected losses covered by
the insurance. Therefore, an insurance (possibly for only part of the risks)
should be considered as an element in a diversified risk management port-
folio, typically composed of ex-ante (e.g., insurance, mitigation measures,
contingent credits, cat-bonds) and ex-post (e.g., loans, diversion of funds)
instruments.

Designing a rational portfolio of catastrophe risk management requires
concerted interdisciplinary activities needed for developing a system of models
that:

• represent a multi-agent decision making structure that typically involves a
population exposed to the risks, central and local governments, insurance
and finance industry, and possibly also other agents;

9 An extreme event that occurs on average once in 1000 years.
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• represent relations between the decisions (composed of elements of the
risk management portfolio) and various measures of the consequences;

• typically compensate for the lack of historical data on the occurrence
of catastrophes in locations where the effects of catastrophes may never
have been experienced in the past.

Such a system of models typically consists of three major modules:

• A catastrophe module that simulates a natural phenomenon using a
model based on the knowledge of the corresponding type of event (e.g.,
earthquakes, floods, hurricanes) represented by a set of variables and the
relations between them. The catastrophe models used in IIASA’s case
studies are based on the Monte Carlo dynamic simulations of geographi-
cally explicit catastrophe patterns in selected regions.10.

• An engineering vulnerability module to estimate the damages that may
be caused by the catastrophes.

• An economic multi-agent module that maps spatial economic losses (which
depend on implemented loss mitigating and sharing policy options) into
gains and losses of the agents (stakeholders), see e.g., [16,17].

Such a system of models supports the integrated analysis of spatial and tem-
poral heterogeneity of diversified characteristics of agents (stake holders) in-
duced by mutually dependent losses from extreme events while also taking
into account the diversified (and partially conflicting) objectives of each type
of the stakeholders. The model addresses the specifics of catastrophic risks:
fragmented data, the need for long term perspectives and geographically ex-
plicit models, and a multi-agent decision-making structure. The model, using
advanced stochastic optimization techniques, supports the search and analy-
sis of robust risk management portfolios for decreasing regional vulnerability
measured in terms of economic, financial, and human losses as well as in
terms of selected welfare growth indicators.

A more detailed overview of the integrated approach to catastrophe risk
management developed at IIASA and applied to many diversified case studies
can be found in [28]. Here we only stress that the corresponding models are
complex11 and their analysis aims to find robust decisions requiring struc-
tured modeling approaches.

4 Structured Modeling

The novel methods characterized in Section 3 that are needed to properly
treat endogenous uncertainties and catastrophe risks involve complex mod-
els. Such models when used for supporting policy-making have to meet addi-
10 A discussion of these models is beyond the scope of this paper but can be found

e.g., in [2,4,6,14,18,21,40]
11 Actually one needs a system of models, each using large sets of data.
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tional requirements. The complexity of models combined with such require-
ments also require new modeling technology. These issues are discussed in
this Section.

4.1 Modeling for Science-Based Policy-Making Support

As mentioned in Section 1, models can integrate knowledge pertinent to
science-based support of policy-making. Actually, models can also be used
for creating knowledge, see Section 4.3. However, the modeling processes
which support policy-making have to meet much stronger requirements (than
those for models used for research or educational purposes) of: credibility,
transparency, replicability of results, integrated model analysis, controllabil-
ity (modification of model specification and data, and various views on, and
interactive analysis of, results), quality assurance, documentation, control-
lable sharing of modeling resources through the Internet, and efficient use of
resources on computational Grids.

Actually such requirements are not new for the modeling communities.
Dantzig summarized in [8] the opportunities and limitations of using large-
scale models for policy-making. Thanks to the development of algorithms and
computing power today’s large-scale models are at least 1000-times larger;
thus, large-scale models of the 1970s are classified as rather small today.
This, however, makes Dantzig’s message relevant to practically all models
used today, not only for policy-making but also in science and management.
Today’s models are not only much larger, the modeled problems are also
more complex (e.g., by including representation of knowledge coming from
various fields of science and technology), and many models are developed by
interdisciplinary teams.

The traditional modeling methods and general-purpose modeling tools are
developed to deal with one of the standard problem-types through a particu-
lar modeling paradigm, and cannot meet the requirements summarized above.
This can only be achieved by a qualitative jump in modeling methodology:
from supporting individual modeling paradigms to supporting a Laboratory
World12 in which various models are developed and used to learn about the
modeled problem in a comprehensive way. The truth is that there are no sim-
ple solutions for complex problems, thus learning about complex problems by
modeling is in fact more important than finding an “optimal” solution. Such
a Laboratory World requires the integration of various established methods
with new (either to be developed to properly address new challenges, or not
yet supported by any standard modeling environment) approaches needed for
an appropriate (in respect to the decision-making process, and available data)
mathematical representation of the problem and the ways of its diversified
analyses.

12 Originally proposed by Dantzig, see e.g., [8,24].
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The complexity, size, model development process, and requirements for
integrated model analysis form the main arguments justifying the need for
the new modeling methodology; the standard general-purpose modeling tools
are not able to adequately meet such demand. More detailed arguments (in-
cluding an overview of the standard modeling methods and tools) supporting
this statement are available in [29].

4.2 Structured Modeling Technology (SMT)

The development, maintenance and exploitation of models is composed of
interlinked activities, often referred to as a modeling process. Such a process
should be supported by modeling technology that is a craft of the systematic
treatment of modeling tasks using a combination of pertinent elements of
science, experience, intuition, and modeling resources, the latter being com-
posed of knowledge encoded in models, data, and modeling tools. Thus the
key to a successful modeling undertaking is defined by the appropriate choice
of ”a combination of pertinent elements”. This can only be achieved through
the long-term and efficient collaboration of researchers advancing disciplinary
methodology with those progressing modeling methodology, the latter keep-
ing abreast of recent developments in operations research, see e.g., [29].

The complexity of problems, and the corresponding modeling process are
precisely the two main factors that determine the requirements for mod-
eling technology that substantially differ from the technologies successfully
applied for modeling well-structured and relatively simple problems. In most
publications that deal with modeling, small problems are used as an illus-
tration of the presented modeling methods and tools. Often, they can also
be applied to large problems. However, as discussed above, the complexity
is characterized not primarily by the size, but rather by: the requirements
of integrating heterogeneous knowledge, the structure of the problem, the
demand for integrated problem analysis, and the requirements for the corre-
sponding modeling process. Moreover, efficient solving of complex problems
requires the use of a variety of models and modeling tools; this in turn will
require even more reliable, re-usable, and shareable modeling resources (mod-
els, data, modeling tools). The complexity, size, model development process,
and the requirements for integrated model analysis form the main arguments
in justifying the need for the new modeling methodology.

Unfortunately, modeling resources are fragmented, and using more than
one modeling paradigm for the problem at hand is too expensive and time-
consuming in practice. The low productivity of model-based work compared
with the high productivity of data-based work has already been discussed
in [22]. In the case of databases, DBMSs are mature and well-established,
and there is a broad agreement on the definitions of the abstract data mod-
els, as well as on the operations (e.g., those featured in SQL) to be sup-
ported for working with these data. This broad agreement has made it pos-
sible to efficiently use data from different sources because DBMS products
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of high quality are available and widely used. It is therefore strange that
professional-quality DBMS techniques are not routinely used in most mod-
eling systems, especially since it is generally agreed that dealing properly
with models of a realistic size requires the use of modern DBMS technology;
moreover, the DBMS technology has advanced immensely and is now well in-
tegrated with the Web. Geoffrion [22] formulated the principles of structured
modeling thus providing a methodological framework for the integration of
various paradigms. However, the proposed integrating framework has been
to a large extent ignored, and most modeling paradigms have been developed
somewhat separately.

Continuing progress in the foundations of modeling, and in database man-
agement, and new opportunities emerging from the network-based, platform-
independent technologies offer a solid background for providing the desired
modeling support needed for management, policy makers, research, and ed-
ucation. Arguments supporting this statement are summarized e.g., in [7,9–
11,19,23,39]. However, modeling technology is still at the stage where data-
processing technology was before the development of DBMS. The data-mana-
gement revolution occurred in response to severe problems with data reusabil-
ity associated with file-processing approaches to application development.
DBMSs make it possible to efficiently share not only databases but also tools
and services for data analysis that are developed and supplied by various
providers and made available on computer networks [27]. Data processing
was revolutionized by the transition from file processing (when data was
stored in various forms and software for data processing had to be developed
for each application) to DBMS. The need to share data resources resulted
in the development of DBMSs that separate the data from the applications
that use the data. The modeling world has not yet learned this lesson: almost
every modeling paradigm still uses a specific format of model specification
and data handling.

Structured Modeling Technology (SMT) has been developed for meeting
such requirements. SMT supports distributed modeling activities for models
with a complex structure using large amounts of diversified data, possibly
from different sources. A description of SMT is beyond the scope of this
paper, therefore we will only summarize its main features:

• SMT is Web-based, thus supporting any-where, any-time collaborative
modeling.

• It follows the principles of Structured Modeling proposed by Geoffrion,
see e.g., [22]; thus it has a modular structure supporting the development
of various elements of the modeling process (model specification, handling
(subsets of) data, integrated model analysis) by different teams possibly
working in distant locations.

• It provides automatic documentation of all modeling activities.
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• It uses a DBMS for all persistent elements of the modeling process, which
results in efficiency and robustness; moreover, the capabilities of DBMSs
allow for the efficient handling of both huge and small amounts of data.

• It assures the consistency of: model specification, meta-data, data, model
instances, computational tasks, and the results of model analysis.

• It automatically generates a Data Warehouse with an efficient (also for
large amounts of data) structure for:
– data, and tree-structure of data updates,
– definitions of model instances (composed of a symbolic specification

and a selected data update),
– definitions of preferences for diversified methods of model analysis,
– results of model results,
– logs of all operations during the modeling process.

This conforms to the requirement for persistency for all elements of the
modeling process.

• It exploits computational grids for large amounts of calculation.
• It also provides users with easy and context sensitive problem reporting.

Thus SMT supports the entire modeling process composed of:

• Analysis of the problem and a development of the corresponding model
(symbolic) specification.

• Collection and verification of the data to be used for calculating the model
parameters.

• Definition of various model instances (composed of a model specification,
and a selection of data defining its parameters).

• Diversified analyses of model instances.
• Documentation of the whole modeling process.

A more detailed presentation of SMT (including an overview of the stan-
dard modeling methods and tools) is available in [29]. Here we only mention
that SMT has been developed for the collaborative modeling of complex prob-
lems, and has been effectively used for this purpose. In particular, it is being
used for the new version of the RAINS model [1], which is a large13 model
composed of submodels of:

• current and future economic activities, energy consumption levels, fuel
characteristics, etc.), for emission control options and costs,

• atmospheric dispersion of pollutants,
• environmental and health effects, including sensitivities (i.e., databases

on critical loads defined for each at about 5400 grids for several types of
environmental indicators).

13 Consisting of over 1,000,000 variables and over 107 non-zero coefficients (many
coefficients are defined by evaluation of expressions composed of “primary” data).
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For handling complex models SMT provides support for the specification of
a whole model, and also for the extraction of consistent sub-models that can
be analyzed separately by using the data from the common Data Warehouse.

SMT also supports efficient data processing which for large models is a
very time consuming, and, in fact, most critical element of the modeling
process. To achieve the needed functionality the data processing has several
characteristics not used in other modeling systems. This includes definitions
of not only the trees of data updates, but also composite updates (which are
actually parameterized sets of updates).

Such a structured method of interdisciplinary knowledge integration
through a mathematical model provides excellent opportunities for effective
collaborative work.

4.3 Integrated Model Analysis

Model analysis is probably the least researched element of the modeling pro-
cess. This results from the focus that each modeling paradigm has on a specific
type of analysis. However, the essence of model-based decision-making sup-
port is precisely the opposite; namely, to support diversified ways of model
analysis, and to provide efficient tools for various comparisons of solutions.
Such an approach can be called Integrated Model Analysis.

A typical model for supporting decision-making has an infinite number of
solutions, and users are interested in analyzing trade-offs between a manage-
able number of solutions that correspond to various representations of their
preferences, often called the preferential structure of the user. Thus, an ap-
propriate integrated analysis should help users to find and analyze a small
subset of all solutions that correspond best to their preferential structures
that typically change during the model analysis. SMT provides the compu-
tational technology framework for the analysis, but there are three types of
problems that call for innovative research:

• the integration of various paradigms of model analysis,
• the extraction of knowledge from large sets of solutions,
• the efficient solution of computational tasks (either resource-demanding,

or numerically difficult, or large sets of simple jobs).

We briefly summarize each of them below.
For a truly integrated problem analysis one should actually combine dif-

ferent methods of model analysis, such as: classical (deterministic) optimiza-
tion (and its generalizations, including parametric optimization, sensitivity
analysis, fuzzy techniques), multicriteria model analysis, stochastic optimiza-
tion and Monte Carlo simulations, classical simulation, soft simulation, and
several of its generalizations (e.g. inverse simulation, softly constrained sim-
ulation). However, no modeling tool supports such a complete analysis, and
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the development of separate versions of a model with tools supporting dif-
ferent modeling paradigms is typically too expensive. Thus we aim to find a
satisfactory solution to this problem.

The second research challenge is to develop and implement a method-
ology for a comprehensive analysis of large sets of solutions. One needs to
explore the applicability of various data-mining and knowledge engineering
techniques, and either adapt some of them, or develop new methods to ex-
tract and organize knowledge from large sets of solutions, and supply users
with this knowledge in a form that will help further problem analysis.

The third set of research issues is related to the efficient and robust orga-
nization of computational tasks typically needed for large-scale models, and
includes:

• Efficient support for handling a large number of results, possibly coming
from various types of analyses of large models.

• Adaptation of specialized optimization algorithms for badly conditioned
problems.

• Support for exploiting the structure of huge optimization problems.
• Support effective use of computational grids.

5 Conclusions

Models can play a key role in the science-based support for policy-making pro-
vided they are properly developed, i.e., use appropriate methodology for the
treatment of uncertainty and risks, and also appropriate modeling technol-
ogy. Successful experience with actual applications in diversified areas shows
how problems which cannot be dealt with by using traditional approaches,
can be successfully coped with.

Any actual policy analysis focuses attention on situations where processes
can be affected or controlled by decisions that should be selected in the best
possible manner. The best however has to be understood differently from the
traditional optimization-driven paradigms that aim at computing the optimal
solution of a well-defined mathematical programming problem. Optimization
still plays a key role in problem analysis but it is now a tool used in integrated
problem analysis. In this approach a policy analysis problem is represented by
a model consisting of several submodels; such a model contains sets of goals
and feasible decisions, the latter implicitly defined by the substantive part
of the model, which represents the pertinent knowledge about the problem.
In reality these sets are also uncertain and they can be specified through a
dialogue of users with a system of models.

The structured modeling technology supports the whole modeling process
in a consistent way. By structuring the modeling process one can organize
and document knowledge integration and creation much more effectively,
especially for problems requiring interdisciplinary work. This includes the
distinction of two parts of a model: objective (a representation of pertinent
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knowledge) and subjective (various representations of user preferences which
are typically modified during the model analysis).

Advances in modeling and computational methods [30] allow us to create
a ”laboratory world” [24], where one can also analyze new policies that have
not yet been implemented. Such ”learning-by-modeling” dialogue of users
with models requires specific methods for finding robust solutions which able
properly account for the effects of rare extreme events. These methods also
maintain a consistency of outcomes under the changing environment of the
”laboratory world” where goals and sets of feasible solutions are subject to
changes that reflect the views of users, new knowledge created by model
analysis, and experience from diversified implementations.

The diversified experience presented in this chapter comes from two
streams of activities: (1) development of novel methods and tools for inte-
grating and creating knowledge pertinent to solving complex problems, and
(2) development of structured modeling technology to support the whole
modeling process of model-based support for solving complex policy prob-
lems. An important challenge for on-going activities is to exploit the synergy
of these two streams.
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Modeling Stochastic Uncertainty
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Abstract. This chapter is concerned with the estimation of the reliability of struc-
tures in view of physical uncertainties encountered due to the inherent variability
in structural properties and loads. In this respect, methods based on the traditional
Monte Carlo simulation method are employed to deal with probabilistically modeled
uncertainties. Hence, suitable variance reduction techniques and efficient computa-
tional procedures are presented, in order to alleviate the high processing demands
associated with Monte Carlo computations and make the overall reliability estima-
tion process more tractable in practice. The focus of this chapter is on statistically
high-dimensional problems, which involve large numbers of random variables. The
merits of some of the techniques and algorithms described are demonstrated with
two application examples.

1 Introduction

The treatment of physical uncertainties has been identified as a research area
of great importance and interest within the structural mechanics commu-
nity [16]. Physical variability is related to the inherent randomness involved
in the properties of engineering structures and systems, as well as in the
imposed loading and boundary conditions. Since physical uncertainties are
a consequence of the randomness in nature, they cannot be controlled by
humans. For instance, uncertainties in material properties (modulus of elas-
ticity, mass density, yield strength, etc.) or environmental loads (earthquake,
wind, wave, etc.) cannot be reduced using a scientific procedure; one can only
accept their existence, then observe and understand them and finally attempt
to appropriately treat them in the framework of an engineering process.

Experience shows that several of the aforementioned uncertainty types
– depending each time on the particular structural problem at hand – re-
sult in severe variations of structural response and therefore directly affect
structural safety and reliability. Therefore, physical uncertainties should be
taken into account during the modeling of structural systems regardless of
the features and the solution accuracy of the numerical method employed
to simulate structural behavior. In an effort to cope with such modeled un-
certainties, various approaches have been developed incorporating statistical
and probabilistic procedures into structural mechanics formulations.

The approaches basically applied for the probabilistic modeling of physi-
cal uncertainties in structural mechanics use either simple random variables
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(e.g. [15]), random processes (e.g. [14]) or random fields (e.g. [22]). In the
simple random variable case, a single variable following some probability dis-
tribution describes the random characteristics of an uncertain parameter in
space and time. In the random field case, the value of an uncertain property
(e.g. material property) or loading (e.g. wind pressure on area-like structures)
varies across the structural domain according to some correlation pattern.
Hence, the adopted probability distribution does not refer to a single random
variable, but to several random variables required to adequately represent the
spatially correlated random fluctuation of the uncertain property or loading.
Accordingly, when the uncertain parameter is time-dependent (e.g. stochas-
tic earthquake loading), a stochastic process with some correlation pattern
can be used to model the random variation in time. When random processes
and/or fields are employed, the resulting structural investigation is called
stochastic analysis. Clearly, the stochastic approach allows for more detailed
description of uncertainties than the use of simple random variables. How-
ever, stochastic modeling implies that sufficient information on the time or
spatial variation of the uncertain parameter is available, in order to be able
to define the corresponding random process or field.

A challenging problem encountered when uncertainties are incorporated
into structural mechanics applications is the estimation of structural reliabil-
ity, which is defined as the probability that a structure will respond within
acceptable limits. The probability of exceeding these bounds or else the prob-
ability of failure of the structure can be simply expressed as:

PF =
∫

g(
−→
θ )≤0

f(
−→
θ ) d

−→
θ =

∫
Rd

IF (
−→
θ )f(

−→
θ ) d

−→
θ , (1)

where g(
−→
θ ) is the so-called performance or limit state function, IF (

−→
θ ) is

the indicator function of a failure event F ⊆ Rd whose probability PF is
to be calculated and the vector

−→
θ ∈ Rd represents the random parameters

of the system (i.e. the uncertainties in material properties, loads) with joint
probability density function f(

−→
θ ). g(

−→
θ ) is a scalar function associated with

F such that g(
−→
θ ) ≤ 0 indicates failure of the system, while g(

−→
θ ) > 0 denotes

non-failure. Thus, the hyper-surface g(
−→
θ ) = 0, which is called limit state

surface, separates the d-dimensional input space of random variables
−→
θ =

(θ1, θ2, . . . , θd) into a failure and a safe domain. Then, the indicator function
IF is defined as:

IF (
−→
θ ) =

{
1 for g(

−→
θ ) ≤ 0

0 for g(
−→
θ ) > 0

(2)

and the failure probability may be interpreted as:

PF = E[IF (
−→
θ )], (3)

where E[·] denotes the expectation operator.
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The present work is focused on the estimation of structural reliability with
techniques based on the traditional Monte Carlo Simulation (MCS) method,
which is the most effective and widely applicable approach for handling ar-
bitrary probabilistic or stochastic structural mechanics problems. The severe
computational workload associated with MCS implementations for reliability
estimation is drastically reduced by introducing suitable variance reduction
techniques to minimize the number of simulations required and by alleviating
the processing effort of each simulation with the use of efficient computational
procedures.

The remainder of this chapter is organized as follows. The simple direct
MCS approach is overviewed in Section 2. Section 3 is concerned with vari-
ance reduction techniques for low- and high-dimensional problems. Section 4
addresses computational efficiency issues involving solution and parallel pro-
cessing procedures. Finally, numerical results are presented in section 5 and
closing remarks are given in section 6.

2 Direct Monte Carlo Simulation

According to the direct MCS approach, the expectation of the failure prob-
ability (3) is estimated by:

PF ≈ P̂F =
1

nsim

nsim∑
i=1

IF (
−→
θ (i)), (4)

where the samples
−→
θ (i), i = 1, 2, . . . , nsim, are independently and identically

simulated following the probability density function f(
−→
θ ). The convergence

rate of the above unbiased estimator is most appropriately measured by the
associated coefficient of variation:

δMC =

√
Var[P̂F ]

E[P̂F ]
=
√

1− PF

nsimPF
, (5)

where Var[·] represents the variance. It is important to note that δMC is
independent of the dimensionality of the random vector

−→
θ . It is also inde-

pendent of the type of the probability density function f(
−→
θ ) employed, as

well as of the type, size and particular configuration of the structural problem
considered. The convergence rate of the estimator (4) depends only on the
failure probability and the number of samples nsim. Hence, direct MCS is
a general method with very wide applicability provided that a deterministic
solver is available for the structural problem at hand, in order to determine
g(
−→
θ (i)) or IF (

−→
θ (i)) by carrying out an analysis for each simulation i.

The main disadvantage of the estimator (4) is its inefficiency in calculating
low failure probabilities PF due to the large number (essentially proportional
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to 1/PF ) of samples or equivalently system analyses needed to achieve an ac-
ceptable level of accuracy. For instance, in order to calculate a failure proba-
bility PF = 10−4 with a coefficient of variation for the estimator δMC = 30%,
nsim = (1−PF )/(δ2MCPF ) = 111, 100 samples are required following Eq. (5).

3 Variance Reduction Techniques

In an effort to alleviate the disadvantage of inefficiency of direct MCS in
calculating low failure probabilities, several more advanced variants have
been developed, which reach PF -convergence with considerably smaller nsim-
numbers compared to estimator (4). A popular class of such simulation meth-
ods essentially reduce the coefficient of variation (5), therefore they are called
variance reduction techniques. As opposed to the general applicability of the
direct MCS procedure, these techniques focus on efficiency. In this sense, di-
rect MCS is not competitive when compared with methods which succeed
to extract and exploit essential properties of the problem considered. How-
ever, generality is usually inversely proportional to efficiency. Hence, variance
reduction sacrifices generality to some extent, in order to yield results in ac-
ceptable computing times.

Contrary to direct MCS, the applicability and effectiveness of variance
reduction techniques is typically not independent of the dimensionality of
the random vector

−→
θ , which includes all uncertain parameters of the struc-

tural system considered. Thus, one needs to separately refer to problems
with relatively small numbers (say up to 20) and large numbers (up to hun-
dreds or even thousands) of random variables, i.e. one has to distinguish
between statistically low- and high-dimensional problems, respectively. The
methods and variants existing today allow the assessment of static/dynamic
linear/non-linear reliability estimation problems quite effectively, since failure
probabilities can be reliably estimated in low and high dimensions by per-
forming manageable numbers of simulations. Even low probabilities can be
satisfactorily dealt with (e.g. PF = 10−6), which would require unacceptably
high numbers of simulations (e.g. tens of millions) with direct MCS.

The present section overviews the following variance reduction techniques:

• importance sampling,
• subset simulation and
• line sampling.

These methods, as well as other alternatives, are implemented in software
packages ISPUD [10] for low-dimensional problems and COSSAN B [7] for
high-dimensional ones. ISPUD can primarily handle reliability problems em-
ploying a smaller number of random variables only. COSSAN B can also
treat problems with large numbers of random variables encountered e.g. in
Stochastic Finite Element (SFE) applications and stochastic dynamics.
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3.1 Low-Dimensional Problems

Importance sampling has been one of the most prevalent simulation-based
methods for the estimation of structural reliability (see e.g. [18]). The un-
derlying concept of the method is to draw samples of the vector of random
parameters

−→
θ from a distribution f ′(

−→
θ ) which is concentrated in the ’im-

portant region’ of the random parameter space. In other words, f ′(
−→
θ ) needs

to be selected in a way that a considerable part of the generated samples falls
within the failure domain F . According to this approach, the weight of each
realization considered in the important region is appropriately adjusted, in
order to avoid the distortion of the original Monte Carlo estimator. For this
purpose the probability of failure of Eqs. (1) and (3) is re-expressed as:

PF =
∫

Rd

IF (
−→
θ )

f(
−→
θ )

f ′(
−→
θ )

f ′(
−→
θ )d

−→
θ

= Ef ′

[
IF (
−→
θ )

f(
−→
θ )

f ′(
−→
θ )

]
. (6)

Then, based on the above expectation with respect to f ′, the estimator (4)
takes the form:

PF ≈ P̂F =
1

nsim

nsim∑
i=1

IF (
−→
θ (i))

f(
−→
θ (i))

f ′(
−→
θ (i))

, (7)

where the samples
−→
θ (i), i = 1, 2, . . . , nsim, are independently and identically

simulated following the probability density function f ′(
−→
θ ). The variance of

estimator (7) is given by:

Var[P̂F ] =
1

nsim
Varf ′

[
IF (
−→
θ )

f(
−→
θ )

f ′(
−→
θ )

]

=
1

nsim

(∫
Rd

IF (
−→
θ )

f2(
−→
θ )

f ′2(
−→
θ )

f ′(
−→
θ )d

−→
θ − P 2

F

)
. (8)

The optimal choice for the importance sampling density f ′(
−→
θ ), which is

obtained from Eq. (8) for Var[P̂F ] = 0, is:

f ′
opt(
−→
θ ) =

IF (
−→
θ )f(

−→
θ )

PF
. (9)

Clearly, this is a practically infeasible choice, since PF is not known a priori.
Therefore, a number of techniques have been developed, which approximate
the optimal sampling density (9) or construct a different one exhibiting a
relatively low variance of the estimator in Eq. (8). Two such approaches are
those based on kernel density estimators or design points [19].
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Importance sampling, as well as other popular reliability estimation ap-
proaches such as first/second order reliability methods (FORM/SORM) and
the response surface method, are known to effectively deal with statistically
low-dimensional problems only [19]. Therefore, alternative methods have been
developed for high-dimensional reliability estimation problems, as described
in the next subsection.

3.2 High-Dimensional Problems

In the framework of subset simulation [2] PF is expressed as a product of
larger conditional probabilities by defining a decreasing sequence of events
(subsets) Fi, i = 1, 2, . . . ,m, such that:

F1 ⊃ F2 ⊃ . . . ⊃ Fm = F. (10)

Then, it holds that:
k⋂

i=1

Fi = Fk ∀ k ≤ m (11)

and the probability of failure PF can be written as:

PF = P (Fm) = P (F1)
m−1∏
i=1

P (Fi+1|Fi). (12)

With an appropriate selection of Fi, i = 1, 2, . . . ,m − 1, the probabilities
P (F1) and P (Fi+1|Fi) ∀ i ≥ 1 can be made sufficiently large so that they can
be efficiently estimated through direct MCS. Hence, the original reliability
estimation problem is substituted by a series of m problems, each of which
can be solved with a small number of simulations. A key ingredient in the
overall efficiency of the method is the use of Markov chains, which allows the
generation of the samples needed for estimating P (Fi+1) by using the samples
simulated in the previous step for calculating P (Fi). Apart from the original
version of subset simulation [2], a number of variants have been developed
building upon the basic concept of the method [12,5–7].

The line sampling approach [13,19] employs lines instead of points in order
to collect information about the probability content of the failure domain. It
requires the specification of an important direction, which points towards the
nearest region of the failure domain. For this purpose, assuming without loss
of generality that the important direction points towards the direction of θ1,
the failure domain F is expressed as:

F = {−→θ ∈ Rd : θ1 ∈ F1(
−→
θ −1)}, (13)
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where F1 is a function defined on Rd−1 and
−→
θ −1 = (θ2, . . . , θd) is a (d-1)-

dimensional vector. Using Eqs. (1) and (13), PF takes the form:

PF =
∫
. . .

∫
︸ ︷︷ ︸

d

IF (
−→
θ )

d∏
i=1

φ(θi)d
−→
θ

=
∫
. . .

∫
︸ ︷︷ ︸

d−1

(∫
IF1(

−→
θ −1)φ(θ1)dθ1

) d∏
i=2

φ(θi)d
−→
θ −1

=
∫
. . .

∫
︸ ︷︷ ︸

d−1

Φ
(
F1(
−→
θ −1)

) d∏
i=2

φ(θi)d
−→
θ −1

= E−→
θ −1

[
Φ
(
F1(
−→
θ −1)

)]
, (14)

where φ(x) = (1/
√

2π)e−x2/2 is the unit-variance Gaussian probability den-
sity function and Φ(F1) =

∫
IF1 (x)φ(x)dx is the probability content of the

Gaussian distribution for F1. Then, based on the above expectation with
respect to

−→
θ −1, the estimator for PF can be written as:

PF ≈ P̂F =
1

nsim

nsim∑
i=1

Φ
(
F1(
−→
θ

(i)
−1)

)
, (15)

where
−→
θ

(i)
−1, i = 1, 2, . . . , nsim, are independent and identically distributed.

It is noted that the estimator for PF by line sampling can be obtained from
the estimator (7) of importance sampling with suitable assumptions for θ1
and f ′(

−→
θ −1) [19]. The coefficient of variation of the estimator (15) is always

smaller than δMC of Eq. (5), which implies that the convergence of the line
sampling procedure is always faster than that of direct MCS. Hence, line
sampling is considered as a robust reliability estimation method once an
important direction has been identified. This direction plays the role of the
design point in importance sampling and can be determined analytically for
linear systems, but in general gradient computations are needed. It should
also be mentioned that line sampling can be combined with the so-called
averaged probability flow concept for estimating excursion probabilities in
stochastic structural dynamics [17].

3.3 Benchmark Studies

As already mentioned in the previous subsections, several reliability estima-
tion methods, procedures and algorithms with various capabilities, accuracy
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and efficiency have been suggested in the past. Hence, a quantitative compar-
ison of these approaches is considered to be most instrumental and useful for
the engineering community. In this respect, a Benchmark study focused on
nonlinear stochastic structural dynamics problems was carried out in 1997 [8].
The results of this initiative presented the comparative status of reliability
estimation methods suggested until then. Moreover, a more recent partially
qualitative comparison of methods was reported in [19].

A new Benchmark study [9], which attempts to assess various recently
proposed alternatives for reliability estimation with respect to their accu-
racy and computational efficiency, was suggested in 2004 and is expected
to be completed within 2005. The emphasis of this current study is now on
systems which include a large number of random variables. For that pur-
pose three problems have been chosen which cover a wide range of cases
of interest in engineering practice and involve linear and non-linear systems
with uncertainties in the material properties and/or the loading conditions
(static/dynamic). Preliminary results obtained in this new Benchmark study
are reported in the Proceedings of a Special Session of the 9th International
Conference on Structural Safety and Reliability (ICOSSAR 2005), Rome,
Italy, 2005 [3].

Reference results obtained with direct MCS allow objective and unbiased
comparisons to be made between the various reliability estimation approaches
employed in benchmark studies. Thus, the accuracy, the efficiency and the
limitations of each approach can be quantitatively determined and the associ-
ated advantages and disadvantages can be highlighted. Apart from assessing
existing procedures in reliability estimation, the benchmark results can also
serve as a reference for the engineering community in order to test new algo-
rithms and computational procedures.

4 Computational Efficiency Issues

The MCS method – either in its simple direct version or in the framework of
a variance reduction technique – involves expensive computations due to the
successive system analyses required. Consequently, the need for developing
efficient computational procedures emerges, in order to accelerate the MCS
process and make it more tractable in structural engineering practice.

4.1 Solution Techniques

When the Finite Element (FE) method is applied in the context of an MCS-
based technique for the analysis of a structure with uncertain properties, suc-
cessive linear systems with multiple left-hand sides have to be processed, since
the coefficient matrix K representing the stiffness of the structure changes in
every simulation. In particular, assuming deterministic loads, each simulation
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i = 1, 2, . . . , nsim involves the solution of a problem of the form:

Kiui = p, (16)

where Ki is the stiffness matrix associated with the ith simulation, ui is the
corresponding vector of unknown nodal displacements and p is the vector
of nodal loads. Let K0 be the stiffness matrix associated with the initial
simulation. Then, Eq. (16) can be written as:

(K0 +ΔKi)ui = p, (17)

which specifies a set of reanalysis-type or nearby problems. Matrix ΔKi,
which defines the difference between the stiffness matrices K0 and Ki, is
generally small compared to K0.

Several solution procedures can be applied for solving the series of the
systems of the form given in Eqs. (16) or (17). The standard direct method
based on Cholesky factorization remains the most popular solution scheme
for FE equations. According to this method, the stiffness matrix is factorized
usually in the form:

K = LDLt, (18)

where D is a diagonal matrix and L is a lower triangular matrix with unit
elements on the leading diagonal. FE equations are then solved for the dis-
placements vector with a forward substitution using L, a vector operation
involving D and a backward substitution employing Lt. Clearly, the afore-
mentioned factorization and forward/backward substitution procedures need
to be performed at each simulation.

A widely known disadvantage of the direct solution approach is its poor
performance in solving large-scale problems. This deficiency has led to the
development of alternative solution procedures, which are essentially iterative
rather than direct and allow the exploitation of the special features of nearby
problems encountered in FE reanalyses.

The Preconditioned Conjugate Gradient (PCG) method is such a solu-
tion technique, which can be customized to take into account the relatively
small differences between stiffness matrices Ki, i = 1, 2, . . . , nsim, avoiding
this way the treatment of the nsim systems (16) as stand-alone problems.
PCG-customization is localized at the preconditioning matrix K̃ employed
to accelerate PCG convergence during the successive FE solutions. Hence,
reanalysis problems of the form given in Eq. (17) can be effectively solved
using the PCG algorithm equipped with a preconditioner following the ratio-
nale of incomplete Cholesky preconditionings. The incomplete factorization
of the stiffness matrix K0 +ΔKi can be written as:

L̃iD̃iL̃
t
i = K0 +ΔKi − Ei, (19)

where D̃i is a diagonal matrix and L̃t
i is a lower triangular matrix with unit

elements on the leading diagonal. Ei is an error matrix which is taken as
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ΔKi, therefore the preconditioning matrix becomes the complete factorized
initial stiffness matrix: K̃ = K0. The PCG algorithm equipped with this
preconditioner throughout the entire MCS process constitutes the powerful
PCG-K0 method for the solution of the nsim nearby problems (17) [4].

4.2 Parallel Computing

Parallel computing is widely appreciated as an effective tool to overcome the
computational barriers imposed by CPU speed and memory limitations in
sequential processing. The appropriate partitioning of a computational task
into subtasks allows the exploitation of powerful parallel computers by exe-
cuting the produced subtasks on the several available processors concurrently
to accelerate the overall computational process. Among the various paral-
lel processing environments available today, a widely used and cost-effective
platform for distributed computing is the cluster of networked computers.

Parallel processing is particularly suitable for coping with the excessive
computational workloads produced in the context of MCS-based FE analysis
(see e.g. [11,4]). There are basically two alternative options for parallelizing
the MCS process, in order to take advantage of high performance computing
environments like clusters of computers. These two options are realized by
partitioning the overall computational process either at the MCS level or at
the structural domain level [4]. In the first case, the global set of simulations
to be performed is decomposed into subsets, each of which is assigned to a
different processor. In other words, several simulations are concurrently con-
ducted by executing the standard sequential MCS-based FE procedure on
each processor for a part of the total number of simulations. In the second
case, a Domain Decomposition (DD) formulation is applied by partitioning
the FE mesh of the structure into non-overlapping submeshes (called subdo-
mains). This way, one simulation is conducted at a time with the structural
domain spread over the available processors in the form of subdomains.

Clearly, implementing a DD method is a much more complicated task than
the straightforward partitioning at the MCS level. However, the partitioning
of simulations leads to efficient MCS-based FE analysis only for moderately
large-scale problems, while DD algorithms can deal more effectively with very
large-scale problems involving hundreds of thousands or even millions degrees
of freedom.

5 Applications

Two application examples are given in this section, in order to demonstrate
the merits of some of the techniques and algorithms described in the present
chapter. The application areas addressed in the two examples are: (i) stochas-
tic dynamics and (ii) stochastic FE analysis.
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5.1 Oscillator with Random Properties Subjected to Random
Excitation

The excursion probability of a ten-degree-of-freedom Duffing-type oscillator
subjected to random excitation is considered to show the effectiveness and
efficiency of a variance reduction technique in estimating low probabilities in
high dimensions (see case 2 of problem 2 in the Benchmark study [9]). The
governing equation of this problem is expressed with respect to time t as:

−→
M−̈→u (t) +

−→
C −̇→u (t) +

−→
K−→u (t) =

−→
F (t) (20)

with zero initial conditions, where the mass, damping and stiffness matrices
are respectively given by:

−→
M =

⎡⎢⎢⎣
m1 0 0 . . . 0
0 m2 0 . . . 0
· · · . . . ·
0 . . . 0 0 m10

⎤⎥⎥⎦ , (21)

−→
C =

⎡⎢⎢⎣
c1 + c2 −c2 0 . . . 0
−c2 c2 + c3 −c3 . . . 0
· · · . . . ·
0 . . . 0 −c10 c10

⎤⎥⎥⎦ , (22)

−→
K =

⎡⎢⎢⎣
k1 + k2 −k2 0 . . . 0
−k2 k2 + k3 −k3 . . . 0
· · · . . . ·
0 . . . 0 −k10 k10

⎤⎥⎥⎦ . (23)

The displacements vector is −→u (t) = [u1, u2, . . . , u10]
t and the random excita-

tion
−→
F (t) has the form

−→
F (t) = p(t) [m1,m2, . . . ,m10]

t, where p(t) is modeled
by a modulated filtered Gaussian white noise. Failure for this system occurs
when the maximum absolute relative displacement δumax between two con-
secutive degrees of freedom over the time interval of interest exceeds some
pre-defined critical value.

The total number of random variables for the Duffing-type oscillator ap-
plication is 4,030. The random variables consist of 30 structural parameters
(i.e. mass, damping and stiffness values for each of the 10 degrees of freedom)
and the excitation values at 4,000 time instants considered in the interval
[0, 20s] with a step Δt = 0.005 s. Naturally, the effect of these two groups of
random variables on the response of the system and as a consequence on the
excursion probabilities is markedly different. Therefore, the original random
parameter space is orthogonally decomposed into two subspaces, i.e. each
vector

−→
ξ ∈ R4030 can be uniquely written as:

−→
ξ =

−→
ξ s +

−→
ξ e, (24)
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where
−→
ξ s ∈ R30 represents the structural parameters and

−→
ξ e ∈ R4000 the

random excitation. This random parameter space decomposition is exploited
to estimate the failure probability PF for 4 test cases by calculating the
averaged probability flow using line sampling computations [20]. Test cases 1
and 2 refer to the excursion probability of the absolute displacement of the 1st
degree of freedom, while test cases 3 and 4 examine the excursion probability
of the relative absolute displacement of the 10th degree of freedom. Hence, the
failure of the oscillator must be monitored for 4 different critical displacement
values, each of which corresponds to one of test cases 1-4.

Table 1 reports the results obtained with the procedure mentioned above,
while direct MCS results are also provided for comparison purposes. The
results of this Table illustrate the accuracy and efficiency of the variance re-
duction technique. The PF -values estimated using averaged probability flows
with line sampling are close to the corresponding reference values of direct
MCS. Moreover, a number of only 330 analyses suffices to obtain PF -results
with the variance reduction technique for any test case; a total number of
360 analyses are required to obtain the results of Table 1, since 30 analyses
are initially performed for gradient evaluations. Thus, sufficiently accurate
reliability estimations can be calculated by performing manageable num-
bers of simulations, avoiding this way the millions of analyses required by
direct MCS. In addition to this advantage, the small Coefficients Of Vari-
ation (COV ) obtained for PF with 10 independent runs demonstrate the
robustness of the utilized procedure in effectively and efficiently handling
high-dimensional spaces of linear stochastic dynamics problems.

Table 1. Simulation results for the Duffing-type oscillator test problem

Test case 1 2 3 4

Critical displacement (m) 0.057 0.073 0.013 0.017

Averaged probability flows using line sampling

PF 9.8E-5 9.7E-7 6.0E-5 4.6E-7

COV (PF ) 4.9% 7.6% 11.9% 15.7%

Analyses performed 360 360 360 360

Direct MCS

PF 1.0E-4 9.0E-7 6.0E-5 3.0E-7

Analyses performed 29,750,000 29,750,000 29,750,000 29,750,000
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5.2 Stochastic FE Analysis of Cylindrical Shell

The cylindrical Scordelis-Lo shell roof of Fig. 1 is used to demonstrate the
potential of efficient computational procedures in MCS applications. The two
longitudinal y-edges of the shell are L=15.2m long and are assumed to be
free, while the two circular edges, each of which is defined as a 80 ◦-arc of
a circle with radius R=7.6m, are supported by rigid diaphragms. The shell
is subjected to deterministic gravity loading and is assumed to have two
uncertain structural properties: the spatial variations of the shell’s modu-
lus of elasticity E and thickness t are described by two non-correlated two-
dimensional univariate homogeneous Gaussian stochastic fields with mean
values E0=21,000N/mm2 and t0=76mm, respectively, and a common coef-
ficient of variation σ=10%. The correlation length values considered for the
random fields are b=1.3m and b=6.5m. The objective in this application ex-
ample is to evaluate the probability PF that the absolute value of the struc-
ture’s vertical displacement wA at node A (mid-point of a free edge of the
shell in Fig. 1) exceeds some critical value wA,cr (we assume wA,cr=46mm in
the case of b=1.3m and wA,cr=54mm in the case of b=6.5m). Hence, a direct
MCS-based stochastic approach is applied to obtain PF -results [1] using the
spectral representation method to generate stochastic field samples [21] and
the local average approach to obtain discretized random field values at the
elements’ centroids [22].
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Fig. 1. The structural mesh for the cylindrical shell test problem (35 × 49 nodes)

Meshes of various sizes consisting of triangular shell elements are pro-
duced for this stochastic test problem. The finest of these meshes, which
contains 35× 49 nodes resulting in 10,080 active degrees of freedom (Fig. 1),
is used as the structural model for carrying out all standard FE calculations.
A stochastic mesh, whose size depends on the adopted correlation length b,
is also employed in each test run of the shell example for the generation of
random field values. The produced stochastic information is transfered from
the stochastic to the structural mesh using a computationally inexpensive bi-
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variate interpolation algorithm [4], as visualized in Fig. 2. Since the adopted
stochastic mesh is typically coarser than the structural one, the task of gener-
ating discretized random field samples during the simulations is considerably
accelerated by producing stochastic field values for a smaller number of ele-
ments and then appropriately interpolating.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Cylindrical shell: A Gaussian random field sample (b=1.3m) generated with
a stochastic mesh of 17× 24 nodes (left) and then interpolated onto the structural
mesh of 35 × 49 nodes (right)

The timing results of Table 2, which are obtained on a cluster of 12
Pentium PCs running the Linux operating system, show the sequential and
parallel computational efficiency of the PCG-K0 solver on np PCs in com-
bination with the concept of separate structural and stochastic meshes. The
performance of the conventional direct solution approach is also presented for
comparison purposes. Clearly, the use of parallel computing by partitioning
the overall computational process at the MCS level leads to very efficient
stochastic FE analyses for this moderately large-scale problem. For instance,
the total processing time needed to conduct 1,900 simulations is reduced from
about 1.2 h using standard techniques (sequential direct solution and coin-
ciding structural and stochastic meshes) to just 33 s when computationally
more efficient schemes (parallel solution with the PCG-K0 method, separate
structural and stochastic meshes) are employed. It is emphasized that the
PF -results yielded by such efficient schemes in the test runs of Table 2 are
practically equal to the reference results obtained with standard techniques.
Hence, MCS results of the same accuracy can be achieved in processing times,
which are order(s) of magnitude smaller.
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Table 2. Simulation results for the cylindrical shell test problem

b (m) nsim np Solver Stochastic mesh Total time (s) PF

1.3 1400 1 Direct 35 × 49 3119.7 3.0E-2

1 PCG-K0 17 × 24 941.7 3.0E-2

6 PCG-K0 17 × 24 159.7 3.0E-2

12 PCG-K0 17 × 24 80.7 3.0E-2

6.5 1900 1 Direct 35 × 49 4233.9 7.1E-2

1 PCG-K0 5 × 7 381.6 7.2E-2

6 PCG-K0 5 × 7 64.8 7.2E-2

12 PCG-K0 5 × 7 32.8 7.2E-2

6 Closing Remarks

The present work presents efficient methods and computational procedures
for calculating the reliability of structural systems. Although reliability es-
timation is a rather computationally intensive task, this work demonstrates
that it can be effectively and efficiently handled using Monte Carlo-based
approaches. However, despite the developments and achievements in this sci-
entific field, a number of issues are still open and call for further research
efforts.

Current research needs are primarily concentrated on problems with large
numbers of random variables. Typical statistically high-dimensional applica-
tions are problems encountered in stochastic finite element analysis (finite
element formulations incorporating structural uncertainties, which are mod-
eled using random fields) and in stochastic dynamics (structural analyses un-
der uncertain dynamic loadings, which are described by random processes).
Particularly challenging in this respect are problems which are non-linear and
time-dependent.

Another area with significant research potential is Reliability-Based De-
sign Optimization (RBDO), in which the design of a structure is optimized
for a particular target safety level. More specifically, the aim in RBDO is to
minimize the cost of a structure under the condition that certain pre-specified
reliability constraints are satisfied. It is clear that reliability estimation algo-
rithms have an important role to play in RBDO implementations.

Finally, as reliability estimation and RBDO are and will be becoming
more effective, efficient and mature tools, they can be used to study and
handle the effect of uncertainties in several areas of application: earthquake
and wind engineering, materials science, fracture and fatigue behavior, etc.
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Abstract. Problems from plastic limit load or shakedown analysis and optimal
plastic design are based on the convex yield criterion and the linear equilibrium
equation for the generic stress (state) vector σ. The state or performance function
s∗(y, x) is defined by the minimum value function of a convex or linear program
based on the basic safety conditions of plasticity theory: A safe (stress) state exists
then if and only if s∗ < 0, and a safe stress state cannot be guaranteed if and
only if s∗ ≥ 0. Hence, the probability of survival can be represented by ps =
P (s∗(y(ω), x) < 0).

Using FORM, the probability of survival is approximated then by the well-
known formula ps ∼ Φ (‖z∗

x‖) where ‖z∗
x‖ denotes the length of a so-called β-

point, hence, a projection of the origin 0 to the failure domain (transformed to the
space of normal distributed model parameters z(ω) = T (y(ω))). Moreover, Φ =
Φ(t)denotes the distribution function of the standard N(0,1) normal distribution.
Thus, the basic reliability condition, used e.g. in reliability-based optimal plastic
design or in limit load analysis problems, reads ‖z∗

x‖ ≥ Φ−1(αs) with a prescribed
minimum probability αs. While in general the computation of the projection z∗

x is
very difficult, in the present case of elastoplastic structures, by means of the state
function s∗ = s∗(y, x) this can be done very efficiently: Using the available necessary
and sufficient optimality conditions for the convex or linear optimization problem
representing the state function s∗ = s∗(y, x), an explicit parameter optimization
problem can be derived for the computation of a design point z∗

x. Simplifications
are obtained in the standard case of piecewise linearization of the yield surfaces.

In addition, several different response surface methods including the standard
response surface method are also applied to compute a β-point z∗

x in order to reduce
the computational time as well as having more accurate results than the first order
approximation methods by using the obtained response surface function with any
simulation methods such as Monte Carlo Simulation. However, for the problems
having a polygon type limit state function, the standard response surface methods
can not approximate well enough. Thus, a response surface method based on the
piecewise regression has been developed for such problems. Applications of the
methods developed to several types of structures are presented for the examples
given in this paper.
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1 Stochastic Plasticity Analysis

1.1 Introduction

Problems from plastic limit/shakedown analysis and optimal plastic design
are based [5–7] on the linear equilibrium equation

Cσ = P (p, x) (1a)

and the convex or piecewise linear convex yield criterion

π
(
Ri(σy , x)−1

d σi|Ki

) ≤ 1, i = 1, . . . , nG, (1b)

for the stress (state) vector σ composed of the n0–subvectors σi = (σij)1≤j≤n0

of stress (state) components σij , 1 ≤ j ≤ n0, at the reference or nodal points
Xi, i = 1, . . . , nG, arising from a discretization of the mechanical structure
by finite elements (FE). In (1a,b) the following notations are used: C is the
m x n equilibrium matrix with rank C = m < n, P = P (p,x) is the external
load vector depending on a random vector p = p (ω) of load parameters and
an r–vector x of design variables, including e.g. the load factor μ ≥ 0 in
limit and shakedown analysis, cf. [8]. Moreover, the feasible stress domain
Ki at the point Xi is a closed convex subset of Rn0 containing the origin 0
of Rn0as an interior point, Ri = Ri(σy , x) = (Rij(σy, x))1≤j≤n0

is the vector
of material strength parameters Ri = Ri(σy, x) = (Rij(σy , x))1≤j≤n0

atXi,
depending on the vector σy of yield stresses and the design vector x, and Rid

denotes the diagonal matrix having the components Rij , j = 1, . . . , n0, on its
main diagonal. Finally,

π = π(z|Ki) := inf
{
λ > 0 :

z

λ
∈ Ki

}
, z ∈ Rn0 (1c)

is the distance or Minkowski functional of Ki. Hence, σi → π(R−1
id σi|Ki) is

the yield function at Xi; for more details see [9].

1.2 State Function

According to conditions (1a-c), for the safety of structures made of elasto-
plastic materials we have [8,10,11] the following criterion:

s∗ = s∗(R,P )
{
< 0 : the structure is in a safe (stress) state
≥ 0 : a safe (stress) state is not guaranteed. (2)
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The state function (limit state function or performance function) s∗ is defined,
see [7–9], by

min s (3a)

s.t.

Cσ = P (3b)

π(R−1
id σi|Ki)− 1 ≤ s, i = 1, . . . , nG (3c)

We may assume that the random νσ–vector σy = σy(ω) and the random
νp–vector p are stochastically independent. Let ν := νσ + νθ, and define the
ν–random vector

y = y(ω) := (σy(ω), p(ω)) (4a)

In the following, let x ∈ D denote an arbitrary, but fixed design vector. By
means of (4a), the state function s∗ can be represented as a function of the
parameter vector y and the design vector x:

s̃∗(y, x) = s̃∗ ((σy , p), x) := s∗ (R(σy, x), P (p, x)) . (4b)

1.3 Computation of the β–Point z∗
x

In the present case of elastoplastic materials, according to (1a-c), the trans-
formed state function s̃∗T = s̃∗T (z, x) is the minimum value of the convex
minimization problem:

min s (5a)

s.t.

Cσ = P
(
T−1

p (zσ), x
)

(5b)

π
(
Ri

(
T−1

σ (zσ), x
)−1

d
σi|Ki

)
− 1 ≤ s, i = 1, . . . , nG . (5c)

Since (5a-c) is a convex minimization problem in the variables (s, σ), where
the problem fulfills the Slater condition, an optimal solution (s̃∗T , σ

∗) =
(s̃∗T (z, x), σ∗(z, x)) can be characterized by the necessary and sufficient
Kuhn–Tucker conditions. Hence, if

P̃ (zp, x) := P
(
T−1

p (zp), x
)
, R̃i(zσ, x) := Ri

(
T−1

σ (zσ), x
)
, i = 1, 2, . . . nG .

(6)
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and C(i)denotes the submatrix of C related to σi, then the projection problem
can be represented in the following equivalent explicit form:

Lemma 1.3.1 The projection problem for the computation of a β–point
z∗X reads (with Lagrange multipliers λ, μ):

min ‖z‖2 (7a)

s.t.

1−
nG∑
i=1

μi = 0 (7b)

CT
(i)λ+ μiR̃id(z, x)−1∇zπ

(
R̃id(z, x)−1σi|Ki

)
= 0, i = 1, . . . , nG (7c)

Cσ − P̃ (z, x) = 0 (7d)

π
(
R̃id(z, x)−1σ|Ki

)
− (1 + s) ≤ 0, i = 1, . . . , nG (7e)

μi

(
π
(
R̃id(z, x)−1σi|Ki

)
− (1 + s)

)
= 0, i = 1, . . . , nG (7f)

μi ≥ 0, i = 1, . . . , nG, s ≥ 0 (7g)

A further representation can be obtained if, by piecewise linearization, the
convex feasible domain Ki is replaced by a convex polyhedron

K̃i = {z ∈ Rn0 : Ñiz ≤ 1} , i = 1, . . . , nG (8)

with given m̃y × n0, matrices Ñi and the vector 1 = 1m̃y = (1, . . . , 1)T ∈
IRm̃y .

Then, the state function s̃∗T = s̃∗T (z, x) is the minimum value function of
the LP

min s (9a)

s.t.

Cσ = P̃ (z, x) (9b)

ÑiR̃id(z, x)−1σi ≤ (1 + s)1m̃y , i = 1, . . . , nG . (9c)
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Selecting fixed positive strength values R◦
ij , j = 1, . . . , n0, i = 1, . . . , nG, con-

dition (9c) can be replaced by

Ñ0
i R̃

0−1
id σi ≤ (ρ̃i min(z, x) + s) 1m̃0

y
, (9c)

where (Ñ0
i , 1m̃0

y
) are given m̃0

y × (n0 + 1) matrices and

ρ̃i min(z,X) := min
1≤j≤n0

Rij

(
T−1

σ (zσ), x
)

R0
ij

. (10)

Consequently, the state function s̃∗T = s̃∗T (z, x) can be represented then also
by the maximum value function of the dual program to (9a-c):

max P̃ (z, x)Tu− F̃0(z, x)T ũ (11a)

s.t.

CTu− R̂(z, x)−1
d NT ũ = 0 (11b)

1T
νG
ũ = 1, ũ ≥ 0 , (11c)

where νG := nG · m̂y, m̂y := m̃y, m̂y := m̃0
y, resp., R = (Ri)1≤u≤nG , N is

composed of the submatrices Ñi, Ñ
0
i , i = 1, . . . , nG, U is a generalized unit

matrix, ρmin := (ρ̃i min), and

R̂(z, x) := R̃(z, x), R̂(z, x) = R0, resp., (11d)

F̃0(z, x) = U1νG , F̃0(z, x) = Uρ̃min(z, x), resp.. (11e)

Consequently, due to this duality relation, the constraint s̃∗T (z,X) ≥ 0 holds,
if and only if there is a vector (u, ũ) of dual variables fulfilling the relations

P̃ (z, x)Tu− F̃0(z, x)T ũ ≥ 0 (12a)

CTu− R̂(z, x)−1
d NT ũ = 0 (12b)

1T
νG
ũ = 1, ũ ≥ 0 (12c)

Here, corresponding to Lemma 1.3.1, we find the next explicit charac-
terization of a β–point:
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Lemma 1.3.2 Replace the feasible domains Ki by convex polyhedrons
K̃i, i = 1, . . . , nG. Then the projection problem for the computation of a
β–point z∗x reads:

min ||z||2 (13a)

s.t.

P̃ (z, x)Tu− F̃0(z, x)T ũ = 0 (13b)

CTu− R̂(z, x)−1
d NT ũ = 0 (13c)

1T
νG
ũ = 1, ũ ≥ 0 (13d)

Remark 1.3.1 Special representations of the β–point of the above type
can be obtained for trusses and frames.

Having a new formulation for the beta-computation for the elastoplastic
mechanical structures described above, the classical First Order Reliability
Method (FORM) is given in the following section in order to compare the
proposed method with the standard FORM approach.

2 First Order Reliability Method (FORM)

In FORM/SORM, the main effort is to solve the constrained optimization
problem in defined in Rν by

min ||z||2 (14a)

s.t

g(z) = 0 (14b)

and
g(z) := −s̃∗T (z, x) (15)

In structural reliability analysis, another method called Response Sur-
face Method (RSM) has emerged to be able to overcome difficulties of using
FORM/SORM approaches for problems having an implicit or time-consuming
evaluation of limit state function. One of the advantages of using a RSM is to
get a better result with the help of any simulation method with the obtained
response surface function. Thus, a simple function is replaced in place of the
performance function for structural reliability analysis.



Stochastic Plasticity Analysis 91

3 Response Surface Method

In structural analysis, Response Surface Methods (RSM) are used to ap-
proximate (estimate) the complex relationship between the performance of
a structure and the variables that affect the performance. Hence, for many
applications, the problem is to estimate a response (output) function or mech-
anism:

g = g(ξ) (16)

with the input r-vector ξ = (ξ1, ..., ξr)
′, and an unknown (to be estimated)

function g. For the estimation of the unknown (eventually partly known)
response function g, observations or estimates η(i) ∼ g(ξi) of the response
g = g(ξi), i = 1, .., p corresponding to p input r-vectors ξ(1), ξ(2), ...,ξ(p)are
available. The unknown function g is estimated by approximating g by a
polynomial of a certain (low) order s. Hence, if s = 1, i.e., if a linear approx-
imation is used, then

g(ξ) ≈ b0 + b1ξ1 + ...+ brξr (17)

with r+ 1 unknown coefficients bk, k = 0, 1, 2, ..., r. Consequently, the obser-
vations η(i), i = 1, .., p may be represented by

η(i) = b0 + b1ξ
(i)
1 + ...+ brξ

(i)
r + εi

i = 1, .., p. Here, εi, i = 1, .., p, are error terms including observation/measure-
ment errors as well as approximation errors.

The above p equations are then represented by the matrix equation

η = Xb+ ε (18)

where
η := (η(1), ..., η(p))T (19)

is the p-vector of all observations of g at the p input vectors ξ(i), i = 1, .., p,

b := (b0, b1, ..., br)T (20)

is the (r + 1)-vector of the unknown coefficients, X is the p× (1 + r) matrix
with the p rowsXi = (1, ξ(i)1 , ..., ξ

(i)
r ), i = 1, .., p, which is called design matrix,

and ε = (ε1, ..., εp)
′ denotes the vector of all errors, i.e. the observational or

measurement errors as well as the (analytical) errors from the approximation
of g by a (first order) polynomial. Having no more information, the vector b of
unknown coefficients is determined by LSQ-techniques [3,4], i.e. the estimate
b̂ of b is defined by minimizing the function

L(b) := ‖η −Xb‖2 (21)
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Under corresponding rank conditions, the estimator of b is then given by

b̂ = (XTX)−1XT η (22)

For reliability problems, Bucher [1] reformed the traditional RSM given above
so that the response function can fit around a region that might include the
design point in structural reliability analysis, for which the main points of
standard RSM technique(s) are described in the following section.

3.1 Standard Response Surface Method

The aim of a standard RSM is to replace the performance function g(y), see
(15), by an appropriate approximative response surface function ḡ(y) which
is mostly given as a second order polynomial as shown in (23) below:

ḡ(y) = a+
ν∑

i=1

biyi +
ν∑

i=1

ciy
2
i (23)

Here, yi, i =1,2,...,ν, denotes the ν physical (“real”) variables, as e.g. load
factors, material resistance coefficients, cost factors, etc., and the coefficients
a, bi, ci are to be determined. As mentioned above, cf. (4a), the values of the
ν-vector y of physical variables are realizations y=y(ω) of a certain random
vector y(y) having a known probability distribution. As the number of free
parameters in (23) is 2ν+1, only a few calculations are needed to obtain the
coefficients of RSF. In the standard RSM, the suggested way of obtaining
these coefficients is interpolation using the points generated along the axes
of the physical Y-space, Y := Rν , which are chosen to be of the form:

yi = ȳi ± fiσi (24)

in which ȳi and σi are the mean value and standard deviation of random
variables yi(ω), resp., and fi is a certain scale factor. Hence, the interpolation
points are selected as indicated in Fig. 1. The values of these points are
then substituted into the performance function to get the response of g(y).
According to the estimation method described at the beginning of Section 3,
a first approximation ḡ(y) of the true state function g(y) is determined. This
first approximate RSF is used then in place of the true performance function
to compute a first approximate yD1 of the “design point” in Y-space by using
one of the structural reliability methods such as the First or Second Order
Reliability Method (FORM or SORM) or Importance Sampling. In case of
using FORM, the design point is obtained by using (14a,b). For this purpose,
the function ḡ(y) is transferred to the Z-space of standard normal distributed
ν-random vectors:

ḡT (z) := ḡ(T−1(z))
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Then the projection problem is solved with g(z) := ḡT (z). Let zD1 denote the
corresponding optimal solution (β-value in Z-space). By back transformation

yD1 := T−1(zD1)

one obtains then the corresponding β-point yD1 in the physical Y-space.
The next iteration will be based on this point which significantly affects the
accuracy of the second and final RSF. Having yD1, the new center point yM

for interpolation is obtained on a straight line from ȳ to yD1 as shown in
Fig. 1b, and an explicit formulation of yM is given as

yM = ȳ + (yD1 − ȳ)
g(ȳ)

g(ȳ)− g(yD1)
(25)

g1(  )y

g(  )y

y1

y2

y2

yM 2

yM 1

(a) (b)

yD1

g2(  )y

g(  )y

y2

y1y1 y1

y2
g1(  )y

Fig. 1. The initial points (a) and interpolation points (b) of the standard RSM.

In order to use some properties of the structural reliability problems in the
construction of the RSF, Kaymaz [2] proposed a new approach, called Adap-
tive Response Surface Method (ADAPRES), based on weighted regression to
get the coefficients of the RSF as explained in the following section.

3.2 ADAPRES: A Response Surface Method for Structural
Reliability Analysis

In the standard RSM normal regression is commonly used which gives equal
weight to the coefficients of the RSF formed. However, the main effort in the
application of the RSM is to form a RSF as close as possible to the limit
state function. Therefore, in the following normal regression is replaced by
a weighted regression method in which the RSF is formed by giving higher
weight to the experimental points closer to the limit state surface.
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The main aim in the formation of the RSM is to fit a RSF as closely
as possible to the limit state function. In the standard RSM, see above, the
coefficients of the RSF using least square method are given by

b̂ = (XTX)−1XT η (26)

Here, X denotes the design matrix comprising the experimental points that
are generated in the Y-space, and ηrepresents the response vector obtained
from the performance function cor responding to the experimental points.
In this method the estimation errors are equally weighted. However, a good
RSF must be formed such that it describes the performance function well,
especially close to the limit state surface given by

g(y) = 0 (27)

Therefore, the weighted regression method [13] is utilized to find the coeffi-
cients of the RSF, for which the weights are usually determined by allowing
the uncorrelated residuals to have different variance, unlike the normal re-
gression, for the error term ε as

V [ε] =

⎡⎢⎣σ
2
1 . . . 0

...
. . .

...
0 · · · σ2

r

⎤⎥⎦ (28)

The above equation indicates that the error terms independently follow prob-
abilistic distributions of different variance. Thus, a weight wi to each obser-
vation is assigned so that w1σ

2
1 = · · · = wrσ

2
r = 1σ2

0 where σ2
0 is termed the

standard deviation of unit weight. The estimate b̂ of b is defined by minimiz-
ing the function

L(b) := (η −Xb)TW (η −Xb) (29)

Under corresponding rank conditions, the estimator of b is then given by

b̂ = (XTWX)−1XTWη (30)

where W is an n× n diagonal matrix of weights as:

W =

⎡⎢⎢⎢⎣
w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...
0 0 · · · wr

⎤⎥⎥⎥⎦ (31)

In general the weights are assigned to observations so that the weight of an
observation is proportional to the inverse expected (prior) variance of that
observation, wi ∝ 1/σ2

i,prior. However, in this study, a different approach is
proposed to select the weights for the observations since we are seeking to
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find a RSF close to the limit state function where g(y) = 0, which is achieved
as follows:

Among the responses of the performance function corresponding to the
design matrix the best design is selected based on closeness to a zero value,
which indicates that the experimental point is close to the limit state:

ŷbest = min
y∈Y

|g(y)| (32)

where min indicates the minimum response value of the performance function
evolutions obtained according to the design of the experiments, thus ŷbest

indicates the value of the absolute minimum performance function response.
The following expression is found to be suitable to obtain the weight for

each experiment:

wi = e

„
− η(i)−ŷbest

ŷbest

«
(33)

where η(i) indicates the ith response from the ith experiment designed accord-
ing to the design of experiment selected, where i corresponds to the number
of the experiment.

The obtained weights are used in the weighted regression to estimate b̂ of
b as:

b̂ = (XTWX)−1XTWη (34)

where W is a diagonal matrix as given in (31).
Thus, the RSF to be formed from the weighted regression will have coeffi-

cients with greater weights for the points closer to the limit state, thus leads
to a better estimate for the reliability index as shown in the examples.

ADAPRES can approximate the performance function around the design
point better than the traditional RSM as shown in the examples. However,
for the problems having polygon type limit state function, the methods given
above can not approximate well enough as will be shown in the examples.
Therefore, a response surface method based on the piecewise regression has
been developed for such problems, for which the theoretical background is
given below.

3.3 A Response Surface Method with a Spline

In piecewise regression, the surface is approximated by subdividing the cor-
responding ranges ai ≤ yi ≤ bi of the physical variables yi, i = 1, ..., ν, into
sufficiently small intervals [ζj ..ζj+1], with a = ζ1 < ... < ζr+1 = b, such that,
on each subinterval, a polynomial pj of relatively low degree can provide a
good approximation to the function to be fitted [12]. This can even be done
in such a way that the polynomial pieces blend smoothly, hence, guaran-
teeing that the resulting patched or composite functions s(x) := pj(x) for
x ∈ [ζj ..ζj+1] has several continuous derivatives. Such a smooth piecewise
polynomial function is called a spline. One of the most widely used spline
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type is B-spline which is explained in terms of its use in this study in detail
below.

In case of only one physical variable y1 = y, i.e. if ν = 1, a B-spline based
response surface function ḡ(y) is defined by

ḡ(y) =
n∑

i=0

PiNi,k(y) (35)

where Pi are the control points, k is the order of the polynomial segments of
the B-spline curve, Ni,k(y) are the normalized B-spline blending functions,
which are described by the order k and by a non-decreasing sequence of
real numbers {ti : i = 0, ..., n+ k} that are called knot sequence. An explicit
definition of the blending functions is given as follows

Ni,1(y) =
{

1 if ti ≤ y ≤ ti+1 and ti < ti+1

0 otherwise (36)

and if k > 1,

Ni,k(t) =
y − ti

ti+k−1 − ti
Ni,k−1(y) +

ti+k − y

ti+k − ti+1
Ni+1,k−1(y) (37)

4 Examples

4.1 Example 1: A Three-Bar Truss

In the following example, a three-bar truss as depicted in Fig. 2 is subjected
to a random vertical load, and the material yield strength is also considered
as a random variable with normal distribution.

1 2 3

P1

1

3 42

Fig. 2. Three-bar truss with a random load
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Table 1. Problem parameters of the three-bar truss structure.

Random parameters

Mean Standard Deviation

Applied force, P (N) 1e5 1e4

Material strength σy(N/mm2) 190 20

Deterministic parameters

The length of the second bar, l (mm) 1000

The cross sectional areas of each bar A(1)=350, A(2)=800, A(3)=350

The problem parameters for the three-bar truss structure are given in
Table 1.

The β-value is determined by the minimization problem as explained in
detail in Section 1.3, for which the formulation is represented as follows:

min ‖z‖2
s.t.
P (T−1

p (zp), x)T v − Fo(T−1
σ (zσ), x)T ṽ ≥ 0

CT v −HT ṽ = 0
1T ṽ = 1
ṽ ≥ 0

(38)

The new program, called beta direct, explained in Section 1.3 is used to
obtain the reliability results given in Table 2.

Table 2. Reliablilty results for the three-bar truss structure

The method applied Design Point Pf β−value

Standard FORM u(1)=1.898
u(2)=-4.907

7.186e-008 5.260

Direct method u(1)=1.898
u(2)=-4.907

7.186e-008 5.260

As can be seen from Table 2, the proposed direct method gives exactly
the same results with that of the standard FORM approach.

Since one of the main aims of this paper is to develop a response surface
method for stochastic plasticity analysis, the results given in Table 2 are
compared with that of the both standard RSM and the proposed ADAPRES,
and the reliability results are given in Table 3. The limit state function and
the response function as well as the experimental points are graphically shown
in Fig. 3, where the solid line indicates the state function while the dashed
line shows the response surface function fitted, and the circles represents the
experimental points generated from Central Composite Design.
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Table 3. Reliability results from standard RSM and ADAPRES

Standard RSM ADAPRES

selected reliability method FORM FORM

probability of failure 3.31e-9 7.190e-8

β−value 5.80 5.260

design points (z-space) u(1)=1.649
u(2)=-5.560

u(1)=1.894
u(2)=-4.907

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

u1

u2

limit state
standart RSM
ADAPRES
experimantal points

Fig. 3. Limit state function and fitted response surface functions

As seen from Fig. 3, there is a discrepancy between the limit state function
and the RSF generated from the standard RSM, which can be caused from
the weakness of the classical RSM.

ADAPRES based on the weighted regression is applied to above problem
and the following results are obtained, indicating that the results are almost
the same as the exact solution obtained from beta direct given in Table 2.

4.2 Example 2: A 5-Bar Truss Structure

The structure is loaded with two random variables as shown in Fig. 4, and
related problem parameters are given in Table 4.

The equilibrium matrix for the given structure is as
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1

2

3

45

P1y P2y

1

3 4

2

Fig. 4. Five-bar truss structure carrying two random loads

Table 4. Problem parameters for the five-bar truss structure

Random parameters

Mean Standard Deviation

Applied force, Py1 (N) 1e5 1e4

Applied force, Py2 (N) 1e5 1e4

Deterministic parameters

Yield Strength, σy(N/mm2) 190

The area of the bars A(i)=410, i=1..n, n=5

C =

⎡⎢⎢⎢⎢⎢⎣
0 −1 0 1/

√
2 0

−1 0 0 −1/
√

2 0

0 1 0 0 1/
√

2

0 0 −1 0 −1/
√

2

⎤⎥⎥⎥⎥⎥⎦ (39)

The cross sectional areas of each bar are selected as 410. The limit state
function and the design point corresponding to the β-value computed are
graphically shown in Fig. 5.

The corresponding reliability results obtained from both the standard
FORM and the proposed direct method are given in Table 5.

Table 5. Reliability results for the five-bar truss structure

The method applied Design Point Pf β−value

Standard FORM u(1)=3.298
u(2)=3.277e-12

4.868e-4 3.298

Direct method u(1)=3.298
u(2)=0.000011

4.868e-4 3.298
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Fig. 5. Limit state function and the design point.

The reliability results given in Table 5 indicate that the proposed direct
method can also work for problems having more complex limit state function
as depicted in Fig. 5.

Two response surface methods,which are the proposed ADAPRES and the
response surface method with spline, are applied to the example to compute
the reliability results that are represented in Table 6.

Table 6. Reliability results from ADAPRES and beta ADAPRES spline

ADAPRES ADAPRES spline

selected reliability method FORM FORM

probability of failure 2.101e-5 4.868e-4

β−value 4.096 3.298

design points (z-space) u(1)=2.896
u(2)=2.896

u(1)=3.298
u(2)=0

As the results given in Table 6 indicates, the ADAPRES can not give
accurate results when compared to those given in Table 5. However, the reli-
ability results obtained from ADAPRES spline gives almost the same results
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with the direct method since the shape of the limit state function given in
Fig. 6 is more suitable for the response surface method with spline.
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Fig. 6. Limit state function and response surface obtained from ADAPRES spline.

Since one of the reason of using RSM is to get more accurate results
than the approximation methods such as FORM or SORM, this example
has been also studied using ADAPRES spline with MCS, and the results are
represented in Table 7.

Table 7. Reliability results and comparison of computational times of MCS and
ADAPRES

Applied method No. of simu-
lation

β−value Pf Comput.
time (sec.)

MCS (exact solution) 1e5 3.167 7.7e-4 1652.7

MCS with ADAPRES spline 1e5 3.102 9.6e-4 325.47

As can be seen from the results, ADAPRES spline can also reduce the
computational time of the structural reliability analysis of the five-bar truss,
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which indicates another advantage of the proposed RSM technique. Even
though the number of the random variables is two, the reduction in the
computational time is very promising when the ADAPRES spline is used. It
also gives better estimate for the reliability results when compared to both
the classical and proposed direct method.

5 Conclusions

In the present case of elastoplastic mechanical structures, using the necessary
and sufficient optimality conditions for the convex optimization problem rep-
resenting the (limit) state function s∗ = s∗(y, x), an explicit parameter opti-
mization problem has been developed and represented for the computation of
a β-point z∗x. This yields then a considerable reduction of the computational
difficulties within FORM that requires computing the projection of the origin
to the transformed failure domain. This new technique is applied to several
types of structures, such as trusses, and the results are given by comparing
with that of FORM. In addition, several different response surface methods
including the standard response surface method are also applied to compute
a β-point z∗x in order to reduce the computational time. As shown in the
examples, ADAPRES can approximate the performance function around the
design point better than the standard response surface method. However, for
the problems having polygon type limit state function, the standard response
surface methods can not approximate well enough as shown in the examples.
Therefore, a response surface method based on the piecewise regression has
been developed for such problems and promising results are obtained for the
given examples.
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Abstract. We make a first attempt to give an extreme value analysis of data, con-
nected to catastrophic events. While the data are readily accessible from SWISS-
RE, their analysis doesn’t seem to have been taken up. A first set refers to insured
claims over the last 35 years; the second deals with victims from natural catastro-
phes. Together these sets should provide ample proof that extreme value analysis
might be able to catch some essential information that traditional statistical anal-
ysis might overlook. We finish with a number of cautious remarks.

1 WMO-Release 695

We start with a short summary table that indicates how the number of
recorded catastrophes has risen over the second half of the previous century.
For background information on catastrophes, see El-Sabh & T.S. Murty, [5].
For information on catastrophes and natural disasters from the point of view
of insurance business, see Teugels & Sundt [13]. For the use of statistical
procedures within an environmental framework, see W.W. Piegorsch & G.
Casella [10].

50-59 60-69 70-79 80-89 90-99

Number of disasters 20 27 47 63 86

Economic loss (b ) 39.6 71.1 127.8 198.6 607

Insured loss (b ) 0 6.8 11.7 24.7 109.1

Let us make a few comments on this table that can be traced down from
WMO Press Release no 695, 2 July 2003 www.wmo.ch/Press695.doc. A nat-
ural catastrophe has been described by Munich Re as: great if the ability of
the region to help itself is distinctly overtaxed, making interregional or in-
ternational assistance necessary. There is the possibility that in the earlier
periods, disasters were not as readily recorded as has been the case during the
later decades. Still, the increase in the number of disasters is remarkable. The
two other rows are linked. One can safely expect that people, responsible for
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risk-prone and expensive items, will take appropriate insurance to cope with
the economic loss resulting from a catastrophe. Nevertheless, the comparison
of the amounts over the last two decades shows a dramatic increase which is
not totally predictable from the number of disasters.

2 Extreme Value Statistics

To introduce our statistical methodology we start by an example. We then
summarize the most essential aspects of extreme value statistics and apply it
to the entire table, as well as to some smaller sub-tables.

2.1 SWISSRE-table of Most Costly Catastrophes

EVENT TYPE DATE LOSS EVENT TYPE DATE LOSS

WTC-attack M 11.09.01 21.062 Petro US M 23.10.89 1.959
Andrew H 23.08.92 20.900 Fran H 05.09.96 1.870

Northridge E 17.01.94 17.312 Fifi S 18.09.74 1.859
Mireille T 27.09.91 7.598 X13 ES 04.07.97 1.827
Daria ES 25.01.90 6.441 Luis H 03.09.95 1.804
Lothar ES 25.12.99 6.382 X4 S 27.04.02 1.707
Hugo H 15.09.89 6.203 Gilbert H 10.09.88 1.694
X11 ES 15.10.87 4.839 Isabel H 18.09.03 1.685

Vivian ES 25.02.90 4.476 Anatol ES 03.12.99 1.651
Bart T 22.09.99 4.445 X5 S 03.05.99 1.634

Georges H 20.09.98 3.969 Canada 1 C 17.12.83 1.619
Allison S 05.06.01 3.261 X6 S 04.04.03 1.605

X1 S 02.05.03 3.205 X7 S 02.04.74 1.600
Piper Alpha M 06.07.88 3.100 X8 S 25.04.73 1.527
Kobe, Japan E 17.01.95 2.973 X9 S 15.05.98 1.512

Martin ES 27.12.99 2.641 Loma Pieta E 17.10.89 1.479
Floyd H 10.09.99 2.597 Celine H 04.08.70 1.463
X12 ES 06.08.02 2.548 Vicki T 19.09.98 1.435
Opal H 01.10.95 2.526 Petro France M 21.09.01 1.405
US F 20.10.91 2.288 Canada 2 C 05.01.98 1.384
X2 S 06.04.01 2.277 X10 S 05.05.95 1.366
X3 S 10.03.93 2.220 Grace H 29.10.91 1.346

Iniki H 11.09.92 2.090

The table contains data collected by SWISS-RE, one of the leading rein-
surance companies. The figures can for instance be found on the web-site
www.swissre.com/INTERNET/pwswpspr.nsf. The data refer to insured losses
over the period 1970-2003. EVENT refers to the catastrophe itself. Each one
of them is recognizable by the DATE that can be found in the third columns.
When the event received a specific name, then this name has been used to
specify the event; if not then a symbol of the type Xi has been used instead.
The figures under LOSS in the fourth columns refer to insured losses in mil-
lions of US dollars. These figures exclude liability losses and they have been
indexed to 2003.

The second columns are meant for further use and give a first possible
classification of the TYPE of event. We used the following abbreviations: M:
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man-made disaster, H: hurricane (US-Caribbean region), E: earthquake, T:
typhoon (Far East region), ES: European storm, S: US-based storm, C: cold
spell, F: forest fire, Xi: alternative for storm without name.

Before we make an analysis of the above table it is instructive to remark
the following: The insured losses of the first three events clearly stand out.
Their joint total is more than that of the next dozen in the list. This kind
of observation is typical when one deals with extreme values. For this reason
we include a bit of information on extreme value statistics.

2.2 The Maximum

We give a quick survey on how to approximate the distribution of

Xn,n := max{X1, X2, . . . , Xn} ,

the maximum of a sample by an extreme value distribution. For a thorough
treatment see the recent book by Beirlant e.a. [2]. This is obtained as follows:
Find sequences of normalizing constants {an} > 0 and of centering constants
{bn} such that

P

{
Xn,n − bn

an
≤ x

}
→ G(x)

where G(x) is a non-degenerate distribution. If such an expression can be
found, then the distribution of the maximum in the sample can be approxi-
mated by

P {Xn,n ≤ y} ≈ G(bn + an y) .

The understanding of the above expression is that once the explicit form
of G is known to the insurer, he can get an idea about the distribution of
the largest claim he can expect in a sample from an otherwise unknown dis-
tribution. Under very weak conditions (satisfied by all classical distributions
from statistics) the above expression can be validated.

It turns out that the possible distributions on the right hand side come
from a one-parameter family {Gγ ; γ ∈ �} of extreme value distributions.
Each one of them is fully characterized by one single parameter γ which is
called the extreme value index. The latter parameter needs to be estimated
from the data and with a bit more work, even confidence intervals can be
obtained. The explicit link between a distribution F (with potentially many
parameters) and its corresponding extreme value distribution Gγ (with one
single parameter) is technically complicated but possible. We refer the reader
to the literature, for example Beirlant e.a. [2].

The tail behavior of the extreme value distribution heavily depends on
the sign of γ. We point at some of the highlights.
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(i) Pareto-Fréchet case: γ > 0
The explicit form Gγ(x) = exp−(1 + γx)1/γ is usually referred to as of
type II. The distribution has infinite right tail. It is useful when modelling
data that come from a distribution where there might be fear of the non-
existence of moments. For example, if γ > 1 then there is no finite mean;
if 1

2 < γ < 1 then there is a mean, but no finite variance.
The most classical example is the Pareto-distribution 1−F (x) = x−

1
γ (x >

1) often used in insurance and in economics. Distributions of the type 1−
F (x) ∼ x−

1
γ �(x) with the function � slowly varying are called of Pareto-

type. They even fully characterize all distributions for which the above
approximation by an extremal distribution with positive γ is actually
valid.

(ii) (Extremal) Weibull case: γ < 0
This extreme value distribution Gγ(x) = exp−(1+γx)1/γ (for 1+γx > 0)
is often called of type III. It is bounded to the right by the value −γ−1.
As a consequence, all of its moments are finite since the right tail of the
distribution is exponentially bounded.
Here the most famous examples are formed by all beta-distributions, in
particular the uniform distribution.

(iii) Gumbel case: γ = 0
This distribution has a particularly simple form G0(x) = exp(−e−x) and
is known as the Gumbel distribution or of type I. While is looks a central
case from the parametric point of view, many traditional distributions
lead to the Gumbel distribution as an approximation for the maximum.
The Gumbel distribution itself is somewhat heavy tailed, heavier than
exponential in any case. Still, all of its moments are finite.
Among the many distributions that lead to the Gumbel distribution, we
mention the normal, the log-normal, the exponential and gamma distri-
butions and many others.

Among the most important statistical assignments in extreme value anal-
ysis is the estimation of the extreme value index γ and the construction of
confidence intervals. In general, the practitioner should only use the largest
(say k) values of the sample as these are the only measurements that refer to
the tail behavior of the distribution. The estimation of the value of k is part
of the statistical assignment. But it often happens - and the reader can verify
this in almost all the forthcoming examples - that there is a sizable number
of different k−values leading to comparable estimates of γ.

Over the last decades one has seen a plethora of potential estimators for
γ and k. Some apply only to the case where γ > 0, while others do not make
this prior assumption. For more information we again refer to Beirlant e.a.
[2].
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2.3 Application to the Swiss-Re Loss Table

Here are a few illustrations on how extreme value analysis is applied to the
Swiss-Re loss table.

The Entire Table

By way of illustration it is worthwhile to apply the statistical procedure
to the entire table above. If one assumes that the 45 different losses from
catastrophes can be considered as coming from the same distribution with
a positive γ, then one can use the existing statistical know-how to estimate
γ. The graph below (Figure 1) illustrates the performance of four different
estimators when one gradually includes more and more of the data.

As a first estimator, the Hill [8] estimator was considered (black full line),
which can basically be seen as a slope estimator for the linear part of the
Pareto quantile plot as discussed below. A second regression estimator was
considered in the use of the Zipf [14] estimator (grey dash-dotted line), as
introduced in this context by Schultze and Steinebach [12] and Kratz and
Resnick [9]. Furthermore, also two bias reduced estimators are considered,
a first one (grey dash-dot line) corresponding to an exponential regression
model as introduced by Beirlant et al. [1] and a second one (grey dashed line)
corresponding to a recently developed extension to the generalized Pareto
distribution (Beirlant et al., [3]). In the abscissa one allows k, the number of
included values, to run from 1 to an ultimate 45.
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Fig. 1. (a) Estimates of the tail index γ for four different well-known estima-
tors, among which the Hill-estimator (full line) and (b) estimates of corresponding
asymptotic mean squared errors for the Hill-estimator, along with the minimizing
k-value (vertical line).

As one could predict, the estimates show a very strong volatility in the
estimation when k is low. This is due to the fact that the number of used
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data is too small to give any precise estimation. However, when k increases
the graphs settle down and show a remarkable stability. This is not only true
for the classical Hill-estimates but also for the other three. This is a strong
indication that the data are coming from a very heavy tailed distribution.

For each of the four estimators one can of course select a specific k−value
that one prefers on the basis of additional statistical precautions. For exam-
ple, one may choose that value of k for which the asymptotic mean squared
error is minimal. The fundamental reason for this choice is that this k−value
strikes a balance between the bias (usually large for k large) and the vari-
ance (usually large for k small). With this criterium, the Hill-estimator for
instance, leads to a k−value of 28 and corresponding estimate .7904 of γ. The
least one can say is that near that k-value, the values for the four different
estimators are close to each other. Moreover, they all end up around the value
.8 indicating that the data might be coming from a distribution with a finite
mean but without a finite variance.

Of course, one can argue that the independence among the Swiss-Re data
can hardly be discussed. However it is less obvious to consider the data as
coming from the same distribution. For this reason we have classified the data
according to their type. Note nevertheless that for a reinsurance company
such a further subdivision is far less obvious than for an environmentalist who
is interested in losses from hurricanes. Whatever, the above analysis has some
interest and has been included mainly for illustrative purposes. Moreover,
the reader should realize that our analysis, based on just 45 data, still shows
remarkable stability. Looking at sub-tables will automatically make all our
statements statistically less accurate.

US-Caribbean Hurricanes

We now apply extreme value analysis to a subset of the total table. While
the number of data in such subsets will be much smaller, we avoid the risk
to be criticized for carelessly amalgamating data.

In Figure 2, it is seen that if we pick out the 12 specific cases from type H ,
then an estimate around the value 1 seems appropriate for all four estimators
as mentioned above. A Pareto-type distribution can be expected to give rea-
sonable results. This indicates that extremely costly hurricanes can still be
expected over the given region. Of course, a time dependent examination of a
hopefully much larger set would eventually reveal changes in the heaviness of
the tail. To illustrate even further that a Pareto-distribution might provide
a proper model we have included a Q−Q−table. The rationale behind such
tables is that if the data are indeed coming from the predicted distribution,
then their sample values should be situated close to a straight line.

At least one more comment is in order. The Pareto-fit endorses our opinion
that - if the data come from a Pareto distribution as constructed above - then
we can roughly estimate the probability of an even larger loss, conditional
on already exceeding the threshold present in the data. This is illustrated in
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Estimates of extreme value index
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Fig. 2. (a) Estimates of the tail index γ for the same four different well-known
estimators and (b) Pareto quantile plot for the US-Caribbean hurricane data.

Figure 3. As a first estimator, the Weissman (1978) estimator was considered
(black full line), which is based on the Hill estimator as a slope estimator for
the ultimate linear part in a Pareto-quantile plot. Furthermore, also two bias
reduced estimators are considered, a first one (grey dash-dot line) correspond-
ing to the previously mentioned exponential regression model as introduced
by Beirlant et al. (1999) and a second one (grey dashed line) corresponding
to the recently developed extention to the generalized Pareto distribution
(Beirlant et al., 2004).
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Fig. 3. Estimates for three different estimators, among which the Weissman es-
timator (full line), of the probability to attain an even larger loss then already
observed.

If we compare the US-Caribbean hurricanes with European storms, then
we deduce that European storms seem to have a much smaller γ, perhaps
even a negative number. This would indicate that European storms are well
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modelled by a distribution for which the corresponding distribution has a
right upper bound. However, the number of relevant data is too small to
perform such an analysis with sufficient confidence.

3 SWISS-RE Casualties Table

On the same Swiss-Re web-site we can find data that refer to numbers of vic-
tims in natural disasters. Here are the data concerning the 38 worst catastro-
phes. (From the original table we dropped two man-made disasters.) For this
table we only used as abbreviations C (cyclone), E (earthquake), F (flood),
H (hurricane), S (snow) and V (volcanic eruption). Before we analyze the
above table and some of its subsets, we make a number of observations.

3.1 The Table Itself

PLACE TYPE DATE VICTIMS PLACE TYPE DATE VICTIMS

Bangladesh F 14.11.70 300000 India E 30.09.93 9500
China E 28.07.76 250000 Honduras H 22.10.98 9000

Bangladesh C 29.04.91 138000 Philippines E 16.08.76 8000
Peru E 31.07.70 60000 Kobe (Japan) E 17.01.95 6425

Gilan (Iran) E 21.06.90 50000 Philippines E 05.11.91 6304
Armenia E 07.12.88 25000 Pakistan E 28.12.74 5300

Tabas (Iran) E 16.09.78 25000 Ecuador E 05.03.87 5000
Colombia V 13.11.85 23000 Nicaragua E 23.12.73 5000
Guatemala E 04.02.76 22000 Indonesia E 30.06.76 5000

Izmit (Turkey) E 17.08.99 19118 Fars (Iran) E 10.04.72 5000
Gujarat E 26.01.01 15000 Algeria E 10.10.80 4500
India C 29.10.99 15000 Afghanistan E 30.05.98 4000
India F 01.09.78 15000 Iran S 15.02.72 4000

Mexico E 19.09.85 15000 Van (Turkey) E 24.11.76 4000
India F 11.08.79 15000 Vietnam T 01.11.97 3840
India F 31.10.71 10800 India F 08.09.92 3800

Venezuela F 15.12.99 10000 China F 01.07.98 3656
Bangladesh C 25.05.85 10000 Taiwan E 21.09.99 3400

India C 20.11.77 10000 Reunion C 16.04.78 3200

• All but four of the events refer to either earthquakes (22) or cyclones-
floods (12) catastrophes. These separate categories require further atten-
tion. Some countries seem particularly vulnerable for one of these types
with the India/Bangladesh region and Iran as particularly vulnerable.

• Only one event appears on both Swiss-Re tables, namely the Great Han-
shin earthquake in Kobe in 1995. This single fact clearly illustrates that
the concept of risk can get totally different interpretations when looked
at it from different perspectives.

• The most surprising observation however is the rounding of the numbers
of victims in the fourth columns. It goes without saying that these num-
bers are rough, even very rough estimates of the actual numbers. The
effect on the extreme value analysis will be obvious as the latter will have
to be based on rough and imprecise data.
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• As in the case of losses, we will again assume that the data in the subsets
come from the same distribution and are independent.

3.2 Extreme Value Analysis

We apply our extreme value techniques to the entire table first. We then look
at two different subsets.

The Entire Table

Figure 4 shows the estimation of the extremal index for the entire table. The
optimal k-value lies at 38 and the corresponding estimate for γ equals 1.197.
Using appropriate statistical procedures from extreme value analysis one can
obtain confidence bounds for this estimate. By way of example we have drawn
the 95% confidence bounds for the entire range of k-values. For our specific
choice of k = 38 the confidence interval is (0.913, 1.745).
As was the case with the insured losses, also here one might criticize the as-
sumption that all data are independent and come from the same distribution.
Independence is probably not a big issue but mixing earthquakes with floods
is far less obvious. For this reason we make a separate analysis of these two
sub-tables.
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Fig. 4. (a) Estimates of the tail index γ for the same four estimators as be-
fore, among which the Hill-estimator (full line) and (b) estimates of corresponding
asymptotic mean squared errors for the Hill-estimator, along with the minimizing
k-value (vertical line).

Casualties From Earthquakes Worldwide

Figures 5 contain some first graphical illustrations on the earthquake data.
The figure on the right indicates why k is chosen to be equal to 20, involving
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almost all of the 22 individual data points. Based on this value we get dra-
matic estimates γ̂ ∼ 1.207 indicating that under this model not even a first
moment exist. The recent tsunami of 26.12.04 resulting from an earthquake
and with some estimated 275000 victims illustrates this statement.

But also Figure 6 gives more illustrative insight into the earthquake data.
On the left the estimated value of γ is used to draw a Pareto-quantile plot.
Knowing that only 22 points have been used the fit between the data and
the one-parameter Pareto-model is reasonable.

The figure on the right illustrates how one might estimate the small ex-
ceedance probability. Given the data and k we estimate the probability that
a similar or even higher number of casualties would show up. As was the
case with the estimation of γ also the estimation of this exceedance proba-
bility can be done using a variety of procedures. The most classical one has
been developed by Weissman. For information on such procedures we refer
to Beirlant e.a. [2].
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Fig. 5. (a) Estimates of the tail index γ for the same four estimators as be-
fore, among which the Hill-estimator (full line) and (b) estimates of corresponding
asymptotic mean squared errors for the Hill-estimator, along with the minimizing
k-value (vertical line).

Casualties From Cyclones

As a second sub-table we combine the casualty data for floods and cyclones as
the connection between the two events is obvious. From the 14 data we have to
deduce that the situation is even more dramatic than for the earthquake data.
The estimated value of γ is γ̂ ∼ 1.5 indicating that even worse catastrophes
can be expected under the current conditions. On the right, we again illustrate
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Fig. 6. (a) Pareto quantile plot for the number of casualties from earthquakes
worldwide and (b) estimates for three different estimators, among which the Weiss-
man estimator (full line), of the probability to attain an even larger number then
already observed.

the estimates of exceedance probabilities.
The reader can easily notice that the estimates on the left are far less stable
than for some of the previous tables. After all, they are based on merely 14
values. However, the main message from the graph should be that, whatever
estimator one uses, all estimates end up far above the value 1. Hence, the
underlying distribution is far from having a finite mean.
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Fig. 7. (a) Estimates of the tail index γ for the same four estimators as before,
among which the Hill-estimator (full line) and (b) estimates for three different
estimators, among which the Weissman estimator (full line), of the probability to
attain an even larger number then already observed.
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4 Concluding Remarks

We like to finish this contribution with a number of comments.

• It is quite clear that the above applications of extreme value analysis are
a very first attempt to get a global insight into the statistical modelling of
catastrophic risks. For a number of natural events one has more elaborate
historical tables that should be used to make a deeper and more profound
analysis. We mention for example the table with earthquake data as pro-
vided by Pisarenko and Sornette [11]. Also for hurricane losses larger and
time-dependent data should be consulted.

• One serious and rather obvious drawback in some of the examples is the
omission of a time coordinate. One normally takes it for granted that
insured losses are increasing over time. This is not only due to inflation.
For example data provided by Munich Re Group suggest an exponential
growth in economic and insured losses over time.

• It is tempting to draw conclusions from the last few tables in connection
with the number of victims. In particular, the estimates of γ for the
cyclone data could be interpreted as indications of changes in climate or
global warming. However, in order to draw such conclusions a much more
elaborate and detailed investigation needs to be undertaken. We might
hope that our first analysis provides sufficient background to go deeper
into the strengths and weaknesses of extreme value analysis.

• One conclusion should stand out: it is necessary that statisticians should
be involved in the worldwide analysis of environmental data, especially
when attempts are made to use or abuse data in one or the other direction.
Topics like global warming and climate change should therefore appear
on the subject lists of statistical conferences, not only on those of nature-
preserving groups or political forums. For more on this item, see El-
Shaarawi & Teugels, [7].

• Certain catastrophes happen at a single site while their aftereffects spread
over time and over space. The propagation of the effects depends among
others on the intensity of the catastrophe, the characteristics of the sur-
rounding medium, the drop-off effect of the catastrophe, etc. Sometimes
one can measure certain quantities directly like in the case of hurricanes.
More often, one is forced to look only at secondary effects like in the
case of insured losses. An integrated approach of this kind of catastro-
phes might be revealing. For an example from earthquake analysis, see
Brillinger [4].

Acknowledgments. The first author likes to thank Abdel El-Shaarawi for
many passed and forthcoming discussions on the raised issues. The authors
thank the referees for a careful reading of the manuscript.
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Scene Interpretation Using Bayesian Network
Fragments

P. Lueders1

University of Hamburg, Germany

Abstract. We present an approach to probabilistic modelling of static and dy-
namic scenes for the purpose of scene interpretation and -prediction. Our system,
utilizing Bayesian Network Fragments as relational extension to Bayesian networks,
provides modelling in an object-oriented way, handling modular repetitivities and
hierarchies within domains. We specify a knowledge-based framework, which main-
tains both partonomy- and taxonomy-hierarchies of entities, and describe an inter-
pretation method exploiting these. The approach offers arbitrary reasoning facili-
ties, where low level perceptive information as well as abstract context knowledge
within scenes can be either given as evidence or queried.

1 Introduction

Objective of our work is to develop an integrated vision system which provides
reasoning facilities on plans and intentions in partially observed scenes. The
system shall handle possibly uncertain evidence on a hierarchy of information
entities ranging from perceptive input of a tracker over representations of
objects and basic processes to aggregations of entities and context concepts.
The conceptual framework of this system was described in [13].

Basically reasoning methods are needed, which can be applied at domains
exhibiting unknown number of entities and uncertainties on entity features
and relations. Besides Scene interpretation other application cases are exam-
ined, e.g. as user surveillance systems (see related works in the end of this
paper).

Plain Bayesian networks [18] provide appropriate reasoning methods han-
dling uncertainty and arbitrary evidence/query combinations, but are limited
to modelling of propositional domains [7]. Relational extensions to Bayesian
networks were introduced [7,12,16] to model complex domains exhibiting re-
lations between entities, concept hierarchies and modular repetitivity. Our
work is based on this previous work, representation elements mostly resem-
ble those in [12].

We present a method to exploit partonomy and taxonomy hierarchies in
scene modelling and describe an interpretation algorithm, which is based on
constrained hypotheses of scene entities and provides answers to queries on
features and existence of entities within scenes.

The remainder of the paper is structured as follows. Chapter 2 presents the
representation our framework is based on, chapter 3 describes the interpre-
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tation algorithm, chapter 4 outlines related work and chapter 5 finally sum-
marizes our presented approach and provides perspectives for future work.

2 Representation

This section starts with presenting the domain-independent underlying struc-
ture of our framework. Subsequently we describe the integration of the frame-
work into our scene-modelling domain.

Basic elements within our framework are Bayesian network fragments
[7,10,12]. A Bayesian network fragment (BNF) F = (R,O, I,G,C) consists
of:

• a finite set R of resident attributes or resident random variables, where
for each random variable X , X ∈ R, there is a local distribution DX ,
which may be an unconditional probability distribution or a conditional
probability distribution (CPD) depending on the values of other random
variables, which are parents ofX in the fragment graph (described below);

• a finite set O of output attributes, with O ⊆ R;
• a finite set I of input attributes, disjoint to R, or random variables, whose

values correspond to output random variables of other fragments;
• a fragment graph G, where G is an directed acyclic graph (DAG), whose

nodes are indexed by the random variables in R∪I, and random variables
in I correspond to root nodes in G;

• a finite set C of input fragments, whose values represent other fragments,
which have attributes, whom input attributes of the fragment F corre-
spond with.

An input fragment represents a binary relation on fragments; if the value
of an input fragment type A of fragment X is Y (denoted as X.A = Y ),
the relation A(X,Y ) holds. A fragment X , having input fragment Y , can
be input fragment of Y too. The dot-notation can be extended to attribute
chains A1.A2. · · · .Ak, denoting the composition of the relations A1, . . . , Ak.
Input attributes identify their corresponding attribute of an other fragment
via attribute chains.

The probability model of a fragment is specified by the local probability
models of its attributes. In the proposed framework fragments are present
as classes and instances. An input fragment of a fragment has an associated
type, i.e. fragment class specification. A type is a ternary relation; if the type-
value of type F on input fragment A in fragment X is Y , then the relation
F (X,A, Y ) holds. The probability model of a fragment is associated with its
class. An instance of a class corresponds to a domain entity of the appropriate
type and derives its probability model from its class.

Fragment classes are organized in a class hierarchy or taxonomy. A sub-
class inherits the probability model of its superclass and can override or
extend it. With this inheritance modelling, equal partial probability models
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of different fragment classes can be represented by the probability model
of a common superclass. The set of output-variables of a class fragment
F ′ = (R′, O′, I ′, G′, C′) must at least contain the output variables of its
superclass F = (R,O, I,G,C), O ⊆ O′.

Fragment classes reside within a knowledge base and represent concepts
of domain entities. During the interpretation process fragment instances are
plugged together to Bayesian networks, which will be called compound net-
works or, while modelling of scenes, scene graphs. Resulting compound net-
works represent relations between domain entities, in our setting basically
partonomies of scene entities. Arrangements of domain entity BNFs are spe-
cific for different scenes or situations, thats why these networks were intro-
duced in [11] as situation specific networks.

To ensure, that the local distributions in Bayesian network fragments de-
fine well-defined probability distributions in compound Bayesian networks, an
assumption is required, which generalizes the acyclicity condition for Bayesian
networks: the node orderings in all fragment graphs must be consistent with
a global total ordering on random variables [12].

2.1 Scene Modelling

As domain for scene interpretation we choose place-cover settings. In a simple
introductory scenario one could ask for the probability of the existence of
a cup-cover given the positions of observed cup and saucer objects on a
table. One could look for a joint probability distribution (JPD) on 3 random
variables A, B, C, representing the position of the cup, the position of the
saucer and the existence of the cover.

The variables can be seen as attributes, which carry belief on features and
existence of entities. In a partonomy one could maintain belief on features
and existence of an aggregate C given evidence of features and existence of
their parts A,B, thus leading to distributions P (C|AB) as basic knowledge
representation. According to the chain rule of probabilities the JPD is given
by e.g. P (ABC) = P (C|AB)P (B|A)P (A).

We consider features of entities to be mutually independent, if nothing is
known about a combining relation (here about the existence of the cover).
In other words, in scene specific partonomy modelling, dependencies between
parts A, B are given in relation to aggregations C. Therefore we apply pruned
factorizations as P (ABC) = P (C|AB)P (A)P (B). Figure 1 (left) depicts a
Bayesian network corresponding to this factorization, where cover-existence
is modelled by a binary random variable, the positions of cup and saucer are
represented as discrete variables, which may take up 4 position values.

Considering the context of describing features and existence of domain
entities, the variables of the probability distribution are represented within
Bayesian network fragments, which correspond to the entities, they are at-
tributes for. Figure 1 (left) shows 3 BNFs, marked by gray rectangles, each
of which having only one resident attribute.
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Fig. 1. Example showing the modelling conception

The discussion was limited until this point on a scenario consisting of
one aggregate-entity ’CupCover’ with its parts ’Cup’ and ’Saucer’, and will
be now generalized. The observation-probability of other aggregate-entities
can be defined in a similar way by features of their parts. A concept ’Cover’
could e.g. depend on the position of a ’CupCover’; the existence of ’Cup’ and
’Saucer’ may depend on features of observed blobs. In the example setting
we extend the model by inserting existence-variables into the BNFs of ’Cup’
and ’Saucer’ and a position-variable into the fragment of ’CupCover’ (figure
1 right).

We further add edges between the existence-node and between the position-
nodes, assuming variable-dependence. The existence of such edges is concept-
specific (the position of ’CupCover’ e.g. depends on the position of ’Cup’: they
are equal, if defined by center of gravity) and is defined within the fragment
graph of the corresponding BNF. A fragment thus contains feature-nodes
(here only positions) and an existence-node, which represents the observation-
probability of the corresponding domain entity. Existence-nodes in network
fragments were described by [12] in a similar context, where existence uncer-
tainty of entities was modelled.

In the above example only one entity feature, the position, was described.
In advanced settings we expect further features to be involved, e.g. observa-
tion times, directions, colors and others. In the result we would get complex
conditional probability distributions for existence variables. We therefore try
to factorize the existence-distribution, if this is possible, by introducing new
variables. A conditional distribution which conditions on features of input
entities and contributes to the belief of existence of a concept can be seen
as constraint-check element. We may e.g. check constraints for positions and
observation times of entities separately to reason on existence of aggregate
entities.This factorization can only be done, if constraint checks indepen-
dently contribute to the existence probability of an entity. Input variables
for CPDs of existence-variables of fragments in our domain thus can be so
called constraint-variables and existence-variables of input entities. Figure 2
illustrates the insertion of a constraint-variable ’SuitPos’ at the ’CupCover’-
BNF.
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Fig. 2. Scene graph with constraint-variable and inference result

We model feature-variables of entities not only by discrete random vari-
ables as in the above example, but also by continuous variables with e.g.
Gaussian distributions. Thus we avoid discretization of natural continuous
domains of feature-variables representing e.g. positions and times. Resulting
scene graphs will be Bayesian networks, containing both discrete and contin-
uous random variables, which are described in [6] as hybrid networks . The
handling of different distribution types is simplified by separate constraint-
variables for different types of features, because their binary discrete distri-
butions are only conditioned on distributions having the certain type of the
particular features.

Figure 2 illustrates a result of probabilistic inference application in a scene
graph, which is constructed of the three BNFs, corresponding to the entities
of the above example. The observation of existence and position of a cup and
the existence of the cup-cover was given as evidence. The query results e.g.
the expected position and a high existence-probability of a saucer. In figure 2
observed and queried variables are illustrated by black and gray value tables
respectively.

Probabilistic inference within scene graphs was processed using an im-
plementation of importance sampling (likelihood weighting), a method for
approximate inference in Bayesian networks, which can be directly applied
to networks containing both discrete and continuous random variables [6].

The introductory setting exemplified the modelling of a static scene. Our
approach is also applied to dynamic scenes, where scene entities, modelled
by BNFs, are not only static objects or aggregations, but also actions or
processes. Figure 3 depicts a scene graph in a simple dynamic setting, where
the scene of placing a cup-cover is modelled.

The process of placing the cover is represented in relation to two sub-
processes of placing a saucer and a cup. Feature-variables of BNFs represent
place-positions, start- and end-times of corresponding process-entities. Figure
3 illustrates a query result, where the start-time and position of the saucer-
placing was given and features of a temporal succeeding cup-placing were
inferred.
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Fig. 3. Scene graph of a dynamic setting example

The compound Bayesian networks examplified above had a hyper tree
structure, i.e. the graphs of fragments was tree-structured. In general we allow
cycles in the graph of fragments, e.g. to model a ’transport’-concept depend-
ing on a ’move’- and a ’touch’-process, which both are connected with the
same ’object’-entity. Such cycles are represented by additional equality con-
straints within BNFs, which are defined by attribute chains in dot-notation.
The ’transport’-fragment would then e.g. retain the constraint
’move.object=touch.object’.

2.2 Incorporating Taxonomy Information

A taxonomy structure of domain concepts can be modelled as Bayesian net-
work of binary random variables, where nodes represent the probability of an
entity being of a subclass, given, that the entity is of a certain superclass (a
similar approach was described in [17]). Figure 4 depicts a taxonomy network
of a simple example domain.

Fig. 4. Taxonomy tree of an example domain

Compound networks of BNFs represent partonomies and other relations
between different entities, while a taxonomy graph models class-type relations
of a single entity. We integrate taxonomy information into the framework
by copying the taxonomy graph into the fragment graphs of entities and
unifying the existence-node of each fragment with the node of the taxonomy
structure, the fragment class corresponds with. The taxonomy structure thus
must contain a node for every fragment class residing in the knowledge base.
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3 Scene Interpretation

The above discussion regarded to scene graphs as Bayesian networks, that
were composed of Bayesian network fragments. Given a set of BNFs, which
reside in the knowledge base and represent concept classes, there exist differ-
ent possibilities of combining instance BNFs to a scene graph. In our domain
a compound of BNFs can be seen as interpretation or explanation of a scene.
The challenge is to find a composition of BNFs, which explains a (partially)
observed scenario best.

We now describe an incremental interpretation algorithm. Given scene
observations are placed as instance BNFs of corresponding scene entities into
the scene graph, where relevant random variables are set with the observa-
tion evidence. Given the set of observation BNFs in the scene graph, the
algorithm instantiates new BNFs as hypotheses. The hypothesized BNFs
may be concepts, whose input fragments are (partially) existing in the scene
graph (bottom up direction), as well as missing input fragments of an existing
concepts (top down direction).

Other steps of the interpretation algorithm are given by specialization
and generalization of entities, which exist in the scene graph. Since output
attributes of subclasses at least contain the output attributes of the cor-
responding superclass, we possibly have to instantiate new input fragments
during specialization and cut of input fragments in the generalization step. By
utilizing taxonomy operations the interpretation algorithm is able to reason
on different abstraction levels of scene entities.

Each operation of the hypothesizing algorithm generates a new scene
graph. Different scene graphs are evaluated and compared by a metric. The
value of the metric increases with the existence-probability of instance BNFs
within the scene graph, since higher probabilities of existence of hypothe-
sized concepts reflect a better interpretation or explanation of a scene. We
thus measure the accuracy of hypothesized scene graphs by multiplying the
existence-probabilities of all BNFs, that the graph contains. The lower the
metric value, the more speculative the scene graph is.

When hypothesizing top-down, i.e. hypothesizing missing input fragments
of existing BNFs, we may instantiate new BNFs, which again have input
fragments missing. To compute the metric of a scene graph we need a valid
probability model, i.e. all input attributes and input fragments must be in-
stantiated. While hypothesizing we had to ’unroll’ the scene graph completely.
To maintain an incremental algorithm we adapt the concept of default dis-
tributions [16], where CPDs of variables with not yet existing parents are
temporarily replaced by non-conditional distributions. We introduce default
BNFs F ′ = (R′, O′, I ′, G′, C′) for every BNF F = (R,O, I,G,C) within the
knowledge base, where O′ = O, I ′ = {} and C′ = {}.

In top-down hypothesizing also BNFs, which already exist in the scene
graph can be bound for missing input fragments. These BNFs must fit the
class-type, the input fragment is associated with. In addition these BNFs
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must be unbound, i.e. not yet set as input fragment to another BNF, or
match additional equality constraints of BNFs.

In the following the interpretation algorithm is presented as pseudo code.

• Instantiate fragments according to observational evidence and/or prior
context knowledge within a scene graph S. Set H = {S}.

• Repeat until a termination criterion is fulfilled:
Set H ′ = {}.
For every S ∈ H do
– Add S to H ′.
– bottom up step. For every F ∈ KB (knowledge base) with at least

one input fragment F ′ ∈ S: create S′ by copying S and instantiating
default BNF F . Add S′ to H ′.

– top down step. For every default BNF F ∈ S create S′ by copying
S and substituting F with the corresponding non-default BNF F ′.
For all possible instantiations of input fragments of F ′, with allowed
F ′′ ∈ S or new F ′′ ∈ KB: create S′′ by copying S′ and instantiating
the input fragment configuration and add S′′ to H ′.

– generalization step. For every BNF F ∈ S having superclass X , where
holds: if F is input fragment to another BNF, X must still match
class-type condition, else X must be more specific then the root-
class. Create S′ by substituting F with instantiation of BNF F ′ of
class X . Add S′ to H ′.

– specialization step. For every BNF F ∈ S having subclass X : Create
S′ by substituting F with instantiation of BNF F ′ of classX . If F ′ has
no unbound fragments, add S′ toH ′. If F ′ has unbound fragments, for
all possible instantiations of unbound input fragments with allowed
F ′′ ∈ S or new F ′′ ∈ KB: Create S′′ by copying S′ and instantiating
the input fragment configuration. Add S′′ to H ′.

Set H := H ′.
Compute metric for all S ∈ H .
Order and prune H according to the metric.

Within the interpretation algorithm loop a number of scene graphs is
maintained within an agenda H . Since the agenda is pruned of graphs with
low metrics, the algorithm can be characterized as beam search. After the
termination criterion is fulfilled, e.g. after the maximal metric value stopped
rising, the scene graph with the best metric is returned as optimal interpre-
tation of a scene given the evidence.

Feature distributions of hypothesized entities in explanations may be uni-
form or of high variance. This originates from having graph structure like
A → C ← B, where parts A,B influence aggregate C. If there is no knowl-
edge about C the variables A and B are mutually independent, but enter-
ing evidence into C renders them dependent (explaining away-structure). In
our framework while evidence of observed parts influences probability of hy-
pothesized aggregats (if constraints match), hypothesized parts may remain
independent, having uniform or prior distributions.
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Thus to infer features of hypothesis concepts we proceed as follows. Within
the graph of the optimal explanation for given observations we put evidence
into all yet unobserved existence-nodes. Subsequently random variables of hy-
pothesis concepts depend on observed random variables and after processing
probabilistic inference, feature values can be read from the graph.

Figure 5 illustrates a first step of an example interpretation task, where
positions and shape of two blobs were given and the features of other possible
scene-entities were queried.

Fig. 5. Bottom-up hypothesis

The result of a run of the interpretation algorithm is shown in figure 6.
Within this best scene-explanation e.g. the existence and features of a third

Fig. 6. Features of a hypothesized scene-graph
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blob are inferred, which possibly might guide a tracker in a process of selective
perception to gather more evidence on the corresponding area of the scene.

Figure 6 also illustrates the use of continuous random variables. The di-
rection of the cover is represented by an angular Gaussian distribution and
positions by bivariate Gaussians within the table-plane. Mean and standard
deviation of position distributions are depicted at the nodes and in the upper-
left part of the picture to point out the spatial configuration of entities within
the hypothesized scene.

4 Related Work

BNF-representations were applied to model various relational open world
domains e.g. units within a military battlefield [11] or entities within road
traffic scenes [7].

An approach for dynamic situation modelling is described in [4]. The
probabilistic framework features apllyiance of symbolic probabilistic inference
and a taxonomic representation, that differs from ours. As use case for this
framework an intrusion detection system is put forth, where multiple inputs
from sensors are given and concept entity-types and states need to be inferred.

The authors of [3] present a method using Multi-Entity Bayesian network
fragments (MEBNFs), which are in short BNFs enriched by first-order-logic
elements [2], to detect human threatening behavior in computer networks.

Relating to measuring scene- or situation assessments, the authors of [1]
present an approach within a military domain and suggest inter alia a multi-
plication of enitity-likelihoods to score a situation. Some of the same authors
point out in [12], that decision theory might play a key role to measure reli-
ability of a BNF-model.

There are numerous approaches to scene interpretation which are based
on rule based systems and logics. In [14] the usage of description logics is
examined, the conceptual representations of enitities are similar to those used
here.

5 Conclusion

We described a framework and methods for probabilistic modelling of scenes.
Our knowledge-based approach exploits taxonomy hierarchies of scene con-
cepts as well as partonomies and other relations of scene entities.

The scene interpretation algorithm provides results on arbitrary scene-
queries, ranging from questions on basic entities given abstract scene knowl-
edge to explanations of scenes given perceptive evidence.

In future work we will evaluate our approach using more complex and
other domains. We will examine methods, where probability models are (par-
tially) specified in an unsupervised data-driven process, i.e. where structure
and parameters of Bayesian network fragments are learned by statistics [15].
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In relational probabilistic modelling with BNFs a frame-based knowledge
representation is maintained, where frames correspond to fragment classes
and frame-slots to both resident variables and input fragments [8]. We will
evaluate other methods of reasoning with frame-based knowledge-bases, e.g.
using description logic (DL) systems, and try to combine different abductive
and deductive interpretation steps. Paralles between RPM and probabilis-
tic logics, RPM learning and inductive logics programming (ILP) which are
outlined in [5] will be examined for integration into the presented framework.
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Abstract. The treatment of spatial characteristics through probability distribu-
tions makes it possible to use stochastic optimization methods and to obtain ef-
ficiency results and competitive equilibrium prices for general equilibrium models
with discrete choices in spatial continuum. Along these lines, and combining results
from stochastic optimization with principles established by Aumann and Hilden-
brand for economies with continuum of traders the paper develops a practical mod-
eling framework that can combine the spatially distributed aspects of land-use with
processes such as market clearing or telecommunication investments concentrated
at specific points. It also presents associated stochastic algorithms for numerical
implementation. We discuss both a general equilibrium version in which all con-
sumers meet their own budget, and a welfare maximizing version with transfers
adjusting among consumer groups for which we formulate a dual approach that
solely depends on a finite number of prices.

Keywords: Spatial modelling, Continuum of agents, Discrete choice, General
equilibrium, Welfare maximization, Dual welfare function, Stochastic tâtonnement.

1 Introduction

At the interface of geography and economics, the practical relevance of ap-
plied policy models has often been limited by their lack of empirical detail
in representing the distribution of spatial and social characteristics of the
economy under study. Elaborate household surveys have been conducted and
detailed geographic information systems were set up, but the databases are
rarely used in regional or national models, due to the relatively high level of
social and spatial aggregation that is required to keep the analysis tractable.
The situation is even less satisfactory when it comes to dealing with spatial
distributions of uncertainties, which are either neglected altogether or dealt
with through a small number of alternative states of nature.
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This paper specifies a general equilibrium model which can be used for
land use planning. The model allows to combine the spatially distributed
aspects of land-cover with processes such as market clearing or telecommuni-
cation investments concentrated at specific points. Assuming that individuals
in society are located on a joint distribution over physical space, social char-
acteristics and random events, the model incorporates spatial and stochastic
distributions of landuse cover jointly with discrete choices, say, about the
(discrete) market the produce should be shipped to, and can be extended to
allow for investments at these market points from which the whole region can
benefit. Thus, we interpret ”spatial” in a broad sense, and the geographical
coordinates may only be two among the many coordinates of the space. This
representation would seem to offer the natural setting for representation of
spatial characteristics as it often significantly simplifies, e.g., convexifies, the
problem, allowing for discrete choices and other non-convexities. The paper
on the one hand shows how stochastic optimization techniques apply to spa-
tial analysis and on the other hand how the treatment of non-convexities may
become easier in a spatial context.

Our discussion proceeds in three parts, the first of which deals in section
2-5 with a general equilibrium model in Arrow-Debreu format, evaluating
the excess demand as the integral over spatial and other characteristics of
the net demand by individual consumers and producers. The specification of
this general equilibrium model has several distinguishing features.

First, as we find it unrealistic to postulate that there exists at every
point in the continuum a market where supply and demand are matched, our
major assumption is that goods are shipped from producers to consumers in
the continuum via a finite number of market points where prices are formed.
Consequently, the market excess demand function is finite dimensional, as
in the standard model, albeit that it is now to be evaluated as the integral
over individual net demand rather than as the sum over a finite number of
agents. Second, we deal with discrete choice as sole source of non-convexity
but since virtually the most important non-convexity can be approximated in
the way, this hardly imposes a limitation. Third, we allow for full satiation of
consumers. When consumers are atomless, their demand could remain infinite
at equilibrium. This seems unrealistic and creates unnecessary complications.
It is avoided by allowing for satiation. Fourth, the critical step in ensuring
that non-convexities may be bypassed is to guarantee that all agents making
the same discrete choice are sufficiently different. For this, it suffices to require
smoothness of the density with respect to a single characteristic.

Representation in a continuum is often used in mathematical modeling, to
bypass non-essential effects associated with non-convexities of real world pro-
cesses. For example, in control theory (see e.g. Alekseev, Tihomirov, Fomin,
1979), the assumption of continuous time convexifies the attainable sets, and
leads to Pontryagin’s maximum principle. Kantorovich (1942) studied clas-
sical transportation problems in a spatial continuum. In economics Aumann
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(1964, 1966) and Hildenbrand (1970, 1973) were first to study a continuum of
agents within general equilibrium theory. Aumann and Hildenbrand assume
continuity of consumer preferences and hence continuity of the correspond-
ing utility functions but relax the usual concavity requirements on utilities.
Treating consumers as atomless and distributed according to a smooth den-
sity enables to prove existence of competitive equilibria, i.e. the existence
of endogenously generated prices at which aggregate demand does not ex-
ceed supply, while consumers and producers take prices as given and maxi-
mize utility and profits, respectively, according to optimization problems that
may exhibit nonconvexities. Their proofs essentially rely on the assumption
that because all individuals are sufficiently different to ensure that agents
whose demand or supply exhibits a discontinuity at the prevailing prices
have measure zero and can be disregarded. However, this assumption is non-
constructive, in the sense that it is introduced after derivation of individual
behavior from preferences and technology. This makes it difficult actually to
build a model that meets the requirement, and may be one reason for the
class of models not to have found numerical application so far, another being
that the traditional computational approaches require discretization of infi-
nite dimensional models that could destroy continuity of the aggregate excess
demand. Our approach, in a way similar to Anderson et al. 1992, construc-
tively introduces requirements through the utility and production functions
themselves. Finally, our convexity requirements are strict, ensuring that in-
dividual net demands are almost everywhere single- rather than multivalued.

The second part of our paper (Section 6) addresses the fact that it may be
difficult to develop an applied model in which the budget of every individual
in the continuum has to be elaborated separately. Hence, we turn to the
cases with a finite number of social classes whose member consumers share
a common budget, and to the case in which there is only one such class and
which can be dealt with as welfare program. It appears that the dual of this
program is more tractable than the primal, since it depends on the (finite-
dimensional) price vectors only and yields excess demand as its gradient and
hence satisfies the Weak Axiom of Revealed Preference.

In Section 7, we turn to computation. Here the main point is that treating
the distributions of characteristics as probability distributions enables us to
apply stochastic tatonnement procedures on excess demand along the lines
described in Ermoliev et al. (2000). These are in effect stochastic equivalents
of the classical Walrasian tatonnement but whereas the classical tatonnement
at each step adjusts the market price for every commodity on the basis of
its aggregate excess demand, the stochastic variant only activates a random
sample of agents from an infinite set. The tatonnement indicates a direction
of price change, purely on the basis of the net demand within this sample.

In sum the paper proceeds as follows. Section 2 introduces the distribution
of spatial and social characteristics. Producer and consumer behavior under
discrete choice are described in sections 3 and 4, respectively. Existence of
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a competitive equilibrium and of a solution to the spatial welfare model is
established in section 5 and 6, respectively. Section 7 discusses the stochastic
tatonnement procedure and its application. Illustrative examples are given
to ease the understanding of the technicalities required for a rigorous presen-
tation of our computational approach.

2 The Continuum of Agents:
Distribution of Spatial and Social Characteristics

The description of our economy starts with the specification of the spatial
and social characteristics of the households living in it. For example, one
may consider the empirical distribution of characteristics as compiled from a
household survey. Each answer in the survey questionnaire defines one charac-
teristic, while the frequency of answers specifies the distribution of these char-
acteristics in the sample. If a characteristic relates to an exogenous variable
of the analysis (e.g. previous occupation of the respondent, or geographical
location), it can be treated as part of a vector x ∈ X ⊂ Rm . Assuming that
the survey was well designed, and representative, it is possible to infer from
this sample an estimate of the distribution G(x) at the level of the population.
In our computational procedure we view G(x) as a probability measure on an
appropriate probability space for which we use the following formal general
concepts. Let Lq(X) denote the Banach space of integrable in power q func-
tions on X for some q, 1 ≤ q <∞. The multifunction A : x→ A(x) ⊂ Rn is
called (Borel)-measurable if it has a Borel graph in X ⊗ Rn , (see Aumann,
1965, Hildenbrand, 1974, and Castaing and Valadier, 1977, for the concept
of measurable multifunctions).

Assumption 2.1. Let x be an m-dimensional real vector of characteris-
tics and x ∈ X, where X is a compact in Rm . The distribution G(x) defines
a measure on X, and this measure G = G1⊗Gy on X = X1⊗Y is a product
of the absolutely continuous (with respect to Lebesgue measure) measure G1

on X1 ⊆ R and the σ-additive and complete measure Gy on Y.
We note that continuity is only required for a single characteristic, say,

element x1 . This is important because survey data often comprise a large
number of discrete characteristics, such as farm/non-farm or male/female. It
is always possible to introduce an artificial, continuous variable, say, xm+1 ,
that creates a ”pseudo”-continuum and only serves to eliminate discontinu-
ities that might arise from non-convexities. In this paper, all characteristics
are taken to describe the spatial or social diversity of agents. This makes it
safe to treat X as a compact set, and also ensures that for a continuous in c,
Borel measurable in x function u(c, x) and distribution G(x), the integrabil-
ity over X is assured and the function U(c) =

∫
X
u(c, x)dG(x) is continuous.

By Lebesgue’s dominance convergence theorem U(c) is continuous if u(c, x)
is continuous in c and majorated by some integrable function, for example,
if u(c, x) ≤ ū for some given ū . However, some components of x could also



General Equilibrium Models 137

be taken to represent uncertain events such that the compactness of X is no
longer guaranteed. Before formulating the producer model with setup costs
and discrete decisions in general terms, we present a simple example that in-
troduces the approach to eliminate discontinuities. This is essentially based
on the following lemmas that ensure the non-stationarity w.r.t. x1 of the
value function F (x) of the decision problems, i.e. when F (x1) �= F (x2) for
x1 �= x2 .

Lemma 1. Assume that (i) the problem F (x) = supz{f(z, x)|h(z, x) ≤ 0}
has a solution for any x ∈ R1 ; (ii) the function f(z, x) is strictly increasing
in x; and (iii) h(z, x) is nonincreasing in x. Then, the function F(x) is strictly
increasing in x.

Proof. Choose x1 < x2, F (x1) = f(z(x1), x1), and h(z(x1), x1) ≤ 0. Since
f(z(x1), x1) < f(z(x1), x2), while h(z(x1), x2) ≤ 0, it follows that F (x1) <
F (x2).

Lemma 2. Assume that (i) the problem F (x) = supz{f(z, x)|h(z, x) ≤ 0}
has a solution for any x ∈ R1 ; (ii) the function f(z, x) is non-decreasing
in x; (iii) h(z, x) is strictly decreasing in x; and (iv) for any (z, x) there
exists an arbitrary small Δz such that f(z + Δz, x) > f(z, x) (for example,
Δz = ε∇zf(z, x) �= 0 , ε > 0). Then, the function F(x) is strictly increasing
in x.

Proof. Choose x1 < x2 and F (x1) = f(z(x1), x1), and h(z(x1), x1) ≤ 0.
Now z(x1) is an internal point of the set {z|h(z, x2) ≤ 0}, since by (iii)
h(z(x1), x2) < h(z(x1), x1) ≤ 0. Furthermore, by (iii) and assumption (iv),
there exists a valueΔz such that h(z(x1)+Δz, x2) ≤ 0 and F (x2) ≥ f(z(x1)+
Δz, x2) ≥ f(z(x1) +Δz, x1) > f(z(x1), x1) = F (x1).

Finally, the next lemma gives a sufficient condition for the level set of
a partially nonstationary function to have zero measure. This is the main
regularity property that makes it possible to neglect the discontinuities in
response functions after integration.

Lemma 3. Assume that (i) function f(x, y) : X ⊗Y → R1 is measurable
in (x, y) on a product of measurable sets X ⊆ R1, Y ⊆ Rm; (ii)f(x, y) is
nonstationary in variable x , i.e. f(x1, y) �= f(x2, y) for any x1 �= x2 ∈ X
and y ∈ Y ; (iii) measure G = Gx⊗Gy on X⊗Y is a product of a σ-additive
and complete measure Gy on Y and (iv) absolutely continuous (with respect
to Lebesgue measure) measure Gx on X. Then G{(x, y)|f(x, y) = 0} = 0.

Proof. For any y ∈ Y by (ii) the set {x|f(x, y) = 0} consists of no more
than one point. By (iv), Gx{x|f(x, y) = 0} = 0. And by the Fubini theorem
(e.g. Kolmogorov and Fomin, 1981):

Gx{x|f(x, y) = 0} =
∫

Y

G{(x, y)|f(x, y) = 0}dG(y) = 0.

In subsequent sections we often use the following important fact. Let

V (p) =
∫

X

max
d∈D

v(p, d, x)dG(x),
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where D ⊂ Rn is a compact set, v(p, d, x) is convex and continuous in p , con-
tinuous in d and integrable in x , its subdifferential ∂pv(p, d, x) is bounded
for all d ∈ D by an integrable in x function. Then, by well known results
on subdifferentiation of integral functions and the differentiation of a maxi-
mum function (see e.g. Clarke, 1983, Levin, 1985), and for co{·} denoting the
convex hull, the following result holds.

Lemma 4. The subdifferential ∂V (p) of V (p) is expressed as follows:

∂V (p) =
∫

X

∂p max
d∈D

v(p, d, x)dG(x) =
∫

X

co{∂pv(p, d, x)|d ∈ d(p, x)}dG(x),

where d(p, x) = argmaxd∈D v(p, d, x). In addition, if v(p, d, x) is continuously
differentiable in p with gradient vp(p, d, x), then d(p, x) is single valued for
any p and V (p) is continuously differentiable with gradient

Vp(p) =
∫

X

vp(p, d, x)|d=d(p,x)dG(x).

Proof. See Clarke (1983), Levin (1985).

Example: Single output and input commodity.

Suppose that households are, in fact, ”producers” and are distinguished by a
characteristic x, say, geographic location and distributed over an area accord-
ing to the smooth distribution function G(x). The firm at spot x produces
a single output commodity, using a single input commodity, according to a
strictly concave production function f(v, x), with setup costs g0(x), where v
denotes input use. The firm maximizes the discontinuous profit function:

π(p, x) = max
v≥0

[p1f(v, x)− g(v, x) − p2v] , (1)

where g(v, x) = 0 if v = 0 and g(v, x) = g0(x) if v > 0 , while p1 and p2 are
the given prices of the output and input, respectively, and p = (p1, p2). This
defines a discontinuous input demand v(p, x) such that v(p, x) = 0 if π(p, x) =
0, and v(p, x) > 0 if π(p, x) > 0. Since f(0, x) = 0, this discontinuous problem
can also be rewritten as the mixed-integer program:

π(p, x) = max
v≥0,δ=0,1

δ [p1f(v, x) − g(v, x)]− p2v.

Furthermore,

Π(p) =
∫
π(p, x)dG(x) =

∫
[max(π̄(p, x), 0)] dG(x), (2)

for π̄(p, x) = maxv≥0 (p1f(v, x)− g0(x)− p2v), assuming that this function
is integrable. Now if π̄(p, x) is non-stationary with respect to x, then G{x :
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π̄(p, x) = 0} = 0, implying that the points at which a switch takes place can
be neglected in the integration. Consequently, the following properties hold.
First, aggregate profit Π(p) is continuously differentiable and convex in p.
Second, the aggregate output and input coincide with the one obtained after
integration of input demand in the original problem (1), and, by Hotelling’s
lemma (Varian, 1992), are equal to the negative of the derivative of the profit
function (see also Lemma 4).

To our knowledge, this approach has not found practical application so far,
presumably because of the difficulties in dealing with maximization problems
generally involving, multi-dimensional integrals, as in (2). Stochastic quasi-
gradient procedures – to be discussed in section 7 – enable us to deal with the
maximization of multidimensional integrals without having to evaluate them
explicitely or to approximate them, which might undermine the convexity
properties.

3 Producer Behavior

Our next example considers a set of marketplaces indexed λ, located at xλ,
with λ = 1, ..., L. We suppose that N commodities are traded at these mar-
ketplaces and fetch a price pλ. Hence, these are n = N × L prices in the
economy. Let p ∈ Rn

+ denote the vector of stacked prices of all marketplaces
partitioned into (p1, ..., pλ, ..., pL). Next, we introduce the production model
with discrete characteristics, representing H technology types indexed h, J
firm types, indexed j, K commodities, indexed k. At x, every firm of type j
maximizes profits, at given prices p solving:

πj(p, x) = max
yh

j ,δh
j

∑
h
δh
j

(
pyh

j

)
s.t.

∑
h
δh
j Hh

j (yh
j , x) ≤ 0, (3)∑

h
δhj = 1, δhj ∈ {0, 1},

where yh
j = (yh,1

j , ..., yh,λ
j , ..., yh,L

j ) denotes net supply of firm j at x using
technology h; πj(p, x) is the optimal profit; and x has a distribution G(x)
satisfying assumptions 2.1. By definition, this profit is equal to the sum of the
value of net supplies at the different locations: πj(p, x) =

∑
λ p

λyh,λ
j . Hence,

the firm can in principle buy and sell at every market place λ, taking charge of
the transportation costs of outputs to, and of inputs from this market. Clearly,
the technology index h might also be associated to a particular configuration
of marketplaces at which the producer trades. For notational convenience we
do not in the sequel refer explicitly to the marketplace.

Every producer chooses one technology, represented by a transformation
function Hh

j (·). The transformation function may have a positive value at
yh

j = 0, so as to reflect that setup costs must be incurred before any produc-
tion can take place, but we also assume that it is feasible to close down the
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factory, i.e. that there is a technology h for which the transformation func-
tion is non-positive at yh

j = 0. In the Example, the associated transformation
function can be defined as:

H1
j (y1

1j , y
1
2j, x) = y1

1j − f(−y1
2j, x) and H2

j (y2
1j , y

2
2j , x) = 0.

We note that model (3) has discrete decision variables. This reflects an indi-
visibility and hence a non-convexity in production. Alternatively, this indi-
visibility can be expressed in the space of products but on nonconvex and, in
general, disconnected sets, as follows:

Y h
j (x) = {y ∈ Rn|Hh

j (y, x) ≤ 0}, Yj(x) = ∪hY
h
j (x).

Hence, model (3) can also be written as the maximization of the profit func-
tion py on the generally nonconvex and possibly disconnected set Yj(x) but
we maintain a representation with discrete choice because this permits to
eliminate the discontinuity at aggregate level in a constructive way.

Assumption 3.1 (Transformation). Every firm j with technology h has
transformation functions Hh

j : Rn × X → R, Hh
j (yh

j , x), and every such
function satisfies the following properties: (i) it is continuous and strictly
quasiconvex in yh

j , measurable in x; (ii) for each j it has possibility of inaction
Hh

j (0, x) ≤ 0 for some h ; (iii) supyh
j
{∥∥yh

j

∥∥ : Hh
j (yh

j , x) ≤ 0} ≤ γ̄h
j (x) ∈

L2(X), all j, h.
Measurability in (i) is a far weaker requirement than continuity and en-

ables us to accommodate abrupt changes in technological conditions over the
space of characteristics. Condition (iii) generates a scalar γ̄h

j (x), which is the
upper bound on feasible output. Now we can re-define the profit functions in
the following way:

πj(p, x) = max
h

πh
j (p, x) (4)

for
πh

j (p, x) = max
yh

j

{pyh
j |Hh

j (yh
j , x) ≤ 0}. (5)

We remark that if we replace the technology constraint Hh
j (yh

j , x) ≤ 0 by the
full set production constraints and balances, it becomes possible to calculate
the price ph

j (x) at location x, as a shadow price to the program. The following
assumption is the key step to ensure that the aggregate net supply is G-a.s.
a continuously differentiable function.

Assumption 3.2 (Regularity). For any positive p and fixed h �= h′:

G(x|πh
j (p, x) = πh′

j (p, x) = πj(p, x)} = 0.

For a two-dimensional vector x, this assumption means that the bound-
aries between regions choosing different technologies are lines of zero surface.
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This illustrates how the optimization model can be used to generate a zon-
ing map hj(p, x) = argmaxh π

h
j (p, x), defined so as to maximize πh

j (p, x), the
value of land. Clearly, it is possible to impose legal restrictions on this zoning,
expressed as the index set, say, to keep land under natural vegetation. The
model to be presented can be used to analyze both the direct effect of such
restrictions, and the indirect effect via the adjustment of prices.

Assumption 3.2 is satisfied if for all pairs h, h′, the difference between the
profit functions is nonstationary with respect to one characteristic, say, x1

whenever h and h′ are both maximal in (5) (see Lemma 1). It is mild since it
only requires that two competing best technologies should not lead to profits
that coincide everywhere within any sub-region, while the underlying best
supplies do not. The requirement can be considered constructive as it can
always be enforced by including in the transformation function of Assumption
3.1, an additional perturbation that differentiates between h and h′. For this,
we can define a nonnegative perturbation function εh

j (x1) that is measurable
and nonstationary in x1 and enters as: Hh

j (yh
j − εh

j (x1), x) ≤ 0.
Proposition 1 establishes continuous differentiability of the aggregate profit

function, and hence single-valuedness and continuity of aggregate net supply.
Proposition 1 (Aggregate net supply). Let the distribution of character-

istics and the transformation function satisfy assumptions 2.1, 2.2 and 3.1,
3.2. Then, the aggregate profit Πj(p) =

∫
X πj(p, x)dG(x), where πj(p, x) =

maxh π
h
j (p, x), of firms in group j is continuously differentiable, convex, non-

negative and homogeneous of degree one in p and the aggregate net supply
mapping Yj(p) = ∂Πj(p)/∂p is continuous and homogeneous of degree zero in
p; Yj(p) =

∫
X

∑
h δ

h
j (p, x)yh

j (p, x)dG(x), where δh
j (p, x), yh

j (p, x) solve prob-
lem (3).

Proof. The proof proceeds in three steps. (1) The profit function πh
j (p, x)

is continuously differentiable and convex in p. This follows from the Maximum
Theorem (see for instance, Varian, 1992) and assumption 3.1(i)); ∂πh

j (p, x)
/
∂p

= yh
j (p, x), where yh

j (p, x) is a solution of (5), that is measurable due to as-
sumption 3.1(i). Function πh

j (p, x) is measurable in x as the optimal value of
the optimization problem whose feasible set is measurable in x (assump-
tion 3.1(i), see Castaing and Valadier(1977)). (2) The profit πj (p, x) =
maxh π

h
j (p, x) of firms in group j is, almost everywhere w.r.t. G(x), con-

tinuously differentiable, and convex in p, it is nonnegative and homogeneous
of degree one; by assumption 3.1(i) and 3.2, the function is continuously
differentiable in p almost everywhere in x; convexity in p follows from (1);
homogeneity follows from the definition of problem (3); non-negativity from
the possibility of inaction 3.1(ii); the almost everywhere property follows from
the regularity assumption (see lemmas 1-3). By the rule of subdifferentiation
of maximum function (see for instance, Rockafellar, 1973):

∂πj(p, x) = co{∂πh
j (p, x)

/
∂p|h ∈ argmax

h
πh

j (p, x)}

= co{yh
j (p, x)|h ∈ arg max

h
πh

j (p, x),
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where co{·} denotes the convex hull. Since all πh
j (p, x) are measurable, πj(p, x)

inherits this property, and multifunction ∂πj(p, x) is also measurable (see
Castaing and Valadier, 1977). (3) By assumption 3.1(iii), profit function
πj(p, x) and subdifferential ∂πj(p, x) are bounded by integrable functions,
so Πj(p) =

∫
Xπj(p, x)dG(x) is well defined and by Lemma 4

∂Πj(p) =
∫

X∂πj(p, x)dG(x) =
∫

X

co{yh
j (p, x)|h ∈ arg max

h
πh

j (p, x)}dG(x).

The subdifferential ∂πj(p, x) is G-a.s. single valued, hence subdifferential
∂Πj(p) is single valued and continuous, and thus Πj(p) is a convex, con-
tinuously differentiable function. Choose a measurable function h̄(p, x) ∈
arg maxh π

h
j (p, x) and define

δh
j (p, x) =

{
1, h = h(p, x),
0, h �= h(p, x),

all h,

Yj(p) =
∫

X

∑
h
δh
j (p, x)yh

j (p, x)dG(x).

Remark that since
∑

h δ
h
j (p, x)yh

j (p, x) ∈ co{yh
j (p, x)|h ∈ arg maxh π

h
j (p, x)},

it follows that Yj(p) ⊆ ∂Πj(p), and because of single valuedness of ∂Πj(p),
we finally obtain Yj(p) = ∂Πj(p) = ∂Πj(p)/∂p.

4 Consumer Behavior

As indicated in the introduction, the representation of consumers by means
of a continuum offers two major advantages. It allows to include detailed
empirical distributions of consumer characteristics, as obtained through geo-
referenced household surveys and censuses, and it permits to deal with dis-
crete choices, which seems important since consumers in general buy goods
in discrete quantities, such as one car, two pairs of shoes, and they face dis-
crete personal choices as to which town, province or country they want to
live in, the job they will apply to, and so on. To describe consumer behav-
ior, we distinguish r consumer groups, indexed i, coinciding with one of the
discrete characteristics, say, i = xm of the households in the survey. To rep-
resent discrete choices, we introduce the option for the consumer to migrate
to alternative destinations, indexed s, each with a specific utility function
and income. The destination might be a physical location, a specific career
or a lifestyle. Migration might be highly temporary and only reflect a shop-
ping visit to the city, or permanent. Like for producers, we assume that all
consumer purchases take place at the marketplace and that transportation
appears as a separate commodity demand.

Assumption 4.1 (Endowments). Each consumer x of group i owns fixed
commodity endowments es

i (x) ∈ Rn after choosing destination s, such that
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(i) es
i (x) ∈ L2(X); (ii) es

1(x) ≥ e1(x) and
∫

X
e1(x)dG(x) > 0; (iii) for every

x there exists a destination s(x) such that es(x)
i (x) ≥ 0, with at least one strict

inequality.
Hence, the stocks available, say of skilled labor, depend on the destination

chosen. Furthermore, this specification can be used to describe purchases of
indivisible commodities and that setup costs of migration could be treated
in this way. The consumer preferences are characterized by a utility function
that can also differ across to reflect variations in lifestyle.

Assumption 4.2 (Utility). Each consumer x of group i has, for every
s, a utility function us

i : Rn ×X → R, such that it is (i) Borel in (c, x), for
some c̄si (x) ∈ L2(X) us

i (c̄
s
i (x), x) ∈ L1(X), (ii) continuously differentiable

with respect to consumption vector c ∈ Rn
++ G-a.s. in x, (iii) strictly concave

in c ∈ Rn
++ G-a.s. in x, where Rn

++ is the strictly positive orthant; (iv)
us

i (0, x) = 0; and (v) G-a.s. in x, ∂us
i (c, x)/∂ck ≥ 0 for c ≤ c̄si (x) with

at least one strict inequality and ∂us
i (c, x)/∂ck < 0 whenever ck > c̄sik(x);

(vi) for i = 1, us
i (c, x) = ũi(c) is increasing in c with ∂ũ1(c)/∂ck → +∞ for

ck ↓ 0; (vii) for i = 1, c̄1,k ≥
∫

X

(∑
j maxhγ̄

h
j,k(x) +

∑
i maxse

s
i,k(x)

)
dG(x).

The Borel measurability requirement in (i) is weaker than a continuity
requirement in (c, x). We do not impose continuity with respect to x, in
order to maintain all flexibility with respect to possibly abrupt changes in
consumer properties in the space of characteristics. Condition (v) defines an
individual satiation level c̄si (x) ∈ L2(X). Utility is non-satiated as long as all
consumption falls below this level, but it is nonincreasing in any commodity
for which consumption exceeds it. This guarantees boundedness (even out of
equilibrium) and hence integrability of the demand by any member in state
s. Assumption (vi) expresses that there is one (possibly very small) consumer
group whose utility function is increasing everywhere but does not vary with
either the state s or the location x. The requirement on the derivative guaran-
tees positive consumption of all commodities. Condition (vii) indicates that
for this consumer group the satiation level is so high that it exceeds maxi-
mal potential supply (see also assumption 3.1 (iii)). The integrability of its
demand is not an issue because all members are identical. Imposing these rela-
tively tight requirements on group 1 enables us to maintain weak assumptions
for all other groups.

Consumer x of group i owns endowments es
i (x) and receives a fixed share

θij(x) of the profits of firms in group j; hence the identity∑
i

∫
X
θij(x)dG(x) = 1 must hold. Thus, consumer income rs

i (p, x) consists
before transfers of the value of commodity endowments pes

i (x) plus profits:

rs
i (p, x) = pes

i (x) +
∑

j
θij(x)Πj(p). (6)

Assumption 4.3 (Transfers). Each consumer x of group i receives trans-
fers ti(p, x) ∈ R, such that (i) ti(p, x) ∈ L1(X); (ii) ti(p, x) is continuous
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and homogeneous of degree one in p (iii) maxs (rs
i (p, x)) + ti(p, x) is positive

for all p; and (iv)
∑

i

∫
X ti(p, x)dG(x) = 0.

We note that conditions (iv) on zero balance of transfers can be imple-
mented in several ways. For example, if ti(p, x) = 0 for each x then all con-
sumers make their decisions independently relying only on commonly known
prices. This leads to Walrasian equilibrium for continuum of traders as in
Aumann (1964, 1966) and Hildenbrand (1970, 1973). Alternatively, the spec-
ification

∫
X ti(p, x)dG(x) = 0 supposes that incomes are redistributed by

means of transfers within a corresponding consumer group (”family”) i that
serves as a risk pool. In this case, the group as a whole may be also represented
by a consolidated consumer with a utility function aggregated by means of
social welfare weights αs

i (x) that convert individual utilities into money met-
ric (see, e.g., Ginsburgh and Keyzer, Chapter 2, 2002) and are implemented
by allowing for the transfers among consumers within the groups. In Section
6 below, we allow for transfers among groups:

Ui({cs(·), κs(·)}) =
∑

s

κs

∫
X

αs
i (x)us

i (c
s(x), x)dG(x)

to be maximized over {cs(·), κs(·)} subject to a consolidated budget∑
s

κsp

∫
X

cs(x)dG(x) ≤
∑

s

κs

∫
X

rs
i (p, x)dG(x).

This problem can be decomposed by means of a single Lagrange multiplier
into individual (x-specific) utility maximization problems (7) with given (en-
dogenous) transfers. Clearly, this also defines the special case in which all
consumer budgets are consolidated into a single one.

Now the model of consumer x in group i reads:

u∗i (p, x) = max
cs≥0,κs∈{0,1}

∑
s
κsus

i (c
s, x)

s.t.
∑

s
κspcs ≤

∑
s
κsrs

i (p, x) + ti(p, x) (7)∑
s
κs = 1,

for given ti(p, x). Observe that in view of the satiation assumption 4.2(v),
program (7) has a bounded solution, even for pk = 0, that determines an
optimal destination κ∗s

i (p, x) as well as a (nonnegative) optimal consumption
c∗s
i (p, x) ≤ c̄si (x). Because of the strict concavity of utility, c∗s

i (p, x) is single
valued and continuous for all p ≥ 0. As in the case of the producer problem we
can reformulate the consumer problem (7) in terms of continuous variables
only, but now with, in general, piecewise continuous utility functions and
nonconvex consumption sets, by defining consumption sets

Cs
i (p, x) = {c ∈ Rn

+|pc ≤ rs
i (p, x) + ti(p, x)}, Ci(p, x) = ∪sC

s
i (p, x),
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as well as the index sets Si(c, p, x) = {s|c ∈ Cs
i (p, x)}, and the piecewise

continuous utility functions

Ui(c, p, x) = max
s∈Si(c,p,x)

us
i (c, x).

Now problem (7) is equivalent to the maximization of Ui(c, p, x) over c ∈
Ci(p, x).

Next, we reformulate problem (7) in a more convenient form. For given
destination s, consumption can be determined from:

u∗s
i (p, x) = max

cs≥0
us

i (c
s, x)

s. t. pcs ≤ rs
i (p, x) + ti(p, x). (8)

Note that by nonsatiation assumption 4.2(v), for s �= 1, utility and consump-
tion will at all non-negative prices, be bounded for every s and all x and for
satiation level c̄ high enough, the budget constraint will hold with equality.
Now the functions u∗i (p, x) can also be determined as

u∗i (p, x) = u∗si

i (p, x) = max
s

u∗s
i (p, x),

while c∗s
i (p, x) = csi

i (p, x), κ∗s
i (p, x) = 1 for s = si and c∗s

i (p, x) = 0,
κ∗s

i (p, x) = 0 for s �= si. As for production, the maximization can be used to
generate a zoning map s(p, x) describing the assignments for every location
x. Likewise, it is possible to impose restrictions S(x) on land use, and to
analyze their direct effect as well as their price induced effect. The following
assumption, similar to (4), ensures that the aggregate consumption is G-a.s.
a continuously differentiable function.

Assumption 4.4 (Regularity). For s �= 1, s �= t, and any positive p:

G(x|u∗s
i (p, x) = u∗t

i (p, x) = u∗i (p, x)} = 0.

As for assumption (4) on profits, this assumption is satisfied if for all pairs
that correspond to maximal utility, the difference between both value func-
tions is nonstationary with respect to x1. The property is easily constructed
via a perturbation function εs

i (x1) that is measurable and nonstationary in
x1 and enters utility as: us

i (c
s
i , x) = ũs

i (c
s
i , x) + εs

i (x1).
Proposition 2 (Aggregate consumption). Let the distribution of charac-

teristics and the utility, endowment and transfer functions satisfy assump-
tions 2.1, 4.2-4.4. Then, the aggregate consumer demand and the aggregate
endowment supply are continuous and homogeneous of degree zero in p.

Proof. Define Si(p, x) = {s : u∗s
i (p, x) = u∗i (p, x)} and

C∗
i (p, x) = {c∗s

i (p, x)|s ∈ Si(p, x)}, E∗
i (p, x) = {es

i (x)|s ∈ Si(p, x)}.
Multivalued mappings Si(p, x), C∗

i (p, x), E∗
i (p, x) are:
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(i) measurable in x for all p ≥ 0;
(ii) closed valued and even single valued for almost all x;
(iii) homogenous of degree zero in p for almost all x;
(iv) upper semicontinuous in p ≥ 0 for almost all x;
(v) bounded by a function that is integrable in x.
In conditions (i), (iv), (v) upper semicontinuity is preserved after integration
over x. Hence, mappings C∗

i (p) =
∫

X
C∗

i (p, x)dG(x), E∗
i (p) =

∫
X
E∗

i (p, x)dG(x)
are upper semicontinuous in p ≥ 0, single-valued by (ii) and thus con-
tinuous. Since Si(p, x) = Si(λp, x) for any λ > 0, C∗

i (p, x) = C∗
i (λp, x),

E∗
i (p, x) = E∗

i (λp, x) hence C∗
i (p) = C∗

i (λp), E∗
i (p) = E∗

i (λp), mappings
C∗

i (p), E∗
i (p) are homogenuous in p ≥ 0 of degree zero.

5 Existence of a Competitive Equilibrium

Having specified supply and demand, we can readily obtain the aggregate net
supply and demand of consumers and producers in the general equilibrium
model (3), (7) with given transfers, as the integral values:

C∗
i (p) =

∫
X

(∑
s
κ∗s

i (p, x)c∗s
i (p, x)

)
dG(x), (9)

E∗
i (p) =

∫
X

(∑
s
κ∗s

i (p, x)es
i (x)

)
dG(x), (10)

Y ∗
j (p) =

∫
X

(∑
h
δ∗h
j (p, x)y∗h

j (p, x)
)
dG(x), (11)

where κ∗s
i (p, x), c∗s

i (p, x) solve consumer problem (7) and δ∗h
j (p, x), y∗h

j (p, x)
solve producer problem (3). A competitive equilibrium is characterized by a
price vector p ∈ P such that

Z∗(p) = 0, (12)

for
Z∗(p) =

∑
i
C∗

i (p)−
∑

i
E∗

i (p)−
∑

j
Y ∗

j (p),

where P denotes the price simplex P = {p ≥ 0,
∑

k pk = 1}. This price
normalization is needed because Z∗(p) is homogeneous of degree zero in p.

Proposition 3 (Competitive equilibrium). Let the distribution of char-
acteristics and the utility, endowment and transfer functions satisfy assump-
tions 2.1, 2.2 and 4.1-4.4, and the transformation functions satisfy assump-
tions 3.1, 3.2, then model (9)-(12) has an equilibrium, with positive prices.

Proof. By propositions 1 and 2 for all p ∈ P , excess demand Z∗(p) is
continuous and homogeneous of degree zero in prices. And by assumption 4.3,
equation (6) and nonnegativity of profit in proposition 1, it satisfies Walras
Law (pZ∗(p) = 0 for all p ∈ P ). Furthermore, by assumptions 4.1(ii) and
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4.2(v), consumers i = 1 have positive income at all prices and demand more
than can be supplied if any price drops to zero. Then, by standard arguments
(see, e.g. Arrow and Hahn, 1971, chapter 1) there exists an equilibrium, and
price must be positive since, by assumption 4.2 (vii) excess demand could
not be nonnegative otherwise.

6 Spatial Welfare Optimum: a Dual Approach

While the spatial competitive equilibrium determines prices for a specified
transfer function, through the spatial welfare optimum to be considered in
this section the transfers are determined on the basis of a welfare program
with fixed positive weights αi(x) on the various consumers. This welfare pro-
gram maximizes the weighted sum over groups i of the integral over x of in-
dividual utilities multiplied by the destination factor κs

i and summed over s.
The resulting welfare program is hard to handle numerically in a straightfor-
ward manner, because it is defined in functional space. Therefore, we propose
to formulate the equivalent dual welfare program, that essentially replaces the
budget constraint from the model of the previous section by a fixed welfare
weight, from which the transfers and the solution of the original program
follow.

Thus, for given positive marginal utility of expenditure μi(x) = 1/αi(x),
i.e. equal to the inverse welfare weight we can maximize the surplus of con-
sumer (i, x):

w◦
i (p, x) = max

∑
s
κs[us

i (c
s, x)− μi(x)(pcs − rs

i (p, x))]

s. t. cs ≥ 0, κs ∈ {0, 1}
∑

s
κs = 1, (13)

with optimal surplus w◦
i (p, x), consumption c◦s

i (p, x) and switches κ◦s
i (p, x).

By construction, κ◦s
i (p, x) = 0 for all s except some si, κ◦si

i (p, x) = 1. By as-
sumptions 4.1-4.3, this problem has a bounded solution. Program (13) defines
the (i, x)-specific subproblem:

w◦s
i (p, x) = max

c≥0
{us

i (c, x)− μi(x)(pc− rs
i (p, x))}. (14)

By assumptions 4.2(v),(vi), w◦s
i (p, x), are well defined for all p ≥ 0, since

satiation ensures that consumption will not exceed c̄si (x), this program attains
its optimum. The same applies to function

w◦
i (p, x) = max

s
w◦s

i (p, x) = w◦si

i (p, x),

that, by (14), is equal to the sum of the consumer surplus (usi

i (c◦si

i (p, x), x)−
μi(x)pc◦si

i (p, x)) and the producer surplus rsi

i (p, x), multiplied by μi(x), where
si = si(p, x) is the optimal state for member x of group i and c◦si

i (p, x) de-
notes the optimal consumption in this state. This value can be interpreted
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as the self-earned utility since for μi(x) such that the revenue balance with
expenditure it coincides with individual utility. The associated regularity as-
sumption is:

Assumption 6.1 (Regularity). For i �= 1 and any positive p:

G{x|w◦s
i (p, x) = w◦t

i (p, x) = w◦
i (p, x); s �= t} = 0.

This regularity assumption on consumer surplus can be enforced construc-
tively in the same way as for assumption 4.4 for utility itself. For every i, we
can now define associated income transfers:

t◦i (p, x) =
∑

s
κ◦s

i (p, x)(pc◦s
i (p, x)− rs

i (p, x)), (15)

i.e., the transfer that closes the gap between target expenditure and available
revenue at prevailing prices (Lagrange multipliers of the welfare program).
The following proposition establishes that the Second Theorem of welfare
economics also applies in our case. The dual social welfare function can be
defined as

W (p) =
∫
X

W ◦(p, x)dG(x) (16)

for
W ◦(p, x) =

∑
i
αi(x)w◦

i (p, x). (17)

Assumption 6.2 (Welfare weight normalization and nonnegligibiliy of
consumer 1). (i) αi(x) are nonnegative integrable functions and

∫
X

∑
i αi(x)

dG(x) = 1; (ii) α1(x) ≡ α1 > 0.
By assumptions 4.1(i), 4.2(v),(vi), and 6.2, functions αi(x)w◦

i (p, x) are
integrable and hence function W (p) is well defined for p ≥ 0.

Proposition 4 (Equilibrium with transfers). Let the distribution of char-
acteristics and the utility, endowment and transfer functions satisfy assump-
tions 2.1, 2.2 and 4.1-4.4, 6.1, and the transformation functions satisfy as-
sumptions 3.1, 3.2, while welfare weights satisfy assumption 6.2, then the
solution of

min
p≥0

W (p) (18)

defined as in (16)-(17) supports a competitive equilibrium (12) with transfers
(15), with unique and positive optimal prices.

Proof. Part 1. Existence and uniqueness of optimal prices. Function
W (p) is convex because w◦s

i (p, x) is convex in p (see e.g. Avriel, 1976, The-
orem 5.1). Since by assumption 4.2(iv), we have us

1(0, x) = 0, it follows that
w◦s

1 (p, x) ≥ pes
1(x) and α1w

◦
1(p, x) ≥ pα1

∑
s κ

◦s
1 (p, x)es

1(x). By assumption
4.1(ii)∫

X

α1w
◦
1(p, x)dG(x) ≥ pα1

∫
X

e1(x)dG(x) → +∞ if p→ +∞. (19)



General Equilibrium Models 149

By assumptions 3.1(ii), 4.2(iv) all w◦
i (p, x) ≥ 0, hence since by assumption

6.2 consumer 1 is nonnegligible, it follows from (16) and (19) that the convex
function satisfies W (p) ≥ 0 and

W (p)→ +∞ if p→∞.

Hence, W (p) achieves its minimum. Thus, we have the following representa-
tion:

W (p) =
∑

i

∫
X

maxs[αi(x)us
i (c

◦s
i (p, x), x) − (pc◦s

i (p, x)− r◦s
i (p, x))]dG(x)

=
∑

i

∫
X maxs[αi(x)us

i (c
◦s
i (p, x), x)

−(pc◦s
i (p, x)− pes

i (x)−∑j θij(x)Πj(p)]dG(x)
=
∑

i

∫
X

maxs[αi(x)us
i (c

◦s
i (p, x), x)

−p(c◦s
i (p, x)− es

i (x))]dG(x) +
∑

j Πj(p)
=
∑

i

∫
X maxs [maxc≥0(αi(x)us

i (c, x)− p(c− es
i (x))] dG(x) +

∑
j Πj(p).

Now by regularity assumption 6.1, function W (p) is differentiable for p ≥ 0,
and by Lemma 4 and Proposition 1:

∂W/∂p = −Z◦(p) = −(
∑

i
C◦

i (p)−
∑

i
E◦

i (p)−
∑

j
Y ◦

j (p)),

where C◦
i , E◦

i , Y ◦
j are defined analogously to (9)-(11) with ∗ replaced by ◦.

A stationary point p∗ of the convex function W (p), clears the market, i.e.
corresponds to nonnegative excess demand:

∂W/∂p = −Z◦(p∗) ≥ 0, p∗Z◦(p∗) = 0. (20)

Now, by assumption 4.2(vii), consumer i = 1 has demand strictly below
satiation level and by 4.2(vi), positive consumption. By (14) ∂u1/∂c1 = μ1p

∗,
and hence p∗ > 0 and Z◦(p∗) = 0. Moreover, because of strict concavity of
utility, differentiability and the boundary property 4.2(vi) of the derivative,
w◦s

1 (p, x) is strictly convex (it is a Legendre transformation, see Avriel, 1976,
p. 109), and since by assumption 6.2 consumer i = 1 has positive measure,
and w◦s

i (p, x) is convex for i �= 1, this property carries over to W (p). Hence,
p∗ is unique.

Part 2. Equilibrium with transfers. We show that for μi(x) = 1/αi(x) > 0
a stationary point of W (p) is equivalent to a competitive equilibrium (12)
with transfers (15) , where μi(x) is the value of the Lagrange multiplier
associated to the budget constraint of the individual consumer problem. Let
{κ◦s

i (p, x), c◦s
i (p, x)} be a solution of (13), i.e. for all cs ≥ 0, κs ∈ {0, 1},∑

s κ
s = 1, we have ∑

s
κs(us

i (c
s, x)− μi(x)(pcs − rs

i (p, x))

≤
∑

s
κ◦s

i (p, x)(us
i (c

◦s
i (p, x), x) − μi(x)(pc◦s

i (p, x)− rs
i (p, x)). (21)

Then, ∑
s
κsus

i (c
s, x) ≤

∑
s
κ◦s

i (p, x)us
i (c

◦s
i (p, x), x)
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for all cs ≥ 0, κs ∈ {0, 1}, ∑s κ
s = 1, and such that∑

s
κspcs ≤

∑
s
κsrs

i (p, x) + ti(p, x), (22)

where ti(p, x) are defined by (15). Since {κ◦s
i (p, x), c◦s

i (p, x)} satisfies (22), it
also provides a solution to (7) with transfers (15) (implicitly dependent on
μi(x) ). Conversely, for given μi(x), solution {κ◦s

i (p, x), c◦s
i (p, x)} and trans-

fers (15) inequality (21) can be rewritten in the form∑
s κ

s(us
i (c

s, x)− μi(x)
∑

s κ
s(pcs − rs

i (p, x) − ti(p, x)) ≤
≤∑

s κ
◦s
i (p, x)us

i (c
◦s
i (p, x), x),

i.e. μi(x) is a Lagrange multiplier for a budget constraint in (7). The same
applies to producer decisions. Obviously, transfers sum to zero.

This proposition shows that the minimum ofW (p) uniquely defines a com-
petitive equilibrium with transfers. Such a competitive equilibrium is known
to be Pareto efficient in terms of the aggregate utility of every group i, and
more generally of any group of consumers with positive measure: no group
could achieve higher utility without any group being worse off. As is well
known the Pareto-concept only applies to sets of positive measure, since it
would be possible to provide unlimited quantities to the individual atomless
consumer without affecting the aggregate commodity balance. We observe
that in conditions of Proposition 4, since commodity balances hold and so-
lutions of (13) are specialized in the optimum, despite the nonconvexities
(14)-(17) imply that dual welfare is equal to primal (social) welfare:

W (p∗) =
∑

i

∫
X

αi(x)usi(x)
i (csi(x)

i (p∗, x), x)dG(x)

= max
cs

i (·),κs
i (·),yh

j (·),δh
j (·)

∑
i,s

∫
X

αi(x)κs
i (x)us

i (c
s
i (x), x)dG(x), (23)

where maximum is taken over measurable functions csi (x) ≥ 0, κs
i (x) ∈ {0, 1},

all i, s, and yh
j (x), δh

j (x) ∈ {0, 1}, all j, h, subject to constraints∑
i,s
κs

i (x)csi (x) ≤
∑

i,s
κs

i (x)es
i (x) +

∑
j,h

δh
j (x)yh

j (x);

∑
h
δh
j (x)Hh

j (yh
j (x), x) ≤ 0, all j;∑

s
κs

i (x) = 1, all i;∑
h
δh
j (x) = 1, all j.

We also note that in this model the welfare weights define price normalization,
so that there is no scope for further normalization on the simplex p, and Z◦(p)
is not homogeneous of degree zero in prices, unlike Z∗(p).
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Clearly, use of the welfare program with fixed welfare weights has the
disadvantage that it does not impose restrictions on transfers. Yet, we note
that trade balances at fixed prices can be incorporated within the technology
set, as a technique to transform imports into exports.

We also note that in this model the price generated at discrete mar-
ket points can be interpreted as an ex ante variable that translates via the
marginal utility in the spatial continuum into an ex post price at location x.
In a similar spirit, the approach is naturally extended to allow for (non-rival,
say, telecommunication) investments at the market points so as to improve
the productivity of (rival) inputs in the spatial continuum.

Finally, the minimization of W (p) as it is specified in (14), (16), (17)
belongs to the class of so-called stochastic minimax problems (see Ermoliev,
1988). In the following section we shall use this fact to develop a stochastic
tâtonnement procedure for searching equilibrium.

7 Deterministic Versus Stochastic Welfare
Tâtonnement

If it was easy to evaluate excess demand, a deterministic price adjustment
procedure could be used to compute equilibrium prices. Specifically, Arrow
and Hurwicz (1958) have proved that if the excess demand Z(p) satisfies the
Weak Axiom of Revealed Preference (WARP)

p∗Z(p) > 0 for all p∗ ∈ P, p ∈ P such that Z(p∗) = 0, Z(p) �= 0,

then Walrasian tâtonnement can be used. For excess demand as defined by
the general equilibrium model of proposition 3, and prices on the simplex
P = {p ≥ 0|∑k pk = 1}, the property can only be proved to hold in very
special cases. Yet, any excess demand Z◦(p) = −∂W/∂p associated to a
welfare optimum satisfies this condition, with price on a compact set P =
{0 ≤ p ≤ p̄}. There is in this case no scope for normalization on the simplex,
since price normalization already follows from the welfare weights. Starting
from given p(1) = p1, one could specify the algorithm:

p(t+ 1) = ΠP [p(t) + ρtZ
◦(p(t))], t = 1, 2, ..., (24)

where ΠP is the projection operator on P and step-size multipliers ρt are suf-
ficiently small. However, the difficulty in applying this tâtonnement rule to
our model is that, due to the integrals, at each step of tâtonement procedure
(24) one has to mine and process the information related to all x, making com-
putation of excess demand very hard and necessarily inaccurate. In fact, the
procedure presupposes that there is a central planner who is able to compute
aggregate excess demand without error, and hence has to possess all infor-
mation about all points x. Suppose on the contrary that we possess at every
iteration t, a statistical estimate of Z◦(p(t)). Then one might expect that, if
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this estimate is asymptotically unbiased, the iteration process will eventually
converge to an equilibrium. The proposed stochastic Walrasian tâtonnement
process builds on this idea. The key observation is that in (13) aggregate
excess demand is the expected value of the total net demand z◦(p, x) of all
consumers with characteristic x, if we treat G(x) as distribution of random
events. The stochastic tâtonnement process uses a sequence of independent
random drawings x(t) from the distribution G(x), and starting from a given
p(1) = p1 ∈ P adjusts p(t) according to:

p(t+ 1) = ΠP [p(t) + ρtz
◦(p(t), x(t))], t = 1, 2, , (25)

for
z◦(p(t), x) =

∑
i,s κ

◦s
i (p, x)c◦s

i (p, x)−∑i,s κ
◦s
i (p, x)es

i (x)
−∑j,h δ

h
j (p, x)yh

j (p, x).

We note that the evaluation of excess demand for price adjustment process
(25) is only required for agents located at a sequence of points x . Nonetheless,
this process converges in the limit.

Proposition 5 (Convergence of stochastic tâtonnement to a welfare equi-
librium). Let the assumptions of proposition 3 hold. Then for step-sizes ρt

such that:
ρt ≥ 0,

∑
t
ρt = ∞,

∑
t
ρ2

t <∞, (26)

process (15) converges, with probability 1, to an equilibrium price.
Proof. See Ermoliev et al. (2000), taking into account that Z◦(p) satisfies

WARP as a subgradient of the convex function W (p).
In fact, the rule ρt = const/t satisfies requirement (26). As argued in Er-

moliev et al. (2000), in case WARP does not hold, process (25) requires addi-
tional shocks for convergence. The stochastic Walrasian tâtonnement process
adds to the intuitive appeal of the classical tâtonnement the property of full
decentralization. In the classical process (24) there is an auctioneer who ad-
justs prices in proportion to the prevailing excess demand whose calculation
requires all agents to communicate their net trades. In the stochastic version,
at any given point during the iteration process, only a random collection of
consumers have to communicate their intentions. However, this purely dual
approach has the limitation that, to avoid solving problems (23) in functional
space it is required that explicit demand c◦s

i (p, x) and net supply yh
j (p, x) be

available in closed form. In practice only the primal functions will be available
for calculations. In other words, c◦s

i (p, x), yh
j (p, x) are solutions of internal

problems that require internal iterations and cannot be obtained without er-
rors. Hence, in (25) estimates of the gradient of W (p) in (18) are subject
to errors, say ε(t) at iteration t. Consequently, at every iteration the Weak
Axiom only holds with a certain accuracy. Nonetheless, convergence of (25)
is ensured if ε(t) → 0, which amounts to a relatively mild requirement since
the change in p tends to zero by construction, making it easier to achieve ac-
curacy. The condition is based on the fact that the approximation of Z◦(p(t))
calculated in this case is the so-called ε(t) -subgradient of W (p).
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Finally, we may mention that several modifications of the stochastic
tâtonnement process could be envisaged. For example, if the continuum
is two-dimensional only (purely spatial), it is possible to approximate the
derivative of the integral of the dual welfare by Monte Carlo sampling for
given prices, i.e. to take a mean over a sufficient number of stochastic gradi-
ents prior to any price adjustment, and apply regular gradient algorithms. In
between both approaches, one may consider further smoothing of the stochas-
tic gradient, by Cesaro-averaging (Nemirovski et al., 1977). The point made
here is merely that once the spatial equilibrium problem has been cast in
the framework of stochastic optimization a rich arsenal of stochastic opti-
mization techniques becomes available to analyse its properties and solve it
numerically.
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Sequential Downscaling Methods
for Estimation from Aggregate Data
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Institute for Applied Systems Analysis, Laxenburg, Austria

Abstract. Global change processes raise new estimation problems challenging the
conventional statistical methods. These methods are based on the ability to ob-
tain observations from unknown true probability distributions, whereas the new
problems require recovering information from only partially observable or even un-
observable variables. For instance, aggregate data exist at global and national level
regarding agricultural production, occurrence of natural disasters, on incomes, etc.
without providing any clue as to possibly alarming diversity of conditions at local
level. ”Downscaling” methods in this case should achieve plausible estimation of
local implications emerging from global tendencies by using all available evidences.

The aim of this paper is to develop a sequential downscaling method, which can
be used in a variety of practical situations. Our main motivation for this was the
estimation of spatially distributed crop production, i.e., on a regular grid, consistent
with known national-level statistics and in accordance with geographical datasets
and agronomic knowledge. We prove convergence of the method to a generalized
cross-entropy maximizing solution. We also show that for specific cases this method
is reduced to known procedures for estimating transportation flows and doubly
stochastic matrices.

Keywords: Cross-entropy, minimax likelihood, downscaling, spatial estima-
tion.

1 Introduction

The analysis of global change processes requires the development of meth-
ods, which allow for dealing in a consistent manner with data on a multitude
of spatial and temporal scales. Although GIS provides detailed geo-physical
information, the socio-economic data often exist only at aggregate level. In-
tegrated analysis of economic and environmental impacts of global changes
raises a number of new estimation problems for downscaling and upscaling
of available data to ensure consistency of biophysical and economic models.
For example, aggregate data on national income does not reveal possibly
alarming heterogeneity of its concentration among a small fraction of popu-
lation or within, say, risk-prone regions of a country. We often need to derive
information about the occurrence of disasters and induced potential losses
in particular locations from information of their occurrence at global or re-
gional levels. Aggregate regional annual concentrations of pollutants may be
well within norms, whereas concentrations in some locations may exceed vital
levels for a short time and cause irreversible damages.
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The estimation of global processes consistent with local data and, con-
versely, long-term local implications emerging from global tendencies chal-
lenge the traditional statistical estimation methods. These methods are based
on the ability to obtain observations from unknown true probability distri-
butions. For the new estimation problems, which can be termed downscaling
and upscaling estimation problems (see also [2] discussing other downscal-
ing and upscaling problems), we often have only very restricted samples of
real observations. Additional experiments to obtain more observations may
be expensive, time consuming, dangerous or simply impossible. For example,
although we can estimate total ”departures” or ”arrivals” of passengers in
transportation systems, the estimation of passenger flows between different
locations requires expensive origin-destination surveys and in many cases the
data does not exist [6]. Similar situations occur with projections of migration
flows, estimation of flows in communication systems, and trade flows. The
paucity or lack of historical data is especially limiting for regions, which are
subject to rapid changes (new developments, shocks, instabilities).

The aim of this article is to develop a recursive sequential downscaling
method, which can be used for a large variety of practical situations. Our
main motivation for this is the spatially explicit estimation of agricultural
production, which is outlined in Section 2.1 and Section 5. In this problem
we deal with ”downscaling”, i.e. attribution of known aggregate national or
sub-national crop production and land use to particular locations (grid cell;
pixel). Sections 2.2, 2.3 outline also the main idea of the sequential down-
scaling method of Section 3 by using simple known procedures for estimating
transportation flows (e.g., migration flows, combining purely probabilistic
prediction with available data on total demands and capacities of locations)
and transition probabilities.

Section 3 develops a sequential downscaling method for iterative rebal-
ancing estimates to satisfy general balance equations with unobservable and
observable variables. We prove the convergence of this method to the solution
maximizing a cross-entropy function. For specific transportation constraints
this method reduces to the procedure proposed in the 1930s by the Leningrad
architect G.V. Sheleikhovskii for estimating passenger flows. The convergence
of Sheleikhovskiis method to the solution maximizing a cross-entropy func-
tion was established by Bregman [1] using complex and lengthy analysis of
specific mappings and projections arising in the case of the transportation
constraints. For recent developments and further references on these pioneer-
ing ideas see [5]. Our analysis for general constraints is based only on duality
theory, which significantly simplifies proofs and clarifies the convergence prop-
erties. This opens up a way for various modifications and extensions, e.g., to
situations with uncertainties when the available higher-level information is
imprecise or involves stochastic elements.

Section 4 outlines connections between the maximum entropy principle,
widely used (see e.g., [3], [12]) for the new estimation (downscaling) problems
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and the fundamental maximum likelihood principle of statistical estimation
theory. We show that the maximum entropy principle can be viewed as an
extension of the maximum likelihood principle, the so-called minimax likeli-
hood principle. Therefore, the convergence of downscaling methods to solu-
tions maximizing a cross-entropy function can be considered as an analog of
the asymptotic consistency [16] analysis in traditional statistical estimation
theory.

Section 5 describes a practical application and results of numerical cal-
culations, with a fast convergence of the proposed basic procedure and its
possible modifications. Section 6 concludes. As an important topic for future
research, it emphasizes the need for incorporating the downscaling meth-
ods within the overall decision making problems, i.e., similar to the existing
stochastic optimization theory.

2 Downscaling Problems: Motivating Examples

Let us consider situations, very common in regional studies, when direct ob-
servations of uncertain parameters on local levels are practically impossible
and the estimation of their spatially explicit representation requires a down-
scaling procedure making use of information at a higher, more aggregate level.
The problem of Section 2.1, in fact, motivated the development of discussed
in Section 3 sequential downscaling procedure. Sections 2.2, 2.3 outline the
main idea of this procedure by using simpler special cases of the problem.

2.1 Spatial Estimation of Agricultural Production

In general, the available information can be summarized as follows (see also
Section 5). Extent of arable land ai, in a pixel i, i = 1,m, is estimated
from land cover satellite images. The degree and extents of suitable area for
different crops in a pixel comes from FAO/IIASA crop suitability studies [10],
[11]. There is also (computer-simulated) spatial information on the attainable
yield dij of crop j, j = 1, n in pixel i. From statistics, the price pj of crop
j, the value Vj of crop production j in a country, i.e. the total production
of crop j multiplied by its price, the crop-wise sown area and production are
available. Let xij be desirable estimates of crop j production in pixel i. This
leads to the following estimate vij = pjdijxij of crop production value j in
pixel i. Since production value Vj of crop j in the country is known from
statistics,

∑m
i=1 vij = Vj , we have equations

n∑
j=1

xij = ai, i = 1,m. (1)

m∑
i=1

dijxij = bj, j = 1, n, (2)
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where bj = Vj/pj.
By introducing new variable yij characterizing area shares by crop j in

pixel i, i.e., xij = aiyij , constraints (1), (2) can be written as the following

n∑
j=1

yij = 1, i = 1,m, (3)

m∑
i=1

aijyij = ej , j = 1, n, (4)

where aij = dijai. This modification of constraint (1), (2) allows the use of
entropy-like arguments.

There will usually be an infinite number of feasible solutions xij , i = 1,m,
j = 1, n satisfying equations (3) and (4). Therefore, to find a unique solution
requires application of some additional principles. A key idea is to use some
additional prior information on crop-specific area distribution, i.e., a prior
distribution qij of crop j in pixel i. This prior can be based upon available
crop distribution maps and other ancillary information, such as agro-climatic,
biophysical, terrain and soil, demographic and farming systems characteris-
tics (see discussion in Section 5). In any case, regardless of availability and
detail of ancillary information, the prior can even be a (least informative)
uniform distribution [18]. If a prior distribution qij > 0, i = 1,m, j = 1, n
is available, then a rather natural way to derive the estimates is from the
minimization of the function

n∑
j=1

m∑
i=1

yij ln
yij

qij
, (5)

subject to (3), (4), where (5) defines the so-called Kullback-Leibler distance
[13] between distributions yij and qij .

Remark 1. Function −∑i,j yij ln
yij

qij
is termed the cross-entropy, i.e., the

minimization of (5) defines the cross-entropy maximizing estimates. Since∑
i,j xij ln

xij

qij
=
∑

i,j aiyij ln
yij

qij
+
∑

i ailnai, therefore the minimization of
function

∑
i,j xij ln

xij

qij
subject to equations (1), (2) is equivalent to mini-

mization of a generalized (a weighted) cross-entropy
∑

i,j aiyij ln
yij

qij
.

An alternative approach, which we take in this paper, is to derive a se-
quence of estimates y0

ij , y
1
ij , y

2
ij , ... from an appropriate behavioral principle

(as Sheleikhovskiis procedure) and to prove their convergence to a cross-
entropy maximizing solution. For instance, a general tendency in farming is
to allocate a crop j to pixels with maximum production values pjdij (or sim-
ilar, such as maximum net revenue or maximum net present value in case of
perennial crops or forestry activities). However, the straightforward applica-
tion of such a rule to equations (1), (2) will, in general, lead to an overestima-
tion or underestimation of aggregate known production values Vj , j = 1, n,
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i.e., situations when condition (2) is not fulfilled. Thus, these rule-based ini-
tial estimates require a sequential balancing procedure, which is developed
in Section 3. Let us illustrate the main idea of the procedure by using two
important special cases.

2.2 Estimation of Interzonal Flows

There can be different types of flows requiring estimation or/and projection
procedures. It may be immigration or trade flows between different regions,
flows of passengers or goods in transportation systems, or flows of messages
in communication systems. Purely statistical projections often require expen-
sive and time consuming origin-destination surveys; the necessary historical
information may not exist [6]. Yet, the inconsistency of purely statistical es-
timate of interdependent flows is an inherent problem in the economics [14].
In particular, this is a key issue in situations when land use patterns are
changing, e.g., due to new development or ”shocks” in some locations. Since
standard statistical procedures often do not take into account such available
information as ”demands” for departures from locations i, i = 1,m, and ”ca-
pacities” of locations j, j = 1, n, to accommodate inflows. As a result, they
may overestimate or underestimate the actual movements between locations.

The downscaling methods attempt to estimate flows among given loca-
tions in a way consistent with available data on the expected total number of
”departures” ai from locations i and arrivals bj in location j.1 For unknown
(to be estimated) flows xij clearly

∑n
j=1 xij = ai, i = 1,m,

∑m
i=1 xij = bj ,

j = 1, n, i.e., we have a particular case of constraints (1), (2) with dij = 1,
i = 1,m, j = 1, n. Assume also that there is a prior probability qij for a
passenger from i to choose the destination j. For example, some behavioral
models (see, e.g., [8], p. 414) define qij proportionally to a ”distance” rij from
i to j, qij = rij/

∑
j rij .

Consider the following iterative estimation procedure:
(i). If a passenger from location i chooses the destination j with a prior
probability qij ,

∑
j qij = 1, then the expected flow from i to j is x0

ij = aiqij .
Clearly

∑
j x

0
ij = ai, i = 1,m, but there may be overestimation

∑
i x

0
ij > bj

or underestimation
∑

i x
0
ij < bj of the available bj.

(ii). Calculate relative imbalances β0
j = bj/

∑
i x

0
ij and z0

ij = x0
ijβ

0
j , i = 1,m,

j = 1, n.
(iii). Clearly,

∑
i z

0
ij = bj , j = 1, n, but the estimate z0

ij may overestimate
or underestimate the known demand for departures ai from i. Therefore,
calculate α0

i = ai/
∑

j z
0
ij , x

1
ij = z0

ijα
0
i , and so on.

1 The terms matrix estimation and matrix balancing have also been used in [5] to
describe this type of methods. The terms downscaling and upscaling have a rather
general meaning. For example, we can speak about a consistent downscaling and
upscaling of certain differential equations, random processes, or potential climate
changes.
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This balancing procedure can be summarized also as the following. We
can represent x1

ij as x1
ij = aiq

1
ij , and q1ij = (qijβ

0
j )/(

∑
j qijβ

0
j ), i = 1,m,

j = 1, n. Assume xk =
{
xk

ij

}
has been calculated. Then find βk

j = bj/
∑

i x
k
ij

and calculate xk+1
ij = aiq

k+1
ij , qk+1

ij = (qijβ
k
j /
∑

j qijβ
k
j ), i = 1,m, j = 1, n,

and so on. In this form the procedure can be viewed as a sequential redis-
tribution of demands ai from locations i = 1,m among locations j = 1, n
by using a Bayesian type of rule for updating the prior distribution qij :
qk+1
ij = qijβ

k
j /
∑

j qijβ
k
j , q0ij = qij .

Initially this method was proposed by the architect Sheleikhovskii (see
references in [1]) for estimating passenger flows between districts of a city
(including possible new districts). Proof of convergence to the solution max-
imizing the cross-entropy type function (Remark 1)

∑
ij xij ln(xij/qij) was

given in [1] using extremely lengthy and complex arguments essentially rely-
ing on specific mappings associated with the transportation constraints. In
Section 3 we propose a similar method for general constraints (2). We apply
duality theory, which allows us to significantly simplify and clarify the conver-
gence analysis (Proposition 1). This also opens up an opportunity for various
modifications, in particular, to situations with more general constraints and
uncertain parameters.

2.3 Estimation of Stochastic Matrices

It is interesting to note that a similar procedure is used in the conventional
statistical theory for estimating doubly stochastic matrices (see discussion
in [15], [20]). Suppose we can observe transitions of a Markov chain with n
states and stochastic matrix {Pij}. The usual estimate of Pij is xij = αij/ai

where αij is the number of transitions from i to j, which are observed, and
ai =

∑
j αij . This amounts to a normalization of the rows of matrix {αij}. If

it was known that {Pij} is in fact a doubly stochastic matrix, i.e.,
∑

i Pij = 1,
then it was proposed to alternately normalize (as in Section 2.2) the rows and
columns of {αij} in the belief that this iterative process would converge to
an estimate of {Pij}. Proof of convergence of this procedure to a doubly
stochastic matrix for rather special cases was given in [15]. From the results
in [1] follows the convergence for general doubly stochastic matrixes and
the optimality of the resulting estimates as the cross-entropy maximizing
solution.

3 Sequential Downscaling Methods

Consider the following problem: minimize

n∑
j=1

m∑
i=1

xij ln(xij/qij), (6)
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subject to constraints (1), (2), where qij > 0, dij > 0 are given, ai > 0,
bj > 0, i = 1,m, j = 1, n. As Remark 1 indicates, the minimization of (6)
is equivalent to the maximization of a generalized cross-entropy function.
Values xij = 0 are also possible when qij = 0 or dij = 0. Without loss of
generality, we assume xij > 0, qij > 0,

∑n
j=1 qij = 1, i = 1,m, and the set of

feasible solutions defined by (1), (2) is not empty.
Consider the following sequential procedure.
Step 1: Compute an initial estimate x0

ij = aiqij . Clearly, x0
ij satisfies (1),∑

j x
0
ij = ai, since

∑
j qij = 1 but, in general, constraints (2) are violated.

Step 2: For given xk = xk
ij , find βk+1

j satisfying equations

m∑
i=1

dijx
k
ije

dijβj = bj , j = 1, n. (7)

The left hand side of this equality is a strictly monotonic function and
βk+1

j can be easily calculated.

Step 3: Calculate zk+1
ij = xk

ije
dijβk+1

j , and

αk+1
i = ai/

∑
j

zk+1
ij , i = 1,m, j = 1, n. (8)

Step 4: Update xk
ij to

xk+1
ij = αk+1

i zk+1
ij , i = 1,m, j = 1, n. (9)

and so on with Steps 2 - 4, until desirable convergence is reached, e.g., con-
straints (1), (2) are satisfied with a given accuracy.

In summary, this procedure, similar to Sections 2.2, 2.3 involves a se-
quential updating of a priori probability distribution qij by using a Bayesian
type of rule: xk+1

ij = aiq
k+1
ij , qk+1

ij = qijγ
k
j /
∑

j qijγ
k
j , γk

j = edijβk
j , where

values γk
j are calculated using observations of imbalances rather than using

observations of real random variables.
Proposition 1. The sequence xk =

{
xk

ij , i = 1,m, j = 1, n
}
, k = 0, 1, ...,

generated by iteration (7)-(9) converges to the solution x∗ of constraints (1),
(2) minimizing the function (6).

Lemma. There exist such αi > 0, βj , i = 1,m, j = 1, n, that the optimal
solution xij = xij(α, β) minimizing (6) subject to constraints (1), (2) satisfies
the following necessary and sufficient optimality conditions:

ai −
∑

j xij = 0; i = 1,m;
bj −

∑
i dijxij = 0; j = 1, n;

xij = qijαie
dijβj , i = 1,m, j = 1, n.

Proof. For a continuous, strictly convex function (6) on a non-empty
compact set of an Euclidian space there is a unique optimal solution to the
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minimization problem. Consider the Lagrangian function:

L(x, λ, μ) =
∑
i,j

xij ln(xij/qij) +
m∑

i=1

λi(ai −
n∑

j=1

xij) +
n∑

j=1

μj(bj −
m∑

i=1

dijxij)

Since the optimal solution is positive, the optimality conditions lead to

∂L

∂xij
= ln

xij

qij
+ 1− λi − dijμj = 0,

i = 1,m, j = 1, n, i.e., the optimal solution can be represented analytically
as xij(λ, μ) = qije

λi−1edijμj , i = 1,m, j = 1, n. The dual problem reads: find
Lagrange multipliers (λi, μj), i = 1,m, j = 1, n, maximizing function

ϕ(λ, μ) = minxL(x, λ, μ) = L(x(λ, μ), λ, μ).

From basic results of convex analysis it follows that ϕ(λ, μ) is a strictly con-
cave continuously differentiable function and the optimality condition can be
written as

∂ϕ

dλi
= ai −

n∑
j=1

xij(λ, μ) = 0, i = 1,m,

∂ϕ

dμj
= bj −

m∑
i=1

dijxij(λ, μ) = 0, j = 1, n.

By using new notations αi = e(λi−1), βj = μj , and the same notations
xij(α, β) for xij(λ, μ) with λi = λi(αi) = lnαi + 1, μj = βj we obtain the
proof due to the strict monotonicity of e(λi−1).

Proof of Proposition 1. It is easy to see that the sequential method
(7)-(9) updates variables α = (α1, ..., αm), β = (β1, ..., βn) and x = {xij}
to satisfy the optimality conditions of Lemma. Namely, equations (7) re-
quire that the gradient of the strictly concave function of the dual problem
ϕμ(λk, μk+1) = 0, whereas equations (8) require that the gradient ϕλ(λk+1,
μk+1) = 0, for some λk, μk, k = 0, 1, ....

Indeed, let us illustrate just a few steps of the method. Solution x0
ij can be

represented as x0
ij = α0

i qije
dijβ0

j , α0
i = ai, β0

j = 0. Clearly, that
∑

j x
0
ij = ai,

i.e., ϕλi(λ0, μ0) = 0 for λ0
i = λi(α̃0

i ), α̃
0
i = α0

i , μ
0
j = β0

j . At Step 2 values

β1
j modify x0

ij to y1
ij = α0

i qije
dij(β

0
j +β1

j ),
∑

i dijy
1
ij = bj , i.e., ϕμj (λ0, μ1) = 0,

μ1
j = β0

j + β1
j . At Step 3 values α1

i modify y1
ij to x1

ij = α0
iα

1
i qije

dij(β
0
j +β1

j ),∑
j x

1
ij = ai, i.e., ϕλi(λ1, μ1) = 0, λ1

i = λi(α̃1
i ), α̃

1
i = α0

iα
1
i and so on.

Therefore, the convergence of vectors λk, μk and hence {xk
ij} to the op-

timal solutions of the dual and the primal problems follows from the conver-
gence of the cyclic ascent method [19].

Remark 2. It follows from the above that for transportation constraints,
i.e., for dij = 1, i = 1,m, j = 1, n, the proposed method is reduced to
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Sheleikovskii’s method. In this case, it also follows that the optimal solution
is represented as xij(α, β) = qijαiβj , αi > 0, βj > 0, i = 1,m, j = 1, n, what
is typical for the so-called gravity models [4].

4 Minimax Likelihood and Maximum Entropy

Definitely that besides a cross-entropy maximization there exists a vast vari-
ety of optimization principles to single out a solution of equations (3), (4). Let
us show that minimization of (5) is a natural generalization of the fundamen-
tal maximum likelihood principle of statistical theory to problems involving
non-statistical uncertainty. Namely, it can be viewed as minimax likelihood
principle.

The standard statistical estimation theory deals with the situation when
the information on unknown distribution can be derived from observations of
underlying random variables. In such a case, the most natural principle for
selecting an estimate from a given sample of observations is the maximum
likelihood proposed by Fisher [9]. This principle requires that the estimate
has to maximize the probability that a given sample is observed.

A downscaling problem deals with the estimation of often unobservable
variables. Yet, the uncertainty can also be characterized or interpreted in
probabilistic terms. For example, in the estimation of crop production values
defined by equations (3), (4), we can think of values yij > 0,

∑n
j=1 yij = 1

as the probability (the degree of our belief) that a unit area of pixel i is
allocated to crop j. It is easy to see that the maximum entropy principle can
be viewed as an extension of the maximum likelihood principle.

Consider a situation similar to problems posed in Section 2. Namely, let us
assume that there is an underlying random variable ξ with a finite number
of possible values ξ1, ..., ξr and the unknown true probability distribution
of ξ is concentrated at these points with associated probabilities p∗1, ..., p

∗
r ,

Prob[ξ = ξj ] = p∗j .
In the statistical estimation the available information is given by a random

sample ξ1, ..., ξN of N independent observations of ξ on (p∗1, ..., p
∗
r). A maxi-

mum likelihood estimate of the unknown probabilities (p∗1, ..., p
∗
r) is obtained

by maximizing the probability (likelihood) of observing ξ1, ..., ξN

N∏
k=1

Prob[ξ = ξk] =
r∏

j=1

p
vj

j (10)

subject to constraints
∑r

j=1 pj = 1, pj > 0, j = 1, r, where vj is the num-
ber of times the value ξj has been observed,

∑r
j=1 vj = N . Since lny is a

monotonously increasing function of y, the maximization of (10) is equiva-
lent to maximization of the log likelihood function ln

∏r
j=1 p

vj

j =
∑r

j=1 vj lnpj

or normalized by the number of observations N ,
∑r

j=1 vj = N , the sample
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mean function
1
N

n∑
j=1

vj lnpj. (11)

This is a continuous, strictly concave function on the set of Rn determined
by linear constraints. By using the Lagrangian function (or the more general
fact of Proposition 2 below) we can derive the well known result (see, e.g.,
[17]) that the unique solution maximizing (11) is the empirical probability
function

pN
j = vj/N, j = 1, r. (12)

Let us consider this differently. The log likelihood function (11) is the
sample mean approximation of the expectation

Elnpξ =
r∑

j=1

p∗j lnpj, (13)

where the unknown probability distribution p∗j is approximated by the fre-
quencies vj/N derived from an available sample of observations ξ1, ..., ξN . In
downscaling problems the available information about the unknown proba-
bility distribution p∗j , j = 1, r is given not by a sample of observations, but
by a number of constraints (3) and (4), i.e., p∗ ∈ P , where P is the set of all
feasible distributions. If y = (y1, ..., yr) ∈ P , then we can consider

r∑
j=1

yj lnpj, (14)

as an approximation of the expectation function (13) similar to the sample
function (11). The log likelihood function (14) is defined for any feasible
probability distribution y ∈ P . The worst-case estimate from P leads to
minimization of the function

V (y) = max
p∈P

r∑
j=1

yj lnpj. (15)

w.r.t. y ∈ P . Therefore, the minimization of (15) w.r.t. p ∈ P is a counterpart
to the minimization of (11)

Proposition 2.

min
y∈P

max
p∈P

r∑
j=1

yj lnpj = min
y∈P

r∑
j=1

yj lnyj. (16)

Proof. It follows from analogous to (12) fact: if y ∈ P , then V (y) =∑r
j=1 yjlnyj. Indeed, for a given y = (y1, ..., yr) ∈ P and p ∈ P we have∑r
j=1 yjlnpj −

∑r
j=1 yj lnyj =

∑r
j=1 yj ln

pj

yj
< ln

∑r
j=1 yj

pj

yj
= 0.
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Remark 3. In other words, the worst-case estimate leads to the principle
of maximizing entropy−∑r

j=1 yj lnyj. In the case of a given prior distribution
q = (q1, ..., qr), we may require the minimization of the difference between
the function (14) for p ∈ P and

∑r
j=1 qj lnpj for the given prior q from P :

min
y∈P

[max
p∈P

r∑
j=1

yjlnpj −
r∑

j=1

yjlnqj] = min
y∈P

∑
yj ln

yj

qj
, (17)

i.e., the maximization of cross-entropy function−∑r
j=1 yj ln

yj

qj
or the Kullback-

Leibler distance between distributions y and q. Clearly, instead of selecting a
worst-case distribution y ∈ P in (15) we can take other distributions, which
may lead to different downscaling principles. Since the estimation is usually
used to support decision making processes, these more general principles may
be specific to different types of problems, i.e., explicitly connected with the
goals of a decision making problem.

5 Practical Applications

The proposed method has been applied for downscaling aggregate national
and subnational data on crop production and land use (Section 2.1) for all
main countries of the world. The downscaling was performed country-by-
country. For this, the territory of each country was subdivided into grid cells
with cultivation share, each cell with spatial resolution of 5 by 5 min latitude-
longitude, i.e., urban areas, infrastructure, and water bodies were excluded
from the analysis. To illustrate the dimensionality, the number of grid cells
with cultivation in France equaled 9042, in Germany 6510, and in Austria
1165. For larger countries, such as United States and Russia, the number of
grid cells with active agricultural use reached approximately 95 thousand, for
Brazil 80 thousand and about 75 thousand for China. The data on aggregate
country-specific agricultural production was obtained from FAO. The list of
crops comprised 28 major crops such as wheat, rice, maize, potato, soybean,
pulses, oil crops, coffee, tea, tobacco, cotton, etc. Figure 1 shows spatial
distribution of downscaled total crop production value for Europe in terms
of international prices (Geary-Khamis (GK) dollars of 2000−2001 per spatial
land unit (grid cell).

Calculation of the prior included important spatial information on per-
centage of cultivated, rainfed and irrigated land in each grid cell derived using
satellite images of land cover classes as well as aggregate statistics of arable
land used for annual and perennial crops in each country. For example, Fig-
ure 2 shows cultivated land share by grid cell. In addition, the calculation of
prior included information on multicropping index, i.e., how many harvests
may be obtained per year from a piece of land, derived with AEZ methodol-
ogy [10], [11], crop suitability (including climate, soil, and terrain conditions)
and attainable yields in each spatial land unit, as well as information on
characteristics of prevailing farming systems and population distribution.
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Versions of the algorithm were written in FORTRAN and MATLAB pro-
gramming languages and performed on PC. They showed fast convergence
and, thus, efficient performance in dealing with large and spatially detailed
data. Clearly, the time performance of the algorithm depends on the size
of a study region, i.e., number of grid cells or land units considered and the
number of crops that can be grown in each location. Applications of the algo-
rithms to global studies showed that to attain high precision (10−7) solution
time increased roughly linearly with the increase of problem dimensionality.
The performance is often remarkably fast, which is explained by the quality
of the prior and the corresponding initial approximation. Thus, for Austria,
7 iterations were needed, for Germany and France about 20 to 30 and for
China about 60, which indicates that the algorithm can be efficiently used in
large real-world downscaling problems.

Fig. 1. Total crop production value, GK dollars per grid cell.

Remark 4. The proposed method can easily be modified to reflect problem-
specific peculiarities of constraints (1) and (2). An important special case is
the transportation constraints, i.e., dij = 1, i = 1,m, j = 1, n. If coefficients
dij are reasonably well approximated by a product of some parameters δi,
i = 1,m, σj , j = 1, n, for instance dij = δiσj , i = 1,m, j = 1, n, then
(1), (2) can be reduced to the transportation constraints by introducing new
variables yij = δjxij and substituting bj by bj/σj and ai by ai/δi, i.e., sim-
ply by rescaling. Another simplifying situation occurs when function edijβj is
approximated by a function Aijf

βj

j , i = 1,m, j = 1, n, for some parameters



Sequential Downscaling Methods 167

Fig. 2. Share of cultivated land per grid cell.

Aij > 0, fj > 0, i = 1,m, j = 1, n, and βj varying within the range of
plausible solutions of (7).

6 Concluding Remarks

In this paper we analyze numerical downscaling procedures only for situations
when aggregate observed information is available and used as constraints
on average values. For many practical situations this assumption may be
insufficient and the procedures may need to be extended into more rigorous
treatment of uncertainty regarding a prior probability qij and parameters of
constraints (1), (2).

For practical applications, the choice of appropriate ”priors”, their in-
herent uncertainties and imprecision, are among the major challenges of the
downscaling methodology, ultimately determining the success of these proce-
dures.

An important issue for future research, besides the uncertainty of ”priors”
and other parameters, is concerned with the incorporation of downscaling
methods within the overall decision making problems, i.e., similar to the
stochastic optimization theory.
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Optimal Control for a Class of Uncertain
Systems

F.L.Chernousko

Institute for Problems in Mechanics
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Moscow, Russia

Abstract. Linear dynamical control systems subject to uncertain but bounded
disturbances are considered. The bounds imposed on the disturbances depend on
the control magnitude and grow with the control. This situation is typical for the
cases where the disturbance is due to the inaccuracy of the control implementation
and often takes place in engineering applications such as transportation, aerospace,
and robotic systems.

Under certain assumptions, the minimax control problem is formulated and
solved. The explicit expressions for the optimal control (both open-loop and feed-
back) are obtained that provide the minimax to the given performance index for
arbitrary but bounded disturbances. Examples are given.

1 Introduction

Dynamical control systems subject to uncertain disturbances are usually de-
scribed by ordinary differential equations

ẋ = f(x, u, v, t). (1)

Here, x is the vector of state, t is time, u is the control vector, and v is
the vector of disturbances.

The disturbance v(t) in (1) can be due either to external causes, for exam-
ple, external forces acting upon the system, or to the errors or inaccuracies in
the control implementation. The latter case often takes place in engineering
applications such as transportation, aerospace, and robotic systems, if the
desired program of the control force (for example, thrust) is carried out by
engines or actuators with unpredictable errors.

In this case, the bounds on the errors, or the magnitude of the admissible
disturbances v(t) in (1), depend on the control applied: these bounds are zero
for the zero control and usually grow with the control magnitude.

In this paper, the model of the situation described above is formalized in
the framework of linear control systems. The minimax control problem with
a general performance index is considered.

The bounds on admissible disturbances are assumed to depend on the
control u(t) in such a way that the explicit solution of the minimax control
problem is available in an explicit form.



172 F.L.Chernousko

The optimal control, both in open-loop and feedback forms, is obtained
that provides the minimax value of the given performance index for arbitrary
but bounded disturbances. Examples for the control of a mechanical system
are presented.

2 Statement of the Problem

Consider a linear control system subject to the control and several distur-
bances

ẋ = A(t)x +B(t)u +
r∑

i=1

Ci(t)vi + g(t). (2)

Here, t is time, t ∈ [t0, T ], x(t) is the n-dimensional vector of state, u(t) is
the m-dimensional vector of control, vi(t) is the ki-dimensional vector of the
ith disturbance, and A(t), B(t), Ci(t), and g(t) are given matrix functions of
time of dimensions n× n, n×m, n× ki, and n× 1, respectively, i = 1, ..., r.

The disturbances vi are bounded by the constraints

(Gi(t)vi(t), vi(t))
1/2 ≤ ρi(t), i = 1, . . . , r, (3)

where the following notation is introduced

ρi(t) = (Ki(t)u(t), u(t)) + (pi(t), u(t)) + qi(t). (4)

Here, Gi(t) is a symmetric positive definite ki × ki matrix, Ki(t) is a
symmetric nonnegative definite m × m matrix, pi(t) is an m-dimensional
vector, and qi(t) is a scalar. All these functions are assumed to be specified
for all i = 1, . . . , r and t ∈ [t0, T ]. The symbol (., .) stands for the scalar
product of vectors. The constraints (3) and (4) include, in particular, the
case of constant bounds on vi typical for external disturbances (in this case,
Gi is the identity matrix, Ki and pi are zero, and qi is a constant) as well as
the case of disturbances due to the errors in the control implementation and
proportional to the squared control magnitude (in this case, Gi and Ki are
the identity matrices whereas pi and qi are zero).

Since the left-hand side of inequality (3) is nonnegative, its right-hand side
ρi(t) should be nonnegative too. To ensure this condition, we will assume that
either

Ki(t) ≡ 0, pi(t) ≡ 0, qi(t) > 0, (5)

or the matrix Ki(t) is positive definite (Ki(t) > 0) and the minimum of
ρi(t) over all u is positive. This minimum is attained at u = −K−1

i pi/2.
Substituting this expression into (4), we find that the minimum of ρi is

qi − 1
4
(K−1

i pi, pi) ≥ 0. (6)
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Therefore, we suppose that, for each i = 1, . . . r, one of the following two
assumptions holds: either (5), or Ki > 0 and (6).

At the initial time instant t = t0, the initial condition for system (2) is
specified:

x(t0) = x0, (7)

where x0 is a given n-dimensional vector.
The performance index for system (2) is defined as follows

J =
∫ T

t0

[(a(t), x(t)) + (D(t)u(t), u(t)) + (b(t), u(t))] dt+ F (x(T )). (8)

Here, the n-dimensional vector function a(t), the symmetric positive def-
inite m × m matrix D(t), and the m-dimensional vector function b(t) are
specified for t ∈ [t0, T ], and F (x) is a given smooth scalar function of the
state x. The performance index (8) includes a linear integral term propor-
tional to the projection of the state vector onto a given direction, integral
terms linear and quadratic in control, and a nonlinear terminal term that can
serve as a measure of the deviation of the terminal state from the prescribed
position. All functions of time introduced in equations (2), (3), (4), and (8)
are supposed to be piecewise continuous in the interval [t0, T ].

We seek for the control u(t) that yields the minimax value to the perfor-
mance index (8):

J∗ = min
u

max
v

J, i = 1, . . . , r, (9)

provided that conditions (2)–(4) and (7) hold.
The maximum in (9) is taken over all disturbances v(t) satisfying inequal-

ities (3), and it is assumed that the disturbances ”know” the control u(t).
The minimum in (9) is taken over all piecewise smooth controls u(t). We
will find the optimal open-loop control u(t) that is the ”best” reaction to
the ”worst” disturbances as well as the optimal feedback control u∗(x, t) that
depends on the state and time. Our problem can be also considered as the
problem of the guaranteed, in the sense of the performance index (8), control
of the ensemble of trajectories of system (2) under constraints (3).

3 Transformations

To simplify our problem, let us carry our certain transformations. Denote by
Φ(t) the fundamental matrix os system (2). This matrix satisfies the following
initial value problem

Φ̇ = A(t)Φ, Φ(t0) = En. (10)
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Here, En is the n× n identity matrix.
Let us make the following change of the state variable:

x = Φ(t)y. (11)

Then equation (2) becomes

ẏ = B1u+
r∑

i=1

Ci1vi + g1, (12)

where the following notation is introduced

B1(t) = Φ−1(t)B(t), Ci1(t) = Φ−1(t)Ci(t),
gi(t) = Φ(t)g(t), i = 1, . . . , r. (13)

The initial condition (7) and the performance index (8) take the form

y(t0) = x0, (14)

J =
∫ T

t0

[(a1, y) + (Du, u) + (b, u)]dt+ F1(y(T )). (15)

Here, the following denotations are used:

a1(t) = ΦT (t)a(t), F1(y) = F (Φ(T )y), (16)

where T denotes the transposed matrix.
Hence, our problem is reduced to the minimax problem (9) for system

(12) under the initial condition (14) and constraints (3). The performance
index J is defined by (15).

4 Solution of the Problem

Let us find first the maximum of J with respect to v, and then the minimum
with respect to u. For both stages, we will apply the maximum principle [1].

The Hamiltonian for the first stage is given by

H = (ψ,B1u) +

(
ψ,

r∑
i=1

Ci1vi

)
+ (ψ, g1) + (a1, y) + (Du, u) + (b, u). (17)

Here, ψ(t) is an n-dimensional adjoint vector that satisfies the following equa-
tion and initial condition at t = T :

ψ̇ = −a1(t), ψ(T ) =
∂F1(y(T ))

∂y
. (18)
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The solution of the initial value problem (18) is

ψ(t, y(T )) =
∫ T

t

a1(τ)dτ +
∂F1(y(T ))

∂y
. (19)

Note that the adjoint vector ψ depends on the terminal state y(T ) yet un-
known.

To find the maximum of the Hamiltonian (17) with respect to vi, it is
necessary to maximize the scalar product

(CT
i1ϕ, vi)→ max, i = 1, . . . , r,

under the quadratic constraint (3). As a result, we obtain

vi = λ−1
i ρiG

−1
i CT

i1ψ, i = 1, . . . , r. (20)

Here, ρi is defined by equation (4),

λi =
(
G−1

i1 C
T
i1ψ,C

T
i1ψ

)1/2
, i = 1, . . . , r, (21)

and we assume that CT
i1ψ �= 0 for i = 1, . . . , r.

Substituting vi from (20) into equation (12), we obtain the equation

ẏ = B1u+
r∑

i=1

λ−1
i ρiCi1G

−1
i CT

i1ψ + g1. (22)

Consider now the problem of minimization of the performance index (15)
with respect to u for system (22). The Hamiltonian for this optimal control
problem is given by

H1 = (ψ1, B1u)+
r∑

i=1

λ−1
i ρi(ψ1, Ci1G

−1
i CT

i1ψ)+(ψ1, g1)−(a1, y)−(Du, u)−(b, u).

(23)
Here, ψ1(t) is the adjoint vector satisfying the following adjoint equation

and initial condition:

ψ̇1 = a1(t), ψ1(T ) = −∂F1(y(T ))
∂y

. (24)

Comparing equations (18) and (24), we see that

ψ1 = −ψ(t, y(T )), t ∈ [t0, T ], (25)

where ψ(t, y(T )) is defined by (19).
Using expressions (25) for ψ1, (21) for λi, and (4) for ρi, we transform

the Hamiltonian (23) to the form:
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H1 = −(BT
1 ψ, u)−

r∑
i=1

λi[(Kiu, u) + (pi, u) + qi]− (ψ, g1)

−(a1, y)− (Du, u)− (b, u). (26)

The maximum of the Hamiltonian (26) over u is attained at

u = −1
2

(
D +

r∑
i=1

λiKi

)−1(
BT

1 ψ +
r∑

i=1

λipi + b

)
. (27)

Thus, the open-loop optimal control u(t) is determined by equation (27),
where λi is defined by (21) and ψ is given by (19). The ”worst” disturbances
vi(t) are specified by equation (20) in which ρi is defined by (4). Hence,
the controls expressed through the given functions of time and the adjoint
vector ψ(t, y(T )). The ”worst” disturbances are expressed through the same
functions and the control. To finalize the solution, we need to determine the
terminal state y(T ) on which the adjoint vector ψ depends.

Let us substitute the control u from (27) into equation (22) and integrate
this equation under the initial condition (14). We obtain

y(t) = y0 +
∫ t

t0

L(ψ, τ)dτ, (28)

where

L(ψ, t) = B1u+
r∑

i=1

λ−1
i [(Kiu, u) + (pi, u) + qi]Ci1G

−1
i CT

i1ψ + g1, (29)

and u is given by equation (27). Setting t = T in (28), we obtain a system of
n algebraic equations

y(T ) = y0 +
∫ T

t0

L(ψ(t, y(T )), t)dt (30)

for the n-vector y(T ). In general, this system of equations is very complicated,
and one cannot ensure the existence and uniqueness of its solution y(T ). Some
particular cases are considered below.

If the unique solution y(T ) of system (30) is found, then the adjoint vector
ψ, the control u, and the disturbances vi are successively defined by respective
equations (19), (27), and (20). The phase trajectory and the minimax value
J∗ of the performance index can be found from the respective equations
(28) and (15). To return to the original state variables, we are to use the
transformation (11).
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Thus, we have described the procedure for constructing the optimal open-
loop control u(t) for the given initial condition x(t0) = x0 from (7). This
control depending on the initial data can be represented as a function u =
ũ(t; t0, x0). To obtain the feedback optimal control, one needs just to let the
current state coincide with the initial one. The resulting function

u∗(x, t) = ũ(t; t, x) (31)

is a feedback optimal control. Note that if the disturbances differ from the
”worst” case, then the feedback control (31) ensures the smaller value of the
performance index J compared to its value for the open-loop optimal control.

The results described above are a generalization of results presented in
earlier papers [2] and [3], where certain particular cases were considered.

5 Linear-Quadratic Performance Index

Let the function F (x) be linear in x and the performance index (8) have the
form

J =
∫ T

t0

[(a(t), x(t)) + (D(t)u(t), u(t)) + (b(t), u(t))]dt+ (c, x(T )), (32)

where c is a given n-vector. Carrying out the transformations described above,
we find that equations (18) for the adjoint vector become

ψ̇ = −a1(t), ψ(T ) = ΦT (T )c. (33)

Hence, in case of the performance index (32), the adjoint vector is given by
an explicit formula

ψ(t) =
∫ T

t

a1(τ)dτ + ΦT (T )c (34)

and does not depend on the vector y(T ). Hence, it is not necessary here to
solve equations for the vector y(T ). This vector, as well as the control u(t)
and disturbances vi(t), are given by the respective equations (30), (27), and
(20) as explicit functions of time. The phase trajectory is defined by (28).

Note that in this case the feedback control coincides with the open-loop
one. In other words, the optimal control u(t) does not depend on the current
state and depends only on time [2].

6 Examples

Consider a simple mechanical system with one degree of freedom subject to
the control force u and two different uncertain disturbances v1 and v2. The
equations of the system are
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ẋ1 = x2, ẋ2 = u+ v1 + v2. (35)

Here, x1 is the coordinate of the system and x2 is the velocity. Suppose the
disturbance v1 is due to the errors in the control implementation, whereas v2
is the external disturbance. The bounds (3) and (4) on the disturbances are
specified by

|v1| ≤ ku2, |v2| ≤ q, (36)

where k and q are given positive constants. The initial conditions (7) for
system (35) are

x1(t0) = x0
1, x2(t0) = x0

2. (37)

The performance index (8) is taken as follows

J = D

∫ T

t0

u2dt+ F (x(T )), (38)

where D > 0 is a constant. Four cases 1–4 will be considered in which the
function F (x) is given by

F (1) = x1, F (2)(x) = x2, F (3)(x) = x2
1/2, F (4)(x) = x2

2/2. (39)

In the notation of Section 3, we have for our examples

n = m = 1, r = 2, g = a = b = 0,

A =
0 1
0 0 , B = C1 = C2 =

0
1 , (40)

G1 = G2 = 1, K1 = K, q2 = q,

K2 = p1 = p2 = q1 = 0, ρ1 = Ku2, ρ2 = q.

Following the procedure of Section 3, we introduce the fundamental matrix
Φ of system (35) and the inverse matrix:

Φ(t) = 1 t− t0
0 1 , Φ−1(t) = 1 t0 − t

0 1 . (41)

Using equations (40) and (41), we obtain from (13) and (16)

B1 = C11 = C21 =
t0 − t

1 , g1 = a1 = 0. (42)

Denote
ϕ(t) = (t0 − t)ψ1(t) + ψ2(t), (43)
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where ψ1 and ψ2 are the components of the adjoint vector ψ(t). Substituting
formulas (40) and (42) into equations (20), (21), and (27) and using the
denotation (43), we have

v1 = Ku2|ϕ|−1ϕ, v2 = q|ϕ|−1ϕ, λ1 = λ2 = |ϕ|, u = (D+K|ϕ|)−1(ϕ/2).
(44)

Using formulas (40) and (42)–(44), we obtain from (29)

L(ψ, t) =
[
q − 1

4K
+

D2

4K(D +K|ϕ|)2
]
ϕ

|ϕ|
t0 − t

1 , (45)

The adjoint vector ψ(t) is defined by equations (19) and (16). Taking into
account equations (41) and (42), we obtain

ψ(1) =
1

T − t0
, ψ(2) =

0
1 , ψ(3) = η

1
T − t0

,

ψ(4) = 0
y2(T ) , η = y1(T ) + (T − t0)y2(T ), (46)

where superscripts correspond to cases 1–4 in (39). All functions ψ(i) are
constant, i = 1, 2, 3, 4.

The function ϕ(t) defined by (43) is equal to

ϕ(1) = T − t, ϕ(2) = 1, ϕ(3) = (T − t)η, ϕ(4) = y2(T ) (47)

for the respective cases 1–4 in (39).
For cases 1 and 2, the function F (x) in (39) is linear. In these cases,

according to Section 5, one need not solve equations (30) for the vector y(T ).
The control u(t), both the open-loop and feedback one, as well as the ”worst”
disturbances v1(t) and v2(t), are determined by equations (44), into which
the respective functions ϕ(1) and ϕ(2) should be inserted for the respective
cases 1 and 2. The controls for these cases are

u(1)(t) =
t− T

2[D +K(T − t)]
, u(2)(t) = − 1

2((D +K)
. (48)

By substituting (45) and (47) into equation (28) and integrating, we obtain
the phase trajectory for case 1 as follows

y
(1)
1 (t) = y0

1 −
(
q − 1

4K

)
(t− t0)2

2

+
D2

4K3

[
ln
D +K(T − t0)
D +K(T − t)

− K(t− t0)
D +K(T − t)

]
,

y
(2)
2 (t) = y0

2 +
(
q − 1

4K

)
(t− t0) (49)

+
D2(t− t0)

4K[D +K(T − t)][D +K(T − t0)]
.
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Similarly, for case 2 we have

y
(2)
1 = y0

1 − κ2(t− t0)2/2, y
(2)
2 = y0

2 + κ2(t− t0),

κ2 = q − 1
4K

+
D2

4K(D +K)2
. (50)

To determine the controls and disturbances for cases 3 and 4, we substitute
expressions (47) into equations (44). We obtain

u(3) =
η(t− T )

2[D +K|η|(T − t)]
, u(4) = − y2(T )

2(D +K|y2(T )|) , (51)

where η is defined in (46). The control u(4) in case 4 is constant.
Phase trajectories y(3)(t) and y(4)(t) for cases 3 and 4 are obtained simi-

larly to (49) and (50). As a result, we have

y
(3)
1 (t) = y0

1 −
(
q − 1

4K

)
η(t− t0)2

2|η|
+

D2

4K3η|η|
[
ln
D +K|η|(T − t0)
D +K|η|(T − t)

− K|η|(t− t0)
D +K|η|(T − t)

]
,

y
(3)
2 (t) = y0

2 +
(
q − 1

4K

)
η(t− t0)
|η|

+
D2η(t− t0)

4K|η|[D +K|η|(T − t)][D +K|η|(T − t0)]
,

y
(4)
1 (t) = y0

1 − κ4(t− t0)2/2, y
(4)
2 (t) = y0

2 + κ4(t− t0), (52)

κ4 =
{
q − 1

4K
+

D2

4K[D +K|y2(T )|]2
}

y2(T )
|y2(T )| .

Expressions (51) and (52) depend on the unknowns η and y2(T ) for the
respective cases 3 and 4. To find these unknowns, we are to solve equations
(30) for the vector y(T ). It occurs, however, that two equations (30) can be
reduced to one equation in both cases 3 and 4.

In case 3, calculating η according to formulas (46) and (52), we obtain

η = y0
1 + (T − t0)y0

2 +
(
q − 1

4K

)
η(T − t0)2

2|η|
+

D2

4K3η|η| ln
[
1 +

K|η|(T − t0)
D

]
− D2(T − t0)

4K2η[D +K|η|(T − t0)]
. (53)

Denote

Y = y0
1 + (T − t0)y0

2 , z = KD−1|η|(T − t0). (54)
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Then equation (53) can be reduced to the following one:

signη
[

Dz

K(T − t0)
+

(T − t0)2

4K
Ψ(z)− q(T − To)2

2

]
= Y, (55)

where

Ψ(z) =
2 + z + z2

2z(1 + z)
− ln(1 + z)

z2
. (56)

The function Ψ(z) defined by (56) is positive and grows monotonically
from 0 to 0.5 as z changes from 0 to ∞, see Fig. 1. Hence, the function

w(z) =
Dz

K(T − t0)
+

(T − t0)2

4K
Ψ(z) (57)

is also positive and monotone; it changes from 0 to ∞ as z grows from 0 to
∞. Equation (55) can be rewritten as follows:

signη[w(z) − q(T − t0)2/2] = Y. (58)

0 5 10

0.25

0.5

z

Fig. 1. Function Ψ(z)

A priori two possibilities should be considered: either signη = signY , or
signη = −signY . It follows from (20), (42), and (46) that for case 3 the
signs of the disturbances v1 and v2 coincide with the sign of η. Hence, the
second possibility implies that the signs of v1 and v2 are opposite to the sign
of Y = y0

1 + (T − t0)y0
2 . The latter quantity, according to (11) and (41), is

equal to the terminal value x1(T ) in the absence of disturbances and control.
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Therefore, the second possibility means that the disturbances act in such a
way as to decrease x2

1(T ). Thus, the second possibility does not correspond
to the ”worst” disturbances, and, hence, to the minimax of the performance
index (38) in case 3. Hence, only the first possibility corresponds to the
minimax of J , and it follows from (58) that

signη = signY, w(z) = |Y |+ q(T − t0)2/2. (59)

The first equality (59) defines the sign of η, whereas the second one is an
equation for z. Since w(z) is a monotone function changing from 0 to ∞,
there exists a unique solution for z, which, according to the second equality
(54), defines the absolute value of η. Thus, equations (59) define a unique
solution for η in case 3.

In case 4, we obtain from (52)

signζ
[
|ζ| − q(T − t0) +

|ζ|(2D +K|ζ|)(T − t0)
4(D +K|ζ|)2

]
= y0

2 , (60)

where ζ = y2(T ). Similarly to case 3, it can be shown that

signζ = signy0
2 , |ζ|+ |ζ|(2D +K|ζ|)(T − t0)

4(D +K|ζ|)2 = |y0
2 |+ q(T − t0). (61)

The first equality (61) defines the sign of ζ = y2(T ), and the second one is an
equation for |ζ|. The left-hand side of this equation is a monotone function of
|ζ| that changes from 0 to ∞ as |ζ| grows from 0 to ∞. Hence, there exists a
unique solution |ζ| of this equation. Therefore, ζ = y2(T ) is defined uniquely
by (61).

For all cases 1–4, the optimal controls and phase trajectories are defined
by equations (48)–(52). The quantities η and ζ for the respective cases 3 and
4 are determined uniquely. The ”worst” disturbances can be easily obtained
by means of equations (20). The minimax value of the performance index J∗

and the feedback controls can be found following the procedure described in
Section 4.

7 Conclusions

Optimal control is obtained for a class of linear dynamical systems subject
to unknown but bounded disturbances. Under certain assumptions about the
performance index and constraints imposed on the disturbances, the solu-
tion of the corresponding minimax problem is found in an explicit form. The
magnitude of possible disturbances is supposed to depend on the magnitude
of the control and grow with the latter. This model of disturbances can de-
scribe errors and inaccuracies in the control implementation that occur in
engineering applications.
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Abstract. Models describing diseases and pathologic processes in particular are
considered. There are presented basic uncertainties arising in such systems. There
is shown why is it so necessary to take into account these uncertainties.

Keywords: Disease, Pathologic Process, Uncertainty, Nonlinear Differential
Equations

1 Introduction

Here we would like to present our results in field of application of system
analysis methods to problem of clinical medicine. We emphasize effects of
uncertainty that should be taken into account in such complex systems. It
will be shown that even considering deerministic models of such nonlinear
systems we see different qualitative behavior closely dealt with parameters
values. Let’s start from origin of such a problem. Nowadays there are obtained
a lot of models describing physiological indexes of human body at different
diseases and treatment schemes. Primarily they are based on regression anal-
ysis. More complex ones use neural networks and evolutionary programming.
The most significant attempts to construct mathematical models at different
levels of hierarchy of human organism were made by John Murray [3], Keener
and Sneyd [2], G.I.Marchuk [1], Mackey and Glass (they investigated nonlin-
ear phenomina applying dynamic systems and introduced notion of dynamic
diseases). Without considering uncertainty all these models can be applied
for patients from determined groups (primarily for given age and a lot of
another restrictions).

As for projects stimulating given research we would like to note the fol-
lowing. During the last years our Departments are fulfilling investigations
initiated by Healthcare Ministry of the Ukraine in order to develop and use
general system analysis algorithm to study different diseases [4] - [9]. Namely,
in fields of oncology (melanoma, leukemia), infectious diseases (toxic colitis),
therapy (bone tissue diseases). Naturally there arises a problem to develop
a general model for disease. It is incorrect to state that we managed offer-
ing unique universal algorithm to construct disease general model at whole.
More correct is to say this approach can be used for diseases of different
nature. We believe this approach can be extended to processes in sociology
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and demography as well as for economy and finance branches tasks. A lot of
them have the same nature as human diseases. Let’s pay attention on special
medical terminology necessary (as small as possible). First of all, the most
recognized definition of disease states that disease is a set of pathologic pro-
cesses weakening vitality and activity of a human organism. Here pathologic
process is a set of pathologic (that is not normal) and protectoral reactions
within human organism. That is, the most significant is modeling pathologic
process.

Based on these reasonings we offered general model for pathologic process
including three counterparts

(i) the reason or cause of disease (it may be some external factor (like
bacteria, chemicals) or own modified cells (tumor cells);

(ii) immune system supports organism with help of specific antibodies
(sort of predators) and plasmatic cells (their ancastors);

(iii) normal cells, tissues and organs (it is necessary to consider them to
satisfy to some constraints of toxicity).

For these researches we used our own software - Software Environment
for Medical System Researches (SEMSR). Demo-version is located on http:
// www.tdma.edu.te.ua /data/structure /med-inf/medicalsystemresearches/
medicalscientificinvestigations.htm. There is developed conceptual model of
software environment of system medical investigations support. Implement-
ing it there is offered model of data structure in branch of system medical
investigations and invented in terms of XML- technology. There is developed
interface which is Web-integrated, user-oriented and adjustable. There are
implemented mathematical methods of system analysis of pathologic pro-
cesses in form of Java-classes hierarchy. There are developed software tools
to execute system medical investigations, to prepare results obtained for pre-
sentation in Internet and visualization.

2 Generalized Pathologic Process

Immunity is the system of supervision the basic function of which is man-
agement of cells proliferation and death of mutated cells. Advantages of im-
munology confirmed idea of F.Bernet offered firstly in 1959 that anti microbe
action is only partial appearance of immunity. Thus infectious immunology
became the base of origin of new branch of scientific knowledge, namely,
noninfectious immunology. One of the important directions of it is study of
tumor immunity. Such immunity depends on tumor reason (virus, chemicals,
random tumors). Immunity is specific as for viruses causing tumor (DNA- or
RNA- including viruses). It arises in a few days or even hours after viruses
injection and is continued during months. Immunity for tumors caused by
chemicals is less than for viruses and the least is immunity to the cells of
random tumors. Model considered is based on the following ideas on tumor
immunity.
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Immune system generates immune response (cell-like, due to cytotoxic
T- lymphocytes and due to antibodies, e.g., specific IgG and IgM). Immune
reactions are induced by specific tumor antigen which can be found in the
different parts of tumor cell (primarily on surface).

In the following general model we do the following assumptions.
1. Populations of tumor cells, antibodies and plasmatic cells are inhomo-

geneous.
2. Change of number of population of tumor cells is due to generalized

Gompertzian dynamic laws. That is, we have rapid growth at small popula-
tion sizes and slow one when approaching carrying capacity.

3. Immune reaction is induced by tumor antigen and specific antibodies.
4. Concentration of tumor antigens at instant is proportional to number

of tumor cells of corresponding pool.
5. Tumor cells exert negative influence on increase of antibodies popula-

tion.
6. Immune protection potential and treatment toxicity is measured by

concentration of bone marrow cells measured by bone mineral density.
7. Change of bone mineral density is due to logistic dynamic.
To get mathematical model we use well-known population dynamics tech-

niques. All mathematical and biological steps used to obtaine equations are
described in [7]. Thus we get the following system of differential equations

dLPi
(t)

dt =
[{

1− αi −
M∑

s=1
(μPi,Ps + μPi,Cs)

}
LPi (t) +

M∑
s=1

μPs,PiLPs (t)
]
Gi +

+ βiLCi (t)− δPiLPi (t)−
m∑

k=1

(
κPi,k +

M∑
s=1

μPi,Ps,k

)
ck (t)LPi (t) +

+
m∑

k=1

(
M∑

s=1
μPs,Pi,kck (t)LPs (t) + γCi,Pi,kck (t)LCi (t)

)
,

Gi = log Θi
MP

s=1
LPi

+
MP

s=1
LCi

, i = i,M,

(1)

dLCi
(t)

dt =
[
αiLPi(t) +

∑M
s=1 μPs,CiLPs(t)

]
Gi−

βiLCi(t)− δCiLCi(t)−
∑m

k=1(kCi,k
+ γCi,Pi,k)ck(t)LCi(t), i = 1,M,

(2)

dCPi
(t)

dt = ξ(m)αPiLPi(t− τCPi
)FPi (t− τCPi

)− μCPi
(CPi − CPi,0)+

+bCPi
ρ(t)−∑m

k=1 βCPi
,kck(t)CPi (t), i = 1,M,

(3)

dCCi
(t)

dt = ξ(m)αCiLi(t− τCCi
)FPi (t− τCCi

)− μCCi
(CCi − CCi,0)+

+bCCi
ρ(t)−∑m

k=1 βCi,kck(t)Ci(t), i = 1,M,
(4)
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dFPi(t)
dt

= bfPi
CPi − (μfPi + ηPiγLPi

LPi(t))FPi (t), i = 1,M, (5)

dFCi(t)
dt

= bfCi
CCi − (μfCi

+ ηCiγLCi
LCi(t))FCi (t), i = 1,M, (6)

dm(t)
dt

=
M∑
i=1

σPiLPi(t) +
M∑
i=1

σCiLCi(t)− μmm(t), (7)

dρ(t)
dt = bρρ(t)(ρ − ρ(t))−
−∑M

i=1 dPiCPi −
∑M

i=1 dCiCCi −
∑m

k=1 βρ,kck(t)ρ(t).
(8)

There are used the following denotions for tumor cells subpopulations:
CPi(t) and CCi(t), 1,M are concentrations of plasmatic cells producing anti-
bodies specific as for Pi and Ci respectively (we designate their concentrations
through FPi(t) and FCi ; m(t) is level of organ damage, ρ(t) is bone mineral
density.

Physical meaning of these equations is the following. Equations (1) and
(2) are equations of generalized Gompertzian dynamics describing growth
of proliferating and clonogenic tumor cells. Equations (3) and (4) describe
growth of populations of corresponding antibodies. Equation (7) describes
change of level of organ damage; (8) is for change of bone mineral density.

Below we explain model coefficients which are assumed to be deterministic
ones. αPi , αCi are coefficients indicating chances of meeting antigen-antibody;
μCPi

, μCCi
are coefficients inverse to lifetime of plasmatic cells; bfPi

, bfCi
are

rates if production of antibodies by one plasmatic cell; μfPi
, μfCi

are coeffi-
cients inversely proportional to antibodies decay time; ηfPi

, ηfCi
are numbers

of specific antibodies required for neutralization of one antigen; σPi , σCi are
coefficients indicating rates of cells death because of damaging action of anti-
gen; μm is coefficient indicating regeneration rate of organ damaged; τCPi

,
τCCi

are delays (time required for a maturation of plasmatic cells cascade);
bCPi

, bCCi
are production rates of plasmatic cels per unit of bone density; βρ,k

is coefficient of decrease of bone mineral density due to toxic action of k-th
cytotoxic agent; ξ(m) is continuous nonincreasing function (0 ≤ ξ(m) ≤ 1)
characterizing deviations of normal functioning immune system because of
damage of target-organ.

Parameters listed above are positive and specific both as for organ and
concrete organism.

Here, LPi(t), LCi(t), CPi(t), CCi(t), FPi(t), FCi(t), m(t), ρ(t) ∈ C1[t0,∞),
i = 1,M and ck(t), k = 1,m are piece-wise functions with values 0 ≤ c(t) ≤ 1
(we can assume it after normalization).

There are given continuous initial conditions at t ∈ [t0 − τ∗, t0], τ∗ =
maxi=1,M

{
τCPi

, τCCi

}
:
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LPi(t) = LPi,0(t), LCi(t) = LCi,0(t), CPi(t) = CPi,0 (t), CCi(t) = CCi,0(t),
FPi(t) = FPi,0(t), FCi(t) = FCi,0(t),m(t) = m0(t), ρ(t) = ρ0(t).

(9)
In the work [9] there were developed mathematical methods of system

analysis of models for which (1)-(9) is generalization. They include parame-
ters identification and state estimation, stability problems, controllability and
optimal control construction, nonlinear dynamics. We refer to this model as
for generalized model of pathogenic process.

3 Simplified Model

There is shown one of the simplest model developed. We do the following
assumption. Populations of tumor cells, antibodies, and plasmatic cells are
homogenous. That is, we dont consider tumor and immune system cells sub-
populations.

Thus, in the absence of cytotoxic agent we get the following system of
differential equations:

dL(t)
dt

= αLL(t)ln
θL

L(t)
− γLF (t)L(t), (10)

dC(t)
dt

= ξ(m)αL(t − τ)F (t− τ) − μC(C − C0) + bCρ(t), (11)

dF (t)
dt

= bfC − (μf + ηγLL(t))F (t), (12)

dm(t)
dt

= σL(t)− μmm(t), (13)

dρ(t)
dt

= bρρ(t)(ρ− ρ(t)), (14)

Where L(t) is a number of tumor cells, C(t) is concentration of plasmatic
cells, F (t) is concentration of antibodies, m(t) is level of organ damage, ρ(t)
is bone mineral density. There are given initial conditions at t ∈ [t0,−τ, t0]:

L(t) = L0(t), C(t) = C0(t),m(t) = m0(t), ρ(t) = ρ0(t). (15)

Furthermore, when analyzing effect of uncertainty of parameters we will
consider model of simplified pathologic process at the following parameter
values:

αL = 0.0396, γL = 4 ∗ 10−3, θL = 0.001,

α = 104, μc = 0.5, ρ = 0.17, μf = 0.17, η = 10, μm = 0.12,



190 Nakonechny and Marzeniuk

ξ(m) =
{

1,m ≤ 0.1,
(1−m)/(10/9), 0.1 ≤ m ≤ 1.

At t ∈ [−τ, 0] there hold initial conditions

L(t) = max(0, x+ 10−6), C(t) = 1, F (t) = 1,m(t) = 0.

These values of parameters correspond to G.I. Marchuk model [1] consid-
ering immune response with help of specific IgG antibodies.

From mathematical viewpoint model includes nonlinear differential equa-
tions with delays in state. The first equation describes so-called Gompertzian
dynamics. Model mentioned here was considered at some control, that is,
treatment (including therapeutic and surgery interventions). Note, control
was considered in a class of generalized functions. It is essential, for example,
because of short-term action of drug injection.

4 Uncertainties

Uncertainties in such models may be parametric. Some of the parameters may
be unknown functions. As for uncertainty in control it is necessary to take
into account all possible scenarios. Note, the purpose of this article is not to
present methods to identify these uncertainties. For these purpose we need
to present powerful and deep mathematical apparatus of adjoint systems,
sensitivity functions and minimax aposteriorial estimation. Here we would
like to answer two questions

(i) why is it so important to take into account uncertainties?
(ii) the basic uncertainties in models of diseases.
When answering the first question we should say that as it will be shown

below even mathematical solutions of equations (10)-(15) have different qual-
itative behavior. In practice we can observe different forms of disease (sub-
clinical, acute, chronic, lethal). Search of treatment scheme is dependent on
such forms.

In our researches we investigated uncertainties in the following issues:
maturation time for plasmatic cells τ , influence of antigen on target-organ
damage rate σ, relation between target-organ damage rate and immune re-
sponse ξ (m), therapy scheme (polychemiotherapy, radiotherapy), surgery in-
terventions. Note, the three last ones are non- parametric. They depend on
unknown function like controller.

Let’s consider uncertainty in value of maturation time for plasmatic cells.
Consider behaviour of system if σ = 200 and we have uncertainties in the
value of maturation time τ ≥ 0. In case 0 ≤ τ < τ1, where τ1 ≈ 4.1 patho-
logic process has chronic form resulting to some stationary state of disease
(it correspond to attractor - stable focus). At τ = τ1 pathologic process has
chronic form resulting to some dynamic state of disease (mathematically this
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phenomenon corresponds to Hopf bifurcation - we get limit cycle). Increasing
τ we get chronic form with lethal results (it corresponds to unstable limit
cycle). At 5.5 < τ < 6.9 form of pathologic process is unpredictible. This
phenomenon is called in chaos theory as strange attractor. We have some
irregular oscillations. Note, their behavior is similar for tumor cells, organ
damage level, plasmatic cells and antibodies. At 7 < τ ≤ 16.31648422 we
return to chronic form with some periodic state, which at τ ≈ 16.3165 trans-
forms to stationary one.

Influence of pathogenic factor on organ damage in simplified pathologic
process model is described by coefficient σ. Consider behavior of model if
τ = 5 and we have uncertainty in value of σ. If 0 ≤ σ < σ1, where σ1 ≈ 100
we have chronic form tending to some cyclic state (i.e., stable limit cycle). At
σ = σ1 it transforms to some lethal form (unstable limit cycle). At σ = σ2 ≈
150 chronic form of pathologic process tends to stationary state (stable node).
At σ = σ3 ≈ 312.5 we have unpredictable behavior of pathologic process
(strange attractor). Mathematical reason is period doubling bifurcation.

As an example of uncertainty in the treatment scheme let us consider one
concrete disease. Melanoma is tumor for which treatment there are applied
gamma-therapy, X- ray therapy, polychemotherapy and surgery interventions.
To simulate it we use the following model

dP (t)
dt = αLP (t) ln θL

P (t) − δ (t− to)κo (P (t))P (t)

−
n∑

i=1

δ (t− tγi ) ρ (fγ
i , P (t))P (t)−

m∑
i=1

δ (t− txi ) ρ (fx
i , P (t))P (t)

−
k∑

i=1

δ (t− tci ) ρc (P (t))P (t),

P (0) = 1.

Here P (t) is number of proliferating cells at instant t, αL is growth rate
of melanoma (days-1); θL is maximal number of proliferating cells which or-
ganism can carry (carrying capacity); to is moment of surgery intervention
(day); κo (P (t)) is probability of sterilization as a result of surgery inter-
vention; tγi is moment of gamma-therapy (day); fγ

i is one dose of gamma-
therapy (Gy); txi is instant of X-ray therapy (day); fx

i is one dose of X-
ray therapy (Gy); ρ (f, P ) is probability of sterilization as a result of radia-
tion of dose f (Gy) of P proliferating cells of melanoma which is calculated
due to PS = exp {−P exp {−0.255f}}; tci is instant of polychemotherapy
(day); ρc (P ) is probability of sterilization as a result of polychemotherapy
at presence of P proliferating melanoma cells. Even for this model consider-
ing unique melanoma cells population we deal with a lot of parameters that
depend on particularities of concrete patient. Analyzing solution of such a
model we concluded essential influence of these unknown parameters on form
of trajectory.
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5 Conclusions

So, even without considering probabilistic nature of the most of quantities
and parameters we saw the complex qualitative behavior of diseases models
depending on parameters and controllers. At different values of these quan-
tities we observed subclinical, acute, chronic or lethal forms of pathologic
processes.

Taking into account complexity of mathematical equations (nonlinear sys-
tems with delays) requires appearance of new powerfull methods of exact
parameter identification and qualitative analysis.

From viewpoint of theoretical medicine uncertainties arising in models of
diseases require to develop treatment schemes that are effective, take into
account toxicity constraints, enable life quality, cost benefit.

In future works our idea is to compare behavior of pathologic processes
using both deterministic and stochastic models and to extend such models
to demographic processes and finance branch.
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Applications of Stochastic Optimization



Impacts of Uncertainty and Increasing
Returns on Sustainable Energy Development
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Optimization Approach
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Abstract. In this article we discuss a stochastic optimization model used for eval-
uation of long-term energy development. The model includes the following features:

1. Increasing returns to scale for the costs of new technologies with uncertain
learning rates;

2. Uncertain costs of all technologies and cost/quantities for energy sources, both
renewable and depletable;

3. Uncertainties in future energy demands and their volatilities;
4. Uncertain environmental constrains;
5. Clusters of linked technologies that induced technological advances.

In particular, this allows us to identify robust dynamic technology portfolios,
which supply (in a sense) potential energy demand, while minimizing adjusted to
risks expected costs together with investment and environmental risks. Formally,
the discussed problem involves a non-convex, large-scale stochastic optimization
model requiring special global optimization technique which takes advantage of the
specific structure of the problem.

This article primarily concentrated with main motivations, critical importance
of non-convexity (increasing returns) and explicit treatment of uncertainty by using
stochastic optimization approach.

1 Introduction

There are deep uncertainties and controversies regarding feasible transitions
to sustainable energy systems. Let us outline some of them determining main
elements of our model.

Globally, energy resources are plentiful and are unlikely to constrain sus-
tainable development even beyond the 21st century. The fossil resource base
is at least 600 times current the fossil fuel use, or 16 times the cumulative
fossil fuel consumption between 1860 and 2000. While the availability and
costs of fossil fuels are unlikely to impede sustainable development, current
practices for their use and waste disposal are not sustainable. Thus, the un-
certainty related to the economic and environmental performance of fossil,
nuclear, and renewable conversion technologies - from resource extraction to
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waste disposal - will determine the extent to which an energy resource can
be considered sustainable. In particular, a transition to sustainable energy
systems that continue to rely predominantly on fossil fuels will depend on
the development and commercialization of fossil technologies that do not
close their fuel cycle through the atmosphere. Alternatively, the transition
will likely require determined policies to move away from fossil fuels within
a rather uncertain long time horizon.

Fundamental changes in global energy systems tend to occur slowly. The
replacement of traditional energy sources - such as the substitution of coal
for fuelwood with the advent of steam, steel, and railways - took almost
all of the nineteenth century. The subsequent replacement of coal with oil
and gas and associated technologies lasted the better part of the twentieth
century. In contrast to these very slow processes of change in the global energy
system, for some parts of the energy system change can be more dynamic
- especially in the evolution of end-use technologies. However, the fact that
fundamental changes occur over many decades rather than a few years means
that technological changes that have inherently shorter time horizons need to
be consistent with the overall slower processes of change in the energy system.
Besides the horizons, the directions of these future transitions are deeply
uncertain. Future energy systems could rely on renewable energy sources, on
clean coal, on less carbon-intensive fossils such as natural gas, or on nuclear
power as well as on their combination that may change over time.

The transition strategies are path dependent, and the choice of a robust
long term path requires an appropriate dynamic model. Our analysis shows
that endogenous increasing returns and uncertainty will have the greatest
impact on the emerging energy system structures during next few decades.
Under deep uncertainty, the near-term investment decisions in new technolo-
gies which take into account long-term perspectives and risks becomes the
most important in determining the direction of long-term development. The
analysis also shows that fundamentally different future energy system struc-
tures might be reachable with similar overall costs, so future energy systems
with low carbon dioxide emissions, and possible those that meet other envi-
ronmental constraints, need not be associated with costs higher than those
of systems with high emissions and not sustainable.

The essential feature of our model is also the following. There are multi-
ple factors that lead to cost reductions. Investments defining transition paths
may have uncertain outcomes and are subject to high risk, but at the same
time, they may turn out to be highly profitable and be subject to increasing
returns to adoption. Actual costs reductions will not only depend on tech-
nical potentials but also on actually achieved performance and the diffusion
rates which are realized on potential markets. These elements are not only
uncertain but also related. Faster and deeper cost reductions may signifi-
cantly accelerate early market adoption of a technology and, subsequently,
may lead to even more dramatic technological improvements.
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Accordingly, our model has the structure of a dynamic random network
with flows where nodes correspond to positions of different technologies at
various time moments. Arrows describe feasible transitions.

Induced technological change is modeled by so-called stochastic learning
curves. Technologies are improved with cumulative experience as expressed
by the scale of their application. The learning curves indicate how costs and
uncertainty decline with increasing scale of application (see Section 3). They
reflect the fact that the process of technological learning is uncertain even as
cumulative experience increases.

Technologies also are related to each other forming certain clusters of
technologies. For example, jet engines and gas turbines for electricity gener-
ation are related technologies and the latter were initially derived from the
former. These relationships among technologies are frequent and imply that
improvement in some of the technologies may be transferable to other related
technologies, i.e., they lead to so-called (positive) spillover effects discussed
in Section 3.4.

Despite the fundamental importance of technological learning under in-
creasing returns and uncertainty, modeling of these processes has received in-
adequate attention in the literature. Several reasons may explain the apparent
lack of systematic approaches. Among them, the complexity of appropriate
modeling approaches is perhaps the most critical. Increasing returns to scale
lead to nonconvexities. In conjunction with the treatment of uncertainties,
adequate modeling becomes methodologically and computationally very chal-
lenging. It requires the development of specific global nonsmooth stochastic
optimization techniques, which are only now under development (see, e.g.,
[4], [5], [16] and [30]). The aim of this article is to discuss main motivations
for explicit treatment of uncertainties, critical importance of non-convexities
(increasing returns) as well as global stochastic optimization methods. We
also are presenting some selected important counterintuitive conclusions that
could be learned from our study. We only outlined the implemented random
global search method that was used since its formal discussion probably re-
quires a separate paper. In particular, this method utilizes some rather spe-
cific features of the numerical model that itself requires a rather detailed
and lengthy description of equations and data sets. Section 2 presents the
stochastic optimization model. Section 3 discusses details of its structure.
Sections 4, 5 outline the implementation and summarize some numerical
results.

2 Modeling Approach and a Motivating Example

Any realistic policy in the presence of uncertainties bears a risk. Explicit
introduction of these uncertainties and related risks in our model creates a
driving force for the development of new technologies necessary for making
the energy system flexible enough against possible instabilities and surprises.
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The proposed modeling approach relies on so-called two-stage dynamic
stochastic optimization model which seems to be rather appropriate for prob-
lems with large number of decision variables and uncertain parameters. Con-
ventional approaches of the control theory relying on standard dynamic pro-
gramming equation are applicable only in the case of a small number of
variables. This is also true for multistage stochastic optimization models. Al-
though the large-scale optimization techniques are used in such case instead
of the recurrent equations, the actual size of solvable problems with realistic
number of scenarios is small again.

2.1 Stochastic Optimization Model

Our two-stage dynamic stochastic optimization model is based on the idea of
representing energy systems development as a dynamic network where flows
from one energy form to another correspond to energy technologies such
as electricity generation from coal or gas power plants. Figure 1 illustrates
the assumed reference energy system as composed of about one hundred
different technologies. Five different stages of energy flows are shown – energy
extraction from energy resources, primary energy conversion into secondary
energy forms, transport and distribution of energy to the point of end use
that results in the delivery of final energy, and finally the conversion at the
point of end use into useful energy forms that fulfill the specified demands
(as discussed above). All possible connections between the individual energy
technologies are also specified by arrows. Various demands for useful energy
are shown for different sectors of the economy. Each technology in the system
is characterized by its associated costs, unit size, efficiency, lifetime, emissions,
etc.

In addition to various balance constraints, there are limitations imposed
by the resource availability as a function of (uncertain) costs. The overall
objective is to minimize the total expected discounted energy system costs
adjusted to risks to fulfill various demands by the utilization of technologies
and resources.

Formally, the problem is formulated as the minimization of function

T∑
t=0

dtE[〈Ct(x|t0 , ω), xt〉+
T∑

t=0
〈at(ω), yt(ω)〉

+ρ(〈Ct(x|t0 , ω)− ECt(x|t0 , ω), xt〉)]
(1)

subject to constraints of the following type:

t∑
k=0

Ak(ω)xk +Bt(ω)yt(ω) = bt(ω), t = 0, 1, . . . , T, (2)

xt ∈ Xt ⊆ Rn, yt ∈ Yt ⊆ Rm (3)



Impacts of Uncertainty and Increasing Returns: A Stochastic Approach 199

Fig. 1. Schematic diagram of the reference energy system showing some hundred
individual technologies. Source: Gritsevskyi and Nakićenović et al., 2002

where x = x|T0 , ω defines random (uncertain) variables and dt is a discount
factor at the time t; x|t0 = (x0, x1, . . . , xt); Ct(x|t0 , ω) are stochastic costs
a given technology path x|t0; matrices At(ω), Bt(ω) and vectors bt(ω) re-
flect uncertain quantity-to-cost relations for resources, establish link between
technology activities and energy demands, characterize different system or
environmental constrains; ω denotes uncertain parameters of the model; ρ(y)
is a piece–wise linear risk function, e.g., ρ(y) = max{0, y} or as in Markovitz,
1959. This model is a specific case of the dynamic two-stage STO models (see
[6]) with the first stage decision vector x, and the second stage y(ω) = yt(ω),
t = 0, 1, . . . , T . To model the increasing returns, marginal costs Ct(·, ω) are
represented as decreasing piece-wise constant or piece-wise linear function,
therefore expected value E [〈Ct(xt

0, ω), xt〉] is in general a nonconvex non-
smooth vector-function. This function can also be represented (in the case
of discrete distributions of ω) by mixed integer linear equation which sig-
nificantly destroy specific structure of constraints (2)-(3) that is utilized in
the developed random search algorithm outlined in Section 4. In details, the
structure of constraints and the objective function is discussed in Section 3.

2.2 A Motivating Example

The energy systems we are dealing with are rather complex, so in order to
illustrate the importance of stochastic approach let us consider an almost
trivial example with only two technologies involved. Figures 2-3 illustrate
effects of increasing returns, uncertainty and short-term vs. long-term mod-
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eling dilemma. The learning curve (linear function in log-log scale, Figure 2)
indicates the change of marginal production costs with the size of adopted
(by market) technology and operational experience gained.
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Fig. 2. Cost reduction for on-shore (low cost) vs. off-shore (high cost) wind energy
technologies in the EU, production cost vs. cumulative production. Source: derived
from IEA Study of Learning Curves, IEA 2000

Fig. 3. What does a wind turbine cost? The price banana. Source:
www.windpower.org, 1998

Figure 2 shows the coexistence of cheap (CCGT, Combined Cycle Gas
Turbine) and expensive (wind) technologies. The wind technology slowly
takes-off penetrating the market despite higher overall costs. The cost-effective
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solutions of standard deterministic modeling framework would take only the
cheapest technology. The coexistence of these technologies, as in Figure 2,
can be justified only within an appropriate time horizon: even if we know
in 1980 the cost reduction trends for the wind technology for the coming
20 years precisely, the additional 30 years may not be enough to justify its
benefits.

Uncertainties significantly affect time-scales. For example, a slight change
in the slope (cost reduction rate) even for best case technology may result in
considerable shifts of the breaking point when technology becomes cheaper.
This also significantly depends on scenarios for CCGT cost development (say,
due to future anticipated increase in gas price and more expensive gas infras-
tructure to be built) and interdependencies (the portfolio of feasible tech-
nologies sharing the same infrastructure or resource).

Stochastic models enable us to justify in a rather natural way the co-
existence of cheap and expensive technologies and, hence to justify S-shape
characters of technological development and necessity of upfront investments
in new technologies and RD&D. For example, the explicit introduction of
risk related to the overestimation of costs as in 1 results in coexistence of
technologies which are more expensive with respect to average costs.

3 Model Structure

Deterministic IIASA’s energy model MESSAGE has been used in stylized
form in a number of energy modeling approaches to capture elements of en-
dogenous technological change. This led to a number of important insights
(Messner (1995, 1997), Grübler and Messner, 1998, Nakićenović, 1996 and
1997). However, the major drawback was its deterministic character (perfect
foresight) so that early investments in new, costly technologies were always
rewarded with increasing returns. Yet, it is clear from the illustrative example
of Section 2 that increasing returns within a given time interval are possible
on average but with a considerable degree of uncertainty. Deterministic mod-
els result in unnaturally degenerated sets of technologies without coexistence
of technologies even closed with respect to costs.

The basis for introducing uncertainties in the distributions of future costs
was the IIASA technology inventory that now contains information on some
1600 energy technologies, on their costs, technical and environmental char-
acteristics (Messner and Strubegger, 1991). Figure 4 shows that the distri-
butions of the investment costs are not symmetric and that they have very
pronounced tails with both “pessimistic” and “optimistic” views on future
costs per unit capacity. Such cost distributions were introduced explicitly in
a simple, stochastic version of MESSAGE and have led to “hedging” against
this uncertainty (Golodnikov et al., 1995; Messner et al., 1996). Stochastic
versions with increasing returns (Grübler and Gritsevskyi, 1998, Gritsevskyi
and Ermoliev, 1999) demonstrated the need for coexistence of technologies
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Fig. 4. Range of Future Investment Cost Distributions from the IIASA Technology
Inventory for Biomass, Nuclear, and Solar Electricity-Generation Technologies, in
US 1990 per kilowatt (kW). Source: Nakićenović et al., 1998

even if some of them are not rewarding within a given time horizon. Exam-
ple 1 illustrates that due to the coexistence some of these technologies may
become superior in a longer time interval.

Another important outcome was the so-called S-shaped patterns of tech-
nological diffusion which were exhibited by optimal dynamic portfolios of
technologies without any explicit technology inducement mechanisms other
than uncertain increasing returns. The disadvantage of the proposed method
was its computational complexity making this method basically infeasible for
application with more than few technologies.

The basic approach of Grübler and Gritsevskyi (1998) was retained in
the new method (see Gritsevskyi and Nakićenović 2002) enabling to include
a hundred technologies by applying parallel computing techniques. Later it
was further extended to a multi-actor, multiregion model with uncertain in-
creasing returns (Grübler and Gritsevskyi 2002). A distinguishing feature of
the model is that the social planner is replaced by a set of actors, each of
which optimizes its own part of a global system while remaining interdepen-
dent via negotiated energy and technology trade flows. The newly developed
method allowed the introduction of more sophisticated environmental un-
certain constrains compared to Grübler and Gritsevskyi (1998). The model
which is discussed in this paper containers a large number of variables (from
just a few dozen of thousands in relatively simple runs and up to some hun-
dred thousands in case when we used Cray T3E supercomputer). A full de-
tailed description of the specific equations and data sets is lengthy, so only
the short outlines of the main blocks of the model are given. A key idea of
the approach relies on the network structure of the model and specifics of
numerical versions of constraints (2).
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3.1 Demands

Future energy demand entering in vector bt of constraints (2) is highly un-
certain. At the same time it is one of the key factors that determine at large
extend the structure of future energy systems and environmental impacts.
We assume that future demand growth is uncertain, demand randomly fluc-
tuates (could not be perfectly forecast even if growth is know) and, last,
quality matters. It is assumed that the regional energy demand is character-
ized by their energy form, e.g., solids, liquids, and grids. Within each energy
form, different combinations of primary resources and conversion technologies
can satisfy the demand. In other words, we assume perfect substitutability
within each energy form. For instance, the demand for high-quality energy
carriers (grids) can be satisfied via electricity generated from coal or from
PVs or wind turbines, or alternatively by natural gas. This is reflected by the
specific structure of matrix At schematically indicated in Figure 1. We also
assume asymmetric (and partial) substitutability between energy forms; that
is, substitutability is only possible in the direction from high to low exergetic
energy forms. Electricity (grids), for instance, can replace coal (solids) as a
final energy carrier, but the reverse is not true. All these features are an im-
portant improvement of the conventional energy models which have focused
only on quantities and prices, largely ignoring energy quality. Quantitatively,
the demand is parameterized similar to the peer reviewed long-term energy
scenario study reported in IPCC (2000).

3.2 Technologies

The main issue of the model is to capture the different directions of possible
future technological change resulting from various technological replacements
and incremental improvements that may occur during this century. The basic
assumption is that endogenous learning is a function of cumulative experi-
ence, measured by cumulative installed capacity, and that this process is
uncertain. Although there are many other indicators of technological learn-
ing, we chose the cumulative installed capacity because it is relatively easy
to measure.

3.3 Uncertain Increasing Returns and Costs

Time horizons of a century or longer are frequently adopted in energy studies.
Modeling energy systems developments over such long time horizons imposes
a number of methodological challenges. Over longer horizons, technological
change becomes fluid and fundamental changes in the energy system are
possible. The increasing returns to scale basically mean that technologies
are improved with cumulative experience, as expressed by the scale of their
application. Accordingly, costs per unit of capacity or output and uncertainty
are assumed to decline with increasing scale of application.



204 A. Gritsevskyi and H.-H. Rogner

Increasing returns, on the other hand, lead to nonconvexities and disequi-
librium tendencies by providing positive feedbacks. After (generally large)
initial investments in RD&D and early market introduction, the incremental
costs of further applications become cheaper and cheaper per unit capacity
(or as assumed here, per unit output). Thus, the more widely adopted a
technology becomes, the cheaper it becomes (with lower uncertainties, lead-
ing to lower risks to adoption). There are many manifestation of this basic
principle. One of the better known is the concept of “lock-in”: as a technol-
ogy becomes more widely adopted it tends to increasingly eliminate other
possibilities. Related to this concept frequently used in empirical analysis is
the so-called technological learning or experience curve: the more experience
that is gained with a particular technology, the greater the improvements in
efficiency, costs, and other important technology characteristics.

The learning rates are uncertain and are captured by probability distri-
bution functions. We assume that the generic cost reduction function has the
following form:

CIt = (2−β)NDt (4)

where CIt is the cost reduction index, or the ratio between technology unit
costs (or more precisely, the annual levelized costs) at time t and initial
cost in the base year which depends on already accumulated output by that
time; NDt is the number of doublings of cumulative output achieved by time
t compared to the initial output; and β is the random progress ratio that
indicates the cost reduction rate per doubling of output. It is important to
note that the suggested algorithmic approach is not limited to the type of
distribution, and, in fact, that it does not require any prior knowledge about
the type of the distribution function.

Figure 5 illustrates the uncertain learning index as a function of each
doubling (of cumulative output). The expected value for the cost reductions
rate is 20% per doubling in the example shown. The numbers between the
isolines indicate the probability ranges of occurrence of different learning
rates. For example, there is a 50% chance that the cost reductions rate falls
between 14 and 25% per each doubling. Let us note that there is a small
chance of 5% that the cost reductions would range from very small to actual
cost increase and that there is a very small probability of 0.1% that there
would be significant cost increase per each doubling. This indicates a real
possibility of negative learning or “induced forgetting” rather than learning,
which illustrates the true risk of investing in new technologies. There is a
high chance that technology would improve with accumulated experience, but
there is also a small chance that it would be failure and even a smaller chance
of a genuine disaster. In the model we extend the application of uncertain
learning to many new technologies ranging from wind and photovoltaic to
fuel cells and nuclear energy.

It is commonly assumed that traditional, “mature” technologies do not
benefit from learning (another interpretation is that cost reductions as the
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Fig. 5. Uncertain cost reductions represented by the learning index as a function
of number of doublings (of cumulative output). The expected value of β (the mean)
learning index (rate) corresponds to 20% cost reduction per each doubling (of cu-
mulative output). The numbers between the isolines of different learning indices
indicate probability ranges. There is a small probability of no learning at all be-
tween any given doubling. Source: Gritsevskyi and Nakićenović et al., 2002

result of learning are insignificant compared to other uncertainties that af-
fect costs). We assume that cost distributions of traditional technologies are
technologies are static over time. For new technologies, due to possible cost
reductions to learning (as described above), the costs are defined by condi-
tional probabilities. We assume that all initial cost distribution are log-normal
with different mean and variance based on the empirical analysis of techno-
logical characteristics with the IIASA technology inventory (see Strubegger
and Reitgruber, 1995).

More precisely, the cost distribution function for a new technology at any
given moment of time t, under the condition that N doublings of cumulative
output have been achieved and that the realized value for random learning
rate β is equal b, is defined by the following expression:

Ft(ζ|NDt = N, β = b) = F0(mt, st),
mt = m0(2−b)N , st = Kmt,

where F0(·, ·) is the initial lognormal distribution function with parameters
m0 and s0; K defines the spread of the distribution.

In addition, the mean value and the variance of these cost distributions is
assumed to decrease with increasing application of new technologies according
to the generic cost reduction ratio (4) with normally distributed progress
ratio. This means that the process of technological learning is uncertain even
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as cumulative experience increases. The uncertainty of new technologies is
characterized by joint probability and scenarios.

The uncertainty associated with magnitudes and costs of energy reserves,
resources, and renewable potential and their extraction and production costs
is also considered. Following the estimates by Rogner (1997), Nakićenović et
al. (1995) and others, we assume a very large global fossil resource base corre-
sponding to some 5,000 Gtoe and accordingly large renewable potentials. We
also assume that the energy extraction and productions costs are uncertain
varying by a factor of more than five. Following the approach proposed by
Rogner (1997), we derived aggregate, global, upward-sloping supply curves
with uncertain costs.

All distributions for uncertain factors are based on actual technological as-
sessments and supported by empirical data. Nevertheless, they are ultimately
subjective views on potentials of the new energy technologies. Therefore, the
explicit introduction of different uncertainties and analysis of robust policies
with respect to all of them is the main idea of our approach to cope with
uncertainties.

3.4 Technological Clusters and Spillover Effect

Technologies are related to one another. For example, we consider the differ-
ent applications of fuel cells, such as for stationary electricity generation and
for vehicle propulsion. We also consider fuel cells that have the same end-use
application but different fuels, for example, hydrogen and methanol mobile
fuel cells. These fuel cells are different but they are related in the technologi-
cal sense, so that improvements in one technology may lead to improvements
in the other.

In the model, we explicitly consider the possibility of such spillover effects
among energy technologies. We simply assume that there are basically two
explicit types of spillover effects. One is indirect through the connections
among energy technologies within the energy system. For example, cheaper
gas turbines mean cheaper electricity, so this could favor electricity end-use
technologies for providing a particular energy service compared with other
alternatives. The other effect is more direct. Some technologies are related
through their proximity from the technological point of view, as was suggested
by the example of hydrogen and methanol mobile fuel cells. We explicitly
define clusters of technologies, where learning in one technology may spill
over into another technology. The spillover effects are assumed to be strong
within clusters and weaker across clusters.

Figure 6 gives a schematic diagram of the ten technology clusters and in-
dicates how they are related to each other with respect to the assumed learn-
ing spillover effects within the structure of the energy system. Two of the
technology clusters are characterized by generally large “unit size” compared
to other technologies – nuclear high temperature reactors (HTRs) and in-
frastructure clusters. Consequently, very large cumulative output is required
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Fig. 6. Schematic diagram of the ten technology clusters and their relationships to
each other with respect to the assumed learning spillover effects within the structure
of the energy system. Technologies in each cluster are listed together with their
assumed expected mean learning rates. Source: Gritsevskyi and Nakićenović et al.,
2002

for achieving a doubling compared to other clusters. The expected learning
rates are indicated for each cluster based on expert opinions. The modular
(smaller “unit size”) technologies have generally higher mean learning com-
pared to other technologies. The highest mean learning rate is indicated for
the photovoltaic cluster. The lowest are shared by the solar-thermal (hydro-
gen), nuclear (HTR) and infrastructures clusters.

Figure 7 illustrates the spillover effects within one cluster of technologies.
There are two density functions of technology costs in 2030 for decentralized
fuel cells. The density function with the lower overall costs is for the case
of spillover effects within the technology cluster; that with the higher overall
costs is for the case without spillover effects. The costs are given in US 1990
cents per kilowatt hour (kWh) of electricity generation without the fuel costs.
Both the expected costs and their variance are substantially higher without
the spillover effects. Thus, the costs, as well as the uncertainty, are expected
to be lower with spillover effects. Therefore, the probability of lower costs is
overall much higher with spillovers. However, the heavy tail of the density
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Fig. 7. Spillover Effects within the Cluster of Decentralized Fuel Cell Technologies.
Source: Gritsevskyi and Nakićenović et al., 2002

distribution is more pronounced in the case of spillover effects. This is an
interesting feature: the expected costs are generally lower with spillovers, but
at the same time the possibility of realizations of very high costs compared
with the mean is higher.

3.5 Environmental Constraints and Resources

Resource availability and environmental constraints are treated as uncertain.
Resource availability and cost assumptions were derived from Nakićenović
et al. (1998) and IPCC (2000). Corresponding resource extraction profiles
and costs were based on Rogner (1997). These assumptions ensure convex
relationships between the quantity of resources available and their costs and
in some sense is simplification of actual situation.

Future environmental regulations and related constrains on energy sys-
tems might emerge, influencing technology choices. Such constraints could
take the form of either hard quantitative limits or emissions taxes. For the
model calculations outlined in the following section, we follow a probabilistic
scenario similar to those described in Grübler and Gritsevskyi (1998) and
Grübler (1998) for a carbon tax. First, we assume a cumulative probabil-
ity distribution of the occurrence of the emissions tax over the entire time
horizon. Starting near zero in 2000, the starting year of our simulations, the
cumulative probability distribution rises over time. The distribution function
assumed reflects only a 50 percent chance that a carbon tax is ever imple-
mented. The probability of the tax being introduced rises to 25 percent by
2030, reaching 50 percent toward the end of the model’s time horizon. For the
magnitude of the tax, we assume a distribution with a very small probability
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of a high carbon tax level, as represented by a Weibull distribution around
a mean value of US 75 per ton carbon (C), with a 99 percent probability
that the tax will not exceed US 150 per ton C if it is implemented at all.

4 Implementation

We use the sample mean approximation to the original problem:

min
T∑

t=0
dtE[〈Ct(x|t0 , ω), xt〉+

T∑
t=0
〈at(ω), yt(ω)〉+

+ρ(〈Ct(x|t0 , ω)− ECt(x|t0 , ω), xt〉)] ≈
min 1

N

T∑
t=0

N∑
s=1

dt[〈Ct(x|t0 , ωs), xt〉+
T∑

t=0
〈at(ωs), yt(ωs)〉+

+ρ(〈Ct(x|t0 , ωs)− 1
N

N∑
s=1

Ct(x|t0 , ωs), xt〉)]

(5)

subject to constraints (2), (3) for ω from a given set of scenarios, where N is
the number of scenarios for exogenous parameters.

The consistency of implemented approximation technique is well known
(see [2], [6], [18] and [20]). In our application, we analyzed 520 alternative
technology dynamics and have drawn some 250 scenarios for each of them,
resulting in a run of about 130 thousand scenarios.

The main difficulties in solving problem (5) is related to the link between
cost components of Ct and solution vectors x|t0. Fortunately, in our case
it is only few dozens of them that follow non-convex relation described by
equation (4) and attributed to increasing returns to scale effect. Major portion
of components Ct is simply constant and those with convex relations could
be addressed by applying conventional linearisation technique. Due to the
specific structure of our problem each of those component of Ct that are
linked to solution vectors x|t0 in accordance to equation (4) is fully defined
by single parameter or so-called ”number of doublings” in corresponding total
technology output (see Figure 5). The set of parameters pt which determine
the components of Ct with increasing returns relations could be written as

pt =
t∑

k=0

〈Dk, x
k〉 (6)

with extremely sparse vector Dt. This means that by choosing some fixed
parameters {pt|t = 1, . . . , T} the problem defined by (5) could be treated as
following linear optimization problem

L(p) = min 1
N

T∑
t=0

N∑
s=1

dt[〈Ct(pt, ωs), xt〉+
T∑

t=0
〈at(ωs), yt(ωs)〉+

+ρ(〈Ct(pt, ωs)− 1
N

N∑
s=1

Ct(pt, ωs), xt〉)]
(7)
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subject to constraints:

t∑
k=0

Ak(ωs)xk +Bt(ωs)yt(ωs) = bt(ωs),

t∑
k=0

〈Dk, x
k〉 = pt, t = 0, 1, . . . , T, s = 1, . . . , N,

(8)

xt ∈ Xt ⊆ Rn, yt ∈ Yt ⊆ Rm (9)

where p = (p0, . . . , pT ).
Physical meaning of parameters p is such that each component of vector

pt = (pt
1, . . . , p

t
l) p

t
j ≥ 0 and for each p = {pt|t = 1, . . . , T} ∈ P such that (8)

is feasible, pt−1
j ≤ pt

j, j = 1, . . . ,M, t = 1, . . . , T
The original stochastic optimization is now approximated by a sequence of

large-scale linear optimization problems in combination with a global random
search method for vector p minimizing the function L(p). In other words, the
main idea for solving the original global stochastic optimization problem is
based on the representation of the model in the form of a two-level nested
structure.

The global optimization part, which defines technological dynamics with
respect to new unit installations for technologies with increasing returns to
scale, is an implementation of an adaptive (controlled) global optimization
random search algorithm specifically “tailored” to network flows optimiza-
tion problems (see Horst and Pardalos, 1995, Pinter, 1996, Neumaier, 2003).
The basic idea is that we start from some (e.g., uniform) distribution on the
set P of the vectors p, sample points p1, . . . , pm from P in accordance to that
distribution and obtained L(p1), . . . ,L(pm). Based on these values the distri-
bution is updated using some additional information regarding the model, in
particular, the specifics of its network structure and numerical data sets. This
allows us to postulate some plausible random updating rules (principles) in
a way that so far best obtained values get higher probability. The random
search method repeats the drawing and probing parts again. We performed
the probing part asynchronously rather then sequentially updating informa-
tion as soon as we got it and stopping processes that could not return values
close enough to the ”best obtained so far” allowing us to achieve interlinear
speedup.

The algorithm for the inner linear optimization problem is the interior-
point method for linear optimization. One of the big advantages of the adap-
tive random search algorithm is that it refines the approximated solution at
the time when information is available. This allowed us to devise a “parallel”
adaptation of this technique. The inner linear optimization problem is rather
large with number of variables in a range of 10,000 to 50,000.

The algorithm that we used for global search also calculated for each step
and lower monotonically increasing bound for L(p). The difference between
the best obtained value and the currently obtained lower bound was used
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as stopping rule. As a final step we launched a fixed number of gradient
free local search algorithms in areas with potentials to get a solution better
than obtained by global search. In all our cases it turned out to be rather
small set of isolated ”spots” which probably reflect very special structure of
the original problem and most probably will not be a case for more general
formulation.

Initially, the original problem implementation was done on a CRAY T3E-
900 supercomputer at the National Energy Research Scientific Computing
Center (NERSC), USA (see http://old-www.nersc.gov/research/annrep98/
gritsevskii.html). At a later stage the problem was ported to IIASA computer
network environment.

The PCx and pPCx solvers of large-scale linear optimization subprob-
lems used in this study were provided by the Argonne National Laboratory
(Wright 1996a, 1996b; Czyzyk et al. 1997). These solvers are written in C
code, modified to increase computational efficiency for our specific problem
formulation and to link the solvers directly to the global optimization part
of the structure.

5 Concluding Observations

Numerical results show that fundamentally different technological dynamics
produce a wide range of different emergent energy systems, approximately
equivalent with respect to optimality criteria. Thus, one result of the analysis
is that different energy system structures emerge with similar overall costs;
in other words, there is a large diversity across alternative path dependent
energy systems.

The actual energy requirements for a given provision of energy services
can range from very high to extremely low compared with current standards.
Therefore, the future environmental impacts of energy systems will vary ac-
cordingly. For example, CO2 emissions range from 10 times the current levels
to virtually no net emissions by 2100 for scenarios in the literature. Figure 8
shows the range of future CO2 emissions derived for the set of 520 technology
dynamics (130,000 scenarios) versus the set of 53 optimal dynamics (about
13,000 scenarios).

Another result of the analysis is that the endogenous technology learning
with increasing returns, uncertainty and spillover effects will have the great-
est impact on the emerging energy system structures during the first few
decades of the twenty-first century. Over these intermediate periods of time,
these mechanisms endogenize future lock-in effects and increasing returns to
adoption.

In the very long run, however, none of these effects is of great importance.
The reason is that over such long periods many doublings of capacity of all
technologies with inherent learning occur, so that little relative cost advantage
results from large investments in only a few technologies and clusters.
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Fig. 8. Global Carbon Dioxide Emissions Ranges for (Top) the Full Set of 130,000
Scenarios with Endogenous Technological Change (Comprising 520 Different Tech-
nology Dynamics) versus (Bottom) the Ranges of about 13,000 Optimal Scenarios
from 53 Different Technology Dynamics. All scenarios share a given useful energy
trajectory; emissions ranges in gigatons of carbon (GtC). Source: Gritsevskyi and
Nakićenović et al., 2002
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Therefore, the main finding is that the near-term investment decisions in
new technologies are more important in determining the direction of long-
term development of the energy system than are decisions that are made later.
In other words, the most dynamic phase in the development of future energy
systems will occur during the next few decades, but robust justification of
these developments requires truly long-term modeling approach. It is during
this period that there is a high degree of freedom of choice across future
technologies, and many of these choices lead to high spillover learning effects
for related technologies.

One policy implication that can be made based on the emerging dynam-
ics and different directions of energy systems development in this analysis is
that future research, development, and demonstration (RD&D) efforts and
investments in new technologies should be distributed across related tech-
nologies rather than directed at only one technology from the cluster, even
if that technology appears to be a winner. Another implication is that it is
better not to spread RD&D efforts and technology investments across a large
portfolio of future technologies. Rather, it is better to focus on (related) tech-
nologies that might form technology clusters. Finally, the results imply that
fundamentally different future energy system structures might be reachable
with similar overall costs. Thus, future energy systems with low carbon diox-
ide (CO2) emissions need not be associated with costs higher than those of
systems with high emissions.
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12. Grübler, A., Gritsevskyi, A. (2002) A Model of Endogenized Technological
Change through Uncertain Returns on Innovation, pp.280–319, in A. Grübler,
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Abstract. Electric energy systems have always been a continuous source of ap-
plications of planning under uncertainty. Stochastic parameters that may strongly
affect the electric system are demand, natural hydro inflows and fuel prices, among
others. A review of some estimation methods used to approximate those parame-
ters is presented. Reliability and stochastic optimisation are widespread techniques
used to incorporate random parameters in the decision-making process in electric
companies. A unit commitment, a market-based unit commitment, a hydrothermal
coordination and a risk management model are typical models that can incorporate
uncertainty in the decision framework.

1 Introduction

Uncertainty may be originated, in a broad sense, by the lack of reliable data,
measurement errors or parameters representing future information. In elec-
tric energy systems planning, uncertainty appears mainly in demand, natural
hydro inflows, fuel prices, system availability, electricity prices, competitors’
strategies, and regulatory framework. Electric demand has a cyclic pattern,
with seasonal, weekly and daily variations along the year. Besides, demand
also presents a locational variation depending on the local or regional eco-
nomic activity. Natural hydro inflows are subject to climate conditions every
year and, therefore, also the water flowing into the reservoirs that can be
used for electricity production. Fossil fuel prices are subject to geopolitical
circumstances. System elements such as power plants and transmission lines
are subject to random failures that can affect the capability of the system to
supply electricity to final customers. Because of the previous stochastic pa-
rameters, electricity prices resulting from market clearing are also subject to
stochasticity. Finally, the regulatory frameworks under which many electric
energy systems are currently operating are subject to changes to adapt them
to new requirements (i.e., emissions market) or to improve their performance
by changing some market rules.
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Planning1 and operation decisions of electric systems are certainly com-
plex, with very different time scopes. They can include decades in the case
of generation and transmission expansion or just several minutes for the eco-
nomic dispatch. These decisions are coordinated to achieve the objective of
optimal operation of the electric system. This general objective is separated
into several others for different time horizons that are implemented in hier-
archical decision support tools. In power systems planning the time scope is
usually divided into the following levels:

• Very long term: for any time ranging from five to fifteen years
• Long term: for any time ranging from two to five years
• Medium term: any time ranging from one month to two years
• Short term: from one week to one month
• Very short term: any time below one week

This division is required by the practical infeasibility of finding a model
detailed enough to characterize the system. At the same time, the nature of
the whole problem is well suited to be functionally decomposed. Longer the
time period lower the detail in modelling the system. The purpose of this
hierarchical process is to represent adequately the main variables, parame-
ters and characteristics of the electric system affecting each decision level.
Besides, it allows managing the complexity of the whole problem. The pre-
viously mentioned stochastic parameters can affect the system planning in
different time horizons. As previously established, only the relevant stochas-
tic parameters are considered in each time horizon and decision level. For
example, stochasticity in demand may affect all the decisions. However, it
seems that this influence can be more relevant in the very long term (where
expansion decisions are taken) and in the very short term (where unit com-
mitment decisions must be adopted). Uncertainty of natural hydro inflows
seems to be relevant in the medium term due to its yearly cycle.

Firstly, in section 2 we present some tables that show the importance of
some stochastic parameters. We have used Spain as the case study for pre-
senting real data. In section 3 we present some of the methods that have been
used so far to predict future values of stochastic parameters. In section 4 we
show some of the mathematical techniques that can be used to deal with un-
certainty in electric energy systems incorporated in decision support tools. In
section 5 we summarize some of the classical applications and we present how
they take into account the uncertainty. Finally, we extract some conclusions
and recapitulate the work presented in this chapter.

2 Uncertainty Impact

For proximity and data accessibility, we have chosen to show the impact of
the uncertainty of the Spanish electric energy system (see [20]). As a matter
1 Planning is used here for any time horizon for taking decisions apart from the

online system operation.
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of fact, the energy demand increase for the last five years is shown in the
following table. The energy load has increased at an approximate 5 % rate for
the last five years (a cumulative 21 %) mainly due to the economic activity.
An increment correction is made to include the effect of working vs. non
working days and temperature.

Year Energy Yearly Corrected yearly
increment increment

TWh % %
2000 195.0 5.8 6.5
2001 205.6 5.4 4.9
2002 211.5 2.8 3.9
2003 225.8 6.8 5.4
2004 235.4 3.5 3.6

Peak load has also increased as shown in the next table. From year 2000 to
year 2004 the winter peak load has increased in 4.5 GW (an increment of 13.5
% with respect to winter peak load in year 2000) and the summer peak load
in 7.2 MW (an increment of 24.6 % with respect to summer peak load in year
2000) and it is almost the same that the winter peak load. The main reason
for this huge increment in summer peak load is the high penetration of air
conditioning in new home and hotel developments in Spain. This peak load
increment in five years would be equivalent to approximately ten combined
cycle gas turbines, which implies two units per year.

Year Winter peak load Summer peak load
GW GW

2000 33.2 29.4
2001 34.9 31.2
2002 34.3 31.9
2003 37.2 34.5
2004 37.7 36.6

The annual energy coming from natural hydro inflows shows also a great
variation along the last years. For example, the hydro energy in year 2003 was
160 % the energy available in year 2002. The percentage of being exceeded
corresponds to the value of the cumulative distribution function for that
hydro energy.
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Year Hydro Index Percentage of
energy being exceeded
TWh %

2000 26.2 0.90 62
2001 33.0 1.14 27
2002 21.0 0.73 88
2003 33.2 1.15 26
2004 24.6 0.85 68

3 Estimation Methods

In this section we present different techniques used for estimating the evo-
lution of some stochastic parameters along the time, namely demand and
natural hydro inflows. With these two parameters, we have tried to show a
variety of complementary prediction techniques used in the context of electric
energy systems.

3.1 Demand

Load forecasting has always been an important concern for long term expan-
sion decisions, mainly related to yearly peak demand. At this time horizon,
the main influence factors are related to the use of electricity by different
customers and to the general socioeconomic and demographic parameters.
Besides these, weather conditions strongly influence the electric load. In the
short term, not only peak is important but also the demand profile and its
variation for each day of the week need to be estimated.

Forecasting methods differ depending on the time range they are dealing
with, see book [9] for a detailed review. For long term forecasting, end-use
models and econometric models are primarily used. For short term forecasting
a large variety of methods from statistical and artificial intelligent techniques
are used. Among them, we can mention regression methods, time series anal-
ysis, artificial neural networks, fuzzy logic, and combinations of them.

End-use models explain the electric demand as a function of the direct use
of electricity by different customers (for example, in appliances for domestic
users, electric motors or aluminium tons for industrial customers, and air
conditioning for commercial customers). So load forecasting is reinterpreted
as the estimation of end-user devices and their evolution along the time. The-
oretically, this approach is very precise. However, it requires a huge amount
of data and can be very sensitive to their quality.

Econometric models use general economic data as factors for explaining
electricity consumption. So load forecasting is estimated as a function of
economic parameters (such as gross domestic product, customer price index,
etc.) obtained by using statistical techniques.
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Regression is used to determine the relationship between load consump-
tion and factors such as weather, temperature, day of the week, etc., see [12,23].

Time series methods are based on detecting the intrinsic structure of
load data regarding correlation, trend, seasonal variation, etc. ARMA2 and
ARIMA3 techniques use time and past load as input parameters, see [1].

Artificial neural networks (ANN) are devices able to do nonlinear curve
fitting. The outputs of an ANN are nonlinear functions of the inputs. These
usually are load, temperature, humidity and weather. Its use in load forecast-
ing has received a lot of attention, see [13] for a recent and exhaustive review
of papers.

Fuzzy logic generalizes the classic Boolean logic by associating qualitative
ranges to a number value. Therefore, this technique allows the introduction
of qualitative data in load forecasting, for example in ANN, see [21].

After the deregulation process that has been carried out by the electricity
industry in many countries an important additional factor that may affect
load forecasting is price. So sensitivity analysis needs to consider as well
demand elasticity in load forecasting.

3.2 Natural Hydro Inflows

Another important source of stochasticity in electric energy systems are nat-
ural hydro inflows. Two different techniques are used to include their stochas-
ticity. One is scenario generation and the other is scenario tree generation.

The first tries to create plausible scenarios for future outcomes of hydro
inflows. It usually resorts to time series analysis or other forecasting tech-
niques, see [11]. The second tries to detect the internal structural dependence
of the different scenarios previously generated. The scenario tree is then in-
corporated in multistage decision tools, which are going to be described in
the following section. In these models, whose resolution relies on the use of
LP, NLP and MIP solvers, uncertainty given by parameters with continuous
distributions complicates its resolution because of the necessity of combin-
ing simulation techniques with optimisation techniques. For that reason, the
choice of an appropriate discrete distribution is crucial for obtaining good
results of the associated stochastic optimisation problem.

Among the existing techniques for generating scenario trees, they appear
those based on moment adjustment [14]. These techniques consist of minimiz-
ing the distance between statistical properties of the discrete outcomes given
by the scenario tree and those of the underlying distribution. This minimiza-
tion is carried out through the resolution of a NLP problem. Although this
method has been extended to multistage and multivariate distributions [15],
the nonlinearity of resulting mathematical problem experiences difficulties

2 AutoRegressive Moving Average.
3 AutoRegressive Integrated Moving Average.
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when a large number of time periods and dimensions in the multivariate dis-
tribution needs to be approximated. Another type of methods uses clustering
techniques to generate the scenario tree [19,16]. This technique adapts itera-
tively the tree branches to the original data series as a function of its vicinity
to a series randomly chosen.

4 Decision Making Methods

In this section we present some of the mathematical methods used to in-
corporate the uncertainty in the decision support process in electric energy
systems. These techniques are reliability and stochastic optimisation.

4.1 Reliability

It is evident that cost and reliability criteria can be conflicting. A strict
reliability criterion may derive in over investment. On the other hand, under
investment usually leads to highly unreliable systems. Reliability evaluation
in electric energy systems has been for many years an area of research, see
the classical reference book from Billinton and Allan [4]. Recently, under
deregulated electricity markets it has been a renewed interest in the topic
due not only to the recent important blackouts occurred in several systems
(for example, in New York, UK and Italy in 2003) but also to new concepts
like transmission open access that are being explored. Even more, networks
are currently led to operate close to physical limits. The main objective of
reliability is to determine some measures or criteria to be used in generation
and network capacity or operation planning.

Important aspects to be considered in reliability evaluation are:

1. Load forecast and capability of the system to supply it
2. Possible generator locations for new generators, generation commitment

and maintenance scheduling and other unit requirements including fuel
availability

3. Possible contingencies in generation or transmission systems and ways to
alleviate them

Generation reliability is usually evaluated by analytical methods such as
probabilistic production simulation, see the seminal papers of Baleriaux [3]
and Booth [5] and a comparison of algorithms in [17]. This technique is
based on obtaining the cumulative distribution function of the sum of ran-
dom variables corresponding to load and generation unit failures. Dispatch of
generating units is made by iteratively convoluting the random variables. The
most common reliability measures obtained by this method are loss of load
probability (LOLP) and expected energy not served (EENS). These reliabil-
ity indexes are frequently used as adequacy criteria for generation expansion
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and operational planning. For example, a classical planning criterion used for
generation expansion has been to have a LOLP lower than 1 day in 10 years.

However, the method only considers the forced outage rate of the units
and ignores the frequency and duration of these outages and the operating
constraints that play a significant role in short term operations, for exam-
ple, startup and shutdown time and minimum uptime and downtime. Monte
Carlo simulation can incorporate some of these characteristics in probabilistic
simulation models [22] or in chronological or sequential planning models [10].

Monte Carlo simulation with variance reduction techniques (VRT) is also
used to evaluate generation and transmission composite reliability, see refer-
ences [18,6]. Control and antithetic variables are some of the VRT frequently
used.

4.2 Stochastic Programming

Within a decision-making framework, many problems can be posed as optimi-
sation problems. This way of modelling considers a set of decision variables,
relations among these variables (termed constraints) and an expression of
the variables whose value needs to be optimised (the objective function). A
problem set in this form is known as a mathematical programming problem.
The algebraic expressions that form the constraints and objective function
may lead to a LP or NLP problem. Additionally, the nature of the decision
variables leads to a continuous problem or to a mixed-integer one. These
problems are solved by using a collection of algorithms that are the wide-
range subject of research of mathematical programming community. These
algorithms include simplex methods, branch & bound methods, methods of
feasible directions, etc. From a practical point of view, there exists a wide
collection of algorithms already implemented in computer codes available for
being used by decision makers. In addition, current algebraic languages give
the possibility of modelling a mathematical programming problem and test
these algorithms quickly.

The difficulty of the resolution of mathematical programming problems
increases when stochasticity is introduced in the problem parameters. The
introduction of uncertainty in the context of energy planning is aimed at
providing a collection of optimal decisions that have to be taken prior to
uncertainty disclosure. This type of stochastic problem is usually denoted
as two-stage program and its purpose is to give a solution, which hedges
against the uncertain future. This is the most extended way of dealing with
uncertainty. There also exist other methods, like those of probabilistic con-
straints, which produce a solution of a mathematical program such that their
constraints are satisfied with some given probability.

Random parameters in stochastic programming (SP) appear as scenarios.
The use of scenarios is extended and is a common way of representing stochas-
ticity in multistage problems. These scenarios share part of their stochastic
information and create a graph structure, which is denoted in the literature
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as scenario tree. Contrary to deterministic problems, for which a collection
of well-studied algorithms exists, for the moment there is no algorithm that
outstands as the leading algorithm to solve stochastic problems. Users and
researches are focused on the resolution of the deterministic equivalent prob-
lem and in the combination of decomposition techniques to create ad hoc
algorithms for specific problems. SP has been widely used as a mathemati-
cal programming technique for planning under uncertainty in electric energy
systems. Next section describes some examples that deal with uncertainty in
different ways depending on the time scope of the model.

5 Characteristic Models

The type of stochastic parameters that enter within energy planning mathe-
matical programming models heavily depends on the considered model. This
section reviews classical models, focusing on the presence of stochasticity:

• a unit commitment (UC) model
• a market-based unit-commitment model
• a mid-term hydrothermal coordination model
• a mid-term risk management model

With these models, we try to introduce the treatment given in SP to
random parameters like demand, hydro inflows and fuel prices.

Short-term models consider uncertainty in electricity demand. A classi-
cal cost-minimization UC model considers uncertainty in the chronological
weekly load demand. A market unit-commitment model represents competi-
tors’ behaviour by means of their residual demand curve. Uncertainty in com-
petitors’ behaviour can be represented as a discrete random variable whose
values are the different residual demand curves. In mid-term models, besides
uncertainty in demand information, models incorporate uncertainty of hy-
dro inflows and fuel costs. Typically, hydrothermal models use SP to obtain
robust decisions for the set of future hydro scenarios. The use of SP is also
necessary for risk management models. Finally, stochasticity in fuel costs is
employed in one of the presented problems to model future contracts with
the purpose of exercising control over minimum benefit scenarios.

The authors have developed the models presented in this section and their
references are given in the corresponding sections. These models have been
implemented in computer applications and applied to the Spanish electric
system.

5.1 Unit Commitment

This problem has to decide the set of generating units that need to be com-
mitted as well as their generation levels. In these problems, total variable cost



Stochasticity in Electric Energy Systems Planning 225

is minimized. Demand appears in classical models as a known parameter and
the problem decides the subset of committed units that will provide the re-
quired demand. This modelling reflects the traditional regulation framework
where an Independent System Operator (ISO) orders to the different compa-
nies the amount of energy they had to produce.

The operating cost of thermal units is modelled as a straight line with
a fixed operating cost (the intercept) and a variable cost (the slope). This
operating cost represents the fuel and operation and maintenance costs.

A weekly model is interpreted as a multiperiod problem where each period
comprises a set of hours. A possibility is to consider one period for each hour,
summing up 168 periods. The nature of the decision variables turns this
optimisation problem into a mixed-integer one. Variables that represent the
commitment status of the units are binary and those that represent operating
levels are continuous.

The remaining section describes the algebraic model of a weekly UC prob-
lem. Consider the following collection of sets, indices, parameters and vari-
ables.

Sets
T Set of periods
I Set of thermal units

Indexes
t Index for periods
h Auxiliar index for periods
i Index for thermal units

Parameters
Dt Demand of period t [MW]
Rt Spinning reserve coefficient for thermal production

in period t [%]
Durt Duration of period t [h]
Pmax

i Maximum rated capacity of thermal unit i [MW]
Pmin

i Minimum rated capacity of thermal unit i [MW]
Lup

i Upwards ramp limit of thermal unit i [MW/h]
Ldown

i Downwards ramp limit of thermal unit i [MW/h]
Fi Fixed operating cost of thermal unit i [e/h]
Vi Variable cost of thermal unit i [e/MWh]
Cup

i Startup cost of thermal unit i [e]
Cdown

i Shutdown cost of thermal unit i [e]
τi Minimum uptime of thermal unit i [h]
κi Minimum downtime of thermal unit i [h]
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Variables
pti Operating level of thermal unit i in period t [MW]
uti Commitment status of thermal unit i in period t {0,1}
sup

ti Startup decision of thermal unit i in period t {0,1}
sdown

ti Shutdown decision of thermal unit i in period t {0,1}

The UC problem must satisfy the load profile in each load level considered

I∑
i=1

pti = Dt ∀t (1)

requiring a spinning reserve operating margin that can be modelled as

I∑
i=1

(Pmax
i uti − pti) ≥ RtDt/100 ∀t (2)

Each thermal unit operating level is bounded between its minimum and
maximum rated capacity

Pmin
ti uti ≤ pti ≤ Pmax

ti uti ∀t, i (3)

Variation in a thermal unit power generation is controlled through the
ramp constraints

Ldown
i Durt ≤ pti − pt−1i ≤ Lup

i Durt ∀t, i (4)

Startup and shutdown decisions are managed with the following con-
straints

uti − ut−1 i = sup
ti − sdown

ti ∀t, i (5)

Some advanced UC models include minimum uptime and downtime re-
quirements for switched-on and switched-off thermal units. Committed units
are usually required to produce a minimum number of hours before they
can stop. Similarly, once they stop, they must also remain offline a minimum
number of hours, before they can produce again. These minimum uptime and
downtime requirements can be formulated as follows:

ut+ht i ≥ uti − ut−1 i ∀t, ht, i (6)

ut+ht i ≤ 1 + uti − ut−1 i ∀t, ht, i (7)

where the set of shifted indexes, controlled by ht, maybe reduced for those
values ht ≥ 1 such that

τi ≤
ht−1∑
l=0

Durt+l (8)
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κi ≤
ht−1∑
l=0

Durt+l (9)

Given the above variables and constraints, the UC model minimizes the
total variable operating cost, given as:

T∑
t=1

I∑
i=1

(DurtFiuti +DurtVipti + Cup
i sup

ti + Cdown
i sdown

ti ) (10)

Uncertainty in a weekly UC model appears in the randomness of demand
load profiles that a generation company faces. For this reason, instead of
formulating a single-scenario problem, the company may analyze its decision-
making problem by means of a SP problem. Stochasticity in demand profiles
can be modelled as a discrete random variable in the form of a scenario
tree. A load profile scenario tree is presented in figure 1. It is represented
the possible evolution of the demand for a week that begins on Tuesday. It
is not considered being uncertain along the very first day. For the second
day, Wednesday, two branches appear. These branches branch at the end of
the second day producing four scenarios that represent the evolution of the
demand profiles for the remaining days of the week.
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Fig. 1. Load demand profile scenario tree.

5.2 Market-Based Unit Commitment

Classical UC problem changes dramatically if the company operates in an
electricity spot market. In this new framework, companies are responsible of
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their total production, which is no longer decided by an ISO. A day-ahead
market is the market that takes place one day before the physical delivery
of power production. This market is based on offers submitted by power
producers and bids submitted by power purchasers. Offers and bids indicate
the price at which producers are willing to sell and purchasers to buy.

In this new context, the objective function of an energy planning problem
changes from the traditional cost minimization to a maximization of the
company’s benefit.

The company’s benefit B(p) is defined as the difference between revenues
and operating cost c(p). In addition, company’s incomes depend on the mar-
ket price π at which the energy p is sold.

B(p) = πp− c(p) (11)

The energy price is a function of the total amount of energy sold. Similarly,
the energy amount that each company is able to sell depends on the final
price. Observe that the energy demand (understood as a function of price)
needs to be equal to the energy supplied (also understood as a function of
price).

D(π) =
∑

agents

Sagents(π) (12)

Under the assumption that competitor’s behaviour is given by their supply
energy functions, the amount of power a single company is able to sell depends
on the demand at that price, D(π), and the offers of the rest of agents,
Srest(π)

R(π) = D(π)−
∑
rest

Srest(π) (13)

expression that gives the residual demand faced by the company, R(π). The
company’s benefit is now given as

B(p) = R−1(p)p− c(p) (14)

The inverse residual demand function is a staircase function that can be
approximated by means of a piecewise linear function. The revenue function
is also a non-concave function that can be modelled as a piecewise linear
function fig.2). This function is modelled by considering a collection of binary
variables to represent the total amount of energy produced as a sum of the
quantities of each segment. Price and revenue values can also be modelled in
the same way.

Uncertainty is again a relevant ingredient of these new market-based UC
models. However, the main source of uncertainty is now the wholesale electric-
ity market, because the decisions made by the rest of agents are not known
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Fig. 2. Piecewise linear residual demand function and revenues’ function.

in advance. This uncertainty is implicit into the residual demand function
that may be considered a random variable within a SP problem.

When having a completely known residual demand function, the benefit
maximization problem is deterministic. This problem determines company’s
optimal production and price for selling that production. However, if a ran-
dom residual demand function is given, the benefit maximization problem
turns into a SP problem. It should provide an optimal quantity for each one
of the residual demand functions involved. This obeys the rules of a supply
energy function, although additional conditions about non decreasing values
need to be imposed.

The multistage stochastic problem we are about to present considers a
realization of uncertainty to be a set of residual demand functions, one func-
tion for each period of the problem scope (fig. 3). The reader should note the
difference in uncertainty management in this model with respect to that of
the weekly UC model and forthcoming models.

( )1 1k kp

1kp

( )2 2k kp
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( )Tk Tkp
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...

Fig. 3. Single scenario of residual demand functions.

Consider the next collection of sets, indexes, parameters, variables and
constraints used in the formulation of a market-based UC problem.

Sets
T Set of periods
I Set of thermal units
J Set of segments to represent

the residual demand function
K Set of scenarios
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Indexes
t Index of periods
i Index of thermal units
j Index of segments
k Index of scenarios

Deterministic parameters
Durt Duration of period t [h]
Pmax

i Maximum rated capacity of thermal unit i [MW]
Pmin

i Minimum rated capacity of thermal unit i [MW]
Lup

i Upwards ramp limit of thermal unit i [MW/h]
Ldown

i Downwards ramp limit of thermal unit i [MW/h]
Fi Fixed operating cost of thermal unit i [e/h]
Vi Variable cost of thermal unit i [e/MWh]
Cup

i Startup cost of thermal unit i [e]
Cdown

i Shutdown cost of thermal unit i [e]

Stochastic parameters
δk
tj Slope of segment j of the residual demand function

in period t and scenario k [e/MW]
γk

tj Slope of segment j of the revenue function
in period t and scenario k [e/MW]

πk
tj Price at segment j of the residual demand function

in period t and scenario k [e]
p̄k

tj Quantity at segment j of the residual demand function
in period t and scenario k [MW]

b̄ktj Benefit at segment j of the revenue function
in period t and scenario k [e]

Probk Probability of scenario k

The load demand constraints adopt the next expression in this case

I∑
i=1

pk
ti = pk

t ∀t, k (15)

where the total amount of energy produced pk
t in period t and scenario k is

modelled by

pk
t = p̄k

t0 +
J−1∑
j=1

pk
tj (16)

The total revenue is modelled as a piecewise linear function similarly to
the total amount of energy produced.
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Variables
vk

tj Binary variable corresponding to segment j
in period t and scenario k {0,1}

pk
t Total production in period t and scenario k [MW]
pk

tj Total production of segment j
in period t and scenario k [MW]

pk
ti Operating level of thermal unit i

in period t and scenario k [MW]
πk

t Price in period t and scenario k [e]
bkt Benefit in period t and scenario k [e]
uk

ti Commitment status of thermal unit i
in period t and scenario k {0,1}

sup k
ti Startup decision of thermal unit i

in period t and scenario k }0,1}
sdown k

ti Shutdown decision of thermal unit i
in period t and scenario k }0,1}

xkk′
t Binary variable related with monotonicity

of the supply function in period t and scenarios k and k′ {0,1}

bkt = b̄kt0 +
J−1∑
j=1

γk
tjp

k
tj (17)

as well as the price obtained when considering the optimal production pk
t in

period t and scenario k.

πk
t = π̄k

t0 +
J−1∑
j=1

δk
tjp

k
tj (18)

This piecewise linear modelling requires the next constraints, which force
a monotonic use of variables representing segment values.

(p̄k
tj − p̄k

tj−1)v
k
t+1 j ≤ pk

tj ≤ (p̄k
tj − p̄k

tj−1)v
k
tj (19)

vk
tj ≥ vk

tj+1 j = 1, . . . , J − 1 (20)

Due to uncertainty, limits for thermal units power output are introduced
for any of the scenarios considered. Similarly, ramp constraints and startup
and shutdown constraints are independently introduced for each scenario k.

Pmin
ti uk

ti ≤ pk
ti ≤ Pmax

ti uk
ti ∀t, k (21)

Ldown
i Durt ≤ pk

ti − pk
t−1 i ≤ Lup

i Durt ∀t, k (22)
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uk
ti − uk

t−1 i = sup k
ti − sdown k

ti ∀t, k (23)

The former set of constraints is the core of the market-based UC problem
with stochasticity in the parameters modelling the residual demand functions.
As it has already been commented, the optimal solution provided by this SP
problem is a set of quantities and prices that form an offer curve. This curve
has to be non decreasing. The following set of constraints is introduced into
the model for that reason.

pk
t − pk′

t ≥ −xkk′
t Mp ∀t, k, k′ k′ > k (24)

πk
t − πk′

t ≥ −xkk′
t Mπ ∀t, k, k′ k′ > k (25)

pk
t − pk′

t ≥ −(1− xkk′
t )Mp ∀t, k, k′ k′ > k (26)

πk
t − πk′

t ≥ −(1− xkk′
t )Mπ ∀t, k, k′ k′ > k (27)

The SP model is completed with the objective function that maximizes
the expected benefit.

max
T∑

t=1

K∑
k=1

Probk[bkt − c(pk
t )] (28)

where c(pk
t ) indicates the production cost in each period t and scenario k.

This cost can be modelled as it has been presented in previous section. The
optimal solution for this problem is an offer curve for each period (fig.4).
For simplicity in the exposition, a pure thermal generating system has been
considered. However, the model has been extended to more complex systems
comprising hydro units as well as futures and options [2]. It is necessary to
outline that building the offer curve necessarily implies the consideration of
stochasticity. This model represents uncertainty in a different way that the
weekly UC problem and the next models, where stochasticity is introduced
by means of a scenario tree.

5.3 Hydrothermal Coordination

A hydrothermal coordination model considers a generating system with ther-
mal units as well as hydro units, see [8] for further details. Hydro units pro-
vide the capability for energy reserve management. In hydrothermal models,
a constant coefficient of efficiency for each hydro unit is usually considered
and hydro reserves are expressed in terms of energy stored, in MWh. A differ-
ence between short-term models and mid-term models appears in the way of
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Fig. 4. Stochastic residual demand function and offer curve for a single period.

considering electricity demand. Short-term models usually consider a chrono-
logical load profile, while mid-term models use to represent the demand ag-
gregated. Thus, mid-term models usually gather the demand in blocks of
peak, shoulder and off-peak hours. Another difference with short-term mod-
els appears in the stochastic parameters considered. In short-term models,
demand profile (together with units’ outage) is the main source of uncer-
tainty. In mid-term models, hydro inflows and fuel costs represent additional
sources that must be taken into account when looking for optimal solutions
to hedge against uncertainty. In a mid-term model, like the presented in this
section, stochasticity enters as a scenario tree. Figure 5 shows a hydro inflows
scenario tree. The tree represents an initial inflow value that branches into
two possibilities in the second month of the model. The scenario tree branches
again in the second and third months producing a final eight-scenario tree.

One of the objectives of a mid-term model is to schedule hydro reserves.
A model that minimizes the expected operation cost over the complete time
scope can achieve this. Hydro units have a very low cost that is usually ne-
glected. Operating cost is limited to variable costs of thermal units. Reservoir
levels are bounded in order to prevent spillage and dramatic scenarios of low
reserves.

Thus, hydrothermal models include equations that represent the evolution
of the reserves. Let us consider the next collection of sets, indexes, parameters
and variables in order to model them.
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Fig. 5. Scenario tree for hydro inflows to a reservoir.

Sets
T Set of periods
H Set of hydro units
K Set of scenarios

Indexes
t Index of periods
h Index of hydro units
k Index of scenarios

Deterministic parameters
Rmax

j Maximum storage capacity of hydro reserve j [MWh]
Rmin

j Minimum storage capacity of hydro reserve j [MWh]
Lmax

j Maximum rated capacity of hydro unit j [MW]
Lmin

j Minimum rated capacity of hydro unit j [MW]
ρj Pumping efficiency of hydro unit j [%]

Stochastic parameters
Ik
j Natural inflows of hydro unit j

in period t and scenario k [MWh]
Probk Probability of scenario k
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Variables
rk
tj Level of hydro reserve j

in period t and scenario k [MWh]
sk

tj Production level of hydro unit j
in period t and scenario k [MW]

ωk
tj Pumping level of hydro unit j

in period t and scenario k [MW]

As mentioned, scheduling of hydro reserves can be obtained by introducing
some constraints that represent the dynamics of water reserve evolution.

rk
tj = rk

t−1,j + Ik
j −Durt(sk

tj − ρjω
k
tj)/100 (29)

with

Rmin
j ≤ rk

tj ≤ Rmax
j (30)

Lmin
j ≤ sk

tj ≤ Lmax
j (31)

Lmin
j ≤ ρjω

k
tj/100 ≤ Lmax

j (32)

A stochastic mid-term hydrothermal coordination problem gives the pos-
sibility of verifying the reserve evolution for the set of hydro scenarios ana-
lyzed. The SP problem provides a solution for the first stage that does not
anticipate the uncertainty given by natural hydro inflows. An example of this
solution is given in the next figure 6. It is depicted the evolution of the hydro
reservoir storage level for the hydro unit whose natural inflows are given in
figure 5.

5.4 Risk Management Model

Risk is implicit to all activities that take place in energy operation business
and planning activities must consider this risk. SP is a suitable tool to carry
on with this risk, which appears under different forms depending on the
activity considered. As outlined at the beginning of the chapter, short-term
operation suffers from the unit failure risk and demand fluctuation. Mid-term
operation has to deal with uncertain hydro inflows and fuel prices, see for
example [7], and long-term models pay careful attention to different factors,
for example demand evolution and regulatory changes.

A risk management model controls the variability of the random variable
that represents the operating cost function or the profit function. A variety of
methods to measure risk can be introduced into a SP problem. A possibility
consists of penalizing those scenarios in which the company cost is greater
than a certain reference cost. Similarly, those scenarios whose profits are less
than a certain reference profit can be penalized.
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Fig. 6. Reserve evolution of a stochastic mid-term hydrothermal model.

Another alternative consists on introducing a hard limit for the quantile of
the distribution function at a given confidence level. This quantile is usually
referred to as Value at Risk (VaR) in risk management models. VaR has
the additional difficulty, for SP problems, that it requires the use of binary
variables for its modelling. Conditional Value at Risk (CVaR) computes the
average of scenario profit values that lie under the quantile given by the VaR.
CVaR computation does not require the use of binary variables and it can
be modelled by the simple use of linear constraints. Figure 7 illustrates the
concepts of VaR and CVaR.

Profits( )f

( )1 –VaR

( )1 –CVaR

1 –

Profits

Fig. 7. VaR and CVaR illustration.

A SP model that incorporates risk measures obtains a final solution (cost
or profit random variable) with less volatility than the final solution of a
model that does not incorporate any measure of risk control. This is observed
in the next figure 8. Different distribution functions are depicted for the profit



Stochasticity in Electric Energy Systems Planning 237

random variable in a mid-term operation planning. It can be observed that
the higher the upper limit imposed to the CVaR, the more concentrate the
scenarios’ profit values. In the following figure 9 the efficient frontier curve is
obtained for expected profit and CVaR for the same case.
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6 Conclusions

Electric energy systems have been for long time a continuous source of ad-
vances and applications of planning under uncertainty and a test bed for
many developments to include stochastic parameters. In this chapter, we
have presented a review and summary of the impact that the uncertainty
may have in electric energy systems. We have presented the methods used to
estimate the main stochastic parameters to be considered in power systems,
namely demand and hydro inflows. Then, we have examined the two main
methodologies that deal with uncertainty. One is reliability computation and
the other is stochastic optimisation. Finally, we have presented some charac-
teristic models that include an explicit treatment of parameter uncertainty.
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Abstract. Main drawback of the traditional PERT modeling is that the proba-
bilistic characteristics determined for the project completion time are only valid
when it is supposed that any activity can be started promtly after executing all of
its predecessor activities. This is possible in the case of scheduling computer tasks,
however it is hardly possible in many other cases, like architectural project plan-
ning what is one of the the most important applicational areas of PERT modeling.
In the paper a stochastic programming based PERT modeling will be introduced.
This modeling will produce deterministic earliest starting times for the activities of
the project. These deterministic starting times will be attainable with prescribed
probability. So we also get an estimated project completion time what is attain-
able with the same prescribed probability. Numerical examples will be given for
comparing the traditional and the newly introduced PERT modeling techniques.

1 Introduction

Consider a compact, directed and acyclic network (N ,A) as a representation
of the project. Assume that N = {c1, . . . , cn} is the set of nodes (events),
and A ⊂ N ×N is the set of arcs (activities). Without restricting generality,
we may assume that there is exactly one node such that no arc leads into
it and there is exactly one node such that no arc goes out of it. These two
nodes will be called start and terminal nodes, respectively. Let us suppose
that c1 is the single start node and cn is the single terminal node,

Each activity has a duration (or length). The duration (or length) of
a path is the sum of the durations of the arcs contained in the path. Of
particular importance are the paths connecting the start and terminal nodes.
The maximum length of these paths is the shortest time needed to complete
the project and we call it the project completion time. The corresponding
path is the critical path.

Suppose that there are m arcs numbered by 1, 2, . . . ,m. Suppose further-
more that there are p paths, numbered by 1, 2, . . . , p, which connect the start
and terminal nodes. The elements of the path–arc incidence matrix A = (aij)
are defined as

aij =
{

1, if activity j is contained in path i
0, otherwise.
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We will designate by Ai the ith row of the matrix A (1 ≤ i ≤ p). Let
ξ = (ξ1, . . . , ξm)T be the vector of the activity durations. Then the critical
path length R(ξ) equals

R (ξ) = max
1≤i≤p

Aiξ.

Designating by P1, . . . , Pp the paths from the origin to the terminal nodes,
we may also write

R (ξ) = max
1≤i≤p

∑
j∈Pi

ξj .

If the durations ξ1, . . . , ξm are random variables then R(ξ) is a random vari-
able, too. Its probability distribution function (cdf) will be designated by
F (x), i.e.,

F (x) = P (R (ξ) ≤ x) . (1)

The main drawback of the traditional PERT modeling is that the prob-
abilistic characteristics determined for the project completion time are only
valid when it is supposed that any activity can be started promtly after exe-
cuting all of its predecessor activities. This is possible in the case of scheduling
computer tasks, however it is hardly possible in many other cases, like archi-
tectural project planning what is the most important applicational area of
PERT modeling.

In the paper a stochastic programming based PERT modeling will be
introduced. This modeling will produce deterministic earliest starting times
for the activities of the project. These deterministic starting times will be
attainable with prescribed probability. So we also get an estimated project
completion time what is attainable with the same prescribed probability.

The original PERT technique, developed by Malcolm et al. (see [9]), is
a technique to approximate the expected duration of the project. Further
approximations and bounds to this value are due to D.R. Fulkerson ([6]),
C.T. Clingen ([1]), S.E. Elmaghraby ([4]), P. Robillard and M. Trahan ([13],
[14]), L.P. Devroye ([2]) and others. Even more important is, from the point
of view of applications, to bound or approximate the probability distribution
function of the critical path. In connection with this we mention the works
by G.B. Kleindorfer ([7]), A.W. Shogan ([15]), A. Nádas ([12]), I. Meilijson
and A. Nádas ([10]), B.M. Dodin ([3]), G. Weiss ([21]), D. Monhor ([11]) and
S.W. Wallace ([20]). Efficient algorithm for the calculation of the cdf (1) can
be found in the paper by J. Long, A. Prékopa and T. Szántai ([8]).

2 The Stochastic Programming Model of PERT

Let us describe the project by the (N ,A) directed graph, which doesn’t
contain any loop. Here N is the set of nodes (events) and A is the set of
arcs (activities). Let us designate by cj , j = 1, . . . , n the nodes in the set
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N , among which c1 let be the start and cn let be the terminal node. Let us
assigne the variable xj to the node cj representing the earliest starting time
for all activities starting from the node cj , j = 1, . . . , n. Let us designate
by ei, i = 1, . . . ,m the arcs in the set A and let us assigne the number
di to the arc ei as the duration time of the represented activity. If these
are deterministic numbers, then the shortest execution time of the whole
project represented by the loopless directed graph (N ,A) can be determined
by solving the following linear programming problem:

xfi − xsi ≥ di, i = 1, . . . ,m
xj ≥ 0, j = 1, . . . , n

min(xn − x1),
(2)

where si, fi are the indices of the starting and ending nodes of arc ei. Ob-
viuosly one can suppose, that x1 ≡ 0 and the problem (2) can be simpli-
fied. If the activity duration times di, i = 1, . . . ,m are random variables,
then let us designate these by ξi, i = 1, . . . ,m and let us solve the following
jointly probabilistic constrained stochastic programming problem for finding
the xj , j = 1, . . . n earliest starting times:

P (xfi − xsi ≥ ξi, i = 1, . . . ,m) ≥ p
xj ≥ 0, j = 1, . . . , n

min(xn − x1),
(3)

where p is a prescribed, large enough probability. If the activity starting times
determined by the x1, . . . , xn variables according to the optimal solution of
the optimization problem (3) are applied then we can garantee at reliability
level p that the whole project can be executed without any conflict in the
activity starting and executing times.

In the literature of PERT the activity duration times are usually supposed
to be independent. In these cases in the stochastic programming problem
(3) the joint probability can easiliy be calculated by taking the product of
the probabilities calculated from the one dimensional marginal probability
distributions. These problems are easy to solve from a numerical point of
view.

In the first problem of the next section we will show that the stochas-
tic programming problem (3) can also be solved if we suppose the random
activity duration times to be Dirichlet distributed. In the second problem
the duration times are supposed to be indepent normally distributed and the
model will be solved both by the original PERT optimization technique as it is
described in the paper [8] and by the solution of the stochastic programming
problem (3). The numerical results will be compared.

3 Numerical Results

Let us regard first the PERT problem given by the loopless, directed graph
of Figure 1. The values di, i = 1, . . . , 15 denote the duration times of 15
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activities and xj denotes the earliest starting times for all activities starting
at event j, j = 1, . . . , 8. The event No. 1 is the start and the event No.
8 is the terminal event and we suppose that x1 = 0. Now, if the activity
duration times di, i = 1, . . . , 15 are deterministic, then the PERT modell
can be regarded as a CPM (Critical Path Method) problem and we have to
solve the problem (4) according to the linear programming problem (2). The
solution component x8 gives the total execution time of the project and the
solution components xj , j = 2, . . . , 7 give the earliest starting times for the
appropriate activities.
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Fig. 1. PERT network

x2 ≥ d1

x3 ≥ d2

x4 ≥ d3

x7 ≥ d4

−x2 +x5 ≥ d5

−x2 +x7 ≥ d6

−x2 +x8 ≥ d7

−x3 +x4 ≥ d8

−x3 +x5 ≥ d9

−x3 +x6 ≥ d10

−x4 +x7 ≥ d11

−x5 +x8 ≥ d12

−x6 +x7 ≥ d13

−x6 +x8 ≥ d14

−x7 +x8 ≥ d15

xi ≥ 0, i = 2, . . . , 8
x8 → min

(4)
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If however the activity duration times are stochastic, we designate them
by ξi, i = 1, . . . , 15. In the classical PERT model of Malcolm et al. ([9]) the
random activity duration times were assumed to be independent beta dis-
tributed on the intervals [ai, bi], where the optimistic activity duration times
ai and the pessimistic activity duration times bi were subjectively determined
by experts. In addition the most likely activity duration times Mi were also
subjectively determined by experts. Using these values the mean and variance
of the random activity duration times were estimated as

E(ξi) ≈ (ai + 4Mi + bi)/6,

and

D2(ξi) ≈ (bi − ai)2/36.

In this small example we will show the application of the Dirichlet distri-
bution for modeling the joint probability distribution of the random activity
duration times. This can be regarded as a natural generalization of the beta
distributed activity duration times, as the one dimensional marginal distri-
butions of the Dirichlet distribution are beta distributions.

Let us define the random variables ξi as

ξi = ai + (bi − ai)ηi, i = 1, . . . , 15,

where ai, bi are the optimistic and the pessimistic estimators of the duration
times of the ith activity, and the random variables η1, . . . , η15 are Dirich-
let distributed with parameters ϑ1 > 0, . . . , ϑ15 > 0, ϑ16 > 0. Their joint
probability density function is

f (x1, . . . , x15) = Γ (ϑ1+...+ϑ15+ϑ16)
Γ (ϑ1)···Γ (ϑ15)Γ (ϑ16)x

ϑ1−1
1 · · ·xϑ15−1

15 (1− x1 − . . .− x15)
ϑ16−1

,

if x1 ≥ 0, . . . , x15 ≥ 0 and x1 + . . .+ x15 ≤ 1.
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Now we have to solve a stochastic programming problem of type (3):

P

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
(b1−a1)( −a1 +x2 ) ≥ η1

1
(b2−a2)( −a2 +x3 ) ≥ η2

1
(b3−a3)( −a3 +x4 ) ≥ η3

1
(b4−a4)( −a4 +x7 ) ≥ η4

1
(b5−a5)( −a5 −x2 +x5 ) ≥ η5

1
(b6−a6)( −a6 −x2 +x7 ) ≥ η6

1
(b7−a7)( −a7 −x2 +x8) ≥ η7

1
(b8−a8)( −a8 −x3 +x4 ) ≥ η8

1
(b9−a9)( −a9 −x3 +x5 ) ≥ η9

1
(b10−a10)( −a10 −x3 +x6 ) ≥ η10

1
(b11−a11)( −a11 −x4 +x7 ) ≥ η11

1
(b12−a12)( −a12 −x5 +x8) ≥ η12

1
(b13−a13)( −a13 −x6 +x7 ) ≥ η13

1
(b14−a14)( −a14 −x6 +x8) ≥ η14

1
(b15−a15)( −a15 −x7 +x8) ≥ η15

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≥ p (5)

xi ≥ 0, i = 2, . . . , 8
x8 → min,

where p is the prescribed probability of completing the project for the earliest
possible due date. In Table 1 the parameters of the Dirichlet distribution are
given. The correlation coefficients between different pairs of activity duration
times can be determined from these parameter values. We don’t give here
their values just remark that all of them are negative and the smallest one
equals −0.124409. Table 2 contains the solutions of the linear programming
problem (4) for those cases, when the optimistic, the pessimistic and the most
likely activity duration times are applied as deterministic values. There are
given in the same table the solutions of the stochastic programming problem
(5) for three different probability levels: 0.9, 0.95 and 0.99. The parameters of
the Dirichlet distribution were taken from the Table 1. In Table 2 the value
of the variable x8 means also the completion time of the project. It can be
seen that the deterministic cases do not provide appropriate results. If we
work with the optimistic or with the most likely activity duration times then
the project will be completed very quickly (less than 200), however if we cal-
culate the reliability level of this solution when the random activity duration
times follow the given Dirichlet distribution it will be probably much more
less then 0.9. When working with the pessimistic activity duration times then
the completion time of the project is too large (300) although the reliabil-
ity level according to the Dirichlet distribution is probably very high, even
more than 0.99. The decision maker can choose from the stochastic versions
according to his acceptable reliability level of completing the whole project
for the calculated time. We belive this choice will be easier for him than
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Table 1. Parameters of the Dirichlet distribution

No. optimistic pessimistic most likely θ expected standard

estimation estimation value parameter value deviation

1 45 60 45.043 1.06 45.691 0.642

2 10 40 11.500 2.05 12.674 1.745

3 50 75 50.048 1.04 51.130 1.060

4 10 40 12.957 3.07 14.004 2.083

5 15 45 15.286 1.20 16.565 1.362

6 70 95 70.071 1.06 71.152 1.070

7 40 75 40.133 1.08 41.643 1.511

8 85 95 85.524 2.10 85.913 0.588

9 10 35 10.600 1.05 11.141 1.065

10 45 90 45.011 1.005 46.966 1.878

11 25 45 25.967 2.015 26.752 1.154

12 25 50 25.083 1.07 26.163 1.075

13 30 60 30.071 1.05 31.370 1.278

14 55 75 56.048 2.10 56.826 1.176

15 15 35 15.029 1.03 15.896 0.844

16 1.02

Table 2. Solutions of the linear and stochastic programming problems

deterministic cases stochastic cases

variables optimistic pessimistic most likely p = 0.90 p = 0.95 p = 0.99

x1 0 0 0 0 0 0

x2 70 130 70.171 79.695 82.784 96.084

x3 10 40 11.500 15.291 24.443 27.131

x4 95 135 97.024 104.492 114.908 117.901

x5 170 255 170.410 177.479 181.694 193.509

x6 115 175 116.507 126.897 138.993 148.067

x7 140 225 144.199 162.424 181.097 184.299

x8 195 300 199.227 226.194 247.067 250.336
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the choice between the deterministic versions. The stochastic programming
problems were solved by that version of the code PCSP (Probabilistic Con-
strained Stochastic Programming) (see [16]) which can handle Dirichlet and
multivariate gamma distributions, too.

As a second numerical example let us consider the network of the Figure
2 what was applied in the paper by J. Long, A. Prékopa and T. Szántai (see
[8]).
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Fig. 2. PERT network from the paper by J. Long, A. Prékopa and T. Szántai (see
[8])

This network consists of 66 activities and 28 events, the start event is
the first one and the terminal event is the event No. 28. The optimistic and
pessimistic estimates of the activity duration times are given in Table 3.

In the PERT network of Figure 2 there exist 1623 paths from the start
to the terminal node. Let us designate these paths by Pj , j = 1, . . . , 1623.
As the optimistic ai and the pessimistic bi estimators of the duration times
of the ith activity are lower resp. upper bounds on the ith random activity
duration time, one can determine unconditional and conditional lower and
upper bounds of the path lengths in the following way:

L(Pj) =
∑
k∈Pj

ak, U(Pj) =
∑
k∈Pj

bk, j = 1, 2, . . . , 1623
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Table 3. Lower and upper bounds for the duration times of 66 activities (Table 1.
in the paper by J. Long, A. Prékopa and T. Szántai (see [8]))

No. Activity Lower Upper No. Activity Lower Upper

bound bound bound bound

1 ( 1, 2) 24 32 34 (13,18) 47 55

2 ( 1, 3) 48 56 35 (13,19) 44 52

3 ( 1, 4) 49 57 36 (14,23) 11 19

4 ( 1,13) 24 32 37 (14,28) 36 44

5 ( 2, 4) 21 29 38 (15,16) 39 47

6 ( 2, 5) 43 51 39 (15,17) 18 26

7 ( 2,15) 30 38 40 (16,17) 13 21

8 ( 3, 6) 14 22 41 (16,18) 41 49

9 ( 3, 8) 28 36 42 (16,22) 42 50

10 ( 3,13) 29 37 43 (17,22) 38 46

11 ( 4,13) 36 44 44 (17,24) 27 35

12 ( 4,15) 19 27 45 (18,19) 26 34

13 ( 5, 7) 49 57 46 (18,20) 39 47

14 ( 5,17) 12 20 47 (18,22) 25 33

15 ( 6, 8) 35 43 48 (19,20) 13 21

16 ( 6, 9) 28 36 49 (19,21) 16 24

17 ( 7,10) 15 23 50 (20,22) 29 37

18 ( 7,17) 26 34 51 (20,23) 42 50

19 ( 8,11) 33 41 52 (20,25) 33 41

20 ( 8,13) 46 54 53 (20,26) 43 51

21 ( 9,11) 41 49 54 (20,27) 44 52

22 ( 9,12) 47 55 55 (21,23) 22 30

23 ( 9,21) 42 50 56 (22,24) 46 54

24 (10,24) 40 48 57 (22,26) 19 27

25 (10,28) 37 45 58 (23,25) 33 41

26 (11,13) 27 35 59 (23,28) 39 47

27 (11,19) 26 34 60 (24,26) 15 23

28 (11,21) 31 39 61 (24,28) 48 56

29 (12,14) 38 46 62 (25,27) 27 35

30 (12,21) 48 56 63 (25,28) 26 34

31 (12,23) 29 37 64 (26,27) 29 37

32 (13,15) 32 40 65 (26,28) 22 30

33 (13,16) 20 28 66 (27,28) 20 28
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and
L(Pj \ Pl) =

∑
k∈Pj\Pl

ak, U(Pj \ Pl) =
∑

k∈Pj\Pl
bk,

j, l = 1, 2, . . . , 1623, j �= l.

The first elimination algorithm described in the paper [8] was based on the
comparison of the unconditional bounds of the path lengths, while the second
elimination algorithm was based on the comparison of the conditional bounds
of the path lengths. If, for a given pair of paths Pj and Pl, U(Pj) ≤ L(Pl),
then Pj is obviously redundant. So the first elimination step can be carried
out in O(p ln p) time. If, for a given pair of paths Pj and Pl, U(Pj \ Pl) ≤
L(Pl \Pj), then Pj is again obviously redundant. To eliminate all redundant
paths this way, we need to perform about

(
p′
2

)
pairwise comparisons if we start

with p′ paths. Fortunately p′, the remaining number of paths after the first
elimination algorithm is usually much less than the total number of existing
paths from the start to the terminal node.

With the lower and upper bounds on duration times of the activities given
in Table 3 the number of the remaining paths after the application of the first
path elimination algorithm is 201, while after subsequent application of the
second path elimination algorithm only 8 paths will remain as paths ever
may become critical. As in these 8 paths only 21 activities are involved, the
path–arc incidence matrix reduced to these paths only, has a size of 8 × 21
and it is given in Table 4. This matrix has only 4 linearly independent col-

Table 4. The path–arc incidence matrix of the remained 8 paths (Table 2. in the
paper by J. Long, A. Prékopa and T. Szántai (see [8]))

2 8 15 16 19 21 26 32 38 41 45 46 48 50 51 56 58 60 62 64 66

1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1

2 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1

3 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1

4 1 1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1

5 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1

6 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1

7 1 1 0 1 0 1 1 1 1 1 0 1 0 0 1 0 1 0 1 0 1

8 1 1 1 0 1 0 1 1 1 1 0 1 0 0 1 0 1 0 1 0 1

umn vectors, so the 8–variate normal probability distribution is restricted to
a 4–dimensional subspace, i.e. the distribution is singular. Let us compare the
results of the multivariate normal approach published in paper [8] with the
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results of the new stochastic programming based approach. Suppose the ran-
dom duration times of activities to be independent and normally distributed
with given expected values and variances. The expected values are defined as
the arithmetical mean values of their lower and upper bounds given in Table
3. The variances are defined as the squares of the differences between the
lower and upper bounds divided by twelve. Now the lengths of the remaining
8 paths have a singular multivariate normal probability distribution, con-
centrated on a 4–dimensional subspace. The parameters of this multivariate
normal probability distribution are given in Table 5.

Table 5. Parameters of the multivariate normal probability distribution of remain-
ing 8 paths

Expected value 508 507 504 503 487 486 483 482

Variance 8.9443 8.9443 8.6410 8.6410 8.6410 8.6410 8.3267 8.3267

1.0000 0.8667 0.8971 0.7591 0.7591 0.6211 0.6445 0.5013

0.8667 1.0000 0.7591 0.8971 0.6211 0.7591 0.5013 0.6445

0.8971 0.7591 1.0000 0.8571 0.6429 0.5000 0.7412 0.5930

Correlation 0.7591 0.8971 0.8571 1.0000 0.5000 0.6429 0.5930 0.7412

matrix 0.7591 0.6211 0.6429 0.5000 1.0000 0.8571 0.8895 0.7412

0.6211 0.7591 0.5000 0.6429 0.8571 1.0000 0.7412 0.8895

0.6445 0.5013 0.7412 0.5930 0.8895 0.7412 1.0000 0.8462

0.5013 0.6445 0.5930 0.7412 0.7412 0.8895 0.8462 1.0000

For comparing the two different approaches first the stochastic program-
ming problem (5) has been solved with different probability levels ranging
from 0 to 1. This was done easily by using the AMPL modeling language
(see Fourer, R., Gay,D. M. and Kernighan,B. W. [5]) and the LOQO solver
(see Vanderbei,R. J. [18] and [19]) as the random duration times of activi-
ties were supposed to be independent and normally distributed. The results
are given in Table 6. For plotting the graph of the cumulative probability
distribution function we needed its values in the interval 530–620 with unit
steplength. These values were calculated from the results of Table 6 by linear
interpolation.

The results of the multivariate normal approach are given in Table 7.
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Table 6. The solutions of the stochastic programming problem for different prob-
ability levels

probability execution probability execution probability execution

level time level time level time

0.01 531.358 0.35 560.794 0.70 577.641

0.05 540.927 0.40 563.087 0.75 580.677

0.10 546.329 0.45 565.351 0.80 584.153

0.15 550.112 0.50 567.624 0.85 588.333

0.20 553.206 0.55 569.945 0.90 593.796

0.25 555.927 0.60 572.353 0.95 602.312

0.30 558.427 0.65 574.897 0.99 619.592

Figure 3 shows the cumulative distribution functions of the project com-
pletion times when the two different, multivariate normal and stochastic pro-
gramming approaches are applied. It can be seen, that the cdf curve produced
by the stochastic programming approach runs along significantly higher val-
ues than the cdf curve produced by the multivariate normal approach. This
means, if we were able to start any activity promptly when all of its pre-
decessor activities are finished in a random instant, then the whole project
could be finished in a much shorter time. On the contrary, if we prescribe a
deterministic starting time for all of the activities in the project before the
starting time of the first activities and guarantee a reliability level to beeing
the whole project executable without any conflict, then the project can be
finished in a much longer time only. Even so, the decision maker sometimes
should accept this longer completion time as he cannot guarantee to start
the activities of the project in random time instants.
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Table 7. The results of the multivariate normal approach

execution probability execution probability execution probability
time level time level time level

480 0.0003 500 0.1297 520 0.8831

481 0.0004 501 0.1560 521 0.9042

482 0.0006 502 0.1855 522 0.9223

483 0.0009 503 0.2183 523 0.9377

484 0.0013 504 0.2541 524 0.9506

485 0.0020 505 0.2928 525 0.9613

486 0.0028 506 0.3340 526 0.9701

487 0.0040 507 0.3772 527 0.9770

488 0.0057 508 0.4220 528 0.9826

489 0.0079 509 0.4678 529 0.9869

490 0.0108 510 0.5141 530 0.9904

491 0.0146 511 0.5601 531 0.9931

492 0.0195 512 0.6053 532 0.9949

493 0.0258 513 0.6490 533 0.9964

494 0.0337 514 0.6909 534 0.9975

495 0.0435 515 0.7304 535 0.9983

496 0.0554 516 0.7671 536 0.9989

497 0.0697 517 0.8009 537 0.9993

498 0.0867 518 0.8315 538 0.9996

499 0.1067 519 0.8589 539 0.9997

Finally we remark, that in the introduced new PERT modeling it is also
possible to realize some type of on–line control. This can be based on ideas
of rolling horizon, i.e., recalculations of the predetermined activity starting
times can take place after observing that one or more of the activities can-
not be started in the predetermined start time, or in an opposite way, after
observing that the predetermined start times became too loose for almost all
of the activities.
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Fig. 3. The cdf’s of the project completion times determined by the multivariate
normal and stochastic programming approaches.
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Abstract. The concept of implementable nonlinear stochastic programming by fi-
nite series of Monte-Carlo samples is surveyed addressing the topics related with
stochastic differentiation, stopping rules, conditions of convergence, rational setting
of the parameters of algorithms, etc. Our approach distinguishes itself by treatment
of the accuracy of solution in a statistical manner, testing the hypothese of opti-
mality according to statistical criteria, and estimating confidence intervals of the
objective and constraint functions. The rule for adjusting the Monte-Carlo sample
size is introduced which ensures the convergence with the linear rate and enables us
to solve the stochastic optimization problem using a reasonable number of Monte-
Carlo trials. The issues of implementation of the developed approach in optimal
decision making, portfolio optimization, engineering are considered, too.

Keywords: stochastic programming, Monte-Carlo method, stopping rules, con-
vergence.

1 Introduction

Optimal decision making in finance, engineering, management, ecology, statis-
tics, etc. is often related with an uncertainty conditioned by variuos causes.
If this uncertainty is described in a theoretical probabilistic way, the associ-
ated stochastic optimization problem can be formulated as a mathematical
programming task with expectations included in the objective function and
constraints. The idea of statistical simulation of these expectations is basic
in many iterative methods of stochastic programming (SP), whose behaviour
is studied theoretically very well, when the number of iterations infinitely in-
creased, i.e., in principle, however, in real situations we must make an optimal
decision after performing only a finite number of computer aided procedures.
In the latter case, development of the concept of implementable methods be-
comes a useful way for practical needs. First monographs, where the methods
of principle and the implementable ones were sequentially distinguished, ap-
peared two-three decades ago (see, i.e., Polak (1971)). Implementable meth-
ods for deterministic optimization are best known and investigated at the
present time (see Gill et al. (1981), Bertsekas (1982), Reklaitis et al. (1983),
Dennis and Shnabel (1983), etc.).
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Following this concept, we treat a method as implementable, if it satisfies
the main requirements on finiteness and efficiency, namely, a simple defini-
tion is given for all the parameters of the method, ensuring the finding of
optimum with an admissible accuracy in a rational way after a finite number
of computer aided procedures.

The development of stochastic implementable methods meets a lot of nu-
merical problems. Let us mention only the estimation of the objective and
constraint functions as well as their gradients, often having rather a compli-
cated analytical form, estimation and control of errors due to randomization
of algorithms, stopping rules, etc. Two main issues should be mentioned to
overcome obstacles in the creation of methods for practical stochastic opti-
mization:

• the model risk, that appears due to randomization of the numerical search
procedure, related with the accuracy of stochastic approximations, stop-
ping rules, etc.;

• the great volume of computations needed to solve the SP problem in a
stochastic way.

Development of algorithms of stochastic optimization is grounded fre-
quently by the ideas of stochastic approximation and the Monte-Carlo method.
The stochastic approximation theory, focussed on the term of a stochas-
tic quasigradient and certain rules for the step-length regulation, remains
a widely theoretically developed approach, because the above-mentioned is-
sues - absence of stopping rules, low convergence, etc. - remain great obstacles
for their practical implementation (Robins and Monro (1951), Arrow et al.
(1958), Vazan (1972), Ermolyev (1976), Mikhalewitch et al. (1987), Ermolyev
and Wets (1988), Uriasyev (1990), Nurminski (1991), Kushner and Jin (2003),
Marti (2005), etc.).

It is well known when applying the Monte-Carlo method to stochastic
optimization that an infinite increase in the Monte-Carlo sample size leads
to the convergence to a desired solution (see, Rubinstein (1983), Shapiro
(1989), etc.). However, the mentioned issues arise again using this fact in
numerical implementation: first, it is not always so clear, how to choose the
sample size in order to assure the establishment of an optimum with a desired
accuracy, second, the numerical iterative optimization, in this case, can be
expensive, in particular, for large sample sizes, third, certain problems may
occur, as the probabilistic measure of uncertain parameters depends on the
optimized ones, etc. A lot of these problems have been considered in (Shapiro
and Homem-de-Mello (1998)), including statistical optimality testing and
sample size regulation, however, concluding finally that “this requires further
theotretical and numerical investigation”.

An interesting way to ensure the convergence in stochastic optimization
is related to the application of methods with a relative stochastic gradient
error. The theoretical scheme of such methods requires the variance of the
stochastic gradient to be varied in the optimization procedure so that it re-
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mained proportional to the square of the gradient norm (see Polyak (1987)).
This approach offers an opportunity to develop implementable algorithms of
stochastic optimization. We survey them in this paper using a finite series
of Monte-Carlo estimators for algorithms construction (see also Sakalauskas
(1992), Sakalauskas (2000), Sakalauskas (2002), Sakalauskas (2004)). The ac-
curacy of the solution and the model risk due to Monte-Carlo randomization
are treated in a statistical manner, testing the hypothesis of optimality ac-
cording to statistical criteria. The rule for adjusting the Monte-Carlo sample
size is introduced to ensure the convergence and to find the solution to the
SP problem from rational volume of Monte-Carlo trials. Stochastic differen-
tiation techniques are briefly surveyed and a set of Monte-Carlo estimators
for stochastic programming is introduced. Some points for practical realiza-
tion of the developed approach and its implementation in decision making,
enginering, finance are considered, too.

2 Stochastic Differentiation and Monte-Carlo
Estimators

Let us consider a constrained stochastic optimization problem in general,
where expectations are included in the objective function and/or several con-
straints:

F0(x) = Ef0(x, ξ) → min,
F (x) = Ef(x, ξ) ≤ 0,

(1)
Ψ(x) = Eψ(x, ξ) = 0,
Φ(x) = 0, x ∈ Rn

+,

where F0: Rn → R is the objective scalar function, vector functions F :
Rn → Rm, Ψ : Rn → Rl describe, respectively, the inequality and equality
expected-value constraints as the vector function Φ: Rn → Rk corresponds
to the deterministic ones, ξ ∈ Ω is an elementary event in a probability space
(Ω,Σ, Px), the functions f : Rn×Ω → Rm, ψ: Rn×Ω → Rl satisfies certain
conditions on integrability and differentiability, the measure Px is absolutely
continuous and parameterized with respect to x in general, i.e., it can be
defined by the density function p: Rn × Ω → R+, and E is the symbol of
mathematical expectation. We restrict ourselves to the interesting theoretical
and practical cases, where deterministic constraints should be valid during
all the steps of algorithm. Such situations are met, for instance, in the finance
portfolio optimization, when the total portfolio weighting should remain the
same and strictly equal to one (see Ziemba and Mulvey (1998), etc.). Follow-
ing this assumption it is useful for further consideration to define the feasible
set :

W =
{
x |Φ(x) = 0, x ≥ 0

}
(2)
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Since mathematical expectations in (1) are computed explicitly only in
rare cases, all the more it is complicated to analytically compute the gradi-
ents of functions, containing this expression. The Monte-Carlo method is a
universal and convenient tool of estimating these expectations and it could
be applied to estimate derivatives, too. The procedures of gradient evalu-
ation are often constructed by expressing a gradient as an expectation and
afterwards evaluating this expectation by means of statistical simulation (see,
Rubinstein (1983), Rubinstein and Shapiro (1993), Kall and Wallace (1994),
Prekopa (1995), etc.). Thus, let us consider the expectation

F (x) = Ef(x, ω) ≡
∫

Rn
f(x, y)· p(x, y)d y, (3)

where the function f and the density function p are differentiable with respect
to x in the entire space Rn. Let us denote the support of measure Px as
S(x) = {y|p(x, y) > 0}, x ∈ Rn. Then it is not difficult to see that the
vector-column of the gradient of this function could be expressed as

∇F (x) = E
(∇xf(x, ω) + f(x, ω)· ∇x ln p(x, ω)

)
, (4)

(we assume ∇x ln p(x, y) = 0, y /∈ S(x)). We also see from the equation

E∇x ln p(x, ω) = 0

(which is obtained by differentiating the equation
∫

Ω p(x, y)d y = 1) that
there follow various expressions of the gradient follow. For instance, the for-
mula

∇F (x) = E
(∇xf(x, ω) + (f(x, ω)− f(x,Eω)

)· ∇x ln p(x, ω)) (5)

serves as an example of such an expression.
Thus we see that it is possible to express the expectation and its gradient

through a linear operator from the same probability space. Hence, opera-
tors (3), (4), and (5) can be estimated by means of the same Monte-Carlo
sample. It depends on the task solved, which formula, (4) or (5), is better
for use. For instance, expression (4) can provide smaller variances of gradi-
ent components than (5), if the variances of ξ components are small. This
fact is important when implementing the idea of smoothing in the stochastic
approximation, when the smoothing parameter tends to zero (Bartkute and
Sakalauskas (2006)).

Let us introduce a set of Monte-Carlo estimators needed for the construc-
tion of a stochastic optimization procedure. In solving the problems of kind
(1), suppose it is possible to get finite sequences of realizations (trials) of ξ
at any point x and after that to compute the values of functions f0, f, ψ, p as
well as of their gradients for these realizations.

Thus, assume the Monte-Carlo sample to be given for some x ∈ Rn:

Y = (y1, y2, . . . , yN ), (6)
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where yi are independent random vectors identically distributed with the
density p(x, · ): Ω → R+, i.e., copies of ξ. Monte’Carlo estimators of the
objective and constraint functions and their sampling variances are as follows:

F̃0(x) =
1
N

N∑
j=1

f0(x, yj), (7)

D̃2
F0

(x) =
1

N − 1

N∑
i=1

(
f0(x, yj)− F̃0(x)

)2
. (8)

Monte-Carlo estimators of the components F, Ψ are obtained in a similar way.
We will use a technique of stochastic differentiation developed on the basis of
likelihood ratios, which allows the estimation of the objective/constraint func-
tions and the coprresponding gradients, using the same Monte-Carlo sam-
ple (see, Rubinstein and Shapiro (1993), Bartkute and Sakalauskas (2006)).
Hence, the gradient estimate of the objective function follows by virtue of (4)
(or (5)) using the sample (6):

∇̃xF0(x) =
1
N

N∑
j=1

gj
0, (9)

where gj
0 ≡ g0(x, yj) = ∇xf0(x, yj)+ f0(x, yj)· ∇x ln p(x, yj) is the stochastic

gradient, namely,Egj
0 = ∇F0(x). The estimators of the components of vector-

functions F,Φ and that of their gradients are defined analogously.
Let us introduce the partial Lagrange function of the problem 1):

L(x, λ, μ) = F0(x) + λ·F (x) + μ·Φ(x), (10)

where λ ≥ 0, μ are the vectors of Lagrange multipliers of respective di-
mension, that may be treated as an expectation of the stochastic Lagrange
function

l(x, λ, μ, ξ) = f0(x, ξ) + λ · f(x, ξ) + μ ·ϕ(x, ξ).

Then the estimator of the gradient of the Lagrange function:

∇̃xL(x, λ, μ) =
1
N

N∑
j=1

Gj , (11)

might be introduced according to (4) (or (5)) as the mean of identically
distributed independent vectors

Gj = ∇xl(x, λ, μ, yj) + l(x, λ, μ, yj)· ∇x ln p(x, yj), i = 1, N.

The sampling covariance matrix

A =
1
N

N∑
j=1

(Gj − ∇̃xL)· (Gj − ∇̃xL)′ (12)

will also used later on.
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3 Statistical Verification of the Optimality Hypothesis

A possible decision on optimal solution finding should be examined during the
optimization process. Let x+ be the solution of (1). By virtue of the Kuhn-
Tucker theorem (see, e.g., Bertsekas (1982)) there exist values. λ+ ≥ 0, μ+,
such that(∇Lx(x+, λ+, μ+)

)
W

= 0, λ+·F (x+) = 0, Φ(x+) = 0, (13)

0where the denotation gQ denotes the projection of the vector g to some set
Q.

Since we estimate the objective/constraint functions and that of their
gradients by statistical simulation, we can test only the statistical optimality
hypothesis. Thus, the decision on finding optimum could be made on the
basis of Monte Carlo estimators of objective/constraint functions and their
gradients, if, first, there is no reason to reject the hypothesis on the validity
of conditions (13), and second, the objective and the constraint functions are
estimated with a permissible accuracy.

Note that the distribution of sampling averages (7), (9), and (11) (as well
as that of their projections) can be approximated by the one- and multi-
dimensional Gaussian law (see, e.g., (Bhattacharya and Ranga Rao (1976),
Box and Wilson (1962), Gotze and Bentkus (1999)). Then it is convenient
to test the validity of the first optimality condition in (12) by means of the
well-known multidimensional Hotelling T 2-statistics (see, e.g., Aivazian et al.
(1985), Krishnaiah, and Lee (1980), etc.). Hence, the optimality hypothe-
sis may be accepted for some point x with significance μ, if the following
condition is true:

(N − n)· (∇̃xL)′·A−1· (∇̃xL)/n ≤ Fish(μ, n,N − n), (14)

where Fish(μ, n,N t − n) is the μ-quantile of the Fisher distribution with
(n,N t − n) degrees of freedom, ∇̃xL = ∇̃xL(x, λ) is the estimate (11) of the
Lagrange function gradient projection to the set (2), and A is the projection
of normalizing matrix (12) estimated at the point (x, λ, μ) to the set W and
N is the size of sample (6).

Let us consider a numerical experiment for the study of the proposed
criteria.

Example 1. Since functions met in practice are typically of a quadratic
character with some nonlinear disturbance in a neighbourhood of the optimal
point, let us consider a test example

F (x) ≡ Ef0(x + ω)→ min,

where f0(y) =
∑n

i=1(aiy
2
i + bi· (1− cos(ci· yi))), yi = xi +wi, wi are random

and normallyN(0, d2) distributed, d = 0.5, (a = (8.00, 5.00, 4.30, 9.10, 1.50, 5.00,
4.00, 4.70, 8.40, 10.00), b = (3.70, 1.00, 2.10, 0.50, 0.20, 4.00, 2.00, 2.10, 5.80, 5.00),
c = (0.45, 0.50, 0.10, 0.60, 0.35, 0.50, 0.25, 0.15, 0.40, 0.50)).
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Such an example may be treated as a stochastic version of the determin-
istic task of mathematical programming with the objective function, where
the controlled variables are measured under some Gaussian error with the
variance d2. Note that our task is not convex. We examine the distribution
of the statistic in criterion (14) by means of statistical simulation, solving
the test task, when p = 0, n = 2. The optimal point is known in this case:
x+ = 0. Let the gradient of considered functions be evaluated numerically
by the Monte-Carlo estimator following from (9) or (11). Thus, 400 Monte-
Carlo samples of size N = (50, 100, 200, 500, 1000) were generated and the
T 2-statistics in (14) were computed for each sample. The hypothesis on the
difference of empirical distribution of this statistic from the Fisher distribu-
tion was tested according to the criteria ω2 and Ω2 (see Bolshev and Smirnov
(1983)). The value of the first criterion on at the optimal point for N = 50
is ω2 = 0.2746 against the critical value 0.46 (p = 0.05), and that of the
next one is Ω = 1.616 against the critical value 2.49 (p = 0.05). Besides,
the hypothesis on the coincidence of empirical distribution of the considered
statistics to the Fisher distribution was rejected at the points differing from
the optimal one according to the criteria ω2 and Ω2 (if r = |x − x+| ≥ 0.1).
So the distribution of the multidimensional T 2-statistics, in our case, can be
approximated rather well by the Fisher distribution even in the case of not
very large samples (N ∼= 50).

Next the dependencies of the stopping probability according to criterion
(14) on the distance r = |x − x+| to the optimal point were studied. These
dependencies are presented in Fig. 1 (for confidence α = 0.95). So we see that
by regulating the sample size we are able to test the optimality hypothesis in
a statistical way and to evaluate the objective and contraint functions with
a desired accuracy.

Fig. 1. Stopping probability according to (13), μ = 0.95.
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Now we make important remarks as to the control of the model risk due to
randomization, because real values of the objective and constraint functions
remain unknown and we know only their estimates, produced by statistical
simulation. Note, that the upper confidence bound of the constraint func-
tion estimate with the appropriate confidence probability has to be used for
testing the validity of expected-value inequality constraints, i.e., the second
optimality condition in (13). Regarding equality constraints, we have to test
wether the appropriate confidence interval includes zero. Besides, the sample
size N has to be sufficiently large in order to estimate the confidence intervals
of the objective and the constraint functions with a permissible accuracy. In
the latter cases it is convenient to use the asymptotic normality again and
to approximate the respective confidence bounds by means of the sampling
variance (8). Clearly, since the statistical testing of the optimality hypothesis
is grounded by the convergence of distribution of sampling estimates to the
Gaussian law, additional points could be introduced, considering the rate of
convergence to the normal law.

Summarizing we introduce some rules, the violation of at least one of
which enables us to reject the optimality hypothesis. Namely, let certain
values (x, λ, μ) be given for which Monte-Carlo sample (6) is generated and
the corresponding Monte-Carlo estimators are estimated. Then, if:

a) criterion (14) does not contradict the hypothesis that the projection to
the feasible set of the Lagrange function gradient is equal to zero (the first
condition in (13));

b) the inequality constraint conditions (the second condition in (13)) van-
ishs with a given probability β:

F̃i(xt) + ηβ · D̃Fi(x
t) ≤ 0, i = 1,m,

c) the equality constraint conditions (third condition in (13)) vanishes
with a given probability β∣∣Φ̃i(xt)

∣∣ ≤ ηβ · D̃Φ1(x
t), i = 1, l,

d) the estimated lengths of the confidence interval of the objective func-
tion and that of constraints do not exceed the given accuracy εi:

2ηβ·DFi/
√
N ≤ εi, i = 0,m, 2ηβ ·DΦi/

√
N ≤ εi, i = 1, l,

where ηβ is the β-quantile of the standard normal distribution, then there
are no reasons to reject the hypothesis on finding optimum. Therefore there
are reasons to stop the optimization and make a decision on finding optimum
with an admissible accuracy.

If at least one condition a)–d) is not satisfied, then new improved values
of (x, λ, μ) should be chosen and other samples generated, etc.
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4 Optimization by Monte-Carlo Estimators with
Sample Size Regulation

Now we start developing a stochastic optimization procedure by Monte-Carlo
estimators. It has been noticed of late that in stochastic optimization only
the first order methods are working. Therefore we confine ourselves only to
the gradient type methods. Our goal is to show how well-known deterministic
approaches might be generalized for the tochastic case. Since the description
of the algorithm for full problem (1) would be rather cumbersome, we consider
partial cases emphasizing the peculiarities arising in each case. Thus, we
focus on unconstrained stochastic optimization, optimization with expected-
value constraints and stochastic optimization with deterministic constraints,
which should be strictly fullfilled. In the latter case, a nonlinear stochastic
optimization with deterministic linear constraints is of interest.

4.1 Unconstrained Stochastic Optimization

Thus, we consider the problem:

F (x) = Ef(x, ξ) → min, x ∈ Rn,

under the assumptions disscussed in the statement (1). Let an initial point
x0 ∈ Rn be given, random sample (6) of a certain initial size N0 be generated
at this point, and the corresponding Monte-Carlo estimators (7), (8), (9),
(12) be computed. Now, the iterative stochastic procedure of gradient search
might be introduced:

xt+1 = xt − ρ· G̃(xt), (15)

where ρ > 0 is a certain step-length multiplier.
Letu s consider the choice of random sample (6) size when this procedure is

iterated. Sometimes this sample size is taken to be fixed in all the iterations of
the optimization process and choosen sufficiently large to ensure the required
accuracy of estimates in all the iterations (see, Antreich and Koblitz (1982),
Belyakov et al. (1985), Jun Shao (1989), Shapiro (1989), etc.). Very often this
guaranteeing size is about 1000–1500 trials or more, and, if the number of
optimization steps is large, solution of stochastic optimization problem can
obtain substantial computation (Jun Shao (1989)). On the other hand, it is
well known that the fixed sample size, although very large, is sufficient only
to ensure the convergence to some neighbourhood of the optimal point (see,
e.g., Polyak (1987), Sakalauskas (1997)).

Note, that there is no great necessity to compute estimators with a high
accuracy on starting the optimization, because then it suffices only to evalu-
ate approximately the direction leading to the optimum. Therefore, one can
obtain not so large samples at the beginning of the optimum search and later
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on increase the samples size so as to obtain the estimate of the objective func-
tion with a desired accuracy only at the time of decision making on finding
the solution to the optimization problem. We pursue this purpose by choosing
the sample size at every next iteration inversely proportional to the square
of the gradient estimator from the current iteration:

N t+1 ≥
[ C

ρ· |G̃(xt)|2
]

+ 1, (16)

where C > 0 is a constant, [· ] means the integer part of the number. The
following theorems justifies such an approach.

Theorem 1. Let the function F : Rn → R, expressed as expectation, be
bounded: F (x) ≥ F+ > −∞, ∀x ∈ Rn, and differentiable, such that the
gradient of this function sattisfies the Lipshitz condition with the constant
L > 0, ∀x ∈ Rn.

Assume that for any x ∈ Rn and any number N ≥ 1 one can obtain sam-
ple (6) of independent identically distributed vectors with the density p(x, · )
and compute estimates (7), (9) such, that the variance of the stochastic gra-
dient norm in (9) is uniformly bounded: E|g(x, ξ)−∇F (x)|2 < K, ∀x ∈ Rn.

Let the initial point x0 ∈ Rn and initial sample size N0 be given andran-
dom sequences {xt}∞t=0 be defined according to (15), where the sample size
is iteratively changed according to the rule (16), where C > 0 is a certain
constant. Then almost surely (a.s.):

lim
t→∞

∣∣∇F (xt)
∣∣2 = 0,

if 0 < ρ ≤ 1
L , C ≥ 4K.

If in addition, the function F (x) is twice differentiable and ‖∇2F (x)‖ ≥
l > 0, ∀x ∈ Rn, then the estimate

E
(
|xt−x+|2+ρ·K

N t

)
≤
(
|x0−x+|2+ρ·K

N0

)(
1−ρ

(
l−K·L

2

C

))t

, t = 0, 1, 2, . . . ,

holds for 0 < ρ ≤ min[ 1
L ,

3
4·(1+l) ], C ≥ K·max[4, L2

l ], and where x+ is a
stationary point.

The proof of the theorem is given by (Sakalauskas (2000)).
The step length ρ could be determinated experimentally or using the

method of a simple iteration (see, e.g., Kantorovitch and Akilov (1958),
Sakalauskas (1997), Sakalauskas (2000)). The choice of constant C or of the
best metrics for computing the stochastic gradient norm in (16) requires a
separate study. Such a version for regulating the sample size might be pro-
posed for practical application:

N t+1 = min
(

max
([ n·Fish(γ, n,N t − n)

ρ· (G̃(xt)′· (A(xt))−1· (G̃(xt)

]
+ n,Nmin

)
, Nmax

)
,(17)
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where Fish(γ, n,N t − n) is the γ-quantile of the Fisher distribution with
(n,N t − n) degrees of freedom. Minimal and maximal values Nmin (usually
∼20–50) and Nmax (usually ∼ 1000− −2000) are introduced to avoid great
fluctuations of sample size in iterations. Note that Nmax may also be chosen
from the conditions on the permissible confidence interval of estimates of the
objective function (Sakalauskas (2000)). The choice C = n·Fish(γ, n,N t −
n) ≈ χ2

γ(n) and estimation of the gradient norm in a metric induced by the
sampling covariance matrix (12) is convenient for interpretation, because in
such a case, a random error of the stochastic gradient does not exceed the
gradient norm approximately with probability 1−γ. The rule (17) implies rule
(16) and, in its turn, the convergence by virtue of the moment theorem for
multidimensional Hotelling T 2-statistics with arbitrarily distributed vectors
(see Bentkus and Goetze (1999)).

For stopping of the method (15), (17) it suffices to test the hypothesis
of equality of the objective function gradient to zero according to the point
a) of the previous section and to verify the admissible length of the confi-
dence interval of this function according to the point d). As follows from the
Theorem 1, the method stops a.s. after a finite number of iterations. The
numerical study of the method (15), (7) is discussed in the next section, too.

4.2 Nonlinear Optimization with Expected-Value Constraints

Let us consider problem (1) in the absence of deterministic constraints.
The stochastic implementation of various versions of constraint optimization
procedures distinguishes itself by the same peculiarities. We may analyse
these peculiarities in the stochastic programming problem when construct-
ing a stochastic version of the Arrow-Hurvitz-Udzava procedure (Bertsekas
(1982)).

Theorem 2. Let the functions F0: Rn → R, F : Rn → Rm, Ψ : Rn → Rk

expressed as expectations, be convex and twice differentiable. Assume that all
the eigen-values of the matrix of second derivatives ∇2

xxL(x, λ+, μ+), ∀x ∈ Rn

of the Lagrange function (10) be uniformly bounded and belonging to some
interval [m,M ], m > 0, and, besides,∣∣∇F (x)−∇F (x+)

∣∣ ≤ m

2·M
∣∣∇F (x+)

∣∣, ∣∣∇Ψ(x)−∇Ψ(x+)
∣∣ ≤ m

2·M
∣∣∇Ψ(x+)

∣∣,
|∇F (x+)| > 0, ∀x ∈ Rn, where (x+, λ+, μ+) is the point satisfying the Kuhn-
Tucker conditions (13).

In addition, let for any x ∈ Rn and any number N ≥ 1 there exists a
possibility exists to generate sample (6) and obtain estimates (7) and (11),
where the conditions of uniform boundedness on variances and covariances
of the estimates introduced are valid: E(f(x, ξ) − F (x))2 < d, E(ψ(x, ξ) −
Ψ(x))2 < d, E|g(x, ξ)−∇F (x)|2 < K, ∀x ∈ Rn.
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Let now the initial point x0 ∈ Rn, the vectors λ0 ≥ 0, μ0, and the initial
sample size N0 be given and the random sequence {xt, λt, μt}∞t=0 be defined
according to:

xt+1 = xt − ρ· ∇̃xL(xt, λt),

λt+1 =
(
λt + ρ·α· F̃ (xt)

)
+
,

μt+1 = μt
+ + ρ· γ· Φ̃(xt),

where Monte-Carlo estimators are obtained iteratively varying the sample size
N t according to the rule:

N t+1 ≥ C

ρ· |∇̃xL(xt, λt, μt)|2 ,

C > 0, α > 0, γ > 0 are certain constants.
Then, there exist positive values ρ̄, C̄ such that

E
(
|xt − x+|2 +

|λt − λ+|2
α

+
|μt − μ+|2

β
+

1
N t

)
< B·βt, t = 1, 2, . . . ,

for certain values 0 < β < 1, B > 0, when ρ < ρ, C > C̄.

The proof is similar to that given by Sakalauskas (2002) in the case of one
expected-value constraint and differs only in details. The multipliers ρ, α, γ
are chosen typicallly in an experimental way. The sample size regulation rule
analogous to (17) might be introduced under similar considerations.

For practical implementation, the modification of the method is useful:

xt+1 = xt − ρ· ∇̃xL(xt, λt),

λt+1 =
(
λt + ρ·α· (F̃ (xt) + ηβ ·DF (xt)

))
+
, (18)

μt+1 = μt
+ + ρ· γ· Φ̃(xt),

which assures the validity of the inequality constraint with a given confidence,
when only a finite number of iterations is taken.

The method considered is stopped according to the rules a)–d) discussed
in the previous section. The numerical study of the algorithm presented is
disscussed in the next section, too.

4.3 Stochastic Optimization with Deterministic Linear
Constraints

Let us focus on the constrained nonlinear stochastic optimization, when con-
straints are only deterministic and should be strictly followed during com-
puting. The gradient search approach with a projection to the feasible set
would be a chance to create an optimizing sequence, however the problems of
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“jamming” or “zigzagging” are typical in such a case (Bersekas (1982)). To
avoid them, we implement the ε – feasible directions approach. For the sake
of simplicity, let us consider a feasible set consisting of only linear constraints:

W =
{
x|Ax = b, x ≥ 0

}
, (19)

where b ∈ Rm, A is the n×m-matrix. The set of feasible directions is defined
as follows:

V (x) =
{
g ∈ �n |Ag = 0, ∀1≤i≤n(gj ≥ 0, if xj = 0)

}
.

Assume a certain multiplier ρ̂ > 0 to be given and the function ρx: V (x) →
�+ defined:

ρx(g) =

⎧⎨⎩min
{
ρ̂, min

gj<0,
1≤j≤n

(
− xj

gj

)}
, g �= 0

ρ̂.

(20)

Thus x+ ρ· g ∈W , as ρ = ρx(g) for any g ∈ V , x ∈ W . Now let a certain
small value ε̂ > 0 be given. We introduce the function εx: V (x) → �+:

εx(g) = ε̂ max
1≤j≤n
gj≤0

{
min{xj ,−ρ̂· gj}

}
, ∀x ∈ W, (21)

and define the ε-feasible set

Vε(x) =
{
g |Ag = 0, ∀1≤i≤n

(
gj ≥ 0, if (0 ≤ xj ≤ εx(g))

)}
. (22)

Next, let the initial approximation of the solution x0 ∈W and some initial
Monte-Carlo sample size N0 be given. We define the sequence {xt, N t}∞0 in
an iterative way by generating Monte-Carlo samples (6) and computing the
corresponding Monte-Carlo estimators and setting

xt+1 = xt − ρt· G̃t, (23)

N t+1 ≥ ρ̂·C
ρt· |G̃t|2 , (24)

where C > 0 is a certain constant, ρt = ρxt(Ĝt), G̃t is an ε-feasible direction
at the point xt (i.e., the projection of gradient estimate (9) to the ε-feasible
set (22)). The following theorem provides conditions for the convergence of
the method (23), (24).

Theorem 3. Let the function F : W → � be differentiable, the gradient of
this function be Lipshitzian with the constant L > 0, supx∈W |∇F (x)| < ∞,
supx∈W F (x) < ∞. Assume the set W = {x ∈ �n|Ax = b, x ≥ 0} to be
bounded and having more than one element, b ∈ Rm, A is the n×m-matrix.
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Let theret be possible to generate samples (6) for any size N > 1 and to
compute corresponding estimates (7), (9), when E|f(x, ξ)| <∞, E|gj | <∞,
E|gj −∇F (x)|p < K, ∀x ∈W .

Then, starting from any initial approximation x0 ∈ W and N0 > 1,
formulae (22), (23) define the sequence {xt, N t}∞0 so that xt ∈ W , and there
exist values ρ̄ > 0, ε0 > 0, C̄ > 0 such that

lim
t→∞

∣∣∇F (xt)V t

∣∣2 = 0 (a.s.),

for 0 < ρ̂ ≤ ρ̄, 0 < ε ≤ 0, C ≥ C̄.

The proof of the theorem is given in (Sakalauskas (2004)). Thus, we see
that the application of the ε-feasible solution enables us to avoid “jamming”
or “zigzagging” as well as the “jumping” arising due to the statistical nature
of Monte-Carlo estimators. The linear convergence rate can be proved in
principle, too, although the proof becomes rather cumbersome. Note, that,
for numerical implementation, the rule similar to (17) is sometimes convenient
for practice. The stopping of the method is performed according to points a)
and d) of Section 3.

Let us summarize the theoretical results provided in this section. First, we
may comment that approaches typical of the gradient search for the first or-
der may be generalized to unconstrained and constrained nonlinear stochastic
optimization, using the Monte-Carlo sample regulation proposed. It is impor-
tant that such an approach makes it possible to ensure the convergence with
the linear rate. Interesting comment follows from the linear convergence rate.
First, the Monte-Carlo sample size regulation according to rule introduced
allows us to develop reasonable, from the computational standpoint, stochas-
tic methods for stochastic optimization. Namely, the method can start from
a small initial size N0 = 20−50, because there is no need to evaluate Monte-
Carlo estimators with a high accuracy at the beginning of optimization, when
it suffices only to estimate an approximate direction leading to the optimum.
Later the sample size is increased with respect to rule introduced, gaining
the values sufficient to evaluate the estimators with an admissible accuracy
only at the final stage of optimization, when the gradient becomes small
in the neighbourhood of optimum. The numerical experiments and testing
corroborate such a conclusion.

On the other hand, as we see, the distance from the optimal solution
|xt − x+|2 and the sample size N t have a linear rate of changing, dependent
on the constant 0 < β < 1, which is stipulated mostly by the conditionality of
the matrix of second derivatives of the Lagrange function and constant C in
expressions of the rule. It follows from the proof of the theorem that Nt

Nt+1 ≈ β
for large t. Then, by virtue of the formula of geometrical progression:

t∑
i=0

N i ≈ N t· Q

1− β
,
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where Q is a certain constant. On the other hand, note that the stochastic
error of estimates at the moment of the stopping decision mostly depends
on the sample size (at this moment, say N t). Hence the ratio of the total
number of computations

∑t
i=0 N

i with the sample size N t, guaranteeing the
permissible accuracy, can be considered as bounded a.s. and not depending
on this accuracy. Consequently, if we have a certain resource to compute
one value of the objective or constraint function with a permissible accuracy,
then in practice the optimization requires only several times more computa-
tions. This enables us to create reasonable, from a computational viewpoint,
stochastic methods for SP.

5 Numerical Study of Algorithms

We consider here several counterexamples to illustrate theoretical conclusions
given by the theorems as well as to explore numerical properties of algorithms.

Example 2. Let us consider the stochastic optimization task with expected-
value constraints

F (x) ≡ Ef0(x+ w) → min,
(25)

P
(
f1(x+ ω) ≤ 0

)− p ≥ 0,

where f1 =
∑n

i=1(yi + 0.5), the function f0(x) is defined and other constants
are given in Example 1.

Now, let us consider the results, obtained for this example, by iterating
the procedure (18) 40 times and changing the sample size according to the
rule (17), where N0 = Nmin = 50 and Nmax is chosen. The initial data were as
follows: p = (0.0, 0.3, 0.6, 0.9), x0 = (−1,−1), n = (2, 5, 10), α = 0.1, ρ = 20,
β = 0.95, μ = 0.95, γ = 0.95, ε0 = 5%, ε1 = 0.05. The optimization was
repeated 400 times. Conditions a) – d) were satisfied although once for all the
paths of optimization. So a decision could be made on finding the optimum
finding with a permissible accuracy for all the paths (the sampling frequency
of stopping after t iterations with the confidence intervals is presented in
Fig. 2 (p = 0.6, n = 2)). Mean, minimal, and maximal values of the amount
of iterations and that of the total Monte-Carlo trials are presented in Table 1,
that are necessary to solve the optimization task (p = 0.6, n = 2). The
amount of iterations and that of total Monte-Carlo trials, needed for stopping,
dependent on the dimension n, are presented in Table 2 (n = 2). The sampling
estimates of the stopping point are x̃stop = (0.006 ± 0.053,−0.003± 0.026)
for p = 0, n = 2 (compare with xopt = (0, 0)). These results illustrate that
the algorithm proposed can be successfully applied when the objective and
constraint functions are convex and smooth only in a neighbourhood of the
optimum.
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Fig. 2. Frequency of stopping (with confidence interval).

Table 1.

Amount of iterations (t) Total amount of trials (
P

t Nt)p
Min Mean Max Min Mean Max

0.0 6 11.5±0.2 19 1029 2842±90 7835
0.3 4 11.2±0.3 27 1209 4720±231 18712
0.6 7 12.5±0.3 29 1370 4984±216 15600
0.9 10 31.5±1.1 73 1360 13100±629 37631

Table 2.

Amount of iterations (t) Total amount of trials (
P

t Nt)N
Min Mean Max Min Mean Max

2 6 11.5±0.2 19 1029 2842±90 7835
5 6 12.2±0.2 21 1333 3696±104 9021

10 7 13.2±0.2 27 1405 3930±101 8668

The averaged dependencies of the objective function ẼF t
0 , the constraint

ẼF t, the Lagrange multiplier Ẽλt and the sample size ẼN t by the iteration
number t are given in Figs. 3–6 to illustrate the convergence and behaviour
of the optimization process (p = 0.6, n = 2). Also, one path of realization of
the optimization process is given to illustrate the stochastic character of this
process in these figures.

Example 3. In this example, we consider the two-stage stochastic linear
optimization problem. In fact, such problems are solved by means of nonlinear
optimization (Shapiro and Homem-de-Mello).

We consider the manpower planning problem (King (1988)), where the
employer must decide upon the base level of regular staff at various skill levels.
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Fig. 3. Change of the objective function.

Fig. 4. Change of the constraint function.

The recourse actions available are regular staff overtime or outside temporary
help in order to meet unknown demand for service at the minimum cost.
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Fig. 5. Change of the Lagrange multiplier.

Fig. 6. Change of the sample size.

The problem is as follows:

choose x = (x1, x2, x3) to minimize:

F (x, z) =
3∑

j=1

cj ·xj +
12∑

t=1

Emin
y,z

( 3∑
j=1

(qj · yj,t + rj · zj,t)
)
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subject to:

xj ≥ 0, yj,t ≥ 0, zj, t ≥ 0,
3∑

j=1

(yj,t + zj,t) ≥ wt − αt

3∑
j=1

xj , t = 1, . . . , 12,

yj,t ≤ 0.2· atxj , j = 1, 2, 3, t = 1, . . . , 12,
γj−1(xj + yj−1,t + zj−1,t)− (xj + yj−1,t + zj−1,t) ≥ 0,

j = 2, 3, t = 1, . . . , 12,

where
xj : base level of regular staff at skill level j = 1, 2, 3,
yj,t: amount of overtime help,
zj,t: amount of temporary help,
cj : cost of regular staff at skill level j = 1, 2, 3,
qj : cost of overtime,
rj : cost of temporary help,
wt: demand for services at period t,
αt: anticipated absentees rate for regular staff at time t,

γj−1: ratio of amount of skill level j per amount of j − 1 required,
the demands ξt, t = 1, 12, are independent normal: N(μt, σ

2
t ), where μt =

l·σt. Initial data and other details can be found in (King (1988)).
The results of solving this task by the method of unconstrained optimiza-

tion (16), (18) are given in Table 3 (the confidence interval in 100 USD, the
cost of manpower is given in USD).

Table 3.

Manpower amount and cost (in dependence of variation l)

η X1 X2 X3 F

0 9222 5533 1106 94,899
1 9222 5533 1106 94,899

10 9376 5616 1046 96,832
30 9452 5672 1036 98,614

Example 4. Let us to consider an application of the developed approach
to the optimization of portfolio of the Lithuanian Stock Market with n = 4
securities.

We make the analysis of daily returns of the following assets:
ENRG – joint stock company “Lietuvos energija” (energetics),
MAZN – joint stock company “Mazeikiu Nafta” (oil refinery),
ROKS – joint stock company “Rokiskio suris” (dairy products),
RST – joint stock company “Rytu skirstomieji tinklai” (energetics).
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Table 4.

ENRG MAZN ROKS RST
μi σi

Correlations

ENRG 1 0.0120 0.0010 0.1621 0.5029 0.7439
MAZN 0.0120 1 −0.0310 0.0954 0.4447 0.6414
ROKS 0.0010 −0.031 1 0.0572 0.2609 0.3320
RST 0.1621 0.0954 0.0572 1 0.3327 0.3555

A brief description of data is given in Table 4, where empirical data were
fitted by a lognormal model according to the Kolmogorov-Smirnov criterion.
The data source is www.nse.lt/nvpb/index en.php, time period – 2002.01–
2003.10.

The portfolio return function is as follows,

r(w, ξ) =
n∑

i=1

wi· eξi ,

ξ � N(μ,Σ), μ = (μ1, μ2, . . . , μn), Σ = [σij ]n1 . Portfolio weighting to maxi-
mize a probability of portfolio return to exceed the desired threshold R:

F (w) = P
(
r(w, ξ) ≥ R

)→ max
w∈W

,

was considered with a simple set of constitutional constraintsW = (w|wi ≥ 0,∑n
i=1 wi = 1).
This problem was solved as nonlinear stochastic optimization task with

strictly valid linear constraints.

Table 5.

t w1 w2 w3 w4
Estimate (7)
(Confidence)

Hotelling statistics T 2

(Fisher quantile Fσ)) Nt

1 25.0 25.0 25.0 25.0 78.12%(68.92 87.33) 2.04 (2.57) 50
2 39.6 28.1 18.7 13.6 80.83%(73.59 88.08) 2.21 (2.53) 63
3 35.5 42.2 12.4 9.9 78.50%(71.39 85.61) 0.20 (2.51) 72
4 37.3 44.8 11.2 6.7 82.94%(81.14 84.73) 5.55 (2.38) 870
5 40.2 46.1 8.8 4.9 85.12%(82.58 87.67) 1.96 (2.40) 376
6 41.6 48.8 7.3 2.3 83.66%(81.25 86.07) 3.46 (2.39) 459
7 44.3 50.4 5.3 0.0 82.84%(79.92 85.76) 2.58 (2.63) 319
8 49.3 47.7 0.3 0.0 83.14%(80.28 86.00) 0.16 (2.63) 326
9 50.3 49.2 0.5 0.0 84.00%(83.30 84.69) 0.84 (2.61) 5318
10 50.7 49.3 0.0 0.0 84.29%(83.79 84.79) 0.18 (3.00) 9900

ΣNt = 17753
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Portfolio weighting according to this objective function by the method
developed is shown in Table 5. The gradient of the objective function was ex-
pressed in form (3), using the transformation to polar variables described by
(Sakalauskas (1998)). The parameters of the method were as follows: ρ = 2.0,
δ = 1%, γ = σ = β = 0.95, ε = 0.7. We see that, after t = 10 iterations and
total 17753 Monte-Carlo trials, the probability of the desired portfolio in-
creased from 78.12% (67.92 87.33) to 84.29% (83.79 84.79) (third column),
changing the strategies of portfolio sharing with respect to (18) (second col-
umn) and choosing the Monte-Carlo sample size with respect to (21) (last
column). The total amount of trials

∑t
i=1 Ni exceeded the Monte-Carlo sam-

ple size Nt at the time of the stopping decision only by 1,79 times.
Thus, counterexamples corroborate the theoretical conclusions and show

that the proposed approach enables us to solve well conditioned SP problems,
where the conditions of convexity and smoothness vanish only in some neigh-
bourhood of the optimal point, with a sufficient permissible accuracy, using
the acceptable volume of computations (5–20 iterations and 3000–10000 total
Monte-Carlo trials). If we keep in mind that application of the Monte-Carlo
procedure usually requires 1000–2000 trials in statistical simulation and es-
timation of one value of the function, the optimization by our approach can
usually require only 3–5 times more computation.

6 Discussion and Conclusions

The stochastic iterative method has been developed to solve the SP problems
by a finite sequence of Monte-Carlo sampling estimators. Since the stochas-
tic optimization only of the first order methods are suitable we confined
ourselves to the gradient-descent type methods, showing that typical deter-
ministic approaches of unconstrained and unconstrained optimization might
be generalised to the stochastic case.

The approach surveyed in this paper is grounded by the stopping proce-
dure and the rule for iterative regulation of Monte-Carlo sample size, taking
into account the stochastic model risk. The stopping procedure proposed
allows us to test the optimality hypothesis and to evaluate the confidence
intervals of the objective and constraint functions in a statistical way. The
numerical experiment has shown the acceptability of this procedure, when
the Monte-Carlo sample size is N ≥ 50. The regulation of sample size, when
this size is taken inversely proportional to the square of the gradient norm of
the Monte-Carlo estimate, makes it possible to solve SP problems rationally,
from the computational viewpoint, and guarantees the convergence a.s. at
a linear rate. The numerical study and the practical example corroborate
theoretical conclusions and show that the procedures developed enable us to
solve SP problems with an admissible issible accuracy using the acceptable
volume of computations (5–20 iterations and 3000–10000 total Monte-Carlo
trials). If we keep in mind that application of the Monte-Carlo procedure
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usually requires 1000–2000 trials in statistical simulation and estimation of
one value of the function, the optimization by our approach can require only
3–5 times more computation.
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Policy Issues Under Uncertainty



Endogenous Risks and Learning
in Climate Change Decision Analysis
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Abstract. We analyze the effects of risks and learning on climate change deci-
sions. Using a new two-stage, dynamic, climate change stabilization model with
random time horizons, we show that the explicit incorporation of ex-post learning
and safety constraints induces risk aversion in ex-ante decisions. This risk aver-
sion takes the form in linear models of VaR- and CVaR-type risk measures. We
also analyze extensions of the model that account for the possibility of nonlinear
costs, limited emissions abatement capacity, and partial learning. We find that in
all cases, even in linear models, any conclusion about the effect of learning can
be reversed. Namely, learning may lead to either less- or more restrictive ex-ante
emission reductions depending on model assumptions regarding costs, the distri-
butions describing uncertainties, and assumptions about what might be learned.
We analyze stylized elements of the model in order to identify the key factors driv-
ing outcomes and conclude that, unlike in most previous models, the quantiles of
probability distributions play a critical role in solutions.

Key words: stochastic nonsmooth optimization, climate stabilization, learning,
catastrophic risk.

1 Introduction

Early climate change mitigation analysis tended to frame the climate change
problem as a hit-or-miss type of decision making situation, in which a single
policy choice is made about appropriate emissions reductions over time. In-
creasingly, analysis explicitly recognizes that the problem is more accurately
described as sequential decision making under uncertainty, with the antic-
ipation that new information will be acquired over time. For example, one
reflections of this orientation can be found in discussions of climate change
policies [14] that are framed as a choice between acting now or waiting until
we know more about the problem [17], [27], [28]. This is a natural framing of
the problem given its key characteristics involving uncertainty, irreversibility,
and the potential for learning. Emissions of greenhouse gases (GHG) asso-
ciated with the production and consumption of goods and services lead to
long-lived atmospheric concentrations (stocks) of these pollutants that alter
Earths climate. On one hand, postponing the reduction of GHG emissions
may lead to costly and potentially irreversible climate-related impacts such
as reorganization of large-scale ocean circulation patterns or increased fre-
quency of extreme weather-related events. On the other hand, undertaking
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emission abatements now risks potentially irreversible investments that may
turn out to be unnecessary if climate change is less severe than expected.

In economics literature, the importance of learning was first discussed in
connections with irreversible investments in 1974 in Arrow and Fisher [2] and
Henry [13] without an overall two-stage model being formulated. Arrow and
Fisher [2], Henry [13], and Chichilnisky and Heal [3] have concluded that when
future damages are uncertain and irreversible, the ability to learn should lead
to more active ex-ante emission reductions. On the other hand, irreversibility
of capital may lock the economy in a wasteful use of resources. Viscusi and
Zeckhauser [25], Dixit and Pindyck [5], Ulph and Ulph [24], and Pindyck
[21] showed that the ability to learn in this case should lead to less active
ex-ante emission reduction. These competing effects imply that the net effect
of learning on ex-ante decisions is an empirical question. Nordhaus [20] and
Kolstad [16] examined the effects of learning by using empirically-calibrated
integrated assessment models. They concluded that, in fact, learning has in-
significant effects on ex-ante abatement policies because the damage losses
are not severe enough. A reason for this is that in the most integrated climate
and economics models, climate changes are considered as if they occur contin-
uously and as if they can eventually be reversed through ex-post adjustments
[28]. These models also use average damages (i.e., they cannot properly cap-
ture the effects of abrupt climate change [1] and catastrophic risks [8], [19],
[28]). A paper by Fisher and Narain [11] analyzed a two-period model with
risk characterized by a parameter introducing high or low climate change
damages. Because overall impacts are evaluated by using expected values,
the effects of capital irreversibility dominate catastrophic damages in a simi-
lar way to other models. Epstein [7] demonstrated that the effects of learning
on ex-ante decision depend in general on convexity or concavity of marginal
costs, which are very restrictive for climate change policy analysis [24].

In this paper we take a different approach. Instead of using expected
damages we explicitly introduce safety constraints by formulating the cli-
mate change problem within the two-stage framework of stabilization. We
develop a two-stage dynamic STO model with random time horizons and
deliberately analyze only stylized linear versions of this model. Our simple
analytical analysis allows to avoid otherwise endless number of computational
experiments in order to identify effects of various driving forces. In particular,
we show that the combination of safety constraints and perspectives of learn-
ing in linear models induces potentially strong risk aversion among ex-ante
decisions that is characterized by quantile based VaR (Value at Risk) and
CVaR (Conditional Value at Risk) risk measures common in the risk litera-
ture. As a result we show that, even with a linear net cost function, learning
may lead to either less or more restrictive emission reductions, depending on
mitigation costs and probability distributions describing key uncertainties.

The paper is organized as follows. Section 2 develops the general model,
characterizing climate change risk by the probability of total atmospheric
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CO2 concentrations exceeding a vital random threshold associated with po-
tential ranges of global temperature. It outlines a new type of two-stage
dynamic climate-change stabilization STO model with random durations of
stages. In general, this model can be solved only numerically and therefore
the key factors driving results are difficult to identify. For these reasons, we
analyze only stylized aspects of the model; these provide a clearer picture of
the various driving forces and show why the ability to learn in the future can
lead to either less restrictive or more restrictive ex-ante abatement policies
today.

Section 3 presents our basic simplified model. It uses a very simple linear
two-stage STO model to illustrate that the results from empirical models can
be contradictory because optimal solutions depend on complex nonsmooth
interactions among ex-ante and ex-post decisions, costs, and probability dis-
tributions. In particular, solutions contain potentially strong risk aversion
characterized by quantile-based risk measures that are used for regulating
the safety of nuclear plants and insolvency of insurance companies, but also
in financial applications, extremal value theory [6], and catastrophic risk man-
agement [8].

Section 4 analyzes three extensions of the basic model designed to investi-
gate the consequences of non-linear costs, limitations on stage two reductions
(or adaptive capacity), or incomplete learning. Results emphasize again the
importance to optimal solutions of quantiles of probability distributions char-
acterizing key uncertainties, and also more strongly and even unconditionally
require ex-ante anticipative emissions reduction in addition to ex-post reduc-
tions.

A more realistic but still linear dynamic two-stage climate change stabi-
lization STO model is analyzed in Section 6. Similar to Section 3, the explicit
incorporation of ex-ante and ex-post decisions induces risk aversions charac-
terized by a dynamic version of a CVaR type risk measure. This may create
the misleading impression that a truly risk-based policy analysis has been
carried out and, without the explicit introduction of adaptive capacity and
additional safety constraints, may provoke a catastrophe. In conclusion, Sec-
tion 6 emphasizes the importance of the proper models, explicit treatment of
uncertainty and risks, more realistic accounting for uncertainty, and robust
decisions.

2 Endogenous Climate Change Risk: A General Model

Climate-change integrated assessment models (see e.g., [20]) incorporate eco-
nomic and geophysical processes that link economic growth with the accu-
mulation of GHG emissions in the atmosphere. The accumulation of CO2

emissions is the main driving force behind global climate change over multi-
decade timescale. The process involves complex interactions between the at-
mosphere, the terrestrial biosphere, and the oceans. Current integrated as-
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sessment models use different carbon-cycle models for computing changes in
atmospheric concentrations M(t) resulting from CO2 emissions e(t) [23]. In
general, these models are of the form

M(t+ 1) = f(M(t), e(t), β), t = 0, 1, 2, ..., (1)

where β is a vector of model parameters. Values M(t) are used in integrated
assessment models to compute the increase in the global average temperature
as a smooth function of M(t), and damages are typically computed in the
form of smooth functions of this temperature increase.

This approach to modeling damages has several weaknesses. For example,
a serious underestimation of damages may result from the use of global av-
erage temperature as a measure of climate change. Changes in the frequency
of extreme weather-related events (e.g., floods, droughts, storms, heat waves)
may be more important and may be non-linearly related to changes in the
mean temperature. In addition, it has been proposed that beyond particular
climate change thresholds, singular catastrophic events may be triggered that
will have widespread consequences such as changes in ocean circulation, or
disintegration of ice sheets [19].

We therefore develop an alternative approach to modeling climate change
damages that treats threshold-type risks explicitly and that also accounts for
uncertainty and its potential resolution over time. We first present a brief
qualitative summary of the model, and then its mathematical form.

We assume that emissions in the absence of climate policy (specifically,
emissions mitigation policy) depend on a wide range of uncertainties in fu-
ture socio-economic development paths, technological progress, and lifestyles
which together can be grouped as scenarios. Furthermore, emissions are also
affected by explicit mitigation policies that might be adopted with uncertain
costs. Emissions lead to uncertain accumulation of atmospheric concentra-
tions and uncertain climate changes (and therefore damages). We introduce
risk by assuming that there is a safety constraint in the form of an atmo-
spheric stabilization target; i.e., a level of greenhouse gas concentration we
wish to avoid exceeding with some level of confidence, based on an assumed
level of aversion to the risk of incurring serious damages. Introducing stabi-
lization in the form of a chance constraint is consistent with the uncertainty
assumed in the problem: as long as uncertainty in the climate system per-
sists, any emissions path will yield at best a range of possible outcomes. Thus,
policies can only limit the chance of exceeding any particular target, and the
acceptable risk must be defined a priori.

We introduce learning by assuming there are two stages. In the first, de-
cision makers face full uncertainty. After a particular (and uncertain) length
of time, some new information about uncertain parameters is revealed, and
the second stage begins, at which point emission mitigation policies may be
adjusted. The problem is to choose the emissions reduction policies for both
stages such that mitigation costs are minimized and the safety constraint is
achieved with the desired level of confidence.
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This model of concentration-stabilization with learning can be defined
mathematically as follows. Let emissions e(t) in (1) depend on scenario un-
certainties ω and policy variables x. In this paper, we assume that sce-
narios are characterized as random variables defined in a probability space
Ω, ω ∈ Ω, with a probability measure P (dω). Thus, for Ω = {1, ..., N},
P (dω) = p(s) := P [ω = s],

∑N
s=1 p(s) = 1. Frequently we do not indicate the

dependence of random variables on ω if this is clear from the context.
Let us denote by L(ω) the uncertain target level of CO2 concentration in

the atmosphere. If M(t, x, ω) denotes the mitigated CO2 concentration, then
the main problem can be formulated as the choice of cost-efficient emission-
reduction path that satisfies probabilistic safety constraints on vital but un-
certain levels of concentrations

P [M(t, x, ω) ≤ L(ω), t = 1, T ] ≥ 1− γ, (2)

where γ is a risk factor, 0 ≤ γ < 1, T is a time horizon that may also
be uncertain. The violation of these constraints can be regarded as a catas-
trophic collapse. In the insurance industry, constraints of type (2) regulate
risk reserves to prevent insolvency. The typical approach to choosing γ in this
industry is not based primarily on evaluating potential damages, but rather
on limiting the chance that the insolvency may occur, say, to only once in 800
years, γ = 1/800. Similarly, the major failure of a nuclear plant is allowed
once in 107 years, γ = 10−7. Note that these are expected time horizons and
therefore there is the possibility that events may occur at any time.

The abrupt climate change in (2) is modeled by random L(ω), which is
revealed as a shock at random moment τ(x, ω), which may also depend on
x. Despite a smooth and even linear dependence of function M(t, x, ω) on x,
the left-hand side of (2) is, in general, a nonsmooth and often even a discon-
tinuous risk function [9], [10], [18]). Endogenous catastrophic collapse or the
vulnerability of analyzed socio-economic and environmental system is mod-
eled as a violation of constraint (2). In general, the learning may not reveal
full information but perhaps only shift ranges of probability distributions.
The learning may also not occur at τ ≤ T , or it may occur very close to T .
Because the inertia of the system may not allow constraints (2) to be fulfilled
quickly, the probability of a catastrophe conditional on revealed information
may drop rapidly below the vital level γ (i.e., constraint (2) emphasizes the
importance of proper ex-ante actions).

Learning is reflected by specifying a two-stage dynamic STO framework
with random time horizon. At stage 1, the emission-reduction path is defined
by ex-ante decisions x(t), t = 1, 2, ..., until a random time moment τ when
new information is revealed. The new information may also include a new
critical time horizon T (ω) for stage 2 ex-post emission reductions x(t, ω),
t = τ + 1, ..., T (ω). A new T (ω) can be shorter or longer than initial T , what
may essentially affect adaptive capacity of the system. In general, the ex-ante
policy x(t), t ≤ τ , includes components for choosing appropriate feasible level
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of this capacity. The problem is to minimize total emission reduction cost
subject to constraints (2).

The resulting model can only be solved numerically. Here, instead of using
numerical simulations, we take a different approach. In the following sections
we formulate various stylized elements of the model and evaluate them an-
alytically. This allows us to keep the discussion on a simple level, which
provides a clear picture of the driving forces, their appropriate treatments
and potential outcomes.

3 A Basic Model with Linear Cost Functions

The first stylized version of the general model we analyze aims to simplify
it to the maximum extent in order to establish which types of solutions are
possible even in the most basic case. Accordingly, we assume there are only
two periods; that mitigation costs are certain and linear in reductions; that
all other uncertainties can be collapsed into a single variable; and that the
learning that takes place before stage two begins completely resolves this
uncertainty. The single variable treated as uncertain is total emissions reduc-
tions over both periods, and the constraint is also expressed in terms of this
variable. A constraint on minimum emissions reduction can be thought of
as a concise way to represent several factors (and their uncertainties) that
come into play in meeting a target based on environmental outcomes such as
atmospheric concentrations, global average temperature levels, or particular
impacts. For example, emissions reductions required to meet a target will
depend on the target itself (i.e., whether a concentration or temperature tar-
get is high or low), on unmitigated reference emissions (because the absolute
size of required emissions reductions will depend on the magnitude of uncon-
trolled emissions in the reference case), and on the system mapping emissions
to environmental outcomes (e.g., parameters of the carbon cycle or climate
system). Uncertainty in total required emissions reductions can be thought
of as reflecting uncertainty in one or more of these different factors. Because
all uncertainty is resolved before stage two begins, a chance constraint (as in
the general problem) is unnecessary; the constraint can always be met with
full certainty.

In Section 3.1 we specify the model mathematically and present its solu-
tion, and in Section 3.2 discuss the effects of learning (in comparison to an
identical problem with uncertainty but no learning, or with perfect informa-
tion). In Section 3.3 we provide a discussion of the results.

3.1 Two-Stage Model

A stylized concentration-stabilization problem with learning can be formu-
lated as follows: assume that there are only two time intervals or periods
t = 1, 2. Define by xt, xt ≥ 0, t = 1, 2, a feasible level of emission reduction
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that can be chosen in period t; Ct, Ct > 0, is the known expected abatement
cost per unit of emission reduction in period t; θ(ω) is the uncertain target
value of cumulative emission reductions for two periods. In this problem for-
mulation, θ(ω) serves as the safety constraint, x1 + x2 ≥ θ(ω). As discussed
above, uncertainty in θ(ω) can be thought of as reflecting uncertainty in any
one of several different factors.

Assume uncertainty in θ(ω) is resolved between periods 1 and 2. The ex-
ante decision x1 is made before the uncertainty in θ is resolved, whereas the
ex-post decision x2 is based on known θ, i.e., x2 is a function of θ, x2(θ).
Assume that the ability to fulfill risk constraint x1 +x2 ≥ θ(ω) in period 2 is
unbounded (the impacts of this rather unrealistic assumption are analyzed in
Section 4. The problem is formulated as the minimization of total expected
linear costs

C1x1 + C2Ex2(θ) (3)

subject to safety constraints

x1 + x2(θ) ≥ θ (4)

for all θ. This is a classical two-stage STO problem [4], [10], [15], [26].
Clearly, if the ex-ante decision x1 is irreversible, then the optimal period

2 decision is x∗2(θ) = max {0, θ − x1}, that is, it depends non-smoothly on
period 1 decision x1 (path-dependence) and θ, providing potentially strong
cross-period random interactions among decisions. Optimal period 1 decision
x∗1 solves the stochastic minimax problem: minimize

F (x) = C1x+ C2Emax {0, θ − x} , x ≥ 0. (5)

Remark 2. Although the initial model (3)-(4) is linear in (x1, x2), the
introduction of ex-post decision x2(ω) induces risk aversion among ex-ante
decisions that is defined by implicit non-smooth (in general) function (5).
The following Proposition summarizes the solution and some important facts
about stochastic minimax problem (5). It shows that the induced risk atti-
tudes are characterized by VaR (critical quantile) and CVaR risk measures
[22] allowing further to derive main conclusions regarding effects of learning.
In extremal value theory [6], CVaR is also known as Mean Shortfall and Mean
Excess Loss.

Proposition. Assume that H(z) = P [θ ≤ z] is a continuously differen-
tiable function.
(i) F (x) is a strictly convex continuously differentiable function.
(ii) If C1 > C2, then x∗1 = 0 and x∗2(θ) = θ. If C1 < C2, then the necessary
and sufficient condition for optimal x∗ reads: x∗ is the quantile satisfying
equation

P [θ ≥ x] = C1/C2. (6)

(iii) The optimal value F (x∗) has two important representations involving
the expected cost uner perfect information, the expected value of perfect
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information and the CVaR risk measure:

F (x∗) = C1θ + C1E[x∗ − θ|θ ≤ x∗] = C2EθI(θ ≥ x∗), (7)

where E[·|·] denotes the conditional expectation, the indicator function
I(θ ≥ x) = 1 if θ ≥ x and I(θ ≥ x) = 0 otherwise.

Let us outline the proof.
(i) The convexity of F (x) follows from the convexity of function max {0, θ − x}
which is preserved under the expectation operation. The strict convexity and
continuous differentiability of F (x) follow from the continuous differentiabil-
ity of H(z).
(ii) The minimization of F (x) is a specific case of so-called stochastic minimax
problems [9]. From the general results (see, e.g., page 416 of [10]) it follows
that F

′
(x) = C1 − C2P [θ ≥ x]. From C1 < C2, it follows that F

′
(0) < 0,

i.e., x∗ > 0 (assuming x∗ = 0 we can derive contradiction with assumption
C1 < C2 for small x). As F (x) is a strictly convex function, it follows that
(6) is indeed a necessary and sufficient optimality condition.
(iii) The first representation in (7) follows from (6) and the following rear-
rangements:

F (x∗) = C1x
∗
1 +C2Emax {0, θ − x∗} = C1x

∗ +C2E[θ− x∗|θ ≥ x∗]P [θ ≥
x∗] = C1x

∗ +C1(E[θ− x∗]−E[θ− x∗|θ ≤ x∗]) = C1θ+C1(E[x∗− θ|θ ≤ x∗])
The second representation in (7) follows from (6) and Emax {0, θ − x∗} =

EθI(θ ≥ x∗)− x∗P (θ ≥ x∗).
Remark 3. The critical quantile in (6) defines the VaR risk measure; i.e.,

it indicates the magnitude of emission reduction in stage 1 that, with prob-
ability 1 − C1/C2, will be sufficient to meet the safety constraint with no
additional reduction required in stage 2. The first term C1θ in (7) represents
the expected cost under perfect information. The second term represents the
expected value of perfect information; i.e., the value of learning the true value
of θ before stage 1, rather than after stage 1 and before stage 2.

The second equation in (7) defines the CVaR risk measure; i.e., the ex-
pected value of abatement costs that will be necessary in stage 2 if emissions
reductions in stage 1 are not sufficient to meet the safety constraint. For some
distributions it is possible to derive x∗ from (6) explicitly. If θ is uniformly
distributed on [a, b], then it is easy to see that x∗ = C1

C2
a+(1− C1

C2
)b, i.e., x∗ is

between optimistic and pessimistic scenarios of required emissions reductions
with weights defined by ratio of costs C1 and C2.

3.2 Comparative Analysis

The Proposition of Section 3.1 allows the comparison of cases of perfect in-
formation, full uncertainty, and uncertainty with learning. The optimal con-
dition given by equation (6) defines a quantile of the underlying probability
distribution, i.e., it shows the critical dependence of period 1 ex-ante optimal
decision on the probability distribution H . Assume that C1 < C2. In the
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case of perfect information, i.e., when θ is known at the beginning of the first
period, both x1 and x2 can be chosen as a function of observable θ. Clearly,
the optimal solution is x∗1 = θ, x∗2 = 0, i.e., the term C1θ of the first equation
in (7) represents indeed the expected cost under perfect information (assum-
ing θ = θ, i.e., uncertainty is unbiased with respect to the true state of the
world). The second term represents the expected value of perfect information
because this cost would be eliminated if θ were known before the first-period
emission reduction decision had to be made (rather than afterward as in
the learning case). In the case of full uncertainty (”without learning”), the
optimal decision is x∗1 = θ, x∗2 = 0, which is also known as the certainty
equivalent. The possibility of learning combined with explicit introduction
of ex-post decisions specifies optimal period 1 abatements by the quantile
satisfying (6). It may exceed the certainty equivalent θ or it may be below
this level. As equation (6) shows, this depends on the relative values of costs
C1, C2, and the probability distribution H . For example, if C1/C2 = 1/2 and
θ has a normal distribution, then optimal ex-ante abatement coincides with
the certainty equivalent x∗1 = θ. For non-symetric probability distributions,
the optimal abatements can be below or above θ. An asymmetric probability
distribution can be caused, for example, by the interaction of a symmetric
probability distribution with an environmental constraint. For example, if
the probability density function for e(ω) is normal, the distribution for θ(ω)
can still be asymmetric if there is an atmospheric concentration constraint
that does not require emissions reductions for all ω.

Remark 4. The certainty equivalent solution x∗1 = θ, x∗2 = 0 in the case of
full uncertainty (no learning) does not satisfy (4) for all θ, which may lead to
a catastrophic collapse of high probability. The only way to fulfill the safety
constraint (4) is to choose x1 from the worst case scenario as maxω θ(ω), ω ∈
Ω. Clearly, this is an unrealistic and extremely costly solution. This calls for
the explicit introduction of safety constraint (2) to provide a trade-off between
the cost effectiveness and risk. The optimal solution under full uncertainty is
now defined as minimizing C1x1 +C2x2 under constraint x1 +x2 ≥ zγ , where
zγ is the minimal z satisfying equation P [z ≥ θ] = 1 − γ, i.e., as x1 = zγ

and since C1 < C2, x2 = 0. Clearly, the risk-adjusted solution under full
uncertainty x1 = xγ may be greater or less than θ, depending on γ, C1/C2,
and probability distribution H .

3.3 Discussion

To summarize the key results, we find that even in this basic model, the effect
of learning on optimal first stage emissions reductions is ambiguous: it can
lead to either more or less emissions reductions than would be undertaken if
there were uncertainty but no learning, and the direction and magnitude of
this effect depends on the relationship between the assumed marginal costs
in stages 1 and 2, and the shape of the probability distribution characterizing
the uncertainty in total required emissions reductions.
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The nature of the optimal solution with learning is not counter-intuitive.
Whether to hedge against the possibility that required reductions will be
large (or small) in stage 2 by making larger (or smaller) reductions in stage
1 depends on expectations about the tradeoffs in reduction costs (how much
cheaper, or more expensive, will it be to make reductions if they are post-
poned) and about the likelihood that exceptionally large or small reductions
will turn out to be required. For example, if marginal reduction costs are
known to be cheaper in stage 2, it is always best to postpone all reduc-
tions however large they might be to stage 2. If, however, marginal costs
are cheaper in stage 1, then the advantages of these cheaper costs must be
balanced against the risk that you will reduce emissions in stage 1 more than
turns out to be necessary. This tradeoff takes on a simple functional form in
this model: it is optimal in stage 1 to reduce emissions up to the quantile
of the uncertainty distribution for total emissions reductions given by the
ratio of marginal costs between the two periods. If costs are twice as high in
stage 2, it is optimal to reduce in stage 1 up to the median of the uncertainty
distribution; if costs are three times as high in stage 2, it is optimal to reduce
up to the 33-rd percentile, etc.

Clearly, then, a wide range of solutions are possible depending on the
particular ratio of costs and the shape of the uncertainty distribution. In
comparison, the solution under uncertainty without learning also depends
on the costs and the shape of the uncertainty distribution, but there is no
interaction between the two. All reductions are made either in stage 1 or
in stage 2, depending on when marginal costs are lower. The amount of
reductions made depends on the certainty with which the constraint is desired
to be met. If a decision maker wants to be 50 percent sure the constraint is
achieved, reductions to the median of the distribution will be made. Thus it is
easy to see that no particular relationship between the solution with learning
and without need hold. Depending on assumptions, optimal reductions with
learning can be smaller, larger, or the same as in the no learning case, even
in this simple linear model.

4 Extensions to the Basic Model

Next we examine separately three aspects of the basic concentration-stabiliza-
tion model with learning presented in Section 3 that can be considered over-
simplified. First, we replace the linear cost assumption with nonlinear abate-
ment costs. We show that assuming costs are quadratic in reductions implies
that it will always be optimal to make at least some reductions during stage
one, a stronger result than occurs in the linear case. We also show that, ex-
cept in the case of normally distributed uncertainty, the optimal solution will
not depend only on the mean value of the uncertainty distribution. Thus de-
terministic analyses that use only the mean value will be misleading. Second,
we assume that there is a limited capacity for making emissions reductions in



Endogenous Risks and Learning in Climate Change 293

stage two, an assumption that could be motivated by inertia in technological
or socio-economic systems, or by the possibility that stage one (the period
before learning occurs) may be long, leaving little time to make reductions
in stage two. We show that the assumption of limited adaptive capacity in
stage two induces greater optimal emissions reductions in stage one. Third,
we assess the implications of incomplete learning, i.e., learning in which un-
certainty is not completely resolved before stage two begins. We show that,
as in the case of complete learning, the effect of learning on optimal stage one
decisions is ambiguous: it can lead to larger, smaller, or the same emissions
reductions as would be made if there were no learning. The effect depends on
the assumed marginal costs in the two periods, and the nature and likelihood
of what might be learned.

4.1 Nonlinear Abatement Costs

Abatement costs are generally modeled as nonlinear functions of emission re-
ductions [12] with a quadratic functional form of a typical assumption (e.g.,
[20]). To examine the implications of this assumption, we let the cost func-
tions of both periods be of the form Ci(x) = Cix

2 with positive C1, C2. Cost
function (5) then takes on the form F (x) = C1x

2+C2E(max {0, θ − x})2 and
hence F

′
(x) = 2C1x − 2C2E(θ − x)I[θ ≥ x]. The first observation we make

concerns the necessity of first period reductions. Since F
′
(0) = −2C2Eθ < 0

(assuming that Eθ > 0) zero reductions in stage one are ruled out indepen-
dently of the particular values of C1 and C2. Compare this results to the case
of linear costs in Section 3.1, where F

′
(0) = C1 − C2 < 0 if C1 < C2; i.e.,

non-zero first period reductions are called for only if costs are less in period
1. With quadratic costs, period 1 reductions are optimal even if C1 > C2.

Let us illustrate some typical situations that may occur in the case of
non-smooth, piece-wise linear functions commonly used in emission-control
problems with technology switches. These functions implicitly impose up-
per or lower bounds on positive ex-ante emission reductions. Assume that
C2(x) = C2x and C1(x) is a piece-wise linear function C1(x) = C1

1x for
0 ≤ x ≤ a and C1(x) = C2

1 (x − a) + C1
1a for x ≥ a, where C1

1 < C2 and
C2

1 > C2. It is easy to see that the optimal ex-ante solution has the upper
bound x1 ≤ a. As C1

1 < C2 and C2
1 > C2, the optimal ex-ante decision is

defined as follows: let x be the solution of equation P [θ ≥ x] = C1
1/C2. The

optimal period 1 decision x∗1 = a if x > a, and x∗1 = x for x ≤ a. Assume
that C1(x) = C1x, and C2(x) = C1

2x for 0 ≤ x ≤ a; C2(x) = C2
2 (x−a)+C1

2a
for x ≥ a, where C1 > C1

2 , C1 < C2
2 . Consider solution x of the equation

P [θ > x] = C1/C
2
2 . It is easy to see that the optimal period 1 decision x∗1 = x

for x ≥ a and x∗1 = 0 for x < a, i.e., it has the lower bound x1 ≥ a.
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4.2 Limited Adaptive Capacity

We next introduce the possibility that the capacity for emissions abatement
in stage two may be limited. There are several possible motivations for this
assumption. First, in cases with learning, Learning may occur slowly and the
second period may begin late, leaving little time for reductions to be made.
Second, inertia in technological and socio-economic systems may limit feasible
reductions over a given time period [12]. The path-dependencies (inertia) of
the technological and socio-economic systems producing greenhouse gases
are critical for dealing with abrupt changes. Without inertia, the switching
from one emission path to another would be instantaneous. In reality, energy
production systems cannot be changed overnight. As a result, the possibilities
for emissions reductions will not be bounded.

Limited adaptive capacity can be modeled most simply by constraints
x2 ≤ β with positive random β which becomes known from learning at
stage 2. Without the safety constraint of type (2), the optimal stage 2 deci-
sion x2 = min[β,max {0, θ − x1}] cannot in general satisfy safety constraints
(4) for all θ. As a consequence, the probability of a catastrophe can be
rather high, calling for explicit introduction of type (2) safety constraint
P [x1 + x2 ≥ θ] = 1− γ. Since x2 ≤ β, this requires ex-ante emission reduc-
tion commitments x1 ≥ xγ , where xγ is minimal non-negative x satisfying
equation P [x ≥ θ− β] = 1− γ. Therefore, in order to prevent a catastrophic
collapse with sufficient confidence, there must be minimal ex-ante emission
reductions sufficient to satisfy the safety constraint in stage 2. Hence, stage
one emission abatement is in general larger when limited adaptive capacity
is explicitly assumed than when possible future emissions reductions are as-
sumed to be unbounded. This can be evaluated properly by analyzing the
STO model with safety constraints (2).

4.3 Incomplete Learning and Safety Constraint

Next we replace the assumption that uncertainty is completely resolved before
stage two with the much more realistic assumption that learning is only
partial. As an example, we consider the case in which learning affects the
prior distribution, H(z), by shifting the range of uncertainty. We first present
the quantitative analysis, then discuss the results in qualitative terms.

Let us assume that H(z) = P [θ ≤ z] is a mixture H(z) = EξH(ξ, z) =∫
H(y, z)dG(y) of distribution H(ξ, z) with unknown ξ characterized by a

probability distribution G(y) = P [ξ ≤ y]. The learning reveals only ξ at the
beginning of period 2. For example, H(z) can be a mixture of distributions
H(ξ, z) with probability mass concentrated in different subregions from the
support of H(z); in reality, these distributions could reflect differing views on
the damages that would be associated with particular emissions pathways.
(Note that if the support of H(ξ, z) is a singleton, then the learning of ξ
reveals the true value of θ. For the sake of illustration, let H(z) be a mixture
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of two distributions H0(z) and H1(z), that is, ξH0(z) + (1− ξ)H1(z), where
ξ = 0 with probability p and ξ = 1 with probability 1 − p, that is, H(z) =
pH0(z) + (1− p)H1(z). Since only ξ is observed, the period 2 decision x2(ξ)
can not fulfill constraints (4), and the safety constraint has to be written as
in (2):

P [x1 + x2(ξ) ≥ θ(ξ)] ≥ 1− γ, ξ = 0, 1, (8)

where θ(ξ) has the posterior probability distribution Hξ(z). For a given ξ and
γ, let us define zγ(ξ) as the minimal z, satisfying equation P [z ≥ θ(ξ)] = 1−γ.
Then equations (8) are equivalent to the equations x1 +x2(ξ) ≥ zγ(ξ), which
are similar to (4). The optimal period 2 decision x2(ξ) = max {0, zγ(ξ) − x1},
and optimal x1 has to minimize F (x) = C1x+C2[pmax {0, zγ(0)− x}+(1−
p)max {0, zγ(1)− x}].

Function F (x) does not have continuous derivatives. Therefore, the opti-
mality condition cannot be derived from the Proposition of Section 3.1. F (x)
is a piece-wise continuous linear function which can be characterized as the
following. Assume, for example, that zγ(0) < zγ(1), then for 0 ≤ x < zγ(0),
F (x) = C1x+C2[p(zγ(0)− x) + (1− p)(zγ(1)− x)] = (C1 −C2)x+C2zγ(ξ).
For zγ(0) ≤ x < zγ(1), F (x) = C1x + C2(1 − p)(zγ(1) − x) = (C1 − C2(1 −
p))x+ C2(1− p)zγ(1),and for x ≥ zγ(1), F (x) = C1x.

The optimal ex-ante solution hedges against the different contingencies.
It is characterized as follows: x = 0, if C1 > C2. Otherwise, x = zγ(0), if
C1 − C2(1− p) > 0, and x = zγ(1), if C1 − C2(1 − p) < 0.

This solution can be understood in more qualitative terms as follows. If
marginal costs are lower in stage two, then it is best to make all reductions in
stage two after learning has taken place. If marginal costs are lower in stage
one, then, in general it pays to make reductions in period 1 that are as large
as possible. However, as was the case in the basic model in Section 3, this
benefit of period 1 reductions must be weighed against the risk of making
more reductions than turn out to be required. After learning takes place at
the end of period 1, the optimal solution is to make reductions such that
the total reduction is either zγ(0) or zγ(1). Thus the minimal first period
reduction is zγ(0). If first period costs are very low, or the chance that ξ = 1
is very high, then it is optimal to make the larger first period reduction zγ(1),
accepting the chance that ξ = 0 and that reductions zγ(1) − zγ(0) will have
been unnecessary.

Let us compare this ex-ante period 1 optimal ”with-learning” solution
to the optimal ”without-learning” solution x∗1 = zγ , x∗2 = 0 derived from
minimization of (3) under safety constraint P [x1 + x2 ≥ θ] ≥ 1 − γ, i.e.,
x1+x2 ≥ zγ , where zγ is the minimal z satisfying constraint P [z ≥ θ] = 1−γ.
Due to the monotonicity of P [x ≥ θ] w.r.t. x, we can derive inequalities among
these decisions by comparing P [x ≥ θ] for x = zγ with x = zγ(0), zγ(1).

Assume that H0(z), H1(z) have continuous derivatives, the support of
distribution H0(z) is interval [a0, b0], and the support of H1(z) is interval
[a1, b1], where a1 > b0. If C1 − C2(1 − p) < 0, then the optimal ”with-
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learning” period 1 solution x = zγ(1) from [a1, b1]. If x ∈ [a1, b1], then P [x ≥
θ] = p + (1 − p)H1(x). Since H1(zγ(1)) = 1 − γ, then P [x ≥ θ] = p + (1 −
p)(1− γ) = 1− γ + γp for x = zγ(1). As γp > 0, then the optimal ”without-
learning” decision x = zγ satisfying P [x ≥ θ] = 1 − γ is less demanding
(smaller) than x = zγ(1), i.e., learning increases the optimal ex-ante emission
reductions. This conclusion is reversed in the case C1−C2(1−p) > 0. Indeed,
let x ∈ [a0, b0]. Then P [x ≥ θ] = pH0(x), H0(zγ(0)) = 1−γ and for x = zγ(0),
P [x ≥ θ] = p(1 − γ) (i.e., the optimal ”without-learning” decision x = zγ is
greater than the optimal ”with-learning” decision x = zγ(0)).

Therefore we find that in the case of incomplete learning, as in the case
of complete learning we assumed in Section 3, the effect of learning is am-
biguous: it can lead to either larger, smaller, or the same optimal emissions
reductions in stage one as would occur under uncertainty without learning.
The particular nature of the effect is determined by the marginal costs of
reductions in the two periods, and the assumed likelihood of what will be
learned at the start of stage two in the example presented here, the likeli-
hood that one of two competing uncertainty distributions will turn out to be
supported by the new information received. The size of the effect is deter-
mined by the shape of the distributions themselves, and the certainty with
which it is desired to achieve the safety constraint.

5 A Dynamic Stabilization Problem

In this section we extend the two-period model presented in Section 3 to
multiple periods. In this more general form, the problem becomes similar
to catastrophic-risk-management problems discussed in [8]. As discussed in
Section 3, the solution of the two-stage model had strong connections with
CVaR-type risk measures. Here we show that the dynamic multi-period model
also has strong connections with dynamic versions of CVaR risk measures.
However, we caution that this resemblance may create the impression of a
truly risk-based policy analysis when in fact, without the explicit introduction
of additional safety constraints, the solution could provoke a catastrophic
collapse.

Assume that CO2 emission paths are characterized by exogenous scenarios
as in Section 3. Let us consider Rt =

∑t
k=0 xk, where decision variables

xk ≥ 0, k = 0, 1, ..., t, t ≤ T . We can think of xk as a feasible level of CO2

emission reduction at the beginning of period k. At time t = 0, 1, ..., the
target value on total emission reduction Rt in period t is given as a random
variable ρt. It is assumed that exact value of ρt is revealed at a random time
t = τ . Since τ is uncertain, the decision path x = (x0, x1, ..., xT ) for the whole
time horizon has to be chosen ex-ante in period t = 0 to ”hit” the target ρt,
Rτ ≥ ρτ , at t = τ in a sense specified further by (10). At random t = τ ,
the decision path can be revised for the ramaining available time. Similar to
the model of Section 3.1, consider a stream of linear random costs v(x) =
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∑T
t=0[ctxt + dt max {0, ρt −Rt} I(τ = t)], where ct > 0, dt > 0, t = 0, 1, ..., T

are known ex-ante and ex-post abatement costs. In this model we assume
a rather strong irreversibility of investments: the multiplier I(τ = t) affects
only the ex-post costs. The analysis of the case when it affects also ex-ante
costs is similar. The expected value of v(x) can be written as

V (x) =
T∑

t=0

[ctxt + ρtdt max{0, ρt −
t∑

k=0

xk}], (9)

where pt = P [τ = t].
Let us consider a path x∗ minimizing V (x) subject to xt ≥ 0, t =

0, 1, ..., T . Assume that V (x) is a continuously differentiable function (e.g.,
a component of random vector ρ = (ρ0, ρ1, ..., ρT ) has a continuous density
function). Also, assume for now that there exist positive optimal solution
x∗ = (x∗0, x

∗
1, ..., x

∗
T ), x∗t > 0, t = 0, 1, ..., T . Then from the optimality condi-

tion for stochastic minimax problems similar to Section 3, it follows that for
x = x∗,

Vxt = ct −
T∑

k=t

pkdkP [
k∑

s=0

xs ≤ ρk] = 0, t = 0, 1, ..., T,

From this sequentially for t = T, T − 1, ..., 0, it follows that

P [
T∑

k=0

xk ≤ ρT ] = cT /pTdT , P [
t∑

k=0

xk ≤ ρt] = (ct−ct+1)/ptdt, t = 0, 1, ..., T−1.

(10)
Since Emax{0, ρt−Rt} = EρtI(ρt ≥ Rt)−RtP [ρt ≥ Rt], then from (10)

it follows that V (x∗) = EdτρτI(ρτ ≥ Rτ ), or

V (x∗) = p0d0E[ρ0I(ρ0 ≥ R∗
0)] + p1d1E[ρ1I(ρ1 ≥ R∗

1)] + ...
+pTdTE[ρT I(ρT ≥ R∗

T )],

which can be viewed as a dynamic CVaR risk measure. Equations (10) can be
used for analysing desirable dynamic risk profiles, say, time independent risk
profiles with a given risk factor γ as in (2): 1−γ = cT /pTdT = (ct−ct+1)/ptdt,
t = 0, 1, ..., T −1, which can be achieved by decisions affecting parameters ct,
dt, pt.

Remark 6. Equations (10) are derived from the existence of the positive
optimal solution x∗. It is easy to see that the existence of this solution follows
from cT /pTdT < 1, 0 ≤ (ct − ct+1)/ptdt < 1, t = 0, ..., T − 1, and the
monotonicity of quantiles βt, β0 < β1 < ... < βT defined by equations

P [βT ≤ ρT ] = cT /pTdT , P [βt ≤ ρt] = (ct − ct+1)/ptdt, t = 0, 1, ..., T − 1.

Indeed, the first requirement guarantees that x∗0 > 0,
∑t

k=0 x
∗
0 > 0, t =

1, 2, ..., T . From the second requirement follows that x∗0+x∗1 > x∗0, i.e., x∗1 > 0,
and so on.
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If probability pt rapidly decreases to 0, e.g., if pt is associated with a
rare catastrophic event, then from (10) it follows that ex-ante abatements
are positive for a relatively short initial interval defined by inequality (ct −
ct+1)/ptdt < 1. This misleading conclusion is due to a strong assumption of
unlimited capacity for emission reductions, which is a standard assumption
of climatic-economic integrated assessment models (see discussions in [12]
and [28]). Similar to conclusions of Section 4.2, this requires an adequate
treatment of risks by additional safety constraints (2) to prevent catastrophes.

6 Concluding Remarks

This paper analyzes the effects of risks and learning on climate change de-
cisions using a two-stage, dynamic model that assumes a concentration-
stabilization constraint. It shows that learning can lead either to larger or
smaller first period emissions reductions, compared to the optimal reduction
under uncertainty without learning, and that this effect can either be large
or small. The direction and magnitude of the learning effect is determined
by a number of interacting factors. For example, in a simple linear model
with deterministic mitigation costs but uncertainty in total required emis-
sions reductions, the learning effect depends on how mitigation costs evolve
over time, the shape of the uncertainty distribution in required emissions re-
ductions, the confidence with which the safety constraint (i.e., stabilization
level) is desired to be met, and, in the case of incomplete learning, the proba-
bility distribution describing the anticipated learning possibilities. Introduc-
ing a more realistic nonlinear cost function with increasing marginal costs
induces a higher level of first period emissions reductions compared to the
linear case. We also analyze the case of limited capacity to make reductions
in period 2, motivated by either uncertain timing of learning or uncertain
inertia in socio-economic systems, and show how this consideration can in-
duce a minimum level of first period reductions. Finally, framing the problem
in dynamic terms as a multi-period problem with an uncertain time path of
required cumulative emissions reductions shows that the problem has strong
connections with dynamic versions of CVaR risk measures. This may create
the misleading impression that risks are being properly managed, and unless
additional safety constraints are introduced, could provoke a catastrophe.
Given the multiple influences on the learning effect, we conclude that draw-
ing practical conclusions on the likely effect of learning on climate change
decisions is an empirical question requiring analysis with models capable of
adequately representing endogenous risks, abrupt changes, realistic learning
rates, inertia, and path dependent costs.
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Abstract. This paper deals with project evaluation from a portfolio perspective.
The chief motivation stems from pricing bundles of related projects, all affected by
uncertainty, when markets are imperfect or absent.

Novelties come by construing single projects as “players” of a transferable-
utility, stochastic, cooperative game. Stochastic programming then provides state-
dependent Lagrange multipliers associated to coupling constraints. Granted concave
payoff functions, these multipliers not only emulate market clearing and formation
of contingent, Arrow-Debreu prices; they also generate core solutions and project
evaluations.

1 Introduction

This paper considers evaluation of several, interdependent, uncertain pro-
jects, not all properly priced by markets. Examples include public investment
in diverse sorts of infrastructure. Chief concerns are with how any single
project will perform alongside others. In particular, what is it worth if added
to an already existing portfolio?

There are four novelties contained in this paper. First, it casts investment
choice as a cooperative production game, featuring single projects as individual
“players”. Second, it argues that any core point incorporates project values.
Third, it applies stochastic optimization, coupled with Lagrangian duality,
to advocate a computable, explicit evaluation — in the core. Fourth, with
a view towards lacking, fictitious or potential markets — and with an eye
to fundamental welfare theorems — it suggests that optimal dual variables
substitute for market-clearing Arrow-Debreu contingent prices.

Admittedly, optimal dual variables, alias Lagrange multipliers or shadow
prices, have long served for project appraisal [14] and cost-benefit analysis
[9,19]. Often though, those prices are presumed deterministic — whence not
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always in step with stochastic optimization. To wit, when some constraint ap-
pears uncertain ex ante, so does the associated shadow price as well. Further,
by mentioning prices, one implicitly alludes to markets. But frequently, the
latter might be imperfect or lacking. If so, reasons are strong to synthesize or
simulate perfect counterparts. Most likely these resemble competitive asset
markets. There though, no asset is priced in isolation from others. So, by
way of analogy, each project had better be seen as member of a surrounding
ensemble.

Cases in point comprise public investment in diverse energy sources or
transportation modes. These are coupled via capacities, resources or tasks.1

Such coupling suggests the use of cooperative game theory — and especially
of the solution concept called the core, expressly concerned with synergies,
efficiency, and incentive compatibility. Further, in our setting, when core solu-
tions are generated by prices, players may plan as though a perfect exchange
market were in smooth operation.

So, what this paper offers is a blend of two chief components, drawn from
different strands of literature but rarely seen together. One concerns the
theory of market or production games, emphasizing the constructive and effi-
cient notion of core solutions [24]. The other component comprises optimiza-
tion techniques, designed to deal with stepwise resolution of uncertainty [3].
Central in both strands are Lagrangian duality and shadow prices [17]. In
fact, standard optimization procedures typically produce state- and time-
dependent prices that clear spot markets. As already mentioned, those mar-
kets could be fictitious or real.

The paper stresses the said features. In doing so it aims at reaching several
kinds of readers. Included are managers who, while concerned with numbers
and computation, keep an eye on applicable, handy theory. Also addressed are
economists who look at how randomness and simple computation connects to
markets and coalition games. In particular, the material below may interest
financial analyst and actuaries who derive bread and butter from pricing
papers and policies, but are less used to endogenous “fundamentals”. And
last, but not least, we address mathematicians or computer scientists, not
all well informed about how closely some of their main constructs fit to the
operation and clearing of markets.

To reach so diverse a readership the paper is organized correspondingly.
Sections 2 and 3 may suffice to illustrate some key points of linear program-
ming — in particular, its Lagrangian duality theory. Section 4 is oriented
towards cooperative game theory. It reviews the concept of the core, omit-
ting any mention of time and contingencies. Section 5 remedies that omission
by fleshing out investment planning as a two-stage, stochastic production
game. Time and again core allocations will emerge via dual optimal solutions

1 To disregard these links may sometimes appear reasonable — and especially so
when initial price estimates only serve as proxies. But quite often such practise
merits more criticism than justification.
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to pooled programs. Core points produced in that manner correspond exactly
with Arrow-Debreu contingent prices. Section 6 concludes by mentioning im-
portant extensions and caveats.

For simplicity we restrict attention to investments that ex ante can be
formalized as one- or two-stage linear programs affected by uncertainty. Ex-
tensions and proofs are found in [7].2

The following notations apply. Whenever referring to an individual project,
its index i serves as subscript. The time horizon stretches merely one period
forwards, from the present, denoted 0, to the next period, labelled 1. When
necessary, the appropriate time occurs as superscript. All variables construed
as prices are written with a star. Thus, in a standard (dot) inner product
x∗ · x, the first vector (with a star) denotes a price regime while the sec-
ond (without a star) stands for a quantity vector. Admittedly, such notation
is non-standard, but it saves letters and facilitates duality. Since technolo-
gies act as linear operators here below, we write all vectors as rows, and in
coordinate-free form.

Uncertainty revolves around which state of the world s ∈ S will happen
next period. Ex ante, s is predictable only up to probability P (s) > 0; ex
post one s materializes and becomes perfectly known. Since computation and
modelling are our chief concerns, we do not hesitate in assuming S finite. Let
E denote the expectation operator generated by P. When some decision,
say x1

i , concerning project i during period 1, depends on s, we should for
correctness write x1

i (s). For simplicity, however, most often we omit mention
of s since no confusion is likely to arise.

2 Pooling of Single-Stage Linear Problems Subject to
Uncertainty

Throughout consider a fixed and finite set I of projects (or investment op-
portunities). For motivation, and as prelude to greater generality, suppose
project i ∈ I is modelled as a single-stage, one-shot linear program. Specifi-
cally, if standing alone, it amounts to the planning problem

max
xi

x∗i · xi subject to Aixi ≤ yi, and xi ≥ 0. (1)

Here xi is construed as an activity (decision or design) vector in some finite-
dimensional space Xi ordered (coordinatewise) by ≥. That activity pattern
generates revenue x∗i ·xi when evaluated in terms of a prescribed (known) price
vector x∗i and a (dot) inner product. Further, yi denotes a given endowment
bundle, owned by project i, and codified as a vector in another, ordered
finite-dimensional space Y. Finally, the “technology” Ai represents a linear
operator mapping Xi into Y.

2 Extensions to multi-stage and nonlinear instances cause no conceptual difficulties,
but these will, of course, tax the algorithmic and computational effort.
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Problem (1) might come up ex post, after s has been unveiled. In that
case, for correctness, we should emphasize that data [x∗i ,Ai, yi] — whence
any optimal solution xi — may depend on s. However, to simplify notation,
we often suppress mention of the state.

In any case, whether regarded ex ante or ex post, project i may produce
uneven revenues from various activities, or face technological bottlenecks, or
suffer from resource scarcity. Then, why not let various projects share syner-
gies with each other? In extremis, why not bring all objectives, technologies
and resources together to form the following grand planning problem?

max
∑
i∈I

x∗i · xi subject to
∑
i∈I

Aixi ≤
∑
i∈I

yi, and all xi ≥ 0. (2)

Note that individual resources yi are presumed perfectly divisible and trans-
ferable. Note also that (2) pools objectives, resources and technologies. The
advantages of doing so are evident: Inefficient or excessively endowed projects
will furnish resources, while other, more efficient projects can undertake pro-
duction. This simple idea immediately raises the question: How can potential
advantages of cooperation and coordination be secured and split equitably?
The following result tells how. For the statement let Ai have transpose A∗

i .
The latter maps Y-prices y∗ into Xi-prices A∗

i y
∗.

Proposition 2.1 (Ex post pooling and sharing) Fix any ex post state s ∈ S
together with realized data [ x∗i (s),Ai(s), yi(s)]. Suppose y∗(s) solves the as-
sociated dual problem

min y∗(s) ·
∑
i∈I

yi(s) s. t. x∗i (s) ≤ A∗
i (s)y

∗(s) for all i with y∗(s) ≥ 0. (3)

Then, no party or coalition C ⊆ I of projects can, in the realized state s, do
better than accepting value vC(s) :=

∑
i∈C vi(s) where

vi(s) := y∗(s) · yi(s). �

As customary, problem (3) provides a minimal evaluation y∗(s) of unit “pro-
duction factors” so that no “output price” x∗i (s) strictly exceeds the corre-
sponding imputationA∗

i (s)y
∗(s). Now, instead of evaluating project i ex post,

separately for each realized state s, what is it worth ex ante? We address this
question right away:

Proposition 2.2 (Ex ante evaluation of random-yield, linear projects) Let
s �→ y∗(s) be the profile of shadow prices mentioned in Proposition 2.1. Then,
ex ante, and in expectation, project i commands a value

v̄i := Evi = E [y∗ · yi] =
∑
s∈S

y∗(s) · yi(s)P (s).
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No cooperation within any coalition C ⊆ I of projects can together generate
expected value > v̄C :=

∑
i∈C v̄i. �

Typically, E [y∗ · yi] �= E [y∗] · E [yi] , a phenomenon well known in finance
concerned with covariances and beta pricing [13]. In particular, as brought
out below in Proposition 4.3, since the mapping from aggregate endowment
y(s) :=

∑
i∈I yi(s) to possible price y∗(s) is monotone decreasing, a law of

demand holds, namely

[y∗(s)− ȳ∗(s)] · [y(s)− ȳ(s)] ≤ 0 for every s,

hence E [(y∗ − ȳ∗) · (y − ȳ)] ≤ 0. As a result, any project i well endowed
precisely when the others are suffering from scarcity, gets a premium above
and beyond the deterministic counterpart E [y∗] ·E [yi] . Put differently: anti-
correlated or negatively associated projects receives some mark-up [15]. They
provide insurance to other projects. This is illustrated next:

Example 2.1: Joint energy production. Consider generation of hydro-
power, using two plants i ∈ I = {1, 2} . Plant 1 draws all water from short
term precipitation and is best furnished in chilly, wet years. Conversely, plant
2, which merely taps melting water under a glacier, is best situated in dry,
warm years. Since years are presumed either dry or wet, S := {dry, wet}.
Plant i has contracted an obligation to deliver the amount of electricity ei,
independent of s ∈ S. Potential shortfall χshort in production must be covered
through purchases in the spot market (at a premium rate). Overproduction
χsurplus, if any, is dumped on the grid.

Each producer worships maximization of own revenue, given effective ca-
pacity and revealed demand. Thus, in state s, if operating alone, producer i
would solve problem (1). Specifically, let x∗i := [p, pshort, psurplus] ∈ R3 and
xi := [χ, χshort, χsurplus] ∈ R3

+, to get the following problem instance

max pχ +pshortχshort +psurplusχsurplus

s.t. χ ≤ capi(s)
χ +χshort −χsurplus = ei

χ , χshort , χsurplus ≥ 0.

⎫⎪⎪⎬⎪⎪⎭ (4)

Here capi(s) denotes the effective capacity of plant i in state s. Thus yi(s) :=
[capi(s), ei] . Choose

[p, pshort, psurplus] = [15,−25, 10] , e1 = e2 = 12.5, and

cap1 = [cap1(dry), cap1(wet)] = [10, 20] ,
cap2 = [cap2(dry), cap2(wet)] = [20, 10] .

The state-dependent, go-alone shadow price vectors are y∗1(wet) = y∗2(dry) =
[35,−20] and y∗1(dry) = y∗2(wet) = [45,−35], the subscript always referring
to the plant. These price vectors reflect the diametral opposite positions of
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the two plants. Similarly, the optimal values are v1(wet) = v2(dry) = 450
and v1(dry) = v2(wet) = 12.5.

The pooled problem is just like (4), replacing there capi(s) by cap1(s) +
cap2(s) and ei by e1 + e2. Most importantly, after that replacement, no un-
certainty prevails in the aggregate; years come out equal. Consequently, the
associated dual vector y∗ = [35,−20] becomes constant, and the overall op-
timal objective value stabilizes at 550. If dry and wet years occur with equal
probability, then ex ante each producer gets 206.25 if going alone. Upon
pooling programs, however, each receives the greater value 275.

3 Pricing of Linear Investment Projects

Section 2 had no direct bearing on investment decisions. Explained next is
how easily the perspective above can be enlarged to accommodate such de-
cisions. It turns out that formats (1) and (2) still apply with minor modifi-
cations.

As stated, for simplicity, consider merely two time periods, denoted 0
and 1. Correspondingly, in that restricted but still dynamic setting, the vari-
able xi = (x0

i , x
1
i ) has two components. The up-front time-0 component x0

i

denotes the ex ante immediate decision, committed before s becomes known.
It is followed by a time-1 decision x1

i , implemented ex post, after s is revealed.
Problem (1) assumes a form that mirrors the presence of these two stages:

max x0∗
i · x0

i + E(x1∗
i · x1

i ) s.t.
{A00

i x0
i ≤ y0

i with x0
i ≥ 0.

A10
i x0

i +A11
i x1

i ≤ y1
i with x1

i ≥ 0. (5)

We hesitate to burden the reader with notation. But, begging a little indul-
gence, if one agrees to write vectors x∗i := (x0∗

i , x1∗
i ), yi := (y0

i , y
1
i ), and

defines the inner product

〈x∗i , xi〉 := x0∗
i · x0

i + E(x1∗
i · x1

i ), and the matrix Ai :=
[A00

i 0
A10

i A11
i

]
,

problem (5) fits the mold

max 〈x∗i , xi〉 subject to Aixi ≤ yi, and xi ≥ 0, (6)

quite in line with (1). The only crucial point to remember is that s �→ x1
i (s)

is a contingent rule whereas x0
i is not. Just as before, programs (6) pool

naturally into

max
∑
i∈I

〈x∗i , xi〉 subject to
∑
i∈I

Aixi ≤
∑
i∈I

yi, and all xi ≥ 0. (7)

Our chief interest is again with dual optimal solutions, or shadow prices,
associated with problem (7). Any such price y∗ = (y0∗, y1∗) consists of two
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components. The stage-0 component y0∗ is deterministic. It prices endow-
ments already on hand. In contrast, the stage-1 component y1∗ is a contin-
gent price regime s �→ y1∗(s), serving to evaluate resources in various states
s. The overall effect ex ante of the composite price y∗ = (y0∗, y1∗) on any
endowment y = (y0, y1) is

〈y∗, y〉 := y0∗ · y0 + E(y1∗ · y1) = y0∗ · y0 +
∑
s∈S

y1∗(s) · y1(s)P (s).

Proposition 3.1 (Ex ante pooling) Suppose y∗ = (y0∗, y1∗) is a shadow
price for problem (7), meaning that it solves the corresponding dual problem

min

〈
y∗,

∑
i∈I

yi

〉
subject to x∗i ≤ A∗

i y
∗ for all i, and y∗ ≥ 0.

Then, ex ante no party or subset C ⊂ I can do better, upon acting alone,
than by accepting value vC :=

∑
i∈C vi where

vi := 〈y∗, yi〉 = y0∗ · y0 +
∑
s∈S

y1∗(s) · y1(s)P (s). � (8)

Example 3.1: Investing in joint electricity production. Continuing
the previous example, let us assume that producer i must choose his capacity
x0

i ∈ [0, ki] at stage 0, before the water abundance becomes known. That
choice is followed by the production decision at stage 1. His stand-alone
problem (1) can be rewritten in deterministic equivalent form as

max x0∗
i · x0

i +
∑
s∈S

x1∗
i (s) · x1

i (s)P (s)

subject to x1
i (s) = [χ, χshort, χsurplus] (s) satisfying the constraints in (4),

and 0 ≤ χ(s) ≤ x0
i ≤ ki for all s.

In addition to the specifications of Example 2.1, let us posit x0∗
1 = x0∗

2 =
−2.5 and k1 = k2 = 25, with P (·) uniform, to have go-alone capacities
x0

1 = x0
2 = 20 and expected optimal values v̄1 = v̄2 ≈ 78. However, the

pooled problem, and formula (8), assigns to each project the significantly
larger ex ante value 100.

4 Project Portfolios and Core Solutions

It is time now to review the preceding development in terms of theory. This
section offers some theoretical statements and discussion but no proofs. Focus
is on linear programs — stated in static, deterministic form — and on pooling
of these. Mention of their dynamic and stochastic nature must wait until the
next section. In the interim our sole purpose is to clarify how cooperation
relates to fictitious or real markets.
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As before, there is a finite, non-empty set I of economic projects or in-
vestment opportunities. Some might already be realized; others are still at
the planning stage. Project i ∈ I, if realized and evaluated in isolation from
the others, yields net present value

Vi = sup {〈x∗i , xi〉 : Aixi ≤ yi and xi ≥ 0} . (Pi)

Here xi is the decision variable. It resides in a finite-dimensional Euclidean
space Xi, equipped with inner product 〈·, ·〉 and vector order ≥. There is
another, ordered space Y, of similar kind, that contains the specified vector yi.
Finally, x∗i ∈ Xi is a prescribed cost vector, and the linear operator Ai maps
Xi into Y.

The notation in (Pi) is admittedly somewhat uncommon but chosen to
facilitate a subsequent dual perspective in which the symbol ∗ invariably is at-
tached to prices and to operators on these. For interpretation of problem (Pi)
one may regard project i as obliged to contend with resource bundle yi and
linear technology Ai. The decision variable xi then represents the activity,
design, or input pattern of project i.

Problem (Pi) is not meant to model Robinson Crusoe’s insular project
planning. Indeed, the set I is not a singleton; it comprises more than one
project. Important in that regard is the similarity between individual prob-
lems (Pi). In particular, note that all yi belong to the same ordered vector
space Y. This crucial feature leads us to ask: why not regard all projects as
parts of one integrated enterprise?

For the sake of that argument, suppose projects in C ⊆ I formed a con-
certed business. By pooling resources and sharing technologies, that inte-
grated endeavor could achieve pooled value

VC := VC(yC) := sup

{∑
i∈C

〈x∗i , xi〉 :
∑
i∈C

Aixi ≤ yC ∀xi ≥ 0

}
. (PC)

Here yC :=
∑

i∈C yi is the total resource endowment held by concern C.
Plainly, the resulting superadditivity

VC∪C′ ≥ VC + VC′ for all disjoint coalitions C,C′ ⊆ I,

reflects on the advantages of cooperation and overall planning. Let A∗
i denote

the transpose operator of Ai. Associated with the primal problem (PC) is a
dual problem (P ∗

C) with optimal value

inf {〈y∗, yC〉 : x∗i ≤ A∗
i y

∗ for all i ∈ C, and y∗ ≥ 0} . (P ∗
C)

While (PC) deals with activity planning, problem (P ∗
C) concerns proper pric-

ing of resources yC . Now suppose that the dual problem (P ∗
I ) for the grand

coalition C = I admits a solution y∗ such that 〈y∗, yI〉 = VI . For brevity,
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call any such y∗ an equilibrium or shadow price. As it turns out, a scheme
for profit sharing in which project i receives value

vi := 〈y∗, yi〉 , (12)

proves both efficient and incentive compatible:

Proposition 4.1. (Linear production games and core solutions) Consider a
finite family I of projects where an integrated concern C ⊆ I, if going alone,
would obtain economic value VC as defined in (PC). Then, any shadow price
y∗ generates a profit sharing (12) that satisfies{

(I) Pareto optimality:
∑

i∈I vi = VI and
(II) stability:

∑
i∈C vi ≥ VC for all C ⊂ I. � (13)

A vector (vi) ∈ RI that solves system (13), is said to reside in the core [4,23].
The simplicity of formula (12) is telling. Project i ∈ I is paid 〈y∗, yi〉 for
making its technology Ai and resource endowment yi available in a larger
context. Then, according to (I), the total, most efficient value VI is achieved
and fully split. Also, by (II) no smaller consortium C ⊂ I of projects could
do better by going it alone. Reflecting on the latter feature, the inequalities
in (II) might be referred to as participation constraints.

For further interpretation of Proposition 4.1 imagine that projects get the
possibility, but have no obligation, to exchange resources (i.e., bundles in Y)
at fixed a price regime y∗. Plainly, when offered this more flexible setting,
free of direct externalities, no party can fare worse:

Proposition 4.2. (Exchange market, duality, complementarity, and Wal-
ras’ law)
• Price-based, perfectly competitive exchange of resources can harm no coali-
tion C ⊆ I of projects. Indeed, for every feasible profile (xi)i∈C and price y∗

in problems (PC) and (P ∗
C) respectively, it holds that

∑
i∈C

〈x∗i , xi〉 ≤
〈
y∗,

∑
i∈C

Aixi

〉
≤ 〈y∗, yC〉 .

Weak duality thus obtains in that sup(PC) ≤ inf(P ∗
C). So, setting vi :=

〈y∗, yi〉 , as recommended in (12), the participation constraint VC ≤
∑

i∈C vi

always holds.
• Suppose sup(PI) is attained. Then a (P ∗

I )-feasible y∗ is an equilibrium price
if and only if there exists a (PI)-feasible profile (xi) with

∑
i∈I

〈x∗i , xi〉 ≥
〈
y∗,

∑
i∈I

Aixi

〉
≥
〈
y∗,

∑
i∈I

yi

〉
.
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Any such pair (xi) and y∗ optimally solve problems (PI) and (P ∗
I ), respec-

tively, and strong duality obtains in that max(PI) = min(P ∗
I ).

• Strong duality is attained precisely when the complementarity condition

0 ≤ y∗ ⊥
∑
i∈I

(Aixi − yi) ≤ 0

is satisfied. The latter amounts to Walras’ law by saying that pooled excess
demand

∑
i∈I(Aixi − yi) ≤ 0 should have no value under prices y∗ ≥ 0. �

To appreciate Propositions 4.1-2, note that excess demand

E :=
∑
i∈I

(Aixi − yi)

prevails in the exchange market. It may well happen that E = 0, in which case
the said market literally balances, meaning total demand

∑
i∈I Aixi equals

total supply
∑

i∈I yi. But insisting on E = 0 might be overly stringent. What
matters is rather to offset supply with excess demand E ≤ 0 worth 〈y∗, E〉 = 0.
Thus, a shadow price, first singled out to “balance” a transferable-utility
cooperative game [4,23], also balances the resource market.

Elementary economics — or simple heuristics — indicate the way to grasp
shadow prices. Imagine (temporarily) there being only one resource. Further,
also for the sake of argument, suppose the grand coalition I obtains differen-
tiable payoff VI(yI), defined in (PC) when C = I. While V′

I(yI) < y∗, that
coalition would gain by buying less in the resource market. Similarly, as long
as V′

I(yI) > y∗, its resource demand had better be increased. So, apparently,
an equilibrium price y∗ prevails if and only if V′

I(yI) = y∗.
The preceding argument collapses, of course, when and where VI(·) cannot

be differentiated in a classical sense. To set things right, reconsider problem
(PI) with standard Lagrangian

LI(x, y∗) :=
∑
i∈I

{〈x∗i , xi〉+ 〈y∗, yi −Aixi〉} .

Assume the optimal value VI(yI) is finite. Recall that VI(·) is declared su-
perdifferentiable at yI if and only if it admits at least one supergradient y∗ ≥ 0
there. Then, one writes y∗ ∈ ∂VI(yI), which means that

VI(y) ≤ VI(yI) + 〈y∗, y − yI〉 for all y ∈ Y.

Proposition 4.3. (Shadow price as marginal payoff and saddle point) Sup-
pose VI(yI) = sup(PI) is finite. Then, y∗ ∈ ∂VI(yI) if and only if y∗ ≥ 0
and supx LI(x, y∗) = sup(PI). �

Proposition 4.3 invoked a generalized derivative — namely, the superdiffer-
ential of convex analysis — to extend the neoclassical optimality condition,
stating that the imputed value of marginal resources used in perfectly com-
petitive projects should equal a common shadow price.
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5 Stochastic Production Games

Here we apply Proposition 4.1 in a setting wide enough to accommodate a
large class of investment problems. There are still two decision stages denoted
0 and 1. At the outset uncertainty prevails as to which s ∈ S will materialize
next.

Corresponding to the two stages, decision xi has an immediate, up-front
component x0

i ≥ 0 and a next-stage, recourse strategy s �→ x1
i (s) ≥ 0. Prob-

lem (Pi) now assumes the form:

maximize 〈x∗i , xi〉 =
〈
x0∗

i , x0
i

〉
+ E

〈
x1∗

i , x1
i

〉
subject to

x0
i ≥ 0, A00

i x0
i ≤ y0

i , and
x1

i (s) ≥ 0, A10
i (s)x0

i +A11
i (s)x1

i (s) ≤ y1
i (s) for all s

⎫⎬⎭ (2-stage Pi)

These problems pool into the following overall concern:

maximize
∑

i∈I 〈x∗i , xi〉 subject to
x0

i ≥ 0,
∑

i∈I A00
i x0

i ≤ y0
I , and

x1
i (s) ≥ 0,

∑
i∈I

{A10
i (s)x0

i +A11
i (s)x1

i (s)
} ≤ y1

I (s) ∀s.

⎫⎬⎭ (2-stage PI)

Proposition 5.1. (Portfolio pricing of linear projects) Suppose problem (2-
stagePI) admits a shadow price y∗ =

[
y0∗, y1∗(·)] ≥ 0. Then

vi =
〈
y0∗, y0

i

〉
+ E

〈
y1∗, y1

i

〉
is the ex ante, cooperative value of project i. A planner contemplating to add
project i to an existing portfolio I�i, should regard vi instead of the “smaller”
optimal value of problem (2-stage Pi). �

6 Concluding Remarks

Investment theory has increasingly emphasized the importance of uncertainty
over returns, the irreversibility of particular installments, and the opportu-
nities to wait and see.3 Said theory deals, however, mostly with one project
or one firm — whence merely with one decision maker — at a time. In
contrast, many planning problems — and notably those regarding environ-
mental management, technological reliability, public welfare and health —
revolve around several projects, typically not traded in markets. And most
importantly: the enterprises at hand might “belong” to separate agents or
authorities. In short, there could be as many or more owners than projects.
Then, how can potential gains from concerted efforts be secured and shared?

In addressing that question, this paper has emphasized three things. First,
it gives priority to the concept of the core — central, natural, and most ap-
plied in cooperative game theory [6–8,18,11,22]. Second, it points to explicit,
3 References include [1], [2] and [5].
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computable solutions, defined in terms of contingent prices [13,15]. Third, in
formalizing investment planning as multi-stage optimization under gradual
resolution of uncertainty, it indicates how powerful techniques of stochastic
programming can be made to bear on analysis and evaluation [20].

One sees then how some projects merit marked-up values because they
insure or stabilize the pooled output. Broadly, these are projects that produce
in “counter-cyclical” fashion; they swing up precisely when others turn down.
In a different jargon: they provide recourse. Such projects can appear of no
value while alone, but qualify well together with others.

For ease of exposition, the main focus of this note has been on linear
instances, deterministic versions of which have been studied in [10,12,18,21].
Extensions to nonlinear, stochastic settings are found in [6,7,22].

Some important caveats remain though. For one: if payoff functions or
technologies exhibit increasing returns to scale, our dual approach, couched
in terms of Lagrangians, is fraught with fundamental problems. Core solutions
may then be unattainable via linear pricing — or quite simply, be unavailable.
Likewise, when some activities or items are indivisible, it may well happen
that shadow pricing gives incorrect evaluations. If so, those evaluations are
all overestimates.
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Precaution: The Willingness to Accept Costs
to Avert Uncertain Danger

C. Weiss

Edmund A. Walsh School of Foreign Service Georgetown University
37th and O Sts., N.W. Washington DC 20057 USA

1 Introduction

Decision makers coping with environmental threats of unknown size and prob-
ability need to understand both the science underlying the threat and the
uncertainty connected with this science. They also need to understand the
level of disagreement among experts - and among the public at large - re-
garding both the science and its associated uncertainty. Only in this way can
they properly assess the political, financial or social costs that they are will-
ing to incur in order to avoid or mitigate this threat, whether it be due to a
natural hazard – climate change, earthquake, or destruction of stratospheric
oxygen, for example – or to a proposed human intervention or innovation,
such as ocean dumping or genetically modified crops. In order to support such
decision-making, technical experts need to be able to communicate the level
of technical uncertainty they associate with a given threat in a reasonably
precise and understandable form.

In this paper, we review and assess two proposed scales, or standard vo-
cabularies, for expressing the subjective estimate of the likelihood that a given
assertion is true, given the strength of the underlying evidence. Assertions of
this form may range from speculative hypotheses to well–established theories.
We then use these scales as the basis for an analytic framework within which
to express differing levels of precaution, or risk avoidance, and to distinguish
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disagreements over precaution from disagreements over science or over scien-
tific uncertainty.

This framework enables us to put the Precautionary Principle in a larger
perspective as a clear and valuable statement of one side of the debate over
the policy implications of scientific uncertainty. We then argue that a second
principle, a proposed Principle of Innovation and Adaptive Management, is
needed to complement the Precautionary Principle and to prevent an un-
necessarily narrow view of precaution from stifling desirable innovation. This
new principle is consistent with the emerging view of precaution in recent
literature.

2 Scales of Subjective Uncertainty

The best known scale of subjective technical uncertainty is the quantitative,
seven-step scale used by the Inter-Governmental Panel on Climate Change
(IPCC), which assigns adjectival phrases, ranging from ”virtually certain” to
”very unlikely,” to seven ranges of Bayesian probability1. As a complement,
the author has proposed a qualitative, 12-step ”legal” scale derived from the
standards of proof used in various branches of US law, and has correlated this
scale with the IPCC scale and with the informal measures used by various
scientists in assessing the likelihood that a given hypothesis will turn out to
be true2.

The IPCC and the “legal” scales are both Bayesian scales that express
someone’s subjective estimate of uncertainty, as opposed to frequentist prob-
abilities based on experience. These Bayesian scales are scales of uncertainty,
not of risk. That is, they apply to situations in which the outcome of events
cannot be foreseen because of underlying ignorance, rather than to situations
in which the probability of an event can be defined from empirically based
statistics. The percentages do not refer the statistical probability of an event
based on past experience (“The chances of a flood of this magnitude hap-
pening in any given year is one in a thousand”), but rather to the subjective
probability that an assertion is true (“I’d give 2:1 odds that half of today’s
incidence of coronary artery disease will turn out to have been due to a bac-
terial infection.”). The two scales are summarized in Table13. Either may

1 Inter-Governmental Panel on Climate Change (2001) Report of Working Group
I. Available at http://www.ipcc.ch/pub/spm22-01.pdf. All URLs are accurate as
of 24 May 2005.

2 Charles Weiss, “Expressing Scientific Uncertainty,” Law, Probability and Risk, 2,
25-46 (2003).

3 The “legal” scale of uncertainty set forth in table 1 has been modified from the
scale as set forth in the reference of footnote 2 in two ways: (1) a new step, that of
“reasonable indication,” has been introduced so as to provide “mirror symmetry”
around the step corresponding to 50 % probability. (2) The top and bottom
step are now expressed as “insufficient to support even a hunch” and “virtually
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be used to represent the subjective views of individuals, or alternatively, to
represent the distribution of views among experts, stakeholders, members of
the general public, or other populations. They can also be used to separate
assertions of scientific fact from estimates of the uncertainty associated with
those assertions. For example, one may imagine that two scientists or two
advocates may agree on the most likely conclusions that may be drawn from
a given set of scientific data, but may disagree in the degree of uncertainty
associated with that interpretation.

Both the IPCC and the legal scales are summary scales that can take
into account the “pedigree” of the model underlying the conclusions, a prop-
erty defined as a “systematic, multi-criteria evaluation of the different phases
of the production of the knowledge base”.4 Both scales can also be used to
summarize subjective views regarding the three dimensions of uncertainty
identified by Walker et all and to the uncertainty in the choice of frequentist
frequency distributions used in various branches of engineering work in or-
der to deal with unpredictable variables, such as the mechanical stresses on
structures or vehicles5.

Each of the two scales has its advantages and disadvantages. The IPCC
scale allows the probabilities associated with individual links in a chain of
evidence to be multiplied in order to give the overall probability of the entire
chain. On the other hand, the legal scale may be more suited to the needs
of people or groups who are uncomfortable with numbers and hence are
unlikely to carry out these multiplications, simple though they may be. For
such people, the advantage of the legal scale is that it is expressed in words
that are reasonably familiar and are “anchored” in situations with which they
can identify.

Both, the IPCC and the legal scales make negative assertions (such as
that a project poses no danger) subject to standards of proof complementary
to the standards applicable to the corresponding positive assertion (in this
case, that the project is in fact dangerous). As a quantitative scale, the IPCC
scale has a significant advantage in dealing with such negative statements,
since the subjective probability that an assertion is not true is simply one
minus the subjective probability that it is true. (P (A) =

(
1 − P (−A)

)
.

This relation is not as straightforward in the legal scale. Nevertheless, as is

certain,” replacing “impossible” and “certain,” neither of which belongs in a scale
of uncertainty because they do not admit of any uncertainty. The correlations
shown in Table 1 are the author’s.

4 Joroen P. Vandersluijs, “Uncertainty and Precaution in Environmental Man-
agement: Insights from the UPEM Conference,” Environmental Modeling and
Software (IEMSS-2004 special issue); Silvio Funtowitz and Jeremy Ravetz, Un-
certainty and Quality in Science for Policy (Dordricht: Kluwer, 1990).

5 W.E. Walker et al., “Defining Uncertainty: A Conceptual Basis for Uncertainty
Management in Model-Based Decision Support,” Integrated Assessment 4, 5-17
(2003).
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shown in Table 2, the treatment of negative assertions is remarkably good,
especially considering that the various legal standards of proof have evolved
for quite different purposes and were never intended to be complementary.
For example, if a person thinks that there is evidence “beyond a reasonable
doubt” (the step in the legal scale that corresponds to 99 % probability) that
a particular assertion is true, (s)he still could reasonably be supposed to hold
a “fanciful conjecture” that it is not true, this being the step corresponding to
< 1 % subjective probability6. On the other hand, it would be unreasonable
for her to believe that there were “reasonable grounds for suspicion” (1-10 %
probability, the next higher step in the scale) that it is false.

3 The Precautionary Principle and the Willingness to
Incur Costs

The scales of uncertainty discussed in the previous section allow us to set
forth a framework within which to discuss the willingness to incur costs to
avert or mitigate an uncertain threat. The major principle addressing such
threats in international law is the Precautionary Principle, which states that
action to protect the environment from the danger of severe and irreversible
damage does not need to wait for rigorous scientific proof. This principle was
initially enunciated in opposition to the doctrine that no intervention was
necessary or justified until and unless evidence for the danger in question
reached the level of rigorous scientific proof7.

In the international legal literature, the Precautionary Principle appears
in two forms. In its “weak” formulation, the Precautionary Principle asserts
that the absence of rigorous proof of danger does not justify inaction. The
Rio Declaration, for example, states that

6 The terms “inarticulable hunch” and “fanciful conjecture,” which are here
equated, have different legal origins. “Inarticulable hunch” is used here as a stan-
dard insufficient to justify a “Terry stop,” a “minimally intrusive” pat-down for
weapons permitted when a police officer has a “reasonable, articulable suspicion”
that a crime is afoot. (Terry v. Ohio, 392 U.S. 1, 88 S.Ct. (1968)). “Fanciful con-
jecture” is used to define a concern that does not rise to the level of a “reasonable
doubt” that would justify a verdict of not guilty in a criminal trial. “A reasonable
doubt is an actual and substantial doubt arising from the evidence, from the facts
or circumstances shown by the evidence, or from the lack of evidence on the part
of the state, as distinguished from a doubt arising from mere possibility, from
bare imagination, or from fanciful conjecture.” (Victor v. Nebraska; Sandoval v.
California 1994 511 U.S. 1, 114 S.Ct.1239)

7 For references on the history and legal status of the Precautionary Principle,
see Charles Weiss, “Scientific Uncertainty and Science-Based Precaution,” In-
ternational Environmental Agreements: Politics, Law and Economics 3, 137-166
(2003), footnote 1.
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“Where there are threats of serious or irreversible damage, lack of full
scientific certainty shall not be used as a reason for postponing

cost-effective measures to prevent environmental degradation.” 8

In this statement, the fear of danger forces the consideration of precautionary
intervention but does not require such intervention actually to take place.

In its “strong” formulation, by contrast, the Precautionary Principle de-
clares that the absence of rigorous proof does require precautionary action to
be taken, and that the burden of proof lies with the proponent of an action to
show that it does not pose a danger of environmental harm. The Wingspread
Statement on the Precautionary Principle, for example, states that

“When an activity raises threats of harm to human health or the
environment, precautionary measures should be taken [author’s italics]
even if cause and effect relationships are not fully established scientifically.
[The] proponent of the activity, rather than the public, should bear the
burden of proof.”9

In a previous paper, the author pointed out two logical flaws in both of
these formulations of the Precautionary Principle, which substantially reduce
its value as a practical guide to action10. The first of these flaws is that
neither formulation deals with the issue of “willingness to pay”, i.e., the
costs – economic, political and social – that would be justified by the need to
address a threat whose magnitude is agreed but whose reality is uncertain.

Either the IPCC or the “legal” scale can be used as part of an analytical
framework to clarify the issues involved. We may represent this utility, or
willingness to incur costs, as a function of three variables: U = f(r, c, p),
where

U = A utility function that gives the cost that a person, group,
organization or government is willing to incur in order to
avert the threat in question;

r = The anticipated damage, i.e., the net cost if the threat were
to come to pass;11

8 Rio Declaration on Environment and Development (1992), In Edith Brown Weiss
et.al., International Environment Law: Basic Instruments and References, 1992-
1999 (Ardsley NY. Transnational Press, 1999).

9 The Wingspread Declaration is the declaration of a meeting of non-
governmental experts held in Wingspread WI in January 1998. See
http://www.sehn.org/state.html.

10 Charles Weiss, op. cit.
11 This anticipated damage is assumed to be agreed in any particular situation. In

principle, these costs may be technical, political, social or even cultural and may
or may not be quantifiable. In most situations, these costs cannot be reduced to
a singel number or even a single dimension, so that these curves are unavoidably
oversimplifications. In purely economic terms, thr net cost might be expressed,
for example, by the discounted value of the sum of cost of repair of the damages,
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c = The subjective probability (or other measure of certainty) that
the threat is real;12 and

p is a variable that measures the attitude of a person, group,
organization or government toward precaution, or (equivalently)
the willingness to accept risk or level of risk aversion.

Figure 1 shows utility functions13 U(c) at three levels of anticipated threat
(r) for each of three attitudes toward precaution, making nine curves in all.
The curves are sketches of theoretical archetypes and are not derived from
data. In an earlier work, we classified different levels of precaution into five
archetypes: environmental absolutist, cautious environmentalist, environmen-
tal centrist, technological optimist, and scientific absolutist.14 For simplicity
of presentation, only three of these five are represented in Figure 1. These
may be conceived as discrete values of p. If the threat in question is connected
to a human intervention, such as a project or a technological innovation, the
value of p expresses the balance in a given individual between the avoidance
of risk (“Look before you leap”) and the welcoming of innovation (“Nothing
ventured, nothing gained”),

In Figure 1, each level of precaution is represented by a curve of a dif-
ferent type: dotted, dashed, or solid line. Within each level of precaution,
the curves labeled a, b and c represent, respectively, the willingness U(c) to
incur costs at different levels of certainty for each of three levels of threat
(r): (a) utter catastrophe (an asteroid striking the Earth, for example), (b)
serious and irreversible damage (pollution of the bottom of a pristine lake
or aquifer, for example), and (c) serious but reversible damage (pollution of
the surface water of a major river, for example). By comparing curves a, b,
and c of the same type, the reader may trace the change in U(c) at a given
level of precaution as the level of threat increases. Similarly, for each level of
anticipated threat, Figure 1 shows three curves, each of a different type and
representing a different level of precaution.

the losses incurred while the damage is being repaired, and the losses that cannot
be repaired, or the opportunity costs of the innovation that has been thwarted. A
fuller representation would take into account the distribution of these costs among
different groups. Our previous treatment (reference, footnote 11) considered only
a single representative value of anticipated cost.

12 A fuller treatment would take into account the fact that a given individual may
entertain a subjective probability distribution of the level of risk, independent
of his level of confidence in that probability distribution. For example, he may
have a ”reasonable belief” that there is a 70 % chance of major damage, a 10 %
chance of minor damage, and a 20 % probability that there will be no damage
at all.

13 See David M. Kreps, A Course in Microeconomic Theory (Princeton NJ: Prince-
ton University Press, 1990).

14 Charles Weiss, op. cit.. We have changed the shape of the function U in Figures
1-3 from that shown in the figures in this reference.
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We use the Bayesian probabilities of the IPCC scale in Figure 1 so as to
make the units of the x-axis linear. (Our earlier work used the legal scale of
uncertainty, resulting in a non-linear scale for the x-axis15). The scale of the
y-axis represents different levels of intervention by verbal descriptions rather
than numbers, since many of the costs are unquantifiable.16 If the y scale
could be made to be well defined and linear in dollars or other appropriate
unit, the slope at any point on the curve would represent the price in that
unit that a person or group described by a given level of precaution would
be willing to pay for a marginal increase in the subjective feeling of certainty
that the threatened danger will not take place.17

For the archetypal “environmental absolutist” - say, a radical eco-activist
- curves 3a-c of Figure 1 depict a demand for action that begins at very low
probability and indeed is relatively independent of the degree of certainty of
the threat. The “environmental centrist” requires somewhat more certainty
before insisting on action. The “scientific absolutist”, on the other hand,
insists on a much higher degree of certainty before being willing to take
strong measures, and is willing to accept significant costs for unlikely threats
only if they are truly catastrophic in scope.
The curves of Figure 2 represent the levels of intervention for which the
group or individual is willing to pay in order to avert a threat of serious and
irreversible danger, at three different levels of precaution (p). The curves are
parametrized by the certainty (c) connected with the risk in question, and
constitute utility curves for increasingly strict attitudes toward precaution.
In essence, the rise of each curve from left to right depicts the extra cost
of increased levels of precaution at each level of certainty. If the cost curve
could be made quantitative, linear and continuous, the slope of the curve
would represent the price to be paid for a marginal increase in precaution at
the given level of anticipated cost.

At all but the very highest levels of certainty, the “scientific absolutist”
– who nowadays is typically a representative of a polluting industry – is de-
picted in Figures 2 and 3 as very reluctant to accept additional costs so much
so that the utility function representing his or her preferences for certainty
(dotted line in Figure 1) is actually concave upward, indicating a welcoming
attitude toward risk. Only (s)he would not take comprehensive measures to
deal with the threat of serious and irreversible damage at any but the very
highest levels of certainty (the top two curves in Figure 2).

15 Charles Weiss, op.cit.
16 These verbal formulations are derived from a study of the response of the inter-

national community to several global environmental threats. See Charles Weiss,
op. cit.

17 If the person making the judgment were utterly indifferent to risk, the anticipated
cost were expressed in dollars, and the y-axis were linear, the curve in Figure 1
for r = r0, where r0 is the anticipated cost, would be a straight line with a slope
of r0/100.
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The nine curves of Figure 3 show the levels of intervention that the indi-
vidual or group is willing to pay for as a function of the seriousness of the
anticipated threat, at each of three levels of uncertainty and three levels of
precaution. As might be expected, the curves converge at the highest lev-
els of certainty of utter catastrophe, but diverge considerably at lower levels
of anticipated cost and higher levels of certainty, with environmental abso-
lutists insisting on relatively vigorous action even at low levels of certainty
and anticipated cost, while scientific absolutists insist on a much higher level
of certainty, even in the face of higher catastrophe.

Figures 1-3 have not been vetted by users, and are intended to provide a
framework for posing questions regarding uncertainty and precaution rather
than precise decision support. One need not accept the specific, more or less
arbitrary shape of the curves to use them as a framework for clarifying the
distinctions among assertions of scientific fact, the uncertainty associated
with those assertions, and the question of what to do about the threat they
describe. The usefulness of this representation in actual communication and
decision support needs to be tested with focus groups and actual decision
situations.

4 A Proposed Principle of Innovation and Adaptive
Management

The second major limitation of the Precautionary Principle as a practical
guide to decisions regarding technological innovation is that it implicitly con-
ceives policy decisions as choices between a risky innovation or intervention,
on the one hand, and a presumably safe status quo, on the other. In prac-
tice, the Principle is typically employed as a means of discouraging proposals
for intervention or innovation. In contrast, many if not most actual policy
decisions involve a choice between (or among) risky alternatives.

In retrospect, this narrow view of precaution stems in large part from
past experience with “technological lock-in”, in which decision makers may
never have been given the opportunity to consider the merits of a possibly
harmful intervention, or at best are faced with “go/no-go” choices concern-
ing proposals for technological interventions that have acquired considerable
momentum and would require major efforts to stop, even though they may
never have been properly analyzed or justified.18

Drawing on this experience, more recent interpretations of the Precau-
tionary Principle have emphasized the need to frame issues broadly enough
to encourage consideration of a variety of alternative strategies, so as to allow
time to gather more information before making a commitment to a partic-
ular approach, and to reduce the prospect that the decision makers will be

18 Poul Harramoes et al, eds., The Precautionary Principle in the 20th Century:
Late Lessons from Early Warnings (London: Earthscan Publications, 2002).
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confronted with an unpleasant choice down the road. In this broader view,
blocking an innovation or intervention is only one of a number of possible
measures by which the Precautionary Principle may be implemented.19

This literature on the Precautionary Principle thus seems to be edging
toward a position consistent with the approach of adaptive management,
which is defined as “a systematic process for continually improving manage-
ment policies and practices by learning from the outcomes of operational
programs”.20 Such adaptive management would be discouraged by a strict
application of the Precautionary Principle in its present form, which has
the effect of rationalizing opposition to paths whose dangers are not well
understood from the beginning. To be sure, adaptive management has its
limitations. It is appropriate to those situations that do not require imme-
diate and definitive results, in which increased research may be expected to
yield information that will create opportunities for improved management in
the reasonably near future, and in which unanticipated consequences of the
proposed innovation are unlikely to be catastrophic or irreversible. It also
requires that the necessary research and monitoring actually take place and
that the results be fed into the management regime. Even so, it is applicable
to the majority of long-term environmental issues.

In order to create space in the legal regime for this more flexible approach,
we propose a new Principle of Innovation and Adaptive Management: “that
research and development on a new technology that promises major benefits
not be unreasonably blocked until the detailed implications of this technology
are well understood, as long as adequate provisions are made for research and
monitoring, and for incorporating their results into management strategy”.21

The new Principle balances and complements the Precautionary Princi-
ple, and ensures that the opportunities that could be created by innovation
are not lost because of an over-zealous application of precaution. It is in-

19 Joel Tickner, ed., Precaution, Environmental Science, and Preventive Public Pol-
icy (Washington: Island Press, 2003); M. Kaiser, ”Multi-Stakeholder Application
of the Precautionary Principle: The Importance of Transparent Values,” paper
presented at the UPEM Conference in Copenhagen, 7-9 June 2004; and Poul
Harramoes, op. cit.

20 Pamela A. Wright, “Monitoring for Forest Management Unit Scale Sus-
tainability: The Local Unit Criteria and Indicators Development Test
(The LUCID Test)” US Department of Agriculture and US Forest Ser-
vice, Inventory and Monitoring Institute Report �4, 2002, available at
http://www.fs.fed.us/institute/lucid/final report. Ibid. See also National Re-
search Council, Our Common Journey (Washington; Natianal Academy Press).

21 We have here modified the formulation given in our earlier paper, Charles Weiss,
“Scientific Uncertainty and Science-Based Precaution,” op. cit., by adding the
clause beginning “as long as.” We are also changing the name of the proposed
Principle, which in our earlier paper we called the “reasonableness principle,”
by replacing the value-laden term “reasonableness,” which might imply that any
criticism of the proposed Principle would be unreasonable.
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tended to frame the debate on the wisdom of a given innovation between
advocates of precaution who emphasize risks and dangers, on the one hand,
and advocates of innovation who emphasize opportunities, on the other. It
is deliberately couched as a general principle that mirrors the generality of
the Precautionary Principle. Both points of view are legitimate and deserve
to be heard. Indeed, we would argue that adaptive management, properly
implemented, is an essential element of precaution.

5 Conclusion: A Framework for Balanced Precaution

We have presented a logical framework to guide decisions involving scientific
uncertainties, based on the following elements22:

• Scales and standard vocabularies of subjective (Bayesian) uncertainty
that facilitate a clear statement of the degree of uncertainty surrounding
a scientific assertion;

• A framework for distinguishing between the state of scientific knowledge,
on the one hand, and the uncertainty surrounding that knowledge, on the
other;

• A framework for distinguishing both of these from one’s attitude toward
risk and precaution: i.e., one’s willingness to accept costs to avert uncer-
tain danger as a function of its size and uncertainty;

• A logical framework for decisions regarding the costs of averting uncertain
dangers

• A legal Principle of Innovation and Adaptive Management that facilitates
the balanced consideration of risks and opportunities in decisions between
alternatives whose scientific underpinnings are uncertain.

The various elements of this framework should be useful in distinguishing
the different issues involved in public discussions of these frequently complex
and difficult issues. Specifically, the scales of uncertainty should be useful
in presenting scientific information to policy makers and the general public,
and in explaining the distinction between scientific assertions and their asso-
ciated uncertainty. One may imagine, for example, experts on opposite sides
of a policy dispute acknowledging that they agree on the likelihood that a
given danger is real and of approximately of a given cost and magnitude, but
disagree on the costs they would accept to forestall or mitigate that danger.
Conversely, they might disagree about the level of uncertainty sorrounding
the science underlying the danger but agree on what they would recommend
if they were to come to agree that the danger was real. The utility functions
for precaution and subjective uncertainty should be a useful framework for

22 Both the “legal” scale of uncertainty and the Principle of Innovation and Adap-
tive Management are slightly modified from the author’s earlier work cited in
footnotes 2 and 7.



Precaution: The Willingness to Accept Costs to Avert Uncertain Danger 325

distinguishing differing attitudes toward precaution from differences of opin-
ion regarding science and the uncertainty connected with science and help
avoid the more extreme versions of “sizbd science”, on the one hand, and
excessive precaution, on the other. The Principle of Innovation and Adap-
tive Management complements the Precautionary Principle by framing the
debate between advocates concerned with the risks of innovation, and those
more inclined to value its benefits. This in turn facilitates consideration of
adaptive management when this is appropriate to a particular situation.

The scale and framework were originally developed for practitioners of
science policy, especially those concerned with international environmental
issues. The overall framework should have broad application in law, intelli-
gence, the history of science, and other fields as well. The Bayesian scales of
uncertainty may also facilitate subjective estimates of the validity of the as-
sumptions and proxies that are inevitable in the models used in some branches
of engineering. It would be desirable to subject the scale, the framework and
the proposed principle to practical test.
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Table 1. Scales of Certainty
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Table 2. Legal Scale of Uncertainty for Positive and Negative Statements
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Fig. 1. Willingness to Accept Cost to Avert an Uncertain Threat
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Fig. 2. The Cost of Increasing Precaution as a Function of Increasing Certainty of
a Threat of Serious and Irreversible Damage
Curves 1-11 display the cost (U) of increasingly strict attitudes to precaution (p) at
different levels of subjective certainty (c) for a hypothetical serious and irreversible,
but not catastrophic risk. The levels of certainty and the cost axis are those of Figure
1, curves 1b-3b.
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Fig. 3. Willingness to Accept Costs as a Function of Increasing Certainty and
Anticipated Threat
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