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Preface 

This book emerged from a PhD project carried out at University of Hannover, Ger
many and New University of Lisbon, Portugal. After getting in contact with our Por
tuguese partners during my master's thesis, I spent a year in Lisbon and finished my 
PhD two years later in Hannover. It was a great experience to be involved in several 
projects carried out at the institutes. In the Proloppe and Padipro projects, the Por
tuguese side, led by Prof. Pereira, focused on logic programming including issues 
such as new semantics, distribution, and applications. The German side, led by Prof. 
Nejdl, has been dedicated to model-based diagnosis and participated in the European 
project ModeLAge to develop a common model of agents. A tedious task. Both in
stitutes cooperated on logic programming for model-based diagnosis over a period of 
four years. 

Based on this background, the objective of this work is the definition and imple
mentation of an architecture for autonomous, model-based diagnosis agents. In this 
book, we first develop a logic programming approach for model-based diagnosis and 
introduce strategies to deal with more complex diagnosis problems. Then we embed 
the diagnosis framework into the agent architecture of vivid agents. 

First, we survey extended logic programming and show how this expressive lan
guage is used to model diagnosis problems stemming from applications such as digital 
circuits, traffic control, integrity checking of a chemical database, alarm-correlation in 
cellular phone networks, diagnosis of an automatic mirror furnace, and diagnosis of 
communication protocols. To compute diagnoses we review a bottom-up algorithm to 
remove contradictions from extended logic programs and substantially improve it by 
top-down evaluation of extended logic programs. Both algorithms are evaluated in the 
circuit domain including some of the ISCAS85 benchmark circuits. 

To deal with complex diagnosis problems we lift the idea of model-based diag
nosis to the meta-level of the diagnostic process and define a strategy language that 
allows a declarative description of the diagnostic process. Taking into account both 
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practical needs and rigorous formal treatment, we define syntax and declarative and 
operational semantics of the strategy language. With the concept of deterministic and 
non-deterministic as well as monotonic and non-monotonic strategies, we design a 
strategy knowledge base for circuit diagnosis with strategies for structural refinement, 
choice of models, measurements, and preferences. We evaluate the knowledge base 
and the algorithm on a voter circuit which is part of the benchmark circuits. 

Based on the inference engine lined out above we turn to the autonomous agent's 
behaviour specification. We present the concept of vivid agents which comprise a vivid 
knowledge system and reaction and action rules to specify the agent's reactive and pro
active behaviour. To realise vivid agents we develop an architecture for concurrent ac
tion and planning. For implementation we use PVM-Prolog that provides coarse-grain 
parallelism to spawn agents in a network and fine-grain parallelism to run action and 
planning component concurrently. The interpreter is evaluated in distributed diagnosis 
where we implement fault-tolerant diagnosis and diagnosis of a communication pro
tocol. The agent interpreter satisfies the requirements for a state-of-the-art multi-agent 
programming language: it supports reactive and pro-active behaviour specification; 
the specifications are executable; the language has a formal semantics; the modular 
design facilitates plug and play according to the problem domain; the system is open 
to heterogeneous agents based on other concepts and languages. 

This comprehensive in-depth study of concepts, architecture, and implementation 
of autonomous, model-based diagnosis agents will be of great value for researchers, 
engineers, and graduate students with a background in artificial intelligence. For 
the practitioners it provides three main contributions: first, many examples from di
verse areas such as alarm correlation in phone networks to inconsistency checking in 
databases; second, an architecture to develop agents; and third, a sophisticated and 
declarative implementation of the concepts and architectures introduced. The theo
rist can benefit from the three contributions of a novel approach to diagnosis based 
on logic programming, a newly devised modal strategy language to model diagnostic 
processes, and a practical and formally under-pinned concept of agents. 

Michael Schroeder, February 1998 



1 INTRODUCTION 

Intelligent agents and multi-agent systems are one of the most important emerging 
technologies in computer science today. Agents have high level interaction capabil
ities and are capable of rational autonomous action in dynamic, unpredictable, typi
cally multi-agent environments. Agents are being applied in domains as different as 
telecommunication networks, air-traffic control, space crafts, etc. 

For example, NASA's Deep Space One Mission challenges information technology 
to achieve a paradigm shift in space missions [PBC+97]. While previous missions 
have been large, long-term projects being controlled from earth, NASA now aims at 
down-sizing. The challenge of NASA's New Millennium Program is the realization 
of deep space missions with minimal costs and maximal autonomy of the space craft. 
Williams and Nayak argue that such systems "will need to be programmable purely 
through high level compositional models. Self modeling and self configuration, coor
dinating autonomic functions through symbolic reasoning, and compositional, model
based programming are the three key elements of a model-based autonomous systems 
architecture that is taking us into the New Millennium" [WN96]. Pell et al. also em
phasise that model-based diagnosis and agent technology are a necessary prerequisite 
for the success of such missions [PBC+97]. 

M. Schroeder, Autonomous, Model-Based Diagnosis Agents
© Springer Science+Business Media New York 1998
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The reason is twofold. First, model-based reasoning, and in particular model-based 
diagnosis, enjoy the advantage of being declarative so that they facilitate easy mainte
nance and extendibility of the systems at minimal development costs [DH88]; second, 
agent technology guarantees maximal autonomy of the systems which is essential for 
operation in unpredictable environments [WJ95]. 

In this book, we will develop the theoretical framework of autonomous, model
based diagnosis agents along with an implementation. The work will be motivated 
and accompanied by examples stemming from practical problems including domains 
such as digital circuits, fault management in cellular phone networks, traffic control, 
unreliable communication protocols, inconsistent databases, and fault-tolerant diag
nosis. We will commence by defining a layered architecture for diagnostic agents 
comprising a knowledge base, an inference engine and a layer for communication and 
control. The core of the inference engine is REVISE, a diagnosis system for extended 
logic programs. Next, there is a component for diagnosis strategies which allows to 
describe the diagnosis process declaratively and which is vital to deal with complex 
problems. Finally, we introduce the new concept of vivid agents which caters for 
high-level executable specifications of agents' reactive and pro-active behaviours. 

1.1 MOTIVATION 

Before we go into detail, let us motivate the three important techniques of model-based 
diagnosis, diagnosis strategies, and autonomous agents. 

1.1.1 Model-based Diagnosis 

Model-based diagnosis is a prominent area within Artificial Intelligence and emerged 
in the last ten years [HCd92], The basic principle in model-based diagnosis is the 
description of a system as a causal model. With the model at hand, the behaviour 
predicted by the model is compared to the actually observed behaviour. Since the pre
dictions of the model are based on the assumption that the components work correctly, 
these assumptions may be partially dropped to accommodate for a detected behaviour 
difference and thus diagnose faulty behaviour. 

Example 1.1 Automatic Mirror Furnace [TD95, The95] 
Consider an automatic mirror furnace [TD95, The95] whose structure is depicted in 

Figure 1.1. It is used in space for material science research of crystal growth under 
micro-gravity conditions. About 20 crystal samples are placed on a disc from where 
they can be put into the focus of an ellipsoid mirror. 

Have a look at the disc drive unit of the sample exchange mechanism in Figure 1.2. 
The unit consists of five components: A control unit that operates the plate and the 
motor and two switches. Switch 4 indicates whether a sample is at a position to be put 
into mirror focus and switch 5 shows whether this sample has the number O. 



Mirror 
Shell 
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Liquid G Data Pow 
Cooling Supply Box Box 
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Figure 1.1. Schematics of an automated mirror furnace (AMF) including disc drive unit 
[TD95]. 
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Switch Switch 5 

Control Unit 

Figure 1.2. Model of the sample exchange disc drive unit . 

Imagine we observe that the control unit enables the plate and starts the motor 
with half a position per time unit. Furthermore, we know that initially position 0 is 
in place so that both switch 4 and 5 should be active. And indeed, if we look at the 
observed behaviour of the switches in Figure 1.3 everything seems to be fine. Based 
on the assumption that all components work correctly, the model predicts that sample 
number 1 is in place after two time units and that therefore switch 4 is active and 
switch 5 is off. But both are observed to be off. 

A possible diagnosis to explain the behaviour difference is that switch 4 is faulty. 
The alternative solutions of a disabled plate or stopped motor are no valid diagnoses, 
since then sample 0 would be in position and subsequently both switches would be ac
tive. But assuming both of them faulty contradicts the principle of parsimony [Rei87], 
e.g. to prefer minimal solutions, as switch 4 by itself is already a diagnosis. However, 
there is another explanation. The motor may suffer from friction so that it did move 
the samples but not at half a position per time unit. In this case, the position is some
where between 0 and 1 which peifectly explains both switches being off and thus is a 
diagnosis. 

In contrast to other diagnosis approaches such as heuristic or case-based diagnosis, 
model-based diagnosis enjoys the following four important properties [DH88]. First, 
it is declarative, so that the model can be described at an abstract level hiding unneces
sary details. Second, it allows easy maintenance and extension of the model. Further 
components can be added to the model without re-implementing the diagnoser from 
scratch. Third, the model gives valuable insight into a system and supports prediction 
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Figure 1.3. Observations of switch 4 and 5 of the disc drive unit . 

of expected behaviour for future states. Fourth, the model features explanation of its 
findings which is vital to judge the diagnosis system's quality and to trust in it. We will 
further elaborate background, techniques, and algorithms of model-based diagnosis in 
chapter 2 and 3. We will demonstrate how to employ extended logic programming, an 
expressive language that provides two forms of negation and integrity constraints, in 
model-based diagnosis. 

1.1.2 Strategies in Model-based Diagnosis 

In the last years, model-based diagnosis has been extended by the introduction of the 
new concept of using different diagnostic assumptions which can be activated during 
the diagnostic process [Str92b). The selection of the appropriate diagnostic assump
tions and system models during the diagnostic process is controlled by a set of work
ing hypotheses [Str92b, BD93, BD94). Diagnostic strategies are rules defining which 
working hypotheses should be used in a given situation during the diagnostic process. 

Example 1.2 Structural Refinement of a Voter 
Consider the digital circuit in Figure 1.4. The circuit realises a voter with input a,b, c 
which outputs b if a = b or b = c and otherwise c. Initially, we view the voter as a 
whole unit and detect a malfunctioning. A first refinement step reveals that the selec
tion component sel and the component voter...ab are involved whereas the component 
voter -.bc is found ok. By adopting an according working hypothesis, the suspicious 
devices are further refined and again two candidates, seLO and equ...abO, are detected, 
while the other components are discarded. A last refinement step leads to the final 
diagnosis of or-gate orO...sel and and-gate andA being abnormal. 

The use of hierarchies and abstractions allows to reduce the complexity of diagnos
ing. In the above example, it has only been necessary to consider half the components 
of the flat gate-level of the voter. If we take into account that computing all diagnoses 
is an NP-complete problem then such a use of hierarchies facilitates the diagnosis 
of large systems. Besides the use of hierarchies, a diagnosis process can use further 
strategies, such as preference of single over double faults, measurements to further dis-
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Figure 1.4. A diagnostic process. 

tinguish among diagnoses, choice of another model in case of implausible diagnoses, 
and refinement of a component's behaviour to further elaborate diagnoses. 

1.1.3 Autonomous Agents 

Agents and multi-agent systems have been an increasingly active area throughout the 
last five years. It attracted many researchers with different backgrounds and subse
quently, a variety of notions of agenthood have been defined. Our notion is based on 
the ideas introduced by Shoham [Sho93] and follows the traditional notion of a logic
based rational agent. Shoham extends the concept of object-orientation and introduces 
the corresponding agent-oriented programming. He defines an agent as "an entity 
whose state is viewed as consisting of mental components such as beliefs, capabilities, 
choices, and commitments" and he pinpoints: "What makes any hardware or software 
component an agent is precisely the fact that one has chosen to analyze and control 
it in these mental terms" [Sho93]. Apart from this weak notion of agenthood, we 
favour the approach of logic-based rational agents coming from logic-programming. 
Kowalski promotes such agents and attempts to reconcile this notion "with the con
trary notion of a reactive agent which acts 'instinctively' in response to conditions that 
arise in its environment" [Kow95]. Wagner's concept of a vivid agent points to a simi
lar direction emphasising that beliefs, tasks, and goals are represented by a knowledge 
base and are subject to manipulation via update and inference operations. The agent's 
behaviour is represented by means of action and reaction rules [Wag96]. Wooldridge 
and Jennings summarise that agenthood is determined by four properties [WJ95]: 
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Figure 1.5. A communication network. 

1. autonomy: agents operate without the direct intervention of humans or others, and 
have some kind of control over their actions and internal state; 

2. social ability: agents interact with other agents (and possibly humans) via some 
kind of agent-communication language; 

3. reactivity: agents perceive their environment, (which may be the physical world, 
a user via a graphical user interface, a collection of other agents, the Internet, or 
perhaps all of these combined), and respond in a timely fashion to changes that 
occur in it; 

4. pro-activeness: agents do not simply act in response to their environment, they are 
able to exhibit goal-directed behaviour by taking the initiative. 

Example 1.3 Distributed Diagnosis of a Computer Network 
As an example of agents for distributed diagnosis, have a look at the communication 
network in Figure 1.5. Due to size and complexity, large communication networks 
cannot be diagnosed by a central system, so that diagnosis has to be performed locally 
whenever possible. 

A solution is to introduce agents which autonomously monitor and diagnose a sub
net offeasible complexity. An agent has detailed knowledge about its own subnet and 
an abstract view of the rest of the network. Agent AI, for example, knows its compo
nents CI and C2 and has routing information to send messages. Being social, agent A I 
passes the message to agent A2 in order to send a message to C7. Thus, Al has only 
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an abstract view of the network including agents A2 and A6, but excluding A3,A4,As. 
Now in case Ai notices that a message was lost, it reacts immediately and diagnoses 
itself and comes either to the conclusion that it is down itself or that A2 is suspicious. 
In the latter case it pro-actively contacts A2 to further investigate the cause offailure. 

1.2 MAIN CONTRIBUTIONS 

The main goal of this book is to define and implement a framework for autonomous, 
model-based diagnosis agents. The contributions of this work are fourfold. First, we 
show how to use extended logic programming for model-based diagnosis. We identify 
modelling techniques for diagnosis problems based on a variety of practical applica
tions. To compute diagnoses we develop a top-down diagnosis algorithm which is 
implemented in the REVISE system. The algorithm is evaluated on some benchmark 
problems. 

Second, the notion of a dynamically developing diagnosis process has been coined 
recently. We devise a new strategy language to specify such diagnosis processes. We 
define syntax and semantics of the language and identify principles to design strategies 
for applications. We define an operational semantics and an efficient algorithm which 
is evaluated in the domain of circuit diagnosis. 

Third, to deal with distributed diagnosis we introduce and implement the concept 
of vivid agents. For the implementation we line out an architecture for concurrent 
action and planning and we implement the architecture using a distributed Prolog. 
The complete agent interpreter is evaluated in the domain of distributed diagnosis. 
It satisfies the main criteria for a state-of-the-art multi-agent programming language: 
It allows to specify reactive and pro-active behaviour, it is under-pinned by a formal 
semantics, the high-level agent specifications are executable, the agents are hardware 
independent, and heterogeneous agents are supported. 

Forth, we introduce the novel architecture for autonomous, model-based diagnosis 
agents shown in Figure 1.6. It consists of three layers: a knowledge base, an inference 
engine, and a top-layer for communication and control. Besides the system descrip
tion, the knowledge base contains the strategic knowledge, and action- and reaction 
rules which specify the agent behaviour. The core of the inference engine is the di
agnosis system REVISE. A strategy algorithm that computes the diagnostic process 
operates on top of the diagnosis engine. Next, there is an optional test component to 
perform hardware tests and evaluate sensors. The planner takes the action rules and a 
goal as input and computes action sequences that achieve the desired goal. Finally, the 
top-layer for communication and control realises a perception-reaction-cycle which 
checks incoming events and reacts according to the reaction rules. It also exhibits pro
active behaviour as it communicates goals to the planner and executes the generated 
plans. 
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Figure 1.6. Components of a new architecture for autonomous model-based diagnosis 

agents. 

1.3 ORGANISATION 

Chapter 2 surveys model-based diagnosis including terminology, basic definitions, 
modelling techniques, and diagnosis engines. 

Chapter 3 deals with the use of logic programming for model-based diagnosis. We 
introduce extended logic programs that provide two kinds of negation and integrity 
constraints. Using this expressive language, we further elaborate modelling techniques 
for the system description based on practical examples such as digital circuits, fault 
management in cellular phone networks, an automated mirror furnace, traffic control, 
unreliable communication protocols, and inconsistent databases. With the examples 
in mind, we turn towards computing diagnoses. We review a bottom-up algorithm for 
contradiction removal and develop a dramatically improved top-down algorithm using 
top-down evaluation of extended logic programs. The algorithms are implemented 
in the REVISE system and we conclude this chapter by comparing the algorithms' 
efficiency. Parts of chapter 3 are based on [DPS97b] co-authored by C. V. Damasio 
and L. M. Pereira. 

Chapter 4 discusses a framework which allows to express diagnosis strategies as 
formulas of a meta-language. We define syntax and semantics of the language and 
present a method for designing strategy knowledge bases as well as an efficient, 
straightforward operational semantics for exploiting them. We evaluate the results 
by a comprehensive example for the diagnosis process of digital circuits. Parts of 
chapter 4 are based on [NFS95, FNS96, FNS97] co-authored by P. Frohlich and W. 
Nejdl. 

Chapter 5 introduces vivid agents to develop distributed monitoring and diagnosis 
systems consisting of a variety of scalable knowledge- and perception-based agents. 
We develop an execution model for vivid agents which is based on an architecture for 
concurrent action and planning. We implement vivid agents in PVM-Prolog which is 
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based on the Parallel Virtual Machine and provides coarse-grain parallelism to spawn 
agents in a network, and fine-grain parallelism to run an agent's perception-reaction
cycle and planning facility concurrently. Next, we evaluate the concept of vivid agents 
in distributed diagnosis including fault-tolerant diagnosis and the diagnosis of an un
reliable communication protocol. Parts of chapter 5 are based on [SW97, SMWC97] 
co-authored by G. Wagner, R. Marques, and J. Cunha. 

Chapter 6 rounds out the picture by comparing to related work, evaluating the pre
vious chapters, and pointing to future work. 



2 MODEL-BASED DIAGNOSIS 

In this chapter we give an overview over model-based diagnosis including termi
nology, basic definitions, modelling techniques, and diagnosis engines. 

2.1 HEURISTIC DIAGNOSIS VS. MODEL-BASED DIAGNOSIS 

In the past, two different approaches to diagnosis emerged, namely heuristic diagnosis 
and model-based diagnosis. In heuristic diagnosis expert knowledge and large data 
samples are used to define rules of thumb to relate symptoms to diagnoses. Heuristic 
diagnosis has been widely applied in the medical domain and the most prominent 
system, called MYCIN, attempts to recommend appropriate therapies for patients with 
bacterial infections. The first principle in systems like MYCIN [BS84] are certainty 
factors to indicate how relevant a symptom is for a diagnosis. The factors range from 
-1 to 1, where -1 means uncertain, 0 unknown, and 1 certain. Given a set of symptoms 
the corresponding certainty factors are combined to give an overall estimation for the 
certainty of a diagnosis. 

M. Schroeder, Autonomous, Model-Based Diagnosis Agents
© Springer Science+Business Media New York 1998
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Symptom Diagnoses 

Morbus Paget Lipom 

a-priori +0.0300 +0.0012 
localisation: hand -0.0875 -0.1000 

x-ray: homogeneous 
concentration -1.0000 +0.0300 

age: 51-60 +0.0583 +0.0833 

Figure 2.1. Certainty factors for bone tumors. 

Example 2.1 CARAT, Diagnosis of Bone Tumors 
CARAT [PBr+93, PBr+94j is a heuristic diagnosis system for bone tumors. Some 

certainty factors are shown in Figure 2.1. Morbus Paget and a Lipom have a-priori 
certainty of 0.03 and 0.0012, respectively. With homogeneous concentrations on the 
X-ray Morbus Paget turns out to be highly uncertain, while a Lipom is slightly pos
itive. Given a patient of 55 years with a tumor on his/her hand and an X-ray with 
homogeneous concentrations we can apply the following formula to obtain the overall 
rating for the diagnoses: 

ifch,ch ~ 0 
ifch,ch < 0 
otherwise 

where cfl and ch are the certainty factors cf(d,sJ) and cf(d,s2) for a diagnosis 
d and symptoms Sl, S2. With the symptoms of the 55 year-old patient Morbus Paget is 
rated -1 and a Lipom 0.0132. Thus, we can definitely rule out Morbus Paget, whereas 
the Lipom is still unknown. 

Though heuristic diagnoses are easily computable, the approach suffers from some 
severe weaknesses. It is difficult to get good heuristics, because experts often do not 
have the technical skills to define them. It is, for example, crucial to fully use the 
interval of possible certainties to get the best discrimination between the diagnoses. 
Once the knowledge about certainties is given, it is difficult to extend. For example, 
in the CARAT project 43 tumors have been classified with around 65.000 factors. If 
a new tumor is found one day, it will be difficult to relate the new certainty factors to 
the old ones. And last, not least, the approach is not theoretically founded so that it is 
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Model Diagnosis 

Predicllon Observations 

Pred;~ beha\';or Disaepancy 

Figure 2.2. Model-based diagnosis. 

not possible to estimate the quality of the systems' findings which is essential for its 
acceptance by medical staff and patients. 

Model-based diagnosis differs significantly from heuristic diagnosis. The first prin
ciple of model-based diagnosis is a model or artifact of the system to be diagnosed. 
As shown in Figure 2.2 the model's predicted behaviour is compared to the observed 
behaviour of the actual system. If they contradict each other, the model's default as
sumption of working components has to be revised to remove the discrepancy. 

2.2 THE MODEL 

Initially, research in model-based diagnosis concentrated on algorithms to compute 
diagnoses, but soon it turned out that modelling is a hard problem, too [HCd92]. Ba
sically, the model contains the system's components and their structure. When trou
bleshooting digital circuits, a domain to which model-based diagnosis has been tightly 
connected [Dav84, dKW87, Rei87, Ham91 , dKW89], the model consists of gates and 
their connections.The components have input and output ports and transform a given 
input according to their functionality. The functionality depends on the behaviour 
mode of the component. Two modes are always present, namely ok and abnormal 
where the former is usually assumed by default. The abnormal mode may be refined 
by fault modes [SD89] that describe the malfunctioning more precisely. 

In the following example we use first order logic as notation. Variables begin with 
upper-case letters and constants with lower-case letters. Variables are assumed to be 
universally quantified. 

Example 2.2 Modelling a Full Adder 
Consider the eight-bit-full-adder in Figure 2.3. The components of the circuit are 
classified by predicates 

type(xll,xor), type(all,and),,,. 

The components are connected which is captured by the predicate conn: 
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-

C=!.:::=~~---- ...,.-

Figure 2.3. Eight-bit-adder as functional model. 

Given a component, values may be either observed, passed via connections, or 
computed. 

val(C,P,v) +- obs(C,P, V) 
val(C,P, V) +- conn(C,P,C',P'), val(C' ,P', V) 
val(C,P, V) +- .0bs(C,P, V') ,comp_val(C, P, V) 

Observations are given as facts, while the computed values are calculated: 

comp_val(C, out I , V) +- .ab(C) ,type(C, and) , 
val(C,inl, VI), val(C,in2, V2), 
andJable(VI' V2, V) 

To constrain the behaviour difference we write 

where .1 denotes the bottom symbol for false. 
To introduce fault modes we could express that gates may be stuck at 0 or 1 denoted 

by so, Sl. So if we detect a component as abnormal we require it to adopt a fault mode 
by 

For the fault modes we have to define how to compute output values. For example, 
does So always yield the output value o. 
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Figure 2.4. Eight-bit-adder as physical model. 

comp_val(C,out"O) +- type(C,and),so(C) 

Besides the functional view of the full adder we may want to use a physical view 
as shown in Figure 2.4, as well. In contrast to the functional view, the physical view 
takes the location of the gates additionally into account. To put both views in the same 
system description we add to all rules of a view a working hypothesis which has to be 
set to activate the rules in the model. To compute values in the physical view we have 
rules whose body contains the working hypothesis physicaLview. 

comp_val(C,outj, \,;') +- ....,ab(C) ,type(C, and...chip) , 
physicaLview, 
val( C, in" V,), . .. , val( C, ins, Vs), 
and_chip.1able(V" ... , Vg, V{, . .. , V8) 

2.3 CONSISTENCY-BASED AND ABDUCTIVE DIAGNOSIS 

The birth of model-based diagnosis can be traced back to de Kleer's and Reiter's sem
inal papers "Diagnosing Multiple Faults" [dKW87] and "A Theory of Diagnosis from 
First Principles" [Rei87], respectively. Reiter's paper introduces the first principles 
of model-based diagnosis, the terminology, and an algorithm which was corrected in 
[GSW89]. Reiter's initial proposal is consistency-based in contrast to abductive diag
nosis which was coined later. In consistency-based diagnosis only the two behaviour 
modes ab and ""'ab, i.e. ok, are present. Using these modes, the system description 
SD is modelled as a first-order formula. Given a set aBS of observations and the 
components CaMPS the triple (SD, CaMPS, aBS) is dubbed a diagnosis problem. 
Adding the observations may lead to inconsistencies, i.e. SD U aBS F= .1, which can 
be removed by adding abnormality assumptions to SD U aBS. There is always the 
trivial solution to gain consistency back by assuming all components to be abnormal. 
But the principle of parsimony requires that subsets of diagnoses should not be diag-
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WI W3 W5 

~s ~BI ~B2 }9" 
W2 W4 W6 

Figure 2.5. Three bulbs and one voltage supply in parallel. 

noses, as well. Hence, a minimal set of components for which assuming abnormality 
re-establishes consistency is called a consistency-based diagnosis. 

Definition 2.3 Consistency-based Diagnosis 
A consistency-based diagnosisfor a diagnostic problem (SD, COMPS, OBS) is a min
imal set ~ ~ COMPS such that 

SDU OBSU {ab(c) ICE~} U {...,ab(c) IcE COMPS\~} 

is consistent. 

Note, that other authors deviate from the term consistency-based diagnosis. Kono
lige [Kon92], e.g., uses the term excusing diagnosis, which comes from the fact that 
the assumption about the malfunction of a component excuses the predicted correct 
behaviour. Console and Torasso [CT91] use the term explanation as consistency. 

Example 2.4 Diagnosing the Full Adder 
Consider the full adder in Figure 2.3 and its system description SD as devel
oped above. We observe for input a = b = 0 that the sum output is 0 as ex
pected, but that the carry out is set 1. Therefore SD U OBS ~ .1, where OBS = 
{val(aj, outl, 0), val(bj,outl, 0), val(sumj, inl, 011 ::; i::; 8} U {val(carryJJut , inl, I)}. 
The three diagnoses {as!}, {as2}, {os!} remove the contradiction. 

Consistency-based diagnosis is a weak notion of diagnosis. Rather than explaining 
the observed behaviour by the model, only contradictions are removed. The advantage 
is twofold: The model is easier to construct as only the intended functionality has to 
be modelled and consistency-based diagnoses are easier to compute. Consistency
based diagnosis is sufficient for many applications, but a variety of practical problems 
occur so that the basic approach has been further developed. The initial proposals 
[Dav84, Gen84, Rei87, dKW87, FN90] did, e.g., not deal with fault modes. De Kleer 
and Williams [dKW89] as well as Struss and Dressler [SD89] tackled this issue. The 
latter by means of the following example of physical impossibility [SD89] . 

Example 2.5 Physical Impossibility 
A supply is connected to three bulbs bl, b2, b3 . The bulbs bl, b2 are broken, b3 is 
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lit. Besides the diagnosis of bl, b2 being faulty, consistency-based diagnosis comes up 
with the unintended diagnosis of the supply and b3 being faulty. The reason is that the 
faulty supply explains the broken bulbs, while assuming b3 faulty accommodates for 
the light with no information on the supply. 

Struss and Dressler solved this problem by introducing fault models: They model 
that a faulty supply does not supply energy so that the bulb b3 cannot burn. Friedrich 
et al. [FGN90] propose rather to add impossibility axioms to the system description 
that state that bulbs cannot burn without supply which is less expressive but compu
tationally more efficient. With the notion of fault modes a strong notion of diagnosis 
can be defined. Instead of only removing contradictions between predictions and ob
servations, we require that the observed behaviour is explained. Poole's abductive 
diagnosis [Po089] and Console and Torasso's explanation as covering [CT91] is de
fined as follows: 

Definition 2.6 Abductive Diagnosis 
An abductive diagnosis for a diagnostic problem (SD, COMPS, OBS) is a minimal set 
A of behavioural mode assumptions such that 

SD U A FOBS and SD U A U OBS is consistent 

2.4 DIAGNOSIS ENGINES 

Based on this theory several diagnosis engines have been implemented. 

GDE and Sherlock. One of the first and most influential diagnosis systems is 
GDE, the General Diagnostic Engine, by de Kleer and Williams [dKW87]. The initial 
GDE computes consistency-based diagnoses and thus there have been various exten
sions. A subsequent system, called Sherlock [dKW89] extends the GDE to include 
fault models and probabilistic information. 

IMPLODE. To improve efficiency de Kleer and Brown introduced sensitivity 
analysis in the diagnosis engine SOPHIE III [dKB92]. Assumptions are judged wrt. 
their influence on output values and are classified as primary or secondary. SOPHIE 
III is specialised on analog circuits and computing single-fault diagnoses. Raiman, 
de Kleer, and Saraswat extend the approach of sensitivity analysis in their theory of 
critical reasoning [RdKS93]. Rather than assumptions they classify conflicts, i.e. sets 
of assumptions. Their diagnoser IMPLODE which incorporates critical reasoning on 
top of a diagnoser described in [dK91] performs very well even for large diagnosis 
problems such as the ISCAS benchmark circuits [BPH85] which have not been solved 
efficiently by previous engines. 
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MOMO. MaMa, a system developed by Friedrich and Nejdl [FN90], follows a 
different line of research. It generates consistent logical models for the inconsistent, 
underlying theory of system description and observations. MaMa is implemented in 
Prolog and uses hyper-resolution. The core is a one-page Prolog program. 

DRUM. The same idea of working directly on logical models is the key of DRUM 
and DRUM II [NG94, NF97, FN97]. Unlike most other systems DRUM does not 
record justifications which can lead to an explosion of labels when solving compli
cated problems. It uses static pre-compiled information on the structure of the un
derlying theory and does no further recording during search. DRUM solves large 
complicated problems with attractive time and space complexity and outperforms the 
IMPLODE system on almost all examples. 

REVISE. The non-monotonic reasoning system REVISE [DNP94, DNPS95, 
DPS96, DPS97b] that revises extended logic programs is based on logic programming 
with explicit negation and integrity constraints. It provides a two-valued revision of 
assumptions to remove contradictions from the knowledge base. It has been tested on 
a spate of examples with emphasis on model-based diagnosis. 

2.5 SUMMARY 

The first principle in model-based diagnosis is a model of the system to be diagnosed. 
Assuming that the components work correctly we can predict the behaviour of the 
system. If the predictions differ from the observations the default assumptions are 
revised to remove the contradiction. In contrast to other approaches model-based di
agnosis enjoys several advantages: 

1. Due to their declarative nature model-based diagnosis systems are easy to extend 
and to maintain. 

2. No heuristics are needed and diagnoses can be explained without the recourse to 
rules of thumb. 

3. Models are often already available from a constructor. 

4. The model can predict the system's future states in advance and also explain un
foreseen and unknown failures. 

5. Model-based diagnosis is theoretically founded, so that the diagnoser's capability 
and quality can be tuned and judged beforehand. 



3 LOGIC PROGRAMMING AND 
DIAGNOSIS 

First we give a survey of the historical development of logic and logic program
ming. After introducing extended logic programming which comprises explicit as 
well as implicit negation and integrity constraints, we show how to model diagnosis 
problems. The domains range from digital circuits through traffic control, integrity 
checking of a chemical database, fault-management in mobile telecommunication, 
an automated mirror furnace to communication protocols. All these problems are 
solved by revising contradictory extended logic programs. Therefore we investigate 
algorithms for contradiction removal. We sketch a first algorithm which is based on 
bottom-up evaluation of extended logic programs and discuss in detail a second one 
which makes use of a top-down proof procedure. The algorithms are implemented in 
the REVISE system and we conclude by comparing them and evaluating their effi
ciency. 

M. Schroeder, Autonomous, Model-Based Diagnosis Agents
© Springer Science+Business Media New York 1998
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3.1 EXTENDED LOGIC PROGRAMMING 

3.1.1 A Brief History of the Predicate Calculus 

Modelling diagnosis problems in logic is part of a much more profound question: 
Can human thought be automated? Is it possible to model the real world mathemat
ically and then automate problem solving? The question was raised early. Leibniz 
(1646-1716) already formulated the two goals of a calculus ratiocinator and a lingua 
universalis. The calculus should free humans from computing (until the sixties "com
puter" was a human profession) while the universal language should be so powerful 
to express anything humans can think of [Ec094]. Of course, Leibniz did not achieve 
these two ambitious goals. But a hundred years later Boole (1815-1864) entered the 
stage and tied logic and mathematics in an algebra for logic that he developed in the 
Laws a/Thought [Sch97]. Later Frege (1848-1925) leaped forward towards a calculus 
of human thought by defining a theory of quantification, now known as the predicate 
calculus, in his Begriffsschrift [Dav83]. Though he defined the first formal language 
his work was not recognised by his peers. 

In fact, the formal treatment of logic and language and its use for mathematics 
started a controversy that came to a head in particular with Cantor's (1845-1918) new 
definition of infinity and transfinite numbers. The critics being famous mathemati
cians such as Kronecker (1823-1891), Poincare (1854-1912), and Brouwer (1881-
1966) founded the doctrine of intuitionism which views mathematics as the formu
lation of mental constructions that are governed by self-evident laws and therefore 
allows only constructive proofs. Counter-arguing intuitionism, Hilbert (1862-1943) 
set out the goal to define a formal calculus of classical mathematics based on Frege's 
and Peano's (1858-1932) work. Whitehead (1861-1947) and Russell (1872- 1970) 
accomplished a great part of the goal in their Principia Mathematica [BM92]. 

A critical point is whether such a theory is consistent. Hilbert demanded a con
structive proof of consistency to accommodate with the intuitionists. In 1931, GOdel 
(1906-1978) answered the question when he published his incompleteness theorem. 
He proved that no formal system comprising arithmetics is expressive enough to prove 
its own consistency. Though this is a fundamental theoretical problem, logic devel
oped further in practice. After World War II, the first theorem provers were developed 
together with the first computers, so that finally Leibniz' dream seemed to become 
reality. But the performance was poor since no optimisations were used. With the in
troduction of the resolution principle in the sixties and the use of Horn clauses which 
do not allow for negation, the situation changed and logic programming languages 
such as Prolog came up. 

3.1.2 Why do we need more Expressiveness than Horn Clauses? 
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The main reason why logic programming was limited initially to Horn clauses is that 
most mathematical problems can be formulated as Horn clause programs and that 
they can be solved efficiently in linear time wrt. the instantiated program. But in the 
meantime logic programming has been explored in other domains such as deductive 
databases and knowledge-based systems, as well. In such domains the user does not 
have knowledge about internal implementation details, so that logic programs need 
an intuitive semantics. An essential characteristics of Horn clause programs is their 
monotonicity. Since only positive facts can be added to a program, previous conclu
sions are never abandoned. They persist, so that adding new facts always increases 
the overall conclusions. Furthermore, we cannot deduce negative conclusions from a 
Horn clause program. The only possibility is to assume a literal false if its proof fails 
in finite time. Such a treatment avoids by definition contradictions. Several problems 
cannot be solved by Horn clauses: 

• Implicit Negation not: 
The qualification problem states that birds usually fly, but that there are excep

tions. Listing all exceptions is tedious and requires that there is only a finite num
ber. Therefore we want to assume by default that birds fly and possibly revise some 
conclusions in the light of new facts. We can solve this problem by introducing 
implicit negation not, which states that we assume a literal false if there is no ev
idence for the contrary. So we may state that a bird which is not abnormal flies, 
where we implicitly assume not-abnormality for any bird. For a penguin we could 
add the fact that it is abnormal and therefore block the conclusion of the rule. 

• Explicit negation -,: 
To formalise when a bus is allowed to cross a railway we may say that it should 

drive if there is no train. If the driver takes "no train" as an implicit negation he/she 
acts grossly negligent. Because with lack of evidence for the train he/she would 
cross the railway. But the lack of evidence for the train may be due to hislher short
sightedness. Being careful, he/she would prove explicitly that there is no train 
which would fail without glasses. So he/she has to put on hislher glasses and prove 
the absence of a train. Explicit negation -, copes with this problem. To relate it to 
implicit negation we demand a coherence principle that explicit negation implies 
implicit negation. 

• Integrity Constraints and Revision: 
Diagnosing a system we require that predictions of the model may not differ from 

actual observations of the system. To put it in other words, there is a contradiction 
..1 if predictions and observations differ. In general, we want besides rules that 
span a solution space for a program, integrity constraints that limit the space (see 
Figure 3.1). Once a constraint is violated we want to revise the program. If the 
contradiction is based on assumptions we can revise these assumptions until no 
constraint is violated anymore. 
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Figure 3.1. The rules of a program span the solution space, whereas the integrity con
straints limit it. 

Since Prolog became a standard in logic programming much research has been de
voted to the semantics of logic programs which are enhanced by extensions such as 
implicit and explicit negation, disjunction, and integrity constraints [GL90, Wag91, 
PA92, Wag94]. Well-founded semantics [GRS88, Ge189, GRS91] turned out to be a 
promising approach to cope with negation by default. Subsequent work extended well
founded semantics with a form of explicit negation and constraints [PA92, AP96] and 
showed that the richer language, called WFSX, is appropriate for a spate of knowl
edge representation and reasoning forms [PAA93, PDA93, ADP95]. In particular, the 
technique of contradiction removal from extended logic programs [PAA91] opens up 
many avenues in model-based diagnosis [PDA93, DNP94, DNPS95, MA95]. 

3.1.3 Syntax of Extended Logic Programs 

To define the syntax of extended logic programs we need some basic definitions: 

Definition 3.1 Term, Ground 
Let C, V, F, P be disjunctive sets of constants, variables, functors, and predicates, 

respectively. The set T of terms is defined as follows. If tEe or t E V, then t E T is 
a term, i.e. constants and variables are terms. Let ti E T be terms and f E F be an 
n-ary function symbol, then f(tl , ... , tn ) E T is a term. Nothing else is a term. A term 
is called 'ground if it does not contain any variables. 

Definition 3.2 Herbrand Universe, Atom, Default and Objective Literal 
Let pEP be a predicate symbol and ti E T terms, then p(tl' ... , tn ) is an atom. Nothing 
else is an atom. The set of all ground atoms is called Herbrand universe :Jf. A literal 
is either an atom A or its explicit negation .A or its implicit negation not A. The latter 
is also called default literal, whereas the two former are objective literals. 

Now we can define the syntax of extended logic programs following [PA92, AP96]. 
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Figure 3.2. Part of a voter circuit. 

Definition 3.3 Extended Logic Program 
An extended logic program is a possibly infinite set of rules of the form 

1.0 f- Ll,'" ,Lm,not Lm+l, ... ,not Ln (O:S m:S n) 

where each Li is an objective literal. 

How can we describe systems to be diagnosed as extended logic programs? Imag
ine a digital circuit as depicted in Figure 3.2. We have to describe the behaviour of 
the components and the topology of the circuit. To express the assumption that the 
components work correctly by default we use implicit negation. 

Example 3.4 Computing Output Values of a Component 
In order to compute output values of a component the system description contains rule 
instances of the following form: 

value(out(Comp,k),Outk) f- mode(Comp, Mode) , 
value(in( Comp, 1),!nl), ... , value(in( Comp,n),Inn), 
table( Comp,Mode,!nl, ... ,Inn, Outl, "" Outk, ... , Outm) 

where table consists offacts that describe the input/output relation of the component 
wrt. to the current mode. The behaviour of an and-gate with two input ports and one 
output port is captured by 

table(and,ok, 0, 0, 0) 
table(and,ok,O, 1,0) 
table(and,ok,I,O,O) 
table(and,ok, 1,1,1) 
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Faulty behaviour is expressed similarly. The mode ab is a general fault mode, 
whereas So and Sl are additional fault modes indicating that the gate is stuck at 0 and 
1, respectively. 

table(and,ab,O,O,I) 
table(and,ab,O, 1, 1) 
table(and,ab, 1,0, 1) 
table(and,ab, 1, 1,0) 

table(and,so, 0, 0, 0) 
table(and,so,O,I,O) 
table(and,so,I,O,O) 
table(and,so, 1, 1,0) 

table(and,sl,O,O,I) 
table(and,sJ,O, 1, 1) 
table(and,sl, 1,0, 1) 
table(and,sJ, 1, 1, 1) 

To express the default assumption that the components are working fine we use 
negation by default: 

mode(Comp,ok) f- not mode(Comp,ab) 

The above schema captures the behaviour of a single component. Additionally, we 
have to code the propagation of values through the system. Given the causal connec
tion of the system as relation conn(N,M), where Nand M are nodes, we express that 
a value is propagated through the causal connection or else observed: 

value(N, V) f- conn(N,M), value(M, V) 
value(N, V) f- obs(N, V) 

These modelling concepts allow predicting the behaviour of the system in case 
it is working fine. To express that normality assumptions may lead to contradiction 
between predictions and actual observations we introduce integrity constraints. 

Definition 3.5 Integrity Constraint 
An integrity constraint has the form 

..L f- Ll,'" ,Lm,not Lm+l,'" ,not Ln (0::; m::; n) 

where each Li is an objective literal and ..L stands for false. 

Syntactically, the only difference between the program rules and the integrity con
straints is the head. A rule's head is an objective literal, whereas the constraint's head 
is ..L, the symbol for false. Semantically, the difference is that program rules open the 
solution space, whereas constraints limit it. 

Example 3.6 Integrity Constraint 
Now we can express that a contradiction arises ifpredictions and observations differ. 
In the setting of digital circuits we use the constraints: 

..L f- value(N,O),obs(N, 1) ..L f- value(N, 1),obs(N,O) 
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A contradiction is always based on the assumption that the components work fine, 
i.e. the default literals are false. In general, we can remove a contradiction by partially 
dropping some closed world assumptions. Technically, we achieve this by adding a 
minimal set of revisable facts to the initially contradictory program: 

Definition 3.7 Revisable, Revision 
The revisables R of a program P are a subset of the default literals which do not occur 

as rule heads in P. The set R' ~ not R is called a revision if it is a minimal set such 
that PUR' is free of contradiction. 

The limitation of revisability to default literals which do not occur as rule heads is 
adopted for efficiency reasons, but without loss of generality. We want to guarantee 
that the truth value of revisables is independent of any rule. Thus we can change 
the truth value of a revisable whenever necessary without considering an expensive 
derivation of the default literal's truth value. 

Before we show how to compute revisions we further motivate the need for model
based diagnosis by sketching some practical problems solved with model-based diag
nosis and extended logic programming. 

3.2 MODELLING DIAGNOSIS PROBLEMS 

In this section we briefly describe applications for model-based diagnosis in traffic 
control [SNH94, Sch94], integrity checking of a chemical database [Ham94], alarm
correlation in mobile telecommunication [FNJW97], diagnosis of the automated mir
ror furnace [TD95, The95], and diagnosis of an unreliable communication protocol 
[FdAMNS97]. The code of the examples is available online and can be run over the 
internet (see [DPS97a]). 

3.2.1 TraiHc Control 

Traffic increases faster than road networks do [SNH94]. Therefore much research 
is devoted to develop traffic information networks to increase safety, efficiency, the 
driver's comfort and to reduce pollution. A typical problem in such networks relates 
to storms of notification: An initial message causes a lot of subsequent messages 
which are irrelevant to fix the fault. Fault management of infrastructure networks can 
be solved by model-based diagnosis techniques [SNH94, Sch94]. 

The following problem is taken from [SNH94, Sch94]. The information system is 
described in terms of processes exchanging messages. The behaviour of a process can 
be described by its state transitions. Figure 3.3 shows a process that reads data from a 
buffer. In absence of errors the process runs through the following sequence of states: 
remove begin, buffer exists, data exists, remove ok, remove end. The states no data 
and not remove ok indicate faulty behaviour which is accompanied by error messages 
such as no buffer or empty buffer. 
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1. revisable(-,ok(_,_,_)). 
2. revisable(in(_,_,_)). 
3. proc..state(trjc..snd, remove, buffer_exists). 
4. 1.. f- proc..state(P,remove,no..data), 

in(P, remove, no..data), 
proc..state(P, remove, remove..begin), 
proc..state(P, remove, buffer_exists) , 
not in(P, remove, remove..begin), 
not in (P, remove, buffer_exist s) . 

5. 1.. f- in(P, remove, remove..begin), 
not -,ok( P, remove, remove..begin). 

6. 1.. f- proc..state(P,remove,remove..begin), 
signal(P, no..buffer), 
not in( P, remove, remove ..begin). 

Figure 3.3. Remove automaton and part of its system description. 

The process is described by four predicates: 

1. proc..state(P,B, Q) states that automaton B belongs to process P and that the status 
Q is allowed for B. 

2. in(P,B, Q) indicates that P has actually reached status Q of automaton B after a 
malfunctioning is detected. 

3. ok(P,B,Q) means that P has actually reached status Q of Band Q belongs to the 
default path taken if no faults occured. 

4. signal(P,S) represents an observation: a signal with message S was sent by process 
P. 

By default the ok-path is taken and the process has not yet reached the automaton's 
status after a malfunctioning, i.e. we assume -,ok and in (line 112) false. Line 3 is an 
example for a state of an automaton. The constraint in line 4 contains the possible tran
sitions: If the process has reached the state no data then it must have previously been 
in remove..begin or buffer_exists. Line 5 relates in and ok such that a malfunctioning 
which lead to in contradicts the assumption that the process ran through the ok-path. 
Line 6 states that an observed signal such as no buffer contradicts the assumption not 
to be in state remove..begin. 
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material(vestolen...a3512). 
groupe vestolen...a3512, pe). 
medium( iso pro ponaLJwh). 
comp( iso proponal.koh, iso propanol). 
comp(isoproponal.koh,koh). 
group(isoproponal.koh,alcohol). 

revisable( abe _)). 
..L t- group(X, weak.hase) , 

group (X ,strong ..base). 
..L t- resistent(X,Y,Nl), 

resistent(X,Y,N2),Nl ¥- N2. 

Figure 3.4. Some database entries and integrity constraints of MEDEX. 

If we add the system description and the observation signal(trfc...snd, remove,
no.huffer ..data) there is a contradiction. It can be resolved by either assuming 

...,ok( traffic ...snd, remove, buffer_exists) , 
inC traffic ...snd, remove, buffer_exists) , 
in(traffic...snd,remove,no..data) 

or 
...,ok(traffic...snd, remove, remove..begin) , 
in(traffic...snd, remove, remove.hegin) 
in(traffic...snd, remove, no..data) , 

In both cases the process ends up in the abnormal state no..data. 

3.2.2 Integrity Checking for the Chemical Database MEDEX 

Assuring integrity of databases is a difficult problem. Especially, deductive databases 
need additional effort to be consistent since rules allow to infer new data indirectly. 
For example, the chemical database MEDEX is maintained by various individuals who 
update data and add inference rules without coordination [Ham94]. 

The database contains, for example, entries for Vestolen a 3512 and Isopropanol 
KOH (see Figure 3.4). Assume two experts add different rules rl,r2 and r3,r4 to 
the database (see Figure 3.5). The first knows that materials of the pe-group have a 
resistance factor 2 against strong bases (rule n) and that media containing KOH are 
strong bases (r2)' The second expert knows that materials of the pe-group have a 
resistance factor 5 against alcoholic media (r3) and that Isopropanol is a weak base 
(r4). Database and rules are contradictory wrt. the integrity constraints (see Figure 
3.4) that a substance is either a weak or a strong base and that a material cannot have 
two different resistance factors for a medium. The contradiction can be removed by 
the diagnoses {ab(r2)}, {ab(rt} ,ab(r4)}, or {ab(r3),ab(r4)}' So the experts have 
to discuss the validity of the respective rules and modify them to guarantee overall 
consistency. 
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resistent (Material, Medium, 2) f

not ab(n), 
medium(Medium), 
material(Material), 
group(Medium,strong..base), 
group (Material, pe). 

group(Medium,strong..base) f

not ab(r2)' 
medium(Medium), 
comp(Medium, koh). 

resistent (Material, Medium, 5) f

not ab(r3), 
medium(Medium), 
mat erial (Material), 
comp(Medium, koh), 
group(Medium, alcohol), 
group(Material,pe). 

group(Medium, weak..base) f

not ab(r4)' 
medium(Medium), 
comp(Medium, isopropanol). 

Figure 3.5. Some rules of MEDEX. 

3.2.3 Alarm-Correlation in Cellular Phone Networks 

Though cellular phone networks already contain intelligent network elements diag
nosing local faults, alarm bursts caused by network element failures cannot be handled 
properly by this technology [FNJW97]. To deal with alarm bursts alarm correlation 
systems are required to filter and condense the incoming alarms to meaningful high
level alarms and diagnoses. We review the application described in [FNJW97] and 
show how the problem is solved with extended logic programming. 

Mobile networks can be divided into three parts (see Figure 3.6): the mobile station (MS), 
the access network with the base station transceiver (BTS) consisting of antennas, radio 
transceivers, cross connect systems (CC) and microwave (ML) or cable links (CL) and 
the base station controller (BSC), and the switched network, which is connected to the 
access network by the BSC's. The BSC provides the radio resource management, which 
serves the control and selection of appropriate radio channels to interconnect the MS and 
the switched network. The switched network interconnects the MS to the communication 
partner, which might be another MS or an ISDN subscriber.[FNJW97] 

The networks are configured in a star topology (see Figure 3.7) with exactly one 
path from a BTS to the BSC. Since such networks are highly dynamic an explicit 
model of the network is a necessary prerequisite for alarm correlation. Consider the 
path depicted in Figure 3.8. Its topology is modelled by facts of the components' 
types and connections (see Figure 3.9). The fact conn(m116,up,bsc,down) states, for 
example, that the up-stream port of microwave link ml16 is connected to the down
stream port of the BSC. 

The network elements are intelligent and perform local diagnosis resulting in 
alarm messages which are sent to the BSC. The detailed messages such as e.g. 
bts_omu.1inkjail or bcch.missing are divided into four classes: 
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Figure 3.6. Alarm messages in the base station subsystem [FNJW97]. 
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BTS Be .. Transceiver Station 
BSC Base Station Controller 

Figure 3.7. Star-configuration of a base station subsystem [FNJW97j. 

Figure 3.8. Network's topology where microwave link m116 is faulty [FNJW97j. 

type(m116,ml). 
type(m117,ml). 
type(m118,ml). 
type(m119,ml). 
type(mI20,ml). 
type (bts17 ,bts). 
type(bts18,bts). 
type(bts19,bts). 
type ( bts20, bts). 
type(bts21,bts). 

Figure 3.9. 

conn(m116,up,bsc,down). 
conn(m118,up,m116,down). 
conn(bts18, up, m117,down). 
conn(bts17,up,m116,down). 
conn(m117, up, bts17, down). 
conn(m119, up, bts19,down). 
conn(mI20,up,bts20,down). 
conn(bts19,up,m118,down). 
conn(bts20,up,m119,down). 
conn(bts21,up,mI20,down). 

Rules for the network's topology. 
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class( bts_omuJink.fail, bts,failure..signal). 
class( bcch_missing, bts _failure ..signal). 
class(available_trqffic,bts.failure_fignal). 

bts.failureAlarm(Sender) +
alarm(Sender, bts_omu_link_f ail), 
type(Sender,bts). 

bts.failureAlarm(Sender) +
alarm(Sender, bcch..missing), 
type( Sender, bts). 

Figure 3.10. 

class( lapd_link.failure, bts _failure ..signal) . 
class(farendAlarmJ ,farend..signal). 
class(alive,status_signal). 

bts.failureAlarm(Sender) +
alarm( Sender, available_traffic), 
type(Sender,bts). 

bts.failureAlarm(Sender) +-
alarm (Sender, lapd_link_failure), 
type ( Sender, bts). 

Alarm classes. 

• Farend alarms are generated by a BTS if the components farther away from the 
BSC are not reachable anymore. 

• BTS-failure alarms are generated directly in the BSC, when it detects that a BTS is 
not reachable anymore. 

• The status signal alive is sent from each BTS on a periodical polling of the BSC. 
It is used to generate appropriate alarms in the BSC in case it gets lost on the way 
from the BTS to the BSC. The message is not physically present. 

• There are other alarm messages which are not necessary to track down faults and 
therefore they are omitted in the model. 

The alarms are classified by the facts class and bts-failure..illarm as shown in Figure 
3.10. The generation and suppression of alarms is captured by the rules shown in Fig
ure 3.11. The rules on the lefthandside state that each BTS sends an alive message and 
an alarm message in case of a farend alarm, respectively. The rules on the righthand
side express that there cannot be an alive message at the BSC if there is a BTS-failure 
or a farend alarm. Here explicit negation (-.signal) proves to be very useful to get a 
compact model. The model of [FNJW97] is more complicated due to missing explicit 
negation and abduction. 

Farend and the status signal alive are propagated from up-stream to down-stream 
ports, through a BTS and through a microwave link (see Figure 3.12). While the BTS 
cannot fail, the microwave link may be faulty, though we assume by default that it is 
not abnormal (not ab(NE)). 

Finally, we have to express that it is contradictory to have and not to have an alive 
message at the BSC and that there has to be either an alive message, or a BTS failure 
alarm, or the message was lost by the BTS (see Figure 3.13). The latter is not very 
probable, so that we additionally specify probabilities for the revisables. Abnormal 
microwave links are much more probable than lost messages. 
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signal{Sender, up, Sender, alive) f

type{Sender,bts). 

signal{Sender, up, Sender, Signal) f

alarm {Sender, SignaQ, 
class{Signal,Jarend..signal) , 
type {Sender, bts). 

-.signal{ bsc, down, Sender, alive) f

btsjailure..alarm{Sender) , 
type{Sender,bts). 

-.signal{ bsc, down, Sender, alive) f

alarm{Sender, Signal), 
class{Signal,Jarend..signal) , 
type{Sender,bts). 

Figure 3.11. Signal generation and suppression. 

signal(NE2,down,Sender,Signal) +
type(Sender,bts),class(SignaIJarend..or..status..signal), 
conn(NE" up,NE2 , down ),signal(NE" up,Sender,Signal). 

signal(NE,up,Sender,Signal) +
class(SignalJarend..or ..status..signal) , 
type (NE, bts) , type (Sender, bts) , 
NE # Sender, 
signal(NE,down,Sender,Signal). 

Figure 3.12. 

.L +- type(Sender,bts), 
not signal(bsc, down, Sender, alive), 
not bts-!ailure..Jllarm(Sender) , 
not message_lost(Sender). 

signal(NE,up,Sender,Signal) +
not ab(NE), 
type(NE,ml), type (Sender,bts) , 
class(SignalJarend..or ..status..signal) , 
signal(NE,down, Sender, Signal). 

Signal propagation. 

.L +- -,signal(bsc, down, Sender, alive) , 
signal(bsc, down, Sender, alive). 

probability( ab( _), 0.(01). 
probability(messagdost( _),0.1). 

Figure 3.13. Constraints for signals and a-priori probabilities of revisables. 
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alarm( bts 17, beeh..missing) . 
alarm( bts 17, bef ..bie..alarm_in). 
alarm(btsI7,pemjail). 
alarm( btsl7, bts..omuJinkjail). 
alarm ( bts 18, beeh..missing) . 
alarm(btsI8,pemjailure). 
alarm( bts 18, bts ..omuJinkjai/) . 
alarm(btsI9,bef ..bie..alarm.in). 

Figure 3.14. 

alarm(btsI9,pemjailure). 
alarm( bts 19, bts ..omuJinkJail) . 
alarm ( bts20, beeh..missing). 
alarm( bts20,pemjail). 
alarm(bts20,bts..omuJinkJail). 
alarm(bts21 ,beeh..missing). 
alarm ( bts21 ,pemjail). 
alarm( bts21 ,bts..omuJinkJail). 

Some alarms. 

As long as there are no alanns the model is consistent. If alanns are generated 
and received by the BSC the constraints are violated and removing the contradictions 
yields the correct diagnoses of the problem. Consider for example the alanns in Figure 
3.14. The burst of messages is difficult to survey for a human operator, though the most 
probable explanation by revision is fairly easy: microwave link m116 is abnormal. For 
further test cases which are given in [FNJW97] see [DPS97a]. Concerning efficiency, 
both systems are comparable. This does not hold in general (see section 6.1.1), but 
for this particular application REVISE's negations allow a compact and very efficient 
representation of the problems. 

3.2.4 Automatic Mirror Furnace 

Have a look at the disc unit of the automated mirror furnace [TD95, The95] as dis
cussed in the introduction. Figure 1.2 in the introduction shows the control unit, the 
motor, the plate, and the two switches. As the system description has a similar struc
ture as digital circuits which we discussed in detail in section 3.1.3 we will focus on 
the behaviour of the components. Figure 3.15 shows table predicates for the com
ponents' behaviour and the computation of values for the motor. The plate and the 
switches are fairly easily modelled. In case the plate's second input parameter is not 
enable the plate stays in the same sample position P. If enable is set by the control 
unit then the new sample P' is computed by adding the old position P and the velocity 
V which is given in positions per time units. The result is taken modulo 23, the number 
of samples on the plate. The table for switch 4 checks whether position P is an integer 
which means that a sample is in position to be taken to the mirror focus. In case it 
is, switch 4 is active, otherwise it is off. Switch 5 works similarly: If position P is 0, 
then it is active or else off. The motor table is a bit more complicated. Besides the 
normal behaviour the motor can adopt fault modes defect and friction. In the former 
mode the motor stands still and therefore velocity is set to 0 and in the latter mode we 
assume a fixed velocity of 0.25 positions per time unit, in contrast to the 0.5 positions 
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motor .1able(ok,start.pos, 0.5). 
motor .1able( ok, startJleg, -0.5). 
motor .1able(ok, stop, 0). 
motor .1able(defect" 0). 
motor .1able(jric'n, start_pos, 0.2S). 
motor .1able(jric' n, startJleg, 0.2S). 
motor .1able(jriction, stop, 0). 
comp_val(out(M,motor) , W, T) f-

state(M, motor, S), 
val(in{M, motor, 1), V, T), 
motor .1able(S, V, W). 

state{M,motor,ok} f

notfm{M,defect}, 
not fm(M,Jriction). 

state(M,motor,FM} f

fm(M,FM}. 

plate.1able(ok,P,_,E,P) f

E i= enable. 
plate.1able(ok,P, V,enable,P') f

P'isP+ Y.mod23. 

switch4.1able(ok,P,active) f

integer{P). 
switch4.1able{ok,P,off) f

not integer{P). 

switchS.1able{ok, 0, active). 
switchS.1able{ok,P,off) f

Pi=0. 

Figure 3.15. Behaviour of the disc drive units. 

in the ok-mode. The table contains additionally a parameter for the control units com
mands, namely moving in positive direction, start.pos, moving in negative direction, 
startJleg, and not moving at all, stop. By implicit negation the motor is assumed to be 
in the ok-mode; if contradictions occur this may be changed to one of the fault modes 
defect or friction. Since the behaviour of these modes is modelled new predictions 
about velocity can be computed. 

Now assume we observe that the control unit enables the plate and sends start-pos 
to the motor. Furthermore, the switches are observed to be active initially and then off 
(see Figure 1.3). As we know that the plate is initially in position 0, a contradiction 
occurs: Since the motor is supposed to move with 0.5 positions per time unit and the 
plate is enabled the position should be 1 after two time units. Subsequently, switch 4 
should be active; but it is not. Assuming switch 4 abnormal removes the contradiction. 
Another solution is friction of the motor, because the fault model predicts position O.S 
after two time unit with friction which explains the observations. The defective motor 
or abnormal plate do not yield diagnoses. In both cases position ° would be predicted 
after two time units. But this implies both switches abnormal which is not a minimal 
solution as switch 4 is already by itself an explanation. 

3.2.5 Communication Protocol 
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A6 AS A4 

Figure 3.16. A communication network. 

Centralised solutions for the diagnosis of spatially distributed systems such as com
puter and telecommunication networks are unnecessary complex and lead to a large 
communication overhead [FdAMNS97]. Consider a distributed system with n nodes, 
e.g. a computer network as depicted in Figure 3.16 consisting of n machines. When 
using a centralised diagnosis system the size of the system description (i.e. number of 
ground formulas) is linear in n. Diagnosis time will usually be worse than linear in n 
[MH93]. Also all observations have to be transmitted to the central diagnosis machine, 
causing a large communication overhead. 

An agent-based approach decomposes a system into a set of subsystems. Each 
subsystem is diagnosed by an agent which has detailed knowledge over its subsystem 
and an abstract view of the neighbouring subsystems. Most failures can be diagnosed 
locally within one subsystem. This decreases diagnosis time dramatically in large sys
tems. In the case of the computer network most machines in a subnet can usually fail 
without affecting machines in other subnets. Only those computers in other subnets 
can be affected which have sent messages to the faulty machine. Moreover, the local 
computation of diagnoses avoids the communication overhead which would be needed 
to forward all observations to the central diagnosis engine. Failures which affect more 
than one subsystem are diagnosed by the agents cooperating with each other. The 
cooperation process is triggered locally by an agent, when it realises that it cannot 
explain the observations by a failure in its own subsystem. The cooperation process 
is guided by a small amount of topological information. To demonstrate the power 
of our approach we formalise the domain of an unreliable protocol (like UDP) in a 
computer network and diagnose an example scenario. 
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onJOute{nl,C3,n2) +- i...am{nl). 
OnJOute{nl,C4,n2) +- i...am{nt}. 
OnJOute{nl,CS,n2) +- i...am{nt}. 
OnJOute{nl,C6,n2) +- i...am{nl). 
OnJOute{nl,C7,n2) +- i...am{nt}. 
OnJOute{nl,cg,n6) +- i...am{nl)' 
OnJOute{nl,C9,n2) +- i...am{nl). 
OnJOute{nl,ClO,n2) +- i...am{nt}. 

onJOute{n2,Cl,nt} +- i...am{n2). 
OnJOute{n2,C2,nt} +- i...am{n2). 
OnJOute{n2,CS,n3) +- i...am{n2). 
OnJOute{n2,C6,n3) +- i...am{n2). 
OnJOute{n2,C7,n3) +- i...am{n2). 
OnJOute{n2,cg,nt} +- i...am{n2)' 
OnJOute{n2,C9,nS) +- i...am{n2)' 
OnJOute{n2,ClO,nS) +- i...am{n2)' ... 

Figure 3.17. Facts for the routing table. 

area_component{nl,ct) +- i...am{nt}. area_component{n3,C6) +- i...am{n3)' 
area_component{nl,C2) +- i...am{nt}. area..component{n3,C7) +- i...am{n3). 
area..component{n2,C3) +- i...am{n2). area..component{n6,cg) +- i...am{n6)' 
area..component{n2,Q) +- i...am{n2). area..component{nS,C9) +- i...am{ns). 
area..component{n3,CS) +- i...am{n3). area..component{n4,ClO) +- i...am{n4). 

Figure 3.18. Facts for the component hierarchy. 

The routing tables comprise facts stating to which neighbour node a message ad
dressed to a component has to be sent. The knowledge is local since each agent only 
knows its neighbours. In order to keep the facts in a single knowledge base which is 
the same for all agents the facts hold only for the respective agent (i...am). For exam
ple, for nl and n2 we get the routing tables shown in Figure 3.17. Additionally, each 
agent knows its components (see Figure 3.18). Since this knowledge is local it is only 
derivable for the respective agent (i...am). 

In the implementation we model only two modes, abnormality (ab) and being ok 
(not ab). The predicate ab is revisable. The default truth value of the predicate ab 
is false, which means that by default we assume components to work fine. Possible 
contradictions to these assumption are caused by violation of consistency of abstrac
tion (see Figure 3.19) and existence of a cause for a lost message (see Figure 3.20). 
Consistency of abstraction means than an abnormal area contains at least one abnor
mal component. A contradiction arises if the area is detected to be abnormal but no 
faulty component is abduced. This constraint has only local character (i...am), since 
an agent cannot detect abnormal components of other areas (see Figure 3.19). The 
basic integrity constraint to start the diagnostic process states that it is contradictory 
to observe a lost message from node N to component C and not to have lost it on the 
route from N to C. The message is lost somewhere on this route if at least one of 
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..1 f- i..am(N),ab(N), I has..ab_component(N) f-

nothas..ab_component(N). area_component(N,C),ab(C). 

Figure 3.19. Rules for consistency of abstraction . 

..1 f- message_lost(N,C), 
notlost..tJn]oute(N,C). 

lost...fJn]oute(N,C) f- ab(N). 
lost-on]oute(N,C) f

on]oute(N,C,M),ab(M). 

1.. f- message_lost(N, C), 
on]oute(N,C,M), 
ab(M) , 
notnewJnessage_lost(M,C). 

Figure 3.20. Rules for existence of a cause for a lost message and refined observation. 

the involved nodes is abnormal (see Figure 3.20). The second constraint allows us to 
abduce new observations. If a message is lost from N to C and M is a neighbour of N 
which is assumed to be abnormal by N, then N abduces the new observation that the 
message was lost on the way from M to C (see Figure 3.20). 

Now have a look at Figure 3.16 and assume that the agent assigned to nl wants 
to send a message to component C7. A timeout mechanism informs n 1 which sent 
the message that there was no acknowledgment for the message. Subsequently, nl's 
knowledge base is updated and the observation message_lost(nl' C7) is added. Now 
the constraint for existence of a cause for a lost message (Figure 3.20) is violated. To 
repair the violation losLon_route has to be abduced. There are two candidates ab(nl) 
and ab(n2), i.e. nl 's neighbour is faulty. Since we assume that the agents have locally 
perfect knowledge, agent n 1 knows that -.ab(n 1) holds so that only the latter candidate 
is valid. Assuming ab(n2) also satisfies the constraints for consistency of abstraction 
(Figure 3.19). Due to the fact i..am(nJ) only the local components, Cl and C2, of 
the component hierarchy (Figure 3.18) are visible so that the constraints are trivially 
satisfied for ab(n2)' Assuming ab(n2) the second constraint in Figure 3.20 leads to 
the abduction of the refined observation newJnessageJost(n2,c7) indicating that nl 
believes that the message was lost on the way from n2 to C7. SO the final diagnosis for 
the observation message_lost(nl' C7) is {ab(n2),newJnessage_lost(n2, C7)}. 

3.3 REVISE - A SYSTEM FOR PROGRAM REVISION 

With this variety of applications in mind we turn to the computation of revisions and 
diagnoses. Before we discuss two algorithms to compute revisions, one being based on 
bottom-up evaluation of extended logic programs, the other being based on top-down 
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evaluation, we briefly review the theory of diagnosis from first principles as initially 
proposed by Reiter [Rei87] and corrected in [GSW89]. 

3.3.1 Definitions 

To compute revisions, we define conflicts which are sets of default assumptions that 
lead to a contradiction and show how to solve the conflicts by changing the assump
tions so that all conflicts are covered. Such a cover is called hitting set, since all 
conflicts involved are hit. 

Definition 3.8 Conflict 
Let P be an extended logic program with default literals D. Then C C D is a conflict 

iff 

P U {-,c I not c E C} 1= .1 

Definition 3.9 Hitting Set 
A hitting set for a collection of sets C is a set H ~ USEe S such that H n S #: {} for 
each SEC. A hitting set is minimal iff no proper subset of it is a hitting set for C. 

Conflicts and hitting sets allow to compute revisions: 

Theorem 3.10 Adoptedfrom [Rei87] 
Let P be a program. Then R is a revision of P iff R is a minimal hitting set for the 

collection of conflicts for P. 

To compute hitting sets Reiter proposed the algorithm shown in Figure 3.21 which 
was corrected in [GSW89]. The algorithm computes a hitting set tree which is defined 
as follows: 

Definition 3.11 Hitting Set Tree 
Let C be a collection of sets. An HS-tree for C, call it T, is a smallest edge-labeled 
and node-labeled tree with the following properties: 

1. The root is labeled"; ifC is empty. Otherwise the root is labeled by an arbitrary 
setofC. 

2. For each node n ofT, let H(n) be the set of edge labels on the path in T from the 
root node to n. The label for n is any set r. E C such that r. n H (n) = {}, if such a 
set r. exists. Otherwise, the label for n is";. If n is labeled by the set r., then for 
each 0 E r., n has a successor, no, joined to n by an edge labeled by 0. 
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1. Let D represent a growing dag. Generate a node which will be the root of the dag. 
This node will be processed by step 2 below. 

2. Process the nodes in D breadth first order. To process a node n: 

(a) Define H(n) to be the set of edge labels on the path in D from the root down 
to noden. 

(b) If there is a node n' which is labeled by J and H(n') C H(n) then close node 
n and mark it x. 
Otherwise, 

• if for all x E C, xnH(n) i- {} then label n by J. 
• else let L be the first member of C for which L n H (n) = {}. 

If there is a node n' which has been labeled by the set S' of C where 
L C S', then relabel n' with L. For any a. in S' - L, the a.-edge under 
n' is no longer allowed. The node connected by this edge and all 
of its descendants are removed, except for those nodes with another 
ancestor which is not being removed. 
Interchange the sets S' and L in the collection. 

Else label n by L. 

(c) If n is labeled by a set LEe, then for each a E L, 

• either reuse a node, i.e. if there is a node n' in D such that H (n') = H (n) U 
{ a}, then let the a-arc under n point to this existing node n'. 

• or generate a new downward arc labeled by a. This arc leads to a new node 
m with H (m) = H (n) U a. The new node m will be processed (labeled and 
expanded) after all nodes in the same generation as n have been processed. 

3. Return the resulting dag, D. 

Figure 3.21. Algorithm to compute minimal hitting sets [Rei87, GSW89]. 



40 AUTONOMOUS, MODEL-BASED DIAGNOSIS AGENTS 

3.3.2 A Bottom-Up Algorithm 

The first algorithm to revise contradictory extended logic programs described in 
[DNP94] adopts Reiter's hitting set algorithm and refines it by taking into account 
preferences for revisables. For this refinement several pruning and caching meth
ods have been implemented to avoid recomputations on different preference lev
els. To compute the conflicts sets the support sets for .1 are generated. A sup
port set indicates which default literals are involved in the derivation of a literal. 
To compute a support set we need a model of the program P which is denoted by 
WFSX(P). The semantics WFSX is explained later in section 3.3.3, for details see 
[PA92, PAA94, ADP94a, ADP94b, ADP95, AP96]. For the purpose of defining sup
port sets it is sufficient that WFSX(P) is a paraconsistent model of P, i.e. it may contain 
.1, and that it is computed in square time wrt. the number of rules of the instantiated 
program. 

Definition 3.12 Support Set 
Let P be a program, WFSX(P) its model and L E WFSX(P). A support set SS(L) of L 
is obtained as follows: 

1. if L is positive or .1 and there is a rule L +- L1, ... , Ln in P such that Li E WFSX(P), 
thenSS(L) = {L}USS(Li) 

2. if L is a default literal not A then 

(a) if there are no rules for A then SS(L) = {not A} 

(b) if there isa rule A +- L1, ... ,Ln inP andaLi whose complementLi E WFSX(P) 
then SS(L) = {L} USS(Li) 

(c) 1f...,A E WFSX(P) then SS(L) = SS(...,A) 

Example 3.13 Let 

P = {.1 +- not a, not b. .1 +- not a, not c, d. d.} 

then SSl (.i) = {not a, not b} and SS2(.1) = {not a, not c,d} 

To obtain a conflict from a support set for contradiction we just have to intersect 
the support set with the revisables and their negation to get rid of the objective literals 
and the default literals whose truth values cannot be changed. 

Lemma 3.14 Let P be a program with revisables R then SS(.1) n (R U not R) is a 
conflict. 

With the hitting set algorithm the revision of extended logic programs is straight 
forward as depicted in Figure 3.22. After computing a model, support sets, and con
flicts, the hitting set algorithm can be applied. The algorithm works bottom-up, since 
a model of the program has to be computed by bottom-up evaluation in the first step. 
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1. Compute the model WFSX(P) of program P 

2. Compute all support sets SS(.1) 

3. Compute all conflicts from the support sets 

4. Compute general hitting set tree 

5. Complement all nodes marked"; and output them 

Figure 3.22. Bottom-up algorithm to compute revisions [DNP94]. 

Example 3.1S Let 

P = {.1 ~ not a,not b. .1 ~ not a,not c, d. d.} 

P is contradictory and we expect the minimal revisions {a} and {b, c} to remove the 
contradiction. The bottom-up algorithm returns these solution by first computing the 
model of P by bottom-up evaluation 

WFSX(P) = {.1, not a, not b, not c, d} 

There are two support sets for .1 

SSl(.1) = {nota, notb}andSS2(.1) = {nota, notc, d} 

being reduced to the conflicts 

Cl = {not a, not b} and C2 = {not a, not c} 

The hitting set tree computed by the algorithm 3.21 is shown in Figure 3.23. It is 
constructed as follows: 

In step 1 of 3.21 the directed-acyclic graph is initialised with root node labeled 
{not a, not b}. With H(l) = {} (2a) and I. = {not a, not b} (2b). In step 2c the 
successor nodes 2. and 3. are created. In the next iteration, node 2. is processed. 
With H(2) = {not a} (2a) node 2. turns out as a solution (2b) and is marked";. For 
node 3. H(3) = {not b} (2a) and in step 2b the node is labeled by I. = {not a, not c}. 
In step 2c, the down arc to nodes 4. and 5. are created. For node 4. we get H(4) = 
{not a, not b} and subsequently the node is closed (2b) since it is not minimal. Finally, 
node 5. is identified as solution and marked"; and with all nodes being processed the 
algorithm obtains the correct solutions from nodes 2. and 5. 
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Figure 3.23. A hitting set tree. 

I 
H :: 

Figure 3.24. Power supply, switches Sij and a bulb 

The algorithm sketched in Figure 3.22 enhanced by pruning rules and a cache 
mechanism is implemented in the non-monotonic reasoning system REVISE 1.0 
[DNP94]. The system shows nicely that extended logic programming is a suitable 
technique for model-based diagnosis. But in practice the algorithm faces a severe effi
ciency problem. Since the model is computed bottom-up it has to be done beforehand 
and in the second step all conflicts are computed. But in most cases this is not neces
sary. In fact, there are examples where 2n conflicts are computed to come up with n 
diagnoses. 

Example 3.16 Bulb example 
Have a look at the circuit in Figure 3.24. A power supply is connected to a bulb via 

n parallel wires, each with two switches. Though all switches are supposed to be open, 
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Bulb Example 
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Figure 3.25. Timings of bottom-up algorithm for bulb example. A DEC5000/ 240 was 

used . 

we observe that the bulb is burning. A conflict is for example that the n switches Sit 

are open. A II in all, there are 2n different conflicts, namely {s ij I 1 ::; i ::; n, j E {I , 2} }. 
But all these conflicts lead finally to only n different diagnoses that the switches Sit 

and Si2 are closed (1 ::; i::; n). 

We ran the algorithm of REVISE 1.0 for the bulb example and as expected it per
forms exponentially. While five wires in parallel are still solved in a reasonable time of 
5 sec, ten wires already consume 19 minutes and twelve 4 hours and 10 minutes (see 
Figure 3.25). The bad performance of the algorithm is due to its bottom-up evaluation 
of the model. Rather than producing conflicts when necessary all of them have to be 
computed beforehand. With a top-down proof procedure the basic algorithm can be 
improved. Rather than doing one after the other, conflict generation and construction 
of the tree are merged. Before we refine the algorithm and describe a top-down revi
sion algorithm we develop a top-down proof procedure for WFSX, the well-founded 
semantics with explicit negation. 

3.3.3 Top-Down Proof Procedure 
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WFSX enjoys the properties of simplicity, cumulativity, rationality, relevance, and 
partial evaluation that other semantics do not fully enjoy [AP96, ADP94a, ADP94b]. 
Simplicity means that the semantics can be characterised by two iterative operators, 
without recourse to three-valued logic. Cumulativity means that the addition of lem
mata, i.e. true propositions, to the program does not change the semantics. Rationality 
refers to the ability to add the negation of a non-provable conclusion without affecting 
the semantics. The issue of relevance is of particular importance for the top-down 
algorithm. Relevance means that the top-down inference of a literal requires nothing 
but the predicate call-graph below the literal. Partial evaluation means that partially 
evaluated programs do not change the semantics of the program. 

The above properties are important as the following two examples show. Consider 
the programs 

PI = {p f- p} ~ = {p f- not p} 

In classical logic we obtain the models MI = {} and M2 = {p} for PI and P2, 
respectively. Thus, as expected intuitively, we cannot conclude p from PI, but we do 
from P2. In Prolog, however, both cases would lead to no inference due to infinite 
loops. Trying to prove p in PI Prolog applies the rule p f- P over and over again. A 
similar reason stops P2 from terminating in Prolog. The problems occur in general due 
to positive or negative loops through recursion. To deal with this problem we define 
T- and TU-trees, to prove verity and non-falsity [ADP94a, ADP94b, ADP95, AP96]. 

Definition 3.17 T-tree, TU-tree 
Let P be a ground extended logic program. AT-tree (resp. TU-tree) for a literal Lis 

an and-tree with root labeled L and nodes labeled by literals. T-trees (resp. TU-trees) 
are constructed top-down starting from the root by successively expanding new nodes 
using the following rules: 

1. If n is a node labeled with an objective literal L then if there are no rules for L in P 
then n is a leaf else select a rule 

L f- LI, ... ,Lm, not Lm+l,'" ,not Ln 

from P. In a T-tree the successors of n are nodes labeled 

LI, ... ,Lm,not Lm+l,.·· ,not Ln 

while in a TU-tree there are, additionally, the successor nodes labeled 

not -,LI, ... ,not -,Lm 
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2. Nodes labeled with default literals are leaves. 

In figures TV-trees are inside a box. 

Definition 3.18 Successful or failed tree 
A T- or TV-tree is either successful or it fails. All infinite trees are failed. A tree is 
successful/failed if its root is successful/failed. Nodes are marked as follows: 

I. A leaf labeled true is successful. 

2. A leaf labeled with an objective literal distinct from true is failed. 

3. A leaf labeled with a default literal not L is successful in T-tree (TV-tree) if 

(a) all TV-trees (T-trees) for L are failed or 

(b) if there is a successful T-tree for-.L. 

Otherwise it is labeled as failed. 

4. An intermediate node n of a T-tree (TV-tree) is successful if all its children are 
successful and otherwise failed. 

All remaining nodes are labeled failed in T-trees and successful in TV-trees. 

Example 3.19 
Consider the program p ~ not p. To prove verity of paT-tree 
for p is created. In order to prove not p true, all TV-trees for 
p have to fail. Thus, an infinite loop occurs and therefore the 
nodes in the TV-tree are eventually classified as failed and the 
nodes in the T-tree as successful, so that p is proved true. 

Theorem 3.20 Correctness [ADP94a, ADP94b, AP96] 
Let P be a ground, possibly infinite, extended logic program, M its well-founded model 
according to WFSX, and let L be an arbitrary fixed literal. 

• If there is a successful T-tree with root L then L EM (soundness) 

• If L E M then there is a successful T-tree with root L (completeness) 

The main issues in defining top-down procedures for well-founded semantics are 
infinite positive recursion, and infinite recursion through negation by default. The 
former results in failure to prove verity, while the latter results in failure to prove 
verity and falsity, i.e. the literal is undefined. Cyclic infinite positive recursion is 
detected locally in T-trees and TU-trees by checking if a literal L depends on itself. 
A list of local ancestors is maintained to implement this pruning rule. For cyclic 
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1. demo(L) : -demo(L,t, [], 0). 
2. demo(true, _, _, _). 
3. demo((L,Cont),M,LA,GA) :

demo(L,M,LA,GA), 
demo(Cont,M,LA,GA). 

4. demo(not L,t,_,GA) : -
not demo(L,tu,O,GA). 

5. demo(not L,tu,_,GA) : -
not demo(L,t,GA,GA). 

6. demo(L,_,_,_) : -
revisable(L) , !,assumed(L, _). 

7. demo(L,_,Ans,_) :
loop..detect(L,Ans) , !,fail. 

8. demo(L,t,LA,GA) :
rule(L,Body) , 
demo(Body,t, [LILA], [LIGA]). 

9. demo(L,tu,LA,GA) : -
complement .neg(L, NL), 
rule(L, Body) , 
demo((Body,notNL),tu, 

[LILA], [LIGA]). 

Figure 3.26. Top-down proof procedure for WFSX. 

infinite negative recursion detection, a set of global ancestors is kept. A T-tree for a 
literal L that already appears in an ancestor T-tree is failed. A TU-tree for a literal L 
which already appears in an ancestor TU-tree is successful. The demo predicate in 
Figure 3.26 implements top-down inference using T-trees and TU-trees and pruning 
of cycles. The predicate demo has as parameters the goal to be proven, the mode t 
or tu, the local and the global ancestor list. The top goal (1) initialises the ancestor 
lists as empty. Item 2 states that a node marked true is successful. A conjunction is 
inferred if the conjuncts hold (3). Item 4 and 5 implement that not L is successful in 
aT-tree (TU-tree) if L fails for TU-trees (T-trees), where the ancestor lists are kept 
accordingly. A revisable is proven if it is assumed, either by default or after flipping 
its truth value (6). Loop checking is implemented by (7) and rule application by (8) 
and (9). For revision, the demo predicate is extended to contain a fifth parameter that 
returns the revisables involved in the proof. 

The top-down proof procedure is of tremendous importance for the revision algo
rithm described in the previous section. Rather than computing the model and support 
sets before constructing the hitting-set tree we can merge these steps now. The top
down inference allows to construct one conflict at a time. Therefore we do not evaluate 
the whole program anymore, but start by computing a successful T-tree for ..1.. If there 
is one, we extract a conflict of the tree and with the conflict we expand the hitting set 
tree. 

3.3.4 A Top-Down Algorithm 

To compute revisions we can adopt the top-down proof procedure to generate conflicts. 
We know that there are conflicts if and only if demo(..1.) succeeds. Furthermore, the 
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successful T-tree of .1 contains the default literals forming the conflict. Thus we can 
employ demo to generate conflicts by collecting the encountered default literals in a 
successful proof for .1. 

Proposition 3.21 demo and conflicts 
There is a conflict for P iff demo(.1) succeeds. If T is a successful T-tree for .1, then 

the union of all default literals in T is a conflict. 

Example 3.22 Consider the extended logic program with revisables a, b, and c ini
tially false: 

.1 f- not p. .1 f- a,not c. .1 f- c. P f- a. p f- b. 

false 

I 
notp -~ 

a b 
I I 

fail fail 

Have a look at the T-tree for .1 on the left. The top-down proof 
procedure creates a T-tree with root .1 and child not p. To prove 
verity of not p falsity of p must be proven. A TV-tree rooted 
with p is created. Since both children a and b fail, p fails and 
not p succeeds. Finally, .1 is proved based on the falsity of the 
revisables a and b. Thus, the proofprocedure returns the conflict 
{not a, not b }, which means that at least a or b must be true. 

The above proposition allows to replace support sets for .1 by iterative conflict gen
eration. Rather than computing all conflicts beforehand, they are generated iteratively. 
When we expand a node in the hitting-set tree we do not take an arbitrary conflict, but 
one which is distinct from the partial solution H (n) of the node found on the path from 
root to node. Therefore we add the partial solution {L I not L E H (n)} to the program 
and generate by demo a conflict. The following lemma ensures that for intermediate 
nodes n there is a conflict of P that contains H(n). 

Lemma 3.23 
Let P be a program and n a node in a hitting-set tree such that n is not a leaf Then 

there is a conflict C of P such that H(n) C C. 

To put it in other words, we can revise the literals of H(n) and still obtain another 
conflict. Thus we add {L I not L E H (n )} to P and generate a conflict to expand the 
current node. Based on proposition 3.21 and lemma 3.23 we can change the bottom-up 
algorithm in Figure 3.22 that uses the hitting-set algorithm in Figure 3.21 by modifying 
the latter to contain conflict generation as an integral part. We only have to work on 
the part of the algorithm where n is either identified as solution and marked J or else 
a new conflict L is chosen: 

• if for all x E C, xnH(n) :j; n then label n by J . 
• else let L be the first member of C for which LnH(n) = n. 
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Instead we pick up an unmarked node with minimal H{n}. Choosing a minimal 
node is crucial to guarantee minimal solutions. By lemma 3.23 we can safely replace 
the check for solution by testing whether there are conflicts for P U {L I not L E H {n } } 
and in case there are taking one: 

• let n be an unmarked node such that H{n} is minimal; mark n 

• If there is no conflict for PU {L I not L E H{n}} then label n by '11'. 

• else let ~ be a conflict for PU {L I not L E H{n}}. 

The overall algorithm is depicted in Figure 3.27. 

Proposition 3.24 Correctness of Algorithm 3.27 
The top-down algorithm in Figure 3.27 terminates. H{n} is a hitting-set iffn is a leaf 

marked '11'. 

Corollary 3.25 Computing Revisions 
The top-down algorithm in Figure 3.27 computes the revisions of P. If a leaf n is 
marked '11', then {L I not L E H{n}} is a revision. 

The corollary follows by Reiter's theorem 3.10 and the correctness of the top-down 
algorithm. 

Since minimality is an abstract criterion the algorithm allows for a wide range such 
as minimality by cardinality, by set-inclusion, or by probability. All of them are imple
mented and have been used. Minimality by cardinality is essential for large problems 
such as the ISCAS85 benchmark circuits (see code in section 3.1.3 and Figure 3.30); 
minimality by set-inclusion is used in the examples of traffic control (section 3.2.1), 
integrity of databases (see section 3.2.2), the automated mirror furnace (see section 
3.2.4), and communication protocols (see section 3.2.5); minimality by probability 
is used throughout the example of alarm correlation in cellular phone networks (see 
section 3.2.3). 

Example 3.26 Consider the extended logic program with revisables a, b, and c ini
tially false and have a look at Figure 3.28 . 

..L +-- not p. ..L +-- a,not c. ..L +-- c. P +-- a. P +-- b. 

The algorithm starts with the empty graph and passes H{n} = {} to the inference 
engine (1). As explained in example 3.22, the proof procedure returns the conflicts 
{not a, not b} (2) which can be satisfied by adding a or b to the program. Thus, 
the downward arcs of the root node now labeled by the conflict {not a, not b} are 
labeled by {not a} and {not b} (3). Assume that arc {not a} is selected for expansion 
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1. Let D represent a growing dag. Generate a node which will be the root of the dag. 
This node will be processed by step 2 below. 

2. While there is an unmarked node: 

(a) Define H{n) to be the set of edge labels on the path in D from the root down 
to node n. 

(b) If there is a node n' which is labeled by"; and H{n') C H{n) then close node 
n and mark it x. 
Otherwise, 

• let n be an unmarked node such thatH{n) is minimal; markn 

• If there is no conflict for P U {L I not L E H (n )} then label n by";. 

• else let I: be a conflict for PU {L I not L E H{n)}. 

If there is a node n' which has been labeled by the set S' of C where 
I: C S', then relabel n' with I:. For any a in S' - I:, the a-edge under 
n' is no longer allowed. The node connected by this edge and all 
of its descendants are removed, except for those nodes with another 
ancestor which is not being removed. 
Interchange the sets S' and I: in the collection. 

Else label n by I:. 

(c) If n is labeled by a set I: E C, then for each 0' E I:, 

• either reuse a node, i.e. if there is a node n' in D such that H{n') = H{n) U 
{ O'}, then let the O'-arc under n point to this existing node n'. 

• or generate a new downward arc labeled by 0'. This arc leads to a new node 
m withH{m) = H{n)UO'. The new nodem will be processed (labeled and 
expanded) after all nodes in the same generation as n have been processed. 

3. Return the resulting dag, D. 

Figure 3.27. Top-down algorithm to compute revisions. 
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Figure 3.28. Iterative construction of hitting-set tree. 
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and H(n) = {a} is passed to the inference engine. The new conflict {not c} (4) is 
found. Thus the node is labeled {not c} and a new downward arc not c is added (5). 
Next the node reached by the arc not b is selected for expansion and {b} is passed to 
inference engine. It turns out to be a revision, since .1 cannot be derived. The inference 
engine returns nothing and the node is marked v' (6). Note that returning nothing is 
distinct from returning the empty set. The former means there are no conflicts and we 
are done, the latter means that there is a conflict which cannot be resolved. Finally, 
for expansion of the last node, {a, c} is send to the inference engine (7). The proof 
procedure returns the empty conflict {} (8), so that the node is marked x as closed. 
Thus the overall solution is {b} (9). 

3.3.5 Comparison of the Algorithms 

Three prototypes of REVISE have been implemented. REVISE 1.0 [DNP94] em
ploys the bottom-up algorithm, while REVISE 2.3 and 2.4 [DNPS95, DPS96, SDP96, 
DPS97b] use the top-down algorithm. For REVISE 2.x the top-down evaluation al
lows to interleave the steps of computing conflict sets and hitting-sets. The hitting-set 
tree is computed incrementally, i.e. after one conflict is computed the candidate space 
is updated. This avoids the explosion of REVISE 1.0 in the bulb example. The com
putation of all conflicts in REVISE 1.0 is quite tedious as the timings in Figure 3.25 
for the bulb example 3.24 show. The exponential runtime behaviour clearly shows 
that generating conflicts before constructing the hitting-set tree is quite crude and that 
many conflicts do not provide new information. For the bulb example 3.24 the algo
rithm of REVISE 1.0 computes first all 2n conflicts and then reduces them to the n 
final diagnoses. REVISE 2.3 and 2.4 use the top-down algorithm and need only n + 1 
conflicts, which is the best case for this example. Based on the first conflict that Sil are 
open, n partial solutions that Sil are not closed are kept in the revision tree. Each of the 
next n conflicts leads to a diagnosis. For this example the minimality of the paths in the 
hitting-set tree are of particular importance, as it guarantees that the partial solutions 
leading to a diagnosis are processed first. The advantage of the incremental method 
of REVISE 2.3 and 2.4 over REVISE 1.0 is obvious from the timings in Figure 3.29. 
Both versions of the top-down algorithm perform in quadratic time in comparison to 
REVISE 1.0's exponential curve (see Figure 3.25). The curves are not linear due to 
the proof procedure which is quadratic in the number of instantiated clauses [AP96]. 

It may be puzzling that in the bulb example REVISE 2.3 performs by a constant 
factor better than REVISE 2.4 does. The difference between them is the representation 
of conflicts. The former uses difference lists and the latter sets as ordered lists. The 
difference lists allow a constant append, but may contain duplicates, while the ordered 
sets are free of duplicates, but a union costs O(min{ m, n} ), where m, n is the size of 
the sets. REVISE 2.3 performs better for the bulb example since in this special case 
conflicts do not contain any duplicates so that REVISE 2.4's extra check does not pay 
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Figure 3.29. Bulb example. Timings in seconds. REVISE in interpreter mode. A DEC-

5000/240 was used. 

off. For real-world examples such as the ISCAS85 benchmark circuits [BPH85] the 
situation is different and avoiding recomputation turns out to be vital. REVISE 2.4 
copes with this problem through its set representation and memoising in the WFSX 
interpreter. Depending on the fanout of the circuits' gates, version 2.4 is up to 80 times 
faster than 2.3 (see Figure 3.30). 

3.4 SUMMARY 

Extended logic programming is a suitable technique for model-based diagnosis. In
tegrity constraints and implicit negation are used to constrain predictions and obser
vations and express default assumptions about the components states, respectively. 
Furthermore, the powerful language allows for a compact representation of diagnosis 
problems. We have modelled a wide variety of diagnosis problems including digital 
circuits, traffic control, integrity checking in databases, alarm correlation in cellular 
phone networks, automated mirror furnace, and communication protocols. The abduc
tive capabilities and explicit negation proved to be especially useful for the problem 
of alarm correlation in section 3.2.3. 
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Figure 3.30. ISCAS85 benchmark circuits. Timings in seconds. REVISE computes all 
single faults in compiler mode. A DEC5000/240 was used. 
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To compute revisions two algorithms are developed, a bottom-up and a top-down 
algorithm. The initial bottom-up algorithm is implemented in the REVISE 1.0 system 
[DNP94] that proved the feasibility of diagnosis and extended logic programming. 
With the top-down proof procedure for WFSX [ADP94a, ADP94b, AP96] the initial 
bottom-up algorithm is refined and conflict generation and construction of the hitting
set tree are interleaved. The new top-down algorithm is implemented in REVISE 2.3 
and 2.4 [SDP96, DPS97b]. It outperforms REVISE 1.0 by far and shows quadratic 
runtime behaviour where REVISE 1.0 performs exponentially. For small real-world 
problems it turns out that REVISE 2.4's conflict representation avoiding duplicates 
pays off. For the ISCAS85 benchmark circuits REVISE 2.4 runs up to 80 times faster 
than REVISE 2.3 does. An additional speed-up of ten to fifteen is gained in a compiled 
version of REVISE in comparison to an interpreted [DPS97b]. 



4 STRATEGIES IN DIAGNOSIS 

The ability to select suitable diagnostic assumptions and models extends the power 
of model-based diagnosis for complex systems and can explicitly be modelled by di
agnostic strategies. We discuss a framework which allows to express these strategies 
as formulas of a meta-language. We define syntax and semantics of the language 
and present a method for designing strategy knowledge bases as well as an efficient 
straightforward operational semantics for exploiting them. 

4.1 INTRODUCTION 

In the last years, model-based diagnosis has been extended by the introduction of 
the new concept of using different diagnostic assumptions (concerning number of 
faults, use of fault models and multiple models of the device) which can be ac
tivated during the diagnostic process. The selection of the appropriate diagnostic 
assumptions and system models during the diagnostic process is controlled by a 
set of predicates in the system description, for which Struss, Bottcher and Dressler 
[Str92b, BD93, BD94] introduced the term Working Hypotheses. Diagnostic strategies 
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are rules defining which working hypotheses should be used in a given situation during 
the diagnostic process. Frohlich, Nejdl, and Schroeder recently introduced a frame
work [NFS95, FNS96, FNS97] for controlling the diagnostic process by strategies 
expressed as sentences in a fonnal meta-language. Compared to previous approaches 
such as [BD94] this framework has the advantage of making strategic knowledge ex
plicit and allowing the flexible specification of diagnostic strategies. The framework 
includes a declarative semantics for deciding whether a diagnostic process obeys the 
strategic knowledge specified by the strategies. We develop a design method and an 
operational semantics to efficiently handle strategic knowledge. Within our framework 
we identify the class of one-step rule-like strategies which is universal in the sense 
that it is expressive enough to describe every possible diagnostic process. Besides 
proving this theoretical result we demonstrate that all strategies needed in practice for 
our application domain can be denoted elegantly by one-step-strategies. Even pref
erence concepts, which were up to now modelled separately [DS92, DNP94, FNS94] 
will be modelled as one-step strategies. We first show how to develop a strategic 
knowledge base for a specific application. Then we define an operational semantics 
which efficiently perfonns the diagnostic process using the strategies provided. In the 
course of the chapter we will discuss both detenninistic and non-detenninistic strate
gies for hierarchical circuit diagnosis. A major advantage of our method is that the 
strategies can be designed independently of each other, so that the strategic knowl
edge can be easily extended without the need to rewrite existing strategies. 

Working Hypotheses. Let L be a first order language with equality. We con
sider a system and observations described by sets of fonnulas SD ~ Land ORS ~ L. 
Struss introduced the concept of working hypotheses into model-based diagnosis in 
order to make diagnostic assumptions explicit [Str92b]. Working hypotheses are de
noted by a set WHYP of atoms from the language L. They can be used to represent 
mUltiple models of the system within one system description as shown in the following 
example. 

Example 4.1 Use of Working Hypotheses 

A 4-bit-selector is composed of four I-bit-selectors 
and an or-gate. The working hypothesis refine(sel) 
can be used to switch between the abstract model and 
the detailed model of the selector in which its subcom
ponents seli and or ..abbc are visible. 

In SD the behaviour of the selector is modelled depending on the working hypoth
esis refine(sel): The rules of the abstract model contain -.refine(sel) in their bodies, 
while the rules of the detailed model contain refine(sel) . 
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To compute the diagnoses under a set of working hypotheses s, we add s and its 
negated complement -,g:= {-,whlwh f/. s} wrt. WHYP to the system description. We 
do not assume a particular diagnosis definition, but we use a generic function diag, 
which implements the computation of diagnoses. This definition allows for a wide 
range of diagnosis concepts like minimal diagnoses [Rei87], most probable diagnoses 
[dKW87], preferred diagnoses [DNP94] and others. 

Definition 4.2 Diagnosis under Working Hypotheses 
Let SD be a system description, OBS a set of observations and s a set of working 

hypotheses. Then diags(SD U OBS) = diag(SD U OBS U s U -,g) denotes the Set of 
Diagnoses under Working Hypotheses s. 

Working hypotheses are an important concept for making the current diagnostic as
sumptions explicit. The selection of the appropriate working hypotheses is controlled 
by strategies. 

4.2 A STRATEGY LANGUAGE 

In this section we extend the previously defined strategy language [FNS94, NFS95, 
FNS96, FNS97] by generic deterministic and non-deterministic strategies, a careful 
treatment of the case where no diagnoses exist and a general condition for the termi
nation of the process. 

4.2.1 Motivation 

We will introduce a bimodal language for the description of diagnostic processes. In 
contrast to previous approaches [Str92b, BD93, BD94] our modal language allows to 
completely formalise the diagnostic process: Processes are models of formulas in our 
language. By formalising diagnostic strategies we are able to judge their expressive
ness (e.g. every process can be described, see theorem 4.23) and their limitations (e.g. 
we only look one step into the future). A language with two modalities is suitable for 
describing processes because two accessibility relations are inherent in a diagnostic 
process: 

• Within each state of the process several hypotheses exist, which together with the 
system description and the observations induce logical models (worlds). We model 
this by an S5-operator (0) and a corresponding accessibility relation. 

• A second modality (.) models accessibility among the process states. 

We define a formal semantics for this language. In section 4.4 we will then define an 
algorithm, which constructs models of our formulas (denoting strategies) with certain 
desirable properties. Thus, we will use the semantics for model checking and model 
generation. 
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4.2.2 Syntax of the Language 

Diagnostic strategies control the diagnostic process by specifying which working hy
potheses to use in a given situation. The state of the diagnostic process is represented 
by the current set of possible diagnoses. Thus the specification of a diagnostic strategy 
consists of 

• properties characterising the current situation 

• working hypotheses which are suitable for handling that situation 

Example 4.3 Using the technique described in example 4.1, we can represent mul
tiple models of a system within a single system description. Suppose we have three 
system models Mo,MI and M2, where Mo is active by default. The working hypothe
ses force.M1 andforce.M2 can be used to switch to MI and M2, respectively. The 
following rule could be used to guide this selection: 

If all diagnoses satisfy a certain formula C which states that model Mo is not appropriate, 
then the diagnostic process can continue either using model MI or model M2, i.e. either 
the working hypothesis force..M1 or the hypothesis force..M2 can be activated. 

To capture such strategies we define modalities to specify properties of the current 
diagnoses as well as to propose working hypotheses 

Modalities 0 and O. The preconditions of diagnostic strategies are statements 
about the current set of possible diagnoses. The atomic statements in these conditions 
are denoted by S5 modal operators: 

Op: p is true under all diagnoses from diags . 

Op: p is true under at least one diagnosis from diagS" 

Modalities • and +. Strategy formulas specify which working hypotheses 
should be assumed in a given situation. This is achieved by the modalities: 

.Owh: wh is a necessary working hypotheses in the current situation, i.e. in all 
successor states of the current diagnostic state we must assume who 

+Owh: wh is a possible working hypotheses in the current situation, i.e. there is a 
successor state of the current diagnostic state in which wh holds. 

In general, the syntax is defined as follows: 

Definition 4.4 Lstrat-Formula 
Let .L be a first-order language with equality, then L E .L is a Lstrat-Formula. Let 

F, G be Lstrat-Formulas and v, VI, V2 variables, then OF and OF, +F and .F, -,F 
and F /I. G, VI = V2, 'Vv : Fare Lstrat-Formulas. Nothing else is an Lstrat-Formula. 
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Note, that .4trat has the same predicate symbols and constants as the system de
scription language L. The variables denote objects of L. This will be ensured in the 
formal semantics presented in the next section. The model-theoretic semantics will be 
given for the full language. In practice we use a subset of the language .4trat, which 
can be efficiently handled by algorithms. It has turned out that rule-like strategies 
are best suited to express intuition: Based on properties of the current state of the di
agnostic process the strategies propose new working hypotheses. Such strategies are 
restricted .4trat-formulas, which can be written as a rules C -+ H, where C charac
terises the current diagnostic state and H the immediate successor states. The head H 
has one level of modalities + and ., the body C has none. Such One-Step Strategies 
are rules where the body has depth 0 and the head depth 1 wrt. to the bold modalities. 
Since we deal only with one-step strategies in this paper we simply call them strategies 
and explicitly refer to .4trat-formulas, when we need the full language in definitions. 

Definition 4.5 Depth 
IfL E L, then OL and OL areformulas of depth O. Let F,G be bothformulas of depth 

n, then OF, OF, of, F 1\ G, F V G are formulas of depth n, .F and +F are formulas 
of depth n + 1. 

Definition 4.6 One-Step Strategy 
A One-step Strategy (in this paper simply called Strategy) is a formula of the form 

C -+ H, where C is a formula of depth 0 and H is a formula of depth 1. 

4.2.3 Representation of a Diagnostic Process 

The aim of strategies is to control the diagnostic process by proposing suitable working 
hypotheses. The diagnostic process itself can be non-deterministic, because more than 
one set of hypotheses can be proposed for a given situation. The State of the diagnostic 
process is characterised by the current set of working hypotheses. For representing 
diagnostic processes we use the notion of a State Transition System: 

Definition 4.7 State Transition System 
Let S be a finite set of states, t E S an initial state and -+ ~ S x S a transition relation. 

Then (S,-+,t) is called a State Transition System. We assume S ~ 2WHYP. 

Consider the following diagnostic process. We start the diagnosis with a simple 
model of a device (Mo) and the single-fault-assumption (see section 4.3.4). It turns 
out that no single-fault diagnosis exists, thus we allow the assumption of double faults. 
Again no diagnoses are found. Now we consider the simple model of the device as 
too abstract and we propose the activation of one of the more detailed models Ml or 
M2. In both of these models we would find single-fault diagnoses. 
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The transition system for representing this process has the states 0 
(initial state, no working hypotheses), df (then allow double faults), 
force..Ml andforce..M2 (select one of the more detailed models). 

{} 

4.2.4 Designing Stra.tegies 

The diagnostic process is represented by a transition system. We use strategies to 
influence the shape of this transition system. Let us first show how to define strategies 
in order to obtain a certain transition system. 

Deterministic Strategies. Often we want to assume one specific hypothesis in 
a given situation. For example, if we have found that a component C is definitely 
faulty, we activate the refined model for it to see which of its subcomponents caused 
the fault. We need a strategy which proposes a state transition leading to a state in 
which refine ( C) holds: 

Oab( C) -t +Orefine( C) /\ .Orefine( C) 
refine(C) 

t 
not reime(C) 

The formula describes exactly the transition system wrt. the hypothesis refine ( C). 
Other strategies specify transition systems wrt. other hypotheses. These partial tran
sition systems are then combined by the algorithm which computes the diagnostic 
process. The +-operator is necessary in this formula. If we had only used the .
operator in the conclusion of this formula, the formula would have been satisfied also 
if there were no successor of the current state. The quantification over all successor 
states would then be trivially satisfied. 

Non-Deterministic Strategies. Sometimes there are several possibilities for 
continuing the diagnostic process in a given situation. Consider the generic model 
selection strategy introduced in example 4.3. Again we can first develop a transition 
system and then describe it by a strategy. 

Oimplausible -t 
+Oforce..Ml/\ +Oforce..M2 
/\ .(Oforce..Ml j4 Oforce..M2) 

In this strategy implausible is a predicate in the system description, which indicates 
that there is no plausible diagnosis under the current system model. 

Example 4.8 implausible 
A diagnosis may be implausible if it contains triple faults including incomplete faults. 
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Triple faults holds if three distinct components X, Y, Z are abnormal and at least one 
of them is in an unknown fault mode. We denote the fault mode M of a component C 
by fm(C,M). 

VX,Y,Z: ab(X) /\ab(Y) l\ab(Z)/\ 
X =I- Y /\ X =I- Z /\ Y =I- Z/\ 
(fm(X,unknown) V fm(Y,unknown) V fm(Z,unknown)) 

-+ implausible 

The strategy for model choice proposes two possibilities for continuing the diag
nostic process: Either assume Ml or assume M2 but do not assume both models at the 
same time. We will give a more specific account on model selection in section 4.3.1. 

The above design method allows to define strategies independently without hav
ing to care about interference between different strategies. We will use it to define 
a complete set of strategies for circuit diagnosis (section 4.3) and describe how the 
independence can be preserved during the diagnostic process (section 4.4). 

4.2.5 Consistency of Transition Systems 

In order to check if the decisions made during the diagnostic process are consistent 
with the given diagnosis problem, we define how strategies can be interpreted as state
ments describing the diagnostic process. First we define logical structures which pro
vide the interpretation for the strategies. 

Definition 4.9 ~trat-Model 
A modelfor ~trat is a structure M = (W,D,-+1,-+2,I), where W is a set of individuals 
(called worlds), D is a domain of individuals, -+ 1 and -+2 are accessibility relations 
on the worlds, i.e. subsets ofW x Wand I is an interpretation Junction. 

The function I provides the interpretation for predicates and ground terms (in our 
case all ground terms are constants). The values of the variables are given by an 
assignment: 

Definition 4.10 Assignment 
Given a domain D an Assignment is a mapping from the set of variables into D. 

By a(xld) we denote the assignment that maps variable x to an element d E D and is 
defined in the same way as a on the other variables. 

The semantics of an ~trat-Model is defined as follows: 

Definition 4.11 Semantics of ~trat 
Let M = (W, D, -+ 1, -+2, I) be an ~trat-model, F, G ~trat-Formulas, a an assign

ment and w E W. Let 

y, l( ) ._ { a(t), ifft is a variable 
a t,a, w.- I(w,t), ifft is a constant 
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Then 
M I=w,1X P{tl' ... tn) 

M I=w,1X tl = t2 
M I=w,1X F /\ G 
M I=w,IX-,F 
M I=w,IX.F 
M I=w,1X +F 
M I=w,1X OF 
M I=w,1X OF 
M I=w,1X 'Vx.F 

iff {Val{tl, (X, w), ... Val{tn, (x, w)) 
E I{w,P) 

iff Val{tl, (X, w) = Val {t2 , (x, w) 
iff M I=w,1X F and M I=w,1X G 
iff M ~w,IXF 
iff f.a. w' E W s.th. w -tl w': M 1=w',1X F 
iff ex. w' E W s.th. w -tl w' and M 1=w',1X F 
iff f.a. w' E W s.th. w -t2 w': M I=w' ,IX F 
iff ex. w' E W s. t. w -t2 w' and M I=w' ,IX F 
iff f.a. d ED: M I=w,IX(xId) F 

We will use the following abbreviations: 
M I=w F iff M I=w,1X F for every assignment ex. 
M 1= F iff M I=w F for every w E W 

The connection between the state transition relation and the ktrat-model is estab
lished in the following way: The possible diagnoses are interpreted as possible worlds, 
where all the diagnoses under one set of working hypotheses are connected wrt. the 
O-operator (relation -t2). The accessibility relation for the .-Operator (relation -t 1) 
is given by the state transition relation -t, i.e. diagnoses under different working 
hypotheses are connected by -t 1 iff the underlying sets of working hypotheses are 
connected by -t. 

Definition 4.12 Induced ktrat-Model M(s,~,t) 
Let (S, -t,t) be a state transition system. For s E S let 'lJs = diags{SDU OBS) be the 

diagnoses under s. We distinguish two cases: 

I. If'lJs =/; 0, then let m.~ be the number of models obtained from the system descrip
tion, the observations and the diagnoses in tJJ.~ and let {M(s,I),'" ,M(s,ms)} be the 
corresponding set of Herbrand models. 

2. If'lJs = 0, then let ms = 1 and M(s,l) be the Herbrand model defined by M(s,l) = 
sU {ab{SD)} 

The Induced ktrat-Model M(s,~,t) is defined as 

M(s,~,t) = (W',D',-t~,-t~,I'), where 

W' 
D' 

-t~ 
-t~ 

I'{{s,i),P) 
I' ({s, i),a) 

= {(s,i) Is E S,i E {l, ... ms }} 

is the set of constants in L 
= {({s,i),{s',j))ls -t s', 1::; i::; ms, 1::; j::; ms'} 
= {({s,i), (s,j)) Is E S,i,j E {l.. .ms}} 
= {X E {D'nIP{x) E M(s,i)} fora predicate symbole P ofarity n 
= a, for a constant a in L. 
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Figure 4.1. Example of the two accessibility relations -+1 and -+2 . 

Definition 4.13 
Let F be an Lstrat-Formula and (S,-+,t) a transition system with induced model 

M(s,-t ,t) and s E S. We write (S, -+ ,t) I=s F iff M(s,-t,t) I=(s,i) F 

The induced model needs some explanation. The worlds Wf are a set of references 
to models which are either obtained from diagnoses of the system description and 
observations under a set of working hypothesis or given by M(s,l) = s U {ab(SD)} in 
case there are no diagnoses. There are two transition relations. The first one, -+;, is 
inherited from the given state transition system (S, -+, t). For each transition s -+ Sf 

from a set of working hypotheses s to another one Sf there are transitions (s, i) -+; 
(Sf , j) where i and j are needed to identify the corresponding models M(s,i) and M(l ,j). 

The second transition relation connects all models obtained under the same set of 
working hypotheses. 

Example 4.14 Induced Model 
The transition system on the left of Figure 4. J induces the model on the right. For 

each set s of working hypotheses a set of models is obtained. The relation -+~ which is 
shown in bold arcs connects all models obtained under a set s of working hypotheses. 
The relation -+ on the left induces the transitions -+; on the right. 

To understand the declarative semantics, consider a given transition system (S,-+ 
, t). We check whether this transition system is a valid solution to the diagnostic prob
lem given by SD U aES and a set of strategies :T. We call a transition system consis
tent, iff all its states satisfy all formulas from :T. Intuitively, the way the diagnostic 
process proceeds is consistent with what the strategies propose. 

Definition 4.15 Consistent 
A transition system (S, -+, t) is consistent with a set :T of strategies, iff for all formulas 

FE :T and all s E S we have (S,-+,t) I=s F. 

An important step to compute a consistent transition system is given by the next 
proposition. For the modalities 0 and 0 consider first a formula L E L without modal 



64 AUTONOMOUS, MODEL-BASED DIAGNOSIS AGENTS 

operators. A state s satisfies OL if there is a diagnosis corresponding to state sunder 
which L holds, and a state satisfies OL, if L holds under all diagnoses in state s. Addi
tionally, we consider the case when there are no diagnoses, because the inconsistency 
of certain assumptions with the current situation should not lead to termination of the 
diagnostic process but rather to a change of assumptions. The absence of diagnoses 
under a given set of literals is indicated by the literal ab(SD), intuitively indicating 
that the system description is not suited for the current set of assumptions. 

For the modalities • and t let F be a strategy formula. The semantics for the 
operators.F and tF is given by the transitions. A state s satisfies .F, if the formula 
F holds in all successor states. Similarly, a state satisfies t F, if the formula F holds 
in at least one successor state. 

Proposition 4.16 Let (S, -+, t) be a transition system, s E S, and tJJs be the diagnoses 
under s. Let L E L be a first order formula and F a strategy, then 

(S,-+,t) Fs OL, 

(S,-+,t) Fs OL, 

(S, -+,t) Fs tF, 
(S,-+,t) Fs .F, 

iff tJJs '" 0 and there is a diagnosis D E tJJs such that the 
modelforSDUOBSUsU...,sUD entails L 

or tJJ.v = 0 and the modelforsU...,sU{ab(SD)} entails L 
iff tJJs '" 0 and for all D E tJJs: SD U OBS Us U ...,su D 

entails L 
or tJJs = 0 and s U ...,sU {ab(SD)} entails L. 
iff ex. s' E S such that s -+ s' and (S, -+,t) Fs' F. 
iff for all s' E S: from s -+ s' follows (S, -+,t) Fs' F. 

Before we discuss the computation of a consistent transition system in section 4.4 
we investigate the relation of the two pairs of modalities. 

4.2.6 Relation between the Modalities 

Since the modalities 0 and 0 give rise to an S5-structure the axioms T, 5, K, Df, PI 
hold [Che80]: 

T. OF-+F 
5. OF -+ OOF 
K. O(F -+ G) -+ (OF -+ OG) 
DfO OF ++ ...,O...,F 
PL. F, where F is a tautology 

For bold modalities only K and D hold: 

K. .(F -+ G) -+ (.F -+ .G) 
D . • F-+tF 

hold. The D axiom manifests itself also in the property that the models of a formula 
are serial, i.e. every state in a model has a successor. Intuitively, this means that the 
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diagnosis process either continues with a new set of working hypotheses or that a sta
ble state is reached where the process loops. Apart from K and D, the bold modalities 
do not satisfy further axioms such as 4 ( .F -+ •• F) and 5 ( tF -+ .tF). The 
reason is that they are used to specify models and therefore we do not want to impose 
constraints on the possible transitions. However, an important relation between plain 
and bold modalities holds. Since the plain modal logic is embedded in the bold modal 
logic, the S5 modalities outside of one of the modalities • or t can be dropped. If 
a world in state s is connected to a world in state s', then due to the S5 axioms, each 
other world in s is also connected to each other world in s'. The following table shows 
axioms on the relationship between the operators: 

OOF OF O.F = .F 
OOF OF O.F = .F 
OOF = OF OtF = tF 
OOF OF OtF = tF 

4.2.7 Results of the Diagnostic Process 

The aim of the diagnostic process could be to identify one unique diagnosis. In general 
this would be too a restrictive criterion for terminating the diagnostic process because 
we might not have enough knowledge to discriminate among all the diagnoses. So we 
define that the diagnostic process terminates in a state where we assumed exactly all 
possible and necessary hypotheses. 

This corresponds to a loop in the transition system as depicted on the 
right. If such a state yields diagnoses we cannot reach a more preferred 
state by applying another strategy. 

Definition 4.17 Stable State 

Q 
t 
; 

Let s be a state in the consistent state transition system (S, -+, t) and !J a set of 
strategy formulas. The state s is stable wrt. (S, -+,t), iff 

1. diags(SD, aRS) =I- 0 

2. s = {wh I (S,-+,t) Fs tOwhA.Owh} 

It is called weakly stable, if s c; {wh I (S, -+,t) FS tOwhA .Owh} 

The first condition states that SD U a RS U s is consistent and the second condition 
is a fixpoint condition: s is already the set of all possible and necessary working hy
potheses. The result of the diagnostic process is given by the diagnoses corresponding 
to the stable states and weakly stable states, respectively. 

4.3 A STRATEGY KNOWLEDGE BASE FOR CIRCUIT DIAGNOSIS 
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In this section we apply the strategy language to the diagnosis of digital circuits. We 
model strategies such as the choice among multiple models, structural refinement, 
measurements and preferences. In section 4.4.4 use them to diagnose the voter circuit 
frOlfl [Isc85]. 

4.3.1 Multiple Views 

Multiple views allow to describe the diagnosed systems emphasising different as
pects. For circuit diagnosis it is often important to consider a physical view beside 
a functional one, because the physical view additionally takes the layout into account 
[Dav84]. We want to employ the functional model by default and the physical model 
only if we do not obtain good diagnoses. 

Strategy (1) tells us how to choose between the models using the hypotheses 
force-physical andforce.junctional. The predicate implausible, which in our example 
holds if no single or double fault diagnosis exists, indicates that the other view should 
be activated. To avoid more than one activation it is also checked thatforce.junctional 
does not yet hold. Once the body of the strategy is satisfied we have to make sure that 
the diagnostic process continues in two directions with the functional and the phys
ical model, respectively, as active model. Thus, we adopt either force.junctional or 
force-physical. Once this model selection has taken place both hypotheses are kept 
(monotonic addition of working hypotheses) (2,3). 

Ofunctional/\ Oimplausible /\ O-force.junctional -t 
+Oforce.junctional/\ +Oforce-physical/\ 
.0 (force.junctional t-t -force-physical) (1) 

Oforce-physical-t +Oforce-physical/\ .Oforce-physical (2) 
Oforce.junctional-t +Oforce.junctional/\ .Oforce.junctional (3) 

In the system description we model the connection between the working hypothe
sesforce-physical andforce.junctional and the literals physical and functional, which 
select the appropriate system model. The functional model is used by default when no 
hypothesis is active: 

-force.junctional/\ -force-physical-t functional 
force.junctional -t functional, force-physical -t physical 

4.3.2 Structural Refinement 

Many authors address the use of hierarchies to reduce the complexity of diagno
sis problems [Dav84, Ham91, Gen84, Moz91, BD94]. In particular, Bottcher and 
Dressler introduce the strategy of structural refinement which states that an abstract 
model of a component is refined only if it is uniquely identified as defective [BD94]. 
Only if all diagnoses contain a component C, it is possible and necessary to activate a 
detailed model of C: 
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'v'C.(Oab(C) 1\ rejineable(C)) V Orejine(C) -t 
tOrejine( C) 1\ .Orejine( C) (4) 

In the system description the rules describing the abstract model are active when 
rejine( C) is false and the rules describing the detailed model are activated if rejine( C) 
is true. This variant of using hierarchies is very efficient since the refinement of the 
model is postponed until the erroneous components are identified. 

4.3.3 Flexible Evaluation of Hierarchies 

Next we extend the strategy of structural refinement for the case where we cannot 
uniquely identify a faulty component but want to continue the process on a more de
tailed level. By default we use structural refinement. If it is not possible to identify 
the faulty components on the abstract level of the system description, we refine the 
abstract components in every diagnosis where they occur. We denote the fact that the 
detailed model for component C is activated via structural refinement by the hypothe
ses strong ]ejine( C) . The additional hypotheses weak1ejine( C) is used for denoting 
that C is to be refined in those diagnoses, where it occurs. These two hypotheses 
dictate the choice of model in the system description as follows: 

'v'C.(ab(C) 1\ weakJejine(C) -t rejine(C)) 
'v'C.(strong1ejine(C) -t rejine(C)) 

The hypotheses weak1ejine( C) should be activated, if the component C is abnor
mal in some diagnosis but not in all diagnoses and all structural refinement steps are 
already done or weak1ejine( C) has already been activated before. 

'v'Ct-{Oab(Cd 1\ 'v'C2.(Oab(C2) -t OstrongJejine(C2)) 
V OweakJejine( Cl) -t 
tOweak1ejine( Cl)) 1\ .OweakJejine( Cd (5) 

4.3.4 Preference Relations among Diagnoses 

Preferences state that diagnoses with certain properties are better than others with 
other properties [DS92, DNP94, FNS94]. Frequently used preferences are, for ex
ample, the single fault assumption or "physical negation" [SD89], i.e. the assumption 
that the known fault models of the components are complete. To use preferences ef
ficiently, the preferred property is activated by default and is relaxed only if there are 
no diagnoses which have the intended property. We can use ab(SD) to detect if there 
are any diagnoses. ab(SD) holds iff diags(SD U ORS) = 0 (see sec. 4.2.5). 
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df, fm....inc 

1\ 
df fm_inc 

\1 
sf 

The preference relation on the left states that by default we are only in
terested in single faults (sf). If there are no diagnoses under the single
fault assumption we allow either diagnoses with double faults (df) or 
incompleteness of the fault models (fmJnc). If there are still no di
agnoses under one of these relaxed hypotheses, we allow double fault 
diagnoses and incompleteness of fault models at the same time. 

Example 4.18 sf and df 
A working hypothesis nf (for n-faults) restricts the cardinality of diagnoses. In the 
system description it is used as a precondition in aformula which restricts the number 
of faults (ab-literals). For single and double faults we have, for example 

'VCl,C2: sf l\ab(Ct} l\ab(C2) -+ Cl = C2 
'VCl,C2,C3: df l\ab(Cl) l\ab(C2) l\ab(C3) -+ 

Cl = C2 VCl = C3 VC2 = C3 

Proposition 4.19 n-faults 
Single- and double-fault assumption can be generalised to n-faults. 

n+l 
'VCl, ... ,Cn+l : nf 1\ 1\ ab(q) -+ 

i=l i,j=l,i"fj 

If SD contains the above formula and nf E s for some n, then for any diagnosis 
DE diags(SDU OBS) there are no more than n distinct components q s.th. ab( q) ED. 

The system description captures the default assumption of single faults by the rule 
-,df 1\ -,tf -+ sf. The strategy of relaxing the single-fault property (6) checks if no 
diagnoses exist (using ab(SD) and if neither df nor jm_inc hold. In this case it is 
possible to adopt either jmJnc or df, but not both at the same time. Finally, double 
faults together with the assumption of incomplete fault models are allowed only if 
there are no double fault diagnoses and no single-fault diagnoses with incomplete 
fault modes (7). 

Oab(SD) 1\ O-,df 1\ O;fmJnc -+ 
tOjm_inc 1\ tOdf 1\ .(Odf;4 jmJnc) (6) 

Oab(SD) 1\ (OdfV OjmJnc) -+ 
to(df I\jm_inc) 1\ .O(df I\jmJnc) (7) 

These kind of strategies show the desired behaviour discussed and implemented 
in [FNS94]. First, the diagnosis system tries to find diagnoses under the most pre
ferred set of properties (in our case diagnoses with only single faults). Only if this 
is not possible (i.e. ab(SD» is true), these properties are exchanged with the next 
most preferred set of properties (in our case either double faults or the assumption 
of "fault mode incomplete") and so on. Wrt. to other strategies the preference prop
erties are not monotonic: Whenever an unrelated diagnosis strategy is executed (e.g. 
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refinement, multiple views, etc.), the next state starts again by trying to find diagnoses 
corresponding to the most preferred set of properties. 

4.3.5 Measurements 

De Kleer, Raiman, and Shirley view diagnosis as an incremental task involving the 
three phases of generating explanations, choosing actions differentiating among them 
and performing these actions [dKRS91]. Our framework allows to incorporate these 
phases into the diagnostic process. Strategy (8) proposes a point X of the circuit for 
measurement if there are two diagnoses predicting different values for X. As measure
ments are expensive, we want to apply the strategy only if all refinements are already 
done which is checked in the first line. 

VC.(Orefineable(C) /\ Oab(C) -+ Orefine(C)/\ 
VX.opoint(X) /\ Oval(X, 0) /\ Oval(X, 1) -+ 

+Opropose(X) /\ .Opropose(X) (8) 
The second phase of choosing the right action is carried out by procedural attach

ment in the system description. The (procedural) predicate best..meas(X) is true for a 
measurement point X, which is optimal according to some specification (for example 
minimum entropy). It needs only be evaluated for the measurement points X proposed 
by strategy (9). 

VX.opropose(X) /\ ObestJneas(X) -+ 
+Omeasure(X) /\ .Omeasure(X) (9) 

In the system description the hypothesis measure(X) causes the specific measure
ment of X to be executed, which is also done by procedural attachment. The modifi
cation of the system description due to the insertion of the measured value has to be 
reflected by a change of the diagnostic state. This is achieved by using the hypothesis 
measure(X) in a monotonic way (strategy (10)). Another (weak) monotonicity axiom 
is used for propose, which is active until the next consistent state is reached, in which 
the measurement is carried out, i.e. as long as ab(SD) holds (strategy (11)). 

VX.omeasure(X) -+ +Omeasure(X) /\ .Omeasure(X) (10) 
VX.Oab(SD) /\ Opropose(X) -+ 

+Opropose(X) /\ .Opropose(X) (11) 

4.4 OPERATIONAL SEMANTICS AND AN ALGORITHM 

4.4.1 Characteristic Formula 

The strategies presented are designed by describing transition systems. These strate
gies have the important property that they are satisfied by exactly one transition sys
tem. Thus, the meaning of these strategies is completely determined by the semantics 
of the strategy language. Now the question arises, whether every transition system can 
be defined by a strategy. The answer is positive. We will define the Characteristic For-



70 AUTONOMOUS, MODEL-BASED DIAGNOSIS AGENTS 

mula of a transition system in this section. All the strategies presented are equivalent 
to characteristic formulas. We further present a method which combines the transition 
systems defined by a set of strategies. Our method will have the property that it max
imises the chance that a consistent diagnostic process is found. Finally, the method is 
exploited by a simple iterative algorithm. 

Given a transition system (S, -+ , t), we can systematically define a formula, which 
completely characterises (S,-+,t): 

Definition 4.20 Characteristic Formula 
Let (S, -+, t) be a transition system, WHYP a set of working hypotheses and s E S. 

Then Gs is called State Formula of s, F., is called Characteristic Formula of sand Fi is 
called Characteristic Formula of (S, -+, t), where 

Gs = DI\{wh I wh E s} U {...,wh I wh E (US)\s} 
Fs Gs /\ 1\ +Fs' /\. V Fs' 

s-+.f' s-+s' 

Lemma 4.21 Let (S, -+, 0) be a transition system and s, s' E S then (S, -+, 0) 1= s G s' 
iffs = s'. 

The above lemma states that the state formula Gs holds only at state s and is false 
at any other state. Thus the first conjunct Gs of the formula Fs fully characterises the 
current state s, the second conjunct manifests the existence of the successor states and 
the third conjunct states that there are no other successors. 

Example 4.22 For the strategy structural refinement in section 4.3.2, the head of the 
strategy is a characteristic formula for the transition system with the only transition 
from the empty set to the state {refine( C) }. 

In general, all the strategy heads in this paper are equivalent to characteristic formu
las. The following theorem shows that we can uniquely characterise a given transition 
system by a set of strategies. 

Theorem 4.23 Given a transition system (S, -+, O), then there is a set !f of one-step 
strategies, such that (S',-+',0) 1= !f iff(S',-+',0) = (S,-+,0). 

We conclude that one-step strategies are the "smallest" language that captures all 
possible transition systems, because we need at least one level of. and +-Modalities 
to describe transitions and we have now shown that one level is also sufficient to 
describe a given transition system. 



STRATEGIES IN DIAGNOSIS 71 

4.4.2 Combining Strategies 

When we consider more than one strategy formula we have to solve the problem of 
combining the proposed transitions. Suppose we have two strategy formulas CI -+ HI 
and C2 -+ H2 and the current state of the process satisfies both CI and C2. How do we 
combine the transitions proposed by HI and H2? 

Example 4.24 Recall the strategies (6) of preferring single fault diagnoses over dou
ble faults and incomplete fault modes and the strategy (1) of activating the physical 
model. Assume the bodies of (6) and (I) are satisfied in the current state and we have 
to perform transitions to satisfy the heads +OfoLinc A +Odf A .(Odf ;4 fm_inc) and 
+Oforce.functional A +Oforce-physical A .Olforce.functional t+ -1orce-physical), 
respectively. There are several transition systems satisfying the conjunct of these two 
heads: 

force_functional force_functional force-physical 

df 

? 
forcejunctional force-physical 

V M 

force_physical 

df 

A 

B 

Solution B is not desired as it includes only two of four possible combinations of 
the working hypotheses. 

Formally, the independence of two strategies proposing working hypotheses Whl 
and Wh2 means that looking at a state in which wh I is active, we cannot derive the 
truth value of wh2 in that state. 

Definition 4.25 Independence of Strategies 
Let F be a set of strategies. Let (S, -+,t) be a consistent transition system wrt. F. 

The state s E S satisfies Independence of Strategies, iff there is no transition system 
(SI, -+1 ,tt) consistent with F such that 

I. for all working hypotheses Whl, Wh2 E SU.,S such that (Sl, -+1 ,tl) Fs .Owhl -+ 
wh2 we have (S,-+,t) Fs .Owhl -+ wh2 
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2. there are working hypotheses Whl, wh2 E SU..,S such that (S,-+,t) I=s .OWhl -+ 
wh2 but (S1,-+I,tt) ~s .Owh1 -+ Wh2 

The transition system (S, -+ , t) satisfies independence of strategies iff every state 
s E S satisfies independence of strategies. Treating strategies as independent has sev
eral advantages: When writing down strategies we explicitly specify dependencies 
among certain hypotheses. Independence to other hypotheses has not to be specified. 
This is important in case a strategy formula is added to a large set of existing formulas. 
Furthermore, assuming independence maximises our chance to find a solution in the 
case of non-determinism. If this transition system does not lead to a stable state, there 
will be no other. 

In the following, we will show that there is only one transition system that satisfies 
independence of strategies for a given set of strategies. Thus the semantics is com
pletely specified and can be computed efficiently. In order to combine the transition 
systems defined by the heads of two strategies while preserving independence, we 
simply combine the successor states in all possible ways. We call this operation the 
State Product. 

Definition 4.26 State Product 
Given two sets of states S 1 and S2 the State Product S 1 ® S2 is defined as {S1 U S2 I SI E 

S1,S2 E S2}. 

When constructing the successor transitions for a given state during the diagnostic 
process, we instantiate the strategies (quantification over components) and collect the 
heads Hi of the strategies C; -+ Hi, whose conditions C; are satisfied. We construct 
the transition systems corresponding to the heads {Hi}. Then we combine them by 
applying the following theorem: 

Theorem 4.27 Let HI, H2, ... Hn be characteristic formulas of depth 1 which have no 
working hypotheses in common and let (SI, -+1,tl), (S2, -+2,t2), ... (Sn, -+n,tn) be the 
corresponding transition systems. The following transition system (S,-+,t) satisfies 
independence of strategies: 

n 

S=0U®(Si\{0}), -+={(0,s) I SES}, t=0 
i=1 

4.4.3 A Strategy Algorithm 

Theorem 4.27 describes how to compute the successor states of a given state under 
the assumption of independent strategies. Iterative application of this theorem yields 
a straightforward method for computing a transition system satisfying a given set of 
strategies. In a given state s starting with 0 we have to execute the following steps: 
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Figure 4.2. Voter. 

1. Compute the diagnoses and corresponding system models under state s. 

2. Instantiate the body of the strategies using the current diagnoses/models. Collect 
the heads of the satisfied strategies. 

3. Construct a transition system for each head. 

4. Combine the resulting transition systems using state product. 

The method must be recursively applied to every generated state. 

4.4.4 Voter Example 

A voter (see Fig. 4.2) has three 4-bit-inputs a,b,c. It outputs b if (a = b) V (b = 
c) and otherwise c. The equality check is realised by the components vote-LJb and 
vote..bc. Both are composed of an and-gate and 4 comparators equJ)!, which serve as 
inputs for the and-gate. A comparator equJ)! compares 2 bits by realizing the boolean 
function xyv£y and thus consists of 2 not- and 2 and-gates and a nor-gate. The select 
component in turn contains 4 one-bit-selectors sel; which are controlled by the or-gate 
or -LJbbc....sel. If it is high, selector sel; lets b; pass, otherwise C; passes. This is realised 
by 2 and-gates, an or- and a not-gate. 
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stronLrefine(sel).slJ'OnLrefine(sell ). 

5 

4 

3 

2 

1 

Figure 4.3. Voter example 1. 

Voter Example 1. The voter inputs are a = 0000, b = 0000 and c = 000 I, which 
should lead to the output 0000, because a = b. However, we observe the value 0010. 
The diagnostic process shown in Fig 4.3 starts with the empty set of assumptions 
where the single fault assumption is active by default (see section 4.3.4). In the 
first diagnosis step we infer that the abstract component sel is abnormal (1). Since 
the condition of the structural refinement strategy is satisfied, the system assumes 
strongJefine(sel) in the next step (2) and the abstract component sel is replaced by 
its subcomponents. Computing diagnoses reveals sell as the faulty component within 
sel. Consequently, the hypothesis strong1efine(sell) is additionally adopted (note the 
presence of the monotonicity axiom for structural refinement) (3) . Now the process 
has reached the gate level of the circuit, where three components can explain the fail
ure: andAI...sel, andBI...sel and orl...sel. The precondition of the measurement strategy 
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Figure 4.4. Voter example 2. 

is now satisfied because the three diagnoses entail different values for the measure 
points out(and2,andALsel, 1) and out(and2,andBl...sel, 1) and no further refinement 
strategy is applicable. For these points a measurement is proposed (4) . There is an 
intermediate step in which we obtain the same diagnoses. Now the measurement 
out(and2,andAl...sel, 1) is selected by activating the procedure choose in the system 
description. Measuring at this point yields the unique diagnosis andAl...sel (5) and the 
state {strong1efine(sel),strongRfine(seLO), measure(out(and2,andAl...sel , I))} turns 
out to be stable. 
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Voter Example 2. In the process depicted in Fig. 4.4 the three input words are all 
0000 and the output is observed to be 1111. The top level diagnosis uniquely identifies 
sel as abnonnal (1), but the following refinement does not lead to any diagnoses (2). So 
the single-fault-assumption is relaxed and two successor states are created, allowing 
double faults and incomplete fault models, respectively. With incomplete fault modes 
some diagnoses are found (4). Since the hypothesis of incomplete fault modes is not 
monotonic, we have to drop it again. The consequence is a loop between two states, in 
which only the state with incomplete fault modes is consistent. By definition 4.17 we 
have reached a weakly stable state. The search for double faults (3) in the other branch 
is not successful. Two strategies apply in this situation. In all successor states we have 
to allow incompleteness of fault models in addition to double faults (section 4.3.4). 
Furthennore we have to branch between physical and functional model as proposed 
by the multiple views strategy (section 4.3.1). Two successor states are generated: 

• With double faults and incomplete fault modes three diagnoses are found (5). The 
search for more preferred diagnoses first leads to no diagnoses (7). Allowing double 
faults does not help (11), while dropping the completeness of fault modes assump
tion yields three single faults (9), so that this state is again weakly stable. 

• Beside the computations in the functional model, we obtain diagnoses of the phys
ical model (6). With double faults and incomplete fault modes allowed, five diag
noses are consistent with the observation. Thus in the next step the preferences 
are relaxed and and_chip and or _chip are valid diagnoses in the physical view 
(8). In order to discriminate among those two diagnoses several measurements are 
proposed (10). Among them the point or ...a.bbc...sel is chosen and finally the state 
{force..physical, strong 1efine(sel) , measure( out( or2, or ...a.bbc...sel, I))} is stable. 

Voter Example 3. The three input words and the output are 0001, 1010, 0100 
and 1010 respectively. The first diagnoses (1) show that all abstract components may 
be responsible (see Fig. 4.5). Thus the components are weakly refined (2) and we 
identify the two and-gates and_vote...a.b,and_vote.bc and the or-gate or ...a.bbc...sel as 
suspicious. Now the measurement strategy proposes the outputs of the and-gates for 
measurement (3). Finally and_vote...a.b is chosen for measurement and we obtain the 
final single-fault diagnosis that and_vote...a.b is abnonnal (4). 

4.5 EXTENSIONS OF THE STRATEGY LANGUAGE 

Motivated by a shortcoming in the initial work on the strategy language [FNS94, 
DNPS95, NFS95], we extend the language by an until-operator [Sch95]. It en
riches the language's expressiveness and is a continuation of the previous approaches: 
initially Damasio, Nejdl, and Pereira introduced a preference relation over single 
diagnoses [DNP94], Frohlich, Nejdl, and Schroeder defined the strategy language 
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Figure 4.5. Voter example 3. 
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whose semantics can be viewed as a preference relation over sets of diagnoses 
[FNS94, NFS95, FNS96, FNS97] and finally, the extension of the until-operator de
fines a preference relation over paths of the diagnostic process, i.e. over sets of sets of 
diagnoses. 

4.5.1 Motivating Example 

The initial definitions of the strategy language [NFS95] focus on monotonic strategies, 
but preferences require non-monotonicity. 

Example 4.28 

Consider a 4-bit-selector sel being composed of an 
or-gate and four I-bit-selectors seli with sell and seh 
being faulty. Thus, sel is also faulty. We specify that 
we prefer single over double faults and use the strat
egy of structural refinement. 

Initially the single fault {ab(sel)} is found and sel is refined. In the next step there 
are no no single-faults as both sell and sel2 are faulty. But due to the monotonic 
adoption of working hypotheses in [NFS95] the single fault assumption cannot be 
dropped anymore. This is unsatisfactory, as the process should terminate with the 
result that insisting on single faults fails after a refinement, so that double faults are 
tried and after the refinement the double fault sell and sel2 is found. 

Much of the problems concerning [NFS95] and detected in [Sch95] are caused 
by the monotonicity when computing the diagnosis process and the treatment of the 
absence of diagnoses. Our approach differs in two respects from the initial work 
[NFS95]. 

1. Our algorithm is non-monotonic. A working hypothesis is only kept if this is ex
plicitly required, otherwise it is dropped. 

2. The absence of diagnosis is not a dead end in the process. In definition 4.12 of the 
induced model the case of no diagnoses is treated separately. The corresponding 
world is associated with a model including the working hypothesis that are respon
sible for no diagnoses together with the literal ab(SD) . 

Therefore the diagnostic process is capable of detecting the none-existence of diag
noses and thus may continue if no diagnoses are found. So it is also possible to loosen 
the restrictions which are imposed by the working hypotheses and lead to no diag
noses. In fact, the preferences defined in section 4.3.4 make heavy use of the special 
ab(SD) literal. 
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Example 4.29 In our framework, the example mentioned above is solved as fol
lows. Initially, the single-fault sel is detected. The single-fault assumption is 
kept and the refinement yields therefore no diagnoses. Subsequently, the model 
{sf,refine(sel),ab(SD)} is generated. With ab(SD) in the model the preference strat
egy (6) in section 4.3.4 drops sf and allows for double-faults. Therefore the interplay 
of non-mono tonicity and ab(SD) solves the problem. 

While preferences and none-existence of diagnoses are handled properly in our 
language, [Sch95] points out a strategy that lies beyond the expressiveness of our 
language: preferences of strategies. If we have two strategies F and G, we may want 
to start by using F and only if all processes based on F end up with no solution, 
then we try strategy G. To do so we need an additional operator AF to express that a 
formula holds finally on all branches of the process. Then we start using F and check 
by AF Ofalse if all paths end finally in the inconsistent state. If this is the case then 
strategy G is activated: 

Definition 4.30 Preference of Strategies 
Given two strategy formulas F and G, we prefer F over G by the strategy formula 

F t\ (( AF Ofalse) -+ G) 

The operator AF can be derived from the until-operator V where FVG means that 
F holds until G holds. In order to give a formal semantics to the AF operator we define 
the declarative semantics of the until operator V and show how the operator AF and 
some other operators can be derived from V. 

4.5.2 The Until Operator 

The basic reason why the problems cannot be properly handled by the initial proposal 
is that they cannot express an unlimited look ahead into the diagnostic process. In
tuitively, this corresponds to an infinite strategy formula. In modal logics there are 
several solutions to this problem. Two familiar approaches are the introduction of an 
until operator [Eme90] and a minimal fixpoint operator [Koz83], respectively. As the 
latter is more complex and unintuitive than the former we will use the until operator. 

Definition 4.31 Semantics of V 
Let M = (W,D, -+1, -+2,1) be an Lstrat-model, WI E W, (WI, W2, ... ) afuU path in 

-+1, andF,G Lstrat-formulas. 

M FWJ,(Wl,W2, ... ),a FVG iff ex. i S.t. M FWj,(Wj,Wj+l, ... ),a G 
fa. j S.t. j < i M FWj,(Wj,Wj+l, ... ),a F 

Intuitively, we extend the definition by an the argument of a path. Then FVG holds, 
if F holds in all states of the path until finally a state satisfying G is reached. Con
sidering one path only does not reveal the full complexity of the operator V. Adding 
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the additional path argument to the old definition we see the complexity: for. and 
+ we do not just consider all and one successor state, respectively, but all and one 
path starting from a successor state. With the path as argument the semantics of the 
modalities is defined as follows: 

Definition 4.32 Semantics of. and + 
Let M = (W,D,-7I, -72,1) be an .£strat-model, WI E Wand (WI, W2, ... ) a path in -71. 

MFw,u.F iff !a. WI EWs.t. w-7lwlandws=(wl,w2, ... ) 
is a full path starting with WI, we have M FW1,WS,U F 

M Fw,u +F iff ex. WI E W s.th. W -71 WI andws = (WI,W2, ... ) 

is a full path starting with WI and M FW1,WS,U F 

M FW F holds iff M Fw,ws F holds for all full paths starting with w. The semantics 
of logical connectors and 0 and O-operator only needs the additional argument of a 
path WS. 

Once we have defined the until operator we are able to give a bunch of new oper
ators to allow formulation of propositions about possibly infinite look ahead into the 
diagnostic process. With these operators the user has a powerful tool at hand to define 
backtracking explicitly and declaratively as a part of the strategy language. 

The operator AF F means that on all paths F holds finally; in the same manner AG 
F means that F holds generally on all paths. EF F and EG F express the same for one 
path, i.e. there is one path such that F holds finally and generally, respectively. 

Definition 4.33 AF, AG, EF, EG, U' 
The operators AF, AG, EF, EG and U' can all be specified by means of the Uoperator. 

AFF 
AGF 
EFF 
EGF 

FU'G 

F V • (trueUF) 
= F 1\ • (FUfalse) 
= FV+(trueUF) 

F 1\ + (FUfalse ) 
FUGv AGF 

The meaning of the operators can be visualised as shown in Figure 4.6. To sum
marise, the until-operator introduced in [Sch95] extends the strategy language's ex
pressiveness to reason about paths of the diagnostic process. It has been introduced to 
deal with some shortcomings of the initial proposal [NFS95] concerning preferences 
and measurements. The reason for the unsatisfactory solution in [NFS95] is that pref
erences require non-monotonicity and that the absence of diagnosis should not be a 
dead-end in the diagnostic process. In our framework we take these two shortcomings 
into account and subsequently solve the problems mentioned in [Sch95]. In contrast 
to [Sch95], our solution of a non-monotonic process and a literal ab(SD) to indicate 
no diagnoses fits elegantly into the framework and is efficiently computable. 
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Figure 4.6. The meaning of the operators U, AF, AG, U', EF, EG. 

4.6 SUMMARY 

To cope with large-scale systems the theory of model-based diagnosis has been ex
tended to include concepts such as multiple views [Dav84, Ham91], hierarchies 
[Dav84, Ham91 , Gen84, Moz91, BD94], preferences [DNP94, FNS94] and measure
ments [dKRS91]. Struss introduced the idea of diagnosis as process [Str92b], further 
developed by Bottcher and Dressler [BD93, BD94]. We formalised it by defining a 
meta-language that allows to describe the process declaratively [NFS95, FNS97]. We 
focused on two important issues. First, we showed how to design srrategies to cover 
the concepts mentioned above. Second, we developed an operational semantics and 
an algorithm that processes these strategies and efficiently computes the diagnostic 
process. We identified generic one-step strategies to deal with monotonic and non
monotonic working hypotheses as well as deterministic and non-deterministic strate
gies. In particular, the combination of non-monotonic working hypotheses and non
determinism allowed us to express preferences which usually have to be treated in 
a separate framework [DNP94, FNS94]. We showed how to use multiple views and 
how to employ hierarchies by the strategy of structural refinement. We integrated 
measurement strategies using procedural attachment. Beside the practical motivation 
of one-step strategies we proved that one-step strategies are universal, i.e. every diag
nostic process can be fully characterised by a set of one-step strategies. Furthermore, 
we defined characteristic formulas and independence of strategies which lead to an 
efficient algorithm that covers the whole variety of strategies. The design of these 
strategies was evaluated in the domain of digital circuits using the voter circuit from 
[Isc85]. 



5 AUTONOMOUS AGENTS 

We introduce vivid agents to develop distributed monitoring and diagnosis sys
tems consisting of a variety of scalable knowledge- and perception-based agents. We 
develop an execution model for vivid agents which is based on an architecture for con
current action and planning. To implement vivid agents we use PVM-Prolog which 
provides coarse-grain parallelism to spawn agents in a network, and fine-grain paral
lelism to run an agent's perception-reaction-cycle and planning facility concurrently. 
Finally, we evaluate the concept of vivid agents in distributed diagnosis including 
fault-tolerant diagnosis and the diagnosis of an unreliable communication protocol. 

5.1 INTRODUCTION 

A multi-agent approach to the diagnosis of distributed systems has several advantages: 
it achieves fault tolerance without any special hardware, diagnosis agents just need 
parts of the overall system description which is often too large or not available, and the 
system can be extended and maintained more easily. Multi-agent diagnosis involves 
several tasks: agents continuously monitor the operation of the subsystems they are 
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assigned to; if they detect any suspicious behaviour they may run specific tests in 
order to confirm or abandon a certain suspicion; they may communicate their findings 
to other competent agents, and they may receive requests to run certain tests from 
other agents; given the findings of other agents they have to compute diagnoses and 
inform other agents about them; if there is no agreement on the right diagnosis of a 
malfunction there has to be a mechanism how to resolve conflicts and reach consensus 
(e.g. by some voting scheme, or by negotiation). 

Thus, a diagnosis agent must be capable of performing tests concerning its own 
state, to compute diagnoses based on other agents' test results and to find a consensus 
among different diagnosis results. To meet these requirements a diagnosis agent needs 
an expressive knowledge base that contains a description of the system to be diagnosed 
and strategic knowledge to deal with hierarchies, multiple models, measurements, and 
preferences. All these requirements are met by vivid agents [Wag96, SMWC97], 
which allow various forms of knowledge representation including the CWA, deduc
tion rules with negation-as-failure, default rules with two kinds of negation, and the 
rule-based specification of inter-agent cooperation. 

The concept of vivid agents comprises both reactive and pro-active behaviour com
petences. The reactive behaviour of vivid agents is, however, not hardwired in the 
form of fixed stimulus-response schemes but encoded in the form of reaction rules 
with a twofold premise: a triggering perception event and an epistemic condition re
ferring to the current knowledge state of the agent. Thus, the reactions of vivid agents 
may depend on the result of deliberation which is essential for diagnosis agents. In our 
present implementation the knowledge base of an agent has the form of an extended 
logic program [GL90), thus allowing for the representation of various forms of in
complete knowledge and of default rules. In combination with contradiction removal 
[PAA91 , AP96), extended logic programs turned out to be sufficiently expressive and 
computationally tractable [DPS97b) to represent and solve many model-based diag
nosis problems. 

An architecture to realise a vivid agent involves four main components: a knowl
edge base, reaction patterns, a planner, and a plan execution facility. Since action 
execution and planning are two nearly independent tasks it is useful to separate them 
in order to achieve greater modularity and efficiency by running two processes for 
action and planning in parallel. We call this architecture CAP for Concurrent Action 
(subsuming both reactions and planned actions) and Planning. To implement the CAP 
architecture we use PVM-Prolog [CM96, CM97), a Prolog core extended by an inter
face to PVM, the Parallel Virtual Machine, a standard software which allows to view 
a network of heterogeneous machines as a single parallel computer. Besides PVM's 
coarse-grain parallelism, PVM-Prolog includes a process-internal thread concept to 
realise fine-grain concurrency. The coarse-grain parallelism is used to spawn agents 
in a network, while the fine-grain concurrency is used to run a perception-reaction
cycle and a planning facility for each agent concurrently. The implementation of 
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vivid agents meets all the requirements of a state-of-the-art programming language 
for multi-agent systems [SMWC97, FMS+97]: 

• Reactive and Pro-active Behaviour. The language supports both reactive and 
pro-active behaviour. I.e. on the one hand the agents are capable of reacting timely 
to events and on the other hand they can pursue long-term goals based on some 
planning facilities. 

• Formal Semantics. Multi-agent applications are complex and therefore likely to 
be error-prone. Since many applications require high safety standards the language 
needs a formal semantics in order to simulate and verify the behaviour of the pro
grams. The transition semantics given for the CAP architecture perfectly matches 
these needs. 

• Executable Specifications. The specification of agent behaviour is declarative 
and executable. 

• Platform Independence. Applications are usually developed on a different 
platform than they are later run on. Furthermore, hardware may be updated and 
is subject to change. Our vivid agent implementation is portable and hardware
independent supporting any UNIX-based machine. 

• Heterogeneity. The language supports the use of agents based on different con
cepts and architectures and implemented in different programming languages. 

• Modularity and Scalability. The agent architecture underlying the language 
is modular, so that different types of agents can be composed. For example, a 
diagnosis agent [SdAMP97, SW97] needs a powerful knowledge base and little 
planning, whereas a scheduling agent may need an optimal planner and only little 
knowledge representation functionality such as in a relational database. 

5.2 VIVID AGENTS 

A vivid agent is a software-controlled system whose state comprises the mental com
ponents of knowledge, perceptions, tasks, and intentions, and whose behaviour is rep
resented by means of action and reaction rules. The basic functionality of a vivid 
agent comprises a knowledge system (including an update and an inference operation), 
a perception (event handling) system, and the capability to represent and perform re
actions and actions in order to be able to react to events, and to generate and execute 
plans. 

Reactions may be immediate and independent from the current knowledge state of 
the agent but they may also depend on the result of deliberation. In any case, they are 
triggered by events which are not controlled by the agent. A vivid agent without the 
capability to accept explicit tasks and to solve them by means of planning and plan 
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Relational Database 

Relational Factbase 

Factbase with deduction rules 

Temporal, Disjunctive, Fuzzy Factbases 

Figure 5.1. Knowledge systems with different complexity. 

execution is called reagent. The tasks of reagents cannot be assigned in the form of 
explicit ('see to it that') goals at run time, but have to be encoded in the specification 
of their reactive behaviour at design time. 

The concept of vivid agents is not based on a specific logical system for the 
knowledge-base of an agent. Rather, it allows to choose a suitable knowledge sys
tem for each agent individually according to its domain and its tasks. In the case of 
diagnosis agents, extended logic programs proved to be an appropriate form of the 
knowledge base of an agent because it is essential for model-based diagnosis to be 
able to represent negative facts, default rules, and constraints. 

5.2.1 Vivid Knowledge Systems 

The knowledge system of a vivid agent is based on three specific languages: LKB is 
the set of all admissible knowledge bases, Louery is the query language, and LInput is 
the set of all admissible inputs, i.e. those formulas representing new information a KB 
may be updated with. In a diagnosis setting, LInput may be {test(_, _),diagnoses(_, _)}, 
where test is used to update other agents' test results and diagnoses to update the 
agents' diagnosis results. The input language defines what the agent can be told (i.e. 
what it is able to assimilate into its KB); the query language defines what the agent can 
be asked. Let L be a set of formulas, then L 0 denotes its restriction to closed formulas 
(sentences). Elements of L~ery' i.e. closed query formulas, are also called if~queries. 

Knowledge systems of various complexity can be distinguished (see Figure 5.1). 
The knowledge system of relational databases allows only atomic sentences and re
quires complete information. Conservative extensions of it are called vivid [Wag94]. 
Formally we can define a vivid knowledge system as follows: 

Definition 5.1 Vivid Knowledge System 
An abstract knowledge system [Wag95 J consists of three languages and two opera
tions: a knowledge representation language LKB, a query language Louery, an input 
language LInput. an inference relation 1--, such that X I-- F holds ifF E L~ery can be 
inferred from X E LKB, and an update operation Upd, such that the result of updating 
X E LKB with FE Ltput is the knowledge base Upd(X,F). 
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Positive vivid knowledge systems use a general Closed-World Assumption, 
whereas general vivid knowledge systems employ specific Closed-World Assump
tions and possibly two kinds of negation. Relational databases can be extended to a 
general vivid knowledge system, called relational factbases, by allowing for literals 
instead of atoms as information units. Further important examples of positive vivid 
knowledge systems are temporal, fuzzy, and disjunctive factbases. All these kinds of 
knowledge bases can be extended to deductive knowledge bases by adding deduction 
rules of the form F +-- G [Wag95]. 

A knowledge base consisting of a consistent set of ground literals, i.e. positive 
and negative facts, is called a relational factbase. In a factbase, the CWA does not in 
general apply to all predicates, and therefore in the case of a non-CWA predicate, neg
ative information is stored along with positive. By storing both positive and negative 
information, the KB can represent incomplete predicates. The schema of a factbase 
stipulates for which predicates the CWA applies by means of a special set CWRel of 
relation symbols. Explicit negative information is represented by means of a strong 
negation -'. 

Example 5.2 In the telecommunication scenario in section 3.2.3 a base transceiver 
station BTS sends by default alive signals to the base stations BSC. In the case of 
a failure alarm the alive signal is explicitly not present at the BSC (left rule be
low). The CWA does not apply to signal, but for the ab-predicate we use the CWA, 
since we want to assume by default that components are not abnormal (right rule). 
In contrast to this, we can distinguish the two cases that we have explicitly derived 
that there is no signal and that we do not have information about the signal. I.e. 
X f- -,signal(bsc,down,bts20,alive) means that we know explicitly that no alive sig
nal of bts20 arrived, whereas X f- not signal(bsc,down,bts20,alive) only expresses 
that we cannot infer whether there is a signal, which means that there is none or that 
there is no information about it. 

-,signal( bsc, down, Sender, alive) +-
bts-failure...alarm(Sender) , 
type(Sender,bts). 

Definition 5.3 Deduction in Factbases 

signal(NE, up, Sender, Signal) +-
notab(NE), 
signal(NE, down, Sender, Signal). 

As a kind of natural deduction from positive and negative facts an inference relation 
f- between afactbase X and an if-query is defined in the following way: 

(f- not) 
(f- -,) 
(f- -'CWA) 

X f- not p(c) if p(c) ¢ X 
X f- -,p(c) if -,p(c) EX 
X f- -,p(c) if P E CWRel &X f- not p(c) 

where p( c) stands for an atomic sentence with predicate p and constant (tuple) c. 
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The negations -, and not are called strong and weak since the coherence principle 
holds and thus X I- -,F implies X I- not F. A factbase X answers an if-query F by yes 
if X I- F, by no if X I- -,F, and by unknown otherwise. 

Definition 5.4 Updates in Factbases 
Updates are recency-prefering revisions: 

Upd(X,p(c)) 

Upd(X,not p(c)) 
~ 

XU {p(c)} 
X - {-,p(c)} U {p(c)} 
X - {p(c)} 
X - {p(c)} U {-,p(c)} 

ifp E CWRel 
else 
ifp E CWRel 
else 

The extension of factbases by adding deduction rules leads to extended logic pro
grams with two kinds of negation as introduced in chapter 3. Inference in extended 
logic programs can be defined either top-down by the demo-predicate in Figure 3.26 
or bottom-up by a fixpoint semantics [GL90, PA92, AP96]. 

Besides a knowledge system that captures the agent's information processing we 
have to specify agent behaviour. We distinguish reactive and pro-active behaviour. 
Reactive behaviour is specified by reaction rules. Triggered by an event a condition is 
evaluated wrt. to the agent's knowledge base and in case it holds the corresponding 
actions are performed. Action rules specify how actions cause effects if they are ap
plicable. Given action rules and a goal, a planner can compute an action sequence to 
achieve the goal. 

5.2.2 Reaction Rules 

Reaction rules encode the behaviour of vivid agents in response to perception events 
created by the agent's perception subsystems, and to communication events created by 
communication acts of other agents. They are similar to 'event-condition-action' rules 
as used in active databases [MD89, KGB+95]. We distinguish between epistemic, 
physical, and communicative reaction rules. 

Definition 5.5 Reaction Rule 
Let AI,A2 be agent names. Let LQuery,Llnput,LEvt. and LAct be a query, update, per
ception and communication event, and physical action language, respectively. Then 
rules of the form 

Eft f

do( a(V)), Eft f

sendMsg(11(V),A2),Eft f-

recvMsg(e(U),At}, Cond 
recvMsg(e(U),AI),Cond 
recvMsg( e(U),At}, Cond 

(Epistemic) 
(Physical) 
( Communicative) 

where Cond E !..o.uery, Eft E Llnput. e(U) E LEvt, a(V) E LAct, 11(V) E LEvt are 
called epistemic, physical and communicative reaction rules. 
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The event condition recvMsg[£(U),Ar] is a test whether the event queue of the 
agent contains a message of the form £(U) sent by some perception subsystem of the 
agent or by another agent identified by Ar, where £(U) E LEvt represents a perception 
or a communication event, and U is a suitable list of parameters. The epistemic con
dition Cond E LQuery refers to the current knowledge state, and the epistemic effect 
Eff E Llnput specifies an update of the current knowledge state. For physical reactions, 
LAct is the language of all elementary physical actions available to an agent; for an 
action a(V) E LAct. do( a(V)) calls a procedure realising the action a with parameters 
V. For the communicative reaction, sendMsg[T\(V),A2] sends the message T\ E LEvt 
with parameters V to the receiver A2. Both perception and communication events are 
represented by incoming messages. In a robot, for instance, appropriate perception 
subsystems, operating concurrently, will continuously monitor the environment and 
interpret the sensory input. If they detect a relevant event pattern in the data, they re
port it to the knowledge system of the robot in the form of a perception event message. 

In general, reactions are based both on perception and on knowledge. Immediate 
reactions do not allow for deliberation. They are represented by rules with an empty 
epistemic premise, i.e. Cond = true. Timely reactions can be achieved by guaran
teeing fast response times for checking the precondition of a reaction rule. This will 
be the case, for instance, if the precondition can be checked by simple table look-up 
such as in relational databases or factbases. Reaction rules are triggered by events. 
The agent interpreter continuously checks the event queue of the agent. If there is a 
new event message, it is matched with the event condition of all reaction rules, and 
the epistemic conditions of those rules matching the event are evaluated. If they are 
satisfiable in the current knowledge base, all free variables in the rules are instantiated 
accordingly resulting in a set of triggered actions with associated epistemic effects. All 
these actions are then executed, leading to physical actions and to sending messages 
to other agents, and their epistemic effects are assimilated into the current knowledge 
base. 

Example 5.6 The system FORKS simulates an automated loading dock where au
tonomous forklift agents load and unload trucks [MiiI96, FMP96, MPT95, Mii194]. 
Consider the grid in Figure 5.2 with two forklift agents and several containers to be 
moved around. The agents may exchange their objectives in order to avoid collisions. 
In this case, a2 sends to ar an acknowledgment and remembers that ar deals with con
tainer b if a2 receives the corresponding message by ar and a2 itself does not work 
with container b (left rule). Messages may also come from the agents' sensor sub
systems. In case ar 's sensors indicate that it is standing in front of the box, ar may 
perform the physical reaction of taking the box (right rule). 

sendMsg(ok(lock(ar, box(b))) ,ar) +
recvMsg(lock(ar, box(b)) , ar), 
i.nm( a2), not lock( a2, box( b)) 

do(take(box(b))) +
recvMsg(box(b) , camera(ar)), 
lock(ar, box(b)) 
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Figure 5.2. Two forklift agents al and a2 in a loading dock. 

5.2.3 Action Rules 

In addition to its reactive behaviour, an agent can exhibit pro-active behaviour. Action 
rules have the general form of Action ~ Condition. Depending on the domain and 
the capabilities and tasks of an agent, only certain actions can be performed by it. 
Besides communication acts, an agent can perform physical actions by means of its 
effectors. An action type corresponds to a set of action rules which represent the 
different execution conditions and effects of different situation contexts. 

Definition 5.7 Action Rule 
Let A be an agent name. Let LQuery, Llnput, LEv(' and LAct be a query, update, perception 
and communication event, and physical action language, respectively. Then rules of 
the form 

r: do(a(V)), Eff ~ Cond 
r: sendMsg[Tl(V) ,A), Eff ~ Cond 

r: Eff ~ Cond 

where Cond E LQuery, Eff E Llnpu(, a(V) E LAc(' Tl (V) E LEvt are action rules. 

The formulas Eff E Llnput and Cond E LQuery, are effects and preconditions of 
the actions. The procedure call do(a(V)) executes the physical action a(V) E LAct; 
sendMsg[Tl(V) ,A] is a procedure call to execute the communicative event Tl(V) E LEvt 

where A identifies the receiver of the outgoing message. r is the name of the action 
rule. We require that the precondition Cond is an evaluable formula and that all free 
variables of the epistemic effect formula Eff occur also in Condo 



AUTONOMOUS AGENTS 91 

Example 5.8 In the loading dock example, agents have to plan their ways through 
the docks. Consider the case that al has taken the container and has to load it on a 
truck at a given position. Based on its current position it has to plan the way to the 
truck. An action to move one step northbound in the loading dock can be specified by 
the action rule: 

move..north: do(move..north) ,not at(X,Y),at(X,Y') f- at(X,Y),Y' = Y + I 

Similarly, we can define actions move..east,move_west,move...south in order to 
move east, west, and south, respectively. 

Action rules combine declarative inference with update. Since in general, the ef
fects of an action may be context-dependent, an action is represented by a set of action 
rules expressing the dependence of different effects on different preconditions. The 
execution of an action in a situation described by the knowledge base X is realised 
by firing the corresponding action rule whose precondition Cond applies to X, i.e. 
X f- Condo 

Definition 5.9 Rule Application 
Let E E Llnput, C E Lo.uery. An epistemic action rule r : E f- C represents an update 

function, i.e. a mapping r: LKB --+ LKB, whose application is defined as 

r(X) := Upd(X, {Ea : a is a substitution s.th. X f- Ca} ) 

Example 5.10 Assume a forklift agent is at position (1,1), i.e. X = {at(l, I)}. Ap
plying the action rules move..east, move..north, move..north results in the knowledge 
base 

X' = move..east(move..north(move..north(X))) = {at(2, 3)} 

Definition 5.11 Plan 
In order to achieve a goal G E L~ery in a situation described by Xo E LKB, an agent 

generates a suitable plan P being a sequence of action rules rl,"" r n, such that 
when the corresponding sequence of actions is performed in Xo, it leads to a situa
tion P(Xo) E LKB where G holds: 

P = rn 0 ... 0 rl, and P(Xo) f- G 

where P is applied to Xo as a composed function. 

Notice that our concept of planning on the basis of action rules in knowledge 
systems can be viewed as a generalisation of the STRIPS [FN71] paradigm which 
corresponds to planning on the basis the knowledge system of relational databases. 
Therefore, the frame problem is solved in the same way as in STRIPS: by means of a 
minimal change policy incorporated in the update operation of a knowledge system. 
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5.2.4 Specification of Vivid Agents 

Since our agent concept is based on relational databases and its conservative exten
sions such as factbases and deductive factbases, we dub them vivid agents [Wag94]. 
Formally, vivid agents are defined as follows. 

Definition 5.12 Vivid Agent 
Let LKB, L~Uery,andLEvt be a knowledge representation, query, perception 

and communication event language, respectively. Then a vivid agent .9l = 
(X,EQ,GQ,PQ,RR,AR) consists ofa vivid knowledge base X E LKB, an event queue 
EQ being a list of instantiated event expressions e(V) E LEvI> a goal queue GQ being 
a list of sentences G E L~ery, an intention queue PQ being a list of goaVplan pairs, a 
set RR of reaction rules, and a set AR of action rules. A multi-agent system is a tuple 
of agents: .9l = (.9lJ, ... ,.9In). 

Simple vivid agents whose mental state comprises only beliefs and perceptions, 
and whose behaviour is purely reactive, i.e. not based on any form of planning and 
plan execution, are called reagents. 

Definition 5.13 Vivid Reagent 
A reagent.9l = (X,EQ,RR) based on a vivid knowledge system consists of a knowl
edge base X E LKB, an event queue E Q, being a list of instantiated event expressions, 
and a set RR of reaction rules. 

We assume that RR is a consistent encoding of reactive behaviour in the sense 
that whenever a set of reaction rules is triggered by an event, the resulting actions 
are compatible with each other, i.e. the epistemic effects associated with them do not 
cancel out each other. To guarantee consistent actions requires techniques such as 
contradiction removal. The normative constraints described in [SdAMP97] solve this 
problem. 

The execution of an agent, a reagent, and a multi-agent system is described by tran
sitions for perception, reaction, plan execution, replanning, and planning [Wag96]. We 
will refine the operational semantics of vivid agents as initially proposed in [Wag96] 
to accommodate for concurrent action and planning. 

5.3 CONCURRENT ACTION AND PLANNING 

An architecture to realise a vivid agent involves four main components: a knowledge 
base, reaction patterns, a planner, and a plan execution facility. Since action and 
planning are two nearly independent tasks it is useful to separate them in order to 
achieve greater modularity and efficiency by running two processes for action and 
planning in parallel. 
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Figure 5.3. The CAP architecture of a vivid agent. 

5.3.1 An Architecture for Concurrent Action and Planning 

D 

o 
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We call the architecture which is depicted in Figure 5.3 CAP for Concurrent Action 
(subsuming both reactions and planned actions) and Planning. The reactive compo
nent receives incoming messages representing perception and communication events 
and generates a reaction based on the set of reaction rules. The reactions depend on 
the agent's knowledge base and may update it. The planner runs concurrently with the 
perception-reaction-cycle on a copy of the knowledge base. Therefore, plans depend 
on the current state of the knowledge base but do not change it. Once the planner has 
generated a plan it communicates it to the action component, where plan execution is 
interleaved with reaction. 

Formally, we can capture the CAP architecture by a tuple (A,P) of an action com
ponent A and a planning component P: 

Definition 5.14 Agent State 
Let X and X' be knowledge bases, EQ an event queue, PQ a plan queue, GQ a goal 

queue and Flag E {r, p} a flag. Then A = (X, E Q, PQ, Flag) is called action state, 
P = (X', GQ) planning state and 5l = (A, P) agent state. 
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The different components of the agent state need some explanation. First of all, 
there are two knowledge bases: The action state contains an up-to-date knowledge 
base X and the planning state a knowledge base X' which is copied from X once 
in a while. The knowledge base X is subject to rapid change so that it would be 
inappropriate for planning. Thus, plans are generated with reference to a fixed copy 
of X. Of course, we expect that the changes of X do normally not affect the quality of 
plans based on the older X'. Thus the plan is executed with respect to X. In case any 
planned action is no more applicable, replanning is initiated. 

There are three queues, namely event, plan, and goal queue. The event queue 
represents the agent's connection to the environment. It stores incoming messages 
from the agent's perception subsystems and from other agents. The stored events are 
consumed one by one triggering appropriate reactions. The plan queue connects the 
planner and action component. The planner generates plans and communicates them 
to the action component which is in lieu of acting. The plans in the queue are executed 
step by step. If a plan's next action is not applicable anymore the plan is removed from 
the queue and the failure is communicated to the planner so that the goal is replanned. 
Finally, the goal queue is part of the action component and informs the planner of what 
goals are still to be achieved. Last but not least, the flag indicates for the action state 
whether it has to react (r) in response to events or whether a planned action is to be 
executed next (p). 

5.3.2 Transition System Semantics 

We can describe the temporal behaviour of an agent by means of transitions between 
agent states. Five kinds of transitions are performed: perception, reaction, plan execu
tion, replanning, and planning. 

Definition 5.15 Transition Semantics 
Let 51 = (A,P) = ((X,EQ,PQ,Flag), (X', GQ)) be an agent state, E an event, 1t an 
action, RRe a function that updates a knowledge base X with all effects of reaction 
rules in RR which are triggered by E and whose conditions hold in X. An empty queue 
is represented by 0, a queue with head q and tail Q by q : Q, and adding an element q 
to a queue Q by Q + q. Then 

1. Perception 
((X,EQ,PQ,Flag),P) ~ ((X,EQ+E,PQ,Flag),P) 

2. Reaction 
RR 

((X,E: EQ,PQ,r),P) ~ ((RRe(X),EQ,PQ,p),P) 
((X,O,PQ,r),P) -7 ((X,O,PQ,p),P) 

3. Plan Execution 
((X,EQ, (G,1t: n) : PQ,p),P) ~ ((1t(X),EQ, (G,n) : PQ,r),P) 



ifrt: Eff f- Cond and X f- Cond 
((X,EQ,O,p),P) ---+ (X,EQ,O,r),P) 

4. Replanning 
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((X,EQ,(G,rt: ll): PQ,p),(X',GQ)) ~ ((X,EQ,PQ,r),(X,GQ+G)) ifrt: 
Eff f- Cond and X If Cond 

5. Planning 

((X,EQ,PQ,Jr),(X',G 
TI(X') f- G 

planG 
GQ)) ---+ ((X,EQ,PQ + (G,ll),Jr),(X',GQ)) if 

Perception is realised by adding an event at the end of the event queue (1). For the 
reaction transition (2) the flag must be set for reaction and in case there is an event E, it 
is removed from the event queue and the knowledge base is updated by RRe according 
to the reaction rules. With no event present, the flag is switched to plan execution. For 
plan execution (3) it is checked whether the next planned actioi1rt is executable. In 
case it is, it is removed from the plan queue and the flag is set for reaction. If there is no 
action to be executed, the flag is directly switched for reaction. Replanning (4) applies 
if a planned action is not applicable anymore, then the plan is removed from the plan 
queue, the goal is added to the goal queue and the planner's outdated knowledge base 
X, is replaced by the up-to-dateX. An alternative to removing the full plan from the 
plan queue is to remove only the action rt and initiate planning for the condition Condo 
But since the whole plan TI is based on the planners old copy of the knowledge base 
it may be the case that TI is not very useful anymore. Finally, the planning transition 
(5) is independent from the action state Jr. The planner generates a plan for a goal and 
communicates it to the reaction state. 

The above definition has several advantages over previous approaches: Most impor
tant, (re)acting and planning are completely separated tasks. In many other approaches 
control is distributed among the reactive and the planning component in a fixed scheme 
which gives rise to the problem of guaranteeing effective response times by means of 
bounded (or real-time) rationality. In our CAP architecture (re)actions and planning 
are performed concurrently and can communicate asynchronously through the plan 
and goal queues. This may solve the problem of bounded rationality since we can 
tune the responsiveness of agents by assigning different priorities to these tasks. 

To implement the CAP architecture we use PVM-Prolog. 

5.3.3 PVM-Prolog 

The parallel virtual machine [Gea94], short PVM, is a standard software in distributed 
and parallel computing that permits a heterogeneous collection of UNIX computers 
(ranging from a personal computer or workstation to massively parallel processors) to 
be viewed as a single parallel computer. PVM coordinates the different hardware ar-
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Applications 

Agent Interpreter 

C Fortran Prolog Lisp c++ Ada 

PVM 

TCP UDP 

Figure 5.4. Programming paradigm layers. 

chitectures and data formats within a network. The PVM computing model is simple, 
yet very general: tasks are spawned in the network accessing PVM resources through 
a library of standard interface routines. These routines allow the initiation and termi
nation of tasks across the network as well as communication and synchronisation of 
the tasks. 

Besides the standard interfaces to C, c++ and Fortran, PVM is available in Lisp, 
Ada and Prolog. Its widespread use and generality makes PVM an excellent candi
date for implementing interpreters for multi-agent programming languages. A general 
scheme for such implementations contains PVM as a layer on top oflow-Ievel network 
protocols (see Figure 5.4). The next layer contains programming languages with full 
PVM access. On top of them, agent interpreters can be implemented, allowing to run 
high-level agent programs as the topmost layer. 

PVM realises communication of spawned tasks by message-passing. The message
passing primitives are tailored for heterogeneous operation, involving strongly typed 
constructs for buffering and transmission. Communication constructs include sending 
and receiving data structures as well as high-level primitives such as broadcast, barrier 
synchronisation, and global sum. There are no limits for messages: A task can send an 
unlimited number of messages of unlimited size, though the size is, of course, limited 
by the available memory of the host. 

An essential feature for multi-agent applications is asynchronous communication. 
Tasks can perform an asynchronous blocking send and receive. A blocking send or 
receive waits until the message is sent or an incoming message arrives. Blocking is 
often useful to let the agent idle and safe computational power. Besides the primi
tive send, a multi-cast to a set of tasks and broadcast to user-defined groups is sup
ported. In general, the message order is preserved in point-to-point communication. 
Additionally, PVM provides dynamic hardware configuration, i.e. addition and dele
tion of hosts at run-time and signaling, such that on events such as exit, addition or 
deletion of tasks other tasks are informed. All these PVM-primitives are included in 
PVM-Prolog, a Prolog-core extended by a PVM-interface [CM97] (see Figure 5.5). 
In addition to PVM's coarse grain parallelism, PVM-Prolog provides process-internal 
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pvmJnytid( -TID) 
pvm...spawn( +LogicProgram, + Goal, +OptList, .. . ) 
pvm_exit 

pvm..addhosts( +HostList, -StatusList) 
pvm..delhosts( +HostList, -StatusList) 

pvm...send( +TID,+Tag, + Term) 
pvmJncast( + TIDList , + Tag, + Term) 
pvm_[nJrecv( + TID, +Tag, - Term) 

Figure 5.5. PVM predicates. 

\ 

Clause Database: 
p(X,Y) :- q(X), r(Y). 
p(a,b). 

\ 

P)Qlog 
Telms 

\ 
p(f(X,Y),a, Y) 

Prolog Threads: 
(Concurrent queries) 

?-p(a,b). ?-q(X).r(c). ?-q(X). 

--- ---

~J 
\ r-- _ ,. 

\ 

'-------------------, 
Parall&1 Virtual Machine 

~~{J'~r 
~Tasks .. 

Figure 5.6. PVM-Prolog programming model. 

threads. While PVM tasks run physically distributed the threads are process internal 
and therefore have less overhead (see Figure 5.6). 

Threads allow concurrent execution of Prolog goals. They are independent of each 
other and must not share variables. To control threads, PVM-Prolog offers primitives 
to create, kill, and identify them. A second class of commands deals with commu
nication of threads through queues. Queues may be created, killed, identified, and 
can be accessed by threads through put and get primitives. The scheduling of threads 
is done in a pre-emptive, round-robin scheme and can be manipulated with regard to 
their priority and activity. High-priority threads are executed before low-priority ones. 
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Thread Lcreate( +Goal, +Stacks, +Priority, +Activity, - Threadjd) 
Control t..mytid( - Threadjd) 

tJeill( + Thread.id) 

q_create( +QName, +MaxTerms, +MaxMem, -Qld) 
qJlame(?QName, ?Qld) 

Term q_[nJputfp]( +Qld, + Term) 
Queues q_[nJgetfp]( +Qld, - Term) 

q_[nJselectfp]( +Qld, - Term, -Queue) 
q..destroy( +Qld) 

Scheduling t....activity( + Threadjd, ?Thread.Activity) 
Lpriority( + Thread.id, ?ThreadJ'riority) 

Figure 5.7. Multi-threading predicates. 

A thread's activity defines the number of commands which is executed per time slice. 
The threads commands are summarised in Figure 5.7 

5.3.4 Implementation 

The CAP architecture is easily implementable in PVM-Prolog. In fact, it was mo
tivated by practical experience. Given a multi-agent system represented as a tuple 
(5l1' .. . .9In) of agents all ~ run as parallel processes on distinct machines. Besides 
this coarse-grain parallelism, a particular agent 5l = (A,P) installed on a single ma
chine invokes two concurrent threads to run A and P. In our implementation, the MAS 
is initially set up by configuring the network and spawning the agents in the network 
using the primitive pvm..spawn (see the initial process in Figure 5.8). To set up a 
particular agent, the primitive Lcreate forks a thread for the planner (currently we use 
STRIPS [FN71]) to run concurrently to the perception-reaction-cycle. The perception
reaction-cycle pops events from the event queue by calling pvm-Tecv. Subsequently, 
it generates a reaction in response to the event. The reaction comprises besides assim
ilating epistemic effects, performing actions which are available as meta predicates 
and sending messages which are translated to pvm..send. The knowledge base is an 
extended logic program [AP96] being easily implementable in Prolog. 

The perception-reaction-cycle is implemented as follows: First, we check if there 
is a message (newEvt, see Figure 5.9). If there is one, the predicate pvmJlrecv, which 
realises a non-blocking receive, succeeds and the message is popped from the event 
queue. Next, the reaction rules are evaluated. For all reaction rules matching the event 
expression the precondition Cond is tested and in case it holds, the triggered actions 
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Vivid Apat - -- - -- - - ViYicI ApDt 

Figure 5.8. Design of the implementation. 

cycle: -
newEvt(Evt) , 
findall(ActEff, (reaction (ActEff, Evt, Cond) , demo ( Cond) ) ,ActEffs) , 
perform (A ctEffs ), 
cycle. 

newEvt(Msg/From) : -pvmJlrecv( -1 ,1 ,Msg/ From). 
newEvt(noEvt). 

Figure 5.9. Perception-Reaction-Cycle. 
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perform([noAct/ EffslActEffs]) : -
assimilate(Effs),perform(ActEffs). 

perform([sendMsg(Msg, To) / EffslActEffs]) : -
name2id(To, ld), i..am(Self) , 
pvm...send(ld, 1 ,Msg/Self) , 
assimilate(Effs),perform(ActEffs). 

perform([do(Act) / EffslActEffs]) : -
call(Act) , 
assimilate(Effs),perform(ActEffs). 

perform([halt/ -IActEffs]) : -
perform (ActEffs ), 
pvmJ!Xit,jail. 

assimilate([not LIEffs]) : -
retractall(fact(L) ), 
assimilate (Effs) . 

assimilate([LIEffs]) : -
assert(fact( L) ) , 
assimilate (Effs ) . 

Figure 5.10. Executing actions and reactions. 

are collected in the set ActEffs. Subsequently, they are perfonned and the cycle is 
closed. Triggered actions are perfonned as follows (see Figure 5.10): The sendMsg
action is translated into PVM-Prolog's pvm...send, whereas a physical action do(Act) 
causes a call to a procedure with the same name. The epistemic effects of actions 
are assimilated into the knowledge base by means of the Prolog operations assert and 
retract. 

5.3.5 Experiments 

Applications of purely reactive vivid agents include distributed diagnosis [SdAMP97, 
SW97, FdAMNS97]. However, to reflect the deliberative and pro-active capacities 
we illustrate the above implementation and concepts by two examples. The first uses 
a simple blocks world example to demonstrate basic behaviour specification, and the 
second uses the loading dock to show replanning. 

Blocks World. An agent a sends a task to agent b and monitors b's progress until 
b finished its task. In this case b is supposed to plan and execute moving actions in the 
blocks world as depicted in Figure 5.11. The agents a and b are specified as follows: 
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Agenlb Agenl a 

progress 

~ 

Figure 5.11. Agent a gives agent b a planning task and observes b' s progress. 

• a sends b on receipt of an initial message by the creator process, the command to 
plan to achieve that block a is on top of b which is on top of c. 

• On receipt of the initial message by the creator, a also sends a request for informa
tion about b's progress. 

• a records the progress of b and continues monitoring b until b has accomplished 
the whole task. 

• If agent b receives a command from a, it performs it. In particular, it serves a's 
requests for information on the state of affairs. 

Formally, we can translate the above description into the action and reaction rules 
and knowledge bases shown in Figure 5.12 and Figure 5.13. 

If executed on the PVM platform the above specification leads to a trace as depicted 
in Figure 5.14. An entry x+-- y z means that x received from y the message z. For the 
sake of brevity we left out send messages (note that communication is asynchronous) 
and the creator's start and halt messages. 

Grid World. Consider the fork lift agents of the loading dock again (see Example 
5.6). Assume that aJ receives initially the order to move to position (3,3) and az is 
sent to position (2,3). Both plan their ways, but cannot foresee that their ways cross. 
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Reaction Rules 
sendMsg( do(plan-8oa1(on(a,b)&on(b, c))),b) +

recvMsg(tell(start) , creator). 
sendMsg(request(on),b) +

recvMsg(tell(start) , creator). 

sendMsg(request(on),b) +
recvMsg(reply(on) , b), 
not accomplished. 

Action Rules 
o 

accomplished_part, +
recvMsg(reply(on(b, c) , T),b), 
not accomplished_part,. 

accomplished_part2 +-
recvMsg( re ply( on( a, b), T), b), 
not accomplished_part2. 

Initial Knowledge Base 
accomplished +

accomplished_part, , 
accomplished -part2. 

Figure 5.12. Specification of agent a. 

Reaction Rules 
do(A) +-

recvMsg( do(A), a). 
sendMsg(reply(on(A,B), T),a) +

recvMsg(request(on),a), 
on(A,B),t~me(T). 

sendMsg(reply(on),a) +
recvMsg(request(on) ,a). 

Action Rules 

Initial Knowledge Base 
on(a,floor). 
on(b,floor). 
on(c,a). 
clear(b). 
clear(c). 

move(U, V,floor) : not on(U,_),on(U,floor),clear(V) +
on(U, V), V:I Iloor,clear(U). 

move(U, V, W) : not on(U,_),not clear(W),on(U, W),clear(V) +
W :I Iloor, clear(W) , on(U, V), U :I W, clear(U). 

Figure 5.13. Specification of agent b. 
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b t-- a do(plan_goal( on( a, b )&on( b, c))) at-- b reply(on(b,floor),9109815) 

b did plan_goal(on(a,b)&on(b,c)) at-- b reply( on ( c ,floor), 9109815) 

b t-- a request( on) b executes move(b,floor,c) 

a t-- b reply(on(a,floor),9109812) a t-- b reply(on) 

at-- b reply( on( b,floor), 9109812) b assimilates not on(b,floor) 

a t-- b reply(on(c,a),9109812) 
b assimilates not clear( c) 

a t-- b reply(on) 
b assimilates on(b,c) 
b assimilates clear(floor) 

b t-- a request( on) 
b t-- a request( on) 

a t-- b reply( on( a,floor), 9109815) 
at-- b reply(on(a,floor),9109816) 

a t-- b reply( on(b,floor), 9109815) 
a t-- b reply(on(c,floor),9109816) 

a t-- b reply(on(c,a),9109815) 
at-- b reply(on(b,c),9109816) 

at-- b reply(on) 
a assimilates aceompt d~artl 

b executes start 
b executes move(a,floor,b) 

b t-- a request( on) 
b assimilates not on( a,floor) 

a t-- b reply( on( a,floor), 9109815) 
b assimilates not clear( b) 

a t-- b reply( on( b ,floor), 9109815) 
b assimilates on(a,b) 

a t-- b reply(on(e,a),9109815) 
b assimilates clear(floor) 

b executes move(c,a,floor) 
at-- b reply(on) 

b assimilates not on(c,a) 
b t-- a request( on) 

b assimilates on( c ,floor) 
at-- b reply(on(e,floor),9109816) 

b assimilates clear( a) 
a t-- b reply( on(b, e), 9109816) 

a t-- b reply(on) 
at-- b reply(on(a,b) ,9109816) 

b t-- a request( on) 
a assimilates aceompt d~art2 

a t-- b reply(on(a,floor),9109815) 
a t-- b reply(on) 

Figure 5.14. A trace for the blocks worlds. 

Figure 5.15. ai's initial plan (bold arc), a2's plan (dashed arc), ai's revised plan (dotted 
arc) . 
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Reaction Rules 
do(plan..goal([at(3, 3)])) f

recvMsg(tell(start), creator). 
obstacle (X , Y) f

recvMsg(inform(at(X, Y) ),a2), 
Lam(at). 

not obstacle(X,Y) f
recvMsg(inform(not at(X,Y)),a2), 
i...am(at). 

Initial Knowledge Base 
at(O,O). 

Action Rules 
walk..north: not at(X"Y),at(X,Y') 
f- at(X,Y),Y' is Y + 1, 

not obstacle(X,Y'). 
walk_east: not at (X , , Y), at(X', Y) 
f- at(X,Y),X' is X + 1, 

not obstacle(X',Y). 
walk...south : not at(X, , Y), at (X , Y') 
f- at(X,Y),Y' is Y -1, 

not obstacle(X,Y'). 
walk_west: not at (X , , Y), at (X' , Y) 
f- at(X,Y),X' is X-I, 

not obstacle (X' , Y). 

Figure 5.16. Specification of a forklift agent. 

Since a2 is nearer to its destiny it can move there. Agent at has to replan the goal of 
going to (3,3) when it realises at position (2,2) that agent a2 blocks its planned way. 
The behaviour of agent at is described in Figure 5.16. Initially, at knows that it is at 
position (0,0). The first reaction rule states that on receipt of a start message at pushes 
the goal to go to (3,3) on top of the goal queue. If at receives information about a2's 
position it updates its knowledge base accordingly. If executed the specification leads 
to a trace as shown in Figure 5.17. 

Next we develop two applications of distributed diagnosis. The first implements 
fault-tolerant diagnosis, the second diagnoses an unreliable communication protocol. 

5.4 DISTRIBUTED DIAGNOSIS OF A COMPUTER NETWORK 

To achieve fault-tolerant diagnosis three agents a,b,c diagnose a node d. Since a,b,c 
have the same description of d their findings are redundant in case they are up and 
they received the same test results of d. The tasks of the agents can be divided into 
four steps as shown in Figure 5.18. 

Initially, the agents receive a start message from the creator process. In a second 
step, the diagnosing agents send requests for test results to the group of agents whose 
underlying hardware is examined, the tests are executed and the requests are answered. 
Thirdly, the diagnosing agents compute diagnoses based on the new test results they 
received and communicate their diagnoses among the diagnosis group. Finally, each 
diagnosis agent computes a consensus based on all the diagnoses it received, and sends 
it to the (possibly human) agent it has to report to. 



a2 f--- creator: tell{start) 
a2 did plan..goal{[at{2,3)J) 
al f--- creator: tell(start) 
al did plan_goal([at(3,3)J) 
a2 executes walkJlOrthJo{3,2) 
a2 assimilates notat{ 3, 1) 
a2 assimilates at( 3,2) 
a2 executes walk_westJo{2,2) 
a2 assimilates notat( 3,2) 
a2 assimilates at(2,2) 
al f--- a2 :inform(not(at{3,1))) 
a 1 assimilates notobstacle( 3, 1) 
a2 executes walk.north_to(2,3) 
a2 assimilates notat(2,2) 
a2 assimilates at(2,3) 
al f--- a2 :iriform(at(3,2)) 
al assimilates obstacle(3,2) 
al f--- a2 :i1!(orm(not{at(3,2))) 
al assimilates notobstacle(3,2) 
al f--- a2 :inform(at(2,2)) 
al assimilates obstacle(2,2) 
al f--- a2 :iriform(not(at(2,2))) 
al assimilates notobstacle(2,2) 
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al f--- a2 :inform(at(2,3)) 
al assimilates obstacle(2,3) 
al executes walkJlOrthJo( 0,1) 
al assimilates notat(O,O) 
al assimilates at{ 0,1) 
al executes walk-easuo(1,1) 
al assimilates notat( 0,1) 
al assimilates at(1, 1) 
al executes walk.north_to(1, 2) 
al assimilates notat(1, 1) 
a 1 assimilates at(1, 2) 
al executes walk_easuo(2,2) 
a 1 assimilates notat(J, 2) 
al assimilates at(2,2) 
al has to replan since walk.northJo(2,3) failed 
al pushed [at(3, 3)] on goal queue 
al executes walk_easuo(3,2) 
al assimilates notat(2,2) 
al assimilates at(3,2) 
al assimilates walk.north_to(3,3) 
al assimilates notat(3,2) 
al assimilates at(3,3) 

Figure 5.17. Trace for the two forklift agents. 

5.4.1 Specification of the Diagnosis Agents 

This agent behaviour is specified declaratively via the following reaction rules based 
on the communication events 

CEvt = { ask{Query), reply{Answer), 
tell(Input), request{Action)} 

When the creator process tells a diagnoser to start, the diagnoser asks the test agents 
for a list of all current test results: 

sendMsg(ask{testResults), T) f-

recvMsg(tell{start), creator), 
i...am(A), diagnoser{A), tester{T). 

When a tester receives a query for test results it performs the tests and replies to the 
query. To obtain test results low-level system calls can be integrated into the predicate 
perform.1ests by procedural attachment. 

sendMsg(reply{test(Results)),D) f--

recvM sg( ask( testResults) , D) , 
peiform.1est{Results) . 
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Start Test Diagnosis Consensus 

'V' a~~r av.
e 

a. .e 

b d b • d b· ·d b d 

Figure 5.18. Steps of the diagnosis process. 

If an agent receives a reply with new test results, the agent enters the third phase 
of computing and exchanging diagnoses among the group of diagnosers. The next 
reaction rule expresses that an agent which received test results, computes diagnoses 
based on the received test data and sends the diagnoses to all diagnosers B. Similar to 
perform..tests, the predicate computeJiiags is implemented by procedural attachment. 
A call of computeJiiags adds the new data Results to the KB and starts a revision 
of KB, which may be partially inconsistent due to the newly received test data and 
the agent's default predictions concerning the correctness of involved hardware. The 
repair of the partial inconsistency yields diagnoses which are returned in the parameter 
Ds. 

sendMsg{tell{diagnoses{Ds) ),A) f

recvM sg (reply{ test{ Results) ) , T) , 
compute Jiiags{ Ds, Results) , 
diagnoser{A) . 

Incoming diagnosis results are added to the knowledge base: 

diagnoses{A,Ds) f-

recvMsg{ tell{ diagnoses{Ds)),A). 

The incoming diagnosis results are counted and if the last message is received the 
agent triggers the final phase of consensus computation. The pending diagnosis results 
are counted by checking if there is a diagnoser for which no diagnosis results are 
stored. The last result is received if the agent is still waiting for at least one result, but 
not for two anymore. This is expressed by the following deduction rules: 

waitjor{A) +- diagnoser(A),not diagnoses{A,_). 
wait-for ..one +- wait-for{A). 
wait -for ..two +- wait -for{A) , 

wait-for{B),A =f. B. 
last +- wait-for ..one, not wait-for ..two. 

In case a diagnosis result is received and it is the last one, the agent triggers its voting 
procedure (by sending a corresponding request to itself): 
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sendMsg(request(vote),B) ~ 
recvMsg(tell(diagnoses(Ds)) ,A), 
i...am(B),last. 

The final step of computing a consensus does not involve any communication with 
other agents. On receipt of a request to vote, the agent computes a consensus by call
ing vote, outputs the result and as an effect cleans up its knowledge base from all 
diagnosis results stored intermediately. The computation of the consensus is procedu
rally attached. For the purpose of fault tolerance a consensus can be implemented by 
a simple voting mechanism, i.e. the call vote checks all the collected diagnoses facts 
and determines the most frequent result. 

not diagnoses(A,Ds) ~ 
recvMsg(request(vote) ,A) , 
vote ( C), write ( C),diagnoses(A,Ds). 

5.4.2 Execution of the Agent Specification 

When executed, the above agent specification invoked for four agents a, b, c, d leads to 
a trace as shown in Figure 5.19. The agents a,b,c form the diagnosing group which 
takes care of a tester group with a single member d. As we want to focus on the 
communication among the agents we have d always sending the same test results. 
When the agents perform the four steps of starting, testing, diagnosing and computing 
a consensus, as sketched in Figure 5.18, they are not synchronised and the steps may 
overlap. Therefore we represent send and receive by a bold and dotted arc, respec
tively. For example, the first icon (1) indicates that b received from the creator a start 
message and the second (2) means that b sends to d a request message. The receipt of 
this request message (4) is preceded by d receiving a start message from the creator 
(3). In general, the trace reveals that agent b is much faster than a and c. For example, 
after c receives the start message (10) agent b already received test results, computed 
its diagnoses and starts to broadcast them (11,13,16). 

5.5 DIAGNOSIS OF A COMMUNICATION PROTOCOL 

Consider the diagnosis of a communication protocol described in section 3.2.5. The 
whole network being too complex we break the problem down and assign agents to 
areas of feasible size. The agents know all necessary details about the area and view 
the rest of network as an abstraction. In section 3.2.5 we have modelled the knowl
edge base of the agents that allows them to perform their local diagnosis tasks, in this 
section we further develop the interaction and cooperation with other agents. The re
sulting algorithm has an attractive complexity compared to a centralised solution, both 
concerning communication overhead and computational complexity. 
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Figure 5.19. A trace of communication of agents a, b, c diagnosing d. The big node is 
the creator process. 

5.5.1 Specification of the Diagnosis Agents 

An agent's local diagnosis can produce three different results. The agent may find that 
there is no diagnosis to explain the misbehaviour, it may find that itself is faulty, or 
it may find another agent responsible. In the second case no cooperation is initiated 
since we assume that an agent knows its own domain well enough to believe in its own 
findings. In the two other cases a cooperation is started. To encode the reaction rules 
for the interaction we need two meta-predicates. 

1. There is no diagnosis to explain the observation (no...diags). 

2. There are diagnoses which do not involve the agent itself (next). In this case the 
agent abduces a new, refined observation. 

With the two meta predicates no...d iag s /1 and next /2 we encode the agents' reaction 
rules: 
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If an agent receives an observation and has no explanation for it, the fault must 
be intermittent, since neither the agent itself is faulty nor are there any neighbours to 
accuse. This is reported to the requesting agent: 

send Msg(intermittenLfailure(B) ,A) +
recvMsg(messagdost(N,C),A), 
no1iiags (messagdost (N, C)), Lam(B). 

If an agent receives an observation and is itself the cause of the problems it reports 
this fact back to the requesting agent: 

sendMsg(responsible(B),A) +
recvMsg(messagdost(N,C),A) , 
i_am(B) , obs( down, B). 

If the agents area is not abnormal and there are diagnoses suspecting the agents 
neighbours, the newly abduced observation is sent to the suspected neighbour: 

send Msg(messagdost(M, C) ,M) +
recvMsg(message_lost(N,C),A), 
i..am(B) ,not obs(down, B) , 
next(M, message_lost(N, C)). 

In this case the agent has to remember to forward the final diagnosis result to the 
requesting agent: 

remember .1oJeply.1o(A) +
recvMsg(message_lost(N,C),A), 
N i= A, Lam(B),not obs(down, B) , 
not no1iiags(message_lost(N, C)). 

If an agent receives a diagnosis result from one of its neighbours and has to report 
the result to another neighbour, it forwards it: 

sendMsg(intermittenLfailure(A),C) +
recvMsg(intermittent _failure (A ), B), 
remember .1oJeply.1o(C). 

sendMsg(responsible(A),C) +
recvMsg(responsible(A) , B), 
remember .1oJeply.1o(C). 

After forwarding a diagnosis result, the bookmark to reply is removed from the 
agent's knowledge base: 
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not rememberJoJeplyJo(C) +
recvMsg(intermittent_failure(A),B), 
remember JOJeplyJo( C). 

not remember JOJeplyJo( C) +
recvMsg(responsible(A),B), 
remember JOJeplyJo(C). 

5.5.2 Execution of the Agent Specification 

Consider Figure 1.5 and assume that node n 1 sends a message to C7, but the messages 
gets lost. Since nl does not receive an acknowledgment, a timeout mechanism informs 
nl that the message is lost and the diagnosis process starts. Consider two scenarios: 
In the first n3 looses the message, in the second an intermittent failure occures. 

Initially, the creator process sends a start message to all nodes (see Figure 5.20, 
lines 1,2,3,4,9,14). The timeout mechanism informs nl of the lost message (5,6). 
Node nl knows that it is working fine and suspects the neighbour in charge of sending 
messages to C7, namely n2. Subsequently nl sends the refined observation that the 
message is lost from n2 to C7 to n2 (8,10). Similarly n2 informs n3 (11,12,15). Addi
tionally it remembers that it has to report the final result to nl (13). Finally, n3 turns 
out to be the cause of the fault and the result is sent from n3 to n2 (16,17) and from n2 
to nl (18,19). n2 removes the fact that it has to respond to nl (20). 

In the second trace (see Figure 5.21) all nodes are ok at diagnosis time so the fault 
is intermittent. The initial phase is similar to the first trace. Only when n3 comes up 
with no diagnoses (16), message of an intermittent failure is sent back. 

5.6 SUMMARY 

We have introduced and implemented the concept of vivid agents and evaluated it 
in the domain of distributed diagnosis. The work presented improves several other 
approaches to agent-oriented programming. 

First, the agents' reactive and pro-active behaviour can be implemented by using 
PVM-Prolog's thread concept to run a perception-reaction-cycle concurrently to a 
planning facility. Such light-weight concurrency has the advantage of fast commu
nication between strongly connected parts of a single agent. Second, the formal se
mantics of the CAP architecture helps understanding and allows program verification. 
The formal semantics is independent of PVM-Prolog as implementation language, but 
it was influenced by the concepts provided by PVM-Prolog and is therefore easily 
implementable in PVM-Prolog. Third, the idea of executable specifications realised 
in Prolog is lifted by the vivid agent concept and its implementation in PVM-Prolog 
to a higher and more declarative level of multi-agent specifications. Forth, PVM is 
hardware independent and available for a range of architectures including PCs, Work-
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1 n2 t-- creator tell (start) 
2 n4 t-- creator tell (start) 
3 nl t-- creator tell (start) 
4 ns t-- creator tell(start) 
5 nl -+ nl message_lost( n 1, C7 ) 

6 nl t-- nl message_lost(nl ,C7) 
7 nl diag[ab(n2 ) ,new.messagdost(n2 , C7 )] 
8 nl -+ n2 message_lost( n2, C7 ) 

9 n6 t-- creator teli(start) 
10 n2 t-- nl message_lost(n2' C7 ) 
11 n2 diag[ab(n3 ) ,new.messagdost(n3 , C7)] 
12 n2 -+ n3 message_lost( n3, C7 ) 

13 n2 assimilates remember Jo_replyJo(nt} 
14 n3 t-- creator tell(start) 
15 n3 t-- n2 message_lost(n3, C7 ) 
16 n3 -+ n2 res ponsible( n3 ) 
17 n2 t-- n3 responsible(n3 ) 
18 n2 -+ nl res ponsible( n3) 
19 nl t-- n2 res ponsible( n3 ) 
20 n2 assimilates not rememberJo-TeplyJo(nt} 

Figure 5.20. Trace for a lost message. 

stations and Multi-computer platforms. PVM's and PVM-Prolog's hardware indepen
dence also makes vivid agents flexible. Fifth, PVM has been widely used up to now, 
so many tools and different language interfaces are available. The PVM distribution 
supports C and Fortran; interfaces for C++, Ada, Lisp, Perl, Tel, and Prolog have 
subsequently been developed. First results show that heterogeneous agents can run 
together in a net but that the MAS configuration has to be public to ensure that agents 
can use the proper formats to communicate. A possible solution is a public yellow 
pages service, which might be implemented itself in PVM-Prolog. 

Using vivid agents we have shown how to solve two applications in distributed di
agnosis, namely fault-tolerant diagnosis and the diagnosis of communication protocol. 
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1 n2 f-- creator tell (start) 
2 nl f-- creator tell (start) 
3 ns f-- creator tell (start) 
4 nl -+ nl message_Iost(nl,c7 ) 
5 nl f-- nl message_Iost(nl,c7 ) 
6 nl diag[ab(n2),new_message_Iost(n2, C7)] 
7 nl -+ n2 message_Iost(n2,c7 ) 
8 n2 f-- nl message_Iost(n2, C7 ) 
9 n6 f-- creator tell (start) 

10 n2 diag[ab(n3 ),new_messagdost(n3,c7)] 
11 n2 -+ n3 message_Iost(n3, C7 ) 

12 n2 assimilates remember Jo-reply_to(nl) 
13 n4 f-- creator tell(start) 
14 n3 f-- creator tell(start) 
15 n3 f-- n2 messagLlost (n3 , C7 ) 

16 n3 nodiagnoses 
17 n3 -+ nz intermittent-failure(n3 ) 
18 nz f-- n3 intermittent-failure(n3 ) 
19 nz -+ nl intermittenLfailure(n3 ) 
20 nl f-- n2 intermittent _failure(n3) 
21 n2 assimilates not remember Jo-reply_to(nl) 

Figure 5.21. Trace for an intermittent failure. 



6 CONCLUSIONS 

This chapter rounds out the picture by comparisons to related work, by a general 
evaluation of the previous chapters and by pointing to future work. 

6.1 COMPARISONS 

6.1.1 Logic Programming and Model-based Diagnosis 

Chapter 3 showed how extended logic programming is employed to solve diagnosis 
problems. The diagnosis engine REVISE is related to both classical diagnosis engines 
and non-monotonic-reasoning systems. 

Model-based Diagnosis. The algorithm used in the diagnosis system REVISE 
corresponds roughly to the early diagnosis engines such as GDE [dKW87] or Sher
lock [dKW89]. REVISE differs in that it is based on logic programming and therefore 
offers a rich language with two forms of negation and integrity constraints. Similar to 
Sherlock, REVISE supports diagnoses minimal by probability. In contrast to GDE and 
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Sherlock, REVISE allows for abduction. REVISE' expressiveness leads to compact 
programs which turned out to be useful for the system description for fault manage
ment in cellular phone networks (see section 3.2.3). It has become shorter due to 
explicit and implicit negation and abduction than the one developed for the diagnosis 
engine DRUM II [FNJW97]. 

Unfortunately, REVISE' expressiveness leads to bad performance when dealing 
with real-world problems. Other diagnosis engines such as IMPLODE [RdKS93] and 
DRUM II [FN96a, FN96b, NF97, FN97] already deal successfully with large real
world problems such as all the ISCAS85 benchmark circuits. The difference between 
DRUM and REVISE is that DRUM computes updates based on a given consistent 
model while REVISE computes revisions. Updates allow to repair violated constraints 
locally, whereas program revision requires a global check of all constraints involving 
heavy recomputation of the programs' models. To leap forward and solve real-world 
problems, REVISE has to be enhanced by an efficient management of the hitting-set 
tree and program model to avoid recomputations in the proofs. The work done in 
TMSs [Doy79], ATMSs [dK86], and tabling [SSW94, SSW96] is relevant for this 
purpose. 

Non-monotonic Reasoning. Apart from the practically motivated diagnosis 
engines mentioned above, there are several non-monotonic reasoning systems com
parable to REVISE. PROTEIN [BF94, BFS95] is a theorem prover employing min
imal model semantics and featuring negation as failure and disjunction. The sys
tem STATIC [BDP96, Prz95] additionally provides for classical negation. A non
monotonic reasoning system more similar to REVISE is smodels [NS96]. It computes 
well-founded semantics and stable models. It has been evaluated on a variety of ex
amples including some examples in the domain of model-based diagnosis. All these 
systems do not provide integrity constraints and contradiction removal which is essen
tial for diagnosis. 

6.1.2 Strategies in Model-based Diagnosis 

Diagnosis as a Process. The strategy language presented in chapter 4 is mo
tivated by Struss' idea to view diagnosis as a process [Str92b, Str92a]. He criticises 
that previous approaches see diagnosis as a static problem. While in practice diagnos
tic reasoning is often guided by working hypotheses and simplifications which may 
be revised later and which give rise to non-monotonicity, most implemented systems 
stick to an overall inference procedure working on a global model. Furthermore, pre
vious work does not tackle the issue of modelling and simply assumes the existence of 
powerful and unique models of the device and its components. But in practice several 
experts design various models for various purposes. The models may contradict each 
other and are only approximations to reality [Str92b]. 
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Based on this criticism, Struss, Bottcher, and Dressler coined the notion of working 
hypotheses to guide the diagnostic process [Str92b, Str92a, BD93, BD94]. To select 
appropriate working hypotheses, Bottcher and Dressler develop a bunch of strategies 
for the diagnostic process including structural and behavioural refinement and fault
mode incompleteness [BD93, BD94]. Various authors have used other strategies and 
coded them into their diagnosis engines. The use of hierarchies to reduce the com
plexity of computing diagnoses is adopted by Davis [Dav84], Hamscher [Ham9l], 
Genesereth [Gen84], Mozetic [Moz9l]. Davis also distinguishes between functional 
and physical models for digital circuits [Dav84]. Preferred diagnoses are computed in 
[DS92, DNP94, FNS94] where preferences are the single fault assumption and phys
ical negation [SD89], i.e. the assumption that the known fault models of the compo
nents are complete. The idea of a diagnosis process is also present in the work of 
De Kleer, Raiman and Shirley on measurements [dKRS91]. They view diagnosis as 
an incremental task involving the three phases of generating explanations, choosing 
actions differentiating among them, and performing these actions. 

The idea of diagnosis as a process and the different instances of diagnostic strate
gies are the motivation for our strategy language. The very idea underlying model
based diagnosis that a device is described declaratively is lifted to the level of com
puting the diagnostic process. The selection of appropriate working hypotheses is 
expressed by rule-like strategies and can be flexibly adjusted to the problem do
main. The initial proposal for a strategy language by Frohlich, Nejdl, and Schroeder 
[FNS94] still distinguished between preferences and strategies. Subsequent work 
proved that the strategy language is capable of incorporating the preference concept as 
well [FNS97, FNS96]. The work presented in chapter 4 allows a unified view of the 
diagnostic process and commonly used strategies. 

Preferences. Closely related to our notion of preferences are preferred diagnoses 
and revisions as defined in [DNP94, FNS94, DNPS95]. A main difference is that in 
our framework preferences are an integral part of strategies whereas preferences are 
embedded into strategies in [DNP94, FNS94, DNPS95]. The authors define a pref
erence graph whose nodes are sets of revisables and integrity constraints [DNPS95]. 
The preference graph induces a partial order and the preferred diagnosis is obtained by 
finding the minimal node such that diagnoses exist. This concept allows for a variety 
of preferences such as choice of model, number of faults, preference of homogeneous 
diagnoses, preference of fault modes, preference of faults complete. To summarise, 
the preference concept is capable of expressing any property of a single diagnosis. It 
does, however, not allow strategies that require properties over sets of diagnoses such 
as structural refinement, measurements, etc. These strategies can only be expressed 
with additional operators such as the modalities to quantify over the successor states. 
Therefore the preference graph does not replace a more expressive strategy language. 
Taking into account the difficulty to properly design the interplay of revisables and in-
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tegrity constraints as necessary in the preference graph, the strategy language turns out 
as an advantage since there is only the need to program in one language instead of two. 
Furthennore, the non-monotonicity and the special treatment of missing diagnoses of 
the framework fully replace the preference graph used in [DNP94, FNS94, DNPS95]. 
Rather than defining an additional preference concept, the notion of diagnosis should 
be kept as a parameter. Depending on the problem domain a suitable diagnosis engine 
and notion can be plugged in. The implementation of the strategy language, for exam
ple, is built on top of REVISE and can be configured to compute diagnoses minimal 
by set-inclusion, cardinality, and probability. The applications presented in chapter 3 
show the usefulness of these notions. 

Meta-Logic and Meta-Logic programming. For the design of strategies 
meta-programming may be an alternative approach to modal logic. Let us reconsider 
the way we use modal logic in our operational semantics. Starting from a given state 
with no working hypotheses active we construct the S5-worlds for this state. These 
worlds are given by the diagnosis semantics. Based on the truth values of the fonnu
las in this world a specialised algorithm computes transitions to the following process 
states. By iterating this algorithm we obtain a transition system. Thus, besides pro
viding a fonnal framework we use modal logic mainly for model generation. In this 
sense our work is more motivated by dynamic logics [Eme90] where model checking 
and generation are main issues than by classical modal logic. 

Furthennore, modal deduction [FdCH95] is computationally very complex. Diag
nosis strategies are means of speeding up diagnosis by proposing suitable assumptions. 
So, perfonning modal deduction during the diagnosis process would slow down com
putation. Our model generation algorithm is restricted to the given problem because 
it exploits the problem structure and therefore is quite efficient. A modal deduction 
system might still be useful here, it could be used to check if a given set of strategies is 
consistent, independent of a diagnostic problem. However, such a system is currently 
outside the scope of this work. 

Another possible fonnalism for our framework is meta-programming. Meta
programming is suitable for implementation rather than for providing a fonnal back
ground. In fact, a fonner version [DNPS95] of our fonnalisation and the current one 
have been implemented on top of the non-monotonic reasoning system REVISE us
ing meta-logic programming with a demo-predicate for both, provability under well
founded semantics and abduction of conflicts [DNPS95]. 

Another approach closely related to ours is the meta architecture developed by ten 
Teije and van Harmelen [tT97, tTvH96, vHtT94]. It consists of three layers for appli
cation description, methods description, and knowledge for solving a problem flexibly. 
Our strategy language can be seen as implementation of this architecture. The applica
tion description corresponds to our system description and observations. The methods 
description contains knowledge about problem solving methods. In our language this 
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knowledge is kept as a parameter diags for the underlying diagnosis engine and no
tion of diagnosis. The knowledge for solving a problem flexibly corresponds to our 
strategies. While ten Teije develops a general meta architecture for diagnostic prob
lem solving [tTvH96, tT97], our work focuses on the declarative description of the 
diagnostic process and efficient algorithms to compute the process. 

6.1.3 Vivid Agents 

The concept of vivid agents introduced in chapter 5 is related to other high-level 
agent languages such as AgentO [Sh093], PLACA [Th095], AgentSpeak[Ra096], BDI 
Agents [RG91, RG93], or ARCHON [CJ96, JCL +96, WJM94, JW92]. Our agent 
interpreter is implemented in PVM-Prolog [CM96, CM97] which is closely related 
to other (logic) programming languages with explicit parallelism such as IC-Prolog 
][ [Chu93], April [MC95], Stream Logic Programming [Rin89, HJR95] , and ICE 
[Amt95, AB96]. We start by comparing our work to the high-level agent languages 
and then review the related (logic) programming languages with explicit parallelism. 

Agent-oriented Programming. There are a number of proposals for high
level agent-oriented programming languages such as AgentO [Sh093], PLACA 
[Th095], or AgentSpeak [Ra096]. In these languages, the knowledge base of an agent 
admits only of literals upon which classical inference is performed, i.e. the CWA and 
negation-as-failure are not used. In the vivid agent approach, however, we take into 
account that, based on the experience with SQL and Prolog, the CWA and negation
as-failure are essential for information and knowledge processing. Also, neither of 
these languages allows intensional predicates expressing causal relations and generic 
laws in the form of possibly non-monotonic deduction rules which are essential for 
model-based diagnosis. 

BDI Agents. BDI agents are modelled in terms of beliefs, desires, and intensions. 
Theoretical work has been investigating multi modal logics to specify agents [RG91, 
RG93] and independently, systems such as the Procedural Reasoning System PRS 
[IG90, LHDK94] have been implemented. Unfortunately, implemented systems and 
specification in BDI logics are not formally coupled, so that the specification logics 
are not executable and the implementation lacks theoretical foundation. 

However, the BDI architecture underlying the implemented systems is quite gen
eral. It comprises a belief base, a set of current desires or goals, a plan library, and an 
intension structure. The plan library provides plans describing how certain sequences 
of actions and tests may be performed to achieve given goals or to react to particu
lar situations. The intension structure contains those plans that have been chosen for 
execution. An interpreter manipulates these components, selecting appropriate plans 
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based on the system's beliefs and goals, placing those selected on the intension struc
ture and executing them. 

Since the BDI architecture is held quite general, the components of vivid agents can 
be loosely mapped to the BDI components. However, the similarity stems basically 
from the idea of using mental states [Sh093]. At a closer look there are several im
portant differences. First, vivid agents are based on the concept of knowledge systems 
which are plugged in and therefore allow for a wide range of applications whereas 
BDI agents use a relational database which is for diagnosis applications insufficient. 
Second, vivid agents plan online whereas BDI agents fall back on plans found in a plan 
library. For planning as in the loading dock this is insufficient. Third, for BDI agents 
there is gap between theory and practice. An attempt to bridge the gap is described 
in [Ra096] where so-called plans which are similar to our reaction rules are intro
duced. Such agent specifications are in principle executable, but the actual translation 
executable in PRS is left open. In contrast to this, vivid agents are executable specifi
cations with a formal semantics, thus bridging the gap between a formal underpinning 
and a working system. 

ARCHON. ARCHON [CJ96, JCL +96, WJM94, JW92] is a framework to design 
industrial applications in distributed artificial intelligence. To devise a well-structured 
distributed application, ARCHON provides assistance for interaction of components 
and a methodology to structure them. ARCHON supports two approaches to the de
sign of applications: bottom-up existing software systems are integrated to improve 
their performance by taking into account additional information; top-down a system is 
decomposed into subcomponents which are associated with an ARCHON agent. The 
agents' architecture consists offour main components: a monitor, a planning and coor
dination module, an agent information management module, and a high-level commu
nication module. The ARCHON agents are implemented in IC-Prolog][ and similar to 
our approach, the components of an agent run as light-weight threads. Different from 
our approach, ARCHON addresses the re-engineering of large, operational software 
systems using agent technology. Besides example applications such as an urban traffic 
scenario and an appointment manager [CJ96], ARCHON is used for real-world appli
cations such as electricity transportation management and particle accelerator control 
[JCL +96]. 

IC-Prolog 1 [. IC-Prolog][ [Chu93]is a full Prolog system which supports parallel 
and distributed logic Programming. It offers basically the same concepts as PVM
Prolog. It allows asynchronous execution of multiple Prolog threads, each resolving 
independent goals. Those threads communicate through pipes the same way as PVM
Prolog threads communicate through term queues. In a networking environment, IC
Prolog ][ supports communication through sockets, offering a predicate library inter
face, whereas PVM-Prolog offers a full-fledged PVM interface library. Sockets are 
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good for network communication and they are widely accepted. But their use involves 
dealing with low-level details such as finding the communication partner, binding the 
socket and handling different data formats. PVM supports a higher level commu
nication model, where name resolution and port allocation are hidden from the pro
grammer. It also supports multi-casting, group communication, and synchronisation 
mechanisms. PVM also covers many multi-processor architectures where sockets are 
not available. 

In contrast to IC-Prolog ][, PVM supports heterogeneous hardware configurations 
with different data formats, which has two advantages: First, the internal data format 
allows a more efficient representation than the textual one and it makes communica
tion among processes created by different languages possible. Second, PVM's host 
configuration can be changed dynamically, an issue which is not handled in IC-Prolog 
][. Another difference concerns IC-Prolog's indirect narning of mailboxes and PVM
Prolog's direct narning of the communication partner. IC-Prolog's mailboxes also 
support multiple readers. In PVM the group communication mechanisms can be used 
for a similar purpose. 

April. April [MC95] is a language which supports a model of execution simi
lar to CSP, the Communicating Sequential Processes [Hoa85], using pattern matching 
to check for incoming messages. It also includes real-time support, and higher-order 
features such as lambda abstractions, and a macro pre-processor. The communication 
model is point to point, with direct naming of the communicating partners. It also sup
ports process creation and global naming through a structured name service for long 
range communication, which mirrors the traditional DNS. Though April includes 
ideas from logic programming such as pattern matching of messages, it does not focus 
on declarative and executable high-level specifications. It is rather a mix of several 
paradigms. Concerning Apr il 's level of abstraction it ranges between PVM-Prolog 
which is a pure paradigm extended by message passing and a high-level multi-agent 
language such as vivid agents. 

Stream Logic Programming. Stream logic programming [Rin89, HJR95] 
advocates object-based concurrent programming and combines ideas from object
orientation and logic programming. Objects are associated with heads of rules. Rules 
consisting of a head, a condition, and a behaviour can be nearly mapped one-to-one to 
event-condition-action rules [MD89]. Per event only one rule is fired which is similar 
to forward chainers which differs however from our approach where various reac
tion rules may fire if triggered by an event. An important difference between Stream 
Logic Programming (SLP) and other approaches concerns the message queue which 
is left implicit in SLP's objects message slots. Rather than a linear stream of events 
SLP objects are capable to handle message arrays. SLP inherits from Prolog pat
tern matching and rules, but important concepts such as unification, backtracking, and 
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negation as failure are not supported. Especially, the latter is a prerequisite for many 
applications. The concurrency provided by SLP is fine-grained and closer to neurons 
in neural networks than to our threads and processes. Synchronisation of objects is 
realised by pattern matching of the objects' conditions. Message receipt blocks by 
default, but a non-blocking receive can be programmed explicitly. The use of SLP 
for multi-agent systems is demonstrated by various protocols such as the contract net 
protocol [HJR95]. 

ICE. ICE [Amt95, AB96] defines a model to support distributed AI applications 
over hybrid languages and heterogeneous, distributed platforms. It is available from 
Prolog, Lisp, C, C++ and Tcl!fk: and it is, similar to PVM-Prolog, implemented on 
top of PVM. Its communication model is point to point through named channels but it 
also supports broadcasting of messages to all components. Components may be cre
ated dynamically but their communication topology must be defined in a configuration 
file. Configuration of components and their communication channels is done through 
a configuration file by a special process, the license server. PVM-Prolog, as ICE, also 
supports communication with tasks written in different languages. ICE's communica
tion model is defined at a higher level than PVM-Prolog's. In ICE, it is necessary to 
specify the topology of the communication before running the system, in contrast to 
PVM's dynamic configuration, communication and process control features. 

6.2 GENERAL EVALUATION 

The principle goal of this work is the definition and implementation of autonomous, 
model-based diagnosis agents. We set out to tackle logic programming and model
based diagnosis, strategies in model-based diagnosis, and to develop and implement 
an architecture of autonomous, model-based diagnosis agents. 

Concerning logic programming and model-based diagnosis, we showed how the 
rich language of extended logic programs including explicit and implicit negation as 
well as integrity constraints can be employed to model diagnosis problems and how 
contradiction removal and abduction allow to compute diagnoses. Based on a variety 
of applications such as digital circuits, traffic control, integrity checking of a chemi
cal database, alarm-correlation in cellular phone networks, diagnosis of an automatic 
mirror furnace, and diagnosis of communication protocols, we developed modelling 
techniques and showed how to model diagnosis problems as extended logic programs. 
We improved a previous bottom-up algorithm to compute diagnoses. Our newly de
veloped top-down algorithm solves some examples in quadratic time which previously 
lead to exponentially increasing timings. Our algorithm was evaluated on some of the 
ISCAS benchmark circuits [Isc85]. The top-down algorithm is implemented in the 
non-monotonic reasoning system REVISE. Our implementation features various min-



CONCLUSIONS 121 

imality notions for diagnosis such as minimality by set-inclusion, by cardinality, and 
by probability. 

To deal with complex diagnosis problems and compute diagnoses dynamically, we 
developed a strategy language. Taking into account both practical needs and rigorous 
formal treatment, we defined syntax and semantics of the strategy language. Speci
fying the diagnosis process declaratively with the strategy language, the very idea of 
model-based diagnosis is lifted to the level of the diagnosis process itself. In order 
to define strategies for practical applications, we identified the principles of deter
ministic and non-deterministic, as well as monotonic and non-monotonic strategies. 
We designed a strategy knowledge base for circuit diagnosis that includes a bunch of 
strategies for choice of models, structural refinement, measurements, and preferences. 
We identified rule-like strategies as appropriate for practical needs and sufficiently ex
pressive to be still universal. We defined an operational semantics and designed an 
efficient algorithm for these strategies. We evaluated the strategy knowledge base and 
the algorithm in the domain of digital circuits and, as a proof-of-principle, we pro
vided traces of diagnosis processes for a voter which is part of the benchmark circuits 
mentioned above. 

For distributed applications, we presented the concept of vivid agents including a 
knowledge system and reaction- and action-rules to exhibit reactive as well as pro
active behaviour. To realise the concept of vivid agents we developed an architecture 
for concurrent action and planning. We defined a transition semantics that formally 
underpins the architecture. To implement the architecture we introduced PVM-Prolog 
which provides coarse-grain and fine-grain parallelism. The former is used to spawn 
agents in the network, while the latter is used to run the action and planning compo
nent concurrently. We evaluated the concept and implementation of vivid agents in 
distributed diagnosis by implementing fault-tolerant diagnosis and the diagnosis of a 
communication protocol. To evaluate these applications we gave traces of the exe
cuted specifications. The implemented agent interpreter satisfies the main criteria for 
a state-of-the-art multi-agent programming language. It allows to specify reactive and 
pro-active behaviour; it is under-pinned by a formal semantics, the high-level agent 
specifications are executable, the agents are platform independent, and heterogeneous 
agents are supported. 

6.3 FUTURE WORK 

This book opens up three interesting areas for future work: First, the comparison of 
the diagnosis agents with agent standards currently under development; second, the 
further improvement of the algorithms; third, the development of real-world applica
tions. 

The agent interpreter is closely related to the ongoing specification of agent stan
dards by a consortium of many (telecommunication) enterprises and universities. The 
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second version of a proposal for the Foundation of Intelligent Physical Agents (FIPA) 
is still under discussion [C+97]. Once it is approved as a standard, it will be inter
esting to investigate if the vivid agents meet the FIPA-specification or if they can be 
modified accordingly. At the current stage, it appears that the interpreter is quite close 
to the first part of the proposal concerning agent management. Similarities include 
for example the distinction of local and global communication and a central directory 
facilitator. The second part of the FIPA proposal deals with an agent communication 
language based on speech acts [Aus62, Sea69, FWW+93] to classify different types 
of messages and according protocols for message exchange as well as a framework to 
reason about agent beliefs. The vivid agent interpreter may serve as an implementa
tion platform to this extent. It would be interesting to evaluate the higher-level second 
part of the FIPA proposal using our agent interpreter in order to find out whether our 
agent interpreter is suitable to implement the specified protocols and, more general, 
whether FIPA's agent communication language is suitable for implementation. 

The second area for future work concerns the improvement of the algorithms, in 
particular the revision and planning algorithms. To gain further speed-ups, the diag
nosis engine REVISE may benefit from tabling systems such as XSB-Prolog [SSW94] 
and assumption-based truth maintenance [Doy79, dK86] which both help to avoid re
computations. A different line of thinking is to adopt the techniques used in the very 
efficient diagnoser DRUM II [FN96a, FN96b, NF97, FN97]. Recently, it turned out 
that the ideas underlying DRUM II are general and have been successfully applied 
to a theorem prover [PBN97b, PBN97a]. The main obstacle for using the DRUM 
II-algorithm for REVISE will concern the two negations provided by REVISE and 
REVISE' abductive capabilities which are more complex than consistency-based di
agnosis. 

Recently, there has been progress in efficient planning. Kautz and Selman pre
sented a planning algorithm based on a translation of planning problems to a SAT 
problem which is efficiently solved by a random-walk algorithm [KS96, SKM97]. To 
integrate such a state-of-the-art planner into our implementation, it has to be enhanced 
by reactive planning. Currently, replanning generates a new plan independent of the 
previous plan which failed. To save computational resources, it would be interesting to 
investigate how the failed plan could be as slightly as possible modified to accomplish 
the given goal. 

Third, future work may be dedicated to the design of applications. In the mean
time, we have gathered first experiences in the development of an agent-based system 
for knowledge-integration on the internet [SN97] and argumentation in multi-agent 
systems [SMA97, MAS97]. As a real-world application the domain of telecommu
nication network management is interesting. While diagnosis and monitoring have 
always been important topics in this field, current technological developments suggest 
that agent technology will be of great importance for future innovations. 



7 PROOFS AND PROOF SKETCHES 

Proof Sketch of Theorem 3.24 To prove that the top-down algorithm in Figure 
3.27 terminates, we argue that there is only a finite number of revisables and subse
quently only a finite number of possible nodes. With a node being marked in each 
step of loop (2) the algorithm terminates. The second part of the theorem that H(n) is 
a hitting-set iff n is a leaf marked v' is true since we can replace conflict generation 
beforehand by online conflict generation using demo by proposition 3.21 and lemma 
3.23. Thus the top-down algorithm 3.27 is equivalent to the hitting-set algorithm 3.21. 
o 

Proof of Proposition 4.16 

1. We show that (S, -t,t) FS OL iff tj) "# 0 and there is a diagnosis D E tj)s such 
that the model for SD U OBS U s U ...,gU D entails L or tj) = 0 and the model for 
s U ...,gU {ab(SD)} entails L. 

Before we start the proof we need a lemma 

Lemma 7.1 Let L E L. Then M(s,--?,t) F(s,j) L iff M(s,j) F L L. 

M. Schroeder, Autonomous, Model-Based Diagnosis Agents
© Springer Science+Business Media New York 1998
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By definition 4.13 (S,-+,t) Ps OL iff M(s,-t,t) P(s,i) OL. By definition 4.11 this is 
equivalent to 3wf s.th. (s,i) -+~ wf and M(s,-t,t) Pw L. By definition 4.12 there 
is 1 :::; } :::; ms s.th. (s,i) -+~ (s,}) and M(s,-t,t) P(s,j) L and by the lemma above 
we have M(s,j) P L L which means by the definition of M(s,j) in definition 4.12 that 
1) -:j:. ° and there is a diagnosis D E 'lJ., such that the model for SDUOBSUsU...,§UD 
entails L or 1) = ° and the model for s U ...,§U {ab(SD)} entails L. 

2. The proof for DL is similar. 

3. To prove (S, -+,t) Ps +F iff ex. Sf E S such that s -+ Sf and (S, -+,t) Ps' F we 
proceed as above and apply definition 4.13, 4.11, and 4.12. 

4. The proof for .F is similar. D 

Proof for Proposition 4.19 We show that any diagnosis under the n-fault as
sumption nf does not contain more than n components. Let 1)s = diags(SDU OBS). 
Assume nf E sand DE fJJs s.th. IDI > n. Then there are at least n + 1 distinct compo
nents q s.th. ab(q) ED. Thus the lefthand side of the formula 

n+1 
VCI,··· ,Cn+1 : nf /\ 1\ ab(q) -+ 

i= I i,j= I ,i=f.j 

is satisfied. To be consistent the right-hand side has to be satisfied as well, i.e. 
at least two components are equal. This is contradictory to choosing n + 1 distinct 
components. D 

Proof Sketch of Lemma 4.21 {::: Application of the definition of Ps and Gs . 

~ Assume s -:j:. Sf. Then there is a working hypothesis wh such that without loss of 
generality wh E Sf but wh f/. s. From the premise (S,-+,0) Ps' Gs we can conclude 
(S,-+,0) Ps' D...,wh and (S,-+,0) ~s' Dwh since wh f/. s. But by definition of Ps' we 
have also (S, -+, O) P." Dwh since wh E Sf. A contradiction. D 

Note that the last conclusion requires that a working hypothesis is only derivable 
iff it is contained in the state which is guaranteed by adding working hypotheses and 
the negated complements. 

Proof of Theorem 4.23 The set ~ of one-step strategies is defined by transition 
formulas that express that if we are in state s, where Gs holds then the successors' state 
formulas hold possibly and their disjunction holds necessarily. The case that the state 
s has no successors is captured by the formula .false: 
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Definition 7.2 Let (S, -+,O) be a transition system and Gs the stateformulafora state 
s E S. Then 

Gs -+ /\ +Gs' t\. V G.s' 
.0-+.1" .o-+s' 

G.o -+ ·false 

is called Transition Formula of s. 

if there is s" such that s -+ s" 

else 

Remark: Transition formulas of states with successors are one-step strategies. The 
heads are characteristic formulas. 

Now we can turn to the proof of the theorem. Let (S, -+, 0) be a transition system 
and let ~ be the set of transition formulas of the states S. 
{:: We have to show that (S, -+, O) F ~. Let s E S and F., E ~. We show that for all 
states s' E S we have (S,-+,0) Fs' F., by examining the cases s ¥ s' and s = s'. In 
case s' ¥ s we know by lemma 4.21 that (S,-+,0) Pf:s' Gs and thus (S,-+,0) Fs' F.,. 
In case s' = s we know by lemma 4.21 that (S, -+, O) Fs' Gs so that it is left to prove 
that (S,-+,0) Fs' /\ +Gs" t\. V Gs'l in case 3s": s -+ s" and (S,-+,0) Fs' .false 

.o-+s" S-+s" 
otherwise. The latter formulas hold by definition of. and +. 
~ The proof is by contradiction. Assume that (S',-+',0) F ~ and (S',-+',0) ¥ (S,-+ 
,O). We have ° E S and starting with ° all states of S are "traversed" by the transition 
formulas ~. Since also ° E S' and (S', -+', O) F ~ we can conclude that S' J S. Now 
assume s E S' n Sand s" E S'\S such that s -+ s". Since s" tt S we have (S', -+', O) Pf:s'l 
V Gs" As s -+ s" we conclude (S', -+', O) Pf:s. V Gs" From this and the fact that 

s-+s' s-+s' 
(S', -+', O) FS Gs we conclude (S', -+', O) Pf:s Fs in contradiction to the assumption. 0 

Proof Sketch of Theorem 4.27 The proof proceeds in three steps: 1. (S,-+,t) 
satisfies the conjunction of all Hi. 2. all transition systems that possibly satisfy the 
conjunction of all Hi consist of subsets of S. 3. None of these candidates actually 
satisfies independence of strategies, so (S, -+,t) in turn does. 

Ad 1. In order to show that (S, -+ , t) F Hi for I ~ i ~ n it is sufficient to prove 
that(S,-+,t)F0 /\ +F.,t\. V F."whereFs=D/\{whlwhEs}U{--'whlwhE 

0-+jS 0-+j.o 

(USi)\S}. 
To prove that the two conjuncts hold the definition of the state product is essential. 

Intuitively, the first conjunct holds as every state in Si is a subset of at least one state 
in S. For the second conjunct we argue the other way around: it holds as every state in 
S is a superset of at least one state in Si. 

Ad 2. As Hi is characteristic and has depth 1 it consists of subformulas. V Fs. 
0-+jS 

n n n 
Thus /\ Hi contains /\. V F., which is equivalent to • /\ V F.,. As the formulas 

i=1 ;=1 0-+j.o ;=10-+js 



126 AUTONOMOUS, MODEL-BASED DIAGNOSIS AGENTS 

Fs do not have any working hypotheses in common the latter expression is in mini
mal CNF. The equivalent DNF corresponds one-to-one to the state product. So the 
conjunction of Hi can only be satisfied by a subset of the state product. 

Ad 3. We show that the first condition for independence of strategies is violated. 
Let (Sl, -71 ,tt) such thatS1 C S, -71 C -7 andt1 = t. Then (S, -7,t) Fs .OWh1 -7 Wh2 

for all Wh1, Wh2 E SU...,S implies (Sl,-71,tt) Fs .OWh1 -7 Wh2 since Sl C S. 0 



References 

[AB96] 

[ADP94a] 

[ADP94b] 

[ADP95] 

[Amt95] 

[AP96] 

[Aus62] 

J. W. Amtrup and J. Benra. Communication in large distributed AI 
systems for natural language processing. In Proceedings of the 16th 
International Conference on Computational Linguistics, COUNG-96., 
pages 35-40, Copenhagen, 1996. 

1. 1. Alferes, C. V. Damasio, and L. M. Pereira. Top-down query eval
uation for well-founded semantics with explicit negation. In A. Cohn, 
editor, Proc. of the European Conference on Artificial Intelligence '94, 
pages 140-144. John Wiley & Sons, August 1994_ 

J. 1. Alferes, C. V. Damasio, and L. M. Pereira. A top-down derivation 
procedure for programs with explicit negation. In M. Bruynooghe, 
editor, Proc. of the International Logic Programming Symposium'94, 
pages 424-438. MIT Press, November 1994. 

J. J. Alferes, C. V. Damasio, and L. M. Pereira. A logic programming 
system for non-monotonic reasoning. Journal of Automated Reason
ing, 14(1):93-147,1995. 

1. W. Amtrup. ICE - Intarc Communication Environment: User's 
Guide and Reference Manual. Version 1.4. University of Hamburg, 
1995. 

J. 1. Alferes and L. M. Pereira. Reasoning with Logic Programming. 
(LNAI 1111), Springer-Verlag, 1996. 

J.L. Austin. How to Do Things with Words. Harvard University Press, 
Cambridge (MA), 1962. 



128 AUTONOMOUS, MODEL-BASED DIAGNOSIS AGENTS 

[BD93] C. Bottcher and O. Dressler. Diagnosis process dynamics: Holding 
the diagnostic trackhound in leash. In R. Bajcsy, editor, Proceedings 
of the 13th International Joint Conference on Artificial Intelligence, 
pages 1460-1471. Morgan Kaufmann Publishers, Inc., 1993. 

[BD94] C. Bottcher and O. Dressler. A framework for controlling model-based 
diagnosis systems with multiple actions. Annals of Mathematics and 
Artificial Intelligence, special Issue on Model-based Diagnosis, 11(1-
4),1994. 

[BDP96] 

[BF94] 

[BFS95] 

[BM92] 

[BPH85] 

[BS84] 

[Che80] 

[Chu93] 

S. Brass, J. Dix, and T. C. Przymusinski. Super logic programs. In 
L. C. Aiello, J. Doyle, and S. C. Shapiro, editors, Proceedings of the 
Fifth International Conference on Principles of Knowledge Represen
tation and Reasoning KR96, pages 529-541, San Francisco, 1996. 
Morgan Kaufmann Publishers, Inc. 

P. Baumgartner and U. Furbach. Model elimination without contrapos
itives and its application to PTTP. Journal of Automated Reasoning, 
13(1):339-359, 1994. 

P. Baumgartner, U. Furbach, and F. Stolzenburg. Model elimination, 
logic programming and computing answers. In IJCAI-95, Montreal, 
Canada, August 1995. Morgan Kaufmann Publishers, Inc. 

C. B. Boyer and U. C. Merzbach. History of Mathematics. John Wiley 
& Sons, second edition, 1992. First published in 1968. 

F. Brglez, P. Pownall, and R. Hum. Accelerated ATPG and fault grad
ing via testability analysis. In Proceedings of IEEE Int. Symposium on 
Circuits and Systems, pages 695-698,1985. The ISCAS85 benchmark 
netlists are available via ftp mcnc . mcnc . 0 rg. 

B. G. Buchanan and E. H. Shortliffe. Rule-based expert systems: the 
MYCIN Experiments of the Stanford Heuristic Programming Project. 
Addison-Wesley Publishing Company, Reading, MA. 1984. 

L. Chiariglione et al. Specification version 2.0. Technical report, Foun
dations of Intelligent Physical Agents, 1997. http://drogo.cselt.stet.itl
fipa/. 

B. F. Chellas. Modal Logic - An Introduction. Cambridge University 
Press, 1980. 

D. Chu. I.C. PROLOG ][: A language for implementing multi-agent 
systems. In S. M. Dean, editor, Proceedings of the 1992 Workshop 



[CJ96] 

[CM96] 

[CM97] 

[CT91] 

[Dav83] 

[Dav84] 

[Dee94] 

[DH88] 

[dK86] 

[dK91] 

[dKB92] 

REFERENCES 129 

on Cooperating Knowledge Based systems (CKBS92), pages 61-74. 
DAKE Centre, University of Keele, UK, 1993. 

D. Cockburn and N. R. Jennings. ARCHON: A distributed artificial 
intelligence system for industrial applications. In G. M. P. O'Hare and 
N. R. Jennings, editors, Foundations of Distributed Artificial Intelli
gence. John Wiley & Sons, 1996. 

1. C. Cunha and R. F. P. Marques. PVM-Prolog: A prolog interface to 
PVM. In Proceedings of the I st Austrian-Hungarian Workshop on Dis
tributed and Parallel Systems, DAPSYS'96, Miskolc, Hungary, 1996. 

J. C. Cunha and R. F. P. Marques. Distributed algorithm develop
ment with PVM-Prolog. In 5th Euromicro Workshop on Parallel and 
Distributed Processing, London, UK, 1997. IEEE Computer Society 
Press. 

L. Console and P. Torasso. A spectrum of logical definitions of model
based diagnosis. ComputationalInteUigence, 7(3):133-141,1991. 

M. Davis. The prehistory and early history of automated deduction. In 
J. Siekmann and G. Wrightson, editors, Automation of Reasoning 
Classical Papers on Computational Logic, 1957-1966. Springer
Verlag, 1983. 

R. Davis. Diagnostic Reasoning Based on Structure and Behavior. 
Artificial Intelligence, 24:347-410, 1984. 

S.M. Deen (Ed.). Proc. 2nd Int. Working Conf. on Cooperating 
Knowledge-Based Systems. DAKE Centre, University of Keele, 1994. 

R. Davis and W. Hamscher. Model-based reasoning: Troubleshooting. 
In Exploring Artificial Intelligence, chapter 8, pages 297-346. Morgan 
Kaufmann Publishers, Inc., 1988. 

J. de Kleer. An assumption-based TMS. Artificial Intelligence, 
28:127-162,1986. 

J. de Kleer. Focusing on probable diagnoses. In Proceedings of the 
National Conference on Artificial Intelligence (AAAI), pages 842-848, 
Anaheim, July 1991. Morgan Kaufmann Publishers, Inc. 

J. de Kleer and J. S. Brown. Model-based diagnosis in SOPHIE III. In 
[HCd92],1992. 



130 AUTONOMOUS, MODEL-BASED DIAGNOSIS AGENTS 

[dKRS91] 

[dKW87] 

[dKW89] 

[DNP94] 

[DNPS95] 

[Doy79] 

[DPS96] 

[DPS97a] 

[DPS97b] 

[DS92] 

[Ec094] 

J. de Kleer, O. Raiman, and M. Shirley. One step lookahead is pretty 
good. In Second International Workshop on the Principles of Diagno
sis, Milano, Italy, October 1991. 

J. de Kleer and B. C. Williams. Diagnosing multiple faults. Artificial 
Intelligence, 32(1):97-130, 1987. 

J. de Kleer and B. C. Williams. Diagnosis with behavioral modes. 
In Proceedings of the International Joint Conference on Artificial In
telligence (/JCA/J, pages 1324-1330, Detroit, August 1989. Morgan 
Kaufmann Publishers, Inc. 

C. V. Damasio, W. Nejdl, and L. M. Pereira. REVISE: An extended 
logic programming system for revising knowledge bases. In J. Doyle, 
E. Sandewall, and P. Torasso, editors, Knowledge Representation and 
Reasoning, pages 607-618, Bonn, Germany, May 1994. Morgan Kauf
mann. 

c. V. Damasio, W. Nejdl, L. M. Pereira, and M. Schroeder. Model
based diagnosis preferences and strategies representation with meta 
logic programming. In K. R. Apt and F. Turini, editors, Meta-logics 
and Logic Programming, chapter II, pages 269-311. The MIT Press, 
1995. 

J. Doyle. A truth maintenace system. Artificial Intelligence, 12:231-
272,1979. 

C. V. Damasio, L. M. Pereira, and M. Schroeder. REVISE progress 
report. In Workshop on Automated Reasoning: Bridging the Gap be
tween Theory and Practice. University of Sussex, Brighton, 1996. 

C. V. Damasio, L. M. Pereira, and M. Schroeder. Revise online. http:// 
www.kbs.uni-hannover.derschroede/revise/ revise.html, 1997. 

C. V. Damasio, L. M. Pereira, and M. Schroeder. REVISE: Logic pro
gramming and diagnosis. In Proceedings of the Conference on Logic 
Programming and Non-monotonic Reasoning LPNMR97. LNAI 1265, 
Springer-Verlag, 1997. 

O. Dressler and P. Struss. Back to defaults: Characterizing and com
puting diagnoses as coherent assumption sets. In ECAI92, pages 719-
723,1992. 

U. Eco. Die Suche nach dervollkommenen Sprache. C.H. Beck, 1994. 
Originally published in italian "La ricera della lingua perfetta nella 
cultura europea" . 



[Eme90] 

REFERENCES 131 

E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, 
editor, Handbook of Theoretical Computer Science, volume B, chap
ter 16. Elsevier, Amsterdam, New York, 1990. 

[FdAMNS97] P. Frohlich, I. de Almeida Mora, W. Nejdl, and M. Schroeder. Diag
nostic agents for distributed systems. In Proceedings of ModelAge97, 
Siena, Italy, 1997. 

[FdCH95] 

[FGN90] 

[FMP96] 

[FN71] 

[FN90] 

[FN96a] 

L. Farinas del Cerro and A. Herzig. Modal deduction with applica
tions in epistemic and temporal logics. In C.J. Hogger Dov M. Gabbay 
and J.A. Robinson, editors, The Handbook of Logic in Artificial Intel
ligence and Logic Programming, volume 4, pages 499-594. Oxford 
Science Publications, 1995. 

G. Friedrich, G. Gottlob, and W. Nejdl. Physical impossibility instead 
of fault models. In Proceedings of the National Conference on Artifi
cial Intelligence (AAAl), pages 331-336, Boston, August 1990. Also 
appears in W. Hamscher, L. Console, J. de Kleer, eds, Readings in 
Model-Based Diagnosis, Morgan Kaufmann, 1992. 

K. Fischer, J. P. Muller, and M. Pischel. A pragmatic BDI architecture. 
In M. Wooldridge, J. Muller, and M. Tambe, editors, Intelligent Agents 
II. LNAI 1037, Springer-Verlag, 1996. 

M. Fisher, J. P. Muller, M. Schroeder, G. Wagner, and G. Staniford. 
Methodological foundations of agent-based systems. IEEE Knowledge 
Engineering Review, 12(3):323-329,1997. 

R.E. Fikes and N. Nilsson. Strips: A new approach to the application 
of theorem proving to problem solving. Artificial Intelligence, pages 
189-208, 1971. 

G. Friedrich and W. Nejdl. MOMO - Model-based diagnosis for ev
erybody. In Proceedings of the IEEE Conference on Artificial Intelli
gence Applications (CAIA), Santa Barbara, March 1990. A slightly re
vised and extended version appears in W. Hamscher, L. Console, J. de 
Kleer, eds, Readings in Model-Based Diagnosis, Morgan Kaufmann, 
1992. 

P. Frohlich and W. Nejdl. A model-based reasoning approach to cir
cumscription. In Proceedings of the 12th European Conference on 
Artificial Intelligence, 1996. 



132 AUTONOMOUS, MODEL-BASED DIAGNOSIS AGENTS 

[FN96b] P. Frohlich and W. Nejdl. A model-based reasoning approach to cir
cumscription - extended version. In Sixth International Workshop on 
Nonmonotonic Reasoning, 1996. 

[FN97] P. Frohlich and W. Nejdl. A static model-based engine for model
based reasoning. In Proceedings of the Fifteenth International Joint 
Conference on Artificial Intelligence (/JCAI-97), Nagoya, Japan, 1997. 

[FNJW97] P. Frohlich, W. Nejdl. K. Jobmann, and H. Wietgrefe. Model-based 
alarm correlation in cellular phone networks. In Fifth International 
Symposium on Modeling, Analysis and Simulation of Computer and 
Telecommunication Systems (MASCOTS), January 1997. 

[FNS94] P. Frohlich, W. Nejdl, and M. Schroeder. A formal semantics for pref
erences and strategies in model-based diagnosis. In 5th International 
Workshop on Principles of Diagnosis (DX-94), pages 106-113, New 
Paltz, NY, October 1994. 

[FNS96] P. Frohlich, W. Nejdl, and M. Schroeder. Design and implementa
tion of diagnostic strategy using modal logic. In JELIA96 - European 
workshop on Logic in AI. LNAI 1126, Springer-Verlag, 1996. 

[FNS97] P. Frohlich, W. Nejdl, and M. Schroeder. Strategies in model-based 
diagnosis. Journal of Automated Reasoning, 1998. 

[FWW+93] T. Finin, J. Weber, G. Wiederhold, M. Genesereth, R. Fritzson, 
D. McKay, J. McGuire, R. Pelavin, S. Shapiro, and C. Beck. Spec
ification of the KQML agent communication language. Technical re
port, The DARPA Knowledge Sharing Initiative, External Interfaces 
Working Group, Baltimore, USA, 1993. 

[Gea94] A. Geist and et al. PVM: Parallel Virtual Machine. MIT Press, 1994. 

[GeI89] A. Van Gelder. The alternating fixpoint of logic programs with nega
tion. In Proceedings of the 8th ACM Symposium on Principles of 
Database Systems, pages 1-10, 1989. 

[Gen84] M. R. Genesereth. The use of design descriptions in automated diag
nosis. Artificial Intelligence, 24:411-436,1984. 

[GL90] M. Gelfond and V. Lifschitz. Logic programs with classical negation. 
In Proc. of ICLP90, pages 579-597. MIT Press, 1990. 

[GRS88] A. Van Gelder, K. Ross, and J. S. Schlipf. Unfounded sets and well
founded semantics for general logic programs. In Proceeding of the 



[GRS91] 

[GSW89] 

[Ham91] 

[Ham94] 

[HCd92] 

[HJR95] 

[Hoa85] 

[IG90] 

[Isc85] 

[JCL +96] 

[JW92] 

REFERENCES 133 

7th ACM Symposium on Principles of Databse Systems, pages 221-
230. Austin, Texas, 1988. 

A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded se
mantics for general logic programs. J. of the ACM, 38(3), 1991. 

R. Greiner, B. A. Smith, and R. W. Wilkerson. A correction of the algo
rithm in Reiter's theory of diagnosis. Artificial Intelligence, 41(1):79-
88, 1989. 

w. C. Hamscher. Modeling digital circuits for troubleshooting. Artifi
cial Intelligence, 51(1-3):223-271, October 1991. 

S. Hampe. Methoden und Verfahren der Konsistenzerhaltung 
am Beispiel eines Expertensytems zur Bestimmung der Medi
enbestandigkeit von Kunststoffen. Master's thesis, RWTH Aachen, 
1994. Prof. W. Nejdl, zusammen mit IKV, Prof. M.ilHr. Menzenbach. 

W. Hamscher, L. Console, and 1. de Kleer. Readings in Model-Based 
Diagnosis. Morgan Kaufmann, 1992. 

M. M. Huntbach, N. R. Jennings, and G. A. Ringwood. How agents do 
it in stream logic programming. In Proceedings of the First Interna
tional Conference on Multi-Agent Systems ICMAS95, pages 177-184, 
San Francisco, USA, 1995. 

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 
1985. 

F. F. Ingrand and M. P. Georgeff. Managing deliberation and reasoning 
in real-time AI systems. In Proceedings of the 1990 DARPA Workshop 
on Innovative Approaches to Planning, pages 284-291, San Diego, 
CA,1990. 

The ISCAS-85 Benchmarks. http://www.cbl.ncsu.edu/www/CBL
Docs/iscas85.html, 1985. 

N. R. Jennings, J. M. Corera, I. Laresgoiti, E. H. Mamdani, F. Perriol
lat, P. Skarek, and L. Z. Varga. Using ARCHON to develop real-world 
DAI applications for electricity transportation management and parti
cle accelerator control. IEEE Expert, 1996. 

N. R. Jennings and T. Wittig. ARCHON: Theory and practice. In N. M. 
Avouris and L. Gasser, editors, Distributed Artificial Intelligence: The
ory and Praxis, pages 179-195. Kluwer Academic Press, 1992. 



134 AUTONOMOUS, MODEL-BASED DIAGNOSIS AGENTS 

[KGB+95] D. Kinny, M. Georgeff, J. Bailey, D. B. Kemp, and K. Ramamoha
narao. Actice databases and agent systems - a comparison. In Proceed
ings of RIDS95, International Workshop of Rules in Database Systems, 
Athens, Greece, 1995. 

[Kon92] K. Konolige. Abduction versus closure in causal theories. Artificial 
Intelligence, 53:255-272, 1992. 

[Kow95] R. A. Kowalski. Using meta-logic to reconcile reactive with rational 
agents. In K. R. Apt and F. Turini, editors, Meta-logics and Logic 
Programming, chapter 9, pages 227-242. The MIT Press, 1995. 

[Koz83] D. Kozen. Results on the propositional II-calculus. Theoretical Com
puter Science, 27:333-354, 1983. 

[KS96] H. Kautz and B. Selman. Pushing the envelope: Planning, proposi
tionallogic, and stochastic search. In Proceedings of AAAI96, pages 
1194-1201,1996. 

[LHDK94] J. Lee, M. J. Huber, E. H. Durfee, and P. G. Kenny. UM-PRS: An 
implementation of the procedural reasoning system for multirobot ap
plications. In CIRFSS94, Conference on Intelligent Robotics in Field, 
Factory, Service and Space, pages 842-849. MIT Press, 1994. 

[MA95] I. A. Mora and 1. J. Alferes. Diagnosis of distributed systems us
ing logic programming. In C. Pinto-Ferreira and N.J. Mamede, ed
itors, Progress in Artificial Intelligence, 7th Portuguese Conference 
on Artificial Intelligence EPIA95, volume LNAI990, pages 409-428. 
Springer-Verlag, Funchal, Portugal, 1995. 

[MAS97] I. Mora, J. J. Alferes, and M. Schroeder. Argumentation for distributed 
extended logic programs. In Proceedings of the International Work
shop on Logic Programming and Multi-Agents, 1997. 

[MC95] F. G. McCabe and K. L. Clark. APRIL - Agent PRocess Interaction 
Language. In M. Wooldridge and N.R. Jennings, editors, Intelligent 
Agents I. LNAI 890, Springer-Verlag, 1995. 

[MD89] D.R. McCarthy and U. Dayal. The architecture of an active database 
management system. In Proc. ACM SIGMOD-89, pages 215-224, 
1989. 

[MH93] I. Mozetic and C. Holzbauer. Controlling the complexity in model
based diagnosis. Annals of Mathematics and Artificial Intelligence, 
1993. 



[Moz9l] 

[MPT95] 

[Miil94] 

[Miil96] 

[NF97] 

[NFS95] 

[NG94] 

[NS96] 

[PA92] 

[PAA9l] 

[PAA93] 

REFERENCES 135 

I. Mozetic. Hierarchical model-based diagnosis. International Journal 
of Man-Machine Studies, 35:329-362, 1991. 

1. P. Muller, M. Pischel, and M. Thiel. Modelling reactive behaviour in 
vertically layered agent architectures. In M. Wooldridge and N.R. Jen
nings, editors, Intelligent Agents I. LNAI 890, Springer-Verlag, 1995. 

J.P. Muller. A conceptual model of agent interaction. In [Dee94], 
pages 213-233, 1994. 

1. P. Muller. The Design of Intelligent Agents: A layered Approach. 
LNAI 1177 , Springer-Verlag, 1996. 

W. Nejdl and P. Frohlich. Minimal model semantics for diagnosis -
techniques and first benchmarks. In 7th International Workshop on 
Principles of Diagnosis, Val Morin, Canada, 1997. 

W. Nejdl, P. Frohlich, and M. Schroeder. A formal framework for 
representing diagnosis strategies in model-based diagnosis systems. In 
IJCA/-95, pages 1721-1727, Montreal, Canada, August 1995. Morgan 
Kaufmann Publishers, Inc. 

W. Nejdl and B. Giefer. DRUM: Reasoning without conflicts and jus
tifications. In 5th International Workshop on Principles of Diagnosis 
(DX-94), pages 226-233, October 1994. 

I. Niemela and P. Simons. Efficient implementation of the well
founded and stable model semantics. In Proceedings of the Joint In
ternational Conference and Symposium on Logic Programming, pages 
289-303, Bonn, Germany, 1996. MIT Press. 

L. M. Pereira and 1. J. Alferes. Well founded semantics for logic pro
grams with explicit negation. In B. Neumann (Ed.), European Con
ference on Artificial Intelligence, pages 102-106. John Wiley & Sons, 
1992. 

L. M. Pereira, J. J. Alferes, and J. Aparicio. Contradiction Removal 
within Well Founded Semantics. In A. Nerode, W. Marek, and V. S. 
Subrahmanian, editors, Logic Programming and Nonmonotonic Rea
soning, pages 105-119, Washington, USA, June 1991. MIT Press. 

L. M. Pereira, 1. N. Aparicio, and J. J. Alferes. Non-monotonic reason
ing with logic programming. Journal of Logic Programming. Special 
issue on Nonmonotonic reasoning, 17(2,3 & 4), 1993. 



136 AUTONOMOUS, MODEL-BASED DIAGNOSIS AGENTS 

[PAA94] 

[PBN97a] 

[PBN97b] 

[PB'f+93] 

[PB'f+94] 

[PDA93] 

[Poo89] 

[Prz95] 

L. M. Pereira, 1. J. Alferes, and J. N. Aparicio. Contradiction removal 
semantics with explicit negation. In M. Masuch and L. P6los, editors, 
Knowledge Representation and Reasoning Under Uncertainty, volume 
808 of LNAl, pages 91-106. Springer-Verlag, 1994. 

B. Pell, D. E. Bernhard, S. A. Chien, E. Gat, N. Muscettola, P. Pan
durang Nayak, M. D. Wagner, and B. C. Williams. An autonomous 
spacecraft agent prototype. In Proceedings of First Internationl Con
ference on Autonomous Agents, AA97, pages 253-261. ACM Press, 
1997. 

U. Furbach P. Baumgartner, P. Frohlich and W. Nejdl. Semantically 
guided theorem proving for diagnostic applications. In Proceedings of 
the Fifteenth International Joint Conference on Artificial Intelligence 
(IJCAl-97), pages 460-465, Nagoya, 1997. 

U. Furbach P. Baumgartner, P. Frohlich and W. Nejdl. Tableaux for 
diagnosis applications. In Proceedings of the International Conference 
on Analytical Tableaux and Related Methods (TABLEAUX'97, 1997. 

E. Pelikan, K. Bohndorf, T. Tolxdorff, D. Zarrinnam, and B. Wein. 
Computer-assisted diagnosis of bone tumors. In H. U. Lemke, K. Ina
mura, C. C. Jaffe, and R. Felix, editors, Computer Assisted Radiology, 
pages 630-633, Berlin, 1993. Springer-Verlag. 

E. Pelikan, K. Bohndorf, T. Tolxdorff, D. Zarrinnam, and B. Wein. 
Computerunterstiitzte Diagnose von pathologischen Skelettbefunden. 
Radiologica Diagnostica, 35/1, juli 1994. 

L. M. Pereira, C. V. Damasio, and J. J. Alferes. Diagnosis and debug
ging as contradiction removal. In L. M. Pereira and A. Nerode, ed
itors, 2nd Int. Workshop on Logic Programming and Non-Monotonic 
Reasoning, pages 334-348, Lisboa, Portugal, June 1993. MIT Press. 

D. Poole. Normality and faults in logic-based diagnosis. In Proceed
ings of the International Joint Conference on Artificial Intelligence 
(IJCAl), pages 1304-1310, Detroit, August 1989. Morgan Kaufmann 
Publishers, Inc. 

T. C. Przymusinski. Static semantics for normal and disjunctive 
logic programs. Annals of Mathematics and Artificial Intelligence, 
14(1):323-357, 1995. 



REFERENCES 137 

[Ra096] A. S. Rao. Agentspeak(l): BDI agents speak out in a logical com
putable language. In Proceedings of MAAMAW96, LNAI 1038. 
Springer-Verlag, 1996. 

[RdKS93] o. Raiman, J. de Kleer, and V. Saraswat. Critical reasoning. In Pro
ceedings of the International Joint Conference on Artificial Intelli
gence (JJCAI), pages 18-23, Chambery, August 1993. Morgan Kauf
mann Publishers, Inc. 

[Rei87] R. Reiter. A theory of diagnosis from first principles. Artificial Intelli
gence, 32(1):57-96,1987. 

[RG91] A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI
architecture. In J. Allen, R. Fikes, and E. Sandewall, editors, KR9I, 
International Conference on Principlies of Knowledge Representation 
and Reasoning. Morgan Kaufmann Publishers, Inc., 1991. 

[RG93] A. s. Rao and M. P. Georgeff. A model-theoretic approach to the 
verification of situated reasoning systems. In Ruzena Bajcsy, editor, 
JJCAI93, International joint Conference on Artificial Intelligence, vol
ume 1, pages 318-324. Morgan Kaufmann Publishers, Inc., 1993. 

[Rin89] G. A. Ringwood. A comparative exploration of concurrent logic lan
guages. Knowledge Engineering Review, 4(1):305-332,1989. 

[Sch94] D. Schuth. Interaktives fehlermanagementin verkehrsinformationsnet
zen. Master's thesis, RWTH Aachen, 1994. 

[Sch95] M. Schroeder. A final frontier: Preferences for strategies. In VI Confer
ence of the Spanish Association for Artificial Intelligence CAEPIA95, 
Alicante, Spain, November 1995. 

[Sch97] M. Schroeder. A brief history of the notation of Boole's algebra. 
Nordic Journal of Philosophical Logic, 2(1):41-62,1997. 

[SD89] P. Struss and o. Dressler. Physical negation - Integrating fault models 
into the general diagnostic engine. In Proceedings of the International 
Joint Conference on Artificial Intelligence (JJCAJ), pages 1318-1323, 
Detroit, August 1989. Morgan Kaufmann Publishers, Inc. 

[SdAMP97] M. Schroeder, I. de Almeida Mora, and L. M. Pereira. A deliberative 
and reactive diagnosis agent based on logic programming. In Intel
ligent Agents III, LNAI 1193. Springer-Verlag, 1997. As poster in 
Proc. of International Conference on Tools in Artificial Intelligence 
ICTAI96, Toulouse, 1996. 



138 AUTONOMOUS, MODEL-BASED DIAGNOSIS AGENTS 

[SDP96] M. Schroeder, C. V. Damasio, and L. M. Pereira. REVISE report: 
An architecture for a diagnosis agent. In Proceedings of the ECAI'96 
Workshop on Integrating Nonmonotonicity into Automated Reasoning 
Systems, UniversiUit Koblenz-Landau, Institut fur Informatik, Rheinau 
1, D-56075 Koblenz, 1996. 

[Sea69] J.R. Searle. Speech Acts. Cambridge University Press, Cambridge 
(UK),1969. 

[Sho93] Y. Shoham. Agent-oriented programming. Artificial Intelligence, 
60(1):51-92,1993. 

[SKM97] B. Selman, H. Kautz, and D. McAllester. Ten challenges in proposi
tional reasoning and search. In Proceedings of the Fifteenth Interna
tional Joint Conference on Artificial Intelligence (IlCAI-97), Nagoya, 
Japan, 1997. 

[SMA97] M. Schroeder, I. M6ra, and J. J. Alferes. Vivid agents arguing about 
distributed extended logic programs. In Proceedings of the Portuguese 
Conference on Artificial Intelligence EPIA97. LNAI 1323, Springer
Verlag, 1997. 

[SMWC97] M. Schroeder, R. Marques, G. Wagner, and J. Cunha. CAP - Con
current Action and Planning: Using PVM-Prolog to implement vivid 
agents. In Proceedings of the 5th Conference on Practical Applica
tions of Prolog, London, UK, April 1997. 

[SN97] M. Schroeder and W. Nejdl. Rapid prototyping for web-mediators 
- integrating distributed knowledge using vivid agents. In Working 
Notes of the Sixth Workshop on Enabling Technologies: Infrastructure 
for Collabortive Enterprises, Boston, USA, 1997. 

[SNH94] D. Schuth, W. Nejdl, andR. Hager. Fault management of infrastructure 
networks. In Proceedings of the Vehicular Technology Conference, 
Stockholm, June 1994. IEEENTS. 

[SSW94] K. Sagonas, T. Swift, and D. S. Warren. XSB as an efficient deductive 
database engine. In Proceedings of the ACM SIGMOD International 
Conference on the Management of Data, pages 442-453, Minneapolis, 
Minnesota, May 1994. 

[SSW96] K. Sagonas, T. Swift, and D. S. Warren. An abstract machine for com
puting the well-founded semantics. In Proceedings of the Joint In
ternational Conference and Symposium on Logic Programming, pages 
274-288, Bonn, Germany, 1996. MIT Press. 



[Str92a] 

[Str92b] 

[SW97] 

[TD95] 

[The95] 

[Th095] 

[tT97] 

[tTvH96] 

[vHtT94] 

[Wag91] 

[Wag94] 

REFERENCES 139 

P. Struss. Diagnosis as a process. In [HCd92], 1992. First appeared 
in Working Notes of the first International Workshop on Model-based 
Diagnosis, Paris, 1989. 

P. Struss. What's in SD? Towards a theory of modeling in diagno
sis. In Readings in Model-Based Diagnosis, pages 419-449. Morgan 
Kaufmann Publishers, Inc., 1992. 

M. Schroeder and G. Wagner. Distributed diagnosis by vivid agents. In 
Proceedings of First Internationl Conference on Autonomous Agents, 
AA97, pages 268-275, Marina del Rey, USA, February 1997. ACM 
Press. 

G. Theiss and R. Dobiasch. Study on application of system modelling 
in spacecraft control. Technical report, European Space Agency, 1995. 

G. Theiss. Systemtechnischer Ansatz flir die Entwicklung von Ex
pertensystemen zur Uberwachung und Diagnose automatisierter An
lagen: am Beispiel einer Spiegelofen-Kristallzuchtanlage. PhD thesis, 
University of Karlsruhe, Germany, 1995. 

S. R. Thomas. The PLACA agent programming language. In 
M. Wooldridge and N.R. Jennings, editors, Intelligent Agents l. LNAI 
890, Springer-Verlag, 1995. 

A. ten Teije. Automated Configuration of Problem Solving Methods in 
Diagnosis. PhD thesis, Universiteit Amsterdam, 1997. 

A. ten Teije and F. van Harmelen. Using refelxion techniques for 
flexible problem solving. Future Generation Computer Systems, 
12(1):217-234, 1996. Special Issue on Reflection and Meta-level AI 
Architectures. 

F. van Harmelen and A. ten Teije. Using domain knowledge to select 
solutions in abductive diagnosis. In A. G. Cohn, editor, Proceedings 
of the 11th European Conference on Artificial Intelligence ECAI94, 
pages 652-656. John Wiley & Sons, 1994. 

G. Wagner. Logic programming with strong negation and innexact 
predicates. Journal of Logic and Computation, 1(6), 1991. 

G. Wagner. Vivid Logic - Knowledge-Based Reasoning with Two 
Kinds of Negation, LNAI 764. Springer-Verlag, 1994. 



140 AUTONOMOUS, MODEL-BASED DIAGNOSIS AGENTS 

[Wag95] 

[Wag96] 

[WJ95] 

[WJM94] 

[WN96] 

G. Wagner. From information systems to knowledge systems. In 
E.D. Falkenberg et al., editor, Proc. of Information System Concepts. 
Chapman & Hall, 1995. 

G. Wagner. A logical and operational model of scalable knowledge
and perception-based agents. In Proceedings of MAAMAW96, LNAI 
1038. Springer-Verlag, 1996. 

M.J. Wooldridge and N.R. Jennings. Agent theories, architectures and 
languages: A survey. In M. Wooldridge and N.R. Jennings, editors, 
Intelligent Agents I. LNAI 890, Springer-Verlag, 1995. 

T. Wittig, N. R. Jennings, and E. H. Mamdani. ARCHON - a frame
work for intelligent cooperation. IEE-BCS Journal of Intelligent Sys
tems Engineering, 3(3):168-179,1994. 

B. C. Williams and P. P. Nayak. Immobile robots: AI in the New Mil
lenium. AI Magazine, 17(3):16-36,Fall, 1996. 



Index 

Abnonnal mode, 13 
Action, 92 
Action rules, 85, 90 
Agent architecture, 8 
Agent state, 93 
Agent-oriented programming, 6, 117 
AgentO, 117 
Agenthood, 6 
Agents 

vivid, 85, 92 
AgentSpeak, 117 
Alarm bursts, 28 
Alarm-correlation, 28 
Algorithm for strategies, 72 
April, 119 
ARCHON, 118 
Assignment, 61 
Asynchronous communication, 96 
Atom, 22 
Automatic mirror furnace, 2, 33 
Autonomy, 7 
BDI agents, 117 
Behaviour 

difference, 14 
mode, 13 
pro-active, 7, 85 
reactive, 7, 85 

Blocks world, 100 
Bottom-up algorithm, 40 
Bulb example, 42 
Cellular phone network, 28 
Certainty factors, 12 
Characteristic fonnula, 70 
Closed World Assumption, 87 

Coarse-grain parallelism, 98 
Combining strategies, 71 
Communication 

asynchronous, 96 
network, 7 
point -to-point, 96 
protocol, 34 

Component, 13 
Conflict, 38 
Consistent transition system, 61, 63 
Cycle 

perception-reaction, 93, 98 
Deduction in factbases, 87 
Default literal, 22 
Demo predicate, 46 
Depth of a strategy fonnula, 59 
Designing strategies, 60 
Detenninistic strategies, 60 
Diagnosis 

abductive, 17 
as a process, 55, 114 
communication protocol, 107 
consistency-based, 16 
engines, 17 
fault-tolerant, 104 
heuristic, 11 
model-based, 13, 113 
modelling problems, 25 
of bone tumors, 12 
preferences, 67 
process results, 65 
under a working hypothesis, 57 

DRUM, 18, 114 
Event queue, 94 



142 AUTONOMOUS, MODEL-BASED DIAGNOSIS AGENTS 

Example 
alann-correlation, 28 
automatic mirror furnace, 2, 33 
blocks world, 100 
bulb,42 
circuit diagnosis, 65 
communication protocol, 107 
fault-tolerant diagnosis, 104 
grid world, 101 
integrity checking of a database, 27 
strategies, 65 
traffic control, 25 
voter, 73 

Executable specification, 85 
Expressiveness, 20 
Extended logic program, 23 
Extensions of strategies, 76 
Fault modes, 14 
FlPA,122 
Flag, 94 
Formula 

characteristic, 70 
depth,59 
one-step strategy, 59 
strategy, 58 

Functional view, 15,66,115 
GDE, 17, 113 
Goal queue, 94 
Grid world, 101 
Herbrand universe, 22 
Heterogeneity, 85 
Hierarchy, 115 
Hitting-set, 38 
Hitting-set tree, 38 

iterative construction, 50 
Horn clauses, 20 
IC Prolog][, 118 
ICE,120 
IMPLODE, 17, 114 
Independence 

of strategies, 71 
platform, 85 

Induced model, 62 
Integrity checking of a database, 27 
Integrity constraint, 21, 24 
Knowledge base, 94 
Knowledge system, 85 
Measurements, 69, 115 
Message-passing, 96 
Meta logic programming, 116 
Modalities 

derived operators, 80 

motivation, 58 
relation between, 64 
semantics, 61 

Model, 13,61 
Model-based diagnosis, 13, 113 
Modularity, 85 
MOMO,17 
Monotonicity,21 
Multiple views, 66 
MYCIN,II 
Negation 

explicit, 21 
implicit, 21 

Non-deterministic strategies, 60 
Non-monotonic reasoning, 114 
Objective literal, 22 
Observations, 14 
OK mode, 13 
One-step strategy, 59 
Parallel virtuaJ machine, 95 
Perception, 94 
Perception-reaction-cycle, 93, 98 
Physical impossibility, 16 
Physical view, 15, 66, 115 
PLACA,117 
Plan, 91 
Plan execution, 94 
Plan queue, 94 
Planner, 92 
Planning, 95 
Platform independence, 85 
Point-to-point communication, 96 
Preference of strategies, 79 
Preferences, 115 
Preferences among Diagnoses, 67 
Pro-active behaviour, 85 
Pro-activeness, 7 
Prolog, 22 
PROTEIN, 114 
PVM,95 
PVM-Prolog, 95 
Queue 

event, 94 
goal,94 
plan, 94 
thread's, 97 

Reaction, 94 
Reaction rules, 85, 88 
Reactive behaviour, 85 
Reactivity, 7 
Reagent, 86 
Relational database, 87 



Relational factbase, 87 
Replanning, 95 
Results of diagnosis process, 65 
Revisable, 25 
REVISE, 18, 37, 113 
Revision, 21, 25, 37 
Rule application, 91 
Rule 

action, 85,90 
reaction, 85, 88 

Scalability, 85 
Semantics 

formal,85 
'If logic programs, 22 
operational, 69 
strategies, 61 
transition, 94 
until operator, 79 
well-founded, 22, 44, 46 

Sherlock, 17, 113 
Smodels,114 
Social ability, 7 
Stable state, 65 
State product, 72 
State transition system, 59 
STATIC, 114 
Strategies 

algorithm, 72 
combining, 71 
designing, 60 
deterministic, 60 
extensions, 76 
hierarchies, 66 
independence, 71 
knowledge base, 65 
measurements, 69 

multiple views, 66 
non-deterministic, 60 
operational semantics, 69 
preferences, 67 
structuraJ refinement, 66 

Stream logic programming, 119 
Structural refinement, 66 
Support set, 40 
Syntax 

extended logic program, 22 
strategy language, 58 

System description, 13 
T-tree, 44 
Task,96 
Term, 22 
Thread,97-98 
Timings 

benchmark circuits, 53 
bottom-up algorithm, 43 
top-down algorithm, 52 

INDEX 143 

Top-down proof procedure, 43, 46 
Traffic control, 25 
Transition semantics, 94 
Transition system 

consistency, 61, 63 
definition, 59 

TU-tree, 44 
Until operator, 79 
Updates in factbases, 88 
View 

functional, 66, 115 
physical, 66, 115 

Vivid,86 
Vivid agent, 85, 92 
Vivid knowledge system, 86 
Vivid reagent, 92 
Working hypothesis, 15,55 


