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To our children



Preface

This book is the outcome of a project that started with the organisation of
the Topical Workshop on “Agent-Based Computational Modelling. An Instru-
ment for Analysing Complex Adaptive Systems in Demography, Economics
and Environment” at the Vienna Institute of Demography, December 4-6,
2003. The workshop brought together scholars from several disciplines, allow-
ing both for serious scientific debate and for informal conversation over a cup
coffee or during a visit to the wonderful museums of Vienna. One of the nicest
features of Agent-Based Modelling is indeed the opportunity that scholars
find a common language and discuss from their disciplinary perspective, in
turn learning from other perspectives. Given the success of the meeting, we
found it important to pursue the purpose of collecting these interdisciplinary
contributions in a volume. In order to ensure the highest scientific standards
for the book, we decided that all the contributions (with the sole exception
of the introductory chapter) should have been accepted conditional on peer
reviews. Generous help was provided by reviewers, some of whom were neither
directly involved in the workshop nor in the book. All this would not have
been possible without the funding provided by the Complex Systems Net-
work of Excellence (Exystence) funded by the European Union, the Vienna
Institute of Demography of the Austrian Academy of Sciences, Università
Bocconi, and ARC Systems Research GmbH, and the help of the wonderful
staff of the Vienna Institute of Demography (in particular, Ani Minassian and
Belinda Aparicio Diaz). Agent-Based Modelling is important, interesting and
also fun—we hope this book contributes to showing that.

Milano Francesco C. Billari
Zurich Thomas Fent
Vienna Alexia Prskawetz
Champaign Jürgen Scheffran
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Agent-Based Computational Modelling:
An Introduction

Francesco C. Billari1, Thomas Fent2, Alexia Prskawetz3 and Jürgen
Scheffran4

1 Istituto di Metodi Quantitativi, Università Bocconi, Milano, Italy
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Summary. Agent-based models (ABMs) are increasingly used in studying complex
adaptive systems. Micro-level interactions between heterogeneous agents are at the
heart of recent advances in modelling of problems in the social sciences, including
economics, political science, sociology, geography and demography, and related dis-
ciplines such as ecology and environmental sciences. Scientific journals and societies
related to ABMs have flourished. Some of the trends will be discussed, both in
terms of the underlying principles and the fields of application, some of which are
introduced in the contributions to this book.

1 Agent-Based Modelling: An Emerging Field in
Complex Adaptive Systems

Since Thomas C. Schelling’s pathbreaking early study on the emergence of
racial segregation in cities [32], a whole new field of research on socioeco-
nomic systems has emerged, dubbed with a diversity of names, such as social
simulation, artificial societies, individual-based modelling in ecology, agent-
based computational economics (ACE), agent-based computational demogra-
phy (ABCD). Accordingly, the literature on agent-based modelling in social
sciences has flourished recently, particularly in economics5, political science6,

5 See i.e. the special issue on agent-based computational economics of the Journal
of Economic Dynamics and Control [34], especially the introduction by Leigh
Tesfatsion, as well as the website maintained by Tesfatsion http://www.econ.

iastate.edu/tesfatsi/ace.htm.
6 See i.e. the review paper by Johnson [23].
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and – to a lesser extent – sociology7. During the 1990s, this computational ap-
proach to the study of human behaviour developed through a vast quantity of
literature. These include approaches that range from the so-called evolution-
ary computation (genetic algorithms and evolution of groups of rules) to the
study of the social evolution of adaptive behaviours, of learning, of innovation,
or of the possible social interactions connected to the theory of games.

Different to the approach of experimental economics and other fields of
behavioural science that aim to understand why specific rules are applied by
humans, agent-based computational models pre-suppose rules of behaviour
and verify whether these micro-based rules can explain macroscopic regular-
ities. The development in computational agent-based models has been made
possible by the progress in information technology (in hardware as well as
software agent technology), and by the presence of some problems that are
unlikely to be resolved by simply linking behavioural theories and empirical
observations through adequate statistical techniques. The crucial idea that
is at the heart of these approaches is to use computing as an aid to the de-
velopment of theories of human behaviour. The main emphasis is placed on
the explanation rather than on the prediction of behaviour, and the model is
based on individual agents.

As outlined in Axelrod ([1, p.4]), agent-based computational modelling
may be compared to the principles of induction and deduction. “Whereas the
purpose of induction is to find patterns in data and that of deduction is to find
consequences of assumptions, the purpose of agent-based modelling is to aid
intuition”. As with deduction, agent-based modelling starts with assumptions.
However, unlike deduction, it does not prove theorems. The simulated data
of agent-based models can be analysed inductively, even though the data are
not from the real world as in case of induction.

2 From Rational Actors to Agent-Based Models

Established economic theory is based on the rational actor paradigm which
assumes that individual actors know their preferences, often measured by a
utility function, and the best possible decision, based on complete informa-
tion about their environment and the supposed consequences. Decision theory
deals with the ranking and selection of the options of actors, according to their
preferences. Usually a single rational decision-maker maximizes utility (value)
under given constraints, where a wide range of methods have been developed
to search for and find the optimum. While rational actors may be adequate
in environments with a few number of state and control variables, they have
limits in complex and uncertain environments and with real human beings of
bounded rationality and restrained computational capabilities.

One of the conditions that restrains rationality is the social environment
itself, in particular the unpredictable behaviour of other agents. Game theory
7 See i.e. the review paper by Macy and Willer [26], or the review of Halpin [18].
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is trying to extend rational decision-making to two and more players, each
pursuing their own preferences and utilities in response to the expected or
observed decisions of other players. Game theory becomes more difficult to
handle when a large number of players interact in a dynamic environment.
Dynamic game models describe the interaction between multiple players ac-
cording to situation-dependent decision rules and reaction functions. In re-
peated games players can learn and adapt their behaviour to the strategies of
other players, possibly leading to the evolution of cooperation. Evolutionary
games analyse the selection among competing populations of game strategies
according to their fitness in replication.

Recent years saw a transition from rational actor models to agent-based
modelling, and from top-down macro decision-making to bottom-up micro-
simulation. A common feature of ABMs is that individual agents act according
to rules, where utility optimization is just one of many possible rules. Thanks
to increasing computational capabilities, it became possible to analyse inter-
actions between multiple agents, forming complex social patterns. Computers
turned into laboratories of artificial societies ([12], [13]). Simulations have now
the character of experiments in virtual worlds, often with demanding compu-
tational requirements.

In cellular automata models, agents behave like insects in virtual land-
scapes [41]. For a large number of homogenous agents, methods from sta-
tistical physics, non-linear dynamics and complexity science are applicable
[17], describing self-organization or phase transitions when observed macro-
scopic properties emerge from the behaviour and interactions of the com-
ponent agents. Approaches to collective phenomena have been transfered to
interdisciplinary fields such as socio-physics and econo-physics, with applica-
tions ranging from moving crowds and traffic systems to urban, demographic
and environmental planning ([22],[39],[33]).

Key challenges are to find a conceptual framework to structure the diverse
field of ABMs, to calibrate the models with data and to integrate ABMs
into real-world applications. The selection of strategies and decision rules in
computer-based simulation models can be based on observation and include
real-world actors and stakeholders, offering a wide field of experimental games
for educational and research purposes as well as for decision support and policy
advice. Special modelling-simulation environments or toolkits of various kinds
are available for performing experiments, which abstract from the details and
can be duplicated by other researchers.

3 Structure, Behaviour and Interaction of Agents

Agent-based models are usually based on a set of autonomous agents capable
to interact with each other as well as with the environment according to rules
of behaviour, which can be simple or complex, deterministic or stochastic,
fixed or adaptive. An agent can be any organisational entity that is able to



4 Francesco C. Billari et al.

act according to its own set of rules and objectives. All agents can be of
the same type (homogenous) or each agent can be different from the other
(heterogeneous).

One core question is related to the structure of agents: should agents be
simple or should they be complex? Proponents of the simplicity of agents,
such as Robert Axelrod [1], support the so-called KISS principle (keep it sim-
ple, stupid), and point out that the most interesting analytical results are
obtained when simple micro-level dynamics produce complex patterns at the
macro level. This approach is analogous to mathematical models where com-
plex dynamics may arise from simple rules. Proponents of the complexity of
agents base their views especially in economics, sociology and cognitive psy-
chology, assuming that agents are possibly guided by a set of behavioural rules
and objective functions which evolved as a result of interaction and learning
in complex environments and shape the individual structure of each agent.
Reality tends to be between simplicity and complexity, and agents should be
kept as “simple as suitable”. Real agents seek to reduce complexity according
to their needs and adjust to their social environment, sometimes leading to
rather simple collective behaviour, despite the potential for individual com-
plexity.

Agents can include many details matching reality, at different spatial and
temporal scales. Depending on the agents’ number, their attributes and be-
havioural rules in their respective environments, ABM’s can be of great variety
and complexity, making them hard to analyse or predict. Using sensors, agents
can perceive their local neighbourhood and receive or send messages ([14]).

Cognitive agents may have cognitive capabilities “to perceive signals, react,
act, making decisions, etc. according to a set of rules” ([9]). Their intended
actions are shaped by what they think to know about the world (beliefs), based
on experience and perception, and what they would like to achieve (desired
goals), both represented by an internal model of the external environment.
Agents can be autonomous and act independently of any controlling agency, or
they can directly interact with or depend on other agents. In their environment
agents need information to react and adapt to their observation and to respond
to changes in the environment, and they can communicate with other agents
via a language. Pursuing goals, agents need to be pro-active, and they can be
rational by following a well-defined and logical set of decision rules to achieve
these goals.

Adaptive agents have the capability to learn, i.e. rather than following a
fixed stimulus-response pattern, they continuously adapt to changes in their
environment according to their expectations and objectives. They evolve in
a learning cycle of acting, evaluating the results of the actions dependent on
the response of the environment and updating the objective or the actions. By
acting an agent employs resources and directs them onto its environment, in
order to achieve the objective. Evaluation compares the results of the actions
and their impacts with the expectations and objectives. Searching tries to find
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better routines for achieving the objective. Adaptive agents can change their
objectives and routines.

A general framework for agent-based modelling can be characterized by
the following elements (see the contribution by Gebetsroither et al. in this
volume):

• Values, targets and objectives
• Resources or production factors
• Observation, expectation and update
• Rules, search routines and actions

These elements occur repeatedly in a cycle of action, evaluation and up-
date. A more comprehensive analysis would consider the complete multi-step
process of decision-making, interaction and management, including the fol-
lowing phases [31]:

1. Situational analysis and problem structuring
2. Option identification and scenario modelling
3. Concept development and criteria-based evaluation
4. Decision-making and negotiation
5. Planning and action
6. Monitoring and learning

The different phases are connected by processes such as evaluation, communi-
cation, capacity building, information, simulation, validation. Usually ABMs
do not apply all phases of this cycle but only selected elements which are of
particular relevance for a given problem.

4 From Micro to Macro: Modelling Population Processes
from the Bottom-Up

Agent-based simulations are increasingly applied in the social sciences. Artifi-
cial computational environments serve in fact as small laboratories to simulate
social behaviours and interaction among a large number of actors. This in-
cludes the study of the complex dynamics evolving from heterogenous popula-
tions. Populations are by definition aggregates of individuals, and as such they
constitute entities at the aggregate or “macro” level, whereas individual lives
contribute to numbers of events, person years and survivors, which are used in
the statistical analysis of populations. Demography as such is concerned with
the study of populations, and has been traditionally focusing on the macro
side of population dynamics, on “macro-demography”. However, during the
last decades of the Twentieth Century a “micro-demography” emerged with
a specific emphasis on the unfolding of individual-level demographic trajec-
tories and on the consequences of individual heterogeneity for the study of
population dynamics.
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Perhaps surprisingly, other disciplines than the one focusing on popula-
tion per se have attempted at micro-founding the study of specific types of
behaviour using some type of “methodological individualism” approach. In
particular, we refer to ecology, sociology, and economics, disciplines that are
in particular represented in this book.

In ecology, “individual-based modelling” (IBM), e.g. for the study of an-
imal and plant populations, has emerged starting from the mid-1970s as a
research program that has led to significant contributions (for a review see
[15]). According to Grimm and Railsback [16], individual-based models in
ecology fulfill, to a certain degree, four criteria: first, they explicitly consider
individual-level development; second, they represent explicitly the dynamics
of the resources an individual has access to; third, individuals are treated as
discrete entities and models are built using the mathematics of discrete events
rather than rates; fourth, they consider variation between individuals of the
same age. Individual-based models in ecology are aimed at producing “pat-
terns” that can be compared to patterns observed in reality. The sustainable
use and management of natural resources is an important issue but difficult to
model because it is characterized by complexity, a high degree of uncertainty,
information deficits and asymmetries.

There are not many examples of agent-based models concerning the man-
agement of natural resources. A complete agent-based model would have to
comprise both social and natural systems and respective agents, which is a
challenging task.

In sociology, the approach proposed by James Coleman (see [8] Ch. 1)
proposes to found social theory ultimately on the micro-level decisions of in-
dividuals. Coleman proposes to use a three-part schema for explaining macro-
level phenomena, consisting of three types of relations: 1) the “macro-to-micro
transition – that is, how the macro-level situation affects individuals; 2) “pur-
posive action of individuals” – that is, how individual choices are affected by
micro-level factors; 3) the “micro-to-macro transition” – that is, how macro-
level phenomena emerge from micro-level action and interaction.

Colemans conceptual framework is embedded in the notion of “social mech-
anism” as the key concept to explain behaviour in the social sciences, proposed
by Hedström and Swedberg [21], who see the three types of relationships as 1)
situational mechanisms, representing the case in which “The individual actor
is exposed to a specific social situation, and this situation will affect him or
her in a particular way”; 2) action formation mechanisms, representing “a
specific combination of individual desires, beliefs, and action opportunities
(that) generate a specific action”; 3) transformational mechanisms, specifying
“how these individual actions are transformed into some kind of collective out-
come, be it intended or unintended”. The framework is very similar to the one
presented recently by Daniel Courgeau [11] in a review on the macro-micro
link.

As we noticed before, the micro level is the natural point of departure
in economics, also when pointing to the macro level as the important out-
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come. While the first generation of economic simulation models was rather
focused on stylized empirical phenomena, the emergence of agent-based mod-
elling during the last 10 years has shifted the emphasis from macro simplicity
to micro complexity of the socio-economic reality. As noted by van den Bergh
and Gowdy [36, p. 65] “During the last quarter century, the microfounda-
tions approach to macroeconomic theory has become dominant”. Mainstream
economics, also known as “neoclassical” economics traditionally considers a
“representative agent” who maximizes a potentially complex utility function
subject to potentially complex budget constraints. This and other hypotheses
lead to mathematically tractable models of macro-level outcomes. The new
economics approach that applies the toolkit of neoclassical economics to de-
mographic choices has been a key success of the work of Gary Becker (see e.g.
[6]). This approach has now reached a level of maturity that can be attested
from the literature on population economics (see e.g. [42]). That we ought to
start from the micro level is also clearly stated by an economist who is partic-
ularly interested in population matters, Jere Behrman, who states that “For
both good conditional predictions and good policy formation regarding most
dimensions of population change and economic development, a perspective
firmly grounded in understanding the micro determinants - at the level of in-
dividuals, households, farms, firms, and public sector providers of goods and
services of population changes and of the interactions between population
and development is essential” [7].

The attention on the policy relevance of research on population (includ-
ing policy implications of results) is undoubtedly the main characteristic that
comes to the surface when looking at research on population economics. Micro-
based theories of behaviour are thus used to cast “conditional prediction” of
reactions to a given policy, with these reactions affecting macro-level out-
comes. Within economics, several scholars have objected to the neoclassical
paradigm from various perspectives (see e.g. [7] for objections to critiques con-
cerning population-development relationships). Of particular interest are the
critiques on mainstream economics that concern the assumption that agents
are homogeneous and the lack of explicit interaction between agents (see e.g.
Kirman [24]). Kirman’s point is that even if individuals are all utility maximiz-
ers (an idea that has also been challenged by several scholars), the assumption
that the behaviour of a group of heterogeneous and interacting agents can be
mimicked by that of a single representative individual whose choices coincide
with the aggregate choices of the group is unjustified and leads to misleading
and often wrong conclusions.

To overcome this micro-macro “aggregation” problem, that is the trans-
formational mechanism in Coleman’s scheme, some economists have proposed
to build models that resemble that of IBM in ecology. Models in agent-based
computational economics (ACE) explicitly allow the interaction between het-
erogeneous agents (see e.g. the review by Tesfatsion [34]).
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5 Population Dynamics from the Bottom-Up: ABCD

We now document the emergence of the agent-based modelling approach in
demography as a specific case-study.

Without the strong paradigm of the “representative agent” that underlies
mainstream economics, demography has to solve aggregation problems tak-
ing into account that demographic choices are made by heterogeneous and
interacting individuals, and that sometimes demographic choices are made by
more than one individual (a couple, a household). For these reasons, and for
the natural links to current micro-demography, computer simulation provides
a way to transform micro into macro without having to impose unnecessary
assumptions on the micro level (among those homogeneity, lack of interac-
tion).

Agent-based computational demography (ABCD) has been shaped by a
set of tools that models population processes, including their macro level dy-
namics, from the bottom up, that is by starting from assumptions at the
micro level [4]. Agent-based computational demography includes also micro-
simulation that has been used to derive macro-level outcomes from empirical
models of micro-level demographic processes (i.e. event history models), but
also formal models of demographic behaviour that describe micro-level deci-
sions with macro-level outcomes.

It is interesting to notice that demography has for a long time been using
simulation techniques, and microsimulation has become one of the principal
techniques in this discipline, being a widely discussed and applied instrument
in the study of family and kinship networks and family life cycle ( [19]; [38];
[30]; [20]; [35]). Microsimulation has also been widely used in the study of
human reproduction and fecundability ([29]; [27]), migratory movements [10]
or whole populations [25], and its role has been discussed in the general context
of longitudinal data analysis [40]. Evert van Imhoff and Wendy Post [37]
provide a general overview of the topic. Microsimulation has been used to
study and predict the evolution of a population using a model for individuals.

What does ABCD add to demographic microsimulation in helping to
bridge the gap between micro-demography and macro-demography? The em-
phasis of demographic microsimulation has been on the macro-level impact of
a certain set of parameters estimated at the micro-level from actual empirical
data. There has been no particular emphasis on the theoretical side. Agent-
based models do not necessarily include only parameters estimated from ac-
tual empirical data, but it may include parameters that are relevant for a spe-
cific theoretical meaning. In fact, microsimulation is to the event history anal-
ysis what macrosimulation (i.e. population projection based on aggregate-level
quantities like in the cohort-component model) is to traditional, macro-level,
formal demography. On the other hand, agent-based computational demogra-
phy is the micro-based functional equivalent of mathematical demography.

Some of the reasons why ABCD helps bridging the macro-micro gap in
demography are mentioned in this context (see [5] for a full discussion).
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First, it is relatively easy to include feedback mechanisms and to integrate
micro-based demographic behavioural theories (and results from individual-
level statistical models of demographic behaviour such as event history mod-
els) with aggregate-level demographic outcomes. This ability to include feed-
back is possibly the most important gain of ABCD models. In such models,
space and networks can be formalised as additional entities through which the
agents will interact.

Second, compared to mathematical modelling, it is relatively easy to in-
troduce heterogeneous agents that are not fully rational. Hence, the paradigm
of the representative, fully rational agent that has and often still penetrates
many economic and sociological applications can easily be relaxed in agent-
based modelling.

Third, when building agent-based computational models, it is indispens-
able to adopt simple formulations of theoretical statements. Although agent-
based modelling employs simulation, it does not aim to provide an accurate
representation of a particular empirical application. Instead, the goal of agent-
based modelling should be to enrich our understanding of fundamental pro-
cesses that may appear in a variety of applications. This requires adhering to
the KISS principle.

Fourth, using agent-based approaches, it is possible to construct models for
which explicit analytical solutions do not exist, for example social interaction
and generally non-linear models. Agent-based models are used to understand
the functioning of the model and the precision of theories need not be limited
to mathematical tractability. Simplifying assumptions can then be relaxed in
the framework of an agent-based computational model. But as Axtell [2] notes,
even when models could be solved analytically or numerically, agent-based
modelling techniques may be applied since their output is mostly visual and
therefore easier to communicate to people outside academia. In general, we
can see formal modelling of population dynamics using differential equations
and agent-based computational models as two ends of a continuum along the
macro-micro dimension [28].

Finally, it is possible to conceive artificial societies that need not necessar-
ily resemble present societies; such artificial societies can be seen as compu-
tational laboratories or may allow to reproduce past macro-events from the
bottom-up.

6 Contributions of ABMs to Economic, Demographic
and Ecological Analysis

The present book describes the methodology to set up agent-based models
and to study emerging patterns in complex adaptive systems resulting from
multi-agent interaction. It presents and combines different approaches, with
applications in demography, socio-economic and environmental sciences.
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6.1 Socio-Economics

Andreas Pyka and Thomas Grebel provide a basic instruction on how to model
qualitative change using an agent-based modelling procedure. The reasons
to focus on qualitative change are discussed, agent-based modelling is ex-
plained and finally an evolutionary economics model of entrepreneurial be-
haviour is given as an example. The conceptual framework for the analysis
of entrepreneurial behaviour is composed of several building blocks (actors,
actions, endowments, interaction, evaluation and decision processes), which
are not separate and unrelated entities but represent the conceptual view on
the issue, as a result of a systematization process. Actors are not modelled
by a representative agent but by a population of heterogeneous agents. For
any of two subpopulations (agents and firms) rules and routines are derived
which govern the particular actions of the agents, the interaction and inter-
relation of the agents within and among the sub-populations. The nature of
the actors and their heterogeneity is shaped by the endowment with resources
and their individual routines, which are related to the satisficing behaviour
and bounded rationality of the actors. Routinized behaviour causes some in-
ertia and stability of the system. Some actors join networks with other actors
and found a firm, others disentangle their networks or even go bankrupt.
The basic conceptual building blocks are implemented in the actual model of
entrepreneurial behaviour.

In their contribution, Markus Franke, Andreas Geyer-Schulz and Bettina
Hoser analyse asymmetric directed communication structures in electronic
election markets. They introduce a new general method of transforming asym-
metric directed communication structures represented as complex adjacency
matrices into Hermitian adjacency matrices which are linear self-adjoint op-
erators in a Hilbert space. With this method no information is lost, no arbi-
trary decision on metrics is involved, and all eigenvalues are real and easily
interpretable. The analysis of the resulting eigensystem helps in the detection
of substructures and general patterns. The formal method is applied in the
context of analysing market structure and behaviour based on market trans-
action data from the eigensystem. As an example, the results of a political
stock exchange for the 2002 federal elections in Germany are analysed. Market
efficiency is of special interest for detecting locally inefficient submarkets in
energy markets.

6.2 Population and Demography

Mike Murphy discusses the role of assortative mating on population growth in
contemporary developed societies. Assortative mating is a widespread feature
of human behaviour, with a number of suggested benefits. The question of
whether it contributes to population growth in contemporary societies is con-
sidered using the micro simulation program SOCSIM. Ways of parameterising
heterogeneous fertility and nuptiality, and the relationship of such parameters
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to those of both fathers and mothers are considered. One conclusion is that
the effect of assortative mating in which the fertility backgrounds of spouses
are positively correlated leads to higher population growth. A population with
a higher long term rate of growth, no matter how small the advantage, will
come to dominate numerically any population with a lower one and the overall
population eventually becomes effectively homogeneous and consists only of
the higher growth population. Further progress will require developments in
theory, data, modelling and technology, but assortative mating remains one
of the most persistent and enduring features of humans and other species.

Belinda Aparicio Diaz and Thomas Fent analyse an agent-based model
designed to understand the dynamics of the intergenerational transmission
of age-at-marriage norms. A norm in this context is an acceptable age in-
terval to get married. It is assumed that this age-interval is defined at the
individual level and the individuals’ age-at-marriage norms are transmitted
from parents to their children. The authors compare four different transmis-
sion mechanisms to investigate the long term persistence or disappearance of
norms under different regimes of transmission. They investigate whether re-
sults also hold in a complex setup that takes into account heterogeneity with
respect to age and sex as well as the timing of union formation and fertility. To
create a more realistic model of evolving age norms, the characteristics of the
agents are extended, and the age-at-marriage norms are split into two sex-
specific age-at-marriage norms. The results provide information about how
additional characteristics and new parameters can influence the evolution of
age-at-marriage norms.

To explain the differences in obesity rates among women in the United
States by education, Mary A. Burke and Frank Heiland model a social pro-
cess in which body weight norms are determined endogenously in relation to
the empirical weight distribution of the peer group. The dramatic growth in
obesity rates in the United States since the early 1980’s to close to 30% in
2000 has been widely publicised and raised attention to the problem of obesity.
Obesity significantly elevates the risks of diabetes, heart disease, hypertension,
and a number of cancers, and remains a prominent public health priority. The
agent-based model embeds a biologically accurate representation of variation
of metabolism which enables to describe a distribution of weights. Individuals
are compared to others with the same level of educational attainment. The
agents are biologically complex, boundedly rational individuals that interact
within a social group. Using heterogeneous metabolism and differences in av-
erage energy expenditure, an entire population distribution of body weights is
generated. Weight norms are defined as a function of aggregate behaviour, and
deviation from the norm is costly. Consistent with the observed distribution of
body weights among women in the U.S. population, the model predicts lower
average weights and less dispersion of weight among more educated women.
While previous models have made qualitative predictions of differential obe-
sity rates across social groups, they have not captured the differences in the
overall weight distributions that this model is able to reproduce. The model is



12 Francesco C. Billari et al.

also used to investigate competing hypotheses based on behavioural or genetic
differences across education groups.

6.3 Ecology and Environment

Volker Grimm and Steven F. Railsback specify agent-based models in ecology
by discussing two modelling strategies that have proven particularly useful:
pattern-oriented modelling (POM), and a theory for the adaptive behaviour
of individuals. These two strategies are demonstrated with example models of
schooling behaviour in fish, spatiotemporal dynamics in forests, and dispersal
of brown bears. Schooling-like behaviour is based on simple assumptions on
individual behaviour: individuals try to match the velocity of neighbouring
individuals, and to stay close to neighbours which leads to the emergence of
school-like aggregations. This demonstrates how simple behavioural rules and
local interactions give rise to a collection of individuals which are more or less
regularly spaced and move as one coherent entity. The question is discussed
how to learn about how real fish behave by combining observed patterns,
data, and an IBM. Specific properties of real fish schools are quantified, such as
nearest neighbour distance and polarisation, i.e. the average angle of deviation
between the mean direction of the entire school and the swimming direction
of each fish.

Ernst Gebetsroither, Alexander Kaufmann, Ute Gigler and Andreas Rese-
tarits present a preliminary version of an agent-based model of self-organisation
processes to support adaptive forest management. The modular approach con-
sists of two separate, but interlinked submodels. While the forest submodel
includes a very large number of comparatively simple agents, the socioeco-
nomic submodel comprises only a few complex agents defined by a fixed set of
an objective and several routines, technologies and resources. The use of forest
resources is determined by the interrelations between specific forest manage-
ment methods and the specific demand for timber of industries producing
wood-based goods. The timber market includes two types of agents which
belong to the sectors “forestry” offering timber with a long-term planning
horizon and “industry” producing wood-based goods with a short-time per-
spective. Their relation is characterised by imperfect competition, imperfect
information, strategic behaviour and learning. Other potentially important
agents are either not included in this model (e.g. tourists, hunters) or con-
sidered as exogenous forces (e.g. state authorities, communities, demand for
wood-based products, competing sources of timber supply). The main ques-
tion is how self-organisation processes on the timber market (demand for the
forest resource “timber”) as well as in forest succession (available stock of
timber) influence each other and which effects of adaptive management meth-
ods can be expected on the overall system’s behaviour. Running simulations
with an empirically calibrated model (using forestry data and interviews of
experts) allows to test specific forest management routines under controlled
conditions and restrictions.
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Rosaria Conte, Mario Paolucci and Gennaro Di Tosto use an evolution-
ary variant of the Micro-Macro Link (MML) theory in biological evolution to
understand the emergence of altruism, applied to food sharing among vam-
pire bats. Behaviour at the individual level generates higher level structures
(bottom-up) which feed back to the lower level (top-down). Starting from
ethological data a multi-agent model is used to analyse the key features of
altruistic behaviour. Every agent in the simulation is designed to reproduce
hunting and social activity of the common vampire bats. During night, the sim-
ulated animals hunt, during day they perform social activities (grooming and
food-sharing). A high number of small groups (roosts) provide social barriers
preventing altruists from being invaded by non-altruists (simple loop). When
the ecological conditions vary (e.g., the number of individuals per group in-
creases), altruism is at risk, and other properties at the individual level evolve
in order to keep non-altruists from dominating, and to protect the whole group
(complex loop). The two loops are illustrated by simulation experimenting on
individual properties, allowing altruists to survive and neutralise non-altruists
even under unfavourable demographic conditions.

6.4 General Aspects

To establish the potential importance of the interplay between social and
physical spaces, Bruce Edmonds exhibits a couple of agent-based simulations
which involve both physical and social spaces. The first of these is a more
abstract model whose purpose is simply to show how the topology of the
social space can have a direct influence upon spatial self-organisation, and
the second is a more descriptive model which aims to show how a suitable
agent-based model may inform observation of social phenomena by suggesting
questions and issues that need to be investigated. Taking the physical and
social embeddedness of actors seriously, their interactions in both of these
“dimensions” need to be modeled. In his view, agent-based simulation seems
to be the only tool presently available that can adequately model and explore
the consequences of the interaction of social and physical space. It provides
the “cognitive glue” inside the agents that connects physical and social spaces.

To build an agent-based computational model of a specific socio- environ-
mental system, Jim Doran discusses designs to create the software agents. The
currently available range of agent designs is considered, along with their limita-
tions and inter-relationships. How to choose a design to meet the requirements
of a particular modelling task is illustrated by reference to designing an infor-
mative agent-based model of a segmented, polycentric and integrated network
(SPIN) organization. As an example, a social movement in the context of en-
vironmental activism is discussed, representing a segmentary, polycentric and
integrated network composed of many diverse groups, which grow and die,
divide and fuse, proliferate and contract. The adaptive structure of SPINs
prevents effective suppression by authorities and opponents, an aspect that
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is relevant for the stability and disruption of networks, in particular terrorist
networks.
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Summary. In economics numerical approaches are increasingly used for the analy-
sis of dynamic phenomena of economic development since almost 30 years. The first
generation of simulation models was rather focused on stylized empirical phenom-
ena. With the emergence of agent-based modelling the last 10 years, however, the
trade-off between simplicity and abstracting in modelling, and taking into account
the complexity of the socio-economic reality has been enhanced to a large extent.
This paper serves as a basic instruction on how to model qualitative change using
an agent-based modelling procedure. The necessity to focus on qualitative change
is discussed, agent-based modelling is explained and finally an example is given to
show the basic simplicity in modelling.

1 Introduction

The tremendous development of an easy access to computational power within
the last 30 years has led to the widespread use of numerical approaches in
almost all scientific disciplines. Nevertheless, while the engineering sciences
focused on the applied use of simulation techniques from the very beginning,
in the social sciences most of the early examples of numerical approaches
were purely theoretical. There are two reasons for this. First, since the middle
of the 20th century, starting with economics, equilibrium-oriented analytical
techniques flourished and were developed to a highly sophisticated level. This
led to the widely shared view that within the elegant and formal framework
of linear analysis offered by neoclassical economics, the social sciences could
reach a level of accuracy not previously thought to be possible. Including also
important non-linearities to this framework, on the one hand was opening the
discussion of important dynamic phenomena, on the other hand, however, this
was already questioning the achievement of accuracy due to the problem of
multiple equilibria and the difficulties of equilibrium selection (e.g. [6]).
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Second, within the same period, new phenomena of structural change ex-
erted a strong influence on the social and economic realms. Despite the main-
stream neoclassical successes in shifting the social sciences to a more mathe-
matical foundation, an increasing dissatisfaction with this approach emerged.
For example, by the 1970s the benchmark of atomistic competition in neo-
classical economics had already been replaced by the idea of monopolistic and
oligopolistic structures under the heading of workable competition (e.g. [28]).
A similar development emphasizing positive feedback effects and increasing
returns to scale caused by innovation led to the attribute “new” in macroeco-
nomic growth theory in the 1980s [26]. In addition to these stepwise renewals
of mainstream methodology, an increasingly larger group claimed that the
general toolbox of economic theory, emphasizing rational behaviour and equi-
librium, is no longer suitable for the analysis of complex social and economic
changes. In a speech at the International Conference on Complex Systems
organized by the New England Complex Systems Institute in 2000, Kenneth
Arrow stated that until the 1980s the “sea of truth” in economics lay in sim-
plicity, whereas since then it has become recognized that “the sea of truth
lies in complexity”. Adequate tools have therefore to include the heteroge-
neous composition of agents (e.g. [27]), the possibility of multilevel feedback
effects (e.g. [4]) and a realistic representation of dynamic processes in histor-
ical time (e.g. [1]). These requirements are congruent with the possibilities
offered by simulation approaches. It is not surprising that within economics
the first numerical exercises were within evolutionary economics, where phe-
nomena of qualitative change and development are at the front of the research
programme. The first generation simulation models were highly stylized and
did not focus on empirical phenomena. Instead, they were designed to analyse
the logic of dynamic economic and social processes, exploring the possibili-
ties of complex systems behaviour. However, since the end of the 1990s, more
and more specific simulation models aiming at particular empirically observed
phenomena have been developed focusing on the interaction of heterogeneous
actors responsible for qualitative change and development processes. Mod-
ellers have had to wrestle with an unavoidable trade-off between the demands
of a general theoretical approach and the descriptive accuracy required to
model a particular phenomenon. A new class of simulation models has shown
to be well adapted to this challenge, basically by shifting outwards this trade-
off:3 So-called agent-based models are increasingly used for the modelling of
socio-economic developments. Our Chap. deals with the changed requirements
for modelling caused by the necessity to focus on qualitative developments
which is generally highlighted within evolutionary economics and the possi-
bilities given by agent-based models. The next Sect. is concerned with the
importance of an analysis of qualitative development and it is shown that
evolutionary economics is offering an adequate framework for this. Section 3
then focuses on agent-based-modelling as “the” tool that allows incorporat-

3 See e.g. [12].
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ing endogenously caused development processes. Section 4 gives an illustrative
example of an agent-based-model. Section 5 summarizes the whole story.

2 Qualitative Change in an Evolutionary Economics
Perspective

When concerned with the examination of change and development processes
within industrialized economies economists usually focus on the movement of
certain variables they consider a good description of the basic effects of eco-
nomic growth and development. In mainstream economics the phenomenon
of economic development is e.g. empirically analysed on the macro-economic
level as the improvement of total factor productivity in time which lowers
prices and leads to the growth of incomes. Accordingly, most often the GDP
per capita is used as an indicator describing economic development in a quan-
titative fashion. Although it is impressing to observe the growth of income in
economies over a long time span, this indicator, due to its quantitative nature
only, does not give any idea about the structural and qualitative dimensions
underlying economic development. This becomes even more obvious on the
sectoral level where the analysis is most often restricted to long-run equi-
librium structure describing e.g. the number of firms in a particular industry
without putting emphasis on those factors driving the emergence and matura-
tion of industries. By restricting their analysis on the quantitative dimension,
the economic mainstream implicitly confines itself to the analysis of a system
characterized by a constant set of activities basically neglecting innovation
processes.4

However, in less orthodox economic approaches it is argued, and it is indeed
also one of Schumpeter’s major contributions that economic development does
also include prominently qualitative changes not only as an outcome but also
as an essential ingredient which justifies us to speak of transformation pro-
cesses going on. Qualitative change manifests itself basically via innovation of
different categories of which technological innovation very likely is among the
most important ones (others are social, legal, organizational changes). Qual-
itative change is the transformation of an economic system, characterized by
a set of components and interactions into another system, with different com-
ponents and different interrelationships (e.g. [27]). An analysis of qualitative
change therefore necessarily has to include the actors, their activities and
objects which are responsible for the ongoing economic development. An ex-
ample for the significance of qualitative changes can be found in Fig. 1 which
displays the emergence of new industries in the internet sector in the 1990s for
Germany by showing the number of firm entries. What strikes immediately is

4 [10]: Economic growth can be described at the macro-economic level, but it can
never be explained at that level. Economic growth results from the interaction of
a variety of actors who create and use technology and demanding costumers.
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Fig. 1. Swarms of new firms in the internet industries (Germany)
Source: e-startup.org database, survey of 332 venture capital firms, analyses of in-
solvency databases, Newsfeed and other public sources.

that anything but an equilibrated regular or proportional development is visi-
ble: Instead new firms appear in swarms, to use a notion coined by Schumpeter
[29] and sometimes almost no activities occur. Of course there are many other
variables which do also reflect the importance of the qualitative dimensions of
economic development e.g. on a macro-economic level the changing composi-
tion of the employment structure (Fourastier Hypothesis), on a meso-level the
regional specialization patterns or on a micro-economic level the obsolescence
of old and the emergence of new knowledge like the biotechnology revolution
in pharmaceuticals, to name a few. By its very nature, the transformation of
an economic system is a multi-facetted phenomenon. Accordingly, it is mis-
leading to focus only on quantitative changes of the economy when analysing
the driving factors of the transformation of economic systems over time. To
better understand the mechanisms and dynamics behind the observed devel-
opments one has to explicitly include the qualitative dimensions. To achieve
this, economic analysis has to consider – besides the prevailing cost-orientation
– an important knowledge- and learning-orientation.

The following paragraphs are concerned with the implications of this
knowledge-orientation, which can also be considered as the heart of the matter
of evolutionary economics.
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Knowledge-Based Approach of Evolutionary Economics

It is beyond the scope of this contribution to discuss in detail the criticism
brought forth by evolutionary economics with respect to assumptions under-
lying the mainstream economic reasoning. A major discussion can be found
among others, in [7], [5] and [31]. For our purposes it is sufficient to men-
tion three major points, evolutionary economists claim to be of outstanding
importance in the discussion of economic development processes and which
are incompatible with traditional economic approaches. These points are also
constitutive for that strand of literature within evolutionary economics which
is concerned with industry evolution and technological progress namely the
Neo-Schumpeterian approach. Here, instead of the resource- or incentive-
orientation of neoclassical industrial economics a knowledge-orientation fo-
cuses on the investigation of industries and innovation processes in particular.

• First of all, the Neo-Schumpeterian theory wants to explain how innova-
tions emerge and diffuse over time. A specific feature of these processes is
uncertainty, which cannot be treated adequately by drawing on stochastic
distributions referring to the concept of risk. Therefore, the assumption of
perfect rationality, underlying traditional models cannot be maintained,
instead the concepts of bounded and procedural rationality are invoked.
Consequently, actors in Neo-Schumpeterian models are characterized by
incomplete knowledge bases and capabilities.

• Closely connected, the second point concerns the important role hetero-
geneity and variety plays. Due to the assumption of perfect rationality i.e.
optimal decisions, in mainstream models homogeneous actors and tech-
nologies are analysed. E.g. every deviation from an optimal technology
would lead to the exit of the respective firm applying by definition a sub-
optimal technology. Heterogeneity as a source of learning and novelty is
by and large neglected or treated as an only temporary deviation.

• Finally, the third point deals with the time dimension in which learning
and the emergence of novelties take place. By their very nature, these
processes are truly dynamic, meaning that they occur in historical time.
The possibility of irreversibility, however, does not exist in the mainstream
approaches, relying on linearity and equilibrium.

Thus, traditional economic theories, summarized under the heading of
incentive-based approaches, with their focus on cost-based and rational deci-
sions only, are excluding crucial aspects of actors’ behaviours and interactions,
which are influenced by a couple of factors lying by their very nature beyond
the scope of these approaches. Although, of course, cost-benefit calculations
(with respect to innovation itself a problematic activity) play an important
role, the actors’ behaviour is influenced additionally by several other factors
as learning, individual and collective motivation, trust etc. It is the role of
these factors the knowledge-based approach of evolutionary economics explic-
itly takes into account.
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By switching from the incentive-based perspective to the knowledge-based
perspective the Neo-Schumpeterian approaches have realized a decisive change
in the analysis of the transformation of economic systems. In this light the
introduction of novelties mutate from optimal cost-benefit considerations to
collective experimental and problem solving processes [9]. The knowledge-base
of the actors is no longer perfect, instead a gap between the competencies and
difficulties which are to be mastered opens up ([16, C-D gap]). There are
two reasons responsible for this C-D gap when it comes to innovation: on
the one hand, technological uncertainty introduces errors and surprises. On
the other hand, the very nature of knowledge avoids an unrestricted access.
Knowledge in general, and new technological know-how in particular, are no
longer considered as freely available, but as local (technology specific), tacit
(firm specific), and complex (based on a variety of technology and scientific
fields). To understand and use the respective know-how, specific competencies
are necessary, which have to be built up in a cumulative process in the course
of time. Following this, knowledge and the underlying learning processes are
important sources for the observed heterogeneity among agents.

Challenges for Analysing Qualitative Change

From the discussion above we can identify two major challenges for an analysis
of qualitative change:

The first challenge is that a theoretical framework adequately displaying
our notion of qualitative change has to incorporate concepts that comply with
the notion of development of evolutionary economics in the sense Nelson [25]
discussed. Basically he refers to path-dependencies, dynamic returns and their
interaction as constitutive ingredients for evolutionary processes in the socio-
economic realm.

The second challenge is that we generally have to focus on both the micro-
and meso-level of the economy as to our understanding the term qualitative
change refers to a changing composition of components and interaction of and
in the economic system. In doing so, we can identify some stylized facts that
are considered of crucial importance when qualitative change in an economy
is considered. The most obvious ones are:

First, an increasing importance of knowledge generation and diffusion ac-
tivities is observed at least in those sectors of the economy that are consid-
ered to be the most dynamic and innovative ones. This coins the notion of
a transformation of the economy into a knowledge-based economy. Second,
this is accompanied by a continuously increasing specialisation and related to
this an increasing variety of products and services coexisting simultaneously.
Third, specialisation and differentiation goes hand in hand with an increas-
ing importance of (market and non-market) interactions between the agents.
Fourth, behind this increasing variety we observe innovation processes that at
the same time improve efficiency of the production process and the quality of
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the products. Fifth, this innovation process is driven by competition select-
ing between different technological alternatives. Finally, the environmental
constraints can be considered as filter- and focusing devices in this selection
process either supporting or suppressing the diffusion of new technologies.

Once the relevance of these facts for the transformation of an economy is
accepted the research has to account for those developments adequately.

Micro- and Meso-Perspective

Obviously this aim can only be accomplished by abandoning an aggregate
perspective and instead focusing on a micro- or meso-level population ap-
proach [23]. This allows for examining diverse agents, their interaction and the
knowledge-induced transformation of both. By doing this, modelling openly
has to take into account the importance of micro-macro-micro feedback effects
(e.g. [31]). In their decisions actors obviously consider macro (-economic) con-
straints, but they also exert a significant influence on the altering of these
constraints [7]. The interrelated inspection of the meso- and the micro-level
reflects the idea that analysis on the aggregated meso-level relies on descrip-
tion whereas the analysis of the micro-level focuses on explanation of the
phenomena found on the meso-level [7].

Knowledge

Considering this will lead to a revision of standard economic models as analysis
here follows reality closely. Traditional ’production functions’ include labour,
capital, materials and energy. Knowledge and technology are only external
influences on production. However, recent analytical approaches have been
developed allowing the explicit consideration of knowledge as well as learn-
ing of actors as a means of acquiring new knowledge. Improvements in the
knowledge base are likely not only to increase the productive capacity of
other production factors, leading to the introduction of new products, as a
visible outcome of the transformation process, but also to alter the organiza-
tional processes of knowledge creation, namely the interrelationships between
the actors. Thus, transformation relates to a result- and a process-dimension
similar to the terminology elaborated in [17].

Consequently, it cannot be assumed that there exists a fixed set of activities
and relationships in the social and economic sphere, especially when it comes
to knowledge generation and learning. But this does by no means imply that
no such set exists at all. It does exist, although, by its very nature it is evolving
continuously. In this respect transformation does not only refer to the feedback
processes, but it does also and with major relevance refer to the change of
the set itself during the process. This is evolution, and evolution is the very
reason for not using static equilibrium theories or dynamic models to analyse
qualitative developments as they are based on the notion of reversibility. The
notion of evolution demands that we resort to ideas of irreversibility and path-
dependence.
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3 A Modelling Approach Allowing for Qualitative
Change: Agent-Based Modelling

An exploration of settings fulfilling the above requirements very likely needs
numerical techniques, which are regarded as a major tool in evolutionary
economics ([19],[2]). Although simulation analysis comes in various flavours
most of them reflect Boulding’s call that we need to develop ’mathematics
which is suitable to social systems, which the sort of 18th-century mathematics
which we use is not’ [3]. An increasingly growing literature today now is
concerned with the application of so-called agent-based models. This approach
consists of a decentralized collection of agents acting autonomously in various
contexts. The massively parallel and local interactions can give rise to path
dependencies, dynamic returns and their interaction. In such an environment
global phenomena such as the development and diffusion of technologies, the
emergence of networks, herd-behaviour etc. which cause the transformation
of the observed system can be modelled adequately. This modelling approach
focuses on depicting the agents, their relationships and the processes governing
the transformation. Very broadly, the application of an agent based modelling
approach offers two major advantages with respect to the knowledge- and
learning-orientation:

The first advantage of agent based models is their capability to show how
collective phenomena came about and how the interaction of the autonomous
and heterogeneous agents leads to the genesis of these phenomena. Further-
more agent-based modelling aims at the isolation of critical behaviour in order
to identify agents that more than others drive the collective result of the sys-
tem. It also endeavors to single out points in time where the system exhibits
qualitative rather than sheer quantitative change [32]. In this light it becomes
clear why agent-based modelling conforms with the principles of evolution-
ary economics ([20], [21]). It is ’the’ modelling approach to be pursued in
evolutionary settings.

The second advantage of agent-based modelling, which is complementary
to the first one, is a more normative one. Agent-Based models are not only
used to get a deeper understanding of the inherent forces that drive a system
and influence the characteristics of a system. Agent based modellers use their
models as computational laboratories to explore various institutional arrange-
ments, various potential paths of development so as to assist and guide e.g.
firms, policy makers etc. in their particular decision context.

Agent-Based modelling thus uses methods and insights from diverse disci-
plines such as evolutionary economics, cognitive science and computer science
in its attempt to model the bottom-up emergence of phenomena and the top
down influence of the collective phenomena on individual behaviour.

The recent developments in new techniques in particular the advent of
powerful tools of computation such as evolutionary computation (for a sum-
mary of the use of evolutionary computation and genetic programming in par-
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ticular see [8]) opens up the opportunity for economists to model economic
systems on a more realistic i.e. more complex basis [32].

There is no entity, even though it may exist without the actors, which
has no influence on the current state of the system or the development of the
system. To illustrate this point, bits of information have no influence on the
system as long as they are not put into the appropriate context by a capable
individual, influencing its activities. No resource can change the system as
long as it is not used for carrying out certain activities that change the nature
and the structure of the system. Hence in the centre of the stage there is the
actor and its activities.

In the following Sects. a typical example for an agent-based model is intro-
duced in order to highlight the specialties of this methodology. In particular
the model deals with the emergence of new firms which are considered the
outcome of entrepreneurial decisions of individual agents pooled together in
networks. As the focus of this Chap. lies on the methodology of agent-based
modelling we cannot go into detail with respect to the economic implications
of the model but refer instead to [14] and [15] where all the economic concepts
and the formal description used in the model are described in detail.

4 An Illustrative Example: An Evolutionary Economics
Model of Entrepreneurial Behaviour

4.1 The General Building Blocks

A conceptual framework for the analysis of entrepreneurial behaviour can be
composed of several building blocks. In particular we consider actors, action,
endowments, interaction and evaluation and decision processes as the decisive
building blocks. However, the building blocks discussed here are not separate
and unrelated entities. Rather they are the result of a systematization process.
They represent our conceptual view on the issue, developed to clarify the
analytical concepts, and to facilitate the implementation of the simulation
model in the second step. In the following Sects. we sketch the building blocks.

Actors

We consider actors and their interactive decisions being the major driving
force in the evolution. As such we regard them as the reason for the man-
ifestation of qualitative developments going on in the system. They are the
crucial components of the system. The model requires a multi-agent approach,
which assumes that agents populating the model can be divided into various
categories according to their initial endowments concerning the availability
of capital, an entrepreneurial attitude as well as the respective technological
competencies.

Accordingly, a central issue is the general design of the actors. Actors are
represented as code that has the standard attributes of intelligent agents [33]:
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- autonomy, which means that agents operate without other agents hav-
ing direct control of their actions and internal states. This is a necessary
condition for implementing heterogeneity.

- social ability, i.e. agents are able to interact with other agents not only in
terms of competition but also in terms of cooperation. This includes the
possibility to model agents that show various forms of interaction blended
from competition and cooperation.

- reactivity, agents are able to perceive their environment and respond to it.
- finally, proactivity enables the agents to take the initiative. This means

that they are not only adapting to changing circumstances, rather are
they engaged in goal-directed behaviour.

The above points indicate that the actors in the simulation are able not
only to adapt their behaviour to a given set of circumstances but they are
also in a Neo-Schumpeterian sense able to learn from their own experience
and to modify their behaviour creatively so as to change the circumstances
themselves.

When modelling the features and characteristics of the artificial agents
the above mentioned standard attributes have to be implemented. As the
agents in our conceptual framework can be characterized by their actions,
endowments, interactions and their evaluation and decision processes, these
conceptual building blocks have to be designed such as to reflect these at-
tributes.

Actions

The different actions (e.g. founding decisions, production decisions etc) per-
formed by the actors enable us to classify certain groups of actors. Not only
is it the actions that we use as a demarcation of different groups of actors -
their endowment might be another criterion for differentiation - but actions is
one of the most striking one and connected to the other features such as en-
dowments, etc. that will be discussed below. Basically we distinguish between
individual agents and firms as networks of agents.

Routines

The actors are not modelled by a representative agent but by a population of
heterogeneous agents. For any of our two subpopulations (agents and firms)
rules and routines can be derived which govern the particular actions of the
agents, the interaction and the interrelation of the agents within and among
the sub-populations. Actions and routines are conceptually closely related and
the latter can be considered as realizations of actions.

Hence it is routines through which the actors manipulate reality. It is not
only the endowment with resources that shapes the nature of the actors, it is
their individual routines that make up a large part of the actors heterogeneity.
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Nelson and Winter [24] relate routines to the satisficing behaviour and the
bounded rationality of actors.5 Routinized behaviour causes some stickiness
and some inertia of the system that results in some stability of the system -
stability, at least to a certain degree.

Evaluation and Decision Processes

The discussion up to this point reveals that we have to cope with a hetero-
geneous set of actors. Some actors join networks with other actors and found
a firm, other disentangle their networks or even go bankrupt with their pre-
viously founded firm. The question here is, how to unify the decision process
of such a diverse set of actors while preserving the possibility for heterogene-
ity. After having introduced the basic conceptual building blocks in a rather
abstract and general way the following Sects. deal with the actual model of
entrepreneurial behaviour.

4.2 Modelling Entrepreneurial Behaviour

The starting point of the model is the micro-level. The driving force of an
agent-based model is the agent. While an incentive-based model would rather
focus on facts and phenomena, external to the actor, a knowledge-based view
has to thoroughly investigate the agent. This also raises methodological issues.
In principal, the former - that is orthodox methodology - uses the Newtonian
mechanics which requires the concept of a homo oeconomicus as a necessary
condition. The homo oeconomicus performs a robustly optimal behaviour.
In case behaviour is deterministic, the usage of analytical tools (equilibrium
analysis) becomes legitimate. In return, this methodology makes it difficult
to discuss psychological and sociological aspects of agents. The homo oeco-
nomicus has been deprived from any psychological and sociological quali-
ties that indeed affect individual (economic) behaviour. As much as orthodox
methodology asks for such a perfectly rational and therefore homogeneous
agent within a supposedly deterministic world, the need to shed some light on
the non-deterministic aspects – the heterogeneity in agents’ behaviour – asks
for an adequate methodology. Agent-Based modelling allows us to cope with
the complexity emerging from the behaviour of heterogeneous actors.

In the following, a sketch of an agent-based model of entrepreneurial be-
haviour will be drawn.

Actors

Actors are boundedly rational. Their current individual state is the result of
an ongoing path-dependent, cumulative and irreversible process. Their knowl-
5 An example of a routine applied by agents in the innovation process is: Invest x

percent of the turnover of the previous period in R&D.
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edge, their capabilities and their resources are the result of a congenitally de-
termined learning and decision-making process. On these grounds, actors will
make future decisions.

When we exemplarily investigate the emergence of entrepreneurial be-
haviour, a stereotypical agent may look as follows: the decision to become
an entrepreneur might be driven by entrepreneurial traits ([29], [22]), by its
knowledge and capabilities acquired by education and work experience ([18],
[13]) and last not least, sufficient financial resources ([30], [11]). For simplic-
ity, these three components, we call the entrepreneurial (ec), the capability
(cc) and the financial (fc) component of our basic, bounded rational actor as
shown in Fig. 2.

ccec

fc

Fig. 2. An actor and its endowment

Using a Schumpeterian concept of the entrepreneur, innovative behaviour
will be dependent on the actor’s capacity to make use of a new technology.
Besides the fact that the actor’s cognitive capacity might prevent him/her
from innovating on a new technology in the first place, the possibility of not
receiving the knowledge about the new technology may never make an actor
an entrepreneur either, though having the potentials. As a result, the diffu-
sion of knowledge is constrained by individual factors as well as the fashion of
social interaction, which is the means to pass on such knowledge. This knowl-
edge diffusion process can be easily modelled with a cellular automaton using
percolation theory [15].

For simplicity let us now consider only those agents who have received and
understood the application of a new technology. Then, it is more probable
that these agents might undertake entrepreneurial actions, even if this is not
a necessary consequence.

Social Interaction

An entrepreneurial decision cannot be considered in isolation. The context of
a social group plays an important role in an actor’s decision-making process:
either supporting or disapproving a decision such as starting a new business.
Some actors might be interested in a new technology (e.g. the internet) and
begin proactively to gather new information and knowledge about it. Thus,
a dynamic social interaction process keeps the agents forming new networks
and thus building and restructuring connections as depicted in Fig. 3.
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ec cc

fc

ec cc

fc

ec cc

fc

agent 1

agent 2

agent 3

Fig. 3. Actors forming a network

This social networking dynamic is an indeterministic, quasi-random pro-
cess6. With a cellular automaton [15] such quasi-random behaviour can be
implemented into a model: placing the actors on a lattice, giving them certain
rules when and where to move, a self-organizing process evolves that makes
actors of a kind (having a comparable set of endowments) happen to bump
into each other.

At any time an actor evaluates his/her chances to found a firm successfully,
and so does he/her evaluate the chances of other network members to start a
business and finally, they may decide to establish a firm altogether. See Fig.
4.

ec cc

fc

ec cc

fc

ec cc

fc

firm

Fig. 4. A firm founded by three actors

So far the micro-level has been substantiated with the specificities of the
actors, their endowments, their routines behaviour and their social interaction.
At any point in time, each network constitutes a potential firm.

6 Quasi-random means that such a search process is neither perfectly determinis-
tic saying that the result of this process is always the optimal network, nor is
the search process completely chaotic. Agents act goal-oriented but not perfectly
rational.
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Micro-Meso/Macro Feedback

Up to this point, the modelling procedure was strictly bottom-up. However,
this is not the whole story. Though indeed entrepreneurial decisions are micro-
level decisions with all the psychological and sociological aspects involved, the
meso and macro level also have a major influence on such kind of decisions.
The emergence of new industries (e.g. e-commerce, etc.) is an endogenous
process. It is an ever-changing process principally driven by micro behaviour.
Nevertheless, economic indicators such as the rate of entry and exit, market
concentration and the stage of an industry’s life cycle have a feedback effect
from the meso/macro level onto the micro level. Hence, the agents create
their common economic reality and at the same time are guided by the same
economic reality.

As a consequence, economic data (entry, exit, etc.) have to be taken into
account within the decision-making process of the agents. Whether an actual
firm is actually established not only depends on individual factors, the self
and the group evaluation process, but also it depends on the evaluation of
economic opportunities of a new technology, i.e. meso and macro data.

A Heterogeneous Oligopoly

In order to implement this endogenous change, we have to use a module that
produces this data given the agents’ actions. This module is a simple hetero-
geneous oligopoly module [15], which produces the data required. Once firms
are founded, they take part in market competition. Each firm faces an indi-
vidual demand curve which depends on the firm’s competitiveness relative to
the remaining incumbent firms’ competitiveness. Thereby, the competitive-
ness is determined by the firm’s balance in endowments. For example, firms
that have less in the capacity component have worse chances than others.
Firms learn over time and improve their efficiency, i.e. there is a first-mover
advantage. This way, the firm’s competitiveness is an endogenous result of the
quasi-random search process of the agents.

The Founding Threshold

The heterogeneous oligopoly only serves as a selection criterion to generate
the necessary data which influences micro behaviour. The module is inter-
changeable. The continuously produced data is fed via the so-called found-
ing threshold into the decision-making process of the agents. The founding
threshold is perceived by the agents from the observation of the overall indus-
try performance (e.g. number of entry and exits). Thus, the focus on micro
behaviour is guaranteed and the model is kept parsimonious and simple. See
Fig. 5 .



Qualitative Development Processes 31

Fig. 5. Micro-macro-feedback effects

Results

An agents-based model as it is developed in [14] has been conceptually outlaid
above. The formal part and the code can be found in the literature cited.

Now, with the model as it was stated above various scenarios can be run.
The endowments of actors can be fleshed out with empirical data or, as it was
done in the simulation run shown below, can just be pseudo-random numbers.
So it is done with the routine behaviour of agents. Certain, specified rules make
them interact with each other. Hence, the start-up decision is an economic,
irreversible decision, contingent to psychological and sociological aspects.

As Fig. 6 shows firms are founded by agents driven by the positive data
generated by market competition. The founding threshold thereby depicts
the ups and downs of the agents common attitude towards the economic
development, which agents adapt their behaviour to.

Figure 7 serves to illustrate the heterogeneity among firms. Each firm
founded has its individual competitiveness relative to others. Not all of the
firms are successful and survive the early phase of competition. Some become
insolvent and may exit the market, whereas others survive and grow. Further-
more, it has to be emphasized that the heterogeneity of firms is no arbitrary
assumption but the result of a decision-making process of bounded rational
and therefore heterogeneous actors.

5 Conclusions

The Chap. deals with one of the most prominent challenges in social sciences
today, namely the analysis of qualitative change. It is shown that evolutionary
economics is offering an adequate framework for this, overcoming the severe
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Fig. 6. A selection of simulation results

restrictions orthodox economic approaches are confronted with. Emphasizing
the role of learning, true uncertainty, heterogeneity of agents and irreversibil-
ity, within evolutionary economics qualitative development becomes an en-
dogenous process driven by agents and their interactions.

Agent-Based models allow for an explicit consideration of these charac-
teristic features and therefore can be considered as “the” modelling tool for
the analysis of qualitative development and transformation processes. After
having worked out the basic features and requirements of agent-based models,
their functioning is exemplarily shown by introducing an agent-based model
of entrepreneurial behaviour. This particular model is also demonstrating a
second crucial advantage of this modelling technique: agent-based models are
offering a platform for inter- and trans-disciplinary research. In the model
of entrepreneurial behaviour for example, several insights from psychology
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time

profits

Fig. 7. The performance of new firms

as well as the theory of social networks are embedded. In a way, agent based
models can be considered a systemic approach, allowing the consideration and
integration of different social “realities” which makes them an extremely valu-
able tool for the analysis of social processes which generally can be considered
as multifaceted phenomena.
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Summary. In this article we introduce a new general method of representing trad-
ing structures as complex adjacency matrices and transforming these into Hermitian
adjacency matrices which are linear self-adjoint operators in a Hilbert space. The
main advantages of the method are that no information is lost, no arbitrary deci-
sion on metrics is involved, and that all eigenvalues are real and, therefore, easily
interpretable. The analysis of the resulting eigensystem helps in the detection of
substructures and general patterns. While this approach is general, we apply the
method in the context of analyzing market structure and behaviour based on the
eigensystem of market transaction data and we demonstrate the method by an-
alyzing the results of a political stock exchange for the 2002 federal elections in
Germany.

1 Introduction

The analysis of directed asymmetric communication structures has its ori-
gins in military signal intelligence in the 1st and 2nd World War. With the
spread of information and communication technology in almost every aspect
of everyday life and with today’s trends towards embedded, wearable, and
networked devices we expect an ever increasing stream of communication and
traffic data. Wellman’s vision of the rise of network societies requires new tools
for enhancing social capital, tools from social network analysis which analyze
these data streams (see e.g. [39], [38]). H. A. Simons’s early investigation of
the behavioural aspects of organizations show the potential of analyzing orga-
nizational communication streams [32]. In information retrieval Google’s page
rank index exploits the “frozen” asymmetric communication between docu-
ments in the form of directed hyperlinks [26]. For a more detailed analysis see
[20]. Another application area – this time on the level of the technical infras-
tructure – is the surveillance of distributed systems by means of analyzing
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their communication streams. However, in this contribution we concentrate
on the analysis of the communication streams in electronic double-auction
markets.

This contribution is structured in two parts: In Sect. 2 we present the no-
tation and the theoretical foundations for the eigensystem analysis of asym-
metric directed communication streams and in Sect. 3 we apply the method to
the analysis of market structure and behaviour in an experimental forecasting
market for the 2002 federal elections of Germany which was organized by the
department of Information Services and Electronic Markets.

2 Hilbert Space, Hermitian Matrices, and Asymmetric
Communication Streams

To make our presentation self-contained we introduce in the following both
notation and basic definitions that we need. By z we denote a complex number
in algebraic form or in exponential form z = a + ib = |z|eiφ. Re(z) = a
denotes the real part of z, Im(z) = b the imaginary part. The absolute value
of z is |z| =

√
a2 + b2, and the phase φ = arccos Re(z)

|z| , 0 ≤ φ ≤ π, with i

the imaginary unit (i2 = −1). z denotes the complex conjugate z = a − ib
of z. The following rules serve as a reminder how to compute with complex
numbers:

z1z2 = |z1||z2|ei(φ1+φ2) (1)
z + z = 2Re(z) (2)

z = z if and only if z ∈ R (3)

zz = |z|2 (4)

2.1 Hilbert Space

We use the following notational conventions: Unless otherwise stated all num-
bers are complex (∈ C). A column vector is printed in bold face x, its compo-
nents are xj , j = 1 . . . n. The vector space is defined by V = Cn. Matrices are
denoted as capital letters A. akl represents the entry in the k-th row and the
l-th column. Greek letters denote eigenvalues. λk represents the k-th eigen-
value. The complex conjugate transpose of a vector x is defined as x∗. The
transpose of a vector x is xt. The outer product of two vectors x and y is
defined as:

xy∗ =

⎛
⎝ x1y1 . . . x1yn

. . . . . . . . .
xny1 . . . xnyn

⎞
⎠ (5)
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We represent the inner product of x and y which is a semilinear form on a
given vector space V as:

〈x | y〉 = x∗y =
n∑

k=1

xkyk (6)

For the vector space V the following rules hold:

〈x | x〉 ≥ 0 with 〈x | x〉 = 0 if and only if x = 0 (7)
〈ax | y〉 = a〈x | y〉; 〈x | ay〉 = a〈x | y〉 (8)

〈x + y | z〉 = 〈x | z〉 + 〈y | z〉 (9)

〈x | y〉 = 〈y | x〉 (10)

The norm, denoted by ‖ x ‖, is defined as follows:√
〈x | x〉 =‖ x ‖ (11)

Note that the distance between two vectors x and y is defined by
‖ x − y ‖. For x,y ∈ Rn the distance reduces to the familiar Euclidean
norm

√∑n
i (xi − yi)2.

A Hilbert space is a complete normed inner product space as defined by
Eqs.(6) - (11). We only consider separable Hilbert spaces in this contribu-
tion. In addition, for every n ∈ N, a set of linearly independent elements
x1, . . . ,xn exists such that the equation a1x1 + . . . anxn = 0 holds only when
a1 = · · · = an = 0. (See e.g. M. H. Stone [37].)
The Cauchy-Schwartz inequality

|〈x | y〉| ≤
√
〈x | x〉

√
〈y | y〉 (12)

(With equality if x = ay, a ∈ C.)
is the basis to the Bessel inequality. For any vector h and an orthonormal
basis xj

n∑
j=1

|〈h | xj〉|2 ≤‖ h ‖2 (13)

(Bessel inequality.)
For any vector h and a complete orthonormal basis xk the Bessel inequality
becomes Parseval’s equality:

n∑
j=1

|〈h | xj〉|2 =‖ h ‖2 (14)
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2.2 Hermitian Matrices

The adjoint space X∗ of X is the set of all semilinear forms (Eq. (8)) (e.g.
inner product) on vector space X [19, p. 11]. A selfadjoint linear operator is
called Hermitian. A matrix H is called Hermitian, if and only if

H∗ = H (15)

with H∗ representing the conjugate complex transpose of H. This means that
the matrix entries can be written hlk = hkl. Hermitian matrices are also
normal:

HH∗ = H∗H (16)

The eigenvalue equation
Hx = λx (17)

of a complex Hermitian matrix H can be represented due to its complete
orthonormal eigenvector system (which means of full rank) in the Fourier
sum representation:

H =
n∑

k=1

λkPk; Pk = xkx∗
k (18)

with λk the k-th eigenvalue, xk the k-th eigenvector, and Pk the orthogo-
nal projectors. Note that

∑n
k=1 Pk = I, P ∗

k = Pk, P 2
k = Pk. The set of all

eigenvalues is called spectrum.
Any orthogonal basis can be chosen such that:

〈xk | xl〉 = δkl follows from (15) (19)

with

δkl =

{
0 if k �= l,

1 if k = l
(20)

This also holds true for arbitrary rotation:

〈eiφkxk | eiφlxl〉 = e−iφkeiφl〈xk | xl〉 = ei(φl−φk)〈xk | xl〉 = ei(φl−φk)δkl

(21)

Hermitian matrices thus have full rank and, therefore all eigenvalues are real:

λk ∈ R ∀k (22)

because 〈Hx | x〉 = 〈λx | x〉 = λ〈x | x〉 and 〈x | Hx〉 = 〈x | λx〉 = λ〈x | x〉
and H∗ = H imply 〈Hx | x〉 = 〈x | Hx〉 and thus λ = λ which means λ ∈ R

(see [23, p. 548], [19, p. 53]).
Since all eigenvalues of a Hermitian matrix are real (Eq.(22)) the interpre-
tation of the eigenvalues does not pose the difficulty of interpreting complex
eigenvalues of non-symmetric real matrices.
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For a complex Hermitian matrix with tr(H) = 0 some eigenvalues have to be
negative due to the fact that

tr(H) =
n∑

k=1

hkk =
n∑

k=1

λk = 0 (23)

As a special case consider a matrix B of order l = n + m with

B =
(

0n×n A
A∗ 0m×m

)
(24)

with A representing a n by m matrix of rank r. In the special case of n = 1
and m = l − 1 this matrix represents a directed, weighted star graph. The
spectrum of that system is described by the following non-zero eigenvalues:

σ(B) = {+λ1,−λ1, . . . ,+λr,−λr} (25)

(This follows from(
0 A

A∗ 0

) (
x1

x2

)
= λ

(
x1

x2

)
⇒

{
Ax2 = λx1

A∗x1 = λx2

}
⇒ A∗Ax2 = λ2x2,

see [23, p. 555]). For the special case of a weighted star (n = 1), the non-zero
eigenvalues are σ(B) = {+λ1,−λ1}.

Furthermore, the eigenvalues of any matrix A depend continuously upon
its entries aij , because the zeroes of a polynomial depend continuously on the
coefficients of the polynomial. This property is made precise by the following
theorem (see [15, p. 539-540]):

Theorem 1. Let n ≥ 1 and p(x) =
∑n

i=0 aix
i is a polynomial with an �= 0.

Then for every ε > 0, a δ > 0 exists, so that for any polynomial q(x) =∑n
i=0 bix

i with bn �= 0 and max0≤i≤n | ai − bi |< δ we have

min
i∈τ

max
1≤j≤n

| λj − µτ(i) |< ε,

where λ and µ are the zeros of p(x) and q(x) in some order and the minimum
is taken over all permutations τ of 1, . . . , n.

In addition, perturbation bounds for invariant subspaces of a Hermitian
matrix A and its Hermitian perturbation A + E can be found in [18] or [10].

2.3 Coding Communication Streams as Hermitian Matrices

We consider communication streams defined as a weighted directed graph
G = (N, E) with N denoting the set of nodes of the graph, E ∈ N × N × R

the set of edges weighted with the number of messages m from node k to node
l and k �= l holds. A complex adjacency matrix H from such a graph G is
constructed as follows:
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1. We construct a square complex adjacency matrix A with n members by

akl = m + ip (26)

with m the number of outbound messages from node k to node l, and p
the number of inbound messages from node l to node k, and i representing
the imaginary unit. As can be seen akl = ialk.

2. We rotate A by multiplying A with e−i π
4 (complex multiplication is equiv-

alent to rotation, see Eq. (1)) in order to obtain a Hermitian matrix H :

H = A · e−i π
4 (27)

Proof:
a) akl = reiφ

b) alk = ire−iφ = iakl

c) akk = 0 because of the exclusion of self references
d) aklr = reiφeiψ = rei(φ+ψ)

e) alkr = ire−iφeiψ = ei π
2 rei(ψ−φ) = rei( π

2 +ψ−φ)

f) For Hermitian matrices aklr = alkr must hold, therefore, rei(φ+ψ) =
re−i( π

2 +ψ−φ).
g) This holds, if φ + ψ = −π

2 − ψ + φ.
h) Solving for ψ leads to 2ψ = −π

2 . Thus ψ = −π
4 . qed

3. Under this rotation the coordinate independent characteristics of the orig-
inal communication patterns is kept [23, p.256], no information is lost.

Furthermore, since H is a Hermitian matrix (and Hermitian matrices are
of full rank) and rotation is rank preserving, this implies that A is also of full
rank.

Table 1 shows how for four different types of communication behaviour
the characteristic is transfered after the rotation described above. Note that
each type remains identifiable.

Table 1. Communication behaviour representation

communication behaviour akl = m + ip hkl = mr + ipr

no self reference akk = 0 hkk = 0
k → l > l → k m > p pr > 0
l → k > k → l m < p pr < 0
k → l = l → k m = p pr = 0

3 Analyzing Market Structure and Behaviour in an
Experimental Forecasting Market

Recently researchers investigated and recommended virtual stock exchanges
as marketing research tools comparable to opinion polls (e.g. [34], [35]). These
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forecasting markets have been pioneered by Forsythe, Nelson, Neumann and
Wright with the Iowa Election Market which successfully predicted the US
presidential elections in 1988 and 1992 and outperformed the polls [9]. For a
survey on German election markets in 1990, 1991, 1994, and 1998 as well as on
other European election markets organized during the last decade see [3] who
show that these markets in general did not as well in predicting the outcome of
elections as their US counterparts. While a number of explanations have been
put forward (marginal trader and judgement bias [9], political insiders [3],
. . . ) we tend towards a different explanation, namely the possible breakdown
of Vernon Smith’s induced value theory when moving election markets from
a university environment into the field [33].

We illustrate this hypotheses with anecdotal evidence from the political
stock markets run during the Austrian presidential elections in 1998. In the
campaign for this election Richard “Mörtl” Lugner ran as outsider against
Thomas Klestil. Election markets were fashionable in Austria at this time, sev-
eral newspapers (Kurier, Salzburger Nachrichten) and two universities (TU-
Wien, WU-Wien) organized election markets – each of a different kind. The
press election markets received high media coverage, whereas the smallest
market, namely the market of the WU-Wien, was more of an internal market
(and a software performance test) for an interdisciplinary seminar organized
by a research group of the second author. Surprisingly, on the market of the
Salzburger Nachrichten Richard Lugner was traded at approximately 20 per-
cent of the votes triggering a large number of stories covering his life, his
life-style and his election program in the press as well as numerous appear-
ances at talk shows.

Practically overnight, Richard Lugner was Austria’s political shooting star.
Even more surprisingly, only the small, “inefficient”, and unknown market of
the WU-Wien performed better than the opinion polls. Rumours on money
losses in the order of 20 000 Euro were reported to the second author and
discussed within the Austrian election market group. However, due to lack
of hard data this incident remained unpublished. Shortly after the election,
mass media researchers estimated the market value of Richard Lugner for
advertising at 1.5 million Euro. And from this anecdote we conclude that it
may be rational to loose money in one market, if and only if we can offset
these losses in another market. Clearly, running an election market which
serves as an information channel for the election proper (another market with
higher rewards) implies loss of experimental control, because it seems almost
impossible to establish a proper incentive structure for this kind of game in
non-isolated markets.

As an alternative to incentive compatibility several researchers (e.g. [9],
[3], [34], and [35]) propose explanation models for the prediction error based
on explanatory variables not observable in the market as e.g. self-reports and
surveys of traders (e.g. demographics [3] and expectations of election results
[25]) or on explanatory variables based on measures of market behaviour as
e.g. the volatility of the market on the last trading day (e.g. [34]). For a critic of
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the first approach we refer the reader to Michael Berlemann [1] who identified
untestable hypotheses, institutional differences, failing incentive systems, and
difficulties in classifying trading behaviour as the main problems. The choice
of the definition of volatility as the coefficient of the variation of price changes
(

��n
i=1

(di−d)2

n )

d
with pi the i-th price, di = pi−pi−1, and d = 1

n

∑n
i=1 di in the

second approach seems to be arbitrary. Other choices for volatility measures
(e.g. the semi-variance) can be found in [27]. Further options are measures as
the bid-ask spread or Roll’s effective bid-ask spread [28] or Gomber’s market
impact as a measure of liquidity [12]. In addition, in an experimental setting
all these measures are based only on a fraction of the available information in
the market transaction data.

The rest of this section is structured as follows: First, we discuss different
aspects of market and information efficiency and their connection to forecast-
ing markets, namely that efficient markets have a high forecasting accuracy.
Since market efficiency is essential for forecasting accuracy, researchers in fore-
casting markets try to induce market efficiency either by enforcing incentive
compatibility or by explanation models on the prediction error. In the follow-
ing we propose an alternative to achieve this goal: To analyze the eigensystem
of market transactions and to compare the eigensystem of an actual market
with the eigensystem of a monopoly/monopsony and with the eigensystem
of an (efficient) competitive market. In order to do this, we first show that
the transactions recorded in the accounting system of a market can be inter-
preted as a weighted asymmetric communication structure. Next, we present
the eigensystem of a typical monopoly/monopsony and the eigensystem of an
(efficient) competitive market. Finally, we analyze a stylized fact about the
market structure and behaviour in an experimental forecasting market for the
2002 federal elections in Germany.

3.1 Market Efficiency and Forecasting Markets

Let us recall that the idea of market efficiency has a long tradition in eco-
nomics with a first peak of interest in the comparison of socialist/communist
centralized planning economies with decentralized market economies after the
Russian revolution (see [17] for a survey). Hayek’s main objections against the
feasibility of centralized planning economies are based on the economics of in-
formation processing: First, the very large number of variables and equations
for optimizing a centralized economy and the too large computational com-
plexity of solving this problem (“a task which, with any means known at
the present, could not be carried out in a lifetime” [13, p. 212]), and, sec-
ond, the difficulty of placing all the relevant information at the disposal of
a single central agency, because of the dispersal of information throughout
the society [14]. Under the (natural) assumption that each economic unit has
only information about itself, Hayek concluded that information efficiency re-
quires a minimization of information transfers between the economic units as
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well as a decentralized solution of the optimization problem in such a way
that the information transfer between the economic units is restricted to the
price vector (without the numeraire) and that each economic unit solves its
own optimization problem (as a price taker). Hayek claimed that decentral-
ized market-based economies are exactly such informationally decentralized
procedures.

A formalization of Hayek’s result due to an idea of K. Arrow can be found
in [24]: It can be shown that in an economy with private property, with ra-
tional companies which know the prices and their own production technology
and maximize their profits, with rational consumers which know the prices
and their own preferences and which maximize their own utility, and with
prices which balance supply and demand the allocation of resources is effi-
cient and the incentive problem is solved because each party follows only its
own interests. Markets are allocationally efficient if prices equate the (risk ad-
justed) marginal return of all parties. Note, however, that this formalization
at the same time allows an analysis of various market failures, either caused
by external effects or the interplay of information decentralization and in-
centive compatibility (see [17]). The last problem is fundamental and of high
relevance for forecasting markets.

Efficient (capital) markets are more realistic than perfect markets. Perfect
capital markets have the following properties [5, p. 331]:

1. No friction. In perfect markets no transaction costs and taxes exist (by
definition operationally efficient). All assets are perfectly divisible. No
regulations constrain the market.

2. Perfect competition in both product and securities markets. Producers
supply goods and services at minimum average cost, in security markets
all participants act as price takers.

3. Informationally efficient means information is costless and received simul-
taneously by all parties.

4. All parties are rational expected utility maximizers.

Compare these conditions with capital market efficiency: “... in an efficient
captial market, prices fully and instantaneously reflect all available informa-
tion” [5, p. 331]. Prices are accurate signals for capital allocation. And this
remains true, even if we relax some of the perfect market conditions. We
can still have efficient markets with taxes, brokerage fees, costly information,
imperfect competition in product markets, etc.

The operationalization of this definition in the form of three different and
testable versions of the efficient capital market hypotheses is due to Fama
(see [6], [7], and [8]). The weak-form efficiency says that the information in
past prices is not relevant in earning excess returns. The semi-strong form effi-
ciency claims that no excess returns can be earned from any publicly available
information. The strong-form efficiency stipulates that no excess returns can
be earned using any information. Rubinstein [29] and Latham [21] have given
an even stronger definition of capital market efficiency: A market is efficient
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with regard to an information event, if that event causes no portfolio changes
- that is no trade occurs.

Formally, in an efficient market (Fama [7])

f(pt | Φt−i) = fm(pt | Φm
t−1), (28)

where pt denotes the security price vector at time t, Φt−1 is the available
information set at t and Φm

t−1 is the information set used by the market,
fm(pt | Φm

t−1) is the density function estimated by the market for pt, and
f(pt | Φt−i) is the true density function of pt. To make Eq. (28) testable
a link between fm(pt | Φm

t−1) and pt−1 must be established. Usually, the
assumption that the conditions of market equilibirum can be expressed in
terms of expected returns serves this purpose:

pj,t−1 =
Em(pj,t | Φm

t−1)
1 + Em(rj,t | Φm

t−1)
(29)

where Em(rj,t | Φm
t−1) is the expected return of security j in market equlibrium

implied by fm(pt | Φm
t−1) and Em(pj,t | Φm

t−1) is the expected value of the price
of security j at time t of the market. E(pj,t | Φt−1) denotes the true expected
price of security j at time t implied by f(pt | Φt−1) and E(rj,t | Φt−1) the true
expected return implied by E(pj,t | Φt−1) and f(pt | Φt−1). If Eq. (28) holds,
we have E(pj,t | Φt−1) = Em(pj,t | Φm

t−1) and E(rj,t | Φt−1) = Em(rj,t | Φm
t−1).

Thus in an efficient market, the true expected return equals its expected value
in market equilibrium and the expected prices in market equilibrium equal the
true prices – and, therefore, markets can be used for forecasting prices as in
election markets. The forecasting quality of a market is directly related to
market efficiency.

However, in capital markets tests on market efficiency always require the
joint specification of a market equilibrium model (that is, how Em(rj,t | Φm

t−1)
is related to fm(pt | Φm

t−1)) but the conditions of market efficiency do not
restrict the choice of a market equilibrium model. (For a survey on empirically
testing the various asset pricing models, see [8]).

Fortunately, in a forecasting market we can dispense with the problem of
jointly specifying and testing a market equilibirum model. At least ex-post (af-
ter the event at time T ) the true prices are known and they can be compared
with the market prices (by the Euclidean distance of pT (the observed price
vector) and pt (the market equilibrium price vector)). However, in a forecast-
ing market, the interesting question ex-ante is if pt is a good predictor of pT ?
Again, this is related to market efficiency and to incentive compatibility, as the
anecdote on Richard Lugner demonstrates. In financial markets behaviourists
like Andrei Shleifer argue that market efficiency is caused by rational traders,
by independent deviations from rationality, and by arbitrage [36]. Moreover,
they argue that even a single condition is enough. For a forecasting market,
that is, unfortunately, only true, if incentive compatibility is assured.
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Nevertheless, we take in the following a behaviouristic position. To sup-
port this, we repeat here A. Samuelson’s argumentation that observed choice
acts reveal consumer preferences [30]. In our own forecasting markets we can
completely observe trading and bidding behaviour and we turn the questions
about market efficiency and incentive compatibility into questions about the
observed trading and bidding behaviour in a market accounting system. Thus,
in our setting more variables of the trading process are observable and poten-
tially taken into account. More specifically, in this contribution we concentrate
in the following on identifying trading patterns consistent with perfect compe-
tition as opposed to trading patterns indicating a monopolostic/monopsonistic
behaviour in the eigensystem of the market accounting system in an attempt
to link monopolistic/monopsonistic behaviour with less efficient markets and
larger forecasting errors. At the moment we can do this only qualitatively.
We are well aware that this constitutes only a first small step towards a be-
havioural foundation for market efficiency.

3.2 Financial Accounting and Asymmetric Communication
Structures

Next, consider the small example of financial accounting shown in Fig. 1 with
eight transactions of the form trader k sells to trader l shares and receives an
amount of money s. The T-accounts of all traders involved are shown with the
8 trades recorded according to the conventions of financial accounting. (For
a short introduction to financial accounting see [11]). The journal entries of
the records numbered (1) to (8) are shown next to the T-accounts. The graph
in Fig. 2 shows the monetary flow between the traders. That is the edge is
weighted by the money flow from trader k to trader l. In the example, the
money flow on the edges of the graph in the observation period is generated by
a single transaction. In general and in the rest of this paper, the edge weight
is the sum of all monetary flows s from trader k to trader l. And we see that
the monetary flow between accounts can be represented as an asymmetric
directed communication structure. Note that the weighting function of the
transaction stream can be chosen as required by the intended application.

(1) Record trader 1 trader 2, 9 Euro
(2) Record trader 1 trader 3, 10 Euro
(3) Record trader 3 trader 1,  4 Euro
(4) Record trader 4 trader 1, 7 Euro
(5) Record trader 1 trader 4, 8 Euro
(6) Record trader 1 trader 5, 9 Euro
(7) Record trader 5 trader 1, 5 Euro
(8) Record trader 2 trader 1, 2 Euro

Trader 1

(1)    9
(2)  10
(5)    8
(6)    9

(3)   4
(4)   7
(7)   5
(8)   2

Trader 2

(1)   9(8)   2

Trader 4

(4)   7 (5)   8

Trader 3

(2)   10(3)   4

Trader 5

(6)   9(7)   5

Fig. 1. 5 Accounts and 8 records
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3.3 Star Graphs and their Interpretation

As a basic construct consider a directed and weighted star graph with 5 mem-
bers as in Fig. 2.

1

2 3

45

2

9

4

10

7

8

5

9

Fig. 2. Unperturbed star graph: A monopoly/monopsony or a market place with
almost perfect competition?

The complex adjacency matrix belonging to this graph is:⎛
⎜⎜⎜⎜⎝

0 2 + 9i 4 + 10i 7 + 8i 5 + 9i
9 + 2i 0 0 0 0
10 + 4i 0 0 0 0
8 + 7i 0 0 0 0
9 + 5i 0 0 0 0

⎞
⎟⎟⎟⎟⎠ (30)

Which after rotation becomes the Hermitian matrix:⎛
⎜⎜⎜⎜⎝

0. 7.7 + 4.9i 9.8 + 4.2i 10.5 + 0.7i 9.8 + 2.8i
7.7 − 4.9i 0. 0. 0. 0.
9.8 − 4.2i 0. 0. 0. 0.
10.5 − 0.7i 0. 0. 0. 0.
9.8 − 2.8 0. 0. 0. 0.

⎞
⎟⎟⎟⎟⎠ (31)

As can be seen in Table 2 there are two non-zero eigenvalues of the same
absolute value but different sign. As was shown in Eq. (25) this is indeed the
characteristic of a star graph complex Hermitian adjacency matrix. As can
also be seen the eigenvectors belonging to the two eigenvalues are the same in
absolute values but differ by π in phase. Note that the trader with ID 1 is the
center of the star graph and is indicated as such by the highest absolute value
of the eigenvector component. This result and all other numerical results in
the following are determined only up to an arbitrary rotation. For the rest of
the paper this rotation is always chosen in such a way that the eigenvector
element with the largest absolute value (in polar coordinates) is real (has a
phase of 0). We have used Mathematica 4.0 to calculate our results [40]. E.g.
for a perturbed star we refer the reader to [16].

Interpreting this graph as a transaction stream in the accounting system
of a market requires knowledge about the market organisation. Two interpre-
tations corresponding to two types of market organization, namely a market
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with bilateral trades between parties and a market with a market mechanism
as formal counterparty to all trades are discussed: The account with ID 1
belongs to a trader as in the example shown in Fig. 1 or the account with ID
1 belongs to a formal counterparty for all trades (“the market mechanism”).
In the case study in Sect. 3.5 the market mechanism is that of a continuous
double auction market.

In the first interpretation, we see that the trader with ID 1 is the only
counterparty for all trades. Depending on the strength of the asymmetry of
the flows in the graph the trader with ID 1 can be identified either as a monop-
olist (only seller, more inflows of money,), a monopsonist (only buyer, more
outflows of money), or as a market maker (liquidity provider, symmetric flow
of money). The eigensystem of a completely balanced market maker has a real
solution of the form characteristic for a star with all trader accounts having
a phase shift of π (as theoretically expected). The eigensystems of a monop-
olist/monopsonist are conjugate complex and exhibit the typical star pattern
which we expect from theory. A monopolist has an inbound star pattern, a
monopsonist an outbound star pattern. In our randomly chosen example, the
trader with ID 1 is slightly on the monopolistic side. We see this from the
phase distribution in the first two eigenvectors in Table 2.

However, in the second interpretation the account with ID 1 belongs to
the market mechanism. In this case market rules require that the market
mechanism is a formal counter party to all traders and so a star is naturally
formed. The absolute values of the eigenvector elements for traders 2, 3, 4 and
5 are almost uniformly distributed, although with different phase. Under this
interpretation this would indicate almost perfect competition of the traders
2, 3, 4, and 5. For a double auction mechanism, the account of the formal
counterparty must always be balanced. And it is this second interpretation
which we use in the example. This is a consequence of the bipartite graph-
structure of a continuous double auction market which is shown in Fig. 6.
Moreover, Eq. (25) defines the spectrum of a continuous double auction market
with a market accounting system with the structure shown in Fig. 6.

Table 2. Eigensystem and its eigenvectors for MStar5 in Eq. (31) with z = |z|eiφ

λk xkl

1. abs(z) 0.71 0.32 0.37 0.37 0.35
arg(z) 0 -0.57 -0.40 -0.07 -0.28

-1. abs(z) 0.71 0.32 0.37 0.37 0.35
arg(z) 0 2.57 2.74 3.07 2.86

Suppose now, that trader 3 in the example has considerable market power.
He was the counterparty for the trades of traders 2, 4, and 5 via the double
auction mechanism with ID 1. The resulting graph is shown in Fig. 3.
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(8+9+9=26)

(7+5+2=14)

7

8

5

9

Fig. 3. Monopolistic/monopsonistic behaviour in a continuous double auction: A
star graph

Table 3. Eigensystem and its eigenvectors for graph in Fig. 3 with z = |z|eiφ

λk xkl

1. abs(z) 0.71 0.19 0.61 0.22 0.21
arg(z) 0 -0.57 0.29 -0.07 -0.28

-1. abs(z) 0.71 0.19 0.61 0.22 0.21
arg(z) 0 2.57 -2.85 3.07 2.86

Next, we compare the eigensystem in Table 2 with the eigensystem in
Table 3. We see that both eigensystems exhibit the star structure. However,
in Table 3 we see that trader 3 as sole counterparty to all trades has the second
largest absolute value of the eigenvector with 0.61, this is considerably larger
than 0.37 in Table 2. Since trader 3 has received a net money inflow of 12
(he has sold shares for 26 and bought shares for 14), he has a positive phase
of 0.29 because imbalances in money flow show in the phase. The strongest
eigenvector element corresponds – as expected to the market mechanism with
account 1. By definition, a market mechanism must be balanced and has,
therefore, a phase of 0. The other three traders retained their phase and have
approximately the same absolute value of their eigenvector elements.

The following idea of measuring competitiveness in a market is derived
from Martin Shubik’s analysis of symmetric oligopolies and his discussion of
perfect competition and monopoly in a real world context [31]. In perfect com-
petition, each trader has the same market power which is reflected in equal
absolute values of the eigenvector elements. In order to compare different mar-
kets with respect to their market power, we introduce a uniform distribution
u with ui = 1

n , with n the number of active traders in the market. For each
real market, we compute a normed vector y with yi = |xi|�

I |xi| with i ∈ I where
I denotes the index set of active traders in the market and xi the eigenvector
component. The market power in a market is defined by the norm

my =‖ y − u ‖, (32)

where my = 0 indicates perfect competition. For the eigensystem in Table 2
the distance from the ideal perfect competition market is 0.03, for the eigen-
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system in Table 3 the distance is 0.26, so that we conclude that the second
example shows less competition than the first. We use this comparison in
the case study. This approach works because of the continuity property of
Hermitian matrices and their eigensystems presented in theorem 1.

3.4 Complete Graphs and Perfect Competition

Without a market mechanism, perfect competition always leads to a complete
graph in the eigensystem. For example, let us consider a complete graph as
presented in Fig. 4.

1
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1
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3
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1 6

Fig. 4. A complete graph: An indication of almost perfect competition

The matrix representing this graph is Mat. (33).⎛
⎜⎜⎜⎜⎝

0 4 + 2i 6 + 5i 3 + 6i 9 + 10i
2 + 4i 0 8 + 7i 10 + 7i 1 + 10i
5 + 6i 7 + 8i 0 6 + 4i 3 + 3i
6 + 3i 7 + 10i 4 + 6i 0 6 + i
10 + 9i 10 + i 3 + 3i 1 + 6i 0

⎞
⎟⎟⎟⎟⎠ (33)

which after rotation becomes Hermitian:⎛
⎜⎜⎜⎜⎝

0. 4.2 − 1.4i 7.7 − 0.7i 6.3 + 2.1i 13.3 + 0.7i
4.2 + 1.4i 0. 10.5 − 0.7i 11.9 − 2.1i 7.7 + 6.3i
7.7 + 0.7i 10.5 + 0.7i 0. 7. − 1.4i 4.2
6.3 − 2.1i 11.9 + 2.1i 7. + 1.4i 0. 4.9 − 3.5i
13.3 − 0.7i 7.7 − 6.3i 4.2 4.9 + 3.5i 0.

⎞
⎟⎟⎟⎟⎠ (34)

The eigensystem belonging to this graph has the form shown in Table 4.
Under the interpretation of the transaction stream of the accounting sys-

tem of a market with direct transactions between the traders we see from
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Table 4. Eigensystem and its eigenvectors for MComplete5 in Eq. (34) with z =
|z|eiφ

λk xkl

1. abs(z) 0.448 0.486 0.425 0.427 0.447
arg(z) -0.13 0 -0.094 -0.148 -0.226

-0.6 abs(z) 0.379 0.583 0.256 0.384 0.550
arg(z) -0.422 0 -2.937 -2.845 2.253

-0.35 abs(z) 0.602 0.332 0.344 0.523 0.369
arg(z) 0 -2.350 3.002 0.994 -2.456

-0.20 abs(z) 0.299 0.342 0.745 0.406 0.270
arg(z) -0.148 -2.80 0 2.929 2.770

0.15 abs(z) 0.451 0.443 0.283 0.481 0.537
arg(z) -0.198 2.577 3.035 -2.424 0

the graph in Fig. 4 that all traders trade with each other and the trading
volume is of the same order of magnitude. Such a complete graph indicates a
market with almost perfect competition. Why almost? A market with perfect
competition requires a complete graph where all edges have the same weight.
Because we have no self-references, Eq. (23) must hold and this implies that in
a complete graph λ1 +

∑r
i=2 λi = 0 where λ1 is the largest eigenvalue > 0 and

all other eigenvalues have the same value. In addition, we see that trader 2 is
the center of a strongly perturbed star because the largest absolute value in
the eigenvectors 1 and 2 corresponds to this trader. From the Table 4 we see
that for a complete graph the absolute values of the eigenvalues λk drop con-
siderably. The eigenvector x1 corresponding to the largest absolute eigenvalue
λ1 almost follows a uniform distribution.

With a double auction mechanism as formal counter-party, the graph
shown in Fig. 4 can never be observed. What we observe, is the graph shown
in Fig. 5. This graph is constructed by running all network flows over the new
node 6 which represents the account of the market mechanism (an intermedi-
ary clearing account).

Table 5. Eigensystem and its eigenvectors for graph in Fig. 5 with z = |z|eiφ

λk xkl

1. abs(z) 0.32 0.35 0.30 0.31 0.31 0.71
arg(z) 0.02 0.14 0 -0.07 -0.12 0

-1. abs(z) 0.32 0.35 0.30 0.31 0.31 0.71
arg(z) -3.12 -3.0 3.14 3.07 3.02 0

The eigensystem for the graph in Fig. 5 is shown in Table 5. The result is,
of course, no surprise. We notice the star structure typical for markets, where
all trades are handled via a market mechanism. The largest absolute value
in the eigenvector is the account of the market mechanism, all other traders
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Fig. 5. Perfect competition with a double auction mechanism: A star graph

have approximately the same market power with the distance from perfect
competition 0.024. The example in this section shows that reorganization of
the market accounting system leads to different eigensystems. However, the
interpretation remains the same.

3.5 Case Study: Analysis of Transaction Data for a Political Stock
Market for the 2002 Federal Elections in Germany

As a case study, we scrutinize a political stock market for the German fed-
eral elections in 2002. In Germany, the federal election system basically is a
proportional election system in which citizens vote for parties. Seats in parlia-
ment are currently computed according to the method of Niemeyer which is
described in [4]. In 2002 the following five major German parties, namely SPD
(Social Democratic Party of Germany), CDU (Christian Democratic Union),
Grüne (The Greens), FDP (Liberal Democratic Party), and PDS (Party of
Democratic Socialism), were explicitely included in the market, whereas all
other parties were aggregated under the label “Others”.

Participants in the political stock market for the German federal election
market simply registered at the web-site of the market and received upon
registration a fixed amount of game money. Leaving the market was possible at
all times, no money transfers occured. No monetary transaction costs occured.
Trading on the market was free, so no trading fees were collected.

In such a market, two kinds of submarkets can be distinguished: On the
primary market, portfolios containing one of each share present in the market
can be bought or sold at a fixed price. Thus only portfolios are traded on
the primary market, single shares are not traded and, therefore, they are not
priced on the primary market. Furthermore, for each party exists a secondary
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market where the shares of this party can be traded in a continuous double
auction. After the close of the market, the shares in the portfolio of each trader
are “bought back” by the market operator at a price that reflects the election’s
result. The only incentive in the market was that traders were simply ranked
according to the final value of their account.

Other political stock markets (e.g. the Iowa political stock markets) have
been run with monetary incentives. In such a setting each trader transfers
a usually fixed sum of money to the market operator. This money transfer
usually is converted into game money credited to the trader’s account at a
fixed rate. After the closing of the market the market operator evaluates the
portfolio of each trader’s shares, and converts trader’s account balance back
into real money and the real money balance is transferred back to the trader.

The market in question was open from beginning of June 2001 till the
closing of the polling stations on 11/22/2002. During this period, 118 traders
submitted 2905 offers for the six shares (SPD, CDU, Grüne, FDP, PDS, and
others), resulting in a total of 2144 transactions. There was no monetary
incentive for participation in the market, instead the rank of the players was
used for motivation purposes.

The political stock market implies a specific structure for the communi-
cation occurring in it. Since the transactions take place in an anonymous
setting (the counterparty is not known to the trader), the visible communi-
cation partner for a participant is the respective market for a share or the
portfolio market. Thus, as communication graph, we obtain a bipartite graph
with the traders on one side and the markets on the other as shown in Fig. 6.
As a consequence, the basic communication pattern is that of a star: For each
trader, the communication matrix shows a star with him as center. Equally,
for each share and the portfolio, there is a star pattern with the market as
center.

Trader
Share
Markets

Fig. 6. Star graphs as building blocks of the communication structure

Traditionally, market quality is seen as dependent on the presence of self
selected traders, an incentive system (monetary or motivational) that includes
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incentives for truth-telling, the experiences of the participants and their fa-
miliarity with the market institution, the representativity of the participants,
and the number and market power of traders [9, 34, 35].

For the analysis of the German federal elections market 2002, we used
a volume weighting for the construction of the communication matrix: In
general, we interpret each offer request that a trader sends to a market as a
communication between the trader and the market. Inversely, each transaction
that is executed by the market is counted as a communication between market
and trader. Each communication increases the weight on the respective edge
by the number of shares involved times the limit for offers (trader-share) or
by the number of shares times the price for transactions (share-trader).

In this experiment, the market was not as efficient in predicting the out-
come of the election as opinion polls. Table 6 gives an overview of the forecasts
along with their precision. RMSE is an abbreviation for Root Mean Square
Error defined as

√∑
p∈P (xp − xp)2 with xp denoting the forecast for party p,

xp the observed final election result for party p and P the set of all parties.
Allensbach, Emnid, Forsa, FGW (Forschungsgruppe Wahlen) and Infratest
are German pollsters.

Table 6. Forecasts for the German federal elections 2002

Final Result Allensbach Emnid Forsa FGW Infratest PSM
09/22/02 09/20/02 09/14/02 09/20/02 09/13/02 09/13/02 09/22/02

SPD 38.5 37.5 39 39 40 38.5 40
CDU 38.5 37 37 37.5 37 36 36.5
Grüne 8.6 7.5 7 7 7 8 7
FDP 7.4 9.5 8 7.5 7.5 8.5 8.2
PDS 4 4.5 5 4.25 4.5 4.7 4.1

Others 3 4 4 4.75 4 4.3 4

RMSE 3.18 2.72 2.67 2.88 3.16 3.23

Table 7 shows two submarkets, namely for CDU and for Grüne. We show
only the positive eigenvalues. The eigenvalue is an indication of the amount
of trading volume explained by the corresponding subspace. Comparing the
eigenvalues, the market for CDU with an eigenvalue of 9349.7 had a consider-
ably larger trading volume than the market for Grüne with an eigenvalue of
353.34.

We see that the submarket for CDU is actually very strongly dominated
by trader number 139. The submarket for Grüne also has one strong trader,
namely trader number 107. Since an efficient market would require perfect
competition, we would expect that the weights of the traders in the eigenvector
approximately follow a uniform distribution. We see for both markets that this
is not the case and that therefore the forecasting precision of both submarkets
is expected not to be high. Since the deviation from a uniform distribution
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Table 7. Eigenvectors for the CDU and Grüne submarkets

Submarket CDU Submarket Grüne
Eigenvalue 9349.76 Eigenvalue 353.343

Trader | z | Phase φ Trader | z | Phase φ

CDU 0.707 0 Grüne 0.707 0
139 0.706 -0.780 107 0.460 3.137
113 0.040 0 161 0.282 π
102 0.011 -0.062 102 0.210 π
101 0.008 -0.010 168 0.184 π
158 0.007 0 195 0.184 2.934
168 0.005 0 101 0.132 π
201 0.005 -0.098 123 0.120 -2.974
... ... ... ... ... ...

(see Eq. 32) is higher for the submarket for CDU (0.83) than for Grüne (0.22),
we expect a larger forecasting error in the submarket for CDU than in the
submarket for Grüne. This is indeed the case, the RMSE forecasting error for
CDU is 2.0 per cent, and 1.6 per cent for Grüne.

This result is not surprising. Since in our experimental market only moti-
vational incentives were present and these are generally thought to be weaker
than monetary incentives, incentive compatibility for traders is not guaran-
teed. The Iowa political stock market, however, has traditionally been run
with monetary incentives, so an investigation of Iowa market data with the
method presented in this paper would be desirable for a second study. Unfor-
tunately, the data publicly available from the Iowa markets do not allow the
construction of the monetary flow over the market accounting system. Further
experiments with different types of incentive systems are planned.

In election markets identification of the power structure is an indirect
indication of market inefficiency. However, in energy markets identification of
temporary power structures may serve as an indication of load pockets and
give hints on necessary infrastructure improvements.

4 Summary

This result shows the application potential of the analysis of eigensystems of
complex Hermitian matrices for markets. For this purpose, we succeeded in
showing how arbitrary accounting systems can be represented as asymmetric
network flows and we transformed them into Hermitian adjacency matrices.
In addition, we presented accounting examples in different market structures
and we generally described the eigensystems of continuous double auction
markets and we applied this to the analysis of an election market.

In order to link market efficiency, incentive compatibility and forecasting
accuracy we concentrated on the competitiveness of a market as expressed as
the distance from a perfectly competitive market in the eigensystem. For the
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German Federal Elections 2002 forecasting market this link can be observed
empirically.

However, the discovery and measuring of other stylized behaviour patterns
in continuous double auction markets (e.g. arbitrage, fraud, irrationality, spec-
ulation, ...) remains to be done.

It is beyond the scope of this paper to develop statistical tests on eigensys-
tems. For a discussion of problems related to tests on eigensystems as e.g. the
Johansen test on cointegration we refer the reader e.g. to [22]. In addition, we
defer the formal definition of the bidding and trading process of a forecasting
market with a fixed-price primary portfolio market and continuous double
auction mechanism for the secondary share markets as a dynamic system as
well as its estimation to the future.

To validate and to elaborate this type of analysis, a lot more work and
a systematic exposition of the interpretation of Hilbert space theory in the
context of markets as well as the analysis of experiments is necessary and
planned for the future.
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Summary. Assortative mating is a widespread feature of human behaviour, which
has a number of suggested benefits. The question of whether it contributes to pop-
ulation growth in contemporary societies is considered using the micro simulation
program SOCSIM. Ways of parameterising heterogeneous fertility and nuptiality,
and the relationship of such parameters to those of both fathers and mothers are
considered. The magnitude of the correlation between numbers of sibs of the part-
ners is similar to that of the correlation between number of sibs of the mother and
the number of her own children. Models that can generate such degrees of similarity
are discussed.
If continued for 250 years, populations with long-standing assortative mating, and
with demographic parameter values that bound those found in practice would have
fertility levels about 2% to 30% higher than those without assortative mating, and
also earlier age at first marriage. Population size is between about 30% and 200%
higher at the end of the period. I conclude that the effect of assortative mating in
which the fertility backgrounds of spouses are positively correlated leads to higher
population growth.

1 Introduction: Determinants of Fertility - Consequences
and Possible Causes

A population with a higher long-term rate of growth, no matter how small the
advantage, will come to dominate numerically any population with a lower one
and the overall population eventually becomes effectively homogeneous and
consists only of the higher growth population (e.g. [27, Sect.1.5]). A related
result is found in Mendelian genetics: Fisher’s fundamental theorem of natural
selection (FTNS) [15] which states that any trait correlated with fitness should
have a heritability1of zero. On the other hand, some empirical studies show
that there is very large variability in fitness: for example, species such as the
1 Heritability is usually measured as the proportion of total variance of a trait that

is due to genetic factors, although other definitions exist [24]. Heritability can
be zero either because the trait is not inherited, or because there is no genetic



62 Mike Murphy

sage grouse in which more attractive males have hugely greater reproductive
success in mating, producing the so-called ‘lek paradox’ [8], [46].

The rate of natural growth is determined by levels of fertility and mortal-
ity, and intergenerational continuities in these will lead to growth rates being
similar in different time periods. The mechanism that is responsible for simi-
larities between generations may be genetic, environmental or an interaction
of the two, but the relative contributions of nature and nurture to such corre-
lations are largely irrelevant. If inherited factors exist that are correlated with
reproductive fitness, then it is simply the overall value of the correlation that
will have implications for population dynamics.

In contemporary developed societies, variations in mortality have little
influence on reproductive success, therefore fertility is the major determinant,
which, in turn, is heavily affected by partnership behaviour since fertility
rates are much higher for married women. Studies of recent populations have
indicated that there is now a correlation coefficient value of about 0.2 for
fertility of parents and children averaged across a number of different studies
[37]. More specific studies based on kinship behaviour genetic models and
twin studies have found a relatively strong heritable component of fertility
and related behaviours, including age at first birth, nuptiality and marital
breakdown in recent periods [34], [11], [29], [49], [28].

There are a number of reasons for the superficially incompatible empirical
and theoretical results on heritability of fertility. Explanations for persistent
variability in fitness include a host-parasite ‘arms race’ [19] and the role of
genetic mutation [30], [23]. However, Fisher’s fundamental theorem of natural
selection assumes essentially long-term stability by a large population in an
unchanged environment with Mendelian inheritance and non-assortative mat-
ing. The last of these conditions is the focus of this paper. Non-random mating
is an almost universal feature of human experience, and spousal similarity in
humans is observed on a wide range of socio-economic, psychometric and an-
thropometric traits (e.g. [20], [25], [56], [13], [50], [9], [10], [42], [55], [14], [26],
[5]. In this paper I aim to quantify the magnitude of the effect of assortative
mating on population dynamics in contemporary developed societies.

The key determinant of population change in modern societies is fertility
since only mortality under about age 45 is relevant to population growth and
mortality rates at these ages are so low that changes have little impact on
overall growth (if the ‘grandmother effect’ — the beneficial effect that post-
menopausal grandmothers have on the reproductive success of her children
and the survival of her grandchildren even if she is unable to bear children her-
self [22], [51], [52], [31] — is ignored; I also ignore migration at this stage since
I am concerned solely with natural increase). The phrase ‘inherited’ does not
necessarily imply individual-level transmission, since inter-generational conti-

variability in the population. Clearly we inherit a propensity to reproduce [16].
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nuities are observed in cross-national comparisons, nor does it imply causation
since it may reflect other factors: for example in cross-national comparisons,
observed similarities between generations in levels of fertility or mortality
would be likely to be attributed to factors such as level of development in the
countries concerned. However, at the individual level, an inherited propen-
sity to have children is found, at least if the number of children born acts as
a proxy for this unobserved variable. Although information on fathers is less
readily available than for mothers, the evidence is that fertility is also partially
inherited from fathers, and that the magnitude of the effect is broadly similar
[37], even though socialisation theory might suggest that mothers should have
a more influential role since they typically play a greater role in bringing up
children. Assuming that both parents play a role is certainly more reason-
able than assuming transmission only occurs through the mother. (There are,
however, two problems with including fathers: the first is that not all children
have a known father, in this application, this is the case for all births outside
of a married or cohabiting union when only the characteristics of the mother
are available; the second is that the nominal father may not be the biological
father.)

Table 1 shows the association between number of live-born children and
their sibs of women aged 35 to 50 from the 1976 British Family Formation
Survey [12], and also with the number of sibs of their current partner. The
values of the correlation coefficients are very similar, and positively related to
the couples’ fertility outcomes (not all children will be those of the current
partner, but the great majority will be so, since these data refer to childbear-
ing around the 1960s). Table 1 also shows the association between numbers
of sibs of the two partners for all women aged 16 to 50 in a partnership.
The magnitude of this correlation between partners is about 0.2 in all age
groups, essentially the same as that for parents and children. Thus the fact
that partners (who are the parents of the subsequent generation) come from
families with positively associated inherited fertility will also have an influence
on the demographic characteristics of kinship distributions, and possibly on
long-term population dynamics: the latter is the question that is addressed
here.

Some degree of positive assortative mating would appear to be advanta-
geous for fitness – if this was not the case, a population that did not practice
it (or even had negative assortative mating) would have at least as great fit-
ness, and assortative mating would not have been selected for (possibly some
intermediate evolutionary stable solution (ESS) could arise). If mating was
so non-assortative that it took place with another species, fitness would be
zero. However, there are limits to the degree of acceptable assortative mating:
many societies, 44%, have prohibitions on incest [57] although the reasons for
this may have to do with strategies for resource accumulation as well as with
restricting inbreeding, which leads to lower fitness (there is some aversion
to mating with those children with whom one is brought up, the Wester-
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Table 1. Correlation coefficients of number of sibs of female respondent and partner,
and number of her live-born children, Family Formation Survey, 1976

Own & partner’s Sibs & Partner’s sibs
sibs own children & own children

Age- Correl- Stand. Sample Correl- Stand. Sample Correl- Stand. Sample
Group ation error size ation error size ation error size

16-19 0.10 0.07 241 - - - - - -
20-24 0.11 0.04 649 - - - - - -
25-29 0.20 0.03 999 - - - - - -
30-34 0.19 0.04 938 - - - - - -
35-39 0.14 0.03 868 0.15 0.03 906 0.16 0.04 868
40-44 0.18 0.03 837 0.14 0.03 891 0.16 0.04 837
45-50 0.19 0.03 829 0.14 0.03 876 0.14 0.04 829

marck effect). As usual, social, biological and developmental factors are all
relevant as determinants of observed patterns. The benefits of positive assor-
tative mating include both social reasons (people are more likely to meet, and
to feel comfortable with people who are similar to them), and also biological
or evolutionary reasons, such as Genetic Similarity Theory in sociobiology,
that relates spousal similarity to the existence of altruistic behaviours in hu-
mans, and Kin Selection Theory, whereby an individual will be more willing
to engage in self-sacrificing behaviours if the benefits to close genetic rela-
tives outweigh the costs [18]. All sexually reproducing species exhibit choice
in selection of partners, especially females, for whom the penalties of a poor
choice are greater, since they have to invest more in their offspring than do
males in almost all cases [4], [9], [2, Chap.5], so there are plausible social and
genetic mechanisms for the existence of assortative mating. However, mech-
anisms that led to assortative mating being selected for in the past, such as
reduced mortality, might not be observed in contemporary populations with
low mortality rates. However, if the mechanism was to increase fitness by in-
creasing fertility over what it might otherwise have been, then such an effect
might still be observable.

I discuss the role of assortative mating on population growth in Sect. 3.
But before doing this, however, I consider the nature of inherited factors, how
they are modelled, and how they are related to actual fertility in Sect. 2.

2 Microsimulation Modelling of Fertility and Nuptiality

Demographic micro simulation is the principal method used to elucidate kin-
ship patterns in historical, contemporary and future populations ([53], [60],
[62], [64], [59]. This analysis is based on the SOCSIM model developed by
Professors Hammel, Wachter and colleagues at Berkeley over a number of
decades [61], [21], [39], which has a number of features that make it attractive
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for this application. It is a closed model so that alternative marriage strategies
can be assessed. The model, written in the C language, is freely available and
the code can be amended or extended by users, in this case to include assor-
tative mating (the program includes both cohabitation and formal marriage,
and fertility of cohabitees is intermediate between non-partnered and married
people in this application: the terms partnership, mating and nuptiality are
therefore used interchangeably in this paper).

An initial population structure of that of England in 1850 taken from
the 1851 England and Wales Census of Population evolves under the given
monthly probabilities of fertility, mortality and nuptiality using empirically
derived values for each series from 1850 to 2000. These rates are based on vital
registration data following the establishment of the system in 1837. Fertility
varies by age, marital status and parity; mortality and nuptiality vary by sex,
age and marital status. Some of these baseline indicators of fertility and nup-
tiality over the simulation period are shown in Table 2. These baseline values
represent the best estimate of how demographic parameters have varied in
Britain since 1850; further details are given in [38].

Two populations with initial sizes of 40,000 people are included, one with
and one without assortative mating; the way in which this is operationalised
is discussed later. Fertility is below replacement-level from about 1970, and
remains slightly below it, in line with current trends and expectations [43]. Life
expectancy is about 83 for males and 89 for females in 2100. Total population
size is nearly 200 thousand in 2000, before declining somewhat by 2100. The
relatively large sizes means that it was unnecessary to replicate the runs: for
example, mortality rates were the same in both populations, and the almost
identical values for life expectancy show that the role of stochastic variability
is trivial.

Since the model is closed [60], partners have to be found within the exist-
ing simulation population using an algorithm to ensure a realistic distribution
of spousal age differences (there is also a prohibition on incest). Closed mod-
els are more complex than open models in which a partner is created when
required, but as they do not come with any demographic background, it is im-
possible to investigate general kinship and other relationships, and crucially
for this paper, the issue of assortative mating since only one partner in a
couple will usually have such information.2

While an intergenerational fertility correlation of about 0.2 is typical of
values found in practice, for genetic transmission between generations of inher-
ited characteristics, achieved parental family size is not the most appropriate
starting point. Sibship size is, at least in part, a socialization, environmental
and life course variable since it affects an individual’s childhood circumstances,

2 This is not possible if a woman gives birth without an identified partner (in this
analysis, any birth outside of a cohabiting or marital union), since such fathers
are regarded as unknown by the program.
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Table 2. Summary of population values

Period Popn Size TFR FMmale FMfemale

N-A A N-A A N-A A N-A A

1850-1860 40000 40000 4.43 4.42 29.1 29.1 26.6 26.7
1860-1870 43574 43523 4.44 4.41 28.5 28.2 25.3 25.1
1870-1880 46793 46555 4.46 4.48 27.9 28.0 25.0 25.1
1880-1890 51016 51181 4.60 4.66 28.1 28.0 25.2 25.2
1890-1900 57094 57394 4.12 4.15 27.9 27.8 24.8 24.8
1900-1910 62525 62828 3.62 3.67 27.6 27.6 24.8 24.8
1910-1920 69158 69736 2.78 2.84 28.0 28.0 25.0 24.9
1920-1930 74365 74962 2.33 2.38 28.0 27.8 24.5 24.6
1930-1940 78834 79677 1.72 1.80 27.9 27.8 24.4 24.3
1940-1950 79920 81490 2.01 2.11 27.1 26.8 23.5 23.5
1950-1960 83083 85546 2.26 2.35 26.2 25.8 22.8 22.7
1960-1970 85596 88722 2.66 2.77 25.3 25.1 23.0 22.8
1970-1980 89694 94186 1.81 1.85 25.3 25.3 22.3 22.2
1980-1990 89032 94445 1.69 1.77 28.1 27.9 24.4 24.3
1990-2000 88450 95398 1.62 1.66 29.7 29.5 27.1 27.0
2000-2010 88346 95893 1.74 1.84 30.5 30.4 28.1 28.2
2010-2020 88076 96909 1.70 1.82 30.6 30.4 28.6 28.3
2020-2030 86500 96631 1.71 1.86 30.9 30.7 28.9 28.8
2030-2040 85378 96703 1.71 1.83 30.8 30.6 28.7 28.8
2040-2050 81442 93620 1.73 1.80 30.8 30.6 28.9 28.7
2050-2060 76300 89233 1.71 1.85 30.8 30.6 29.1 28.9
2060-2070 71574 84996 1.71 1.81 31.0 30.8 29.1 28.8
2070-2080 67534 81584 1.75 1.79 30.7 30.7 29.0 28.9
2080-2090 64235 78726 1.78 1.79 30.9 30.9 29.0 29.2
2090-2100 60949 75733 1.73 1.87 30.7 30.7 29.0 29.0
2100- 57839 73282

Note: N-A non-assortative, A assortative;
FMmale FMfemale mean age at first marriage of males and females
respectively.

including through mechanisms such as education or standard of living, and
consequently it may affect the child’s later behaviour including subsequent
childbearing (see, for example, [54]. These standard social science mechanisms
have often been assumed to be the ways in which intergenerational continu-
ities in behaviour arise [58]. In fact, fertility cannot be inherited; rather it
is the propensity to have a particular family size. In terms of a proximate
determinants framework [6], this can be decomposed into the probability of
a woman being in a sexual union, and the chance of a full-term pregnancy
arising from that union. Both factors are known to have an inherited charac-
ter, and therefore we consider models in which the propensity to form (and to
dissolve) partnerships is also inherited. It is possible that actual sibship size
may have a separate effect, in that people may choose a family size that is
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similar to that of their own upbringing. However, even with identical average
sizes in successive generations, the average family size a child is brought up
in will be much larger than their own average number of children [47].

For investigating models of intergenerational transmission of fertility be-
haviour, there must be heterogeneous probability of giving birth. The monthly
probability of conception or birth (depending on the context) to a woman at
risk of the event is referred to as fecundability [17], [32]. I therefore consider
models in which this underlying propensity to give birth (a) is heterogeneous;
(b) may be intergenerationally transmitted; and (c) is correlated between
partners. In SOCSIM, an individual woman’s monthly probability of birth is
given by the appropriate baseline distribution multiplied by a random vari-
ate, which is fixed at birth. Wachter [61] suggested that the heterogeneity
distribution have a mean value of 1.0, so making the specification of mod-
els much easier, since the average fertility rates of the group of women are
equal to their baseline input rates.3 Without such an assumption, the model
is under-determined, since the same result can be obtained by multiplying the
heterogeneity parameter by an arbitrary value, and dividing the baseline value
by the same amount. Inclusion of such heterogeneity produces distributions
of fertility that are close to the empirically observed baseline values, but with
greater and more realistic variability in the fertility distribution than is the
case for a homogeneous population, and, in particular, it permits the role of
intergenerational transmission of heterogeneity to be assessed. In this analysis,
periods of susceptibility to pregnancy are not identified, apart from a mini-
mum gap of 12 months between births. I therefore call this fertility multiplier,
which gives the relative probability of a woman in a particular age, marital
status and parity category giving birth in a given month, ‘näıve standard-
ized fecundability’ (NSF) - näıve because it subsumes all the other proximate
determinants and standardized because the mean value is one [39]. As with
the usual definition of fecundability, it obscures some aspects of the reproduc-
tive process but the present formulation has some advantages by permitting
concentration on intergenerational continuities.

The form of the distribution of the lifetime fertility multiplier must be con-
strained, since the distribution is non-negative, unimodal and of mean one. In
most analyses, fecundability is assumed to follow a skewed distribution such as
the beta distribution, which is mathematically convenient for analysing het-
erogeneity [1], [63]. Although the evidence for a specific distributional form
is lacking, the precise form is probably unimportant. As conventionally done,
I choose a mathematically convenient form with the desired properties. For
analysing intergenerational transmission, when there is a need to have a cor-
relation in the values of näıve standardized fecundability between successive

3 This refers to rates within age, marital status and parity. Measures of overall
fertility such as total fertility rate (TFR) will also depend on the proportion of
time spent in these states. The paper will consider the relative contributions of
these two components later.
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generations, the beta distribution has the disadvantage that it does not easily
produce correlated distributions4, therefore I use an approximate beta dis-
tribution with mean one and variance of 0.5 based on a transformed normal
distribution with mean µ and standard deviation σ, N(µ, σ), to generate the
näıve standardized fecundability distribution (NSF) as follows (Fig. 1):

NSF = 2.65/{1.0 + exp(N(0.592, 0.934))} (1)

D
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

Fig. 1. Approximation to beta distribution

The underlying normal variate for person i, N i , is generated to have a
correlation with the corresponding value for his/her parents, N m and N f , for
mother and father respectively.

Ni = alphafert× (Nm + Nf ) + sqrt(1. − 2.0 × alphafert2 × 1.3)× Na (2)

where N a is an independently generated variate and alphafert is a constant
chosen by the investigator to produce a given level of intergenerational cor-
relation. 5 Note that quantities such as näıve standardized fecundability are
unobserved, rather than directly measured ones such as completed fertility or
4 In its original formulation in the SOCSIM model, the lifetime fertility multiplier

was generated by a cubic approximation to the beta distribution with mean one,
variance of 0.416 (coefficient of variation of 0.645), maximum of 2.4 and minimum
of zero [61].

5 In the original version of SOCSIM, the basic model of fertility inheritance is that
the value of näıve standardized fecundability of a daughter, f d is given by f d =
αf m + (1-α)f with the notation as above, where f is generated as in footnote
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mean age at marriage. The use of an underlying normal distribution means
that correlated values can be readily obtained since it is straightforward to
generate multivariate normal variates with a pre-determined level of correla-
tion. In practice, the correlation between variates such as those of (1) based
on correlated normal variates is very close to that of the underlying normal
distribution, which makes it straightforward to specify the degree of correla-
tion between successive generations. Thus the correlation in the transformed
beta-like distribution is very close to the value alphafert, which is the inter-
generational correlation of the untransformed values.

I also use the same approach as in (1) and (2) above to model intergen-
erationally transmitted heterogeneous partnership behaviour, since there are
known to be intergenerational transmission of such behaviours. I call the het-
erogeneity multiplier applied to the baseline partnership rates (both marriage
and cohabitation) näıve standardized nuptiality (NSN), and the analogous one
applied to partnership breakdown rates, näıve standardized divorce (NSD).
Since fertility rates differ substantially between partnership statuses, varia-
tions in overall fertility depend both on nuptiality and partnership-specific
fertility rates, and variability in each of these two components contributes ap-
proximately equally to variability in total fertility (I do not include mortality
heterogeneity in the model since the effect on population dynamics is trivial
as noted above). In this application, I assume that the three heterogeneity pa-
rameters are independently distributed, but in principle they could be allowed
to be correlated.

If there is no inherited component to fertility or nuptiality, the mean value
of näıve standardized fecundability and nuptiality will remain one, and the
observed population fertility rates will be equal to the baseline values at that
time period (which clearly makes model specification easier). However, if there
is inheritance, then on average more fecund women will have larger numbers
of daughters who will themselves have higher than average values of näıve
standardized fecundability and who will form a higher proportion of their
generation, so that the mean value of näıve standardized fecundability will
increase generation by generation (we assume that such correlations will be
positive, as found empirically, but negative correlations are also theoretically
possible). Thus the overall level of fertility will be higher than in the absence of
such transmission because it is given by the original baseline value multiplied
by the average population value of näıve standardized fecundability.

The existence of intergenerationally-transmitted näıve standardized nup-
tiality, will further tend to inflate the correlation of fertility between mothers

4. α can run from zero (no intergenerational transmission) to one (each daughter
has exactly the same näıve standardized fecundability as her mother). However,
if there is inheritance, the variance will decline. For example, if f m and f are
distributed independently from the same distribution, then if α is equal to 0.5
the variance f d in the next generation will be only about 0.5 of that in the previous
one. Therefore the variability (and the shape) of the distribution and hence its
influence in subsequent generations will decline.
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and daughters since early-marrying mothers will spend more of their fertile
period in the higher-fertility married state, and thus have more children than
average, who will themselves in turn have more children because of their higher
propensity to form partnerships at young ages (although historical data sug-
gest a relatively low intergenerational correlation for age at marriage, [33]. If
the heterogeneous trait is uncorrelated with reproductive success (‘fitness’),
then the distribution will remain constant over time; an example of this is
marital breakdown propensity (näıve standardized divorce), which is essen-
tially independent of childbearing level (at least with the assumption that the
multipliers for fertility, nuptiality and marital breakdown are independent).

The effect of transmitted heterogeneity will cumulate over generations (and
there is empirical evidence of multi-generational transmission, [40], [36]. If the
trait is correlated with fitness, then not only the mean value, but also the form
of the distribution will change. Since those with high values will have greater
reproductive success, over time this will lead to the distribution converging
to the highest value and to a reduction in its variability if the distribution is
bounded, which will be the case for quantities such as a monthly probability of
birth. Such an outcome is implausible since such homogeneity in reproductive
behaviour is not observed. Moreover, it is likely that childbearing performance
is relative rather than absolute: for example, a family size of six children would
be considered very high in contemporary European societies, whereas around
100 years ago, 60% of fertile women who married at ages 20-24 were found
to have had eight or more children by the end of the childbearing ages in the
1911 Census of England and Wales [48, Table XVIII, p xlvi]. Thus if ‘high’
and ‘low’ are related to the norms and values of the society in question, the
values of the moments of relative distributions, such as näıve standardized
fecundability and näıve standardized nuptiality, would also be expected to
remain largely constant over time.

Since the baseline rates used in the model are equal to those actually
observed in order to replicate the real situation, then the heterogeneity pa-
rameter must have mean values close to one and, as pointed out above, there
is a strong case that the variability of the heterogeneity distributions would
remain relatively constant. Clearly the variance in fitness is not collapsing,
as would happen if values converged towards a fixed upper limit. Thus, since
there is no reason to believe that the variance is changing, mechanisms are
required to maintain approximately fixed levels over time of mean values and
variability. In particular, if variability changes, it is impossible to separately
identify changes due to assortative marriage from the effects of changing vari-
ability per se, and I want to concentrate on the former by constraining the
latter. The coefficient of 1.3 in (2) above is an empirical value to adjust näıve
standardized fecundability and näıve standardized nuptiality for assortative
mating, so that their variances remain reasonably constant over time (this is
unnecessary for näıve standardized divorce and no adjustment was done in
this case). The justification for this value is as follows:



The Role of Assortative Mating on Population Growth 71

If εc is the child’s, εm the mother’s and εf the father’s values, and ε a
new independently generated value; the coefficients relating them are α1 and
β1 and we want the variances to remain constant (for convenience, in all
distributions, variance taken as 1.0 and the mean as 0.0).

Thus
εc = α1(εm + εf ) + β1ε

Calculating the variance therefore gives

1 = 2α2
1(1 + ρmf ) + β2

1

ρcm = α1(1 + ρmf )

Where ρmf is the correlation between values for mothers and fathers, and
ρcm is the correlation between values for mothers and children,

if ρmf = 0, i.e. non-assortative mating, then

1 = 2α2
1 + β2

1

ρcm = α1

if ρmf = ρcm i.e. correlation between parents and parent-child are similar
in magnitude (as in Table 1)

ρ = α(1 + ρ)

ρ = α/(1 − ρ)

α = ρ/(1 + ρ)

β2 = 1 − 2αρ

ρmf = γρcm i.e. ratio of correlation between parents and parent-child is
fixed

ρcm = α1(1 + γρcm)

ρcm = α1/(1 − α1γ)

if β2 = 1 − 2α2
1, then

σ2
c = σ2

m(1 + 2α2
1ρmf )

Now if we choose a plausible value for the correlations, e.g. ρmf = .3, ρcm = .3,
α1 = .3/1.3

β2 = 1 − (2 × .32 × 1.3)/1.32

so α1 = .23, β1 = .83.
Thus an adjustment factor of the order of 1.3 is needed to maintain a fixed

variance over time with correlations of the order of 0.3.
The second issue is that the higher reproductive success of those with

higher values of näıve standardized fecundability or näıve standardized nup-
tiality will tend to increase the mean value of these distributions over time. In
order to maintain a constant value for mean näıve standardized fecundability
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and näıve standardized nuptiality, the innovation mean is reduced to counter-
act this tendency. In practice, this may be achieved by reducing the mean of
the innovation process, N a , for näıve standardized fecundability in (2) from
zero by mean value(NSF )× 3.0 × alphafert, and correspondingly for näıve
standardized nuptiality.

Partners with Positive Correlations

So far, the extent to which people choose partners with characteristics similar
to themselves has not been considered, and I now turn to assortative marriage.
In the case of intergenerational transmission, a child’s characteristic can be
relatively easily related to that of his/her parents: for example, if the parent
has a trait distributed as N(0,1), then the child’s value of

α × parental value +
√

(1 − α2 × N(0, 1)) (3)

will have a correlation of α with the parent’s value and also be distributed as
N(0,1). However, mating is a process of mutual adjustment in which men and
women attempt to maximise their chances of success [35]. The preferred way
of finding a partner of the opposite sex in closed micro-simulation models is
to form a ‘partnership market’, in which people seek a partner from the pool
of eligible members using an algorithm to identify the two partners (e.g. [7]).

I therefore defined a function that calculated a score for each pair of po-
tential partners as follows: when a person joins the partnership market, with
probability determined by the observed partnership rates, the potential spouse
with the highest score is selected provided the score is above a threshold value,
or by random selection if there is more than one pair with the same maximum
value. The assumption is that people have a preference for a particular type
of partner who is more like themselves than the population at large; an al-
ternative would be to assume that everyone wanted to partner with the most
attractive person, and that person would chose the individual of the opposite
sex with the highest score, i.e. every person would be ranked on an abso-
lute scale, rather than one relative to a given potential partner (e.g. [35, pp.
198–215]). The former seems to be more in accord within people’s behaviours,
although much work remains to be done in this area [3].

Clearly, age is a major factor that cannot be ignored; men tend to partner
with women who are slightly younger than themselves on average, and the
number of partnerships with large age differences is relatively small [44] —
although the question of how the choice is made and the relative roles of
men and women in the process remains a subject of lively debate, there exist
clear preferences for a partner within specific age bounds ([45], [2]. The non-
assortative model had only a simple age-preference scheme, whereby a score
was attached to each potential match: this score was set at zero for couples
in which the man was 12.5 years older than the woman, or 10 years younger.
The score was set at a constant maximum value in the range where the man is
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between 5 years older and 2.5 years younger than the woman. At intermediate
ages, the score declines linearly to zero at the ends of the eligibility range.
The highest non-zero score was used to select the partner, or if there was
more than one potential partner with the same highest non-zero score, the
partner was chosen randomly from these. It can be argued that including age
preference represents choice to some extent, but not to include some such age
preference would lead to unrealistic results, thus these assumptions produce
plausible distributions of spousal age differences, but spouses are otherwise
independent in their characteristics.

The function used in the assortative model includes age as above, but, in
addition, a man and a woman with more similar fertility and nuptiality traits
are more likely to form a partnership. A major objective of this study was
to obtain a function of the spouses’ scores on unobserved variables such as
näıve standardized fecundability and näıve standardized nuptiality that were
positively correlated. This was done by defining a score for the two potential
partners that penalises differences as follows:

−0.1×{(NSFh−NSFw)2+(NSNh−NSNw)2+(NSDh−NSDw)2}+N(0, λ)
(4)

(with h denoting potential husband and w denoting potential wife)
The larger the value of the constant λ in the second component, the less

weight is given to similarity on the other variables of the potential partners,
and consequently, the lower the correlation between spouses on these charac-
teristics. The variance of the first component is about 0.01, and the two values
chosen for λ were 1 (‘Standard correlation’), and 0 (‘High correlation’). The
high correlation case is chosen as an extreme case, and all assortative results
refer to the standard correlation case, apart from those of Fig. 4 and Table 4
presented later.

3 Results of Models under Alternative Assortative
Mating Assumptions

I am attempting to identify the role of a particular factor, that of assorta-
tive mating, over and above the overall effect of inherited behaviour, which
is known to be large, so it is necessary to be able to isolate the effect of as-
sortative mating, which is likely to be small in comparison. I compare two
models, both with inherited fertility and nuptiality. I set α in (2) to 0.4 for
näıve standardized fecundability, nuptiality, and divorce over the simulation
period — note that the intergenerational correlation between these underlying
variables and corresponding observed quantities such as achieved family size,
or average age at first marriage will be less than this, so the value of the in-
tergenerational correlation coefficient in variables such as näıve standardized
fecundability will be higher than the values shown in Table 1.
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Macro-Level Effects

Mothers and fathers with a high (or low) propensity to form or dissolve part-
nerships will pass on this trait to their children. In comparing two populations
with different patterns of inheritance, it is important that they are subject
to the same demographic regime which is achieved by treating them as two
groups within the same simulation run (there is an option in SOCSIM to do
this) which would not be possible with independent runs. Exactly the same
baseline demographic parameters and model assumptions are used in both
groups, except that they differ only in that one excludes and one includes
assortative partnership. Thus any differences observed between the two popu-
lations are due to deviations from the overall average values produced by the
sub-group differences in marriage function. Table 3 and Fig. 2 show that the
means, standard deviations, and overall distributions of näıve standardized
fecundability, näıve standardized nuptiality and näıve standardized divorce
for selected birth cohorts from 1850 to 2100 remain very similar over time
after the adjustments of Sect. 2.

Table 2 and Fig. 3 show the main simulation results comparing the as-
sortative and non-assortative cases. The values of mortality (shown as life
expectancy) and divorce are essentially the same in the two cases, but the
level of fertility is slightly higher, and the average age at marriage is slightly
lower in the assortative case. Statistics referring to the average number of chil-
dren born are based on people who reached at least age 45, since to include all
individuals in the simulation, including those who do not even reach the age of
reproduction, would distort the interpretation of the relationships shown here
(especially important in the last period, with censoring at 2100 and the fact
that birth to unknown fathers do not contribute to male fertility). However,
the values of the three heterogeneity variables shown are not subject to this
problem, and all ages are included. Looking first at the simplest case, that of
näıve standardized divorce, the mean and standard deviation remain largely
constant without any further adjustment (Tables 3(a) and 3(b), see also Fig.
2), because it is effectively independent of the other variables in the Table, i.e.
it is uncorrelated with fitness. The standard deviations of näıve standardized
fecundability and näıve standardized nuptiality also remain fairly constant
over the period, showing that the adjustment process described earlier has
produced the desired result, and so changes in measures such as population
size or TFR are not artefacts of changing variability in the heterogeneity dis-
tributions as could be the case if such adjustments are not made. The mean
values are close to one, but not exactly equal to it, but these differences do
not affect the interpretation of differences between groups. In Table 3(c), the
values of the correlations between these variables and number of children born
to the same individuals are based on people who reached age 40 or over, so
that they have effectively completed childbearing. Note that the magnitude
of correlations of overall fertility with näıve standardized fecundability and
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Fig. 2. Distributions of NSF, NSN & NSD by birth cohort
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Table 3. Fertility and nuptiality parameters

(a) Mean values

Year of Children born NSF NSN NSD
birth N-A A N-A A N-A A N-A A

1900-1950 1.561 1.631 1.082 1.116 1.079 1.098 1.012 0.988
1950-2000 1.591 1.684 1.054 1.097 1.060 1.080 1.011 0.986
2000-2050 1.609 1.684 1.038 1.080 1.072 1.085 0.984 0.969
2050-2100 0.731 0.746 1.042 1.070 1.069 1.089 0.958 0.955

(b) Standard deviations

Year of Children born NSF NSN NSD
birth N-A A N-A A N-A A N-A A

1900-1950 1.656 1.692 0.478 0.494 0.477 0.487 0.502 0.499
1950-2000 1.588 1.631 0.474 0.487 0.475 0.484 0.500 0.499
1950-2000 1.617 1.653 0.472 0.483 0.476 0.484 0.498 0.495
2000-2050 1.281 1.283 0.472 0.480 0.472 0.482 0.494 0.493

(c) Correlation coefficients

Year of Children & NSF Children & NSN Children & NSD
birth N-A A N-A A N-A A

1900-1950 0.198 0.215 0.159 0.164 -0.006 -0.011
1950-2000 0.196 0.227 0.230 0.233 -0.028 -0.035
2000-2050 0.215 0.224 0.234 0.241 -0.039 -0.035
2050-2100 0.118 0.128 0.149 0.145 -0.016 -0.021

Note: N-A non-assortative; A assortative;
NSF näıve standardized fecundability;
NSN näıve standardized nuptiality;
NSD näıve standardized divorce.

näıve standardized nuptiality are approximately equal, indicating that they
have similar effects on achieved fertility.

The mean values for näıve standardized fecundability and näıve standard-
ized nuptiality are about 4% and 2% higher in the assortative marriage group
than in the non-assortative one (Table 3(a)). However, the continuation of
relatively small differences in fertility with mortality being the same, will lead
to the difference in overall population size increasing over time. Thus while
the effect of assortative marriage is not substantial in a given period, but if
continued over a long period it clearly has a substantial effect (Fig. 3). Be-
cause the initial population at 1850 was not assortatively mated, the effect
of assortative mating takes time to build up as people form partnerships be-
yond 1850, and they subsequently have children, so it takes some time for the
intergenerational patterns in population size to emerge. Thus while the differ-
ence in TFR around 1950 is only about 4% greater in the assortative case, by
2100, this had increased to 8%. By 1950, the assortative population size is only
about 2% higher than the non-assortative one, but by 2050, it is 18% larger,
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Fig. 3. Population parameters for non-assortative & assortative regimes standard
correlation case

and 27% larger by 2100. These effects are much smaller than those associated
with the absence or presence of inherited fertility where the population after
250 years was over four times higher in the latter case [41]. The slightly earlier
age at first marriage in the assortative case also becomes apparent over time
(although the great majority of people’s first partnership in these models in
the 21st century is a cohabiting rather than a formal marriage, so this may
understate differences in partnership behaviour).
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Micro-Level Effects

While Table 3 shows the relationships between different variables for the same
individual, Table 4 shows the effect of assortative mating for pairs of people
at the end of the period of analysis, for those born between 2050 to 2100
in the principal kin groups of parent/child and partners (the two partners
are those of each individual’s last partnership, whether intact or not). It also
shows the effect of increasing the strength of assortative mating by setting the
value λ in (4) to 0 (‘High correlation’). Table 4(a) confirms that the correla-
tion coefficients for partners are trivial in the non-assortative case. The small
positive values observed for this group for näıve standardized fecundability
and näıve standardized nuptiality are probably due to the fact that those
with higher values of näıve standardized nuptiality of both sexes will enter
the marriage market more quickly on average than those with lower values,
so the characteristics of the pool of eligibles will be slightly different from
the overall population. However, there is no preference for selection within
the pool as in the assortative case, where the magnitude of the correlation
coefficients between partners is about 0.1 for näıve standardized fecundability
and näıve standardized nuptiality, and rather smaller for näıve standardized
divorce in the standard case. The degree of association between parents and
children was chosen to be about 0.4 as discussed earlier, but the effect of as-
sortative mating is to increase the correlation by about 10%, from about 0.37
to 0.41 for näıve standardized fecundability and näıve standardized nuptiality
(Table 4(b)). Assortative mating has the effect of increasing the correlations
between parents and children: this is to be expected since the child’s values
are positively correlated with both parents’ values, and the parents’ values
are themselves correlated. Since higher correlations lead to higher population
growth [41]), this accounts for the larger population size in the assortative
case in Fig. 3.

However, analyses so far do not show how large or small are the effect of
the strength of the correlation between the spouses on that between parents
and children. The alternative high model in Table 4(a) produces a correlation
coefficient of about 0.9 between partners, compared with about 0.1 in the
standard case. The effect is to increase substantially the correlation between
parents and children, from about 0.4 to about 0.7 in the three variables shown
(the values remain unaltered in the non-assortative case). In turn, this leads
to considerably higher population growth, which substantially increases the
differential between the non-assortative and assortative populations, so that
the size of the assortative group is three times larger at the end of the period
than the non-assortative one, and the differentials in fertility and nuptiality
are much larger (as before, mortality differentials are effectively zero as would
be expected, Fig. 4). This second case is extreme, and serves to put an upper
limit on the magnitude of such effects, but the standard case shows a modest
effect, in that the correlations between näıve standardized fecundability and
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Table 4. Correlation coefficients with standard and high assortative levels

(a) Women (born 2050-2100) and partners

Level NSF NSN NSD
N-A A N-A A N-A A

Standard 0.014 0.099 0.019 0.078 0.007 0.039
High 0.001 0.902 0.033 0.902 0.039 0.912

(b) Children (born 2050-2100) and parents

Level NSF NSN NSD
N-A A N-A A N-A A

Standard 0.372 0.408 0.377 0.406 0.388 0.400
High 0.379 0.669 0.381 0.679 0.397 0.721

Note: N-A non-assortative; A assortative;
NSF näıve standardized fecundability;
NSN näıve standardized nuptiality;
NSD näıve standardized divorce.

näıve standardized nuptiality, and achieved family size is only about 0.02, so
that the correlation between sibship sizes of partners is considerably smaller
than the values shown in Table 1, and therefore the standard case results may
be regarded as a lower bound on the magnitude of the effect of assortative
mating on population growth.

4 Conclusions

There are three main points that arise from these findings. The first is that the
effect of persistent assortative mating in conjunction with intergenerational
transmission of fertility has a clear effect in making the population larger
than would otherwise be the case. This is in line with theoretical expecta-
tions about the positive effect of assortative mating on fitness. The second
is that assortative mating does have an effect that should not be ignored in
demographic and genetic studies since part of the observed relationship in fer-
tility of mothers and children is due to that via the father and their children,
which is similar in magnitude [37] and therefore contributes to explanation,
whereas the great majority of studies consider neither fathers nor the role of
assortative mating. The third is that the whole area of partner selection re-
mains a relatively under-developed area. Models that require interaction and
adjustment between agents are more complex than ones that provide a se-
ries of linked sequential actions. Progress will require developments in theory,
data, modelling and technology, but assortative mating remains one of the
most persistent and enduring features not only of humans, but other species
as well.
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Summary. In this Chap. we analyse an agent–based model designed to understand
the dynamics of the intergenerational transmission of age–at–marriage norms. A
norm in this context is an acceptable age interval to get married. We assume that this
age–interval is defined at the individual level and the individuals’ age–at–marriage
norms are transmitted from parents to their children. We compare four different
transmission mechanisms to investigate the long term persistence or disappearance
of norms under different regimes of transmission. Our work is an extension of [4] that
introduces a one–sex non–overlapping–generations version of an age–at–marriage
model. Here we investigate whether their results also hold in a more complex setup.
Therefore, we explicitly take into account heterogeneity with respect to age and
sex. Moreover, we also include the timing of union formation and fertility into our
model. To create a more realistic model of the evolution of age norms the character-
istics of the agents are extended, some new parameters are added to the model and
the age-at-marriage norms are split into two sex-specific age–at–marriage norms. A
comparison of the results with those of the original model gives information about
how additional characteristics and new parameters can influence the evolution of
age–at–marriage norms.

1 Introduction

In this Chap. we present an agent–based model to simulate the evolution of
age–at–marriage norms. While some individual decisions are mostly influenced
by economic incentives and other decisions are mostly driven by social norms
there can also be decisions depending on both. We postulate that individuals’
choices regarding their age at first marriage is at least partially influenced

∗ We are grateful for comments and suggestions by Francesco Billari, Rosaria Conte,
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referees.
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by normative guidelines enforced by the society and put the emphasis of our
model onto that aspect of age–at–marriage.

Social norms can only be effectively put into practice if there exist sanc-
tions that punish deviant behaviour. In a densely connected society there ex-
ists a versatile bundle of sanctions to put norms into effect such as ostracism,
physical retaliation, refusal of social approval, gossip etc. Diekmann and Voss
[6] show that rational actors are able to enforce social norms with sanctions
even in one–shot situations. However, the existence of a social network is a
prerequisite for the successful implementation of norms.

Normative guidelines generally are a decision guidance whenever an in-
dividual has to decide about something important. Thus certain actions are
influenced by social norms, namely social rules that state how individuals
ought to behave in certain circumstances. Many papers address the presence
of such social norms. For instance [11] shows that the presence of family–size
norms can explain diverse experiences in income and population growth.

Although one might think that modernisation processes may have weak-
ened traditional normative pressure, the effect of social norms may have been
internalised in western societies rendering obsolete any need for external soci-
etal enforcement of social norms [9]. In post–industrial societies there seems
to be a trend towards a diminishing normative regulation of schedules. A de-
creasing impact of social norms in the transition to adulthood may be related
to a decreasing dependence from the traditional references to the family and
to the church [5]. Nevertheless, according to [3] new types of norms may have
substituted the old ones.

The impact of social norms on shaping individuals’ lifes has been adressed
by [2]. They accomplish a theory–based empirical analysis of cross-sectional
survey data on norms and sanctions concerning sexual life and marriage for
young Italian university students. The survey shows the existence of lower
and upper age limits on sexual debut and first marriage. Moreover, there
exist perceived norms and sanctions connected for instance to the experience
of some types of sexual behaviour. Social norms are supposed to be enforced
by formal and informal sanctions. Their investigation exhibits strong evidence
that sexual behaviour is subject to strong sanctions and that sexual behaviour
is highly affected by social norms. Consequently, it seems reasonable to assume
that there may be a corresponding normative pressure to adhere to the norm.

Our simulation model is motivated by [4] who introduce a more stylized
model using a slightly simpler implementation of norms. The age–at–marriage
norms serve as guidelines for individuals to take decisions about the right
point in time to get married. Agent–based simulations are frequently applied
in the social sciences, since they have proved to be a valuable tool to study
the complex dynamics evolving from heterogenous populations. Here they are
applied to observe the long–term persistence or dissolution of social norms
and to investigate their evolution over time. Within the artificial environments
which can be seen as small laboratories it is possible to simulate behaviours
that are influenced by such social norms.
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The remainder of this paper is organized as follows. Sect. 2 provides em-
pirical evidence regarding the past development of age–at–marriage. Sect. 3
briefly summarizes the agent–based model of [4], who studied the evolution
of age–at–marriage norms, their long term persistence or disappearance, the
long term impact of the initial distribution of norms in a population, and the
impact of random mutations. In Sect. 4 we describe our extended model, the
details of the implementation are provided in Sect. 5, and Sect. 6 highlights
the numerical results obtained. The concluding Sect. 7 draws a summary of
the main results and elaborates on the following questions: Do the missing
characteristics influence the results in an important way or does the simpler
model serve as a description that is close enough to reality to detect the evo-
lution of age–at–marriage norms? Does this extension provide a step forward
to a closer approximation to the real world?

2 Empirics

Hajnal [8] describes two basic marriage patterns, a traditional or non-European
pattern of early and universal marriage reflecting the typical behaviour in
most of the developing regions and a European pattern of late marriage and
high proportions of individuals who never get married characterizing Western
European Societies.

Dixon [7] investigates timing and nuptiality in 57 countries according to
censuses taken around 1960. In particular she looks at the proportions of men
and women not being married at age 20–24 and at the corresponding pro-
portions at age 40–44. First marriages after the age of 44 are not taken into
consideration since they occur only rarely and are demographically of little
impact. The data show that grooms are older than their brides in all societies.
The main difference between the European and the traditional marriage pat-
tern, however, is partially due to the fact that in societies where marriage
occurs early, more people marry ultimately than in societies where marriage
occurs relatively late. Dixon investigates in particular the availability of mates,
determined by the sex ratio of persons of marriageable age and by the method
of mate selection, the feasibility of marriage, determined by expectations with
respect to financial and residential independence and the available resources,
and the desirability of marriage, indicating the strength of the motivation
to marry and depending on the available social and institutional alternatives
to marriage and childbearing. When looking at the desirability, it is impor-
tant not only to take the availability of alternatives into consideration but
also whether these alternatives are considered rewarding. Dixon states that
the pressure toward marriage and the penalties of remaining single vary in
kind and degree, and differ for men and women. Thus, empirical investigation
should also assess the penalties associated with marrying late or never and
childlessness like social isolation, stigma, and the loss of economic and social
opportunities. This qualifies the desirability of marriage to be an indicator
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for the relevance of social norms on the decision whether and when to get
married. The data investigated by Dixon reveal that delayed marriage and
celibacy are most highly correlated with indicators of the desirability of mar-
riage, less so with feasibility, and least with availability. Moreover, she arrives
at the conclusions that the degree of social isolation and stigma that bachelors
and spinsters experience depends on the level of celibacy in each society and
in those countries where romanticism provides a primary motivation for mar-
riage, the unmarried person still experiences the discomfort of being visibly
‘unwanted’ in a society that idealizes personal attractiveness and individual
happiness.

Bhrolcháin [1] examines age preference data for measuring recent levels of
partner availability in England, Wales, and the USA and for assessing time
trends of partner supply in those countries. The data reveal that mean age
differences in England and Wales do not exhibit a long–run secular trend
driven by social and cultural change but rather fluctuate during the 20th
century. During the same time period mean age differences have varied within
a relatively narrow range in the USA, where a long–run but modest change
resulted in a decline from an average of around four years around 1900 to 2.4
years in 1990.

Current empirical data regarding female first marriage in Europe reveal
that there is no monotone trend in age–at–marriage over a long period but
rather a turning point between two opposed trends. Figure 1 illustrates the
mean age of women at first marriage for five European countries. It shows that
from the birth cohorts in the 1930s to the birth cohorts in the 1940s the mean
age at first marriage decreased by about one year and after that it started
to increase to levels already higher than at the beginning of the observation.
Moreover, the time series suggest that this increase has not finished yet.

Figure 2 shows the rate of first marriage per 1000 females in Italy by 5–
year age–groups. In compliance with the previous graph it turns out that for
younger women (< 20 and 20−24) the rate of first marriage slightly increased
between the 1960s and the 1970s while it declined afterwards. Furthermore,
the rate of first marriage of the women aged 25 to 34 decreased between 1960
and 1975 and increased later on. This observation motivates that the lower
age limit of first marriage underwent an increase from 1960 to the 1970s and
a decrease later on. The picture is not so clearcut with respect to the upper
age limit since the rate of first marriage simply fades away for higher ages.
However, Settersten and Hägestad [12] investigated a survey of individuals
belonging to different age groups in Chicago. Their analysis revealed that
82.3% of the respondents perceived an age deadline for marriage, i.e. an upper
age after which it would not be appropriate to get married.
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3 The One–Sex Model

To show the long term persistence of norms, a population of fixed size is gen-
erated, where several individuals are characterized by their age–at–marriage
norm. This norm is an age interval, which describes the age at which an
individual can marry. The agent’s age at a certain time is not a relevant char-
acterization in this setup and is therefore ignored. The absence of additional
characterizations is one of the properties to be modified in the following Sect.

Starting with an initial generation with randomly generated age–at–
marriage norms, the evolution of the experimental population is simulated.
Within this model, the agents do not grow older — they are born, can marry
each other, can reproduce if they find a partner, and they die — in the course
of one generation. Thus, each time step represents one generation. Individ-
uals can only marry another individual with compatible norms. The norms
of two individuals are compatible if they overlap — i.e. if their intersection
is nonempty. Other criteria, like age and sex do not matter. Only married
individuals are allowed to reproduce, but the reproduction isn’t connected
with any other criteria like the current age or the duration of the marriage.
The independence between age at marriage and the number of children a
couple can have is another restriction of this model which will be relaxed in
the following Sect. While searching for a partner each individual tries to find
someone whose age interval overlaps with the own one. If an agent can’t find
an acceptable partner it remains single and isn’t taken into consideration any
longer. Otherwise both partners marry. Married individuals are removed from
the list of marriage candidates.

The population within this model is stationary. This is achieved by as-
signing min(�s/c�, k) children to each married couple, where the parameter
s means the size of the starting generation, c is the number of couples and
k ≥ 0 is a numerical parameter determining the minimal number of children
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a couple could have. After that replenishment of the population is achieved
by assigning further children to the couples until the original population size
is attained. The case k equal to zero means there is no minimum number of
children and therefore it is possible that some couples remain childless.

If a couple has children, their children inherit their age-at-marriage norms
by means of a special transmission mechanism. Four different transmission
mechanisms are applied,

• Intersection,
• Union,
• Random, and
• Uniform.

These mechanisms are also adopted in the extended model and are de-
scribed in detail in the following Sect. Combinations of these mechanisms are
also allowed. This is achieved by assigning to each individual one out of four
mechanisms with the same probability. In this case children inherit both, the
age norms and the transmission procedure, from their parents. In addition
to the transmission of norms, two alternative forms of mutations are allowed.
Thus, with a certain user–defined probability a child does not necessarily in-
herit the transmission mechanism or the age norm from its parents. In the
former case the children are initialised randomly with the same method ap-
plied for the initial generation, in the latter case the lower and upper bounds
of the child’s age norm are calculated as the average of the lower and up-
per bounds of the parent generation. These two mutation techniques are not
adopted to the new model in an attempt to keep the number of degrees of
freedom at a tractable level.

4 The Extended Model

This Model is an extension of [4] which is described in brief in Sect. 3. It is de-
signed to study the cultural evolution of age-at-marriage norms. The model is
a system in which agents interact in a dynamic and evolving way. The agents
search for a partner, marry, and reproduce. The existence of norms implies
that marriage only takes place within a particular age interval. As these age
norms prevent marriage outside of the personal age interval, they influence
the demographic choices of individuals. The norms serve as a guideline for
the timing of marriage and for choosing an acceptable partner. Because these
norms restrict the individual life course choices, they are important for inves-
tigating the further deployment of the life course. The model was developed
for simulating these dynamic age norms. In particular the long term persis-
tence and the disappearance of age norms are examined. Further, the impact
of the initial distribution of norms within the population is depicted. The
long run persistence — i.e. the survival across several generations — of age
norms can be investigated by means of agent–based modelling. Agent–based



Age-at-Marriage Norms 91

models allow us to study the evolution of norms within setups determined by
co-existence of norms.

The previously described model is now extended by adding the demo-
graphic structure characteristics age and sex. For this model a starting popu-
lation of N agents is produced. The agents obtain a starting age between zero
and the maximum age m, which is assigned randomly. The sex of the individ-
uals is also chosen randomly. The sex ratio at birth resp. at initialization, srb,
which means the ratio of male to female births, can be chosen arbitrarily.

Besides age and sex the individuals are characterized by two sex-specific
age-at-marriage norms. The female age–at–marriage norm determines the ac-
ceptable age for a woman to marry. Therefore, a female individual recognizes
her own marriage readiness by this interval whereas for a male individual it
indicates the age his potential wife should have. The male age–at–marriage
norm on the other hand determines the acceptable age for men to marry. Con-
sequently, the male agents consider this norm to determine their own readiness
while it determines the age range of an acceptable partner from the viewpoint
of a female agent. It seems to be appealing to extend the length of the mar-
riage intervals with age since the tolerance of an individual with respect to
age differences may expand with increasing age. However, the age–norms in
our model are not intended to determine the age differences within unions but
to constitute a regulating mechanism with respect to age–at–marriage. Thus,
expanding the marriage interval with age means to mess up two different pro-
cesses. Therefore, we decided not to include this extension into our model.
Moreover, in the simulation experiments this extension did not exhibit a sig-
nificant impact on the results, it simply delayed some of the observed effects.

Each norm is represented by a lower acceptable age–at–marriage, l, and
an upper acceptable age–at–marriage, u. The individual lower bound must
be above the global minimum age la, which may be interpreted as a legal
minimum age to get married. The upper bound of the individuals age–at–
marriage intervals is only restricted by the age m at which agents are being
removed from the simulation. Thus, the lower limit is situated between la
(which is the minimum age for marriage) and m, and the according upper age
limit is set between the lower limit and m.

The norms for the initial population are drawn from a random distribution.
First a random number lfi satisfying la ≤ lfi ≤ m is selected as the lower
bound. Then a random number, uf

i , which must be between this lower bound
and m is chosen as the individual’s upper bound. These two values describe
the female age–at–marriage norm. After fixing the female norm the male age–
at–marriage interval is determined according to the same procedure.3

3 This procedure does not generate a uniform distribution for both lower and upper
bound. Only the lower bounds are uniformly distributed while the upper bounds
are biased towards higher ages. However, Figs. 7 and 8 indicate that all possible
norms occur in the initial population. As long as the population size is sufficiently
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On the basis of this starting population, the evolution of this popula-
tion is simulated, where each individual ages, may marry and get children.
Since a simulation sequence now represents one year, the individuals grow one
year older within one simulation step. The maximum age which an individual
achieves is m years. As soon as an agent gets m years old, it is discarded from
the model, since it has no influence on the dissemination of age–at–marriage
norms due to age–specific fertility rates. For simplicity we neglect age–specific
mortality rates and assume that all agents survive until the age m.

In every time step each individual who is in the marriageable age may
search for an acceptable partner. An individual arrives at the marriageable age
when its own age is situated within its appropriate sex–specific age interval.
A potential partner is a marriageable single individual of the other sex, whose
sex–specific age–at–marriage norms overlap with the agent’s own norms. An
unmarried female at marriageable age would search for any male single in-
dividual whose current age is within her male age–at–marriage interval and
whose female and male age–at–marriage norm have nonempty intersections
with her own female and male age–at–marriage norms (see Fig. 3).

Moreover, the chosen potential partner would only accept a partnership if
her current age is also within his female age–at–marriage interval.

own age norm possible age intervals of an acceptable partner

Fig. 3. Age intervals of a potential partner

Additionally, the potential partners must not have the same parents since
marriage among siblings is prohibited in our simulation. This restriction is
useful to avoid the persistence of a weak norm which is transmitted by only one
couple. Given the population is sufficiently large the result of the simulation
described so far would be that most individuals find an acceptable partner as

large this bias in the initial population will not have any significant impact on
the results.
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soon as they enter their individual age–at–marriage interval. Moreover, each
agent would marry the very first partner encountered who is acceptable with
respect to age–at–marriage norms. This is obviously not the way how dating
and marriage happen in the real world. Besides the age of the potential partner
there will also be criteria like sympathy, physical attraction, or social and
economic status which play a role in mate choice of within human populations.
These phenomena are discussed for instance by [13] and [15]. To overcome the
problem of a marriage peak just after surpassing the lower age limit [13]
and [15] applied a normally distributed courtship time in their model and
[14] introduced a variation in the number of dates to be encountered during
adolescence. Our solution is in line with these models. Here, every agent who
finds an acceptable partner gets married with probability pm given by

pm = pm0 + (1 − pm0)
a − l

u − l
, (1)

where a − l is the number of years since the individual has reached the mar-
riageable age and u−l is the length of the personal age interval. The use of pm
allows for an individual to marry as soon as she/he reaches the marriageable
age with a certain probability but also to wait after entering the marriageable
age–interval (e.g. someone who is sure of having found her/his partner would
marry immediately whereas others might rather wait for a “better” partner).
An individual who doesn’t find an acceptable partner or decides not to marry
remains single for that period and continues to search for a partner in the
next period if she/he is then still at marriageable age.

However, if female and male age norms of two marriageable individuals
match, this couple may eventually get married. In that case these two agents
are no longer potential partners for others. Each married couple can have chil-
dren annually. In our simulation model the probability for a married woman
at age a to give birth is

w(a)
mw(a)

af(a) tfr , (2)

where tfr is an adjustable parameter determining the period total fertility
rate within the population. This parameter is multiplied by af(a) to replicate
empirically observed age–specific fertility patterns. Consequently, af(a) tfr
would represent the age–specific fertility of all female agents at age a within
the population. Moreover, since children are assigned only among the married
couples this age–specific fertility rate is multiplied by w(a)/mw(a) where w(a)
is the total number of women at age a and mw(a) is the number of married
women at that age. Therefore, the fraction w(a)/mw(a) must be greater or
equal to one which causes the age–specific fertility of the married women to be
greater or equal than the age–specific fertility of the whole female population.
Each newborn inherits the conceptions concerning the marriage age of its
parents due to a special transmission mechanism. In this model we apply the
four transmission techniques introduced in [4].
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Intersection: The child’s age norms [lfc , uf
c ] and [lmc , um

c ] result from the in-
tersection of its parent’s intervals, lfc = max(lfp1, l

f
p2), uf

c = min(uf
p1, u
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p2),

lmc = max(lmp1, l
m
p2), and um

c = min(um
p1, u

m
p2) (see Fig. 4).
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Fig. 4. Intersection of age intervals

Union: The age-at-marriage norms of the child are in each case the unions
of the parents’ age intervals, lfc = min(lfp1, l

f
p2), uf

c = max(uf
p1, u

f
p2), lmc =

min(lmp1, l
m
p2), and um

c = max(um
p1, u

m
p2) (see Fig. 5).
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Fig. 5. Union of age intervals

Random: The boundaries of the female norm of the child are selected ran-
domly from the respective boundaries of the parents’ female norms. Thus,
the lower bound of the child may be either the lower bound of the mother
or the lower bound of the father. The upper bound of the female norm as
well as the lower and upper bound of the male norm are selected the same
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way, lfc = random(lfp1, l
f
p2), uf

c = random(uf
p1, u

f
p2), lmc = random(lmp1, l

m
p2),

and um
c = random(um

p1, u
m
p2) where random(x, y) chooses either x or y with

the same probability (see Fig. 6).
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Fig. 6. One possibility for Random combiner. The upper limit is randomly chosen
from (up1, up2) and the lower limit is chosen from (lp1, lp2).

Uniform: The lower (upper) bound of one of the two norms of the child
is a random number between the lower (upper) bound of the respec-
tive norm of the mother and the father4, lfc = uniform(lfp1, l

f
p2), uf

c =
uniform(uf

p1, u
f
p2), lmc = uniform(lmp1, l

m
p2), and um

c = uniform(um
p1, u

m
p2)

where uniform(x, y) selects a number between x and y drawn from a uni-
form distribution (see Fig. 7). Similar mechanisms are used for instance
by [10] and [16] to model opinion dynamics within an agent population.
While [10] uses a weighted average of an agents current own opinion and
the opinions of the other agents to get the agents opinion in the following
period, in [16] only two agents communicate with each other and agree to
a compromise by adjusting their own opinion slightly towards the opinion
of the other agents. Here, the age–at–marriage norm takes over the role
of an opinion and the norm of the child is a compromise of the parents
norms. Unlike [10] and [16] the particular location of that compromise is
not deterministic but results from a random process.

In Sect. 6 we will present results obtained in simulations with homogenous
populations — i.e. populations of agents endowed with the same transmission
mechanisms — as well as results gained from heterogenous populations. In
the latter case the assignment of combiners to the original population is done
randomly with each mechanism being chosen with equal probability. So if the
user chooses two mechanisms, these are assigned to the individuals with a
4 The Uniform transmission is a random transmission with uniform distribution.

This notation is consistent with [4].
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Fig. 7. Uniform combiner

probability of 50 percent. If all four techniques are to be used, these four are
divided among the individuals with a probability of 0.25 each. Individuals
who are born during the simulation inherit the transmission technique of one
parent, where the probability to inherit from the mother is just the same as
to inherit from the father. The one mechanism that is inherited to the child
is also the one that is used to compute the child’s age norms from its parents’
male and female norms.

The extensions described above allow us to demonstrate within the simu-
lation that the long term persistence of norms depends not only on the trans-
mission mechanism. Thus other female norms will persist than male norms
since the age at marriage of a woman considerably influences the number of
children she can give birth and consequently the possibility of passing on her
age norms. This natural fact is simulated by the consideration of age specific
fertility rates5 (see Table 1).

Table 1. Age specific fertility rates

15-19 20-24 25-29 30-34 35-39 40-44 45-49

ASFR 5 14.8 69.6 98.1 65.6 25.2 5.2 0.4
af(a) 6(%) 1.06 4.97 7.01 4.69 1.80 0.37 0.03

5 Source: U.S Bureau of the Census, International Database, Table 028: Age specific
fertility rates (in Austria in 2002)

6 The total fertility rate in Austria in 2002 was 1.399. That year a thousand women
aged between 15 and 19 years on average gave birth to 14.8 (= 1.48%) children
as indicated in the first line of the table. Equation (2) implies that we need a
standardized age–specific fertility rate assuming a total fertility rate of 1. This
standardized age–specific fertility rate is given in the second line of the table. For
a women in the age group [15,19] we get af(a) = 1.48/1.399 ≈ 1.06.
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The implementation of the agents’ ages also influences the evolution of
norms since the assumption that all couples can get children with the same
probability no matter at which age the couple has married does not comply
with reality. Thus integration of the age causes a displacement of the lower
age at marriage bounds downward.

5 Simulation Details

As already mentioned earlier there are two sex specific age–at–marriage norms.
Above all, the introduction of an age–at–marriage minimum is of relevance,
as in all countries exists a minimum age before which individuals are not
allowed to get married. Although a maximum age for marriage isn’t intended
legitimately, we restrict the maximum age of the agents to m because the
evolution of norms is not effected by agents above that age. Consequently,
the upper limit of the agents’ age–at–marriage intervals cannot exceed m.
The separation of norms shows how age–at–marriage norms of women evolve
differently than those of men. Furthermore sex is now a vital selection criteria
since marriage between individuals of the same sex is not allowed. Another
important extension is the specification of the agents’ age. In contrast to the
original model the individuals can’t marry before they reach their personal
marriageable age. This characteristic influences the marriage readiness as well
as the reproduction. The probability of having children depends on the age of
the female partner.

The inhabitants of our simulation enjoy the pleasure to live in a world in
which nobody dies before the age of 60. However, then they are removed from
the model. We dare to refrain from modelling mortality in a more accurate
way because in highly developed countries the chance to survive until the
age of 60 is very high7 and the dying after the age of 60 does not affect the
evolution of age–at–marriage norms, which is the main subject of our study.

The four transmission mechanisms Intersection, Union, Random and Uni-
form have been retained unchanged but we did not include the two mutation
mechanisms (a child does not inherit any information from its parents) into
this model. We abandoned the implementation of a mutation operator intro-
ducing new age intervals completely randomly because a certain degree of
randomness is already being provided by the Random and Uniform operator.
Nevertheless, the randomness inserted by these two operators takes place on
a well–regulated level.

7 For instance the period lifetable for Austria for the period 1990/92 indicates that
the probability for females to survive until the age of 60 is 91.9% and for males
it is 83.6%, (Source: Statistik Austria, Statistisches Jahrbuch 2004, p. 75)
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5.1 Numerical Parameters

Some model parameters may be changed to show the effect of their values on
the results. The values of other parameters are fixed and cannot be changed.
This Sect. gives an overview of all parameters and their values used in the
simulation.

N initial population size, N = 500 − 5000. N agents described
by randomly chosen characteristics are created. On the basis
of this starting population, the evolution of this population
is simulated.

m maximum age an individual can achieve, m = 60. As soon
as an agent becomes 60 years old it is removed from the
model — it dies. Moreover, because agents are removed at
age m, this parameter also takes over the role of a global
upper bound for age at marriage.

srb sex ratio at birth. To examine the effects of an imbalanced
ratio between sexes, values from 0.5 to 2 are allowed. A srb of
1.05 means that 105 boys are born while 100 girls are born.

la lower bound for age at marriage, la = 15 years.
pm probability that an individual who has found an acceptable

partner really marries.
pm0 probability of marriage in the first year after arriving at mar-

riageable age.
tfr total fertility rate. tfr can take values between 1.0 and 3.0.
af(a) age specific fertility rate of women at age a.
lf lower bound of female age at marriage, lf ∈ [15, 59].
uf upper bound of female age at marriage, uf ∈ [lf , 59].
lm lower bound of male age at marriage, lm ∈ [15, 59].
um upper bound of male age at marriage, um ∈ [lm, 59].

5.2 The Agents

Each agent is described by some characteristics determining its behaviour
during the simulation. For the age–at–marriage model the following agent
characteristics are defined:
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Variables Values Description

index 0 - identifier of the agent
age 0 - 59 indicates the agent’s age
sex male / female shows its sex
married? true / false is set true when the agent has married

an acceptable partner
mother index identifier of the agents mother – for the

first generation the value of this vari-
able is undefined.

father index identifier of the agents father
brosis8 index lists all agents who have the same

mother and father. An agent is not al-
lowed to marry one of these agents

partner index if an agent is married this variable
shows its partner otherwise the value is
nobody

pregnant? true / false for male agents and unmarried agents
this value is always set false, for mar-
ried women it is randomly assigned true
based on the probability in equation (2)

female-lower-bound 15 - 59 lower bound of the agent’s female age
norm lf

female-upper-bound lf - 59 upper bound of the agent’s female age
norm uf

male-lower-bound 15 - 59 lower bound of the agent’s male age
norm lm

male-upper-bound lm - 59 upper bound of the agent’s male age
norm um

of-marriageable-age? true / false is true as long as the agent’s age is situ-
ated within its appropriate sex-specific
age interval

transmission intersection/
union/
random/
uniform

indicates the transmission mechanism
used to inherit the age norms

8 abbreviation of brothers and sisters
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6 Results

To investigate the effect of the four transmission mechanisms on the persis-
tence or dissolution of age norms, the model was implemented in NetLogo9.
Our simulations show that the transmission mechanism determines which
norms survive and which disappear first. Moreover, we are interested in the
impact of a combination of two or more transmission mechanisms on the per-
sistence of age norms. To facilitate the comparison of the different transmis-
sion mechanisms, the values of some numerical parameters are kept constant.
The following six simulations each are started with an initial population of
5000 agents, whose characteristics like age, sex and age norms are assigned
randomly. Male and female agents are generated with the same probability
(srb = 1). To avoid erratic fluctuations in the size of the agent population we
set the total fertility rate tfr equal to two. Consequently, the female agents
(about half of the population) give birth to two children on average. Finally
the variable pm0 is set equal to 35%.

Intersection combiner

If the child’s norm is the intersection of the age intervals of its parents, its lower
bound is the maximum of its parent’s lower bounds and its upper bound is the
minimum of its parent’s upper bounds. Therefore, the child’s age intervals are
always shorter than, or at most, as long as the intervals of its parents. That
implies that the mean length of the age at marriage interval decreases with
time. Thus the average mean length converges to a very narrow age interval
(see Fig. 8). In reality such a development may not persist in the long run.
Nevertheless, in a period of increasing lower age limits and nearly constant
upper age limits (see for instance the period from 1980 to 2000 in Fig. 2) a
mechanism similar to this intersection combiner may be at work. Figures 1
and 2 suggest the interpretation that there is not one universal mechanism at
work in the long run. Therefore, here and in the following we will not only
look at the long run equilibria resulting from the transmission mechanisms
but also investigate the intermediate dynamics.

The age–at–marriage norms of the initial population were chosen ran-
domly. Hence, Figs. 9 and 10 show that the initial state contains practically
every possible norm.

Already after 60 time steps the evolution of age norms exhibits a clear
trend towards shorter age intervals. Those norms with the largest interval
length become fewer (see Figs. 11 and 12).10 The female age–at–marriage
9 Within a short test of different simulation platforms we got the impression that

NetLogo provides an easy to use programming environment, which enabled us to
quickly implement the simulation model from the scratch. Further details can be
found at http://ccl.northwestern.edu/netlogo/

10 In Figs. 11 and 12 there are more female norms remaining in the upper left corner
than male norms which is just a random “accident” of that particular simulation
run.



Age-at-Marriage Norms 101

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35

40

45

year

m
ea

n 
le

ng
th

Fig. 8. Mean length of age norms — intersection combiner
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Fig. 9. Female age–at–marriage norms
in the initial population

10 20 30 40 50 60
10

20

30

40

50

60

lower bound

up
pe

r 
bo

un
d

Fig. 10. Male age–at–marriage norms
in the initial population

norms with a lower bound of 50 years or above disappear within the first 60
years, until all agents of the first generation with random norms are removed
from the model (see Fig. 11). This phenomenon holds for all simulations and
can be explained easily. A female agent who marries at the age of 50 or above
isn’t able to have offsprings because the age specific fertility rate above the
age of 50 is zero. Thus, no child can be born who inherits an age norm with
a female lower bound above 50.

Because of a very low age specific fertility rate for 45 to 49 year old women,
the age norms with lower bounds in this range disappear over the next few
years. The persistence of male age norms doesn’t show the above behaviour
since we did not take into account male (age–specific) fertility rates. For both
sexes the norms in the upper left corner of the diagram vanish gradually.
These are the norms with the largest length which disappear because of the
intersection combiner. Within the next years the female norms keep converging
towards the lower half of the diagonal and the male norms converge towards
the whole diagonal, but in the long run also the male norms converge towards
the lower half of the diagonal, simply because of the fact that younger men
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Fig. 11. Female age–at–marriage
norms after 60 time steps
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Fig. 12. Male age–at–marriage norms
after 60 time steps

have more time to conceive more children to whom they can transmit their
norms.

Although those norms along the diagonal have the shortest length of all,
and therefore should remain, most of them also disappear. The dissolution
of female norms with a higher lower age bound can be traced back to age
specific fertility rates. Since in the simulation only married agents can give
birth to children, those female agents who get married early have a longer
time period for having children and are married during the time in their live
with the highest age specific fertility rate. Consequently, these agents have
higher chances to have children and pass their norms to the next generation.
But there are some norms that died out to which this fact doesn’t apply. In
addition this phenomenon also occurs in Fig. 12 which shows the male age–
at–marriage norms. The disappearance of these norms happens for some other
reasons. Individuals who are characterised by such extremely short norms also
have very little time to search for a partner. Especially an individual with an
age norm at the diagonal is at marriageable age for only one year and his/her
partner has to be at a specific age to be able to marry. This reduces the
supply of potential partners enormously. Therefore, for those individuals the
probability of remaining single is rather high due to the fact that even if there
are enough individuals who are characterised by the same norm it is unlikely
that they are also at a marriageable age at the same time. On this account
also many of these short norms along the diagonal vanish. Finally there are
just a handful of norms surviving which each account for a group of agents
who are only allowed to marry among themselves (see Figs. 13 and 14). In
[4] where the agent’s age isn’t included the norms converge toward the whole
diagonal within a few generations.

Figure 15 illustrates the time development of the mean age at marriage.
The dotted line represents one particular simulation run and the solid line
shows the average over 10 simulations with the same set of numerical param-
eters. The mean age at marriage decreases to 18 years due to the fact that the
norms surviving in the long run are clustered at the lower end of the diagonal.
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Fig. 13. Female age–at–marriage
norms after 250 time steps
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Fig. 14. Male age–at–marriage norms
after 250 time steps
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Fig. 15. Mean age–at–marriage within 450 time steps — intersection combiner

Union combiner

Using the parents’ union as the children’s age norm causes the converse effect
of the intersection combiner. Creating a new age norm by using the union
combiner sets the lower bound to the minimum of the parents’ lower bounds
and its upper bound to the maximum of its parent’s upper bound. Compared
to the intersection, the interval lengths have to be longer than, or at least as
long as the parents’ intervals. Therefore, the mean length of age–at–marriage
norms increases quickly until it reaches the maximum possible length of 44
years (Fig. 16).

Once again we start with an initial population of 5000 agents with random
parameters. Compared to the previous simulation, those with the largest in-
terval length do not become fewer, but those norms with the smallest interval
length do become fewer. The norms along the diagonal are barely represented
by now, whereas the norms amass at the upper left corner representing the
norms with the highest possible interval lengths. After 100 time steps there
is clear evidence that the norms converge toward the maximum (Figs. 17 and
18). Age norms with very short interval lengths completely disappear. Al-
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Fig. 16. Mean length of age norms — union combiner

though the female and male age–norms converge toward the same point their
evolution is slightly different. The female norms are soon dominated by the
lowest possible lower bound 15, whereas the male norms are dominated by the
highest possible upper bound 59 (Figs. 19 and 20). This artefact is caused by
the fact that male fertility rates are neglected. After 350 years only the norm
with a lower bound of 15 years and an upper bound of 59 has survived, all
other norms have disappeared completely. Each individual is characterised by
the two age norms with the maximum interval length. This implies that every
individual of marriageable age easily finds an acceptable partner. Because of
an annual probability to get married above 35% an agent remains single on
average for only two years. Therefore the mean age–at–marriage becomes 17
years (Fig. 21).
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Fig. 17. Female age–at–marriage
norms after 100 time steps
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Fig. 18. Male age–at–marriage norms
after 100 time steps
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Fig. 19. Female age–at–marriage
norms after 250 time steps
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Fig. 20. Male age–at–marriage norms
after 250 time steps
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Fig. 21. Mean age–at–marriage within 350 years — union combiner

Random combiner

After investigating the effect of children inheriting their norms as an intersec-
tion or as a union of their parents’ norms, we demonstrate the consequences
of a norm consisting of age bounds applied by chance. Using what we call
the random combiner each new born inherits one of its parents’ lower bounds
with the same probability. The upper bound is chosen the same way. This as-
signment of bounds doesn’t offer the appearance of new bounds but it allows
for new combinations of already existing boundaries. Thus age bounds that
already got lost during the evolution of norms cannot reappear. Compared
to the intersection and union combiner the random combiner allows for more
possibilities regarding the norms of the children but not as many as the uni-
form combiner described in the next Sect. Therefore, the random combiner
can be seen as in intermediate mechanism bridging the gap between the two
very deterministic combiners and the very undeterministic uniform combiner.
This transmission mechanism does not predetermine the change of the mean
length. The interval length may increase, decrease, or remain constant as well.
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At the beginning the interval length increases which is due to the disap-
pearance of some female norms during the first few years. During the following
years there are short term increases as well as short term decreases which is
due to the extinction of several bounds but the mean length always levels off
at average values since the remaining lower bounds are combined with sev-
eral upper bounds. Therefore nearly as many norms with a large interval (e.g.
persisting male norm with largest length: (15, 59) ⇒ length = 44) as norms
with a short interval (e.g. shortest remaining male norm with a lower bound
of 15: (15, 21) ⇒ length = 6) remain. Within this simulation the mean length
of the age intervals converges towards 25 years (Fig. 22). Since the random
combiner possesses the ability to behave in the same way as the intersection
or the union combiner but may also create norms by any other combination
of the parents norms, the dynamics of the mean length of age–norms is also
somewhere between the results obtained from the two extreme transmission
mechanisms.
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Fig. 22. Mean length of age–norms — random combiner

Already after a few simulation steps it can be seen that only the female
norms in the left half of the diagram remain. It is obvious that norms consist-
ing of a small lower age bound have a high chance to survive. But there are
no upper bounds that are obviously superior to others. When looking at male
norms there is also a clear trend to the left half of the diagram. However,
the convergence happens much slower because the age–at–marriage of men
does not have an immediate impact on the number of births. After 1050 time
steps (more than twice the simulation time we used for intersection and union
combiner) there is still no stable structure (Figs. 23 and 24). There are still
numerous variations of possible age–at–marriage norms. Since the structure
of norms within the population is not stable yet, the mean length of the age
intervals can still change as well. Comparing Figs. 23 and 24 with the results
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obtained from the union combiner we can conclude that the variety in lower
age limits gets reduced in both cases but the random combiner sustains a
higher variety of upper age bounds than the union combiner.

10 20 30 40 50 60
10

20

30

40

50

60

lower bound

up
pe

r 
bo

un
d

Fig. 23. Female age–at–marriage
norms after 1050 time steps
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Fig. 24. Male age–at–marriage norms
after 1050 time steps

Since the norms do not converge toward an equilibrium, the average value
for the age–at–marriage does not converge either but fluctuates between 19
and 23 years in the long run (Fig. 25). The reason for these values is the
mean lower bound of female norms of 17 years and the mean lower bound of
male norms of 22 years. Due to the mean interval length of 25 years it follows
from (1) with pm0 = 0.35, a − l = 1 (annual step), and u − l = 25 that
the probability for individuals to marry increases by (1 − 0.35) ∗ 1/25 = 2.6
percentage points per year. Because of this increase most agents who find an
appropriate partner do not remain single for more than one year.11
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Fig. 25. Mean age–at–marriage within 1050 time steps — random combiner

11 This does not mean that agents who find an appropriate partner but do not marry
remain connected to that partner for future periods of the simulation.
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Uniform combiner

In the following we will discuss the results obtained from simulation experi-
ments based on the uniform transmission mechanism. Now the children may
get any bound between the respective bounds of the parents. Therefore the
mean length does not converge toward an extreme, but rather toward an in-
termediate value. In this case the value for the interval length is nine years
as it can be seen in Fig. 26. During the first few decades, the mean length
increases which is comparable to the increase of the intersections mean length
in the beginning. Like in the previous simulations, some short female norms
(those with a lower bound of 50 and above) disappear within the first 60
years, which causes the short increase of mean length at the beginning. From
that moment the mean length decreases until it arrives at approximately 9
years. This shrinkage of interval lengths is due to the fact that children in-
herit bounds somewhere between the respective bounds of their parents, which
results in a modest tendency towards shorter age intervals.

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

40

45

year

m
ea

n 
le

ng
th

Fig. 26. Mean length of age norms — uniform combiner

The norm’s evolution can be anticipated soon. It can be seen that the
first norms to disappear are those that have survived in two of the previous
experiments (Figs. 27 and 28): The norms which prove to be the strongest
in the experiment with the union transmission mechanism are those in the
upper left corner. The norms that survived in the intersection experiment are
those with the shortest length, which are those along the diagonal. These two
groups of norms are the first to die out.

Norms that are nearby a maximum value or a minimum value vanish.
These boundary values disappear because they are likely to be paired with a
partner with a value that is further away from that bound. Consequently their
children are likely to inherit a shorter age interval. Female norms with higher
lower limits disappear like in the other tests. However, it takes more than 1000
time steps until only three female norms and tree male norms remain. All
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Fig. 27. Female age–at–marriage
norms after 150 time steps
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Fig. 28. Male age–at–marriage norms
after 150 time steps

remaining female norms already have the same upper bound namely 28 years.
The female lower bound varies from 19 years to 21 years (Fig. 29). The male
lower bound is for all agents 28 years (like the female upper bound). The male
upper bounds still varies from 38 years to 40 years (Fig. 30). These bounds
are explained by the fact that 21 (female lower bound) is the mean value
for the lower bound weighted by the age specific fertility rate and 28 (female
upper bound) is the weighted mean value between 21 and 59. The bounds of
the male norms are weighted with the remaining time for conceiving children.
The according weighted averages for the male lower and upper bound are thus
28 and 38 years, respectively.
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Fig. 29. Female age–at–marriage
norms after 1050 time steps
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Fig. 30. Male age–at–marriage norms
after 1050 time steps

Sooner or later there will be only one point left in each diagram repre-
senting the strongest norm. Women achieve their marriageable age between
19 years and 21 years while all men reach the marriageable age at 28. Thus
the mean age at marriage among the whole population fluctuates between 23
and 25 years in the long run (Fig. 31).
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Fig. 31. Mean age–at–marriage within 1050 time steps — uniform combiner

Intersection and union

Now we will investigate a mixed population containing agents with the inter-
section combiner as well as agents with the union combiner. These are those
two transmission mechanisms which result in extreme age norms when they
are used in a homogenous population of agents. The union combiner, which
results in the age norm in the upper left corner having a maximum mean
length of 44 years is combined with the intersection combiner that results
in an age norm along the diagonal with short interval lengths. The aim of
this experiment is to investigate how the dynamics differ within a heteroge-
nous population compared to the homogenous populations. Each initial agent
is randomly assigned one transmission mechanism with the same probability
(0.5 each). Newborn agents inherit the transmission mechanism from one of
their parents.

At the beginning the mean length increases nonmonotonically. A little
bit later it becomes monotonically increasing until it reaches the maximum
possible value of 44 after only 200 years (see Fig. 32). The reason for the
increasing length is that the union combiner (causing an increasing length)
dominates the intersection combiner which causes a decreasing interval length.
The union combiner is the stronger of the two because it allows for more
acceptable partners for marriage, which results in a bigger number of couples
who can hand down the union transmission mechanism. Only relatively few
agents with the intersection combiner get married, and consequently fewer
children with an inherited intersection transmission mechanism are born.

The union’s predominance against the intersection is very strong. After
only 100 years already more than 80 percent of all individuals are characterised
by the union transmission and after 450 years the weaker combiner does not
occur anymore in the population (Fig. 33).

Therefore the only norm that remains until the end of the simulation is the
one with the lower bound at age 15 and the upper bound at age 59, which is
the same that survived in case of a homogenous population of agents applying
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Fig. 32. Mean length of age norms —
intersection and union combiner
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Fig. 33. Proportion of intersection
and union combiner

the union combiner. Since the union transmission mechanism dominates the
intersection mechanism, the mean age at marriage levels off at 17 years, which
was the mean age at marriage in the simulation applying the union combiner.

Combination of all four transmission mechanisms

In this Sect. we have a look at the evolution of norms applying a combina-
tion of all four transmission mechanisms — intersection, union, random and
uniform. Considering the combination of the four transmission mechanisms
the changes of the mean length are comparable to those evolving from the
combination of the intersection and the union combiner (Fig. 34). During the
first 60 years the graph is monotonically increasing since all four transmis-
sion mechanisms cause an increasing mean length due to the disappearance
of all female norms with a lower bound above 50 (which all have a short
mean length). The following decades show a mean interval length that does
no longer increase monotonically. The intersection and the uniform combiner
cause some decreases in the short term but as their joint proportion consti-
tutes less than 30 percent after 150 years, the influence of these mechanisms is
rather small. Therefore the curve soon is monotonically increasing again and
reaches the maximum possible length of 44 years after only 350 years when
already 65 percent of all agents inherit their age norms as the union of their
parents’ intervals (Figs. 34 and 35).

It takes more than 1000 years until the union combiner dominates all the
other combiners and only the norm with the longest possible interval remains.
Because of the persisted age norm (15, 59) individuals are allowed to marry
when they are at the age of 15. Most agents stay single for two years and get
married at the age of 17.

By influencing the evolution of norms, the choice of the transmission mech-
anism also influences the mean length of the age interval, the number of mar-
ried couples and singles of marriageable age and the mean age at marriage.
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Table 2 shows the respective values. To make the data comparable, the pro-
portion of married couples of all simulations are taken after 300 years12.

Table 2. Comparison of the transmission mechanisms

intersection union random uniform

proportion of married couples (%) 29.6 36.0 30.8 29.9
mean length 1 44 25 9
mean age at marriage 18 17 19–23 23–24

This comparison explains the results of the two investigated combinations
of transmission mechanisms. Individuals who are characterised by the union
combiner find considerably more potential partners than those who are char-
acterised by the intersection combiner because of the union’s large interval
length. Therefore, the union combiner dominates the simulations with het-
erogenous populations. The random transmission mechanism, which has the
second largest interval length and thus the second largest proportion of cou-
ples, does also persists in a combination of all transmission mechanisms. The
execution of different simulations showed that after 1050 years 10% to 25% of
the agents are characterised by the random combiner. After the intersection
combiner has died out also the uniform combiner disappears because its mar-
riage rate is not that high as well. Since the union transmission technique is
the strongest one that dominates all other mechanisms both simulated com-
binations finally lead to the age norm (15, 59) with an age interval of 44 years
and a mean age at marriage of 17.

12 The proportion of married couples was measured after 300 years since these
midterm results illustrate the development of the distribution of the combin-
ers within the population. The mean length of the age interval and the mean age
at marriage were taken at the end of the simulation since we are interested in the
long–term equilibrium.
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Parameter variations

So far we have only been looking at simulations based on a set of numer-
ical parameters which are kept constant over the whole time horizon. The
purpose of these simulations is to understand how the different transmission
mechanisms work and what is their impact on the appearance or dissolution of
norms within the agent population. However, the empirical data discussed in
Chap. 2 give evidence that in real societies norms and values are not constant
over time (see Figs. 1 and 2). Consequently, we want to investigate whether
our model is capable to replicate the observed dynamics. From the previous
simulations we conclude that the uniform combiner results in medium size
interval lengths which is of course the kind of dynamic behaviour which is
most appropriate to approximate real world dynamics. Therefore, we set up
a simulation model based on an agent population which is homogenous in
terms of the uniform transmission mechanism. At the beginning we fix the
parameter pm0 equal to 35% and simulate 100 time steps to arrive at stable
age–at–marriage norms. After that we modify pm0 in ten year time steps such
that pm0 = 35, 65, 95, 100, 55, 25, 5, 0 at t = 100, 110, . . . , 170. Fig. 36 reveals
that — neglecting the fluctuations — in this setup the mean age at marriage
decreases for some decades from around 24 to about 22 and later on increases
to mean ages higher than at the beginning of the simulation. Looking at the
age specific rate of marriage we see that the frequency of marriage among
young agents increases between t = 100 and t = 120 but later on decreases
to rather low levels (see Fig. 37). Thus, we can conclude that the time dy-
namics within the agent population are similar to those observed in the real
world data discussed in Sect. 2. The pronounced fluctuability in the mean age
at marriage in Fig. 36 is due to the rather low size of the agent population,
N = 2000. Since real populations are much bigger, the curves in Fig. 1 are
smoother.
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7 Concluding Remarks

In this Chap. we investigated the impact of the design of the transmission
mechanism on appearance, shifts, and extinction of social norms within an
agent population. Moreover, we looked at the impact of these social norms on
the age–at–marriage and on the age specific rates of marriage. In particular we
explored the effect of four different transmission mechanisms — intersection,
union, random, and uniform — on the dynamic behaviour of the social norms.

The first simulation considered the evolution of norms within a homoge-
nous population of agents endowed with the intersection combiner resulting
in a decreasing mean length of the age at marriage interval. The final in-
terval length was 1 year. The age norms converged toward the diagonal and
finally only a few age norms with a lower bound between 16 and 20 years
and an upper bound of 18 to 20 years survived. Applying the union combiner
caused an increasing mean length up to the maximum possible value of 44
years. Regarding age norms a convergence toward the upper left corner could
be observed. The random combiner did not cause one isolated norm to sur-
vive but the variety of different bounds shrank. Some lower and some upper
bounds vanished but the structure of norms within the population was still
not stable after more than 1000 years. The interval length of the age norms
varied. There was no clear increase or decrease. In case of the uniform com-
biner, the mean interval length leveled off to a narrow value. The number
of age–at–marriage norms reduced until a single point (15,59) survived. But
this process lasted considerably longer than it lasted using the intersection
or the union combiner. In a heterogenous population of agents equipped with
different transmission mechanisms the fraction of the population character-
ized by the union combiner increased until extinction of all other transmission
mechanisms.

A simulation setup based on the uniform transmission alone combined
with the variation of the parameter pm0 determining the initial probability of
getting married allowed us to approximate the time development of age–at–
marriage and the age specific rate of marriage among birth cohorts observed
in empirical data. It turned out that a temporary increase followed by a de-
crease of the initial probability to get married may be an explanation of the
U–shaped curve indicating the mean age at first marriage in some European
countries (see Fig. 1). Thus, such shifts in the initial probability of getting
married may at least partially explain past trends in age–at–marriage. For in-
stance, it is reasonable to assume that women born in the fourties considered
marriage and childbearing as major priorities in their lifes while succeeding
cohorts were more interested in getting a proper education and pursuing their
professional career before marriage. Compared to the model investigated in [4]
the extended model introduced in this Chap. proved to provide a significant
step toward reality since the timing of union formation and childbearing is
taken explicitely into account. Only with this explicit consideration of time
and age it is possible to investigate the impact of social norms and param-
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eter shifts on mean age at marriage and age specific marriage rates. Hence,
the increased complexity of the model is needed to replicate the phenomena
observed in empirical data.

Of course we are aware that social norms are not the only mechanism influ-
encing individuals on their decision about getting married. There are several
forces at work at the same time. For instance, the availability of appropriate
mates, economic considerations, and attractiveness may influence the deci-
sion. However, the empirical studies summarized in Sect. 2 give evidence for
the existence of such social norms and our simulation model shows clearly
that the existence of social norms can generate a behaviour similar to empiri-
cal data. Taken together, these findings strongly support the assumption that
age–at–marriage norms indeed have a major influence on the decision to get
married.
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Summary. In order to explain the differences in obesity rates among women in the
United States by education, we model a social process in which body weight norms
are determined endogenously in relation to the weight distribution of the peer group.
The model features biologically grounded variation in metabolism, and enables us
to describe a complete distribution of weights in equilibrium. We assume that in-
dividuals compare themselves to others with the same level of education, and that
the importance of conforming to the group weight norm increases with education
status. Consistent with observed body weights among women in the United States,
the model predicts lower average weights and less dispersion of weight among more
educated women.

1 Introduction

The dramatic growth in obesity rates in the United States since the early
1980’s has been widely publicized and much fretted over in recent years. In
the aggregate the percentage of obese adults in the U.S. increased from 13.6%
in the 1970’s to a rate of close to 30% in 2000. While official Centers for Dis-
ease Control (CDC) estimates of obesity-related mortality in the U.S. were
recently adjusted downward [18], from a high estimate of 400,000 per year
to about 65,000, obesity remains a prominent source of elevated disease risk,
most notably for diabetes and heart disease, and has contributed significantly
to increasing medical expenditures. The official definition of obesity employed
by CDC and by the World Health Organization (WHO) is a body mass index
(BMI) value of 30 or greater, where BMI is the ratio of weight, measured in

∗ We are grateful for the comments of two anonymous referees. An extended version
of this article including the FORTRAN90 code used to solve the model can be
found online at http://mailer.fsu.edu/∼fheiland/research.htm.
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kilograms, to squared height, measured in meters. BMI less than 18.5 is offi-
cially underweight, BMI values between 18.5 and 24.9 are considered healthy,
and BMI between 25 and 29.9 is defined as overweight but not obese.

While the increases in obesity have cut across a wide swath of the U.S.
population, obesity prevalence varies significantly across groups by education
level. Among U.S. women observed over the 1990-2002 period, the median
weight for 30-60 year old college graduates was 149 pounds, while the me-
dian for those in the same age group with just a high school diploma was 162
pounds.3 The difference in average weights between these groups is even larger,
the respective means being 143 and 154 pounds as shown in Fig. 1.4 The box
plots of the weight distributions also illustrate the fact that the dispersion
of weight about the median among more educated women is substantially
smaller than that for the less educated.5 For men, however, the differences by
education are much less pronounced. For example, college educated men in the
30-60 age bracket weighed on average 187 pounds compared to 190 pounds for
men with only a high school education. Median weights are almost identical
(184 pounds) for the two groups (see Table 1). Additional analysis confirms
that the education and gender patterns observed in the weight data also hold
when comparing the distributions of BMI. In this paper we use an agent-based
model of choice to explain the differences between the weight distributions of
U.S. women by educational attainment. Based on the hypothesis that more
educated women face stronger incentives to conform to a body weight norm
than do other women, the model captures many of the distributional dif-
ferences across education class. We also investigate competing explanations
based on behavioral or genetic differences across the groups. While data lim-
itations preclude a direct empirical test of the social interaction hypothesis,
the agent-based simulation approach taken here serves as an alternative tool
for assessing the explanatory power of the competing hypotheses.
3 The empirical findings presented in this paper are based on a sample of 30 to

60 year old Americans from the Behavioral Risk Factor Surveillance System
(BRFSS), a survey administered by the Centers for Disease Control and Preven-
tion. The BRFSS is a large random sample of the resident population 18 years
and older in participating states of the U.S.. Self-reported information on actual
weight, height and socio-economic and demographic characteristics is gathered
annually between 1990 and 2002. We correct for potential bias of self-reported
weights (see [39]) following the approach by Chou et al. [14] using data from
the third wave of the National Health and Nutrition Examination Survey for the
30-60 year olds.

4 Kolmogorov-Smirnov tests easily reject equality of the weight distributions by
education. Specifically, they provide strong statistical support that college edu-
cated women have the lowest weights while high school dropouts have the highest
weights.

5 Both the size of the box (=difference between the 75th and the 25th per-
centile=interquartile range) and the distance between the upper and the lower
adjacent values (=four times the length of the box) illustrate the dispersion of
the data about the median.
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Fig. 1. Box plot of body weight distribution, 1990-2002, U.S. Women aged 30-60
(Source: authors’ computation from BRFSS 1990-2002 data)

Several recent papers in economics have sought to explain obesity among
adults, including [14], [24], [16], [30], [22]. While these studies have offered
some compelling explanations for the general increases in weights in the United
States over time, they provide little insight into the relationship between ed-
ucation and weight, and, with the exception of [16], they focus on changes in
average weight and ignore other distributional features. An earlier paper by
the current authors [11] incorporates the influence of falling food prices into a
model with social weight norms and genetic heterogeneity, and captures not
just increases in average weights over time but also the growth in the upper
tail of the distribution since the 1970’s. The current work employs the same
basic choice framework as the earlier paper but focuses on cross-sectional
differences by education rather than changes over time.

In our socio-economic choice model, individuals suffer disutility from de-
viating from an endogenously determined social weight norm. For a given
value of the weight norm, M , the disutility is parameterized as −J(Wi−M)2,
where Wi is individual weight, and J captures the individual’s concern for
conformity or social esteem. The greater is J the greater the disutility of a
given deviation from a given norm. This formulation is standard in the so-
cial interactions literature, in which J (or some equivalent) is described as
representing the “strength of social interactions” or the degree of concern for
social esteem. Deviation costs may be self-imposed (a result of internalization
of a norm), and/or imposed by others, as discussed below. We argue, based
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on independent empirical evidence, that more educated women face stronger
incentives to conform to social weight norms, in the context of competition
for jobs, status, and marriage partners, than do less educated women. Given
these stronger incentives, modelled as a higher value for J , we predict lower
average weights among more educated women, a lower value for the endoge-
nous weight norm, and a smaller variance in weights within this group, all of
which are consistent with the empirical evidence.

In the model, each education class constitutes a self-referencing social
group with a particular common value for the conformity parameter, J . We
describe the qualitative effects of variation in J , and then simulate equilibrium
weight distributions for different values of J , calibrating the model to Amer-
ican women 30-60 years of age. Preferences over food and non-food goods
are identical across individuals, but metabolism is permitted to vary. Each
agent draws a one-time metabolic shock that determines the relationship be-
tween her body weight and calories burned per day at every possible weight
level; all shocks are drawn from the same distribution, whose parameters and
characteristics are based on empirical studies of exogenous human metabolic
variation. Equilibrium is group-specific, consisting of the stable distribution of
weights and the corresponding equilibrium weight norm that together satisfy
an internal consistency condition. Simulations based on this social interactions
model are compared to simulated distributions under competing hypotheses
in which individual characteristics vary systematically across groups and con-
formity may or may not be a concern. We find that, while several different
hypotheses can explain variation in average weight across educational groups,
our social interaction hypothesis does a superior job of explaining cross-group
differences in additional distributional features such as variance and skewness.

The social interactions literature has long recognized the theoretical im-
portance of the strength of social interactions, for example in determining the
number and character of equilibria (among many others see [7]). And while
in theory the parameter may be allowed to vary across individuals or across
pairings of individuals depending on their characteristics, very little work has
been done to measure J empirically or to identify the factors that affect its
magnitude. Thus this investigation, in addition to seeking to explain variation
in obesity rates across groups of women, also contributes to the study of the
empirical determinants of social pressures.

The remainder of the paper is organized as follows. The remainder of
Section 1 motivates the central assumptions of the model and presents com-
peting hypotheses concerning obesity and education level. Section 2 describes
the theoretical model and the comparative static effects of the strength of
social interactions on equilibrium weights and the equilibrium weight norm.
Section 3 presents the numerical simulations of the equilibrium weight dis-
tributions for women, illustrating the role of peer groups and of variation in
the strength of social interactions by education. It also discusses the predic-
tive power of alternative explanations that do not assume differences in the
strength of social interaction. Section 4 concludes.
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1.1 Sources of Non-Conformity Costs and their Relation to
Education

The central hypothesis that drives the variation in weight distributions across
education groups is that the degree of concern for conformity to a social weight
standard (alternatively termed the strength of social interactions) increases
with a woman’s education level. While it is difficult to observe such concerns
directly, there are a number of reasons to expect such a relationship. First,
educational attainment might be construed as revealing (among other things)
an individual’s level of concern for social status. Given that educational at-
tainment is highly correlated with measures of social and economic status such
as employment and income, individuals who pursue higher education may do
so because they have a relatively strong concern for social esteem. Concern
for social esteem should influence other behaviors or choices that are socially
visible, such as body weight and appearance in general [5].

Education might alternatively predict variation in the importance of con-
formity to body weight norms through its association with economic opportu-
nity. Cawley [13] and Averett and Korenman [2], based on recent U.S. samples,
show that overweight and obesity are associated with earnings penalties for
women but not, interestingly, for men.6,7 Women with greater human capital
are more likely to pursue professional careers and spend more time in the labor
market, and hence penalties that stem from social interactions may be more
salient for educated women. Consistent with greater costs of obesity for more
educated women, Bhattacharya and Bundorf [6] find higher obesity-related
wage penalties for women in high income occupations (the lower wages are in
part to offset the greater healthcare costs of obese employees). A recent study
by Carr and Friedman [12] on institutional and interpersonal discrimination
finds that severely obese (BMI > 35) professionals are more likely than their
nonprofessional counterparts to experience discrimination on the job. Also,
Ross [35] finds that, among overweight women, the extent of depression at-
tributable to negative self-perception is only significant for highly educated
women.

Marriage market conditions may also vary substantially for women by
educational attainment. While all women face large marriage market penalties
for being overweight or obese [2], there are several reasons why such costs may
be particularly large for better educated women. For example, women who
invest in their education delay marriage and child-bearing relative to women
that complete only high school or less. In a rational choice framework such
delay represents a choice that is simultaneous with the choice of educational

6 A related literature finds that women in low prestige jobs tend to be more obese
[28].

7 Employers may use BMI as a signal of the productivity of an employee. Using
evidence from twin data [4] find that the correlation between excess weight and
earnings disappears when earnings endowment, schooling, height and job experi-
ence are controlled for.
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attainment. Given this choice the woman should feel pressure to stay attractive
(relative to a particular social standard) for longer than women who marry
earlier. In addition, since women have a preference to “marry up” in quality,
and men exhibit a preference for women younger than themselves, the group
of available and acceptable men shrinks with a woman’s education level and
age, and competition for men may thus be more fierce among this group [34].
Within any given age cohort the more educated women are less likely to be
married and, conditional on seeking marriage in the future, more likely to be
concerned with achieving or maintaining a desirable body weight.

1.2 Competing Hypotheses

The recent economic literature on obesity generates potential alternative ex-
planations for the relationship between education and body weight among
women. Chou et al. [14], using pooled data from the BRFSS, find a negative
association between educational attainment and obesity that remains after
controlling for income, gender, race/ethnicity, and food prices. The authors
do not explore the association between education and obesity further, but
note that the effect may capture differences in the efficiency in household pro-
duction, health awareness, discounting, or genetics (see [14], pp. 571, 579).
Cutler et al. [16] suggest that the emergence of calorically dense convenience
foods and falling food preparation costs are responsible for increased con-
sumption of calories. The model predicts that those with the highest value for
convenience foods would have gained the most weight as the price and time
costs of convenience foods has fallen. But this framework implies, counter to
evidence, that more educated women, with greater time opportunity costs,
would have gained relatively more weight than low-opportunity cost women
in recent years. Philipson and Posner [30] and Lakdawalla and Philipson [22]
identify lower calorie prices and lower calorie expenditure due to labor-saving
technologies as causes of rising obesity. The sign of the effect of education on
weight implied by this explanation depends on whether more educated women
expend fewer calories in their jobs and at home than less educated women.
Brownson et al. [9, Table 3] provide evidence from a sample of U.S. women
age 40 and older that more schooling is associated with more physical activity
on the job but less physical activity at home. Based on this finding the labor-
saving hypothesis does not readily explain the observed differences in average
weights by education. Nonetheless the Philipson framework can achieve the
predicted relationship between education and weight based on its assumption
that closeness to ideal weight is a normal good (ideal weight is exogenous).
In equilibrium higher income beyond a point leads to lower weight, and the
association between income and education yields a similar prediction between
education and weight.

Along these same lines a number of explanations based on preferences and
information might be advanced. Intuitively we might simply assume that more
educated individuals have greater awareness of nutrition, a better understand-
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ing of the relationship between food intake, exercise, and weight, and greater
awareness of the health risks associated with obesity. Such individuals should
be more motivated and better equipped to maintain “healthy” weight levels
as construed by medical standards. An observationally equivalent hypothesis
would be that there are genetic differences that affect both educational attain-
ment and either resting metabolism or food preferences. Another explanation
may be that cultural composition varies by educational class, and with it cul-
tural standards of ideal weight. For example, less educated women are more
likely to be African-American or have a non-Western cultural background,
and a number of studies have argued that African-Americans and some non-
Western cultures exhibit a preference for higher female weight. Yet another
factor is that women with higher education delay pregnancy and have fewer
children on average, thus delaying or avoiding the (often persistent) weight
gains associated with pregnancy. The latter explanation is problematic, how-
ever, given the endogeneity of fertility and pregnancy-related weight gain.

Income effects represent a prominent alternative explanation of the rela-
tionship between education and weight. More education leads to higher in-
come, and it is often assumed that thinness, or closeness to a weight norm
(as in [22]), is a normal good. While there is cross-sectional evidence of a
modest negative relationship between income and BMI, the effects of educa-
tion on weight remain significant even after controlling for income [14]. While
Lakdawalla and Philipson [22] have noted a Kuznets-curve-type (inverted U-
shape) relationship between income and weight, recent evidence indicates that
the income-obesity gap has narrowed over time in the U.S. since the 1970’s
[33]. In addition, unlike the social interactions model, a model that assumes
closeness to an exogenous ideal weight is a normal good cannot explain ob-
served changes in weight aspirations or income-weight relationships over time
([1], [37]).

The alternative explanations have the potential to explain the differences
in average or median weight by education. However they do not readily gen-
erate predictions on higher moments of the weight distribution in relation to
eduction. To tease out such predictions we simulate models of group-specific
heterogeneity, in which weight norms may or may not enter preferences. In
general the alternative models fail to explain the greater dispersion of weights
among more educated women. Also, the alternative explanations should gen-
erally predict similar relationships between education and weight for women
and men, counter to empirical evidence. Although it is beyond the scope
of this article, we believe that our model has the potential to explain the
gender-specific relationships using similar arguments about conformity incen-
tives across groups.

1.3 Description of Weight Norms and Reference Groups

While the existence of weight standards may seem like an obvious social fact,
the formal description of such standards is less obvious because there is no
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scientific consensus on how they are formed. Norms of body weight and shape
within a culture may derive from a number of sources, such as ideals promul-
gated in cultural images, the desire to be normal in relation to one’s peers, and
health standards promoted by physicians and public health officials. We do
not provide a theory of how such sources might interact to determine weight
aspirations. Instead we offer a model that aims to capture the net result of
such influences in a contemporary Western context. The weight standard to
which individuals aspire is defined as a fraction, less than one, of average
weight in the reference population.8 This specification, in which people aim
to be thinner than the average person in the reference population, combines
two basic assumptions: (1) that in contemporary Western society thinness (up
to a point) is prized, and (2) that individuals assess themselves in relation to
their peers rather than against an absolute scale. Relative assessment within
peer groups strikes us as appropriate to the context that motivates our model,
namely that of positional competition among women for status, scarce jobs,
and romantic partners [19].

As stated above, we define reference groups on the basis of educational
attainment, such that the disutility of weight is assessed in relation to the
weight standard that emerges from the reference group’s weight distribution.
This specification presumes that comparisons to peers with similar education
levels are particularly salient. This will be true if individuals care only how
they compare to others of the same educational class, despite interacting with
people of diverse backgrounds, or if people tend to interact more frequently
with others of similar education levels. Social stratification by education level
is likely for a number of reasons: at the secondary level tracking by ability
may lead to selection of friends on the basis of future educational attainment,
leading to assortative friendships at later stages if the ties persist; individuals
that attend college form long-lasting social ties with other college attendees;
selection into jobs depends on education levels, leading to stratification in
workplace as well as non-workplace interactions. More obviously, people may
simply prefer to interact with others of similar educational backgrounds be-
cause they have more in common. The observed assortativity of U.S. marriage
markets by education level constitutes evidence of such preferences ([29], [25]).

2 Theoretical Framework

2.1 Agent-Based Model

The model consists of boundedly rational individuals interacting within a so-
cial group. Each individual compares her own weight to the group’s commonly-
held norm or “reference” weight, and this comparison enters her optimization
8 Burke and Heiland [11] provide evidence from desired weight data from the

BRFSS that women aged 30 to 60 between 1990 and 2002 desire a weight level
that is about 15% below the average weight.
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problem as described below. The reference weight itself is a function of the
group’s weight distribution. Equilibrium for the system is defined as a weight
distribution and a norm that are mutually consistent. Each individual maxi-
mizes a myopic utility function over short-term food and non-food consump-
tion taking the reference weight and prices into account. Food and non-food
consumption are both goods, but deviation from the reference weight is a bad.
A general expression of the one-period utility model is as follows:

Uit[Ft, Ct|Wt−1] = Gi[Fit, Cit] − J(Wit[Fit, Wi,t−1, εi] − Mt−1)2. (1)

Ft and Ct represent food and non-food consumption for period t, respectively.
Wt−1 is weight at the end of period t − 1, which is a product of past actions.
Individual heterogeneity is captured by εi, which is a stationary shock to basal
metabolism. Gi is the norm-independent or “private” component of utility:
it is strictly increasing and strictly concave in C, and strictly concave but
not necessarily monotonic in F . The term beginning with J gives the “so-
cial” component, which is the disutility of deviating from the reference weight
(norm), M . The subscript on M indicates that agents observe the value of
M at the end of period t − 1 and take this as fixed in the optimization; in
particular they do not forecast the value of M that will emerge as a conse-
quence of aggregate behavior in period t; this specification facilitates solution
of the model without altering the equilibrium outcome relative to a model
with rational expectations of the norm.

The individual correctly anticipates her end-of-period weight as a function
of food intake, and so takes into account the effect of current food consumption
on the cost of deviating from the reference weight. This cost is symmetric—it
is just as undesirable to be underweight relative to the norm as overweight—
and is meant to capture a number of known types sanctions for non-conformity
to weight norms. As mentioned above, overweight has been associated with
significant wage penalties among women. Stigmatization of overweight (and
underweight) individuals is well-documented [27], and may entail for example
teasing, ostracism, discrimination in hiring, and fewer friendship and marriage
opportunities. Peer pressure and contagion regarding eating behavior have
also been observed, particularly among adolescent girls [15]. Ross [35] has
identified depression as a consequence of overweight among women; she finds
that educated women appear to suffer most acutely.

In addition to economic costs, social costs and mental health costs, extreme
overweight and underweight entail significant physical health consequences
(e.g., [26], [38]). Evidence from developing countries, where underweight is
much more prevalent, indicates substantially elevated disease incidence among
low weight (BMI below 20) individuals [17]. A model with deviation costs
that depend on a mutable norm will capture these health costs only when
the value of the norm lies within the medically recommended range. In the
parameterizations we consider the emergent norms do in fact fall within this
range, but in general the model does not constrain them to do so.
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Our functional form and parametric assumptions guarantee convergence
to a unique stable weight value for a given metabolic shock and a given weight
norm (see [11]). This stable weight does not in general coincide with the sta-
tionary weight that optimizes the corresponding infinite horizon problem. The
myopic specification may be taken to imply lack of self-control, although we
do not explicitly model a time inconsistency problem. We believe the model is
behaviorally plausible: individuals give some thought to the effects of calorie
consumption on weight, but without full consideration of the lifetime impli-
cations.

For purposes of simulation and calibration we specify the maximization
problem as follows:

Max{Ft,Ct}Uit[Ft, Ct|Wi,t−1, α, δ, β, J, γ, ρ, εi, Mt−1] = αFit−δF 2
it+βlog[Cit+1]

−J(Wi,t−1 − (7/3500)(γ + (ρ + εi)Wi,t−1 − .00025W 2
i,t−1) + .9Fit − Mt−1)2,

s.t. ptFt + Ct ≤ Y (2)

Within the single period, calibrated to one week, the marginal utility of food,
F , declines and eventually becomes negative. The expression inside the paren-
theses following J just amounts to the difference between end-of-period weight
Wt, and M , as in equation (1).

Metabolism is quadratic in body weight, and the short-term relationship
between food intake and weight (2) is:

Wt = Wt−1 − (7/3500)(γ + (ρ + εi)Wt−1 − .00025W 2
t−1) + .9Ft. (3)

Calories burned per day, not including those burned in digestion, is given in
the above by the terms γ + (ρ + εi)Wt−1 − .00025W 2

t−1. The constant and
the weight-linear terms are due to [36], and have been used in Cutler et al.
and others. While the Schofield equations have become a de facto standard
for predicting BMR, some aspects of the estimates have come into question
by Horgan and Stubbs [20] and Pullicino [31]. In a perhaps biologically more
accurate model, we allow a weight-BMR relationship that is quadratic in
weight, such that BMR per unit of body weight declines in weight.

We multiply calories per day by 7/3500 to convert to pounds of body
weight expended per week, based on the fact that burning 3500 calories im-
plies loss of one pound of body weight. Ft is total food intake for the week,
measured as calories divided by 3500, or the equivalent of the caloric in-
take in pounds of body weight accrued. Since digestion of a given amount of
food requires on average 10% of calories consumed, we multiply by .9 to get
food intake net of digestive metabolism [36]. Aside from the calories burned
in digestion, we assume for simplicity that calorie expenditure is limited to
the basal metabolic rate (BMR), or the calories needed only to sustain basic
bodily functions such as lung and heart activity with the body at rest. The
advantage of this assumption is that BMR is exogenous in body weight. Of
course, variation in physical activity also contributes to variation in calorie



The Strength of Social Interactions and Obesity among Women 127

expenditure and therefore weight. By abstracting from endogenous physical
activity in the model we assume that the number of actual calories burned is
strongly correlated with BMR. We assume that individuals correctly perceive
both their food intake and this metabolism function.9

As suggested by Leibel et al. [23] and Rand [32], we make the disturbances
proportional to weight: the shock εi is normally and identically distributed
with mean zero and standard deviation σε. Because the shock is multiplied by
weight the errors are heteroscedastic by weight class. Unlike the homoscedastic
case, this specification implies an asymmetric equilibrium weight distribution,
with a long upper tail mirroring the general shape of the weight distributions
observed in the BRFSS data.

2.2 Definition of Equilibrium

Within a given education group, individuals are identical in all of the param-
eters of the utility function, α, β, ρ, γ, J , M , have identical incomes, and
face the same price. The only explicit source of heterogeneity is the idiosyn-
cratic metabolic shock, εi. The full equilibrium conditions can be expressed
as follows:

α − 2δF S
i − 1.8J(WS

i − MS) = λp, (4)

FS
i = (1.11)(7/3500)(γ + (ρ + εi)WS

i − .00025(WS
i )2), (5)

MS = ζ(
1
N

∑
i

WS
i ), (6)

β

CS
i + 1

= λ, (7)

pFS
i + CS

i = Yi. (8)

The conditions apply to an interior equilibrium, in which stable food intake,
FS

i , stable weight, WS
i , and stable non-food consumption, CS

i are all strictly
positive. MS is the equilibrium weight norm, which according to equation (6)
is some fraction, ζ, of the average stable weight that arises under this norm.
Equation (4) gives the first-order condition on food consumption, where λ is
the Lagrange multiplier. Equation (5) guarantees that per-period food intake
maintains weight at the level WS

i . Equations (7) and (8) are, respectively,
the first order condition on non-food consumption and the budget constraint.
The equilibrium norm depends on the relative price of food, the distribution of
individual shocks, and the magnitude of J , because these determine the stable
individual weights and consumption levels for any fixed M . The equilibrium
norm (and therefore the weight distribution) also depends on ζ, which we will

9 There is evidence that people systematically underestimate their caloric intake
[40], but we ignore this problem here.
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set at .85 based on the evidence in [11]. Equilibrium depends on income levels
and the remaining parameters as well, but we hold these fixed throughout the
analysis.

2.3 Comparative Statics and the Strength of Social Interactions

Before generating quantitative experimental results, we analyze the qualita-
tive effects of variation in J on equilibrium behavior. The non-conformity
cost of a given deviation of individual weight from the group norm increases
with J , and thus so does the incentive to conform. Holding the norm fixed,
an increase in the value of J will reduce the absolute difference between an
individual’s chosen stable weight and the weight norm: individuals initially
below the weight norm gain weight (but remain below the norm); individuals
initially above the norm lose weight but remain above; and an individual with
stable weight equal to the initial norm will stay put. In the aggregate these
weight changes alter average weight, and therefore the norm must be updated.
This norm change in turn sets off additional weight adjustments, until a new
equilibrium is reached. Thus we observe a “social multiplier” effect, as in [3],
[8], [10], and [11], among others. The total effect of J on stable individual
weight can be decomposed as follows:

dW S
i

dJ
=

∂WS
i

∂J
+

∂WS
i

∂M

dMS

dJ
, (9)

where the expression dMS

dJ refers to the change in the equilibrium norm caused

by the change in J . While we have already analyzed the sign of ∂W S
i

∂J , to get

at the sign on dW S
i

dJ we need to sign the remaining terms in the expression. It

is readily shown that ∂W S
i

∂M ≥ 0 for all individuals. But the effect of J on the
equilibrium norm, dMS

dJ , is less obvious. The following decomposition helps to
determine its sign:

dMS

dJ
=

ζ

N

∑
i

(
∂WS

i

∂J
+

∂WS
i

∂M

dMS

dJ
) =

ζ
N

∑
i

∂W S
i

∂J

1 − ζ
N

∑
i

∂W S
i

∂M

. (10)

The numerator in the last expression on the right represents the effect on
average weight (times ζ = .85) caused by the partial (norm constant) effects
of J on individual weights. The denominator embeds the social multiplier
effect: the effects in the numerator are amplified by the factor 1/(1 − m),
where m = ζ

N

∑
i

∂W S
i

∂M is the multiplier itself, as in [3]. It can be shown that
the multiplier m is strictly positive and strictly less than one for J ≥ 0,
such that 1/(1 − m) ≥ 1. Therefore the sign on dMS

dJ follows the sign of the
numerator, but has greater magnitude.

The numerator represents the average (times ζ = .85) of the partial effects
of J on weight. Since some people gain and some lose weight the (scaled)
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average effect depends on the number of gainers vs. losers and the magnitudes
of gains and losses. However, within the confines of our functional forms and
parameters, we always obtain ζ

N

∑
i

∂W S
i

∂J < 0 and thus the sign of (10) is
negative.

Turning back to the first expression, (9), representing the equilibrium ad-
justment of individual weight, we see that for overweight individuals the par-
tial effect of J and the social multiplier effect reinforce each other, and so the
value of dW S

i

dJ is unambiguously negative for initially overweight individuals.

For underweight individuals the two effects are opposed, and the sign on dW S
i

dJ
may go either way: for individuals very close to the norm initially, the mag-
nitude of ∂W S

i

∂J is very small, and is outweighed by the weight-reducing effect
of the decline in M . Despite losing weight some of these individuals (the ones
initially just below the norm) will wind up above the new, lower norm. How-
ever, there is a threshold value of the metabolic shock such that the individual
exactly conforms to the norm. Individuals with shocks above this threshold
gain weight on net when J increases, remain below the norm, and yet wind
up closer to it than in the initial equilibrium. As J increases, the new perfect
conformist will have a greater metabolic shock than the previous conformist.

3 Experiments

The simulation exercises use 50000 agents (50000 values from the initial
metabolic shock distribution) to generate equilibrium weight distributions and
norms under various specifications of the model. Equilibrium implies instan-
taneous adjustment of individuals to their stable weight for a given value of
the norm, iterating until stable weights are consistent (myopically optimal) in
relation to the emergent norm. As detailed below, we calibrate the model to
women ages 30 to 60, setting a list of parameters to roughly match average
weight for this group observed in the 1990-2002 BRFSS data, and the food
budget share estimated by Huang [21]. The goal is to assess the power of the
model to explain differences in the average, median, variance and dispersion
of the weight distribution across education groups on the basis of variation in
the incentive for conformity. To do this we examine the shape of the simulated
equilibrium weight distribution at three different levels of J meant to roughly
reproduce the different social environments faced by high school dropouts,
high school graduates and college graduates. As explained above we are not
aware of studies that provide quantitative evidence on the amount of confor-
mity by education. To proceed with the numerical simulations we will select
three values of J that result in predictions that approximately match the em-
pirical distributions of body weight, holding all other parameters constant.
We then compare our conformity costs model to competing explanations. The
alternatives described in the introductory discussion are captured in two ad-
ditional experiments. We first consider a model with no conformity effects, i.e.
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Table 1. Summary of empirical and simulated weight distributions

Distribution Mean Std. Dev. Min Max Median 95tha 99thb Normc

Empirical Distribution

I. U.S. Women Age 30-60d

BRFSS-Data, 1990-2002 155.3 35.5 51 662 148 223 272 N.A.
High School Dropouts 162.2 38.7 66 651 154 236 288 N.A.
High School Graduates 157.2 36.2 51 603 151 225 277 N.A.
College Graduates 149.2 31.9 59 587 143 205 256 N.A.

II. U.S. Men Age 30-60
BRFSS-Data, 1990-2002 188.6 36.3 49 738 184 251 304 N.A.
High School Dropouts 183.6 38.7 61 598 179 251 304 N.A.
High School Graduates 190.1 37.4 63 738 184 256 304 N.A.
College Graduates 186.8 33.7 59 636 183 249 293 N.A.

Simulated Distribution - U.S. Women Age 30-60
I. Endogenous Norms, Group-Specific Deviation Costse

High School Dropouts 161.5 39.6 85 736 153.9 232 294 137.3
High School Graduates 157.8 33.1 88 506 151.9 218 266 134.1
College Graduates 149.2 23.1 93 319 145.9 191 220 126.8

II. Group-Specific Energy Expendituref

High School Dropouts 162.0 40.5 85 786 154.1 234 298 N.A.
High School Graduates 157.1 37.5 83 665 150.0 224 282 N.A.
College Graduates 148.3 32.6 81 520 142.3 207 256 N.A.

III. Group-Specific Exogenous Norms
High School Dropouts 158.2 33.2 88 508 152.4 219 267 137.9
High School Graduates 157.7 33.1 88 506 151.9 218 266 133.6
College Graduates 157.0 32.9 87 503 151.1 217 264 126.8

Note: a95th Percentile. b99th Percentile. cWeight Norm, computed as 15% below
the average weight. dSee Fig. 1. eSee Fig. 2. fSee Fig. 3.

J = 0, but with education-group-specific metabolism. This setup captures ei-
ther genetic differences between educational groups, or behavioral differences
based on predetermined preferences or information. Second we consider a
model with conformity effects in which we exogenously vary the weight norm.
This experiment illustrates the hypothesis that not differences in conformity
costs but differences in representation of women with non-western body ideals
across educational groups explain the observed distributional variation.

3.1 Calibration of the Model

The metabolism function is parameterized using the Schofield et al. [36] point
estimates for the constant term and the coefficient on weight for women in
the 30-60 year old group.10 In the first and third experiment we assume that
all individuals regardless of educational groups face the same metabolic shock
distribution. In this case, all ε are normally distributed with mean zero and

10 In particular, the values for the parameters are γ = 844 and ρ = 8.13382/2.2.
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standard deviation of 0.75.11 The quadratic coefficient of .00025 in expression
(2) implies that metabolism for a 200 pound woman is 10 kcal less per day
under the quadratic specification than under a (hypothetical) linear model
of metabolism, implying a weight increase of 1.04 pounds annually holding
caloric intake constant. For a 120 pound woman the corresponding annual
weight gain would be about 0.4 pounds. In the second experiment we allow
the metabolic shock distribution to differ across educational groups by shifting
its mean.

The marginal utility of the first unit of food in a week is identical across
individuals and exceeds the marginal utility of the first unit of non-food con-
sumption by 20%.12 Income and prices are chosen such that the average person
is spending about 20% of her income on food purchases, which matches em-
pirical measurements [21]. The price represents the price of 1 pound of body
weight, or 3500 calories, which is about the amount burned in 1.5 days by a
moderately active 140 pound woman. In nominal terms we use a price of $36
and an income of $600 per week ($31, 200 per year).

3.2 Baseline Calibration: High School Graduates

Women whose highest degree is a high school diploma constitute the largest
fraction (about 33%) in the U.S. population and hence serve as our baseline
group. Using an intermediate level of J = 0.001 for the strength of social
interactions (’Endogenous Norms, Group-Specific Deviation Costs’), we find
that the model matches the empirical weight distribution very well. For ex-
ample, the model predicts an average weight of 157.8 pounds, a standard
deviation of 33.1, a 95th (99th) percentile weight of 218 (266) pounds and
an implied obesity rate of 24.0%. The corresponding BRFSS values for 30-60
year old female high school graduates are 157.2 (mean weight), 36.2 (standard
deviation), 225 pounds (95th percentile weight), 277 pounds (99th percentile
weight) and 26.3% (obesity rate). Details can be found in Fig. 2 and Table 1.
The social body weight norm predicted for high school graduates is 134.1
pounds (=0.85*157.8).

3.3 Main Hypothesis: Variation in Strength of Sanction

We now consider whether variation in the coefficient J , which captures the
incentive for conformity, can predict the differences in the weight distributions
that we observe across the three main groups of educational attainment. Using
the high school graduates as the baseline, we chose J = 0.0001 for the high
school dropouts. This level is one tenth of the one used for high school grad-
uates, suggesting lower costs from deviating from the norm among dropouts.
11 This parametrization of the metabolic shock distribution has an empirical basis:

the distribution implies an average absolute deviation that is in line with the
mean of the relevant (additive) Schofield residuals.

12 The coefficients on the preference are α = 6.0, δ = 0.9, and β = 5.0.
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College

High School

No High School

U.S. Women aged 30−60
Endogenous Norms with Group−Specific Deviation Costs

Fig. 2. Box plot of predicted body weight distribution, endogenous norm with
group-specific deviation costs, U.S. women aged 30-60

For college graduates we consider J = 0.0035, i.e. a 3.5-fold increase in the
strength of social interaction compared to the baseline group.

As shown in Fig. 2 and Table 1, changes in the strength of social inter-
actions can have visible effects on the weight distribution. The higher value
of J for the more educated women implies lower average and median weights
and less dispersion of the weight distribution. For the group that faces the
greatest costs from not complying with the group standard (college educated
women) the model predicts a mean of 149.2 pounds, a median of 145.9 pounds,
and a standard deviation of 23.1 pounds. With the greater incentive to con-
form, we obtain a lower weight norm, 126.8 pounds (=0.85*149.2), and a
tighter distribution. In the other extreme, the group that faces the weakest
non-conformity incentives (high school dropouts) is characterized by a greater
average and median weight (161.5 and 153.9 pounds), greater standard de-
viation (39.6 pounds) and a longer right tail of the distribution (e.g. 95th
percentile is at 232 pounds). These predictions, and the implied obesity rates
for college educated women and high school dropouts of 13.0% and 27.9% re-
spectively, compare well to the observed obesity rates of 18.4% and 33.9% in
the BRFSS. The results also show, however, that the variation in the standard
deviation of weight across groups predicted by our hypothesis is greater than
the observed one.
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3.4 Alternative Hypotheses

We now abstract from social norms, i.e. set J equal to 0, and assume that
calorie expenditure differs systematically across educational groups to cap-
ture behavioral (e.g., exercising behavior not motivated by weight norms)
or genetic differences between educational groups. Genetic differences could
have emerged from evolutionary and cultural forces. If determinants that fa-
cilitate scholastic achievement (human capital accumulation) are correlated
with metabolic differences, either behavioral or genetic, then the pattern in
the weight distributions may be better explained by group-specific metabolic
differences than by group-specific degrees of sanctioning (main hypothesis).
An alternative source of systematic correlation could be greater health aware-
ness among college educated women, leading to more frequent exercise and
greater calorie burning on average. To capture these possibilities we assume
that mean metabolism varies positively with educational attainment. We pre-
dict the weight distribution for high school graduates assuming normally dis-
tributed shocks with the same standard deviation as above, but with a mean
of +.10. For the high school dropouts the distribution is the same as in the
initial experiments, and for the college-educated women it is shifted to the
right by two-thirds of a standard deviation (mean=+.30). The magnitude of
the shift is chosen to roughly reproduce the averages in the empirical weight
distributions.

The predictions based on this set of explanations (’Group-Specific Energy
Expenditure’) are shown in Fig. 3 and summarized in Table 1. As in the
social sanction hypothesis, the model predicts that the group mean, median,
and variance all decline with education level. Compared to the earlier model,
this experiment does a better job capturing the variation in the standard
deviation across the groups. However, as seen in Fig. 2 as compared with
Fig. 1, the social sanctions model comes closer than the group-specific energy
expenditure model to capturing the decrease in the inter-quartile range at
higher education levels. Finally, we seek to explore the hypothesis that more
educated women are more likely to adhere to western ideals of thinness as
a result of cultural and ethnic stratification by education. We assume that
J = 0.001 holds for all groups and exogenously set the value of the social
norm at 15% below the group average, yielding norms of 137.9, 133.6, and
126.8 pounds for high school dropouts, high school graduates, and college
graduates respectively. Predicted weights for high school dropouts and college
graduates are more similar to the high school graduates than observed or
predicted by the other hypotheses suggesting that the differences in social
norms alone may not suffice to explain the observed differences in the data
(see Table 1, ’Group-Specific Exogenous Norms’).
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College

High School

No High School

U.S. Women aged 30−60
Group−Specific Energy Expenditure

Fig. 3. Box plot of predicted body weight distribution, group-specific unobserved
heterogeneity, U.S. women aged 30-60

4 Conclusion

This paper presents an agent-based framework with biologically complex
agents to explain the differences in the body weight and body mass distri-
butions observed across women with different educational attainment in the
U.S.. We show that the smaller average and median weights and smaller dis-
persion of weights that is observed for more educated women in the U.S. can
be explained by two key social factors: stratification of individuals by educa-
tion level, and greater sanctioning of deviation from the weight norm within
the more educated groups.

We modify the framework to illustrate important alternative hypotheses
including differences in average energy expenditure and exogenous differences
in weight norms across educational groups. The alternatives can represent
various sources of correlation between educational attainment and weight in-
cluding behavioral, genetic, and cultural differences between women in the
population. We show that these alternatives can also explain the observa-
tion of lower average weight and obesity rate for more educated women, but
they do not capture the reduction in dispersion as well as our model does.
The reason is that the alternative theories do not readily relate education to
variability of weight within groups.

In the simulation of the cultural composition theory, we assumed differ-
ences only in the level of weight norms by education, not differences in the
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variability of weight norms across groups. There is some evidence from the
BRFSS that desired weight varies more among less educated women, consis-
tent with greater dispersion of weight norms among the racially/ethnically
more diverse lower educational strata. It is easy to see that allowing for vari-
ability of norms within the lower-educated group in the cultural composi-
tion experiment may predict variability in weights comparable to that which
emerges under our main hypothesis. However, the observed differences in the
variability of desired weights in the data appear to be small, and the effect
of norm variability within groups on average weight would in general be am-
biguous. Reproducing the stylized facts in this manner would require multiple
tenuous assumptions, whereas the conformity costs model offers a more parsi-
monious explanation with further potential to explain changes in norms over
time with changing economic incentives.
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Summary. Ecologists have used agent-based models for a long time, but refer to
them as “individual-based models” (IBMs). Common characteristics of IBMs are
discrete representation of unique individuals; local interactions; use of adaptive,
fitness-seeking behaviour; explicit representation of how individuals and their envi-
ronment affect each other; and representation of full life cycles.

Ecology has contributed to agent-based modelling in general by showing how to
use agent-based techniques to explain real systems. Ecologists have used IBMs to
understand how dynamics of many real systems arise from traits of individuals and
their environment. Two modelling strategies have proven particularly useful.

The first strategy is “pattern-oriented modelling” (POM). POM starts with
identifying a variety of observed patterns, at different scales and at both individual
and system levels, that characterize the system’s dynamics and mechanisms. These
patterns, along with the problem being addressed and conceptual models of the sys-
tem, provide the basis for designing and testing an IBM. A model’s variables and
mechanisms are chosen because they are essential for reproducing these characteris-
tic patterns. After an IBM is assembled, alternative versions (different theories for
individual behaviour; different parameterizations) can be tested by how well they
reproduce the patterns.

The second strategy is developing general and reusable theory for the adaptive
behaviour of individuals. A “theory” is a model of some specific individual behaviour
from which system-level dynamics emerge. Theory can be developed by hypothesiz-
ing alternative models for the behaviour, then using the IBM to see which alternative
best reproduces a variety of patterns that characterize the system dynamics of in-
terest. Empirical observations are used to develop both theories and the patterns
used to test and falsify them.

These two strategies are demonstrated with example models of schooling be-
haviour in fish, spatiotemporal dynamics in forests, and dispersal of brown bears.

1 Introduction

Agent-based modelling has a long tradition in ecology but under a different
label: individual-based modelling [13] [5] [8]. Due to the different histories of
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agent-based [3] and individual-based modelling [11], they differ in definition
and rationale, but in recent years the two approaches are merging [22]. In
ecology, the original focus was on three facts that are ignored in analytical
ecological models: individuals are discrete entities, they usually interact lo-
cally, and they are not all the same. However, some authors in ecology used
the term “individual-based” very broadly, for example for models with in-
dividuals that are discrete but identical and lacking an explicit life cycle.
Therefore Uchmański and Grimm [32] proposed a definition of “individual-
based models” (IBMs) which includes discreteness, uniqueness and full life
cycles of individuals. Railsback [22] identified an additional characteristic of
IBMs: individuals are autonomous and show adaptive behaviour, i.e., they
adapt their behaviour (growth, feeding, habitat selection, mate choice, etc.)
to the state of themselves and their environment, to seek higher fitness. Fit-
ness is either modelled explicitly [26] or implicitly by assuming that under
certain conditions a certain behaviour improves fitness.

Regarding adaptive behaviour, most individual-based ecological models
are still far behind agent-based models. Adaptive behaviour is either ignored,
as in most plant IBMs, or behaviour is imposed, or adaptation, decision mak-
ing, and fitness considerations are only implicitly assumed. Ecology has a lot
to learn from agent-based modelling not only regarding adaptation but also
regarding software platforms and concepts for representing individuals, their
decisions, and their interactions [3].

On the other hand, ecological IBMs usually address natural systems, not
engineered, designed, or artificial systems, so considerable know-how has accu-
mulated in ecology regarding the design, analysis, verification, and validation
of models describing real systems. “Getting results” [23], i.e. achieving un-
derstanding, testable predictions, management support, etc., from an IBM or
ABM is not at all trivial. The step from just interesting demonstrations to
insights into how real systems work and real agents behave requires appro-
priate strategies; many ABM projects, especially by beginners in modelling,
seem stuck at the demonstration level.

Here we summarize two linked strategies which were developed in ecology
[11] and are likely to be useful in agent-based modelling in general: using multi-
ple patterns to design, test, validate, and parameterize ABMs; and contrasting
alternative theories of behavioural traits. These strategies are explained in the
following two Sects. and then example applications are presented.

2 Pattern-Oriented Modelling

One of the main problems in developing agent-based models is to find the
appropriate level of detail: how many state variable should we use to describe
agents? How variable should the model world be in space and time, and how
much information should we assume an agent knows and uses to make de-
cisions? If the model is too simple we might neglect essential mechanism of
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the real system, which limits the model’s potential to provide understanding
and testable predictions. If the model is too complex, model analysis will be
cumbersome and we might get bogged down in too much detail.

Pattern-oriented modelling [7] [10] [23] [9] [34] [11] is to use the indicators
of internal organisation provided by the real systems themselves: patterns.
A pattern is anything above random variation and thus indicates some kind
of internal organisation. We should therefore chose a model’s detail so it (in
principle) allows the observed patterns to emerge in the model. This is the
principal way natural sciences proceed: trying to explain observed patterns
by developing models, or theories, which reproduce the patterns.

For example, early theories of the structure of the hydrogen atom were
pointing in the right direction (a separation of nucleus and electron) but were
incapable of reproducing many observed patterns. Patterns in atomic spectra,
the discrete spectral lines, forced physicists to assume structures and mech-
anisms (i.e., quantum mechanics) which reproduced these discrete spectra.
Similarly, patterns indicating internal organisation were the key that revealed
the structure of DNA [33].

For developing agent-based models we need to ask from the very beginning:
what characteristic patterns can we observe and how can we make sure that
these patterns can also emerge in the model? If there is a spatial pattern,
the model should be spatially explicit; if there are patterns in age or size
structures, age and size should be variables describing individuals; if we know
characteristic dispersal patterns, dispersal should be an explicit model process;
if we have data about how the system responds to specific disturbances, e.g.
a drought, then precipitation and response of individuals to different water
availabilities should be in the model; if we know that for a certain plant
community total biomass per spatial unit remains within certain limits, we
should use biomass as an additional variable of individuals; if we know that
at high densities individuals are more aggressive, we should think about how
we model interaction and aggression; etc. Thus, observed patterns to a large
degree can help us decide which structures (variables) and processes of a real
system we include in the model.

Of course, the other main determinants of model structure beside patterns
are the question we want to answer with the model and our current hypothe-
ses about how the system works, i.e. our conceptual model of the system [6].
However, by including variables and processes that are motivated by observed
patterns, our model automatically has a level of detail linked to the system’s
internal organisation. In this way, the model becomes testable at different hi-
erarchical levels. We can test alternative assumptions about the model entities
and their behaviour by how well they reproduce observed patterns. Of partic-
ular importance in IBMs are the models, or theories, for adaptive behaviour.
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3 Developing Theory of Adaptive Behaviour

Individuals or agents adapt their behaviour to their current state and environ-
ment. In ecology, we assume that adaptive behaviour is a product of natural
selection: individuals have behavioural traits that improve their fitness, i.e.,
increase their expectation of passing their genes to future generations. How-
ever, it is not easy to formulate realistic models of these traits, i.e. the set
of decision rules used by the individuals: what do individuals know, what do
they assume, and how do they predict the consequences of their decisions?
Even when we think organisms do not actually identify and predict the conse-
quences of alternative decisions, evolution has often provided organisms with
behaviours that can be modeled as if they do (e.g., [26]).

To develop useful, general theory of adaptive behaviour, we propose using
the scientific method of strong inference [19] by contrasting alternative theo-
ries [11]. We refer to “theories” instead of “models” to emphasize that the aim
is to find general and tested theories which can be used to model the same
traits of other species or in other environments. In the theory development
cycle we propose, we first define the trait and ecological context of interest,
for example habitat selection of European lynx during dispersal [30]; then
we formulate alternative theories of the trait, including “null theories” that
contain no adaptive ability; next we identify patterns at both the individual
and system level (see previous Sect.); and finally we implement the alternative
theories in an IBM and test how well they reproduce the patterns. Thus, we
use the full IBM as a kind of “virtual laboratory” to test alternative theories
of a certain adaptive behaviour. Usually, the steps of the cycle have to be
repeated several times because first insights gained from the model lead to
new theories, additional patterns, or modification of the entire IBM.

Testing alternative theories has several benefits: we are forced to be ex-
plicit about the theories and the way we test them; we can demonstrate how
significant the specific formulation of a certain trait is for explaining observed
patterns; in particular, we can demonstrate whether null theories lead to un-
realistic results; and we can refine theories by identifying additional patterns.

The advantages of testing theories of adaptive traits become obvious when
we compare two IBMs addressing the same phenomenon, schooling in fish. The
famous “Boids” (=bird-oids) model of Reynolds [29] reproduces schooling-like
behaviour. It is based on simple assumptions or, in our terminology, theories
for individual behaviour: individuals try to avoid collision, to match the veloc-
ity of neighbouring individuals, and to stay close to neighbours. This simple
theory indeed leads to the emergence of school-like aggregations, as seen in
the numerous implementations of Boids available on the Internet (Fig. 1).
However, Boids is only a demonstration of how simple behavioural rules and
local interaction give rise to a collection of individuals which are more or less
regularly spaced and move as one coherent entity. It does not allow us to infer
how real fish or birds behave, and we do not know which elements of the boids
behaviour are essential to reproduce schooling behaviour.
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The fish school of Huth and Wissel [15] addressed a different question than
Boids: how can we use observed patterns, data, and an IBM to learn about
how real fish behave? The model is very similar in structure to Boids but the
entire modelling strategy is different.

First, specific currencies were used to quantify properties of real fish
schools: polarization p and nearest neighbour distance NND. Polarization is
the average angle of deviation between the swimming direction of each fish
and the mean direction of the entire school; p is 0˚ if all fish swim in the
same direction and p approaches 90˚ if all fish swim in random directions.
Values of p observed in real fish schools are 10–20˚. The NND is the average
distance between a fish and its nearest neighbor. In real fish schools, NND
is typically about 1-2 times the average body length of a fish. The observed
values of these two currencies are the patterns towards which the entire IBM
is oriented.

Fig. 1. Fish school model, based on the Boids model of Reynolds [29] and developed
and implemented by H. Hildenbrandt (figure courtesy of H. Hildenbrandt).

Second, alternative theories were formulated for how fish decide where and
how fast to swim in the next time increment. For example, it seems reasonable
to assume that fish average the influence of their nearest neighbours; this
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assumption is also made in Boids [29]. But how many neighbours should be
taken into account: a certain number or all neighbours within a given distance?
It is also conceivable that fish first decide on one single neighbour fish, for
example the closest one or the one swimming both close and in front of the
fish, and then adjust their swimming to this single fish. Huth and Wissel [15]
[14] formulated 11 alternative theories of swimming behaviour. Nine of these
were based on an averaging decision, two on a priority decision. It turned out
that priority decisions failed to reproduce realistic polarization values (Fig.
2).

What we also see in Fig. 2 is that looking at only one pattern may not
be sufficient to identify the better theory: looking at NND alone might sug-
gest that both priority and averaging models produce similar results, but in
fact priority theories produce schools which are only as compact, but not as
polarized as real schools. Unfortunately often in ecological theory, the focus
is on only one pattern, for example cycles in abundance or levels of primary
production, so the resulting models may still be quite unrealistic in structure
and mechanism. If we use multiple patterns at different hierarchical levels and
test alternative theories against these patterns, we are more likely to end up
with models which are “structurally realistic” [34] and “mechanistically rich”
[6].

Realism and richness in structure and mechanism also allow models to
be validated with independent or secondary patterns which were not used to
develop, parameterize, or verify the model. After testing their model, Huth
and Wissel [15] [14] searched the empirical literature for additional patterns.
Some were more qualitative, for example regarding the shape of fish schools;
others were more quantitative, for example the NND of the first, second, and
third nearest neighbour. In almost all empirical patterns, Huth and Wissel
found a good, at least qualitative match between model and data. (The Huth-
Wissel model is discussed in more detail in [4] and [11].)

4 Examples

The fish school example from the previous Sect. is from ethology, not ecology.
Here we first present two IBM projects from ecology that are pattern-oriented
or use alternative theories of adaptive behaviour. More than 30 such example
IBMs are discussed in [11]. The third example IBM is also pattern-oriented,
but its focus is on how patterns can be used to indirectly determine model
parameters that are unknown or not directly accessible. For detailed descrip-
tions of the three models, see the original publications and corresponding
information on the internet.

4.1 Mid-European Natural Beech Forests

Forest IBMs have been widely used since the 1970s. The JABOWA forest
model [2] [31] [1] is probably the most successful IBM because it gave rise
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Fig. 2. Comparison of 11 alternative theories of the schooling behaviour of fish.
Theories 10 and 11 are based on selecting a single neighbour fish for orientation,
whereas theories 1-9 average the influence of neighbours within a certain range. The
theories are tested for the two currencies, or patterns: nearest neighbour distance
(NND, in body lengths) and polarization (in degrees). (After [14].)

to a large family of so-called “gap models” [16]. However, early gap models
were not designed to address spatial patterns in forests, but temporal patterns
(succession); and more recent gap models are spatially explicit, quite complex,
and not easy to implement or parameterize. Therefore, Wissel [37] developed
a very simple cellular automaton model to explain the mosaic structure of nat-
ural beech forests [28]. However, foresters were not convinced by this model,
mainly because it was too poor in structure and mechanism. There was no
way to analyse the model forest on different hierarchical levels to identify and
test secondary predictions.

Neuert [17] developed a new beech forest model, BEFORE, which took into
account not only the mosaic pattern but also patterns in the vertical struc-
ture. The different developmental stages are characterized by different verti-
cal structures. For example, the “optimal stage” is characterized by a closed
canopy layer and almost no understory. Moreover, the conceptual model of
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many foresters about beech forests includes vertical structure and the gener-
ation and closing of gaps in the canopy as factors driving forest dynamics.

Following the strategy of pattern-oriented modelling, Neuert [17] included
the vertical spatial dimension in BEFORE so that vertical structures could
also emerge (Fig. 3). The behaviour of individual trees is described by empir-
ical rules because foresters know quite well how growth and mortality depend
on the local environment of a tree. Likewise, empirical information is available
to define rules for the interaction of individuals in neighbouring spatial units.

Fig. 3. Vertical and horizontal structure of the beech forest model BEFORE [17]
for an area of 10 × 10 grid cells. Within a grid cell, which has the area of a large
canopy tree, four different vertical layers or size classes of trees are distinguished
and characterized by their cover, ranging from 0% (white) to 100% (black) (A). For
comparing the model results to horizontal patterns (mosaic structure) of real forests,
patterns in the vertical structure are assigned to three different developmental stages
(B). The resulting mosaic pattern is smoothed by a moving average (C). (After [20].)

BEFORE not only reproduces the mosaic and vertical patterns, it is also so
rich in structure and mechanism that it could produce independent predictions
of forest characteristics not considered at all during model development and
testing [18] [20]. These predictions were about the age structure of the canopy
and the spatial distribution of very old and large trees. All these predictions
were in good agreement with observations, considerably increasing the model’s
credibility.

The use of multiple patterns to design the model obviously led to a model
which was “structurally realistic”. This realism had the additional benefit of
allowing the addition of rules to track woody debris, a process not originally
considered in the model. Again, the amount and spatial distribution of woody
debris in the model forest were in good agreement with observations of natural
forest and old forest reserves [21].
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This example shows that the usual complaint about the complexity of
IBMs and ABMs is not necessarily true: if multiple patterns are used to design
and verify a model, its complexity may no longer be only a burden making
model analysis and understanding difficult, but can become a rich source
for increasing the model’s credibility and gaining understanding. True, the
time frame for developing and testing models like BEFORE is much longer
than for simple analytical models or for mere demonstrations, but once the
modelling project is in the “exploitation phase” it can be used to rapidly and
productively address a wide range of applied and basic questions.

4.2 Habitat Selection in Stream Trout

In rivers, dams and water diversions affect the flow regime and thus fish pop-
ulations. Fish adapt to changes in flow by moving to different habitat, so
to predict how fish populations react to new flow regimes we need to know
how fish select their habitat. Habitat suitability (or “preference”) models are
widely used to predict habitat selection, but are limited because they are
based on empirical relationships between observed distributions of fish and
habitat characteristics. These empirical relationships are valid only for the
conditions under which observations were made and may not be valid for
altered conditions [27].

Therefore, IBMs of stream fish have been developed to model habitat selec-
tion and the consequent response of populations to flow alteration (e.g. [36]).
These IBMs attempt to capture the important processes determining survival,
growth, and reproduction of individual fish, and how these processes are af-
fected by river flow. For example, mortality risks and growth of trout depend
on habitat variables (depth, velocity, turbidity, etc.) and fish size; moreover,
competition among trout resembles a size-based dominance hierarchy. How-
ever, existing foraging theory (e.g., that habitat is selected to maximize growth
or minimize the ratio of growth to risk) cannot explain the ability of trout
to make good tradeoffs between growth and risk in selecting habitat under
a wide range of conditions. Therefore Railsback et al. [26] developed a new
theory, which is based on the assumption that fish select habitat to maximize
the most basic element of fitness: the probability of surviving over a future
period. This new “state-based, predictive” theory was tested by demonstrat-
ing that it could reproduce, in a trout IBM, a wide range of habitat selection
patterns observed in real trout populations [24] (Table 1).

The resulting structural realism of the trout IBM made it a powerful tool
for addressing many basic and applied questions [25] [27]. The trout IBM re-
produced system-level patterns observed in real trout including self-thinning
relationships, periods of high density-dependent mortality among juveniles,
density-dependence in juvenile size, and effects of habitat complexity on pop-
ulation age structure. In a management application, the trout IBM was used
to predict the population-level consequences of stream turbidity [12]. Turbid-
ity (cloudiness of the water) reduces both food intake and predation risk. The
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Table 1. Pattern-oriented test of three alternative habitat selection theories for a
trout IBM. Only the state-based, predictive theory caused all six observed patterns
to be reproduced in the IBM. (After: [24] [11].)

Observed pattern Maximize Maximize State-based,
growth survival predictive

Hierarchical feeding + +

Response to high
flow

+ + +

Response to
inter-specific
competition

+ +

Response to
predatory fish

+ +

Seasonal velocity
preference

+

Response to reduced
food availability

+

population-level consequences of these two offsetting individual-level effects
would be very difficult to evaluate empirically, but was easily predicted using
the IBM: over a wide range of parameter values, the negative effects of tur-
bidity on growth (and, consequently, reproduction) outweighed the positive
effects on risk.

4.3 Patterns for Parameterization: Spread of Brown Bears into
the Alps

A major problem of agent-based modelling of real systems is parameteriza-
tion. In virtually all cases, many parameters are uncertain or even unknown.
Consequently, model results are uncertain and predictions and insights from
the model become questionable. For example, in ecology many questions re-
garding population dynamics must include spatial heterogeneity of the land-
scape. However, it has been asked whether spatially explicit population mod-
els (SEPMs), which are often individual-based, are made useless by parameter
uncertainty and error propagation.

Wiegand et al. [35] argue that this is not necessarily so. If a model is struc-
turally realistic it captures key structures and processes of the real system
(which by itself reduces the importance of parameter values). Then, observed
patterns can be used to reduce parameter uncertainty. Wiegand et al. demon-
strate this indirect parameter estimation (in other disciplines referred to as
“inverse modelling”) with their SEPM of brown bears (Ursus arctos) spread-
ing from Slovenia into the Alps. First, they determine parameter values from
sparse data from the Alps and other regions (Scandinavia, Spain, USA) and
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varied the remaining unknown parameters over wide ranges. A global sensi-
tivity analysis of this uncalibrated parameter set revealed high uncertainty in
model output (coefficient of variation of about 0.8).

Then, two data sets were used to identify five patterns. These patterns are
(1) fluctuations in the abundance of females with cubs observed over 10 years,
(2) the low density of females in a certain transition area in the Alps, and the
density of bears observed in (3) central Austria, (4) the Carnic Alps, and (5)
the Karawanken. For these five patterns, quantitative criteria were defined to
obtain confidence intervals for the agreement between observed and simulated
patterns.

The indirect parameter estimation started with 557 random parameter
sets covering the entire range of parameter uncertainty. Then the five ob-
served patterns were used as filters: parameter sets which failed to reproduce
a pattern were discarded. The five filters were used alone and in combination
(Table 2). The best combination of filter patterns reduced the number of fea-
sible parameter sets to 10. The global sensitivity of this remaining data set
was reduced to a coefficient of about 0.2.

Table 2. Filters defined through observed patterns in the distribution and abun-
dance of brown bears spreading from Slovenia into the Alps (after [35]).

Filter description Filters Number of model parameter-
izations in agreement with
observed pattern

No filter 0 557

Density of females in transition
area

1 506

Bear observation in central
Austria

2 138

Bear observation in the Carnic
Alps

3 154

Bear observation in the
Karawanken

4 180

Census time series of females
with cubs

5 12

2+3+4 13

5+1 10

2+3+4+1 11

It is noteworthy that both the census time series (filter 5 in Table 2) and the
three spatial filters (2+3+4 together) narrowed down parameter uncertainty
to a similar degree. This is reassuring because if a model really captures the
essence of a system then different patterns at the population level should be
redundant because they reflect the same underlying processes.
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5 Discussion

Agent-based models in ecology, usually referred to as individual-based models
(IBMs), have generally differed in two main aspects from agent-based models
in other disciplines. First, adaptive behaviour and decision-making has not
been a main issue (although this certainly will change in the future [22] [3]).
Second, in ecology IBMs are more often oriented towards understanding and
managing real systems, not hypothetical or “what-if” situations. This empha-
sis on real systems led to the development of a strategy—pattern-oriented
modelling (POM)—to design IBMs so that they are structurally realistic and
can be verified and validated.

We present POM and how it leads to IBMs which can be used as virtual
laboratories to test alternative theories. However, there is a chicken-or-egg
problem: we implement theories in an IBM to test them, but suitable IBMs
must be based on tested theories—models of adaptive behaviour which are
proven capable of reproducing observed patterns. A flawed IBM could lead to
wrong conclusions about theories tested in it. One solution to this problem is
that not more than one theory at a time should be tested in an IBM. Moreover,
we cannot model all aspects of individual behaviour with the same resolution.
The behaviours that are key to the questions we are addressing with a model
should be modelled as adaptive traits: individuals decide what to do next
depending on their current state and the state of their environment, to improve
their expected fitness. Other traits can simply be imposed by the modeller.
For example, in the brown bear model [35] habitat selection during each time
step of dispersal was modelled as an adaptive process: the decision where to
move next was based on the attractiveness of habitat in the neighbourhood.
But mortality per time step was imposed—simply assumed to be constant.
Finally, we cannot overstate the importance of testing a model and its theories
by how many characteristic patterns it can reproduce at a variety of scales
and at both individual and system levels. Much higher confidence in an IBM
is justified when the model can be shown to reproduce a wide diversity of such
patterns.

Pattern-oriented modelling is not really new. Many experienced modellers
use observed patterns to design and test their models. What is new is our
attempt to formalise the use of multiple patterns and the contrasting of al-
ternative theories for behavioural traits as an explicit strategy for develop-
ing IBMs and ABMs. We hope that this strategy will contribute to make
individual-based and agent-based modelling more efficient and coherent [11].
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32. J. Uchmański and V. Grimm (1996) Individual-based modelling in ecology:
what makes the difference? Trends in Ecology and Evolution, 11:437–441.

33. J. Watson (1968) The double helix: a personal account of the discovery of the
structure of DNA. Atheneum, New York.

34. T. Wiegand, F. Jeltsch, I. Hanski, and V. Grimm (2003) Using pattern-oriented
modeling for revealing hidden information: a key for reconciling ecological theory
and conservation practice. Oikos, 100:209–222.

35. T. Wiegand, E. Revilla, and F. Knauer (2004) Dealing with uncertainty in
spatially explicit population models. Biodiversity and Conservation, 13:53–78.

36. W. Van Winkle, H.I. Jager, S.F. Railsback, B.D. Holcomb, T.K. Studley, and
J.E. Baldrige (1998) Individual-based model of sympatric populations of brown
and rainbow trout for instream flow assessment: model description and calibra-
tion. Ecological Modelling, 110:175–207.

37. C. Wissel (1992) Modelling the mosaic-cycle of a Middle European beech forest.
Ecological Modelling, 63:29–43.



Agent-Based Modelling of Self-Organisation
Processes to Support Adaptive Forest

Management

Ernst Gebetsroither, Alexander Kaufmann, Ute Gigler, and Andreas
Resetarits

ARC systems research GmbH, Seibersdorf, Austria
Ernst.Gebetsroither@arcs.ac.at

Alexander.Kaufmann@arcs.ac.at

Ute.Gigler@arcs.ac.at

Andreas.Resetarits@arcs.ac.at

Summary. Managing the numerous and interrelated processes between man and
nature in order to use renewable resources in a sustainable way is confronted with
conflicting objectives, external effects, complex interdependencies, uncertainty and
other features that make it nearly impossible to come to unambiguous optimal de-
cisions. Self-organisation in socioeconomic and ecological systems - the process of
structuring a system by the elements of the system themselves without hierarchical
or external control - is often the reason for ambiguity and uncertainty. Adaptive
management is an approach to deal with these challenges. This natural resource
management method is permanently monitoring both socioeconomic and ecologi-
cal systems in order to be able to react rapidly on any development pushing the
systems into an undesired direction. Understanding and simulating the underlying
self-organisation processes helps to make the adaptive management of renewable
resources both more effective and more efficient. In this chapter we present a simple
model of self-organisation concerning the use of forest resources. It consists of two
submodels: The submodel of the socioeconomic system comprises firms producing
wood-based goods who buy and forestry companies who sell timber. The ecologi-
cal system is represented by a forest succession model. After a brief description of
both submodels, some preliminary results of simulating forest succession by using
NetLogo are presented.

1 Introduction

The sustainable use of renewable resources is both a very important issue and
a very difficult problem to tackle. It will remain a crucial task in the foresee-
able future in part due to economic growth in rapidly developing countries like
China which accounts for a large part of the worlds population. The sustain-
able use and management of natural resources is also a very challenging task
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because it encompasses socioeconomic as well as ecosystem processes and it
is characterized by complexity, a high degree of uncertainty, and information
deficits and asymmetries [10].

Managing forest resources makes no exception. Foresters and forest owners
have to meet multiple and often conflicting objectives such as maintaining
a functioning ecosystem while simultaneously managing for high yields in
order to be profitable. They also have to take into account current needs
of the ecosystem, potential users of forest products and at the same time
project into the future and attempt to predict the market situation decades
later. Traditional short-rotation, even-aged, intensive management approaches
often prove insufficient to sustain the ecosystem long-term. More sustainable
forest management methods that build on natural regeneration and aim at
maintaining biodiversity and minimizing impacts on the environment appear
to hold more promise [6]. The major challenge for forest managers remains
how to best handle an inherently complex, dynamic, non-linear and hard
to predict forest ecosystem that is embedded in a socioeconomic framework
characterized by frequent changes.

Adaptive management is a natural resource management approach specif-
ically designed to deal with the issues described above by keeping the man-
agement process flexible, feedback-driven, and continually adaptive [8, 10].
Central elements of the approach include the use of experiments, comprehen-
sive monitoring and involving all relevant stakeholders in the management
process [21]. Even though there is often less attention paid to socioeconomic
processes than to ecosystem functions, they too are viewed to be crucial ele-
ments of the adaptive management instrument [14, 10, 15, 9].

Self-organising processes in the biosphere and the anthroposphere are a
major reason why sustainable management of renewable resources is a chal-
lenging problem. Self-organisation means that macro patterns emerge only or
primarily by interactions between individual agents and not by external regu-
lation. As a consequence, the outcome depends on initial conditions, develop-
ment is path-dependent and irreversible, often characterized by bifurcations.
Non-linearity can lead to rapid cumulative processes where tiny changes cause
huge effects (the so-called “butterfly-effect”). If one or more of these features
are present in a decision problem, as is usually the case in natural resources
management, it is impossible to derive clear-cut optimal solutions. It is only
possible to calculate several scenarios and to assess the range of potential out-
comes. One way to deal with self-organisation is to build agent-based models
and to run simulations. This is the method we have chosen because it captures
the importance of feedback loops between decisions and actions of individual
agents and helps us understand how self-organisation leads to emergent pat-
terns. In our context such patterns might concern emerging stable or cyclical
timber market situations, the establishment of cooperative structures com-
prising stakeholders with very different aims or the adaptation of trees to
changing environmental conditions.
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One of the weaknesses of the current practice of adaptive management is
the lack of a thorough consideration and analysis of self-organisation processes,
especially in socioeconomic systems. As a consequence, there is insufficient
knowledge about the critical processes and the type of information that needs
to be collected. In non-linear processes such as forest management, it is useful
to follow a so-called “piecemeal engineering” model [16], which is a cautious
small step-by-small step process. In order to do this successfully, regular mon-
itoring of critical variables is crucial. We want to contribute to the adaptive
management model by gaining an in-depth understanding of self-organisation
processes in socioeconomic and ecological systems. For this purpose we have
chosen agent-based modelling. This method shall provide, in addition to field
surveys and expert knowledge, information for identifying key parameters and
processes underlying the dynamic behaviour of the system to be managed -
in our case the use of forest resources and forest management. Finding these
key parameters and processes is very important, because explicitly monitoring
them can help to recognize ongoing changes earlier and management can be
adapted in time accordingly.

We present a preliminary, still simple version of a self-organisation model.
The model consists of two separate, but interlinked submodels, one for so-
cioeconomic, the other for ecological self-organisation. The modular approach
has been chosen because of different modelling requirements: In the socioeco-
nomic submodel there are only few, but complex agents whereas in the forest
submodel there is a very large number of agents, but they are comparatively
simple. Both submodels are described in detail in the next two Chaps. It is
still work in progress, therefore the final Chap. will provide an outlook of how
the model will be developed further.

Our main question is therefore: How do self-organisation processes on the
timber market (determining demand for the forest resource ’timber’) as well
as in forest succession (determining the available stock of timber) mutually in-
fluence each other and which effects of certain adaptive management methods
on the overall system’s behaviour can be expected?

Our paper is organized as follows: Chapter 2 and 3 present the design
of the two submodels concerning the socioeconomic system and the forest
submodel. In these Chaps. we describe the agents of the submodels and their
interactions as well as the interface between the socioeconomic and the forest
submodels. In Chap. 4 we discuss our first steps of programming which refer
exclusively to the forest submodel. We conclude the paper with Chap. 5 giving
a summary of the experience so far and an outlook of the next steps in our
work.

2 Socioeconomic Subsystem

Agent-based modelling has gained importance in recent years in the field of
economics and has been applied to understand a wide range of social and eco-
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nomic problems or to forecast the effects of certain processes in socioeconomic
systems. A famous early work concerned the emergence of racial segregation
in cities [18]. Other issues were the emergence of cooperation [2] or the mutual
influence of expectations in certain markets like the stock market [1]. It has
even been argued that agent-based modelling could be used for simulating
whole artificial economies [3]. These and many similar approaches have con-
tributed to a common research agenda known as “agent-based computational
economics” [20]. Unfortunately there are not many examples of agent-based
modelling concerning the management of natural resources (e.g.[11]), where a
complete agent-based model would have to comprise both social and natural
systems and respective agents. Most often the focus is more on ecosystems or
other biological systems neglecting socioeconomic processes. In our model we
intend to avoid this one-sidedness.

2.1 Modelling the Use of Forest Resources

The aim of the socioeconomic submodel is to analyse how the use of forest
resources is determined by the interrelations between specific forest manage-
ment methods - some of them adaptive, some not - and the specific demand
for timber of industries producing wood-based goods. The relations between
forestry and industry form a system which is characterised by imperfect com-
petition, imperfect information, strategic behaviour and learning. In order to
analyse this self-organising system we have designed a multi-agent model fo-
cusing on a few key variables and relations only. Running simulations with an
empirically calibrated model (using forestry data and interviews of experts)
allows to test specific forest management routines under controlled conditions
and restrictions. The “response” of the forest submodel is also modelled and
will be described in Chap. 3.

In our model we focus on selling and buying of timber as the main kind of
human influence on forests, at least in countries like Austria. We have designed
a timber market with two types of agents which belong to the sectors ’forestry’
offering timber and ’industry’ producing wood-based goods. Other potentially
important agents are either not included in this model (e.g. tourists, hunters)
or considered as exogenous forces (e.g. state authorities, communities, demand
for wood-based products, competing sources of timber supply).

In general, a socioeconomic agent is defined by a specific set of an objec-
tive and several routines and resources. Any organisational entity that is able
to act independently (i.e. according to its own set of objectives and routines)
is considered an agent. The agents in the socioeconomic submodel do not
behave according to a constant set of stimulus-response rules but have the
capability to learn. They continuously adapt to changes in their environment
and they do this in a strategic way trying to achieve their objectives. Thus,
agents evolve following a continuous cycle of formulating expectations of how
to achieve their objectives, acting, evaluating the results of the actions (i.e. the
response of the environment) and updating the objective or a routine in the
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case of having missed the objective (see Fig. 1). Agents are interacting with
their environment, including other socioeconomic agents, in three basic ways:
acting, evaluating and searching. By acting the agent employs resources and
directs them onto its environment (in order to achieve its objective). By eval-
uating it compares the results of actions or any impact from its environment
with the objective. By searching it tries to find better routines for achieving
its objective or a more suitable objective.

Fig. 1. Basic structure of a socioeconomic agent

Any agent is defined by a specific set encompassing objective, routines and
resources (production factors) at a specific point of time t. At any time step
this set can but need not be changed. An unchanged set of objectives and
routines may be due either to perfect compliance with the objective or to a
longer period during which one or more routines or the objective is decided to
be fixed. The temporal perspective can be defined in the objective as well as
in any of the routines. If the resources (production factors) remain the same,
the agent has been inactive and has not been affected by its environment.

In the following, the elements of an agent are described in more detail:

• Objective (Z): Any agent has a single objective. While the objective func-
tions of the agents are fixed (specific for each agent class), the target values
can vary.

• Routines (R): This category comprises four basic types: expectation, ac-
tion, evaluation and update.



158 Ernst Gebetsroither et al.

– Expectation (E): An agent formulates at least one expectation about
the effects of his actions on the environment, on reactions of the envi-
ronment and on its development.

– Action (A): Agents dispose of at least one action routine which is re-
quired to achieve the objective.

– Evaluation (V): Any impact of the environment on the agent, be it the
reaction on a specific action or any other impact, has to be evaluated
by the agent whether the stated objective is still achieved or not. In
the negative case, the update routine has to be invoked.

– Update (U): In the case of a missed objective, the agent searches for
alternatives regarding the target value or one or several routines. Which
elements of the (Z, R)-set are going to be adjusted has to be specified
by the agent depending on the degree of failure.

• Resources or production factors (F): All resources an agent can dispose of
in order to execute actions are called factors. In the model three basic types
of factors are considered: fixed capital (production technology), variable
capital (timber and wood-based goods) and money.

The fact that agents change their objectives and routines justifies to call
them adaptive and the resulting changes in the population evolution. Innova-
tion, however, is not considered in our model. There is a pool of routines and
technologies available to the agents which is fixed throughout the simulation.

The temporal scale of the socioeconomic agents differs between industry
and forestry. The former have a shorter time perspective. Their long-term
planning covers typically 10 years. The latter consider longer periods of two
or more generations (several decades). The model shall be able to simulate
a small regional timber market comprising of a few dozen manufacturers of
wood-based products as well as a similar or slightly smaller number of forest
owners.

2.2 Timber Supply: Forestry Agents

Our model contains small forest owners (with forests of less than 200 ha) as
well as large forestry companies. They differ with respect to their objectives,
routines and available resources which are described in the following. Objec-
tives and routines may vary between agents with regard to the functional
form, more often, however, they will differ with regard to parameters only.

Objective (Zforestry): Each forestry firm or owner defines a targeted profit
rate for a certain period of time t. The profit rate equals revenue minus costs
and is related to the capital employed (see equation 1). Price of timber (PT )
times volume sold (Tsold) gives the revenue. Costs comprise costs of capital, i.e.
depreciation (CF ) of machinery (Tech), costs of extracting (CT ) the needed
volume of timber (Tremoved) and, if reforestation is done, costs of planting
(CR) new trees (Treforested). Capital comprises machinery (Tech) and timber
on stock (Tstock).
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Z =
PT × Tsold − (CF × Tech + CT × Tremoved + CR × Treforested)

Tech + PT × Tstock
(1)

Exogenous cost parameters: CF , CT , CR

Agents may have different target rates and time frames which represent
different motives of the agents. If the agent is predominantly market oriented,
the value of the profit rate will be high and the time frame short. If the agent
also stresses nature conservation, the profit rate will be lower and the time
frame longer.

Expectation (Eforestry): Forestry agents need expectations regarding the
market demand for and price of timber as well as the future extractable volume
of timber. As far as market expectation is concerned, a range of models may be
applied. Some agents may use very simple forecasting models based on one or
several previous periods while others may try to formulate more sophisticated
models (e.g. looking for cyclical patterns). The second expectation concerns
the growth of trees and the available stock of trees at any point in time. The
expected volume of certain species and quality depends on the specific forestry
method applied. The method also specifies if and how often the forecast will
be adjusted based on monitoring of actual tree succession. Simplifying real
forestry to two extreme approaches, two methods can be distinguished: The
first method, we call “traditional” management, remains unchanged as long
as there is always at least as much timber volume removable as expected.
The second method, adaptive management, is regularly adjusted according
to monitoring results of selected variables. Agents differ with regard to these
expectations.

Action (Aforestry): Forestry agents execute two basic types of actions:
managing forests and selling timber. Forest management consists of removal
(harvesting) and reforestation. According to the expected market demand the
respective volume of trees of a certain species and quality is removed. Quality
is determined by diameter at breast height (DBH) and a factor derived by
comparing actual growth with optimal growth (i.e. the growth under optimal
environmental conditions). Areas which have been logged can be reforested
with selected species, but they can also be left to regenerate naturally. There
is a range of possible combinations of the forest management methods clear
cutting, plantation and selective harvesting (“Plenterwirtschaft”). Each man-
agement method is characterized by specific fixed and variable costs.

Evaluation (V) concerns the comparison of the targeted and realised profit
rates. The updating routine (U) consists of a coherent set of rules that specifies
for any negative difference between stated goal and achieved result whether
the target or a specific routine has to be modified and how they shall be ad-
justed. Agents’ update rules may differ with regard to thresholds and way of
adjustment. For instance, a minor missing of the targeted profit ratio may
lead to the adjustment of the market expectation only, while a bigger failure
may require a new profit target. Furthermore, agents can apply varying search
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spaces, ranging from global search (covering the whole pool of available rou-
tines) to local search (restricted to the routines used by agents with whom
relations have been established).

Resources (Fforestry) of forestry firms comprise the production factors
technology (machinery and other fixed capital necessary for timber harvesting)
and money as well as the timber produced in period t and the timber that is
on stock from former periods.

Forestry agents are interrelated with the forest succession model (see Chap.
3) via two activities: The first one is harvesting, the removal of trees which
yield the volume and quality of timber expected to be sold. The second one,
reforestation of certain tree species, is not necessary. Depending on the man-
agement method applied it is also possible to rely on natural rejuvenation. In
our model forest management methods differ with respect to three routines:

• Expected removable volume of timber (expected growth of stock): Tradi-
tional management relies on total stock growth models whereas adaptive
management tries to consider the forest succession process (see Chap. 3)
in assessing the timber volume that will be removable in the future. There
are also differences regarding the time horizon.

• Removal and reforestation: Adaptive management relies more on natural
rejuvenation than traditional management where reforestation, planting
trees according to estimated future demand, is more important.

• Adjustment of management: In traditional management trees are removed
up to the expected demand (reduced by the timber on stock), restricted by
the removable volume which is assessed on the basis of the stock growth
model. The management is only changed if the available volume that can
be removed is less than expected. In the case of adaptive management
there is a monitoring programme watching actual growth of trees and key
processes on a regular basis. The monitoring is used for the adjustment of
management already long before a negative development becomes appar-
ent.

Of course, real forest management cannot be reduced to two competing prac-
tices only. Our model allows the testing of a broader variety of management
methods by combining a range of different routines.

2.3 Timber Demand: Wood-Based Industries

The present model comprises four industries, the three most important timber-
consuming industries which are furniture, paper and pulp and construction,
as well as bioenergy, a still small but growing sector, which is likely to in-
crease in importance as a more sustainable form of energy production. It is
not necessary to present the objectives, routines and resources of each indus-
try separately, because all agents apply the same basic rules. What makes
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industries distinct is that parameters vary more between firms in different
industries than between firms within the same industry.

Objective (Zindustry): The objective has a similar form like in forestry.
Each firm defines a targeted profit rate for a certain period of time t. Again,
the price of the goods (PW ) times the volume sold (Wsold) gives the revenue.
Except for the costs of capital, the costs of industry agents comprise slightly
different categories: manufacturing costs (CM ) for the volume of produced
goods (Wprod), costs of buying timber (PT ) and costs of transporting (CT )
between the seller and the buyer (Dij being the distance between them) of
the volume bought (Tbought). Capital comprises machinery (Tech) and goods
on stock (Wstock).

Z =
PW × Wsold − (CF × Tech + CM × Wprod + (PT + CT × Dij) × Tbought)

Tech + PW × Wstock
(2)

Exogenous cost parameters: CF , CT , CM

Expectation (Eindustry): Firms have to formulate expectations regarding
demand for their wood-based products as well as their prices. As in forestry,
several forecasting models can be applied (see Chap. 2.2.).

Action (Aindustry): Firms perform three types of actions on a regular ba-
sis: they buy timber, produce wood-based goods and finally sell them. The
production function depends on the technology used but will usually be char-
acterised by a decreasing marginal product. The volume produced at any time
t depends on the market expectation. The cost function consists of fixed and
variable costs. The latter comprises costs of timber and transport from the
saw mill to the firms plant.

Evaluation (V) is the same as in forestry. Update (U) rules, too, are based
on the same logic but concern the specific routines of industry agents.

Resources of industry(Findustry) comprise machinery and other fixed capi-
tal necessary for manufacturing wood-based products, the stock of goods and
money. It is assumed that all timber bought is processed within one period so
there is no stock of timber at the end of a period.

The timber market is not a closed system. There are several exogenous
factors and processes which are given as parameters and restrictions. This
applies to the final demand of wood-based products, the competing supply
of timber (from forests outside the model region), exports of timber (demand
outside the model region), the pool of available technologies in forestry and
industry and the cost of transportation between two sites. Furthermore there
are important restrictions by public regulation. State authorities and commu-
nities are interested in maintaining or improving public functions of forests
like protection against avalanches in alpine regions, preventing erosion, pro-
tecting the watershed or offering recreational areas. Instruments of regulation
are detailed forest management standards (e.g. a ban on clear-cutting, re-
stricting the maximum area to be clear-cut, rules concerning reforestation)
and restrictions regarding land use (zoning).
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2.4 Interactions between Agents: Timber Market

In our model there are only market relations. The individual decisions and ac-
tions of forestry firms determine supply of timber, the decisions and actions of
firms producing wood-based goods determine demand for timber, and supply
and demand are matched on the timber market.

• Supply side: Agents in forestry formulate expectations regarding market
price of and demand for timber of a certain quality. They calculate the
volume of timber considering existing stock, and they calculate the min-
imum price of timber acceptable to achieve the profit target. Then they
produce the volume of timber of this quality and offer the total volume
(stock and production) on the market at the expected price.

• Demand side: Firms of the wood-based industries formulate expectations
concerning market price of and demand for their wood-based products.
They calculate the quantity of goods considering goods on stock and the
maximum price of timber acceptable to achieve the profit target. Then
they look for timber of the quality required for production at the expected
price. The quality is at a minimum determined by tree species and size,
or the diameter at breast height (DBH) in technical terms.

• Timber trading and market clearing: The timber market is primarily deter-
mined by selling and buying between the agents in the model (forestry and
manufacturing firms). But there are also exogenous sources of demand and
supply, i.e. exports and imports of timber to and from outside the model
region. At first, all individual supply volumes and all individual demand
volumes of the agents in the model are summed up, differentiated by qual-
ity. Then the imported volume of timber is added to and the exported
volume is deducted from the total supply. Individual selling and buying
offers where both prices are equal are immediately matched. Finally, those
offers of timber which cannot be matched are removed from the market
and added to the forestry firms stock of timber.

• Wood-based products trading and market clearing: It is assumed that all
firms face one market demand curve for each industry which gives the
maximum volume that can be sold at the chosen price. The shape of the
demand function for wood-based products is given exogenously. Except for
the exogenous nature of demand, the process of determining market price,
matching supply and demand offers and adding unacceptable offers to the
manufacturers stock is the same as in the case of the timber market.

3 Forest Subsystem – Forest Succession Model

Natural ecosystems and forests are constantly undergoing changes and re-
sponding to changes; they are open, in flux and are affected by a series of
often stochastic factors. Managing non-linear, highly variable and complex
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systems is challenging and requires a better understanding of ecosystems.
Therefore scientific analysis and monitoring of key parameters are necessary,
in order to ensure a sustainable management process [17]. An agent-based
model can help analyse self-organisation processes during forest ecosystem
succession which may help explain certain ecosystem processes and interac-
tions. This helps to monitor the key parameters within a forest ecosystem,
which, as a consequence, contributes to its adaptive management.

3.1 General Characteristics of the Agents in the Succession Model

The agents (individuals) of the forest model are different trees with different
main characteristics. These agents are spatially immobile, but their influence
due to seed dispersal and competition with other trees goes beyond their
local position. During forest succession the competitive advantage changes
between species. Many pioneer species which have advantages at the beginning
of settlement or resettlement of an area (e.g. a gap within a forest ecosystem
after a windthrow or a clear cut) cannot compete with other species in later
succession stages. Therefore, the tree stock at a certain point of time often does
not represent the biodiversity present during former stages of the succession
process. For example, if we look at Austrias forest inventory, many species
do not seem necessary to be modelled because of their marginal occurrences.
However, if we want to simulate self-organisation processes, they are also
important. In the first model the tree species birch, beech, fir, spruce and pine
are included, but the number of species can be increased in future versions to
cover the diversity in the succession process in different regions.

3.2 Self-Organisation in a Forest Ecosystem

A definition for self-organisation in biological systems is given in Camazine,
Deneubourg et al. [5]: “Self-organisation is a process in which a pattern at
the global level of a system emerges solely from numerous interactions among
the lower-level components of the system.” Within a forest ecosystem, trees
can be seen as lower-level components which act mainly local while their
interaction shapes global patterns. One main problem of analysing changes
in forest ecosystems is that visible changes of patterns often take a very long
time. A computer-based simulation model therefore can provide a tool to
observe these trends earlier and help to find more sustainable management
decisions. Hence, one major goal is to capture the main events and mechanisms
that determine the temporal and spatial dynamics within a forest succession
under given environmental circumstances. As we focus on the self-organisation
processes, i.e. the spatial and temporal interaction and competition between
trees, we found it appropriate to use a so-called forest gap model instead
of the growth-yield models, more often used in forest management [13]. Our
approach is based on the forest model JABOWA III from Botkin et al. [4], a,
as several studies have shown [19, 7], is an efficient and widely used model.
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In the first version of the model we focus only on those features of JABOWA
III which are important in our modelling context. In the model, the trees
are characterised by diameter (diameter at breast height, DBH), height and
species. Every species is defined by a set of parameters and the individuals
compete against each other to get more light, water and nitrogen. For each
agent or tree a general growth equation is calculated (equation 3).

∆GGF = f(Dmax, Hmax, b2, b3, D, G) × f(environment) (3)

b2,b3...Parameters defining tree form which can be estimated with Dmax and
Hmax [4]
D...Diameter at breast height (DBH)
G...Growth parameter which can be estimated according to maximum age,
Dmax, Hmax

With this equation the maximum growth potential (the maximum changes
per year, ∆GGF , if f(environment)=1) for each tree species is calculated as a
function of the species-specific parameters maximum diameter at breast height
(Dmax), maximum height (Hmax) and maximum age, the actual diameter of
the tree, reduced by local environmental responses (f(environment), a factor
between 0 and 1). Environmental responses are correlated with available light
and site conditions (equation 4).

f(environment) = f(light)× Qi (4)

Site conditions included in the present model are the “wilt” factor WiFi,
an index of drought conditions a tree can withstand, and the index of tree
response to nitrogen content of the soil (NFi). For the next version it is also
planned to include the general temperature response function TFi and the
“soil wetness” factor WeFi, an index of the amount of water saturation of the
soil a tree can withstand (equation 5).

Qi = WiFi × NFi × TFi × WeFi (5)

In a natural forest ecosystem dead trees are common and an important
factor, whereas they are often missing in a managed forest. This is important
because some seeds chiefly germinate on dead trees. Within the model, mortal-
ity is simulated according to JABOWA III in two different ways. First, there
is an inherent risk of death for any tree independent of the competition with
other trees, e.g. caused by windthrow or, very important as it relates to the
socioeconomic subsystem, harvesting. Second, there is competition-induced
death. Trees that grow poorly over a certain period of time (e.g. ten years)
have a higher probability to die than well growing trees. These are the re-
sponses of an existing tree to the environment. The natural reproduction of
trees, i.e. regeneration, is also very important. A tree has to reach a species-
specific age for seed production and produces characteristic seeds. To simplify
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the model, we distinguish only between tolerant, intermediate and intolerant
seeds for the tree parameters shade, nitrogen- and water-scarcity. Contrary to
the forest model developed by Botkin et al. [4] (JABOWA III), we do not as-
sume that there are always enough trees to produce seeds independent of the
management practice and how many old trees in the area are able to produce
seeds. We think that is closer to reality and as other investigations have shown,
simultaneous events like increased seed production and increased open areas
can strongly influence the dynamics [22] of the system. In the first version
of the model we assume the concentric dispersal of seeds from the producing
tree, but the model can be improved by correlating seed dispersion with the
main wind direction and dynamic. Seeds of shade-tolerant species are able
to germinate under the producing tree as opposed to shade-intolerant seeds
which need an open area to germinate and grow. Self-organisation within the
forest succession model emerges due to direct local competition of the trees
for light and space (seed dispersal). A taller tree reduces available light for
the smaller trees in its neighbourhood. Neighbouring trees with almost the
same height do not reduce the amount of available light. Direct competition
for nutrients and water is not implemented in the present version of the model
as one tree does not influence the general availability of nitrogen and water of
a neighbouring tree. Environmental influences (rainfall, snow, calamities etc.)
can be summarised as external natural influences which are often difficult or
even impossible to predict. They can have dramatic influences on the system
depending on its current state.

The self-organisation mechanism within the forest succession model is vi-
sualised in Fig. 2. The positive feedback between “Ability to compete with
other trees”, “Resources” and “General growth function” characterises the
self-organisation process (Fig. 2). A tree with a higher ability to compete can
absorb more resources (light, nitrogen, water) and hence grows faster which,
in turn, increases its absorption capacity. To avoid an overshooting reaction,
negative feedbacks, such as the inability of seeds of a tree which grows faster
under full light conditions to grow under the producing tree itself, balance the
system over time. Changes at the macro level (forest succession) are driven by
the positive feedback mechanism at the micro level (induced by the interaction
of individual trees).

3.3 Interface with the Socioeconomic Submodel

The interrelation with the socioeconomic subsystem simulates a specific hu-
man influence on the forest succession process, the extraction of timber by
forestry. As shown in Fig. 2, the interface to the socioeconomic model encom-
passes two types of actions - removal (harvesting) and reforestation.

Removal/harvesting: Timber for different purposes like furniture, con-
struction and paper production requires different tree species with different
qualities (age, shape or DBH). Demand for different species and qualities of
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Fig. 2. General forest submodel scheme

timber is determined in the socioeconomic subsystem which, in turn, deter-
mines which trees at what location and by which harvesting method will be
removed. The currently implemented harvesting methods are selective har-
vesting, clear-cutting, thinning and cleaning. Selective harvesting means that
individual trees are removed depending on their DBH. They can be selected
randomly within the whole forest area until the wood demand is fulfilled or
they can be taken from a restricted site. Clear-cutting means that all trees
within a certain area independent of their age, DBH or growing behaviour
are removed. The newly opened site (gap) may be reforested with a chosen
tree species or natural regeneration may be allowed to take place. Thinning
means that all individual trees less than a certain DBH are removed. Thin-
ning can be restricted to a small patch or encompass the entire forest. This
harvesting method is mainly used to improve growing conditions by increasing
available light. Cleaning means that all trees or a certain amount of trees are
removed which exhibit poor growth over a period of time. These trees have
poor wood quality and a higher possibility for natural mortality compared to
trees that grow well. Removing them enhances growing conditions for all trees
and normally improves germination of seedlings.

Reforestation: The socioeconomic model determines whether and which
tree species should be planted. Reforestation has no direct influence on the
general growth function (equation 3) of existing trees, but affects them indi-
rectly, because competition for resources by newly planted trees affects exist-
ing trees.
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4 Implementation of a First Version of the Forest
Succession Model

We have used NetLogo to implement our first model-version and to test our
approach. NetLogo is a freely available, multi-agent, programmable modelling
environment from the Center for Connected Learning and Computer-Based
Modelling of the Northwestern University (http://ccl.northwestern.edu/).
One of the main advantages of NetLogo is that it is easy to use and therefore
very valuable to test new model approaches. A disadvantage is the poor simu-
lation speed compared to other agent based simulation platforms like RePast
(a JAVA-based agent simulation toolkit). Since we need a large amount of
agents (trees), this is a major argument for developing our next version with
RePast. Figure 3 shows the graphical user interface developed with NetLogo.
Number of trees, harvesting method, simulation duration, nitrogen and water
availability, harvesting interval and reforestation behaviour are the main in-
put parameters of the model which can be chosen by the user. The simulated
area is 36 ha in size with an individual patch size of 5x5 meter (25 m2) which
equals about 14,600 patches in total. Each patch has a certain amount of
nitrogen and water available. This availability is initialised within the setup
process and can range from ’no’ to ’medium’ and ’high’ to reflect different site
conditions. The available light on the ground of each patch is derived from
the trees growing on the patch and in the neighbourhood. This amount of
light is very important for germination and the growing potential of different
seedlings.

Outputs include the visualisation of tree species and size within the simula-
tion area, diagrams of the number of trees of the selected species, percentages
of trees with high quality (the quality is calculated compared to the growing
behaviour under optimal environmental conditions), the harvesting potential
of trees with a DBH greater than 60 cm and the removed (harvested) amount
of trees.

4.1 Calibration, Verification and Validation

Calibration (including parameterisation) of a model is a crucial step in the
development of a model. One reason to use a relatively simple model ap-
proach is to find valuable data for calibration. Main inputs for the forest self-
organisation model are tree characteristics, site conditions and information
about stochastic events such as windthrow, seed dispersal or tree mortality.
Within this version of the model, there is no feedback loop between the state
of the forest and the occurrence of calamities (e.g. bark-beetle). The quality
and validity of models has to pass several checks [12]. Verification means test-
ing the model with regard to the underlying mathematical and computational
components. Sensitivity tests play an important role in this context.

Validation comprises structural and outcome validation. In a model which
is focused more towards shedding light on theoretical questions – which applies
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Fig. 3. General overview of the first model-version developed with NetLogo

to our model – verification and structural validation is more important [12].
The validation of the dynamics of the forest subsystem to prove the realistic
behaviour of our model is a three step procedure:

• First, the potential growth curve of each tree species is simulated indepen-
dently from competition with other trees and validated with experimental
data.

• Second, the different environmental response functions of each tree species
is checked independently and also validated with experimental data.

• Third, the competition between different tree species is analysed and val-
idated with experimental data and expert knowledge.

The validation of the model developed with Netlogo has shown reliable
behaviour as expected by experts. A more intensive validation, however, will
be necessary for the RePast model, including more site-specific data from
Austrian forests. The first simulation results have shown that some parameter
settings are very sensitive which makes it necessary to calibrate and verify
them very carefully.

4.2 Analysis of the Forest Succession Model

Agent based models such as the one introduced have extensive lists of pa-
rameters which can be combined to an almost infinite number of different
parameter settings and simulation runs. We made more than 1,000 runs with
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different parameter settings to test and analyse the behaviour. In the following
we discuss some interesting outcomes of this analysis.

As is often the case in complex systems there are sensitive parameter
ranges which makes the model verification more difficult [12]. Within one
experiment all trees with a DBH of less than 15 cm were harvested at a
certain interval. Figure 4 shows two different simulations with only a slight
change in parameter settings namely the harvesting interval was increased
from 15 (left) to 20 years (right).

Fig. 4. Experiment: Thinning trees less than 15 cm DBH with an interval of 15
years left, 20 years right

Figure 4 (left) shows the development over the simulated 250 years with
the result that almost all trees are extinct. In Fig. 4 (right) this is changed
dramatically; there, a more or less sustainable behaviour can be observed.
Main causes for this behaviour are individual tree characteristics, age at first
seed production and number of seeds and growing performance. If trees grow
slowly within 15 years they are not able to reach more than a DBH of 15 cm
and are harvested. It is important to note that this result is independent of
the number of trees present at the beginning. If the interval is changed from
20-25 years, we do not observe the same behaviour. The next Fig. shows an
experiment where we have used the selective harvesting method for all trees
larger than a certain DBH. The change we made between the runs was to
increase the DBH from 70 (left) to 80 cm (right).

Changing the DBH from 70 cm to 80 cm changes growing conditions in
particular for birch and pine which have similar assumed growing and repro-
duction behaviour, different from the other tree species. It further shows, that
although more trees have been harvested in the first experiment (DBH 70 cm)
at the beginning, at the end much more trees could be harvested with a DBH
of more than 80 cm. The simple experiments displayed in figures 4 and 5 pro-
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Fig. 5. Experiment: Selective harvesting of trees with more than 70 cm DHB left
and 80 cm DHB right with an interval of 10 years.

vide an impression as to why simulation is valuable to learn more about system
behaviour. A main element of adaptive management is long-term monitoring.
In the experiments discussed above we found that the harvesting interval is
one of the key parameters. The influence of this parameter on the number of
trees and harvesting potential (trees > 60 cm DBH) indicates the long-term
behaviour of the system. Without adaptive management, the trees would be
extinct as in Figs. 4 and 5 (left).

5 Conclusions and Outlook

The succession model, presented in this paper, is able to show basic behaviour
of self-organisation, e.g. competition of trees for light and space. The currently
used agents within the forest model vary only with regard to few parameters,
nevertheless we can observe interesting dynamics. For example, we did not
include realistic seed dispersal rules, and although it can be assumed that
these are critical parameters for determining succession, we have found char-
acteristic succession patterns like early dominance of pioneer species followed
by characteristic species of later stages. Self-organisation is obviously driven
even by small changes due to the positive feedback between growth function,
competitiveness and resources.

At present, the other, the socioeconomic submodel is being programmed. It
will be the basis for simulation and analysis of the self-organisation processes
on the timber market and the resulting use of forest resources. We already
have started to program both submodels in RePast in order to ensure their
smooth connection.

Before that, however, both submodels are being verified independently,
because the technical requirements differ significantly between them. Espe-
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cially, the large amount of agents in the forest model (individual trees) which
is necessary when modelling a small regions timber market might require dis-
tributed simulation techniques.

Finally, the overall model, connecting the socioeconomic and ecological
submodels, will be validated primarily by discussing them with experts in
forest management and, to a lesser extent, by empirical data.

After having validated the model it will be possible to analyse simulation
results regarding the most critical self-organisation processes. Different forest
management practices will be tested on their effects on the socioeconomic and
ecological subsystems. It will be particularly interesting to compare adaptive
management with “traditional” management practices.
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Summary. An evolutionary variant of the Micro-Macro Link (MML) theory is
proposed. According to the MML theory, behaviour at the individual level generates
higher level structures (bottom-up process), which feed back to the lower level (top-
down), reinforcing the producing behaviour either directly or indirectly, i.e. acting on
the mind of the agent. Focusing on the evolution of pro-social behaviour, we explore
these two types of link by means of simulation experiments. The experiments were
aimed at studying the role of groups in the performances of populations of agents
exchanging helping behaviour (simple loop) and the role of cognitive mediators (i.e.
goals) and social norms in the spreading of altruism, described as a purposeful action
(complex loop).

1 Introduction

As shown by a huge amount of experimental literature (see [1], for a review),
humans are more likely to cooperate than expected by rationality theory.
Why?

Answers to this question are essentially found in sociobiology, under the
umbrella of either kin selection or reciprocal altruism.

Kin selection theorists expect altruism to be found among relatives, in a
measure that is a direct function of the degree of relatedness between donors
and recipients. On the other hand, reciprocal altruism accounts for the evo-
lutionary advantage of altruism in terms of inclusive fitness.

However, a strong objection to this fascinating biological theory — which
became very popular in the seventies and still is dominant among evolutionary
scientists — comes from analytical models of social dynamics: according to
the so called haystack models [2], altruists go extinct when randomly matched
with non-altruists. Otherwise stated, unless altruists and non-altruists are
assorted in such a way that the former are more likely to meet with one
another than they are to meet with non-altruists, altruists are invaded by
non-altruists, and the whole group is bound to die out soon.
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On one hand, then, the survival and reproduction of groups seems largely
to depend on the survival of altruists: groups of cooperators have a much
longer life than groups of non-cooperators.

On the other hand, how did altruistic individuals and groups evolve at
all, if they are so vulnerable to non-altruistic ones? In this paper, we propose
an answer to this question in terms of an evolutionary variant of the Micro-
Macro Link (MML) theory. The MML occurs when behaviour at the individual
level generates higher level structures or groups (bottom-up process), which
feedback to the lower level (top-down), either:

• directly, reinforcing the altruistic behaviour (simple loop);
• indirectly, acting on the minds of altruists (complex loop).

In our view, both loops are involved in different stages of the evolution of
altruism. Inclusive fitness is not sufficient to explain the evolution of altruism,
since group selection is also needed. As we will endeavour to demonstrate
by means of artificial data, drawn from simulations of a classic ethological
example of altruism, food-sharing among vampire bats, a high number of
small groups (roosts) allow for a strong variance in the assortation of altruists
and non-altruists over the whole population. Hence, roosts de facto provide
social barriers preventing altruists from being invaded by non-altruists (simple
loop).

However, this is not a robust effect, since as soon as the ecological con-
ditions vary (e.g., the number of individuals per group increases), altruism
is at risk. Other properties at the individual level must evolve in order to
keep non-altruists from dominating, and to protect the whole group (complex
loop).

We illustrate the two loops by means of simulation. In the first part of
the paper, we will describe a simple loop: our simulation model of vampires’
food-sharing will be applied to investigate the effects of roosts on the evolu-
tion of this behaviour. In the second part of the paper, we will investigate a
complex loop, by experimenting on the individual properties allowing altruists
to survive and neutralise non-altruists even under unfavourable demographic
conditions, i.e. when the probability of mmeting a non-altruist is higher then
the other way around.

2 The Model

In nature, examples of altruism abound [3]. Among mammals, the most fa-
mous example of pro-social behaviour is blood-sharing in vampire bats [4]. The
species studied by Wilkinsons lives in Central America, in small groups (a few
dozen individuals) inhabiting the cavity of trees. We will call this basic unit
group a roost1. Their diet consists of ingesting each day an amount of fresh
1 To be more precise, real vampire bats move in subgroups around several cavities,

creating a fluid and territorial group system. Roosts contain usually only one
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blood, which they suck from herbivores. However, each night about 7% of the
adults find no prey to parasitize. In these occasions, they can survive thanks to
luckier fellows regurgitating for them a portion of the food ingested. Wilkin-
son, who have studied this species in its natural settings, actually stated that
such behaviour “depends equally and independently on degree of relatedness
and an index of opportunity for reciprocation” [4].

Starting from these ethological data we have drawn the model for a multi-
agent system to analyse the key features of altruistic behaviour and to explore
the micro-macro link. We are not interested in the ethological debate around
the life of vampire bats per se. Our goal is to model behaviour at an abstract
level, taking inspiration from the case of vampire bats, which provides good
evidence for building the simulation model in a non-arbitrary way.

Every agent in the simulation is then designed to reproduce the hunting
and social activity of the common vampire bats. Each simulation time step
includes one daily and one nightly stage. During the daily stage, the simulated
animals perform social activities (grooming and food-sharing). In the night,
they hunt. In our model, hunt is defined as an ecological parameter; in accor-
dance with real-world data [5], its default value is set to 93%. In substance,
each night 93% of the population will find food to survive until the next hunt.
The remaining 7% will begin (or continue) to starve, unless they receive help
from some fellow (under the form of regurgitation). Vampire bats do not ac-
cumulate resources: hunt is performed only for short-term food consumption.
In addition, although the average lifetime of these animals lasts around 14
years, starvation and death are a constant menace to them, since each good
hunt gives them no more than 60 hours autonomy. As a consequence, for a
bat in isolation, two failures in a row are fatal. These are the harsh conditions
characterizing the life of vampires, which face infrequent — in the simulation,
about 1.65 episodes of double insuccessful hunt per animal per year — but
lethal food scarcity. The only way to prevent starvation and death is receiving
help from fellows, which is what these animals appear to do in nature.

In the daily stage, the following actions can be performed:

Groom The condition for this action is that two agents are sorted out from
the same roost. Grooming allows for help requests.

Ask for help The condition for the application of this action is that the re-
questor be starving. The request will be addressed to one agent in the
same grooming network, if any. Otherwise, other in-roosts may be ad-
dressed as well. The effect of a request will be either donation or denial.
In the first case, the requestor will ingest some blood and gain some hours
of autonomy. In the second, it is bound to die.

Donate The condition for applying this action is that recipient is starving.
The effect is that donor’s lifetime is reduced and the recipient’s is in-

alpha male, plus several other males and females in a rigid hierarchy, but we will
not model this level of detail in our simulation.
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creased. Donating, in accordance with physiological data, is a non-zero
sum interaction: the receiver gains more than the donor loses.

Deny help The condition is that agent received a request for help. The effect
is the requestor’s death.

As to daily activities, in nature the rationale of grooming is at least twofold:
animals familiarize thanks to and during it, and check their respective physical
shape. Since satiation causes body volume inflation, a lucky hunter may grow
to even twice as much as its normal size, as can be easily detected by its
grooming partners. Likewise, a starving bat is also likely to be recognized.
Bluff would immediately be found out in such extreme life conditions.

Each day, pairs are formed by each animal choosing one partner from the
roost population. As in the real world, in our model grooming has the effect
of increasing the probability of food-sharing among in-roosts: a starving bat
will turn to grooming partners for help, and will avoid death if any of them is
found to be full (having had a good hunt). Because of the bat’s metabolism,
the donor will lose much less than is gained by the recipient. In the simulation,
the agent loses an amount of energy allowing them to survive for six hours;
this amounts to losing a chance to ask for help during the last day, given two
failures in a row following donation. In this set of experiments, we limited the
number of partners per day to one.

The numbers obtained merge with what is known by ethological observa-
tions in presence of mutual help (the yearly rate of death for adults is about
24%) and with the results of a simulation carried on by Wilkinson [5] in
absence of help. As said above, help is rare but critical: roosts in which all
individuals deny help reduce their population by 82% in a year.

The case under study presents two peculiarities. Any kind of wealth ac-
cumulation is exceedingly difficult. Energy coming from a meal is dissipated
after two nights, so that there can be no such thing as a wealthy individual.
The lucky hunter of today has the same chances as everybody else to starve
tomorrow. Moreover, direct retaliation is simply impossible in the present
setting. The victim of cheating2 dies on the spot; asking for help is the last
resort, and given our restriction of one helping partner per night, a cheater is
a dangerous killer that is really difficult to find out.

In the simulations, only starving animals are allowed to ask for help, and
will be helped by their addressees if these are both altruists and satiated. No
bluff is allowed — if an agent is not starving it will not ask for help. Agents
have no memory of past interaction and cannot calculate the probability of
reciprocation. No explicit mechanism for punishment of cheaters is imple-
mented. In such conditions, how can reciprocity emerge as a mere “objective”
effect, implying neither computation nor deliberation on the side of altruists?

2 Following the convention used in the literature on cooperation a cheater is a
defector, i.e. anybody who does not cooperate or, more specifically, who denies
help.
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In order to answer this question and to explore the effect of groups on the
evolution of altruism, we run simulations with mixed populations (altruists
and cheaters in variable combination) initially distributed over a given number
of roosts. During the simulation, roosts can grow or collapse, depending upon
the survival and reproduction rates of their members, which in turn exclusively
depends on social attitudes (whether altruistic or not). Ecological conditions
are kept equal for all roosts. At given times, roosts give rise to new roosts if the
number of young individuals reaches a given threshold. This was meant as an
operational simplification of the notion of group selection and reproduction.

3 Simple Loop: Groups and the Evolution of Altruism

This study was aimed to test different interpretations of the evolution of al-
truism by means of simulation. The reference example in the real world is the
vampire bats’ food-sharing. As previously recalled, this species offers clear
evidence of the advantages of altruism on life expectancies. Wilkinson’s simu-
lation findings, also reproduced by our simulation, show that the probability
of survival per year is around 76% of the population when food-sharing is ac-
tivated, as opposed to a bare 18% in the opposite condition (no food-sharing).
How to interpret these findings?

In line with the sociobiological theory of reciprocal altruism [6], one could
say that vampires survive to such a greater extent when sharing food because
of reciprocity [7], which adds to the individual fitness of donors much as
altruism adds to the fitness of recipients. In other words, help-giving acts as a
sort of investment, although non-deliberate nor acknowledged, on the part of
the altruist, which accumulates credits to be refunded by means of reciprocity.
Since vampires do not accumulate food, donors that are reciprocated later on
in their lives will survive longer than if they had performed no altruistic act.
Whereas the initial donation caused a mere reduction of the time interval
before starvation, the following reciprocation prevents immediate death!

However, it is unclear whether and to what extent vampires take mea-
sures against cheaters. Wilkinson’s findings refer to the comparison between
an all-cooperators condition vs an all-defectors condition. What happens in
intermediate conditions? Which is the minimal share of altruists for obtaining
an increase of the survival rate with regard to the all-defectors condition?
Moreover, does the increasing of survival rate effectively correspond to an in-
crease of donors’ fitness, or is it redistributed over the entire population? And
if so, are individual donors always refunded or do they sustain a share of the
costs of redistribution?

The latter question is crucial since if donors are not always reciprocated
in person or along their future generations, there is reason to question the
reciprocal altruism interpretation, and to look for another concurrent expla-
nation. One good candidate is the group-selection theory, i.e. the theory that
considers aggregates of non-kin individuals as units of biological selection and
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Fig. 1. Evolutionary advantages of food sharing among common vampire bats.
When food sharing is not allowed the annual rate of mortality increase from 24% to
82%.

evolution. In such a perspective, a given trait, like altruism is accounted for in
terms of its contribution to the fitness of the group rather than to the individ-
ual (genetic or reproductive) fitness of its members. Consequently, vampires’
food-sharing may be seen as a habit that evolved thanks to its positive effects
on the fitness of roosts taken as wholes, rather than on the individual fitness
of donors. In short, the reciprocal altruism theory proves adequate if donors
are almost always reciprocated in their lives or in the lives of their offspring.
In such a case, the altruistic gene spreads because the genes of donors survive
and replicate through generations.

Instead, the concurrent group-selection theory proves right if (i) survival
rate increases in altruistic roosts although donors are poorly reciprocated
both in their lives and in their offspring’s, provided (ii) the altruistic roosts
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as wholes are fitter than their non-altruistic competitors. How to measure a
roost’s fitness? We turned to roost formation as one possible solution. In this
sense, the higher the number of roosts that get formed from an original one,
the fitter the latter. This is so, provided the rationale for roost formation is
reproduction: the higher the number of reproduction of a parent roost, the
higher the number of child roosts it will give rise to.

3.1 Simulating the Effects of Groups

By means of RePast simulation platform3, we constructed a pilot experi-
ment that mimics the vampires’ behaviours in what we perceive as its essen-
tial traits, introducing two different algorithms, altruistic (food-sharing) and
cheating (no food-sharing). The former mimics the behaviour of lucky hunters
that give away an extra amount of the blood ingested, if any, to the benefit of
starving fellows asking for help. The latter reproduces the behaviour of selfish
animals, denying help to their unlucky fellows, which starve to death.

Cheaters never give help when asked, even if they are full; unlike altru-
ists, they sustain no costs. Since no retaliation mechanism is modeled, a first
expectation could be that cheaters prosper, thereby reducing the efficiency of
the system as a whole. This is indeed what happens in the short run; but when
we start to consider longer simulations, the scenario changes dramatically.

Moreover, apart from the effects of cheating, we were also interested in
a measure allowing to discriminate between group selection and inclusive fit-
ness. To this purpose, we keep track of the lineage of the agents from the
beginning of the simulation. Reproduction by cloning allows for clear tracks;
if the mortality rate of one lineage is equal-lower than the average in the same
roost but this produced a significantly higher number of children roosts than
happens in the control condition, then group-selection seems an adequate in-
terpretation of vampires altruism. If instead donors’ lineages show a mortality
rate significantly lower than the average in the same roost, and the number
of children roosts is not significantly higher than in the control condition,
reciprocal altruism provides a more adequate interpretation.

Simulations have been run for a number of cycles corresponding to forty
years, which includes about four generations of vampires. In Fig. 2 and 3, we
present typical examples of what happens during the run for different initial
shares of cheaters.

Results clearly show the reproductive advantage of the food-sharing condi-
tion. Selfish vampires are bound to go extinct in a few generations, leading also
their roosts to collapse. They play a destructive role, by gradually reducing the
reproductive capacity of their roosts until global extinction. However, when
altruists far exceed cheaters, or some demographic catastrophe (triggered by
cheaters themselves) leads to earlier extinction of cheaters, the reproduction
of altruists takes off again and the number of roosts grows in proportion.

3 http://repast.sourceforge.net
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Fig. 2. A typical experiment. Total population, number of roosts, and number of
cheaters (multiplied by 10) are shown. Simulation starts with 300 agents in 10 roosts,
for 8000 days, 10% of cheaters at startup.

This happens after a critical period during which cheaters go extinct, and the
global fitness of the whole population is almost on the verge of collapse. After
cheaters are totally extinguished, the population starts growing rapidly and
indefinitely.

This observation leads to appraise the role of roosts. In fact, if the whole
population were sharing one roost (see Fig. 4 for one example), the presence
of cheaters would lead it to certain extinction. With a single roost, most sim-
ulations converge to zero after some period, with or without later resurgence;
in any case, the presence of cheaters increases until they cause a catastrophic
lowering of the population, after which they start to increase again until ex-
tinction. No reciprocity could emerge in a world in which cheaters are allowed
to repeatedly exploit others, incurring neither retaliation nor isolation.
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Fig. 3. Total population, number of roosts, and number of cheaters (multiplied by
10) are shown. Simulation starts with 300 agents in 10 roosts, for 8000 days, 40%
of cheaters at startup.

Under these extreme conditions, in which help exchange is vital, after
having exploited their altruistic in-roosts to death, cheaters find no way to
face adversity, and are soon bound to share the same fate. If a few altruists
happen to survive the extinction of cheaters, they will soon repopulate the
roost and produce new ones. If no-one survives cheaters, which is the most
likely event since they survive longer than their good fellows, the roost will
collapse.

On the contrary, the phenomenon of roosting radically modifies the situa-
tion. Due to the presence of cheaters, most of the roosts disappear. However,
if at a certain point any roost without cheaters will appear, it will grow and
repopulate the world. This is what happens in Fig. 2, after a demographic
catastrophe.
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Fig. 4. Single roost with 300 agents, no new roost formation, 10% cheaters, 20000
days.

As for the question if the evolutionary advantage of food sharing is better
explained by inclusive fitness or group selection, we tried several measures to
discriminate between them. A clear signal in favour of group selection would
be given if we were to find that helpers, that is, agents that helped others
often during their lifetime, had less offspring than other altruists. The prob-
lem here is subtle, since agents that have had more chances for reproduction,
i.e., have lived longer, also automatically have had more chances for helping
others. For this reason, the correlation we found between help and fitness —
defined as both the number of descendants and the number of living descen-
dants — is obviously positive, but inadequate to support either explaination.
Trying to pinpoint the effect, we selected a subset of the initial agent popula-
tion, characterised as both long-lived and altruists. In the simulation, agents
reaching an age of 10 years are automatically removed from the population.
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However, by tracking their descendants, we can look for a correlation between
the number of helps given and the size of the donor’s offspring.

We run a set of 100 simulations, with 10 roosts of 30 agents each. Cheaters’
percentage was set to 10%; simulations stopped at 5000 day, and only values
for agents surviving form the beginning of the experiment to maximum possi-
ble age were extracted. For these agents, we kept track of the number of helps
given and of the number of agents in the whole lineage up to the end of the
simulation. We found only a very low factor (0.07) of positive correlation be-
tween these measures. In substance, there is not a linear relation between the
number of help given in life and the total number of offspring in the simulation
for the subset we choose to analyse.

3.2 Preliminary Discussion

The findings presented above point into two distinct directions.
On one hand, altruistic roosts survive longer and reproduce far more than

mixed roosts, which include cheaters. Indeed, cheaters tend to cause the ex-
tinction of their roosts, including themselves. This result is not particularly
original, since it essentially confirms what was found by Wilkinson through
his simulation study of vampire bats’ food-sharing. Although distribution of
cheaters over the roost population makes a difference in terms of the repro-
ductive success of the whole roost, even one single cheater may be enough to
lead the roost to extinction. This is so for two reasons: first, cheaters usually
survive longer than their fellow altruists; second, in a competitive environ-
ment, any roost that happens to be cheater-free will generate more offspring,
both in terms of roosts and in terms of individuals. In this sense, the roost
is a critical unit of selection, whose efficiency in finding out and eliminating
cheaters is amazing. The relevance of roosts could be lessened by a different
kind of cheater, not included in this study: a roaming cheater, which dis-
tributes the cost of its presence over the roosts it has access to. However, it
must be noted that in nature, individuals requesting entrance to a new roost
find it very hard to be accepted by the new roost inhabitants; an entrance fee
could have co-evolved in order to protect the altruistic mechanism.

The second direction pointed to by our findings concerns the role of roost
in the evolution of altruism. In this respect, grouping, or better, roosting
seems to matter. If it is the case that altruistic groups survive longer than non-
altruistic ones, the reverse is also true: altruists have better chances to survive
if they roost together. In a one-roost world, inhabited by cheaters and altruists,
the chances of survival of altruists — and of the entire population — would
be close to zero. Conversely, in a multi-roost world, where altruists happen
to co-exist in variable distribution with cheaters, an inter-roost competition
for reproduction occurs. Since cheaters lead to the extinction of their roosts,
only altruistic ones will survive enough as to reproduce, and these will soon
populate the world. In this perspective the group-selection argument seems



184 Rosaria Conte, Mario Paolucci, and Gennaro Di Tosto

to receive support. Groups act as units of selection and reproduction, much
alike individual organisms.

However, this finding per se does not say much about the internal rationale
of altruism. If it supports group-selection, it does not disclaim the concurrent
sociobiological theory of reciprocal altruism. Indeed, precisely because no rule
for reciprocity is explicitly represented in our simulation model, the only way
for altruists to survive is to roost together, waiting, so to speak, for cheaters
to go extinct. In this sense, and rather tautologically, reciprocity emerges only
when cheating disappears.

Up to now, our findings also indicate that actual donors do not reach
a significantly higher rate of survival and reproduction than the rest of the
population; indeed, the correlation factor is too low to come to a conclusion on
this matter. No negative correlation definitely disclaiming reciprocal altruism
has been found. The global increase of fitness of the roost population is not
obtained at the expenses of one share of it (the actual donors). On the other
side, the final generations do not necessarily include the lineage of the actual
donors. This is possibly due to the simplicity of the algorithm, which allows for
no specific rule of reciprocity. On the other hand, it corresponds to the simple
rationale of reciprocal altruism, for which agents neither aim nor calculate the
probability of reciprocity, which should be an emergent effect of the altruism
fitness. However, if actual donors are not reciprocated, their fitness decreases
to the benefit of the global fitness. But if this is the case, as appears to be in
our findings, inclusive fitness is not the reason accounting for the spread of
altruism. Indeed, group selection theory gains the ground that is lost by the
reciprocal altruism theory. Grouping matters and helps altruists to survive
and reproduce even in presence of cheaters. Under the shelter of their roosts,
animals helping each other will have better chances to reproduce, although
some of them, finding themselves in roosts with high cheaters content, will
pay dearly for such behaviour.

4 Complex Loop: Spreading of Altruistic Behaviour

As said in the introduction, the loop between an emergent macro-social level
and its feedback on the micro-social level may be more or less complex. In the
former part of this paper, we have seen a simple loop, in which an emergent
macro-effect (groups’ fitness) of the agent behaviour (food-sharing) directly
acts upon the micro-level preventing donors from being exploited, thereby
increasing altruists’ fitness.

So far, we have shown that, at least in a possible (artificial) world, prosocial
behaviour can emerge and stabilize, despite a minority of cheaters, thanks
to a social circuit that we described as a simple loop. If in nature things
actually worked out in such a way, although plausible, is far from having
being ascertained.
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However, these dynamics are much too simple. As already shown, the roost
dimension matters: the larger the roosts, the lesser their capacity to protect
from cheating. Hence, the simple loop proves rather fragile, as altruists can
only put up with a fairly small minority of cheaters. As shown by analytical
modelling, large and isolated roosts with randomly assorted altruists and non-
altruists have none or poor chance of survival.

Should we then forget about a more robust form of altruism? Certainly,
the simple loop appears to be sufficient4 for the evolution of food-sharing
and the survival of vampire bats. This species has probably reached a de-
mographic/ecological equilibrium with a stable distribution of the population
over a myriad of small and fairly segregated roosts, in which newcomers are
not let before providing long-lasting and robust evidence of an altruistic atti-
tude. But what about other species, e.g. humans, which, for most part of their
evolutionary history, have been characterised by a consistent demographic in-
crease and the attitude to form ever enlarging settlements?

Let us assume that collective dilemmas were frequent in the evolutionary
stage of our species, an assumption that is far from unrealistic [8, 9] given
the necessity of defenceless individuals to live in groups, on one hand, and
the scarcity of resources usually threatening the cohesion of these groups, on
the other [10]. How could such a species have evolved at all, if a handful of
cheaters was enough to invade and desgregate a settlement?

Here is where a more complex dynamics between the micro- and the macro-
social levels seems to be strongly needed. In our view, the bottom-up process,
from the micro-social to the macro-social level, coincides no more with the
emergence of specific social structures (e.g., a myriad of small groups), but
with the appearance of an immaterial social structure, a prescription that
agents are expected to observe, namely the norm of reciprocity. By this means,
altruism is supposed to spread over newer portions of the population, allowing
the group to resist the inevitable offensive of cheaters. The emergent norm,
acting on the individuals, modifies their behaviours. How can this be done in
a robust way, i.e. in such a way that individual donors can put up with and
reduce the costs, or the risks, of bad encounters?

Many good evolutionary scientists have been playing around with this
question. However, the typical answer which this usually receives — in terms
of familiarity, repeated interaction, or past experience — does not allow us to
proceed further than we did with our simple loop: small stable groups allow
agents to recognise and possibly avoid one another. But what about larger
open groups? How can norm-abiders reduce the costs of norm obedience, if
they cannot escape transgressors? Which mental construct is required for the
norm to be applied in a robust way, thereby increasing the probability that
the norm itself will survive?

These questions show that the complex loop includes two steps:

4 Sufficient but not necessary: for that we should wait for conclusive field evidence.
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• an emergent process (the way up of the circuit): how does the norm come
into existence?

• an immergent process (the way down): which mental constructs are re-
quired for the norm to be executed and stabilised?

Here we set to answer the latter question, while postponing to further work
the study of the former.

4.1 Reciprocity: Artificial Vampire Bats with Credit Network

Reciprocity is considered as the main factor in the evolution of cooperation.
Of the two forms of reciprocity, direct and indirect, however, the former was
above argued to be inapplicable to the present context. How about indirect
reciprocity, then?

The abundant literature on this issue [11, 12, 13] points to the effect of
punishment, possibly based on reputation, on the emergence of indirect reci-
procity. According to these studies altruism spreads via reciprocation. Is this
applicable to our scenario? Let us see.

We simulated a population of artificial bats, with variable percentage of
cheaters (bats that never donate food). In Fig. 5, the effect of a variable num-
ber of initial cheaters over global survival rate is shown. The left chart shows
the number of living agents at the end of simulation, for 20 different values
of the initial cheater/altruist ratio; for each value we run 200 simulations, for
a time span of about 30 years. On the right, we show the success rate for the
same set of simulations, defined as the percentage of the 200 runs in which at
least an agent survives to the end.
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Fig. 5. Left: boxplot, number of living agents at simulation end by cheating rate.
200 runs for each value of cheating percentage. Right: successful runs (number of
simulation where population does not extinguish), by cheating rate.
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Apparently, even a small number of cheaters leads the population to col-
lapse. The population starts to decline as soon as the number of cheaters
grows over a bare 10%; no roost reached the end of the simulation when the
percentage of cheaters reachs or goes beyond 40%. Sooner or later, depending
on the initial number of cheaters, a mixed population is bound to go extinct. It
is easy to see why: in isolation, cheating is a self-defeating strategy. Cheaters
reproduce more than altruists, as long as they find any to exploit. As altruist
decline, the simulation return in a no food sharing condition. Consequently,
cheaters go extinct in a couple of years. Which ingredient is then needed for
altruism to spread despite cheaters?

Optionally, we provided agents with the capacity for individual recogni-
tion. Every time a donation occurs, an agent adds to its memory the identity
of the recipient. We maintained this information through a network, the nodes
of the net being the agents. At any donation the credit network is updated.
In fact, either a previous donor is refunded — in which case its credit is extin-
guished and one link removed — or a new credit is formed and a new link is
activated between current donors and their recipients. Whenever donors are
reciprocated, their corresponding credits are cancelled. In our implementation,
to avoid reiterated initialization of the network, we decided to pass it on to
one’s offspring, which then inherit parents’ features and credits. Consequently,
a given credit can be extinguished during the donor’s life or after its death
to the benefit of its offspring. (Obviously, the more the credits passed on to
future generations, the higher the probability of survival of one’s offspring.)
If the credit network is activated, it gets investigated any time a request of
help is received and, if the postulant is found to be a debtor with a number
of unreciprocated donation over a given threshold, help is denied. This action
is seen as a mechanism to limit the exploitation of the altruistic behaviour by
selfish agents, who — since they never reciprocate — will progressively loose
the opportunities the receive helps from in-roosts.

When one thinks of it, the grooming network creates a familiarity as well
as a reciprocity basin: giving help allows animals to achieve credits, which will
be extinguished if and when help is returned. A lucky hunt may last the short
space of one night, and a fat guy may soon shrink in starvation. Hence, it
will be urged to go out for grooming in the hope to meet with a luckier (and
fatter) debtor. In less metaphorical terms, the grooming network facilitates
re-encounters and therefore the extinguishing of credits.

This credit network is checked any time a request of help is received. In
a more restrictive condition, only if no credit link is already active with the
requestor, the agent will give help. Otherwise, help is denied. We found that
this condition is too restrictive, and does not allow for population survival. In
a less restrictive condition, shown in this paper, help is denied only when the
same requestor asks for help more than two times consecutively.

Agents search for potential donors within the grooming network. Only one
trial is available. If help is denied, the postulant is bound to die.
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Fig. 6. Artificial vampire bats with and without credit network. Successful runs
(number of simulation where population does not extinguish), by cheating rate.

As shown in Fig. 6, the credit network does not improve things. Indeed,
to investigate own credits when deciding whether or not to donate leads to a
comparable number of cheaters in the population, with the same reduction of
the global survival rate.

Apparently, these findings are counterintuitive: turning off credits before
donating again appears as a quite rational strategy. How come it is non-
influential rather than helpful? Looking at what effectively happens within
the simulations is rather instructive, indeed. The credit network has one main
effect: it allows for lesser donations. Agents more often deny help. But this
punishment is unfair, as it penalizes not only cheaters but also unlucky altru-
ists. Moreover, it is rather extreme: requestors will die out and those, among
them, which cheat will have no time to learn. Learning to reciprocate requires
time, but in such harsh life conditions, time is not available.

Should we conclude that learning is unfeasible? Or, perhaps, should we
turn to a different form of learning leading to milder, rather than tougher,
criteria for donations, including unconditioned altruism? Is it possible to learn
such a form of altruism? Is it compatible with an autonomous agent? To
these questions we turned our attention in the successive study, which will be
described below.
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4.2 Dynamic Goal-Directed Agents

In this Sect. we start to model a different type of agent. Until now all the
agents were designed only to reproduce the activities of a common vampire
bat in its natural environment. Let us call these first agents Simple agents.
Every Simple agent is endowed with a set of routines that (s)he will use in
order to obtain food from the environment and help from other agents. From
now on, we will use the name Smart agents for agents endowed with altruistic
motivations of variable intensity.

We aim at enabling autonomous agents (i.e., agents endowed with and
acting to achieve their own goals) to become altruists. Rather than incompat-
ible with altruism, autonomy augments agents’ adaptability thanks to goal-
dynamics. The social environment — as well as the physical one — deeply
affects autonomous agents. Autonomous agents endowed with goal dynamics
respond to events that affect them by modifying their goals, harbouring from
the least to the most benevolent strategies towards their fellows.

Dynamic goal-directed action is an essential aspect of cognition [14, 15]. In
a cognitive architecture, a goal is a highly dynamic mental construct, which,
thanks to beliefs, may be generated, abandoned, worked out, suspended, in-
terrupted, achieved, compromised, etc. as an effect of its varying intensity.
In the simulation model at the present stage of development, goal-dynamic
is only partially implemented. Autonomous agents change their behaviour
according to their goals, and change their goals on the base of their beliefs.
However, beliefs are not explicitly modelled in our system and goals vary as to
their motivational force, rather than in their representational content. Future
extensions of this work will investigate qualitative goal-dynamics.

Goal-directed agents are an extension of the simple ones. They have access
to the same set of actions: repertoire of actions (give blood, deny help) is kept
constant. However, they differ in the decision-making mechanism with respect
to decisions about donations. Every time a request for blood is received two
opposite goals are activated:

• a Normative Goal (NG), which prescribes to answer the requests received;
• a Survival Goal (SG), according to which agents try to keep constantly

high their blood-autonomy.

The conflict between these two opposite goals is resolved toward the goal
with the higher value, which in turn will activate the appropriate action. So,
the goal values are a measure of the altruistic motivation of each smart agent.

In our case five plausible cases are derived. In Table 1, the outputs of this
motivational interplay as agents actions are given, together with suggested
named for the five strategies; action are characterised by the amount of au-
tonomy sufficient to activate donation, in hours.

We then endowed agents with rules for modifying the values of their goals,
consequently changing their strategy while interacting with each others. For
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Table 1. Behaviour associated to each strategy. The goal dynamic (applied to the
Normative Goal, NG) leads agents to pass from one strategy to another, either more
or less altruistic.

STRATEGY NG ACTIONS

Cheaters < −2 Always deny help

Prudents −1 If you have 48 h of autonomy
donate at a cost for you of 6 h.
Otherwise deny help.

Fair 0 If you have 48 h of autonomy donate for 12 h.
If you have 24 h of autonomy donate for 6 h.
Otherwise deny help.

Generous 1 − 2 If you have 48 h of autonomy donate for 24 h.
If you have 24 h of autonomy donate for 12 h.
Otherwise deny help.

Martyrs > 3 Even with 18 h of autonomy left
donate at a cost for you of 6 h.

simplicity, we implemented only those affecting the altruistic goal (NG, keep-
ing constant the survival one). In particular two heuristics have been explored:

Action-Based Learning The value of altruistic goals goes up or down as
an effect of one’s and others’ actions. If one receives help, the force of the
altruistic motivation increases, whereas it decreases if one gives help. This
heuristic is apparently fair, but in fact is biased toward altruism. Every-
body’s altruistic motivations can intensify since everybody receives help.
But only altruistic agents can see their motivations decreasing, because
only such agents can give help. Therefore, we turned to more symmetric
rules.

Credit-Based Learning After a given time interval (the average time in
which at least one unsuccessful hunt can occur per agent, that is, about
two hundred days), own credits are investigated. If help has been received
within that period, the goal goes up; in the opposite case, it goes down.
These heuristics should be regarded as complementary effects of an in-
built norm of reciprocity [16]. In the present study we will take these
heuristics for granted, postponing to follow-up simulations the important
evolutionary question as to the minimal mental requirements for agents
to form these rules.

Noticeably, here, autonomy is other than weak rationality. Unlike ratio-
nal ones, goal-directed agents do not necessarily care about costs (see [17]).
Whereas a prudent algorithm act as if agents take their utility into account
(performing an altruistic action at the minimum cost), the goal-directed is
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not. However, both are autonomous, in the sense that both are endowed with
internal criteria for decision-making.

4.3 Findings

Simulations have been initialized either by setting agents’ goals to equal val-
ues (one strategy at the onset), or to all values (all strategies at the onset),
or finally to extreme values, cheaters and altruists (either martyr or fair or
prudent). Results show that different strategies — corresponding to different
patterns of relationships among agents’ goals (see Fig. 7, 8) — emerge and
their difference increases over time.
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Fig. 7. Strategy differentiation with action-based learning (cheaters C, prudent P,
fair F, generous G, martyrs M ). Averages of population divided by strategy. From
left to right, initial populations of all Prudents, all Fair, all Martyrs.

What is more interesting is that the dominant strategy appears to be
the most altruistic. Whatever the initial strategy, agents learn to be more
altruistic than anything else, and the population prospers.

The results of the different models explored are shown to be non-trivial.
Indeed, prudent agents perform equally when they are modeled either as rigid
and as dynamic systems: compare the results for 20% cheaters, given in Table
2, with the results obtained above; prudent rigid agents have a success rate of
0,67 without credit network and of 0,655 with credit network. The opposite
is true for unconditioned altruists. However, in general, the more altruistic
strategies are always dominant and lead the population to an exponential
growth, which is controlled in our simulations by means of a carrying capacity
set to 200.
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Fig. 8. Strategy differentiation with credit-based learning (cheaters C, prudent P,
fair F, generous G, martyrs M ). Averages of population divided by strategy, initial
populations of all Martyrs.

As expected, the comparison between the two heuristics for learning shows
that credit-based learning is more symmetric than the other, which is instead
slightly biased in favour of altruism. As a consequence, it is no surprise that
altruistic strategies are less dominant with this than with the other rule. Still,
in both cases, the majority of agents learn to exhibit an unconditioned form
of altruism.

Obviously, the more altruistic the dominant strategy, the more the pop-
ulation grows, which confirms the well-known law that altruistic populations
do better than non-altruistic ones. The question addressed in this paper is
whether unconditioned altruism can be learned and whether it can be learned
by autonomous intelligent agents. Our findings seem to provide a tentatively
positive answer to this question.

In short, altruism emerges and spreads in populations of dynamic goal-
based systems, at least in populations with a relatively small number of agents
where everybody can change either for better and for worse. Under these
conditions, agents learn to be altruist more than the other way around.

Table 2. Success rate per heuristic and initial population (20% cheaters). Initial
populations of Prudents (P), All five strategies in equal proportion (A), and Martyrs
(M).

HEURISTIC P A M

Action-based 0,03 0,36 0,98

Credit-based 0,312 0,0 0,14
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5 Final Discussion

In this paper, we have been trying to show two types of MML processes: what
we have called simple loop and complex loop.

In the former, from a large number of small social structures (roosts), those
with a strong numeric prevalence of altruists are likely to get reproduced and
to consist of altruistic offspring. Roosts in turn protect their members, provid-
ing the social barriers that prevent non-altruists from invading the roosts and
leading inhabitants to an early extinction. The simple loop was then found
to be good enough for the evolution of altruism in a species demographically
and socially stable.

Under different demographic and social conditions, instead, a more com-
plex loop seems to be needed. In it, the function played by the social structures
in the simple loop (protect altruists) is now accomplished by an enforcing arte-
fact, namely a norm of reciprocity. This is supposed to mediate the process
and allow the altruists to put up with and neutralise the non-altruists. The
question is whether the agent typology involved in the simple loop is still
sufficient or other properties and a more complex architecture of the agent
must be implemented in order for altruists to observe the norm without being
exploited by cheaters up to extinction. Our simulation findings seem to show
that a dynamic form of intelligence, i.e. the capacity to learn from the con-
sequences of others’ actions on oneself, is needed for a complex loop of this
sort to be realised. With dynamic intelligent agents, diversified and robust
forms of altruism emerge, which can put up even with a majority of cheaters.
It may be of some interest to observe that the most extreme altruistic forms
tend to get reinforced more than the milder ones, as they appear to be more
contagious than the latter.

There is a couple of questions that this paper did not address, and which
should be investigated in future works. First, how does a norm of reciprocity
come out? If we do not consider it only as a mental module, but also as a social
prescription, how did it emerge? To be noticed, this question should not be
confused with the question addressed (and to a large extent, answered) by the
theorists of conventions à la Lewis, according to which norms are behavioural
conformities. On the contrary, we ask how a social prescription, not a social
regularity, comes out. So far, to our knowledge, nobody did answer such a
question.

The second, and related, question concerns the dynamics of agents’ goals.
In this paper, we have been investigating the effects of a quantitative dynam-
ics: agents’ goals change value as a function of a number of contingent beliefs.
However, we did not show how and why agents acquire goals anew, what is a
crucial step in the study of normative compliance: where comes from the goal
to observe the norms of reciprocity?

We will address both questions in our future work.
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Summary. The paper argues that in many (if not most) cases, explicitly represent-
ing aspects of both physical and social space will be necessary in order to capture the
outcomes of observed social processes (including those of spatial distribution). The
connection between social and physical spaces for an actor will, almost inevitably
involve some aspect of cognition. Thus, unless there is evidence to the contrary it is
unsafe to try and represent such social distribution without representing key aspects
of cognition linking social and spatial topologies. This argument is demonstrated
by two counter-examples: an abstract simulation extending Schelling’s cellular au-
tomata model of racial segregation to include the social communication of fear; and
a more descriptive simulation of social influence and domestic water consumption.
Both models are sufficiently credible that one could not rule similar processes as
occurring in reality, but in both the social and physical spaces that the agents are
embedded in is critical to the global outcomes.

1 Introduction

Even social entities such as: humans, animals, households, firms etc. exist in
physical space. The way these entities are distributed in that space is fre-
quently important to us. Some of this distribution can be clearly attributed
to economic and environmental factors that are essentially independent of the
social interaction between these entities. However it is overwhelmingly likely
that some of the distribution is due to the interaction between these entities1

– i.e. the spatial organisation of the collection of such entities is (at least
partially) self-organised via processes of social interaction.

It is difficult to study such self-organisation using purely statistical tech-
niques. Statistical techniques are more suited to dealing with aggregate ten-
dencies where the deviation from these tendencies in particular cases can be
considered as essentially random. Thus not only can the detail of the spatial

1 That is, the desired aspects of their spatial distribution can not be modelled
without interaction between the entities that are distributed.



196 Bruce Edmonds

organisation be lost in the process of aggregation but in many social cases
the deviations are not random. Furthermore statistical models, in practice,
require fairly drastic assumptions in order to make them amenable to such
techniques.

Mathematical models (e.g. those expressed as differential or difference
equations) have the potential to capture the self-organisation, but only by
disaggregating the model into many separate sets of equations for each en-
tity (or place). This, except in a few special cases where strong assumptions
hold, makes any analytic solution impossible. Thus if one tries to apply such
techniques to study self-organised distribution one usually ends up by numer-
ically simulating the results, rather than exploiting the analytic nature of the
formalism.

It is for these reasons that the study of such self-organisational processes
has been advanced primarily through the use of individual-based computa-
tional simulations. These are simulations where there are a number of indi-
vidual entities in the simulation which are named and tracked in the process
of the computation. It is now well established that considerable complexity
and self-organisation can result in such models even where the properties and
behaviour of the individuals in the models are fairly simple. Many of these
models situate their component individuals within physical space, so that one
can literally see the resulting spatial patterns that result from their interaction
[1].

Some of these individual-based models seek to capture aspects of com-
municative interaction between actors. That is, the interaction between the
modelled entities goes beyond simple cause and effect via their environment
(as in market mechanisms, or the extraction of common resources) but tries
to include the content or effects of meaningful communication between the ac-
tors. Another way of saying this is that the actors are socially embedded [9, 5].
That is to say that the particular network of social relations is important to
the behaviour of the individual – or, to put it another way, a model which “as-
sumes away” these relations will distort important aspects of the phenomena.
Examples of this might include the spread of new land uses among a commu-
nity of farmers or a request for households to use less water. In such models it
is often the case that influence or communication occurs between individuals
who are spatial neighbours – that is to say that physical space is used as a
’proxy’ for social space. In such models communication or influence between
individuals is either limited to local neighbourhoods or is totally global.

However, in the modern world humans have developed many media and de-
vices that, in effect, allow communication at a distance2. For example, farmer
may drive many miles to their favourite pub to swap farming tips rather than
converse with their immediate neighbours. Thus the network represented by

2 Of course, when one looks at the detail of their operation they always involve
some action, for example in the propagation of electromagnetic waves, but given
the limited granularity of social models these are effectively non-local.
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the communication patterns of the actors may be distinct from the spatial
pattern. Recently there have been some models which seek to explore the ef-
fects of other communicative topologies. There has been particular focus on
“small world” topologies, on the grounds that such topologies have proper-
ties that are found among the communicative webs of humans, in particular
the structure of hyperlinks on the Internet. However such models are (so far)
divorced from any reference to physical space, and focus on the organisation
and interactions that can occur purely within the communicative web.

There have been very few models which explicitly include actions and
effects within a physical space as well as communication and action within a
social space. This paper argues that such models will be necessary if we are
to understand how and why human entities organise themselves in physical
space. A consequence of such an approach will involve a move away from
relatively simple individual-based simulations towards more complex agent-
based simulations due to the necessary encapsulation of the agents who act in
space and communicate with peers. Thus some sort of cognitive agency will be
necessary to connect the communication with the action of the individuals -
communication only makes sense when put in the context of the actions of the
individuals concerned as well as the actions of others that impinge on them and
sensible action can only result when communications have been internalised.
This parallels Carley’s call for social network models to be agentified [2].

Thus this paper argues that such cognitive agency will be unavoidable
in adequate models of the spatial distribution of human-related actors and,
further, that the spaces within which action and communication occur will
have to be, at least somewhat, distinct. Thus the burden of proof is upon
those modellers who omit such aspects – that the “short-cut” of abstracting
away the cognition of individuals in models will not substantially bias the
results away from that which is observed.

In other words this paper is explicitly questioning the extent to which
models which fail to take into account these social facts will be successful
at capturing self-organised social phenomena. I am suggesting that abstract
“physics-type” models will not further our understanding of such phenomena
and in particular the spatial distribution of many such phenomena.

To establish the potential importance of the interplay between social and
physical spaces, and to illustrate the approach I am suggesting, I exhibit a cou-
ple of agent-based simulations which involve both physical and social spaces.
The first of these is a more abstract model whose purpose is simply to show
how the topology of the social space can have a direct influence upon spa-
tial self-organisation, and the second is a more descriptive model which aims
to show how a suitable agent-based model may inform observation of social
phenomena by suggesting questions and issues that need to be investigated.

These models are counter-examples - it is sufficient for my point that they
show that it is credible that similar processes are occuring in the phenomena
we seek to model and, hence, that one can not rule out the necessity of rep-
resenting both physical and social networks as well as the cognitive processes
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which link these without good reason. This throws the burdon of proof back
to those who abstract some of these away without knowing whether it is safe
to do so. This is part of a more fundermental disagreement about the nature
of modelling social phenomena and how would should approach this.

2 Example 1 – The Schelling Model of Racial
Segregation Extended with a Friendship Network and
Fear

2.1 The Schelling Model of Racial Segregation

To illustrate the interplay of social and physical spaces, I go back to Schelling’s
pioneering model of racial segregation [12]. This was a simple model composed
of black and white counters on a 2D grid. These counters are randomly dis-
tributed on the board to start with (there must be some empty squares left).
There is a single important parameter, c, which is the ratio of counters of
its own colour among the counters in its immediate neighbourhood (see the
first diagram in 1 below) below which the counter will seek to move. Each
generation of this game, each counter is considered and if the ratio of same
coloured counters in its neighbourhood is less than c then it randomly selects
an empty square next to it (if there is one) and moves there.
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Fig. 1. Neighbourhoods of distances 1, 2 and 3 respectively in the 2D Schelling
model

The point of the model was that self-organised segregation of colours re-
sulted for surprisingly low levels of c, due to the movement around the ’edges’
of segregated clumps. The interpretation is that, even if people are satisfied
with their location if only 40% of their neighbours are the same colour as
them, then racial segregation can still result – it does not take high levels of
intolerance to cause such segregation. Figure 2 shows three stages of a typical
run of this model for c = 0.5 and a neighbourhood of distance 1.
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Fig. 2. A typical run of the Schelling model at iterations: 0, 4, and 40 (c =0.5)

Figure 3 is a graph of the typical outcomes of this model in terms of the
critical parameter, c, and the final average of the proportion of each counter’s
neighbours who are of the same colour – this is an indication of the extent of
the segregation that occurs. One can see that segregation gradually increases
from low levels of c until at c = 0.35 a significant level of self-organised seg-
regation is the result. The maximum is somewhere between c = 0.6 and c =
0.65. Above this level the segregation drops sharply off. This is due to the
impossibility of all counters finding positions with 75% like counters and so
counters at the edges of segregated clumps are continually randomly relocat-
ing destroying any clumping. As discussed in [7] this is not a fault of the model
since its purpose was to show, as simply as possible, how segregation could
occur at low levels of intolerance.
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Fig. 3. The variation of resulting segregation with levels of intolerance (distance-1
neighbourhoods)

It is interesting to note that, even in Schelling’s model the social topology
(in this case the neighbours each counter considers in the decision to move
or not) can have an effect. Figure 4 shows the corresponding graph to Fig.
3 for runs of the Schelling model with a neighbourhood of distance 3. Since
each counter has many more neighbours (in the later case 56 of them) it is
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more likely that one is satisfied with a random mix at the beginning for low
values of c. In other words, it is much less likely that a counter will find itself
attached to a monolithic clump of the other colour at the beginning and so
will not ever move. This “flattening” of segregation for low levels of c (i.e.
c < 0.35) depends upon the random initialisation of the model. If one started
from an already segregated pattern then increasing the size of neighbourhoods
would have a less significant effect.

Fig. 4. The variation of resulting segregation with levels of intolerance (distance-3
neighbourhoods)

2.2 The Extended Model

I have extended the basic Schelling model by adding an explicit “social struc-
ture” . The purpose of this extended model is simply to demonstrate that
social networks can interact with the physical space in ways that significantly
affect the outcomes, in particular the spatial distribution that results. This is
done in a model whose processes might credibly mirror observed social pro-
cesses. The model is fairly simple – its structure is not justified by detailed
psychological or social studies but rather it is only a demonstrator of processes
that could not be ruled out as occurring in observed phenomena. It is thus
a counter-example – it demonstrates that if, in this example, one abstracted
away the social network one would have come up with significantly wrong
outcomes. Hence that such abstraction is dangerous, unless there are good
reasons to believe otherwise.

In this extended model the social structure is in the form of a friendship
network. This is a directed graph between all counters to indicate who they
consider are their friends. The topology of this network is randomly deter-
mined at the start according to three parameters: the number of friends, the
local bias and the racial bias. The number of friends is how many friends each
counter is allocated. The local bias controls how many of a counter’s friends
come from the local neighbourhood – a value of 1 means all its friends come
from its initial neighbourhood, and a value of 0 means that all counters are
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equally likely to be a friend wherever they are. The racial bias controls the
extent to which a counter’s friends have its own colour – a value of 1 means
that all its friends have the same colour as itself and a value of 0 that it is
unbiased with respect to colour and friendship. In this model this friendship
structure is then fixed for the duration of the run. This network has several
functions: firstly, influence only occurs from a counter to a friend, secondly, if
it has sufficient friends in its neighbourhood a counter is unlikely to seek to
move and, thirdly, (depending on the movement strategy set for the run) if a
counter has decided to move it may seek to move nearer to its friends (even
if this move is not local).

The motivation for moving is different from the original model as well.
Instead of being driven by intolerance, the idea is that it is driven by fear.
Each counter has a fear level. This is increased by incidents (which occur at
completely at random) happening in their location and by fear being trans-
mitted from friend to friend. There are two critical levels of fear: when the
fear reaches the first level the counter (randomly with a probability each time)
transmits a percentage of its fear to a friend, this transmitted fear is added to
the friends fear. Thus fear is not conserved but naturally increases and feeds
on itself. When fear reaches the second critical level the counter seeks to move
to be closer to friends (or away from non-friends). It only moves if there is
a location with more friends than its present location. When it does so its
fear decreases. Fear also naturally decays each iteration to represent a sort
of memory effect. This is not a very realistic modelling of fear, since fear is
usually fear of something, but can be cumulative and is communicable. The
incidents that cause fear occur completely randomly over all locations with a
low probability. The other reason for moving is simply that a counter has no
friends in its neighbourhood.

Thus in this model the influence of counter colour upon counter movement
is indirect: counter colour influences the social structure (depending on the
local and racial biases) and the social structure influences relocation. Thus I
separate its position in space and the social driving force behind relocation.

The dynamics of this model are roughly as follows. There is some move-
ment at the beginning as counters seek locations with some friends but initially
levels of fear are zero. Slowly fear builds up as incidents occur (depending on
the rate of forgetting compared to the rate of incidence occurrence). Fear sud-
denly increases in small “avalanches” as it reaches the first critical level in
many counters – this is because fear is suddenly transmitted over the social
network causing others to pass the critical level etc. When fear reaches the
second critical level then counters start moving towards where its friends are
concentrated (or away from non-friends depending on the move strategy that
is globally set). This process continues and eventually settles down as coun-
ters only move if they can go to where there are more friends than its current
location.

Table 1 shows some of the key parameters of the simulation for the range
that I will talk about. I have chosen this range of values, because it is relevant
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to my point and seems to be the critical region of change in this model. The
three parameters I will vary are those that affect the topology of the social
network: the number of friends each counter has; the bias towards (initially)
local friends; and the racial bias. Each of these parameters are tried with each
of 5 values, giving 125 runs in total. In each of the graphs below each line
represents the average value over 25 different runs.

Table 1. Parameter settings

Parameter Range of Values

Number of Cells Up 20
Number of Cells Across 20
Number of Black Counters 150
Number of White Counters 150
Neighbourhood Distance 2
Local Bias 0.45-0.55
Racial Bias 0.75-1.0
Num Friends 2-10

The Effect of Network Connectedness

The greatest effect results from the number of friends each counter has, i.e.
the connectedness of the social network.
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Fig. 5. The average fear level for runs with different numbers of friends

Figure 5 shows the average fear levels for runs with different number of
friends (25 runs each). The fear levels increase exponentially due to the fact
that counters (probabilistically) communicate a proportion of their fear – an
interpretation of this could be that if they are more fearful they communicate
more fear. The amount of fear increases with the number of friends each
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counter is allocated up to the value of 8 but this decreases for the runs with 10
friends. There seems to be two different competing effects: the more connected
the social network the more fear is communicated and multiplied but also a
high number of friends allows counters more opportunities to move and hence
to dissipate a chunk of their fear.

Figure 6 shows the average number of communications and Fig. 7 the
average number of movements. It is clear that the more friends one has the
more chances there are of moving to a location with a higher number of friends
(who themselves might well move etc.) so that the simulation takes a lot longer
to “settle down” to a situation where no one can move somewhere better. It
is notable that in Fig. 6 the number of communications is initially greatest
for the runs with 10 friends but then drops down below those runs with 6 or
8 friends.
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Fig. 6. The average of the number of communications for runs with different num-
bers of friends
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Fig. 7. The average number of movements for runs with different numbers of friends

The greater possibility of movement for those runs with more friends means
that the counters “sort themselves out” more so that friends are closer – this
is shown in Fig. 8.
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Fig. 8. The average of the average number of nearby friends for runs with different
numbers of friends

Since in all these runs the racial biases run from 0.75 (each counter has 25%
of other coloured friends than would the case if they were selected randomly)
to 1 (no friends of the other colour), an outcome where friends are clustered
means that counters of like colours will also be clustered, but to a much lesser
extent. This set of outcomes is illustrated by Fig. 9.
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Fig. 9. Average of the average proportion of nearby like coloured counters for runs
with different numbers of friends

The Effect of Local Clustering

The local bias has the next most significant effect. Figure 10 shows the average
of the average fear levels for different levels of local bias. What appears to be
happening is that in the short run having a bias towards (initially) local friends
means that the communication of fear is locally amplified and so increases
locally, but in the long run self-reinforcement over a substantial part of the
network will overtake this.

In this case the average number of movements and the average number of
nearby friends is not much effected by the local bias, but the average propor-
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Fig. 10. The average fear levels for runs with different local biases
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Fig. 11. Average number of communications for runs with different local biases

tion of nearby counters of like colour is a bit higher for a local bias of 0.55
(Fig.12).
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Fig. 12. The average of the average proportion of nearby counters of like colour for
runs with different local biases

The Effect of Racial Bias (Disconnectedness of Sub-Networks)

The racial bias has the least dramatic effect in terms of outcomes.
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Fig. 13. The average levels of average fear for runs with different racial biases

Figure 13 shows the average fear levels for runs with different racial bi-
ases, the greatest fear level resulting from the runs with just under a complete
racial bias. The communication rates show that initially there are more com-
munications in the runs with least racial bias but after a time the position
reverses with a higher racial bias resulting in more communication.
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Fig. 14. Average number of communications for runs with different racial biases
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Fig. 15. The average number of nearby friends for runs with different racial biases
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Figure 15 shows that the higher the racial bias the greater the average of
nearby friends’ results. Figure 16 shows that with a racial bias of 1 a much
greater colour segregation results compared to even a slightly reduced racial
bias.
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Fig. 16. The average proportion of nearby same coloured counters for runs with
different racial biases

These results clearly show how the structure of the social network relative
can substantially effect the results both in quantitative terms as well as the
kinds of dynamics that unfold in this model. Given that it is credible that
a similar process could occur in corresponding social phenomena, one can
conclude that, in such cases, abstracting away the social network would be
unsafe.

3 Example 2 – Social Influence and Domestic Water
Demand

The second example has a more descriptive flavour. It seeks to see how the
quality of variation in domestic water demand in localities may be explained
by mutual influence. It was developed as part of the FIRMA3 and CC:DEW4

projects for a more detailed description see [4]. The initial model was written
by Scott Moss and then developed by Olivier Barthelemy. A fuller description
of this model can be found in [8], but this does not include the comparison
described below. Its role in this paper is to show that the structure of the
social network is important to the results in a more detailed and descriptive
model, one which has a closer relation with observation than the version of
the Schelling model described above. It illustrates how the particular network
structure is important as part of the model.

3 http://firma.cfpm.org
4 http://www.sei.se/oxford/ccdew
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The core of this model is a set of agents, each representing a household,
which are randomly situated on a 2D grid. Each of these households is allo-
cated a set of water-using devices (such as toilets, washing machines etc.)in
a similar distribution to those in the mid-Thames region of the UK. At the
beginning of each month each household sets the frequency the appliance is
used (and in some cases the volume at each use, depending on the appliance).
Households are influenced as to their usage of appliances by several sources:
their neighbours and particularly the neighbour most similar to themselves
(for publicly observable appliances); the policy agent (either the local wa-
ter company or a government representative); what they themselves did in
the past; and occasionally the new kinds appliances that are available (in
this case power showers, or water-saving washing machines). The individual
household’s demands are summed to give the aggregate demand. Each month
the ground water saturation is calculated based on weather data (which is ei-
ther historical data or artificial data), if this is less than a critical amount for
more than one consecutive month, this triggers the policy agent to suggest a
lower usage of water. If a period of drought continues it progressively suggests
using less and less water. The households are biased as to the extent that they
attend to the influence of neighbours or the policy agent – the proportion of
these biases are set by the simulator. The structure of the model is illustrated
in Fig. 17.

Fig. 17. The structure of the water demand model

The neighbours in this model are those in the n spaces in the squares
orthogonally adjacent to a household. The default value of this distance, n, was
4. The purpose of this neighbourhood shape was to produce a more complex
set of neighbour relations than would be produced using a simple distance-
related one as in the Schelling model (Fig. 1), but still retain the importance
of the influence of neighbours.

To give an idea of the social topology that results from this neighbourhood
I have shown the “most similar” neighbour influence pattern at a point in a
typical run of the model in Fig. 19. Due to the fact that every neighbour has
a unique neighbour who is most influential to it, the topology of this social
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Fig. 18. The neighbourhood pattern for the households

network consists of a few pairs of mutually most influential neighbours and
a tree of influence spreading out from these. The extent of the influence that
is transmitted over any particular path of this network will depend upon the
extent each node in the path is biased towards being influenced by neighbours.

Fig. 19. The most influential neighbour relation at a point in time during a typical
run of the water demand model

Households are also (to a lesser extent) influenced by all its neighbours
in its neighbourhood (the one shown in Fig. 18 above). Figure 20 illustrates
all the effective neighbour relations between the households for the same in-
stance. Note that the edges of this are not wrapped around into a torus in the
examples described, so the households at the edges and corners have fewer
neighbours than those in the middle. The reason for the chosen neighbour-
hood pattern is that the resulting patterns (as in Fig. 19 above and Fig. 1
above) seem to us a reasonable mix of locality and complexity. We have no
good empirical basis for this, it just seems intuitively right to us and we could
not find any evidence as to what the structure might be. I return to this issue
in the discussion below.
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Fig. 20. The totality of neighbour relations in the same case as Fig. 19 (each node
connects to those 4 up, down, left and right along the indicated lines)

In each run the households are distributed and initialised randomly, whilst
the overall distribution of the ownership and usages of appliances by the house-
holds and the biases of the households is approximately the same. In each run
the same weather data is used, so droughts will occur at the same time and
hence the policy agent will issue the same advice. Also in each run the new
innovations (e.g. power showers) are introduced at the same date. Figure 21
shows the aggregate water demand for 10 runs of the model with the same
settings (normalised so that 1973 is scaled to 100 for ease of comparison).

To illustrate the difference between the outcomes when the social network
is active and when it is disrupted, I ran the simulation again with the same
settings, social structures etc. except that whenever a household looks to other
households, instead of perceiving that household’s (public) patterns of water
use, the patterns of a randomly selected household is substituted. Thus the
neighbour-to-neighbour influence is randomly re-routed each time it occurs
in the second case. This is designed to be the minimal possible disruption
of the social network, for it does not effect the number of neighbours of each
household, their cognition, or the external factors – these all remain the same.
Figure 22 shows 12 runs of this version of the model, this can be compared to
Fig. 21 where influence transmission is normal.

The qualitative difference between the two runs is reasonably clear. In
the first set (Fig. 21) there is an almost uniform reaction to droughts (i.e.
the advice of the policy maker), with almost all runs showing a reduction
in water demand during these periods, whilst in the second (Fig. 22) the
reaction to such periods is not a general reduction in demand but rather a
period of increased volatility in demand. Secondly, the first set (Fig. 21) shows
a much greater stability than the second (Fig. 22), which exhibits short term
“oscillations” in demand.

What seems to be occurring is that, in the first experiment, small neigh-
bourhoods mutually influence each other so as to adopt a set of usage patterns,
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Fig. 21. The aggregate water demand for 10 runs of the model (55% Neighbour
biased, historical scenario, historical innovation dates, dashed lines indicate major
droughts, solid lines indicate introduction of new kinds of appliances)
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Fig. 22. The aggregate water demand for 12 runs of the model where the neighbour
relation is broken by randomisation

an this acts to dampen down any avalanches of influence that may otherwise
occur, because such neighbourhoods are more difficult to influence from sur-
rounding areas due to their internal self-reinforcement of usage patterns. In
the disrupted case households “flip” between different patterns as the incom-
ing perceived patterns vary, resulting in a lot of “noise” – this noise acts
to drown out the relatively “faint” suggestions of the policy agent. A “mean
field” style social influence model, where each household perceives the average
of its neighbour’s water use patterns would be even smoother and more con-
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sistent than the original model. Thus the social influence in the undisrupted
model can be seen as somewhere “between” that of the randomised and the
“mean-field” abstract models, a situation which allows for localised, mutu-
ally reinforcing patterns of behaviour to compete with and influence other
localised patterns of water use.

Elsewhere Barthelemy [2] showed that the output of this model was qual-
itatively and significantly effected by different changes to the topology of the
social network, including a change in the density of agent, whether the space
has edges or not (i.e. whether the grid is toroidally wrapped around to itself
or not); and the size of the agent neighbourhoods.

In any case it is clear that the social network does have a significant effect
upon the resulting behaviour of the simulation, and that the structure of that
network is important in producing the results. In other work on this model it
is clear that changing the distribution of biases on the household (so that more
or less are biased towards being influenced by their neighbours or the policy
agent) also changes the qualitative nature of the aggregate water demand
patterns that result.

4 Discussion

One of the main reasons for making more descriptive simulation models is that
they suggest what to look for in the target phenomena – they inform good
observation. Here a natural question that arises as a result of investigations
into this model is what are the external influences upon households are – do
they look to their immediate neighbours for cues to what is socially acceptable
or does such influence spread mainly through local institutions such as the
school, the pub or the place of work? However, as far as I can tell, not much is
known about this. This points to an obvious “gap” in the field research – social
networks do look at the structure of who talks to who, but does not relate this
(as far as I can tell) to physical location – geographers do look at where people
are located in space but do not generally investigate any social structure that
is not based upon physical locality. There are some simple studies which start
to touch upon this relation, (e.g.[13, 15]), but these only start to touch upon
a single aspect of the relation of social and physical space corresponding to
the local bias parameter in the modified Schelling Model above.

Social network theory is a long established field that studies the properties
of social networks from both theoretical (e.g. [14]) and empirical approaches.
However it tends to focus overmuch on the network as its abstraction of choice,
largely leaving out the cognition of the agent [2]. Thus social network theory
complements that of cellular automata which is an abstraction of physical
action (e.g. [11]). Combining the two would lead to a richer and more complete
model of many situations, however the interaction of physical and social space
occurs primarily through the cognition of the agent. Thus to combine these
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two spaces one needs a modelling tool that also allows the representation of
this cognition, i.e. an agent-based model.

5 Conclusion

If we are to take the physical and social embeddedness of actors seriously we
need to model their interactions in both of these “dimensions” – assuming
these away to very abstract models will lead to different, and possibly very
misleading, results. Agent-based simulation seems to be the only tool presently
available that can adequately model and explore the consequences of the inter-
action of social and physical space. It provides the “cognitive glue” inside the
agents that connects physical and social spaces. Statistical and mathematical
tools are not well suited to this task which is perhaps why, up to now, models
have been very abstract in nature. However, this situation has now changed -
we now have an appropriate modelling tool, namely agent-based simulation.
Thus, for the first time, it is no longer necessary to “simplify away” all of the
real contingencies of social interaction but start to capture these in descriptive
social simulations. Such models will then allow a more informed determina-
tion of when and how abstraction can safely be done – until then, we may
find all sorts of interesting properties of networks and structures, but we will
have no evidence as to whether they are relevant other than their intuitive
appeal. It is not a question of agent-based simulation being “second best” to
analytic models, for such complex phenomena it is the more appropriate, the
better, tool.

Thus I am saying more than just that either: that there are aspects that
are not covered in simpler models; or that an approach that starting with
a model that is descriptively adequate to the available evidence is likely to
be more productive than one that tries to start simply, i.e. a KIDS rather
than a KISS approach as I advocate elsewhere [6]; but that models such as
those above provide evidence that assuming- away the structure of the social
network (that is separate from the physical topology) is unsafe. Thus the
burden of proof is upon those that make this kind of simplifying assumption
to show that such assumptions are, in fact, justified. So far I have not seen
any such evidence, and so one must conclude that any such work is likely to
be inadequate to capture the essence of many occurring socially self-organised
processes.
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Summary. To build an agent-based computational model of a specific socio-
environmental system requires that answers be found to several important questions
including: what social actors and contextual entities are to be modelled as software
agents? With what mental functions must these software agents be equipped? What
standard design or designs should be used to create the software agents? This pa-
per concentrates upon the last of these questions. The currently available range
of agent designs is considered, along with their limitations and inter-relationships.
How best to choose a design to meet the requirements of a particular modelling
task is discussed and illustrated by reference to the task of designing an informative
agent-based model of a segmented, polycentric and integrated network (“SPIN”) or-
ganisation of the type analysed by Gerlach in the context of environmental activism.

1 Introduction

This paper is about how best to design, not merely to implement, an agent-
based model on a computer of a real-world socio-environmental scenario. Al-
though much has been written on this topic in recent years (e.g. [4], [5], [13,
Chap.8], [1], ,[15], [16] ), the various questions that arise have not been fully
answered. Indeed, I fear that much agent-based model design continues to be
arbitrary and ill conceived. Thus although some of what is to be said may
seem commonplace, it is important to revisit the issues.

The start point is that given a real-world scenario (for example, a busy
supermarket), and some questions about it to which we seek answers (for
example, how best to reduce average evacuation time in case of fire), we must
design a model capable of providing those answers:

SCENARIO + QUESTIONS → MODEL DESIGN

Major decisions to be made on the way to a suitable model design are: (a)
whether to use a specific or a non-specific model, (b) the level of abstraction
of the model, (c) the cognitive content of the agents, and (d) the choice of
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agent architectures. Notice that all of these decisions must be made whether
explicitly or not and whether arbitrarily or in a considered and informed way.

2 Specific and Generic Models

A model may refer to a specific situation, for example a particular super-
market at a particular location. Or it may refer to the essential features of
a type of situation, for example the essential features of any supermarket at
any location. This distinction is an important one. Specific models require
much detailed observation to justify their particular and detailed structure
and potentially yield specific insights and predictions. By contrast, generic
models require less detailed observation and more preliminary interpretation
and recognition of just what are the essentials of a type of situation. They
potentially yield general insights. Specific models are naturally used to predict
the likely outcomes of specific actions (including no action). Generic models
are used to discover the properties that a real-world scenario has as a result
of its structure and dynamics. A current and persuasive example of the use
of generic models to explore social phenomena is the work of Hemelrijk and
colleagues [14] who are investigating how certain types of animal social be-
haviour, especially those found in some ape communities, may emerge from
relatively simple elements of behaviour. Their work is important not merely
because it illustrates a certain type of agent-based modelling, but because it
could significantly change our understanding of how the social behaviour in
question arises.

3 Which Agents?

To set up an agent-based model, whether specific or generic, one must decide
what are to be the agents within it. These will probably correspond in some
fashion to actors in the real world. Indeed it is natural to envisage a two-
staged process. First to decide what actors are to be “recognised” in the real
world scenario in question, and then to decide how the actors recognised are
to be mapped into agents within the model. It is clear that the decisions made
must depend both on the reality of the scenario and on the objectives of the
modelling study.

The problem of recognising actors in the world is far from trivial once cul-
tural pre-conceptions are discarded1. For example, how many actors are there
in a University? Is the Department of Mathematics an actor? Are overseas
students collectively an actor? Is the pleasant cedar just outside the Vice-
Chancellor’s window that from time to time calms down the VC, an actor?

1 See the analysis and discussion in [6], [7] with associated computational experi-
ments and results.
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Are the fly on the windowpane and the expert system on the VC’s personal
computer actors?

Given that a set of actors has somehow been systematically recognised in
or “read into” the real-world scenario, according to current cultural norms
or otherwise, the next question is how this set of actors is to be transformed
into a set of agents within the model. A one-to-one mapping from actors to
agents is likely to seem unnecessary or even impossible. Some notion is needed
of what actors are relevant to the objectives of the modelling study and this
involves the model as a whole.

4 What Level of Model Abstraction/Aggregation?

Deciding what are to be the agents in a model is closely connected with
deciding the level of abstraction or aggregation of the model, that is, just
how much detail is to be included. The following principles seem applicable
to deciding the level of abstraction/aggregation:

Principle: The model must be sufficiently detailed that it can address the
questions to be answered. For example, if the question posed concerns how
many members of a group will support its leader in a certain eventuality,
modeling the group solely as a single collective agent is inappropriate. How-
ever, too much detail is both unnecessary and likely to be computationally
overwhelming. Hence:

Principle: The model should be as abstract/aggregated as possible subject
to the requirement:

Each of a completeset of inter-variable relationships and processes in the
model must

Either be reliably set from empirical observation (even if the relationship
or process is non-linear)

Or be feasibly subjected to experimental variation (and in due course be
so examined)

Or demonstrably have no significant impact (in which case it can probably
be discarded).

Principle: Assumptions based on pre-conceptions are to be avoided.
It should be clear that meeting these requirements is rarely easy, wherein

lies much of the difficulty in agent-based modelling. Perhaps the central issue
is just what potential properties of the model can reliably and completely
be observed in the real-world scenario. This is a practical matter. Note that
generic models are somewhat less dependent on reliable observation than are
specific models.
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5 What Agent Cognition and what Agent Architecture?

The choice of cognition and structure to be designed into the agents in the
model is an aspect of the foregoing considerations. We have to decide what
cognitively oriented computations the agents are to perform in the model.
This is so whether all agents perform the same computations or different
agents perform different computations. Furthermore, we must decide what in-
formation (knowledge, belief) each agent is initially to possess. Again different
agents may well possess different initial information.

It must further be decided what actual agent architectures are to be used.
In this context an agent architecture is a structural and process design for
the agent. The major differences between agent types lie in their architectural
concepts rather than in implementation software. There is a significant range
of recognised software agent architectures available for use in agent-based
models ([17], [18]). They include architectures based upon:

1. sets of variables with associated condition-action rules (incl. “fuzzy” rules)
2. artificial neural networks
3. behaviours and subsumption
4. predictive planner and internal model
5. logic systems e.g. BDI
6. hybrid and/or multi-layer

Architectures with associated condition-action rules (1) can be very sim-
ple - no more that a couple of variables and a handful of (possibly fuzzy)
rules - or can be highly complex and support advanced cognitive processes.
Artificial neural networks (2) take as their building blocks simple computa-
tional abstractions of real brain neurones usually arranged in layers. These
architectures are typically used to implement reactive agent behaviour with
some kind of associated learning. Architectures based upon behaviours with
subsumption relationships (3) between them were originally devised for robot
control, where effective low-level behaviours are essential. In their original
form they avoided the use of internal models or planning. Architectures that
do use internal models and predictive planning (4) tend to be more “symbolic”
in flavour and the more effective examples are based on the long tradition of
AI work concerned with automatic planning systems. Formal logic based ar-
chitectures (5), of which the best known is perhaps the BDI (“beliefs, desires
intentions”) architecture, are derived from structures and processes in frag-
ments of mathematical logic, but necessarily take a computational form in
practice sometimes akin to (1) and (4) above. Finally, hybrid multi-layer ar-
chitectures usually have a lower level that is reactive (an architecture of type
(1), say), then a higher layer which uses modelling and planning (type (4),
say) and often come with a further even higher layer with a more social func-
tion, perhaps involving communication and cooperative planning with other
similar agents in a shared collective environment.
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These architectures are not fully standardised. They vary not merely in
their effective content, but in the degree to which they are well defined and
available off the shelf. They can be mapped along at least three distinct di-
mensions: (a) by the type of their basic elements (e.g. rules, artificial neurones,
symbols), (b) by the range of “cognitive” functions that are provided, and (c)
by the definiteness with which they are specified. Most of these architectures
are “open” in the sense that with due programming effort any cognitive func-
tion can be provided within them to at least some degree. In particular, all of
these agent architectures can support adaptive agents.

Although their users often discuss particular types of architecture as if
they were quite distinct from (and superior to) alternatives, in fact these
architectures are not wholly independent. Furthermore there are some com-
monly encountered erroneous beliefs concerning them. For example, it is often
assumed that control architectures typically deployed in robot contexts are
quite different from and irrelevant to software modelling and vice versa; that
“rule-based” architectures cannot involve learning and are necessarily limited
in their human social significance because people are not “rule bound”; and
that there is a major difference between “symbolic” and “neural network”
architectures. In fact all of these beliefs are questionable if not downright
mistaken. They arise from a too superficial and conventional view of the ar-
chitectures in question. Further points that merit reiteration are that usually
anything can be programmed in any agent architecture or software system
(see next Sect.), and that “logic-based” software rarely gains any real power
or reliability from its association with mathematical logic.

6 Software Platforms

Software platforms designed to support agent-based modelling typically pro-
vide some specific support for agent design and implementation. Platforms
such as SWARM, CORMAS, SDML and RePast (see [12], [13, Chap.8]) make
it easier to design and implement models and agents of certain types but do
not necessarily guide the user to the right choices. Also, there are many soft-
ware multi-agent support platforms that, although not designed with social
modelling in mind, could easily be used for that purpose.

7 Choosing the Agent Architectures

Given previous choices of agents and of their required cognitive and informa-
tion storage capabilities, how can we best to choose an agent architecture to
meet the requirements of a particular modelling task? First we must consider
why we do not design an agent architecture (or architectures) suitable for
each particular model. The answer is that it is no easy matter to design and
implement such an architecture. To attempt to do so is likely either to result
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in a trivial architecture, or to set up a major and unnecessary design task. To
ignore architectures already to hand is surely a mistake unless they can be
demonstrated to be unsuitable.

It is sometimes argued that in a model which is to address social phe-
nomena, since the agents must behave socially, we should design specifically
social agent architectures, no doubt with a major emphasis on support for
inter-agent communication. This argument is often supported by an explicit
or implicit claim that the agent architectures listed earlier are not social. But
the fact is that, in software, any distinctive “social cognition” that an agent
may have will inevitably be built upon its non-social cognition, so that the
semi-standard architectures remain relevant.

To sum up, we should aim to choose from amongst the semi-standard archi-
tectures, possibly embedded in a multi-agent software platform, by reference
to the principles stated earlier. This is, of course, easier said than done!

8 An Example: Gerlach’s SPIN Organisations

By a SPIN, Gerlach [10] means a social movement that is a segmentary, poly-
centric and integrated network. He illustrates and discusses SPINs by reference
to the environmental movement in the USA over the last four decades [11],
and its component groups such as Friends of the Earth and the Earth Lib-
eration Front, and, by contrast, to the Wise Use movement that sought to
counter environmental activism.

Gerlach (loc cit, p. 289) focuses attention on the segmentary nature of
SPINs. They are “composed of many diverse groups, which grow and die,
divide and fuse, proliferate and contract”. They are also polycentric. They
have “multiple, often temporary, and sometimes competing leaders or cen-
ters of influences”. And finally they are networked, “forming a loose, reticu-
late, integrated network with multiple linkages through travelers, overlapping
membership, joint activities, common reading matter, and shared ideals and
opponents”.

Gerlach argues that SPINS are adaptive and offers seven reasons why this
is so (Gerlach, loc cit, pp. 302-6):

1. “... prevents effective suppression by the authorities and the opposition.”
2. “Factionalism and schism aid the penetration of the movement into a

variety of social niches.”
3. “Multiplicity of groups permits division of labor and adaptation to cir-

cumstances.”
4. “.... contributes to system reliability.”
5. “Competition between groups leads to escalation of effort.”
6. “facilitates trial-and-error learning through selective disavowal and emu-

lation.”
7. “....promotes striving, innovation, and entrepreneurial experimentation in

generating and implementing social change.”
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9 Using Agent-Based Modeling to Verify SPIN Adaptive
Functionality

To use agent-based modelling to test these claims for the adaptive function-
ality of SPINs it is inappropriate to model a specific instance of a SPIN
(see discussion earlier). Rather we should create a computational version of
a typical SPIN. This is made easier because Gerlach’s discussion, although
directed to the environmental movement and counter-movement in the USA,
is largely pitched in general terms. Therefore to proceed we must define SPIN
and traditional non-SPIN organisations, and then a range of strategies suit-
able to be used to attack them. Following Gerlach, we would then expect to
demonstrate experimentally that the SPIN organisations fare better in most
circumstances2.

But what does testing Gerlach’s claims for SPIN functionality require by
way of agent structure and process? Gerlach’s discussion implies that the
SPIN actors deploy a comprehensive range of high-level cognitive functions.
The issue is therefore whether we need to incorporate some or all of them
in the agents of a SPIN model. Consider, however, a network’s response to a
“hostile” process that successively deletes actors, network members, at ran-
dom - (see (1) above). It is difficult to see how the effect on the network of a
deletion of a single actor in the network can be reliably predicted other than
by empirical observation and subsequent generalisation. To try reliably to in-
corporate agent decision-making and cognitive processing within the model
so that the “right” network responses will emerge is to aim at a level of com-
plexity that is computationally and observationally overwhelming, ultimately
leading, one can predict, to model and agent structures that are essentially ar-
bitrary and unverifiable. This is so even if (implausibly) rationality is assumed
in the model as a way of achieving predictability.

The conclusion is therefore a somewhat negative one: it is that no signifi-
cant internal structure can safely be associated with the agents in the model.
We reach this conclusion for this particular application because the actors
in the real-world scenario (the members of the environmental movement) are
not performing systematically observable role driven actions, or systemat-
ically observable routine learning, that can be reliably replicated within a
software agent architecture. As discussed earlier, without reliable observation
at a particular level of abstraction and aggregation, a reliable model cannot
be grounded at that level.

10 SPINS and Terrorist Networks

Gerlach’s first reason why SPINS are adaptive is that their structure “prevents
effective suppression by the authorities and the opposition.” His discussion of
2 If our framework of consideration were more mathematical, we might reasonably

hope to prove this conjecture as a theorem.
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this point foreshadows ongoing work by Carley and her colleagues [2] that
uses agent-based modelling to address the effectiveness of strategies for dis-
rupting networks, in particular for destabilizing terrorist networks. Carley and
colleagues, unlike Gerlach, are concerned with fully covert organisations, but
this does not prevent there being close similarities in their work. Carley’s
investigation has already provided interesting and important preliminary re-
sults notably that different strategies are required to destabilize cellular and
distributed organisations from those that are effective on hierarchical organi-
sations. Furthermore, different destabilisation strategies impact differently on
different measures of the performance of the target organisation.

11 Conclusion

There exist a range of semi-standard software agent designs. But these are not
always well understood by those creating agent-based models, and are rarely
explicitly used by them. It is not clear how an agent architecture should be
chosen on a particular occasion. At best a few broad principles can be stated,
as we have done earlier. This lack of guidelines is surely important. Bonabeau’s
[1] recent comments that “ABM is a mindset more than a technology” (p.
7280) and that model building remains “an art more than a science” (p.7287)
confirm the difficulty of our situation.

Is it a limitation that we cannot create software agents to build into our
agent-based models that display human levels of intelligence and conscious-
ness3? It is tempting to answer “not at all”, on the grounds that models can
and should be much simpler than that which they model. Yet human soci-
ety is surely the emergent product of human intelligence and consciousness.
It would be surprising if these fundamental human characteristics could be
entirely ignored in models of human society.
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