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Preface

The Institute of Mathematics for Industry (IMI), Kyushu University, is a relatively
new institute that will soon mark the fourth anniversary of its founding. In April
2013, the IMI received official recognition from the Ministry of Education,
Culture, Sports, Science and Technology as Japan’s second Joint Usage/Research
Center in mathematics following the Research Institute for Mathematical Sciences
of Kyoto University. Given the title of Center for Collaborative Research in
Advanced and Fundamental Mathematics for Industry, the breadth of IMI activi-
ties is widening in collaboration with the research community as a motivating
force. The IMI is also the third national mathematical science research institute in
Japan if we include the Institute of Statistical Mathematics under the Research
Organization of Information and Systems. Members of the IMI are researchers in
what would traditionally be called industrial mathematics, (theoretical) applied
mathematics, and pure mathematics, and they are divided about evenly among
these fields. In addition, most of these members are currently engaged in joint
research with industry while also being responsible for educating students
majoring in mathematics including those in Master’s degree courses and Ph.D.
programs. For this reason, I think it would be fair to say that this book has a feel
different from a typical compilation on mathematical modeling.

This book is based on a Japanese-language version prepared exactly one year
ago, but its text has been revised and enhanced while adding contributions from
new members in IMI. Instead of summarizing its contents, I will here quote from
the preface to the Japanese edition.

‘‘This book has been achieved through the cooperation of IMI members as well
as researchers in industry who have made time to give keynote addresses at
research gatherings sponsored either solely or jointly by IMI or to speak at the IMI
Colloquium held regularly on the third Wednesday of every month. The themes
covered in the book were selected according to the specialties and interests of each
author, with attention given to one or more problems within each theme. The idea
here was to create a guide for solving those problems through mathematical
modeling. The world of applied mathematics and industrial mathematics is, of
course, quite vast, and only a few themes from that world are taken up in this book.
The purpose of the book, however, is to introduce those fields of mathematics—
even if only a small portion of that world—that are now contributing to other
scientific fields and to industry and that have the potential of contributing in the
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future. The readers that we have in mind begin with undergraduate students and
graduate students with an interest in mathematics and mathematical science,
followed by individuals in industry and finally researchers/faculty members in
various fields including mathematics. It is with this order in mind that an editorial
policy was established. In particular, the authors were asked to prepare their
manuscripts assuming that readers would have a level of knowledge typical of
second- and third-year undergraduate students majoring in mathematics for the
Japanese standard.

‘‘Plans for publishing this book go back to the preparatory stage in the founding
of IMI, but it has been a matter of ‘easier said than done’. Nevertheless, an
editorial committee for preparing the book was established in IMI in April of
last year with Prof. Ryuei Nishii taking on the responsibilities of chairman. The
result of this committee’s efforts was a book consisting of 36 chapters.

‘‘Although I cannot say for sure that the contents of this book have completely
satisfied our objective here, I sincerely hope that it finds its way into the hands of
many readers. The publishing of this book is, in a way, an experimental endeavor,
and we plan to use the results that we have achieved here as a basis for enhancing
the content of next year’s edition.’’

All of us at the IMI would be greatly pleased if this book created through the
process described above were to breathe new life, if even slightly, into the research
of industrial mathematics and mathematical modeling. At the same time, we look
forward to the frank opinions and comments offered by reviewers and readers of
this book.

March 2014 Masato Wakayama
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Preface

The purpose of this book is to introduce those fields of mathematics that are
contributing to other fields and to industry and that have the potential of
contributing in the future. The readers targeted by the book are upper-level
undergraduate students, graduate students, and corporate individuals. The six
people responsible for editing the Basic Volume and Applied Volume of the book
and the person in charge of overall editing made up the Editorial Committee, and
all members of the Institute of Mathematics for Industry (IMI) and individuals
from industry and academia having a deep relationship with IMI made contribu-
tions. The members of the Editorial Committee are listed below.

Algebra: Takayuki Ochiai (IMI, Kyushu University)
Geometry: Miyuki Koiso (IMI, Kyushu University)
Analysis: Shin-ichiro Ei (IMI, Kyushu University, now at Hokkaido University)
Probability and Statistics: Tomoyuki Shirai (IMI, Kyushu University)
Applied Mathematics: Ryuei Nishii (IMI, Kyushu University)
Application of Mathematics: Kanzo Okada (IMI, Kyushu University)
Overall Editing: Shingo Saito (Faculty of Arts and Science, Kyushu University)

On reading the submitted manuscripts, we could not help but be reminded of the
wide dynamic range of mathematics and the great potential for its application to
other fields and industry. We feel confident that the goal of publishing this book—
to help others become more knowledgeable about the great possibilities of
mathematical modeling—will be achieved, and it is our hope that this book and its
individual articles will prove useful in a variety of situations and scenarios.
Finally, we would like to extend our deep appreciation to those in industry and
academia who took time from their busy schedules to prepare manuscripts for this
book.

March 2014 Ryuei Nishii
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Mathematics: As an Infrastructure
of Technology and Science

Hiroyuki Ochiai

Abstract One of the roles of mathematics is to serve as a language to describe
science and technology. The terminology is often common over several branches of
science and technology. In this chapter, we describe several basic notions with the
emphasis on what is the point of a definition and what are key properties. The objects
are taken from set theory, groups and algebras.

Keywords Group · Lie algebra · Exponential map · Spherical linear interpolation ·
Unit quaternion

1 Sets and Functions

In mathematics, the objects under discussion are described by sets, and the relations
are described by functions.

1.1 Sets: Two Methods of Description

There are two ways to describe sets:

• List all the elements. This method is called extension.
• Specify the conditions that are satisfied by all the elements in the sets. This method

is called intension.

H. Ochiai (B)

Institute of Mathematics for Industry, Kyushu University, 744, Motooka, Nishiku,
Fukuoka 819-0395, Japan
e-mail: ochiai@imi.kyushu-u.ac.jp
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4 H. Ochiai

Example 1 A surface is recognized as a subset of the space R
3. The point cloud is

an extensional definition of this set. Another extensional definition of a surface is a
parametric description:

x = x(u, v), y = y(u, v), z = z(u, v).

An intensional definition of a surface is

f (x, y, z) = 0

by using an implicit function f in (x, y, z).

Example 2 Solving a system of equations can be understood as rewriting a set
described in an intensional definition into an extensional definition. Practical exam-
ples of this are linear or nonlinear programming and numerical problem solving.
A more abstract example is Fermat’s Last Theorem: The intensionally defined set
{(x, y, z, n) ∈ Z

4 | xn + yn = zn, x, y, z > 0, n > 2} is an empty set which is a
most trivial example of a set in an extensional method!

Example 3 Given a data set D = {(xi , yi ) | i = 1, 2, . . . , N }, finding a correlation
f such that f (xi , yi ) = 0 (or nearly equal zero with noise) can be understood as the
converse procedure of the above example: a set given by an extensional method is
embedded in a set given by an intensional method D ⊂ {(x, y) | f (x, y) = 0}.

In mathematics and in an application, the translations from intension to extension
and vice versa are often useful. The ideal-variety correspondence in algebraic geom-
etry is one example [2]. It is easy to judge an element to be in a subset given by an
intensional method. It is straightforward to give all the elements in a subset given by
an extensional method. As one of the applications of these observations, in order to
show the inclusion S1 ⊂ S2, we consider the following: if S1 is given in extension
while S2 is given in intension, then it is easy to check whether S1 ⊂ S2.

1.2 Function

1.2.1 Function and Map

A map f : X → Y is a correspondence, denoted by x ⊃→ f (x), from a set X to a set
Y . If Y consists of numbers, then f is also called a function.

Example 4 A vector a ∈ R
n can be considered as a map from {1, 2, . . . , n} to R.

Data consisting of N points in R
3 can be considered as a map {1, 2, . . . , N } → R

3

and also as a map {1, 2, . . . 3N } → R. A series {an} is considered to be a map
N → R.
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1.2.2 Average

The average (or mean) of data a1, . . . , an is defined to be

(a1 + · · · + an)/n.

This operation usually requires the operation called addition satisfying the commu-
tative and associative law and the scalar (1/n) multiple operation. This implies that
the data should be in a (convex subset of) vector space in order for the average to
make sense. In other words, if the data are not contained in a vector space, then the
definition of average is not trivial. For example, if we have weather records like (fine,
fine, rain, cloudy, rain, fine, cloudy), we can not obtain the average of these data.
Of course, if we assign the numbers 3, 2, 1, 0 to fine, cloudy, rain, snow, then we
can obtain an average of the translated scores, but we need to consider whether this
assignment makes sense.

If the data are expressed in terms of a set of numbers (like vectors), we could
naively take the average by means of the coordinates of the data, but this procedure
may not make sense or may even be not well defined. For example, if the given data
are on a curved manifold, such as a sphere, then the naive average is often located
outside of the given manifold. This phenomenon suggests a modification of the notion
of line; a geodesic and a connection in differential geometry is an alternative to lines
and linear interpolation and extrapolation.

On the other hand, a smooth short curve and piece of a surface are well approxi-
mated by a segment (a piece of a line) and a face like a triangle, respectively, so the
linear approximation works well in such a case. The set of data obtained by motion
capture is considered to be a low-dimensional submanifold of a higher (like 104)
dimensional spaces and is non-linear, but it is locally well controlled by a linear
combination. This is the idea of blendshape, which is commonly used in computer
graphics.

1.3 Injective, Surjective

1.3.1 Definition

Definition 1 We define several notions on a map f : X → Y .

• The map f is called surjective if for any y ∈ Y , there exists x ∈ X such that
y = f (x).

• The map f is called injective if f (x) ∧= f (x ←) for any x, x ← ∈ X with x ∧= x ←.
• The map f is called bijective if f is surjective and injective.

In general, injectivity and surjectivity are independent. However, in the following
cases, these notions are accidentally equivalent:
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• In the case X and Y are finite sets and the numbers of elements are same.
• In the case X and Y are finite-dimensional vector space with the same dimension,

and f is a linear map.
• In particular, A is a square matrix and f is a multiplication map v ⊃→ Av on the

set of column vectors.

These cases are often treated seriously in the first course of linear algebra, especially
when eigenvalues and eigenvectors are introduced. So, one might have the wrong
impression that injective implies surjective and vice versa, even in a general situation.

1.3.2 Bijective and Inverse

Suppose a map f : X → Y is bijective. Then there exists a map g : Y → X such
that g( f (x)) = x and f (g(y)) = y for all x ∈ X and y ∈ Y . This g is called the
inverse of f and is denoted by f −1. In mathematics, once we have a bijective f ,
then we immediately get f −1 and we often identify X with Y by using f . This is a
powerful way of thinking. On the other hand, in a practical setting, even if we know
f is bijective, the actual construction of f −1 is often non-trivial. This fact is a key
to one-way function, which are often important in cryptography. Moreover, even if
we have a bijection between X and Y , the information read in picture X and that in
picture Y are often different. We explain these phenomena by means of an example
from the logarithm and the Fourier transform, respectively.

1.3.3 Logarithm

For a real variable, the reason the logarithm y = log x is defined to be an inverse func-
tion of the exponential function y = ex is based on the continuity and monotonicity
of the exponential function, and on the completeness of real numbers. The numeri-
cal computation supported by software is effective because log x is close enough to
log x ← if x is so to x ←. On the other hand, in the case of the discrete logarithm, once
we have fixed a and n, the exponential function Z ≈ x ⊃→ (ax mod n) ∈ Z/nZ

does not have continuity on x . Therefore, the analysis of the discrete logarithm as
the inverse function cannot be reduced to elementary calculus.

1.3.4 Fourier Transform

A Fourier transformation is a linear bijection on an appropriate function space, e.g.,
the space of square integrable functions (L2). Nevertheless, the information given
in the original space variables and that in the transformed frequency variables are
different in a practical situation, e.g., an approximation by a finite number of terms.
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1.4 Generalization of Map

A generalization of a map is a correspondence. This is a subset of the direct product
X × Y . Once we are given a map f : X → Y , the graph of f is defined to be
{(x, f (x)) | x ∈ X} as a subset of X × Y . On the other hand, if a subset C ⊂ X × Y
satisfies the condition that the fiber Cx := {y ∈ Y | (x, y) ∈ C} consists of
one element for each x ∈ X , then such a C comes from a map. For a general
correspondence C , the fiber Cx can be an empty set or can consist of more than
one element. The correspondence is effective in many situation, e.g., to describe an
integral transform like the X -ray transform, or Radon transform.

Other generalization of the notions of sets and maps are category and functor.

1.5 Topology

There are several notions to describe near or far; e.g., topology, metric, norm, inner
product. The energy function, the error term, and penalty also play the same role in
some cases.

1.5.1 Definition

A distance is a non-negative symmetric map d : X × X → R with a triangle
inequality: d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X . A metric space (X, d) is
a set X with a distance d. A generalization of a metric space is a topological space,
by definition, a space with topology. Topology is defined by the set of open sets,
which is closed under the union and the finite intersection, while the metric uses a
single real-valued function. So topology can express a more complicated structure. A
norm is a special case of distance, and it has a scalar multiple structure. A norm only
has only a length, but an inner product measures both length and angle. In particular,
there is the notion of orthogonality in an inner product space. Orthogonal basis and
an orthogonal projection only make sense only in an inner product space, whereas
basis and a projection do make sense in a vector space.

1.5.2 Complete

A metric space is called complete if every Cauchy sequence converges. We can
find and specify an element in a complete space by an approximating series. The
expression π = 3.14 . . . is an example. This idea is also effective to give a function,
curve, surface and data, and is the basis of construction principle.

A complete norm space is called a Banach space, and a complete inner product
space is called a Hilbert space.
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Example 5 Suppose p > 1. For a series {an}, we define the l p norm

∀{an}∀p := p

√∑
n≥1

|an|p,

and we denote by l p the set of all series {an} with ∀{an}∀p < ∞. Then l p is the
Banach space for p > 1, and l p is a Hilbert space if and only if p = 2. Note that for
a finite-dimensional vector space, topology does not depend on a norm, whereas it
does depend on a norm for an infinite-dimensional vector space [8].

2 Algebra

In this section, we introduce several algebras. A group is used for the description of
motion and symmetry. A typical example is a group consisting of matrices. A set of
numbers and that of polynomials are rings.

2.1 Definition of Groups (Static)

A set G and a binary operation G × G → G is called a group if they satisfy the
associative law (g1g2)g3 = g1(g2g3), the existence of the unit (identity) and the
existence of the inverse of every element. We often call G a group without explicitly
mentioning the operation (produce) we choose.

Example 6 A set of regular matrices is a group, by the multiplication of matrices.

2.1.1 Abelian Group

A group satisfying the commutative law g1g2 = g2g1 is called an abelian group
(commutative group). We often denote the operation by the addition for an abelian
group.

Example 7 With the addition, Z, Z/nZ are examples of abelian group. The set
{z ∈ C | |z| = 1} of complex numbers with absolute value 1 is an abelian group,
which is called a unitary group U (1) of size one.

Example 8 The set of points on an elliptic curve turns out to be an abelian group by
a non-trivial definition of “addition”.
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2.1.2 Homomorphism

A map f : G → H between two groups G and H is called a (group) homomorphism
if it satisfies f (g1g2) = f (g1) f (g2). If a group homomorphism is bijective, then it
is called an isomorphism.

Example 9 An exponential function y = ex gives a group isomorphism from the
additive group R to the multiplicative group R>0 := {t ∈ R | t > 0}.

Note that the exponential function exp(A) =
∑∞

n=0

1

n! An of matrices is not a group

homomorphism.

Example 10 The Weierstrass ℘ function gives a group isomorphism

(℘,℘←) : C/(Zω1 + Zω2) −→ {(x, y) ∈ C
2 | y2 = 4x3 − g2x − g3} ∪ {∞} (1)

Note that

• C/(Zω1 + Zω2) is an intensional description, whereas {(x, y) ∈ C
2 | y2 =

4x3 − g2x − g3} ∪ {∞} is an extensional description.
• By a natural topology, this map is also a homeomorphism.
• The operation on C divided by the lattice Zω1 + Zω2 is the addition of complex

numbers, so it is easy to calculate the n sum z + z + · · · + z. On the other hand,
the operation on elliptic curve y2 = 4x3 − g2x − g3 is non-trivial, so it is not easy
to calculate the n sum P + P + · · · + P .

• By this isomorphism, the set of rational points on elliptic curve bijectively corre-
sponds to a subset of C/(Zω1 + Zω2). However, the non-triviality of ℘ function
reflects to the difficulty of the logarithm on an elliptic curve.

2.2 A Multiplicative Group of a Ring

2.2.1 Definition of a Ring

A set R with two operations, called an addition and a multiplication, is called a ring
if R is an abelian group with an addition, the multiplication satisfies the associative
law, and the two operations satisfies the distribution law such as (a +b)c = ab +ac.
Here the last expression means (ab)+(ac), of course. We often assume the existence
of the unit 1 of the multiplication. If the multiplication satisfies the commutative
law ab = ba, then R is called a commutative ring. (Note that we never call it an
abelian ring.) We also remark that the existence of the unit 0 of the addition and the
commutativity of the addition a + b = b + a have already been assumed for a ring.
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Example 11 The set C[x1, . . . , xn] of polynomials is a commutative ring with unit.

A non-zero element a in a ring does not necessarily have its inverse (with respect to
the multiplicative operation; ab = ba = 1). An element of a ring is called invertible
if it has an inverse. We denote by R× the set of invertible elements, then R× is a
group.

Example 12 An invertible element of the ring M(n, R) of real square matrices of
size n is a regular matrix. We denote M(n, R)× by GL(n, R), which is called a
general linear group.

A ring is called a field if every non-zero element is invertible.

Example 13 The set Q, R, C (respectively) of rational, real, complex (respectively)
numbers is field. The set H = R+Ri +R j +Rk of quaternions is also a field, and is
a typical example of a non-commutative field [5]. We remark that in some literatures,
especially on Galois theory, a field has been already assumed to be commutative.

An algebra is defined to be a vector space with a ring structure. There are a lot of
variety of algebraic systems depending on its purpose; e.g., monoid, semigroup, Lie
algebra, Jordan algebra.

2.3 Transformation Group, a Dynamic Definition of Group

A group G and a set X with a binary operation G × X → X is called an action if it
satisfies (g1g2)x = g1(g2x).

Example 14 A coordinate transformation group and a fractional linear transforma-
tion group give a natural action.

Example 15 Galois group acts on the set of roots of a polynomial equation.

The definition of an action is equivalent to a group homomorphism G → Aut (X),
where Aut (X) is a group consisting of all bijection on the set X . An action is called a
representation if X is a vector space and the action x ⊃→ gx is a linear map. In general,
an action is not a representation, but the action naturally induces a representation of
G on a function space on X .

2.4 Homogeneous Space

2.4.1 Definition

An action of G on X is called transitive if for any two elements x, y in X there
exists a g ∈ G with y = gx . In such a case, X is called a homogeneous space of
G. For example, the rotation group SO(3) acts transitively on the sphere S2. All the
elements on a homogeneous space are equivalent.
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2.4.2 Isotropy Subgroup

We fix an element x in a homogeneous space X of G. Then the subgroup Gx =
{g ∈ G | gx = x} consisting of elements fixing the element x is called a isotropy
subgroup (or stabilizer) at x . Then the homogeneous space X has the expression
X = G/Gx . For example, S2 = SO(3)/SO(2). The expression X = G/Gx is
useful to understand the symmetry of X , introduce coordinates and a metric on X ,
and the comparison with other spaces. Remark that the isotropy subgroup Gx and
the expression G/Gx depend on the choice of the base point x .

2.4.3 Principal Homogeneous Space

A homogeneous space X of G is called a principal homogeneous space if for any
x, y ∈ X there exists a unique g ∈ G with y = gx . In this case, the action is called
transitive. As a set, X can be identified with G. However, G has the special point
“the identity”, but X does not.

Example 16 The three-dimensional vector space R
3 is an additive group. Our living

three-dimensional space is a homogeneous space of this translation group R
3, and

our living space does not have a specific base point (the origin of the coordinates).
Most of geometric properties of figures in spaces does not depend on the choice of
the origin.

Example 17 Let X be the set of all triangles (on the fixed plane) whose barycenters
are located at the origin. Then X is a principal homogeneous space of the general
linear group GL(2, R).

In computer graphics (see, e.g., [1, 4]) a continuous deformation of a triangulated
figure is described by the interpolation not in terms of the coordinates of the vertices
of triangles but in terms of the corresponding elements in GL(2, R).

Example 18 Consider a single rigid body, such as a camera. The set of possible
positions and direction of this rigid body is a principal homogeneous space of the
motion group.

Example 19 For a plane cubic curve X , if we fix a point x0 on X , then we can
define the additive group operation on X so that x0 is the identity. This is called an
elliptic curve E . The group structure on X depends on x0. The curve X is a principal
homogeneous space of E .

2.5 Lie Group

2.5.1 Definition

A Lie group is a manifold with a compatible group structure. If one is not familiar
with manifolds, one may consider a Lie group to be a group consisting of matrices.
We can use both calculus and linear algebra to investigate Lie groups.
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2.5.2 Exponential Map

The exponential map exp (Example 9) gives a map from the Lie algebra to the Lie
group.

Example 20 For example, the Lie algebra of the general linear group GL(n, R)

(Example 12) is gl(n, R) = M(n, R), and the exponential map is exp : M(n, R) →
GL(n, R). This map is neither injective nor surjective [3].

Example 21 The set

so(3) = {A ∈ M(3, R) | t A = −A} (2)

of skew-symmetric matrices of size three is the Lie algebra of the three-dimensional
rotation group SO(3) = {g ∈ M(3, R) | t gg = I3, det g = 1}, and the exponential
map exp : so(3) ≈ A ⊃→ exp(A) ∈ SO(3) is surjective.

These exponential maps exp are not group homomorphisms. In the case of two-
dimensional rotation group SO(2), the exponential map is a group homomorphism,
but it is exceptional.

One of the definition of the Lie algebra of a Lie group is the tangent space of the
Lie group at the identity. In particular, the Lie algebra is a vector space, and the linear
interpolation makes sense in a Lie algebra. For example, a linear interpolation of two
rotation matrices may not be a rotation matrix, but the exponential image of a linear
interpolation of the corresponding two elements in the Lie algebra makes sense.

2.5.3 Dual Numbers

The Lie algebra is a linear approximation of a Lie group. We introduce a formal
variable ε, and consider the ring R[ε] by adding ε to R and dividing by the ideal
(ε2), then we obtain the quotient ring R[ε]. As an actual computation, we deal with
a number-like expression a + bε and replace ε2 by 0.

Example 22 Let us compute the Lie algebra of G = SO(3). We consider the tangent
space of G at the identity. We put g = I + εA with A ∈ M(3, R). Examine the
condition g ∈ SO(3). By the rule ε2 = 0, we obtain t gg = (I + εt A)(I + εA) =
I + ε(t A + A). We see that g ∈ SO(3) is equivalent to t A + A = O . This proves
the formula (2).

A linear approximation of functions and manifolds usually looses some information.
It is significant that the Lie algebra has all the higher order (local) information in
Lie algebra. The key of this recovery is encoded in Lie bracket [A, B] = AB − B A
and the exponential map. Remark that the global information of Lie groups, such as
a connectivity π0 and the fundamental group π1 can not be read off from the Lie
algebra (c.f., Sect. 2.6).
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2.5.4 Semidirect Product

Let G be a group, H a subgroup of G, and K a normal subgroup of G. If a map
H × K ≈ (h, k) ⊃→ hk ∈ G is bijective, then G is called a semidirect product group
of H and K and we denote G = H � K . In other words, for any h ∈ H and k ∈ K ,
if we consider k← = h−1kh, then kh = hk← and k← ∈ K . Note that the role of H and
K is not symmetric.

Example 23 We consider the three-dimensional vector space, and regard H =SO(3),
K = R

3 as a set of rotations and translations, respectively. The motion group G is
a semidirect product group SO(3) �R

3, and is the set of orientation-preserving con-
gruences of the three-dimensional space. If we rotate, translate and rotate reversely,
then we obtain a translation. This paraphrases the fact that K = R

3 is a normal
subgroup of G.

2.6 Unit Quaternion

We explain the spherical linear interpolation used in the control of characters and
cameras in computer graphics [7]. This is considered to be a method of interpolation
in a rotation group SO(3).

A unit quaternion is by definition a quaternion with its norm 1, and we denote
by H

1 the set of unit quaternions. There are several notations U (1, H), Sp(1) for it.
Explicitly,

H
1 = {a + bi + cj + dk ∈ H | a2 + b2 + c2 + d2 = 1}. (3)

Then H
1 is homeomorphic to the three-dimensional sphere S3 as a manifold, and is

a compact connected Lie group. We regard H as a two-dimensional complex (right)
vector space; H = C+ jC. Consider the matrix expression of the left multiplication
of an element g = a + bi + cj + dk = α + jβ ∈ H with this basis 1, j then

we obtain

(
α −β̄

β ᾱ

)
The set of matrices of this form is a special unitary group

SU (2) = {A ∈ M(2, C) | t ĀA = I2, det(A) = 1}. H
1 ∼= SU (2). This is an

example of accidental isomorphisms of low-dimensional Lie groups [6].
The conjugate action of q ∈ U (1, H) is defined by ϕq(z) = qzq−1 (z ∈ H). Since

the quaternion is non-commutative field, this map is non-trivial. We put the imaginary
part of quaternions by ImH = Ri + R j + Rk. If z ∈ ImH, then ϕq(z) ∈ ImH. We
naturally identify ImH = R

3, and then we obtain a map

Ω : H
1 ≈ q ⊃→ ϕq ∈ SO(3). (4)

This map Ω is surjective, a group homomorphism, and its kernel consists of two
elements; ker Ω = {±1}. The map Ω is also a universal covering map of SO(3)
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Consider the interpolation of two elements g1, g2 ∈ SO(3) For example, we
consider a problem to give a smooth and natural motion of a camera from one
starting position to another ending position specified by g1, g2. Put q1, q2 be a lift
of g1, g2 by a map Ω . That is, ϕq1 = g1, ϕq2 = g2. If we can interpolate q1, q2 in
H

1, then its image by Ω gives an interpolation of g1, g2 in SO(3). There are several
possibilities of interpolations in H

1.

• A geodesic (shortest path) in a Riemannian manifold S3.
• The image of the exponential map of the linear interpolation in the Lie algebra

ImH.
• Spherical linear interpolation (slerp) [9].

We will explain these methods are same. We first recall the exponential map, the
Lie algebra and the Lie group in this setting. For a θ with −π < θ < π and an
n ∈ ImH with |n| = 1, we obtain exp(θn) = (cos θ) + (sin θ)n and exp(θn) ∈ H

1.
On the other hand, every unit quaternion other than −1 can be expressed in this
form. This gives a geometric meaning of the conjugate action of a unit quaternion.
For q = exp(θn), the map ϕq gives a rotation with the axis n and the angle 2θ .

On the other hand, for q0, q1 ∈ H
1, we denote by φ the angle of these two elements

in R
4. Then the spherical linear interpolation is, by definition, for 0 ≤ t ≤ 1,

slerp(q0, q1, t) = sin(1 − t)φ

sin φ
q0 + sin tφ

sin φ
q1.

The slerp satisfies the following properties:

slerp(q0, q1, 0) = q0,

slerp(q0, q1, 1) = q1,

slerp(q0, q1, t) ∈ H
1,

slerp(q0, q1, t) = slerp(1, q1q−1
0 , t)q0, (5)

slerp(1, exp(θn), t) = exp(tθn). (6)

The property (5) shows the covariance, and the property (6) shows that it is the
image by the exponential map of the linear interpolation in the Lie algebra. These
two properties characterize slerp.
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Remarks on Quantum Interaction Models
by Lie Theory and Modular Forms
via Non-commutative Harmonic Oscillators

Masato Wakayama

Abstract As typically the quantum Rabi model, particular attention has been paid
recently to studying the spectrum of self-adjoint operators with non-commutative
coefficients, not only in mathematics but also in theoretical/experimental physics, e.g.
aiming at an application to quantum information processing. The non-commutative
harmonic oscillator (NcHO) is a self-adjoint operator, which is a generalization of
the harmonic oscillator, having an interaction term. The Rabi model is shown to
be obtained by a second order element of the universal enveloping algebra of the
Lie algebra sl2, which is arising from NcHO through the oscillator representation.
Precisely, an equivalent picture of the model is obtained as a confluent Heun equation
derived from the Heun operator defined by that element via another representation.
Though the spectrum of NcHO is not fully known, it has a rich structure. In fact,
one finds interesting arithmetics/geometry described by e.g. elliptic curves, modular
forms in the study of the spectral zeta function of NcHO. In this article, we draw this
picture, which may give a better understanding of interacting quantum models.

Keywords Eichler integral · Heun ODE · Non-commutative harmonic oscillator ·
Oscillator representation ·Rabi model ·Spectral zeta function ·Universal enveloping
algebra · Zeta regularization.

1 Introduction

The non-commutative harmonic oscillator Q (NcHO) is a parity-preserving (or pos-
sessing Z2 symmetry) differential operator introduced in [28, 29] as
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Q := A
(

− 1

2

d2

dx2 + 1

2
x2

)
+ B

(
x

d

dx
+ 1

2

)
,

where A is positive definite symmetric and B is skew-symmetric (A, B ∈ Mat2(R)).
We assume the Hermitian matrix A + i B is positive definite, i.e. det(A) > pf(B)2.
The former requirement arises from the formal self-adjointness of Q relative to the
inner product on C

2 ⊂ L2(R). The latter condition guarantees that the eigenvalues
of Q are all positive and form a discrete set with finite multiplicity. As a normalized

form we may take A =
⎧
π 0
0 ℘

⎨
and B =

⎧
0 −1
1 0

⎨
(The assumption is π℘ > 1). It

should be noted that, when π = ℘, Q is unitarily equivalent to a couple of quantum
harmonic oscillators, whence the eigenvalues are easily calculated as

⎩→
π2 − 1

(
n +

1
2

⎫ | n ∈ Z⊃0
⎬

having multiplicity 2 ([28], I). Actually, when π = ℘, behind Q, there
exists a structure corresponding to the tensor product of the 2-dimensional trivial
representation and the oscillator representation (e.g. [10]) of the Lie algebra sl2. The
clarification of the spectrum in the general π ∧= ℘ case is, however, considered to
be highly non-trivial. Indeed, while the spectrum is well described theoretically by
using certain continued fractions [28, 29] and also by Heun’s ordinary differential
equation (the second order Fuchsian differential equation with four regular singular
points in a complex domain, [23, 24, 34]), and in particular there are some results
related to the estimate of upper bound of the lowest eigenvalue and distribution of
eigenvalues [9, 13, 22, 30], only very little information is available in reality when
π ∧= ℘ (see [26] and references therein. Figure 1 represents a numerical graph for
the spectrum for the ratio ℘/π. Note that the eigenvalue curves are continuous w.r.t.
the parameter ℘/π [22]).

In fact, only quite recently, it was proved that the multiplicity of each eigenvalue
is always less than or equal to 2 by the monodromy representation of Heun’s equa-
tions [34], and the ground state is simple (and even) [8] using the criterion given
in [35] (see also [9]). Therefore, in spite of many studies, the spectral description
of the NcHO is still incomplete (see [27] for an overview of the recent progress).
One of the difficulties to obtain the eigenfunctions and eigenvalues is, representation
theoretically, the apparent lack of an operator which commute with Q (second con-
served quantity) besides the Casimir operator, the image of the generator of the center
ZU (sl2) of the universal enveloping algebra of the Lie algebra sl2. (Moreover, it
has been shown that there is no annihilation/creation operators associated to NcHO
when π ∧= ℘ [27].)

Recently, however, particular attention has been paid to studying the spectrum of
self-adjoint operators with non-commutative coefficients, in other words, interacting
quantum systems, like the quantum Rabi model [3, 20, 21, 31, 38], the Jaynes-
Cumming (JC) model etc., not only in mathematics (e.g. [7]) but also in theoretical
physics and experimental physics founded e.g. in the book by Haroche and Rai-
mond [6] (also [39]). For instance, the quantum Rabi model [31] is known to be the
simplest model used in quantum optics to describe interaction of light and matter
beyond the harmonic oscillator, and the JC model is the widely studied rotating-wave
approximation of the Rabi model (see e.g. [4]).
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Fig. 1 Approximate N -th eigenvalues ω̂N of Q [22]

The quantum Rabi model is defined by the Hamiltonian

HRabi/� = εa†a + αβz + gβx (a
† + a).

Here a = (x + ϕx )/
→

2 (resp. a† = (x − ϕx )/
→

2) is the annihilation (resp. creation)

operator for a bosonic mode of frequency ε, βx =
⎧

0 1
1 0

⎨
, βy =

⎧
0 −i
i 0

⎨
, βz =⎧

1 0
0 −1

⎨
are the Pauli matrices for the two-level system, 2α is the energy difference

between the two levels, and g denotes the coupling strength between the two-level
system and the bosonic mode. The Rabi model considers a two-level atom coupled
to a quantized, single-mode harmonic oscillator (in the case of light, this could be a
photon in a cavity, as in Fig. 2 [33]). Introduced over 70 years ago [31], its applications
range from quantum optics, magnetic resonance to solid state and molecular physics.
Very recently, the model applies to a variety of physical systems, including cavity
quantum electrodynamics, the interaction between light and trapped ions or quantum
dots, and the interaction between microwaves and superconducting qubits.

Although this model has had an impressive impact on many fields of physics [6],
only recently (in 2011) could this model be declared solved by D. Braak [3]. It is now
pointed out [33] that as physicists gain intuition for Braak’s mathematical solution, it
is very much expected that the results could have implications for further theoretical
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Fig. 2 Courtesy of APS/Alan Stonebraker in [33]: The Rabi model describes the simplest inter-
action between quantum light and matter. The model considers a two-level atom coupled to a
quantized, single-mode harmonic oscillator

and experimental work that explores the interaction between light and matter, from
weak to extremely strong interactions.

The NcHO has been similarly expected to provide one of these Hamiltonians
describing such quantum interacting systems. In this article, we will observe that
the quantum Rabi model is obtained by a second order element R of the universal
enveloping algebra U (sl2), which is arising from the NcHO through the oscillator
representation Ω ← of the Lie algebra sl2, and a confluence procedure for Heun’s equa-
tion under another representation Ω ←

a . Roughly speaking, the quantum Rabi model
can be obtained by a confluence process by a “certain rescaling” of the NcHO through
their respective Heun’s pictures:

2 Number Theoretic Structure of NcHO

Although the explicit eigenvalues of Q are not known, the spectrum of Q possesses
a very rich mathematical structure. Denote the (repeated) eigenvalues of Q by 0 <

ω1 ≈ ω2 ≈ ω3 ≈ · · · (≤ ∀). Define the spectral zeta function of Q by

θQ(s) =
∀⎭

n=1

ω−s
n .

This series is absolutely convergent and defines a holomorphic function in s in the
region Re(s) > 1. The function θQ(s) is analytically continued to the whole complex
plane C as a single-valued meromorphic function that is holomorphic, except for a
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simple pole at s = 1 with residue
→

π+℘→
π℘(π℘−1)

[11]. It is notable that θQ(s) has ‘trivial

zeros’ at s = 0,−2,−4, . . .. When π = ℘(> 1), θQ(s) is identified (by a elementary
holomorphic factor) with the Riemann zeta function θ(s).

Similarly to the Apéry numbers which were introduced in 1978 by R. Apéry for
proving the irrationality of θ(2) and θ(3) (see, e.g. [2]), Apéry-like numbers have
been introduced in [12] for the description of the special values θQ(2) and θQ(3).
These Apéry-like numbers J2(n) and J3(n) share with many of the properties of
the original Apéry numbers, e.g. recurrence equations, congruence properties, etc
(see [12, 18], also [25]). Actually, the Apéry-like numbers J2(n) for θQ(2) obtain
a remarkable modular form interpretation, as that shown by F. Beukers [2] in the
case of the Apéry numbers. We have shown in [14] that the differential equation
satisfied by the generating functionw2(t)of J2(n) is the Picard-Fuchs equation for the
universal family of elliptic curves equipped with rational 4-torsion: φALw2(t) = 0.
The parameter t of this family is regarded as a modular function for the congruence
subgroup �0(4)(≥= �(2)) ∞ SL2(Z). Moreover, one observes ([14]) that w2(t) is
considered as a �0(4) meromorphic modular form of weight 1 in the variable τ as

the classical Legendre modular function t (τ ) = − θ4(τ )2

θ4(τ )4 . We also remark that the
modular form w2(t) can be found at #19 in the list of [37].

The formulas of the special values θQ(k) for the general cases k ⊃ 4 are much more
complicated than those of k = 2, 3. Thus, we will focus only on the first anomaly
Rk,1(x) (in the terminology by Kimoto) which expresses the 1st order difference (in
a suitable sense) of θQ(k) from θ(k) with respect to the parameters π, ℘ [15, 16].
The first anomaly Rk,1(x) for x = 1/

→
π℘ − 1 describes the special value θQ(k)

partly. (When k = 2, 3, Rk,1(x) possesses full information of each special value.)
The Taylor expansion of Rk,1(x) in x yields k-th Apéry-like numbers Jk(n). Then,
remarkably, one can show that the generating function wk(t) of Jk(n) satisfies an
inhomogeneous differential equation whose homogeneous part is given by the same
Fuchsian differential operator which annihilates w2(t) as φALwk(t) = wk−2(t).

In order to solve this differential equation for w4(t), it is necessary to “integrate
twice” a certain explicitly given modular form. Then one can prove that the gener-
ating function w4(t) can be expressed as a differential of a residual modular form
multiplied by a modular form (a product and quotient of theta functions) for �(2). The
notion of residual modular forms is a generalization of the Eichler (or automorphic)
integral. Note that the Abelian integrals and the Eisenstein series E2(τ ) of weight 2
for SL2(Z) are special examples of the Eichler integral. The name “residual” comes
from the following two facts.

• Eichler’s integral possesses an “integral constant” given by a polynomial in τ ,
which is known as a period function and computed as residues of the integral when
one performs the inverse Mellin transform of L-function of the corresponding
modular form.

• To obtain another meaningful expression of such Eichler’s integral, we define
differential Eisenstein series by a derivative of the analytic continuation of gener-
alized Eisenstein series (e.g. [1]) at negative integer points.
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We remark that the “residual part” of a differential Eisenstein series is in general
given by a rational function in τ , whence it can not be handled in a framework of
Eichler integrals. Moreover, one should note that only w4(t) one can give its explicit
expression by a sum of two such differential Eisenstein series [16]. Furthermore, to
understand the structure, especially the dimension of a space of residual modular
forms, it is important to consider the Eichler cohomology groups [5] associated with
several �(2)-modules made by a set of certain functions on the Poincaré upper half
plane, such as the space (field) of rational functions C(τ ), the space of holomor-
phic/meromorphic functions with some decay condition at the infinity (cusps), etc.
In the course of this analysis, we focus on a particular subgroup of the Eichler coho-
mology group, which we call a periodic cohomology, for the explicit determination
of the space of residual modular forms which contains w4(t). We leave the detailed
discussion about this arithmetic study of NcHO to the paper [16] (also [15]).

3 Quantum Rabi and Jaynes-Cummings Models

The Hamiltonian of the Rabi model (� = 1) reads

HRabi = εa†a + αβz + g(β+ + β−)(a† + a),

with β± = (βx ± iβy)/2. It is regarded as exactly solvable only since the work of
[3]. The simpler related model defines the JC Hamiltonian

HJC = εa†a + αβz + g(β+a + β−a†).

It is known to be integrable, even in the Dicke version with n two-state atoms.
Actually, unlike in the Rabi case, the operator

I := a†a + 1

2
(βz + 1)

commutes with the Hamiltonian HJC and leads to the solvability of the JC-model. The
conservation (i.e. invariance w.r.t. HJC) ofI signifies that the state space decomposes
into an infinite sum of two-dimensional invariant subspaces. Each eigenstate of HJC
is then labeled by (the eigenstates of I ) 0, 1, 2, . . . with a two-valued index, e.g. +
and −, denoting a basis vector in the two-dimensional subspace which belongs to the
eigenspace of I . Representation theoretically, the conserved quantity I generates
a continuous U (1) symmetry of the JC-model which is broken down to Z2 in the
Rabi model due to the presence of the term (β+ + β−)(a† + a). This residual Z2
symmetry, usually called parity, leads to a decomposition of the state space into just
two subspaces H±, each with infinite dimension. Hence the Rabi model shares a
similar situation as NcHO.
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By [3], one knows that the spectrum of HRabi consists of two parts, the regular and
the exceptional (degenerate) spectrum. Almost all eigenvalues are regular and given
by the zeros of the transcendental functions G±(x) in the variable x . The functions
G±(x) are defined through the power series in the coupling constant g as

G±(x) =
∀⎭

n=0

Kn(x)
[
1 ∪ α

x − nε

]( g

ε

)n
,

where the coefficients Kn(x) are defined recursively,

nKn(x) = fn−1(x)Kn−1(x) − Kn−2(x),

with the initial condition K0 = 1, K1(x) = f0(x), and

fn(x) = 2g

ε
+ 1

2g

(
nε − x + α2

x − nε

)
.

The function G±(x) is meromorphic in x having simple poles at x = 0, ε, 2ε, . . .

(essentially the eigenvalues of harmonic oscillator). Then the regular energy spectrum
of the Rabi model in each invariant subspace H± with parity ± is given by the zeros
of G±(x): for all zeros x±

n of G±(x), the nth eigenenergy with parity ± reads

E±
n = x±

n − g2/ε. All exceptional eigenvalues E have the form Edeg
n = nε− g2/ε,

and the necessary and sufficient condition for the occurrence of the eigenvalue Edeg
n

reads Kn(nε) = 0, which furnishes a condition on the model parameters g and |α|.
Actually, we have the following interesting result due to Kus [20].

We will assume ε = 1 (without loss of generality) in the sequel of this article.

Lemma 1 Let P(n)
k (x, y) be the polynomial of two variables defined by the following

recursion formula:

P(n)
0 = 1, P (n)

1 = x + y − 1,

P (n)
k = (kx + y − k2)P(n)

k−1 − k(k − 1)(n − k + 1)x P(n)
k−2

If P(n)
n ((2g)2,α2) = 0, then there exist two linearly independent eigenfucntions ψ±

n

(“positive and negative parity”) of HRabi corresponding to the eigenvalue Edeg
n =

n − g2, that is, the multiplicity of Edeg
n is 2.

Remark 1 The eigenfunctions ψ±
n are constructed in [20]. Also, if 0 < α < 1

there exist exactly n distinct positive roots of P(n)
n (x,α2) as a polynomial in x [20].

Similar polynomials for the NcHO [34] should be well formulated as P (n)
k .

The analysis on the Rabi model above have been extensively using the Bargmann
representation of bosonic operators which is realized by the following Bargmann
transform B (from real coordinate x to complex variable z).
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(B f )(x) = →
2

∀∫
−∀

f (x)e2Ωxz−Ωx2− Ω
2 z2

dx .

Here the Bargmann space is by definition a Hilbert space of entire functions equipped
with the inner product

( f |g) = 1

Ω

∫
C

f (z)g(z)e−|z|2 d(Re(z))d(Im(z)).

The main advantage is simply due to the fact; a† = (x − ϕx )/
→

2 ≤ z and a =
(x + ϕx )/

→
2 ≤ ϕz . This makes the Rabi model to be a matrix-valued first order

differential operator. The same situation, however, does not appear for NcHO. This
explains one of the reasons that the analysis for NcHO is rather difficult and very
likely richer.

Now we consider the spectral (Hurwitz type) zeta function of the Rabi model as

θRabi(s, z) =
⎭

ω∈Spec(HRabi)

(z − ω)−s,

where the sum runs over all eigenvalues ω of the Rabi model (counted with multiplic-
ity). As in the case of the spectral zeta function θQ(s) of NcHO, one can easily prove
that the sum converges absolutely and uniformly on compacts in the right hall plane
Re(s) > 1 so that it defines an analytic function in this region. Then, as in the case of
θQ(s), one can naturally expect that θRabi(s, z) has a meromorphic continuation to
the whole complex plane C, in particular meromorphic at s = 0. If we may assume
that θRabi(s, z) is holomorphic at s = 0, we define the zeta regularized product by

∏

∏

ω∈Spec(HRabi)

(z − ω) := exp (− d

ds
θRabi(0, z)).

(Notice that a zeta regularized product is identified with a usual product when the
defining series is finite. Moreover, even if θRabi(s, z) is not holomorphic at s = 0, one
may still define the zeta regularized product similarly. See [17, 19] and the references
therein for zeta regularizations.) It is known that the function

⎡
ω∈Spec(HRabi)

(z − ω)

is an entire function whose zeros are exactly given by the ω’s. Then, the following
claim follows naturally from the results of Braak [3] and Kus [20] above.

Conjecture 1 Let
⎡⎡Edeg

n ∈Spec(HRabi)
(z − n) be the zeta regularized product defined

by the series
⎣

Edeg
n ∈Spec(HRabi)

(z − Edeg
n )−s , where Edeg

n = n − g2 denotes the

doubly degenerate eigenvalue of the Rabi Hamiltonian. Then, there is a non-zero
entire function C(z) such that the following holds.
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∏∏

ω∈Spec(HRabi)

(z − ω − g2) = C(z)�(z)−2G+(z)G−(z)
∏

∏Edeg
n ∈Spec(HRabi)

(z − n)2.

Remark 2 It is important to study common zeros of the polynomials P (n)
n (x,α2).

Also, the proof should be done by an analytic continuation of the (Hurwitz) spectral
zeta function of the Rabi model in an explicit manner.

4 Lie Algebraic Description

To draw the picture more precisely we recall the representation theoretic setting. Let
H, E and F be the standard generators of sl2 defined by

H =
⎧

1 0
0 −1

⎨
, E =

⎧
0 1
0 0

⎨
, F =

⎧
0 0
1 0

⎨
.

They satisfy the commutation relations

[H, E] = 2E, [H, F] = −2F, [E, F] = H.

For the triplet (κ, ε, ν) ∈ R
3
>0, define a second order element R of the universal

enveloping algebra U (sl2) of sl2 by

R := 2

sinh 2κ

⎤[
(sinh 2κ)(E − F) − (cosh 2κ)H + ν

]
(H − ν) + (εν)2

⎦
.

Let us consider the representation (Ω ←, C[y]) of sl2 given by

Ω ←(H) = yϕy + 1/2, Ω ←(E) = y2/2, Ω ←(F) = −ϕ2
y /2.

Define an inner product on C[y] by ( f, g)F = →
Ω( f (ϕy)ḡ(y))|y=0 ( f, g ∈ C[y]).

Then (ym, yn)F = δm,n
→

Ωn!. If we denote by C[y] the completion of C[y] w.r.t.
this inner product, then it is shown that the representation (Ω ←, C[y]) is unitarily
equivalent to the oscillator representation of sl2 realized on the Hilbert spaces L2(R).

The following lemma follows immediately from [23] (Corollary 9 with Lemma
8), which translates the eigenvalue problem of Q into a single differential equation.

Lemma 2 Assume π ∧= ℘ (π℘ > 1). Determine the triplet (κ, ε, ν) ∈ R
3
>0 by the

formulas

cosh κ =
⎪

π℘

π℘ − 1
, sinh κ = 1→

π℘ − 1
, ε =

⎢⎢⎢π − ℘

π + ℘

⎢⎢⎢, ν = π + ℘

2
→

π℘(π℘ − 1)
ω.
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Then the eigenvalue problem Qϕ = ωϕ (ϕ ∈ L2(R, C
2)) is equivalent to the

equation Ω ←(R)u = 0 (u ∈ C[y]).
Remark 3 Notice that Ω ←(R) is a third order differential operator. The correspon-
dence ϕ ∼ u in the lemma above can be given explicitly. Remark also that the
recurrence equation (or its corresponding continued fraction) in [28] is equivalent to
this third order differential equation.

4.1 Intertwiners Arising from Laplace Transforms

In order to obtain a complex analytic picture of the equation Ω ←(R)u = 0 in Lemma
2 and observe a connection between NcHO and the Rabi model through Heun ODE,
we introduce two representations of sl2.

Let a ∈ N. Define first the operator Ta acting on the space of Laurent polynomials
C[y, y−1] (or y2

C[y]) by

Ta := −1

2
ϕ2

y + (a − 1)(a − 2)

2
· 1

y2 .

Define a modified Laplace transform La by

(Lau)(z) :=
∀∫

0

u(yz)e− y2

2 ya−1dy.

Then, one finds that

(LaTau) (z) =
⎥

− 1

2z
ϕz + a − 1

2z2

)
(Lau) (z) + 1

2z
u←(0)δa,1 − a − 1

2z2 u(0)δa,2,

where δa,k = 1 when k = a and 0 otherwise. This can be true whenever u(0), u←(0)

and (Lau)(z) exist.
We now define a representation Ω ←

a of sl2 on ya−1
C[y] by

Ω ←
a(H) = Ω ←(H), Ω ←

a(E) = Ω ←(E), Ω ←
a(F) = Ta = Ω ←(F) + (a − 1)(a − 2)

2
· 1

y2 .

Moreover, introduce another representation of sl2 on C[z, z−1] by

�a(H) = zϕz + 1

2
, �a(E) = 1

2
z2(zϕz + a), �a(F) = − 1

2z
ϕz + a − 1

2z2 .
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Then one easily verifies the following.

Lemma 3 Let a ∧= 1, 2. Then one has LaΩ
←
a(X) = �a(X)La (X ∈ sl2).

Furthermore, when a = 1 (resp. a = 2) the restriction ofL1 (resp.L2) to the space of
even (resp. odd) functions turns out to be an intertwiner between two representations
Ω ←(= Ω ←

1) (resp. = Ω ←
2)) and �1 (resp. �2).

Remark 4 Observe that La defines an isometry. For instance, assume a = 1. If
u(y) = ⎣N

n=0 un yn ∈ C[y] then (L1u)(z) = 1→
2

⎣N
n=0 un�( n+1

2 )(
→

2z)n . More-

over, if one defines the inner product in z-space such that {zn | n ∈ N} forms an

orthogonal basis and (zn, zn)1 = 2�( n
2 +1)

�
(

n+1
2

) , then L1 is an isometry. The others are

similar.

Since �a(E)z−a = 0, one has the following second equivalence: the representa-
tion (Ω ←

a, y2−a
C[y2]) can be considered as the Langlans quotient of the representa-

tions (�a, C[z2, z−2]) or (�a, zC[z2, z−2]) depending on the parity of a.

Lemma 4 The operator La gives the equivalence of irreducible modules of sl2:

(Ω ←
a, ya−1

C[y2]) ≥= (�a, za−1
C[z2]),

(Ω ←
a, y2−a

C[y2]) ≥= (�a, za
C[z2, z−2]/z−a

C[z−2]).

Moreover, the Casimir operator ZC := 4E F +H 2−2H ∈ ZU (sl2) takes the value
(a − 1)(a − 2) − 3

4 in both representations (Ω ←
a, ya−1

C[y2]) and (Ω ←
a, y2−a

C[y2]).
Remark 5 There is a symmetry a ∼ 3 − a for Ω ←

a . Actually, when a ∧∈ Z, there is a
equivalence between two representations Ω ←

a and Ω ←
3−a in a suitable setting.

4.2 Heun Differential Operators

In this section, we follow the results from [34]. Recall the operator R ∈ U (sl2).
Then, one observes

�a(R) =
⎤
(z2 + z−2 − 2 coth 2κ)

⎥
θz + 1

2

)

+ (a − 1

2
)(z2 − z−2) + 2ν

sinh 2κ

⎦
(θz + 1

2
− ν) + 2(εν)2

sinh 2κ
,

where θz = zϕz . Hence, conjugating by za−1 one obtains the following lemma.
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Lemma 5 For each integer a one has

z−a+1�a(R)za−1 =
⎤
(z2 + z−2 − 2 coth 2κ)(θz + a − 1

2
)

+ (a − 1

2
)(z2 − z−2) + 2ν

sinh 2κ

⎦
(θz + a − 1

2
− ν) + 2(εν)2

sinh 2κ
.

Furthermore, notice that the operators �a(H),�a(E) and �a(F) are invariant under
the symmetry z ≤ −z. This implies that the �a(R) can be expressed in terms of the
variable z2. We therefore put w := z2 coth κ . Using zϕz = 2wϕw and the relations

z2 + z−2 − 2 coth 2κ = (tanh κ)w−1(w − 1)(w − coth2 κ),

z2 − z−2 = (tanh κ)w−1(w2 − coth2 κ),

2/ sinh 2κ = (tanh κ)(coth2 κ − 1),

factoring out the leading coefficient of �a(R) in its expression one obtains

Proposition 1 The following relation holds:

z−a+1�a(R)za−1 = 4(tanh κ)w(w − 1)(w − coth2 κ)Ha(w, ϕw),

where Ha(w, ϕw) is the Heun differential operator given as follows:

Ha(w, ϕw) = d2

dw2 +
⎥

3 − 2ν + 2a

4w
+ −1 − 2ν + 2a

4(w − 1)
+ −1 + 2ν + 2a

4(w − coth2 κ)

)
d

dw

+
1
2 (a − 1

2 )(a − 1
2 − ν)w − qa

w(w − 1)(w − coth2 κ)
.

Here the accessory parameter qa is given by

qa =
⎤

− (a − 1

2
− ν)2 + (εν)2

⎦
(coth2 κ − 1) − 2

⎥
a − 1

2

) ⎥
a − 1

2
− ν

)
.

5 Heun Operators’ Description for NcHO

The equivalence between the spectral problem of Q and the existence/non-existence
of holomorphic solutions of Heun ODE’s in a certain complex domain is described
in [23] for odd parity and in [34] for even parity. The proof follows from the follow-
ing quasi-intertwining property of the operator L j resulted from Lemma 3 and the
realization of the representation � j .
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Proposition 2 The element R ∈ U (sl2) satisfies the following equations:

(L1Ω
←(R)u)(z) = �1(R)(L1u)(z) + (ν − 3

2 )u←(0)z−1,

(L2Ω
←(R)u)(z) = �2(R)(L2u)(z) − (ν − 1

2 )u(0)z−2.

In particular, the eigenvalue problem Qϕ = ωϕ for the even and odd case is respec-
tively equivalent to the equation

�1(R)(L1u)(z) = 0 (the even case) and �2(R)(L2u)(z) = 0 (the odd case).

Noting that, for instance the even case,

�1(R) = 4(tanh κ)w(w − 1)(w − π℘)H+
ω (w, ϕw),

one has the following by Proposition 2 ([34]). The odd case was obtained in [23].

Theorem 1 There exist linear bijections:

Even : {ϕ ∈ L2(R, C
2) | Qϕ = ωϕ, ϕ(−x) = ϕ(x)} ≥−≤ { f ∈ O(φ) | H+

ω f = 0},
Odd : {ϕ ∈ L2(R, C

2) | Qϕ = ωϕ, ϕ(−x) = −ϕ(x)} ≥−≤ { f ∈ O(φ) | H−
ω f = 0},

where φ is a simply-connected domain in C (w-space) such that 0, 1 ∈ φ while π℘ ∧∈
φ, O(φ) denotes the set of holomorphic functions on φ, and H±

ω = H+
ω (w, ϕw) are

the Heun ordinary differential operators given respectively by

H+
ω (w, ϕw) := d2

dw2 +
⎥ 1

2 − p

w
+ − 1

2 − p

w − 1
+ p + 1

w − π℘

)
d

dw
+ − 1

2

(
p + 1

2

⎫
w − q+

w(w − 1)(w − π℘)
,

H−
ω (w, ϕw) := d2

dw2 +
(1 − p

w
+ −p

w − 1
+ p + 3

2
w − π℘

) d

dw
+ − 3

2 pw − q−
w(w − 1)(w − π℘)

.

Here p = 2ν−3
4 with ν = π+℘

2
→

π℘(π℘−1)
ω. The accessory parameters q± =

q±(ω, π, ℘) can be explicitly expressed by the parameters π, ℘ and eigenvalue ω

[34].

Remark 6 The modified Laplace transform û(= L2u) in [23] defines the intertwiner
when restricting to the space of odd functions but does not for the even case.

6 Capturing the Rabi Model by R

In this section, employing the standard confluence process of Heun equations, we
observe that the Rabi model can be obtained from R ∈ U (sl2) by a suitable choice
of a triple (κ, ε, ν) ∈ R

3. In the sequel, we assume a ∈ R, not necessarily an integer.
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6.1 Confluent Heun’s Equation Derived from Rabi’s Model

The Schrödinger equation HRabiϕ = Eϕ of the quantum Rabi model is reduced to
the following second order differential equation (see e.g. [34, 38]):

d2 f

dz2 + p(z)
d f

dz
+ q(z) f = 0,

where

p(z) = (1 − 2E − 2g2)z − g

z2 − g2 , q(z) = −g2z2 + gz + E2 − g2 − α2

z2 − g2 .

Write f (z) = e−gzφ(x), where x = (g + z)/2g. Substituting f into the equation
above, one finds that the function φ satisfies the following confluent Heun equation
(by a similar calculation in [38]). Actually, one has HRabi

1 φ = 0, where

HRabi
1 := d2

dx2 +
⎤

− 4g2 + 1 − (E + g2)

x
+ 1 − (E + g2 + 1)

x − 1

⎦ d

dx
+ 4g2(E + g2)x + μ

x(x − 1)

with the accessory parameter μ = (E + g2)2 − 4g2(E + g2) − α2.

Remark 7 Setting f (z) = egzφ(x), where x = (g − z)/2g, one obtains another
equation H Rabi

2 φ = 0. Here

HRabi
2 := d2

dx2 +
⎤
−4g2+ 1 − (E + g2 + 1)

x
+ 1 − (E + g2)

x − 1

⎦ d

dx
+ 4g2(E + g2 − 1)x + μ

x(x − 1)
.

6.2 Confluence Process of the Heun Equation

Put t = coth2 κ(> 1). The Heun operator Ha(w, ϕw) derived from �a(R) is given
by

Ha(w, ϕw) = d2

dw2 +
⎥

3 − 2ν + 2a

4w
+ −1 − 2ν + 2a

4(w − 1)
+ −1 + 2ν + 2a

4(w − t)

)
d

dw

+
1
2 (a − 1

2 )(a − 1
2 − ν)w − qa

w(w − 1)(w − t)
.
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The corresponding generalized Riemann scheme [32] is expressed as

⎛
⎜⎜⎝

1 1 1 1
0 1 t ∀ ; w qa

0 0 0 a − 1
2

1+2ν−2a
4

5+2ν−2a
4

5−2ν−2a
4

−1−2ν+2a
4

⎞
⎟⎟⎠.

Here the first line indicates the s-rank of each singularity. Replace a (resp. ν) by
a + p (resp. ν + p) in the expression of H a(w, ϕw) above. It follows then that

A := 1

4
(−1−2ν +2a), B := a + p + 1

2
, C := 1

4
(3−2ν +2a) = 1+ A, D := A.

Write it as

w(w − 1)(w − t)Ha(w, ϕw) =w(w − 1)(w − t)ϕ2
w

+
[
C(w − 1)(w − t) + Dw(w − t)

+ (A + B + 1 − C − D)w(w − 1)
]
ϕw + ABw − qa .

Consider a confluence process of the singular points at w = t and ∀ (Table 3.1.2
in [32]). The process is given as t := ρ−1, B := rρ−1 and ρ ≤ 0 (equivalently
p ≤ ∀):

− lim
ρ≤0

w(w − 1)(w − t)ρHa(w, ϕw)

= w(w − 1)ϕ2
w + [

C(w − 1) + Dw − rw(w − 1)
]

− r Aw + lim
ρ≤0

ρqa.

Now we take ε = kρ for some constraint k. Then one has a confluent Heun equation.

d2φ

dw2 +
[

− r + 1 + A

w
+ A

w − 1

] dφ

dw
+ −r Aw − (2A)2 − 4A + k2

w(w − 1)
φ = 0.

Notice that w = ∀ is an irregular singularity with s-rank 2 (see e.g. [32]). Compare
this with the confluent Heun operator H Rabi

1 for the Rabi model. Then, taking r =
4g2, A = −(E + g2) with a suitable choice of k in this equation gives the latter.

Remark 8 Let K =
⎧

0 1
1 0

⎨
. Similarly to Lemma 2, one can show that the eigenvalue

problem K QKϕ = ωϕ is equivalent to the equation Ω ←(R̃)u = 0, where

R̃ := 2

sinh 2κ

⎤
(H − ν)

[
(sinh 2κ)(E − F)− (cosh 2κ)H + ν

]
+ (εν)2

⎦
∈ U (sl2).
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Then, a confluence procedure for �a(R̃) similarly to that of �a(R) yields HRabi
2 in

Remark 7. Moreover, one can find an element K (resp. ˜K ) ∈ U (sl2) of order two
such that �a(K ) (resp. �a( ˜K )) essentially provides HRabi

1 (reps. HRabi
2 ) [36].

7 Conclusion

So far, even well-developed Lie theory has never contributed the spectral problems
of quantum interaction models in a definite way. One of the simplest reasons is
obviously the absence of the creation/annihilation operators (see [27]). Hence the
observation in this article might provide a new insight. Also, probably, as many of
physicists may think there is an important questions: What are the detailed meaning
of the exact solvability of [3], if it really differs from integrability? At the same time,
according to [33], no second operator—integral of motion—exists. Therefore we
should explore a fundamentally new category of exact solvability. As we have seen,
the NcHO can be a “mother” of the Rabi model through the confluence procedure,
whence one may expect to obtain an unified understanding of some sort of quantum
interaction models using (in general, much higher R-rank) Lie groups/algebras.
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Introduction to Public-Key Cryptography

Tsuyoshi Takagi

Abstract Cryptography was once considered to be a means of maintaining secrecy
of communications only in military affairs and diplomacy. However, today, mod-
ern cryptography is used for various purposes in familiar circumstances. Public-key
cryptography is a key technology of modern society; it is used for personal authen-
tication, electronic commerce on the Internet, copyright protection of DVDs, and so
on. In particular, the RSA public-key cryptosystem, which was proposed more than
30 years ago, has become the de facto standard of cryptographic software since the
spread of the Internet in the 1990s. Another technology, called elliptic curve cryptog-
raphy, was proposed in 1985. It can perform arithmetic processing at high speed, and
since the beginning of the 2000s, it has been implemented in devices such as DVD
players and personal digital assistants. Pairing-based cryptography, first proposed
in 2000, can be incorporated in security technologies that are not practical with the
previous public-key cryptographies. It is actively studied by various organizations
around the world. In this chapter, we explain the basic mathematics and security
evaluations of public-key cryptography.

Keywords Bilinear pairing · Public-key cryptography · Discrete logarithm prob-
lem · Elliptic curve · Factoring

1 Introduction

Public-key cryptography is one of the key technologies for maintaining information
security in the world today. For example, secure socket layer (SSL), an encryp-
tion system incorporating public-key cryptography, is used for securely transmitting
secret data such as credit card numbers.
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Fig. 1 Internet banking using public-key cryptography

Figure 1 sketches the public-key cryptography used in internet banking. Two
different keys are generated, namely a secret key and the corresponding public key.
The secret key is securely stored in the receiver (server), and the public key is visible
to the whole network. If we want to send a credit-card number to the server, we
encrypt it with the public key on the network, and send its ciphertext to the server via
the Internet. Thanks to the encryption, potential attackers cannot learn the credit-card
number. At the same time, the server, which has the secret key, is able to decrypt the
ciphertext. Note that only the public key is required to encrypt messages, and thus,
public-key cryptography does not need to transmit the secret key of the server.

The most frequently used public-key cryptography is the RSA cryptosystem,
whose security is based on the hardness of the factoring problem [21]. On the other
hand, elliptic curve cryptography (ECC) relies on the intractability of the discrete
logarithm problem on elliptic curves over finite fields [16, 18]. ECC has equiva-
lent security to that of an RSA cryptosystem, but with a shorter key size. Recently,
pairing-based cryptography (PBC) has attracted the attention of researchers and orga-
nizations concerned with cryptography. PBC enables many novel cryptographic pro-
tocols, such as ID-based encryption [4, 22], which cannot be efficiently constructed
using RSA or ECC. In particular, PBC involves a pairing that reduces the discrete
logarithm problem on elliptic curves to one over finite fields.

In this chapter, we give a short overview of the development of public-key cryp-
tography, starting with the RSA cryptosystem and moving on to ECC and PBC. We
explain how the basic mathematical structure influences the security and efficiency
of public-key cryptography.
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2 RSA Cryptosystem

The RSA cryptosystem was proposed by Rivest, Shamir, and Adleman in 1977 [21].
In this cryptosystem, a one-way function with a trapdoor is constructed by using the
basic mathematical property of the divisibility of integers.

For given integers a, b, there are uniquely determined integers q, r such that
a = bq + r and 0 ∈ r < b. The integers q, r are called the quotient q and remainder
r of dividing a by b, and we write r = a mod b. The set Zk = {0, 1, 2, ..., k − 1}
of all remainders by an integer k is called the residue ring modulo k. If the greatest
common divisor of two integers is one, the two numbers are called relatively prime.
We denote by Z×

k the set of all integers in the residue ring Zk that are relatively prime
to k, and Z×

k forms a group, which is called the multiplicative group modulo k.
The security of the RSA cryptosystem is based on the computational difficulty of

factoring integers. The cryptosystem is constructed on the multiplicative group Z×
n ,

where n is the product of two integers p, q of the same size. In the following, we
explain the construction of the RSA cryptosystem.

[Key Generation] Let n = pq, where p, q are two distinct primes of the same bit-length.
Generate integers (e, d) such that ed = 1 mod (p − 1)(q − 1). The public key is (e, n), and
the secret key is d.

[Encryption] We choose the a representative of the residue ring Zn as Zn = {0, 1, 2, ..., n − 1}.
We encrypt a message m ⊂ Zn with the public key (e, n) by computing c = me mod n.
Then c is the ciphertext of m.

[Decryption] For the ciphertext c, we decrypt m with the secret key d by computing m =
cd mod n.

Here, the order of the multiplicative group Z×
n is (p − 1)(q − 1), and there is an

integer k such that ed = 1+k(p−1)(q−1). Therefore, as a result of Euler’s theorem,
we can decrypt m by computing cd = med = m1+k(p−1)(q−1) = m mod n for
gcd(m, n) = 1. In the case of gcd(m, n) →= 1, we have m = 0 mod p, m = 0 mod q,
or m = 0, and the message can be recovered with the same decryption.

2.1 Security of the RSA Cryptosystem

The security of the RSA cryptosystem is based on the hardness of the factorization
problem. If the public key n = pq can be easily factored, the secret key d can be
easily computed by d = e−1 mod (p − 1)(q − 1), and the cryptosystem would be
completely broken. Here, the asymptotically fastest algorithm for factoring n is the
number field sieve (NFS) [17], which requires a subexponential time in the bit length
of n, i.e., O(exp(((64/9)1/3 + o(1))(log n)1/3(log log n)2/3)), where o(1) ⊃ 0 for
n ⊃ ∧.

The secure bit length of n in the RSA cryptosystem depends on the speed of the
factoring algorithm used against it as well as the capabilities of software and hardware
technology of computers. Currently, it is considered infeasible to factor more than
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1024 bits, but a longer key size will be needed in the near future. In this regard, the
CRYPTREC project has reported on secure key sizes for the RSA cryptosystem [10].

Next, we explain the security of the RSA cryptosystem in the sense of one-
wayness. In the following, we denote by RS Aπ the set of all public keys of an
RSA cryptosystem of π bits. Let N and R be the set of natural and real numbers,
respectively. A function ℘(π) : N ⊃ R is called negligible, for any integer ω > 0,
there exists an integer πω > 0 that satisfies ℘(π) < 1/πω for π with π > πω .

Let us consider an algorithm A that computes a message m from a randomly
chosen ciphertext c and public key (e, n) in RS Aπ. Given any polynomial-time
algorithm A for the input size π, if the probability

Pr

[
(e, n) ← RS Aπ, m ← Zn,

c ← me mod n : A(e, n, c) = m

]
< ℘(π)

is negligible, the RSA cryptosystem is called secure in the sense of one-wayness.
The one-wayness will be compromised if we can compute the eth root m =

c1/e mod n from the public key (e, n) and ciphertext c. However, it is an open problem
as to whether the one-wayness of the RSA cryptosystem can be compromised without
having to factor the public key n [7].

3 Elliptic Curve Cryptography

Elliptic curve cryptography was independently proposed by Miller [18] and
Koblitz [16] in 1985. This cryptosystem is constructed by using the elliptic curve
over finite field.

3.1 Addition Formulae of Elliptic Curves

For a prime number p > 3, the elliptic curve over a finite field G F(p) is

E(a, b, p) := {(x, y) ⊂ G F(p) × G F(p) | y2 = x3 + ax + b} ≈ {∧} (1)

where a, b ⊂ G F(p) satisfies 4a3 + 27b2 →= 0 and ∧ is the point at infinity.
Equation (1) is called the Weierstrass form of the elliptic curve. E(a, b, p) forms
an additive group with the zero element ∧, and the inverse of P = (x, y) is
given by −P = (x,−y). From Hasse-Weil’s theorem, the order of E(a, b, p) is
#E(a, b, p) = p + 1 − t , with |t | ∈ 2

≤
p, where t is the trace of the Frobenius map

of E(a, b, p). Namely, the order of E(a, b, p) is approximately as large as p.
Given two points P1 = (x1, y1), P2 = (x2, y2) on elliptic curves E(a, b, p)

which are different from ∧, the addition P1 + P2 = (x ∀, y∀) can be computed by
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Fig. 2 Addition and doubling on elliptic curves

x ∀ = ε2 − x1 − x2, y∀ = ε(x1 − x ∀) − y1,

ε =
{

(y2 − y1)/(x2 − x1) for P1 →= ±P2

(3x2
1 + a)/(2y1) for P1 = P2.

(2)

Addition P1 + P2, (P1 →= ±P2) and doubling 2P1 on an elliptic curve E(a, b, p)

are, respectively, denoted by ECADD and ECDBL.
Figure 1 illustrates ECADD and ECDBL on the elliptic curve y2 = x3 +1 defined

over a real field. Regarding ECADD, let l be the line that passes both P1 and P2.
There is a third point P3 through line l on elliptic curve. Let h be the line through
P3 and the point at infinity ∧. Then h is the vertical line to the x-axis from P3,
and the symmetric point of P3 to the x-axis on elliptic curve becomes the resulting
addition P1 + P2. In ECDBL, let P3 be another point on the elliptic curve that is on
the tangent line l on point P1. The doubling 2P1 is another crossing point of h that
passes through P3 and the point at infinity ∧.

We usually use elliptic curves of prime order in ECC in order to avoid sub-
group attacks. The order #E of an elliptic curve E(a, b, p) can be efficiently
counted for given a, b, p of Eq. (1) by Schoof’s algorithm [2, Chap. VII]. For a
given order #E(a, b, p) and characteristic p, we can efficiently find the coefficients
a, b ⊂ G F(p) by performing complex multiplication [2, Chap. VIII]. It is possi-
ble for many users to use one fixed elliptic curve as a set of system parameters in
ECC. For example, SECG (http://www.secg.org/) recommends elliptic curves that
are secure against known attacks (Fig. 2).

http://www.secg.org/
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3.2 Elliptic Curve Cryptography

In the following, we explain about ElGamal encryption based on elliptic curve.

[System Parameter] Given a prime number p > 3, generate an elliptic curve E(a, b, p)

defined by a, b ⊂ G F(p) of prime order #E = π. Let G be a generator of E(a, b, p). All
users share a, b, p, π, G as system parameters.

[Key Generation] Let s ⊂ Zπ be the secret key of a user, and let Q = sG be the
corresponding public key.

[Encryption] A message M is chosen as a point M on the elliptic curve E(a, b, p). Using
the system parameter G, a random integer r ⊂ Zπ, and public key Q, we encrypt the message
M by computing C1 = rG ⊂ E(a, b, p), C2 = r Q + M ⊂ E(a, b, p). Then (C1, C2) is
the ciphertext of M .

[Decryption] For ciphertext (C1, C2), we can decrypt the message M by using secret key
s to compute M = C2 − sC1 ⊂ E(a, b, p).

Here we can uniquely decrypt the message M due to relationship C2 − sC1 =
(r Q + M) − s(rG) = rsG + M − rsG = M .

The security of ECC relies on the intractability of the discrete logarithm problem
on E(a, b, p), wherein one tries to compute the secret key s of Q = sG from
the public key Q and system parameter G. No algorithm for solving the discrete
logarithm problem on E(a, b, p) in subexponential time in the bit length of p has
been found so far. The fastest algorithm currently known is Pollard’s α method [20],
which requires O(

≤
p). It is estimated that an ECC of 160 bits p is as secure as an

RSA cryptosystem of 1024 bits n. This means that the key length of ECC can be
made much shorter than that of RSA and that ECC is suitable for embedded devices
that have small memories.

On the other hand, the public key Q = (x, y) used for ECC is generated by
Q = sG from the random secret key s ⊂ Zπ and the system parameter G, and
thus, Q = (x, y) is a randomly distributed point on the elliptic curve E(a, b, p). An
example of a public key Q = (x, y) of 160 bits in hexadecimal is
x = 4A96B568 8EF57328 46646989 68C38BB9 13CBFC82

y = 23A62855 3168947D 59DCC912 04235137 7AC5FB32

In this example, the curve parameters are chosen as p = 2160 − 231 − 1, a = −3,
and b = 1C97BEFC 54BD7A8B 65ACF89F 81D4D4AD C565FA45. The y-coordinate of Q =
(x, y) on E(a, b, p) can be computed as y = (x3 +ax +b)1/2, and thus, it is possible
to use only the x-coordinate for the public key.

4 Pairing-Based Cryptography

Sakai, Ohgishi, and Kasahara presented a cryptosystem based on pairing at the 2000
Symposium on Cryptography and Information Security, Japan [22]. Since then, many
cryptographic pairing-based protocols have been proposed that would have been
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difficult to construct by using RSA or ECC. These include ID-based encryption [4],
keyword searchable encryption [5], and efficient broadcast encryption [6]. Here, we
explain the algorithm for computing pairing and ID-based encryption.

4.1 Pairing

We deal with Tate pairing over supersingular elliptic curves defined on a finite field
of characteristic p > 3 [8]. The details on how to construct pairings over elliptic
curves can be found in [11, 25].

For b = 0, 1 we define an elliptic curve over a finite field G F(p) as follows:

Eb(p) = {(x, y) ⊂ G F(p) × G F(p) | y2 = x3 + (1 − b)x + b} ≈ {∧}.

The trace of the Frobenius map of Eb(p) is 0, and the order of the elliptic curve
becomes #Eb(p) = p + 1, if p ≥ 3, 2 mod 4, respectively, holds for b = 0, 1.
Such elliptic curves are called supersingular, and the following assumes that Eb(p)

is supersingular. Let π be a prime number with gcd(π, p) = 1 and π|#Eb(p). We
usually choose #Eb(p) to be as large as π in cryptography. From π|(p2 − 1), the
extension field G F(p2) contains the πth primitive root of 1. Denote by Eb(p)[π] the
subgroup of Eb(p) of order π. The Tate pairing is a non-degenerate bilinear pairing
map e defined by

e : Eb(p)[π] × Eb(p2)/πEb(p2) ⊃ G F(p2)×/
(

G F(p2)×
)π

.

For a point P ⊂ Eb(p), we define the function f (π)
P (x, y) whose divisor ( f (π)

P ) is

equivalent to π(P) − π(∧). The Tate pairing is computed by e(P, R) = f (π)
P (R) for

a point R = (x, y) ⊂ Eb(p2)/πEb(p2).
We choose the basis of G F(p2) over G F(p) to be {1, i} for p ≥ 3 mod 4,

where i2 = −1. In the following, we will consider an elliptic curve with this
fixed basis (we can similarly discuss an elliptic curve E1(p) using a different
basis). The distortion map is defined by β(x, y) = (−x, iy) ⊂ E0(p2) for a
point Q = (x, y) ⊂ E0(p). There exists a point Q ⊂ E0(p)[π] that satisfies
R = β(Q) for R ⊂ E0(p2)/πE0(p2), and thus, we can define a Tate pairing
e(P, β(Q)) for the points P, Q ⊂ E0(p)[π]. In order to decide the value of Tate

pairing uniquely in G F(p2)×/
(
G F(p2)×

)π
, we define the reduced Tate pairing as

ê(P, Q) = e(P, β(Q))(p2−1)/π for P, Q ⊂ E0(p). The reduced Tate pairing over
E0(p) satisfies the bilinearity condition ê(a P, Q) = ê(P, aQ) = ê(P, Q)a for an
integer a, and thus, it is a non-degenerate symmetric bilinear pairing map.

Next, let us explain the Miller algorithm, which is an efficient algorithm for
computing Tate pairings [19]. Let l be a line that passes through points P1, P2, and
let h be a line through P3 and the point at infinity. These lines l, h were used for
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the addition formulae of elliptic curves (Fig. 1) described in the previous section.
Let gl , gh be linear equations over G F(p) corresponding to lines l, h. For points
P1, P2 ⊂ Eb(p), function f (π)

P has the following relationship [3, Chap. IX]:

f (π)
P1+P2

= f (π)
P1

f (π)
P2

gl

gh
. (3)

The pairing ê(P, Q) = f (π)
P (β(Q))( p2 − 1)/π can be computed by calling this

relationship O(log p) times by using a binary expansion of π = ∑t−1
i=0 π[i]2i ,

π[t − 1] = 1, π[i] ⊂ {0, 1} for i = 0, 1, ..., t − 2. Algorithm 1 is one for com-
puting the reduced Tate pairing.

%queryPlease check and confirm the inserted opening brace in sentence starting
with ?Algorithm 1 is one for computing the reduced Tate pairing..., and amend if
necessary.

Algorithm 1: Computation of Tate Pairing for E0(p)

Input: P = (x p, yp), Q = (xq , yq ) ⊂ E0(p)[π], π = ∑t−1
i=0 π[i]2i , π[t − 1] = 1

Output: ê(P, Q) ⊂ G F(p2)×/(G F(p2)×)π

1. f ← 1 and V ← P
2. for i ← t − 2 to 0 do

2.1. Set the lines l and h for ECDBL(T )

2.2. f ← f 2 gl (β(Q))
gh (β(Q))

in G F(p2)

2.3. T ← ECDBL(T ) in E0(p)

2.4. if π[i] = 1 do
2.5. Set the lines l and h for ECADD(T, P)

2.6. f ← f gl (β(Q))
gh (β(Q))

in G F(p2)

2.7. T ← ECADD(T, P) in E0(p)

3. return T (p2−1)/π

Each step of the second loop in Algorithm 1 can be implemented by arithmetic
operations (addition, multiplication, inverse) in a finite field G F(p) and requires
O((log p)2) bit operations. The final exponentiation f (p2−1)/π can be computed by
in O(log p) multiplications of the finite field G F(p2) by using the binary expansion
of (p2 − 1)/π. The total computation cost of the Miller algorithm is O((log p)3) bit
operations. Moreover, there are several speed-up methods, such as eliminating the
denominator gh(β(Q)), reducing the Hamming weight of the binary expansion of π,
and using the Jacobian coordinate [15]. In recent implementations, bilinear pairing
maps of 80- to 128-bit security can be computed as efficiently as the decryption of
an RSA cryptosystem having the same security level [14, 26].
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4.2 ID-Based Encryption

The bilinearity of the reduced Tate pairing ê provides us with an ID-based encryption
that cannot be efficiently constructed with an RSA cryptosystem or ECC [4, 22].

[System Parameter] Let p be a prime number, and let b = 0, 1. Let P be a generator of
the subgroup of prime order π in an elliptic curve Eb(p). We generate a master key s ⊂ Zπ,
and set Q = s P . All users share p, b, π, P, Q as system parameters.

[Key Generation] The user ID is embedded in a point QID ⊂ Eb(p)[π], and the secret key
is computed by SID = s QID . It might be possible to delete the master key s after generating
the secret key of all users.

[Encryption] Let m be a message m ⊂ G F(p2). Using the system parameters P, Q, a
random integer r ⊂ Zπ, and public key QID , we encrypt the message m by computing
C1 = r P ⊂ Eb(p)[π], c2 = mê(Q ID, Q)r ⊂ G F(p2). Then (C1, c2) is the ciphertext of
message m.

[Decryption] For the ciphertext (C1, c2), we can decrypt m with the secret key SID ⊂
Eb(p)[π] by computing m = c2 ê(SID, C1)

−1 ⊂ G F(p2).

The bilinearity of ê ensures the following relationship:

c2ê(SID, C1)
−1 = mê(Q ID, Q)r ê(SID, C1)

−1 = mê(QID, P)rs ê(QID, P)−rs = m,

and thus, the message m can be uniquely decrypted.

ID-based encryption generates a secret key SID for each user ID, namely QID .
Therefore, the x-coordinate of the public key Q ID can be a freely chosen bit string
(for example, takagi@imi.kyushu-u.ac.jp). On the other hand, if we want to realize an
ID-based encryption by using ECC, we have to solve a discrete logarithm problem on
Eb(p)[π] in order to get the secret key s from the system parameter G and QID = sG.

The security of ID-based encryption is based on the difficulty of the discrete log-
arithm problem on both the finite field G F(p2) and elliptic curve Eb(p). Indeed,
the problem of finding the master key s from system parameters P and Q wherein
Q = s P is equivalent to the discrete logarithm problem on Eb(p). As we stated
in the previous section, this problem requires an exponential time O(

≤
π), and

the size of π must be at least 160 bits. Moreover, for any R ⊂ Eb(p)[π], we
have ê(R, Q) = ê(R, s P) = ê(R, P)s . We can recover the master key s, if the
discrete logarithm problem for ê(R, Q) and ê(R, P) over G F(p2) can be effi-
ciently computed. The asymptotically fastest algorithm for solving the discrete
logarithm problem on G F(p2) is the number field sieve (NFS) over finite fields
[23]. The asymptotic speed of NFS is estimated to be subexponential in time:
O(exp

((
(64/9)1/3 + o(1)

)
(log p2)1/3(log log p2)2/3

)
. This asymptotic complexity

is as large as that of the number field sieve used for factoring integers, and thus, the
length of p2 should be as large as that of the public key of the RSA cryptosystem.

http://takagi@imi.kyushu-u.ac.jp
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Many large-scale experiments on PBC (including ECC) have attempted to esti-
mate the maximum bit length for which the discrete logarithm problem can be solved
in actual computational environments. The current world records on solving the dis-
crete logarithm problem are 112 bits for an elliptic curve over finite field G F(p), 532
bits for a finite field G F(p), and 923 bits for a finite field G F(3n) of characteristic
three [13]. In light of these figures, we can determine the secure key length of PBC
in practical environments by considering the computational limits that attackers are
likely to have.

5 Conclusion

This chapter described the development of public-key cryptography, one of the core
technologies in the field of information security. In particular, we explained the
construction and security of the RSA cryptosystem, ECC, and pairing-based cryp-
tography. The development of PBC has been relatively quick. The first international
conference on PBC was held in 2007 [24]. We expect that research on pairing-based
cryptography will continue to advance at a rapid pace.
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Code-Based Public-Key Encryption

Kirill Morozov

Abstract We present a short survey of public-key encryption (PKE) schemes based
on hardness of general decoding. Such the schemes are believed to be resistant even
against attacks using quantum computers, which makes them candidates for the
so-called post-quantum cryptography. First, we briefly introduce the state-of-the-art
in the area of code-based PKE. Then, we describe the McEliece PKE, two major
attacks against this scheme and the proposed parameters. Finally, we survey recent
results on the variants of this PKE which are proven to be indistinguishable under
chosen plaintext and chosen ciphertext attacks.

Keywords Goppa codes · General decoding · McEliece public-key encryption ·
Recommended parameter sets · Provable security

1 Introduction

The first public-key encryption (PKE) scheme based on error-correcting codes was
introduced by McEliece in 1978 [28]. This scheme used Goppa codes [16, 26],
a subclass of alternant codes, which has the following useful features: (1) The lower
bound on its minimal distance (and hence the number of correctable errors) is known;
(2) Hardness of recovering the decoding algorithm from a proper representation of
the code—the meaning of this property will be explained later. In this section, we
focus on irreducible Goppa codes overF2, and only note that working with codes over
larger fields may help to decrease the key size [7]. There were many attempts to use
different classes of codes in the McEliece-type public-key encryption schemes, but
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some of them turned out to be insecure, while others are currently under evaluation—
we leave this topic out of scope of this survey.

Another famous code-based PKE scheme was introduced by Niederrieter in
1986 [31]. Originally, Generalized Reed-Solomon codes were proposed to be used,
however this construction was shown insecure by Sidelnikov and Shestakov [42].
Nonetheless, when Goppa codes are employed, the security of Niederreiter PKE is
equivalent to that of McEliece PKE as shown by Li et al. [24]. For details, we refer
the reader to the surveys [12, 33].

The main advantage of the above code-based PKE’s is that there is no efficient
attack on this system using quantum computers [5, 35]. This makes them candidates
for post-quantum PKE [35]. Although at this moment, quantum computers exist
only as early prototypes, it is important to consider secure alternatives to currently
used cryptographic systems (such as RSA [38]) which are not quantum-tolerant
[35]. Another important advantage of code-based PKE is their fast encryption and
decryption algorithms, that admit implementation even for embedded and memory-
constraint devices, see e.g., [11, 17, 44]. The main disadvantage of both McEliece
and Niederreiter PKE is their relatively large public key size.

Recent research on code-based encryption proceeds in the following main
directions1:

• Attacks on underlying assumptions: decoding attacks [1, 6], structural attacks
[13, 41].

• Study on compact keys [3, 29].
• Alternatives to Goppa codes [36].
• Efficient and compact implementations: [11, 17, 44].
• Advanced cryptographic protocols for code-based PKE [10, 18, 27].

The rest of this presentation will be focused on McEliece PKE.

2 Background

2.1 Notation

Let J be an ordered subset as follows: { j1, . . . , jm} = J ∈ {1, . . . , n}, then we
denote a vector (x j1 , . . . , x jm ) ⊂ F

m
2 by xJ . Similarly, we denote by MJ the submatrix

of a (k × n) matrix M consisting of the columns which correspond to the indexes of
J . A concatenation of vectors x ⊂ F

n0
2 and y ⊂ F

n1
2 is written as (x |y) ⊂ F

n0+n1
2 . For

x, y ⊂ F
m
2 , x + y denotes a bitwise exclusive-or. We denote by x →R X a uniformly

random selection of an element from its domain X .

1 Note that this collection of references is by no means comprehensive—it only contains some of
the representative works on the topics in question.
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2.2 Elements of Coding Theory

2.2.1 Linear Codes

A binary (n, k)-code C is a k-dimensional subspace of the vector space F
n
2; n and

k are called the length and the dimension of the code, respectively. We call C an
(n, k, d)-code, if its so-called minimum distance is d := min

x,y⊂C
x ⊃=y

dH (x, y), where dH

denotes the Hamming distance (i.e., the number of positions where x and y differ).
The distance of x ⊂ F

n
2 to the zero-vector 0n denoted by wH (x) := dH (x, 0n) is

called the weight of x . We will write 0 to represent the zero-vector 0n , omitting n
which will be clear from the context.

For the relevant topics in coding theory we refer the reader to [26, 39].

2.2.2 Goppa Codes

In this subsection, we will follow the presentation of [12]. Let us first define a binary
irreducible Goppa code of length n. Set m = log2 n. Let t be an integer—in fact, it
will be an upper bound on the number of errors, which the code can correct.

Let g(X) = ∑t
i=0 gi Xi ⊂ F2m [X ] be a monic polynomial of degree t called the

Goppa polynomial and L = (γ0, . . . , γn−1) ⊂ F
n
2m called the support, which is a

tuple of n distinct elements such that g(γi ) ⊃= 0, for all 0 ∧ i ∧ n − 1.
For any vector y ⊂ F

n
2, define the syndrome of y by Sy(X) := ∑n−1

i=0
yi

X−γi
mod g(X), where yi denotes the i-th bit of y.

Definition 1 The binary Goppa code G(L , g(X)) is the set of all vectors y ⊂ F
n
2

such that the identity Sy(X) = 0 holds in the polynomial ring F2m [X ].
If g(X) is irreducible over F2m , then G(L , g(X)) is called an irreducible binary

Goppa code.

Parity-Check and Generator Matrices. A parity-check matrix of G(L , g(X)) can
be written as: H = XY Z , where

X =


⎧⎧⎧⎨

gt 0 0 · · · 0
gt−1 gt 0 · · · 0

...
...

...
. . .

...

g1 g2 g3 · · · gt

⎩
⎫ , Y =


⎧⎧⎧⎨

1 1 · · · 1
γ0 γ1 · · · γn−1
...

...
. . .

...

γ t−1
0 γ t−1

1 · · · γ t−1
n−1

⎩
⎫ ,

and Z = Diagn(g(γ0)
−1, g(γ1)

−1, . . . , g(γn−1)
−1), where Diagn(·) denotes the

diagonal matrix of size n with the arguments being the elements of the main diagonal.
Since X is a k × k invertible matrix, when multiplying the parity-check matrix by it,
we obtain an equivalent representation of the same code. Therefore, one may omit
X , and compute H = Y Z .



50 K. Morozov

We have
y ⊂ G(L , g(X)) if and only if H yT = 0. (1)

The entries of H are elements of the extension field F2m over F2. In order to
obtain the binary form of H , we use a representation of F2m as a vector space over
F2. Then, we write H as a mt × n matrix over F2.

Now, we need to compute the generator matrix G of the code G. It follows by (1)
that the Goppa code consists of the vectors belonging to the kernel of H . Therefore,
the generator matrix G can be represented by the basis vectors of such the kernel.

Since H is an mt × n matrix, G is k × n with k ← n − mt , defining the (n, k)

Goppa code.

Error Correction. For any codeword y ⊂ G(L , g(X)) \ 0, the following relation
holds [12]: wH (y) ← 2 deg g(X) + 1. We have deg g(X) = t , therefore the code G
corrects up to t errors.

As the decoding algorithm DecG used for decryption, we will employ the algo-
rithm by Patterson [34]. We refer the reader to [12] for further details.

2.3 Security Assumptions

Definition 2 (General Decoding (G-SD) Problem) Input: G →R F
k×n
2 , c →R F

n
2

and 0 < t ⊂ N.
Decide: If there exists x ⊂ F

k
2 such that e = xG + c and wH (e) ∧ t .

This problem was shown to be NP-complete by Berlekamp et al. [4].
The following two definitions refer to the quantities defined in Sect. 3. No efficient

(polynomial-time) algorithm is known for solving them when using recommended
parameters [6, 12, 14].

Definition 3 (McEliece Problem) Input: A McEliece public key (G pub, t), where
G pub ⊂ F

k×n
2 , 0 < t ⊂ N;

and a McEliece ciphertext c ⊂ F
n
2.

Output: m ⊂ F
k
2 such that dH (mG pub, c) = t .

Definition 4 (Goppa Code Distinguishing (GD) Problem) Input: G ⊂ F
k×n
2 .

Decide: Is G a parity-check matrix of an (n, k) irreducible Goppa code, or of a random
(n, k)-code?

An important step toward solving the GD problem was made by Faugère et al. [13]
by introducing a distinguisher for high rate Goppa codes,2 however, this distinguisher
does not work for typical parameters of the McEliece PKE. Nonetheless, it shows
that the assumption on hardness of the GD problem must be used with extra care.

2 Such the codes are not typically used for public-key encryption, but rather for constructing code-
based digital signatures [9].
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3 McEliece Public-Key Encryption

The McEliece PKE scheme consists of the following triplet of algorithms (K, E,D):

• System parameters: n, k, t ⊂ N.
• Key generation algorithm K: On input n, k, t , generate the following matrices:

– G ⊂ F
k×n
2 —the generator matrix of an irreducible binary Goppa code correcting

up to t errors. Its decoding algorithm is denoted as DecG .
– S ⊂ F

k×k
2 —a random non-singular matrix.

– P ⊂ F
n×n
2 —a random permutation matrix (of size n).

– G pub = SG P ⊂ F
k×n
2 .

Output the public key pk = (G pub, t) and the secret key sk = (S, G, P, DecG).

• Encryption algorithm E : On input a plaintext m ⊂ F
k
2 and the public key pk,

choose a vector e ⊂ F
n
2 of weight t at random, and output the ciphertext

c = mG pub + e.

• Decryption algorithm D: On input c and the secret key sk, calculate:

– cP−1 = mSG + eP−1.
– mSG = DecG(cP−1).
– Let J ∈ {1, . . . , n} be such that G J is invertible. Output m = (mSG)J

(G J )−1S−1.

It is easy to check that the decryption algorithm correctly recovers the plaintext:
Since in the first step of decryption, the permuted error vector eP−1 is again of
weight t , the decoding algorithm DecG successfully corrects these errors in the next
step.

3.1 Security Analysis

Let us discuss two major types of attacks against McEliece PKE.

Decoding Attack. For the parameter sizes related to McEliece PKE, the best
algorithm is the information-set decoding [1, 6, 8, 22, 23, 30, 37, 43]. The time com-
plexity of this algorithm is subexponential and for the relevant parameters can be (con-
servatively) lower bounded by the following expression [12]: O(n3)2−t log2(1−k/n).
For precise estimation, one may use the lower bounds [30, 37].

Structural Attack. If we employ the irreducible binary Goppa codes, then up to date,
there is no efficient algorithm which can extract the secret key from the public key
in the McEliece (or the Niederreiter) scheme as long as the so-called weak keys [25]
are avoided. Moreover, there is no algorithm which can efficiently distinguish the
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Table 1 Examples of
Parameter Sets for the
McEliece PKE (Niebuhr et al.
[30])

Equivalent security (bits) 85 112 129
Code length n 1652 2440 2798
Code dimension k 1203 1877 2088
Weight of error vector t 42 50 62
Public key size (Kbytes) 66 129 181

matrices defined by the McEliece public keys and the same size generator matrices
of random codes, for the typical parameters. The time complexity of the currently
best algorithm [41] is still subexponential. Roughly speaking, this algorithm works
as follows: Enumerate Goppa polynomials and verify whether each corresponding
code and the code generated by G pub are “permutation equivalent” or not by using
the support splitting algorithm [41], which results in an algorithm running in time
nt (1 + o(1)).

For details on the attacks described above and their respective countermeasures,
we refer the reader to the surveys in [12, 19, 33, 40].

Some recommended parameter sets along with their estimated security levels
provided in [30] are given in Table 1.

4 Provable Security of Code-Based PKE

4.1 Chosen Plaintext Security

The semantic security (also called indistinguishability under chosen plaintext attacks
or IND-CPA) defined by Goldwasser and Micali [15] is a security notion for public-
key encryption. Its intuitive meaning is that a ciphertext does not leak any useful
information about the plaintext except for its length. More precisely, suppose that
the attacker is allowed to pick any pair of plaintexts. Then given a ciphertext, she
must not be able to find out, which one was encrypted.

Nojima et al. [32] show that the McEliece encryption with a random padding of
the plaintext (which is multi-bit) is IND-CPA secure under hardness of the learning
parities with noise (LPN) problem3 and GD problem. A little more formally, the
Randomized McEliece encryption is constructed in the same way as described above,
except that the ciphertext c = (r |m)G pub + e, where r →R {0, 1}k0 , m ⊂ {0, 1}k1 ,
k = k0 + k1. Particular choices of k0 and k1 are discussed in [32]. For typical
parameters, taking k1 ≈ k/4 results in secure encryption. A similar padding will
provide IND-CPA security for Niederreiter PKE as well [32].

3 See e.g. [20] for a formal definition of LPN problem—it is similar to G-SD problem except that
in the error vector e, each bit has Bernoulli distribution with fixed p, 0 < p < 0.5.
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4.2 Chosen Ciphertext Security

In some cases, a limited access to decryption algorithm may be available to an
attacker. It may sound somewhat counter-intuitive, but consider, for instance, a mail-
ing service that automatically decrypts the received correspondence. Then the adver-
sary, who gains access to the output of such a service for some time, may be modeled
by the above oracle. This model is to capture the property that the result of decryp-
tion must not reveal any additional information (for instance, nothing about the secret
key), apart from the decrypted messages themselves.

Public-key encryption is indistinguishable under the adaptive chosen ciphertetxt
attack (IND-CCA2), if in the IND-CPA scenario described in the previous subsection,
the attacker is allowed to access the decryption algorithm (but not the secret key).
Naturally, the attacker is allowed to request decryption of any ciphertext, except those
to be distinguished.

An IND-CCA2 conversion for the McEliece PKE in the random oracle model
was presented by Kobara and Imai [21]. The random oracle model [2] assumes
cryptographic hash functions to behave like random functions, hereby simplifying
security proofs. Recently, IND-CCA2 conversions that do not use random oracles
were presented for McEliece PKE [10] and for Niederreiter PKE [27].

5 Conclusion

We presented a summary of the state-of-the-art in code-based PKE, with a focus on the
McEliece PKE scheme which is based on error-correcting codes by Goppa. We briefly
described major attacks on this scheme, secure parameters sets, and conversions
enhancing its security.

Current research trends in PKE based on error-correcting codes include studies on
compact keys and fast implementations, as well as on related cryptographic protocols.
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Gröbner Basis and Its Applications

Takafumi Shibuta

Abstract Computer Algebra is a field of mathematics and computer science that
studies algorithms for symbolic computation. A fundamental tool in computer alge-
bra to study polynomial ideals is the theory of Geöbner basis. The notion of the Gröb-
ner basis and the Buchberger’s algorithm for computing it was proposed by Bruno
Buchberger in 1965. Gröbner bases have numerous applications in commutative
algebra, algebraic geometry, combinatorics, coding theory, cryptography, theorem
proving, etc. The Buchberger’s algorithm is implemented in many computer algebra
systems, such as Risa/Asir, Macaulay2, Singular, CoCoa, Maple, and Mathematica.
In this chapter, we will give a short introduction on Gröbner basis theory, and then
we will present some applications of Gröbner bases.

Keywords Gröbner basis · Toric ideal

1 Affine Varieties

First, we give a preliminary on affine varieties.
Let K be an infinite field (e.g., the rational number field Q, the real number field

R, the complex number field C, and the algebraic closure of a finite field Fp), and
K[x1, . . . , xn] the polynomial ring over K with indeterminates x = (x1, . . . , xn).
For a = (a1, . . . , an) ∈ Z

n⊂0, we use the multi-index notation xa = xa1
1 . . . xan

n ,
|a| = a1 + · · · + an .

Algebraic Geometry is the study of sets of common zeros of a family of
polynomials.
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Definition 1 (Affine Variety) Given a set of polynomials P → K[x1, . . . , xn], the set
of common zeros of P

V (P) = VK(P) := {(u1, . . . , un) ∈ K
n | f (u1, . . . , un) = 0 for all f ∈ P}

is called an affine (algebraic) variety.

The operator V reverses the inclusion; P1 → P2 implies V (P2) ⊃ V (P2). If P is a
finite set { f1, . . . , fr }, we denote VK(P) by VK( f1, . . . , fr ).

Example 1

• VR

(
x2 + y2 − 1

)
is the unit circle.

• VR
(
x2 + y2 + z2 − 1, z − x2 − y2

)
is the intersection of the sphere x2 + y2 +

z2 = 1 and the paraboloid z = x2 + y2.
• Let GLn(K) be the general linear group of degree n (the set of n × n invertible

matrices). Let K[t, xi j | 1 ∧ i, j ∧ n] be the polynomial ring with indeterminates
t and xi j , 1 ∧ i, j ∧ n. Then there exists one-to-one correspondence between the
affine variety VK(t · det(xi j )i, j − 1) and GLn(K):

VK(t · det(xi j )i, j − 1) ←≈ GLn(K)

(d, (ai j )i, j ) ≤≈ (ai j )i, j

(det(ai j )
−1
i, j , (ai j )i, j ) ≤≈(ai j )i, j .

Thus one can view GLn(K) as an affine variety.

The expression of an affine algebraic variety as common zeros of polynomials is not
unique. For example, VK(x, y) = VK(x + y, x − y) = {(0, 0)} → K

2. To avoid this
problem, we consider ideals.

Definition 2 (Ideal) (1) A subset I → K[x1, . . . , xn] is called an ideal if

1. f1 + f2 ∈ I for all f1, f2 ∈ I ,
2. g f ∈ I for all f ∈ I and g ∈ K[x1, . . . , xn].

(2) For f1, . . . , fr ∈ K[x1, ..., xn], the ideal

∀ f1, . . . , fr ≥ := {g1 f1 + · · · + gr fr | gi ∈ K[x1, . . . , xn]}

is called the ideal generated by f1, . . . , fr .

(3) For a subset S → K
n , we define

I (S) = { f ∈ K[x1, . . . , xn] | f (u1, . . . , un) = 0 for all (u1, . . . , un) ∈ S}.

For an affine variety V , V = V (I (V )) holds. We call I (V ) the defining ideal of
V . The operator I reverses the inclusion; S1 → S2 implies I (S1) ⊃ I (S2). By the
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Hilbert’s basis theorem any ideal I , there exist finitely many polynomials f1, . . . , fr

such that I = ∀ f1, . . . , fr ≥. Hence I (S) has a finite system of generators for any
S. We note that VK( f1, . . . , fr ) = VK(∀ f1, . . . , fr ≥). Hence VK( f1, . . . , fr ) =
VK(g1, . . . , gs) if ∀ f1, . . . , fr ≥ = ∀g1, . . . , gs≥.
Definition 3 (Radical ideal) For an ideal I → K[x1, . . . , xn], we define

∞
I = { f ∈ K[x1, . . . , xn] | f n ∈ I for some n ∈ Z⊂0},

and call it the radical of I . We say that I is a radical ideal if I = ∞
I .

Example 2 (Monomial ideal) An ideal I is called a monomial ideal if it can be
generated by set of monomials. We say that a monomial xa1

1 . . . xan
n is square-free

if a1 = 0 or 1 for all i . A monomial ideal generated by square-free monomials is
called a square-free monomial ideal. For a monomial xa = xa1

1 . . . xan
n , ai ∈ Z⊂0,

we set
∞

xa := xb1
1 . . . xbn

n where b1 = 1 if ai ∪= 0 and bi = 0 otherwise. Let
I = ∀xa1 , . . . , xar ≥ be a monomial ideal. Then

1.
∞

I = 〈∞
xa1 , . . . ,

∞
xar

〉
,

2. I is a radical ideal if and only if I is square-free.

For instance,
√∀x3 y, y2z2≥ = ∀xy, yx≥.

It is easy to show that VK(I ) = VK(
∞

I ). For any subset S → K
n , I (S) is a radical

ideal, and VK(I (S)) is the minimal affine variety containing S.

Definition 4 We call VK(I (S)) the Zariski closure of S and denote by S.

The union and the intersection of affine varieties can be computed using these ideal
operations. There is a map from the set of radical ideals to the set of the affine
varieties I ≤≈ VK(I ). There is also a map in the inverse direction V ≤≈ I (V ).
The Nullstellensatz states that these maps are inverse map to each other if K is
algebraically closed (e.g. K = C).

Theorem 1 (Nullstellensatz) Assume the K is algebraically closed. Then the maps
V and I give an inclusion reversing one-to-one correspondence

{Radical ideal → K[x1, . . . , xn]}
V
�
I

{Affine variety → K
n}.

Thus, we can view the set of radical ideals as a dictionary of affine varieties. Using
this dictionary, we can translate geometric problems to algebraic ones.

For ideals I and J , the summation I + J = { f + g : f ∈ I, g ∈ J }, the
intersection I ∼ J are again ideals.

Proposition 1 1. V (I ) ∼ V (J ) = V (I + J ).
2. V (I ) ⊇ V (J ) = V (I ∼ J ) = V (I J ).

We note that if I and J are radical ideals, then so is I ∼ J .



60 T. Shibuta

The image of projection corresponds to the restriction of the defining ideal.

Proposition 2 For n > i , let pr : K
n ≈ K

i , (u1, . . . , un) ≤≈ (u1, . . . , ui ) be the
projection map. Let I → K[x1, . . . , xn] be an ideal. Then

pr(V (I )) = V (I ∼ K[x1, . . . , xi ]) → K
i .

Definition 5 We say that an affine variety is irreducible, and it cannot be represented
as the union of two proper affine subvarieties.

Any affine variety V can be expressed as a finite union of irreducible proper affine
subvarieties W1 ⊇ · · · ⊇ Wr , Wi � V . This expression is called the irreducible
decomposition of V . If V ∪= W1 ⊇ · · · Wi−1 ⊇ Wi+1 ⊇ · · · Wr for any 1 ∧ i ∧ n, this
decomposition is said to be irredundant. The irredundant irreducible decomposition
of an affine variety is unique up to reordering.

Definition 6 We say that an ideal I is irreducible it can not be represented as the
intersection I1 ∼ I2 of two ideals I1 and I2 such that I � Ii .

Any ideal I can be expressed as a finite intersection of irreducible ideals I1 ∼· · ·∼ Ir ,
I � Ii . This expression is called the irreducible decomposition of I . If I ∪= I1 ∼
· · · Ii−1∼ Ii+1∼· · · Ir for any 1 ∧ i ∧ n, this decomposition is said to be irredundant.
An irreducible ideal appearing in the irredundant irreducible decomposition of I is
called an irreducible component of I . Clearly, irreducible decomposition of ideals
corresponds to irreducible decomposition of affine varieties. Let V be an affine
variety, and I (V ) = I1 ∼ · · · ∼ Ir an irreducible decomposition of I (V ). Then
V = V (I1) ⊇ · · · ⊇ V (Ir ) is an irreducible decomposition of V .

A monomial ideal is irreducible if and only if it is of form ∀xa1+1
i1

, . . . , xaπ+1
iπ

≥ for
some 1 ∧ i1 < · · · < iπ ∧ n and ai ∈ Z⊂0. Any component of the irredundant irre-
ducible decomposition of a monomial ideal I is also a monomial ideal. In particular,
a square-free monomial ideal can be expressed as a finite intersection of ideals of
form ∀xi1 , . . . , xiπ≥ for some 1 ∧ i1 < · · · < iπ ∧ n.

Example 3
∀x3 y, y2z2≥ = ∀x3, y2≥ ∼ ∀z2, x3≥ ∼ ∀y≥

is the irredundant irreducible decomposition of ∀x3 y, y2z2≥. Let V = V (x3 y, y2z2).
Then, I (V ) = √∀x3 y, y2z2≥ = ∀xy, yz≥ = ∀x, z≥ ∼ ∀y≥. Thus,

V = V (x, z) ⊇ V (y)

is the irredundant irreducible decomposition of V .
As we have seen, the operations on affine varieties can be translated to the cor-

responding operations on ideals. The theory of Gröbner basis gives algorithms for
computing them.
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2 Gröbner Bases

Here, we give a short introduction on the theory of Gröbner bases. See [3, 4, 6, 7]
for details.

Let K[x1, . . . , xn] be a polynomial ring over a field K . A total order ≺ on the
set of monomials {xa | a ∈ Z

n⊂0} is a term order on K[x1, . . . , xn] if x0 = 1 is the

unique minimal element, and xa ≺ xb implies xa+c ≺ xb+c for all a, b, c ∈ Z
n⊂0.

Let a = t (a1, . . . , an) and b = t (b1, . . . , bn) ∈ Z
n⊂0.

Definition 7 (Lexicographic order) The term order ≺lex called a lexicographic order
with x1 ≺lex · · · ≺lex xn is defined as follows: xa ≺lex xb if a j<b j where j =
max{i | ai ∪= bi }.
Definition 8 (Reverse lexicographic order) The term order ≺rlex called a reverse
lexicographic order with x1 ≺rlex · · · ≺rlex xn is defined as follows: xa ≺rlex xb if
|a| < |b| or |a| = |b| and a j>b j where j = min{i | ai ∪= bi }.
Definition 9 (Weighted order) For a weight vector ℘ ∈ Q

n⊂0 and a term order ≺, we

define a new term order ≺℘ as follows: xa ≺℘ xb if ℘ · a < ℘ · b, or ℘ · a = ℘ · b
and xa ≺ xb.

Definition 10 (Product order) Let ≺1 and ≺2 be term orders on K[x1, . . . , xn] and
K[y1, . . . , ym], respectively. We define a new term order ≺ on K[x1, . . . , xn, y1,

. . . , ym] as follows:

xayc ≺ xbyd if xa ≺1 xb, or a = b and yc ≺2 yd.

This term order is called the product order of ≺1 and ≺2.

Definition 11 (Elimination order) Let ≺ be a term order on K[x1, . . . , xn, y1,

. . . , ym]. We say that ≺ is an elimination order {x1, . . . , xn} � {y1, . . . , yn} if

xa ≺ xb implies xayc ≺ xbyd for any a, b ∈ Z
n, c, d ∈ Z

m⊂0.

The product order ≺ of ≺1 and ≺2 is an elimination order {x1, . . . , xn} �
{y1, . . . , yn}, and the lexicographic order ≺lex is an elimination order {xi+1, . . . , xn}
� {x1, . . . , xi } for any i .

Definition 12 Let ≺ be a term order on R, f ∈ R, and I an ideal of R. The initial
term of f , denoted by in≺( f ), is the highest term of f with respect to ≺. We call

in≺(I ) = ∀in≺( f ) | f ∈ I ≥

the initial ideal of I with respect to ≺. We say that a finite collection of polynomials
G → I is a Gröbner basis of I with respect to ≺ if ∀in≺(g) | g ∈ G≥ = in≺(I ).
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It is known that Gröbner basis of I is a system of generators of I . For simplicity, we
assume that the coefficient of the initial term of any element of a Gröbner basis is 1.

Proposition 3 Let G = {g1, . . . , gπ} → K[x1, . . . , xn] be a finite set of polynomials
such that the coefficient of the initial term of gi if 1, and ≺ a term order. For a
polynomial f ∈ K[x1, . . . , xn], there exists h1, . . . , hπ, r ∈ K[x1, . . . , xn] such that

f = h1g1 + · · · hπgπ + r

and r is zero or any term of r is not reducible by in≺(gi ) for all i .

We call this r a remainder of f on division by G with respect to ≺. The remainder
can be computed by the following so-called division algorithm.

Definition 13 (Division algorithm) Let the situation as in Proposition 3. If a term
of f , say cxa, is divisible by in≺(gi ) for some i , then we write

f
G≈ f − cxa

in≺(gi )
gi .

Continuing this procedure, f
G≈ f1

G≈ f2
G≈ . . ., we eventually obtain fN for some

N ∈ Z⊂0 such that fN = 0 or any term of fN is not divisible by in≺(gi ) for all i .

Then, we write f
G⇒ fN .

It is known that this division algorithm terminates in finite time. If f
G⇒ r , then r is

a remainder of f on division by G with respect to ≺. A remainder is not unique in
general, but if G is a Gröbner basis of the ideal generated by G, it is known that it is
determined uniquely.

Theorem 2 Let I → K[x1, . . . , xn] be an ideal, and G a Gröbner basis of I with
respect to a term order ≺. Then, for any f ∈ K[x1, . . . , xn] there exists a unique
remainder r of f on division by G. In particular, f ∈ I if and only if r = 0.

Example 4 Let a, b, c ∈ C be complex numbers, satisfying

a + b + c = 5, ab + bc + ca = 7, abc = 9. (1)

Then, let us compute the value of a5 + b5 + c5. Let

I = ∀a + b + c − 5, ab + bc + ca − 7, abc − 9≥

be an ideal of the polynomial ring C[a, b, c] with indeterminates a, b, c. The Gröbner
basis of I with respect to the lexicographic order c ≺lex b ≺lex a is

G = {c3 − 5c2 + 7c − 9, b2 + (c − 5)b + c2 − 5c + 7, a + b + c − 5}.

By division algorithm, we have a5 +b5 + c5 G≈ 785. Thus a5 +b5 + c5 = 785 under
the conditions (1).
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Fig. 1 Triangle ABC

Let I be an ideal of K[x1, . . . , xn, y1, . . . , ym]. Using Gröbner basis with respect to
elimination order, the elimination ideal I ∼ K[y1, . . . , ym ] can be computed. Recall
that the elimination ideal corresponds to the image of the projection map.

Theorem 3 (Elimination theorem) Let I be an ideal of K[x1, . . . , xn, y1, . . . , ym],
and ≺ an elimination order {x1, . . . , xn} � {y1, . . . , yn}. Let G be a Gröbner basis of
I with respect to ≺. Then G ∼K[y1, . . . , ym ] is a Gröbner basis of I ∼K[y1, . . . , ym]
with respect to the term order on K[y1, . . . , ym] induced by ≺.

Example 5 Let ABC be a triangle and M a point of the segment BC . Let AB = d1,
AC = d2, B M = d3, MC = d4, and AM = d5 as in Fig. 1. Using Gröbner basis,
we are able to obtain the relation among the length of the segments di ’s. We place the
triangle on the Euclidean plane so that M = (0, 0), B = (−d3, 0), and C = (d4, 0).
Let A = (a, b). Then

(d3 + a)2 + b2 = d2
1 , (d4 − a)2 + b2 = d2

2 , a2 + b2 = d2
5 .

Let K[d1, . . . , d5, a, b]be the polynomial ring overK with indeterminates d1, . . . , d5,

a, b, and I = ∀(d3 + a)2 + b2 − d2
1 , (d4 − a)2 + b2 − d2

2 , a2 + b2 − d2
5 ≥ →

K[d1, . . . , d5, a, b]. Let ≺ be the block order of the reverse lexicographic order on
K[a, b] such that a ∇ b, and the reverse lexicographic order on K[d1, . . . , d5] such
that d1 ∇ · · · ∇ d5. Then the Gröbner basis of I with respect to ≺ is

{ −d4d2
3 + (−d2

4 + d2
2 − d2

5 )d3 + d4d2
1 − d2

5 d4,

−2d4a + d2
4 − d2

2 + d2
5 ,−2d3a − d2

3 + d2
1 − d2

5 ,

(−2d2
2 + 2d2

5 )a + 4d4b2 + d3
4 + (−d2

2 − 3d2
5 )d4,

(2d2
1 − 2d2

5 )a + 4d3b2 + d3
3 + (−d2

1 − 3d2
5 )d3, a2 + b2 − d2

5 },

and thus

I ∼ K[d1, . . . , d5] = ∀−d4d2
3 + (−d2

4 + d2
2 − d2

5 )d3 + d4d2
1 − d2

5 d4≥
= ∀d2

1 d4 + d2
2 d3 − (d3 + d4)(d

2
5 + d3d4)≥.
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This shows that for any triangle,

d2
1 d4 + d2

2 d3 = (d3 + d4)(d
2
5 + d3d4)

holds. This equality is known as the Stewart’s theorem.

Example 6 (Intersection of ideals) Let I, J → K[x1, . . . , xn] be ideals. Let t be a
new indeterminate. Then

I ∼ J = (
t I + (1 − t)J

) ∼ K[x1, . . . , xn]

where t I + (1 − t)J is the ideal of K[x1, . . . , xn, t] generated by t I and (1 − t)J .
Thus, we are able to compute the intersection of ideals using the elimination
theory.

Example 7 (The Zariski closure of the image of a polynomial map) Let p1, . . . , pm ∈
K[x1, . . . , xn] be polynomials, and p : K

n ≈ K
m , u ≤≈ (p1(u), . . . , pm(u)),

a polynomial map. Then p is decomposed into the graph embedding g : K
n ≈

K
n × K

m and the projection map pr : K
n × K

m ≈ K
m :

p : K
n g≈ K

n × K
m pr−≈ K

m,

u ≤≈ (u, p(u)) ≤≈ p(u).

Thus Image(p) = pr(Image(g)). It is easy to show that Image(g) is an affine variety
V (y1 − p1, . . . , ym − pm). Thus the Zariski closure of the image of a polynomial
map p is V (∀y1 − p1, . . . , ym − pm≥ ∼ K[y1, . . . , yn]) by Proposition 2.

3 Gröbner Bases of Toric Ideals and Its Application

We conclude this Chapter with some application of Gröbner bases of toric ideals.
The multiplicative group (K∗)d where K

∗ = K\{0} is called the algebraic torus
of dimension d.

Definition 14 (Affine toric variety and toric ideals) Let A = (a1, . . . , an) ∈ Z
d×n

be a d × n integral matrix. The affine toric variety associated to A is the Zariski
closure of the image of a monomial map

(K∗)d ≈ K
n

u = (u1, . . . , un) ≤≈ (ua1 , . . . , ua1)

The defining ideal of this affine toric variety is called toric idealof A, and is denoted
by IA.
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Fig. 2 Whitney umbrella

The toric ideal is generated by binomials;

IA = ∀xu − xu | Au = Av, u, v ∈ Z
n⊂0≥.

For any term order ≺, IA admits a Gröbner basis consisting of binomials.

Example 8 The Whitney umbrella is the surface {(uv, u, v2) | u, v ∈ R} → R
3

(Fig. 2). The Zariski closure of this surface is an affine toric variety VR(x2 − y2z).
We note that

VR(x2 − y2z) � {(uv, u, v2) | u, v ∈ R}

since the negative z-axis is contained in the left-hand side.

Let A = (a1, . . . , an) ∈ Z
d×n be a d × n integral matrix, c = (c1, . . . , cn) ∈ Q

n⊂0 a

cost vector, and b ∈ Z
d⊂0. We are concerned with an integer programming

Minimize c · u
subject to Au = b,

u ∈ Z
n⊂0.

(2)

There is an algorithm by Conti and Traverso for integer programming using the
Gröbner basis of the toric ideal.

Theorem 4 (Conti-Traverso algorithm [2]) Let ≺c be a weighted term order on
K[x1, . . . , xn], and G a Gröbner basis of the toric ideal IA. Take u ∈ Z

n⊂0 such
that Au = b. Let xv be the remainder of xu on division by G. Then v is an optimal
solution to the integer programming (2).

The linear programming relaxation of the integer programming (2) is

Minimize c · u
subject to Au = b,

u ∈ Q
n⊂0.

(3)
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The maximum difference of the optimal values of (3) and (2) as b ranges in the
semigroup Z⊂0 A = {∑n

i=1 mi ai | mi ∈ Z⊂0} is called the integer programming
gap of A and c, and is denoted by gap(A, c). We note that (2) is feasible if and
only if b ∈ Z⊂0 A. Hoşten and Sturmfels gave a method to compute gap(A, c).
Fix a weighted term order ≺c, and let M = ∀xu1+1

i1
, . . . , xuπ+1

iπ
≥ be an irreducible

component of in≺c(IA). The gap value of M is ci1 u1 + · · · + ciπuπ − c∗ where c∗ is
the optimal value of the liner programming

Minimize c · v
subject to Av = ui ai1 + · · · + uπaiπ ,

v = (v1, . . . , vn) ∈ Q
n , vi1 , . . . , viπ ∈ Q⊂0.

Theorem 5 ([8]) The integer programming gap gap(A, c) equals the maximum gap
value of any irreducible component of in≺c (IA).

The set of nonnegative integer vectors FA(b) := {u ∈ Z
n⊂0 | Au = b} is called the

fiber space of A over b. This is the feasible region of the integer programming (2).
As stated in [7], the enumeration of the fibers can be achieved by an algorithm based
on the reverse search technique [1].

Let G = {g1, . . . , gr } where gi = xui − xvi be a Gröbenr basis of the toric ideal
IA with respect to ≺c. We assume that in≺c (gi ) = xui . We define a directed graph
G = (VG , EG ) as follows; the vertex set VG is the fiber space FA(b), and the edge

set EG is {(u, v) | xu G≈ xv}. Let v∗ the optimal solution to the integer programming
(2) obtained by the Coti–Traverso algorithm. Since the division algorithm termi-
nates in finite time, G has no loop, and by the Conti–Traverso algorithm, G has the
unique sink v∗. For each u ∈ FA(b), let j = min{i | xu is divisible by in≺c(gi )},
and define f (u) = u + (v j − u j ). Then, xu G≈ x f (u), and the subgraph T =
{FA(b), {(u, f (u)) | u ∈ FA(b}} of G is a spanning tree of G . The following algo-
rithm with the input v∗ outputs all vectors in FA(b).

Algorithm B(u)

Input: A fiber u ∈ FA(b).
Output: All descendant nodes of u of the tree T .

1: Output u.

2: Compute the set S = {v | xv G≈ xu}.
3: For every v ∈ S, if ( f (v) = u){ B(v) }.

The size of the fiber space can be too large to enumerate completely. Alternatively,
we are able to sample a set of fibers by performing a random walk on the connected
graph G . Using this sampling algorithm, Diaconis and Sturmfels [5] developed a
Markov Chain Monte Carlo method (MCMC) for sampling contingency tables.
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Stability Analysis for Variational Problems
for Surfaces with Constraint

Miyuki Koiso

Abstract Surfaces with constant mean curvature (CMC surfaces) are critical points
of the area functional among surfaces enclosing the same volume. Therefore, they
are a simple example of solutions of variational problem with constraint. A CMC
surface is said to be stable if the second variation of the area is nonnegative for all
volume-preserving variations satisfying the given boundary condition. The purpose
of this article is to show some fundamental methods to study the stability for CMC
surfaces. Especially, we give a criterion on the stability for compact CMC surfaces
with prescribed boundary. Another concept that is closely related to the stability for
CMC surfaces is the so-called bifurcation. We give sufficient conditions on a one-
parameter family of CMC surfaces so that there exists a bifurcation. Moreover, we
give a criterion for CMC surfaces in the bifurcation branch to be stable.

Keywords Bifurcation · Constant mean curvature · Pitchfork bifurcation · Stabil-
ity · Symmetry breaking · Variational problem

1 Introduction

Surfaces with constant mean curvature (CMC surfaces) are critical points of the
area functional among surfaces enclosing the same volume and satisfying the given
boundary condition (see Sect. 2). For this reason, sometimes they serve as mathe-
matical model of soap bubbles. If we consider physical phenomena, it is important
to judge whether a CMC surface attains a local minimum of the area functional or
not. A CMC surface is said to be stable if the second variation of the area is nonneg-
ative for all volume-preserving variations satisfying the given boundary condition.
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Judging stability is an important subject both in mathematics and in applications. In
this article, we give some fundamental methods to study the stability for CMC sur-
faces. Although we treat mainly immersed CMC surfaces in the three-dimensional
euclidean space R3, our methods are generalized to hypersurfaces in more general
Riemannian manifolds. Also, the area functional can be generalized to more general
functionals for which the Jacobi operator is self-adjoint (see Sect. 3).

The contents of this article are as follows. In Sect. 2, we give the definition of
mean curvature and the simplest examples of CMC surfaces: CMC surfaces of revo-
lution. In Sect. 3, we give the first variation formulas for the area, volume, and mean
curvature. We also give the second variation formula for the area and the definition
of the stability. Section 4 is devoted to the uniqueness theorem on closed stable CMC
hypersurfaces in the (n+1)-dimensional euclidean space Rn+1. Actually such hyper-
surfaces are only round spheres [1]. We will give an outline of the proof because
it is a good example to use a nice geometric comparison function. In fact, except
for round spheres, for any closed CMC hypersurface there is a volume-preserving
variation, which diminishes the area. In Sect. 5, we give a criterion on the stability for
compact CMC surfaces with prescribed boundary and give some simple examples. In
Sect. 6, we also study compact CMC surfaces with prescribed boundary. A so-called
bifurcation is closely related to the stability of CMC surfaces. We give sufficient
conditions on a one-parameter family of CMC surfaces so that there exists a bifur-
cation. Moreover, we give a criterion for CMC surfaces in this bifurcation branch to
be stable. We will give sufficient conditions so that we have the so-called pitchfork
bifurcations, and so that there exists an interesting phenomenon that a one-parameter
family of stable solutions with high symmetry bifurcates to unstable solutions with
the high symmetry and stable solutions with a lower symmetry.

For simplicity, from Sects. 2 to 5, we assume that all functions and mappings are
of C∈ if we do not state anything special.

2 Definition of Mean Curvature and Examples of Surfaces
with Constant Mean Curvature

Letπ be a connected oriented two-dimensional C∈ manifold (with or without bound-
ary). We denote by

(
u1, u2

)
the local coordinates of π. Let X = (

x1, x2, x3
) :

π ⊂ R3 be an immersion. We denote by ℘ = (
℘1, ℘2, ℘3

) : π ⊂ S2 :={
℘ = (

℘1, ℘2, ℘3
) → R3; |℘| = 1

}
the Gauss map of X . That is, ℘ is the unit normal

vector field along X and {Xu1 , Xu2 , ℘} gives a frame in R3 with positive orientation.

Remark 1 A C1 mapping X = (
x1, x2, x3

) : π ⊂ R3 is an immersion if

rank

(
x1

u1 x2
u1 x3

u1

x1
u2 x2

u2 x3
u2

)
= 2

is satisfied at every point in π.
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We denote by ⊃u, v∧ the canonical inner product of u, v → R3.
The first and the second fundamental forms of X are denoted by ds2, II, respec-

tively, and they are given by

ds2 = gi j dui du j ,
(

gi j := ⊃Xi , X j ∧, Xi := ω X/ωui
)
,

II = hi j dui du j ,
(

hi j := ⊃℘, Xi j ∧ = −⊃℘i , X j ∧, Xi j := ω2 X/ωuiωu j
)
,

here we used the Einstein convention, that is, for example, hi j dui du j means
2∑

i, j=1

hi j dui du j . Set (gi j ) := (gi j )
−1. Then the mean curvature H and the Gauss

curvature K of X are defined as

H = hi j g
i j/2, K = det(hi j )/ det(gi j ).

H℘ is called the mean curvature vector of X . The equation “H = constant” is a
second-order quasi-linear elliptic partial differential equation.

Hereafter, an immersed surface is called a surface. An immersion with constant
mean curvature is called a CMC surface.

Example 1 CMC surfaces of revolution are named Delaunay surfaces after a French
mathematician C.-E. Delaunay of the nineteenth century. Consider a smooth curve
ε : (x(s), z(s)) (x ← 0) with arc-length s. ε generates the surface of revolution

X (s, α) = (x(s) cos α, x(s) sin α, z(s)),

and the mean curvature of X is H = (x ≈≈z≈−x ≈z≈≈−x−1z≈)/2. By simple calculations,
we see that ε is represented as

z = ±
∫

c − H x2√
x2 − (

c − H x2
)2

dx, (1)

where c is a constant. Hence, Delaunay surfaces are two-parameter family of surfaces.
They are classified into six classes: plane, catenoid, cylinder, unduloid, sphere, and
nodoid (see Fig. 1).

Definition 1 A compact surface without boundary is called a closed surface.
For example, spheres are closed surfaces.
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Fig. 1 Delaunay surfaces. From the left catenoid, cylinder, unduloid, sphere, and nodoid

3 Variation Formulas and the Definition of Stability

Assume that π is compact with or without boundary. For an immersion X : π ⊂ R3,
the area A(X) and the volume V (X) of X are defined as follows.

A(X) =
∫
π

dπ, V (X) = 1

3

∫
π

⊃X, ℘∧ dπ,

where dπ := √
det(gi j ) du1du2 is the volume form (area element) of π induced

by X .

Remark 2 V (X) is the “algebraic volume” of the cone generated by the immersed
surface X (π) and the origin of R3. If X (π) is an embedded closed surface (that is,
π is a compact manifold without boundary and X is an injective mapping: roughly
speaking, X (π) is a smooth closed surface without self-intersection) and ℘ points
outward from the domain β bounded by X (π), then V (X) coincides with the canon-
ical volume of β.

Let Xϕ be a variation of X that fixes the boundary with variation parameter ϕ.
This means that X≤ : π × (−ϕ0, ϕ0) ⊂ R3 is a C∈ mapping and satisfies

X0(w) = X (w), ∀w → π, Xϕ(Ω ) = X (Ω ), ∀Ω → ωπ.

In other words, Xϕ can be written as Xϕ = X + (θ + f ℘)ϕ + O(ϕ2), where θ

and f ℘ are the tangential and the normal component of the variation vector field
φX := (ω Xϕ/ωϕ)ϕ=0 = θ + f ℘, and both of them are of C∈ on π and vanish on ωπ.

Lemma 1 The first variation formulas of A and V are given by the following.

φA := d

dϕ
A(Xϕ)|ϕ=0 = −2

∫
π

H f dπ, φV =
∫
π

f dπ. (2)

Proof The first formula is standard, and the second formula is proved in [2]. �
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Remark 3 If the variation Xϕ = X + (θ + f ℘)ϕ +O(ϕ2) does not fix the boundary,
then

φA = −2
∫
π

H f dπ +
∫
ωπ

⊃θ, η∧ ds, (3)

where η is the outward-pointing unit conormal to X along ωπ, and ds is the line
element of ωπ induced by X . The first variation of V is the same as that in (2).

Remark 4 By the first formula in (2) and the formula (3), we know that the variation
Xϕ = X + ϕH℘ of X in the direction H℘ diminishes the area of the surface.

The following lemma is important to study volume-preserving variations.

Lemma 2 If a variation Xϕ = X + (θ + f ℘)ϕ + O
(
ϕ2

)
of X fixes the boundary

and is volume-preserving, then f → C∈
0 (π) and

∫
π

f dπ = 0 hold. Conversely, for

any function f → C∈
0 (π) satisfying

∫
π

f dπ = 0, there exists a volume-preserving

variation Xϕ = X + f ℘ϕ + O
(
ϕ2

)
of X that fixes the boundary.

Proof The first half is an immediate consequence of Lemma 1. The proof of the
second half is given in [1], where the implicit mapping theorem is essentially
used. �

Remark 5 In Lemma 2, we can weaken the assumption about the regularity of f :
Even if we assume that f is only C0 and piecewise C∈ on π, a similar result holds.

In order to study variational problems with constraint, it is useful to consider the
so-called Lagrange multiplier. So we define a new functional: For any H → R, set

JH := A + 2H V .

The following result is proved by using Lemmas 1 and 2.

Theorem 1 ([1]) Assume that X : π ⊂ R3 is an immersion with mean curvature
H. Set

H0 := (A(X))−1
∫
π

H dπ.

Then, the following (i)–(iii) are equivalent.

(i) The mean curvature of X is constant H0 on π.
(ii) For any volume-preserving variation of X that fixes the boundary, φA = 0.

(iii) For any variation of X that fixes the boundary, φ JH0 = 0.

The first variation of the mean curvature is given by the following Proposition.
The proof can be found, for example, in [12, pp. 150–151].
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Proposition 1 Let X : π ⊂ R3 be an immersion. Let Xϕ = X + (
θ i Xi + f ℘

)
ϕ +

O
(
ϕ2

)
be a variation of X. Then, the first variation of the mean curvature H is given

by the following.
φH = L[ f ]/2 + θ i Hi , (4)

where
L[ f ] := τ f + ≥d℘≥2 f (5)

is the self-adjoint operator. Especially, if X is CMC, then φH = L[ f ]/2.

Definition 2 We call L the Jacobi operator for X .

Remark 6 τ f = gi j fi j + ∞
g−1 (∞

ggi j
)

i f j , g := det
(
gi j

)
, ≥d℘≥2 = 4H 2 − 2K .

Proposition 2 Assume that X has CMC H0. Then, for any volume-preserving vari-
ation of X that fixes the boundary, the second variation of the area A is given by the
following.

φ2 A := d2

dϕ2 A(Xϕ)|ϕ=0 = −
∫
π

f L[ f ] dπ, f := ⊃φX, ℘∧, (6)

where φX is the variation vector field. For any variation of X that fixes the boundary,
the second variation of JH0 = A + 2H0V is given by the same form as follows.

φ2 JH0 = −
∫
π

f L[ f ] dπ, f := ⊃φX, ℘∧. (7)

Proof Let Xϕ = X + ϕ(θ + f ℘) + O
(
ϕ2

)
be a volume-preserving variation of X

that fixes the boundary. Then,

φA = φA + 2H0φV = −2
∫
π

(H − H0) f dπ.

Therefore,

φ2 A = −2
∫
π

(φ(H − H0)) f dπ − 2
∫
π

(H − H0)φ( f dπ)

holds. Remark that, when ϕ = 0, H ∪ H0 holds. Hence, by Proposition 1, we obtain
(6). (7) is proved in a similar way. �

Set

I ( f ) := −
∫
π

f L[ f ] dπ.



Stability Analysis for Variational Problems for Surfaces with Constraint 77

We define the stability of CMC surfaces as follows.

Definition 3 Assume that X is a CMC immersion. X is said to be stable if φ2 A ← 0
for all volume-preserving variations of X that fix the boundary. If X is not stable, it
is said to be unstable.

From Lemma 2 and Proposition 2, we immediately obtain the following.

Lemma 3 Assume that X;π ⊂ R3 is CMC. Set

F0 :=
{

f → C∈
0 (π) ;

∫
π

f dπ = 0

}
.

Then, X is stable if and only if I ( f ) ← 0 holds for all f → F0.

Remark 7 It is obvious that, if X : π ⊂ R3 is a stable CMC surface, then, for any
subdomain π1 ∼ π, X |π1 is stable.

In order to study the stability and bifurcation for CMC surfaces, the following
eigenvalue problem is useful (see Sect. 5, 6).

L[ f ] = −λ f, f → C∈
0 (π). (8)

The following lemma is sometimes useful to estimate the eigenvalues of (8).

Lemma 4 Assume that X has CMC H with Gauss map ℘ = (
℘1, ℘2, ℘3

)
. Set E1 :=

(1, 0, 0), E2 := (0, 1, 0), E3 := (0, 0, 1). Then, the following equalities hold.

L
[
℘ j

]
= 0, L

[⊃E j × X, ℘∧] = 0, ( j = 1, 2, 3), (9)

L[⊃X, ℘∧] = −2H. (10)

Proof By Proposition 1, for any variation Xϕ of X with
〈
φX, ℘

〉
= f , we have

2φH = L[ f ]. Let u be any constant vector in R3. Since the translation Xϕ = X +ϕu
does not change the mean curvature H , ℘u := ⊃℘, u∧ satisfies L[℘u] = 0. By applying
this to u = E j , we have the first equality in (9). Similarly, since the rotation Xϕ =
X + ϕE j × X + O

(
ϕ2

)
does not change H , we obtain the second equality in (9).

On the other hand, by the homothetic transformation Xϕ = (1 + ϕ)X , H becomes
H/(1 + ϕ). This gives (10). �

Remark 8 The function ψ := ⊃X, ℘∧ appeared in (10) is called the support function
of X . For each w → π, ψ(w) is the (±) distance between the origin in R3 and the
tangent plane of the surface at X (w).
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4 Uniqueness for Stable Closed CMC Hypersurfaces

The discussion in Sect. 3 is generalized to immersed hypersurfaces in Rn+1. In this
section, we give the uniqueness result on stable closed CMC hypersurfaces in Rn+1

and give an outline of the proof.

Theorem 2 (Barbosa-do Carmo [1]) Let π = πn be a compact connected ori-
entable C∈ manifold, and let X : π ⊂ Rn+1 be an immersion with nonzero CMC.
Then, X is stable if and only if X (π) is a round sphere.

An outline of the proof of Theorem 2 given in [1] is as follows. Denote by H , ℘,
the mean curvature and the Gauss map of X , respectively. Set

f := Hψ + 1, ψ = ⊃X, ℘∧. (11)

Then, by using the constancy of H , it is proved that

∫
π

f dπ = 0

holds. And it is proved that I ( f ) ← 0 holds if and only if all principal curvatures are
the same at each point of X (π), which is equivalent to that X (π) is a round sphere.

Wente [24] gave an excellent explanation of the variation vector field f ℘ given by
(11) as follows. Recall that the variation Xϕ = X +ϕH℘ decreases the area (Remark
4). However, in general, Xϕ does not preserve the volume. So, consider the variation
X̃ϕ = t (ϕ)(X + ϕH℘) of X . Here, t (ϕ) is chosen so that X̃ϕ is volume-preserving.
Then, it is proved that φ2 A ← 0 holds if and only if the principal curvatures of X are
all the same, which means that X is a round sphere. Moreover, [24] pointed out that
f̃ := ⊃φ X̃ϕ, ℘∧ coincides with f given by (11) up to constant multiple.

Remark 9 There are many unstable closed CMC surfaces in R3. For example, for
each g → N, there exist closed CMC surfaces in R3 with genus g. Such examples
were constructed by Wente [23] for g = 1, and by Kapouleas (in [5] for g ← 3 and
in [6] for g = 2) for the first time.

5 A Criterion for the Stability

Let X : π ⊂ R3 be an immersion with constant mean curvature H . We consider
the following eigenvalue problem associated with the second variation of the area.

L[u] = −λu, u → C∈
0 (π). (12)

Since L is a second order self-adjoint elliptic operator, all eigenvalues are real and
they constitute a countably many nondecreasing sequence [17, Lemma 1]. We denote
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them byλ1 < λ2 ⊇ λ3 ⊇ · · · . The number of negative eigenvalues (with multiplicity)
is called the Morse index of X , and we denote it by Ind(X). Ind(X) is the dimension
of the space of variation vector fields that fix the boundary and diminish the functional
A + 2H V . Therefore, we cannot judge the stability only by the eigenvalues of (12).

On the other hand, the eigenvalue problem associated with the second variation
of the area for volume-preserving variations is given by

L̃[u] := L[u] + c = −λ̃u on π, ≺c → R, u → F0 − {0}. (13)

We can denote the eigenvalues of (13) by λ̃1 ⊇ λ̃2 ⊇ λ̃2 ⊇ · · · . Here, the condition
that u → F0 is the condition so that u℘ is the normal component of a variation of X
that fixes the boundary and preserves the volume.

Lemma 5 (i) X is stable if and only if λ̃1 ← 0.
(ii) The inequalities λ1 < λ̃1 ⊇ λ2 hold.

In general, it is more difficult to estimate the eigenvalues for (13) than that for
(12). For example, sometimes Lemma 4 gives information about eigenvalues of (12).
So, we will give a criterion for the stability by use of (12).

Hereafter, for any one-parameter family {Xt }t of immersions from π to R3, we
will use the following notations.

H(t) := the mean curvature of Xt , V (t) := the volume enclosed by Xt ,

Lt := the Jacobi operator for Xt .

First we give a criterion for the stability that looks geometric.

Theorem 3 (Criterion for the stability I, [8, 15, 18]) Assume that X is CMC.

(I) If λ1 ← 0, then X is stable.
(II) Assume that λ1 < 0 ⊇ λ2 holds. If there exists a variation Xt of X that fixes

the boundary and satisfies the condition that H ≈(0) = constant �= 0, then the
following (i) and (ii) hold.

(i) If H ≈(0)V ≈(0) ← 0, then X is stable.
(ii) If H ≈(0)V ≈(0) < 0, then X is unstable.

If there is no such variation, then X is unstable.
(III) If λ2 < 0, then X is unstable.

Next we will give a criterion for the stability that looks analytic. Denote by E
the eigenspace of (12) belonging to the zero eigenvalue if zero is an eigenvalue of
(12). If zero is not an eigenvalue, then set E := {0}. Denote by E⇒ the orthogonal
compliment of E in L2(π). Here, L2(π) is the completion of C∈(π) by the metric

given by the inner product (u, v)L2 =
∫

π

uv dπ. Also, we denote by H1
0 (π) the
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completion of C∈
0 (π) by the inner product (u, v)H1 =

∫
π

(uv + ∇u∇v) dπ, and

by Ĥ(π) the pre-Hilbert space H 1
0 (π) with inner product (, )L2 .

Then, one can choose eigenfunctions κ j → C∈
0 (π) belonging to λ j so that they

form an orthonormal basis for L2(π) [17, Lemma 2]. Moreover, each λ j has the
following minimum property on the pre-Hilbert space Ĥ(π) [17, Lemma 4].

λ1 = I (κ1) = min

{
I (u) ; u → H 1

0 (π) and
∫
π

u2 dπ = 1

}
, (14)

λ j = I (κ j ) = min

{
I (u) ; u → H 1

0 (π),

∫
π

u2 dπ = 1,

∫
π

uκk dπ = 0, ∀k → {1, . . . , j − 1}
}
, j = 2, 3, · · · . (15)

This implies that the number of negative eigenvalues (counted with multiplicities)
coincides with the dimensions of the space of variation vector fields that diminish
the function A + 2H V .

The following theorem is essentially the same as Theorem 3.

Theorem 4 (Criterion of the stability II, [8, 15, 18]) Let X : π ⊂ R3 be a CMC
immersion.

(I) If λ1 ← 0, then X is stable.
(II) If λ1 < 0 < λ2, then there exists a unique function u → C∈

0 (π) that satisfies
L[u] = 1, and the following (II-1) and (II-2) hold.

(II-1) If
∫
π

u dπ ← 0, then X is stable.
(II-2) If

∫
π

u dπ < 0, then X is unstable.

(III) If λ2 = 0, then the following (III-A) and (III-B) hold.

(III-A) If there exists a function u → E that satisfies
∫
π

u dπ �= 0, then X is
unstable.

(III-B) If
∫
π

u dπ = 0 for all u → E, then there exists a unique function u →
E⇒ ∗ C∈

0 (π) that satisfies L[u] = 1 and the following (III-B1) and (III-
B2) hold.

(III-B1) If
∫
π

u dπ ← 0, then X is stable.
(III-B2) If

∫
π

u dπ < 0, then X is unstable.

(IV) If λ2 < 0, then X is unstable.

Remark 10 (II) and (III) in Theorem 4 can be stated in the following manner: Assume
λ1 < 0 ⊇ λ2 holds. If there exists a function u → C∈

0 (π) that satisfies L[u] = 1,
then, X is stable if and only if

∫
π

u dπ ← 0 holds. If there is no such function u,
then X is unstable.
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Remark 11 Theorems 3, 4 can be generalized or modified to similar results for
more general variational problems or to similar results for variational problems with
various (fixed, free, partially-free, or without) boundary conditions.

Remark 12 Similar results to (I), (II), (IV) in Theorem 4 were obtained by Maddocks
and Vogel for more general or a different variational problems, and (III) was obtained
by Koiso [8, 13–15, 18–22].

Remark 13 Assume that X : π ⊂ R3 is CMC. Then, for any w → π, there exists a
small closed neighborhood U of w such that λ1(U ) > 0 and therefore X |U is stable.

Proof First we assume that there exists a positive function u → C∈(U ) such that
L[u] = 0 holds. Then, for any function κ → C∈

0 (U ), κ can be written as κ = u f
by using a function f → C∈

0 (U ). We then compute by using the Stokes’ theorem to
obtain

I (κ) = −
∫
U

(
τκ + ≥d℘≥2κ

)
κ dπ =

∫
U

u2|∇ f |2 − u f 2 L[u] dπ

=
∫
U

u2|∇ f |2 dπ > 0,

which implies that λ1(U ) > 0 because of (14). Now, in a small neighborhood U of
w, the surface is a graph of a function of a domain in the tangent space at X (w). By
rotating the surface if necessary, ℘3 > 0 on U . Set u := ℘3. Then, by Lemma 4,
L[u] = 0 holds. �

Remark 14 If the mean curvature of X : π ⊂ R3 vanishes on π, then X is called
a minimal surface. A minimal surface X is said to be stable if φ2 A ← 0 holds for all
variations of X that fix the boundary. Hence, a minimal surface X is stable if and
only if λ1 ← 0 holds.

Example 2 (i) Spheres are stable. In fact, a sphere is the minimizer of the surface
area among all closed surfaces enclosing the same volume.

(ii) Consider a part C of a right circular cylinder bounded by two parallel circles,
which are orthogonal to the rotation axis. Denote by r the radius of the cylinder
and by h the height of C . Then, C is stable if and only if h ⊇ 2πr .

(iii) Let U0 be the one period of an unduloid U , which is from a neck to the next
neck. Then U0 is stable. Any part U1 ∼ U0 is stable, and any part U2 ∼ U
that includes U0 properly is unstable.

(iv) If an unduloid U is sufficiently close to a cylinder, then the one period U0 from
a bulge to the next bulge is stable.

(v) If an unduloid U is sufficiently close to spheres, then the one period U0 from
a bulge to the next bulge is unstable.

We give an outline of the proofs of (ii)–(v). C is represented as

X (z, α) = (r cos α, r sin α, z), −πr ⊇ z ⊇ πr.
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The function κ(z, α) := sin(z/r) gives an eigenfunction belonging to λ2 = 0. U0 is
represented as

X (s, α) = (x(s) cos α, x(s) sin α, z(s)), −s0 ⊇ s ⊇ s0.

Now we use Lemma 4. The function κ = ℘3 gives an eigenfunction belonging to
λ2 = 0. For all cases, the support function ψ = ⊃X, ℘∧ is an even function with
respect to z (or s) which is a solution of the equation L[ψ ] = constant �= 0, and κ is
an odd function which is a solution of L[κ] = 0. Let ν be a nonzero even solution
of L = 0. Take a suitable linear combination u = aψ + bν so that u vanishes on the
boundary. Note L[u] = constant �= 0 and use Theorem 4. �

6 Bifurcation and the Stability

A so-called bifurcation is closely related to the stability of CMC surfaces. In this
section, we consider surfaces whose boundary values are prescribed. The set of
admissible surfaces is denoted by S . Each CMC surface in S is called a solution.
We give sufficient conditions on a one-parameter family of solutions so that there
exists a bifurcation of solutions. Moreover, we give a criterion for solutions in this
bifurcation branch to be stable.

First, we give the definition of bifurcation in our context. Consider a one-parameter
family of variational problems (VPt ) with parameter t . Let I be the domain of
definition of t . Denote by δ(≤, t) = 0, (≤ → S ), be the Euler–Lagrange equation of
(VPt ).

Definition 4 Assume that there is a one-parameter family of solutions:

δ(Xt , t) = 0, (∀t → I ).

Let t0 → I . If every neighborhood of (Xt0 , t0) contains zeroes of δ not lying on the
curve C := {(Xt , t) | t → I }, then (Xt0 , t0) is called a bifurcation point of δ with
respect to C .

If we consider CMC surfaces, we may choose H , V , the boundary condition, etc. as
the parameter. In this section, we take H or V as bifurcation parameter.

For a CMC immersion X → C3+α(M, R3), we set

E := {u → C2+α
0 (π); L[u] = 0}.

The following theorem gives a sufficient condition for nonexistence of bifurcation.

Theorem 5 (Existence and uniqueness of CMC deformation. Koiso [8]) Let 0 <

α < 1. Let X → C3+α(M, R3) be a CMC immersion. Assume either the following
(i) or (ii) holds.
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(i) E = {0}. (ii) dim E = 1 and
∫

π

e dπ �= 0 for all e → E − {0}.
Then, in a small neighborhood of X in C2+α

(
π, R3

)
, there exists a unique (up to

C2+α-diffeomorphisms of π) one-parameter family {Xt }, (Xt : π ⊂ R3, X0 = X),
of CMC immersions with the same boundary values as X.

Therefore, there is no bifurcation in this case. It is well-known that the multiplicity
of λ1 is one and that any eigenfunction belonging to λ1 does not change sign. Hence,
if λ1 = 0, then (ii) in Theorem 5 is satisfied. Therefore, bifurcation may occur only
in the case where λk = 0 for some k ← 2.

We will give two sufficient conditions for existence of bifurcations of CMC sur-
faces with fixed boundary condition. For a one-parameter family Xt : π ⊂ R3 of
CMC immersions, as in Sect. 5, we will denote the mean curvature of Xt , the volume
of Xt , by H(t), V (t), respectively. We will denote by Lt , L̃ t the self-adjoint operators
associated with the second variation of the area for Xt (see (5), (13)).

Theorem 6 ([10]) Assume we have a one-parameter family Xt = X + κ(t)℘ :
π ⊂ R3, (t → I = (−ϕ, ϕ) ∼ R), of CMC C3+α immersions with X = X0 and
X |ωπ = Xt |ωπ , which satisfy the following (i)–(iii).

(i) Xt is differentiable with respect to t .
(ii) H ≈(0) �= 0.

(iii) E = {ae; a → R}, ≺e →
(

C2+α
0 (π) − {0}

)
.

Then,
∫
π

e dπ = 0. And there exists a one-parameter family λ(t) (t →
(−ϕ0, ϕ0) ∼ I ) of real values such that λ(t) is differentiable with respect to t ,
λ(0) = 0, λ(t) is a simple eigenvalue of Lt , and there is no other eigenvalue of
Lt near 0.
Assume further that

(iv) λ≈(0) �= 0.
Let E⇒ be any complement of E in C3+α

0 (π). Then there exists an open interval

Î (0 → Î ∼ R) and C1 functions Ω : Î ⊂ E⇒ and t : Î ⊂ R, such
that t (0) = 0, Ω(0) = 0, and Y (s) := X + (κ(t (s)) + se + sΩ(s))℘ is a
CMC immersion with mean curvature Ĥ(s) := H(t (s)). Moreover, in a small
neighborhood of X, CMC immersions with the same boundary values as X

consists of {Xt ; t → I } and
{

Y (s); s → Î
}

. Furthermore, surfaces {Xt ; t → I }
and {Y (s); s → Î } are all different except for X0 = Y (0).

Theorem 6 is proved by applying a general result on bifurcation by Crandall-
Rabinowitz [3]. The bifurcation parameter in Theorem 6 is the mean curvature H .
On the other hand, Patnaik [16] was trying to obtain a similar result to Theorem 6,
where he used the volume instead of the mean curvature as bifurcation parameter.
The following result is proved by a modification of the proof of Theorem 4.6 in [16],
which is proved essentially by using Theorem 1.7 in [3].
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Theorem 7 ([10]) Assume we have a one-parameter family Xt = X + κ(t)℘ :
π ⊂ R3, (t → I = (−ϕ, ϕ) ∼ R), of CMC C3+α immersions with X = X0 and
X |ωπ = Xt |ωπ , which satisfy the following (i)–(iii).

(i) Xt is differentiable with respect to t .
(ii) V ≈(0) �= 0, H ≈(0) �= 0.

(iii) E = {ae; a → R}, ≺e → (C2+α
0 (π) − {0}).

Then,
∫
π

e dπ = 0, and λ j = λ̃k = 0 for ≺ j ← 2 and ≺k ← 1. There exists
a one-parameter family λ̃(t) (t → (−ϕ0, ϕ0) ∼ I ) of real values such that λ̃(t)
is differentiable with respect to t , λ̃(0) = 0, λ̃(t) is a simple eigenvalue of L̃ t ,
and there is no other eigenvalue of L̃ t near 0. Assume further that

(iv) λ̃≈(0) �= 0.
Let E⇒ be any complement of E in C3+α

0 (π). Then there exists an open interval

Î (0 → Î ∼ R) and C1 mappings η : Î ⊂ C3+α
0 (π) and τ : Î ⊂ R, such that

τ(0) = 0, η(0) = 0, and Y (s) := X +(κ(τ(s))+se+sη(s))℘ is a CMC immer-
sion with volume V̂ (s) := V (τ (s)). η(s) can be written as η(s) = c(s)κ≈(0) +
θ(s), where c : Î ⊂ R and θ : Î ⊂

{
u → C3+α

0 (π) |
∫

π

u dπ = 0

}
∗ E⇒

are C1 mappings such that c(0) = 0, θ(0) = 0. Moreover, in a small neigh-
borhood of X, CMC immersions with the same boundary values as X consists
of {Xt ; t → I } and {Y (s); s → Î }. Furthermore, surfaces {Xt ; t → I } and{

Y (s); s → Î
}

are all different except for X0 = Y (0).

Remark 15 Let us denote by “˙” the derivative with respect to t . In Theorem 6, the
variation vector field of Xt at t = 0 is (κ̇(0))℘, that of Y (s) is (t ≈(0)κ̇(0) + e)℘, and∫

π

e dπ = 0. It seems that this implies that, when Xt has a certain symmetry, Y (s)

does not have the same symmetry as Xt , that is, the so-called “symmetry breaking”
seems to occur. In Theorem 7, the same formula is valid by exchanging t for τ .
Bifurcation and symmetry breaking from nodoids are studied in [9].

In view of Theorems 3–5, in order to study the stability of CMC surfaces in a
bifurcation branch, we need to study only the case where λ2 = 0 holds.

From Theorem 3, we obtain the following lemma.

Lemma 6 We assume (i)–(iii) in Theorem 7. We use the same notations as those
in Theorem 7. Also, we assume that λ2 = 0 holds. Then, the following (A) and (B)
hold.

(A) If H ≈(0)V ≈(0) ← 0, then X is stable and λ̃1 = 0 holds.
(B) If H ≈(0)V ≈(0) < 0, then X is unstable and λ̃2 = 0 holds.

By using Theorem 7, Lemma 6, and generalizations of results in Crandall-
Rabinowitz [4], we obtain the following result about stability for surfaces in the
bifurcation branch.
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Fig. 2 The pictures represent, from the left, a subcritical pitchfork bifurcation, a supercritical
pitchfork bifurcation, and a transcritical bifurcation. The bifurcation parameter is the volume V

Theorem 8 (Stability of bifurcation branch) We assume (i)–(iv) in Theorem 7. We
use the same notations as those in Theorem 7. Moreover, we assume that λ2 = 0
holds. Then, the following (A1), (A2) and (B) hold near s = 0.

(A1) Assume H ≈(0) > 0 and V ≈(0) > 0 holds. Then, X is stable. If λ̃≈(0) < 0 (resp.
λ̃≈(0) > 0), then, for the CMC-bifurcation Y (s) with volume V̂ (s) obtained in
Theorem 7, the following result about stability holds. If V̂ ≈(s) ∪ 0, then Y (s)
is stable. Assume that V̂ ≈(s) �= 0 holds. Then, for s > 0, Y (s) is stable if and
only if V̂ ≈(s) > 0 (resp. V̂ ≈(s) < 0) holds. And for s < 0, Y (s) is stable if and
only if V̂ ≈(s) < 0 (resp. V̂ ≈(s) > 0) holds.

(A2) Assume H ≈(0) < 0 and V ≈(0) < 0 holds. Then, X is stable. If λ̃≈(0) < 0 (resp.
λ̃≈(0) > 0), then, for the CMC-bifurcation Y (s) with volume V̂ (s) obtained in
Theorem 7, the following result about stability holds. If V̂ ≈(s) ∪ 0, then Y (s)
is stable. Assume that V̂ ≈(s) �= 0 holds. Then, for s > 0, Y (s) is stable if and
only if V̂ ≈(s) < 0 (resp. V̂ ≈(s) > 0) holds. And for s < 0, Y (s) is stable if and
only if V̂ ≈(s) > 0 (resp. V̂ ≈(s) < 0) holds.

(B) If H ≈(0)V ≈(0) < 0, Then, X is unstable, and Y (s) is unstable for small |s|.
Remark 16 Theorem 8 implies that if H ≈(0)V ≈(0) > 0 (that is, the original surface
X is stable), then, only the following three types of bifurcations can occur: a super-
critical pitchfork bifurcation, a subcritical pitchfork bifurcation, and a transcritical
bifurcation (see Fig. 2). If, for the surfaces Y (s) in Theorem 8, Y (−s) = δ◦Y (s)◦�

holds for an isometry δ of R3 and a diffeomorphism � of π, then if H ≈(0)V ≈(0) > 0,
only pitchfork bifurcations can occur.

Remark 17 As we saw in Remark 15, If Xt has a certain symmetry, it seems that
Y (s) does not have the same symmetry as Xt . This implies that Theorem 8 may
give a sufficient condition for existence of the interesting phenomenon that a one
parameter family of stable solutions with a certain symmetry bifurcates to unstable
solutions with the same symmetry and stable solutions with lower symmetry.

Remark 18 In the above theorems on bifurcation, we assumed that zero-eigenspace
of the bifurcation point is one-dimensional, which means that the Morse index jumps
at that point and the jump is one. It seems that if the jump of Morse index is an odd
number, a bifurcation may occur. In fact, recently [11] gives a sufficient condition for
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existence of bifurcation on triply-periodic minimal surfaces in R3, which gives new
examples of triply-periodic minimal surfaces. There they only assume that the jump
of Morse index is an odd number. However, they obtain only discrete bifurcation and
they have not yet obtained a continuous bifurcation as the above theorems. They use
a general bifurcation result given in [7].
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of Plane Curves
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Abstract We consider the isoperimetric deformation of smooth curves on the
Euclidean plane. It naturally gives rise to a nonlinear partial differential equation
called the modified KdV(mKdV) equation as a deformation equation of the curva-
ture, which is known as one of the most typical example of the soliton equations
or the integrable systems. The Frenet equation and the deformation equation of the
Frenet frame of the curve are the auxiliary linear problem or the Lax pair of the mKdV
equation. Based on this formulation, we present two discrete models of isoperimetric
deformation of plane curves preserving underlying integrable structure: the discrete
deformation described by the discrete mKdV equation and the continuous deforma-
tion described by the semi-discrete mKdV equation.
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1 Isoperimetric Deformation of Plane Curves

1.1 Frenet Formula

Let γ (x) =
[

X (x)

Y (x)

]
∈ R

2 be an arc-length parameterized plane curve and x be the

arc-length. This implies from the definition dx = √
(dX)2 + (dY )2 that

|γ ⊂| =
√(

dX

dx

)2

+
(

dY

dx

)2

= 1, (1)

where ⊂ is the derivative with respect to x . We define the tangent vector T of γ by
T = γ ⊂. Then it follows from (1) that T admits a parameterization as

T = γ ⊂ =
[

cos θ

sin θ

]
. (2)

Note that the geometric meaning of θ = θ(x) is the angle between T and the
horizontal axis, and it is called the turning angle. We next define the normal vector
N by (see Fig. 1)

N = R
(π

2

)
T =

[
0 −1
1 0

]
T, R(φ) =

[
cos φ − sin φ

sin φ cos φ

]
. (3)

Let →·, ·⊃ be the standard Euclidean scalar product. Since we have →T, T ⊃ = 1 from
(1), differentiating this by x yields →T ⊂, T ⊃ = 0, which implies that T and T ⊂ are
orthogonal. Therefore, there exists a function κ = κ(x) such that

T ⊂ = κ N =
[

0 −κ

κ 0

]
T, (4)

which we call the curvature. Differentiating the both sides of (2) and comparing with
(4), we see that κ = θ ⊂. From this fact, θ is also called the potential function. We
define the Frenet frame Φ ∈ SO(2) by Φ = [T, N ], which is an orthonormal frame
of R2 defined along the curve. Then we see from (3) and (4) that

Φ ⊂ = ΦL , L =
[

0 −κ

κ 0

]
. (5)

Equation (5) is called the Frenet formula of γ .
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Fig. 1 Smooth plane curve

γ (x, t)

T (x, t) = γ (x, t)

=
cosθ
sinθ

θ(x, t)

N(x, t)

x

O

1.2 Isoperimetric Deformation of Plane Curves and mKdV
Equation

Suppose that the curve γ (x) and associated quantities, such as the turning angle θ(x)

and the curvature κ(x), depend also on the deformation parameter t . We require the
condition

|γ ⊂(x, t)| = 1 (6)

for all t , namely, we consider the deformation such that the arc-length is preserved.
We call such deformation the isoperimetric deformation, and (6) is referred to as
the isoperimetric condition. Noticing that Φ is the orthonormal frame of R2, let us
express the deformation of γ as

∂γ

∂t
= f (x, t)T + g(x, t)N . (7)

A simple calculation by using (5) and (7) yields the equation describing the defor-
mation of the Frenet frame Φ:

∂Φ

∂t
= ΦM, M =

[
0 −(g⊂ + κ f )

g⊂ + κ f 0

]
, f ⊂ = κg. (8)

Note that we have used the fact that ∂T/∂t is orthogonal to T which is verified
by differentiating the both sides of →T, T ⊃ = 1 by t . The compatibility condition
Φxt = Φt x of the system of linear partial differential Eqs. (5) and (8) for Φ implies
that L and M satisfy

∂L

∂t
− ∂ M

∂x
− L M + M L = 0. (9)

Writing down the equations for the entries of (9), we see that κ satisfies

κt = gxx + κx f + κ2g, fx = κg. (10)

If we choose f and g as

f = −κ2

2
, g = −κx , (11)
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then the deformation Eq. (7) reads

∂γ

∂t
= −κ2

2
T − κx N , (12)

and (10) yields

κt + 3

2
κ2κx + κxxx = 0, (13)

or in terms of θ ,

θt + 1

2
(θx )

3 + θxxx = 0. (14)

Equations (13) and (14) are called the modified Korteweg-de Vries (mKdV) equation
and the potential mKdV equation, respectively, which are typical integrable systems.
Namely, the (potential) mKdV equation describes an isoperimetric deformation of
the curves on the Euclidean plane[4].

Remark 1 We note that (10) can be rewritten as

κt = Ωg, Ω = ∂2 + κ2 + κx∂
−1κ, (15)

where ∂−1 denotes the formal integration operator. The operator Ω is well-known
as the recursion operator of the mKdV hierarchy, which yields a family of infinitely
many integrable differential equations called the mKdV hierarchy

κt = −Ωn−1κx , n = 1, 2, . . . . (16)

The system of linear Eqs. (5) and (8) for Φ is called the auxiliary linear problem or
the Lax pair of the mKdV hierarchy in the theory of the integrable systems(see, for
example, [1]). In this way, the mKdV hierarchy naturally arises in the framework of
the isoperimetric deformation of the plane curves [4].

2 Isoperimetric Deformation of Discrete Plane Curves

2.1 Discrete Plane Curves and Discrete Frenet Formula

Let us consider the deformation of the discrete plane curves. For γn ∈ R
2(n ∈ Z),

if any consecutive three points γn−1, γn, γn+1 are not colinear, we call γn a discrete
plane curve. We put

an = |γn+1 − γn| (17)

and define the tangent vector Tn and the normal vector Nn by
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Fig. 2 Discrete plane curve γ n−1

γ n

γ n+1

an−1 an
Kn

Tn

Nn

Tn = γn+1 − γn

an
, Nn = R

(π

2

)
Tn, (18)

respectively. From ∣∣∣∣γn+1 − γn

an

∣∣∣∣ = 1, (19)

Tn is parameterized as

Tn = γn+1 − γn

an
=

[
cos Ψn

sin Ψn

]
, (20)

where Ψn is the angle between Tn and the horizontal axis. We call Ψn the turning
angle similarly to the case of the smooth curve. Let Kn be the angle between the
tangent vectors Tn−1 and Tn . Then it follows immediately from the definition that
(see Fig. 2)

γn+1 − γn

an
= R(Kn)

γn − γn−1

an−1
, Kn = Ψn − Ψn−1. (21)

Introducing the discrete Frenet frame Φn ∈ SO(2) by

Φn = [Tn, Nn] , (22)

it follows from (18) and (21) that

Φn+1 = Φn Ln, Ln = R(Kn+1). (23)

Equation (21) or (23) is called the discrete Frenet formula.

2.2 Discrete Isoperimetric Deformation of Discrete Plane Curves

We consider a discrete isoperimetric deformation of the discrete curve, which reduces
to the isoperimetric deformation of the smooth curves described by the mKdV equa-
tion in Sect. 1 in the continuous limit [8, 11]. Let m ∈ Z be the discrete time and γ m

n
be the isoperimetric deformation of γn = γ 0

n . Namely, γ m
n satisfies
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Fig. 3 Discrete isoperimet-
ric deformation of discrete
curves: bm and W m

n

γ m
n−1

γ m
n

γ m
n+1

an−1

an

bm Wm
n

γ m+1
n

∣∣∣∣γ
m
n+1 − γ m

n

an

∣∣∣∣ = 1 (24)

for all m so that the length of the edge γ m
n+1 − γ m

n is constant with respect to m. We
also require the equidistant condition

∣∣∣∣γ
m+1
n − γ m

n

bm

∣∣∣∣ = 1 (25)

for all n, where bm is an arbitrary function of m. Then, as shown in Fig. 3, putting
the angle between the vectors γ m

n+1 − γ m
n and γ m+1

n − γ m
n as W m

n , we have

γ m+1
n − γ m

n

bm
= cos W m

n T m
n + sin W m

n N m
n . (26)

Substituting (26) into the isoperimetric condition

|γ m+1
n+1 − γ m+1

n | = an (27)

gives

sin

(
W m

n+1 + K m
n+1 + W m

n

2

)
= bm

an
sin

(
W m

n+1 + K m
n+1 − W m

n

2

)
, (28)

or equivalently

W m
n+1 = −K m

n+1 + 2 arctan

(
bm + an

bm − an
tan

W m
n

2

)
. (29)

The deformation of the discrete curve is determined by (26) and (29) as follows. Let
γ 0

n be a given initial curve, and accordingly K 0
n and an are given. Then:

1. Choose a point, e.g, γ 0
0 , and move it to an arbitrary point γ 1

0 on the plane. Put
b0 = |γ 1

0 − γ 0
0 | and W 0

0 = ∠(γ 1
0 − γ 0

0 , γ 0
1 − γ 0

0 ).
2. Compute W 0

n from W 0
0 and K 0

n by using (29) with m = 0 successively.
3. Compute γ 1

n by using (26).
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Applying this procedure successively, we obtain γ m
n (m = 1, 2, 3 . . .) from the initial

curve γ 0
n .

Now we see that the discrete Frenet frame Φm
n satisfies

Φm
n+1 = Φm

n Lm
n , Lm

n = R(K m
n+1),

Φm+1
n = Φm

n Mm
n , Mm

n = R(W m
n+1 + K m

n+1 + W m
n ), (30)

by using (26) and (29). Note that the first equation in (30) is nothing but the discrete
Frenet formula. The compatibility condition Lm

n Mm
n+1 = Mm

n Lm+1
n of the system of

linear difference Eq. (30) gives

K m+1
n − K m

n+1 = W m
n+1 − W m

n−1. (31)

Eliminating K m
n from (29) and (31), we find that W m

n satisfies the discrete mKdV
equation [11]

W m+1
n+1

2
− W m

n

2
= arctan

(
bm+1 + an

bm+1 − an
tan

W m+1
n

2

)

− arctan

(
bm + an+1

bm − an+1
tan

W m
n+1

2

)
. (32)

By virtue of (31), the potential function θm
n is introduced as

K m
n = θm

n+1 − θm
n−1

2
, W m

n = θm+1
n − θm

n+1

2
, Ψ m

n = θm
n+1 + θm

n

2
. (33)

Then θm
n satisfies the discrete potential mKdV equation [6]:

tan
θm+1

n+1 − θm
n

2
= bm + an

bm − an
tan

θm+1
n − θm

n+1

2
. (34)

Therefore we have formulated the isoperimetric deformation of discrete curves by
(26) and (29) which is described by the discrete mKdV Eq. (32) or the discrete
potential mKdV equation (34).

Remark 2 The isoperimetric condition (27) is also satisfied if

sin

(
W m

n+1 + K m
n+1 − W m

n

2

)
= 0 (35)

holds. This implies that T m
n and T m+1

n are parallel, and in a sense, trivial as shown
in Fig. 4. At each point γ m

n , one can choose the deformation according to either (29)
or (35), but we do not consider the latter deformation here.
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Fig. 4 Discrete isoperimet-
ric deformation of discrete
curves. Thick line deformation
according to (29). Broken line
deformation according to (35)

γ m
n−1

γ m
n

γ m
n+1

bm

γ m+1
n

bm

bm

γ m+1
n+1

γ m+1
n−1

Fig. 5 Tangential flow of
discrete curves

γ l−1

γ l+1

γ l Kl

Kl

2

Kl

2

cos Kl
2 dγ l

ds

2.3 Continuous Isoperimetric Deformation of Discrete Plane
Curves

Let γl ∈ R
2 (l ∈ Z) be the discrete curve with the length of tangent vector al = ε

(constant) and the turning angle Ψl . Namely, γl satisfies

∣∣∣∣γl+1 − γl

ε

∣∣∣∣ = 1,
γl+1 − γl

ε
=

[
cos Ψl

sin Ψl

]
, (36)

γl+1 − γl

ε
= R(Kl)

γl − γl−1

ε
. (37)

Let s be a continuous deformation parameter. As shown in Fig. 5, we consider the
deformation in the direction of the vertex tangential vector γl+1 − γl−1 [2, 7, 9]

d

ds
γl = 2εα

γl+1 − γl−1

|γl+1 − γl−1|2 , (38)

where α is a constant, or equivalently

d

ds
γl = α

cos Kl
2

R

(
− Kl

2

)
γl+1 − γl

ε
, (39)

which is called the tangential flow. It is also expressed in terms of the tangent vector
Tl and the normal vector Nl as

d

ds
γl = α

(
Tl − tan

Kl

2
Nl

)
. (40)
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Fig. 6 Osculating circle and
discrete curvature

γ l−1

γ l+1

γ l

Kl

Kl

2

Kl

2

2 tan Kl

2

We may put α = 1 without loss of generality. We can verify that this deformation is

isoperimetric, namely,
dε

ds
= 0 by direct calculation. Then it follows that the Frenet

frame Φl = [Tl , Nl ] satisfies

Φl+1 = Φl Ll , Ll = R(Kl+1),

d

ds
Φl = Φl Ml , Ml = 1

ε

[
0 −

(
tan Kl+1

2 + tan Kl
2

)
tan Kl+1

2 + tan Kl
2 0

]
. (41)

The compatibility condition d
ds Ll = Ll Ml+1 − Ml Ll of the linear system (41) yields

the semi-discrete mKdV equation

dKl

ds
= 1

ε

(
tan

Kl+1

2
− tan

Kl−1

2

)
. (42)

Note that (42) is also derived by differentiating cos Kl = →Tl−1, Tl⊃ and by using
(41). Introducing the “discrete curvature”[7] κl by κl = 2

ε
tan Kl

2 , which is the inverse
of the radius of the circle osculating at the mid-points of two adjacent edges of γl

(see Fig. 6), (42) is rewritten as

dκl

ds
= 1

2ε

(
1 + ε2κ2

l

4

)
(κl+1 − κl−1) . (43)

The potential function θl introduced by

Ψl = θl+1 + θl

2
, Kl = θl+1 − θl−1

2
(44)

satisfies the potential semi-discrete mKdV equation[5]:

dθl

ds
= 2

ε
tan

θl+1 − θl−1

4
. (45)
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2.4 Continuous Limit

The discrete potential mKdV Eq. (34) yields the semi-discrete potential mKdV
Eq. (45) and the potential mKdV Eq. (14) by the following limiting procedures
[5, 6, 9]:
(34)−∧(45)

an = a (const.), bm = b (const.), δ = a + b

2
, ε = a − b

2
, (46)

s

δ
= n + m, l = n − m, δ ∧ 0

(45)−∧(14)

x = εl + s, t = −ε2

6
s, ε ∧ 0 (47)

The semi-discrete mKdV Eq. (45) and the mKdV Eq. (13) are derived from the dis-
crete mKdV Eq. (34) by the same limiting procedure. The same procedures also apply
to the turning angle, the Frenet frame, and the curve itself. These continuous limits
can be verified simply by applying the Taylor expansion with respect to the limiting
parameters after the designated variable transformations.

3 Concluding Remarks

It is possible to construct various exact solutions to the deformation of the curves,
which are expressed explicitly in terms of the τ functions by using the theory of
integrable systems, such as the solution describing the interaction of loop solitons
[8, 9]. It is known that the Wadati-Konno-Ichikawa (WKI) elastic beam equation
admitting the loop soliton solutions is related to the mKdV equation by a certain
variable transformation called the reciprocal transformation (or sometimes referred
to as the hodograph transformation). This transformation includes the independent
variable transformation in which the dependent variable is incorporated. From the
geometric formulation of the mKdV equation presented in this article, the reciprocal
transformation can be regarded as a variable change from the Lagrangian description
to the Eulerian description of the curves. Based on this observation, one can construct
the discrete analog of the reciprocal transformation, which yields the integrable
discretization of the WKI elastic beam equation. It is possible to apply the similar
procedure to obtain the integrable (semi-)discretization of various soliton equations
admitting the loop solitons, such as the short pulse equation which describes the
interaction of the ultrashort pulses in the optical fiber [3]. We also remark that the
deformations of space curves described by the semi-discrete and discrete mKdV
equations are presented in [10].



Discrete Models of Isoperimetric Deformation of Plane Curves 99

References

1. M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform. SIAM Studies in
Applied Mathematics 4 (SIAM, Philadelphia, 1981)

2. A. Doliwa, P.M. Santini, Integrable dynamics of a discrete curve and the Ablowitz-Ladik
hierarchy. J. Math. Phys. 36, 1259–1273 (1995)

3. B.F. Feng, J. Inoguchi, K. Kajiwara, K. Maruno, Y. Ohta, Discrete integrable systems and
hodograph transformations arising from motions of discrete plane curves. J. Phys. A Math.
Theor. 44, 395201 (2011)

4. R.E. Goldstein, D.M. Petrich, The Korteweg-de Vries hierarchy as dynamics of closed curves
in the plane. Phys. Rev. Lett. 67, 3203–3206 (1991)

5. R. Hirota, Exact N-soliton solution of nonlinear lumped self-dual network equation. J. Phys.
Soc. Jpn. 35, 289–294 (1973)

6. R. Hirota, Discretization of the potential modified KdV equation. J. Phys. Soc. Jpn. 67, 2234–
2236 (1998)

7. T. Hoffmann, Discrete differential geometry of curves and surfaces, COE Lecture Notes, vol.
18 (Kyushu University, Fukuoka, 2009)

8. J. Inoguchi, K. Kajiwara, N. Matsuura, Y. Ohta, Motion and Bäcklund transformations of
discrete plane curves. Kyushu J. Math. 66, 303–324 (2012)

9. J. Inoguchi, K. Kajiwara, N. Matsuura, Y. Ohta, Explicit solutions to the semi-discrete modified
KdV equation and motion of discrete plane curves. J. Phys. A: Math. Theor. 45, 045206 (2012)

10. J. Inoguchi, K. Kajiwara, N. Matsuura, Y. Ohta, Discrete mKdV and discrete sine-Gordon
flows on discrete space curves. J. Phys. A: Math. Theor. 47, 235202 (2014)

11. N. Matsuura, Discrete KdV and discrete modified KdV equations arising from motions of
discrete planar curves. Int. Math. Res. Notices 2012, 1681–1698 (2012)



Computing Optimal Cycles of Homology
Groups

Emerson G. Escolar and Yasuaki Hiraoka

Abstract This is a brief survey concerning the problem of computing optimal cycles
of homology groups through linear optimization. While homology groups encode
information about the presence of topological features such as holes and voids of
some geometrical structure, optimal cycles tighten the representatives of the homol-
ogy classes. This allows us to infer additional information concerning the location of
those topological features. Moreover, by a slight modification of the original problem,
we extend it to the case where we have multiple nonhomologous cycles. By consid-
ering a more general class of combinatorial structures called complexes, we recast
this multiple nonhomologous cycles problem as a single cycle optimization problem
in a modified complex. Finally, as a numerical example, we apply the optimal cycles
problem to the 3D structure of human deoxyhemoglobin.

Keywords Computational topology · Homology groups · Optimal cycles

1 Introduction

Recent advances in applied computational topology, particularly persistent
homology [15], have brought into light the usefulness of topological methods
in applied settings. One motivation for this work is provided by the paper [9].
In that paper, protein compressibility is characterized with high correlation by a
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topological quantity obtained through persistent homology. One insight is that
compressibility is related to the sizes of holes in the structure. As a proxy for study-
ing size, the paper [9] uses the idea of persistence (robustness) throughout different
scales to measure holes.

In this work, we focus directly on the sizes of holes by computing optimal cycles
in homology groups. In abstract, homology groups are quotient groups of kernels by
images of so-called boundary maps. When applied to concrete geometrical structures,
the homology classes encode information about connected components, holes, voids,
and higher dimensional analogs.

As a quotient, a homology group is a group of homology classes, each composed
of cycles that are topologically equivalent, or to be precise, homologous to each other.
For a homology class, we choose a representative cycle to stand for it. Given appro-
priate inputs, a set of representative cycles for the homology classes of a homology
group can be computed [11].

However, representative cycles are determined only up to homology class. There
is room for a representative cycle to be deformed among its topologically equivalent
cycles. The idea behind finding optimal cycles is to find good representatives for
the homology classes so that we gain additional information about the underlying
geometric structure. The criterion for “good” varies according to what information
is desired. Typical criteria include the number of cells of the representative cycle
or the total length/surface area/volume. Particularly helpful for intuition is that in
dimension 1, the problem of finding optimal cycles can be thought of as tightening
loops around holes. See Fig. 2 for an example.

We also mention that the problem of finding optimal cycles of homology groups
is closely related to the localization of homology classes, as studied in [3, 4, 16].
There, the focus is on the optimization of homology classes by some definition of
locality on homology classes. Here, we optimize directly on the representatives of
homology classes.

We follow Dey et al. [6] in casting the problem of finding an optimal cycle as an
integer linear optimization problem. While integer linear optimization is NP-hard
in general, Dey et al. derive several conditions where the problem can be converted
to linear optimization without losing integrality in the solution. Of course, one can
instead solve the optimization problem with real coefficients to avoid the theoretical
NP-hardness. However, cycles with a fractional/irrational number of cells tend to be
awkward to interpret geometrically.

We also tackle the case where there is more than one hole in the structure. A given
cycle may go around two or more holes, so that even after optimizing the cycle, it
still winds around multiple holes. We modify the optimization problem to address
this, further showing the flexibility in using an optimization-based approach.

Moreover, by considering a more general class of combinatorial objects—
complexes, we show that this modification in the optimization problem can be
realized as simply pasting extra cells. That is, minimization with multiple nonho-
mologous cycles is simply minimization of a single cycle in a modified complex.
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2 Background

In this section, we review basic ideas from both algebraic topology and integer linear
optimization. For a more thorough reference, we refer the reader, for example, to
[12, 13].

2.1 Constructions

A complex K overZ is a graded set K = ∈p⊂0 K p with elements called cells, together
with an incidence map κ : K × K → Z satisfying

1. κ(σ, τ ) ⊃= 0 implies dim σ = dim τ + 1,
2.

∑
σ∧K

κ(ρ, σ )κ(σ, τ ) = 0.

The dimension of a cell σ ∧ K is given by dim σ = p if and only if σ ∧ K p.
Throughout this work, we assume that our complexes only have a finite number of
cells.

The definition above is very abstract. To motivate our minimization problem, we
consider certain complexes called simplicial complexes. A simplicial complex is a
set of vertices V together with a set of simplices S ← 2V satisfying the property
that every singleton {v} is in S for v ∧ V , and if A ∧ S, B ← A, then B ∧ S. For
A ∧ S, any subset of A is called a face of A. In this work, we only consider simplicial
complexes with V finite, called finite simplicial complexes.

One can think of A = {v0, . . . , vp} ∧ S, for p = 0, 1, 2, 3, . . ., as a point, line,
triangle, tetrahedron, and so on, respectively. For example, {v0, v1, v2} in Fig. 1 is the
triangle with vertices v0, v1, and v2. For every simplex in S, we consistently choose
an orientation by giving the vertices some order [v0, v1, . . . , vp]. Consistency means
that the faces of a simplex inherit from that order. Now, let

K p = {σ = [v0, . . . , vp] | {v0, . . . , vp} ∧ S}

and define

κ([v0, . . . , vp], τ ) =
{

(−1)i , if τ = [v0, . . . , vi−1, v̂i , vi+1, . . . , vp],
0, otherwise,

where the hat ˆ denotes removal of the vertex vi . For simplicity, we call a
p-dimensional simplex σ ∧ K p as a p-simplex. It is easy to check that this con-
struction gives us a complex from a simplicial complex.
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Fig. 1 A 2-simplex is a
triangle. The cell σ =
[v0, v1, v2] is oriented in a
counter-clockwise direction

e0

e1e2

v0 v1

σσ

v2

2.2 Homology Groups

Given a complex, we construct its homology groups by first defining its p-th chain
groups

C p(K ) =
⎧⎨
⎩

∑
σ∧K p

nσ σ

∣∣∣∣∣∣ nσ ∧ Z

⎫⎬
⎭

for p ⊂ 0. The elements of Cp(K ) are simply formal sums of p-dimensional cells
with integral coefficients and are called p-chains of K . The boundary maps ∂p :
C p(K ) → C p−1(K ), for p ⊂ 1, are defined by linearly extending

∂pσ =
∑
τ∧K

κ(σ, τ )τ =
∑

τ∧K p−1

κ(σ, τ )τ

for σ with dimension p. We set ∂0 : C0(K ) → {0} as the zero map. By property 2
of the incidence map, it can be shown that ∂p∂p+1 = 0 for p ⊂ 0. By choosing the
set of all p-dimensional cells as the basis for C p(K ), for each p ⊂ 0, we write down
each ∂p in matrix form, and call these the boundary matrices of Cp(K ).

If the complex K is obtained from a simplicial complex, we regain the classical
formula

∂p[v0, . . . , vp] =
p∑

i=0

(−1)i [v0 . . . , v̂i , . . . , vp]

for σ = [v0, . . . , vp] ∧ K p. Here, for any permutation g ∧ Sp+1 of the p+1 vertices
of σ , we identify

[v0, . . . , vp] = sgn(g)[vg(0), . . . , vg(p)].

As an example, consider the triangle σ = [v0, v1, v2] in Fig. 1. We have
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Fig. 2 Representative cycles
do not always precisely
describe the hole. Here, z1
and z2 loop around the same
hole and are homologous

z2

z1

∂2σ = 1[v1, v2] + (−1)[v0, v2] + 1[v0, v1]
= [v1, v2] + [v2, v0] + [v0, v1]
= e1 + e2 + e0,

which is a chain composed of the edges on the geometrical boundary of the triangle.
Define the group of p-cycles of K and the group of p-boundaries of K by

Z p(K ) = ker ∂p and Bp(K ) = im ∂p+1, respectively. By the fact that ∂p∂p+1 = 0,
we have Bp(K ) ← Z p(K ) and we obtain the p-th homology group of K as

Hp(K ) = ker ∂p

im ∂p+1
= Z p(K )

Bp(K )
.

Since we are assuming that K is finite, C p(K ), Z p(K ), and Bp(K ) are all finitely
generated, free Z-modules. In general, however, Hp(K ) is not free, but has structure
given by

Hp(K ) ≈= Z
b ≤ Zn1 ≤ . . . ≤ Znt , (1)

with b called the p-th Betti number of K . The summand Zn1 ≤ . . . ≤ Znt is called
the torsion part of Hp(K ).

Elements of Hp(K ) are called homology classes, denoted by [a] = a + Bp(K )

for some a ∧ Z p(K ). Two elements a, b ∧ Z p(K ) are said to be homologous if their
projections [a], [b] into Hp(K ) are equal. This occurs if and only if

a = b + ∂p+1 y

for some y ∧ C p+1(K ). In Fig. 2 for example, the cycles z1 and z2 are homologous
since their difference z1 − z2 is the image under the boundary map of a y ∧ C2(K ),
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where y is the chain equal to the sum of triangles enclosed between z1 and z2, oriented
appropriately.

The homology groups capture information about connected components, holes,
voids, and so on. Roughly speaking, for H1(K ), we take all the cycles (loops of
edges) in the complex, and identify two loops as being the same if they differ by
the image under the boundary map of a chain of 2-dimensional cells. Loops that
surround any holes will not be made trivial, since they cannot be expressed as the
image of some chain of 2-dimensional cells under the boundary map.

Using the structure of Hp(K ) as expressed in Eq. (1), assume that we are given a
generating set for Hp(K ),

B = {[z1], . . . , [zb], [zb+1], . . . , [zb+t ]},
such that [zi ] has infinite order for i = 1, . . . , b and order ni for i = b + 1, . . . b + t .
From each homology class [zi ] we choose a representative cycle zi . If Hp(K ) has
no torsion, B will be a basis for Hp(K ). If Hp(K ) has torsion, linear independence
fails since we have nb+t [zb+t ] = 0 even though nb+t ⊃= 0.

Popular implementations of homology group calculations such as CHomP [5] can
compute a set of representative cycles for Hp(K ). These are typically computed by
Smith normal form operations on the boundary matrices. Since these computations
do not control what representatives are chosen, the resulting cycles do not directly
tell us anything about the locations of the topological features. We illustrate this in
Fig. 2. Consider the simplicial complex K , with one hole as counted by H1(K ) ≈= Z

1

with Betti number 1. In homological terms, there is no difference between z1 and z2
since they generate the same homology class [z1] = [z2]. In practical applications,
we would like to be able to identify z1.

2.3 Integer Linear Optimization

An integer linear optimization problem [13] is the following. Given a rational matrix
A, and rational vectors b, c of appropriate dimensions, determine

min{cT x | Ax ∀ b, x is integral}, (2)

where T denotes vector transposition and Ax ∀ b means component-wise inequality.
A vector x is said to be integral if each coordinate entry is an integer. We write such
a problem in the form

minimize cT x

subject to

{
Ax ∀ b,

x is integral.

Each row in the inequality Ax ∀ b, together with any other conditions imposed on x ,
is called a constraint. The set of vectors x satisfying the constraints of an optimization
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problem is called its feasible region F . In problem (2), the feasible region is

F = {x | Ax ∀ b, x is integral},

and thus the integer linear optimization problem is simply to determine

min
x∧F

cT x .

This form of the integer linear optimization problem is equivalent to many other
forms of integer linear optimization. For example, a maximization problem can be
expressed by setting maxx∧F cT x = − minx∧F −cT x . Instead of inequalities in the
constraints, we can have equality Ax = b, by setting

[
A −A

]
x ∀ [

b −b
]
.

Certain coordinates in the vector x may be also be restricted to be nonnegative by
including those inequalities to the constraints.

In general, integer linear optimization is known to be NP-hard. We consider certain
conditions where it can be solved in polynomial time. Given problem (2), we consider
a related problem, called its linear relaxation, as follows:

min{cT x | Ax ∀ b, x is a real vector}. (3)

Of course, the solutions to problems (2) and (3) may be different. Of particular
interest in integer linear optimization problems are totally unimodular matrices. A
matrix A with integral entries is said to be totally unimodular if and only if all of its
submatrices have determinant 0, −1, or 1.

The following is also used in the paper [6] to show that certain optimal cycle
problems can be solved in polynomial time.

Proposition 1 Let A be a totally unimodular matrix, b an integral vector. Then,
problem (2) can be solved in time polynomial in the dimensions of A.

We recall some definitions and give a sketch of the proof. The feasible region F = {x |
Ax ∀ b, x is a real vector} of the linear relaxation is a polyhedron. A polyhedron
is said to be integral if and only if it is the convex hull of integral vectors. In other
words, its vertices are integral.

It is known [14] that if A is a totally unimodular matrix and b is an integral vector,
then F is integral. Since the optimum solution to the linear relaxation problem, if
any, will be on a vertex, this shows that solving the linear relaxation suffices to obtain
a solution to problem (2). Finally, it is known [13] that a linear optimization problem
can be solved in polynomial time.
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3 Optimal Cycles Through Integer Linear Optimization

3.1 Optimization of a Single Cycle

Following Dey et al. [6], we consider the problem of optimizing cycles using inte-
ger linear optimization. By fixing a standard basis for C p(K ) consisting of all the
p-dimensional cells of K , we identify

C p(K ) ≈= Z
m .

Let {τk}m
k=1 be the set of all p-dimensional cells in K . We can thus write the elements

x = ∑m
k=1 ckτk ∧ Cp(K ) as vectors

x = [
c1 . . . cm

]T

in Z
m . Using this, we define a 1-norm on C p(K ) by

||x ||1 =
m∑

k=1

|ck |.

Even though we do not use it in this work, we mention that a different norm may be
used depending on what criterion for good representative cycles is needed. For exam-
ple, let W be a diagonal matrix with diagonal entries wkk . Depending on dimension p,
the entries wkk can be chosen to be the length, surface area, volume, and so on, of the
p-dimensional cells τk . Then, the weighted norm ||x ||w = ||W x ||1 = ∑m

k=1 |ckwkk |
incorporates additional geometric information about the p-dimensional cells τk in
computing the norm of x .

With bases fixed for C p(K ) for every p ⊂ 0, we write down the boundary maps
∂p in matrix form relative to these bases. Henceforth, we use the same symbol for
the map ∂p and its matrix representation.

The optimal homologous cycle problem is the following optimization problem.
Given z ∧ Z p(K ), we solve the problem

minimize ||x ||1
subject to

{
x = z + ∂p+1 y,

x ∧ C p(K ), y ∧ C p+1(K ).

(4)

In other words, we are solving for the smallest 1-norm of the chains homologous to
z. Even though we did not require it explicitly, any minimizer ẑ for problem (4) is a
cycle. Since ẑ must satisfy ẑ = z + ∂p+1 y, we compute ∂p ẑ = ∂pz + ∂p∂p+1 y = 0,
showing that ẑ ∧ Z p(K ).

Using a standard trick in linear optimization, problem (4) is equivalent to solving
the integer linear optimization problem
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Fig. 3 The loop z3 is wound
around two holes

z1

z2

z3

minimize
m∑

k=1

(x+
k + x−

k )

subject to

{
x+ − x− = z + ∂p+1 y,

x+, x− ∧ Z
m, x+, x− ⊂ 0, y ∧ Z

n,

(5)

and taking ẑ = x̂+− x̂− as a minimizer for problem (4), where x̂+, x̂− is a minimizer
for problem (5).

If ∂p+1 is totally unimodular, so is the constraint matrix in problem (5). For a
fixed p ⊂ 0, Dey et al. [6] show that in the following cases the matrix ∂p+1 will be
totally unimodular.

1. K is a finite simplicial complex triangulating a compact, (p + 1)-dimensional
orientable manifold.

2. K is a finite simplicial complex embedded in R
p+1.

3. Only for p ∀ 1, the simplicial complex K contains no so-called Mobius subcom-
plexes of dimension p + 1.

In these cases then, problem (5) can be solved in polynomial time by Proposition 1.
In certain cases however, solving problem (5) may not be enough. Consider the

simplicial complex in Fig. 3 with two holes. Suppose that we are trying to find an
optimal cycle homologous to z3 by solving problem (5) with z = z3. With some
computation, the minimal 1-norm is 8, attained by the cycle ẑ that loops around both
z1 and z2 by going through the square of side length 2. Note that neither z3 nor ẑ are
homologous to z1 or z2.
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3.2 Optimization in the Presence of Multiple Cycles

Let Hp(K ) be torsion-free. Given z1, . . . , zr in Z p(K ) and for a fixed 1 ∀ j ∀ r ,
we find ẑ j ∧ C p(K ) such that ẑ j attains the minimum in the following problem:

minimize ||x ||1

subject to

⎧⎨
⎩

x = z j + ∂p+1 y +
∑
i ⊃= j

ai zi ,

x ∧ Cp(K ), y ∧ C p+1(K ), ai ∧ Z.

(6)

We denote the set of such solutions by

Pj (z1, . . . , zr ) =
{

ẑ j

∣∣∣∣ setting x = ẑ j attains the minimum in problem (6)
for some y, ai satisfying its constraints

}
.

To be precise, the feasible region of problem (6) is

F =
⎧⎨
⎩

⎡
⎣ x

y
a j

⎤
⎦

∣∣∣∣∣∣
x = z j + ∂p+1 y + ∑

i ⊃= j ai zi ,

x ∧ C p(K ), y ∧ C p+1(K ), a j ∧ Z
r−1

⎫⎬
⎭

where a j = [ a1 . . . a j−1 a j+1 . . . ar ]T . We are defining Pj (z1, . . . , zr ) only by
looking at the x components of the vectors of F . In other words, Pj (z1, . . . , zr )

is the set of vectors x that attain the minimum in minx∧Fx ||x ||1, where Fx is the
projection of F to the x component.

As before, we can convert problem (6) to an integer linear problem:

minimize
m∑

k=1

(x+
k + x−

k )

subject to

⎧⎨
⎩

x+ − x− = z j + ∂p+1 y +
∑
i ⊃= j

ai zi ,

x+, x− ∧ Z
m, x+, x− ⊂ 0, y ∧ Z

n, ai ∧ Z.

(7)

The
∑

i ⊃= j ai zi term allows us to drag z j across {zi }i ⊃= j in minimizing z j . This is
similar to the “sealing technique” used by Chen and Freedman [4] except that we are
sealing all the other cycles at the same time. In effect, it adds additional cells with
boundaries equal to zi for i ⊃= j to the (p + 1)-boundary matrix. This can be easily
seen by writing out the constraint in matrix form:
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Fig. 4 We cut out the triangles
from a triangulation of the
Mobius band

e4 e6

e5 e7

e0 e2 e0
e1 e3

minimize
m∑

k=1

(x+
k + x−

k )

subject to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
I −I −∂p+1 −z1 . . . − z j−1 −z j+1 . . . − zr

]
⎡
⎢⎢⎣

x+
x−
y

a j

⎤
⎥⎥⎦ = z j ,

x+, x− ∧ Z
m , x+, x− ⊂ 0, y ∧ Z

n, a j ∧ Z
r−1

(8)

where

a j = [
a1 . . . a j−1 a j+1 . . . ar

]T
.

The main insight here is that optimization in the presence of the other cycles
{zi }i ⊃= j can be recast as the optimization of a single cycle by modifying the complex
K . For every zi = ∑m

k=1 cikτk , i ⊃= j , we include a new (p + 1)-dimensional cell
σi . The new complex is

K ≥ = K ∞ {σi }i ⊃= j

with κ ≥ : K ≥ × K ≥ → Z such that κ ≥ is equal to κ on K × K , and κ ≥(σi , τk) = cik

for τk ∧ K p and 0 otherwise.
After some computation, we obtain the (p + 1)th boundary map for K ≥ as

∂ ≥
p+1 = [

∂p+1 z1 . . . z j−1 z j+1 . . . zr
]
.

Thus, the problem (6) is simply

minimize ||x ||1
subject to

{
x = z j + ∂ ≥

p+1 y≥,
x ∧ C p(K ≥) ≈= Cp(K ), y≥ ∧ C p+1(K ≥).

Note that C p(K ) is left unchanged. This problem is essentially the optimal homol-
ogous cycle problem (4) for K ≥.
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In general, integer linear optimization is known to be NP-hard. We might hope
that even in this modified problem, we may use total unimodularity to convert it to
a linear optimization problem. However, even if ∂p+1 were totally unimodular, the
concatenation of the zi columns may destroy total unimodularity.

For example, consider the complex in Fig. 4, the 1-skeleton M(1) of a certain
triangulation of the Mobius band. It has H1(M (1)) ≈= Z

5, but we need only consider
four cycles to see how total unimodularity could be destroyed. Consider z1, . . . , z4 ∧
Z1(M (1)) given by

z1 = e0 + e1 + e4, z2 = e1 + e2 + e5, z3 = e2 + e3 + e6, z4 = −e0 + e3 + e7.

In e0, e1, e2, e3, e4, e5, e6, e7 basis, we have

[
z1 z2 z3 z4

] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1
1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

containing a (4 × 4)-submatrix with determinant

∣∣∣∣∣∣∣∣
1 0 0 −1
1 1 0 0
0 1 1 0
0 0 1 1

∣∣∣∣∣∣∣∣
= 2.

Suppose that we have some complex K containing M(1) as a subcomplex, such that
the homology classes of z1, z2, z3, z4 form a subset of some basis for H1(K ). Then,
appending [z1 z2 z3 z4] will ensure that the resulting ∂ ≥

2 = [∂2 z1 z2 z3 z4] cannot be
totally unimodular.

Nevertheless, let us state some properties of Pj .

Lemma 1 Let z1, . . . , zr ∧ Z p(K ).

1. Pj (z1, . . . , zr ) ⊃= ∪
2. ẑ j ∧ Pj (z1, . . . , zr ) implies ẑ j ∧ Z p(K ).
3. Suppose that [zi ] = [si ] for i = 1, . . . , r . Then Pj (z1, . . . , zr ) = Pj (s1, . . . , sr ).
4. Let Hp(K ) be free and B = {[z1], . . . , [zr ]} be a basis for Hp(K ). Suppose that

ẑ j ∧ Pj (z1, . . . , zr ). Then, B≥ = {[z1], . . . , [ẑ j ], . . . , [zr ]} is also a basis for
Hp(K ).

Proof 1. It is obvious that Pj (z1, . . . , zr ) is nonempty.

2. One of the constraints that ẑ j ∧ Pj (z1, . . . , zr ) must satisfy is
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ẑ j = z j + ∂p+1 y +
∑
i ⊃= j

ai zi

for some y ∧ C p+1(K ). Thus ∂p ẑ j = ∂pz j + ∂p∂p+1 y + ∑
i ⊃= j ai∂pzi = 0.

3. Without loss of generality, we show that if [z1] = [s1] in Hp(K ), then Pj (z1, z2,

. . . , zr ) = Pj (s1, z2, . . . , zr ). Let F1
x and F2

x be the feasible regions, projected to
the x component, of the optimization problems associated to Pj (z1, . . . , zr ) and
Pj (s1, z2, . . . , zr ) respectively. We have z1 = s1+∂p+1b for some b ∧ C p+1(K ).
Suppose that j ⊃= 1. Then, for any x ∧ F1

x , we have

x = z j + ∂p+1 y +
∑
i ⊃= j

ai zi

= z j + ∂p+1 y +
∑

i ⊃=1, j

ai zi + a1(s1 + ∂p+1b)

= z j + ∂p+1(y + a1b) + a1s1 + a2z2 + . . . + a j−1z j−1 + a j+1z j+1

+ . . . + ar zr ∧ F2
x .

A similar argument shows the opposite inclusion.

The case j = 1 is similar. For any x ∧ F1
x ,

x = z1 + ∂p+1 y +
∑
i ⊃=1

ai zi

= s1 + ∂p+1b + ∂p+1 y +
∑
i ⊃=1

ai zi

= s1 + ∂p+1(y + b) +
∑
i ⊃=1

ai zi

∧ F2
x .

Showing that F2
x ← F1

x can be done in an analogous manner.

In both cases we have F1
x = F2

x . Thus the elements of both Pj (z1, . . . , zr )

and Pj (s1, z2, . . . , zr ) are the minimizers of the same optimization problem.
Consequently, Pj (z1, z2, . . . , zr ) = Pj (s1, z2, . . . , zr ).

4. For x ∧ Hp(K ),

x =
r∑

i=1

ci [zi ]

=
∑
i ⊃= j

(ci − c j ai )[zi ] +
∑
i ⊃= j

c j ai [zi ] + c j [z j ]

=
∑
i ⊃= j

(ci − c j ai )[zi ] + c j [ẑ j ]
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e ez1

z2

(b)(a)

Fig. 5 Pj (z1, . . . , zr ) may contain more than one ẑ j

shows that B≥ generates Hp(K ). To show linear independence, suppose that we
have some integers ci such that

∑
i ⊃= j

ci [zi ] + c j [ẑ j ] = 0.

Then,

∑
i ⊃= j

ci [zi ] +
∑
i ⊃= j

ai c j [zi ] + c j [z j ] = 0

or ∑
i ⊃= j

(ci + c j ai )[zi ] + c j [z j ] = 0.

Since B is linearly independent, ci + c j ai = 0 and c j = 0, implying ci = 0 for
all i . ∼∈
We note that Pj (z1, . . . , zr ) may contain more than one cycle. In Fig. 5, we have

a cylinder with a hole on its surface. In its triangulation K , the left and right edges
are pasted together. The set P2(z1, z2) is the set of minimizers to

minimize ||x ||1
subject to

{
x = z2 + ∂ ≥

2 y≥,
x ∧ C1(K ≥), y≥ ∧ C2(K ≥),
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where K ≥ is K with an additional cell σ1 such that ∂ ≥
2σ1 = z1, as defined above.

Clearly, z2 is in P2(z1, z2), with ||z2||1 = 3. However, so are any of the chains of
edges parallel to z2 in the triangulation.

4 Algorithm and Numerical Example

Let Hp(K ) be free. Given a basis B = {[z1], . . . , [zr ]} for Hp(K ), we choose
representative cycles z1, . . . , zr for each of the basis elements. Through Algorithm 1,
we go through all the cycles z j , optimizing each of them. We implement computa-
tion of ẑ j ∧ Pj (ẑ1, . . . , ẑ j−1, z j , . . . , zr ) using IBM ILOG CPLEX Optimization
Studio [10]. Note that we do not have to compute the entire set

Pj (ẑ1, . . . , ẑ j−1, z j , . . . , zr )

since we only need one ẑ j from it.
Recall problem (7) in Sect. 3.2, which we use to define Pj (z1, . . . , zr ). In solving

minimize
m∑

k=1

(x+
k + x−

k )

subject to

{
x+ − x− = z j + ∂p+1 y + ∑

i ⊃= j ai zi ,

x+, x− ∧ Z
m, x+, x− ⊂ 0, y ∧ Z

n, ai ∧ Z

to find ẑ j , we first try to solve its linear relaxation

minimize
m∑

k=1

(x+
k + x−

k )

subject to

{
x+ − x− = z j + ∂p+1 y + ∑

i ⊃= j ai zi ,

x+, x− ∧ R
m, x+, x− ⊂ 0, y ∧ R

n, ai ∧ R.

If the minimizer for the linear relaxation has x+, x−, y, ai all integral, we do not
need to solve problem (7), and just set ẑ j = x+ − x−. Otherwise, we have to solve
the integer linear optimization problem.

After step j , we update our set of representative cycles by replacing z j with
ẑ j . By Lemma 1, the output of algorithm MinimizeGenerators forms a basis B≥ =
{[ẑ1], . . . , [ẑr ]} for Hp(K ). In essence, what we are doing in each step is to modify
the homology basis one homology class at a time.

Unfortunately, the choice of ẑ j in the loop implies that the output may depend
on the choices made. Suppose that all the cycles in Pj (ẑ1, . . . , ẑ j−1, z j , . . . , zr )

are homologous. Then, by Lemma 1, we are guaranteed that Pj+1(ẑ1, . . . , ẑ j−1, ẑ j ,
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Algorithm 1 MinimizeGenerators Algorithm
Require: {z1, . . . , zr } such that {[z1], . . . , [zr ]} is a basis for Hp(K )

function MinimizeGenerators({z1, . . . , zr })
for j = 1, . . . , r do

Choose a ẑ j from Pj (ẑ1, . . . , ẑ j−1, z j , . . . , zr )

end for
return {ẑ1, . . . , ẑr }

end function

Fig. 6 Multiset of 1-norms of H1(2HHB0)

z j+1, . . . , zr ) does not depend on the choice of ẑ j . In general however, this is not
the case.

Given a set of optimized cycles {ẑ1, . . . , ẑr } from Algorithm 1, we record its
1-norms as the multiset

L = {||ẑ1||1, . . . , ||ẑr ||1}.

As noted above, the ẑ j may vary depending on the choices made in the algorithm.
Thus, L is not guaranteed to be invariant.

Given a point cloud (set of points in Euclidean space) together with weights
for every point, the weighted α-shape [7] is a sequence of simplicial complexes
constructed on the weighted point cloud that generalizes α-shapes. Without going
into details, α-shapes are used to define what we mean by the “shape” of a point
cloud. The α value controls the level of detail or scale. Since the weighted α-shape is
dual to the union of balls space-filling model, it is appropriate for modeling molecular
structures. We refer the reader to [7] for more details.

For a numerical example, we take point cloud data of the atomic structure of
the protein human deoxyhemoglobin (PDB ID: 2HHB [8]) from the Protein Data
Bank [1] at http://www.rcsb.org. Using CGAL [2], we construct its weighted alpha
shape at α = 0, where each atom is given a weight equal to the square of its van

http://www.rcsb.org
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Fig. 7 We detect an optimal
cycle of length 34, going
around the central hole
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der Waals radius. We denote this simplicial complex by 2HHB0. We compute a set
of representative cycles for a homology basis of H1(2HHB0) using CHomP [5], and
apply the MinimizeGenerators algorithm to it.

In Fig. 6, we plot the multiset of 1-norms of the set of optimized cycles as a
histogram. Of interest is the optimal cycle with length 34. We plot it together with
the point cloud in the Fig. 7, projecting to the xz, xy, and yz planes respectively.
In particular, we observe that the optimal cycle of length 34 is wrapped around the
central hole of the structure.

Acknowledgments The authors would like to thank Hayato Waki for valuable comments and
discussions and for introducing optimization software.
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Singularity Theory of Differentiable Maps
and Data Visualization

Osamu Saeki

Abstract In many scientific situations, a given set of large data, obtained through
simulation or experiment, can be considered to be a discrete set of sample values of
a differentiable map between Euclidean spaces or between manifolds. From such a
viewpoint, this article explores how the singularity theory of differentiable maps is
useful in the visualization of such data. Special emphasis is put on Reeb graphs for
scalar functions and on singular fibers of multi-variate functions.

Keywords Data visualization · Multi-variate function · Differential topology ·
Singularity theory · Reeb graph · Singular fiber

1 Introduction

In general, data obtained through scientific simulation or experiment can often be
formulated as a set of discrete sample points of a differentiable map f : Rn ∈ R

p

between Euclidean spaces. In this article, in order to explore mathematical technolo-
gies, based on differential topology, for analyzing and visualizing such big data, we
would like to present some fundamental materials from the theory of singularities of
differentiable maps.

In the following, M will be a C⊂ manifold of dimension n, N a C⊂ manifold of
dimension p, and we assume n → p → 1. If the reader is not familiar with the theory
of differentiable manifolds, then M and N can be safely assumed to be open subsets
of Rn and R

p, respectively. Furthermore, f : M ∈ N will be a differentiable map,
or more precisely, a map of class C⊂.
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2 Scalar Functions and Their Level Sets

As to data analysis of maps as described in Sect. 1, the case of scalar functions has
been extensively studied. In fact, this case does not require theoretically complicated
technologies and is very useful in many real-world situations. In this section, we
describe the case of such scalar functions f : M ∈ R.

For the feature analysis of scalar functions, the following notions of a level set
play an important role.

Definition 1 For a value c ⊃ R, the set

f −1(c) = {x ⊃ M | f (x) = c}

is called a level set (or an iso-value set, iso-line, iso-surface, etc.).

In general, a level set is of dimension n − 1, where n = dim M , although it may
not be a manifold. For example, for elevation data, we have n = 2 and the level sets
are nothing but the contours.

Given such a set of elevation data, for example, in order to read-off the characteris-
tic features of the data, what is important? It is clear that the contours play important
roles, and the reader may notice that there are characteristic contours among them.
They, in fact, correspond to the peaks, passes, and pits (see Fig. 1).

If we slightly change the values corresponding to these feature contours, then
we have the birth–death (around a peak or a pit) or split–merge (around a pass) of
contours. Therefore, the values around which the corresponding contours change
their topology are essential for grasping the characteristic features of the given data.

In order to integrate this type of information, the following notion is often
extremely useful.

Definition 2 [12] For a scalar function f : M ∈ R, the graph obtained by con-
tracting each connected component of a level set to a point is called the Reeb graph.
(Depending on the situation, this is also called a contour tree, volume skeleton tree,
topological volume skeleton, level-set graph, Stein factorization, etc.) See Fig. 2. In
mathematical terms, the Reeb graph is the topological space endowed with the quo-
tient topology induced by the quotient map from the domain M . It is known that for
a generic scalar function f , its Reeb graph is actually a graph consisting of vertices
and edges.

These graphs have been extensively studied as a tool for describing the topological
change in the contours for elevation data [14] and have been applied to various
situations.

The algorithm for obtaining the Reeb graph from a given set of data has been
established when the domain dimension n is equal to 2, 3, and 4 (for example, see
[2, 5, 11]).

What is important here is the fact that the vertices of a Reeb graph correspond to
the values where a topological change in the level sets occurs. For obtaining a global
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Fig. 1 Feature contours

f

M

Fig. 2 Example of Reeb graph

feature of the given data, these vertices play important roles. These correspond to
the points as described in Fig. 1. They are formulated as follows.

Definition 3 (1) Let us consider a differentiable function f : M ∈ R. A point
x ⊃ M such that all the partial derivatives of f with respect to local coordinates
vanish at x , is called a critical point (or a singular point) of f . Furthermore, its
corresponding value f (x) is called a critical value.

(2) Suppose that the n × n symmetric matrix

(
∂2 f

∂xi∂x j
(x)

)
i, j
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consisting of the second-order partial derivatives of f at a critical point x is regular,
where (x1, x2, . . . , xn) are the local coordinates around x . Then, the critical point x
is said to be nondegenerate.

It is known that every differentiable function can be perturbed arbitrarily slightly
in such a way that all of its critical points are nondegenerate (for example, see [9,
10]).

In differential topology, the following is fundamental.

Theorem 1 (Morse Lemma) Around each nondegenerate critical point, we can
choose a set of local coordinates so that f can be written as

f = ±x2
1 ± x2

2 ± · · · ± x2
n + c

for a constant c, which is equal to the corresponding critical value.

In the above quadratic form, the number of minus signs is called the index of the
critical point. The topology of a given function near a nondegenerate critical point
is determined by the index. In fact, the topological change of level sets occurs only
near critical points, and such a change can be described by the above quadratic form.
(For example, when n = 2, the index is equal either to 0, 1 or 2, and the topology of
the level sets near the critical point is exhausted in Fig. 1.) In this sense, the Morse
Lemma is fundamental for chasing the topological changes of level sets.

For example, when n = 3 and M is an open subset of the 3-dimensional Euclidean
space, the global change in the level sets (iso-surfaces) can be classified mathemati-
cally, including the information on whether the function value increases or decreases
into the outer region of the surface; in other words, whether the function value corre-
sponding to the region occluded by the iso-surface has smaller or larger values (see
[15, 16]). This type of classification is essential for visualizing volume data.

As an explicit example, [4] applied this technique to analyze the simulation data
of the electron density function for a proton and hydrogen atom collision. These
are spatio-temporal data, corresponding to the case n = 4; however, for each fixed
time T , they analyzed the corresponding 3-dimensional space data. By varying the
time T , they extracted Reeb graph changes and sought the characteristic time for
the data. With this method, they showed that the electron distribution change and its
characteristic features at the collision can be clearly understood; much better than a
straightforward visualization with a simple video.

3 Singular Points of Differentiable Maps and Their
Singular Fibers

Now, let us consider a general differentiable map f : M ∈ N with n = dim M →
p = dim N → 1, where p may not necessarily be equal to 1. When N = R

p, we
have
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Salinity constant curves on
temperature constant surfaces

Temperature constant
surfaces

Singular fiber

Singular point

Fig. 3 Example of fibers for 2-variate function

f = ( f1, f2, . . . , f p)

for a set of p scalar functions. Thus, such an f can also be called a p-variate function
(or a multi-variate function). In this case, we can naturally analyze each coordinate
function fi , i = 1, 2, . . . , p, independently, as described in the previous section.
However, the relation among the coordinate functions often cannot be seen, or in a
worse case, one may not grasp the global features of the given data.

In this article, the idea of analyzing coordinate functions individually and studying
their relations is discarded: instead, the given set of data is analyzed based on the
principle with which f is considered as a single map.

Definition 4 For a point c ⊃ N , the set

f −1(c) = {x ⊃ M | f (x) = c}

is called a fiber. Sometimes, it is also called a level set; however, the former is
preferred to emphasize that a multi-variate function is considered.

For example, consider the case where n = 3, M is a 3-dimensional domain filled
with sea water, and f :M ∈ R

2 is given by f = (temperature, salt density). This
situation is shown in Fig. 3.

A fiber containing a singular point is called a singular fiber, which will be explained
in detail later. It can be naturally expected, as an analogy of scalar functions, that
these singular fibers play important roles in extracting characteristic features of a
given set of multi-variate data.

Definition 5 Consider a differentiable map f : M ∈ N . For a point x ⊃ M , we
choose local coordinates around x and f (x). Then, let the map d fx : Rn ∈ R

p be
defined as the linear map associated with the Jacobian matrix of f (the real p × n



124 O. Saeki

fold cusp

Jacobi set

Fig. 4 Generic singularities for maps from dimension 2 to dimension 2

matrix consisting of the first derivatives of the coordinate functions of f at x). The
linear map d fx is called the differential of f at x . If rank d fx < p, then x is called
a singular point of f . It is easy to show that this definition does not depend on a
particular choice of local coordinates. The set

J ( f ) = {x ⊃ M | rank d fx < p}

of all singular points is called the Jacobi set (or singular point set) of f . Furthermore,
the image of a singular point by f is called a singular value, and a fiber containing
a singular point is called a singular fiber.

In general, a Jacobi set J ( f ) is of dimension p − 1.
When p = 1, i.e. for a scalar function, we have the Morse Lemma, which enables

us to clearly understand the level set changes. However, in the general case where
p → 2, no such lemma is known, except for a few special cases: or rather, it has been
even mathematically proved that such a lemma is impossible in general (for details,
see [6–8], etc.).

In this article, let us explain the case where such a result similar to the Morse
Lemma is available. More precisely, the case in which p = 2, 3 is the focus.

Let us begin by the case p = 2. For simplicity, we assume n = 2. Then, it is
classically known that a “generic map” has only the following two types of singu-
larities, a fold and cusp (see [1, 17], etc.). They are described, with respect to local
coordinates, as

(x, y) ∧∈ (x, y2), (x, y) ∧∈ (x,−xy + y3)

(see Fig. 4).
The above classification is possible even when n → 3, where n is the dimension

of the domain. However, as in the Morse Lemma, we have several different types
depending on the indices.
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Fig. 5 Fold indices near cusp
point (in the case n = 3)

λ = 0 λ = 1

For example, let us consider a differentiable map f : M ∈ N , where p =
dim N = 2 and dim M = n → 3 is odd. Then, each fold point has its own index
λ, where λ = 0, 1, . . . , (n − 1)/2. Inside the Jacobi set, a cusp is theoretically
identifiable; however, in the case of a set of real data, we need an additional scheme
in order to identify a cusp point. For example, a cusp is characterized as a singular
point where the above-mentioned fold index changes (see Fig. 5). In fact, it is not
algorithmically difficult to compute the index of a given fold point.

Edelsbrunner and Harer (2004) [3] proposed an algorithm for obtaining the Jacobi
set of a differentiable map by approximating it with a piecewise linear map. The-
oretically, it gives us the Jacobi set; however, in practice, if we directly apply the
algorithm for real datasets, then a Jacobi set curve may appear as an irregular zig-zag
curve and may not necessarily be clearly visualized. Figure 6 shows examples of
Jacobi sets that have been computed with the help of this extracting algorithm. The
blue and green curves on the (X, Y )-plane on the left represent the Jacobi set in the
domain, and the curves on the right represent their images in the range.

Figure 6 gives examples of singular fibers: the relevant fibers are the intersections
of the level set surfaces of the two scalar functions. In the figures, the domain R

3

and range R
2 correspond to each other, and the singular fiber corresponding to the

black dot in R
2 on the right is depicted in R

3 as a red curve on the left. The upper
pair corresponds to the birth-death of a component, while the lower one corresponds
to the split-merge of two components. If we move the black dot in the range, then
the corresponding fiber changes accordingly. With the help of this interface, we can
observe the topological change in the fibers as the corresponding value changes. This
method for extracting singular fibers turns out to be useful for explicit analytic multi-
variate functions and provides us with appropriate differential topological feedbacks.
However, if we apply it to a real volume dataset, then we often encounter problems:
sometimes, most of the domain is covered by singular fibers because of the noise in
the data or the sparse discrete data.

Furthermore, even if we know where the singular points are and where the singular
fibers are, their types may be unknown. If we use the theory of differentiable maps
and their singularities in differential topology, then we can more efficiently identify
the types of such singular points and fibers, which would significantly contribute to
the analysis of a given large dataset and its visualization.
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Fig. 6 Example of singular fibers for maps from dimension 3 to dimension 2

4 For Visualization of Multi-Variate Data

In order to visualize multi-variate data, we need to identify the following items.

(1) The Jacobi set.
(2) The type of each singular point.
(3) The Jacobi set image.
(4) The singular fiber type over each region of the range divided by the Jacobi set

image.

In particular, for item (4), it is indispensable to identify the fiber change near the
singular fiber. An example of a fiber change is shown in Fig. 7 for f :M ∈ N with
dim M = n = 3 and N = R

2, where the red curves represent the Jacobi set image,
the black curves represent the fibers over the regions in R

2 divided by the Jacobi set
image, the blue curves represent the fibers over the points in the Jacobi set image
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Fig. 7 Example of fiber change for map from dimension 3 to dimension 2

Most complicated one with κ = 2, which appears discretely.

Mildly complicated one with κ = 1, which appears along curves.

Simplest one with κ = 0, which appears over 2-dimensional regions.

Fig. 8 Example of fibers and their codimensions for maps from dimension 3 to dimension 2

other than the crossing point, and the fiber over that crossing point is represented in
green.

Looking at Fig. 7, we notice that the fibers have hierarchies depending on their
complexities. More specifically, for each fiber type F , we consider the subset

F( f ) = {y ⊃ N | the fiber f −1(y) is of type F}

of the range N , and
κ = dim N − dim F( f )

is called the codimension of fiber type F . An example of the codimensions of fibers
for the case of n = 3 and p = 2 is shown in Fig. 8.

Let us now consider the case of n = 4 and p = 3 (for details, see [13]). This
case corresponds, for example, to analyzing a set of given triplets of spatio-temporal
data. First, the Jacobi set image of a “generic map” f :M ∈ N with dim M = 4
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(1) (2) (3)

(4) (5) (6)

Fig. 9 Local configurations of Jacobi set images of maps from dimension 4 to dimension 3: (1), (2)
and (4) correspond to one, two or three fold points, respectively; (3) corresponds to a single cusp
point; (5) corresponds to a fold point and a cusp point; and (6) corresponds to a single swallowtail

Fig. 10 Example of fiber change for map from dimension 4 to dimension 3

and dim N = 3 appears as a singular surface in N . The neighborhood of each of its
points is classified in Fig. 9.

For example, the fiber change in a neighborhood of the singular fiber over a point,
as in Fig. 9 (5), has several types, one of which is depicted in Fig. 10.

The list of singular fibers for the case of n = 4 and p = 3 is shown in Fig. 11.
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κ = 1

κ = 2

κ = 3

Fig. 11 List of singular fibers for maps from dimension 4 to dimension 3

With the help of such a list, we can extract characteristic fibers and their types
when analyzing a given set of data, and it is expected that this will contribute to the
visualization of the given data.

We have CT scan data as an example of a possible application. A CT scan measures
volume data by piling up the sliced images with respect to a fixed direction. In this
process, if we can take the sliced image datasets with respect to several directions,
then it is expected that the accuracy of the reconstruction of the real object data is
improved. If we just consider one direction, then it corresponds to constructing a
Reeb graph. Therefore, if we consider two or more directions and consider a unified
representation of the Reeb graphs of the corresponding directions, or if we construct
a graph containing the adjacency information of the singular fibers, then we would be
able to extract that information, which would have never been obtained by considering
only one direction.

The differential topological method that we have explored has the advantage in
helping to efficiently represent, with a fairly small amount of data, important intrinsic
features of a given large dataset, which could not be handled using current methods.
It is also clearly a significant benefit that the visual information band is quite broad
compared with character information such as numerical data. It is therefore largely
expected that this kind of method will play an essential role in data analysis.
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Analysis



Mathematical Analysis for Pattern Formation
Problems

Shin-ichiro Ei

Abstract We explain our theoretical treatment of various kinds of patterns appearing
in nature in this paper. We introduce one of our typical approaches to focus on the
pattern boundaries and to derive a curvature flow equation for the motion of these
boundaries. This approach is based on the idea that patterns are defined by their
boundaries.

Keywords Interface · Curvature flow · Reaction-diffusion model

1 Patterns Appearing in Nature

Let us consider how we can theoretically explain the various patterns in nature. There
are many different kinds of defining scales, such as the cosmos is a huge scale and
atoms or electrons are small scale, in which we have corresponding theories, such as in
astronomy and quantum theory. In this report, we consider the phenomena appearing
in our everyday life. Typical examples are snow crystals, fire shapes, and animal coat
patterns (Figs. 1, 2, 3, and 4). Of course, there are a lot of examples in our life.

We would like to clarify the mechanism for theoretically creating these patterns in
this report. We are going to introduce one approach for doing this. In addition, there
are many kinds of objects with different mechanisms. For example, the problem with
differing snow crystal patterns may belong to material sciences and for the animal
coat patterns it may in biology. Thus, to discuss all of them in one story would be
impossible, so we concentrate on one simple explicit example.

We should make this one “pattern” clear before starting with the main ideas. As in
the examples mentioned above, patterns are represented by the boundaries between
two different regions. For example, the pattern of a snow crystal is expressed by
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Fig. 1 Snow crystal (left) and dendritic crystal (right) ([1])

Fig. 2 Fire shapes ([2])

Fig. 3 Animal coat patterns (Tama Zoo)

the boundaries between the solid and liquid regions. The coat patterns on animal
skins are expressed by the boundaries between the regions of high and low pigment
concentrations on the skins. Let us focus on the neighborhoods of the boundaries,
in which two different states adjoin. The state will change from one to the other
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Fig. 4 Spiral
patterns appearing in
oxidation-reduction
reaction ([1])

Fig. 5 Magnetic-like units
spread over a plane

when we cross the boundaries together with intermediate states. If the region of an
intermediate state is large, the boundaries become ambiguous and the patterns are
then not clearly recognizable. Thus, the intermediate regions need to be small in
order to clearly differentiate between the patterns. Therefore, we can say that the
patterns are clearly recognized when the intermediate regions are sufficiently small.

2 Theoretical Treatment of Shapes

We explained in the previous section that patterns are expressed by their boundaries.
We regard them as hyperplanes (possibly curves in two-dimensional spaces) with
zero width in order to deal with the boundaries because the intermediate regions are
assumed to be very small. We analyze the patterns discussed in the following para-
graphs by adopting one of the simplest examples, which has almost been completely
analyzed.

We assume that some microscopic magnetic-like units are spread all over a plane
without any space and that each unit is stable in the right upper or under directions.
On the other hand, if they come into contact with each other, they are assumed to be
inclined in the same direction see Fig. 5.

For the convenience in understanding, the upper- and under-directed units are
colored black and white, respectively. Then, we consider the movements of the
colored regions over time.

First, let us consider a case in which the strengths toward the upper and under
directions of each unit are not equal, in particular, when the upper direction is much
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Fig. 6 Initial distribution

Fig. 7 Movement of Γ

stronger than the under one. We can easily expect that all of the units will eventually
point in the upper direction even if there are many units initially pointing in the under
direction, which is not theoretically attractive.

Therefore, we assume as a final assumption that the strengths toward the upper
and under directions of each unit are completely equal, by which our intuition does
not work and theoretical consideration is necessary.

Finally, we assume that the units are sufficiently small and regard the system as a
continuous system with an initial distribution, such as that in Fig. 6.

Then, the problem is to analyze the movement of the interfaces (say Γ ) between
the black and white regions. The following have been known since the 1980’s under
the above-mentioned assumptions together with several additional conditions (see
Fig. 7):

Theorem 1 The curve Γ moves according to

V = −κ. (1)

Here, V and κ denote the outward normal velocity and the curvature of Γ ,
respectively.

The movement according to (1) is called the curvature flow.
Let us further explain Eq. (1). First, V is the outward normal velocity, which

means we have to determine the inside and outside of Γ in advance. We call the
region corresponding to the black region surrounded by Γ the “inside of Γ .” Thus,
V denotes the velocity from the black region to the white region.

Next, we explain the curvature κ . Fixing a point, say P on Γ , we draw a maximal
tangential circle at P , which is uniquely determined. If the tangential circle is drawn
inside of Γ , then we define the curvature by κ := 1/r by using the radius of the
circle while we define κ := −1/r if the circle is drawn outside Γ (see Fig. 8).
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Fig. 8 Sign of curvature κ (left) and magnitude of curvature κ (right)

Fig. 9 Movement of Γ

In particular, if Γ is a line, then we can draw an infinitely large tangential circle
at P , and thus, the radius is R = ∞, which means κ = 0. In general, the curvature
denotes how Γ curves toward the inside, that is, the more curved toward the inside of
Γ is, the smaller r and κ is positively larger. On the other hand, if Γ is more curved
outside, κ is negatively larger. These properties of κ and (1) lead to the movement
of Γ as follows: at convex parts toward the outside of Γ , κ > 0 and the outward
normal velocity V = −κ < 0, which means the movement of Γ is toward the inside
while the movement toward the outside is induced in the concave parts. This means
Γ moves toward an unrelieved shape and approaches a circle. Since a shape close to a
circle has a positive curvature everywhere, V is negative everywhere. Thus, once Γ is
close to a circle, it eventually shrinks to one point and disappears at a finite time. This
means the final occupying color is determined by the initial distribution (see Fig. 9).

In practice, the movement of Γ according to (1) is more well known than the
above style. For example, the length of Γ is monotonically decreasing over time.
This property implies that Γ approaches a minimal line and remains in the dumbbell-
shaped region, as shown in Fig. 10.

We previously considered that the strengths toward the upper and under directions
of each unit were completely equal but this is unnatural and unrealistic. Therefore,
let us consider a case in which the strengths are slightly different. Then, the corre-
sponding equation to (1) is

V = −κ + c. (2)
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Fig. 10 Movement of Γ in
dumbbell-shaped region

This is also called the curvature flow. The constant c is determined by the difference
in the strengths and c = 0 means there are completely equal strengths. Hereafter,
we assume c > 0, which means that the upper direction is slightly easier to tend to
than the under direction. That is, the black regions are easier to extend toward than
the white regions. All the properties for (1) do not hold and the theoretical treatment
becomes drastically difficult by only slightly modifying Eqs. (1) to (2). Therefore,
we consider the simplest case in which the initial shape of Γ is a circle. Then, Γ is
known to always be a circle at any time. Let r(t) be the radius of the circle at time t .
Then, (2) is represented by

dr

dt
= −1

r
+ c. (3)

We hope that readers can obtain (3) from (2) by themselves as an exercise. Equa-
tion (3) is an ordinary differential equation of r(t) and can be explicitly solved. Here,
we analyze (3) in another way.

First, we define r∗ := 1/c. If the initial radius r(0) = r∗, then the right-hand side
of (3) is just zero and dr

dt = 0 holds, which means r(t) = r∗ for any t > 0. This
special solution r(t) ≡ r∗ is called “equilibrium.”

Next, consider the case if r(0) < r∗. Then, 1
r(0)

> c, and therefore, dr
dt < 0 holds.

That is, the radius r(t) decreases over time t > 0 and decreases even more for a
smaller r (i.e., larger 1

r ). Thus, r(t) = 0 over a finite time, that is, Γ disappears.
Conversely, if r(0) > r∗, then by a similar discussion to the above, r(t) increases

over time t > 0. Thus, whether Γ can grow or shrink over time is determined by
whether or not the initial radius r(0) is larger than r∗. r∗ is called the “critical radius,”
which is known to be effective for explaining the growth of initially small ice blocks
in solidification phenomena.

Curvature flows like (1) and (2) are frequently observed in other fields. For exam-
ple, in two almost balanced competing species, the movement of the boundaries
between the occupied regions based on the species is known to be essentially gov-
erned by (2).

Various patterns described by the boundaries between two different regions, such
as the solid and liquid regions, regions with high and low concentrations of pig-
ments, and regions occupied by two competing species, are all known to be related
to the curvature flow dynamics and can be reestablished by conducting numerical
simulations although they are in quite different scientific fields from each other.
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The approaches for patterns research by focusing on the boundaries and deriving
the equations for the motions of the boundaries have just begun to be created, by
which many unsolved problems based on patterns have been related to the geometrical
properties and are currently being solved [3, 4].
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Models and Applications of Organism
Transportation

Atsushi Tero

Abstract Organism makes various transportation networks. These many networks
have adaptive character, in which the link grows with high-use and degenerates with
low-use. In this chapter the mathematical model of adaptive network is introduced.
Next, this chapter shows the simulation results by this mathematical model with
various parameter. As a result, this chapter shows that how the organism can gain
the global function only with the local growth law.

Keywords Adaptive network · Mathematical model · Optimal network · Shortest
path · True slime mold

1 Introduction

Transportation networks, such as roads and railroads are accompanied with
particularly high costs, but they are essential to our daily lives and as such, road
networks and railroad networks continue to be serviced. In railroad networks, the
number railroad lines and trains are increased for those routes with a high number of
users using the funds collected from passenger fares, while those with a low number
of users are reduced or discontinued. Since the optimum configurations of transport
networks in urban areas change in response to the population distribution and the
like, networks that are optimum when they are planned and when construction work
starts do not necessarily remain optimum when their operations begin. In addition,
transportation networks may be disconnected owing to accidents or disasters, and
since they are also required to transport medical aid and materials when such acci-
dents and disasters occur, they must be able to respond to situations that change
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Fig. 1 Adaptive transport networks created by organisms

in ways that cannot be predicted in either the short or long term. The most suitable
urban planning methods must be explored by implementing a variety of methods and
through trial and error. Such efforts, however, are not realistic, because they require
a large amount of cost and time (Fig. 1).

However, there are occasions where groups of organisms other than humans create
transportation networks. Ants for instance, disperse pheromones when bringing food
back to their nests to make it easier for other ants to follow the path. As a result,
ants form a queue along an efficient route. Similarly, transportation networks also
exist inside individual organisms. Many organisms including humans have a blood
vessel network inside their bodies to distribute nutrients and oxygen properly within
the body. Blood vessels grow from blood flows and shearing stress on the blood
vessels to form such blood vessel networks. Additionally, leaf veins in plants have
the function of transporting moisture and nutrients throughout the leaves, and a
chemical substance known as auxin is believed to affect the formation of leaf veins
significantly [1].

Such networks in all cases are built in an adaptive manner, with development
occurring along routes that are in use, while those routes that are not in use decay
and become extinct. The description of a theory that can be applied to all adaptive
networks is provided in this chapter. Furthermore, a comparison is made between
biological networks that enabled organisms to survive through the process of natural
selection occurring over many years and railroad networks built by humans. The
result obtained from considerations of these optimized networks is explained.
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Fig. 2 Slime molds gathering around food

2 Tubular Network of a Slime Mold

True slime mold is an organism that has such an adaptive network (hereinafter referred
to as “slime mold”). When a slime mold comes into contact with food, it engulfs it to
feed and absorb its nutrients. When a slime mold comes into contact with multiple
food sources at the same time, it engulfs all the food sources and connects them with
a tubular structure (Fig. 2). Furthermore, slime molds have multiple nuclei within
a plasmodium, but no cell membranes or cell walls separating them, even though
they are considered unicellular organisms. Since a slime mold has multiple nuclei
within a single plasmodium, it has the characteristics of both a singular individual
and a group. When a slime mold is physically cut in two using a knife, the separated
pieces both start to behave as individual entities, and when two slime molds come
into contact with each other, they combine to form a single organism. Since this
property makes it possible for a slime mold to control its shape, it has become a good
model for understanding adaptive networks.

3 Slime Mold Solving a Maze

First of all, the maze-solving phenomenon of the slime mold, which is an important
boundary for determining a network topology, is introduced here [2]. This experiment
was performed by Professor Toshiyuki Nakagaki. First, the initial state is prepared
as a maze on an overhead projection (OHP) film, which is placed over a nutrient agar
(Fig. 3a). Since agar contains moisture, it becomes a penetrable pathway for a slime
mold to enter, while the OHP film is dry and becomes an impenetrable barrier of the
maze for the slime mold. Next, food is placed at two locations, the start and the goal.
This prompts the slime molds to gather around the food and form a network with a
tubular structure over the pathway of the maze (hereinafter referred to as the tube).
Those tubes that end up in a dead end cease to exist (Fig. 3b), while only the route
with the shortest distance through the maze remains, subject to conditions (Fig. 3c).
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Fig. 3 a–c Maze solving by a slime mold. d–f Numerical calculation results with a mathematical
model

4 Mathematical Model

What is the mechanism involved for a slime mold, which has no brain, to solve
the maze? This mechanism is explained by using a mathematical model, with the
maze expressed in terms of a discrete graph. Intersections and dead ends of the maze
are expressed by nodes Ni , and the pathways of the maze that connect them are
expressed as links Ei j . N1, N2 is the location where food is placed for our purpose.
Each node Ni is assigned a variable pi , which express the force with which the tubes
of the slime molds press onto the internal protoplast at each given instant in time.
Furthermore, each link Ei j is assigned variables Li j , ai j (t), Qi j (t). Li j represents
the physical length of the link, while ai j (t) represents the radius of the tube, and
Qi j (t) represents the flow rate.

Poiseuille’s flow is assumed here, based on the assumption that the flow of proto-
plasts inside the tube can be considered as an incompressible Newtonian fluid flowing
through a circular tube.

Qi j = πa4
i j

8κ

pi − p j

Li j
, (1)

where κ , which is a constant, is the viscosity of the protoplast. Next, by defining

Di j (t) = πa4
i j

8κ
the following can be formulated:
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Qi j = Di j

Li j
(pi − p j ), (2)

where Di j (t) is a monotonically increasing function with respect to the tube radius
ai j and represents the weight of the link.

Furthermore, the following equation can be formulated, since the amount of pro-
toplast that flows into each node Ni is equal to the amount of protoplast that flows
out of it:

∑
j

Qi j + Ii = 0. (3)

Ii (t) expresses the amount of protoplast that flows into the tube network from the
slime mold that gathers around the food. At a node that is not connected to the food,
Ni (i ∈= 1, 2) it is Ii = 0.

Furthermore, by defining Ri j = Li j
Di j

as resistance for our purpose here, the Eqs. (2)
and (3) become equivalent of the Ohm’s Law and Kirchoff’s Law, respectively, for
electric circuits.

The growth of the route is considered next. The thickness a tube often grows when
the amount of protoplast flowing inside the tube is large, or it decays or become extinct

when the amount is small. Because of Di j (t) = πa4
i j

8κ
, the weight of the link Di j (t)

changes in response to the flow rate Qi j (t).

d

dt
Di j = f (|Qi j |) − r Di j . (4)

where f (q) satisfies f (q) = 0, and is a monotonously increasing function for q.
The shape of the final network varies, depending on the function of f (q).

5 Numerical Calculation Result of f (q) = |q|µ

Numerical calculation results for a case where the typical numerical calculation result
for the mathematical model described in the previous section f (q) = |q|μ (Fig. 4).
While almost all of the routes within the entire network remain in case of μ < 1
(Fig. 4a), only one route is selected for the initial values or network shape in the
case of μ > 1. In this manner the network topology changes significantly, using the
parameters of μ = 1 as the boundary [3]. In the case of μ = 1, only the shortest route
remains, and the experiment on the slime mold solving the baze can be reproduced
(Fig. 3d–f) [4]. The fact that a tube remains the shortest route is also mathematically
proven [5, 6].
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Fig. 4 Numerical calculation results for f (q) = |q|μ. a μ = 0.8. b μ = 1.0. c μ = 1.2

Fig. 5 An experiment on the risk distribution in a slime mold network. Both (a) and (b) have same
amount of slime mold, but (a) has more food. When the slime molds gather around the food, the
flow rate between the groups increases for (b), and the number of tubes changes. c and d are results
of numerical calculations. Increasing the flow rate from the vicinity of the food, Ii , results in an
increased number of tubes
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Fig. 6 The shortest network that connects the peaks of a regular polygon (a–d), the solution of the
slime mold (e–h), and the result of numerical calculation (i–l). Both experimental and numerical
calculation results can potentially offer a network topology that is different from the correct solution,
but a solution can be obtained quickly with little error

6 Risk Distribution of Network

Slime molds are also known to use a number of tubes instead of creating a tube with
larger flow rate capacity when the flow rate increases (Fig. 5a, b), [7]. However, if a
thick tube with an excessively large flow rate capacity is created, and if such a tube
is cut off due to an accident, the slime mold will sustain significant damage. This
leads us to believe that the slime molds incorporates a mechanism that voluntarily
distributes such risks. This phenomenon can be reproduced by applying the S-shape
function to f (q), which is the law of growth for tubes (for our purpose here it is

defined as: f (q) = |q|3
1+|q|3 ).

7 Shortest Network with Multiple Points

Next, a description is provided for an optimized network that connects three or more
points. Slime molds create a straight-forward network when the flow rate is small,
as described thus far. This property was used to derive the shortest possible network
between multiple points, and the result is shown in Fig. 6. This algorithm does not
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Fig. 7 An optimized network with three points. The total distance of the network increases as risk
distribution is performed for an increasing flow rate

necessarily provide a correct solution, but it does provide a solution with a certain
level of accuracy in a short time [8].

8 Optimized Network with Multiple Points

A network having three or more points with considerations for risk distribution
is examined here. The slime mold configures a complex network as the flow rate
increases (Fig. 7d–f). A complex network is also derived with this mathematical
model by significantly increasing the flow rate I j (t) (Fig. 7g–i) .
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Fig. 8 a–f The railroad network as proposed by the slime molds. g, h The results of numerical
calculations. i Actual railroad network in the Kanto region

9 Comparison of Optimized Networks Made
by Organisms

Finally, the result of a comparison between the network of slime molds with an actual
man-made railroad network is introduced [9]. Figure 8g is an actual railroad network
in the Kanto region in Japan. Figure 8a–f are photographs taken to indicate how the
slime molds spread on a culture prepared in the shape of there. Figure8g, h are the
results of simulations. Similar to an actual railroad network, the shape of the final
network becomes condensed as the number of users increases.
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10 Conclusion

A network theory that is applicable to various adaptive networks was proposed in
this chapter, based on our numerical model of networks created by slime molds. The
fact that networks in various fields and organisms can be understood in such a unified
manner can be considered an advantage of mathematics.
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The Renormalization Group Method
for Ordinary Differential Equations

Hayato Chiba

Abstract The renormalization group (RG) method is one of the singular
perturbation methods which provides asymptotic behavior of solutions of differ-
ential equations. In this article, how to construct approximate solutions by the RG
method is shown with several examples and basic theorems on the RG method, such
as an error estimate and the existence of invariant manifolds are given.

Keywords Renormalization group · Dynamical systems · Perturbation method

1 Introduction

Differential equations form a fundamental topic in mathematics and its application
to natural sciences. In particular, perturbation methods occupy an important place
in the theory of differential equations. Although most of the differential equations
can not be solved exactly, some of them are close to solvable problems in some
sense, so that perturbation methods, which provide techniques to handle such class
of problems, have been long studied.

In this article, we investigate a system of ordinary differential equations on Rn of
the form

dx

dt
= f (x) + εg(t, x, ε), x ∈ Rn, (1)

with appropriate assumptions, where ε ∈ R is a small parameter.
Since ε is small, it is natural to try to construct a solution of this system as a power

series in ε of the form
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x = x̂(t) = x0(t) + εx1(t) + ε2x2(t) + · · · . (2)

Substituting Eq. (2) into Eq. (1) yields a system of equations of x0, x1, x2, . . . to obtain
x̂(t). The method to construct x̂(t) in this manner is called the regular perturbation
method.

It is known that if the function g(t, x, ε) is analytic in ε, the series (2) converges to
an exact solution of (1) while if it is not analytic, (2) diverges and no longer provides
an exact solution. However, the problem is that one can not calculate infinite series as
(2) in general whether it converges or not because it involves infinitely many equations
of x0, x1, x2, . . .. If the series is truncated at a finite-order term in ε, another problem
arises. For example, suppose that Eq. (1) admits an exact solution x(t) = sin(εt),
and that we do not know the exact solution. In this case, the regular perturbation
method provides a series of the form

x̂(t) = εt − 1

3! (εt)3 + 1

5! (εt)5 + · · · . (3)

If truncated, the series becomes a polynomial in t , which diverges as t → ∞ although
the exact solution is periodic in t . Thus, the perturbation method fails to predict qual-
itative properties of the exact solution. Methods which handle such a difficulty and
provide acceptable approximate solutions are called singular perturbation methods.
Many singular perturbation methods had been proposed so far and many authors
reported that some of them produced the same results though procedures to con-
struct approximate solutions were different from each other.

The renormalization group (RG) method is the relatively new method proposed
by Chen et al. [3], which reduces a problem to a more simple equation called the
RG equation. In their paper, it is shown (without a proof) that the RG method unifies
conventional singular perturbation methods such as the multiple time scale method,
the boundary layer technique, the WKB analysis and so on. Their results are math-
ematically justified by Chiba [1]. Indeed, it is proved that the RG method extends
and unifies other traditional singular perturbation methods, such as the averaging
method, the multiple time scale method, the (hyper-) normal forms theory, the cen-
ter manifold reduction, the geometric singular perturbation method and the phase
reduction. Furthermore, the RG method is also applicable to some class of partial
differential equations [2]. The purpose of this article is to show how to construct
approximate solutions by the RG method and give basic theorems on the RG method
with several examples.

2 Example

We explain how to construct approximate solutions by using a simple example.

Example 1 Let us consider the following second order differential equation.

ẍ + x + εx3 = 0, x ∈ R, (4)
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where (˙) denotes the derivative with respect to a time t . At first, we apply the
regular perturbation method and obtain a secular term explicitly. For this purpose,
put x(t) = x0(t) + εx1(t) + O(ε2) and substitute it to the equation.

ẍ0 + εẍ1 + x0 + εx1 + ε(x0 + εx1)
3 + O(ε2) = 0.

Comparing the coefficients of ε0 and ε1 in the both sides of the equation, we obtain

ẍ0 + x0 = 0, (5)

ẍ1 + x1 = −x3
0 , (6)

respectively. The equation of x0 is just the unperturbed system obtained by putting
ε = 0 in Eq. (4). Equation (5) is solved as

x0(t) = Aeit + Ae−i t , (7)

where A ∈ C is an arbitrary constant. Substituting the x0 into Eq. (6) provides

ẍ1 + x1 = −(A3e3i t + 3|A|2 Aeit + 3|A|2 Ae−i t + A
3
e−3i t ).

Since this equation is an inhomogeneous linear equation, we can obtain a solution
explicitly as

x1(t) = A3

8
e3i t + 3i

2
|A|2 Ateit + c.c., (8)

where c.c. denotes the complex conjugate of the preceding term. The first term is
periodic in t , while the second term diverges as t → ∞, which is called the secular
term. Because of the secular term, the regular perturbation solution

x(t) = x0(t) + εx1(t) = Aeit + ε

(
A3

8
e3i t + 3i

2
|A|2 Ateit

)
+ c.c. (9)

does not give a nice approximate solution.
Now we introduce the RG approach to remove the secular term and to obtain an

effective approximate solution. The first step is to introduce a dummy parameter τ

and rewrite Eq. (9) as

x(t; τ) = Aeit + ε

(
A3

8
e3i t + 3i

2
|A|2 A(t − τ)eit

)
+ ε

3i

2
|A|2 Aτeit + c.c. (10)

The secular term t was replaced with t−τ , and the last term including τ was added for
the consistency. Next, we renormalize the last term into the constant A. This means
that we assume A = A(τ ) to be an unknown function of τ , and rewrite Eq. (10) as
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x(t; τ) = A(τ )eit + ε

(
A(τ )3

8
e3i t + 3i

2
|A(τ )|2 A(τ )(t − τ)eit

)
+ c.c. (11)

We shall determine the function A(τ ). Since the exact solution x(t) is independent
of the dummy parameter τ , we require that the derivative of x(t; τ) with respect to
τ becomes zero. Hence, we assume the equality

dx

dτ

∣∣∣
τ=t

(t; τ) = 0. (12)

For Eq. (11), this condition yields the differential equation of A of the form

dA

dt
= ε

3i

2
|A|2 A + O(ε2),

which is called the RG equation. The equation

dA

dt
= ε

3i

2
|A|2 A, (13)

obtained by truncating the higher order with respect to ε is called the first order RG
equation.

This RG procedure is motivated by the following idea. The secular term including
a factor t diverges as t → ∞, which makes the accuracy of an approximate solution
bad. Thus, we introduce the dummy parameter τ , replace the factor t by t − τ and
assume that τ is also large when t is large so that t −τ is bounded. Then, the constant
A is regarded as some function of τ for the consistency.

Equation (13) is explicitly solved as

A(t) = 1

2
a exp i

(
3ε

8
a2t

)
, (14)

with an arbitrary constant a. Substituting A(t) into Eq. (11) and putting τ = t , we
obtain the desired nice approximate solution

x(t) = 1

2
a exp i

(
t + 3ε

8
a2t

)
+ ε

8
· 1

8
a3 exp i

(
3t + 9ε

8
a2t

)
+ c.c. (15)

See Fig.1 for the graphs of an exact solution and the approximate solution.
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Fig. 1 The solid line and the dashed line denote an exact solution of Eq. (4) and the approximate
solution (15), respectively. The dotted line, which is almost overlapped with the solid line, denotes an
approximate solution obtained by employing the second order RG equation, which is not explained
in this example

3 Settings

We give a general settings of the problem. Let us consider the perturbative problem
on Rn

ẋ = f (x) + εg(t, x), x ∈ Rn. (16)

We suppose that
(A1) the flow ϕt(y) of the unperturbed system ẋ = f (x) is periodic in t , where the
flow ϕt (y) is a solution of the equation ẋ = f (x) satisfying the initial condition
x(0) = y.
(A2) the function g is periodic in t .

In many applications, Eq. (16) is a perturbation of a linear system like as the
previous example. In this case, f (x) is expressed as f (x) = Fx with a matrix F .
Then, ϕt (y) = eFt y and the assumption (A1) implies that all eigenvalues of the
matrix F lie on the imaginary axis. These assumptions can be weakened in several
ways, see [1] for more general results.

Let us derive the RG equation for Eq. (16). For this purpose, put x = x0+εx1+· · ·
and substitute it into the equation. From the zero-th order and the first order of ε, we
obtain the equations

ẋ0 = f (x0), ẋ1 = D f (x0)x1 + g(t, x0),

where D f is the Jacobi matrix of f . A solution of the former equation is written as
x0 = ϕt (y). Thus, the equation for x1 takes

ẋ1 = D f (ϕt (y))x1 + g(t, ϕt (y)).
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When f (x) = Fx , then D f (ϕt (y))x1 = Fx1. In any case, this is an inhomogeneous
linear equation solved explicitly as

x1 = Dϕt (y)

∫
(Dϕt (y))−1g(t, ϕt(y))dt.

Due to the assumption on periodicity, the integrand consists of a constant term and
a periodic term with respect to t ;

(Dϕt (y))−1g(t, ϕt (y)) = (constant) + (periodic).

Integrating it, it turns out that the integral of the constant term yields the polynomial
of t , while the integral of the periodic term is still periodic;

∫
(Dϕt(y))−1g(t, ϕt (y))dt = (constant) · t + (periodic).

Hence, the secular term arises from the constant term of the integrand. This constant
term may be explicitly expressed as

R1(y) := lim
t→∞

1

t

∫
(Dϕt (y))−1g(t, ϕt (y))dt.

Note that this is a function of y.
We define a function h(1)

t (y) by removing the secular term from x1 as

h(1)
t (y) = Dϕt (y)

∫
((Dϕt (y))−1g(t, ϕt (y)) − R1(y))dt.

Therefore, the regular perturbation solution up to the first order is given by

x(t) = x0 + εx1

= ϕt(y) + εDϕt (y)

∫
(Dϕt (y))−1g(t, ϕt(y))dt

= ϕt(y) + εDϕt (y)

∫ (
(Dϕt (y))−1g(t, ϕt(y)) − R1(y) + R1(y)

)
dt

= ϕt(y) + εDϕt (y)R1(y)t + εh(1)
t (y).

In particular, we have obtained the secular term Dϕt (y)R1(y)t .
Now we apply the RG method to remove the secular term. The dummy parameter

τ is introduced and the factor t is replaced by t − τ . After that, the constant y is
assumed to be an unknown function y = y(τ ):

x(t; τ) = ϕt (y(τ )) + εDϕt (y(τ ))R1(y(τ )) · (t − τ) + εh(1)
t (y(τ )). (17)
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Since this expression is independent of the dummy parameter τ , we suppose

dx

dτ

∣∣∣
τ=t

= 0.

Then, Eq. (17) yields

0 = dx

dτ

∣∣∣
τ=t

= Dϕt(y(t))
dy

dt
− εDϕt (y(t))R1(y(t)) + εDh(1)

t (y(t))
dy

dt
.

This is rearranged as
dy

dt
= εR1(y(t)) + O(ε2). (18)

Truncating the higher order terms O(ε2), we obtain the first order RG equation

dy

dt
= εR1(y). (19)

Let y(t) be a solution of the RG equation. Substituting y(y) into Eq. (17) and putting
τ = t , we obtain the first order approximate solution as

x̂(t) = ϕt(y(t)) + εh(1)
t (y(t)) + O(ε2). (20)

This procedure can be continued to obtain a more higher order approximation, see
[1] for the detail.

4 Main results

The above RG procedure to obtain an approximate solution should be mathematically
justified. What we want to show is
(i) quantitative nature: how good is the accuracy of an approximate solution and how
long is it valid in a time t?
(ii) qualitative nature: does it provide qualitative properties of solutions such as the
existence of a periodic solution?
(iii) is it easier to solve the RG equation than the original equation?

Regarding these questions, the following theorems hold. See [1] for the proof.

Theorem 1 (error estimate) Let x̂(t) be an approximate solution obtained by the
RG method given as Eq. (20) and x(t) an exact solution of Eq. (16) satisfying the
initial condition x(0) = x̂(0). There exist positive constants C, T > 0 such that the
inequality

||x(t) − x̂(t)|| < Cε

holds for the time interval 0 ≤ t ≤ T/ε.
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In this sense, the RG method actually provides a good approximate solution. If we
use the m-th order RG equation, then the inequality is refined as ||x(t)−x̂(t)|| < Cεm .
Since the time interval 0 ≤ t ≤ T/ε is finite, however, this theorem does not describe
the asymptotic behavior of solutions as t → ∞. For the asymptotic behavior, we can
prove the next theorem, in which we suppose that a given Eq. (16) is autonomous
(that is, g is independent of t) for simplicity.

Theorem 2 (existence of invariant manifolds) Suppose that the RG equation ẏ =
εR1(y) has a normally hyperbolic invariant manifold M. Then the given Eq. (16)
also has an invariant manifold Mε within an ε-neighborhood of M. The manifold
Mε is diffeomorphic to M and the stability of Mε is the same as that of M.

Roughly speaking, a normally hyperbolic invariant manifold is an invariant man-
ifold which is exponentially attracting or repelling, see a textbook of dynamical
systems theory for the precise definition. In applications, it is important to find a
periodic solution. When M is a stable periodic orbit, the above theorem is restated
as follows.

Theorem 3 (existence of a periodic orbit) If the RG equation ẏ = εR1(y) has an
asymptotically stable periodic orbit, then the given Eq. (16) also has an asymptoti-
cally stable periodic orbit.

These theorems imply that near a stable invariant manifold, we can detect the
asymptotic behavior of solutions as t → ∞. Finally, we show that the RG equation
is simpler than the original equation.

Theorem 4 (symmetry)

(i) If the given Eq. (16) is invariant under the action of a Lie group H, the RG
equation is also invariant under the action of H.

(ii) The RG equation is invariant under the action of the flow ϕt of f ; that is, the
equality

R1(ϕt (y)) = Dϕt(y)R1(y)

holds.

This theorem means that the RG equation has a symmetry larger than that for the
original equation. In this sense, the RG equation is easier to solve than the original
equation.

Example 2 Consider the following system

{
ẋ = y + ε(x − x3)

ẏ = −x .
(21)
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This is a perturbed harmonic oscillator. The RG equation is given by

Ȧ = ε

2
(A − 3A|A|2).

It is easy to show that this equation has a stable periodic orbit given by |A| = 1/
√

3.
Hence, Theorem 3 proves that the system (21) also has a stable periodic orbit whose
radius is approximately estimated as 1/

√
3 + O(ε).
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A Phase Field Approach to Mathematical
Modeling of Crack Propagation

Masato Kimura and Takeshi Takaishi

Abstract We consider a phase field model for crack propagation in an elastic body.
The model is derived as an irreversible gradient flow of the Francfort-Marigo energy
with the Ambrosio-Tortorelli regularization and is consistent to the classical Griffith
theory. Some numerical examples computed by adaptive mesh finite element method
are presented.

Keywords Adaptive mesh finite element method · Crack propagation · Fracture
mechanics · Irreversible system · Phase field model

1 Introduction

Crack propagation phenomenon appears in various situations from tiny size to huge
scale and often causes serious problems, for example, in tiny precision machine and
its parts, the body of a car or a ship, a building, a large structure, the ground, or the
crust of the earth. Since the propagation of a relatively small crack in such material
may cause the collapse of the whole structure, to understand the behavior of the crack
propagation is very important.

Among various crack propagation models in fracture mechanics, the phase field
approximation [20] of the crack seems to be one of very interesting ideas. A number
of engineering-oriented discrete models, such as extended finite element method
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(XFEM) [3, 21], rigid body spring model (RBSM) [16], discrete element method
(DEM) [9, 22], or particle discretization scheme-FEM (PDS-FEM) [13, 14], etc., are
widely used for fracture analysis in engineering simulations. On the other hand, such
discrete models are dependent on the FEM mesh and other numerical parameters and
algorithms. From the mathematical point of view, a mathematically closed continuous
model is also preferable.

In [24, 25], the authors proposed a phase filed model for mode III crack propa-
gation on a two dimensional plate and showed several numerical examples. In this
paper, we consider some generalizations of our phase field model and discuss their
properties based on the idea of [19].

In Sect. 2, we derive our phase field model with two-dimensional linear elasticity.
The model is derived as the gradient flow of the Francfort-Marigo type energy [7, 10]
with the Ambrosio-Tortorelli regularization [2]. We also introduce a non-repair con-
dition of the crack without destructing the gradient flow structure.

In Sect. 3, we give some numerical examples of crack propagation for mode III
case and modes I and II case. We also show how it works in the case that the fracture
toughness is spatially variable. For the simulation, we use P2 adaptive mesh finite
element method with FreeFEM++ software [12].

2 Derivation of Crack Propagation Models

We suppose that π ⊂ R
2 is a bounded elastic body without crack. Let u(x) ∈ R

2

be an in-plane displacement field at x ∈ π. The strain tensor is denoted by e[u] =
(ei j [u](x)), where

ei j [u](x) := 1

2

(
℘ui

℘x j
(x) + ℘u j

℘xi
(x)

)
(i, j = 1, 2).

We use the Einstein summation convention for spatial indices i, j, k, l ∈ {1, 2}.
We suppose that the elasticity tensor ci jkl(x) satisfies the symmetries ci jkl(x) =
ckli j (x) = c jikl(x) and the positivity condition ci jkl(x) ωi j ωkl ≥ c∗ |ω |2 for x ∈
π, ω ∈ R

n×n
sym , where |ω | := ⎧

ωi j ωi j . The stress tensor is denoted by ε [u] =
(εi j [u](x)) and is defined as

εi j [u](x) = ci jkl(x)ekl [u](x).

Then the equilibrium equation is given by

−divε [u] = f (x) x ∈ π, (1)

where f (x) ∈ R
2 is a given body force at x . It is known that the solution u is obtained

as the minimizer of the following elastic energy including the body force under a
suitable boundary condition:
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E0(u) = 1

2

⎨
π

ε [u] : e[u] dx −
⎨
π

f (x) · u(x) dx,

where ε : e = εi j ei j .
Let us assume that there is a crack α in π, where α is a smooth curve in π with

finite length and that π \ α is open and connected. We have crack opening modes I
and II with two-dimensional displacement. We derive a crack propagation model of
modes I and II.

We introduce the following smooth function z(x) for x ∈ π to represent the
approximate profile of the crack. We assume that 0 ≤ z(x) ≤ 1 and z(x) ≈ 1 for
around the crack α and z(x) ≈ 0 for the other region. We call z(x) the phase field
for the crack shape and derive a time evolution model of z.

We suppose that the damaged stress tensor is defined as

ε̃ [u] := (1 − z)2ε [u]. (2)

The function z also can be considered as a damage variable which represents the
damage ratio of the material in the sense of (2).

Then we have the modified elastic energy:

E1(u, z) = 1

2

⎨
π

(1 − z)2ε [u] : e[u] dx −
⎨
π

f (x) · u(x) dx .

The surface energy on the crack is approximated by

E2(z) = 1

2

⎨
π

β (x)

(
ϕ|∇z|2 + 1

ϕ
z2

)
dx,

where the fracture toughness β (x) > 0 is a given function and ϕ > 0 is a small
regularization parameter. This is called the Ambrosio-Tortorelli regularization and
they proved that the energy E2(z) approximates the surface energy

⎩
α

β (x)ds in the

sense of Ω-convergence for some special cases [2].
Following the derivation of the phase field model in [25], we consider a regularized

Francfort-Marigo type energy [10]:

E(u, z) := E1(u, z) + E2(z),

and derive our model as a gradient flow of E . It is shown that this energy approach
is compatible to the classical Griffith theory [7, 10, 11].

Let the boundary Ω = ℘π be Lipschitz and piece-wise smooth, and the unit
outward normal vector on Ω is denoted by n. We suppose that ΩD is a nonempty
open piece-wise smooth portion of Ω, and define ΩN := Ω \ ΩD. The displacement
on ΩD is given as u = g(x) and the traction free condition is assumed on ΩN . We
consider the following boundary condition:
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u = g on ΩD, ε [u]n = 0 on ΩN ,
℘z

℘n
= 0 on Ω.

If f and g do not depend on t , the first variations of the energy E(u, z) with respect
to u and z are formally derived as follows. For arbitrary v(x) with v = 0 on ΩD, we
have

d

dθ
E(u + θv, z)

∣∣∣∣
θ=0

= −
⎨
π

⎫
div

⎬
(1 − z)2ε [u]

⎭
+ f

}
v dx

Hence, the gradient flow equation of the displacement u(x, t) becomes

φ1
℘u

℘t
= div

⎬
(1 − z)2ε [u]

⎭
+ f, (3)

where φ1 ≥ 0 is a small time constant. It must be remarked that the case φ1 = 0
corresponds to the equilibrium state of forces (1), however, for numerical simulation,
we can set 0 < φ1 << 1 to stabilize the numerical solution even in the case of z = 1,
where the ellipticity is broken.

For any ζ(x), we derive the first variation of the energy E(u, z) with respect to
z as

d

dθ
E(u, z + θζ )

∣∣∣∣
θ=0

= −
⎨
π

{
ϕ div (β (x)∇z) − β (x)

ϕ
z + ε [u] : e[u](1 − z)

}
ζ dx . (4)

The gradient flow equation of the damage variable z(x, t) becomes

φ2
℘z

℘t
= ϕdiv (β (x)∇z) − β (x)

ϕ
z + ε [u] : e[u](1 − z),

where φ2 > 0 is a time constant.
The resulted phase field model is as follows:

⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎣
⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎤

φ1
℘u

℘t
= div

⎬
(1 − z)2ε [u]

⎭
+ f (x, t) x ∈ π, t > 0

φ2
℘z

℘t
=

(
ϕ div (β (x)∇z) − β (x)

ϕ
z + ε [u] : e[u](1 − z)

)
+

x ∈ π, t > 0

u = g(x, t) x ∈ ΩD, t > 0
ε [u]n = 0 x ∈ ΩN , t > 0

℘z

℘n
= 0 x ∈ Ω, t > 0

u(x, 0) = u0(x) x ∈ π

(omit if φ1 = 0)
z(x, 0) = z0(x) ∈ [0, 1] x ∈ π

(5)
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Since a crack once generated can be no longer repaired, we put ( )+ to the
right-hand side of the second equation, where (a)+ = max(a, 0). It guarantees
the non-repair condition for the crack: ℘z

℘t ≥ 0. The second equation expresses the
crack evolution due to the magnitude of the elastic energy density ε : e. The fracture
toughness β (x) > 0 prescribes the critical value of the energy release rate in the
Griffith criterion. It is harder for the crack to grow, if the value of β is larger.

We remark that the second equation is a fully nonlinear parabolic equation and it
is called an irreversible system in the mathematical field of evolution equation. One
of the authors recently established a global existence of a unique strong solution for
the irreversible diffusion equation ut = (τu + f (x, t))+ in [1].

If f and g do not depend on t , under suitable regularity assumptions, formally
we have the following energy decay property:

d

dt
E(u(·, t), z(·, t)) = −

⎨
π

⎫
div((1 − z)2ε [u]) + f

} ℘u

℘t
dx

−
⎨
π

⎫
ϕdiv(β∇z) − β

ϕ
z + ε [u] : e[u](1 − z)

} ℘z

℘t
dx

= −φ1

⎨
π

∣∣∣∣℘u

℘t

∣∣∣∣
2

dx − φ2

⎨
π

∣∣∣∣℘z

℘t

∣∣∣∣
2

dx ≤ 0.

This stands for the gradient flow structure of our phase field model (5) even with the
non-repair condition.

We remark that the phase field model (5) can be also considered in the three-
dimensional case, u(x, t) ∈ R

3, x ∈ π ⊂ R
3.

In [25], the authors studied our phase field model in two dimension with scalar
anti-plane displacement u(x, t) ∈ R, x ∈ π ⊂ R

2:

⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎣
⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎤

φ1
℘u

℘t
= μdiv

⎬
(1 − z)2∇u

⎭
+ f (x, t) x ∈ π, t > 0

φ2
℘z

℘t
=

(
ϕ div (β (x)∇z) − β (x)

ϕ
z + μ|∇u|2(1 − z)

)
+

x ∈ π, t > 0

u = g(x, t) x ∈ ΩD, t > 0
℘u

℘n
= 0 x ∈ ΩN , t > 0

℘z

℘n
= 0 x ∈ Ω, t > 0

u(x, 0) = u0(x) x ∈ π

(omit if φ1 = 0)
z(x, 0) = z0(x) ∈ [0, 1] x ∈ π,

(6)
where μ > 0 denotes the rigidity, one of the Lamé constant. This is a mode III crack
propagation model. See [25] for detail of the derivation of our phase field models.
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We cannot find any difficulty to compute crack growth numerically. This model
equation makes possible to analyze the crack growth phenomena by well-known
numerical method, only taking notice about the mesh size that you must choose
carefully. In the next section, we show some numerical results of crack growth from
this model equation.

Similar mathematical models for simulation based on the Fracfort-Marigo type
energy are also found in [4–8, 15].

3 Numerical Results

We show some numerical results of our phase field models of crack growth derived in
the previous section. We use a free software FreeFem++ [12] for our computation. It is
a useful tool of finite element method for our purpose. Due to the small regularization
parameter ϕ introduced in our model, the profiles of u and z have small spatial patterns
of ϕ-scale. We, however, use an adaptive mesh finite element method with the help
of FreeFEM++.

We fix τ > 0 as a constant time step, uk(x) and zk(x) are the approximated
solution of u and z, respectively, at t = kτ (k = 0, 1, 2, . . .).

First, we make two types of numerical simulation of the single-line crack growth
of the mode III type (6). We set minimum mesh size more than 2 × 10−3 and
maximum number of the vertices of triangular mesh less than 5,000. The numerical
solution (uk, zk) for mode III model (6) are computed from (uk−1, zk−1) with the
semi-implicit scheme:

⎡⎡⎡⎣
⎡⎡⎡⎤

φ1
uk − uk−1

τ
= μ div

⎬
(1 − zk−1)2∇uk

⎭
φ2

z̃k − zk−1

τ
= ϕ div

⎬
β (x)∇ z̃k

⎭
− β (x)

ϕ
z̃k + μ|∇uk−1|2(1 − z̃k)

zk = min(1, max(z̃k, zk−1))

(7)

We remark that 0 ≤ zk ≤ 1 is guaranteed when z0 ∈ [0, 1] at t = 0. For spatial
discretization, we use adaptive mesh P2 finite element method. The model of modes
I and II (5) is similarly discretized. It is necessary to set the mesh of small size
near crack region (z ∼ 1), because the values of u and z change drastically around
there. We solve (7) by FreeFem++ with adaptive P2-element, where z is evaluated
for remeshing at each time step.

Initial crack is set as Fig. 1a, single-line from left hand side. Figure 2 shows that
a crack propagates to the another side when fracture toughness β is homogeneous.
Adaptive mesh is effective to follow the crack path. As the crack grows, FreeFem++
adapts to set small size mesh near the crack, and the number of vertices becomes
larger till it breaks down (Fig. 3).
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ΓD

ΓD ΓDx1

x2

x3

Σ

ΓD

x1

x2

x3

Σ

(a) (b)

Fig. 1 Domain of numerical simulation of mode III crack growth (a) and mode I+II crack growth (b)

t = 1 t = 2 t = 4 t = 5

Fig. 2 An initial crack grows in isotropic media with given boundary displacement g = (0, 0, 10)×
t (u (upper), z (middle), mesh (lower))

When β is inhomogeneous, the crack intends to follow the weak region. Figure 4
shows the crack growth when β has the profile as stripe (β (x, y) = 0.5(1 +
0.2 sin 20(x + y))). First crack grows following weak position, after that, sub-branch
emerges repeatedly.
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Fig. 3 Temporal evolution of a the minimum and maximum mesh size, (b) number of vertices

t = 1 t = 2 t = 4 t = 5

Fig. 4 An initial crack grows in an anisotropic media (β (x, y) = 0.5∗(1+0.2∗sin(20∗(x + y))))
with given boundary displacement g = (0, 0, 10) × t (u (upper), z (middle), mesh (lower))

Finally, we show the numerical results of mode I+II crack growth. We use the
phase field model (5) with isotropic elasticity tensor. Lamé constants are set as
ψ = 26.76, μ = 19.38, where Young’s modulus and Poisson’s ratio are set as
E = 50, ε = 0.29, respectively. Initial crack which is shaped as slit changes its
direction to perpendicular to the displacement on ΩD (Fig. 1b). It shows that crack
kinks to annihilate mode II at the front (Fig. 5).
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t = 1 t = 2 t = 4 t = 5

Fig. 5 An initial crack grows in an isotropic media with given boundary displacement g =
(1, 1, 0) × t (u (upper), z (middle), mesh (lower))

From these results, using adaptive mesh method is effective to calculate the crack
path. For the similar purpose, we use ALBERTA toolbox [23] in [24, 25]. Adaptive
mesh method is also useful in other free boundary or pattern formation problem,
such as reaction-diffusion model [17, 18].
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Variational Methods in Differential Equations

Michiaki Onodera

Abstract This chapter concerns classical variational methods in boundary value
problems and a free boundary problem, with a special emphasis on how to view a
differential equation as a variational problem. Variational methods are simple, but
very powerful analytical tools for differential equations. In particular, the unique
solvability of a differential equation reduces to a minimization problem, for which a
minimizer is shown to be a solution to the original equation. As a model problem, the
Poisson equation with different types of boundary conditions is considered. We begin
with the derivation of the equation in the context of potential theory, and then show
successful applications of variational methods to these boundary value problems.
Finally, we study a free boundary problem by developing the idea to a minimization
problem with a constraint.

Keywords Boundary value problem · Free boundary problem · Variational method

1 Introduction

The variational method, or calculus of variations, is an infinite-dimensional version
of calculus: minimize a (real-valued) “function” defined in an infinite-dimensional
phase space. Such a phase space is often taken to be a function space; thus, the
variational method is, so to speak, calculus for a “function” of functions. Such a
generalized “function” is called a functional.

In nature we often encounter a situation where an observable state of a phenomenon
minimizes a certain “energy” functional. A well-known example is a spherical soap
film, which minimizes its surface area (energy) under the constraint that the volume
of the enclosed region is prescribed. Thus, a physically reasonable energy functional
serves as an explanation of a natural phenomenon.
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Furthermore, the variational method is used as an analytical tool to reveal some
properties of a solution to a given mathematical problem. Specifically, for a differ-
ential equation, we can virtually construct an energy functional in such a way that a
minimizer of that energy becomes a solution to the original problem.1 In this way,
the original problem can be reduced to a minimization problem. To illustrate this
idea, let us consider the equation

x = g(x) (1)

where g is a real-valued function defined in R. To prove the existence of a solution
x to (1), let us define the energy

E(x) := 1

2
x2 − G(x), (2)

where

G(x) :=
x∫

0

g(s) ds,

and find a minimum point x ∈ R of E . In fact, x is a solution to (1) if and only if
x is a critical point of E , i.e., E ⊂(x) = 0. Note that a minimum point x necessarily
becomes a critical point.

The existence of a minimum point x will be proved, for example, by taking a
minimizing sequence {xk}→k=1 such that E(xk) ⊃ inf y∈R E(y) and showing that it
contains a convergent subsequence (denoted again by {xk}→k=1) with the limit x ∈ R.
Then,

E(x) = lim
k⊃→ E(xk) = inf

y∈R
E(y).

In particular, when g is a bounded function, i.e., |g(x)| ∧ M for some constant
M > 0, we easily see that E satisfies the coerciveness condition2

lim|x |⊃→ E(x) = →.

Hence, every minimizing sequence is bounded, so the Bolzano–Weierstrass theorem
guarantees the existence of a convergent subsequence. We can thus obtain a solution
x to (1). We also note that, if E is (strictly) convex, i.e.,

E(t x1 + (1 − t)x2) < t E(x1) + (1 − t)E(x2) (x1 ←= x2 and 0 < t < 1), (3)

then its critical point is unique. Indeed, at any critical point x , (3) implies that

1 The energy thus constructed also has a physical meaning.
2 This terminology is not standard (see Kinderlehrer and Stampacchia [3, Definition 4.4]).
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0 = E ⊂(x)(y − x) = lim
t⊃0

E(x + t (y − x)) − E(x)

t
∧ E(y) − E(x)

for all y ∈ R. Thus, every critical point is a minimum point. Furthermore, it also
follows from (3) that there is at most one minimum point.

In the following sections, we will show how variational methods can be applied
to several problems in differential equations.

2 Problems in Potential Theory

One of the basic problems in potential theory is to find the gravitational potential
u induced by a prescribed mass distribution f , with an additional condition. Here,
the mass f can be regarded as a function (or measure) defined in the n-dimensional
Euclidean space R

n (n ≈ 2). Then, the Newtonian potential u of f is given by

u(x) :=
∫
Rn

π(x − y) f (y) dy, (4)

where π is defined by

π(x) :=

⎧⎨
⎧⎩

− 1

2π
log |x | (n = 2),

1

n(n − 2)ωn|x |n−2 (n ≈ 3),
(5)

with ωn being the volume of the unit ball in R
n . The function π is the Newtonian

potential induced by a unit point mass located at the origin x = 0; hence, its gradient

≤u(x) = − 1

nωn|x |n−1

x

|x |
represents the gravitational field induced by the point mass. When n = 3, this is
nothing but Newton’s law of universal gravitation: the induced force is inversely
proportional to the square of the distance from the origin. Thus, formula (4) is its
generalization, since each factor π(x − y) f (y) dy is the potential induced by a small
portion f (y) dy of mass.

Formula (4) is expressed by u(x) = (π ∀ f )(x), and it is important to note that
the operation f ≥⊃ π ∀ f is the inverse operator to −℘ := −∑n

j=1(∂/∂x j )
2, i.e.,

−℘u = f . This fact can be checked mathematically under some regularity condition
on f , but for our purposes it suffices to note that −℘π = δ (in the distribution sense),
where δ is the Dirac measure (i.e., point mass) supported at the origin x = 0. Then,
formally,
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−℘u(x) =
∫
Rn

−℘π(x − y) f (y) dy =
∫
Rn

δ(x − y) f (y) dy = f (x).

One may wish to control the potential u in a bounded domain ω ∞ R
n by locating

an additional mass f0 outside ω (i.e., f0 = 0 in ω). A standard question is whether or
not we are able to construct the potential u in such a way that u = 0 on the boundary
∂ω. More precisely, for given f and ω with f (x) = 0 (x /∈ ω), we ask if there is
f0 such that f0(x) = 0 (x ∈ ω) and that the potential

u(x) :=
∫
Rn

π(x − y) f (y) dy +
∫
Rn

π(x − y) f0(y) dy (6)

satisfies u = 0 on ∂ω. This problem is actually equivalent to the following Poisson
equation ⎫−℘u = f (x ∈ ω),

u = 0 (x ∈ ∂ω).
(7)

Indeed, (7) can be derived from (6) by applying −℘ to (6). Conversely, if u is a
solution to (7), then by extending u (which is defined only in ω) smoothly to a
function u defined in the whole space Rn (more precisely, u should be extended such
that u = 0 near |x | = →) and setting f0 := −℘u − f , we see that (6) holds for u.

The Poisson equation also appears in different contexts in physics, biology, and
even in mathematics itself. One of the advantages of mathematical abstraction lies in
the fact that one mathematical result can lead to several consequences in other fields
of science.

3 Variational Methods in Boundary Value Problems

Our purpose here is to show how variational methods can be successfully applied
to boundary value problems, including the Dirichlet problem (7). The primary step
is to view a given equation as a variational equation, where by a variational equation
we mean an equation of the form E ⊂(u) = 0 with a functional E . As we will see later,
the concept of solutions will be weakened so that a given problem is reformulated to a
variational setting, and such weak (or generalized) solutions are not necessarily twice
differentiable. The variational equation thus obtained will be treated in a similar way
to that presented for (1).

We remark that the regularity theory of elliptic equations tells us that, under
some regularity condition on given data (e.g., f and ∂ω), generalized solutions
are eventually shown to be smooth enough, and hence they are actual solutions
as expected. This regularity theory is beyond our scope, so we do not go into the
details here. The interested reader may consult, for example, a book by Gilbarg and
Trudinger [1]. Throughout this section, we assume that ω is a bounded domain inRn .
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3.1 How to View a Differential Equation as a Variational Problem

Let us reformulate (7) into a variational setting by introducing an appropriate energy
functional

E : X ⊃ R

together with some linear function space X equipped with the norm ∪ · ∪X (e.g., see
Example 1 below). For problem (7), the boundary condition shall be incorporated
into the space X so that each function u ∈ X satisfies u = 0 on ∂ω in a certain sense.
Thus, what we need to do is to identify

−℘u = f and E ⊂(u) = 0.

To clarify the meaning of the derivative E ⊂(u) in a function space X , we recall
that a function

F : R ⊃ R

is differentiable at x ∈ R if and only if there is a constant A ∈ R such that

F(x + h) = F(x) + Ah + o(h), where lim
h⊃0

o(h)

|h| = 0.

Then, F ⊂(x) = A. This fact leads to the notion of the Fréchet derivative of a functional
on X : E is said to be differentiable at u ∈ X if there is a continuous linear functional
A : X ⊃ R, such that

E(u + v) = E(u) + A[v] + o(v), where lim
v⊃0

o(v)

∪v∪X
= 0.

Then, we write E ⊂(u) = A. Here, we use the notation A[v] instead of A(v) merely
to emphasize that A is linear in v. Note that v ≥⊃ E(u) + E ⊂(u)[v] is an affine
approximation of v ≥⊃ E(u + v).

Example 1 Let X = C1
0(ω), that is, the space of all continuously differentiable

functions u satisfying u = 0 on ∂ω. The space C1
0(ω) is equipped with the norm

∪u∪C1
0 (ω) := sup

x∈ω

|u(x)| + sup
x∈ω

|≤u(x)|.

We consider the functional

E(u) :=
∫
ω

|≤u|2 dx (u ∈ C1
0(ω)).

Then, the Fréchet derivative E ⊂(u) at u ∈ C1
0(ω) is given by
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E ⊂(u)[v] = 2
∫
ω

≤u · ≤v dx,

since

E(u + v) = E(u) + 2
∫
ω

≤u · ≤v dx +
∫
ω

|≤v|2 dx

and the functional v ≥⊃ 2
⎬
ω

≤u · ≤v dx is linear and continuous, and

∫
ω

|≤v|2 dx ∧ ∪v∪2
C1

0 (ω)
|ω| = o(v), i.e., lim

v⊃0

⎬
ω

|≤v|2 dx

∪v∪C1
0 (ω)

= 0,

where |ω| denotes the volume of ω.

The dual space X∀ of X consists of all continuous linear functionals on X . Thus,
since E ⊂(u) ∈ X∀, Eq. (7) should be interpreted as an equation in X∀. One of the
ways to view a function f defined in a domain ω ∞ R

n as a functional in X∀ for a
function space X is to consider the correspondence

X ∼ ϕ ≥⊃
∫
ω

f ϕ dx ∈ R (8)

and identify the above correspondence (8) with f . Indeed, with an appropriate choice
of X , (8) becomes a continuous linear functional on X . For example, the choice of
X = C→

c (ω) (the space of infinitely differentiable functions ϕ with compact support
in ω, equipped with a certain topology) gives the identification of a function f as,
what we call, a distribution. Another choice is to take X to be the Lebesgue space
L2(ω): the space of all square-integrable functions on ω, in which the integral in (8)
is finite for f,ϕ ∈ L2(ω) (see Hölder’s inequality in the Appendix).

Remark 1 The Lebesgue space L2(ω) has the inner product

(ϕ, ε )L2(ω) :=
∫
ω

ϕε dx (ϕ, ε ∈ L2(ω)), (9)

and the norm is defined by ∪ϕ∪L2(ω) := (ϕ,ϕ)
1/2
L2(ω)

. Note that L2(ω) is a natural
extension of the Euclidean space R

n , since (9) is the sum of all ϕ(x)ε (x): the
multiple of each component of ϕ and each component of ε , and this is similar to
the inner product in R

n : x · y = ∑n
j=1 x j y j . In fact, L2(ω) becomes a Hilbert space

with this inner product.

On the other hand, there are several natural ways to identify −℘u as a functional.
When u and ϕ ∈ C→

c (ω) are smooth, by integration by parts, we have
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−
∫
ω

℘uϕ dx =
∫
ω

≤u · ≤ϕ dx = −
∫
ω

u℘ϕ dx . (10)

Thus, we ca use each of them in (10) as an identification of −℘u as a functional. In
variational methods, (i) it is natural to impose condition u ∈ X , i.e., both u,ϕ live
in the same space X . Moreover, (ii) it is preferable to take the space X as large as
possible, but keeping the identification to make sense. These conditions lead to the
Sobolev space H 1(ω): the space of differentiable (in the distribution sense) functions
ϕ with ϕ,≤ϕ ∈ L2(ω), and we choose the second identification in (10). Note that,
of course, (8) still makes sense for X = H 1(ω) and f ∈ L2(ω).

Remark 2 The Sobolev space H1(ω) = H 1,2(ω) has the inner product

(ϕ, ε )H1(ω) :=
∫
ω

ϕε dx +
∫
ω

≤ϕ · ≤ε dx

and the norm is defined by ∪ϕ∪H1(ω) := (ϕ,ϕ)
1/2
H 1(ω)

. Note that H1(ω) becomes a
Hilbert space with the inner product.

We are now in a position to introduce the variational formulation of the Poisson
equation (7) with f ∈ L2(ω). We choose X = H1

0 (ω), where H1
0 (ω), a subspace

of H 1(ω), consists of functions ϕ ∈ H1(ω) with ϕ = 0 on ∂ω (more precisely, the
completion of C→

c (ω) with the topology of H1(ω)). Thus, the boundary condition
u = 0 on ∂ω is now incorporated into the space itself.

Definition 1 We call a function u ∈ H 1
0 (ω) a weak (or generalized) solution to (7)

if ∫
ω

≤u · ≤ϕ dx =
∫
ω

f ϕ dx (11)

holds for all ϕ ∈ H1
0 (ω).

This is an equation in the dual space H−1(ω) := (H 1
0 (ω))∀. Observe that a smooth

solution u to (11) satisfies the original Eq. (7). Indeed, when u,ϕ are smooth, (11)
becomes ∫

ω

(−℘u − f )ϕ dx = 0.

Hence, if −℘u− f > 0 (or < 0) in a subset ω0 ∞ ω, then the choice of ϕ = (−℘u−
f )η with an appropriate cut-off function η ∈ C→

0 (ω0) leads to a contradiction. Thus,
−℘u = f everywhere in ω.
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3.2 The Dirichlet Problem

We derived (11) in order to view the original problem (7) as a variational equation
E ⊂(u) = 0 in H−1(ω). The remaining question is what energy E corresponds to
(11). Recalling the derivation of (2) for problem (1), we define

E(u) := 1

2

∫
ω

|≤u|2 dx −
∫
ω

f u dx (u ∈ H1
0 (ω)).

Then, we see that

E ⊂(u)[ϕ] =
∫
ω

≤u · ≤ϕ dx −
∫
ω

f ϕ dx .

Therefore, u ∈ H 1
0 (ω) is a solution to (11) if and only if E ⊂(u) = 0 in H−1(ω).

When f ∈ L2(ω), Hölder’s inequality followed by the Poincaré inequality (see
the Appendix) yields that

⎭⎭⎭⎭⎭⎭
∫
ω

f u dx

⎭⎭⎭⎭⎭⎭ ∧ ∪ f ∪L2(ω)∪u∪L2(ω)

∧ C ∪ f ∪L2(ω)∪≤u∪L2(ω)

∧ C

(
ε∪≤u∪2

L2(ω)
+

∪ f ∪2
L2(ω)

4ε

)
.

Hence, by taking ε > 0 small enough such that Cε ∧ 1/2, we have

E(u) ≈ 1

4

∫
ω

|≤u|2 dx − C∪ f ∪2
L2(ω)

with some constant C > 0. Applying the Poincaré inequality again, we see that E
satisfies the coerciveness condition

E(u) ≈ δ∪u∪2
H 1

0 (ω)
− C ⊃ → as ∪u∪H1

0 (ω) ⊃ →,

where δ, C > 0 are some constants.
With the virtue of the coerciveness, every minimizing sequence {uk}→k=1 (i.e.,

limk⊃→ E(uk) = infv∈H1
0 (ω) E(v)) is bounded in H 1

0 (ω). However, it should be

emphasized that H1
0 (ω) is infinite-dimensional, and we cannot conclude the existence

of a convergent subsequence from the boundedness of the minimizing sequence.
Hence, we need to use some facts in functional analysis: (i) every bounded sequence
in H1

0 (ω) contains a weakly convergent subsequence (denoted again by {uk}→k=1)
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with the limit u ∈ H1
0 (ω); (ii) E is weakly lower semicontinuous, i.e.,

E(u) ∧ lim inf
k⊃→ E(uk) = inf

v∈H1
0 (ω)

E(v).

Thus, we can conclude the existence of a minimizer u of E , and hence the existence
of a solution to (11). Moreover, in this case, E is convex; hence, u is a unique solution.
Here, the convexity of E follows from the direct computation

|≤ (tu1 + (1 − t)u2)|2 = t2 |≤u1|2 + 2t (1 − t)≤u1 · ≤u2 + (1 − t)2 |≤u2|2

∧ t2 |≤u1|2 + t (1 − t)
(
|≤u1|2 + |≤u2|2

)
+ (1 − t)2 |≤u2|2

= t |≤u1|2 + (1 − t) |≤u2|2

for 0 < t < 1, where the equality holds only when ≤u1 = ≤u2 (see the Appendix).

Remark 3 The reason for the choice X = H1
0 (ω) lies in the facts that

• X is compatible with E in the sense that the coerciveness holds with its norm;
• X is a Hilbert space, which guarantees fact (i) in the argument above.

Check that both conditions are not satisfied by C1
0(ω).

3.3 The Neumann Problem

The variational method developed above can also be applied to the Neumann problem

⎡−℘u + u = f (x ∈ ω),
∂u

∂ν
= 0 (x ∈ ∂ω),

(12)

where ν is the unit outer normal vector to ∂ω. Thus, in the Neumann problem, we
control the normal derivative ∂u/∂ν, i.e., the gravitational force itself. The reason
that we put the term u into the left-hand side of the equation will be made clear later,
when we show the coerciveness of energy.

As in the Dirichlet problem, let us derive a variational formulation of (12). In this
case, we work with H1 and do not incorporate the boundary condition into the space.
But, the boundary condition is implicitly included in the formulation. Indeed, as we
will see later, the boundary condition ∂u/∂ν = 0 will be automatically satisfied by
minimizers.

Definition 2 We call a function u ∈ H 1(ω) a weak (or generalized) solution to (12)
if ∫

ω

≤u · ≤ϕ dx +
∫
ω

uϕ dx =
∫
ω

f ϕ dx (13)
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holds for all ϕ ∈ H 1(ω).

We should observe that (10) does not hold in general for ϕ ∈ C→(ω) unless ϕ
vanishes on ∂ω. However, the first equality in (10) still holds, since

−
∫
ω

℘uϕ dx =
∫
ω

≤u · ≤ϕ dx −
∫

∂ω

∂u

∂ν
ϕ dσ

=
∫
ω

≤u · ≤ϕ dx

follows from the boundary condition ∂u/∂ν = 0. Hence, even for a wider class of
functions ϕ ∈ H1(ω), the identification of −℘u with

H1(ω) ∼ ϕ ≥⊃
∫
ω

≤u · ≤ϕ dx ∈ R

is adequate, or, what amounts to the same thing, smooth solutions u to (12) satisfy
(13).

To see that the boundary condition ∂u/∂ν = 0 is incorporated into the formulation
(13), let us check the converse statement: smooth solutions u to (13) satisfy (12). For
this purpose, we note that (13) is reduced to a Dirichlet-type problem by restricting
ϕ ∈ H 1(ω) to ϕ ∈ H 1

0 (ω). Then, the same reasoning as in the Dirichlet problem
(11) applies (see the argument immediately after Definition 1), and we deduce that
−℘u+u = f holds everywhere in ω. Furthermore, using (13) now with ϕ ∈ H 1(ω),
we see that ∫

∂ω

∂u

∂ν
ϕ dσ =

∫
ω

≤u · ≤ϕ dx +
∫
ω

℘uϕ dx

=
∫
ω

( f − u + ℘u)ϕ dx

= 0

holds for smooth ϕ ∈ H 1(ω). By choosing ϕ such that ϕ = ∂u/∂ν on ∂ω, we find
that the boundary condition ∂u/∂ν = 0 in (12) is now recovered.

Let us define the energy functional

E(u) := 1

2

∫
ω

|≤u|2 dx + 1

2

∫
ω

u2 dx −
∫
ω

f u dx (u ∈ H1(ω))

which is similar to the one for the Dirichlet problem, but now the domain of E is
taken to be H1(ω). As before, we can check that critical points u correspond to
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solutions to (13) and that E satisfies the coerciveness condition

lim∪u∪H1(ω)
⊃→ E(u) ⊃ →.

Note that the presence of the second term
⎬
ω

u2 dx in E(u) is necessary to have the
coerciveness of E because the Poincaré inequality is not available for u ∈ H 1(ω).
The minimization argument with the help of functional analysis deduces the existence
of a solution u to (13). The uniqueness also follows from the convexity of E .

3.4 The Robin Problem

To conclude this section, we study a boundary value problem of the third type

⎨
⎩

−℘u = f (x ∈ ω),

∂u

∂ν
+ gu = 0 (x ∈ ∂ω),

(14)

where g = g(x) is a positive function defined on ∂ω. As in the Neumann problem
(12), the boundary condition is incorporated into the variational formulation itself.

Definition 3 We call a function u ∈ H1(ω) a weak (or generalized) solution to (14)
if ∫

ω

≤u · ≤ϕ dx +
∫
∂ω

guϕ dσ =
∫
ω

f ϕ dx (15)

holds for all ϕ ∈ H 1(ω).

Here, −℘u is identified with

H1(ω) ∼ ϕ ≥⊃
∫
ω

≤u · ≤ϕ dx +
∫

∂ω

guϕ dσ ∈ R.

The validity of this can be checked by integration by parts.
If u ∈ H1(ω) is a smooth solution to (15), then, as in the Neumann problem, we

can deduce that −℘u = f in ω by taking ϕ ∈ H 1
0 (ω) in (15). Then, for smooth

ϕ ∈ H 1(ω), we see that

∫
∂ω

⎣
∂u

∂ν
+ gu

⎤
ϕ dσ =

∫
ω

≤u · ≤ϕ dx +
∫
ω

℘uϕ dx +
∫

∂ω

guϕ dσ

=
∫
ω

( f + ℘u)ϕ dx

= 0.
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This yields the boundary condition ∂u/∂ν + gu = 0 on ∂ω.
We define the energy functional E for problem (15) by

E(u) := 1

2

∫
ω

|≤u|2 dx + 1

2

∫
∂ω

gu2 −
∫
ω

f u dx (u ∈ H 1(ω)).

Again, critical points of E correspond to solutions to (15). Note that the coerciveness
of E in H 1(ω) follows when g > 0. In fact, in this case we have

∫
ω

u2 dx ∧ C

⎦
⎪∫

ω

|≤u|2 dx +
∫

∂ω

gu2 dσ

⎢
⎥

for u ∈ H 1(ω) as a substitute for the Poincaré inequality. The existence of a unique
solution u follows from the same argument as presented before.

4 Free Boundary Problem

We saw in the previous section how boundary value problems can be formulated as
variational equations. In this section, the variational point of view is extended to a free
boundary problem, for which one needs to determine the domain ω. We will see that
our free boundary problem also has a variational formulation, known as a variational
inequality, which can be treated again by minimizing an energy functional.

Let the mass f be concentrated in the sense that f > 1 in a domain ω0 and
f = 0 outside ω0. Then, one of the inverse problems in potential theory asks about
the existence of a uniform mass distribution χω, in a domain ω ⊇ ω0, which is
“graviequivalent” to the prescribed mass f . Namely, we ask whether there exists
ω ⊇ ω0 such that

∫
Rn

π(x − y) f (y) dy =
∫
ω

π(x − y) dy (16)

holds for all x ∈ R
n \ ω. Here, χω denotes the characteristic function of ω, i.e.,

χω = 1 in ω and χω = 0 outside ω.

Example 2 Let f = MχB(0,r) with a constant M > 1, where B(0, r) denotes the ball
of radius r > 0 with center at the origin x = 0. Then, we can show that ω = B(0, R)

satisfies (16), where R > 0 is chosen to satisfy |B(0, R)| = M |B(0, r)|. Indeed, for
x ∈ R

n \ ω, since ℘yπ(x − y) = 0 for y ∈ ω, the mean value formula of harmonic
functions implies that
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∫
Rn

π(x − y) f (y) dy = M
∫

B(0,r)

π(x − y) dy

= M |B(0, r)|π(x)

=
∫

B(0,R)

π(x − y) dy.

It is not at all obvious that there is such a domain ω for a general f . However, the
variational point of view will give us a new insight to the problem, and we are able
to solve the free boundary problem by minimizing a functional as (fixed) boundary
value problems.

Our starting point is the derivation of a differential equation for (16). For this
purpose, let us consider the potential difference

u(x) :=
∫
Rn

π(x − y) f (y) dy −
∫
ω

π(x − y) dy. (17)

Then, the free boundary problem is rewritten, in terms of u, as the problem of finding
ω such that the following boundary problem has a solution u:

⎡
−℘u = f − χω (x ∈ R

n),

u = 0 (x ∈ R
n \ ω).

(18)

It is easy to check that, if (16) holds for x ∈ R
n \ ω, then u defined by (17) is

a solution to (18). Conversely, if (18) possesses a solution u, then (16) holds for
x ∈ R

n \ ω.
Let us impose the additional requirement u ≈ 0 (x ∈ R

n) on (18) and try to
construct ω under this stronger condition in such a way that

ω = {x ∈ R
n | u(x) > 0}. (19)

It will be revealed that this makes the problem proper for variational methods. To
make it clear, let us first rewrite (18) combined with the side condition u ≈ 0 as

⎧⎧⎧⎨
⎧⎧⎧⎩

−℘u ≈ f − 1 (x ∈ R
n),

u ≈ 0 (x ∈ R
n),∫

Rn

(−℘u − f + 1)u dx = 0.
(20)

Indeed, the last condition in (20) asserts that at least one of the two inequalities
in (20) must be equality at each point x ∈ R

n . However, (20) merely implies that
−℘u = f −1 in ω, so (18) does not seem to directly follow from (20). Nevertheless,
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by virtue of the regularity theory (see Kinderlehrer and Stampacchia [3]), (18) is
eventually shown to be satisfied by a solution u to (20) with ω defined by (19).
This fact can be formally verified, since u = 0 in R

n \ ω implies −℘u = 0 there.
Moreover, in view of the first inequality in (20), ω0 ∞ ω follows from the fact that
f > 1 on ω0 and −℘u = 0 on R

n \ ω. We emphasize that formulation (20) does
not contain ω explicitly; thus, our problem is just to find a solution u to (20).

The variational structure of (20) will be further clarified by noting that −℘u −
f + 1 ≈ 0 if and only if

∫
Rn

(−℘u − f + 1)ϕ dx ≈ 0

holds for all ϕ ∈ C→
c (Rn) with ϕ ≈ 0. Then, (20) is equivalent to finding u ≈ 0

such that ∫
Rn

(−℘u − f + 1)(ϕ − u) dx ≈ 0 (21)

for all ϕ ∈ C→
c (Rn) with ϕ ≈ 0. Furthermore, by identifying (21) with

∫
Rn

{≤u · ≤(ϕ − u) + (1 − f )(ϕ − u)} dx ≈ 0 (22)

and by setting

K :=
{

u ∈ H 1(Rn) | u ≈ 0
⎛

,

we finally arrive at the following variational inequality.

Definition 4 We call a function u ∈ K a weak (or generalized) solution to (21) if

∫
Rn

≤u · ≤(ϕ − u) dx +
∫
Rn

(1 − f )(ϕ − u) dx ≈ 0 (23)

holds for all ϕ ∈ K .

Remark 4 The validity of (22) for ϕ ∈ H1(Rn) follows from the fact that H 1
0 (Rn) =

H1(Rn); namely every function u ∈ H1(Rn) can be approximated by ϕ ∈ C→
c (Rn)

arbitrarily closely in H 1(Rn).

Remark 5 Any smooth domain ω defined by (19), where u is a smooth solution to
(23), satisfies (18) and hence (16) as desired.

Now we define the energy functional

E(u) := 1

2

∫
Rn

|≤u|2 dx +
∫
Rn

(1 − f )u dx (u ∈ K )
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and observe that u ∈ K is a solution to (23) if and only if E ⊂(u)[ϕ − u] ≈ 0 for
ϕ ∈ K . The latter condition implies that u is a minimum point of E in K , since E
is a convex functional on the closed convex set K ∞ H 1(Rn), where K is said to be
convex if

tu1 + (1 − t)u2 ∈ K (u1, u2 ∈ K and 0 ∧ t ∧ 1).

This fact is illustrated by the following example.

Example 3 Let K ∞ R
m be a closed convex set and let E : K ⊃ R be a convex

function. Then, for any minimum point x ∈ K ,

E ⊂(x)[y − x] = ≤E(x) · (y − x) = lim
t⊃0

E(x + t (y − x)) − E(x)

t
≈ 0 (24)

holds for y ∈ K (note that x + t (y − x) ∈ K for 0 ∧ t ∧ 1). Conversely, by the
convexity of E , we have

E(y) ≈ E(x) + ≤E(x) · (y − x) (y ←= x);

thus, (24) implies that x is a minimum point of E .

The existence of a solution u to (23) will be proved by minimizing E in K . Indeed,
the argument we have presented for the whole space H1 in the case of boundary value
problems still works even for the convex closed subset K ∞ H1, once we show the
coerciveness condition, since the limit of every weakly convergent sequence in K
still lies in K . The uniqueness of a minimizer also follows from the convexity of K .
However, because of the lack of the Poincaré inequality, the coerciveness does not
hold and one needs to modify the argument as follows to complete the proof:

(i) Take a large ball B and consider the minimization problem in K B := {u ∈
H1

0 (B) | u ≈ 0} instead of K .
(ii) Check that the minimizer u B and ωB := {x ∈ B | u B(x) > 0} satisfy (23) if

ωB ∞ B.
(iii) Show an a priori bound of ωB , which is independent of B, so that B can be

chosen to satisfy ωB ∞ B.

For details of the above argument in a slightly different manner, see Sakai [4] and
Gustafsson [2].

Appendix

Here, the basic inequalities in analysis known as Hölder’s inequality and the Poincaré
inequality are supplied for the sake of completeness.
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Hölder’s inequality (or the Cauchy-Schwarz inequality) states that

⎭⎭⎭⎭⎭⎭
∫
ω

uv dx

⎭⎭⎭⎭⎭⎭ ∧ ∪u∪L2(ω)∪v∪L2(ω) (25)

holds for u, v ∈ L2(ω). This is a natural generalization of the inequality |x · y| ∧
|x ||y| for x, y ∈ R

n , since the left-hand side is the inner product (u, v)L2(ω). In
particular, equality holds in (25) if and only if u = αv for some scalar α ∈ R.

The Poincaré inequality states that, for a bounded domain ω, there is a constant
C > 0 such that

∪u∪L2(ω) ∧ C∪≤u∪L2(ω)

holds for u ∈ H1
0 (ω). The boundedness of ω can be relaxed to some extent; however,

the inequality does not hold, in general, for unbounded domains. Moreover, H 1
0 (ω)

cannot be replaced by H 1(ω) for the inequality to hold. Indeed, the constant function
u ≺ 1 violates the inequality.
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Finite Markov Chains and Markov Decision
Processes

Tomoyuki Shirai

Abstract Markov chains are important tools used for stochastic modeling in various
areas of mathematical sciences. The first section of this article presents a survey
of the basic notions of discrete-time Markov chains on finite state spaces together
with several illustrative examples. Markov decision processes (MDPs), which are
also known as stochastic dynamic programming or discrete-time stochastic control,
are useful for decision making under uncertainty. The second section will provide
a simple formulation of MDPs with finite state spaces and actions, and give two
important algorithms for solving MDPs, value iteration and policy iteration, with an
example on iPod shuffle.

Keywords Markov chain · Markov decision process · Mixing time · Coupling ·
Cutoff phenomenon

1 Markov Chains

Throughout this article, we assume that S is a finite set of states and we denote the
set {0, 1, 2, . . . } by T.

A discrete-time stochastic process on S is a sequence of S-valued random variables
{Xt }t∈T defined on a probability space (Ω,F ,P). A Markov chain on S is a stochas-
tic process having the following Markov property: for 0 ⊂ t0 < t1 < · · · < tn < t
and x0, x1, . . . , xn, x ∈ S,

P(Xt = x |Xt0 = x0, Xt1 = x1, . . . , Xtn = xn) = P(Xt = x |Xtn = xn).
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Fig. 1 State transition diagram and corresponding transition matrix

In particular, a Markov chain X = {Xt }t∈T is said to be time homogeneous if
P(Xt+1 = y|Xt = x), x, y ∈ S does not depend on t . When a Markov chain X
is time homogeneous, the |S|× |S| matrix P = (p(x, y))x,y∈S given by the one-step
transition probability p(x, y) := P(Xt+1 = y|Xt = x) is called a transition matrix.
A time homogeneous Markov chain is completely determined by a transition matrix.

Lemma 1 Let X = {Xt }t∈T be a time homogeneous Markov chain. Then, for every
s, t ∈ T and x, y ∈ S, P(Xt+s = y|Xs = x) = Pt (x, y).

Throughout this section, we treat only time homogeneous Markov chains.

1.1 Examples of Markov Chains

Example 1 Let S = {1, 2, . . . , n}. An n by n matrix P = (pi j )
n
i, j=1 is said to be

a stochastic matrix if pi j → 0 for all i, j = 1, 2, . . . , n and
∑n

j=1 pi j = 1 for all
i = 1, 2, . . . , n. Every stochastic matrix P defines a Markov chain. If n is small, it
is well described by using a diagram (Fig. 1).

Example 2 (Simple random walk (SRW) on a finite graph) Let G = (V, E) be a
finite connected graph and set S = V with |V | → 2. An SRW on a finite graph G is
a Markov chain on the vertex set S with the transition probability being deg(x)−1 at
each vertex x ∈ S, where deg(x) is the degree of a vertex x in G. For example, in
Fig. 2, deg(1) = deg(2) = deg(5) = 2, and deg(3) = deg(4) = 3.

Example 3 (Ehrenfest’s urn) In two urns, say U1 and U2, there are n balls in total.
A ball is taken out uniformly at random and put into the other urn. Looking at the
number of balls in U1, we can regard it as a Markov chain on S = {0, 1, 2, . . . , n}
with transition probability

p(k, k − 1) = k

n
, p(k, k + 1) = n − k

n
(k = 0, 1, 2, . . . , n).
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5 P=

0 1/2 1/2 0 0

1/2 0 0 1/2 0

1/3 0 0 1/3 1/3

0 1/3 1/3 0 1/3

0 0 1/2 1/2 0

Fig. 2 Finite graph and transition matrix of SRW on it

Example 4 (SRW on a hypercube) Let S = {0, 1}n . We can identify S with the
vertices of a square when n = 2 and those of a cube when n = 3. Since the size of
the transition matrix is 2n , it is not practical to write it down. In this case, it is more
convenient to give a transition rule algorithmically. The transition rule from a point
x = (x1, . . . , xn) ∈ S is defined as follows:

1. Choose a coordinate i from {1, 2, . . . , n} uniformly at random.
2. Update xi to be 1 if xi = 0 and 0 if xi = 1. That is, xi ⊃∧ 1 − xi .

This rule defines the SRW X = {Xt}t∈T on S. For example, when n = 5, transition
proceeds like

(1, 0, 1, 1, 0)
3∧ (1, 0, 0, 1, 0)

5∧ (1, 0, 0, 1, 1)
2∧ (1, 1, 0, 1, 1)

3∧ (1, 1, 1, 1, 1)
1∧ · · ·

The number above each arrow indicates the coordinate chosen in step 1. If we use
up-spin and down-spin instead of 1 and 0, we see that

(←, ≈, ←, ←, ≈)
3∧ (←, ≈, ≈, ←, ≈)

5∧ (←, ≈, ≈, ←, ←)
2∧ (←, ←, ≈, ←, ←)

3∧ (←, ←, ←, ←, ←)
1∧ · · ·

It seems like a transition for the stochastic Ising model (a model for magnetism). One
can easily see that Nt = ∑n

i=1(Xt )i , the number of 1’s in Xt , is the same Markov
chain as was given in Example 3.

Example 5 (Markov chain on the set of q-colorings) Let G = (V, E) be a finite
connected graph. For a fixed integer q > maxx∈V deg(x), we consider a map c :
V ∧ {1, 2, . . . , q}. It can be regarded as a coloring of V by q-colors. We call a map
c a q-coloring and denote the set of all q-colorings by S. If c satisfies c(v) ≤= c(w)

whenever vw ∈ E , i.e., v and w are adjacent in G, we call it a proper q-coloring
and denote the totality of proper q-colorings by Sproper . Even when it is difficult to
identify the structure of S for a general graph G, we can define a natural Markov
chain {ct }t∈T on S algorithmically:

1. A vertex in V is chosen uniformly at random.
2. If v ∈ V is chosen at step 1, we set Av(ct ) = {1, 2, . . . , q} \ {ct (w) : vw ∈ E},

which is the set of colors admissible for the vertex v. A color is chosen from
Av(ct ) uniformly at random and ct+1(v) is updated to that color, leaving all the
other vertices unchanged (Fig. 3).
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Fig. 3 Left diagram shows a proper 3-coloring, and right diagram shows an improper one

1.2 Irreducibility and Periodicity

It is important to know whether or not the Markov chain under consideration can
traverse its state space.

Definition 1 We say that a Markov chain X = {Xt }t∈T on S is irreducible if for any
x, y ∈ S there exists t = tx,y ∈ N such that P(Xt = y|X0 = x) > 0.

Definition 2 Let Per(x) := {t ∈ N : P(Xt = x |X0 = x) > 0}. We call the greatest
common divisor of Per(x) the period of a state x ∈ S. It is known that the period is
constant on S when X is irreducible. In this case, the period can be considered as
that of Markov chain X . If the period is 1, X is said to be aperiodic.

Example 6 (Random bishop/knight moves) The possible moves for a bishop and a
knight from a particular square on a chessboard are shown in Fig. 4. The state space S
comprises the 64 squares. The square to move to is chosen uniformly at random from
the possible moves. In the example shown, the bishop chooses one of the squares
with probability 1/13 and moves to it, and the knight does the same with probability
1/8. These transition rules define Markov chains on S. We call these chains “random
bishop move” and “random knight move,” respectively.

• (Irreducibility). The random bishop move is not irreducible. Indeed, by the tran-
sition rule, the bishop can only move on the squares of the same color as that of
the initial place. Then, it is impossible for the bishop to jump to any square of the
other color. By induction on the size of the chessboard, it can be shown that the
random knight move is irreducible.

• (Periodicity). The period of the random knight move is two. Indeed, the random
knight can move only to a square of the opposite color so that an even number of
moves is required to return to the initial square. On the other hand, the random
bishop move is aperiodic since it is clear that {2, 3} ∀ Per(x) for every x ∈ S.
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B
K

Fig. 4 Bishop (B) and knight (K) can move to a square with a white dot

1.3 Stationarity and Reversibility

It is important to study the behavior of a Markov chain X = {Xt}t∈T as t ∧ ≥.
By the Markov property, the distribution of Xt converges to a stationary distribution
(under mild conditions) as t ∧ ≥ regardless of its initial distribution.

Definition 3 We say that π is a stationary distribution of a Markov chain X on S if
it is a probability distribution and satisfies

∑
x∈S

π(x)p(x, y) = π(y), ∞y ∈ S.

We say that a Markov chain X or its transition matrix P is reversible with respect to
π if the detailed balance condition

π(x)p(x, y) = π(y)p(y, x), ∞x, y ∈ S

holds. We call π a reversible distribution or a reversible probability measure.

It is easy to see the following.

Proposition 1 If π is a reversible distribution, then it is also a stationary distribu-
tion.

Remark 1 Suppose that P is irreducible. There exists a reversible distribution if and
only if for any closed path (x1, x2, . . . , xn, x1), it holds that

p(x1, x2)p(x2, x3) · · · p(xn, x1) = p(x1, xn)p(xn, xn−1) · · · p(x2, x1). (1)

For fixed a ∈ S, we define π̃(x) = p(a,x1)p(x1,x2)···p(xn,x)
p(x1,a)p(x2,x1)···p(x,xn)

by taking a path
(a, x1, . . . , xn, x). It does not depend on the choice of a path joining a and x under
the condition (1), and it is a constant multiple of the reversible distribution.

Example 7 It is easy to show that the Markov chain defined in Example 3 is reversible
with respect to π(k) = ⎧n

k

⎨
2−n . Indeed, the detailed balance condition π̃(k) n−k

n =
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π̃(k + 1) k+1
n , k = 0, 1, . . . , n − 1 with π̃(0) = 1 yields π̃(k) = ⎧n

k

⎨
. Therefore, we

obtain the reversible distribution π(k) = π̃(k)/
∑n

j=0 π̃( j).

Example 8 Let Cn be the cycle graph with n vertices. The SRW on Cn is irreducible
and reversible with respect to the uniform distribution. If n is odd, the SRW is
aperiodic; if n is even, the SRW has period 2. A Markov chain on Cn moving to the
right with probability p( ≤= 1/2) and to the left with probability 1 − p( ≤= 1/2) has
the uniform distribution as the stationary distribution; however, it is not reversible
since the condition (1) in Remark 1 fails.

The following two propositions are useful for identifying reversible distributions:

Proposition 2 The SRW on a finite graph G = (V, E) in Example 2 has the
reversible distribution π(x) = deg(x)

2|E | , where 2|E | = ∑
x∈V deg(x) by the hand-

shaking lemma.

Proposition 3 Suppose that the transition probability of an irreducible Markov
chain on S is symmetric in the sense that p(x, y) = p(y, x) for every x, y ∈ S.
Then, the uniform distribution π(x) = 1

|S| , ∞x ∈ S, is the reversible distribution.

The next theorem is one of the most important facts in Markov chain theory.

Theorem 1 Let X = {Xt }t∈T be an irreducible Markov chain on a finite state space
S.

(1) There exists a unique stationary distribution π .
(2) If X is aperiodic, then the distribution P(Xt = ·|X0 = x) = Pt (x, ·) of Xt

starting at x converges to the stationary distribution π as t ∧ ≥ for any
x ∈ S. In other words, Pt converges to the matrix Π whose row vectors are all
Π(x, ·) = π (x ∈ S).

(3) For each x ∈ S, π(x) = 1
Ex [τ+

x ] , where τ+
x = inf{t → 1 : Xt = x}.

Example 9 The Markov chain given in Example 2 has the stationary distribution
π = ( 1

6 , 1
6 , 1

4 , 1
4 , 1

6 ) from Proposition 2. Since P is irreducible and aperiodic, (2) of
Theorem 1 implies

Pt =

⎩
⎫

0 1/2 1/2 0 0
1/2 0 0 1/2 0
1/3 0 0 1/3 1/3
0 1/3 1/3 0 1/3
0 0 1/2 1/2 0

⎬
⎭⎭⎭⎭

t

∧

⎩
⎫

1/6 1/6 1/4 1/4 1/6
1/6 1/6 1/4 1/4 1/6
1/6 1/6 1/4 1/4 1/6
1/6 1/6 1/4 1/4 1/6
1/6 1/6 1/4 1/4 1/6

⎬
⎭⎭⎭⎭ = Π (t ∧ ≥)

By (3) of Theorem 1, we have Ex [τ+
x ] = 6 for x = 1, 2, 5 and Ex [τ+

x ] = 4 for
x = 3, 4.

Example 10 For a random knight move starting from one of the corners on the
chessboard, say c, it is easy to show that Ec[τ+

c ] = 168 by Proposition 2 and (3) of
Theorem 1. Indeed, it is easy to check that deg(c) = 2 and that
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2|E | =
∑
x∈S

deg(x) = 2 × 4 + 3 × 8 + 4 × 20 + 6 × 16 + 8 × 16 = 336.

Remark 2 We note that an irreducible Markov chain on S is aperiodic if there exists
a state x ∈ S such that p(x, x) > 0. To apply (2) of Theorem 1, we define the lazy
version of a Markov chain with P = (p(x, y)) as the Markov chain with transition
matrix Q = (q(x, y)) with

q(x, y) =
{

1
2 p(x, y) if y ≤= x,
1
2 + 1

2 p(x, x) if y = x .

It is clear that Q = 1
2 (I + P). If a fair coin is flipped and it comes up heads, then

the Markov chain moves according to the original probability law P; if it comes up
tails, then it stays at the present position. The stationary distribution of Q is the same
as that of P . Even if P is periodic, Q becomes aperiodic.

Example 11 Let G = (V, E) be a finite connected graph and suppose that q >

maxx∈S deg(x). In Example 5, a Markov chain was defined on the set of all q-
colorings. By the transition rule, a vertex chosen in step 1 is colored differently from
the vertices in its neighborhood. Through repeated transitions, at least after all the
vertices are chosen in step 1, the state becomes a q-proper coloring even if it was
originally a non-q-proper coloring. Moreover, once the state becomes q-proper, it will
remain q-proper. This means that Sproper is closed with respect to this Markov chain.
Although the Markov chain on S is not irreducible, that on Sproper is irreducible. Such
a subset of a state space as Sproper is sometimes called an irreducible component.
By Proposition 3, the stationary distribution is the uniform distribution on Sproper .

1.4 Coupon Collector’s Problem

Coupon collector’s problem is a classic problem in probability theory and has been
extended in several ways. Here we consider the most basic one.

Problem 1 Suppose that there are n different kinds of coupons. One coupon is
obtained with equal probability 1

n in each trial. How many trials does it take to
collect a complete set of coupons?

The number of different coupons is considered to be a Markov chain X = {Xt}t∈T
on S = {0, 1, 2, . . . , n} with X0 = 0. Since the probability of getting a new kind of
coupon is n−k

n if one has k different kinds already, the transition probability is given
by

p(k, k) = k

n
, p(k, k + 1) = n − k

n
(k ∈ S).
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Fig. 5 Histogram of τ100 (simulation) and the limiting distribution e−e−c

By definition, this Markov chain only goes upwards. Let τn be a random variable
taking values in N defined by

τn = inf{t ∈ N : Xt = n},

which is the first time that a complete set of coupons has been collected; if the set
{t ∈ N : Xt = n} is empty, τn is understood to be ≥. Problem 1 can thus be
rephrased as the problem of studying the random variable τn .

Proposition 4 (1) E[τn] = n
∑n

k=1
1
k ∪ n log n.1 (2) limn∧≥ P(τn ⊂ n log n +

cn) = e−e−c
(c ∈ R).

This proposition implies that the expected time to collect a complete set of coupons
is about n log n and the probability that all kinds are not yet collected after n log n is
exponentially small. For example, if n = 100, then E[τ100] = 518.738 . . . (Fig. 5).

1.5 Mixing Time

The distribution at time t of an irreducible and aperiodic Markov chain on a finite
state space S converges to the stationary distribution as t ∧ ≥ by Theorem 1. Here
we consider the speed of convergence. For that we introduce a distance on P(S),
the set of all probability measures on S.

Definition 4 For μ, ν ∈ P(S), we define the total variation distance by

∼μ − ν∼T V = max
A∀S

|μ(A) − ν(A)|.

This distance has several different expressions.

1 an ∪ bn means that an/bn ∧ 1 as n ∧ ≥.
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Proposition 5 For μ, ν ∈ P(S), 0 ⊂ ∼μ − ν∼T V ⊂ 1 and

∼μ − ν∼T V = 1

2

∑
x∈S

|μ(x) − ν(x)| =
∑
x∈S

μ(x)→ν(x)

|μ(x) − ν(x)|

= inf{P(X ≤= Y ) : (X, Y ) is a coupling of(μ, ν)},

where a two-dimensional random variable (X, Y ) is said to be a coupling of (μ, ν)

if the marginal distributions of X and Y are equal to μ and ν, respectively. Here we
simply write μ(x) for μ({x}).
Remark 3 When a Markov chain is irreducible and aperiodic, since S is finite, The-
orem 1 implies that d(t) := maxx∈S ∼Pt (x, ·) − π∼T V ∧ 0. Moreover, it is known
that d(t) is monotone decreasing.

Definition 5 From the remark above, we can define the mixing time by

tmix(ε) := inf{t ∈ N : d(t) ⊂ ε}

for given ε ∈ (0, 1/2). In particular, we write tmix := tmix(1/4). Here 1/4 can be
replaced with any ε ∈ (0, 1/2).

Mixing time is the time when a Markov chain approaches the stationarity “suffi-
ciently.” Several results have been obtained for the following problem.

Problem 2 Given an increasing sequence of state spaces {Sn : n ∈ N} and Markov
chains X (n) = {X (n)

t }t∈T on Sn , one can define t (n)
mix for each X (n) on Sn . Analyze the

asymptotic behavior of the mixing time t (n)
mix as n ∧ ≥.

1.6 Coupling of Markov Chains

The coupling method is often used for comparisons with probability distributions.
In the example below, we use a coupling of Markov chains to derive an inequality.

Definition 6 (1) Let X = {Xt }t∈T and Y = {Yt }t∈T be Markov chains on S starting
at different initial states x and y, respectively. A Markov chain {(X̃ t , Ỹt )}t∈T on
S × S is said to be a Markov coupling of X and Y if the probability law of {X̃t}t∈T
(resp. {Ỹt }t∈T) is equal to that of the given Markov chain X (resp. Y ). We denote the
probability law of this coupling {(X̃t , Ỹt )}t∈T by Px,y .

(2) We define a coupling time by τcouple = inf{t → 0 : X̃t = Ỹt }.
Example 12 Consider a Markov chain on S = {0, 1, 2, . . . , n}. This chain jumps to
one of its two neighbors with equal probability 1/2 at {1, 2, . . . , n −1}, to 0 or 1 with
equal probability at 0, and to n − 1 or n with equal probability at n. We construct
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a coupling as follows: Toss a fair coin. Both X̃t and Ỹt move upwards if it comes
up heads and both move downwards if it comes up tails. The important feature of
this coupling is the fact that if x ⊂ y, then X̃ t ⊂ Ỹt for any t → 0. Therefore, since
{X̃t = n} ∀ {Ỹt = n}, we can see that if x ⊂ y then

Pt (x, n) = Px,y(X̃t = n) ⊂ Px,y(Ỹt = n) = Pt (y, n).

In other words, Pt(x, n) is an increasing function of x for each t . This fact is not so
easy to prove by simply using matrix computations.

1.7 Upper Estimate of Mixing Time via Coupling of Markov Chains

The expected coupling time is used as an upper bound of tmix.

Proposition 6 Let Px,y be a coupling of two Markov chains starting at x and y.
Then, tmix ⊂ 4 maxx,y∈S Ex,y[τcouple].

From Proposition 6, it is important to construct a “nice” coupling with small
coupling time. Here we give two examples.

1.7.1 Mixing Time of LSRW on Cycle Graph Cn

First we estimate the mixing time for the lazy version of the SRW on Cn given in
Example 8. We construct a coupling {(X̃ t , Ỹt )}t∈T of two LSRWs starting at x and
y respectively as follows:

1. Toss a fair coin. If it comes up heads, X̃t moves according to the transition rule;
if it comes up tails, Ỹt does.

2. After the two chains meet, they move together as a single LSRW, keeping X̃t = Ỹt
for t → τcouple.

Looking at either X̃ t or Ỹt reveals that each chain is obviously an LSRW on Cn .
Let us consider the coupling time of this chain {(X̃ t , Ỹt )}t∈T. Let Zt be the shortest
path distance between X̃t and Ỹt . It is thus a Markov chain on {0, 1, . . . , ⊇n/2≺}.
(The transition rule at ⊇n/2≺ is a little different depending on whether n is even or
odd.) Then, the coupling time of X̃t and Ỹt is equal to the first hitting time of Zt
at 0. It is known to be of O(n2). Therefore, by Proposition 6, we can conclude that
t (n)
mix = O(n2).
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1.7.2 Mixing Time of LSRW on Hypercube

Consider the lazy version of the SRW on hypercube S = {0, 1}n given in Example 4.
A coupling {(X̃t , Ỹt )}t∈T of two LSRWs starting at different initial states is con-
structed as follows:

1. A coordinate i is chosen from {1, 2, . . . , n} uniformly at random.
2. In accordance with the heads or tails of a fair coin flip, set X̃t (i) = Ỹt (i) = 1 or

X̃t (i) = Ỹt (i) = 0.

For example, a transition when n = 5 proceeds like

(
1 0 1 1 0
0 0 0 0 0

)
3,heads∧

(
1 0 1 1 0
0 0 1 0 0

)
5,heads∧

(
1 0 1 1 1
0 0 1 0 1

)
3,tails∧

(
1 0 0 1 1
0 0 0 0 1

)
1,tails∧ · · ·

Suppose i is chosen at step 1. No matter what the value of the i-th coordinate is,
at step 2, it keeps that value with probability 1/2 and is updated to the other value
with probability 1/2. Therefore, if we look at either X̃t or Ỹt only, we see nothing
but an LSRW. Under this coupling, once the i-th coordinate is chosen at step 1,
the values of the i-th coordinate of X̃t and Ỹt will remain the same. Therefore, the
coupling time of the coupled chain is the first time when all the coordinates at which
the values are different at t = 0 (e.g., {1, 3, 4} in the example above) are chosen. If
we regard {1, 3, 4} as the coupons yet to be collected, the coupling time is smaller
than τn defined in coupon collector’s problem in Sect. 1.4. Therefore, Ex,y[τcouple] ⊂
E[τn] ⊂ n log n +n. By Proposition 6, we see that t (n)

mix ⊂ 4(n log n +n). It is known

that t (n)
mix ∪ 1

2 n log n.

1.8 Cutoff Phenomenon

The cutoff phenomenon is said to occur when the total variation distance d(t) keeps
nearly 1 before the mixing time tmix and abruptly drops to near 0 around the mixing
time tmix. This implies that the distribution of Xt is far from the stationarity before
time tmix and close to stationarity after time tmix. This phenomenon is formulated as
follows.

Definition 7 A sequence of Markov chains has a cutoff if

t (n)
mix(ε) ∪ t (n)

mix(1 − ε) for every ε ∈ (0, 1/2)

as n ∧ ≥, which is equivalent to

lim
n∧≥ dn(ct (n)

mix) =
{

1 if c < 1,

0 if c > 1.
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tmix
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n
0

1

0

1

Fig. 6 Cutoff phenomenon. Graph of dn(t) rescaled by t (n)
mix as n ∧ ≥

The total variation distance dn(t) converges to a step function as n ∧ ≥ by rescaling
time t by t (n)

mix (Fig. 6).
The following is a more precise version of the above.

Definition 8 A sequence of Markov chains has a cutoff with a window of size wn if
wn = o(t (n)

mix) and for every ε ∈ (0, 1/2) there exists cε > 0 such that

t (n)
mix(ε) − t (n)

mix(1 − ε) ⊂ cεwn (∞n ∈ N),

which is equivalent to

lim
c∧−≥ lim inf

n∧≥ dn(t(n)
mix + cwn) = 1, lim

c∧+≥ lim sup
n∧≥

dn(t
(n)
mix + cwn) = 0.

Example 13 (1) The LSRW on the hypercube {0, 1}n has a cutoff at t (n)
mix ∪ 1

2 n log n
with a window of size n.

(2) The SRW on cycle graph Cn does not have a cutoff.
(3) A biased random walk on {0, 1, . . . , n} moves upwards with probability p > 1/2

and downwards with probability 1− p. Then its lazy version has a cutoff around
t(n)
mix ∪ (p − 1/2)−1n with a window of size

√
n.

2 Markov Decision Processes

On many occasions one has to make a decision to minimize a cost or maximize a
reward. Markov decision processes (MDPs) provide a model for use in such situa-
tions.

Here we give a formulation of MDPs. Let S be a finite state space and A a finite
set of actions. For each a ∈ A a transition matrix P(a) = (pxy(a))x,y∈S is given.
A function c : S × A ∧ [0,≥) is called a cost function. A policy is a sequence
u = {ut }t∈T of functions ut : St+1 ∧ A. For given {P(a)}a∈A, we define a stochastic
process {Xt }t∈T on S associated with policy u and initial state μ = (μx )x∈S by the
following properties: for x0, x1, . . . , xt+1 ∈ S,
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1. P
u(X0 = x0) = μx0 .

2. P
u(Xt+1 = xt+1|X0 = x0, . . . , Xt = xt ) = pxt xt+1(ut (x0, . . . , xt )).

When the initial state μ is the delta measure at x , we denote the probability law of
{Xt }t∈T by P

u
x . This process is not, in general, a Markov chain since the conditional

probability depends on the past not just on the present state. A policy u is said to be
a stationary policy if there exists a map u : S ∧ A such that ut (x0, . . . , xt ) = u(xt )

for any t = 0, 1, . . . . Here we abuse the notation of u. If a policy u is stationary,
then the corresponding stochastic process is a Markov chain.

In what follows, for simplicity, we assume the following:

(A1) There exists an absorbing state z ∈ S in the sense that pzy(a) = δzy and
c(z, a) = 0 for any a ∈ A. We denote the set of all absorbing states by Sabs .

(A2) For x ∈ S \ Sabs , c(x, a) > 0 for every a ∈ A.
(A3) There exists a stationary policy u such that for every x ∈ S \ Sabs there exists

t = tx ∈ N so that Pu
x (Xt ∈ Sabs) > 0.

Let τ be the first hitting time to Sabs , i.e., τ = inf{t → 0 : Xt ∈ Sabs}. We define
the expected total cost associated with a policy u by

V u(x) = E
u
x

⎡
τ−1∑
t=0

c(Xt , ut (X0, X1, . . . , Xt ))

⎣
(x ∈ S)

and the optimal total cost by

V ⇒(x) = inf
u

V u(x) (x ∈ S).

It is clear that
cminE

u
x [τ ] ⊂ V u(x) ⊂ cmaxE

u
x [τ ], (2)

where cmin = minx∈S\Sabs ,a∈A c(x, a) and cmax = maxx∈S,a∈A c(x, a). This implies,
under (A2), that maxx∈S V u(x) < ≥ is equivalent to maxx∈S E

u
x [τ ] < ≥.

Lemma 2 Let u be a stationary policy as in (A3). Then, maxx∈S E
u
x [τ ] < ≥. In

particular, maxx∈S V ⇒(x) < ≥.

We note that if a policy u is a stationary policy associated with u : S ∧ A, then
V u(x) satisfies

V u(x) = c(x, u(x)) +
∑
y∈S

pxy(u(x))V u(y). (3)

Example 14 For n → 2, let S = {0, 1, 2, . . . , n} be a state space with 0 being the
absorbing state. There are two actions A = {a1, a2}. If one chooses a1, then one
goes downward by 1 in every state; if one chooses a2, then one jumps to 0 or n − 1
with equal probability 1/2 at n and goes downward by 1 otherwise. Suppose that
the cost of action a1 (resp. a2) is 1 (resp. C), i.e., c(x, a1) = 1 (resp. c(x, a2) = C)
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for x = 1, 2, . . . , n. Suppose C > 1 for simplicity. It is clear that V ⇒(x) = x for
x ∈ {0, 1, . . . , n − 1} and

V ⇒(n) =
{

C + n−1
2 if 1 < C ⊂ n+1

2 ,

n if C → n+1
2

for x = n. One should choose action a2 at n for the former and action a1 for the
latter.

In Example 14, we can compute the optimal cost V ⇒ explicitly. However, it is not
easy to determine the optimal cost in general. So the question is how to estimate the
optimal cost V ⇒. Here we give upper and lower estimates for V ⇒.

2.1 Lower Bound: Value Iteration

For a lower bound, we define the minimum expected cost incurred before time t
inductively by

Vt (x) = min
a∈A

⎤⎦
⎪c(x, a) +

∑
y∈S

pxy(a)Vt−1(y)

⎢⎥
 , V0(x) = 0 (∞x ∈ S), (4)

which is often called the Bellman equation with finite horizon. By induction, it is
easy to see that Vt (x) is increasing in t . Hence, there exists an increasing limit
limt∧≥ Vt (x) ∈ [0,≥]. We can show that the limit is equal to the optimal value
V ⇒(x).

Proposition 7 For each x ∈ S, Vt (x) is increasing in t and converges to V ⇒(x) as
t ∧ ≥. In particular, Vt (x) ⊂ V ⇒(x) for any t.

We apply Proposition 7 to Example 14. Since Vt (0) ∇ 0 and C > 1, we see that

Vt (x) =
{

1 + Vt−1(x − 1) for x = 1, 2, . . . , n − 1,

min{1 + Vt−1(n − 1), C + 1
2 Vt−1(n − 1)} for x = n.

This implies that Vt (x) = min{x, t} and hence V ⇒(x) = x for x = 1, 2, . . . , n − 1.
When t → n, as Vt−1(n − 1) = n − 1, we have

V ⇒(n) = Vt (n) =
{

C + n−1
2 if 1 < C ⊂ n+1

2 ,

n if C → n+1
2 .
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2.2 Upper Bound: Policy Iteration

Next we consider an upper bound for V ⇒. For a given stationary policy u0 such that
maxx∈S V u0(x) < ≥, one can choose a stationary policy u1 such that for each x ∈ S
action a = u1(x) minimizes the function a ⊃∧ c(x, a) + ∑

y∈S pxy(a)V u0(y). For
such a stationary policy u0, we inductively define a sequence of stationary policies
{ut }t∈T by

ut (x) ∈ arg min
a∈A

⎤⎦
⎪c(x, a) +

∑
y∈S

pxy(a)V ut−1(y)

⎢⎥
 (x ∈ S), (5)

where arg mina∈A f (a) is the set of arguments for which f (a) attains its minimum
and ut (x) is arbitrarily chosen from the right-hand side.

Proposition 8 For a stationary policy u0 such that maxx∈S V u0(x) < ≥, we define
{ut }t∈T as described above. Then, V ut (x) is decreasing in t and converges to V ⇒(x)

as t ∧ ≥ for each x ∈ S. In particular, V ⇒(x) ⊂ V ut (x) for any t.

We apply Proposition 8 to Example 14. For simplicity, we assume that n → 3. The
n = 2 case is left to the reader as an exercise. First, we suppose a policy u0(x) = a2
for every x . Then,

V u0(x) =
{

Cx for x = 0, 1, . . . , n − 1,
C
2 (1 + n) for x = n.

It is clear that u1(x) = a1 for x = 0, 1, . . . , n − 1 since C > 1. For x = n,

c(n, ai ) +
∑
y∈S

pny(ai )V u0(y) =
{

1 + C(n − 1) for i = 1,

C + 1
2 C(n − 1) for i = 2.

Then, it is easy to see that u1(n) = a2 when n → 3 since C > 1 and that

V u1(x) =
{

x for x = 0, 1, . . . , n − 1,

c + 1
2 (n − 1) for x = n.

Similarly, it is clear that u2(x) = a1 for x = 1, . . . , n − 1 and that

c(n, ai ) +
∑
y∈S

pny(ai )V u1(y) =
{

1 + (n − 1) = n for i = 1,

C + 1
2 (n − 1) for i = 2

for x = n. Therefore, we have
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u2(x) = a1 (x = 1, . . . , n − 1), u2(n) =
{

a2 if 1 < C ⊂ n+1
2 ,

a1 if C → n+1
2

(6)

and

V u2(x) =
{

x for x = 0, 1, . . . , n − 1, or for x = n and C → n+1
2 ,

C + n−1
2 for x = n and 1 < C ⊂ n+1

2 .

It can be easily seen that ut (x) = u2(x) for t → 2. Therefore, u2(x) given in (6) is
an optimal policy.

2.3 An Example: iPod Shuffle

An iPod shuffle is an MP3 music player with a clickable control pad and an external
button for switching between two different modes; one is sequential play mode and
the other is random shuffle mode. Suppose that the playlist for your iPod is sorted by
song title, say, S = {1, 2, . . . , n}, and n is assumed to be the song you want to listen
to. If you click the control pad in the sequential play mode, x goes to x +1, and if you
click the control pad in the random shuffle mode, the next song is chosen uniformly
at random from {1, 2, . . . , n}. Intuitively, if you start at a song close enough to n, it
might be better to stay in the sequential play mode, and if you start at a song far from
n, it might be better to switch to the random shuffle mode until a song close to n is
reached. The question is, what is the threshold for switching between two modes?
This problem is well-modeled by a Markov decision process.

Example 15 (iPod shuffle) Let S = {1, 2, . . . , n} be a state space with n being the
absorbing state. There are two actions A = {a1, a2}. If action a1 is chosen, one moves
upward by 1; if action a2 is chosen, one jumps to a state uniformly at random. The
costs of action a1 and a2 are 1 and T , respectively. We assume that 1 < T ∗ n. We
apply Proposition 7 to this example. It follows from (4) that

Vt (x) = min

⎤⎦
⎪1 + Vt−1(x + 1), T + 1

n

n∑
y=1

Vt−1(y)

⎢⎥
 , x = 1, . . . , n − 1, (7)

and Vt (n) = 0(∞t = 0, 1, . . . ). From this expression, by induction, it is easy to see
that Vt (x) is decreasing in x for each t and that there exist νt > 0 and Kt ∈ {1, . . . , n}
such that

Vt(x) =
{

νt for x = 1, 2, . . . , n − Kt ,

n − x for x = n − Kt + 1, n − Kt + 2, . . . , n.



Finite Markov Chains and Markov Decision Processes 205

By Proposition 7, Vt (x) ◦ V ⇒(x) as t ∧ ≥, and hence we obtain ν > 0 and
K ∈ {1, . . . , n} such that

V ⇒(x) =
{

ν for x = 1, 2, . . . , n − K ,

n − x for x = n − K + 1, n − K + 2, . . . , n.

On the other hand, from (7),

V ⇒(x) = min

⎤⎦
⎪1 + V ⇒(x + 1), T + 1

n

n∑
y=1

V ⇒(y)

⎢⎥
 , for x = 1, 2, . . . , n − 1.

(8)
The second argument on the right-hand side does not depend on x and is equal to

Cn(ν, K , T ) = T + 1

n

⎛
(n − K )ν + 1

2
K (K − 1)

⎜
.

Setting x = 1 in (8) yields

⎤⎝⎦
⎝⎪

ν = min {1 + ν, Cn(ν, K , T )} K = 0, 1, . . . , n − 2,

ν = min {n − 1, Cn(ν, n − 1, T )} K = n − 1,

n − 1 = min {n − 1, Cn(ν, n, T )} K = n.

Since we assumed that T ∗ n, we have that Cn(ν, n, T ) < n − 1, and so K ≤= n. It
is also easy to see that ν = Cn(ν, K , T ) for K ⊂ n − 1, which implies that

v = 1

2
(K − 1) + nT

K
. (9)

Setting x = n − K and x = n − K + 1 in (8) yields ν = min{K , Cn(ν, K , T )} and
K − 1 = min{K − 1, Cn(ν, K , T )}. Hence, we have

K − 1 ⊂ ν = Cn(ν, K , T ) ⊂ K .

By solving these inequalities together with (9), we have

√
1 + 8nT − 1

2
⊂ K ⊂

√
1 + 8nT + 1

2
.

Therefore, we can see that ν ∪ K ∪ √
2nT as n ∧ ≥. ��

Remark 4 We refer the reader to Levin et al. [1] for a comprehensive account of
the topics covered in Sect. 1, especially mixing time and cutoff phenomenon. Norris
[2] provides additional details for the explanations in Sect. 2. The iPod example in
Sect. 2.3 is taken from Norvig [3].
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Introduction to the Premium Principle Based
on the Wang Transform

Shingo Saito

Abstract This is a self-contained introductory survey article on the premium
principle based on the Wang transform. We give the definition and examples of
the Wang transform and prove that the induced premium principle is a coherent risk
measure.

Keywords Premium principle · Wang transform · Risk measure · Coherent risk
measure

1 Introduction

Young begins his survey article [7] on premium principles in the Encyclopedia of
Actuarial Science with the sentence,

Loosely speaking, a premium principle is a rule for assigning a premium to an insurance
risk.

Mathematically speaking, a premium principle is a map π that assigns to each random
variable X (possibly satisfying certain conditions such as integrability or nonnega-
tivity) a real number π(X), viewed as the premium of the insurance risk modeled
by the random variable X . The simplest examples include the expectation premium
principle π(X) = (1 + h)E[X ] defined for integrable random variables X and the
standard deviation premium principle π(X) = E[X ] + hσ(X) defined for square-
integrable random variables X , where h is a non-negative constant, and E[X ] and
σ(X) are, respectively, the expectation and standard deviation of X .

Wang et al. [6] showed that if a premium principle π defined for nonnegative
random variables satisfies certain desirable conditions, then π must be of the form

S. Saito (B)

Faculty of Arts and Science, Kyushu University, 744, Motooka, Nishi-ku,
Fukuoka 819-0395, Japan
e-mail: ssaito@artsci.kyushu-u.ac.jp

R. Nishii et al. (eds.), A Mathematical Approach to Research Problems 207
of Science and Technology, Mathematics for Industry 5,
DOI: 10.1007/978-4-431-55060-0_16, © Springer Japan 2014



208 S. Saito

π(X) = ∫ ∈
0 g

(
P(X > x)

)
dx , where the function g : [0, 1] ⊂ [0, 1], called a

distortion, is an increasing and concave function with g(0) = 0 and g(1) = 1;
compare the equation with the formula E[X ] = ∫ ∈

0 P(X > x) dx (see Proposi-
tion 3). Wang [3] gives a list of distortions g that includes g(x) = x1/(1+h) and
g(x) = (1−e−hx)/(1−e−h) with h > 0. He then proposed in [4] another distortion
g(x) = Φ

(
Φ−1(x) + h) with h > 0, now known as the Wang transform, where

Φ is the cumulative distribution function of the standard normal distribution. See
Wang [5] for a discussion of the Wang transform from an economic perspective.

This article focuses solely on the premium principle based on the Wang trans-
form, aimed at mathematically minded people with no knowledge about the Wang
transform. Section 2 gives the definition of the Wang transform; Section 3 provides a
few examples; Section 4 describes some properties that can be summarized as being
a coherent risk measure. Although we occasionally use results in measure theory,
a reader unfamiliar with the theory should also be able to understand most of the
contents without much difficulty.

2 Wang Transform

For a random variable X , we define its cumulative distribution function FX : R ⊂
[0, 1] by FX (x) = P(X → x). We sometimes conveniently extend FX to [−∈,∈] =
R ⊃ {±∈} by setting FX (−∈) = 0 and FX (∈) = 1.

Let Φ denote the cumulative distribution function of the standard normal distri-
bution. For h ∧ R, we define an increasing homeomorphism gh : [0, 1] ⊂ [0, 1]
by

gh(x) = Φ
(
Φ−1(x) − h

)
,

with the understanding that ∈ − h = ∈ and −∈ − h = −∈ (Fig. 1).

Lemma 1 1. We have gh1+h2 = gh1 ← gh2 and g0 = id[0,1]; therefore, g−1
h = g−h.

2. We have 1 − gh(x) = g−h(1 − x).

Proof 1. Obvious from the definition of gh .
2. We have

1 − gh(x) = 1 − Φ
(
Φ−1(x) − h

) = Φ
(−Φ−1(x) + h

) = Φ
(
Φ−1(1 − x) + h

)
= g−h(1 − x).

≈≤
Definition 1 Let h ∧ R be a constant. The Wang transform of a random variable X
is a random variable WX,h whose cumulative distribution function is given by

FWX,h (x) = gh
(
FX (x)

)
.
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Fig. 1 Graphs of gh for
various values of h

1

1

O x

gh(x)

h = 2

h = 1

h = 0

h = −1

h = −2

We write π(X, h) = E[WX,h] if it exists in [−∈,∈].
Since the definition above specifies only the distribution of WX,h , we shall not be

concerned with its correlation to other random variables.

Remark 1 We view π(X, h) as the premium of the insurance risk modeled by the
random variable X . In practice, the constant h is chosen to be non-negative because
in this case we have FWX,h (x) → FX (x) and so π(X, h) ∀ E[X ], which is required
to ensure that the insurer does not lose money on average.

For random variables X and Y , we write X
d= Y to mean that X and Y have the

same distribution; i.e., FX (x) = FY (x) for all x ∧ R. Definition 1 and Lemma 1

immediately tell us that we have Y
d= WX,h if and only if X

d= WY,−h .
The support of a random variable X , denoted by suppX , is the smallest closed

subset C of R for which P(X ∧ C) = 1. Throughout what follows, equality and
inequality between random variables will always mean almost sure equality and
almost sure inequality, respectively.

Proposition 1 We have suppWX,h = suppX. In particular, if X ∀ 0, then WX,h ∀ 0
and π(X, h) ∀ 0; if a → X → b, then a → WX,h → b and a → π(X, h) → b.

Proof It suffices to show that suppWX,h ≥ suppX , because it will imply that
suppX = suppWWX,h ,−h ≥ suppWX,h . Let x ∧ R \ suppX . Then we may choose
real numbers p and q with p < x < q so that FX (p) = FX (q). This gives us
FWX,h (p) = FWX,h (q), which implies that x ∧ R \ suppWX,h . ≈≤

Proposition 1 and the observation in Remark 1 imply that if h ∀ 0, then we can
think of WX,h as a random variable obtained from X by placing more emphasis on
larger values in its support.
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3 Examples

This section gives examples of probability distributions whose Wang transform
and/or its expectation can be computed analytically.

3.1 Discrete Distributions

Example 1 Suppose that X is a constant c. Then FX (x) = 0 for x < c and FX (x) = 1
for x ∀ c; therefore, FWX,h (x) = 0 for x < c and FWX,h (x) = 1 for x ∀ c. It follows
that WX,h = c and π(X, h) = c. These results also easily follow from Proposition 1.

Example 2 Suppose that X is a discrete random variable on a finite set {x1, . . . , xn},
where x1 < · · · < xn , with P(X = x j ) = p j for j = 1, . . . , n. For ease of

notation, set x0 = −∈, xn+1 = ∈, and q j = ∑ j
i=1 pi for j = 0, . . . , n. Then for

j = 0, . . . , n, if x j → x < x j+1, we have FX (x) = q j and so FWX,h (x) = gh(q j ).
This means that WX,h is a discrete random variable on {x1, . . . , xn} with P(WX,h =
x j ) = gh(q j ) − gh(q j−1) for j = 1, . . . , n. We therefore have

π(X, h) =
n∑

j=1

x j
(
gh(q j ) − gh(q j−1)

)
.

Although very few probability distributions allow their Wang transforms to be
computed analytically, Example 2 provides us with a Monte Carlo method for com-
puting π(X, h) numerically if sampling from the distribution of X is possible.

3.2 Normal Distribution

For μ ∧ R and σ > 0, we write N (μ,σ2) for the normal distribution with mean μ
and variance σ2.

Example 3 Suppose that X has the normal distribution N (μ,σ2). Then FX (x) =
Φ

(
(x − μ)/σ

)
, and so

FWX,h (x) = Φ

(
x − μ

σ
− h

)
= Φ

(
x − (μ + hσ)

σ

)
.

It follows that WX,h has the normal distribution N (μ + hσ,σ2), which yields
π(X, h) = μ + hσ = E[X ] + hσ(X).
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3.3 Lognormal Distribution

A random variable X has the lognormal distribution L N (μ,σ2) if X is positive
and log X has the normal distribution N (μ,σ2). Since the lognormal distribution
is closely connected to the normal distribution, the following proposition allows its
Wang transform to be computed analytically. For a random variable X , we write
FX (x−) = limx ∞∪x FX (x ∞) = P(X < x). The continuity of gh implies that
FWX,h (x−) = gh

(
FX (x−)

)
.

Proposition 2 If ψ : R ⊂ R is increasing, then Wψ(X),h
d= ψ(WX,h); in particular,

we have π
(
ψ(X), h

) = E[ψ(WX,h)] if they exist.

Proof Given any y ∧ R, we need to show that FWψ(X),h (y) = Fψ(WX,h)(y). Set
x = sup ψ−1

(
(−∈, y]) ∧ [−∈,∈]. We leave the easier cases x = ±∈ to the

reader and hereafter assume that x ∧ R.
The set ψ−1

(
(−∈, y]) is then either (−∈, x] or (−∈, x). In the former case,

we have
Fψ(Y )(y) = P

(
ψ(Y ) → y

) = P(Y → x) = FY (x)

for any random variable Y , from which it follows that

FWψ(X),h (y) = gh
(
Fψ(X)(y)

) = gh
(
FX (x)

) = FWX,h (x) = Fψ(WX,h)(y).

In the latter case, we have

Fψ(Y )(y) = P
(
ψ(Y ) → y

) = P(Y < x) = FY (x−)

for any random variable Y , from which it follows that

FWψ(X),h (y) = gh
(
Fψ(X)(y)

) = gh
(
FX (x−)

) = FWX,h (x−) = Fψ(WX,h)(y).

≈≤
Corollary 1 If a and b are constants and a ∀ 0, then Wa X+b,h

d= aWX,h + b; in
particular, we have π(aX + b, h) = aπ(X, h) + b if π(X, h) exists.

Proof Apply Proposition 2 to the function ψ(x) = ax+b to get Wa X+b,h
d= aWX,h+

b. It follows that

π(aX + b, h) = E[aWX,h + b] = aE[WX,h] + b = aπ(X, h) + b.

≈≤
If Y has the normal distribution N (μ,σ2), then its moment-generating function,

defined by MY (t) = E[exp(tY )], is given by MY (t) = exp(μt +σ2t2/2). Therefore,
if X has the lognormal distribution L N (μ,σ2), then
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E[X ] = E[exp(log X)] = Mlog X (1) = exp

(
μ + σ2

2

)
.

Example 4 Suppose that X has the lognormal distribution L N (μ,σ2). Then Propo-
sition 2 shows that

WX,h = Wexp(log X),h
d= exp(Wlog X,h).

Since log X has the normal distribution N (μ,σ2), Example 3 implies that Wlog X,h
has the normal distribution N (μ + hσ,σ2). It follows that WX,h has the lognormal
distribution L N (μ + hσ,σ2) and so π(X, h) = exp(μ + hσ + σ2/2) = ehσ E[X ].

3.4 Uniform Distribution

It appears to be little known that π(X, h) can be computed analytically when X
is uniformly distributed on an interval. The computation is based on an interesting
integration formula (Lemma 2) concerning the function Φ, which the author found
in Owen [2]. Let ϕ : R ⊂ R denote the probability density function of the standard
normal distribution:

ϕ(x) = 1∼
2π

exp

(
− x2

2

)
.

Lemma 2 For a, b ∧ R, we have

∈∫
−∈

Φ(a + bx)ϕ(x) dx = Φ

(
a∼

1 + b2

)
.

Proof This proof was communicated by Tomoyuki Shirai. Let X and Y be indepen-
dent random variables, both having the standard normal distribution. Then

∈∫
−∈

Φ(a + bx)ϕ(x) dx =
∈∫

−∈
P(Y → a + bx)ϕ(x) dx = P(Y → a + bX)

= P(Y − bX → a) = Φ

(
a∼

1 + b2

)
,

where the last equality follows from the fact that Y − bX has the normal distribution
N (0, 1 + b2). ≈≤
Example 5 Suppose that X has a uniform distribution on the interval [a, b]. Let Y be
a random variable having the standard normal distribution. Then Φ(Y )has a uniform
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distribution on the unit interval [0, 1], and so X
d= a + (b − a)Φ(Y ). Since WY,h has

the normal distribution N (h, 1) by Example 3, we have

π
(
Φ(Y ), h

) = E[Φ(WY,h)] =
∈∫

−∈
Φ(x)ϕ(x − h) dx =

∈∫
−∈

Φ(x + h)ϕ(x) dx

= Φ

(
h∼
2

)

by Proposition 2 and Lemma 2. It follows from Corollary 1 that

π(X, h) = π
(
a + (b − a)Φ(Y ), h

) = a + (b − a)π
(
Φ(Y ), h

)
= a + (b − a)Φ

(
h∼
2

)
.

Since E[X ] = (a + b)/2 and σ(X) = (b − a)/2
∼

3, we have

π(X, h) = E[X ] + 2
∼

3

(
Φ

(
h∼
2

)
− 1

2

)
σ(X).

4 Properties

Important properties of the premium principle X ⊇⊂ π(X, h) can be summarized as
being a coherent risk measure. Let L ∈ denote the linear space of bounded random
variables.

Definition 2 A coherent risk measure is a map π : L∈ ⊂ R with the following
properties:

1. monotonicity: if X → Y , then π(X) → π(Y );
2. translation invariance: if c ∧ R is a constant, then π(X + c) = π(X) + c;
3. positive homogeneity: if c ∀ 0 is a constant, then π(cX) = cπ(X);
4. subadditivity: we have π(X + Y ) → π(X) + π(Y ).

Remark 2 Monotonicity means that if an insurance policy Y always pays more than
an insurance policy X , then Y should be priced higher. Translation invariance means
that the combination of an insurance policy X and a fixed amount c of payment by
the insurer should be priced at the price of X plus c. Positive homogeneity means
that if an insurance policy pays c times as much as an insurance policy X , then its
price should be the price of X multiplied by c. Subadditivity means that it should
be more reasonable to buy two insurance policies X and Y together at the price of
π(X + Y ) than to buy them separately at the prices of π(X) and π(Y ).
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If X is a bounded random variable, then WX,h is also bounded by Proposition 1, and
so π(X, h) is defined inR. If we take h to be non-negative, then the map X ⊇⊂ π(X, h)

restricted to L ∈ turns out to be a coherent risk measure:

Theorem 1 If h ∀ 0, then the map π(·, h) : L ∈ ⊂ R is a coherent risk measure.

The rest of this section will be devoted to the proof of Theorem 1. Since translation
invariance and positive homogeneity readily follow from Corollary 1, we shall verify
monotonicity (Sect. 4.1) and subadditivity (Sect. 4.2).

4.1 Monotonicity

For a random variable X , we define its complementary cumulative distribution func-
tion SX : R ⊂ [0, 1] by SX (x) = 1 − FX (x) = P(X > x). Then we have

SWX,h (x) = 1 − FWX,h (x) = 1 − gh
(
FX (x)

) = g−h
(
1 − FX (x)

) = g−h
(
SX (x)

)
by Lemma 1.

Proposition 3 If X ∀ 0, then

π(X, h) =
∈∫

0

g−h
(
SX (x)

)
dx ∧ [0,∈].

Proof For any non-negative random variable Y , Fubini’s theorem for non-negative
functions shows that

E[Y ] = E

[ Y∫
0

dx

]
= E

[ ∈∫
0

1(0,Y )(x) dx

]
=

∈∫
0

E[1(0,Y )(x)] dx

=
∈∫

0

P(Y > x) dx =
∈∫

0

SY (x) dx .

Since WX,h ∀ 0 by Proposition 1, it follows that

π(X, h) = E[WX,h] =
∈∫

0

SWX,h (x) dx =
∈∫

0

g−h
(
SX (x)

)
dx .

≈≤
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Proposition 4 (Monotonicity) If X, Y ∧ L ∈ and X → Y , then π(X, h) → π(Y, h).

Proof By adding a sufficiently large constant to X and Y if necessary, we may assume
that X, Y ∀ 0. Then the claim immediately follows from Proposition 3 because g−h

is increasing and SX (x) → SY (x) for all x ∧ R. ≈≤

4.2 Subadditivity

Lemma 3 If 0 → X1 → X2 → · · · ⊂ X, then 0 → π(X1, h) → π(X2, h) → · · · ⊂
π(X, h).

Proof For each x ∧ R, we have 0 → SX1(x) → SX2(x) → · · · ⊂ SX (x) by the
monotone convergence theorem (for measures). Therefore, the conclusion follows
from Proposition 3 and the monotone convergence theorem. ≈≤
Lemma 4 If h ∀ 0, then the function gh is convex.

Proof We have

g∞
h(x) = ϕ

(
Φ−1(x) − h

)
ϕ
(
Φ−1(x)

) = exp

(
hΦ−1(x) − h2

2

)
∀ 0,

g∞∞
h (x) = hg∞

h(x)

ϕ
(
Φ−1(x)

) ∀ 0,

and the lemma follows. ≈≤
A random variable is simple if it can be expressed as

∑n
j=1 x j 1A j , where

x1, . . . , xn are constants and A1, . . . , An are events.

Proposition 5 (Subadditivity) If h ∀ 0 and X, Y ∧ L ∈, then

π(X + Y, h) → π(X, h) + π(Y, h).

Proof By adding a sufficiently large constant to X and Y if necessary, we may
assume that X, Y ∀ 0. By Lemma 3, we may assume that X and Y are simple. We
may write X = ∑n

j=1 x j 1A j and Y = ∑n
j=1 y j 1A j , where x1, . . . , xn, y1, . . . , yn

are non-negative constants and A1, . . . , An are disjoint events whose union is the
whole sample space. Set p j = P(A j ) for j = 1, . . . , n. We assume without loss of
generality that our underlying probability space is the unit interval [0, 1] equipped
with the Lebesgue measure, for the technical reason that we will wish to divide given
events into smaller pieces.

We first prove the required inequality when p1, . . . , pn are all rational. Then by
dividing the events A1, . . . , An further if necessary, we may assume that p1 = · · · =
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pn = 1/n. Let Sn denote the symmetric group on the set {1, . . . , n}. If σ0 ∧ Sn is
such that xσ0(1) → · · · → xσ0(n), then Example 2 shows that

π(X, h) =
n∑

j=1

xσ0( j)

(
gh

(
j

n

)
− gh

(
j − 1

n

))
.

Since gh is convex by Lemma 4, the number gh( j/n) − gh
(
( j − 1)/n

)
increases as

j increases. We therefore have

π(X, h) = max
σ∧Sn

n∑
j=1

xσ( j)

(
gh

(
j

n

)
− gh

(
j − 1

n

))
.

Since we similarly have

π(Y, h) = max
σ∧Sn

n∑
j=1

yσ( j)

(
gh

(
j

n

)
− gh

(
j − 1

n

))
,

π(X + Y, h) = max
σ∧Sn

n∑
j=1

(xσ( j) + yσ( j))

(
gh

(
j

n

)
− gh

(
j − 1

n

))
,

we conclude that π(X + Y, h) → π(X, h) + π(Y, h).
We now turn to the general case where p1, . . . , pn are not necessarily rational.

Let ε > 0 be arbitrary. Choose M > 0 larger than all of x1, . . . , xn, y1, . . . , yn .
Since g−h : [0, 1] ⊂ [0, 1] is uniformly continuous, we may take δ > 0 so that
|g−h(s) − g−h(t)| < ε/M whenever s, t ∧ [0, 1] and |s − t | < δ. We may choose
disjoint events B1, . . . , Bn of rational measure whose union is [0, 1] so that, setting
X ∞ = ∑n

j=1 x j 1B j and Y ∞ = ∑n
j=1 y j 1B j , we have P(X = X ∞ and Y = Y ∞) > 1−δ.

Then |SX (x) − SX ∞(x)| < δ for all x ∧ R, and so by Proposition 3 we have

|π(X, h) − π(X ∞, h)| =
∣∣∣∣

∈∫
0

g−h
(
SX (x)

)
dx −

∈∫
0

g−h
(
SX ∞(x)

)
dx

∣∣∣∣

→
M∫

0

∣∣g−h
(
SX (x)

) − g−h
(
SX ∞(x)

)∣∣ dx

→
M∫

0

ε

M
dx = ε.

Since we similarly have |π(Y, h)−π(Y ∞, h)| < ε and |π(X +Y, h)−π(X ∞+Y ∞, h)| <

ε, we obtain
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π(X + Y, h) → π(X ∞ + Y ∞, h) + ε → π(X ∞, h) + π(Y ∞, h) + ε

→ π(X, h) + π(Y, h) + 3ε.

Since ε > 0 was arbitrary, we conclude that π(X + Y, h) → π(X, h) + π(Y, h). ≈≤

5 Further Reading

For premium principles in general, see Young [7] and the references therein. For
(coherent) risk measures, see Föllmer and Schied [1].
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Stochastic Process Models

Hiroki Masuda

Abstract A stochastic process model describes how an objective “randomly” varies
over time and is typically referred to as an infinite-dimensional random variable X =
X (ω) = {Xt (ω)}t∈T whose value is either a continuous or a càdlàg (right-continuous
with left-hand limits) function of t ∈ T ⊂ R+. The probabilistic structure of X can be
wonderfully rich, ranging from a piece-wise constant type describing a low-frequency
state change to a very rapidly varying type for which we cannot define

∫
f dX

pathwise as the Riemann-Stieltjes integral even for a smooth f ; typical examples
are a compound-Poisson process and a Wiener process, respectively. Examples of
application fields include signal processing (detection, estimation, etc.), population
dynamics, finance, hydrology, radiophysics, and turbulence.

Keywords Asymptotic statistics · Itô calculus · Lévy process, Stochastic differen-
tial equation · Stochastic process.

1 Lévy Process

Let L (ζ) denote the distribution of a random variable ζ. We say that a real-valued
stochastic process X = (Xt )t∈R+ is a Lévy Process if the properties (L1) and (L2)
hold true:

(L1) For any finite points 0 = t0 < t1 < · · · < tn , the increments

Xt1 − Xt0 , Xt2 − Xt1 , . . . , Xtn − Xtn−1

are independent, and for each j ,
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L (Xt j − Xt j−1) = L (Xt j −t j−1).

(L2) For each t ∈ R+, Xs
p−→ Xt as s → t .

Here
p−→ stands for the convergence in probability. The initial variable X0 can be any

fixed point, but here we will set X0 = 0. Given any Lévy Process X , t > 0, and
n ∈ N, we can always write Xt as

Xt =
n∑

j=1

(X jt/n − X( j−1)t/n), (1)

where, according to (L1), the summands X jt/n −X( j−1)t/n form an array of i.i.d. ran-
dom variables. Expression (1) suggests that X is a natural continuous-time analogue
of the discrete-time random walk and also that L (Xt ) is infinitely divisible for each
t . In fact, there is one-to-one correspondence between Lévy Processes and infinitely
divisible distributions: we can associate any Lévy Process X with an infinitely divis-
ible distribution μ such that μ = L (X1), and conversely, for any infinitely divisible
distribution μ there is a corresponding Lévy Process X such that L (X1) = μ. The
class of infinitely divisible distributions is reasonably large: to mention just a few,
gamma, inverse-Gaussian, log-normal, normal, stable, hyperbolic, Student-t , Pareto,
Meixner, logistic, negative binomial, geometric, F , Gumbel, and Weibull. Because
an i.i.d. sequence can be used to construct a time series model, a Lévy Process can
be a building block for constructing a much wider class of stochastic processes.

In view of the general stochastic process theory (e.g., [18], Chap. I), we may
always suppose that each sample path t ⊃→ Xt (ω) is càdlàg (right-continuous with
left-hand limits). The convergence in probability is metrizable by several equivalent
metrics, and the continuity in probability (L2) means that Xs converges to Xt for any
t under one of them, say E{1 ∧ |Xt − Xs |} → 0 as s → t for each t ∈ R+, where E
denotes the expectation operator associated with the underlying probability P . More
intuitively, (L2) means that a sample path of X has no prearranged jump time point;
P(πXt ←= 0) = 0 for each t ≈ 0, where

πXt := Xt − lim
ε≤0

Xt−ε

denotes the (directed) jump size of X at time t . For example, the process

Xt =
[t]∑
j=1

ξ j

with i.i.d. random variables ξ1, ξ2, . . . is not a Lévy Process, because it has fixed
points of discontinuity.
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Although the definition of a Lévy process looks pretty simple, unbelievably many
inherent properties follow from it. In particular, the Lévy-Itô decomposition of a
sample path says that any Lévy Process admits the pathwise representation

Xt = bt + ∀
cwt + Jt , (2)

where the ingredients are given as follows.

• b ∈ R and c ≈ 0 are constants.
• w is a standard Wiener process, a Lévy Process having continuous but everywhere

non-differentiable sample paths and normally distributed increments: L (wt −
ws) = N (0, |t − s|) for each s, t ∈ R+.

• J is a pure-jump Lévy Process, a Lévy Process evolving only by jumps, which is
independent of w and is characterized by the Lévy measure ν(dz).

A Lévy measure is a σ-finite measure on the Borel space (R,B(R)) such that

ν({0}) = 0 and
⎧
R

(1 ∧ |z|2)ν(dz) < ≥. (3)

For each Borel set A ⊂ R\{0}, the quantity ν(A) represents the occurrence frequency
of jumps of size in A over the unit time interval [0, 1]. A sample path t ⊃→ Jt may have
infinitely many “small” jumps over any nonempty interval; then we have ν(B) = ≥
for any open neighborhood B of the origin. If

∫
|z|∞1 |z|ν(dz) < ≥, then J may take

the form
Jt =
∑

0<s∞t

πXs (4)

as soon as the sum is convergent a.s. (with probability 1). Although the presence of
“too many” small jumps makes the sum fail to converge, we can formulate J even
for such cases by means of suitable centering of small jumps. Condition (3) puts an
upper limit on the occurrence frequency of small jumps; that is, we have to impose
that
∫
|z|<ε |z|2ν(dz) < ≥ for any ε > 0.

The distribution L (X) can be completely characterized in terms of the non-
random generating triplet

(b, c, ν(dz)) .

In particular, the characteristic function of L (Xt ) can be given by the so-called
Lévy-Khintchine representation:
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Fig. 1 Simulated sample paths of a Wiener process (left) and a normal inverse Gaussian Lévy
Process (right for clarity, we connected the points by lines)

⎧
R

eiux P Xt (dx)

= exp

⎨
⎩t

⎫
⎬iub − 1

2
cu2 +

⎧
R

⎭
eiuz − 1 − iuz1U (z)

)
ν(dz)



⎡
⎣ , u ∈ R,

where U := {z ∈ R : |z| ∞ 1} and P Xt stands for the distribution of Xt . This
formula can be deduced from the Lévy-Itô decomposition (2), but another proof
which does not make use of (2) is possible.

There are several basic references concerning general Lévy Processes. We refer
to [9, 15, 18, 30] for a detailed systematic account of Lévy Processes.

Typical sample paths of a standard Wiener process and a normal-inverse Gaussian
Lévy Process in the plane are shown in Fig. 1. The latter is of the pure-jump type
and belongs to the class of the generalized hyperbolic Lévy Processes that will be
introduced shortly hereafter.

There exist many real phenomena for which Gaussian noise is never suitable.
In stochastic process modeling, incorporating a pure-jump Lévy Process instead of
only using the continuous Wiener process seems to be one of the current mainstream
approaches. We may often get a significant gain in model fitting, hence in prediction
too, just by replacing Gaussian noise with non-Gaussian noise. There is some empir-
ical evidence to support this. An example is use of the generalized inverse-Gaussian
and the generalized hyperbolic distributions in turbulence and econometrics.

The Generalized Inverse-Gaussian (GIG) distribution GIG(λ, δ, γ) is the distri-
bution on the positive half line admitting the density

pGIG(x;λ, δ, γ) = (γ/δ)λ

2Kλ(γδ)
xλ−1 exp

⎤
− 1

2

⎭δ2

x
+ γ2x

)⎦
, x > 0. (5)
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Here Kλ(x), λ ∈ R, denotes the modified Bessel function of the third kind with
index λ, and the region of admissible values for the parameter (λ, δ, γ) is specified
as follows: ⎫

⎬
λ > 0 ∪ δ ≈ 0, γ > 0;
λ = 0 ∪ δ > 0, γ > 0;
λ < 0 ∪ δ > 0, γ ≈ 0.

(6)

The GIG distribution is infinitely divisible; hence, we can choose a Lévy Process X
such that L (X1) = GIG(λ, δ, γ): we note that L (Xt ) for t ←= 1 may or may not
belong to the GIG family.

The Laplace transform of the GIG(λ, δ, γ)-distribution is explicitly given by

u ⊃→
⎪

γ2

γ2 + 2u

⎢λ/2 Kλ

⎭
δ
⎥

γ2 + 2u
)

Kλ(δγ)
,

so we can derive moments of any order in closed forms if any exist. The moments
are expressed in terms of K·(·); moments of any order are finite if γ > 0, while only
those of order less than −λ exist if γ = 0. Moreover, we have E(X−q) < ≥ for
every q > 0 as soon as δ > 0. By suitable control of the parameters, we can derive
several well-known positive distributions as special cases. For example:

• the gamma distribution for δ = 0, γ > 0, λ > 0;
• the reciprocal gamma distribution for δ > 0, γ = 0, λ < 0;
• the inverse-Gaussian distribution for δ > 0, γ ≈ 0, λ = −1/2;
• the delta (degenerate) distribution as the limit for δ, γ → ≥ under the condition

δ/γ → c ∈ (0,≥) (then we can prove that pGIG(x;λ, δ, γ) → 0 for x ←= c while
pGIG(x;λ, δ, γ) → ≥ for x = c).

Moreover, other distributions such as Weibull and log-normal can be derived through
appropriate transformations such as power transformation.

Given constants μ, β, and random variables σ ∼ GIG(λ, δ, γ) and η ∼ N (0, 1)

independent of σ, we define the normal variance-mean mixture of σ as the random
variable

Y := μ + βσ + ∀
ση. (7)

Then we call L (Y ) the Generalized Hyperbolic (GH) distribution, usually denoted
by G H(λ,α,β, δ,μ) with the reparametrization α := ⎥γ2 + β2. The GH dis-
tribution is infinitely divisible: hence, we can define a Lévy Process X such that
L (X1) = G H(λ,α,β, δ,μ). The admissible region of the parameters is deter-
mined according to (6): λ,μ ∈ R, and

⎫
⎬

λ > 0 ∪ δ ≈ 0, α > |β|,
λ = 0 ∪ δ > 0, α > |β|,
λ < 0 ∪ δ > 0, α ≈ |β|.

(8)

Note that L (X1) is symmetric around μ if β = 0.
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It follows from (5) and (7) that the distribution L (Y ) admits the density

pG H (y;λ,α,β, δ,μ) = C(λ,α,β, δ){h(y; δ,μ)}λ−1/2

× Kλ− 1
2
(αh(y; δ,μ)) eβ(y−μ), y ∈ R,

where

h(y; δ,μ) :=
√

δ2 + (y − μ)2,

C(λ,α,β, δ) := (α2 − β2)λ/2

∀
2παλ−1/2δλKλ(δ

⎥
α2 − β2)

.

The function pG H is unimodal (and so is pGIG(·;λ, δ, γ)). The parameters λ,α,β
determine the tail behavior:

lim|y|→≥
pG H (y;λ,α,β, δ,μ)

|y|λ−1 exp{−α|y| + βy} = e−βμ

∀
α

C(λ,α,β, δ),

clarifying the semi-heavy tail property of GH distributions except for the case α =
|β|, which corresponds to an asymmetric variant of the Cauchy distribution. As in
the GIG case, suitable control of the parameters leads to special distributions such
as normal, skewed Student-t , normal-inverse Gaussian, hyperbolic, and GIG.

For more details concerning the GIG and GH distributions together with their
histories, we refer to [5, 8, 12, 21] as well as the references therein.

2 Itô Calculus and Stochastic Differential Equation

2.1 Semimartingale

For later exposition, let us mention here the notion of the semimartingale. A semi-
martingale X is an adapted process represented as the sum of a finite-variation process
A and a local martingale M , both starting from the origin; we say that a function
x : R+ → R is of finite variation (resp. infinite variation), if for each t ∈ R+

sup
n∈N

2n∑
j=1

|x jt/2n − x( j−1)t/2n | < ≥ (resp. = ≥).

Furthermore, the local martingale part can be decomposed into its continuous part
Xc and purely discontinuous part Xd , so that

X = X0 + A + Xc + Xd .
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In the case of Lévy Process (2), we have Xc = ∀
cw while the representation of Xd

is really determined in conjunction with A. A typical way is to divide the jump part
into small- and large-jump parts with centering for the former:

Xt =
⎛
⎜⎝bt +

t⎧
0

⎧
|z|>1

zμ(ds, dz)

⎞
⎟⎠+ ∀

cwt +
t⎧

0

⎧
|z|∞1

z{μ(ds, dz) − ν(dz)ds}, (9)

where μ denotes the Poisson random measure associated with the Lévy measure
ν(dz); for each t > 0 and B ∈ B(R), the random variable μ([0, t], B) is distributed
as Poisson with intensity tν(B), with ν(B) possibly being infinity when 0 ∈ B. If J
takes the form (4), then (9) can be written as

Xt =
⎛
⎜⎝b −

⎧
|z|∞1

zν(ds, dz)

⎞
⎟⎠ t + ∀

cwt +
t⎧

0

⎧
R

zμ(ds, dz),

with the last term on the right-hand side corresponding to J .

2.2 Itô Integral

Consider two sequences of real-valued random variables Y1, Y2, . . . and ζ1, ζ2, . . .

where ζi are independent and zero mean, and let the σ-fields

Fn := σ(ζi ; i ∞ n) =
∨
i∞n

{ζ−1
i (B); B ∈ B(R)}

represent the information about ζi up to time n. Assume that each Yi is predictable,
i.e. Fi−1-measurable. Then, the martingale transform Y · ζ is defined by

(Y · ζ)n :=
n∑

i=1

Yiζi . (10)

In fact, Y ·ζ is an (Fi )-martingale. The martingale transform is an easily understand-
able general procedure of making a martingale from predictable and independent
sequences, and it corresponds to the prototype for the construction of Itô’s stochastic
integration, which has brought about a revolution in the theory of continuous-time
martingales.

Kiyosi Itô (1915–2008) introduced the concept of stochastic integration of the
form ⎧

Y dX,
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where both Y and X are stochastic processes whose sample paths are of possibly
unbounded variation, and then developed the theory of a random perturbation of dif-
ferential equations. This paradigm is called Itô calculus, a term known to everybody
concerned with stochastic processes. Itô calculus is nowadays a basic analysis tool in
a wide range of application fields such as system control engineering, mathematical
biology, finance, and econometrics. Owing to Itô’s great achievement, it has become
possible to deal with, for example, the limit of the Riemann sum of the suitable
predictable semimartingale Y with respect to w in a rigorous manner: there exists a
unique random variable

∫ t
0 Ysdws such that

n∑
j=1

Y( j−1)t/n(w jt/n − w( j−1)t/n)
p−→

t⎧
0

Ysdws, (11)

with the convergence holding true uniformly over any compact time interval. The
limit process

∫
Y dw is called the Itô integral of Y with respect to w, which defines a

local martingale. We note that the notation
∫

Y dw is just symbolic, and the random
variable

∫
Y dw cannot be defined pathwise (ω-wise) as the Riemann-Stieltjes inte-

gral. In fact, let m( j; t, n) denote the midpoint between j t/n and ( j − 1)t/n, and
replace the predictable weight “Y( j−1)t/n” by “Ym( j;t,n)”. Then, the corresponding
limit is still well-defined as a locally uniform limit in probability, say

n∑
j=1

Ym( j;t,n)(w jt/n − w( j−1)t/n)
p−→

t⎧
0

Ys ⊇ dws .

However, the limit process
∫

Y ⊇ dw is essentially different from that in (11), and is
called the Stratonovich integral. The two stochastic integrals

∫
Y dw and

∫
Y ⊇ dw

have the explicit relation

t⎧
0

Ys ⊇ dws =
t⎧

0

Ysdws + 1

2
≺Y c, w〉t .

Here the term ≺Y c, w〉 is the continuous part of the quadratic variation process [Y, w],
which vanishes especially if Y is of finite variation. Here, given two semimartingales
X and Y , we can define the quadratic variation process [X, Y ] by the following limit
in probability (locally uniform in time):

[X, Y ]t := lim
n→≥

n∑
j=1

(X jt/n − X( j−1)t/n)(Y jt/n − Y( j−1)t/n). (12)

It admits decomposition into its continuous and discontinuous parts:



Stochastic Process Models 227

[X, Y ]t = ≺Xc, Y c〉t +
∑

0<s∞t

(πXt )(πYt).

The continuous part ≺Xc, Y c〉 can be more explicit according to the specific structures
of X and Y ; in particular, if Y = w, then ≺Y c, wc〉t = ≺w, w〉t = t . It is the concept
of quadratic variation that most clearly separates stochastic calculus from classical
calculus. More than half a century has passed since Itô’s invention, but the device
still remains a basic requisite in continuous-time modeling.

Importantly, the Itô integral (11) can be defined with respect to much more general
local martingales X instead of the Wiener process w. For example, we can construct
the Itô integral

∫
Y−dX for general local martingale X (hence automatically for

general semimartingales), especially for Lévy Processes with jumps; in this case,
in order to make the variable suitably defined, we have to pick the left-hand limit
version Yt− := limt⇒s Yt for the integrand process. As a result, a broad class of
stochastic processes beyond Lévy Processes can be constructed; see Sect. 2.4 below.

2.3 Itô’s Formula for Semimartingale

Given a right-continuous semimartingale X and aC 2-function f , the celebrated Itô’s
formula provides us the pretty change-of-variable formula

f (Xt) = f (X0) +
t⎧

0

f ∇(Xs−)dXs + 1

2

t⎧
0

f ∇∇(Xs−)d≺Xc〉s

+
∑

0<s∞t

{
f (Xs) − f (Xs−) − f ∇(Xs−)πXs

}
, (13)

where we simply wrote ≺Xc〉 = ≺Xc, Xc〉. The last term on the right-hand side of (13)
is absolutely convergent locally uniformly in time, and in particular it vanishes if X
has continuous samples paths. Itô’s formula looks somewhat like a Taylor approxima-
tion. Indeed, we make use of the Taylor expansion in the proof of (13). Nevertheless,
it is an equality with the third- and higher-order parts vanishing and instead having
some seemingly strange second-order part. Itô’s formula is an indispensable tool in
studying various stochastic process models.

Here is a simple illustration. Let X be a Lévy Process and S0 > 0 a constant.
Then, the process S = (St) defined by

St = S0 exp(Xt )

is called the geometric Lévy Process, which is one of the basic examples for describing
random fluctuation of a financial price process. Applying Itô’s formula, we have
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St = S0 +
t⎧

0

Ss−dXs + 1

2

t⎧
0

Ss−d≺Xc〉s +
∑

0<s∞t

Ss−(eπXs − 1 − πXs).

In particular, if X is of the form (2), we have

St = S0 +
⎭

b + c

2

) t⎧
0

Ssds + ∀
c

t⎧
0

Ssdws

+
t⎧

0

Ss−d Js +
∑

0<s∞t

Ss−(eπJs − 1 − πJs).

This is an extension of the classical Black-Scholes model, where J ∗ 0.

2.4 Stochastic Differential Equation

The Itô calculus enables us to consider a random perturbation of the ordinary integral
equation

xt = x0 +
t⎧

0

b(xs)ds

for some measurable function b. Let X be a Lévy Process X of the form (2) with
b = 0 and c = 1. Given suitable measurable functions c and ζ, consider the process
X of the form

Xt = X0 +
t⎧

0

b(Xs)ds +
t⎧

0

c(Xs)dws +
t⎧

0

ζ(Xs−)dJs,

where the last two terms on the right-hand side are Itô integrals. Conventionally, this
integral equation is written in the differential form:

dXt = b(Xt)dt + c(Xt )dwt + ζ(Xt−)dJt , (14)

which is called the Stochastic Differential Equation (SDE). Under appropriate con-
ditions on the coefficient functions, (14) admits a unique solution process X as a
functional of (X0, w, J ); such a solution is called a strong solution. We note that
solutions become non-Markovian if the coefficients of (14) depend on the past of X ,
e.g. b(x·)t = ∫ t

t−1 xsds. Then things become much more complicated, and we can
no longer make use of Markov operator theory to study X .
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We refer to [14, 29] for a comprehensive account of the theory of SDE (including
non-Markovian types) as well as of stochastic integration.

2.5 Long-Term Stability

We may control various characteristics of X in (14) in terms of the ingredients b, c,
ζ, and ν(dz), to mention just a few:

• Heaviness of the tail of L (Xt );
• Auto-covariance structure (short- and long-memory properties);
• Finiteness of moments such as not only E{g(Xt )} but also supt∈R+ E{g(Xt )} for

some unbounded measurable function g;
• Ergodicity of X .

Here, the ergodicity means that there exists a unique invariant measure π(dx) to
which the distribution L (Xt ) in total variation converges as t → ≥ for every initial
point:

lim
t→≥ sup

A∈B(R)

|P(Xt ∈ A|X0 = x) − π(A)| = 0, x ∈ R.

We then have the weak law of large numbers

1

t

t⎧
0

f (Xs)ds
p−→
⎧
R

f (x)π(dx), t → ≥, (15)

also known as the ergodic theorem, roughly meaning that a time average converges
to a space average. The convergence (15) is valid for every g ∈ L1(π).

If in particular b(x) = −λx with c and ζ being constant, then we can write it as

dXt = −λXt dt + dZt

for some Lévy Process Z . The solution is called the Lévy-Ornstein-Uhlenbeck (OU)
process, admitting the closed form

Xt = e−λt X0 +
t⎧

0

e−λ(t−s)dZs, t ∈ R+. (16)

This is the continuous-time counterpart to the first-order autoregressive model
ζn = ρζn−1 + εn in the time series literature. The OU process has several inherent
characteristics, which cannot be shared with a general nonlinear SDE. For example,
there is a simple relation between the generating triplet of Z and the invariant dis-
tribution π, the latter being necessarily selfdecomposable; see Masuda [22] as well
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Fig. 2 Relations among Lévy
Process, Markov process, and
SDE models

as the references therein for details. Because of its mathematical tractability, the OU
process is used in many application fields such as stochastic volatility modeling in
econometrics (Barndorff-Nielsen et al. [5]) and signal estimation in diffusion leaky
integrate-and-fire neuronal models (Lansky and Ditlevsen [20]).

Figure 2 shows relations among several stochastic models.

2.6 Sample Path Generation

It is important for simulation purposes to generate a sample path of X = (Xt )t∈[0,1]
on a computer. There is a huge literature of stochastic numerics for the SDE (14).
The most naive way is the Euler approximation. Suppose that we know how to
(approximately) generate random numbers obeying L (Jt ) for any t > 0 small
enough. Then, for a sufficiently large n ∈ N we inductively generate discrete-time
skeleton process X0, X1/n, . . . , X(n−1)/n, X1 via the recurrence formula

X j/n = X( j−1)/n + b(X( j−1)/n)
1

n
+ c(X( j−1)/n)π

n
j w + ζ(X( j−1)/n)π

n
j J, j ∞ n,

(17)
where and in what follows

πn
jζ := ζ j/n − ζ( j−1)/n

for any process ζ. Actually, there are several concrete examples of J for which an ex-
act or approximate algorithm for generating L (J1/n)-random numbers is available.
As a result of (17), we get a discretized (piecewise constant) process Xn defined by

Xn
t := X[nt]/n, t ∈ [0, 1];

see Fig. 3. Under appropriate conditions, the original process X is realized as a limit
of Xn under a suitable topology.

More sophisticated methods are known. For diffusion processes, the monograph
[19] is a milestone. We refer to [4, 27] for numerics concerning Lévy Processes and
SDE models driven by a Lévy Process.
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Fig. 3 Sample paths of a SDE model X (blue) and its discretized version Xn (red)

Finally, we note that the SDE of the form (14) may arise as a weak limit of a time
series model under high-frequency sampling. For example, a diffusion approximation
is valid for the famous GARCH model, which is used to model (normally daily)
stock-return fluctuation; see [26]. This fact enables us to reflect good properties of
the diffusion model in the limit into the original GARCH model; for example, it is
easy to specify the invariant distribution for a one-dimensional diffusion process,
whereas it is not easy to do so for the GARCH model.

3 Stochastic Process as a Statistical Model

Mathematical statistics is a discipline to quantify information from observed data in
various fruitful ways with theoretical rationale, and then to put it to use for future
decision-making. It has been penetrating deeply into a great number of research
fields handling actual phenomena involving randomness, expanding its impact in an
increasing number of future directions. One of the essences of mathematical statistics
is distribution approximation. Asymptotic statistics is a collective term for analyses
of the distribution behavior of statistics when the number of data increases, forming
a core of mathematical statistics.

In most types of parameter estimation, we usually define an estimator θ̂n of θ,
where θ stands for the parameter of interest, as the maximum point of some ob-
jective (random) function θ ⊃→ Mn(θ), θ ∈ ℘ ⊂ R

p; for example, the penalized
maximum-likelihood method, the weighted least-squares method, and the least ab-
solute deviation method. In order to deduce the asymptotic behavior of θ̂n , it is
crucial to clarify that of a suitably rescaled Mn , especially, the weak limit in the
function space; see e.g. van der Varrt [33, Chap. 5] for details. When attempting to
estimate a stochastic process model, we have to verify limit theorems such as the law
of large numbers and the central limit theorem, building on a correct understanding
of local (small-time) and global (long-term) stochastic behaviors of the underlying
stochastic process. Toward that end, martingale limit theory and ergodic theory often
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play important roles. Concerning statistical inference for diffusion models, interested
readers can consult [17, 28, 32] for an extensive review of the existing literature.

Despite its importance in application fields, a solid basis of asymptotic statistics
for the SDE models with jumps such as (14) has not yet been well-established as yet
in the presence of jumps. Needless to say, this is primarily because of the difficulty of
handling the diversity of the driving Lévy Process. On the one hand, for a broad class
of SDE with jumps the likelihood analysis has been developed when continuous-time
data (Xt )t∈[0,T ] is available: see Sø [31]. On the other hand, however, for the more
realistic discrete-time sampling, many things are yet far from being well-developed;
indeed, the exact maximum likelihood estimation is usually of no utility because of
the lack of a closed-form transition probability, and we do not know what kind of Mn
is universally good to use even when the class of L (Jt ), or equivalently the class of
ν(dz), is limited to some extent. This area of research is now under development.

Example 1 Population Growth Dynamics

The logistic diffusion is defined by

dXt = r (1 − Xt/K ) Xtdt + Xtσdwt (18)

for some positive constants r, K , and σ. This model is a randomly perturbed version
of the logistic equation (the ordinary differential equation)

dxt = r(1 − xt/K )xt dt

by a state-dependent diffusion term “xtσdwt ”. The SDE (18) is used to describe the
random dynamics of population growth, Xt denoting, say, the number of cells. A
solution process is regarded as an approximate macroscopic model; it can take values
in R \ N too.

In this example, we can explicitly calculate the invariant distribution of X by
means of an analysis of one-dimensional diffusions: if r > σ2/2, the solution to (18)
admits a chi-square invariant distribution with its degrees of freedom depending on
the parameters r , K , and σ. See [3, 25] for details.

If we can estimate the parameters r , K , and σ from observed time series data,
then we can also calculate the distribution of the population in which X will end up
after long period. However, the random dynamical system (18) may be too simple to
describe several stylized features in reality. Various extensions and generalizations
of the model incorporating the features would be possible.
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Fig. 4 Graphic illustration of HMM

Example 2 Hidden Markov Models

A Hidden Markov model (HMM) consists of an unobserved Markov process X and
an observed process Y . The probabilistic structure is then specified in terms of:

• The transition probability of the latent Markov process;
• The conditional probability of Y given state of X .

Figure 4 shows a graphical illustration of HMM. In particular, if the model is discrete
in both time and states, then the HMM {(Xi , Yi ); i = 1, 2, . . . } can be completely
characterized by the quantities

pX
i,i+1(k, l) := P(Xi+1 = l| Xi = k),

pY |X
i (y|k) := P(Yi = y| Xi = k).

If these are parametrized by θ, a statistical problem arises: we want to estimate θ only
based only on available data (Yi )i∞n . If the state spaces of X and Y are not compact,
then maximum-likelihood estimation is theoretically difficult and computationally
heavy. See [11, 34] for a detailed account of the statistics of discrete-time HMMs.

Estimation of a continuous-time HMM (X, Y ) = {(Xt , Yt )}t∈R+ is directly related
to parameter estimation in a filtering problem, e.g. [1]. Instead of the maximum-
likelihood method, we may resort to other practical ways to estimate a model in
question. One such possibility is the method of moments discussed in [23] for a class
of discretely and partially observed ergodic stochastic process models driven by a
Lévy Process.

Here is an illustrative example borrowed from [23]. Assume that we observe
{Y jh : j = 0, 1 . . . .n} for a given sampling step size h > 0, and that the latent
Markov process is given by the OU process X of (16) with λ > 0, X0 > 0 a.s., and
πZt > 0 a.s. so that we have Xt > 0 a.s. for each t ∈ R+. The stochastic volatility
model introduced by Barndorff-Nielsen and Shephard [5, 7]) is given by
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dYt = (μ + βXt )dt +⎥Xt dwt + ρdZt ,

which describes the variation of the logarithm of a stock price; Y = log S for some
stock price process S. Here the standard Wiener process w is independent of (X0, Z).
In this model, Xt describes the volatility at time t . With ρ < 0, this model can capture
the leverage effect; that is, the volatility tends to increase after a negative shock in
price. Let y j := Y jh −Y( j−1)h denote the log-returns. For each constants m ∈ N and
k = (k1, . . . , km) ∈ Z

m+, the special nature of the OU process provides us with the
closed form of the characteristic function of L (y1, . . . , ym), so that the expressions
for its kth cumulants κ(k) = κ(k1,...,km ) can be derived through the relation

κ(k) := i−(k1+···+km ) ∂k1+···+km

∂uk1
1 · · · ∂ukm

m

log E

⎫
⎬exp

⎛
⎝i

m∑
j=1

u j y j

⎞
⎠

 .

This enables us, under regularity conditions including the ergodicity and the sta-
tionarity of {(y j+1, . . . , y j+m)}≥j=0, to construct an easy-to-use estimator θ̂n of the
parameter θ0 ∈ R

p of interest, based on moment fitting such as

1

n − m + 1

n−m+1∑
j=1

m∏
l=1

ykl
j+l−1 ◦ E

(
m∏

l=1

ykl
1

)
.

The above type of closed-form method of moments is also applicable to the
continuous-time state space model

dYt = Xt dt + dZt ,

where the OU process X describes some unseen state process, which is now not
necessarily positive, and where Z represents measurement error piling up as time
passes.

In either case, we can deduce the asymptotic normality of the normalized estima-
tor: for some explicit asymptotic covariance matrix ω(θ0, h),

∀
n(θ̂n − θ0)

L−→ Np (0,ω(θ0, h)) .

To achieve this distribution approximation, the mixing property of X plays a crucial
role in verification of the appropriate law of large numbers and central limit theorem,
paving the way to formulation of how to construct confidence regions and model
assessment devices.
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Example 3 Estimation of Integrated Volatility Via Realized
Multipower Variation

There is no relation between model and actual time scales. Time series data over
any fixed period may be regarded as, say, a discrete-time sample from a stochastic
process X over unit interval [0, 1]. According to a somewhat universal local (small-
time) structure of L (Xt+ε − Xt ), a high-frequency data setting allows us to estimate
the integrated volatility by means of very simple statistics.

To be more specific, let us assume that a discrete-time sample (X j/n)
n
j=0 is ob-

served from a continuous Itô semimartingale of the form

Xt = X0 +
t⎧

0

bsds +
t⎧

0

σsdws, (19)

where b and σ are stochastic processes satisfying mild regularity conditions. Suppose
that the function σ never vanishes, and let m (� n) and r > 0 be given constants. The
realized Multi-Power Variation (MPV) (with index (m, r)) is defined by the easily
computable statistics

Vn(m, r; X) := nrm/2−1
n−m+1∑

j=1

m∏
k=1

|πn
j+k−1 X |r .

From [6], which proved the asymptotic mixed normality of the MPV for general
multivariate continuous Itô semimartingales, we know that

Vn(m, r; X)
p−→ μm

r

1⎧
0

σrm
s ds,

where μr denotes the r th absolute moment of the standard normal distribution. Im-
portantly, we do not need to impose any concrete structure of b and σ. Concerning
(19), the integrated volatility over [0, 1] is the possibly random quantity

1⎧
0

σ2
s ds.

To estimate this, we can make use of Vn(m, r; X) for mr = 2, the simplest case
being the realized volatility Vn(1, 2; X), the sum of squared log returns:
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Fig. 5 Computing two
time-scale realized
volatilities: the accuracy
of volatility estimation (20)
can be improved just by finer
sampling, but excessively
fine sampling may lead to a
heavy contamination owing to
market microstructure noise

Vn(1, 2; X) =
n∑

j=1

(πn
j X)2 p−→

1⎧
0

σ2
s ds, n → ≥. (20)

The unit-period integrated volatility appears as the key variable in the option-price
formula in financial engineering. We note that the realized volatility Vn(1, 2; X) is
very familiar in the classical martingale theory and has been well-recognized as an
estimator of the quadratic variation [X, X ]1 (Recall (12)): Itô calculus plays a crucial
role in developing the theory of MPV.

In reality, however, using ultrahigh-frequency data, such as financial tick data
(stock price data recording every change), may cause trouble in the limit theorem
(20); that is, so-called market microstructure noise violates the limit. See e.g. [2,
13] for a detailed empirical analysis in this direction. In such cases, we may use
the subsampling method or direct data thinning (say, using returns every 15 min).
Alternatively and hopefully, we may get a more stabilized estimation and volatil-
ity prediction procedures by introducing a more sophisticated way of incorporating
the effect of market microstructure noise. Moreover, when concerned with the in-
tegrated co-volatility of two return-process models, the effect of non-synchronicity
of sampling times is non-negligible. Several attempts have been made so far in this
direction; among others, we refer to [10] and the references therein. This area of
research remains active.

In the case where X has a jump component, things become much more com-
plicated; we refer to Jacod [16] for a detailed study of the asymptotic distribution
of power variation Vn(1, r; X) when X is a general Itô semimartingale with jumps
(Fig. 5).

The case of m ≈ 2, such as the bipower variation Vn(2, 1; X), has the attractive
feature that it can estimate the continuous part in a way somewhat (but not very
much) robust to the presence of jumps. For example, suppose that X takes the form



Stochastic Process Models 237

Xt = X0 +
t⎧

0

bsds +
t⎧

0

σsdws + Jt

with some pure-jump process with finite-activity jumps (only finite number of jumps
can occur in each compact time interval). Then (20) becomes

Vn(1, 2; X)
p−→

1⎧
0

σ2
s ds +

∑
0<s∞t

(πXs)
2, n → ≥,

while

Vn(2, 1; X) =
n−1∑
j=1

|πn
j X ||πn

j + 1 X | p−→ 2

π

1⎧
0

σ2
s ds, n → ≥.

These statistics can be used to construct a simple test procedure for the existence of
jump part J . See [6, 21, 24] as well as the references therein for more information
on the MPV literature.
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Signal Detection and Model Selection

Yoshiyuki Ninomiya

Abstract Signal detection is a basic statistical problem in various fields including
engineering, econometrics and psychometrics. It is performed by statistical testing or
model selection, but we cannot apply conventional statistical theory to it. The reason
is that the signal model, a statistical model for signal detection, has an irregular-
ity, called non-identifiability. Because of this non-identifiability problem, the signal
model needs to be shrunk in its geometrical representation. After drawing it, we prove
there is an asymptotic property of the likelihood ratio statistics for the model, which
is indicated by the geometrical representation. Then, on the basis of this asymptotic
property, we introduce a criterion for model selection considering non-identifiability
that is a reevaluated Akaike information criterion (AIC). We check the validity of
the reevaluated AIC through simulation studies and real data analysis using a factor
analysis model, which can be regarded as a kind of signal model.

Keywords Factor analysis · Information criterion · Likelihood ratio ·Locally conic
parameterization · Non-identifiability

1 Introduction

Consider the following experiment to detect regions of the human brain that respond
to hot temperatures. Prepare lukewarm water and hot water, and have an examinee
soak his or her hands in one then the other. While this is going on, capture an image
of blood flow in his/her brain; the image will be darker or lighter when the blood flow
is faster or slower. For example, if the image made when the examinee’s hands are in
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the hot water has a region that is clearly darker than the corresponding region in the
image for lukewarm water, we can say that the region responds to hot temperatures.

The problem is the criterion for determining whether the region is “clearly” darker.
Can we discriminate an image that is dark by necessity from an image that is dark
by chance? Various environmental and bodily factors such as biorhythms influence
blood flow. That is, even if the region is not related to hotness, its blood flow when
the examinee’s hands are in hot water may still be faster than when his or her hands
are in lukewarm water.

Such an unpredictable random variation in an image is called noise. On the other
hand, the variation derived from the sensation of hotness is called a signal in the
broad sense. Signal detection is the task of detecting variations in an image that are
due to a signal, not noise, and its difficulty is the possibility that the variations are
due to noise. For this reason, statistics is required in signal detection. The existence
of signals can be determined by statistical testing, and the number of signals can be
estimated by using statistical model selection. However, statistical models for signals,
which hereafter are called signal models, have an irregular property. Because of it,
we cannot apply conventional statistical theory to signal detection. Hereafter, we
explain this irregularity especially through model selection.

2 Non-identifiability in Signal Models

We will illustrate the problem mentioned in the previous section with a simple model.
Let yt be the difference between two data at position t . In image analysis, t is usually
two or three dimensional, but here, we will assume that it is one dimensional for
simplicity. For this yt , we assume the following model:

yt = αgt(β) + εt , εt
indep.∈ N(0, σ 2

0 ), t = 1, . . . , T, (1)

where αgt (β) is the term for a signal with amplitude α and position β, and εt is the
term for noise. Let us assume, for simplicity, that the variance of the noise σ 2

0 and
shape of the signal gt (·) are known, and so only α and β are unknown parameters
(α ⊂ R, 1 → β → T ). From (1), the probability density function for y = (y1, . . . , yT )

can be written as

f (y|α, β) = 1

(2πσ 2
0 )T/2

exp
[

− 1

2σ 2
0

T∑
t=1

{yt − αgt (β)}2
]
.

For the time being, let us express the one-signal model as follows:

M1 = { f (y|α, β) | α ⊂ R, 1 → β → T }.
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Fig. 1 Signal model The left panel shows its representation in parameter space, and the right panel
shows its geometrical representation

The hatched area in the left panel of Fig. 1 is a representation of M1 in the space
of parameter (α, β), but is it reasonable to regard M1 as this type of region? The one-
signal model M1 becomes a no-signal one yt = εt independent of the value of β if
α = 0; in other words, the one-signal model becomes a no-signal model regardless of
its position if its amplitude is zero. This property of M1 leads to a negative answer to
the question. The property means that even if β† ⊃= β‡, the probability distributions
f (y|0, β†) and f (y|0, β‡) become the same. For the time being, we will denote this
no-signal model as follows:

M0 = { f (y|0, β) | 1 → β → T }.

Because we cannot discriminate among probability distributions in M0, M1 is
said to be non-identifiable at M0. In the left panel of Fig. 1, M0 is drawn as a thick
line, but it should be drawn as a one point because every point of the thick line
corresponds to the same probability distribution. That is, M1 should be “shrunk” as
in the right panel of Fig. 1.

Let us generalize this one-signal model. Given a set of probability distributions

M1 = { f (y|α, β, γ ) | α ⊂ R
p, β ⊂ R

q , γ ⊂ R
r } (2)

for data y, we assume that f (y|α, β, γ ) reduces to f (y|0, β, γ ) if and only if α = 0,
and f (y|0, β, γ ) does not depend on β. Then, M1 is said to be non-identifiable at

M0 = { f (y|0, β, γ ) | β ⊂ R
q , γ ⊂ R

r }, (3)

and M1 can be drawn as in Fig. 2 (when p = 1, q = 2 and r = 0). From a viewpoint
near M0, M1 can be regarded as a cone, and so Dacunha-Castelle and Gassiat [5]
call M1 a locally conic model with a vertex M0. Note that M1 is often expressed
with parameters different from (α, β, γ ), and in this case, it is called a locally conic
parameterization for deriving (α, β, γ ).

On the other hand, let us consider the model,
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Fig. 2 Geometrical representation of locally conic model

yt = α1 + εt , εt
indep.∈ N(0, σ 2

0 ), t = 1, . . . , T, (4)

or

yt = α1 + α2t + εt , εt
indep.∈ N(0, σ 2

0 ), t = 1, . . . , T, (5)

where α1, α2 ⊂ R. In this model, the probability distribution expressed by α1 = 0,
or α1 = α2 = 0, does not have any other expression; that is, the model is identifiable
at α1 = 0 or α1 = α2 = 0. Let us consider this model in more general form. We
assume that a set of probability distributions

M1 = {g(y|α, γ ) | α ⊂ R
p, γ ⊂ R

r } (6)

for data y are identifiable at its subset

M0 = {g(y|0, γ ) | γ ⊂ R
r }. (7)

The model M1 with p = 1 and r = 0, which corresponds to (4), can be drawn as in
the left panel of Fig. 3, and the model M1 with p = 2 and r = 0, which corresponds
to (5), can be drawn as in the right panel of Fig. 3. These models do not need to be
shrunk, and so M1 can be regarded as a line or plane from a viewpoint near M0.

3 Statistical Theory for Non-identifiable Models

First, we will describe the conventional statistical theory; then, we will show it
does not to hold for non-identifiable models. Let l̂0 and l̂1 be the maximum log-
likelihoods for models M0 and M1, respectively. The difference l̂1 − l̂0 is regarded
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Fig. 3 Model without the non-identifiability problem. The left panel shows a one-dimensional
model, and the right panel shows a two-dimensional model

as an important index for comparing M0 and M1, and twice the difference is called
the likelihood ratio statistic. When they are (6) and (7), i.e., the models do not have
the non-identifiability problem, the likelihood ratio statistic can be written as

2l̂1 − 2l̂0 = sup
α,γ

{2 log g(y|α, γ )} − sup
γ

{2 log g(y|0, γ )}.

The following is a well-known asymptotic property for this statistic.

Theorem 1 (Wilks [11]) For models (6) and (7), if M1 is identifiable at M0 and
the true distribution exists in M0, the following

∧p ⊂ N; ∧T ∈ χ2(p); 2l̂1 − 2l̂0
d← T

holds under certain regularity conditions.

Here, χ2(p) denotes the chi-square distribution with p degrees of freedom, and
d←

denotes convergence in law.
The above theorem says that although there are various models without the non-

identifiability problem, the asymptotic distributions of their likelihood ratio statistics
are of the same type. This is attributed to the fact that it is an asymptotic property and
the true distribution exists in M0. In fact, the asymptotic distribution is influenced
by the behavior of likelihoods whose parameters are in the immediate vicinity of the
true ones, and any model in the vicinity can be regarded as a hyper-plane. Note that
a χ2(1) (or χ2(2)) distribution appears when the hyper-plane is a line (or plane).

On the other hand, for models with the non-identifiability problem, M1 can be
regarded as a cone in the vicinity of M0, as explained in the previous section, and
so Theorem 1 does not hold. When the models are (2) and (3), the likelihood ratio
statistic can be written as

2l̂1 − 2l̂0 = sup
α,β,γ

{2 log f (y|α, β, γ )} − sup
β,γ

{2 log f (y|0, β, γ )},
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and the following theorem can be obtained in place of Theorem 1.

Theorem 2 (Dacunha-Castelle and Gassiat [5]) For models (2) and (3), if M1 is
non-identifiable at M0 and the true distribution exists in M0, the following

∧p ⊂ N; ∧{Tβ ∈ χ2(p)}; 2l̂1 − 2l̂0
d← sup

β

Tβ

holds under certain regularity conditions.

Note that M1 becomes a model without the non-identifiability problem if β is fixed,
and that the likelihood ratio statistic for the case in which β is unknown is the
maximum of the likelihood ratio statistic for the case in which β is fixed with respect
toβ, that is, 2l̂1−2l̂0 = supβ [supα,γ {2 log f (y|α, β, γ )}−supγ {2 log f (y|0, β, γ )}].
These two facts enable us to intuitively understand the above theorem.

On the basis of Theorems 1 and 2, we can conduct statistical testing, that is,
evaluate the p value for the null hypothesis where the true distribution exists in M0
against the alternative hypothesis where it exists in M1 \ M0. The p value is given
by a tail probability of T in Theorem 1 or supβ Tβ in Theorem 2. The tail probability
of supβ Tβ reduces to the exceedance probability of a Gaussian random field, and
its evaluation is an important topic in probability theory because of its demands in
statistics. The evaluation method requires a differential geometric tool called the tube
method (Hotelling [8], Weyl [10]). The tube method has been shown to be part of
the Euler characteristic method, an integral geometric approach (Adler [1]), and it
continues to be a topic of interest. The topic is summarized in Adler and Taylor [2],
but here we shall focus on its use in statistical model selection.

The model selection is the task of selecting an appropriate model by examining
data from a set of candidates {M (m) | m = 0, 1, 2, . . .}, and it is indispensable to the
field of statistical analysis. The m-th degree polynomial regression model defined by

yt =
m∑

j=0

α j+1t j + εt , εt
indep.∈ N(0, σ 2

0 ), t = 1, . . . , T,

which is an extension of (4) and (5), is an example of M (m), and in this case, the
model selection task is to select the degree m.

One of the most frequently used model selection methods involves the Akaike
information criterion (AIC; Akaike [3]). Letting l̂(m) and q(m) be the maximum
log-likelihood for M (m) and the number of parameters in M (m), AIC is defined as

AIC(m)
formal = −2l̂(m) + 2q(m). (8)

The model that yields the smallest AIC value is regarded as an optimal one. Here,
we denote the AIC for M (m) by AIC(m)

formal in (8) because later we reevaluate AIC
for models with the non-identifiability problem.



Signal Detection and Model Selection 245

If M (m) does not have the non-identifiability problem and the true probability
distribution exists in M (m), it is known that AIC(m)

formal is an asymptotically unbiased
estimator of twice the Kullback-Leibler divergence KL(m) (minus some constant)
between the best probability distribution in M (m) and the true probability distribu-
tion. Therefore, by focusing on the comparison between just two models M (m) and
M (m+1), we obtain the following property.

Proposition 1 If M (m+1) including M (m) is identifiable at M (m) and the true
probability distribution exists in M (m), AIC(m+1)

formal − AIC(m)
formal is an asymptotically

unbiased estimator of 2KL(m+1) − 2KL(m) under certain regularity conditions.

When the true probability distribution is in or near M (m), we can say from Propo-
sition 1 that AIC(m+1)

formal − AIC(m)
formal is a good estimator of 2KL(m+1) − 2KL(m), and

so the selection based on AICformal must be reasonable. On the other hand, when the
true probability distribution is far from M (m), AIC(m+1)

formal − AIC(m)
formal is not a good

estimator. In this case, however, l̂(m+1), which is regarded as an index of goodness
of fit for M (m+1), becomes considerably larger than l̂(m), which is regarded as an
index of goodness of fit for M (m), then AIC(m+1)

formal − AIC(m)
formal will usually be less

than 0. The result is that M (m+1) is regarded as better than M (m), and so no problem
occurs. Hence, owing to the above proposition, we can say that AICformal has good
performance. On the other hand, if the proposition does not hold, we cannot assure
that AICformal will have good performance.

The difference AIC(m+1)
formal − AIC(m)

formal can be rewritten as −2(l̂(m+1) − l̂(m)) +
2(q(m+1) −q(m)); that is, it is related to the likelihood ratio statistic. As can be imag-
ined from this fact, Proposition 1 does not hold for models with the non-identifiability
problem, and so AICformal does not work well. For example, if M (m) is an m-signal
model defined by

yt =
m∑

j=1

α j gt (β j ) + εt , εt
indep.∈ N(0, σ 2

0 ), t = 1, . . . , T,

which is an extension of (1), M (m+1) is non-identifiable at M (m), and so it is not
reasonable to use AICformal.

Now let us consider candidates of a locally conic model such as the signal model
{M (m) | m = 0, 1, 2, . . .}, and denote the maximum log-likelihood for M (m) by
l̂(m). Here, we obtain

∧p(m) ⊂ N; ∧{T (m)
β ∈ χ2(p(m))}; 2l̂(m+1) − 2l̂(m) d← sup

β

T (m)
β

from Theorem 2. On the basis of the above equation, we can reevaluate AIC as

AIC(m)
proposed = −2l̂(m) + 2

m−1∑
j=1

E
(

sup
β

T ( j)
β

)
. (9)
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Accordingly, its properties can be obtained as follows.

Proposition 2 If M (m+1) including M (m) is non-identifiable at M (m) and the true
probability distribution exists inM (m), AIC(m+1)

proposed−AIC(m)
proposed is an asymptotically

unbiased estimator of 2KL(m+1) − 2KL(m) under certain regularity conditions.

From this proposition, AICproposed is expected to perform well at model selection.
However, we must point out here that the expectation in (9) is for the supremum of
an infinite number of chi-square variables, and so it is generally difficult to evaluate
explicitly.

4 Application to Factor Analysis Model

To check the validity of AICproposed, we considered the factor analysis model, which
is a basic model of psychometrics and a typical example of models with the non-
identifiability problem. The factor analysis model assumes there are several latent
factors behind multivariate data {xi ⊂ R

p | 1 → i → n}. Concretely speaking, letting

zi = (zi1, . . . , zim)≈
indep.∈ N(0, diag(1, . . . , 1)) (10)

and

εi
indep.∈ N(0, diag(ψ1, . . . , ψp)), (11)

if xi can be expressed as

xi =
m∑

j=1

λ j zi j + εi = (λ1, . . . , λm)zi + εi , i = 1, . . . , n, (12)

this model is called the m-factor model for p-variate data. In this section, we denote
it by M (m) and consider the problem of selecting m, the number of factors. Here,
for i-th sample, zi is a vector whose components are m factors, and εi is noise.
In addition, the unknown coefficient λ j = (λ j1, . . . , λ j p)

≈ is called factor loading
vector. The m-factor model M (m) can be rewritten as

xi
indep.∈ N

(
0,

m∑
j=1

λ jλ
≈
j + diag(ψ1, . . . , ψp)

)
, i = 1, . . . , n (13)

from (10) to (12).
The (m + 1)-factor model M (m+1) is non-identifiable at m-factor model M (m),

and so M (m+1) can be regarded as a cone in the vicinity of M (m), as in Fig. 2. It also
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Fig. 4 Geometrical representation of factor analysis model

Table 1 Evaluation of the expectation term in AICproposed for factor analysis model

p − j 4 5 6 7 8 9 10 11 12 13 14 15

E
(

max1→β→p− j T ( j)
β

)
6.4 8.5 10.5 12.4 14.2 16.0 17.8 19.5 21.2 22.8 24.5 26.1

has the following characteristic. As in Fig. 4, in the vicinity of M (m), M (m+1) is
divided into (m + 1) cones and each cone is shrunk. Using this characteristic, we
obtain the following theorem.

Theorem 3 (Ninomiya et al. [9]) Let M (m) be the factor analysis model defined in
(13), and assume that the parameter space is compact and that λ j ⊃= 0 (1 → j → m).
Then, (9) reduces to

AIC(m)
proposed = −2l̂(m) + 2

m−1∑
j=1

E
(

max
1→β→p− j

T ( j)
β

)
, (14)

where T ( j)
β (1 → β → p − j ) are chi-square variables with (p − j − 1) degrees of

freedom.

Note that it is not difficult to evaluate the expectation in (14) because it is for the
maximum of a finite number of chi-square variables. The expectation can be evaluated
as in Table 1, for example, and thus, model selection can be easily conducted.

In order to compare AICproposed and AICformal, we will introduce the data analysis
presented in Ninomiya et al. [9] which applies AICproposed and AICformal to the data
in Holzinger and Swineford [7]. The data consists of 145 samples of 24 psychological
variables, and it is benchmark data in psychometrics. The results are shown in Table 2.
Note that AICconsistent is a criterion proposed by Bozdogan [4]. We can see that each
criterion selects a different number of factors, which indicates that the differences
among the criteria are not trivial. According to various analyses by psychologists,
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Table 2 Application of AIC to the data in Holzinger and Swineford [7]

1-factor 2-factor 3-factor 4-factor 5-factor 6-factor

AICproposed 2573.1 2433.7 2374.0 2372.4 2397.4 2462.1
AICformal 2589.4 2419.2 2329.7 2299.3 2296.5 2303.1
AICconsistent 2780.2 2701.5 2699.5 2752.6 2829.4 2943.0

4-factor is regarded to be reasonable [6, p.164], and so we can verify the reasonable-
ness of AICproposed in this sense.
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Regression Analysis and Its Development

Ryuei Nishii

Abstract Regression analysis aims to predict a target variable statistically by using
explanatory variables. The analysis has a long history and is utilized in various
situations. We will review linear regression analysis and describe model assessment
methods based on the coefficient of determination and Akaike information criterion
(AIC). Furthermore, we propose a relative coefficient of determination based on AIC
for general statistical modeling. Finally, we illustrate variable selection and discuss
recent developments in regression analysis.

Keywords Akaike information criterion · Bayesian information criterion ·
Coefficient of determination · Model selection · Regression analysis

1 Introduction

Regression analysis aims to predict a target variable by using a set of
explanatory variables. It is the most-frequently utilized statistical method. We will
illustrate regression analysis with a simple dataset representing the postnatal devel-
opment of 32 infants [1].

Figure 1(left) shows a scatter plot of the weights of 32 babies just after birth against
a weight growth ratio 3 months after birth. A straight line relation can be detected
between the two variables. Hence, we can fit a linear model for the training data
{(xi , yi ) | i = 1, 2, . . . , n}, where xi and yi are the weight just after birth and weight
growth ratios after 3 months of the babies i = 1, . . . , n(= 32). Our aim is to predict
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Fig. 1 Weight growth data of 32 babies. left weight just after birth (kg) against weight growth ratio
3 months later (%), right weight just after birth (kg) against weight after 3 months (kg)

the growth ratio yi from the weight xi at birth. Hence, these two variables are called
the target and explanatory variables, respectively.

We fit the following regression model:

yi = π0 + π1xi + ℘i , i = 1, 2, . . . , n (1)

where π0 and π1, called regression coefficients, are constants, and ℘i , called errors,
are independent random variables following a stochastic distribution with mean zero
and variance ω 2. Here, π0, π1, and ω 2 are unknown parameters that all the data have
in common.

1.1 Parameter Estimation and Significance Test

A vector of the unknown regression coefficients π = (π0, π1)
T is estimated with the

least squares method. Let Q(π) be a quadratic form defined by

Q(π) ∈
n∑

i=1

(yi − π0 − π1xi )
2.

Then, π is estimated by minimizing Q(π). It can be seen that Q(π) is a convex
function of π. Hence, the stationary point minimizes the function. The partial deriv-
atives of the function lead to the following normal equations:

ε Q(π)

επ0
= −2n(ȳ − π0 − π1 x̄) = 0, (2)

ε Q(π)

επ1
= −2

n∑
i=1

xi (yi − π0 − π1xi ) = 0 (3)

where x̄ = ∑n
i=1 xi/n and ȳ = ∑n

i=1 yi/n. The solution of the simultaneous Eqs. (2)
and (3) is given by
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π̂ ∈
⎧

π̂0

π̂1

⎨
=

⎧
ȳ − π̂1 x̄
sxy/sxx

⎨
(4)

where sxy =
n∑

i=1

(xi − x̄)(yi − ȳ) and sxx =
n∑

i=1

(xi − x̄)2 > 0. The π̂ is called the

least squares estimate.
From the assumptions placed on the error distribution, it is shown that the estimate

π̂ given by Eq. (4) follows a bi-variate random distribution with mean vector π and
variance-covariance matrix ω 2 D1, where

D1 = 1

sxx

⎧
sxx/n + x̄2 −x̄

−x̄ 1

⎨
. (5)

If the errors independently follow a normal distribution N (0, ω 2) with mean 0 and
variance ω 2, π̂ follows a bi-variate normal distribution, where a probability density
function of a general m-dimensional normal distribution Nm(μ,α) is given by

β(x |μ,α) = (2ϕ)−m/2|α|−1/2 exp
⎩
−(x − μ)T α−1(x − μ)/2

}
. (6)

Let ŷi = π̂0 + π̂1xi be the predicted values and ℘̂i = yi − ŷi be the estimated
errors. Accordingly, the sum of the squared errors follows a chi-squared distribution,
summarized as

π̂ ⊂ N2(π, ω 2 D1) and s1 ∈
n∑

i=1

℘̂2
i =

n∑
i=1

(yi − ŷi )
2 ⊂ ω 2Ω2

n−2. (7)

Additionally, π̂ and se are stochastically independent.
From the distributions (7), a confidence interval and significance test can be

carried out on π by using the t-distribution. For example, the significance of π1 is
tested by using a statistic (π̂1 − π10)

→
sxx

⎫→
s1/(n − 2) following a t-distribution

with the degree of freedom n − 2 under the null hypothesis H0 : π1 = π10. For
residual diagnostics, the same t-distribution of ℘̂i/

→
1 − hii

⎫→
s1/(n − 2) is used,

where hii = 1/n + (xi − x̄)2/sxx .

1.2 Model Assessment of Regression Analysis

Next, we derive a measure for model assessment. The sample correlation coefficient
R between the target variable yi and the predicted value ŷi ∈ π̂0 + π̂1xi may be
utilized for this purpose. After some calculation, one finds that
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R2 = 1 −
n∑

i=1

(yi − ŷi )
2
⎬ n∑

i=1

(yi − ȳ)2. (8)

The squared correlation coefficient R2 is called the coefficient of determination.
It takes a value from 0 to 1, and a large R2 implies that the linear model fits the
data well.
Numerical example (Weight growth data) The estimated regression line for Fig. 1
(left) was y = 167.8 − 30.48x . The line segment from the observations (xi , yi ) to
the regression line gives the estimated error, and the y-value on the regression line
gives the predicted value ŷi . In this case, the two correlation coefficients are both
highly significant, and the coefficient of determination is 0.4465. When the target
variable is substituted with the weight after 3 months (Fig. 1 (right)), the coefficient
of determination of the second regression model is 0.4102. Hence, the first model is
better than the second one.

2 Multiple Regression Analysis and Significance Test

Concerning the prediction of postnatal development, conception day is another
important explanatory variable. Next, let us consider regression analysis with multi-
ple explanatory variables.

Let yi be a target variable of the i th sample and xi1, . . . , xip be p-dimensional
explanatory variables. We will assume a linear model:

yi = π0 + π1xi1 + · · · + πpxip + ℘i , i = 1, . . . , n. (9)

The case of p = 1 reduces to model (1) with a single explanatory variable. We will
employ vector notation for simplicity. Let y be a vector of target variables, X a design
matrix of size n×(p+1) constituted by explanatory variables, π a coefficient vector,
and ℘ an error vector defined by

y =
⎭


y1
...

yn


⎡ , X =

⎭


1 x11 · · · x1p
...

...
...

...

1 xn1 · · · xnp


⎡, π =

⎭


π0
...

πp


⎡ and ℘ =

⎭


℘1
...

℘n


⎡ . (10)

Here, we assume that the rank of X is equal to p + 1(⊃ n) and the errors ℘i inde-
pendently follow N (0, ω 2). y and X are observed, whereas π and ω 2 are unknown.

Now, the regression model (9) leads to the following joint expression,

y = Xπ + ℘ with ℘ ⊂ Nn(0n, ω 2 I ). (11)
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The coefficient vector π can be estimated using the least squares method. Put the
sum of squared errors as

Q(π) =
n∑

i=1

(yi −π0−π1xi1−· · ·−πpxip)
2 =

n∑
i=1

℘2
i = ℘T ℘ = (y−Xπ)T (y−Xπ).

The derivatives of Q(π) with respect to each coefficient of π yield the following
normal equation in the general case:

ε Q(π)/επ = −2X T y + 2X T Xπ = 0p+1. (12)

Equation (12) has a unique solution π̂ = Dp X T y following the normal distribution:

π̂ = Dp X Ty ⊂ Np+1(π, ω 2 Dp) (13)

with Dp = (X T X)−1 : (p + 1) × (p + 1). (14)

The vectors of predicted target values and estimated errors are respectively given by
ŷ ∈ X π̂ and ℘̂ ∈ y − X π̂. The sum of squared errors is defined by sp ∈ ℘̂T ℘̂. The
estimated error vector and the sum of squared errors independently follow a singular
normal distribution and a chi-square distribution with degree of freedom n − p − 1:

℘̂⊂ Nn
⎣
0, ω 2(I − H)

⎤
and sp ∈

n∑
i=1

(yi − ŷi )
2 ⊂ ω 2Ω2

n−p−1 (15)

where H ∈ X Dp X T : n × n. The null hypothesis H0 : π j = π j0 is tested by

(π̂ j − π j0)/
⎦

d j j⎦
sp/(n − p − 1)

⊂ tn−p−1 ( j = 0, 1, . . . , p) (16)

where d j j is the j th diagonal element of the matrix Dp defined by (14).
The tolerance of the residual ℘̂i is assessed by the standardized residual

℘̂i/
→

1 − hii
⎫⎦

sp/(n − p − 1), which follows a t-distribution with df n − p − 1,
where hii is the i th diagonal element of the matrix H = X Dp X T .

Regression analysis is usually carried out under the assumption that the errors
are independently and identically distributed as a normal distribution. Hence, the
validity of the assumption should be checked by using residual plot and outlier
detection. Note also that the matrix X T X is nearly singular if there are two highly
correlated explanatory variables. In such case, the estimated coefficients will be
unstable. Furthermore, if n < p, X T X is singular. This means that variable selection
is an important issue.
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3 Model Assessment and Selection of Explanatory Variables

3.1 Coefficient of Determination R2 and the Adjusted R2

The coefficient of determination R2 defined by (8) is used in multiple regression by
substituting the predicted vector with ŷ = X π̂. Unfortunately, R2 is monotone
increasing if additional explanatory variables are implemented in the regression
model, and hence, it is of no use for variable selection. Instead, the following R2

is adjusted by the degrees of freedom of the denominator and the numerator

R2 = 1 − sp

s0
and R2

ad j = 1 − sp/(n − p − 1)

s0/(n − 1)
with s0 =

n∑
i=1

(yi − ȳ)2. (17)

Note that the adjusted R2 may take negative values if the model is very poor.

3.2 Information Criterions AIC and BIC

Now, let us consider a general model evaluation. Consider a statistical model fθ (x)

specified by a parameter vector θ . Let L(θ) = ⎪n
i=1 fθ (xi ) be the likelihood based

on random samples x1, . . . , xn and θ̂ be the maximum likelihood estimate (MLE)
which maximizes the likelihood. Akaike Information Criterion, AIC, is a measure
for evaluating general statistical models; it is an unbiased estimate of the expected
log likelihood of the model. Bayesian Information Criterion (BIC) has a similar form,
but it is derived from a Laplace approximation of the Bayes factor [6]. AIC and BIC
evaluate the losses of the model by using the following formulas:

AIC = −2 log L(θ̂) + 2 × dim θ̂ =∧ minimum

BIC = −2 log L(θ̂) + log n × dim θ̂ =∧ minimum

where L(θ̂) denotes the maximum likelihood.
The AIC of the regression model (11) is derived as follows. The parameter vector

θ and likelihood are (π, ω 2) and L(π, ω 2) = β(y|Xπ, ω 2 I ) from formula (6). The
MLE of the parameter is given by π̂ = Dp X T y and ω̂ 2 = sp/n. Thus, the maximum
likelihood is expressed by L(π̂, ω̂ 2) = (2ϕe)−n/2ω̂−n . Therefore, the AIC and BIC
of the regression model are given by

AIC = n log(2ϕe) + n log ω̂ 2 + 2(p + 2) =∧ minimum (18)

BIC = n log(2ϕe) + n log ω̂ 2 + (p + 2) log n =∧ minimum (19)
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where ω̂ 2 = sp/n. Now, p+2 implies the sum of the numbers of unknown parameters
p + 1 (regression coefficients) and 1 (the variance). They are typical criteria for
model selection. If the complexity of the statistical model increases (equivalently,
the number of parameters becomes large), then ω̂ 2 becomes small. AIC balances this
trade-off. Actually, it aims to predict an appropriate model of future samples.

3.3 Lasso (Least Absolute Shrinkage and Selection Operator)

Finding the optimal regression model by using AIC requires us to calculate 2p AIC
values if the full model has p explanatory variables. Exhaustive searches are currently
impractical for more than 20 explanatory variables, and forward selection, backward
elimination and stepwise methods are used instead.

It is known that AIC has a tendency to select a large model. Therefore, BIC with
model consistency is utilized when one needs to choose a relatively small model.
The optimal models selected by AIC and BIC can be compared by cross-validation,
where the data are divided up into training and test data, and the performance of the
optimal model determined from the training data is evaluated on the test data.

LASSO [8] and adaptive lasso are variable selection and parameter estimation
methods that work by minimizing the following formulas.

n∑
i=1

(yi − π0 − π1xi1 − · · · − πpxip)
2 + φ

p∑
j=1

|π j | : Lasso (20)

n∑
i=1

(yi − π0 − π1xi1 − · · · − πpxip)
2 + φ

p∑
j=1

w j |π j | : Adaptive Lasso (21)

where the explanatory variables are standardized so that
∑n

i=1 xi j = 0 and
∑n

i=1 x2
i j= n. Here, φ > 0, w1 > 0, . . . , wp > 0 are tuning parameters. The target functions

given by (20) and (21) are derived by using the least squares method with L1 penalty
against overfitting. Lasso has the ability of variable selection; i.e., some of the
regression coefficients π j are estimated to be exactly zero. This feature is especially
useful when one choose a small model among large numbers of explanatory variables.

4 Absolute Measure of Model Assessment Based on AIC

Consider the regression model (9). Its AIC is given by (18), and the AIC of the
simplest model yi = π0 + ℘i is AIC0 = n log(2ϕe) + n log(s0/n) + 4, where
s0 is determined using (17). Now, let us define the relative coefficients of AIC
determination and of BIC determination by
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RAIC = 1 − exp

⎧
AIC − AIC0

n

⎨
and RBIC = 1 − exp

⎧
BIC − BIC0

n

⎨
. (22)

Accordingly, the following relations hold.

1 − R2 =
⎢

1 − R2
adj

⎥
exp

⎧
− log

n − 1

n − p − 1

⎨

= (1 − RAIC) exp

⎧
−2p

n

⎨

= (1 − RBIC) exp
⎢
− p

n
log n

⎥
.

These equalities yield the inequalities,

RBIC < RAIC < R2
adj < R2 ⊃ 1

if n > e2 = 7.39 and n > p. Therefore, RAIC gives a smaller value than the
adjusted R2.

The relative coefficient RAIC defined by (22) is proposed as an extension of the
coefficient of determination in regression settings. Of course, AIC can be used for
general model evaluations. Here, we propose the use of RAIC for a general model
evaluation. It gives a relative evaluation of the current model M with respect to the
simplest model M0. Maximization of RAIC is equivalent to minimization of AIC,
and RAIC is less than 1. Furthermore, it gives an absolute scale of AIC. RAIC = 0.5
means a 50 % improvement with respect to the simplest (baseline) model.

The choice of the simplest model is an important issue. A reasonable candidate
of the simplest model would be the simplest one in the family of distributions under
consideration. Note that RAIC or RBIC may take negative values if the current model
M is poorer than the simplest model M0.

4.1 Numerical Examples

The first example is regression analysis of “air quality data” provided by the sta-
tistical software R [13]. “Ozone” is regressed by “Solar.R”, “Wind”, and “Temp”.
Complete data of size n = 111 were used. Eight models were made consisting of
all possible combinations of three explanatory variables, and these are denoted by
M000, M100,. . ., and M111. Model M000 means “Ozone = π0 + ℘”, M100 means
“Ozone = π0 +π1 ×Solar.R+℘”, and so on. Model M000 was chosen as the simplest
model (the baseline model). p denotes the number of explanatory variables used in
the model.

Table 1 lists the estimated parameters and four model evaluation measures for
each model. RAIC provides a similar value of Rdj, whereas RBIC is smaller.
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Table 1 Model assessment of “air quality” data. The target variable “Ozone” was regressed using
all combinations of “Solar.R”, “Wind”, and “Temp”. The sample size was n = 111

Model p π0 π1 π2 π3 ω RBIC RAIC R2
adj R2

M000 0 42.10 – – – 33.28 0 0 0 0
M100 1 18.60 0.1272 – – 31.33 0.0833 0.1054 0.1133 0.1213
M010 1 99.04 – −5.729 – 26.42 0.3481 0.3638 0.3694 0.3752
M001 1 −147.7 – – 2.439 23.92 0.4658 0.4787 0.4833 0.4880
M110 2 77.25 0.1004 −5.402 – 24.92 0.4007 0.4293 0.4393 0.4495
M101 2 −145.7 0.0571 – 2.278 23.50 0.4670 0.4923 0.5012 0.5103
M011 2 −67.32 – −3.295 1.828 21.73 0.5443 0.5660 0.5736 0.5814
M111 3 −64.34 0.0598 −3.334 1.652 21.18 0.5524 0.5840 0.5948 0.6059

Table 2 Model evaluation at the group stage of the 2010 FIFA World Cup. The logarithm of the
Poisson mean is regressed by using all combinations of “World Ranking,” “Points,” and “+/− Pos”.
The sample size was n = 96

Model p π0 π1 π2 π3 BIC RBIC AIC RAIC

M000 0 0.0577 – – – 268.94 0 266.38 0
M100 1 0.2884 −0.0101 – – 269.02 −0.0008 263.89 0.0256
M010 1 −0.7223 – 0.000823 – 267.94 0.0104 262.81 0.0365
M001 1 0.0653 – – −0.04675 272.47 −0.0423 267.79 −0.0148
M110 2 −0.5912 −0.00162 0.000724 – 272.47 −0.0374 264.78 0.0165
M101 2 0.2888 −0.01014 – 0.00118 273.58 −0.0495 265.89 0.0051
M011 2 −0.7080 – 0.000811 −0.00931 272.48 −0.0375 264.79 0.0164
M111 3 −0.6009 −0.00138 0.000730 −0.00648 277.03 −0.0878 266.77 −0.0041

The second example is Poisson regression, one of the generalized linear models
(GLM) [5]. Scores from the group stage of the 2010 FIFA World Cup [3] were
analyzed using Poisson regression. Each of the 32 teams played three matches.
Accordingly, we assumed that the 96 scores are independently drawn from a Poisson
distribution with mean

φi = exp(π0 + π1xi1 + π2xi2 + π3xi3) (i = 1, . . . , 96)

where the explanatory variables xi1, xi2, and xi3 are given by World Ranking, Points
and +/− Pos (change of ranking) of the i th team. Note that the explanatory variables
of each team appears three times among i = 1, . . . , 96.

Table 2 lists the parameters estimated by the maximum likelihood method and
model evaluation measures for the eight Poisson regression models. All criteria
choose M010 as the best model, which is based only on FIFA points. Also, RBIC
and RAIC take on negative values in many models, and the improvement of RAIC
is 3.65 %. This implies that the baseline model M000 is nearly optimal. Figure 2
shows the regression line estimated by the optimal model M010. The horizontal and
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Fig. 2 FIFA points versus total scores of 32 teams at the group stage.
The curve was estimated by Poisson regression

vertical axes correspond to FIFA points in 2010 and total scores at the group stage
of 32 teams. It can be seen that teams with many points got high scores.

5 Development of Regression Analysis

The above-mentioned regression model does not always perform well in practical
circumstances. The following illustrates various practical approaches for improving
regression models.

1. Power transformation of the target variable and/or explanatory variables
When the target variable is positive, the power transform is used to (a) improve
the linearity of the explanatory variables and (b) make the error distribution closer
to a normal distribution.

φ(z; φ) =
⎛
⎜

log z if φ = 0,

zφ − 1

φ
if φ ←= 0.

(23)

The transform is also useful when the effect of the explanatory variable is not
linear. Figure 3 shows that φ(z + 1; φ) are monotone increasing functions even
if φ is negative [11].

2. Expansion using basis functions
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Fig. 3 Power transform of z + 1 (φ = power)

Fig. 4 Forest areal rate against relief energy R Polygonal line parametric model, Curved line natural
cubic splines

The functional form of the effect of an explanatory variable on the target variable
may not be a linear/monotone one. In such a case, an expansion based on basis
functions is useful. The following formulas give linear models wherein the effect
of x1 is expressed in two ways. Let E(y|x) denote the conditional mean given
explanatory variables x = (x1, . . . , x p)

T .

E(y | x) = π0 + π11x1 + π12x2
1 + · · · + π1q xq

1 + π2x2 + · · · + πpx p

E(y | x) = π0 + π11b1(x1) + π12b2(x1) + · · · + π1qbq(x1) + π2x2 + · · · + πpx p.

The first one is a polynomial regression of x1, and the second gives the basis func-
tion expansion using the known basis functions b1(·), . . . , bq(·) (e.g. x2, log x,

sin x). They are members of generalized additive models (GAM [5]).

Figure 4 shows an example of basis function expansion. The target variable:
forest areal rate is expressed in terms of the relief energy [9]. Natural cubic spline
functions are used as basis functions, and a non-monotone effect is detected.
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3. Modeling of error variance
The model (9) assumed a common variance ω 2. Generalized linear models
(GLMs) [5] are available in the heteroscedastic case. log(ω ) is expressed by
a linear combination of explanatory variables.

ω = exp
⎢
τ0 + τ T x

⎥
.

Of course, the mean regression and standard deviation are jointly estimated. The
R package named “gamlss” [4] is useful for estimating the parameters of GLM.

4. Random effect models
Model (9) assumed that the effect of each explanatory variable is fixed (a fixed
effect model). Next, let us consider a case in which some of the effects are
random. We divide the coefficient vector πT into two subvectors (πT

1 , πT
2 ): π1

is random, and π2 is fixed. The following is a typical random effect model.

y = X1π1 + X2π2 + ℘
⎢
π1 ⊂ Nq(Hτ, τ2 D), ℘ ⊂ Nn(0, ω 2 I )

⎥
⊂ Nn(X1 Hτ + X2π2, τ2 X1 H DH TX T

1 + ω 2 I )

where H : q × r is known, p � q � r , and D : q × q is also a known positive-
definite matrix. This regression model has a specialized covariance structure. If
τ = 0, π1 is also fixed. The unknown parameters τ : r × 1, τ 2 � 0, ω 2 > 0
can be estimated using the maximum likelihood principle, and AIC and BIC can
be used to evaluate the model.

5. Design of experiments
Consider a situation where explanatory variables can be arbitrarily chosen from
a compact domain. Here, an optimal design by which the estimated parameters
provide a good prediction on the domain is required. Suppose that the initial esti-
mates of the parameters are derived in a preliminary experiment with a design
matrix X . Then, the predictive variance at the explanatory vector x is propor-
tional to xT (X T X)−1x . The predictive variance is useful for finding additional
experimental points.

6. Global models based on local linear models
Linear models are approximations of unknown mean functions made by taking
a Taylor expansion to the first degree. So, we cannot expect that such models
provide a good approximation over all regions of regressors. LOLIMOT (LOcal
LInear MOdel Tree) is a weighted sum of local linear models derived in subre-
gions of regressors [10]. LOLIMOT needs to be tuned in many ways: One needs
to determine the number of subregions, find a way to determine the subregions,
and decide on how to tune the weights to the local models. These tunings are all
mutually related.
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7. Application to time series
Suppose we have a time series {(xt , yt ) | t = 1, . . . , T }with xt = (x1t , . . . , x pt )

T .
Let us consider the following ARX model (AutoRegressive model with eXoge-
nous variables).

yt = ψ0 +
u∑

i=1

ψi yt−i +
p∑

j=1

v j∑
k=1

π jk x j,t−k + ℘t , t = max{u, v1, . . . , vp} + 1, . . . , T .

This model has an auto-regressive term. There are many candidate models involv-
ing different explanatory variables and different time delays u, v1, . . . , vp.
The state-space models are generalizations of ARX models.

8. Weighted least squared method
In regression analysis, it is implicitly required to obtain a uniformly good pre-
diction. However, there are situations in which a large target variable should be
precisely predicted. Prediction of the tension of a winding process is a typical
example [12]. In this case, the least weighted squares method can be employed
even if the variance of the errors is common, and the Generalized Information
Criterion GIC [6] can be used to make the model selection.

9. Model averaging method
Suppose that there are candidate models M1,…, and Mm . Usually, the best model
is selected according to a certain criterion, and it is used for prediction. In contrast,
the model averaging method [2] uses all models and weights them according to
the information criterion. For example, the model averaging method based on
AIC is defined by

ŷ =
m∑

i=1

wi ŷi with wi = exp(−AICi/2)
⎬ m∑

j=1

exp(−AIC j/2)

where AICi denotes the AIC value of model Mi , and ŷi denotes a value predicted
by Mi for the explanatory vector x . This method aims to derive a stable prediction.

10. Regression model of spatio-temporal data
Spatio-temporal data, e.g., the amount of precipitation at different sites and times,
have spatial and time dependencies. The regression model of the spatio-temporal
data is significantly improved by incorporating a spatio-temporal dependency
into the error [11].

11. Zero-Inflated regression analysis
Consider the above-mentioned stochastic model for precipitation again. The
model needs to specify zero probability of rainfall as well as a continuous density
on a positive half plane. More precisely, let y be rainfall under weather condition
x . Then, the zero-inflated model [11] is given by



262 R. Nishii

p(y|x) = κ(x)δ(y) + {1 − κ(x)} q(y|x)I (y > 0)

where δ(·) is the Dirac delta function, κ(x) is a probability Pr(y = 0|x), q(y|x)

is a conditional probability density function on the positive half plane, and I (·)
denotes the indicator function. Here, the zero-inflated probability can be modeled
by logistic regression [7] as κ(x) = {1 + exp(ψ0 + ψT x)}−1.

6 Discussion

Many methods for conducting regression analyses have been proposed, and nonlinear
regression analysis and multivariate regression analysis have been discussed. The
latest developments and related software are available on the Web.

The word “regression” in regression analysis comes from a law discovered by
Francis Galton (1822–1911), which is that the conditional expectation gets closer to
the average. It is quite interesting that regression analysis continues to be one of the
hot topics of statistics.
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Stochastic Analytical Models in Mathematical
Finance

Setsuo Taniguchi

Abstract Stochastic analysis is a key tool in the recent study of Mathematical
Finance. Stochastic analytical models in Mathematical Finance are classified into
two types. One is a discrete model, in which the trading time is restricted to the set
of natural numbers, and moreover the underlying probability space is often a finite
set. The other is a continuous model, which admits the trading time to be any non-
negative real number. In a lot of continuous models, stochastic differential equations
govern the time evolution of the models. A short survey on these two models will be
given.

Keywords Equivalent martingale measure · Pricing formula · CRR model ·
Trinomial model · Stochastic integral · Black-Scholes model · Implied volatility ·
Stochastic volatility model · Single-factor model

1 Discrete Models

1.1 A Review on the Probability Theory on a Finite Set

Let π be a finite set, say π = {℘1, . . . , ℘N }, and F = 2π, the set of all subsets of
π. In this case, a probability measure P on (π,F ) is specified by a finite sequence
{pω = P({℘ω})}N

ω=1 so that

P(A) =
∑

ω:℘ω∈A

pω, A ∈ F .
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Throughout this section, we assume that pω > 0 for every ω = 1, . . . , N . For a
random variable X : π ⊂ R, the expectation E[X ] of X is given by

E[X ] =
N∑

ω=1

X (℘ω)pω.

The expectation of X on A ∈ F , denoted by E[X; A], is defined to be the expectation
of X1A, where 1A is the indicator function of A.

For a sub-ε -fieldG → F , the conditional expectation E[X |G ] of random variable
X given G is a unique G -measurable random variable satisfying that

E[X; A] = E[E[X |G ]; A] for any A ∈ G .

With the help of the unique G0 = {A1, . . . , An} → G satisfying that Ai ⊃ A j = ∧ if
i ←= j and every A ∈ G is represented as a union of elements of G0, the conditional
expectation is given by

E[X |G ] =
n∑

i=1

E[X; Ai ]
P(Ai )

1Ai .

1.2 Fundamental Theorems of Mathematical Finance

Let T ∈ N and T = {0, 1, . . . , T }, which is thought of as the set of trading times.
An information structure on (π,F , P) is an increasing sequence of sub-ε -fields of
F such that {∧,π} = F0 → F1 → · · · → FT = F .

A market model is an Rd+1-valued stochastic process S = {St = (S0
t , . . . , Sd

t )}t∈T
such that every Si

t is positive andFt -measurable, and S0
0 = 1. S0

t represents the price
of bond or safe security at time t , and Si

t , i = 1, . . . , d, are those of stock or risky
securities.

A trading strategy is a stochastic process α = {αt = (α0
t , . . . , αd

t )}t∈T with values
in Rd+1 such that {αt}t∈T is predictable: for each 0 < t < T , αt is Ft−1-measurable,
and α0 = α1. The value process {Vt(α)}t∈T of α is given by

Vt (α) = αt · St =
d∑

i=0

α i
t Si

t for t ∈ T, (1)

where x · y stands for the inner product of x, y ∈ Rd+1. A trading strategy is self-
financing if

Vt (α) − Vt−1(α) = αt · (St − St−1) for any 1 ≈ t ≈ T . (2)
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An admissible trading strategy α is a self-financing trading strategy such that Vt (α) ≤
0 for any t ∈ T. An arbitrage opportunity is an admissible trading strategy α with
V0(α) = 0 and P(VT (α) > 0) > 0. An arbitrage opportunity is a mathematical
modeling of “free lunch”.

A probability measure Q on (π,F ) is called an equivalent martingale measure
(EMM in short) if Q({℘ω}) > 0 for any ω = 1, . . . , N and every discounted stock

price S
i = {S

i
t = βt Si

t }t∈T, where βt = 1
S0

t
, is a martingale under Q: EQ[Si

t |Ft−1] =
S

i
t−1, 1 ≈ t ≈ T , EQ being the expectation with respect to Q.

Theorem 1 (The 1st fundamental theorem of mathematical finance) The market
model admits no arbitrage opportunity if and only if there exists an EMM.

For the 1st fundamental theorem in the general setting, consult [5].
A contingent claim with maturity T is a non-negative random variable F : π ⊂

R, which represents the payoff at time T . The claim F is said to be attainable if an
admissible strategy α replicates F : VT (α) = F .

Theorem 2 (The 2nd fundamental theorem of mathematical finance) The market
model is complete, that is, every contingent claim is attainable, if and only if there
exists only one EMM.

For a contingent claim F , put

ϕb(F) = sup{y ∈ R | V0(α) = −y, VT (α) + F ≤ 0 for some self-financing α}
ϕs(F) = inf{z ∈ R | V0(Ω) = z, VT (Ω) − F ≤ 0 for some self-financing Ω}.

The first one is a price acceptable to a buyer, and the second is one to a seller.

Theorem 3 (Pricing formula) Suppose that the market model possesses an EMM Q.
Then ϕb(F) ≈ EQ[βT F] ≈ ϕs(F). Moreover, if F is attainable, then the identities
hold: ϕb(F) = ϕs(F) = EQ[βT F].

1.3 CRR Model

Let r > 0, b > a > −1 and set W2 = {1+a, 1+b} and π = W T
2 . Given 0 < p < 1,

define the probability measure P on (π,F ) by

P({℘}) = p#{t |℘t =1+b}(1 − p)#{t |℘t =1+a} for ℘ = (℘1, . . . , ℘T ) ∈ π.

Set F0 = {∧,π} and Ft = {A × W T −t
2 |A → W t

2}, 1 ≈ t ≈ T . Let

S0
t = (1 + r)t and S1

t (℘) = s0

t∏
s=1

℘s for t ∈ T, (3)
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where s0 > 0 and
⎧0

s=1 ℘s is understood to be 1. The market model S = {St =
(S0

t , S1
t )}t∈T is called the CRR (Cox-Ross-Rubinstein) model, which was introduced

in 1979 [3]. In the CRR model, the stock price value S1
t varies according to the “coin-

tossing”. The CRR model satisfies that

Theorem 4 1. There exists an EMM if and only if a < r < b.
2. Assume that a < r < b and set q = (r − a)/(b − a). Then the probability

measure given by

Q({℘}) = q#{t |℘t =1+b}(1 − q)#{t |℘t =1+a} for ℘ = (℘1, . . . , ℘T ) ∈ π.

is the only one EMM.

In conjunction with the fundamental theorems, this theorem implies that in the
CRR market model,

1. there is no arbitrage opportunity,
2. every contingent claim is attainable.

Moreover, the price ϕ(F) of contingent claim F is given by

ϕ(F) = (1 + r)−T
∑

℘1,...,℘T ∈W2

F(℘1, . . . , ℘T )q#{t |℘t =1+b}(1 − q)#{t |℘t =1+a}.

In particular, if F(℘) is of the form f (#{t |℘t = 1 + b}), then

ϕ(F) = (1 + r)−T
T∑

s=0

⎨
T
s

⎩
f (s)qs(1 − q)T −s .

A typical example of contingent claim of this kind is the call option with strike price
K > 0: F = (ST − K )+, where a+ = max{a, 0}. Its price is given by:

ϕ((ST − K )+) = (1 + r)−T
T∑

s=A

⎨
T
s

⎩
qs(1 − q)T −s{s0(1 + b)s(1 + a)T −s − K },

where A = min{s ∈ T|s0(1 + b)s(1 + a)T −s − K ≤ 0}.
The put option with strike price K > 0 is a contingent claim with payoff (K −

ST )+. Since EQ[S1
T ] = s0, the put-call parity holds:

ϕ((ST − K )+) − ϕ((K − ST )+) = s0 − (1 + r)−T K .

It should be noted that (1+r)−T K is the discounted value of the strike price at t = 0.
For ℘ = (℘1, . . . , ℘T ) ∈ π and t ≈ T , define

℘(t) = (℘1, . . . , ℘t ), ℘(t)
a = (℘1, . . . , ℘t , 1 + a), ℘

(t)
b = (℘1, . . . , ℘t , 1 + b)
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Since S1
t is a function of ℘(t) and αt is that of ℘(t−1) for each t ∈ T, a self-financing

trading strategy α replicating f (S1
T ), f being a non-negative function, is computed

backward as follows:⎨
α0

T (℘(T −1))

α1
T (℘(T −1))

⎩
= 1

b − a

⎨
(1 + b)(1 + r)−T −(1 + a)(1 + r)−T

−(S1
T −1(℘

(T −1)))−1 (S1
T −1(℘

(T −1)))−1

⎩

×
⎨

f ((1 + a)S1
T −1(℘

(T −1)))

f ((1 + b)S1
T −1(℘

(T −1)))

⎩
,

and, for t < T ,

⎨
α0

t (℘(t−1))

α1
t (℘(t−1))

⎩
= 1

b − a

⎨
(1 + b)(1 + r)−t −(1 + a)(1 + r)−t

−(S1
t−1(℘

(t−1)))−1 (S1
t−1(℘

(t−1)))−1

⎩

×
(

(1 + r)tα0
t+1(℘

(t−1)
a ) + (1 + a)S1

t−1(℘
(t−1))α1

t+1(℘
(t−1)
a )

(1 + r)tα0
t+1(℘

(t−1)
b ) + (1 + b)S1

t−1(℘
(t−1))α1

t+1(℘
(t−1)
b )

⎫
.

The first identity comes from replicating and the second does from being self-
financing.

1.4 Trinomial Model

Let r > 0, a1 > a2 > a3 > −1 and take p1, p2, p3 > 0 with p1 + p2 + p3 = 1. Set
W3 = {1 + a1, 1 + a2, 1 + a3}, π = W T

3 , and F0 = {∧,π},Ft = {A × W T −t
3 |A →

W t
3}, 1 ≈ t ≈ T . Define the probability measure P on (π,F ) by

P({℘}) =
3∏

i=1

p#{t |℘t =1+ai }
i for ℘ = (℘1, . . . , ℘T ) ∈ π,

and the asset price processes {S0
t }t∈T and {S1

t }t∈T by Eq. 3. The market model
S = {St = (S0

t , S1
t )}t∈T is called the trinomial model.

A probability measure on (π,F ) is characterized as follows:

Theorem 5 Let P be the set of all probability measures on (π,F ) and C be the
set of sequences f = { f θ

t |θ ∈ W3, 1 ≈ t ≈ T } of functions f θ
t : W t−1

3 ⊂ (0, 1) with⎬
θ∈W3

f θ
t = 1 (1 ≈ t ≈ T ). Then,

1. Q ∈ P and f ∈ C are in the one-to-one correspondence through the relationship:

Q({(℘1, . . . , ℘T )}) =
T∏

t=1

f ℘t
t (℘1, . . . , ℘t−1),

EQ[1{Rt =θ}|Ft−1] = f θ
t for θ ∈ W3, 1 ≈ t ≈ T, where Rt (℘) = ℘t .
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2. Rt , 1 ≈ t ≈ T , are independent under Q if and only if every f θ
t , θ ∈ W3, 1 ≈

t ≈ T , is a constant function.
3. Rt , 1 ≈ t ≈ T , are independent and identically distributed under Q if and only

if every f θ
t , θ ∈ W3, 1 ≈ t ≈ T , is a constant function and f θ

t = f θ
s for any

θ ∈ W3, 1 ≈ s, t ≈ T .

The above one-to-one correspondence, and hence the derivation of f θ
t ’s, is found

in the following expression of Q({(θ1, . . . , θT )}) for θ1, . . . , θT ∈ W3:

Q({(θ1, . . . , θT )}) = E
⎭ T∏

t=1

1{Rt =θt }
]

= E
⎭

E[1{RT =θT }|FT −1]
⎨T −1∏

t=1

1{Rt =θt }
⎩]

= E[1{RT =θT }|FT −1](θ1, . . . , θT −1)E
⎭T −1∏

t=1

1{Rt =θt }
]
.

Theorem 6 1. There exists an EMM if and only if a3 < r < a1.
2. Suppose a3 < r < a1. Q is an EMM if and only if the corresponding f = { f θ

t |θ ∈
W3, 1 ≈ t ≈ T } satisfies that

3∑
i=1

ai f 1+ai
t = r for 1 ≈ t ≈ T .

In particular, there exist infinitely many EMM’s.
3. If a3 < r < a1, then the trinomial model admits no arbitrage opportunity, but

is not complete.
4. For φ ∈ W T −1

3 , set φ̂i = (φ, 1 + ai ) ∈ W T
3 , i = 1, 2, 3. If a contingent claim F

is replicated by α , then it holds that

F (̂φ3) = (a2 − a3)F (̂φ1) − (a1 − a3)F (̂φ2)

a2 − a1
for φ ∈ W T −1

3 .

2 Continuous Models

2.1 Stochastic Integral and Stochastic Differential Equation

Let T > 0, T = [0, T ], and {Bt }t∈T be a one-dimensional Brownian motion on the
probability space (π,F , P): (i) B0(℘) = 0 and T ∀ t ≥⊂ Bt (℘) ∈ R is continuous
for every ℘ ∈ π, and (ii) for any 0 = t0 < t1 < . . . < tn ≈ T , Bti+1 − Bti ,
i = 0, . . . , n −1, are independent and each Bti+1 − Bti obeys the normal distribution
with mean 0 and variance ti+1 − ti . Let Ft be the smallest ε -field containing all null
sets and {Bs ≈ a}, s ≈ t, a ∈ R, and assume that F = FT .
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A stochastic process {αt}t∈T is said to be progressively measurable if for each
t , the mapping [0, t] × π ∀ (s, ℘) ≥⊂ αs(℘) is B([0, t]) × Ft -measurable, where
B([0, t]) is the Borel ε -field of [0, t] and B([0, t]) × Ft the product ε -field of
B([0, t]) and Ft .

Let L 2
loc be the totality of progressively measurable {αt }t∈T with P(

∫ T
0 α2

s ds

< ∞) = 1. Denote byL0 the set of all {αt}t∈T ∈ L 2
loc such that for some 0 = t0 < t1

< . . . < tn = T , αt = αti if t ∈ [ti , ti+1), i = 0, . . . , n−1, and supt∈T,℘∈π |αt (℘)| <

∞. The stochastic integral
∫ t

0 αsd Bs of {αt}t∈T ∈ L 2
loc is defined as follows: (1) if

{αt }t∈T ∈ L0, then

t∫
0

αsdBs =
n−1∑
i=0

αti {Bt∪ti+1 − Bt∪ti }, t ∈ T,

(2) for general {αt }t∈T ∈ L 2
loc, taking a sequence {{α(n)

t }t∈T}∞n=1 → L0 such that∫ T
0 |α(n)

s −αs |2ds ⊂ 0 in probability (n ⊂ ∞), that is, E[{∫ T
0 |α(n)

s −αs |2ds}∪1] ⊂
0, define {∫ t

0 αsd Bs}t∈T to be the stochastic process such that

sup
t∈T

⎡⎡⎡⎡⎡⎡
t∫

0

α(n)
s dBs −

t∫
0

αsdBs

⎡⎡⎡⎡⎡⎡⊂ 0 in probability.

A stochastic process {βt }t∈T represented as

βt = β0 +
t∫

0

αsdBs +
t∫

0

βsds, t ∈ T

for some {αt }t∈T, {βt }t∈T is often called an Itô process, and symbolically denoted by

dβt = αt dBt + βt dt.

For continuous ε, b : R ⊂ R, a solution to the stochastic differential equation
(SDE in short)

dXt = ε(Xt )dBt + b(Xt )dt (4)

with initial condition X0 = x is an {Xt }t∈T ∈ L 2
loc such that

Xt = x +
t∫

0

ε(Xs)dBs +
t∫

0

b(Xs)ds, t ∈ T.
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It is known that if ε, b are both globally Lipschitz continuous, then the SDE Eq.4
possesses a unique solution. The SDE describes the time evolution of random events,
and hence is thought of as a probabilistic counterpart to the Newton equation.

For details of stochastic integrals and SDE’s, see [11, 13, 16]. The above definition
of stochastic integrals is different from the original one due to K. Itô [12], and is
found in [13].

2.2 Black-Scholes Model

2.2.1 Market Model

The Black-Scholes market model (BM model in short) consists of two assets, one is
safe and the other is risky, as the CRR model.

Let r, μ ≤ 0, ε > 0. The price processes {S0
t }t∈T and {S1

t }t∈T of the safe and
risky assets, respectively, are given by

S0
t = ert , S1

t = s0 exp

⎨⎣
μ − ε 2

2

⎤
t + ε Bt

⎩
, t ∈ T,

where s0 > 0. They obey the SDE

dS0
t = r S0

t dt, dS1
t = μS1

t dt + ε S1
t dBt .

Hence r is the force of return of the safe asset, μ is a true value of the force of
return of the risky asset, which is perturbed randomly by the Brownian motion. The
constant ε is called a volatility and used to evaluate the level of risk.

The idea of using the Brownian motion as the price process goes back to 1900
[1], and the price process of the above form does to 1960s [2, 14, 17, 18].

2.2.2 Trading Strategy

A trading strategy α = {αt }t∈T is a progressively measurable R2-valued process and
its value process {Vt (α)}t∈T is defined by Eq. 1:

Vt (α) = α0
t S0

t + α1
t S1

t , t ∈ T,

where we represented αt as (α0
t , α1

t ). A trading strategy α = {αt }t∈T is said to be
self-financing if its components {α i

t }t∈T are in L 2
loc and it holds that

dVt (α) = α0
t dS0

t + α1
t dS1

t = {rα0
t S0

t + μα1
t S1

t }dt + εα1
t S1

t dBt .
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The totality of all self-financing strategy is denoted by Ssf. As is easily guessed, the
formula is obtained via a “limiting procedure” from Eq. 2: take {0, 1

n , 2
n , . . . , nT

n =
T } instead of {0, 1, . . . , T }, and then let n ⊂ ∞. It should be also mentioned that

Proposition 1 Given {α1
t }t∈T ∈ L 2

loc and a ∈ R, there exists {α0
t }t∈T ∈ L 2

loc such

that {(α0
t , α1

t )}t∈T ∈ Ssf and V0(α) = a.

A self-financing trading strategy {αt }t∈T is an arbitrage opportunity if V0(α) = 0,
VT (α) ≤ 0, and P(VT (α) > 0) > 0. Let Sarb be the set of all arbitrage opportunity.

Example 1 Suppose that r = μ = 0 and a > 0. Under this assumption, dS0
t = 0

and dS1
t = ε S1

t dBt . Set Yt = ∫ t
0

1∼
T −s

dBs , t < T , and τa = inf{t |Yt = a}. Then

the time change argument yields that P(τa < T ) = 1.
Let α1

t = 1
ε S1

t
∼

T −t
1[0,τa)(t), t ∈ T. On account of Proposition 1, take {α0

t }t∈T ∈
L 2

loc so that α = {(α0
t , α1

t )}t∈T ∈ Ssf and V0(α) = 0. Since d S0
t = 0, it then holds

that

Vt(α) =
t∫

0

α1
s dS1

s = Yt∪τa .

In particular, VT (α) = Yτa = a > 0. Thus α ∈ Sarb and hence Sarb ←= ∧.

2.2.3 EMM

A probability measure Q on (π,F ) is said to be an equivalent martingale measure

(EMM in short) if {S
1
t = βt S1

t }t∈T, where βt = 1
S0

t
, is a martingale under Q. In the

BS model, one can directly construct an EMM as follows:

Theorem 7 Let ω = r−μ
ε

and define the probability measure Q on (π,F ) by

Q(A) = E[eωBT − ω2T
2 ; A], A ∈ F .

Then,

1. {Bt = Bt − ωt}t∈T is a Brownian motion under Q,
2. Q is an EMM,
3. {V t (α) = βt Vt (α)}t∈T is a local martingale under Q for any α ∈ Ssf.

As in the discrete case, the existence of EMM implies that the BS model possesses
no arbitrage opportunity in some restricted classes of self-financing trading strategies
(cf. Example 1). To state this, we introduce two classes of admissible strategies:



272 S. Taniguchi

Sadm,2 =
⎦⎪
⎢{αt }t∈T ∈ Ssf

⎡⎡⎡⎡EQ

⎥
 T∫

0

(α1
t S1

t )2dt

⎛
⎜ < ∞

⎝⎞
⎟ ,

Sadm,0 =
⎣
{αt }t∈T ∈ Ssf

⎡⎡⎡⎡ inf
t≈T,℘∈π

Vt (α)(℘) > −∞
⎤

.

The BS model possesses no arbitrage opportunity in the sense that

Sarb ⊃ Sadm,2 = ∧, Sarb ⊃ Sadm,0 = ∧.

See [6, 16].

2.2.4 Pricing Formula

A contingent claim is an F -measurable function, which is bounded from below. C0
stands for the totality of all contingent claims, and C2 does the set of all F ∈ C0
with EQ[F2] < ∞. For ω = 0 or 2, F ∈ Cω is said to be attainable if there is a
α ∈ Sadm,ω replicating F : VT (α) = F . If F is in C2 or C0 ⊃ L1(Q), then it is
replicated by α with V0(α) = EQ[βT F] = e−rT EQ[F].

For ω = 0 or 2, two prices of contingent claim F by buyers and sellers are
defined by

ϕω
b (F) = sup{y ∈ R | V0(α) = −y, VT (α) + F ≤ 0 for some α ∈ Sadm,ω}

ϕω
s (F) = inf{z ∈ R | V0(Ω) = z, VT (Ω) − F ≤ 0 for some Ω ∈ Sadm,ω}.

Theorem 8 1. For F ∈ C0, ϕ0
b (F) ≈ ϕ0

s (F). If, in addition, F ∈ L1(Q), then

ϕ0
b (F) = ϕ0

s (F) = e−rT EQ[F].

2. If F ∈ C2, then

ϕ2
b (F) = ϕ2

s (F) = e−rT EQ[F].

In conjunction with the representation ST = s0erT exp(ε BT − ε 2

2 T ), this yields
that the price ϕ( f (ST )) of the contingent claim f (ST ) is given by

ϕ( f (ST )) = e−rT
∫
R

f

⎨
s0e(r− ε2

2 )T ex
⎩

1∼
2ϕε 2T

e− x2

2ε2T dx . (5)
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2.2.5 Implied Volatility

The payoff C of the European call option with strike price K > 0 is (ST − K )+. By
Eq. 5, it holds that

ϕ(C) = s0�(d+) − K e−rT �(d−),

where

�(x) =
x∫

−∞

1∼
2ϕ

e− y2

2 dy, d± = 1

ε
∼

T

⎨
log
⎠ s

K

)
+
⎨

r ± ε 2

2

⎩
T

⎩
.

Denote ϕ(C; ε) instead of ϕ(C) in order to emphasize the dependence on ε . Then
ψ
ψε

ϕ(C; ε) > 0, that is, ϕ(C; ε) is a strictly increasing function of ε . Thus, for
κ ≤ 0, one finds the unique εκ so that ϕ(C; εκ ) = κ . This εκ is called an implied
volatility.

The payoff P of the European call option with strike price K > 0 is (K − ST )+.
By Eq. 5, it holds that

ϕ(P) = K e−rT �(−d−) − s0�(−d+).

Since �(−x) = 1 − �(x), the put-call parity holds:

ϕ(C) − ϕ(P) = s0 − K e−rT .

Denoting ϕ(P; ε) instead of ϕ(P) to emphasize the dependence on ε , it is also
seen that ϕ(P; ε) is a strictly increasing function of ε . Thus, for κ ≤ 0, via the
option pricing formula for the put option, one finds the implied volatility εκ so that
ϕ(P; εκ ) = κ .

Observe that the pricing formula Eq. 5 involves only ε , but not μ. Thus if one
knows the volatility ε , the pricing formula works. Hence from the practical point of
view, it is necessary to determine the ε through the market data, and for this purpose
the implied volatility is used: once the market price of the call (or put) option is
observed and the implied volatility is computed, all the above pricing formulas start
working.

2.3 Stochastic Volatility Model

In the BS market model, the volatility is a fixed constant. Pragmatically speaking,
it seems more natural to assume that the volatility varies randomly. The models of
this kind are called stochastic volatility models and are determined by the SDE of
the form
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⎣
dSt = μ(St , t)dt + εt St dBt ,

dεt = a(εt , t)dt + b(εt , t)dWt ,

where {Bt }t∈T, {Wt }t∈T are both one-dimensional Brownian motions, which may
not be independent.

There are several famous stochastic volatility models. Wiggins [21] considered
the model ⎣

dSt = μSt dt + εt dBt ,

dεt = a(εt )dt + αεt dWt ,

and Heston [8] did, putting νt = ε 2
t ,

⎣
dSt = μSt dt + ∼

νt St dBt ,

dνt = ν(ν − νt )dt + φ
∼

νt dWt ,

where μ, ν, ν, φ are all constants. In both models, St possesses concrete expressions:

St = s0eμt

t∫
0

e−μsεsdBs (the Wiggins model),

St = s0 exp


 t∫

0

∼
νsdBs +

⎦⎪
⎢μ − 1

2

t∫
0

νsds

⎝⎞
⎟

 (the Heston model),

while neither εt nor νt is represented explicitly.

2.4 Short-Term Rate Models: Single-Factor Models

There is a lot of derivatives whose prices vary in response to interest rates, like bond
options, swaps, swaptions, and so on. In this subsection, an application of SDE’s to
the study of interest rates is shown.

Let T ⊇ > 0 be a horizon date for all market activities, and B(t, T ) be the price at
time t of a zero coupon bond, whose holder is repaid one unit cash at maturity time
T ≈ T ⊇. The yield of the zero coupon bond is given by Y (t, T ) = − 1

T −t log B(t, T ),
and the term structure of interest rates (or the yield curve) is the function T ≥⊂
Y (t, T ). The instantaneous forward rate f (t, T ) and the instantaneous short-term
rate rt , 0 ≈ t ≈ T ≈ T ⊇, are defined by

f (t, T ) = −ψ log B(t, T )

ψT
, rt = f (t, t),

respectively.
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While rt has less information than f (t, T ) and hence B(t, T ), there are several
models where {B(t, T )}t≈T can be recovered by {rt }t≈T ⊇ : namely, suppose that there
exist a progressively measurable process r = {rt }t≈T ⊇ on a filtered probability space
(π,F , P, {Ft }t≈T ⊇) and a probability measure P⊇ such that (i) P⊇ is equivalent to
P, and (ii) the discounted price process {βt B(t, T )}t≈T , where βt = exp(− ∫ t

0 rsds),
is a martingale under P⊇. Then the family {B(t, T )}t≈T ≈T ⊇ is called an arbitrage-free
family of bond prices relative to r = {rt }t≈T ⊇ , and it holds that

B(t, T ) = EP⊇
[
e
−

T∫
t

rs ds⎡⎡⎡Ft

]
, t ≈ T .

From this it follows that rt = − ψ
ψT

⎡⎡
T =t log B(t, T ), i.e., rt is the instantaneous

short-term rate.
In the remainder, several arbitrage-free families of bond prices, whose short-term

rate processes {rt }t≈T ⊇ obey SDE’s governed by a one-dimensional Brownian motion
{Bt }t≈T ⊇ , will be given. Since the Brownian motion is one-dimensional, the models
are called single-factor models.

• Merton model: [14] {rt }t≈T ⊇ obeys the SDE

drt = adt + εdBt ,

where a, ε > 0 are constants. In this case,

rt = r0 + at + ε Bt .

The unwelcome event {rt < 0} occurs with positive probability.
• Vasicek model: [20] {rt }t≈T ⊇ obeys the SDE

drt = (a − brt )dt + εdBt ,

where a, b, ε > 0 are constants. In this case,

rt = r0e−bt + a

b

(
1 − e−bt)+ ε

t∫
0

e−b(t−u)dBu .

The event {rt < 0} also occurs with positive probability.
• Cox-Ingersoll-Ross (CIR) model: [4] {rt }t≈T ⊇ obeys the SDE

drt = (a − brt )dt + ε
∼

rt dBt ,

where a, b, ε > 0 are constants. Using the Bessel processes, one can pull out
several properties of {rt }t∈T. In particular, one can show the positivity of rt . It
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should be noted that the SDE for the CIR model is exactly the same as the one
determining the stochastic volatility in the Heston model.

• Hull-White model: [10] {rt }t≈T ⊇ obeys the SDE

drt = (a(t) − b(t)rt )dt + ε(t)dBt ,

where a, b, ε are functions from [0,∞) to (0,∞). The solution is given by

rt = e−δ(t)


r0 +

t∫
0

eδ(u)a(u)du +
t∫

0

eδ(u)ε (u)dBu


 , δ(t) =

t∫
0

b(u)du.

Again the probability P(rt < 0) may be positive.

Bibliographical comment
Those who are interested in the details of the subjects, see for example the books

by Duffie [6], Elliott-Kopp [7], Musiela-Rutkowski [15], Øksendal [16], and Shreve
[19]. For mathematical financial overview, see the book by Hull [9].
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An Introduction to the Minimum Description
Length Principle

Jun’ichi Takeuchi

Abstract We give a brief introduction to the minimum description length (MDL)
principle. The MDL principle is a mathematical formulation of Occam’s razor. It says
‘simple explanations of a given phenomenon are to be preferred over complex ones.’
This is recognized as one of basic stances of scientists, and plays an important role
in statistics and machine learning. In particular, Rissanen proposed MDL criterion
for statistical model selection based on information theory in 1978. After that, much
literature has been published and the notion of MDL principle was founded in the
1990s. In this article, we review some important results on the MDL principle.

Keywords Bayes mixture · Laplace estimator · MDL · Model selection · Minimax
regret · Universal code

1 Introduction

The minimum description length (MDL) principle [10, 11, 18] is one of key con-
cepts in information science. It is a mathematical formulation of Occam’s razor from
William of Ockham (see [16], e.g.,) in the fourteenth century, ‘simple explanations
of a given phenomenon are to be preferred over complex ones [10].’ This idea is
applicable in particular to machine learning and statistical estimation, where the
simpler hypothesis is recognized as better one among competing ones. In particu-
lar, Rissanen formulated it based on information theory [18] under an influence of
Akaike’s Information Criterion (AIC) [1]. He founded a quantitative formalization
of Occam’s razor using the codelength in universal data compression and named it
the MDL principle.
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The MDL principle says that we should pursuit the shortest codelength, to obtain
a good performance in various problems in information science including machine
learning. The most basic recognition here is that there is essentially one to one
correspondence between a code for data compression and a probability distribution
of the data. Shannon found that if a data string xn ∈ X n is distributed according to
a probability function p(xn), that is, the information source is p, the decodable code
which minimizes the expected codelength has the code length L(xn) = −log2 p(xn)

bit, where we neglect values less than 1 bit. Based on this recognition, we can think
of a probability distribution as a code, hence we often refer to a probability function
p(x) as code.

In particular for statistical model selection, the MDL principle takes a form “use
the model by which the observed data is encoded into the shortest code.” We note that
“shortest code” is defined in terms of regret in universal data compression [20]. Here,
the regret of a universal code q designed for the considered model for a data string
xn = x1x2 . . . xn is the difference between the codelength by q and the codelength by
the hindsight best code for xn in the considered model. Further, the MDL principle
says that we should design the code q so that q minimizes the worst case regret for
various data strings. For an observed data, the codelength by such a code is called
stochastic complexity (SC) [19] of the data xn , which is the most important notion
in the MDL principle.

The remainder of this article is organized as follows. In Sects. 2 and 3, we review
basic concepts of data compression and related issues in statistics. In Sect. 4, we
introduce the two part code MDL, which is the first version of the MDL proposed by
Rissanen for model selection. Then, we introduce the refined MDL, which is based on
the notion of stochastic complexity in Sect. 5. In Sect. 6, we argue Bayesian approach
to achieve the stochastic complexity with some application to statistical inference.

2 Data Compression

In this section, we review the basic notion of data compression and universal coding.
See [9].

Let X be a finite set, which is called alphabet. Let xn denote a string x1x2 . . .

xn ∈ X n (n = 1, 2, . . .), and Xn = X1 X2 . . . Xn be a random variable on X n . In
general, we let xt denote a realized value of Xt . We also refer to X n as an enlarged
alphabet.

Let p be a probability function on X n , that is ⊂xn ∈ X n, p(xn) → 0 and

∑
xn∈X n

p
(
xn) = 1.

In this article, we usually assume that p defines an i.i.d. stochastic process, that is
p(xn) = ∏n

t=1 p(xt) for n = 1, 2, . . .. Let H(X) = H(X |p) denote the entropy of
X ⊃ p:
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H(X |p) = −E p log p(X) = −
∑

x

p(x) log p(x),

where E p denotes the expectation provided X is drawn from p and log is the natural
logarithm (the unit of entropy is ‘nat’). A function π : X n ∧ {0, 1}← is referred
to as a code for the alphabet X n , where A← denotes the set of all strings of finite
length over an alphabet A. Here, each π(xn) is referred to as code word. We refer to a
function L : X n ∧ [0,≈) as codelength function. Let |π(xn)| denote the length of
the string π(xn) then the function which maps xn to |π(xn)| is a codelength function.
We refer to it as the codelength function of the code π.

Assume that π is a prefix code, which is a code satisfying the prefix condition: for
each xn , π(xn) is not a prefix of any other code words. Note that ‘NULL’, ‘a’, and
‘ab’ are prefixes of the string ‘ab’ for example. Then, π has a property of ‘instantly
decodable’. See [9] for detail.

Note that the codelength function L(xn) = |π(xn)| of any prefix code satisfies
the inequality ∑

xn∈X n

2−L(xn) ≤ 1,

which is known as Kraft’s inequality. Conversely for any codelength function L
satisfying Kraft’s inequality, construction of prefix code π with |π(xn)| = ∀L(xn)≥
is possible, where ∀x≥ is the minimum integer not less than x .

From now on, we change the unit of codelength from ‘bit’ to ‘nat’, i.e., let L(xn) =
|π(xn)|e = |π(xn)|/ log2 e. Then Kraft’s inequality becomes

∑
xn∈X n

e−L(xn) ≤ 1.

The following Proposition is known as the source coding theorem.

Proposition 1 Assume that Xn is drawn from p. For any codelength function satis-
fying Kraft’s inequality,

1

n
E p L

(
Xn) → H(X |p).

holds, where equality holds, if and only if L(xn) = −log p(xn).

The proof is possible via several ways. For example, the inequity E f (X) → f (E X)

for strictly convex function f (x) suffices, where equality holds if and only if X is a
constant. This is known as Jensen’s inequality. See [9].

Define q’s redundancy with respect to p as

Rn (p, q) = E p

(
log

1

q (Xn)
− log

1

p (Xn)

)
.

Then, we have Rn(p, q) → Rn(p, p) = 0. Note that R1(p, q) is referred to as
Kullback-Leibler divergence (KL-divergence for short), which we denote by
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D(p|q) = E p log
p(X)

q(X)
.

The source coding theorem provides a relation between a prefix code and a sub-
probability function. Here, a function f (x) → 0 with

∑
x f (x) ≤ 1 is referred to as

sub-probability function. Given a prefix code π, define

q
(
xn) = e−|π(xn)|e .

Then, ∑
xn

q
(
xn) ≤ 1

holds. Here, q is referred to as a sub-probability function corresponding to the prefix
code π. The source coding theorem means that p is optimal in terms of expected
codelength, among all sub-probability functions when Xn ⊃ p. Based on this recog-
nition, we regard a probability function as a source code. This is our fundamental
recognition that we understand probabilistic notions in terms of data compression.

The above discussion concerns data compression in the situation that the proba-
bility distribution of the data is known. Such situation is somewhat restricted, and in
fact we can design source codes provided Xn’s distribution is unknown but belongs
to a known set M . Strictly speaking, a code q which satisfies

⊂p ∈ M , lim
n∧≈

1

n
E p

(−log q
(
Xn)) = H(X |p)

is referred to as a universal code with respect to M . When M corresponds to the
set of all stationary ergodic processes for finite alphabet X , there exists a universal
code [9]. For example, well-known applications such as zip, compress, etc., are
implementations of universal coding algorithms.

We can extend the notions introduced in this section to the case in which the setX
is not discrete. Typically, we assume X = ∞d , for which we introduce a reference
measure ℘(dx). Then we assume p(x) is a probability density function with respect
to ℘(dx) and the sum in the above is replaced by integral with respect to ℘(dx). In
particular, Kraft’s inequality is

∫
e−L(xn)℘

(
dxn) ≤ 1.

Note that we need quantization of X to have the corresponding code to p.
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3 Statistical Preliminaries

Let M be a parametric model of probability densities of x ∈ X with respect to the
reference measure ℘:

M = {p (·|ω) : ω ∈ ε},

where ε ∪ ∞k is a k-dimensional parameter space. Let ω̂ = ω̂ (xn) denote the
maximum likelihood estimate (MLE) of ω given xn , that is, p(xn|ω̂ ) = maxω p(xn|ω).

We introduce the empirical Fisher information Ĵ (ω, xn) given xn and the Fisher
information J (ω):

Ĵi j (ω) = Ĵi j
(
ω, xn) = −1

n

α2 log p (xn |ω)

αω iαω j
,

Ji j (ω) = Eω Ĵi j
(
ω, Xn) .

The exponential family is defined as follows [2, 3, 7].

Definition 1 (Exponential Family) Given a Borel measurable function T : X ∧
∞k , define

ε =
{
ω : ω ∈ ∞k,

∫
X

exp (ω · T (x)) ℘(dx) < ≈
}
,

where ω · T (x) denotes the inner product of ω and T (x). Define a function β and a
probability density p on X with respect to ℘ by β(ω) = log

∫
exp(ω · T (x))℘(dx)

and p(x |ω) = exp(ω · T (x) − β(ω)). We refer to the set M = {p(·|ω)|ω ∈ ε} as an
exponential family of densities.

Note that exponential families include many common statistical models such as
Gaussian, Poisson, Bernoulli models, and so on.

For the exponential family above, we refer to ω as the canonical parameter (or ω -
coordinates). We define the expectation parameter (or ϕ-coordinates) as ϕi = Eω (Ti ).

Note that αβ(ω)/αωi = Eω (Ti (X)) = ϕi and α2β(ω)/αω jαωi = Eω ((Ti (X) −
ϕi )(Tj (X) − ϕ j )) hold on ε∼. Here, this Eω ((Ti (X) − ϕi )(Tj (X) − ϕ j )) is an entry
of the Fisher information matrix with respect to ω .

Given a data string xn , we have p(xn|ω) = ∏n
Ω=1 p(xΩ |ω) = ∏n

Ω=1 exp(ω ·
T (xΩ ) − β(ω)) = exp(n(ω · T̄ − β(ω))), where T̄ = T̄ (xn) = (1/n)

∑n
Ω=1 T (xΩ ).

It is easy to see ϕ̂(xn) = T̄ (xn) holds for xn ∈ {xn : T̄ (xn) ∈ H ∼}.
Also, we have

Ĵi j
(
ω, xn) = −1

n

α2 log p (xn |ω)

αωiαω j
= Ji j (ω). (1)

This is a remarkable property of the canonical parameter of exponential families.
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Further note that the following holds. When we employ other parametrization
than the canonical parameter ω by ω = π(u) and denote p̄(x |u) = p(x |π(u)), where
u is k-dimensional and π is one to one. Then, (1) does not generally holds, but we
still have

Ĵu
(
xn, û

) = Ju
(
û
)
, (2)

where Ĵu and Ju denote the empirical Fisher information and the Fisher information
of u, respectively.

4 Two Part Code MDL

The MDL was first proposed as an information criterion for statistical model selection
[18], which is given as

L
(
xn |θ ) = −log p(xn |ω̂θ , θ ) + kθ

2
log n. (3)

Here p(·|ωθ , θ ) is an element of a parametric model Mθ specified by an index θ ,
kθ is ωθ ’s dimension, and ω̂θ is the MLE of ωθ given xn . This is derived as the
codelength of a universal code designed for Mθ . The first term of (3) is referred to
as data description length and the second is referred to as model description length
(or parameter description length). In this section, we discuss this derivation and
properties of inference using the MDL criterion.

4.1 MDL Criterion

Define

M =
⋃
θ∈φ

Mθ

Mθ = {
p

(·|ωθ , θ
) : ωθ ∈ εθ

}
,

where φ is a countable set, εθ is a subset of ∞kθ , and kθ is a natural number
depending on θ .

We can design a universal code which corresponds to the MDL criterion (3), i.e.,
there exists a universal code for Mθ of which codelength is given by (3). The para-
meter description length here is codelength for quantized value of ωθ , since almost
every real number cannot be encoded. Here, precision of quantization is impor-
tant. The more precise quantization becomes, the longer the parameter description
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length becomes. As for the data description length, the more precise quantization
becomes, the shorter it becomes, since the maximum likelihood estimate minimizes
the data description length and in general the MLE cannot be realized by the quantized
values of parameters. Hence, we have a trade-off between data description length
and parameter description length depending on precision of quantization.

Let us find (sub) optimal precision for data strings of size n in an informal dis-
cussion, assuming ω is one-dimensional for simplicity. In the discussion below, we
omit the subscript θ . We also assume that ε = [0, 1]. Then to encode ω , quantize ε

into
ε̄n = ε̄n(δ) = {

δ, 2δ, . . . , ∀δ−1≥δ}
and let L(ω̄ |ε̄n) = −log δ + log 2 be the codelength for ω̄ ∈ ε̄n . Then, we want to
optimize δ so as to minimize

L
(
xn |ε̄n

) = min
ω̄∈ε̄n

(−log p
(
xn |ω̄) + L

(
ω̄ |ε̄n

))
,

depending on n. Here, the corresponding universal code is constructed as follows.
Given xn , first find ω̈ = ω̈ (xn) which minimizes the sum −log p(xn |ω̄ ) + L(ω̄ |ε̄n),
then encode ω̈ with the code q(ω̄ |ε̄n) = exp(−L(ω̄ |ε̄n)), and then encode xn with
the code p(xn |ω̈ ). This code can be decodable by the reverse process and L(xn|ε̄n)

satisfies Kraft’s inequality. It can be directly confirmed as

∑
xn

e−L(xn |ε̄n) =
∑
xn

p
(
xn |ω̈)

e−L(ω̈ |ε̄n) ≤
∑
ω̄∈ε̄n

∑
xn

p
(
xn|ω̄)

e−L(ω̄ |ε̄n) (4)

=
∑
ω̄∈ε̄n

e−L(ω̄ |ε̄n) ≤ 1. (5)

Out task is to optimize typical values of L(xn|ε̄n). Let q(xn |ε̄) denote the sub-
probability function corresponding to L(xn|ε̄n), i.e., q(xn|ε̄) = e−L(xn |ε̄n). If we
knew the value ω̂ (xn) prior to the compression process, we did not need to encode
ω . Then, the optimal codelength was − log p(xn|ω̂ (xn)). We think it as a reference
for universal coding, that is, we are to minimize regret of the code q(·|ε̄n), which is
defined as

r
(
xn, q

(·|ε̄n
)) = − log p(xn|ω̈ ) + L(ω̈ |ε̄n) − (−log p(xn |ω̂ (xn))).

This regret is a performance measure for universal code and sometimes called point-
wise redundancy. Note that regret is defined for individual strings, while redundancy
is defined in terms of expectation. Performance measures like regret are often used
in machine learning community.

Since the regret depends on the data xn , we minimize its worst case value. Assum-
ing |ω̈ − ω̂ | is small, by Taylor expansion, we have
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r
(
xn, q

(·|ε̄n
)) ⊇ −1

2

α2 log p (xn|ω)

αω2

∣∣∣∣
ω=ω̂

(ω̈ − ω̂ )2 + L
(
ω̈ |ε̄n

)
.

Recalling −α2 log p (xn |ω) /αω2 = n Ĵ (ω), we have

r
(
xn, q

(·|ε̄n
)) ⊇ n Ĵ (ω̂)(ω̈ − ω̂ )2

2
+ L

(
ω̈ |ε̄n

)
. (6)

As for the first term of (6), we replace (ω̈ − ω̂ )2 by its worst value δ2/4, that is,

r
(
xn, q

(·|ε̄n
)) ⊇ n Ĵ (ω̂)δ2

8
− log δ + log 2.

The right-hand side is minimized when δ = 2(n Ĵ (ω̂))−1/2. Ignoring dependency of
Ĵ (ω̂) on xn , we have L(ω̈ |ε̄n) = (1/2) log n + C , where C is a certain constant.
When ω is k-dimensional, we have L(ω̄) = (k/2) log n + C ≺. This yields the MDL
criterion (3).

Now we redefine L(xn|θ ) as

L
(
xn|θ ) = −log p

(
xn|ω̈θ

) + kθ

2
log n + Cθ , (7)

where we introduce the constant Cθ so that L(xn|θ ) satisfies Kraft’s inequality.
Then the information criterion (3) is slightly modified to (7). Let θ̂ = θ̂ (xn) denote
the minimizer for L(xn |θ ). Then, we should note that it is impossible to decode xn

from the codeword with the codelength L(xn|θ̂ (xn)), since we do not identify θ̂ in
advance. Hence, we need a code to encode θ prior to encoding ωθ . Let L(θ ) be a
codelength function for a code for θ ∈ φ. Then, we employ the codelength below
for model selection.

L
(
xn, θ

) = − log p
(
xn|ω̈θ , θ

) + kθ

2
log n + Cθ + L(θ ). (8)

Note that the term L(θ ) is significant in the proof for the consistency of the model
selection by MDL, in particular when φ is not a finite set. When we employ (8) for
our information criterion for model selection, θ̂ is redefined as the minimizer for
L(xn, θ ) as well. Let L(xn) = L(xn, θ̂ (xn)), then L(xn) satisfies Kraft’s inequality
and corresponds to a universal code for M .

4.2 Convergence of MDL Estimator

Using the two part code MDL (8), we can design an estimator which maps xn to an
element of M . We refer to it as the MDL estimator based on the two part code. Here,
we discuss its convergence property.
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First we introduce new notations for two part code MDL and define a variant of
two part code MDL. Let M̈n denote a quantized set of M and encode p ∈ M̈n with
L̇n(p) nats. Assume that L̇n(p) satisfies Kraft’s inequality. Then we have two part
code MDL

L(n)
2-p(xn) = min

p∈M̈n

(−log p
(
xn) + L̇n(p)

)
.

By a technical reason, define τ two part code MDL assuming τ → 1 [4]:

L (n)
τ2-p(xn) = min

p∈M̈n

(−log p
(
xn) + τ L̇n(p)

)
(9)

= −log p̈
(
xn) + τ L̇n ( p̈) , (10)

where we let p̈ denote the value of p to achieve L(n)
τ2-p(xn).

Let pτ2-p(xn) = exp(−L(n)
τ2-p(xn)), then pτ2-p is a sub-probability density.

Now, we give a theorem to guarantee the convergence of the MDL estimator.
To state it, we use a notion of Rényi divergence [17]. The following is the Rényi
divergence of order λ (> 0) from p to q.

d̄λ(p|q) = − 1

1 − λ
log

∫
pλ(x)q1−λ(x)℘(dx),

with d̄1(p|q) = limλ∧1−0 d̄λ(p|q), which equals the KL-divergence. Also note that
d̄λ(p|q) is increasing in λ ∈ (0, 1). For the proof, see [11] for example.

Noting −log t → 1 − t , we have

d̄λ(p|q) → 1

1 − λ

(
1 −

∫
pλ(x)q1−λ(x)℘(dx)

)
(11)

= 1

1 − λ

∫ (
1 −

(
q(x)

p(x)

)1−λ
)

p(x)℘(dx). (12)

The last expression times λ−1 equals the ψ-divergence [2, 3]:

D(ψ)(p|q) = 4

1 − ψ2

∫ (
1 −

(
q(x)

p(x)

)(1+ψ)/2
)

p(x)℘(dx)

with λ = (1 − ψ)/2. Note that limψ∧−1 D(ψ)(p|q) = D(p|q). When ψ = 0, the
ψ-divergence equals the squared Hellinger distance:

d2
H (p, q) = 4

∫ (
1 −

(
q(x)

p(x)

)1/2
)

p(x)℘(dx) =2
∫ (√

p(x) − √
q(x)

)2
℘(dx) (13)

which is a popular distance measure in statistics and information theory.
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The first form of Theorem 1 below was given by Barron and Cover [4] in 1991.
Theorem 1 is a variant of Theorem 4 of [4] and noted in [11] as Theorem 15.3. The
sophisticated proof stated below is quoted from [11].

Theorem 1 The following holds for any λ ∈ (0, 1 − τ−1) with τ > 1.

EXn⊃p← d̄λ

(
p←| p̈

) ≤ 1

n
Rn

(
p←, pτ2-p

)
.

Proof The proof for λ = 1 − τ−1 is sufficient, since d̄λ(p←| p̈) is increasing in
λ ∈ (0, 1 − τ−1]. Define

Aλ(p0|p1) =
∫

pλ
1 (x)p1−λ

0 (x)℘(dx).

Then

d̄λ

(
p←| p̈

) = − 1

1 − λ
log Aλ

(
p←| p̈

)

= 1

n
log

p̈ (xn) e−τL( p̈)

pτ2-p (xn)
+ τ

n
log

1

An
λ (p←| p̈)

= 1

n
log

p← (xn)

pτ2-p (xn)
+ τ

n
log

( p̈(xn)
p←(xn)

)1/τ
e−L( p̈)

An
λ (p←| p̈)

= 1

n
log

p← (xn)

pτ2-p (xn)
+ τ

n
log

(
p̈(xn)
p←(xn)

)1−λ

e−L( p̈)

An
λ (p←| p̈)

≤ 1

n
log

p← (xn)

pτ2-p (xn)
+ τ

n
log

∑
q∈M̈n

( q(xn)
p←(xn)

)1−λ
e−L(q)

An
λ(p←|q)

.

Taking expectation with respect to the data string, we have

EXn⊃p← d̄λ

(
p←| p̈

) ≤ 1

n
Rn(p←, pτ2-p) + τ

n
EXn⊃p← log

∑
q∈M̈n

(
q(xn)
p←(xn)

)1−λ

e−L(q)

An
λ (p←|q)

.

By Jensen’s inequality, the second-term’s expectation in the right-hand side is not
greater than
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log E p←
∑

q∈M̈n

(
q(xn )
p←(xn)

)1−λ

e−L(q)

An
λ(p←|q)

= log

∫ ∑
q

(q (xn))1−λ (p← (xn))λ ℘ (dxn) e−L(q)

An
λ (p←|q)

(14)

= log
∑

q

e−L(q) ≤ 0. (15)

This completes the proof.

Assume that p← ∈ M , then this theorem says that the better the code pτ2-p(xn)

is as a universal code for M , the tighter upper bound on p̈’s convergence to p← is
obtained. We would like to let τ = 1, since it corresponds to the genuine two part
code MDL L(n)

2-p(xn). However, τ = 1 means that we must have λ = 0, for which the
proof of the theorem does not hold. The corresponding convergence result to τ = 1
has been an open problem for over 20 years.

5 Refined MDL

Here, we refine the codelength derived in the previous section. There, we minimized
the maximum regret maxxn r(xn, q(·|ε̄n)) by choosing the code for the parameter
ω . It means that the objective universal code was restricted to two part codes. In this
section, we remove this restriction and obtain the shorter codelength.

5.1 Stochastic Complexity and Parametric Complexity

First we introduce the notion of minimax regret with respect to a target class
M = {p(·|ω) : ω ∈ ε} [20]. For a subset K ∪ ε, let MK = {p(·|ω) : ω ∈ K } and
X n(K ) = {xn : ω̂ (xn) ∈ K }. Here, we assume K satisfies K̄ = K̄ ∼. (For A, Ā is
A’s closure and A∼ is A’s interior.)

We consider a problem to find the following quantity:

r̄n (MK ) = inf
q

sup
xn∈X n(K )

r
(
xn , q

) = inf
q

sup
xn∈X n(K )

(
log

1

q (xn)
− log

1

p
(
xn |ω̂ (xn)

)
)

,

where infimum is taken for all probability densities over X n .
We refer to the value r̄n(X n(K )) as the minimax regret for the target class MK

and the minimizer as the minimax code for MK .
The minimax regret is achieved by the normalized maximum likelihood [20]

defined as

m̂n(xn) = p(xn|ω̂ (xn))∫
X n(K )

p(xn |ω̂ (xn))℘(dxn)
.
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Fig. 1 Computation of
parametric complexity of
Bernoulli model [14]

Input: n, d
1. G(1,n) := 1
2. G(2,n) := ∑n

k=0C(n,k)(k/n)
k(1− k/n)n−k

3. for i= 1 to d−2
G(i+2,n) := G(i+1,n)+(n/i)G(i,n)

This can be confirmed by noting

r
(
xn, q

) = log
p(xn |ω̂ (xn))

q(xn)
= log

m̂n (xn)

q(xn)
+ log

∫
X n(K )

p(xn|ω̂ (xn))℘(dxn).

We have

max
xn∈X n(K )

m̂n (xn)

q(xn)
→ 1,

where equality holds when q = m̂n . It implies

max
xn∈X n(K )

r
(
xn, q

) → max
xn∈X n(K )

r
(
xn, m̂n

) = log
∫
X n(K )

p(xn |ω̂ (xn))℘(dxn).

Note that the codelength − log m̂n(xn) is referred to as stochastic complexity (SC)
of xn with respect to MK [11, 19], and log

∫
p(xn|ω̂ (xn))℘ (dxn) is referred to as

parametric complexity of MK [11].
It is an important issue to determine the SC of various statistical models, since the

SC is what we should use for statistical inference including model selection in the
view point of the MDL principle. In general, computation of normalized maximum
likelihood is intractable, since the expression of parametric complexity contains
exponentially many number of sum (integral) in n. However, for the multinomial
Bernoulli case, an O(n + d) time algorithm is known [14].

Let p(x |ω) = ωx for x ∈ X = {1, 2, . . . , d}. Then,
∑

xn p(xn|ω̂ (xn)) can
be obtained as G(d, n), which is computed by code in Fig. 1. Here C(n, k) is the
binomial coefficient.

This algorithm is very important, but is a special one for the multinomial Bernoulli
model. Efforts to extend it to other classes have been done, but it is not successful to
date, except for a few classes like the Bayesian networks, which have the essentially
same structure as the Bernoulli model [21].

Note that the regret is the sum of the incremental regrets of prediction:

r
(
xn, q

) =
n−1∑
i=1

(
log

1

q(xi+1|xi )
− log

1

p(xi+1|xi , ω̂ (xn))

)
.

Hence, the minimax code is also the minimax prediction strategy.
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As mentioned above, strict evaluation of stochastic complexity is difficult in
general. Instead, asymptotic evaluation for various cases is known. When M is the
multinomial Bernoulli model, Xie and Barron [28] gave an asymptotic evaluation

log
∫
X n

p(xn |ω̂ (xn))℘
(
dxn) = k

2
log

n

2κ
+ log

∫
|J (ω)|1/2 dω + o(1), (16)

where k equals the size of alphabet minus 1, |J (ω)| denotes the determinant of the
Fisher information matrix J (ω), and o(1) is a quantity which converges to 0 as n
goes to infinity. For the stationary Markov model with finite alphabet, the analogous
result is known [12, 27]. As for these cases, the stochastic complexity is evaluated
for K = ε, but it is difficult in general, since the parametric complexity is infinite
for many natural models. For a compact K ∪ ε∼, the parametric complexity for
various target models is evaluated as

log
∫
X n(K )

p(xn |ω̂ (xn))℘(dxn) = k

2
log

n

2κ
+ log

∫
K

|J (ω)|1/2 dω + o(1), (17)

using universal codes based on Bayes mixtures. In the next section, we review some
results about it.

6 Bayesian Approach

For most cases, the asymptotic expression (17) has been shown by Bayesian methods.
This section provides a brief review about it.

6.1 Bayes Codes

The universal code based on the probability density function of mixture

mw
(
xn) =

∫
K

p
(
xn|ω)

w(ω) dω

is referred to as Bayes code. Here w(ω) → 0 is a prior density over K ∪ ε:∫
K w(ω) dω = 1.

We are interested in the regret of Bayes codes. In this context, the Jeffreys prior
[8, 13] is important, which is the prior density proportional to |J (ω)|1/2. The value
CJ (K ) = ∫

K |J (ω)|1/2 dω is the normalization constant for the Jeffreys prior over
K . We refer to the mixture with Jeffreys prior as the Jeffreys mixture.

For the exponential family including the stationary Markov model with finite
alphabet, it is known that a sequence of Jeffreys mixtures achieves the minimax
regret asymptotically [6, 22, 23, 27, 28]. For the multinomial exponential family
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case except for multinomial Bernoulli and Markov models, these facts are proven
under the condition that K is a compact subset included in the interior of ε.

We briefly review outline of the proof of these results. Let {Kn} be a sequence of
subsets of ε such that K ∼

n ⊃ K . Suppose that Kn reduces to K as n ∧ ≈. Let m J,n
denote the Jeffreys mixture over Kn . If the rate of that reduction is sufficiently slow,
then we can prove

log
p

(
xn|û)

m J,n (xn)
= k

2
log

n

2κ
+ log CJ (K ) + o(1), (18)

where the remainder o(1) tends to zero uniformly over all sequences with MLE in
K . This implies that the sequence {m J,n} is asymptotically minimax.

The asymptotic (18) can be shown as follows. Let mw denote the Bayes mixture
with a prior w(ω). First by Taylor expansion of log p (xn|ω) around ω̂ , we have

log p
(
xn|ω) = log p

(
xn|ω̂)−1

2

(
ω − ω̂

)T
n Ĵ (ω ≺)

(
ω − ω̂

)
.

where ω ≺ is a certain point between ω and ω̂ . We have used the fact that α log p(xn|ω)/

αωi = 0 at ω = ω̂ and that α2 log p(xn |ω)/αωiαω j = −n Ĵ (ω). Hence we have

p(xn|ω)

p(xn|ω̂ )
= exp(−1

2
(ω − ω̂ )T n Ĵ (ω ≺)(ω − ω̂ )).

Let Bn denote a sphere with radius n−1/2 log n centered at ω̂ , then we have

mw (xn)

p(xn|ω̂ )
⊃

∫
Bn

exp
(−nωT Ĵ (ω̂)ω

2

)
w(ω) dω ⊃ (2κ)k/2w(ω̂)

nk/2| Ĵ (ω̂)|1/2
.

Hence, we have the following asymptotic for the regret of m J,n:

r
(
xn, m J,n

) = k

2
log

n

2κ
+ log

| Ĵ (ω̂ , xn) |1/2 CJ (Kn)

|J (ω)|1/2 + o(1). (19)

When M is an exponential family, Ĵ (ω̂ , xn) = J (ω̂) holds. Hence, the above expres-
sion asymptotically equals the minimax regret.

If K is the entire space for the statistical model, we cannot define the superset of
K and need a different technique, which was established for the cases of multinomial
Bernoulli model, Markov model, and a certain type of one-dimensional exponential
families. See [23, 25, 27, 28].
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6.2 Beyond Exponential Families

When the target class M is not an exponential family, we have a difficulty that the
empirical Fisher information Ĵ (ω̂ , xn) differs from the Fisher information J (ω̂) in
general. It means that we do not have the cancelation in the second term of the regret
(19). Conversely, if | Ĵ (ω) − J (ω)| is small, then the regret approximately equals
minimax level. Our difficulty is in the case that | Ĵ (ω) − J (ω)| is large. Hence, we
form an enlargement of the target class M by an exponential tilting using linear
combinations of the entries of the differences V (xn|ω) = Ĵ (ω) − J (ω), which has
a point with larger likelihood than p(xn|ω̂ ), when |V (xn|ω)| is large. Let B =
(−b/2, b/2)k×k for some b > 0. The enlargement is formed as

p̄
(
xn|u) = p

(
xn|ω)

en(τ·V (xn |ω)−βn(u)), (20)

where u denotes the pair (ω, τ), τ is a matrix inB, V (xn|ω)·τ denotes Tr(V (xn |ω)τt )

= ∑
i j Vi j (xn|ω)τi j , and �n(u) = log

∫
p(xn|ω)enτ·V (xn |ω)℘ (dxn). Note that this

enlarged family is an example of local exponential family bundle in Amari’s infor-
mation geometry [3]. Then the mixture defined below asymptotically achieves the
minimax regret under certain regularity conditions, where r is a certain small positive
constant.

m̄n
(
xn) = (

1 − n−r ) m J,n
(
xn) + n−r

∫
p̄

(
xn |u)

w(u) du. (21)

In particular for the general mixture family [2, 3] defined below, it is shown that
the regularity conditions are satisfied for MK with a compact K ∪ ε∼ [24].

Definition 2 (Mixture Family) For i = 0, 1, . . . , k, let pi (x) be a probability density
function over X . Define

p (x |ω) =
k∑

i=0

ωi pi (x),

where ω ∈ ε = {ω ∈ ∞k : 0 ≤ ∑k
i=1 ωi ≤ 1 and ⊂i → 1, ωi → 0} and ω0 =

1 − ∑k
i=1 ωi . Then, the set {p(·|ω) : ω ∈ ε} is referred to as a mixture family of

densities.

Further, some refinement of the above strategy was recently proposed [25], which
achieves the parametric complexity for K = ε.

Note that the idea for this enlargement in addressing minimax regret originates in
preliminarily form in [6, 23] as informally discussed in [5]. The literature [26] gives
discussion in the context of information geometry [3].
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6.3 Prediction by Bayes Codes

An advantage of the Bayesian approach is in the following form of conditional
probabilities for prediction.

mw
(
xn+1|xn) = mw

(
xn+1

)
mw (xn)

=
∫

p (xn+1|ω) w
(
ω |xn) dω,

where w(ω |xn) is the posterior density defined as

w
(
ω |xn) = p (xn|ω) w(ω)∫

p (xn|ω) w(ω) dω
.

For example, consider the case of Bernoulli model p(x |ω) = ω x (1 − ω)1−x

(x = 0, 1, ω ∈ ε = [0, 1]). Assume that we have a data string xn with
∑n

t=1 xi = n1.
If we employ the uniform prior w(ω) = 1, we have

mw
(
1|xn) = n1 + 1

n + 2
.

This is known as the rule of succession by Laplace from the nineteenth century. If
we employ the Jeffreys prior w(ω) ⇒ ω−1/2(1 − ω)−1/2, then

mw
(
1|xn) = n1 + 0.5

n + 1

holds. This is a special case of the Kritchevsky-Trofimov (KT) estimator for the
multinomial Bernoulli model [15]. In the view point of MDL principle, the KT
estimator is better than the Laplace estimator, since the former is approximately
equal to the minimax estimator.

We can generalize the KT estimator to the case of the stationary Markov models
with finite alphabet based on the result from [27]. Let us see an example for the
first order with binary alphabet case. Let p(xn |x0, ϕ) be the density of first-order
stationary Markov model on the alphabet X = {0, 1}, where x0 is the initial symbol
and ϕ = (ϕ0|1, ϕ1|0). The parameter ϕi | j denotes the conditional probability that
xt+1 = i is observed after xt = j . Suppose that xn = 0, then the following holds:

m J
(
1|xn

0

) ⊇ n01 + 0.5

n0 + 1
+ (n00/n0)(μ̂0 − 0.5)

n0 + 1
⊇ n01 + μ̂0

n0 + 0.5 + μ̂0
, (22)

where ni j is the number of occurrences of pattern i j in the string xn
0 = x0x1 . . . xn ,

n j = n0 j +n1 j , ϕ̂i | j = n ji/ni , μ̂i = ni/n, and the residual term is of order o(1/n0).
From this, difference between the minimax predictor and the simple KT estimator
(n00 +0.5)/(n0 +1) is of order ν(1/n0), which is statistically significant. Also, it is
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reported in [27] that this estimator performs better in terms of regret than the simple
KT estimator in numerical simulation.

7 Conclusions

We reviewed important notions of the MDL principle and some recent results. We did
not mention applications at all. The readers can find many examples in [10, 11]
and reach more literature on recent applications via the web site “http://www.mdl-
research.org/”.
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An Introduction to Ergodic Theory

Khanh Duy Trinh

Abstract Ergodic theory concerns with the study of the long-time behavior of a
dynamical system. An interesting result known as Birkhoff’s ergodic theorem states
that under certain conditions, the time average exists and is equal to the space aver-
age. The applications of ergodic theory are the main concern of this note. We will
introduce fundamental concepts in ergodic theory, Birkhoff’s ergodic theorem and
its consequences.

Keywords Benford’s law · Ergodic theorem · Markov chain · Measure-preserving
transformation · Poincaré’s recurrence theorem · Strong-mixing · Weak-mixing

1 Ergodic Transformations and Examples

1.1 Measure-Preserving Transformations and Poincaré’s
Recurrence Theorem

Let (π,F , P) be a probability space. A transformation T : π ∈ π is called
measurable if T −1(F ) ⊂ F .

Definition 1 A measurable transformation T : π ∈ π is said to be measure
preserving if P(T −1 A) = P(A) for all A → F .

Let T be a measure-preserving transformation on (π,F , P). Then (π,F , P, T )

is called a dynamical system. The orbit or trajectory of ω under T is the set {T nω}n⊃0,
where T n denotes the nth iterate of T .
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Consider a physical phenomena whose state changes over time. π denotes all
possible states which are distributed according to a probability measure P. The
evolution over time of states is described by a transformation T from π to itself.
A function f : π ∈ R is regarded as value of the physical quantity, which can be
observed in consecutive periods. In fact, we can only measure the value of a physical
quantity over a single orbit {T nω}n⊃0. From the measured data { f (T nω)}n⊃0, we
wish to derive properties of the physical quantity itself. Note that when T is a measure-
preserving transformation, the sequence fn = f (T n) is a stationary sequence; i.e.,
a sequence whose distribution is the same as that of the shifted sequence { fk+n}n⊃0.

Here are some examples of measure-preserving transformations.

Example 1 (Circle rotation) Let π = [0,1), F = Borel subsets, P = Lebesgue
measure. For fixed θ → (0, 1), define

Rθ : ω ∧∈ ω + θ mod1.

If we identify [0, 1) with the unit circle T := {z → C : |z| = 1} on the complex
plane by mapping [0, 1) ← x ∧∈ exp(2πi x), then Rθ acts as a rotation of angle 2πθ.
This identification makes it clear that Rθ is measure preserving.

Example 2 (Bernoulli shift) The probability space is the same as in the previous
example. Let

T : [0, 1) ∈ [0, 1), ω ∧∈ 2ω mod1 =
{

2ω, if 0 ≈ ω < 1/2,

2ω − 1, if 1/2 ≈ ω < 1.

It is clear that

T −1(a, b) =
(

a

2
,

b

2

)
≤

(
1 + a

2
,

1 + b

2

)
,

which is a disjoint union. Thus, T is measure preserving.
Let

d1 = d1(ω) =
{

0, if 0 ≈ ω < 1/2,

1, if 1/2 ≈ x < 1,

and let dn := d1(T n). Then

ω =
∀∑

n=1

dn

2n

gives the binary expansion for a number ω → [0, 1). In fact, the sequence {dn}n⊃1 can
be shown to be an independent identically distributed sequence with the common
distribution P(dn = 0) = P(dn = 1) = 1/2, which is a Bernoulli process. The trans-
formation T shifts {dn}n⊃1 one step to the left, thus we may call it a Bernoulli shift.
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The following property of a measure-preserving transformation, called recurrence,
may be considered the starting point of ergodic theory.

Theorem 1 (Poincaré’s recurrence theorem) Let T be a measure-preserving
transformation on a probability space (π,F , P), and let A → F be measurable
with P(A) > 0. Then for almost all ω → A, {T n(ω)}n⊃0 returns infinitely often to
A (i.e., there exists B ⊂ A with P(B) = P(A) such that for each ω → B, there is a
sequence n1 < n2 < · · · of natural numbers with T ni (ω) → B for each i).

1.2 Ergodicity

Let T be a measure-preserving transformation on a probability space (π,F , P).
A measurable set A → F is called invariant (more precisely, T -invariant) if
T −1(A) = A.

Definition 2 A measure-preserving transformation T is called ergodic if every
invariant set A has probability 0 or 1.

Here are several equivalent ways to state ergodicity.

Theorem 2 Let T be a measure-preserving transformation on (π,F , P). Then the
following statements are equivalent:

(i) T is ergodic;
(ii) for B → F with P(T −1 B℘B) = 0, we have P(B) = 0, or P(B) = 1, where

A℘B := (A \ B) ≤ (B \ A) denotes the symmetric difference of A and B;
(iii) for A → F with P(A) > 0, we have P(

⋃∀
n=1 T −n A) = 1;

(iv) for A, B → F with P(A) > 0, P(B) > 0, there exists n > 0 such that
P(T −n A ≥ B) > 0.

Theorem 3 Let T be a measure-preserving transformation on (π,F , P). Then the
following statements are equivalent:

(i) T is ergodic;
(ii) if f is measurable and f (T ω) = f (ω) for all (or almost surely) ω → π, then

f is constant almost surely (a.s. for short);
(iii) if f → L2(π,F , P) and f (T ω) = f (ω) for all (or a.s.) ω → π, then f is

constant almost surely.

A measurable function f : (π,F , P) ∈ C with f (T ω) = f (ω) (for all or almost
surely ω → π) is called an invariant function. The ergodicity is equivalent to the
statement that any invariant function is constant. In condition (iii), we can replace
L2(π,F , P) by L p(π,F , P) for any p ⊃ 1. Here

L p(π,F , P) := { f : π ∈ C| f is measurable and
∫
π

| f (ω)|pdP(ω) < ∀}.
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Example 3 (Circle rotation—revisited)

(i) If θ = p
q is rational, then f (ω) = exp(2πiqω) satisfies

f (Rp/qω) = exp(2πiq(ω + p

q
)) = exp(2πiqω) exp(2πi p) = f (ω).

However, f (ω) is not constant. Therefore, by the previous criterion
(Theorem 3(ii)), the circle rotation Rθ is not ergodic if θ is rational.

(ii) We claim that if θ is irrational, then Rθ is ergodic. Indeed, let f → L2([0, 1))

satisfying f (Rθω) = f (ω) almost surely. We will show that f is constant almost
surely; hence, Theorem 3(iii) implies that Rθ is ergodic. Let

f (ω) =
∀∑

n=−∀
cn exp(2πinω)

be the Fourier series of f . Then

f (Rθω) =
∀∑

n=−∀
cn exp(2πinθ) exp(2πinω)

is the Fourier series of f (Rθ). Now f = f (Rθ) implies that their Fourier
coefficients are the same; i.e., cn = cn exp(2πinθ) for all n. Therefore cn = 0,
if n ∞= 0. This means that f is constant almost surely.

Example 4 (Bernoulli shift—revisited) The Bernoulli shift is ergodic. Indeed, let
f → L2([0, 1)) with Fourier series

f (ω) =
∀∑

n=−∀
cn exp(2πinω)

and f (T ω) = f (ω). Then

f (T ω) = f (2ω) =
∀∑

n=−∀
cn exp(2πi(2n)ω)

is the Fourier series of f (T ω). The invariance of f implies that cn = c2n for all n.
It follows that

cn = c2n = c22n = · · · ∈ 0,

if n ∞= 0, because the Fourier coefficients cn tend to zero as |n| ∈ ∀. Therefore, f
is constant almost surely, hence the Bernoulli shift T is ergodic.
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2 Birkhoff’s Ergodic Theorem

Theorem 4 (Birkhoff’s ergodic theorem) Let T be a measure-preserving transfor-
mation on (π,F , P). Then for any X → L1(π,F , P),

lim
n∈∀

1

n

n−1∑
m=0

X (T mω) =: X∪ a.s. and in L1.

Moreover, X∪ is invariant, X∪(T ) = X∪, and E[X∪] = E[X ]. In addition, if the
transformation T is ergodic, then X∪ = E[X ], and the above limit can be rewritten
as

lim
n∈∀

1

n

n−1∑
m=0

X (T mω) = E[X ] a.s.

Here, E[X ] = ∫
π

X (ω)dP(ω) denotes the expectation of X.

In his original paper, Birkhoff considered only the case of indicator functions.
Then Khintchine extended Birkhoff’s result to arbitrary integrable functions on a
finite measure space. For this reason, this result is also called the Birkhoff-Khintchine
theorem. We also call it the pointwise ergodic theorem because of the type of conver-
gence. In the ergodic case, its meaning is that the time average exists (almost surely)
and is equal to the space average.

Let I be the sub-σ-algebra of F consisting of all T -invariant subsets A → F .
We claim that the limit X∪ = E[X |I ], where E[X |I ] denotes the conditional
expectation of X givenI ; i.e., the uniqueI -measurable function Y with the property
that

E[Y 1A] = E[X1A] for all A → I .

Here, 1A denotes the indicator function of the set A, and 1A(ω) = 1, if ω → A;
1A(ω) = 0, otherwise. Indeed, for any A → I , by the ergodic theorem and the
T -invariance of 1A,

lim
n∈∀

1

n

n−1∑
m=0

(X1A)(T mω) = 1A(ω) lim
n∈∀

1

n

n−1∑
m=0

X (T mω) = 1A(ω)X∪(ω) a.s.

and

E[X∪1A] = E[X1A].

In addition, the limit X∪ is invariant, thus X∪ is I -measurable. These imply that
X∪ = E[X |I ].
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As a consequence of the ergodic theorem, we give another criterion for the
ergodicity.

Theorem 5 Let T be a measure-preserving transformation on (π,F , P). T is
ergodic if and only if for A, B → F ,

lim
n∈∀

1

n

n−1∑
m=0

P(T −m A ≥ B) = P(A)P(B).

Proof Assume that T is ergodic. Then, by applying the ergodic theorem to the
indicator function 1A, we have

lim
n∈∀

1

n

n−1∑
m=0

1A(T mω) = P(A) a.s.

Multiply both sides with 1B , and we have

lim
n∈∀

1

n

n−1∑
m=0

1A(T mω)1B(ω) = P(A)1B(ω) a.s.

The function on the left-hand side is bounded by 1, so by the bounded convergence
theorem, we obtain

lim
n∈∀

1

n

n−1∑
m=0

P(T −m A ≥ B) = P(A)P(B).

Conversely, assume that

lim
n∈∀

1

n

n−1∑
m=0

P(T −m A ≥ B) = P(A)P(B)

for any A, B → F . Then, in particular, for an invariant set A, T −1 A = A, take
B = A, we have

lim
n∈∀

1

n

n−1∑
m=0

P(A) = P(A)2.

It follows that P(A) = P(A)2; hence, P(A) = 0 or P(A) = 1. Therefore T is ergodic.

The convergence in the previous theorem can be changed to give the following.

Definition 3 Let T be a measure-preserving transformation on (π,F , P).

(i) T is weak-mixing if for A, B → F ,
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lim
n∈∀

1

n

n−1∑
m=0

|P(T −m A ≥ B) − P(A)P(B)| = 0.

(ii) T is strong-mixing if for A, B → F ,

lim
n∈∀ P(T −n A ≥ B) = P(A)P(B).

We provide some remarks:

(i) In practice, to verify ergodic, weak-mixing or strong-mixing properties, we
only need to check corresponding conditions for A, B belonging to a generating
semi-algebra of F .

(ii) A strong-mixing transformation is weak-mixing and a weak-mixing transfor-
mation is ergodic. Indeed, for a real sequence {an}, limn∈∀ an = 0 implies

lim
n∈∀

1

n

n−1∑
m=0

|am | = 0,

and this condition itself implies

lim
n∈∀

1

n

n−1∑
m=0

am = 0.

(iii) If θ is irrational, then the circle rotation Rθ is ergodic but is not weak-mixing.
Indeed, we can see this roughly as follows. If A and B are small intervals,
then T −m A will be disjoint from B for at least half of the value of m so that
(1/n)

∑n−1
m=0 |P(T −m A ≥ B) − P(A)P(B)| ⊃ (1/2)P(A)P(B) for large n.

(iv) There are examples of weak-mixing which are not strong-mixing.
(v) Intuitive descriptions of ergodicity and strong-mixing can be given as follows.

T is strong-mixing if the sequence of sets T −n A becomes, asymptotically, inde-
pendent of any other set B. Ergodicity means that T −n A becomes independent
of B on average.

(vi) For a real sequence {an}, the condition

lim
n∈∀

1

n

n−1∑
m=0

|am | = 0

is equivalent to a condition that there is a subset J of zero density; i.e., 1
n #(J ≥

{0, 1, . . . , n − 1}) ∈ 0, such that

lim
J ∞←n∈∀ an = 0.
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Thus, T is weak-mixing if for A, B → F , the sequence T −n A becomes inde-
pendent of B provided that we ignore a few instants of time.

3 Some Applications of Ergodic Theorems

3.1 Uniform Distribution Modulo One

Definition 4 A real sequence (xn)n⊃1 is said to be uniformly distributed modulo 1
if for all a, b with 0 ≈ a < b ≈ 1, we have

lim
n∈∀

1

n
#{1 ≈ m ≈ n : {xm} → [a, b)} = b − a,

where {xn} denotes the fractional part of xn .

It follows that if a sequence (xn)n⊃1 is uniformly distributed modulo 1, then for
any Riemann integrable function f : [0, 1) ∈ C,

lim
n∈∀

1

n

n∑
m=1

f ({xn}) =
1∫

0

f (x) dx,

because a Riemann integrable function can be approximated by linear combinations
of {1[a,b) : 0 ≈ a < b ≈ 1}, where 1[a,b) is the indicator function of the set [a, b).
Note that this property is not true for Lebesgue integrable functions because if f
is a Lebesgue integrable function, then changing the values of f on a countable set
({xn})n⊃1 does not change the value of the integral.

A useful criterion for testing the uniform distribution modulo one is

Theorem 6 (Weyl’s criterion) A real sequence (xn)n⊃1 is uniformly distributed mod-
ulo 1 if, and only if, for any integer k ∞= 0,

lim
n∈∀

1

n

n∑
m=1

exp(2πikxm) = 0.

We now show that the sequence (Rn
θω)n = (ω + nθ mod1)n is uniformly distrib-

uted for all ω → [0, 1) provided that θ is irrational. For irrational θ, recall that Rθ

is ergodic. Let f be a Lebesgue integrable function on [0, 1). Then, by the ergodic
theorem,

lim
n∈∀

1

n

n∑
m=1

f (ω + mθ mod1) =
∫

[0,1)

f (ω) dP(ω), a.s.
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In particular, take f = exp(2πi x), and we obtain

lim
n∈∀

1

n

n∑
m=1

exp(2πik(ω + nθ)) =
1∫

0

exp(2πikx) dx = 0 a.s.

It is clear that the left-hand side does not depend much on ω. Consequently, the
convergence holds for all ω → [0, 1). Thus (ω + nθ mod1)n is uniformly distributed
by Weyl’s criterion.

3.2 Benford’s Law

Benford’s law refers to statistical data whose leading digits k → {1, . . . , 9} occur
with probabilities log10(1 + 1

k ). The numerical values of the probabilities are

1 2 3 4 5 6 7 8 9
0.3010 0.1761 0.1249 0.0969 0.0792 0.0669 0.0580 0.0512 0.0458

The law was discovered by Newcomb (1881) and named after Benford (1938), who
tested it on data from 20 different domains. His data set included the surface areas of
335 rivers, the sizes of 3259 US populations, 104 physical constants, 1,800 molecular
weights, and so on. (Source: Wikipedia.)

Let us show below that the frequencies of the leading digits of the sequence
(2n)n⊃0 follow Benford’s law. The leading digits of 2n are k, k → {1, 2, . . . , 9} if
there is an m → {0, 1, . . . } such that

10mk ≈ 2n < 10m(k + 1),

which is equivalent to

{n log10 2} → [log10 k, log10(k + 1)).

Since log10 2 is irrational, the sequence (n log10 2)n is uniformly distributed modulo
1. Therefore,

lim
n∈∀

1

n
#{1 ≈ m ≈ n : {m log10 2} → [log10 k, log10(k + 1))}

= log10(k + 1) − log10 k = log10(1 + 1

k
).

In this proof, we only need the fact that log10 2 is irrational. Thus, the result is
true for any sequence (αn)n provided that log10 α is positive irrational. Note that it
is the average over time, while statistical data means the average over space. If an
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ergodic dynamical system can be constructed to model some phenomenon, then the
time average and the space average can be related by the ergodic theorem. Thus, it
is plausible that statistical data of exponentially growing quantities will agree with
Benford’s law.

3.3 Markov Chains

In this section, we consider a Markov chain on finite state space. For simplicity, the
state space is taken as S = {1, 2, . . . , k}, (k ⊃ 2). A vector λ = (λi )i→S is called
a distribution (on S) if λi ⊃ 0, (i → S), and

∑
i→S λi = 1. A matrix P = (pi j ) is

said to be stochastic if every row of P is a distribution; i.e., pi j ⊃ 0, (i, j → S), and∑
j→S pi j = 1, for all i .

Definition 5 A sequence of S-valued random variables {Xn}n⊃0 (defined on some
probability space (π∼,F ∼, Pr)) is said to be a Markov chain with initial distribution
λ and transition matrix P if

(i) X0 has distribution λ; i.e., Pr(X0 = i) = λi , (i → S);
(ii) for n ⊃ 0, conditional on Xn = i , Xn+1 has distribution (pi j : j → S), and is

independent of X0, . . . , Xn−1; i.e.,

Pr(Xn+1 = j |Xn = i, Xn−1 = in−1, . . . , X0 = i0) = pi j .

We say that {Xn}n⊃0 is Markov(λ, P) for short. Here, λ is a distribution and P is a
stochastic matrix.

We list here some properties of Markov chains. Let {Xn}n⊃0 be Markov(λ, P).
We then have the following:

• Joint probability distribution

Pr(X0 = i0, X1 = i1, . . . , Xn = in) = λi0 pi0i1 · · · pin−1in .

• The distribution of Xn is λPn .
• n-step probability transition

Pr(Xn = j |X0 = i) = p(n)
i j ,

where p(n)
i j denotes the (i, j) element of matrix Pn .

• A distribution π is called invariant if πP = π. Let {Xn}n⊃0 be Markov(π, P)

with invariant distribution π. Then the distribution of Xn is πPn = π. Moreover,
{Xn}n⊃0 becomes a stationary sequence.

• Ergodic theorem for Markov chain. P is called irreducible if for any i, j → S, there
exists an n > 0 such that p(n)

i j > 0. Let P be an irreducible stochastic matrix.
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Then there is a unique invariant distribution π with πi > 0, (i → S). Let {Xn}n⊃0
be Markov(λ, P) with λ being any initial distribution. Then, for any function
f : S ∈ R, we have

lim
n∈∀

1

n

n−1∑
m=0

f (Xm) = f̄ = (
∑
i→S

fiπi ) almost surely.

• Convergence to equilibrium. A state i is called aperiodic if the greatest common
divisor of {m ⊃ 0 : p(m)

i i > 0} equals one. The Markov chain (or the matrix P)
is called aperiodic if every state is aperiodic. Assume that P is irreducible and
aperiodic, and π is the invariant distribution. Let {Xn}n⊃0 be Markov(λ, P). Then
we have

lim
n∈∀ Pr(Xn = j) = π j , for all j .

In particular,
lim

n∈∀ p(n)
i j = π j , for all i, j .

Let us see how the last two results are related to ergodic theory. Actually, we will
deal with a one-sided Markov shift. Let P be a stochastic matrix and π be an invariant
distribution with πi > 0, (i → S).

Consider the measurable space (S, 2S), where 2S denotes the collection of all
subsets of S. Let (π,F ) be the direct product space:

(π,F ) =
∀∏
0

(S, 2S).

Let T denote the shift transformation defined by

T ((ω0,ω1, . . . )) = (ω1,ω2, . . . ).

The probability measure P is defined on the semi-algebra of measurable elementary
rectangles by

P({(ωi ) → π|ω0 = i0,ω1 = i1, . . . ,ωn = in}) := πi0 pi0i1 · · · pin−1in ,

then P can be extended to a probability measure on (π,F ) and T preserves the
probability measure P. The transformation T is called a one-sided (π, P)-Markov
shift.

Let ξn denote the projection from π onto S, which maps ω = (ωi ) to ωn → S.
Then regard {ξn}n⊃0 as a sequence of random variables defined on (π,F , P), the
sequence {ξn}n⊃0 is Markov(π, P). Note that ξn = ξ0(T n).

The Markov shift T has the following properties.
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(i) If P is irreducible, then T is ergodic.
(ii) If P is irreducible and aperiodic, then T is strong-mixing.

These results are related to the above results of Markov chain on ergodic theorem
for Markov chain and convergence to equilibrium. Indeed, recall that {ξn}n⊃0 is
Markov(π, P). Let f : S ∈ R be any function. Then f ⊇ ξ0 is a random variable on
(π,F , P) and

E[ f ⊇ ξ0] =
∑
i→S

fi P(ξ0 = i) =
∑
i→S

fiπi .

If P is irreducible, then the Markov shift T is ergodic. Applying Birkhoff’s ergodic
theorem to f ⊇ ξ0, we then obtain

lim
n∈∀

1

n

n−1∑
m=0

f ⊇ ξ0(T
m) = lim

n∈∀
1

n

n−1∑
m=0

f (ξm) = E[ f ⊇ ξ0] =
∑
i→S

fiπi .

Now if P is irreducible and aperiodic, then T is strong-mixing. Let A = {ω =
(ωi ) : ω0 = j}, B = {ω = (ωi ) : ω0 = i}. Then

T −n A ≥ B = {ξn = j, ξ0 = i}.

Consequently, by the strong-mixing property, we have

lim
n∈∀ P(ξn = j, ξ0 = i) = P(ξ0 = j)P(ξ0 = i) = π jπi .

Since P(ξn = j, ξ0 = i) = πi p(n)
i j , it follows that

lim
n∈∀ p(n)

i j = π j .

Note that for results above regarding a Markov chain, the Markov chain can start
at any initial distribution. However, when we consider the Markov shift, we assume
that the Markov chain starts at the invariant distribution.

4 Conclusion

This note is mainly taken from [1] (Chap. 7) and [4] (Chap. 1). Refer to [2, 3] for
further details on the topics of the distribution modulo one of sequences and Markov
chains, respectively.
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Discrete Optimization: Network Flows
and Matchings

Naoyuki Kamiyama

Abstract In this paper, we give a brief introduction to network flow problems
and matching problems that are representative problems in discrete optimization.
Network flow problems are used for modeling, e.g., car traffic and evacuation.
Matching problems are used when we allocate jobs to workers and assign students to
laboratories, and so on. Especially, we focus on mathematical models that are used
in these problems.

Keywords Discrete optimization · Matching · Network flow

1 Introduction

Optimization is a branch of mathematics that studies problems of finding the
optimal object from a set of objects. Especially, discrete optimization is the study of
optimization problems with certain discrete structures. In this paper, we give a brief
introduction to network flow problems and matching problems that are representative
problems in discrete optimization. Network flow problems are used for modeling,
e.g., car traffic and evacuation. Matching problems are used when we allocate jobs
to workers and assign students to laboratories, and so on. Especially, we focus on
mathematical models that are used in these problems. See references given in each
section for theory and algorithms.

In the rest of this paper is organized as follows. In Sect. 2, we explain graphs that
play an important role in discrete optimization. In Sect. 3, we consider network flow
problems. In Sect. 4, we consider matching problems.
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Throughout this paper, we denote by R, R+ and Z+ the sets of real numbers,
nonnegative real numbers and nonnegative integers, respectively.

2 Graphs

In this section, we explain basic concepts related to graphs. Intuitively speaking,
graphs model “links” connecting “objects” (e.g., people, countries, papers and
words). In graph theory, “vertices” and “arcs” (or “edges”) correspond to objects
and links, respectively. See, e.g., [2, 17] for coverage of concepts related to graph
theory. Here we define two kinds of graphs. The first one is a directed graph and the
second one is an undirected graph.

A directed graph D = (V, A) is a pair of a vertex set V and an arc set A, where
every arc in A is an ordered pair of vertices in V . See Fig. 1a for an example of a
directed graph. Notice that in a directed graph, we take the direction of each arc into
consideration. For each arc a = (v, w) in A, we call v and w the tail and head of a,
respectively. For each vertex v in V , we denote by Δ+(v) and Δ−(v) the sets of arcs
of A whose tails and heads are v, respectively. That is, Δ+(v) represents the set of
arcs “leaving” v, and Δ−(v) represents the set of arcs “entering” v. For example, in
Fig. 1a, Δ+(v) = {a3} and Δ−(v) = {a1, a2}.

An undirected graph G = (V, E) is a pair of a vertex set V and an edge set E ,
where every edge e in E is a subset of V with |e| = 2. See Fig. 1b for an example of
an undirected graph. Notice that in an undirected graph, we do not take the direction
of each edge into consideration. For each subset F of E and each vertex v in V ,
we denote by F(v) the set of edges e in F with v ∈ e. For example, in Fig. 1b,
E(v) = {e1, e2, e3}. An undirected graph G = (V, E) is called a bipartite graph, if
V is partitioned into two subsets P and Q, and every edge in E connects a vertex in
P and a vertex in Q. See Fig. 6 for an example of a bipartite graph.

3 Network Flows

In this section, we consider network flow problems that are used for modeling, e.g.,
car traffic and evacuation. See [1] for applications of network flow problems. In the
first half of this section, we consider an ordinary network flow model, called a static
network flow. In the second half, we consider a dynamic network flow in which
we take an important factor “time” into consideration. See, e.g., [1, 5, 17, 18] for
coverage of concepts related to networks flows.

3.1 Static Network Flows

In this section, we explain an ordinary network flow model, called a static network
flow model. Intuitively speaking, we do not take into account “time,” i.e., objects
“ceaselessly” flow.
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Fig. 1 a A directed graph. b An undirected graph
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Fig. 2 a A static network. b A static flow

More formally, in a static network flow model, we are given a directed graph
D = (V, A) with specified vertices s, t ∈ V and a capacity function c : A ⊂ R+.
We call the pair of D and c a static network. A function ξ : A ⊂ R+ is called a static
flow, if it satisfies the following two condition.

Capacity constraint. For every arc a in A,

ξ(a) → c(a).

Flow conservation. For every vertex v in V with v ⊃= s, t ,

∑
a∈Δ+(v)

ξ(a) =
∑

a∈Δ−(v)

ξ(a).

The value of a static flow ξ is defined as

∑
a∈Δ−(t)

ξ(a) −
∑

a∈Δ+(t)

ξ(a).

See Fig. 2 for an example of a static flow model and a static flow. In Fig.2a, the
numbers attached to arcs represent their capacities. In Fig. 2a, the numbers attached
to arcs represent a static flow.
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Here we explain two representative problems in a static flow model. The first one
is the maximum-flow problem. The goal of this problem is to find a static flow with
maximum value. That is, this problem models the situation in which we want to send
objects as much as much possible from s to t . For example, in the static network
illustrated in Fig. 2a, the static flow in Fig. 2b is a solution of the maximum-flow
problem. It is known that this problem can be efficiently solved. See, e.g., [9] for an
efficient algorithm for the maximum-flow problem.

The second problem is the minimum-cost flow problem. In this problem, we are
given a demand d ∈ R+ and a cost function k : A ⊂ R+. The cost of a static flow
ξ : A ⊂ R+ is defined as ∑

a∈A

k(a) · ξ(a).

The goal of the minimum-cost flow problem is to find a static flow whose cost is
minimum among all static flows whose value is equal to d. That is, this problem
models the situation in which a penalty incurs when we send objects on arcs. This
problem can be efficiently solved. See, e.g., [15] for an efficient algorithm for the
minimum-cost flow problem.

3.2 Dynamic Network Flows

In this section, we consider a dynamic network flow in which we take an important
factor “time” into consideration. That is, in this model, the time required to transit
an arc plays an important role.

More formally, in a dynamic network flow model, we are given a directed graph
D = (V, A) with a terminal subsets S of V partitioned into S+ and S−, a capacity
function c : A ⊂ R+, a transit time function τ : A ⊂ Z+ and a time horizon T ∈ Z+.
The value τ(a) represent the time required to transit from the tail of a to the head of
a. We call the triple D, c and τ a dynamic network. A function f : A × Z+ ⊂ R+
is called a dynamic flow, if it satisfies the following two conditions.

Capacity constraint. For each arc a in A and each nonnegative integer θ ,

f (a, θ) → c(a).

Flow conservation. For each vertex v in V \S and each nonnegative integer θ ,

ex f (v, θ)

{
∧ 0 if θ = 0, 1, . . . , T − 1

= 0 if θ ∧ T ,
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Fig. 3 A dynamic network.
In this figure, S+ := {s}
and S− := {t}. Furthermore,
we set c(a) := 1 for every
arc a in A, and τ(a1) =
τ(a5) = 0, τ(a3) = 1,
τ(a2) = τ(a4) = 3 and T = 5
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where define

ex f (v, θ) :=
∑

a∈Δ−(v)

θ−τ(a)∑
t=0

f (a, t) −
∑

a∈Δ+(v)

θ∑
t=0

f (a, t).

Intuitively speaking, f (a, θ) represents the value of flow entering the tail of a at the
time θ . The value ex f (v, θ) represents the excess of supplies on the vertex v until
the time θ . Notice that in the flow conservation constraint, we allow supplies to stay
at vertices. See Fig. 3 for an example of a dynamic network.

Here we explain two representative problems in a dynamic flow model. The first
one is the maximum dynamic flow problem. Intuitively speaking, this problem is
a dynamic version of the maximum-flow problem in a static flow model. In this
problem, S+ and S− consists of single vertices s+ and s−, respectively. The goal of the
maximum dynamic flow problem is to find a dynamic flow maximizing ex f (s−, T ),
i.e., we want to send objects from s+ to s− as much as possible within the time limit
T . This problem can be efficiently solved. See, e.g., [6] for an efficient algorithm for
the maximum dynamic flow problem.

The second problem is the dynamic transshipment problem. There exists no cor-
responding problem in a static flow model. In this problem, we are given a demand
function d : S ⊂ R such that

d(s)

{
→ 0 s ∈ S+

∧ 0 s ∈ S−.

The dynamic transshipment problem asks for discerning where there exists a dynamic
flow f such that

←s ∈ S : ex f (s, T ) = d(s),

and find it, if one exists. That is, we want to send objects from S+ to S− so that all
supplies and demands are satisfied. This problem can be efficiently solved. See, e.g.,
[11] for an efficient algorithm for the dynamic transshipment problem.
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Fig. 4 The time-expanded network of the dynamic network in Fig. 3

From now on, we show that problems in a dynamic flow model can be reduced
to those in a static flow model. For this, we define the time-expanded graph T of a
dynamic network D with c and τ , which is a static network. See Fig. 4 for an example
of a time-expanded network. The vertex set of T consists of a new vertex vθ for
each vertex v in V and each θ = 0, 1, 2, . . . , T . The arc set of T consists of the
following two parts. The first part consists of an arc aθ = (vθ , wθ+τ(a)) for each arc
a = (v, w) in A and each θ = 0, 1, . . . , T − τ(a). Furthermore, the capacity of aθ

is equal to c(a). The second part consists of an arc (v(θ), v(θ + 1)) for each vertex
v in V and each θ = 0, 1, . . . , T − 1. Furthermore, the capacity of (v(θ), v(θ + 1))

is infinite.
Let ξ be a static flow in the time-expanded network T . By defining f (a, θ) :=

ξ(aθ ) for each arc a in A and each θ = 0, 1, 2 . . . , T − τ(a), we can construct a
dynamic flow f in D with c and τ . Conversely, we can construct a static flow from
a dynamic flow in the similar way. This observation implies that by defining s = s0
and t = tT , we can reduce the maximum dynamic flow problem to the maximum-
flow problem. It should be noted that the size of the time-expanded network is
exponentially larger than that of the input dynamic network.

3.3 Other Problems

In this section, we give other problems in a dynamic flow model.
Similarly to a static flow model, it is natural to consider the problem of finding

a dynamic flow with minimum cost. More precisely, we are given a cost function
k : A ⊂ R+ and a demand d ∈ R+. Furthermore, we assume that S+ and S− consists
of single vertices s+ and s−, respectively. For each dynamic flow f , we define its
cost as ∑

a∈A

T∑
θ=0

k(a) · f (a, θ).
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The goal of this problem is to find a dynamic flow f whose cost is minimum among
all dynamic flows f ≈ such that ex f ≈(s−, T ) = d. Unlike the minimum-cost flow
problem in a static flow model, this problem is very hard. See [12] for details.

Furthermore, it is practically important to consider the case where there exist
many kinds of objects. For example, there exist several kinds of people in evacuation
situations. We can model this problem by using “multi-commodity” flow. There are
many papers considering multicommodity flow problems in a static flow model.
Thus, it is natural to consider a dynamic version of a multicommodity flow problem
in a dynamic flow model. See [10] for details.

In the above problems, we implicitly assume that we can control movement of
objects. However, if objects are people, then it is natural to consider that objects
selfishly move. That is, it is natural to consider problems from the game theoretical
viewpoint. There are many papers considering network flow problems in a static
flow model from the game theoretical viewpoint. In a dynamic flow model, e,g, the
paper [13] considers a dynamic flow problem from the game theoretical viewpoint.

4 Matchings

In this section, we consider matching problems that are used when we allocate jobs
to workers and assign students to laboratories, and so on. See [16] for applications of
matching problems. In the first half of this section, we consider an ordinary matching
problem, called the maximum-size matching problem. In the second half of this
section, we consider the stable matching problem in which each agent has a preference
list edges, i.e., a matching problem in a strategic situation. See, e.g., [14, 16, 17] for
coverage of concepts related to matching problems.

4.1 Maximum-Size Matchings

In this section, we consider the maximum-size matching problem. Intuitively speak-
ing, in this problem, we try to find “pairs” as many as possible.

More formally, in the maximum-size matching problem, we are give an undirected
graph G = (V, E). A subset M of E is called a matching, if

←e, f ∈ M s.t. e ⊃= f : e ≤ f = ∀.

The maximum-size matching problem asks for finding a matching with maximum
cardinality. See Fig. 5 for an example of a maximum-size matching. The matching
in Fig. 5b is a maximum-size matching in the undirected graph illustrated in Fig. 5a.
This problem can be efficiently solved. See, e.g., [3] for a efficient algorithm for the
maximum-size matching problem.
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(a) (b)

Fig. 5 a An undirected graph. b A maximum-size matching

In the maximum-size matching, the goal is to find a matching with maximum
cardinality. If a “profit” is given for each edge, then it is natural to maximize the profit
of a matching. This problem is called the maximum-weight matching problem. More
formally, in the maximum-weight matching problem, we are given an undirected
graph G = (V, E) and a weight function σ : E ⊂ R+. The weight of a matching
M is defined as ∑

e∈M

σ(e).

The goal of the maximum-weight matching problem is to find a matching with
maximum weight. This problem can be efficiently solved. See, e.g., [17] for details.

4.2 Stable Matchings

In this section, we explain the stable matching problem. Intuitively speaking, in this
model, there exist two groups of agents and each agent has a preference ranking over
members of the other group. The goal is to find a matching between these two groups
with some specified properties.

More formally, the stable matching problem is defined as follows. We are given a
bipartite graph G = (V, E). We assume that V is partitioned into P and Q. For each
vertex v in V , we are given a strict linear order >v that represents the preference of
v. If e >v f for some edges e, f in E(v), then v prefers e to f . See Fig. 6a for an
example of the stable matching problem. In this example, we assume that

{u, y} >u {u, x}
{v, x} >v {v, y} >v {v, z}

{v, x} >x {u, x}
{v, y} >y {w, y} >y {u, y}.
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Fig. 6 a A bipartite graph. b An unstable matching. c A stable matching

Let M be a matching (see Sect. 4.1 for the definition of a matching). An edge e
in E\M is said to be free on its end-vertex v ∈ e, if

• M(v) is empty, or
• e >v f , where M(v) = { f }.
We say that an edge e in E\M blocks M , if e is free on both vertices in e. A matching
M is said to be stable, if there exists no edge in E\M blocking M . That is, if a
given matching is not stable, then there is incentive for some pair to break a current
matching.

It is not clear that there exists a stable matching in every instance of the stable
matching problem. Gale and Shapley [7] proved that there always exists a stable
matching and we can efficiently find it. For example, the matching in Fig. 6b is not
stable since {v, x} is a blocking pair. On the other hand, the matching in Fig. 6c is
stable.

4.3 Other Problems

Here we explain other problems related to the stable matching problem.
In the stable matching problem, we try to find one-to-one matching. However,

when we consider the problem of allocating jobs to workers or assigning residents
to hospitals, it is natural to consider that one agent can be matched to more than
one partners. That is, we consider a many-to-one or many-to-many matching. This
problem is called that hospital/residents problem. More formally, in this problem,
we are given the same input as the stable matching problem. Furthermore, we are
given a capacity function c : Q ⊂ Z+. A subset F of E is called an assignment, if
|F(p)| → 1 for every vertex p in P and |F(q)| → c(q) for every vertex q in Q. Let
F be an assignment. An edge e = {p, q} in E\F is said to be free on q ∈ Q, if

• |M(q)| < c(q), or
• there exists an edge f in M(q) with e >q f .

We say that an edge e in E\F blocks F , if e is free on both vertices in e. An assignment
F is said to be stable, if there exists no edge in E\F blocking F . It is known that
there always exists a stable matching and we can efficiently find it. See [7] for details.
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Next we consider a problem related to preference lists. In the stable matching
problem, we are given a “strict” linear order as a preference list of each agent. That
is, some agent v strictly prefer some edge in E(v) to other edge. However, in many
practical situations, it is natural to think that agents has preference lists with “ties.”
That is, in this case, it is possible that some agent v is “indifferent” between some
edge in E(v) and other edge. It is known that in this case, there always exists a stable
matching, but a new issue arises. This is “Pareto efficiency” of a matching. This
concept means that there exists no other matching improving some agent without
hurting everyone else. See [4] for this topic.

Finally, we consider the popular matching problem introduced by Gärdenfors
[8]. Recall that the concept of stability of a matching is “locally” defined. Thus, it is
natural to consider a “global” fairness. The concept of popular matching is one of such
concepts of global fairness. In the popular matching problem, we decide the order
over matchings by “voting.” More precisely, when we are given two matchings, we
conclude that a matching for which much people vote is preferable. It is not clear that
there always exists a popular matching, but Gärdenfors [8] proved that there always
exists a popular matching. In fact, a stable matching is also a popular matching. Thus,
the existence of a popular matching follows from that of a stable matching.
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Strict Feasibility of Conic Optimization
Problems

Hayato Waki

Abstract A conic optimization problem (COP) is the problem of minimizing a given
linear objective function over the intersection of an affine space and a closed convex
cone. Conic optimization problem is often used for solving nonconvex optimization
problems. The strict feasibility of COP is important from the viewpoint of computa-
tion. The lack of the strict feasibility may cause the instability of computation. This
article provides a brief introduction of COP and a characterization of the strict fea-
sibility of COP. We also explain a facial reduction algorithm (FRA), which is based
on the characterization. This algorithm can generate a strictly feasible COP which is
equivalent to the original COP, or detect the infeasibility of COP.

Keywords Conic optimization problem · Strong duality · Strict feasibility · Facial
reduction

1 Introduction

A conic optimization problem (COP) is the problem of minimizing a given linear
objective function over the intersection of an affine space and a closed convex cone,
and is one of the convex optimization problems. For instance, linear program (LP),
second-order cone program (SOCP), and semidefinite program (SDP) are convex op-
timization problems and can be representable as COP. It is known that these problems
are solved by primal-dual interior-point methods (PDIPMs) in practice. In contrast,
nonconvex optimization problem is NP-hard, and thus, it is difficult to find a global
optimal solution for such a problem in general.
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Conic optimization problem is used in convex relaxations, which are effective
approaches to solve nonconvex optimization problems. For instance, one can often
obtain an optimal solution by combining a convex relaxation with a branch and bound
algorithm. Convex relaxations generate COP from a given nonconvex optimization
problem. Then, the resulting COP has the property that the optimal value is always
equal to or smaller than the optimal value of the original. In particular, LP, SOCP, and
SDP are used well in convex relaxations since one can compute the optimal values
by using software in which PDIPMs are implemented.

The purpose of this article is to provide a brief introduction on COP and the
strict feasibility of COP. The strict feasibility is required to solve LP, SOCP, and
SDP efficiently by PDIPMs. In fact, under the assumption that a given problem is
strictly feasible, the convergence of PDIPMs is proved theoretically. If the assumption
fails, PDIPMs may not converge to an optimal solution. Furthermore, in that case,
it may have no optimal solutions, i.e., the optimal value is finite, but it may not be
attainable. Consequently, it is hopeless to find a good approximation of an optimal
solution numerically if it is not strictly feasible.

We describe a characterization of the strict feasibility of COP in this article. One
can detect whether a given COP is strictly feasible or not by using the characterization.
Furthermore, one can reduce the size of COP by using the certificate of nonstrict
feasibility and generate a strictly feasible COP which is equivalent to the original.
The characterization plays an essential role in a facial reduction algorithm (FRA)
proposed by Borwein and Wolkowicz [2]. We also provide a short survey of FRA.
See [11] for more details.

The organization of this article is as follows: the formulation and examples of COP
are provided in Sect. 2. Here, we describe the strong duality for COP. This is closely
related to the strict feasibility for COP. In Sect. 3, we describe the characterization of
the strict feasibility and FRA proposed by Borwein and Wolkowicz. This algorithm
is simplified by Pataki. Our explanation of FRA is based on Pataki’s simplification.

1.1 Notation and Symbols

The set of real numbers is denoted R. ∈·, ·⊂1 and ∈·, ·⊂2 denote inner products of R
m

and R
n , respectively. For a set X → R

n , int(X) and relint(X) denote the interior and
the relative interior of X , respectively. For a convex set X , if the affine hull of X is
R

n , then relint(X) = int(X). For a given function f : R
n ⊃ R and a set X ∧→ R

n ,
we denote the minimization of f over X by

inf
x

{ f (x) : x ∧ X}.

x is variable in the minimization. For the maximization, we use supx . We remark that
this problem may not have any optimal solutions even if the optimal value is finite.
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2 Conic Optimization Problem

2.1 Formulation and the Duality

Let K ← R
n and A : R

n ⊃ R
m be a closed convex cone and a surjective linear

transformation, respectively. Let us choose b ∧ R
m and c ∧ R

n . We consider the
following optimization problem:

sup
y

{∈b, y⊂1 : c − A≈y ∧ K , y ∧ R
m}, (1)

where A≈ : R
m ⊃ R

n denotes the adjoint of A, which satisfies ∈Ax, y⊂1 = ∈x, A≈y⊂2
for all x ∧ R

n and y ∧ R
m . Let p≈ be the optimal value of (1). If the feasible region

is empty, then p≈ is set to be −≤.
We introduce the dual of (1). To this end, we define the function L(y, x) : R

m ×
R

n ⊃ R by L(y, x) = ∈b, y⊂1 + ∈x, c − A≈y⊂2. Let K ≈ ← R
n be the dual cone of

K , i.e., K ≈ = {s ∧ R
n : ∈x, s⊂2 ∀ 0 (≥x ∧ K )}. Since ∈b, y⊂1 ∞ L(y, x) for all

x ∧ K ≈ and y ∧ R
m satisfying c − A≈y ∧ K , we have

p≈ ∞ sup
y

{L(y, x) : c − A≈y ∧ K , y ∧ R
m} ∞ sup

y
{L(y, x) : y ∧ R

m}
= ∈x, c⊂2 + sup

y
{∈b − Ax, y⊂1 : y ∧ R

m}

for x ∧ K ≈. Here we use A≈≈ = A. For the above inequality, we consider the case
where b − Ax = 0. Otherwise, the last value is +≤. Consequently, for x ∧ R

n such
that x ∧ K ≈ and Ax = b, we have p≈ ∞ ∈x, c⊂2, and thus the dual problem can be
formulated as follows:

inf
x

{∈c, x⊂2 : Ax = b, x ∧ K ≈}. (2)

Let d≈ be the optimal value of (2). If the feasible region is empty, then d≈ is set to
be +≤.

It follows from the introduction of the dual of (1) that p≈ ∞ d≈ holds. This
inequality is known as the weak duality for (1) and (2). The equality p≈ = d≈ is
called the strong duality or a zero duality gap for (1) and (2). This equality does
not hold in general. In fact, some instances where the gap is positive are known.
For instance, see [18]. We need to impose an assumption for the strong duality. The
assumption is called the constraint qualification (CQ). Various CQs are proposed for
the strong duality for more general convex programming problems. For the strong
duality for (1) and its dual (2), Slater’s CQ is used well. Slater’s CQ for (1) is that there
exists a feasible solution y of (1) such that c − A≈y ∧ int(K ). Analogously, Slater’s
CQ for (2) is that there exists a feasible solution x of (2) such that x ∧ int(K ≈).
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Theorem 1 (Strong duality; see [1]) If Slater’s CQ for (1) holds and (2) is feasible,
then p≈ = d≈ and (2) has an optimal solution. Analogously, if Slater’s CQ for (2)
holds and (1) is feasible, then p≈ = d≈ and (1) has an optimal solution.

It is known that the strong duality holds under a weaker CQ than Slater’s CQ. The
generalized Slater’s CQ for (1) is that there exists a feasible solution y of (1) such that
c − A≈y ∧ relint(K ). (1) is said to be strictly feasible if the generalized Slater’s CQ
holds for (1). Analogously, Slater’s CQ for (2) is that there exists a feasible solution
x of (2) such that x ∧ relint(K ≈). The strict feasibility for (2) is also defined in a
similar manner to (1).

Theorem 2 ([21, Corollary 4.8]) If (1) satisfies the generalized Slater’s CQ and (2)
is feasible, then p≈ = d≈ and (2) has an optimal solution. Analogously, if (2) satisfies
the generalized Slater’s CQ and (1) is feasible, then p≈ = d≈ and (1) has an optimal
solution.

2.2 Examples of Conic Optimization Problems

We give some typical examples of COP. The first example is LP, which is obtained by
choosing the standard inner products of Euclidean spaces and K to be the nonnegative
orthant, i.e., K = R

n+. The strong duality for LP holds under a weaker assumption
than the strict feasibility.

Theorem 3 (Strong duality for LP; see [15]) Suppose that both an LP problem and
its dual are feasible. Then, the optimal values are the same and both problems have
optimal solutions.

It is well-known that LP can be solved in polynomial time by the ellipsoid method.
However, the ellipsoid method is not so fast in practice. Instead of it, the simplex
method and interior-point methods are used well practically. See [1, 15] and refer-
ences therein.

The second one is SOCP, which is obtained by setting

K =
{

x = (x1, x2, x3, . . . , xn) ∧ R
n : x1 ∀

√
x2

2 + x2
3 + · · · x2

n

⎧
,

and the standard inner products of Euclidean spaces. Unlike LP, the Slater’s CQ is
required for the strong duality for SOCP. See [8] for the applications.

The third example is SDP. Unlike LP and SOCP, SDP deals with symmetric matrix
variables. Sn and S

n+ denote the sets of n×n real symmetric and positive semidefinite
matrices, respectively. In general, the set S

n can be identified with R
n(n+1)/2. Let K

be the set of n×n positive semidefinite matrices. We fix ∈X, S⊂2 = ⎨n
i, j=1 Xi j Si j for

X, S ∧ S
n and ∈y, z⊂1 = ⎨m

i=1 yi zi for y, z ∧ R
m . Furthermore, for L1, . . . , Lm ∧

S
n , we define a linear map A as follows:



Strict Feasibility of Conic Optimization Problems 329

AX =
⎩
⎫

∈L1, X⊂2
...

∈Lm, X⊂2

⎬
⎭ (≥X ∧ S

n).

Then it is easy to prove A≈y = ⎨m
i=1 Li yi for all y ∧ R

m . For L0 ∧ S
n , the SDP

problem is the following problem1:

sup
y

{
∈b, y⊂1 : L0 −

m∑
i=1

yi Li ∧ S
n+

}
. (3)

For (3), the dual is

inf{∈L0, X⊂2 : ∈Li , X⊂2 = bi (i = 1, . . . , m), X ∧ S
n+, y ∧ R

m}. (4)

It should be noted that for these three cases, we have int(K ) = relint(K ), and
thus the generalized Slater’s CQ is equivalent to the Slater’s CQ.

The ellipsoid method can solve LP, SOCP, and SDP with rational coefficients in
polynomial time to any fixed given precision. However, it is not effective in practice.
Practically, PDIPMs are effective for solving SOCP and SDP problems. In fact,
under the assumption that both SDP problem (3) and its dual (4) are strictly feasible,
both problems have optimal solutions and PDIPMs converge to a pair of primal
and dual optimal solutions in polynomially many iterations. From the viewpoint of
computation for SDP problems, the assumption is necessary because PDIPMs often
become numerically unstable if the assumption fails. See [1, 18–20] for more details
on the strong duality and PDIPM, and [24, 25] for instability of computation.

A common feature among LP, SOCP, and SDP is self-dual, i.e., K ≈ = K . We
provide examples of non-self-dual case. X ∧ R

n×n is a nonnegative matrix if all
elements of X are nonnegative. We define the following sets:

C = {X ∧ S
n : x T X x ∀ 0 (x ∧ R

n+)},
C ≈ = {X ∧ S

n : X = Y Y T for some nonnegative matrix Y },
N = {X ∧ S

n : X is nonnegative matrix},
D = N ∪ S

n+.

We remark that C ≈ ← D ← S
n+ ← C and C ≈ is the dual of C with the standard inner

product in S
n .

1 We remark that the formulation (3) of SDP in this article is different from one in the article of Dr.
Fujisawa. However, one can obtain the form in the article of Dr. Fujisawa by applying the following
replacement:

b ⊃ −c, Li ⊃ −Fi .

Then, (3) can be reformulated as a minimization problem on y.
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Conic optimization problems (1) with K = C ,C ≈andD are called copositive
optimization problem, completely positive optimization problem and doubly nonneg-
ative optimization problem, respectively. Since we have C ∼= C ≈ for n > 1 and
D≈ = N + S

n+, all problem are not self-dual.
It is known that all problems are convex programming, but copositive and com-

pletely positive optimization problems are NP-hard in general. In contrast, doubly
nonnegative optimization problem can be reformulated as SDP and is solvable by
PDIPMs. See [3, 4] and references therein for the applications.

3 Strict Feasibility

3.1 Characterization of Strict Feasibility

We give a characterization of the strict feasibility of COP. When the strict feasibility
for (1) fails, the intersection of the relative interior of the closed convex cone K and
the affine space L := {c− A≈y : y ∧ R

m} is empty. It is natural to use the separation
theorem. To give the characterization, we use the following separation theorem since
the set L is polyhedral.

Theorem 4 (Separation theorem in [14, Theorem 20.2]) Assume that C and D
are nonempty convex sets and C is polyhedra. Then, the following statements are
equivalent:

1. There exists a hyperplane H ∼⊇ D which separates C and D.
2. C ∪ relint(D) = ≺.

In Proposition 1, we give the characterization of (1) where the strict feasibility fails
by using the separation theorem 4. To this end, we explain how we apply Theorem 4
to our case for the clarity of this article. See [24] for the details of the proof. Pataki
gives another shorter proof in [11].

Assume that COP (1) is not strictly feasible. Then we have

L ∪ relint(K ) = ≺.

It follows from Theorem 4 that there exist w ∧ R
n \ {0} and δ ∧ R such that

1. ∈w, s⊂2 ∞ δ ∞ ∈w, f ⊂2 (≥s ∧ L ,≥ f ∧ K ), and
2. exists f̄ ∧ K satisfying ∈w, f̄ ⊂2 > δ.

We remark that the first is obtained from the fact that a hyperplane H separates C
and D in Theorem 4. The second one is from the fact that the hyperplane H ∼⊇ D in
Theorem 4. These imply that ∈w, c⊂2 ∞ 0, A≈w = 0 and we can choose δ = 0. Since
∈w, f ⊂2 ∀ 0 for all f ∧ K , we have w ∧ K ≈.

If ∈w, c⊂2 < 0, then COP (1) is infeasible. In fact, let ȳ be a feasible solution of
COP (1). Then, we have
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0 ∞ ∈w, c − A≈ ȳ⊂2 = ∈w, c⊂2 < 0,

which implies that COP (1) is infeasible.
Assume that ∈w, c⊂2 = 0. Here {w}⊥ denotes the set {s ∧ R

n : ∈s, w⊂2 = 0}. Then
it is easy to see that L ← {w}⊥, and thus

L ∪ K = L ∪ {w}⊥ ∪ K .

Since there exists f̄ ∧ K satisfying ∈w, f̄ ⊂2 > δ, we obtain K � K ∪ {w}⊥.
We make a summary of the these result in Proposition 1.

Proposition 1 SupposeL ∪relint(K ) is empty. Then, there exists a nonzero w ∧ K ≈
such that Aw = 0 and ∈c, w⊂2 ∞ 0. Furthermore, if ∈c, w⊂2 < 0, then (1) is infeasible.
Otherwise, F := K ∪ {w}⊥ � K and L ∪ F = L ∪ K .

It should be noted that if COP (1) is feasible, but not strictly feasible, then it is
equivalent to the following optimization problem (5):

sup
y

{∈b, y⊂1 : c − A≈y ∧ F, y ∧ R
m}. (5)

One can reformulate (2) as the form of (1). See [24] for the reformulation. Con-
sequently, Proposition 1 for the dual (2) holds and is provided as follows:

Corollary 1 LetM = {x ∧ R
n : Ax = b}. SupposeM ∪relint(K ≈) is empty. Then,

there exists a nonzero v ∧ R
m such that −A≈v ∧ K and ∈b, v⊂1 ∀ 0. Furthermore,

if ∈b, v⊂1 > 0, then (2) is infeasible. Otherwise, G := K ≈ ∪ {−A≈v}⊥ � K ≈ and
M ∪G = M ∪K ≈. Therefore, if (2) is feasible, then (2) is equivalent to the following
problem:

inf
x

{∈c, x⊂2 : Ax = b, x ∧ G}. (6)

3.2 Facial Reduction Algorithm for Conic Optimization Problems

Facial reduction algorithm (FRA) is proposed by Borwein and Wolkowicz, which
works on COP. FRA for (1) is based on Proposition 1 and generates a finite sequence
of COPs which are equivalent (1). If the original problem is feasible, the final problem
is strictly feasible. Otherwise, FRA detects the infeasibility of the problem. As we
have mentioned, the strong duality for (1) and (2) requires the Slater’s CQ. On the
other hand, if one applies FRA to both (1) and (2), the strong duality holds without
assuming any CQs.

We describe FRA for (1) in Algorithm 1.
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Algorithm 1: Facial Reduction Algorithm for COP (1)
Input: COP (1)
Output: Return a strictly feasible COP which is equivalent to (1) or detect the

infeasibility
begin

F ⇒− K ;
while ∇ nonzero w ∧ F≈ such that Aw = 0 and ∈c, w⊂2 ∞ 0 do

if ∈c, w⊂2 < 0 then
COP (1) is infeasible and stop;

else
F ⇒− F ∪ {w}⊥;

end
end
Return supy{∈b, y⊂2 : c − A≈y ∧ F, y ∧ R

m}
end

We remark that FRA for (1) terminates at finitely many iterations. See [11, 24]
for the details.

All resulting subsets F in Algorithm 1 are faces2 of K and FRA can reduce the
cone K in the original COP (1). This is why this algorithm is called FRA.

One can also apply FRA to (2). The FRA is based on Corollary 1 and described
in Algorithm 2. Here we use K ≈≈ = K since K is a closed convex cone.

Algorithm 2: Facial Reduction Algorithm for COP (2)
Input: COP (2)
Output: Return a strictly feasible COP which is equivalent to (2) or detect the

infeasibility
begin

G ⇒− K ≈;
while ∇ nonzero v ∧ R

m such that −A≈v ∧ G≈ and ∈b, v⊂1 ∀ 0 do
if ∈b, v⊂1 > 0 then

COP (2) is infeasible and stop;
else

G ⇒− G ∪ {−A≈v}⊥;
end

end
Return infx {∈c, x⊂2 : Ax = b, x ∧ G}

end

We here give some literature on FRA. More detailed one is described in Pataki
[11]. After FRA is proposed by Borwein and Wolkowicz, Ramana [12] proposes

2 For a given convex set C → R
n , a face of C is a convex subset D of C such that every x, y ∧ C ,

x + y ∧ D implies that x, y ∧ D. If C is polyhedral, then the definition is simpler. In fact, a face
of polyhedral set C is the intersection with a hyperplane and C . Such a face is called exposed face.
See [10, 14] for more details.
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the extended Lagrange–Slater dual to obtain a strictly feasible SDP problem for
a given SDP problem. The resulting problem is a strictly feasible SDP problem
with polynomially many variables and constraints. Ramana et al. [13] show the
relationship between FRA and extended Lagrange–Slater dual. Pataki extends FRA
and Ramana’s approach by simplifying FRA in [11].

The other approach is proposed by Luo et al. [9] and Sturm [16, 17]. Their
approach also achieves a strictly feasible COP for a given COP by expanding cones
K and its dual K ≈. The relationship between FRA by Borwein and Wolkowicz and
it is revealed in [24].

3.3 Discussion About Facial Reduction Algorithm

The difficulty in FRA in Algorithm 1 is to find w such that w ∧ K ≈ \ {0}, Aw = 0
and ∈c, w⊂2 ∞ 0. For instance, one may be able to find such a vector w by solving
following problem:

inf
w

{0 : w ∧ K ≈, Aw = 0, ∈c, w⊂2 ∞ 0, ∈ f̄ , w⊂2 = 1},

where f̄ ∧ relint(K ) is added to obtain nonzero vector w. We remark that if this
problem is infeasible, then FRA terminates since we have no nonzero w. Moreover,
COP is infeasible if w satisfies ∈c, w⊂2 < 0.

However, the computational time for solving this problem will be almost the same
as one for (1) because the scale is the almost same as (1). In this sense, applying
FRA directly to (1) may be not effective in practice. Furthermore, one cannot obtain
the exact solution w by numerical computation since it usually contains round-off
errors.

Instead of the full application of FRA, some partial ones are proposed in [5–7,
23, 26, 27]. They exploit some structure in problem which they deal with. For in-
stance, approaches proposed in [7, 23] reduce to the size of polynomial optimization
problems by using a property of polynomials. Waki and Muramatsu [22] prove that
they are partial applications of FRA. Although their approaches have no guarantees
for the strict feasibility of the resulting COPs, they are simpler and more robust
from viewpoint of computation. In fact, the computational results which have been
already reported in these papers outperform computational one in solving original
COPs. The use of partial applications of FRA will increase in the future.

Acknowledgments The author was supported by a Grant-in-Aid for JSPS Fellow 20003236 and
a Grant-in-Aid for Young Scientists (B) 22740056.
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Theory of Automata, Abstraction
and Applications

Yoshihiro Mizoguchi

Abstract We introduce computational models, such as sequential machines and
automata, using the category theory. In particular, we introduce a generalized theorem
which states the existence of the most efficient finite state automaton, called the
minimal realization. First, we introduce set theoretical elementary models using
sets and functions. We then consider a category of sequential machines which is
an abstract model of finite automata. In the category theory, we consider several
properties of compositions of morphisms. When we look at the category of sets and
functions, we describe properties using equations of compositions of functions. Since
the theory of category is a general theory, we can have many concrete properties from
a general theorem by assigning it to specific categories such as sets and functions,
linear space and linear transformations, etc.

Keywords Sequential machine · Automaton · Category theory

1 Introduction

There is a close relationship between the theory of computing and computers, but the
theory of computing predates the appearance of an electric computer. It is said that
mathematics is a study of “number,” “figure” and “motion.” The theory of computing
is a study of “motion.” Similarly, calculus is a typical mathematical subject studying
“motion.” When we study calculus, we consider the motions of numbers which
represent physical phenomena. In the theory of computing, we focus our attention
towards discrete objects such as strings or formulas, rather than towards numbers.
An object constructed by strings has a structure of a (formal) language, and it can
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represent a computation process which may treat itself. An object in the theory of
computing is not only a varying motion object, but also it may refer to itself to move.
This leads to one of the difficulties of the theory of computing.

In this paper, we introduce computational models, such as sequential machines
and automata. Of particular note, we introduce a theorem which states the existence
of the most efficient finite state automaton, which is called the minimal realization.
We also show the construction of the minimal realization. We omit general introduc-
tions of automata theory, which readers can obtain from several excellent textbooks.
We focus on introducing an abstract theory of automata, which were introduced by
Arbib and Manes [1, 2]. We pay closer attention to the theory of automata rather
than to abstract theories of categories. The theorem of the minimal realization of
an automaton is generalized as an abstract theorem of the decomposition of mor-
phisms. Once we have an abstract theorem, we can interpret it with several different
categories. When we use a category of discrete systems, we have the theorem of
the minimal realization of an automaton. When we interpret it with a category of
nondiscrete linear spaces, we can consider a minimal realization of a linear sys-
tem represented by differential equations. This means that we can prove different
kinds of theorems using the same abstract proof through the theory of categories.
We sometimes consider optimalities where we are not aware of the notion of their
formalizations. The abstract formalization may guide us in formalizing properties
such as vague optimalities. When we can formulate a property which we want to
minimize, it could be easy to find a way to minimize it. An abstraction using the
theory of categories is the first step to solving such problems.

In the 1930s, Alan Turing introduced a formal computational model which is
now called a “Turing Machine.” He studied computabilities and the notion of the
universality of computations. A string written in a tape of a computational model
represents a number. Computations are manipulated by represented strings. The study
of a finite automaton, which is a kind of computational model using strings, started
in the 1950s. The first publication related to this was a collected paper published in
1956 by McCarthy and Shannon, who is now famous as a founder of information
theory [3]. At that time, they investigated it as an abstract model of sequential circuits
and considered several properties between input strings and output strings [4]. After
the notion of an accepting using a subset of a state set was introduced, the theory of
automata was established with the formal language theory. The first paper on a finite
automaton was written by Rabin and Scott in 1959 [5, 6], who received the ACM
Turing award in 1976 for their contributions. Nowadays, formal language theory has
expanded the areas covered by their work to include “machine translation,” “database
theory,” and “artificial intelligence.”

The annual Language and Automata Theory and Applications (LATA) confer-
ence now provides a popular forum for discussion of these concepts [7]. Studies
of cellular automata as a model of parallel computations are attracting much inter-
est and theoretical studies of cellular automata are published at the international
workshop on Cellular Automata and Discrete Complex Systems supported by the
TC-1 working group 1.5 of the International Federation for Information Process-
ing [8]. Further application areas of cellular automata include modeling biological,
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physical, or chemical systems, image processing, pattern recognition, parallel com-
puting, hardware circuits and architectures, and traffic control. Such applications
were recently discussed at the annual Cellular Automata for Research and Industry
(ACRI) conference [9].

A theory of automata as a formalism of computation is used to verify programs
using inference rules of symbolic logic. Extensions of automata models and logical
systems are investigated. When we consider a system such as engineering system,
social system, economic system or environmental system, we formalize precondi-
tions of an object, expressions of behaviors, and states of an object. We describe the
relations of those formalized objects as a function or a relation between structured
sets. Such theoretical study of systems using formalism is called the general systems
theory. We prove the correctness of a system by inducing formally described sys-
tem behaviors through formally described preconditions. Usually, we use a specific
formal system for corresponding problems. However, it is also important to arrange
results and properties induced by an abstract system using the category theory. This
article is an introduction to describing a system using terms of the category theory.
In particular, we introduce the theory of automata using it.

2 Sequential Machines

Figure 1 shows an example of a primitive element of sequential circuits, an RS-flipflop
(“reset-set” type flipflop). Outputs change sequentially according to inputs. The set
of outputs is Y = {0, 1}, where 0 and 1 represent “On” and “Off,” respectively. There
are two input lines “S(et)” and “R(eset).” We denote inputs as one string “SR” and
consider it as a binary number. That is, an input is an element of X = {0 = (00), 1 =
(01), 2 = (10)}. The set of states is Q = {a, b} and the circuit system is defined by
a state transition function δ : Q × X ∈ Q and an output function β : Q ∈ Y in the
table shown in Fig. 2. The RS-flipflop is modeled as a sequential machine defined
by X , Q, Y , δ, and β. When an input is x , a state q changes to the state δ(q, x).
The above Fig. 1 shows inputs “02021021” and outputs “0110010” from the first
state a. The state transition diagram of the sequential machine is shown on the right
side of Fig. 2. A vertex with an output represents a state and an edge with an input
represents a transition. For an input string, we follow edges with input symbols and
get transitions of states and output symbols.

A sequential circuit is considered as a function from an input string to an output
string; i.e., a function f : X⊂ ∈ Y ⊂ from X⊂ to Y ⊂, where X⊂ is a set of strings over X
including an empty string ε. A sequential circuit is formalized as a sequential machine
defined by a state set, a transition function, and an output function. We consider
problems such as ‘Which kind of string functions are represented by a sequential
machine ?’ and ‘How many states do we need to represent a string function?’.

Proposition 1 (surjection-injection factorization) Let F : X ∈ Y be a function
from a set X to a set Y . There exists a surjection e : X ∈ Z and an injection
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1 0 0 1 0 0 0

0 1 0 0 0 1 0

1 2 0 1 0 2 0
0 1 0 0 1 1 0

R

S Q

Fig. 1 Example: RS-flipflop circuit

q x δ (q, x)
a 0 a

a 1 a

a 2 b

b 0 b

b 1 a

b 2 b

q β (q)
a 0

b 1
a/0

0 or 1

b/12
1

0 or 2

Fig. 2 A state transition diagram of a sequential machine with a state transition function δ and an
output function β

m : Z ∈ Y such that F(x) = m(e(x)) (x → X).1 The set Z is uniquely defined
without isomorphic set and Z ⊃= F(X) = {F(x) | x → X}. In addition, Z ⊃= X/ ⊃
= {[x] | x → X} where the equivalent relation ⊃ over X is defined by [x ⊃ x ∧ iff
F(x) = F(x ∧)] and [x] is an equivalent class {x ∧ → X | x ⊃ x ∧} (Fig. 3).

Definition 1 Let Q be a state set, Y a finite set of input symbols, δ : Q × X ∈ Q a
state transition function, β : Q ∈ Y an output function and q0 → Q an initial state.
The sextuple M = (Q, X, Y, δ, β, q0) is a finite state sequential machine.2

A state transition function δ : Q × X ∈ Q can be extended to a function
δ⊂ : Q × X⊂ ∈ Q by defining δ⊂(q, ε) = q and δ⊂(q, xw) = δ⊂(δ(q, x), w)

(q → Q, x → X , w → X⊂). A function f : X⊂ ∈ Y can be generalized to a function
f⊂ : X⊂ ∈ Y ⊂ by defining f⊂(ε) = f (ε) and f⊂(wx) = f⊂(w) f (wx) (x → X , w →
X⊂). Let M = (Q, X, Y, δ, β, q0) be a sequential machine. A generalized function
fM⊂ : X⊂ ∈ Y ⊂ of a function fM : X⊂ ∈ Y defined by fM(w) = β(δ⊂(q0, w))

(w → X⊂) is representing a relation between the input string and the output string.

1 e : X ∈ Z is a surjection if for any element z → Z , there exists an element x → X such that
e(x) = z. m : Z ∈ Y is an injection if m(z1) ←= m(z2) for any elements z1, z2 → Z and z1 ←= z2.
2 We follow the definition of the Moore type sequential machine. The Mealy type sequential machine
uses an output function λ : Q × X ∈ Y instead of β. These two models are equivalent. If we omit
the output for an initial state, they are mutually transformable. We note that there is no output of a
Mealy-type sequential machine for an initial state. We can define a sequential machine as a pentad
without an initial state.
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X F Y

e m

Z ∼= X/ ∼∼= F(X)

Fig. 3 Surjection–injection factorization

A function t : X⊂ ∈ Y ⊂ is realizable if there exists a sequential machine M such
that t = fM⊂. A necessary condition for a realizable function t : X⊂ ∈ Y ⊂ is that
there exists a function f : X⊂ ∈ Y such that t = f⊂. The condition is equivalent
to the condition such that for any w → X⊂, x → X there exists a y → Y such that
t (wx) = t (w)y. That is, the first part of t (wx) is dependent on just w and independent
of x . A function t : X⊂ ∈ Y ⊂ satisfying the condition is called a sequential function.

Next we construct two sequential machines M satisfying f = fM for a given func-
tion f : X⊂ ∈ Y . The first machine is the most symbolical sequential machine. The
state set of the machine is the set of all input strings. That is MI = (X⊂, X, Y, δI , f, ε)
where δI (w, x) = wx (w → X⊂, x → X ). The second machine is the most abstract
sequential machine. The state set of the machine is the set of all functions between
input strings to output symbols. That is MT = (Y X⊂

, X, Y, δT , βT , f ) where Y X⊂
is a

set { f | f : X⊂ ∈ Y } of all functions from X⊂ to Y . The function δT ( f, x) : X⊂ ∈ Y
is defined by δT ( f, x)(w) = f (xw) (x → X , w → X⊂) and βT ( f ) = f (ε) ( f → Y X⊂

).
For those two sequential machines, we have f = fMI = fMT . Note, however, that
neither MI nor MT is a finite sequential machine.

What kind of function f : X⊂ ∈ Y is realized by a finite sequential machine?

A solution is inside the sequential machine MT . We do not use all states in MT . We
use a state δT ( f, w) for some string w, where f is an initial state of MT . The finiteness
of an above state set is important. If a set Z = {δ⊂

T ( f, w) → Y X⊂ | w → X⊂} is finite,
then M is realized by a finite sequential machine. Let F : X⊂ ∈ Y X⊂

be a function
defined by F(w) = δ⊂

T ( f, w) (w → X⊂). We then have Z = F(X⊂) and Z = X⊂/ ⊃
by Proposition 1. The equivalent relation(⊃) is [w ⊃ w∧ iff δ⊂

T ( f, w) = δ⊂
T ( f, w∧)].

For any z → X⊂, δ⊂
T ( f, w)(z) = δ⊂

T ( f, w∧)(z); i.e., f (wz) = f (w∧z). The number of
equivalent classes is finite, so f is realized by a finite sequential machine. Shrinking
the state set to Z , we have a finite state sequential machine. Furthermore, we can
show that the number of states is minimal.

We assume a function f : X⊂ ∈ Y is realized by a sequential machine M =
(Q, X, Y, δ, β, q0). That is, f = fM . The generalized function F : X⊂ ∈ Y X⊂

of F(w) = δ⊂
T ( fM , w) can be decomposed into a composition of fe : X⊂ ∈ Q

and fm : Q ∈ Y X⊂
such that F(w) = fm( fe(w)), where fe(w) = δ⊂(q0, w) and
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X∗ ×X YX∗ ×X

{∗} ε
X∗

δI

F=δ ∗
T ( f ,−)

YX∗

δT

βT Y

fe=δ∗(q0,−) fm(q)=β·δ∗(q,−)

Q

Fig. 4 MI = (X⊂, X, Y, δI , f, ε) and MT = (Y X⊂
, X, Y, δT , βT , f )

fm(q)(w) = β(δ⊂(q, w)) (w → X⊂, q → Q).3 If fe is a surjection, then we say M
is reachable. If fm is an injection, then we say M is observable or reduced. We
can show that a reachable and observable sequential machine M is a minimal state
realization of f = fM .

If fm : Q ∈ Y X⊂
is not an injection, we can construct a minimal state sequential

machine by decomposing fm into a composition of a surjection and an injection. The
equivalent relation ⊃ on Q is [q ⊃ q ∧ iff fm(q) = fm(q ∧)]. That is, fm(q)(w) =
fm(q ∧)(w) for any w → X⊂. This means β(δ⊂(q, w)) = β(δ⊂(q ∧, w)) for any w → X⊂.
When the size n of the state set Q is finite, it is sufficient to check β(δ⊂(q, w)) =
β(δ⊂(q ∧, w)) only for w → X⊂ and |w| ≈ n. Since we can check q ⊃ q ∧ in finite
steps, we have an algorithm to construct a minimal state sequential machine from a
given finite state sequential machine (Fig. 4).

3 Minimal Realization of a Sequential Machine

In this section, we consider a category of sequential machine which is an abstract
model of finite automata. In the category theory, we consider several properties
of compositions of morphisms. When we see the category of sets and functions,
we describe properties using equations of the compositions of functions. Since the
theory of category is a general theory, we can have many concrete properties from a
general theorem assigning it to specific categories such as sets and functions, linear
space and linear transformations, etc. A list for further reading on the category theory
is given in another textbook [2, 10].

3 Note that fm(q) : X⊂ ∈ Y (q → Q).
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3.1 Category and Image Factorization System

Definition 2 A category C is a pair (Obj(C), Mor(C)) of a class of objects Obj(C)

and a class of morphisms Mor(C). A set of morphisms Mor(C)(A, B) is defined
by two objects A and B. We also denote Mor(C)(A, B) as C(A, B). A morphism
f → C(A, B) is denoted by f : A ∈ B and we refer to A as the domain of f and
B as the codomain of f . We assume the following properties for morphisms.

Property 1 A function C(A, B) × C(B, C) ∈ C(A, C) is given for any objects
A, B, and C . We denote the function value for a pair ( f, g) of f : A ∈ B and
g : B ∈ C as g · f and we call it the composition of f and g. We assume the
associative axiom h · (g · f ) = (h · g) · f for any objects A, B, C and D, and
any morphisms f : A ∈ B, g : B ∈ C and h : C ∈ D.

Property 2 There exists a special morphism idA in C(A, A) for any object A. The
function idA is called as the identity of A. We assume that idA ·g = g, f · idA = f
for any object B and morphisms f : A ∈ B and g : B ∈ A.

Example 1 The category Set of sets and functions, the category Vect of linear spaces
and linear transformations and the category Poset of partial ordered sets and order
preserving functions are examples of categories.

A morphism f : A ∈ B is an epimorphism if ?g1 · f = g2 · f ≤ g1 = g2? for
any object C → Obj and morphisms g1 : B ∈ C and g2 : B ∈ C . An epimorphism
is denoted as f : A � B.

A morphism f : B ∈ C is an monomorphism if? f ·g1 = f ·g2 ≤ g1 = g2? for
any object A → Obj and morphisms g1 : A ∈ B and g2 : A ∈ B. A monomorphism
is denoted as f : B � C .

Example 2 In the category of Set, an injection is equivalent to a monomorphism,
and a surjection is equivalent to an epimorphism.

Definition 3 A morphism f : A ∈ B is an isomorphism if there exists a morphism
g : B ∈ A such that g · f = idA and f · g = idB . We call such a g an inverse of f
and A and B are isomorphic and denote A ⊃= B.

Definition 4 A pair of classes of morphisms (E, M) is an image factorization system
for a category C if the following properties hold.

Property 1 For any e : A ∈ B and e∧ : B ∈ C in E, e∧ · e : A ∈ C is in E. For
any m : A ∈ B and m∧ : B ∈ C in M, m ∧ · m : A ∈ C is in M.

Property 2 Any element in E is an epimorphism. Any element in M is a monomor-
phism.

Property 3 An isomorphism is in both E and M.
Property 4 Any morphism f : A ∈ B is decomposed into a composition of an

element e : A ∈ C in E and an element m : C ∈ B in M such that f = m · e.
The decomposition is unique up to isomorphism. That is, if there exists another
decomposition f = m∧ · e∧ of e∧ : A ∈ C ∧ in E and m : C ∧ ∈ B in M then
ψ · e = e∧ and m∧ · ψ = m for some isomorphism ψ : C ∈ C ∧.
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A
e C

e
m

C

ψ

................

m
B

Example 3 Let (E, M) be a pair of morphisms where E = { f | f is a surjection}
and M = { f | f is an injection}. (E, M) is then an image factorization system for
the category Set.

Theorem 1 Let (E, M) be an image factorization system. Let e → E and m → M.
Consider the following commutative diagram. If g · e = m · f then there exists a
unique morphism h : B ∈ C such that h · e = f and m · h = g.

A
e

B

.
..
..
..
..
..
..
.

h

C

f

m D

g

3.2 Category of Sequential Machines

Let Σ be a set of inputs, Q a set of states, δ : Q ×Σ ∈ Q a state transition function,
q0 : 1 ∈ Q a function for an initial state, Y a set of outputs and β : Q ∈ Y an
output function where 1 is the terminal object in the category Set; i.e, a one point set
1 = {⊂}. We call a sextuple M = (Σ, Q, δ, q0, Y, β) as a sequential machine.

A function q0 : 1 ∈ Q can be identified as an element q0(⊂) in Q, so we call
q0 as an initial state. If Y = {0, 1}, then β : Q ∈ Y can be considered a subset
Fβ = {q → Q|β(q) = 1} of Q. We call the subset Fβ as the set of final states. Thus,
a sequential machine is a generalization of a finite state automaton. We denote a state
at time 0 as q(0) = q0. Let an input symbol and a state at time t be x(t) and q(t),
respectively. Then the output at time t is settled y(t) = β(q(t)) and the state at time
t + 1 is settled q(t + 1) = δ(q(t), x(t)).

Definition 5 Let Σ be a set of inputs. An object of the category Dyn(Σ) is a pair
(Q, δ) of a set Q and a function δ : Q × Σ ∈ Q. We refer to the objects of the
category Dyn(Σ) as Σ-dynamics. Let (Q∧, δ∧) be another Σ-dynamics. A morphism
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h : (Q, δ) ∈ (Q∧, δ∧) of the category Dyn(Σ) is a function h : Q ∈ Q∧ satisfy the
following commutative diagram.

Q× Σ
δ

Q

Q × Σ

h× idΣ

δ
Q

h

We call a morphism of Dyn(Σ) a dynamorphism. The composition of dynamor-
phisms is defined by the composition in the category Set.

It is easy to see that Dyn(Σ) is a category.

Definition 6 Let Σ be a set of inputs and Y a set of outputs. An object of
the category Mach(Σ, Y ) is a sequential machine M = (Σ, Q, δ, q0, Y, β). Let
M ∧ = (Σ, Q∧, δ∧, q ∧

0, Y, β ∧) be another object. A morphism h : M ∈ M ∧ of the cat-
egory Mach(Σ, Y ) is a dynamorphism h : (Q, δ) ∈ (Q∧, δ∧) satisfy the following
commutative diagram.

We call a morphism of Mach(Σ, Y ) a simulation. We say for such M and M ∧ that
M simulates M ∧.

1
q

0 Q

q
0

β

Q

h

β
Y

Definition 7 Let Q be a set, μ0 Q : (Q × Σ⊂) × Σ ∈ Q × Σ⊂ a function defined
by μ0 Q((q, w), x) = (q, wx). Then, (Q × Σ⊂, μ0 Q) is a Σ-dynamics. We call
(Q × Σ⊂, μ0 Q) the free dynamics.

Theorem 2 (Left Adjoint) Let ηQ0 : Q0 ∈ Q0 × Σ⊂ be a function defined by
ηQ0(q) = (q, ε). For any Σ-dynamics (Q, δ) and a function f : Q0 ∈ Q, there
exists a unique dynamorphism r f : (Q × Σ⊂, μ0 Q) ∈ (Q, δ) that satisfies the
following commutative diagrams.
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Q
0

ηQ0 Q
0 × Σ ∗

f

Q

rf

(Q0 ×Σ ∗) ×Σ
r f ×idΣ

Q× Σ

Q0 ×Σ ∗

μ0Q0

r f
Q

δ

Definition 8 The function ridQ
defined in Theorem 2 is denoted by δ⊂ : Q ×Σ⊂ ∈

Q and is called the run map. The function rq0 is called the reachability map for an
initial state q0 : 1 ∈ Q. If the reachability map is an epimorphism, then we say
Σ-dynamics (Q, δ) is reachable.

Definition 9 Let Y be an output set, LY : Y Σ⊂ × Σ ∈ Y Σ⊂
a function defined by

LY ( f, x)(w) = f (xw). Then, (Y Σ⊂
, LY ) is a Σ-dynamics. We call (Y Σ⊂

, LY ) the
cofree dynamics on Y .

Theorem 3 (Right Adjoint) Let ΛY : Y Σ⊂ ∈ Y be a function defined by ΛY ( f ) =
f (ε). For any Σ-dynamics (Q, δ) and a function β : Q ∈ Y , there exists a unique
dynamorphism σβ : (Q, δ) ∈ (Y Σ⊂

, LY ) that satisfies the following commutative
diagrams.

Y
ΛY

Y Σ ∗

β

Q

σβ

Q × Σ
σβ × idΣ

Y
Σ ∗
× Σ

Q

δ

σβ
Y

Σ ∗

LY

The function σβ : Q ∈ Y Σ⊂
defined in Theorem3 for an output function β : Q ∈

Y is called the observable map. If an observable map is an monomorphism, then we
say Σ-dynamics (Q, δ) is observable. Let M = (Σ, Q, δ, q0, Y, β) be a sequential
machine, rq0 : Σ⊂ ∈ Q a reachable map and σβ : Q ∈ Y Σ⊂

an observable map.
We call the composition τM = σ ⊂

β · rq0 : Σ⊂ ∈ Y Σ⊂
the total response map.4 If

a dynamorphism τ : (Σ⊂, μ01) ∈ (Y Σ⊂
, LY ) is equal to a total response map τM

of a sequential machine M , we say M is a realization of τ . If a realization M0 of a
dynamorphism τ : (Σ⊂, μ01) ∈ (Y Σ, LY ) is reachable and observable, we say it
is a minimal realization.

Example 4 Let τ : (Σ⊂, μ01) ∈ (Y Σ⊂
, LY )be a dynamorphism. MI = (Σ,Σ⊂, μ0

1, η1, Y,ΛY · τ) and MT = (Σ, Y Σ⊂
, LY, τ · η1, Y,ΛY ) are realizations. MI is

reachable and MT is observable.

4 Note that the total response map is a dynamorphism. τM : (Σ⊂, μ01) ∈ (Y Σ⊂
, LY ).
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Proposition 2 If there exists a simulation h : M ∈ M ∧ in the category Mach(Σ, Y ),
then the total response maps of M and M ∧ are equal.

Theorem 4 Let h : (Q, δ) ∈ (Q∧, δ∧) be a morphism in the category Dyn(Σ) and
h = m ·e is an image factorization of a function h : Q ∈ Q∧ in the category Set. Then
there exists a unique Σ-dynamics (h(Q), δ∧∧) that satisfies the following commutative
diagram. That is e : (Q, δ) ∈ (h(Q), δ∧∧) and m : (h(Q), δ∧∧) ∈ (Q∧, δ∧) are
dynamorphisms.

Q×Σ e×Σ
h(Q) ×Σ m×Σ

Q ×Σ

Q

δ

e
h(Q)

δ

...............

d
Q

δ

Corollary 1 Let D be a class of dynamorphisms, ED = { f → D | f is a surjection}
and MD = { f → D | f is a injection}. Then (ED, MD) is an image factorization
system for the category Dyn(Σ).

Theorem 5 (Simulation) Let τ : (Σ⊂, μ01) ∈ (Y Σ⊂
, LY ) be a dynamorphism.

There exists a unique simulation h : M ∈ M ∧ from a reachable realization M of τ

to an observable realization M ∧ of τ .

Proof Let τM = σ ·r and τM ∧ = σ ∧ ·r ∧. There exists a unique morphism h : Q ∈ Q∧
that satisfies the following diagram by Theorem 1.

Σ ∗ r Q

..
..

..
..

..
..

..

h

Q

r

σ
Y Σ ∗

σ

Since r is an epimorphism, h is a dynamorphism and h : M ∈ M ∧ is a
simulation. ∀≥
Theorem 6 (Minimal Realization) There exists a minimal realization M ∧ for any
dynamorphism τ : (Σ⊂, μ01) ∈ (Y Σ⊂

, LY ). For any reachable realization M
there exists a unique simulation h : M ∈ M ∧. For any observable realization M ∧∧
there exists a unique simulation h∧ : M ∧ ∈ M ∧∧.



348 Y. Mizoguchi

4 Conclusion

We can consider Theorem 6 as a general theorem for a category with an image fac-
torization system. The minimal realization theorem of finite automata is considered
as the theorem for the category of sets and functions. The minimal realization of
linear systems described by differential equations is considered in the category of
linear spaces and linear transformations.

When we find properties of new vague objects in a specific problem, it may be
ambiguous to describe the property itself. If you turn your eyes to use generalizations
and you describe problems using abstract notions of the category theory, you may see
some way to describe properties and objects in a specific problem. It is important to
investigate an image factorization system of dynamic morphisms, adjoint functors,
free dynamic systems, and cofree dynamic systems when considering extensions of
automata. When we can formulate a property which we want to solve, it can become
easy to find a way to solve it.
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Markov Chain Monte Carlo Algorithms

Osamu Maruyama

Abstract Markov chain Monte Carlo (MCMC) methods are a general framework of
algorithms for generating samples from a specified probability distribution. They are
useful when direct sampling from the distribution is unknown. This article describes
theory of MCMC, presents two typical MCMC algorithms (Metropolis-Hastings and
Gibbs sampling) and three tempering methods (simulated tempering, parallel tem-
pering, and simulated annealing), and discusses the application of MCMC methods
to a prediction problem in systems biology.

Keywords Markov chain Monte Carlo · MCMC · Metropolis-Hastings · Gibbs
sampling · Simulated tempering · Parallel tempering · Simulated annealing

1 Introduction

Markov chain Monte Carlo (MCMC) methods are a family of algorithms for sampling
from a probability distribution, using the property that a Markov chain converges to
a unique stationary distribution under some condition (see, for example, [12, 20]).
In physics, statistics, computer science, and other research fields, sampling from
particular probability distributions is often required. However, direct sampling algo-
rithms are unknown for many of these distributions. MCMC methods can generally
be used for generating the sample. In this article, we focus on MCMC algorithms
and describe two representative ones and their extensions.

MCMC sampling algorithms can also be used to optimize a scoring function
f (x) for which the optimal value is the minimum of f . For a probability distribution
formulated as
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π(x) ∈ exp

(
− f (x)

T

)

from f (x) and temperature parameter T > 0, the higher the π(x) the more optimal
the f (x). This means that the optimization problem can be solved by finding the
state x⊂ with the highest probability,

The rest of the article is organized as follows. Section 2 describes theory of
MCMC. The Metropolis-Hastings algorithm and the Gibbs sampling algorithm are
presented in Sect. 3. Section 4 presents three tempering techniques that are useful for
multimodal probability distributions. Lastly, an application of MCMC is discussed
in Sect. 5.

2 Theory of Markov Chain Monte Carlo

2.1 Markov Chain

Let X (n) be random variables for n = 0, 1, . . ., and let P(X (n)) represent the prob-
ability distribution of X (n). A sequence of random variables, (X (0), X (1), . . .), is
called a Markov chain if

P(X (n+1) = x |X (0) = x (0), X (1) = x(1), . . . , X (n) = x(n)) = P(X (n+1) = x |X (n) = x (n))

for all n and x, x(0), x (1), . . . , x (n). This property is called the Markov property.
A possible value taken by the random variables is called a state. We assume here

that the set of all states is finite and that the states are indexed from one to |S|,
respectively, for the sake of simplicity. This set is often called a state space, and here
we denote it by S.

A Markov chain is said to be time-homogeneous if

P(X (n+1) = j |X (n) = i) = P(X (n) = j |X (n−1) = i)

for all n. The Markov chain discussed here is a time-homogeneous one.
Since the state space is finite, the transition probability distribution can be rep-

resented by an |S|-dimensional matrix in which the (i, j)th element, which is equal
to

W (i, j) = P
⎧

X (n+1) = j |X (n) = i
⎨

,

is called the transition probability from state i to j . The corresponding |S|-
dimensional square matrix, W = [W (i, j)], is called a transition matrix. Note that

⎩
j

W (i, j) = 1.
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2.2 Convergence to Stationary Distribution

A probability distribution, π , over S is called a stationary distribution if

π( j) =
|S|⎩

i=1

π(i)W (i, j)

for any state j → S. A Markov chain with transition matrix W , is said to be ergodic
if there exists a positive integer M such that

W M (i, j) > 0

for an arbitrary pair of states, i, j → S, where W M is the M th matrix power of W .
For an ergodic Markov chain of W , the stationary distribution of W is known to be
unique.

We now consider the infinite sequence of probability distributions, π(n) with
π(n)( j) = P(Xn = j), for n = 0, 1, . . ., that are generated by repeatedly applying
W to π(n−1) in the following way:

π(n)( j) =
|S|⎩

i=1

π(n−1)(i)W (i, j), (1)

where π(0) is an initial probability distribution. This can be also expressed as

π(n)( j) =
|S|⎩

i=1

π(0)(i)W n(i, j).

Theorem 1 Let W be a transition matrix over a state space S and for which the
Markov chain is ergodic, and let π be the stationary distribution of W . The infinite
sequence of probability distributions, π(0), π(1), . . ., converges to π :

lim
n⊃∧ π(n)(i) = π(i).

We now prove this theorem in a simple way [9]. The ergodicity of W implies that
there exists a positive integer M such that any two states are reachable to each other
with exactly M transitions by W . Thus, W is replaced with the transition matrix of
the M th matrix power of W . The resulting matrix satisfies W (i, j) > 0 for every
pair of (i, j). This property gives the next lemma.

Lemma 1 Suppose that π is a probability distribution over S and that W is a
transition matrix on S and its Markov chain is ergodic. For π and W , there exists a
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real number, c, in (0, 1) such that, for an arbitrary probability distribution, U, we
have ⎩

i

U (i)W (i, j) = cπ( j) + (1 − c)R( j),

where R is a probability distribution.

Proof For the sake of simplicity, the resulting probability distribution on the left side
of the above equation is denoted by V ( j), i.e.,

V ( j) =
⎩

i

U (i)W (i, j).

For each state j , a lower bound on V ( j) can be obtained as follows:

V ( j) ← min
k

W (k, j)
⎩

i

U (i) = min
k

W (k, j)

Recall that
min

k
W (k, j) > 0.

Thus, there exists a constant c j > 0 such that

min
k

W (k, j) > c jπ( j).

Then the next is obtained:
min

k
W (k, j) > cπ( j)

for any state j , where
c = min

j
c j .

Note that c > 0. If c ← 1, c is replaced with c < 1. Even then, the above equation
still holds. Thus, we have

V ( j) ← cπ( j). (2)

We then define

R( j) = 1

1 − c
(V ( j) − cπ( j)) .

From Eq. (2) and 1 − c > 0, we have R( j) ← 0. From the above equation, we have

V ( j) = cπ( j) + (1 − c)R( j).

After the summations of both sides, R satisfies
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⎩
j

R( j) = 1.

In addition to the above equation, we have already shown that R( j) ← 0. Both mean
that R( j) ≈ 1. Thus, R is a probability distribution over S. �

We are now ready to prove Theorem 1 directly. Recall that π(0) is the initial
probability distribution. Applying Lemma 1 to π(0) gives

π(1)( j) =
⎩

i

π(0)(i)W (i, j) = cπ( j) + (1 − c)R(1)( j)

with some probability distribution R(1). Recall that c depends only on π and W . By
using the above equation and the fact that π is the stationary distribution of W , the
probability distribution of π(2), which is Eq. (1) with n = 2, can be calculated:

π(2)( j) =
⎩

i

π(1)(i)W (i, j)

= c
⎩

i

π(i)W (i, j) + (1 − c)
⎩

i

R(1)(i)W (i, j)

= cπ( j) + (1 − c)
⎩

i

R(1)(i)W (i, j).

Note that in the last equation, the assumption that π is the stationary distribution of
W is applied. Furthermore, the last term on the rightmost side of the equation can be
transformed by using Lemma 1 as follows:

⎩
i

R(1)(i)W (i, j) = cπ( j) + (1 − c)R(2)( j)

with some probability distribution, R(2). As a result, the two above equations give

π(2)( j) = (1 − (1 − c)2)π( j) + (1 − c)2 R(2)( j).

In the same way, we can show that, for n = 3, 4, . . . ,

π(n)( j) = (1 − (1 − c)t )π( j) + (1 − c)t R(n)( j)

with some probability distribution R(n). As a result, it can be shown that as 0 < c < 1
and R(n)( j) ≈ 1,

lim
n⊃∧ π(n)( j) = π( j).

The proof of Theorem 1 is thereby completed.
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2.3 Detailed Balance

Given Theorem 1, we can see that, given a transition matrix W for which the Markov
chain is ergodic, the states resulting from repeatedly taking the transitions from an
arbitrary initial state can be considered to be samples from the stationary distribution
of W . However, making the W for a particular probability distribution π is still not
trivial.

Definition 1 Let W be a transition matrix over a finite state space S and π be a
probability distribution over S. A Markov chain with W satisfies the detailed balance
condition w.r.t. π if

π(i)W (i, j) = π( j)W ( j, i) (3)

for every (i, j).

The detailed balance condition is sufficient for π to be the stationary distribution
with W because, by taking the summations of both sides of Eq. 3 over S, respectively,
we have ⎩

i

π(i)W (i, j) =
⎩

i

π( j)W ( j, i) = π( j)

for every j → S. Note that, in the case where W (i, j) = 0, if W ( j, i) = 0, the
detailed balance condition at (i, j) trivially holds for any π .

The discussion so far is valid on a finite state space. It is also basically valid on
continuous state spaces (see, for example, [18]).

The Metropolis-Hastings algorithm, which is presented in the next section, satis-
fies the detailed balance condition.

3 MCMC Sampling Algorithms

Two typical MCMC methods are the Metropolis-Hastings algorithm and the Gibbs
sampling algorithm.

3.1 Metropolis-Hastings Algorithm

As shown in Algorithm 1, the Metropolis-Hastings algorithm [7] repeatedly moves
the current state to another state probabilistically. Distribution Q(x, x≤) is formulated
over states x≤, conditioned on current state x. It thus holds that

∑
x≤ Q(x, x≤) = 1

for every x. The distribution is called a proposal distribution. In each iteration, a
candidate for the next state, x≤, is randomly proposed accordance with Q(x, x≤).
Then, with a probability of

r = min

⎫
1,

π
⎬
x≤⎭ Q

⎬
x≤, x

⎭
π (x) Q (x, x≤)

}
,
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Algorithm 1 Metropolis-Hastings algorithm. The target probability distribution from
which samples are generated is π . N is the number of iterations.

Let x(0) be the initial state
x = x(0)

for n = 0 to N do
x≤ ∀ Q(x, x≤)

r = min

⎫
1,

π
⎬
x≤⎭ Q

⎬
x≤, x

⎭
π (x) Q (x, x≤)

}

R ∀ Uniform(0, 1)

if r > R then
x = x≤

end if
end for

x is replaced with the proposed state, x≤. With the remaining probability, nothing
is done (x is used again as the current state in the next iteration). The algorithm
repeatedly performs this iteration. A sequence of states generated by the Metropolis-
Hastings algorithm satisfies the Markov property, because the next state is proba-
bilistically determined from only the previous one.

One of the advantages of the Metropolis-Hastings algorithm is that, even if the
partition function of a target probability distribution, π , is unknown, the algorithm
works because π is used only in the form π(x≤)/π(x). This feature is quite helpful
because it is often difficult to calculate the partition function from a probability
density function without the partition function.

It can be easily shown that every iteration of the Metropolis-Hastings algorithm
satisfies the detailed balance condition. Suppose that x is the current state and that
candidate state x≤ is proposed for the next iteration. We denote by W (x, x≤) the
resulting transition probability of moving from x to x≤, which can be described as
follows. It is enough to consider the case in which π(x) > 0, π(x≤) > 0, and x ≥= x≤.

If r ← 1, we have

W (x, x≤) = Q(x, x≤), (4)

W (x≤, x) = Q(x≤, x) × π(x)Q(x, x≤)
π(x≤)Q(x≤, x)

, (5)

and otherwise

W (x, x≤) = Q(x, x≤) × π(x≤)Q(x≤, x)

π(x)Q(x, x≤)
,

W (x≤, x) = Q(x≤, x).

In the first case, the next equation can be obtained by respectively dividing both sides
of Eq. (4) by both sides of Eq. (5):
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W (x, x≤)
W (x≤, x)

= π(x≤)
π(x)

.

This means that π and W satisfy the detailed balance condition. The same result can
be shown for the second case. Consequently, π is guaranteed to be the stationary
distribution of W .

It is almost trivial that there is no need that a single transition of the Metropolis-
Hastings should be ergodic. It is sufficient that a finite sequence of transitions is
ergodic for the corresponding Markov chain to converge to the stationary distribution.
It would be easy to formulate such transitions in most cases.

Furthermore, it can be seen that there is no need to repeatedly use the same pro-
posal distribution, Q(x, x≤), for every transition. Let Q1, Q2, . . . , QK be K different
"base" proposal distributions, and let WQ1 , WQ2 , . . . , WQK be the resulting transi-
tions. Suppose, at every iteration, the Metropolis-Hastings algorithm is allowed to
choose Qk with probability αk . The resulting transition probability distribution is
expressed as

W (x, x≤) =
K⎩

k=1

αk WQk (x, x≤).

Alternatively, the algorithm can use the base proposal distributions successively. The
transition probability distribution with this scheme is

W (x, x≤) =
⎩
x1

. . .
⎩
xK−1

WQ1(x, x1)WQ2(x1, x2) . . . WQK (xK−1, x≤),

which is equivalent to
W = WQ1 WQ2 . . . WQK .

Typical base proposal distributions for a D-dimensional space propose a new value
for only one coordinate. For example, for state, x = (x1, x2, . . . , xD)T , the pro-
posal distribution, Qd(xd , x ≤

d), proposes a new value, x ≤
d , for the dth coordinate

(d = 1, 2, . . . , D). If the D-dimensional space is continuous, a typical proposal
distribution is Qd(xd , x ≤

d) = N (x ≤
d |xd , σ 2) where N (x ≤

d |xd , σ 2) is the Gaussian
distribution with mean xd and variance σ 2. The resulting Markov chain is trivially
ergodic.

The resulting probability distributions simulated by transitions converge to π .
Therefore, the states chosen at each transition can be considered samples from π .
By choosing states with a sufficiently long interval, we can use the resulting states
as samples from P .

If a proposal distribution is symmetric, i.e., Q(x, x≤) = Q(x≤, x), the Metropolis-
Hastings algorithm is equivalent to the Metropolis algorithm [17].
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3.2 Gibbs Sampling

Algorithm 2 Gibbs sampling algorithm. x−i is the set of all elements except xi .

Let x = (x1, x2, . . . , xD)T be a variable representing a state in a D-dimensional space
Let x(0) be the initial state
x = x(0)

for n = 1 to N do
for i → {1, 2, . . . , D} do

{choose i randomly or in sequential order}
x (n)

i ∀ π
⎧

x (n)
i

∣∣∣ x−i

⎨
xi = x (n)

i

end for{New sample x(n) =
⎧

x (n)
1 , x(n)

2 , . . . , x(n)
D

⎨T
has been created}

end for

The Gibbs sampling algorithm [4], shown in Algorithm 2, is also an MCMC
algorithm for sampling from a given multivariate probability distribution. The state
space considered here is D-dimensional. Let π be the probability distribution from
which samples are generated. The algorithm repeats the following procedure for
current state x = (x1, x2, . . . , xD)T . For each i → {1, 2, . . . , D}, xi is replaced with

a sample x (n)
i ∀ π

⎧
x (n)

i

∣∣∣ x−i

⎨
, where x−i is the set of all elements except xi . That

is, x (n)
i is sampled from the distribution of the i th element, xi , conditioned on all

other variables. The value of xi is then instantly updated with the latest sample, x (n)
i .

The Gibbs sampling algorithm is a special case of the Metropolis-Hastings algo-
rithm for the following reason. A proposal distribution can be formulated for the
Gibbs sampling algorithm although it does not explicitly appear in the algorithm.
We denote it by Q(x, x≤). Because the algorithm chooses i → {1, 2, . . . , D} and
proposes a candidate value for the i th element, Q can be represented as

Q(x, x≤) = Qindex(i)π
⎬
x ≤

i |x−i
⎭
,

where Qindex(i) is the probability of choosing the i th element. Note that for every
j ( ≥= i), x ≤

j = x j , where x = (x1, x2, . . . , xD)T and x≤ = (x ≤
1, x ≤

2, . . . , x ≤
D)T . Using

this proposal distribution, we can show that the term of r in the Metropolis-Hastings
algorithm is always equal to one:

r = π(x≤)Q(x≤, x)

π(x)Q(x, x≤) =
π(x≤)Qindex(i)π

⎧
xi |x≤−i

⎨
π(x)Qindex(i)π

⎬
x ≤

i |x−i
⎭ = π(x≤)π

⎬
xi |x−i

⎭
π(x)π

⎬
x ≤

i |x−i
⎭ = π(x≤)π (x)

π(x)π
⎬
x≤⎭ = 1.

This is why the Gibbs sampling algorithm always accepts a proposed value.
It is appropriate to use Gibbs sampling if sampling from the conditional distri-

bution, π(xi |x−i ), is easy. Otherwise, an alternative method like the Metropolis-
Hastings algorithm should be used.



358 O. Maruyama

4 Tempering

A probability distribution from which samples are generated is often designed in the
form

π(x) ∈ exp

(
− f (x)

T

)
,

where f (x) is a scoring function for which the optimal value is the minimum, and
T > 0 is a temperature parameter. This formulation is called a Boltzmann or Gibbs
distribution. In physics, f (x) corresponds to the energy of state x. The higher the
T , the more uniform the resulting probability distribution, and the lower the T , the
spikier the distribution.

The target probability distribution, π , is often multimodal. If it is, an MCMC
sampler is likely to be trapped in local modes if the temperature is low. Conversely,
an MCMC sampler increases the chance of moving to the main body of π if the tem-
perature is high. This observation led to various techniques of multi-level sampling.

4.1 Simulated Tempering

Algorithm 3 Simulated tempering algorithm.

Let
⎬
x(0), i (0)

⎭
be the initial state

(x, i) = ⎬
x(0), i (0)

⎭
for n = 1 to N do

u ∀ Uniform(0, 1)

if u ≈ α0 then
i (n) = i
x(n) is updated via the MCMC transition for πi from x

else
x(n) = x
j ∀ Qst(i, j)

rst = min

{
1,

c j π j (x)Qst( j, i)

ci πi (x)Qst(i, j)

}
R ∀ Uniform(0, 1)

if rst > R then
i (n) = j

else
i (n) = i

end if
end if
(x, i) = ⎬

x(n), i (n)
⎭

end for

In the simulated tempering algorithm [6, 15], shown in Algorithm 3, the value of
the temperature parameter in a Boltzmann distribution is also sampled from among I
predetermined temperatures, T1 < T2 < · · · < TI . The state space of the algorithm
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is thereby augmented to S × {1, 2, . . . , I }, where S is the original state space. For a
temperature Ti , the corresponding probability distribution is given as

πi (x) = 1

Zi
exp

(
− f (x)

Ti

)
,

where Zi is the partition function. The target probability distribution,

π(x, i) ∈ ciπi (x),

is then defined on the augmented state space, where ci is the weight of the i th
distribution, πi .

In each iteration of the algorithm, with some probability α0, the algorithm
simulates an MCMC transition for πi while the current temperature, Ti , remains
unchanged. With the remaining probability, j (→ I ) ∀ Qst(i, j) is proposed, and j
is accepted with probability

min

{
1,

c jπ j (x)Qst( j, i)

ciπi (x)Qst(i, j)

}

and is rejected otherwise. Usually, Qst(i, j) proposes a neighboring value, i ± 1.
Trivially, this transition also satisfies the detailed balance condition. Thus, as a whole,
this algorithm also satisfies the condition.

4.2 Parallel Tempering

The parallel tempering algorithm [5] shown in Algorithm 4 is also known as the
exchange Monte Carlo algorithm [8]. Instead of the original state being augmented
to S × {1, 2, . . . , I } as in simulated tempering, it is augmented to product space SI ,
and the I Markov chains on the space in parallel. In addition, instead of a temperature
transition as in simulated tempering, the original states in two neighboring Markov
chains are swapped.

Let (x1, x2, . . . , xI ) → SI be a state in parallel tempering. The target probability
distribution is given in the form

π(x1, x2, . . . , xI ) =
I⎡

i=1

πi (xi ),

where πi (xi ) is a probability distribution over S. Looking at Algorithm 4, we can
easily see that the detailed balance condition is satisfied.

This algorithm is called “parallel tempering” because the i th probability distrib-
ution over xi is typically tempered with a temperature, Ti ,
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Algorithm 4 Parallel tempering algorithm.

Let
⎧

x(0)
1 , x(0)

2 , . . . , x(0)
I

⎨
be the initial state in SI

(x1, x2, . . . , xI ) =
⎧

x(0)
1 , x(0)

2 , . . . , x(0)
I

⎨
for n = 1 to N do

u ∀ Uniform(0, 1)

if u ≈ α0 then
every individual state xi is updated via the i th MCMC transition for πi

else
i ∀ Uniform[1, 2, . . . , I − 1]
rpt = min

{
1,

πi (xi+1)πi+1(xi )

πi (xi )πi+1(xi+1)

}
R ∀ Uniform(0, 1)

if rpt > R then
the values of xi and xi+1 are exchanged

end if
end if

end for

πi (x) ∈ exp

(
− f (x)

Ti

)
,

where T1 < T2 < . . . < TI . Probability rpt can thus be expressed as

rpt = min

{
1, exp

((
1

Ti
− 1

Ti+1

)
(f(xi) − f(xi+1))

)}
.

It is interesting to compare the performance of these two tempering methods. For
example, Zhang and Ma [25] reported that simulated tempering is superior to parallel
tempering under certain condition.

4.3 Simulated Annealing

Simulated annealing, proposed by Kirkpatrick et al. [11], is a sampling method spe-
cialized for solving optimization problems. Let T1 > T2 > · · · > TI be monoton-
ically decreasing temperatures. For each i = 1, 2, . . . , I , an MCMC simulation is

conducted on πi ∈ exp

(
− f (x)

Ti

)
where the initial state is the last state sampled in

the previous simulation. With a high temperature, the algorithm moves globally. With
a low temperature, the algorithm moves locally. The whole simulation is not a valid
MCMC simulation; it is simply a sequence of MCMC simulations with different
temperatures.



Markov Chain Monte Carlo Algorithms 361

5 Application of MCMC

As seen in the discussion of simulated annealing, MCMC methods can be applied
to optimization problems. Successful results for the problem of predicting protein
complexes from protein-protein interactions (PPIs) have been obtained by designing
search algorithms based on the Metropolis-Hastings algorithm [22, 23]. Here we
discuss, as an example, PPSampler2 [23], a protein complex prediction tool based
on the Metropolis-Hastings algorithm.

The formulations of the state space, the scoring function, and the proposal distri-
bution can be described as follows. Let V be the set of proteins under consideration.
The input is a collection of PPIs that can be considered a subset of protein pairs from
V . Each pair has a weight representing the reliability of the interaction. Let C be a
partition of V :

C =
⎣⎤
⎦c1, . . . , cn ∞ V

∣∣∣∣∣∣
∪i, ci ≥= ∼,

⊇1 ≈i≈ nci = V,

∪i, j ( ≥= i), ci ≺ c j = ∼

⎪⎢
⎥ .

We call an element of C a cluster of proteins. Every partition of V is used as a state
in PPSampler2.

The complete scoring function

f (C) = −(g1(C) + g2(C) + g3(C)),

gives the target probability distribution,

P(C) ∈ exp

(
− f (C)

T

)
.

The first function, g1(C), is an optimization term, and the other two are regularization
terms (i.e., they control the relative frequency of the sizes of the predicted clusters and
the number of proteins in the predicted clusters, respectively). The g2(C) function is
designed on the basis of the observation that the frequency of sizes of known protein
complexes obeys a power-law. It can be observed in CYC2008 (a comprehensive
catalog of manually curated 408 heteromeric protein complexes in S. cerevisiae)
[19] for yeast and in CORUM (a comprehensive database of mammalian protein
complexes) [21] for humans.

The g1(C) function is defined as g1(C) = ∑
c→C g1(c) where

g1(c) =

⎣⎤
⎦

0 if|c| = 1,

−∧ else if|c| > Nor
∃u → c,∪v( ≥= u) → c, w({u, v}) = 0,⎩

u,v(≥=u)→c

w(u, v)⇒|c| otherwise,
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and N is the upper bound on the size of a cluster in C .
The g2(C) function is formulated as

g2(C) = −
N⎩

i=2

(ψC (i) − ψ(i))2

2σ 2
2,i

,

where ψ(i) is a power-law function,

1∑N
j=2 j−γ

· i−γ ,

of power-law parameter γ , and ψC (i) is the relative frequency of clusters of size i
in C for size i = (2, 3, . . . , N ).

The g3(C) function is formulated as

g3(C) = − (s(C) − λ)2

2σ 2
3

,

where s(C) is the number of proteins in clusters of size two or more in C , i.e.,

s(C) =
⎩

c→Cs.t. |c|←2

|c| ,

and λ is the target value of s(C).
The proposal distribution used is a rather naive one. It first randomly chooses a

protein, p. It then moves p to another cluster with the probability proportional to the
sum of the weights between p and the proteins in the cluster.

PPSampler2 returns the partition with the minimum score among the partitions
sampled. All clusters of size two or more in the found partition are used as predicted
ones.

The performance of PPSampler2 was compared with that of seven common pre-
diction tools (MCL [3], MCODE [2], DPClus [1], CMC [13], COACH [24], RRW
[14], NWE [16]) as well as with that of PPSampler [22], the previous version of
PPSampler2 [23]. The input PPIs were all PPIs in WI-PHI (a weighted yeast inter-
actome enriched for direct physical interactions) [10]. PPSampler2 is reported to
outperform the other tools in terms of the F-measure [23] due to its more sophis-
ticated scoring function. While the solution obtained by PPSampler2 might not be
optimal, it is superior to the those of the other tools [23].
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Modeling of Fluid Flows by Nonlinear
Schrödinger Equation

Yasuhide Fukumoto

Abstract Fluid flows exhibit diverse ways of their behavior, from ordered to chaotic
and turbulent motion. The Navier-Stokes or Euler equations governing such motion
are formidable as they are, and even the highest performance computers have dif-
ficulty in producing accurate and therefore useful solutions. Effort has constantly
been made for mathematically modeling flow phenomena by simplified equations,
deriving them from the Navier-Stokes equations and solving them. In this note, we
illustrate how we model the nonlinear modulation of a traveling wave, as observed
in water waves, by the nonlinear Schrödinger equation. The wave modulation is cap-
tured as the instability and bifurcation of a plane-wave solution. Behind this lies the
Hamiltonian structure of the Euler equations, and Krein’s theory of the Hamiltonian
spectra is applicable to it. We build on it a striking aspect of dissipation and diffusion
that drives instability for an otherwise stable solution.

Keywords Nonlinear Schrödinger equation · Ginzburg-Landau equation · Stokes
wave · Benjamin-Feir instability · Dissipation induced instability

1 Introduction

Fluid mechanics is a subject for understanding flows of liquids and gases and the
force exerted on bodies moving in them, and then for utilizing and further controlling
the flows. Given the boundary shape, the flow of a fluid through it is ordered when
its velocity is slow but it becomes disordered when the velocity is increased. There
are cases where disturbances are not amplified when their amplitude is small but are
amplified when their amplitude is large. The field of hydrodynamic stability ranges
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from engineering, planetary-geophysics, physics to mathematics. As its theory is
developed, the frontier of hydrodynamic stability overlaps with dynamical system,
pattern formation and singularity theory etc.

In this note, we give an exposition of how to make a mathematical modeling of phe-
nomena governed by the hydrodynamic equations, using the nonlinear Schrödinger
and the Ginzburg-Landau equations, with illustration of the concrete procedure for
stability of water waves. Using the nonlinear Schrödinger equation, we discuss sta-
bility and bifurcation of a solution. Behind this lies the Hamiltonian structure of
the Euler equations, and Krein’s theory of the Hamiltonian spectra is applicable to
it [1, 9]. We build on it a striking aspect of the effect of dissipation and diffusion
causing instability [7, 8].

2 Sketch of Derivation of the Navier-Stokes Equations

Motion of a simple fluid, like the water and the air, is governed by the Navier-Stokes
equations. Their derivation is a long process [2]. In this section, we give only a
perfume of it.

Suppose that the fluid is incompressible with its density π being uniform. We
think of the fluid as a collection of infinitely many fluid particles. A fluid particle
is not a molecule constituting the fluid, but means an infinitesimal material parcel
which includes a number of molecules. This parcel is regarded as a point in the
macroscopic description of the fluid. We introduce the Cartesian coordinates (x, y, z)
and write the position of a fluid particle at the time t as x(t) = (x(t), y(t), z(t)) =
(x1(t), x2(t), x3(t)). The velocity of the fluid at the time t and the position x(t) is
defined by

dx
dt

= u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) . (1)

The kth component of acceleration is

d2xk

dt2 = ℘uk

℘t
+

3∑
j=1

℘uk

℘x j

dx j

dt
= ℘uk

℘t
+

3∑
j=1

u j
℘uk

℘x j
= ℘uk

℘t
+

3∑
j=1

(u · ∈)uk . (2)

Inside the fluid, the material is in a state of tension; fluid parcels push and/or
pull each other. The pressure and the viscous stress are the force, per unit area,
acting on a lump of the fluid through its boundary by the surrounding fluids. The
pressure is the normal force, per unit area, acting trough the boundary of adjacent
fluid parcels pushing each other. The summation of the x-component of the pressure
force experienced by a short cylindrical region, of length ωx , with the top and the
bottom faces of area S oriented normal to the x-axis is
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p(x, y, z)S − p(x + ωx, y, z)S = −
{

℘p

℘x
(x, y, z)ωx + O

⎧
(ωx)2⎨⎩ S. (3)

If we ignore the forces other than the pressure, Newton’s second law for the short
cylindrical region under question reads, in the limit of infinitesimal ωx ,

πωV
d2x

dt2 = −℘p

℘x
ωV (ωV = Sωx) ⊂→ π

d2x

dt2 = −℘p

℘x
. (4)

The viscosity is a manifestation of resistance of a fluid parcel against distortion by
adjacent fluid parcels. This may be regarded as an internal friction. The viscous stress
acts to diffuse the momentum from a high velocity region to the neighboring smaller
velocity region, with the diffusion coefficient measured by the kinematic viscosity
ε. Other than these area forces acted on the boundary by adjacent fluid parcels, there
are body forces, like the gravity force, directly acting on each infinitesimal material
parcel, and we denote the body force per unit mass by b. With these forces taken
into account, we are led from Newton’s law to the following equations governing the
velocity field.

π

[
℘u
℘t

+ (u · ∈)u
⎫

= −∈ p + πε∈2u + πb. (5)

These are called the Navier-Stokes equations. The Navier-Stokes equations with
the viscous term being removed are called the Euler equations. In the case of the
incompressible fluid, these are supplemented by the condition of constancy in time
of the volume of an arbitrary material region Vt

d

dt

⎬
Vt

dV =
⎬

Vt

∈ · udV = 0 ⊂→ ∈ · u = 0. (6)

3 Hydrodynamic Stability and Ginzburg-Landau Equation

The body force as exemplified by the gravity force is in most cases expressed by
use of a potential function α(x) as b = −∈α. For a fluid of constant density π,
the body force πb is absorbed into the pressure term −∈ p in the Navier-Stokes
equations (5). We denote the velocity and pressure fields of the base flow to be
U0(x, t) and P0(x, t), and explore its stability. These fulfill the incompressibility
condition ∈ · U0(x, t) = 0 and the Navier-Stokes equations (5).

π

[
℘U0

℘t
+ (U0 · ∈)U0

⎫
= −∈ P0 + πε∈2U0. (7)

As a typical setting, we take a steady base flow: ℘U0/℘t = 0.
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We superpose a disturbance on it and denote the disturbance velocity and pressure
fields by ũ(x, t) and p̃(x, t). The total velocity field u(x, t) and the pressure field
p(x, t) are u = U0 + ũ and p = P0 + p̃, and they satisfy he Navier-Stokes equations
(5). By subtracting Eq. (7) for the base flow from the equations for the total field, we
are left with evolution equations governing the disturbance field as

℘ ũ
℘t

+ (U0 · ∈)ũ + (ũ · ∈)U0 + (ũ · ∈)ũ = − 1

π
∈ p̃ + ε∈2 ũ. (8)

Crudely viewing, Eq. (8) look alike the time-dependent Ginzburg-Landau equa-
tion governing a complex valued function β(x, t) (⊃ C) of the one-dimensional
space variable x and the time t [6],

℘β

℘t
+ U

℘β

℘x
= μβ + ϕ

℘2β

℘x2 − Ω|β |2β, (9)

where U , μ, ϕ and Ω are constants. In case ϕ and Ω are complex numbers, (9) is
called the complex Ginzburg-Landau equation. With a simpler form, (9) serves as a
one-dimensional toy model for the disturbance Eq. (8). Since the middle of 1960s,
an effort has been made for deriving (9) from (8) in a systematic manner, and thereby
the hydrodynamic stability theory has been substantially deepened. In the context of
fluid mechanics, (9) is called the Landau-Stuart or Stuart-Stewartson equation.

When μ = 0 and ϕ and Ω are pure imaginary, (9) is reduced to the nonlinear
Schrödinger equation. Relevant to the motion of an inviscid fluid is this case. Sub-
sequently, we shall illustrate that the stability of a water wave is described by the
nonlinear Schrödinger equation.

4 Water Wave

Let us consider waves excited on the surface z = 0 of a liquid filling the lower half
space z < 0 [11]. We take the motionless sate U0 = 0 as the base flow in the absence
of waves and restrict the wave amplitude to be infinitely small. Under this restriction,
the nonlinear term is ruled out from (5), and the viscous term may be ignored except
for small-scale phenomena. Taking account of gravity −gez as an external force per
unit mass, the Euler equations (5) are approximated by

℘u
℘t

= − 1

π
∈ p − gez, (10)

where g is the gravity acceleration, and ez is the unit vector along the z-axis, being
directed vertically upward. We recall the assumptions that the density π is constant
and that the solenoidal condition (6) is imposed on the velocity. We readily see that,
when π = const., an irrotational flow, being characterized by ∈ × u = 0, satisfies
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the curl of (5). Subsequently, we assume that the flow is irrotational. Under this
assumption, there a potential function θ for the velocity to be expressed by u = ∈θ.
In view of the condition (6), θ is ruled by the Laplace equation

∈ · ∈θ = ∈2θ = 0. (11)

Upon substitution from the relation u = ∈θ, (10) becomes

∈
⎭

℘θ

℘t
+ p

π
+ gz

)
= 0, (12)

which is integrated to yield

π
℘θ

℘t
+ p + πgz = f (t), (13)

where f (t) is an arbitrary function of t . Equation (13) is no other than the Bernoulli
theorem for a potential flow. The requirement that the pressure is equal to the
atmospheric pressure pa at the liquid surface (z = 0) selects f (t) = pa.

Supposing that the displacement of the liquid surface does not depends on y,
we write the infinitesimal displacement of the liquid surface as φ(x, t). Equating
the pressure of the liquid to the atmospheric pressure pa at the displaced surface
z = φ(x, t) yields one of the boundary conditions

℘θ

℘t
+ gφ = 0 at z = φ(x, t) ∧ 0. (14)

Within the linear approximation, we may take the free surface to be z = 0. As the
other boundary condition, we equate, at the surface (z = φ ), the normal component
of the velocity of the liquid surface z = φ(x, t) to the normal component of the
liquid velocity. From the representation F(x, z, t) = z − φ(x, t) = 0 of the liquid
surface, the normal vector at the surface is found to be n = ∈F = (−℘φ/℘x, 0, 1).
The velocity of the surface is us = (0, 0, ℘φ/℘t) and the velocity of the liquid is ∈θ.
With this form, the second boundary condition is expressed as (us − ∈θ) · n = 0,

at z = φ , which is reduced in the linear approximation to

℘φ

℘t
= ℘θ

℘z
at z = φ(x, t) ∧ 0. (15)

Elimination the variable φ , the two boundary conditions (14) and (15) collapse to a
single boundary condition on θ

℘2θ

℘t2 = −g
℘θ

℘z
at z = 0. (16)
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The motion of a liquid filling the region z < φ(x, t) below the surface is found
by solving (11). We pose a monochromatic traveling wave of the form φ(x, t) =
Re[A exp{i(kx − ωt)}] for the shape of the liquid surface. The amplitude A is a
complex number, and Re[·] designates the symbol taking the real part. The real
constants k and ω are referred to as the wavenumber and the angular frequency.
They have a link with the wavelength τ = 2π/k and the frequency f = ω/(2π).
This wave travels, without change of form, in the positive x-direction with speed
cp = ω/k. This is called the phase velocity. In keeping with the deformation of
the surface, the disturbance of the potential for the liquid velocity takes the form
θ = α(z) exp{i(kx − ωt)}. For the case of infinite depth, the condition of θ being
bounded at the bottom (z = −←) gives α ≈ exp(kz), whence the general solution
of (11) is obtained, using an arbitrary constant C , as θ = Cekzei(kx−ωt). Upon
substitution from (4), the boundary condition (16) produces, under the condition
C ≤= 0 a relation between ω and k as

ω2 = gk i.e. ω = √
gk. (17)

This is referred to as the dispersion relation.
It follows from (17) that the phase velocity is cp = ∀

g/k. On the other hand,
the derivative cg = dω/dk = ∀

g/k/2 of the dispersion relation ω = ω(k) with
respect to k is referred to as the group velocity. This velocity signifies the propagating
velocity of the wave energy. In the next section which exposes modulation of a wave,
it turns out that cg signifies the propagation velocity of a bundle of waves.

5 Wave Modulation and Nonlinear Schrödinger Equation

By an intuitive argument, the modulation of the amplitude and the phase of a wave is
shown to be described by the nonlinear Schrödinger equation. We denote the complex
function representing a wave by β = β(x, t). It would be reasonable to pose the
following nonlinear dispersion relation modified by the wave amplitude

ω − ω0(k) + ψ |β |2 = 0, (18)

where ψ is a constant [5]. Regarding the linear part, we can take ω0(k) = ∀
gk for

the case of infinite depth.
In the preceding section, we took the wave amplitude A = const. Here instead,

we suppose that the amplitude A varies (= modulates) slowly in space and in time
around k = k0 and ω = ω0(k0), and set

β = A(x, t)ei(k0x−ω0t); ω0 := ω0(k0), (19)

where the amplitude A(x, t) is a complex-valued function slowly varying in x and t .
The nonlinear dispersion relation (18) becomes, when expanded in k about k = k0,
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ω−ω0(k0)−ω≥
0(k0)(k−k0)−1

2
ω≥≥

0(k0)(k−k0)
2+ψ |β |2+O

(
(k − k0)

3
)

= 0. (20)

Here the superscript ( )≥ stands for the differentiation with respect to the argument, and
the remaining terms of the Taylor expansion are ignored. As a rule, the frequency
ω and the wavenumber k are replaced by derivative operators ω = i℘/℘t, k =
−i℘/℘x .Rewriting (20) with this displacement and substituting (19) into the resulting
equation, we arrive at the evolution equation for the amplitude A

i
℘ A

℘t
+ iω≥

0
℘ A

℘x
+ 1

2
ω≥≥

0
℘2 A

℘x2 + ψ |A|2 A = 0. (21)

where we have employed short-hand notation ω≥
0 = ω≥

0(k0) and ω≥≥
0 = ω≥≥

0(k0). This is
the nonlinear Schrödinger equation, and is now know to describe various phenomena
of nonlinear waves. The foregoing description implies that the wave modulation is
appropriately described by the nonlinear dispersion relation (18).

Compare (21) with the Ginzburg-Landau equation (9). They take the same form
except for the imaginary unit i . The second term of the nonlinear Schrödinger equa-
tion indicates that a part of amplitude variation propagates with the group velocity
ω≥

0(k0). In other words, the group velocity is literally the propagation velocity of a
group of waves. The second term is eliminated in the coordinate frame moving with
the group velocity ω≥

0(k0) in the x-direction.
The nonlinear Schrödinger equation (21) has a distinguishing feature of being

a completely integrable evolution equation. It has soliton solutions. In the case of
ψ < 0, the localized solution of permanent form is called the dark soliton. It is only
recent that the dark soliton of a water wave is observed in a laboratory experiment
[4].

6 Benjamin-Feir Instability

We consider the stability of a traveling wave governed by the nonlinear Schrödinger
equation of a general form

i At + ϕAxx + ψ |A|2 A = 0, (22)

where A = A(x, t) is a complex valued function of x and t , and the subscript stands
for the derivative with respect to the indicated variable. We take ϕ and ψ as real
constants. Returning to the definition (19), A is the amplitude function. Accordingly,
we inquire into the amplitude modulation [3] (See also [5]).
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6.1 Stokes Traveling Wave

At the outset, we seek a traveling-wave solution of (22). Inserting the solution form
A = A0 exp{i(κx − � t + ν0)}, with A0( ≤= 0) and ν0 being constants, into (22), we
have

� = ϕκ2 − ψ |A0|2. (23)

The wave (19) with the frequency provided by (23) is called the Stokes traveling
wave or simply the Stokes wave.

When rewritten for the original variable β , (19) becomes

β = A0ei[(k0+κ)x−(ω0+�)t+ν0], (24)

and the dispersion relation for the Stokes wave is therefore

ω0 + � = ω0(k0) + ϕκ2 − ψ |A0|2. (25)

In case the wavenumber increment κ = 0, (25) is reduced the nonlinear dispersion
relation (18) as expected. Hereinafter, we generalize to the cases κ ≤= 0.

Though the calculation procedure may be elegant if we treat the complex function
A as it is, the treatment of A as a pair of real functions has an advantage of exploiting
the Hamiltonian structure [3]. We express the amplitude function, in terms of two
real-valued functions u1(x, t) and u2(x, t) of the independent variables x and t , as
A = u1 + iu2. With this change of variables, the nonlinear Schrödinger equation
(22) is converted into a vector equation for the vector-valued function u = t (u1, u2)

Jut + ϕuxx + ψ ||u||2u = 0; J :=
⎭

0 −1
1 0

)
. (26)

Here superscript t designates the transpose of the following vector or matrix, therefore
u is a column vector, and ||u|| = (u2

1 + u2
2)

1/2 is an ordinary norm of the vector u.
The Stokes traveling wave (24) is written, in terms of the amplitude A0 = u01 + iu02
and the phase ν = (k0 + κ)x − (ω0 + �)t + ν0, as

⎭
u1
u2

)
= Rν

⎭
u01
u02

)
; Rν :=

⎭
cos ν − sin ν

sin ν cos ν

)
. (27)

6.2 Linear Stability of Stokes Wave

We look into time evolution of a disturbance Rν v(x, t); v = t (v1, v2), of infinitesimal
amplitude, superimposed on the Stokes wave. The amplitude vector augmented with
a disturbance
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u(x, t) = Rν [u0 + v(x, t)] (28)

is substituted into (26). Ignoring the quadratic term in disturbance amplitude and
simplifying, with the aid of JRν t + ϕRνxx + ψ ||u0||Rν = 0, and Rνx = κJRν ,

which are derived from the dispersion relation (23), we deduce, after multiplication
from the left by t Rν , the linearized equation governing the disturbance as

Jvt + 2ϕκJvx + ϕvxx + 2ψ (u0 · v)u0 = 0. (29)

Here we have used the relations t RνRν = I (I: 2 × 2 unit matrix) and t RνJRν = J.

We substitute
v(x, t) = v(t) cos δ x + w(t) sin δ x (30)

into (29). Abuse of the same notation v in (30) is to be kept in view. The spatial
dependence lies only in the trigonometric functions cos δ x and sin δ x . Collecting
terms with cos δ x , we obtain

Jv̇ + 2ϕκδJw − ϕδ 2v + 2ψ (u0 · v)u0 = 0, (31)

where a dots stands for the derivative in the time t . Likewise, collecting the terms
with sin δ x , we obtain

Jẇ − 2ϕκδJv − ϕδ 2w + 2ψ (u0 · w)u0 = 0. (32)

The solution takes the form v = t(q1, q2)eτt , w = t (p1, p2)eτt , and, with this form,
(31) and (32) are reduced to a matrix equation

A

⎡
⎣⎣⎤

q1
q2
p1
p2

⎦
⎪⎪⎢ = 0;

A =

⎡
⎣⎣⎤

−ϕδ 2 + 2ψ u2
01 −τ + 2ψ u01u02 0 −2ϕκδ

τ + 2ψ u01u02 −ϕδ 2 + 2ψ u2
02 2ϕκδ 0

0 2ϕκδ −ϕδ 2 + 2ψ u2
01 −τ + 2ψ u01u02

−2ϕκδ 0 τ + 2ψ u01u02 −ϕδ 2 + 2ψ u2
02

⎦
⎪⎪⎢ .

(33)

The necessary and sufficient condition for (33) to have a nontrivial solution
t (q1, q2, p1, p2) ≤= 0 furnishes an algebraic equation for the spectral parameter τ as

det A = τ4 + 2(p2 + 4κ2ϕ2δ 2)τ2 + (p2 − 4κ2ϕ2δ 2)2 = 0; (34)

p2 :=ϕ2δ 4 − 2ψϕ||u0||δ 2.
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The solution is readily found to be

τ2 = −(p ± 2κϕδ)2, or τ = ±i(p ± 2κϕδ). (35)

It is a characteristic feature of a Hamiltonian system that the spectra come as a quartet
[1, 7, 9]. If τ is a spectrum, not only its complex conjugate τ̄ but also −τ belong to
the spectra. The latter spectra reflects the time-reversal symmetry of the Hamiltonian
system.

If at least one of the roots of (34) has positive real part, a disturbance growing in t
can be built, that is, the Stokes wave is spectrally unstable. When the parameter p is
real, all the four roots of (35) are pure imaginary, indicating that the Stokes wave is
spectrally stable. In contrast, when p becomes a purely imaginary number, two among
(35) have positive real part, with which the disturbance is amplified exponentially in
time. As far as the amplitude of the Stokes wave is small enough (||u0|| <

√
ϕδ 2/2ψ ),

p is a real number, but as the amplitude is increased and exceeds the critical value
||u0|| = √

ϕδ 2/2ψ , the spectral parameter acquires positive real part, indicating the
exponential growth of the disturbance. This instability is called the Benjamin-Feir
instability. Until the middle of the twentieth century, there were trials to embody
the Stokes wave in a water tank, but the excited traveling waves were necessarily
disrupted. This failure could be attributable to the Benjamin-Feir instability. This
pertains to the side-band instability. For the Stokes wave (24) with wavenumber
k = k0 +κ , the disturbances whose wavenumber is located in a narrow band, around
k, with width 2δ (δ 2 < 2ψ ||u0||2/ϕ) is amplified. Recalling the linear stability
analysis in this subsection, a disturbance is given to the amplitude A0 of the Stokes
wave (24) with wavenumber k = k0 + κ as

β = [A0 + B(x, t)] ei[(k0+κ)x−(ω0+�)t+ν0]; B = B0eiδ x+τt . (36)

The wavenumber k = k0 + κ of the Stokes wave is altered, by experiencing the
disturbance, to k± = k0 + κ ±δ . The linearized term originating from the nonlinear
term ψ |A|2 A in the nonlinear Schrödinger equation (22) couples a wave with the
fundamental wave number k and that with k+ to create a wave with 2k − k+ = k−
and couples also the waves with k and k− to create a wave with 2k − k− = k+. As a
consequence, the sideband waves with k+ and k− go through resonant amplification
via the base field (24).

It is illuminating to view this instability from the standpoint of the Hamiltonian
spectra. When the amplitude ||u0|| of the Stokes wave is small, the four spectra all
confined on the pure imaginary axis in the complex τ plane. As the amplitude is
raised, the two spectra on the positive imaginary axis approach each other and the
same is true for the two spectra, being the mirror images, on the negative imaginary
axis. At the critical amplitude ||u0|| = √

ϕδ 2/2ψ , the spectrum parameters execute
pairwise collisions at τ = 2iκδ and τ = −2iκδ , and a further increase of amplitude
gives rise to real parts in the spectra. This is the Hamiltonian-Hopf bifurcation.
Krein’s theory dictates that a necessary condition for the spectra to escape from
the imaginary axis is that the signs of the energy of the corresponding eigenmodes
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are opposite from each other [1, 9]. It is shown that, before the collision of spectra
(p > 0), the eigenmode associated with τ = ±i(2κϕδ + p), being located on the
far side from τ = 0, has positive energy, but that with τ = ±i(2κϕδ − p), being
located closer to τ = 0, has negative energy, being consistent with the scenario of
Krein’s theory [3].

7 Dissipation Induced Instability

Dissipation is an agent to convert the kinetic energy into the thermal energy (=
heat), with a tendency of subsiding the moving state to a steady state. Seemingly
contrary to an intuition, there are cases in which the dissipation turns an ordered
motion to unstable one [7, 8]. As argued at the end of the last section, instability of a
Hamiltonian system is typically driven by a collision of two spectra with positive and
negative energy. A positive-energy mode subsides down when its energy is lost by
the dissipation, while on the contrary a negative-energy mode is amplified by losing
its energy. Instability stemming from dissipative forces is not uncommon. In nature,
there are an abundance of negative-energy modes. This section gives an account for
the instability of weak diffusion origin that the Stokes wave undergoes, which occurs
in the parameter region of absence of the Benjamin-Feir instability [3].

7.1 Nonlinear Schrodinger Equation with Diffusion Effect

We augment the nonlinear Schrödinger equation (22) with weak dissipation and
diffusion as

i At + (ϕ − ia)Axx + ibA + (ψ + ic)|A|2 A = 0, (37)

where a, b and c are positive constants. If we retain only these new terms in (37) by
taking the coefficient in the original form as ϕ = ψ = 0, we are left with

At = a Axx − (b + c|A|2)A. (38)

The first term on the right-hand side signifies the diffusion term with the diffusion
coefficient a(> 0). The rests are linear and nonlinear dissipation terms.

A comprehensive analysis is referred to [3]. Here, for the sake of simplicity, we
focus only on the diffusion effect by putting b = c = 0. The dispersion relation (37)
of the Stokes wave A = A0 exp{i(κx − � t + ν0)} is modified to

� = ϕκ2 − ψ |A0|2 − iaκ2. (39)

The modification of (23) comes as the presence of the last term with the effect of
damping the Stokes wave.
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7.2 Diffusion Effect on Linear Stability of Stokes Wave

With an introduction of a pair of real functions for the complex amplitude function
A = u1 + iu2, the generalized nonlinear Schrödinger equation (37), with restriction
b = c = 0, admits the following real representation for the vector (u1, u2)

Jut + ϕuxx − aJuxx + ψ ||u||u = 0. (40)

This is substituted from superposition of the Stokes wave and a disturbance v, like
(28), resulting in, after linearization in disturbance amplitude ||v||,

Jvt + 2 (ϕκJ + aκ) vx + (ϕ − aJ) vxx + 2ψ (u0 · v)u0 = 0. (41)

Substitution from the disturbance (30) with wavenumber δ into (41) yields for the
cos δ x and the sin δ x terms, respectively

Jv̇ + 2κδ (ϕJ + a) w − δ 2 (ϕ − aJ) v + 2ψ (u0 · v)u0 = 0, (42)

Jẇ − 2κδ (ϕJ + a) v − δ 2 (ϕ − aJ) w + 2ψ (u0 · w)u0 = 0. (43)

The solution takes the form v = t (q1, q2)eτt , w = t(p1, p2)eτt , and (42) and (43)
gives the algebraic equation (33) with the matrix A provided by

A =

⎡
⎣⎣⎤

−ϕδ 2 + 2ψ u2
01 −τ − aδ 2 + 2ψ u01u02 2aκδ −2ϕκδ

τ + aδ 2 + 2ψ u01u02 −ϕδ 2 + 2ψ u2
02 2ϕκδ 2aκδ

−2aκδ 2ϕκδ −ϕδ 2 + 2ψ u2
01 −τ − aδ 2 + 2ψ u01u02

−2ϕκδ −2aκδ τ + aδ 2 + 2ψ u01u02 −ϕδ 2 + 2ψ u2
02

⎦
⎪⎪⎢ .

(44)
The procedure of gaining the spectra τ from the necessary and sufficient condition

det A = 0 for (33) to have a nontrivial solution t (q1, q2, p1, p2) ≤= 0 is the same as
before.

In the sequel, we regard the diffusion term as a perturbation, and retain its effect
only to first order in a small parameter a/ϕ, resulting in

det A = τ̂4 + 2(p2 + 4κ2ϕ2δ 2)τ̂2 − 32aϕκ2δ 2(ϕ2δ 2 − ψ ||u0||2)τ̂
+(p2 − 4κ2ϕ2δ 2)2 + O

(
(a/ϕ)2

)
, (45)

where τ̂ = τ + aδ 2 and p is defined by (34). Correspondingly to this treatment, we
construct the root of det A = 0 in a power series in a/ϕ. For p > 0, the root with
positive imaginary part is calculated to be

τ = i(2κϕδ ± p) − aδ 2 ∞ 2aκδ

p
(ϕ2δ 2 − ψ ||u0||2) + O

(
(a/ϕ)2

)
. (46)
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The roots with negative imaginary part are placed symmetrically with respect to
the real axis. For the parameter region with p > 0, being free from the Benjamin-
Feir instability, the diffusion effect pushes the roots, closer to the real axis, to the
side of positive real part, being indicative of the exponential amplification. The
corresponding eigenmodes have negative energy. The eigenmodes associated with
their spectra located farther from the real axis which have positive energy are pushed
to the side of negative real part, indicating decay in time by the diffusion effect.

The influence of dissipation effect (b > 0, c > 0) is similar to the above [3].
Krein’s theory not only describes the bifurcation of the solution of a Hamiltonian
system, but also has a rich implication on the effect of dissipation and diffusion. As
a final remark, we emphases that Krein’s theory is concerned with the system of a
finite number of freedom. The topic under investigation is a system of an infinite
number of freedom governed by partial differential equations.

8 Closing Remarks

We can list numerous examples of instabilities induced by dissipation or friction
effects [7, 8]. A familiar example is the sleeping top, the vertically upright configu-
ration of the axis of a heavy symmetrical top or Lagrange’s top. In the absence of the
friction at the end of axis in contact with a supporting plane, the upright configura-
tion lasts permanently. When the friction comes into play, the rotation slows down,
resulting in the tilting down of the axis. This is likened to the wake up. We reason that
this is a manifestation of amplification of a negative energy mode. Recently we have
found that unexpectedly the sleeping top does not necessarily follow this standard
scenario [10]. In general, a disturbance superposed on the stable motionless state
has only positive energy. Negative energy modes reside on nontrivial steady states,
phenomena filling the nature surrounding us.
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Financial Applications of Quasi-Monte Carlo
Methods

Shu Tezuka

Abstract This article overviews major developments in the last two decades on the
applications of quasi-Monte Carlo methods to financial computations.

Keywords Finance · Low-discrepancy sequences · Quasi-Monte Carlo methods

1 Introduction

In 1977, Boyle [1] applied Monte Carlo methods to finance problems, where he tried
not only simple Monte Carlo but also variance reduction techniques, such as control
variates and antithetic variates, for option pricing. For such applications, however,
Monte Carlo approaches have a serious drawback of their notoriously slow conver-
gence rate. According to the central limit theorem, the convergence rate is O(N−1/2),
where N is the number of sample points, even if we use variance reduction methods,
by which the constant term included in the O notation can be (sometimes consider-
ably) reduced. The more complex the stochastic models become, the more computing
time is needed. Similarly, the more accurate the solution is required to be, the more
computing time is needed. Speeding up the computation time is indispensable for
these finance applications. Around 1990, even with the fastest parallel supercom-
puters, it was not possible to, for example, distinguish within a short time a highly
profitable mortgage-backed security (MBS) from pools of collateralized mortgage
obligations (CMOs) with poorer returns.

In the 1990s, we had witnessed a dramatic increase in the efficiency of Monte
Carlo simulations for finance applications, in terms of both accuracy and speed
[2, 5, 9, 11, 12, 23]. It was reported [9, 11] that speed-ups of as much as thousands
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of times relative to simple Monte Carlo simulations could be obtained for complicated
fixed-income derivatives including CMOs. This made a tremendous impact not only
on the finance industry but also on the computer software business [25, see articles
such as in The New York Times]. The technology which this innovation was based
on is called as quasi-Monte Carlo methods, which had been investigated by number
theoreticians since Monte Carlo methods were devised by von Neumann and his
colleagues in the 1940s. In fact, this technology has made marked progress and
become a mainstay in high-dimensional numerical integrations, particularly over the
last two decades [4, 6, 8, 15–18, 27].

The organization of this paper is as follows: In Sect. 2, we first describe what
are quasi-Monte Carlo methods and also give some historical remarks. Next, we
give the definitions of mathematical terms such as discrepancy and low-discrepancy
sequences. Then, we introduce a general method of constructing low-discrepancy
sequences, which we call (t, e, k)-sequences, followed by a special realization
of them called generalized Faure sequences. Lastly, we briefly summarize recent
progress of theoretical research on explaining the success of quasi-Monte Carlo
methods in finance problems. In Sect. 3, we give results from numerical experiments
with financial problems related to computing the present values of MBS, along with
some discussion of these results.

2 Speeding-Up by Quasi-Monte Carlo Methods

2.1 What Are Quasi-Monte Carlo Methods?

As was already mentioned earlier, the main drawback of Monte Carlo methods is their
slow convergence rate O(N−1/2) for N sample paths. Although we can improve the
convergence speed by applying the variance reduction techniques, the improvement
only reduces the constant factor included in the O term, still leaving the same rate
in terms of N . Finance-related Monte Carlo problems, particularly those related to
derivative pricing, can be formulated as problems of computing high-dimensional
integration. The dimension of the integration is naturally equal to the number of time
steps in the time period considered. Once a problem can be formulated as one of high-
dimensional numerical integration, we have several “deterministic” approaches for
computing it. However, the direct extensions of one-dimensional approaches, such as
trapezoidal rules, to higher dimensional ones do not work. For example, if we apply
the product rule to the trapezoidal rules for high-dimensional numerical integration,
the error bound for the k-dimensional integration is known to be O(N−2/k), which
means that for a fixed error tolerance the computation time grows exponentially
in dimension. Much more generally, we have a theoretical lower bound of com-
putational complexity for high-dimensional numerical integration, which increases
at the exponential rate in dimension. This is a well-known result in the field of
Information-Based Complexity (see, e.g. [10, 23]), and today it is called the curse
of dimensionality in numerical integration.
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If we assume a certain smoothness for integrands, there is a much better approach,
called quasi-Monte Carlo methods, which give the error bound O((log N )k/N )

for the k-dimensional integration problem. The idea is that by using deterministic
sequences instead of random numbers, we can derive more precise (deterministic)
error bounds for high-dimensional numerical integrations, and consequently achieve
a significant improvement in the convergence rate. The extent to which the points are
uniform has been mathematically defined as their discrepancy. The more uniformly
distributed the points are, the lower the discrepancy. The so-called low-discrepancy
sequences are to quasi-Monte Carlo methods as random numbers are to Monte Carlo
methods. Here, we should remark that pseudorandom numbers, which we actually
use in practice for Monte Carlo simulations, are also deterministic sequences, but
are required to mimic truly random numbers. On the other hand, low-discrepancy
sequences have no relevance with randomness at all. The practical advantage of
low-discrepancy sequences is that for every N > 1, the first N points of a low-
discrepancy sequence are uniformly distributed; in other words, we can add one
point after another so that the entire set of points at any time remains very uniform
throughout the domain. Therefore, we can use them sequentially until some stopping
rule for the computation is met.

The application of low-discrepancy sequences to finance problems was triggered
by the seminal paper of Woźniakowski [26] published in 1991. Paskov and Traub
[12, 24] used Halton sequences and Sobol’ sequences for pricing a ten-tranch CMO
(Collateralized Mortgage Obligation), which they obtained from Goldman-Sachs,
and reported that Sobol’ sequences performed very well relative to simple Monte
Carlo methods, as well as to antithetic Monte Carlo methods. Joy et al. [5] applied
Faure sequences to several equity derivatives to obtain good performances. Notice
that at that time Faure sequences were theoretically the best of all known low-
discrepancy sequences, whereby “theoretically the best” we mean that the constant in
front of the leading term (log N )k/N in the discrepancy upper bound is the smallest
asymptotically in dimension. Then, Ninomiya and Tezuka [9] reported that gener-
alized Niederreiter sequences could provide further speed-up over Halton, Sobol’,
and Faure sequences, and that they had observed a speed-up of about 1,000 times
over simple Monte Carlo for three pricing problems: a discount bond, an interest-rate
lookback option, and MBS. Papageorgiou and Traub [11] reported that generalized
Faure sequences, a special subset of generalized Niederreiter sequences, perform
consistently better than their improved Sobol’ sequences for pricing their CMO, and
may allow speed-ups of about 1,000 times relative to simple Monte Carlo simula-
tions in cases where high accuracy is desired. Thus, in what follows, we describe
generalized Faure sequences in detail.

2.2 Generalized Faure Sequences

First, we recall the definition of discrepancy. For N points X0, X1, . . . , X N−1 in
[0, 1]k , and a subinterval J = ∏k

i=1[0, ui ), where 0 < ui ∈ 1 for 1 ∈ i ∈ k, we
define the (star) discrepancy as
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D(k)
N = sup

J

∣∣∣∣ A(J ; N )

N
− Vol(J )

∣∣∣∣ ,
where A(J ; N ) is the number of n, 0 ∈ n < N , with Xn ⊂ J , and where Vol(J ) is
the volume of J , with the supremum extended over all subintervals J . If we employ
the L2-norm instead of the L→-norm in the above, we can define L2-discrepancy,
T (k)

N , as ⎧
T (k)

N

⎨2 =
⎩

[0,1]k

(
A(J ; N )

N
− Vol(J )

⎫2

du1 · · · duk .

It is easy to see that 0 ∈ T (k)
N ∈ D(k)

N ∈ 1.
The Koksma-Hlawka theorem describes the relation between discrepancy and

numerical integration [3, 7]:

Theorem 1 If the integrand f is of bounded variation V ( f ) on the k-dimensional
unit hypercube [0, 1]k in the sense of Hardy and Krause, then for any X0, X1, . . . ,

X N−1 ⊂ [0, 1)k we have

∣∣∣∣∣∣∣
1

N

N−1⎬
n=0

f (Xn) −
⎩

[0,1]k

f (u1, . . . , uk)du1 · · · duk

∣∣∣∣∣∣∣ ∈ V ( f )D(k)
N .

We also have another important result, the Woźniakowski theorem [26]:

Theorem 2 Let Ck be the class of real continuous functions defined on [0, 1]k

equipped with the classical Wiener sheet measure w (that is, Gaussian with mean
zero and covariance kernel

R(s, t) def=
⎩
Ck

f (s) f (t) w(d f ) = min(s, t) def=
k⎭

i=1

min(si , ti )

for any vectors s = (s1, . . . , sk) and t = (t1, . . . , tk) in [0, 1]k). Then, for a given
set of points Xn = (xn1, . . . , xnk), n = 0, 1, . . . , N − 1, in [0, 1]k , we have

⎩
Ck


 1

N

N−1⎬
n=0

f (Xn) −
⎩

[0,1]k

f (u1, . . . , uk)du1 · · · duk


⎡⎣

2

w(d f ) = (T̄ (k)
N )2,

where T̄ (k)
N is the L2-discrepancy of the point set X̄n = (1 − xn1, . . . , 1 − xnk), n =

0, 1, . . . , N − 1 .

The theorem means that on average the integration error is dependent only on the
discrepancy, not on the integrand f , and that low-discrepancy sequences are useful
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in integration. Both the above theorems tell us that the lower the discrepancy is,
the smaller the integration error will be. We now introduce the definition of low-
discrepancy sequences:

Definition 1 If a sequence X0, X1, . . . in [0, 1]k satisfies the condition that for all
N > 1, the discrepancy of the first N points is

D(k)
N ∈ Ck

(log N )k

N
,

where Ck is a constant depending only on the dimension k, then we call it a low-
discrepancy sequence.

Notice that the order of magnitude in terms of N on the right-hand side is believed
to be the optimal upper bound.

In this article, we concentrate on the construction of low-discrepancy sequences
based on (t, e, k)-sequences. First, we need the following notions: Let b ⊃ 2 be an
integer. An elementary interval in base b, which is a key concept of the net theory,
is an interval of the form

E( j1, . . . , jk) =
k⎭

i=1

⎤
ai

b ji
,

ai + 1

b ji

⎫
, (0 ∈ ai < b ji , ji ⊃ 0),

where ai and ji are integers for i = 1, . . . , k.

Definition 2 Let e = (e1, . . . , ek) and j = ( j1, . . . , jk) be integer vectors with
ei ⊃ 1 and ji ⊃ 0 for i = 1, . . . , k. Let t and m be integers with 0 ∈ t ∈ m such
that m − t ⊂ M(e) := {(e, j) | all j }, where (e, j) := e1 j1 + · · · + ek jk . A
(t, m, e, k)-net in base b is a point set of bm points in [0, 1]k such that Abm (E) = bt

for every elementary interval E = E(e1 j1, . . . , ek jk) in base b with μ(E) = bt−m

and j satisfying (e, j) = m − t .

Definition 3 A (t, e, k)-sequence in base b is an infinite sequence, X = (Xn)n⊃0, of
points in [0, 1]k such that for all integers π ⊃ 0 and all m > t satisfying m−t ⊂ M(e),
the point set {[Xπbm ]b,m, . . . , [X(π+1)bm−1]b,m} is a (t, m, e, k)-net, where [Xn]b,m
means the coordinate-wise b-ary m-digit truncation of a point Xn .

It is obvious that a (t, k)-sequence in base b is identical to a (t, e, k)-sequence in
base b with e = (1, . . . , 1).

Tezuka [20, 21] proved the following theorem on the discrepancy of (t, e, s)-
sequences in an arbitrary integer base b ⊃ 2:

Theorem 3 Let b ⊃ 2 be an arbitrary integer. The discrepancy for the first N > bt

points of a (t, e, k)-sequence in base b is bounded as follows:

DN ∈ Ck
(log N )k

N
+ O

(
(log N )k−1

N

⎫
,
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where Ck = bt

k!
∏k

i=1

⎧
bei −1

2ei log b

⎨
.

This means that if t , e, and b are constant or depend only on k, then a (t, e, k)-
sequence in base b becomes a low-discrepancy sequence. Note that a smaller value
of t gives a lower discrepancy.

The following is known as a general construction principle for (t, k)-sequences,
which can be applied to (t, e, k)-sequences as well. Let k ⊃ 1 and b ⊃ 2 and
B = {0, 1, . . . , b − 1}. Accordingly, we define;

(i) A commutative ring R with identity and card(R) = b;
(ii) Bijections ψr : B ∧ R for r = 1, 2, . . . , with ψr (0) = 0 for all sufficiently

large r ;
(iii) Bijections λim : R ∧ B for 1 ∈ i ∈ k and m = 1, 2, . . . , with λim(0) = 0 for

1 ∈ i ∈ k and all sufficiently large m;
(iv) Elements c(i)

mr ⊂ R for 1 ∈ i ∈ k, m ⊃ 1, r ⊃ 1, where for fixed i and r we
have c(i)

mr = 0 for all sufficiently large m.

For n = 0, 1, 2, . . . , let n = ⎦→
r=1 ar (n)br−1 for ar (n) ⊂ B. Set the i-th coordinate

of the point Xn as

X (i)
n =

→⎬
m=1

x (i)
nmb−m,

for 1 ∈ i ∈ k and n ⊃ 0, with

x (i)
nm = λim

⎪ →⎬
r=1

c(i)
mrψr (ar (n))

⎢
⊂ B

for 1 ∈ i ∈ k, m ⊃ 1, and n ⊃ 0. We call C (i) = (c(i)
mr ) the generator matrix of the

i-th coordinate of a (t, e, k)-sequence.
Hereafter, we assume that b is a prime power, and that R in the construction

principle is the finite field G F(b). Let

c(i)
m (l) = (c(i)

m,1, . . . , c(i)
m,l) ⊂ G F(b)l ,

and let
C(d1, . . . , dk; l) = {c(i)

m (l) | 1 ∈ m ∈ di , 1 ∈ i ∈ k}.

We need construct the generator matrices, C (i), 1 ∈ i ∈ k, so that (t, e, k)-sequences
become low-discrepancy sequences.

We now describe how to construct such generator matrices so that we obtain
low-discrepancy sequences called generalized Niederreiter sequences [3, 14]. The
construction is based on the formal Laurent series expansions over finite fields.
Denote S(z) ⊂ G F{b, z} by
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S(z) =
→⎬

r=w

ar z−r ,

where all ar ⊂ G F(b) and w is an arbitrary integer. Hereafter, we use the following

notations: [S(z)] denotes the polynomial part of S(z) ⊂ G F{b, z} and [S(z)]p(z)
def=

[S(z)] (mod p(z)) with 0 ∈ deg([S(z)]p(z)) < deg(p(z)).
Let polynomials p1(z), . . . , pk(z) ⊂ G F[b, z] be pairwise coprime and let ei =

deg(pi ) ⊃ 1 for 1 ∈ i ∈ k. For m ⊃ 1, 1 ∈ i ∈ k, and j ⊃ 1, consider the expansion

yim(z)

pi (z) j
=

→⎬
r=w

a(i)( j, m, r)z−r ,

by which the elements a(i)( j, m, r) ⊂ G F(b) are determined. Here w ∈ 0 may
depend on i, j, m, and each yim(z) is a polynomial such that the residue polynomials
[yim(z)]pi (z), ( j − 1)ei ∈ m − 1 < jei , are linearly independent over G F(b) for
any j > 0 and 1 ∈ i ∈ k. Define

c(i)
mr = a(i)(mi + 1, m, r),

for 1 ∈ i ∈ k, m ⊃ 1, and r ⊃ 1, where mi = [(m − 1)/ei ].
Tezuka [20] proved the following theorems:

Theorem 4 A generalized Niederreiter sequence in base b is a (0, e, k)-sequence
in base b, where ei = deg(pi ) for i = 1, . . . , k.

Theorem 5 If pi (z), i = 1, 2, . . . , k are the first k irreducible polynomials over
G F(2) from the list sorted in nondecreasing order of degree, the leading constant in
the upper bound of the discrepancy of generalized Niederreiter sequences in base 2
converges to 0 as the dimension k goes to infinity.

Since Faure sequences are a special case of generalized Niederreiter sequences such
that (1) b ⊃ k is prime, (2) pi (z) = z − i + 1 for 1 ∈ i ∈ k, and (3) all yim(z) = 1,
we give the following definition:

Definition 4 Generalized Faure sequences are defined as (0, e, k)-sequences in a
prime base b ⊃ k, where e = (1, . . . , 1), obtained from generalized Niederreiter
sequences.

Theorem 3 implies that the leading constant in the upper bound of the discrepancy
of generalized Faure sequences converges to 0 as the dimension k goes to infinity,
if the base is the least prime b ⊃ k. In the matrix representation, for all generator
matrices C (i), 1 ∈ i ∈ k, we have

C (i) = A(i) Pi−1, (1)
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where A(i), 1 ∈ i ∈ k, are nonsingular lower triangular matrices over G F(b) and
P is the Pascal matrix whose (i, j) element is equal to (

j−1
i−1 ). The original Faure

sequences correspond to the case in which A(i) = I for all 1 ∈ i ∈ k.

2.3 Theoretical Explanations of Speeding-Up

After remarkable success of quasi-Monte Carlo methods in financial computations,
researchers have been interested in explaining the success theoretically [23, 27],
because it seems to contradict the curse of dimensionality. There are two sides which
we need take into consideration. One is an algorithm side, i.e., low-discrepancy
sequences, and the other is a problem side, i.e., integrands.

For the algorithm side, Matous̆ek [7] pointed out that randomly chosen generalized
Faure sequences can be viewed as a simplified version of Owen’s scrambling scheme
[2, 6]. His results imply that the expected integration error over all generalized Faure
sequences is

O

⎪
(log N )(k−1)/2

N 3/2

⎢
.

Note that this result can be interpreted as an existence theorem of a very good
generalized Faure sequence for high-dimensional integration. Tezuka and Faure [22]
proposed the so-called i-binomial scrambling as a partial derandomization of Owen’s
scrambling.

For the problem side, the notion of effective dimension was proposed by Paskov
[12]. This notion is a measure to quantify the importance of each variable on the
integrand with many variables. Caflisch, Morokoff, and Owen [2] defined it based
on the ANOVA (Analysis of Variance) decomposition, which is defined as follows:
Let u ← {1, 2, . . . , k} be a subset of indecies and ū = {1, 2, . . . , k} − u be its
complement. Also, X = {x1, . . . , xk} and Xu = {x j ; j ⊂ u}. Then, the ANOVA
decomposition of f (x1, . . . , xk) is defined by

f (x1, . . . , xk) =
⎬

u←{1,2,...,k}
αu(x1, . . . , xk),

where αu(x1, . . . , xk) is given by

α≈(x1, . . . , xk) := I ( f ) ≤
⎩

[0,1)k

f (z1, . . . , zk)dz1 . . . dzk,

and

αu(x1, . . . , xk) :=
⎩

Zu=Xu ,Zū⊂[0,1)ū

( f (z1, . . . , zk) −
⎬
v∀u

αv(z1, . . . , zk))
⎭
j⊂ū

dz j .
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The meaning of αu(x1, . . . , xk) is the effect of the subset Xu on f (x1, . . . , xk)

minus the effect of its proper subset X v with v ∀ u. These αu(x1, . . . , xk) have the
following orthogonal property: Let i ⊂ u. If we fix x j , j ≥= i,

1⎩
0

αu(x1, . . . , xk)dxi = 0.

Thus, when u ≥= ≈ ∀ {1, . . . , k},
⎩

[0,1)k

αu(x1, . . . , xk)dx1 . . . dxk = 0.

When u ≥= v,

⎩
[0,1)k

αu(x1, . . . , xk)αv(x1, . . . , xk)dx1 . . . dxk = 0.

Hence, the variance of f (x1, . . . , xk) is given by

σ2 =
⎩

[0,1)k

( f (x1, . . . , xk) − α≈(x1, . . . , xk))
2dx1 . . . dxk =

⎬
|u|>0

σ2
u,

where σ2
u = 0 if u = ≈; otherwise

σ2
u := σ2(αu) =

⎩
[0,1)k

αu(x1, . . . , xk)
2dx1 . . . dxk .

The definition of effective dimension was introduced in two ways [2]:

• Truncation sense:

Dtrunc := min(1 ∈ i ∈ k such that
⎬

u←{1,2,...,i}
σ2

u ⊃ 0.99σ2),

• Superposition sense:

Dsuper := min(1 ∈ i ∈ k such that
⎬
|u|∈i

σ2
u ⊃ 0.99σ2).
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However, Tezuka [19] showed that low-effective dimension is not a necessary con-
dition for quasi-Monte Carlo methods to perform better than simple Monte Carlo
methods.

Sloan and Woźniakowski [13] took a different approach, which is now called
the weighted discrepancy. Together with a notion of a weighted function space, they
obtained the weighted version of the Koksma-Hlawka bound for the integration error
in the weighted space. They proved that there exists a weighted space for which quasi-
Monte Carlo methods run in O(N−1) with the implied constant independent of the
dimension. This direction of research has much advanced to what is today called the
tractability theory [10], one major field of computational complexity. Recent progress
in this field was surveyed by Woźniakowski [27], which also contains an interesting
little history about the exciting early days of the tractability theory at Columbia
University. It should be pointed out that the tractability of numerical integration
using generalized Faure sequences is still open.

3 Numerical Experiments

In this section, we apply quasi-Monte Carlo methods to a practical problem related
to pricing financial derivatives. It is numerical simulation originally described by
Paskov [12], concerned with mortgage-backed securities (MBS), the most popular
among fixed-income derivatives. Many people still remember that in 2008 the US
subprime MBS caused the credit crisis in the international financial market, and
shook the world. In the experiments, we used a randomly chosen generalized Faure
sequence as a low-discrepancy sequence for quasi-Monte Carlo simulations. More
precisely, nonsingular lower triangular matrices A(i), 1 ∈ i ∈ k, in Eq. (1) for the
generator matrices were chosen at random, and we omitted the first 100000 points;
that is to say, we used the points Xn, n = 100001, 100002, . . . , of the sequence.
Tezuka [14] describes an efficient implementation of generalized Faure sequences
based on the b-ary Gray code. We used the random number generator CombTaus
[14] for Monte Carlo simulation.
Mortgage-Backed Securities

Mortgage-backed securities (MBS) are a kind of interest-rate option, whose under-
lying asset is a pool of residential mortgage portfolios. They have a critical feature
of prepayment privileges, because householders can prepay thier mortgages at any
time. The integration problem associated with MBS is summarized as follows. We
use the following notations:

rk : The appropriate interest rate in month k
wk : The percentage prepaid in month k
ak : The remaining annuity after 361 − k months
C : The monthly payment on the underlying mortgage pool

for k = 1, 2, . . . , 360, where ak = 1+d1+· · ·+dk−1
1 is constant with d1 = 1/(1+r0)

and r0 is the current monthly interest rate. C is also constant. The variable rk follows
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the discrete-time version of the Rendleman-Bartter interest-rate model, which is
mathematically equivalent to the Black-Scholes model:

log rk − log rk−1 = (a − σ2

2
)℘ + σdB,

where ℘ = 1 and dB is the normal random variable with mean zero and variance
℘. Here, we assume zero drift (i.e., a = 0) in order to make E(rk) = r0 for k =
1, . . . , 360. Thus,

rk = K0 exp(σzk)rk−1, for k = 1, 2, . . . , 360,

where zk, k = 1, 2, . . . , 360, are independent standard normally distributed random
variables, and K0 = exp(−σ2/2).

The prepayment model for the variables wk, k = 1, 2, . . . , 360, depends on the
interest rate rk, k = 1, 2, . . . , 360, as follows:

wk = K1 + K2 arctan(K3rk + K4),

where K1, K2, K3, and K4 are given constants. As is easily seen from our actual
experience, in general, the lower the interest rate, the higher the prepayment rate.
Thus, the cash flow in month k is

Mk(z1, . . . , zk) = C(1 − w1) · · · (1 − wk−1)(1 − wk + wka361−k).

This is multiplied by the discount factor

dk(z1, . . . , zk−1) =
k−1⎭
i=0

1

1 + ri
,

We have the following total present value of MBS:

PV (z1, . . . , z360) =
360⎬
k=1

dk(z1, . . . , zk−1)Mk(z1, . . . , zk).

What we want to compute is the expected value of the present value PV over all
independent random variables zk, k = 1, . . . , 360. By using the inversion of the
normal distribution, we can formulate this problem as one of computing a multivariate
integration over [0, 1]360:

E(PV ) =
⎩

[0,1]360

PV (u1, . . . , u360)du1 · · · du360,
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Fig. 1 Convergence of Monte Carlo and quasi-Monte Carlo methods for MBS pricing: The vertical
and horizontal lines indicate the present value (PV) of MBS and the number of sample paths,
respectively

where uk = N(zk) for k = 1, . . . , 360.
In this experiment, we used the parameter set

(r0, K1, K2, K3, K4,σ) = (0.00625, 0.24, 0.134,−261.17, 12.72, 0.2)

from [9, 15], where the expected value of PV is numerically computed as 143.0182×
C . Figure 1 shows the convergence performances of Monte Carlo and quasi-Monte
Carlo methods. The solid line (MBS.MC) shows the result for Monte Carlo methods,
while the dotted lines (MBS.faure and MBS.gfaure) show the results for quasi-
Monte Carlo methods using the original Faure sequences and generalized Faure
sequences, respectively. In this case, for example, with 1,000 samples quasi-Monte
Carlo (MBS.gfaure) converges to the correct value within an accuracy of 10−5. On
the other hand, the standard deviation of PV computed from the first 1,000 sample
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values of the Monte Carlo simulation is about 0.276. Thus, the 99 % confidence
interval is about [143.005, 143.042]. Therefore, we can say that about 250 times
speed-up was gained by quasi-Monte Carlo for this problem. We should notice that
generalized Faure sequences perform significantly better than the original Faure,
though both are low-discrepancy sequences.
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Pure Mathematics and Applied Mathematics
are Inseparably Intertwined: Observation
of the Early Analysis of the Infinity

Masahito Takase

Abstract In this work I consider the connection between pure mathematics and
applied mathematics from a historian’s point of view and I conclude that pure math-
ematics and applied mathematics are inseparably intertwined.

Keywords Pure mathematics · Applied mathematics · Gauß’s theory of errors ·
Folium of descartes · Cyclotomic equations · Proof of the impossibility · Analysis
of the infinity

1 From Euler’s Statements

The original idea of separating mathematical science into pure and applied mathe-
matics can be found by looking back at the history of mathematics. Crelle’s Journal
founded by Crelle in Berlin at the beginning of the nineteenth century already had the
name Journal fur die reine und angewandte Mathematik, in which we find the two
phrases pure mathematics and applied mathematics. Leonhard Euler also compared
pure mathematics and applied mathematics in his paper De la controverse entre Mrs.
Leibniz et Bernoulli sur les logarithmes des nombres negatifs et imaginaires, where
he writes;

The views of mathematicians may be quite different on issues concerning applied mathe-
matics, in which the real controversies may be caused by the different ways of conceiving
objects and of referring them to precise ideas. On the other hand, the pure parts of mathe-
matics are completely free from any item of dispute, and have always much proud of the fact
that one will find there nothing of which we can’t demonstrate either the truth or the falsity
[4, Translation from the French by Stacy G. Langton].
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Prior to Euler’s paper, there was a debate between Gottfried Wilhelm Leibniz and
Johann Bernoulli over the logarithm log(−1) of a negative number −1 and the
logarithm log(

√−1)of an imaginary number
√−1. Euler spoke as above after having

known the course of the debate. Determining the real nature of the logarithm of a
negative number and of an imaginary number was a theme of pure mathematics, but
because the Leibniz and Bernoulli debate dealt with only a vague, overall impression
of the issue, it could not be said who was right and the matter gradually faded away.
Euler claimed that it is impossible in pure mathematics for a falsehood to not be
distinguished from the truth—indeed, he always boasted of it. In contrast, this is not
so in applied mathematics, and so it seems to natural that debates on realism often
occur. I have still never come across clear written or verbal distinction of applied
mathematics and pure mathematics.

Even if it is not clear what Euler considers to be applied mathematics, I have
recently begun to think that there might be an original mathematical science that
predates both pure and applied mathematics. C. F. Gauß’s is what got me thinking
about such mathematics.

2 Gauß’s Theory of Errors

Gauß’s theory of errors is essentially a correction of the errors in astronomical obser-
vation. Gaußproposed the method of least squares to minimize errors and developed
a probabilistic consideration for the decision of the orbits of celestial bodies. Prob-
ability theory is connected with this orbit decision because the orbit decision is a
prediction of future position. Prediction techniques are the very essence of prob-
ability theory and comprised the bulk of Jacob Bernoulli’s classic masterpiece on
probability theory, Ars Conjectandi.

Pure mathematics, which has the reputation of mathematics for mathematics, is a
theoretical system totally unrelated to physical natural phenomena. In this discussion,
I reference facts that I have actually observed in the world of mathematics. Gauß’s
theory of numbers is a typical example of pure mathematics. Pierre de Ferma’s the-
ory of numbers also belongs to pure mathematics. Leibniz and Bernoulli pursued the
real nature of the logarithm of negative and imaginary numbers, and Euler, several
decades after in their contemplation, clarified the essential characteristic of the loga-
rithm, i.e., that it has infinitely many values; Euler’s investigation also feels like pure
mathematics. In contrast, the single word applied in applied mathematics makes it
seem more like the applications of theories of pure mathematics.

Here, I want to introduce my idea of a simple image of pure and applied mathe-
matics. Gauß’s theory of errors seems to be a typical example of applied mathematics
since it is a device to rectify the errors of astronomical observations. I became greatly
estranged from the general image of applied mathematics when I read Gauß’s theory
of errors. It makes sense to deduce from his theory that the idea of new mathematics
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is rooted in a concept we call the correction of errors. It seems more likely that
probability theory is created from the theory of errors than that probability theory is
applied to the theory of errors. This surprised me, as I had not assumed that I would
have such an impression at all.

The mysterious impression I received from Gauß’ theory of errors made me think I
had felt a similar feeling somewhere else. Looking back at the history of mathematics,
I found a concrete example in the analysis of the infinity of the days of creation. The
analysis of the infinity of the European Continent begins in the two articles written
by Leibniz: one, called Nova methodus pro maximis et minimis, itemque tangentibus,
quae nec fractas nec irrationales quantitates moratur, et singulare pro illis calculi
genus [9, 1684], is an article on differential calculus—and the other, De geometria
recondita et analysi indivisibilium atque infinitorum [8, 1686], deals with integral
calculus. The two papers were published in the scientific journal Acta Eruditorum
founded by Otto Mencke in Leipzig in 1682. In those days, the Bernoulli brothers
(Jacob and Johann) were based in Basel, Switzerland and seemed to be very much
charmed by Leibnitz’s papers; they cooperated with him and began decoding his
work, writing him letters because his papers were so full of enigmatic words that
they were quite difficult to understand. This was the scene in the early days of the
analysis of the infinity.

Prior to the establishment of the analysis of the infinity, there was the day of curves,
namely the times when people developed an interest in curves. In 1637, Descartes’
Discours de la methode pour bien conduire sa raison et chercher la verite dans les
sciences [3] was published and the Optics, the Meteorology, and the Geometry were
discussed as concrete examples of his method discussed in the introduction. Here,
we should focus on Descartes’ Geometry, which includes three chapters. The second
chapter, entitled the properties of curves, expresses the origin of today’s concept of
analytic geometry.

3 Folium of Descartes

The interest in curves is very old: curves such as the Conchoid of Nicomedes, the
Cissoid of Diocles, the Spiral of Archimedes, and the conic sections of Apollonius
have been found in Ancient Greece. This interest was inherited by the mathematical
scholars of Modern Europe and many new curves were discovered, leading to an
increased interest in the study of curves. According to an idea suggested by Descartes,
curves are usually expressed by algebraic equations of the form f (x, y) = 0. In these
equations, f (x, y) denotes a polynomial of x, y, so the objects of contemplation are
limited to algebraic curves. The original idea of algebraic curves did not include
displaying them by using polynomials with f (x, y) = 0; rather, these curves were
first expressed by algebraic equation, and then we were able to survey the whole
algebraic curves.
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The known algebraic curves were all displayed in algebraic equations and a curve
drawned in various ways was displayed in an algebraic equation as far as it was
algebraic. The truly essential point of Descartes’ idea was to start from equations.
First, we write down an algebraic equation f (x, y) = 0, and second, we think the
displayed curve. The all algebraic curves were generated by this idea. In 1638, the
year after Descartes’ Discours was published, Descartes wrote the equation x3+y3 =
axy (a denotes a constant) in a letter addressed to Mersenne and pictured the rough
shape of the curve that it expressed. This is the algebraic curve that came to be known
as the Folium of Descartes . Descartes’ point when doing this was to demonstrate
the attitude of starting from an equation proactively by oneself.

4 From the Theory of Curves to the Analysis of the Infinity

As stated, in the seventeenth century, interest in curves was widespread and various
methods were devised to draw tangent and normal lines for various kinds of curves,
to determine the curvature of a curve, and to calculate the area of the domain sur-
rounded by a curve. These methods were elaborated along the particular property
associated with the individual curve. Then Leibniz proposed his new method of the
analysis of the infinity, which was fine-tuned through his continued correspondence
with the Bernoulli brothers during this time. In 1696, Analyse des infiniment petits
pour l’intelligence des lignes courbes [10] by Marquis de L’Hopital was published.
This is the first calculus text in the history of mathematics, and the title deserves
attention because it suggests that the analysis of the infinity is the best theory to use
to understand curves.

The power of the analysis of the infinity was extremely strong; for example,
it led to the capability of drawing a tangent line to a curve freely in its arbitrary
point. We do not require a specialized device to do this, and Leibniz’s method is
applicable not only to algebraic curves but also to transcendental curves. In fact, this
led to the development of the all-around tangent line method. Descartes’ Discours
was published in 1637, and Lebniz’s two papers on differential and integral calculus
were published in 1684 and 1686, respectively. During this interval of approximately
50 years, curve theory was finalized by the birth of the analysis of the infinity. This
remarkable scene closely resembles the situation surrounding the creation of Gauß’s
Theory of Errors.

Gauß created a new theory of mathematics in his efforts to correct the errors exist-
ing in astronomical observation. Mathematicians of the seventeenth century were
fascinated with curves and the analysis of the infinity was generated largely from
their passion. Being fascinated with a preexisting concept, and the situation of math-
ematics being born of a passion to pursue an ideal is identical to the case of Gauß’s
Theory of Errors. We do not obtain new knowledge of a scientific domain applying
some kind of finished theory of mathematics. Rather, the creation of mathematics is
intimately connected with the passion of wanting to know the unknown.
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Mathematics is born of passion. Applied mathematics is born when people’s pas-
sion turns to phenomena of nature, such as celestial bodies, and pure mathematics
is born when we turn to phenomena of a mathematical nature, such as curves. Only
mathematics itself exists without the distinction between pure and applied mathe-
matics. This is my impression when I recollect the history of the formation of the
analysis of the infinity and Gauß’s Theory of Errors.

5 Euler’s Analysis of the Infinity

Euler was aware of the distinction between pure mathematics and applied mathe-
matics in mathematical science and wrote a few words about the distinction. It was
quite difficult for me to approach the substance of what is called applied mathematics
with only this as a clue. However, it suddenly occurred to me while studying Gauß’s
Theory of Errors that there is no distinction between pure mathematics and applied
mathematics in mathematics itself. This realization caught me completely off guard.

Let me give another example, this one using Euler’s analysis of the infinity. I
mentioned above that the theory of curves was reached after Leibniz and the Bernoulli
brothers had completed their analysis of the infinity. What kind of course would it
make sense for the subsequent theory of the infinity to follow? Let us express it a little
more concretely. Euler lived in the generation directly after Leibniz and the Bernoulli
brothers. What kind of mathematical phenomena would Euler instinctually turn to
in his analysis of the infinity? Since interest in the theory of curves had already
peaked, it seems clear that he would have moved beyond that. Euler’s books and
papers from that era indicate he was trying to find a theme in the dynamics and the
calculus of variations. In 1736, when he was 29-years old, Euler penned the two
volumes of Mechanica [5, E15, E16], and in 1744, aged 37, a masterpiece entitled
Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive
solutio problematis isoperimetrici lattissimo sensu accepti [6, E65].

Since tracing a moving object creates a drawing of a curve, we should be able to
use tracting to understand dynamics based on the theory of curves. Johann Bernoulli
proposed the Brachistochrone curve problem, which led to the birth of the calculus
of variations, and so we can say that the calculus of variations also came from the
theory of curves. Euler surveyed a world opened up by the theory of curves and
went on to explore the dynamics and the calculus of variations. He chose this route
because Newton’s theory of dynamics was on his mind. Not only Mechanica but
also Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive
solutio problematis isoperimetrici lattissimo sensu accepti were Euler’s foundation
stones in the study of dynamics. His mathematical objective was to understand the
dynamics of Newton by analyzing Leibniz’s and the Bernoulli brothers’ concept of
the infinity. The figure of the analysis of the infinity repeated big transformations in
this flow.
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The above is a common view. However, a question remains: Is the analysis of the
infinity pure mathematics or applied mathematics? The essence of Euler’s analysis
of the infinity is a theory of solving various differential equations. Differential equa-
tions existed even in the times of Leibniz and the Bernoulli brothers, but they were
equations that indicate the situation of a tangent line and the normal line of a curve
rather than a differential equation because differential equations before Euler’s time
were considered the realm of the theory of curves. Leibniz and the Bernoulli brothers
had been thinking about curves long before Euler came around, and they aimed to
restore the perspective of a curve from local information on tangent and normal lines.
This method, called inverse method of tangent, is the same as integral calculus from
the viewpoint of the theory of differential equations.

6 Various Sources of Pure Mathematics

Euler’s analysis of infinity is no longer considered a theory of curves. Euler introduced
the concept of three functions into mathematics, established a viewpoint to consider
a curve as the graph of a function, and moved the collective focus from curves to
functions. Functions now play the leading role in the analysis of the infinity and
the information on tangent and normal lines are shown in the form of differential
equations while the former inverse method of tangent became modern integral cal-
culus. In this case, integral calculus has the same meaning as the method of solving
differential equations and integral calculus has the same meaning as the elucidation
of the differential equation.

In the early days of curve theory, Descartes suggested calling a figure expressed
by an equation a curve, and then Euler changed the concept of what a curve actually is
once again. Because Euler’s analysis of the infinity is essentially a theory of solving
differential equations, it feels more like pure mathematics than applied mathematics.
However, the source is dynamics. Both the common and the abstract theories of
mathematics were born from serious interest in dynamics. Ultimately, the theory
of differential equations is neither applied mathematics nor pure mathematics: it is
just a theory of mathematics. It is pointless to wonder if the theory of differential
equations is pure mathematics or applied mathematics because, in truth, it can be
considered mathematics created by dynamics .

In the theory of algebraic equations, we search for a method of solving cubic and
quartic equations by observing phenomena observed inside of mathematics. Various
theories, including Gauß’s theory of cyclotomic equations [7], Abel’s proof of the
impossibility [1], and Galois’s Galois theory were born from this observation. There
surely exists a world of mathematics in which Leibniz and the Bernoulli brothers’
analysis of the infinity, Euler’s analysis of the infinity, Gauß’s theory of cyclotomic
equations, Abel’s proof of the impossibility, and Galois’s Galois theory can coexist.
It seems only logical to call all of these theories pure mathematics.

The source of Euler’s analysis of the infinity is dynamics, but he did not apply
the established theory of differential equations to the dynamics. Rather, he had the
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mathematical intention to understand the dynamics from the viewpoint of the theory
of curves. The theory of curves resulted in the creation of the theory of differential
equations.

I conclude that, if Euler had been around in modern times, he might have consid-
ered the analysis of the infinity to be applied mathematics. By this I mean that there
was an opportunity for the formation of a theory outside of mathematics, and Euler’s
analysis of the infinity is an area of scientific mathematics, similar to number theory.
This is why I believe that pure mathematics and applied mathematics are inseparably
intertwined.
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1 Introduction

In the last two decades, semidefinite programming (SDP) problems have been
intensively studied in both their theoretical and practical aspect in a wide range
of fields. SDP has been regarded as one of the most important optimization problems
for following several reasons.

1. SDP is used in a wide range of fields such as combinatorial optimization, structural
optimization, control theory, economics, quantum chemistry, sensor network loca-
tion, data mining, and machine learning [1, 2].

2. SDP theoretically includes a large number of convex programming such as linear
programming (LP), convex quadratic programming (QP), and second-order cone
programming (SOCP). For example, LP is a special case of SDP when all the
matrices involved are diagonal. Therefore, we can convert typical convex pro-
gramming problems to SDP problems.

3. SDP relaxation techniques can be used to obtain strong upper and lower bounds.
This is true not only for convex optimization problems but also for nonconvex
optimization problems, which are encountered in application areas such as control
theory and smart grids and systems.

4. There exist several fast and stable theoretical algorithms [1]. For example, we can
obtain an optimal solution in polynomial time using a primal-dual interior-point
method (PDIPM).

5. Many state-of-the-art multithread-based parallel software packages for SDP, such
as SDPA [3–5], CSDP [6], SeDuMi [7], and SDPT3 [8] have been developed. In
addition, there exist MPI-based parallel software packages for supercomputers
such as SDPARA [9–12], PCSDP [13], and PDSDP [14].

The standard form SDP has the following primal-dual form.

P : minimize
m∑

k=1
ck xk

subject to X =
m∑

k=1
Fk xk − F0, X ∈ O.

D : maximize F0 • Y
subject to Fk • Y = ck (k = 1, . . . , m), Y ∈ O.

(1)

We denote by S
n the space of n × n symmetric matrices. The notation X ∈

O (X ⊂ O) indicates that X → S
n is a positive semidefinite (positive definite)

matrix. The inner-product between U → S
n and V → S

n is defined by U • V =∑n
i=1

∑n
j=1 Ui j Vi j .

In most SDP applications, it is common for the input data matrices F0, . . . , Fm
to share the same diagonal block structure (n1, . . . , nh). Each input data matrix
Fk (k = 1, . . . , m) consists of submatrices in the diagonal positions as follows:
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Fk =


⎧⎧⎧⎨

F1
k O O O

O F2
k O O

O O
. . . O

O O O Fh
k

⎩
⎫

where F1
k → S

n1 , F2
k → S

n2 , . . . , Fh
k → S

nh .

Note that
∑h

π=1 nπ = n and the variable matrices X and Y share the same block
structure. We define nmax as max{n1, . . . , nh}. For the blocks where nπ = 1, the
constraints of positive semidefiniteness are equivalent to the constraints of the non-
negative orthant. Such blocks are sometimes called LP blocks.

The size of a given SDP problem can be approximately measured in terms of four
metrics.

1. m: the number of equality constraints in the dual form D (which equals the size
of the SCM)

2. n: the size of the variable matrices X and Y
3. nmax: the size of the largest block of input data matrices
4. nnz: the total number of nonzero elements in all data matrices.

The SDP algorithm (SDPA) [4, 5] is one of the most well-known software
packages of the PDIPM for solving the standard form SDP problem (formulation
(1)). SDPA incorporates special data structures for handling block diagonal data
matrices and efficient techniques for computing search directions when SDP prob-
lems become large and/or sparse [4]. Solving extremely large-scale SDP problems
is considered to be important and challenging. In many applications, however, SDP
problems become considerably large such that SDP software packages, including
the SDPA, cannot solve them on a single node. There exist two well-known major
bottlenecks in the algorithmic framework of the PDIPM. The first is the generation of
the so-called Schur complement matrix (SCM). The second is the Cholesky factor-
ization of the SCM. These two parts where bottlenecks occur are called ELEMENTS
and CHOLESKY, respectively. We denote the time complexities of ELEMENTS and
CHOLESKY by O

⎬
mn3 + m2n2

⎭
and O

⎬
m3

⎭
, respectively.

We developed a new version of semidefinite programming algorithm parallel
version (SDPARA) 7.6.0-G, which is a parallel implementation on multiple CPUs
and GPUs for solving extremely large-scale SDP problems. SDPARA is designed to
execute the PDIPM on parallel computers with distributed memory space. The speed-
up achieved by SDPARA is essentially attributable to its use of parallel computation
to overcome the computational bottlenecks of ELEMENTS and CHOLESKY. Each
process reads the input data and keeps all the variables in the process memory space,
whereas the SCM data are divided between the processes. We previously reported
that SDPARA can compute each row of the SCM in parallel, and applied the parallel
Cholesky factorization provided by ScaLAPACK1 to the SCM [9, 10]. SDPARA is
considerably faster than other parallel implementations, such as PCSDP [13] and

1 http://www.netlib.org/scalapack/.

http://www.netlib.org/scalapack/
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PDSDP [14] when solving large-scale sparse SDP problems [9–11]. In our previous
work [11], we implemented SDPARA 7.5.0-G on TSUBAME 2.0, which is a high-
performance GPU-accelerated supercomputer at the Tokyo Institute of Technology.
We solved the largest SDP problem (which has over 1.48 million constraints), and
created a new world record in 2012. In the same year, our implementation also
achieved 533 TFlops in double precision for large-scale Cholesky factorization using
4,080 GPUs.

As mentioned above, SDP has many applications that involve SDP problems with
special structures. We initiated the SDPA project,2 whose objective is to develop
high-performance software packages for SDP, and we have solved a large number
of SDP problems since 1995; therefore, we can classify the various types of SDP
problems into the following three cases:

1. Case 1: SDP problems are sparse and satisfy the property of correlative
sparsity [15]; therefore, the SCM tends to become sparse (e.g., the sensor net-
work location problem and the polynomial optimization problem). In this case,
CHOLESKY constitutes the bottleneck in the PDIPM. We can perform parallel
Cholesky factorization of a sparse SCM by utilizing MUMPS [16] and optimized
BLAS libraries [10].

2. Case 2: m is less or not considerably greater than n and the SCM is fully dense
(e.g., the quantum chemistry problem and the truss topology problem). In this
case, ELEMENTS constitutes the bottleneck in the PDIPM, and therefore, we
decrease the time complexity of ELEMENTS from O

⎬
mn3 + m2n2

⎭
to O

⎬
m2

⎭
by exploiting the sparsity of the data matrix [9]. ELEMENTS for large-scale
SDP problems generally requires significant computational resources in terms of
CPU cores and memory bandwidth. In our recent paper [12], we demonstrated
that SDPARA can perform efficient parallel computation of ELEMENTS using a
large quantity of CPU cores and some processor affinity and memory interleaving
techniques in Case 2 (Sect. 4).

3. Case 3: m is considerably greater than n and the SCM is fully dense (e.g., the com-
binatorial optimization problem and quadratic assignment problem (QAP) [11]).
In this case, CHOLESKY constitutes the bottleneck in the PDIPM. We acceler-
ated CHOLESKY by using massively parallel GPUs with a computational perfor-
mance much higher than that of CPUs. In order to achieve scalable performance
with thousands of GPUs, we utilized a high-performance BLAS kernel together
with optimization techniques to overlap computation, PCI-Express (PCIe) com-
munication, and MPI communication [11]. In our recent paper [12], we improved
the performance of CHOLESKY and verified the numerical results in Case 3 on
the TSUBAME 2.5 supercomputer (Sect. 6).

We previously reported that SDPARA can certainly determine whether the SCM
of an input SDP problem becomes sparse (Case 1) or not (Cases 2 and 3) [10]. In
the recent study [12], we focused primarily on parallel computation of ELEMENTS
and CHOLESKY in Cases 2 and 3, respectively. We also demonstrated through

2 http://sdpa.sourceforge.net/.

http://sdpa.sourceforge.net/
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numerical experiments on the TSUBAME 2.5 supercomputer that SDPARA is a
high-performance general solver for SDPs in various application fields and solved
the largest SDP problem (which has over 2.33 million constraints), thus creating a new
world record. Our implementation also achieved 1.713 PFlops in double precision
for large-scale Cholesky factorization using 2,720 CPUs and 4,080 GPUs.

Our assertion in this paper is that the advanced integration of optimization tech-
niques that span various layers is essential in order to achieve a petascale performance.
Such optimization techniques include efficient GPU utilization, hiding communica-
tion (Sect. 6), and proper NUMA allocation policy (Sect. 4).

2 Important Applications of SDP

As mentioned in Sect. 1, we can easily identify important applications of SDP in many
research areas. Sets of SDP benchmark problems are helpful for the development
and evaluation of SDP codes. There exist some standard benchmark test sets of SDP
instances: SDPLIB,3 the DIMACS test sets,4 and benchmark sets maintained by
Hans Mittelmann5 and Renata Sotirov.6 In this paper, we have selected two types
of large-scale SDP instances associated with recent applications of SDP in truss
combinatorial optimization and quantum chemistry; however, SDPARA can also
achieve high performance when solving large-scale SDP problems in other important
application areas.

2.1 Quadratic Assignment Problems

The QAP is a fundamental and important combinatorial optimization problem that
involves finding a permutation for given flow and distance matrices, and it is
formulated as follows:

minimize trace
⎬

AX B XT
⎭ + trace(C X)

subject to X XT = XT X = In,
(2)

where A and B are n ×n real symmetric matrices, C is an n ×n real matrix, and In is
an n × n identity matrix. For finding a lower bound or the exact value of the QAP in
(2), we consider the following doubly nonnegative (DNN) relaxation problem [17]:

3 http://euler.nmt.edu/~brian/sdplib/sdplib.html.
4 http://dimacs.rutgers.edu/Challenges/Seventh/Instances/.
5 http://plato.asu.edu/ftp/sparse_sdp.html.
6 https://sites.google.com/site/sotirovr/library/.

http://euler.nmt.edu/~brian/sdplib/sdplib.html
http://dimacs.rutgers.edu/Challenges/Seventh/Instances/
http://plato.asu.edu/ftp/sparse_sdp.html
https://sites.google.com/site/sotirovr/library/
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minimize

〈(
0 vec(C)T

vec(C) BT ⊃ A

)
,

(
y00 yT
y Y

)〉
subject to Y = ⎬

Y i j
⎭

1∧i, j∧n → S
n2

+ ,

Y i j =
⎡

Y i j
kπ

⎣
1∧k,π∧n

→ S
n (i, j = 1, . . . , n),

y = ⎬
yi

⎭
1∧i∧n , yi

k = Y ii
kk (i, k = 1, . . . , n),

y00 = 1,

Y i j
kπ ← 0 (i, j, k, π = 1, . . . , n),∑n

i=1 Y ii = In,⎤
In, Y i j

⎦ = ℘i j (1 ∧ i ∧ j ∧ n),⎤
Jn, Y i j

⎦ = 1 (1 ∧ i ∧ j ∧ n),

(3)

where ℘i j is a Kronecker delta, Jn is an n × n matrix of all ones, and vec(C) is
the vector formed from the columns of matrix C . We can obtain the optimal value
and solution of (3) by applying SDP solvers since (3) can be reformulated into an
SDP problem. Before solving (3) with the SDP solvers, we apply a facial reduction
algorithm based on the study of Zhao et al. [18] to (3) since (3) is too degenerate
to get an accurate value and solution. Indeed, (3) does not have any interior feasible
solutions, and thus, it is difficult to obtain an accurate value and solution by using
SDP solvers in which PPDIMs are implemented. In addition, we rewrite the resulting
DNN problem as a linear matrix inequality described by variables Y i j

kπ to improve the
numerical stability of the computation of SDP solvers. For instance, we can write⎤
In, Y i j

⎦ = ℘i j and
⎤
Jn, Y i j

⎦ = 1, respectively, as follows:

n⎪
k=1

Y i j
kk = ℘i j and

n⎪
k,π=1

Y i j
kπ = 1.

2.2 SDP Relaxation of Electronic Structure Problems for Atoms
and Molecules

The ultimate goal in chemistry is to know the exact wave function by solving the
Schrödinger equation

Hω = Eω, (4)

where H is the Hamiltonian of the system, E is the energy, and ω is the wave
function [19]. We can know the Hamiltonian of the systems quite easily, so if we
solve the Schrödinger equation, then we can obtain a lot of information: how super-
conductivity occurs, how a protein works as an enzyme, how CO2 is converted to
O2, etc.

However, it is also known that solving the Schrödinger equation is difficult because
it involves solving the eigenvalue problem in the form of a partial differential equation
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of second order. The task is difficult even if we employ localized atomic orbitals to
discretize the problem, as it becomes an eigenvalue problem involving a huge matrix.
Therefore, we are looking at an alternative method; we are interested in the direct
determination of the second-order reduced density matrix

ε
i1i2
j1 j2

= 1

2

⎢
ω|a†

i1
a†

i2
a j1 a†

j2
|ω

⎥
.

If we restrict ourselves to the ground-state problem, in which the lowest eigenvalue
and its eigenvector are found, the problem is further simplified to the minimization
of the linear functional:

Eg = min
ε→P

TrHε. (5)

This simplification is quite drastic as the number of variables reduces from O(r !) to
O(r4), where r is the number of localized atomic orbitals. The barter for such a drastic
simplification is that we have to know about the N -representability condition [20];
otherwise, the calculated energy becomes much lower than the exact one. Therefore,
for actual calculations, we just minimize under sufficient conditions like P , Q, and
G conditions [20, 21].

Equation (4) can be cast as an SDP problem for the ground state.

⎛
⎜

inf ≈H, εfull≤
s.t. ≈I, εfull≤ = N ,

0 ∀ εfull,

where N is the number of electrons in the system and εfull is the von Neumann or
Landau density matrix. Equation (5) can also be cast as an SDP problem [22, 23].

⎝
inf ≈H, ε≤
s.t. 0 ∀ ε, etc. (“N − representabilityconditions≥≥).

Nakata et al. [22] formulated the problem as a primal SDP problem. They performed a
direct variational calculation of the 2-reduced density matrix (2-RDM) by employing
the P , Q, and G conditions and by using the well-established SDP solver known as
SDPA [4, 5]. This approach was applied to many few-electron atoms and molecules.
Nakata et al.’s [22] results obtained by using the P , Q, and G conditions were
very encouraging; they obtained around 100–130 % of correlation energy and could
produce a dissociation curve of the nitrogen dimer that was in good agreement with
full CI results. Zhao et al. included the T 1 and T 2 conditions in addition to the P ,
Q, and G conditions in the above-mentioned approach in their calculations on small
molecules [23].
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3 Basic Framework of the Primal-Dual Interior-Point Method

In this section, we explain the basic framework of the PDIPM on which SDPA,
SDPARA, and other software packages are based. The most important theoretical
aspects of the PDIPM is that it solves both primal and dual forms simultaneously
and finds their optimal solution in polynomial time.

The Karush–Kuhn–Tucker (KKT) conditions theoretically guarantee that a point
(x∞, X∞, Y ∞) satisfying the system in (6) below is an optimal solution of (1) when
the so-called Slater’s condition is satisfied.

KKT

⎞⎞⎛
⎞⎞⎜

X∞ = ∑m
k=1 Fk x∞

k − F0,

Fk • Y ∞ = ck (k = 1, 2, . . . , m),∑m
k=1 ck x∞

k = F0 • Y ∞,
X∞ ∈ O, Y ∞ ∈ O.

(6)

As we have shown in Fig. 1, in the PDIPM, the algorithm starts from a feasible or
infeasible point. In each iteration, it computes the search direction (dx, dX, dY ) from
the current point toward the optimal solution, decides the step size, and advances by
the step size in the search direction. If the current point reaches a small neighborhood
of the optimal solution, the PDIPM terminates the iteration and returns the approxi-
mate optimal solution. The PDIPM is described in many papers (see [24–28]). The
framework we use relies on the HRVW/KSH/M approach [25–27], and we will use
the appropriate norms || · || for matrices and vectors.

3.1 Algorithmic Framework of PDIPM

Step 0: Choose a feasible or infeasible initial point
⎬
x0, X0, Y 0

⎭
such that X0 ⊂ O

and Y 0 ⊂ O . Set the centering parameter α → (0, 1), the boundary parameter
β → (0, 1), the threshold parameter ϕ > 0, and the iteration number s = 0.

Step 1: Compute the residuals of the primal feasibility P , the dual feasibility d,
and the primal-dual gap g:

⎞⎞⎞⎞⎛
⎞⎞⎞⎞⎜

P = F0 −
m∑

k=1
Fk xs

k + Xs,

dk = ck − Fk • Y s (k = 1, . . . , m),

g =
m∑

k=1
ck xs

k − F0 • Y s .

If max{||P||, ||d||, |g|} < ϕ (namely, all residuals above are sufficiently small),
stop the iteration and output (xs, Xs, Y s) as an approximate optimal solution.

Step 2: Compute the search direction (dx, dX, dY ).
Step 2a: Compute the SCM B by the formula
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Bi j =
⎡⎬

Xs⎭−1
Fi Y

s
⎣

• Fj . (7)

Step 2b: Apply the Cholesky factorization to B and obtain a lower triangular matrix
L such that B = L LT.

Step 2c: Obtain a component of the search direction dx by solving the equations

L ⎟dx = r and LT dx = ⎟dx

for the right-hand-side vector r computed as

rk = −dk + Fk •
⎡⎬

Xs⎭−1 ⎬
R + PY s⎭⎣ (k = 1, . . . , m), (8)

where R = αμI − XsY s with μ = Xs • Y s/n.
Step 2d: Compute the remaining components of the search direction (dX, dY ) as

follows: ⎞⎞⎞⎛
⎞⎞⎞⎜

dX = −P +
m∑

k=1
Fk dxk,

⎟dY = (Xs)−1(R − dXY s),

dY =
⎡⎟dY + ⎟dY

T
⎣

/2.

Step 3: Maximize the step sizes (lengths) such that the following positive definite-
ness conditions are satisfied.⎝

ΩP = max{Ω → [0, 1]: Xs + Ω dX ∈ O},
ΩD = max{Ω → [0, 1]: Y s + Ω dY ∈ O}.

Step 4: Update the current point as follows:

⎡
xs+1, Xs+1, Y s+1

⎣
∪ ⎬

xs, Xs, Y s⎭ + β (ΩP dx, ΩP dX, ΩD dY ).

Set s ∪ s + 1, and return to Step 1.

Steps 2a and 2b correspond to the first and second bottleneck parts defined in Sect. 1,
respectively. We shall define the computation in Steps 2a and 2b as ELEMENTS and
CHOLESKY, respectively. As indicated in [9], ELEMENTS

⎬
O

⎬
mn3 + m2n2

⎭⎭
and CHOLESKY

⎬
O

⎬
m3

⎭⎭
have often accounted for 80–90 % of the total execution

time of the PDIPM. Therefore, researchers have focused on reducing the time taken
for these steps [5–8]. We have reduced the time complexity of ELEMENTS from
O

⎬
mn3 + m2n2

⎭
to O

⎬
m2

⎭
when solving the sparse SDP problem [4].



410 K. Fujisawa

Fig. 1 Primal-dual interior-point method

4 Hybirid Parallel Computing for Computing the Schur
Complement Matrix

4.1 Generic Algorithmic Framework for Hybrid Parallel
Computing

As mentioned in Sect. 1, ELEMENTS forms a bottleneck in the PDIPM when solving
SDP problems in Case 2. In this section, we explain the hybrid (MPI and OpenMP)
parallel computation for ELEMENTS. SDPARA was the first parallel software pack-
age to incorporate a technique for exploiting the sparsity of ELEMENTS [4, 9]. In
general, the elements of the SCM are evaluated by using Bi j = ⎬

(Xs)−1 Fi Y s
⎭• Fj in

Step 2 of the PDIPM. This formula requires two multiplications of two n×n matrices
and one computation of the inner product of two n × n matrices. However, if we
focus only on the nonzero elements of Fi and Fj , we can obtain another expression
for the same formula, i.e.,

Bi j =
n⎪

l=1

n⎪
β=1

n⎪
ϕ=1


⎨ n⎪

Ω=1

n⎪
α=1

⎠⎡
X−1

⎣l
]

βΩ

[
Fl

i

]
Ωα

[
Y l

]
αϕ

⎩
⎫[

Fl
j

]
β ϕ

,

where
[
Fl

i

]
Ωα

is the (Ω, α) element of the l-th block of Fi .

Let nz
⎬
Fl

i

⎭
be the set of indices of nonzero elements of the l-th block of Fi :

nz(Fl
i ) =

⎝
(Ω, α) :

[
Fl

i

]
Ωα

∼= 0

}
.
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Futher, let #nz(Fl
i ) be its cardinality. The cost of Bi j based on the latter formula

is almost proportional to (2 × #nz(Fl
i ) + 1) × #nz(Fl

j ). If #nz(Fl
i ) and #nz(Fl

j )

are very small and O(1) (namely, #nz(Fl
i ) and #nz(Fl

j ) are independent of n), the
latter formula is less resource-intensive than the original formula. Depending on
the sparsity of the input data matrices, SDPARA can automatically select the best
formula from among the following three;

F 1 : Bl
i j =

(⎡
X−1

⎣l
Fl

i Y l
)

• Fl
j

for the case when both Fl
i and Fl

j are dense,

F 2 : Bl
i j =

⎪
(β,ϕ)

(
n⎪

Ω=1

⎠⎡
X−1

⎣l
]

βΩ

[
Fl

i Y l
]
Ωϕ

)[
Fl

j

]
β ϕ

,

for the case of dense Fl
i and sparse Fl

j ,

F 3 : Bl
i j =

⎪
(β,ϕ)


⎨⎪

(Ω,α)

⎠⎡
X−1

⎣l
]

βΩ

[
Fl

i

]
Ωα

Y l
αϕ

⎩
⎫[

Fl
j

]
β ϕ

,

for the case when both Fl
i and Fl

j are sparse,

where (Ω, α) → nz(Fl
i ), (β, ϕ) → nz(Fl

j ), and Bi j = ∑h
l=1 Bl

i j .
Following the report of our proposed method [4], similar techniques for exploiting

the sparsity of ELEMENTS were implemented in other software packages, such as
CSDP [6] and SDPT3 [8].

The new version of SDPARA incorporates MPI+OpenMP-based hybrid parallel
computing (Figs. 2 and 3). The most important property of F 1,F 2, or F 3 from
the viewpoint of parallel computation is that the computations on each column are
completely independent of those of the other rows.

It should be noted that B is always symmetric in the PDIPM, and therefore, we
have to evaluate only the upper triangular part. Suppose that u processes are available
for the parallel computation of ELEMENTS. Then, within the framework of the
column-wise distribution shown in Fig.3, the p-th process evaluates the columns of
B that have been assigned to it in a cyclic manner. In particular, the p-th process
evaluates the columns in set R p defined by

R p = { j : ( j − p)%u = 0, 1 ∧ j ∧ m},

where a%b is the remainder of the division of a by b. If each processor on the
parallel computer has multiple CPU cores, we can accelerate the computation of
the columns in set R p using the OpenMP library with the scheduling parameter
dynamic. SDPARA can attain high scalability using a large quantity of CPU cores
and some processor affinity and memory interleaving techniques [12].
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Fig. 2 Algorithmic framework of MPI+OpenMP hybrid parallel computation for ELEMENTS

Fig. 3 Column-wise distri-
bution and MPI+OpenMP
hybrid parallel computation
for ELEMENTS

5 TSUBAME 2.0 and 2.5: GPU-Accelerated Supercomputer

This section briefly describes the TSUBAME 2.0 and 2.5 supercomputers that were
used for our evaluation of SDPARA, and the new techniques introduced in this
paper. It is to be noted that SDPARA and the proposed techniques were developed
for general GPU clusters.

TSUBAME 2.0, installed at Tokyo Institute of Technology in 2010, is a GPU-
based heterogeneous supercomputer with a peak performance of 2.40 PFlops (for
detailed information, refer to the technical paper [29]). The main part of the system
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Fig. 4 Structure of each HP SL390s G7 node used in TSUBAME 2.0 and scatter-type affinity and
memory interleaving. In TSUBAME 2.5, M2050 GPUs are replaced by K20X GPUs

consists of 1,408 HP Proliant SL390s G7 nodes. With these nodes, the system has
16,896 cores, 4,224 GPU devices, over 74 TB of host memory capacity, and inter-
connection with 200 Tbps of bisection bandwidth.

Figure 4 shows the structure of each node, which has two Intel Xeon X5670
2.93 GHz (six cores) CPUs, three NVIDIA Tesla M2050 GPUs, 54 GB (partly 96 GB)
of DDR3 memory, and 120 GB SSDs as node local storage. Each node is con-
nected to interconnect via two QDR 40 Gbps InfiniBand HCAs. The two CPUs share
54 GB of memory, and their total theoretical peak performance (double precision) is
140.8 GFlops. The CPUs and GPUs are connected via a PCIe 2.0 x16 bus.

As the interconnect, which connects all the compute nodes and the shared storage,
we adopt a dual-rail interconnect with a full-bisection fat-tree topology. This design,
which has many redundant routes, is adopted so that the cost of global communication
is minimized, as compared to that in other topologies, such as the torus.

In September 2013, TSUBAME 2.0 was upgraded to a new version called TSUB-
AME 2.5, by replacing the M2050 GPUs with new-generation NVIDIA Tesla K20X
GPUs. The peak performance (double precision) of each K20X GPU is 1.31 TFlops,
which is 2.54 times faster than that of the M2050; the current total peak performance
of TSUBAME 2.5 is 5.76 PFlops. No parts other than the GPUs, such as CPUs, host
memory, main boards, and networks were changed.
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6 Scalable Cholesky Factorization for Thousands of GPUs

6.1 Implementation and Optimization

As described above, the total execution time of SDPARA is dominated by that of
CHOLESKY (Cholesky factorization of SCM B) when B is sufficiently large and
dense. Generally, dense matrix computation can be significantly accelerated by har-
nessing GPGPU computing, as shown in recent works [11, 12]. In particular, Endo
et al. have shown that the performance of the Linpack benchmark (LU factorization
with pivoting) can be scalably increased by using more than 1,200 accelerators on the
TSUBAME 1.2 supercomputer, the predecessor of TSUBAME 2.0 [30]. The keys to
scalability include

• Overlapping computation on GPUs and PCIe communication between GPUs and
CPUs.

• Configuring the block size nb so that data reuse is promoted and the amount of
PCIe communication is reduced. To determine a better value of nb, we conducted
some preliminary experiments. Table 1 lists the DGEMM kernel performance on a
GPU. On an M2050 GPU, we see that the kernel performance improves with a
larger value of nb, and reaches 343.8 GFlops with nb = 1,024. Because we obtain
only a slight benefit with an even larger value of nb, we chose to use nb = 1,024
on TSUBAME 2.0. On the recently implemented K20X GPU, we see a three times
better performance than on an M2050 GPU. However, the trade-off becomes more
severe; nb = 1,024 cannot hide the PCI-e costs sufficiently. Instead, we chose to
use nb = 2,048 on TSUBAME 2.5.

While the parallel Cholesky factorization algorithm and Linpack have many com-
mon points, the former poses new challenges because of the following differences.

• In each computation step, the part of the matrix to be updated is the lower triangle
part, rather than a rectangle. Upon two-dimensional block-cyclic distribution, the
shape of the updated part in each process becomes more complex.

• (Related to the above difference) The computation amount per step is halved
compared to LU factorization. This makes the computation/communication ratio
even worse.

• Cholesky factorization requires additional work called “panel transposition.”

Hereafter, we call SDPARA whose CHOLESKY component is accelerated by
GPUs “SDPARA (version 7.6.0-G) [12].” Our accelerated CHOLESKY component
has properties similar to the pdpotrf function of ScaLAPACK. The dense matrix
B, with a size of m × m, is distributed among MPI processes in the two-dimensional
block-cyclic distribution with block size nb. When we let mb = ⊇m/nb≺ be the
number of blocks that are aligned in a row or a column, the CHOLESKY algorithm
consists of mb steps. A single (k-th) step proceeds as follows:

• Diagonal block factorization: The k-th diagonal block is Cholesky-factorized
locally. Then, the result block is broadcast to processes in the k-th process column.
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Table 1 Performance of GPU DGEMM in GFlops, including PCI-Express communication costs

nb M2050 in TSUBAME 2.0 (GFlops) K20X in TSUBAME 2.5 (GFlops)

256 316.0 251.0
512 334.1 490.8
768 340.5 719.6

1,024 343.8 (*) 935.6
1,536 346.6 1,065
2,048 348.2 1,080 (*)
2,560 349.0 1,089
3,072 349.8 1,091

We use two matrices whose sizes are (16,384 × nb) and (nb × 16,384). In our SDPARA execution,
we chose the value (nb) marked with (*)

• Panel factorization: The k-th block columns are called “panel” L , and the panel
is factorized by using the dtrsm BLAS kernel.

• Panel broadcast and transposition: We need to broadcast L row-wise, obtain the
transposition of L , and broadcast L t column-wise.

• Update: This is the most computation-intensive part. Each process updates its
own part of the rest matrix, taking the corresponding part of L and L t . Let B≥ be
the rest matrix. Then B ≥ = B ≥ − L × L t is computed. Thus, the DGEMM BLAS
kernel dominates the execution time. Note that updating the lower triangular part
is sufficient; thus, we can omit the computation of the unused upper part.

The basic approaches we applied to accelerate this algorithm are as follows.

1. We invoke one MPI process per GPU to drive it, and thus, three processes per
node are invoked on TSUBAME 2.0 and 2.5 nodes.

2. On GPU clusters, we have to decide where the data structure is located since the
GPU device memory is separated from the host memory. In order to accommodate
larger sizes of B, we store it on the host memory.

Approaches (1) and (2) indicate that we need to divide the matrices into parts
smaller than the device memory capacity and send the input matrices to the GPU via
PCIe in order to perform partial computation. Of course, without overlapping com-
putation and communication (as in “Version 1” in Fig. 5), the performance is strictly
restricted. To ensure high performance, the following optimization and configuration
are adopted.

• When the size of the partial matrix to be updated by a single GPU is r × s, the
computation cost in the “update” phase is O(r · s · nb), while the communication
cost is O(r · s + r · nb + s · nb). To reduce the relative communication cost, the
block size nb should be sufficiently large. Here, there is a trade-off since very large
nb degrades load balancing. After a preliminary evaluation, we set nb to be 2,048.

• In order to reduce and hide the PCIe communication cost, we overlap GPU com-
putation and PCIe communication.
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In each computation step, each process uses its assigned GPU to accelerate the
DTRSM and DGEMM kernels. In each process, its local part of B, which may be larger
than the GPU memory size, is stored on the host memory. Therefore, we need to
divide the matrices into small parts and send them to the GPU via PCI-e, and execute
the DTRSM/DGEMM kernels. The PCI-e communication and GPU computation are
conducted in a pipelined fashion. With these methods (“Version 2” in Fig. 5) we can
enjoy the accelerated performance. However, we have noticed that inter-node MPI
communication costs still restrict the scalability. Although each node in TSUBAME
2.5 has a wide injection bandwidth (8 GB/s = 40 Gbs), the communication costs
increase relatively when the computation is accelerated. Here, we further promote
the overlapping policy described above; we overlap all computations, PCIe com-
munication, and MPI communication (“Version 3” in Fig. 5). For this, the “Panel
broadcast and transposition” and “Update” phases are reorganized; the transposed
panel L t is divided into pieces before broadcasting, and each process transfers them
to the GPU just after partial broadcast is completed.

The implementation (“Version 3” in Fig. 5) were effective and achieved good
scalability for up to 4,080 GPUs; however, we observed that there remains a bot-
tleneck in the “panel factorization” phase, which computes L . The computational
cost of this phase is asymptotically smaller than that of the update phase; however,
because this cost is in the critical path, hiding the cost is important. To achieve this,
we improved the overlapping method (“Version 4 in Fig. 5). Here, the panel factor-
ization phase and the following “panel broadcast” are overlapped by dividing the
computation of the panel L into small parts. Using all the described techniques, the
performance of our CHOLESKY was even improved, as shown below.

As future improvement, we could overlap MPI communication for L and com-
putation by using an optimization technique called “lookahead,” which has been
introduced in High-Performance Linpack [31].

6.2 Numerical Results

This section demonstrates the performance evaluation results of CHOLESKY for
large-scale SDP problems in Case 3 (Table 2). The largest problem is QAP10, where
the SCM size is m = 2,339,331. Table 3 shows the system software used in the
experimentation.7

Figure 6 and Table 2 show the speed of the CHOLESKY component in teraflops.
The graph shows that the performance reaches 1.018 PFlops on TSUBAME 2.0 with
the QAP10 problem. This result forms a world record in terms of the performance
of an SDP solver.

The graph further shows the effects of the above described technique in which
panel factorization and broadcast are overlapped. “New” corresponds to the more
recent algorithm (“Version 4”) in the Fig. 5, whereas “org” denotes the original

7 “hpl-2.0_FERMI_v15” is distributed at https://nvdeveloper.nvidia.com/ to registered developers.

https://nvdeveloper.nvidia.com/
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Version 1: No overlapping

Version 2: GPU computation and PCIe communication are overlapped

Version 3: GPU computation, PCIe communication, and MPI communication are overlapped

Version 4: GPU computation, PCIe communication, MPI communication, and panel factorization
are overlapped

Fig. 5 Several versions of the Cholesky factorization algorithm
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Table 2 Performance (teraflops) of GPU CHOLESKY obtained by using up to 1,360 nodes (4,080
GPUs) on TSUBAME 2.0 and 2.5

Name m org(2.0) new(2.0) new(2.5)

(a) 400 nodes (1,200 GPUs)
QAP6 709,275 223.0 233.0 314.5
QAP7 1,218,400 248.8 306.2 505.8
(b)700 nodes (2,100 GPUs)
QAP6 709,275 309.5 329.0 387.5
QAP7 1,218,400 440.0 470.0 707.1
QAP8 1,484,406 463.8 512.9 825.1
(c) 1,360 nodes (4,080 GPUs)
QAP6 709,275 439.6 437.8 508.7
QAP7 1,218,400 695.2 718.8 952.0
QAP8 1,484,406 779.3 825.6 1186.4
QAP9 1,962,225 – 964.4 1526.5
QAP10 2,339,331 – 1018.5 1,713.0

Table 3 System software used in the experimentation

Name TSUBAME 2.0 TSUBAME 2.5

Compiler Intel 11.1.072 Intel 11.1.072
MPI MVAPICH 1.5.1 MVAPICH 1.5.1
BLAS (CPU) GotoBLAS2 1.13 GotoBLAS2 1.13
CUDA 4.0 5.0
BLAS (GPU) hpl-2.0_FERMI_v15 CUBLAS 5.0

algorithm (“Version 3”) in the Fig. 5. The graph shows that the “new” version achieves
up to a 10.5 % performance improvement for the QAP8 problem. Although this
improvement seems relatively small, it should be noted that the “org” version is
already optimized by applying overlapping techniques of computation, PCI-e com-
munication, and MPI communication.

On TSUBAME 2.5, we observe that the performance for the QAP10 problem
becomes 1.7 times better and reaches 1.713 PFlops, which breaks the world record
mentioned above. However, the improvement is rather mild as compared to the
improvement obtained using the DGEMM kernel shown in Table 1. We suppose the
following reasons for this. First, in spite of the GPU upgrade, the InfiniBand net-
work remains the same. Second, the larger block size, nb = 2,048, degrades load
balancing among MPI processes as described above. We are planning to propose a
new algorithm in the near future that solves the trade-off related to nb.
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Fig. 6 Performance of GPU CHOLESKY obtained by using up to 1,360 nodes (4,080 GPUs) on
TSUBAME 2.0 and 2.5

7 Conclusion

This paper described a high-performance solver, SDPARA 7.6.0-G, for large-scale
SDP problems with over 2 million constraints. The key to the high performance
of SDPARA is the acceleration of ELEMENTS and CHOLESKY by using thou-
sands of CPUs and GPUs, respectively. SDPARA could attain high scalability using
16,320 CPU cores on the TSUBAME 2.0 supercomputer and some processor affin-
ity and memory interleaving techniques when the generation of the SCM constituted
a bottleneck. By using 4,080 NVIDIA Tesla K20X GPUs on the TSUBAME 2.5
supercomputer, our implementation achieved 1.713 PFlops in double precision for a
large-scale problem with m = 2,339,331. We showed that SDPARA is a petascale
general solver for real problems in Cases 2 and 3. Finally, we demonstrated that
solving SDP problems with m > 2 × 106 is now possible on modern accelerated
supercomputers.
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Modeling of Head-Disk Interface
for Magnetic Recording

Kanzo Okada

Abstract All the existing models of thin film gas lubrication developed for designing
head sliders of hard disk drives are chronologically reviewed so as to show how
each model was improved and finally generalized to treat gas lubrication flows for
arbitrary Knudsen numbers. Each model is compared with the others using specific
examples for benchmarking purposes. A possible approach to the modeling of head-
disk interface is also proposed for further consideration that has the potential of
addressing one of the extreme operations in which the reader/writer element of the
head slider surfs through the lubricant on the disk.

Keywords Magnetic recording · Hard disk drives · Head-disk interface · Thin film
gas lubrication · Flying height · Head slider · Knudsen numbers · Modeling

1 Introduction

The hard disk drive is an integral and essential component of the modern com-
puter system. The head-disk interface technology is one of the key technologies of
hard disk drives and has been regarded as most instrumental in driving the ever-
increasing recording density trend. The frontiers of the head-disk interface technol-
ogy are already well into the regime of atomic and molecular phenomena.

As the physics of magnetic recording dictates, the head-to-disk separation should
be as little as possible to provide a sufficiently large signal for reading/writing a small
magnetic bit. Most of the head sliders commercialized 20 years ago broke the flying
height barrier of 100 nm and today it goes below 10 nm at the laboratory level, an
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order of magnitude lower [1]. Quite amazingly, 10 nm flying height of the standard
0.85 mm long head slider is comparable, by analogy, to flying the latest Boeing 787
aircraft steadily at an altitude of less than 1 mm. As shown in Fig. 1, due to the rapidly
decreasing flying height in the seemingly never-ending pursuit for higher recording
densities, the air-bearing film thickness became comparable to and soon surpassed
the mean free path of air molecules (∈64 nm under the condition of 1 atmospheric
pressure and 0 ⊂C), inducing the evolution of flying head slider design methodologies
as we know it today.

The ratio of the mean free path of air molecules λ to the film thickness h is a
measure of the degree of molecular rarefaction and known as the Knudsen number
Kn = λ/h. The Knudsen number generally classifies gas flows into the following
four types: (1) Kn → 0 for continuum flow, (2) Kn ⊃ 1 for slip flow, (3) Kn ∈ 1
for transition flow, and (4) Kn ∧ 1 for free molecular flow. As such, modeling gas
lubrication flows involves scale effects.

Our plan is to chronologically review all the existing models of thin film gas lubri-
cation developed for designing head sliders of hard disk drives so as to show how
each model was improved and finally generalized to treat gas lubrication flows for
arbitrary Knudsen numbers. In Sect. 2 we provide the readers with a basic derivation
of each model, covering from the classical Reynolds equation to the generalized
Reynolds equation of Fukui and Kaneko [2, 3] derived from the Boltzmann equation
of molecular gas dynamics, with the modified Reynolds equation of Burgdorfer [4]
and the higher order approximation model due to Hsia and Domoto [5] reviewed in
the transition. At the end of Sect. 2, we compare one model against another by using
specific examples for benchmarking purposes. In Sect. 3, in consideration for the
stringent magnetic spacing requirement of 2–3 nm for the next-generation ultrahigh
density hard disk drives, we conclude this article by making a brief comment, for
further consideration, on a possible approach to the modeling of head-disk inter-
face, which has the potential of addressing one of the extreme operating conditions
where the reader/writer element of the head slider surfs through the lubricant on the
disk [1].
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2 Thin Film Gas Lubrication Equations

In Sect. 2.1, we introduce the classical Reynolds equation based on the continuum
theory of viscous fluids since it is the foundation of hydrodynamic lubrication theory.
In Sect. 2.2 the modified Reynolds equation and its higher order version are derived
by adopting the first order slip flow condition and extending it up to the second
order slip flow condition based on the kinetic theory of gases for improved approx-
imation. In Sect. 2.3 the generalized Reynolds equation valid for arbitrary Knudsen
numbers is derived from the linearized Boltzmann equation. Section 2.4 is provided
to benchmark all the four models reviewed in this article.

2.1 Reynolds Equation

We consider a general curved solid surface (head slider) floating in a steady state
over a planar solid surface (disk) moving in the direction parallel to the xy-plane
as shown in Fig. 2. For convenience, we let the planar surface be in the xy-plane
of the Cartesian coordinate system. We also let the local separation between the
surfaces be a prescribed function z = h (x, y). The solid surfaces are assumed to
be sufficiently rigid so that any deformations of the surfaces due to hydrodynamic
pressure and surface forces are negligible. The fluid flow at low Reynolds number
in the region between the sliding surfaces can be described by what is known as the
Reynolds lubrication approximation if the characteristic length l of the head slider
in relative motion is large compared to the minimum flying height h0, that is, under
the condition of h0/ l ⊃ 1. In this approximation, it is assumed that locally the
flow is similar to that between the parallel plates, namely, the lateral components of
the flow velocity field are large and derivatives in the direction normal to the disk
are dominant. By applying this approximation to the compressible Navier-Stokes
equations for a viscous fluid of shear viscosity μ, we obtain the following steady
state problem:

μ
∂2u
∂z2 = ∇ p (1)

Here u = (u, v) is the flow velocity field, ∇ = (∂/∂x, ∂/∂y) , and the pressure p
is only a function of x and y.

Throughout this article, without loss of generality, we assume an infinite disk
along the y-direction. The disk is forced to move with a constant velocity U along
the x-direction. Under these conditions, the problem can be treated as one in two-
dimensions. Using the non-slip flow conditions:

u = U at z = 0 (2)

u = 0 at z = h (3)
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Equation (1) can be integrated with respect to z to give

u (x, z) = − 1

2μ

dp

dx

(
hz − z2

)
+ U

(
1 − z

h

)
(4)

It is to be noted from the two terms on the right-hand side of Eq. (4) that thin film gas
lubrication flows are composed of the two fundamental parallel plate flows, namely,
the first term corresponds to the pressure flow (Poiseuille flow) due to the pressure
gradient, while the second term to the shear flow (Couette flow) due to the disk motion.
The equation of continuity in differential form can be replaced by the condition that
the volume of flow in every section must be constant, namely,

d

dx

⎧
⎨ρ

h⎩
0

udz


⎫ = 0 (5)

Substituting Eq. (4) into Eq. (5) and integrating it with respect to z under the nonslip
flow conditions (2) and (3), we obtain the Reynolds equation in the following form:

d

dx

⎬
ρh3 dp

dx

⎭
= 6μU

d

dx
(ρh) (6)

If the temperature distributions on the boundary surfaces are uniform and approx-
imately the same, it can be proven that the flow field at the head-disk interface is
isothermal. Under the isothermal condition, the pressure can be taken to be propor-
tional to the density:

p ← ρ (7)

For compressible fluids such as air, replacing ρ in Eq. (6) by p through the relation (7),
the Reynolds equation can be expressed entirely in terms of the pressure distribution
p (x) with an arbitrary height function h (x) given.
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d

dx

⎬
ph3 dp

dx

⎭
= 6μU

d

dx
(ph) (8)

The pressure at the perimeter of the air-bearing surface is equal to the ambient
pressure pa . Projecting the perimeter on the domain of definition (0 ≈ x ≈ l), we
can set the pressure boundary condition by

pbdry = pa (9)

Thus, the Reynolds equation of lubrication can be put in the final forms of Eqs. (8)
and (9).

For ease of comparison in what follows, we write both the Reynolds equation and
the boundary condition in nondimensional forms by dividing the position coordinate
x , the pressure p, and the height function h by the head slider length l, the ambient
pressure pa , and the minimum flying height h0, respectively.

d

d X

[
P H3 d P

d X

]
= Λ

d

d X
(P H) (10)

Pbdry = 1 (11)

Here, the dimensionless quantity Λ(= 6μUl/pah2
0) is known as the bearing number

and gives the ratio of the mass flow rate of the Couette flow to that of the Poiseuille
flow. A brief discussion will be made later in Sect. 2.4 on how the bearing number
characterizes the lubrication flow.

2.2 Modified Reynolds Equations

As already remarked in Sect. 1, the film thickness became no longer negligible in
comparison to the mean free path of air molecules as the former decreased rapidly
in response to the demand for higher and higher recording densities. Clearly the
Reynolds equation was not adequate to model such thin film gas lubrication flows.
It was Burgdorfer [4] who first introduced from the kinetic theory of gases an ad hoc
slip boundary condition (by expanding the velocity in a Taylor series about the wall
position and retaining the zeroth and first order terms as shown in Eqs. (12) and (13))
to account for molecular effects, although still limited to the continuum flow region
of Kn ⊃ 1.

u = U + aλ
∂u

∂z
− (aλ)2

2

∂2u

∂z2 + . . . at z = 0 (12)

u = −aλ
∂u

∂z
− (aλ)2

2

∂2u

∂z2 − . . . at z = h (13)

Here, a is defined by a = (2 − α) /α where α is called the accommodation coef-
ficient of the boundary surface and 0 < α < 1. There are mainly three modes of
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gas particle reflection at the boundary: (1) specular reflection (α = 0), (2) diffuse
reflection (α = 1), and (3) Maxwell-type reflection (a linear interpolation between
specular and diffuse reflection modes). In this article, we set α = 1 for simplicity.

In the same way as the Reynolds equation was derived in Sect. 2.1, Eq. (1) is
solved for the flow velocity u by using the first order slip flow conditions (12) and
(13) in place of the nonslip flow conditions (2) and (3) and it is given by

u (x, z) = − 1

2μ

dp

dx

(
λh + hz − z2

)
+ U

⎬
1 − z + λ

h + 2λ

⎭
(14)

Following exactly the same procedure as employed in Sect. 2.1, we can finally write
down the nondimensional form of the modified Reynolds equation of Burgdorfer as
in Eq. (15). Note that there is an additional term 6Kn0/P H on the left-hand side of
the equation, which is associated with the mass flow rate of the Poiseuille flow and
accounts for the first order effect due to the mean free path λ of gas molecules.

d

d X

[
P H 3

⎬
1 + 6Kn0

P H

⎭
d P

d X

]
= Λ

d

d X
(P H) (15)

Here Kn0(= λ/h0) is the Knudsen number evaluated at the minimum flying height h0.
By retaining terms up to the second derivative of u with respect to z in the velocity

boundary conditions (12) and (13), Hsia and Domoto [5] proposed a higher order
approximation model to the Reynolds equation and it reads as follows:

d

d X

[
P H3

(
1 + 6Kn0

P H
+ 6K 2

n0

P2 H2

⎡
d P

d X

⎣
= Λ

d

d X
(P H) (16)

We will take a look, later in Sect. 2.4, at the problem of applicability of the modified
Reynolds equation (15) and its higher order version (16) to those Knudsen numbers
on the order of Kn ∈ 1.

2.3 Generalized Reynolds Equation

Around 1987, when Fukui and Kaneko [2] first reported the derivation of a gener-
alized Reynolds equation valid for arbitrary Knudsen numbers, the minimum flying
heights of head sliders used then were around 150 nm (see Fig. 1). We had been
knocking on the door of Kn ∈ 1, and therefore, a more advanced model other
than the slip flow Reynolds equations was in order. This provided the researchers
with impetus to extend or generalize the slip flow Reynolds equations, which are
corrections to the classical Reynolds equation to one degree or another, so that it
becomes valid for arbitrary Knudsen numbers. As the Boltzmann equation of mole-
cular gas dynamics describes the behavior of gas molecules for arbitrary Knudsen
numbers, and therefore, has a definite advantage over the then existing gas lubrication
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models [6], Fukui and Kaneko took a good look at the linearized Boltzmann equation
to derive an ultrathin film gas lubrication model valid for arbitrary Knudsen numbers
exactly in the same form as the Reynolds equation. Given below is an essential part
of their derivation of the generalized Reynolds equation [2, 3].

Essential to molecular gas dynamics is the probabilistic and statistical description
of the behavior of gas molecules by means of a molecular velocity distribution func-
tion f (x, ξ, t) where x is the position vector, ξ is the molecular velocity vector, and
t is the time. It gives the probability of finding a gas molecule at a given phase coor-
dinates of x and ξ at time t and is the solution of the celebrated integro-differential
equation known as the Boltzmann equation:

∂ f

∂t
+ ξ · ∇ f = Q ( f, f ) (17)

Here, Q( f, f ) is an integral operator quadratic in f, representing the gains and
losses through intermolecular collisions which cause changes of f in space and time
through Eq. (17). In general, the collision operator Q ( f, f ) is highly complex and
difficult to treat.

However, we can approximate it by using the well-known BGK model proposed
by Bhatnagar, Gross and Krook [7] without losing the essence of the problem under
consideration. The BGK model is most frequently used for practical problems and
takes the form

∂ f

∂t
+ ξ · ∇ f = ν ( fe − f ) (18)

Here,ν is the mean collision frequency and fe is the Maxwellian distribution function,
which is one of the exact solutions of the Boltzmann equation, representing a uniform
and steady state of a gas, namely an equilibrium state independent of space and time.

fe (ξ) = ρ

(2πRT )3/2 exp

⎤
−|ξ − u|2

2RT

⎦
(19)

Since it can safely be assumed for the actual head-disk interface that the magnitude
of the flow velocity field is appreciably small compared to the molecular counterpart,
namely, the Mach number is small compared to unity and that the flow field in the
region of lubrication is maintained in an isothermal state, we can regard the deviation
of the velocity distribution function f from the velocity distribution function f0 of
the static equilibrium state as small. This provides us with the reasonable ground
for using the BGK model equation linearized about f0 as the fundamental equation
of ultrathin film gas lubrication. The nondimensional form of the linearized BGK
model equation is given by

εζX
∂φ

∂X
+ ζZ

∂φ

∂Z
= 1

k0
(−φ + ω + 2ζX VX ) (20)
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The nondimensional variables used above are defined as follows:

X = x

l
, Z = z

h0
, ε = h0

l

ζX = ξx≤
2RT

, ζZ = ξz≤
2RT

,

VX = u≤
2RT

=
⎩ ⎩ ∀⎩

−∀
(ζXφE) dζ (21)

φ = f f −1|u=0 − 1

ω = ρ

ρ0
− 1 =

⎩ ⎩ ∀⎩
−∀

(φE) dζ

Here, X and Z are the nondimensional coordinates of x and z, ζX and ζZ are the
nondimensional molecular velocity components of ξx and ξz , VX is the flow velocity
in the X-direction, and h0 is the minimum flying height. Those quantities with a
subscript 0 refer to the static equilibrium state. φ and ω are the non-dimensional
perturbations of the velocity distribution function f and density ρ, respectively. R
and T are gas constant and reference temperature. E and k0 are given by

E = π−3/2 exp
(
−ζ2

)
(22)

k0 =
≤

π

2

⎬
λ

h0

⎭
=

≤
π

2
Kn0 (23)

Under the isothermal condition and the assumption of diffuse reflection mode(α = 1),
the boundary conditions of the governing equation (20) are simplified to yield

φ = 2VW at Z = 0, ζZ > 0 (24)

φ = 0 at Z = H, ζZ < 0 (25)

Here, VW is the nondimensional disk speed
(
= U/

≤
2RT

)
.

Next, we consider the following similarity solution to the fundamental
equation (20).

φ =
⎬

X

ε

⎭
φ0

(
ζ2

)
+ ζXφ1

(
Z , ζZ , ζ2

)
(26)

Substituting it into Eq. (20) and arranging the resultant in terms of X and ζX , we get
the following relations for φ0 and φ1:

φ0 = β (27)
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ζZ
∂φ1

∂Z
= 1

k0
(−φ1 + 2VX ) − β (28)

Here, β is the nondimensional pressure gradient (= ε dP/dX) .

Solving Eq. (28) with the boundary conditions (24) and (25), we obtain the fol-
lowing analytical expressions for φ1 with VX yet to be determined.

φ1 = 2VW exp

⎬
− Z

k0ζZ

⎭
(29)

+ 1

ζZ
exp

⎬
− Z

k0ζZ

⎭ Z⎩
0

⎬
2VX (Z ≥)

k0
− β

⎭
exp

⎬
Z ≥

k0ζZ

⎭
dZ ≥ for ζZ > 0

φ1 = 1

ζZ
exp

⎬
− Z

k0ζZ

⎭ Z⎩
H

⎬
2VX (Z ≥)

k0
− β

⎭
exp

⎬
Z ≥

k0ζZ

⎭
dZ ≥ for ζZ < 0 (30)

Substituting Eqs. (29) and (30) into Eq. (21)3 with φ replaced by the second term on
the right-hand side of Eq. (26) while taking an appropriate care of the sign of ζZ , we
get the integral equation for VX .

VX (Z) = 1≤
π

⎪⎢
⎥VW T0

⎬
Z

k0

⎭
+ 1

k0

H⎩
0

T−1

(∣∣Z − Z ≥∣∣
k0

⎡ [
VX

⎛
Z ≥⎜ − k0β

2

]
dZ ≥

⎝⎞
⎟
(31)

Here, Tn (x) is the Abramowitz function [8] defined by

Tn (x) =
∀⎩

0

tn exp
(
−t2 − x

t

)
dt (32)

Fukui and Kaneko wrote VX (Z) as a linear sum of those two terms in the following
equation for the reason to become clear shortly.

VX (Z) = k0β

2

⎛
1 − ψp

⎜ + VW ψc (33)

Putting Eq. (33) into Eq. (31) and arranging the resultant in terms of k0β/2 and VW ,
we obtain the following integral equations for ψp and ψc.

ψp (Z) = 1 + 1≤
πk0

H⎩
0

T−1

(∣∣Z − Z ≥∣∣
k0

⎡
ψp

⎛
Z ≥⎜ dZ ≥ (34)
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ψc (Z) = 1≤
π

⎠
T0

⎬
Z

k0

⎭
+ 1

k0

H⎩
0

T−1

(∣∣Z − Z ≥∣∣
k0

⎡
ψc

⎛
Z ≥⎜ dZ ≥


 (35)

It was already known then that the solutions ψp and ψc of Eqs. (34) and (35) give the
velocity profiles VX p and VXc of the Posiseuille and Couette flows through the first
and second terms on the right-hand side of Eq. (33) [9, 10]. This is the reason why
Fukui and Kaneko adeptly expressed VX (Z) as in Eq. (33) so that their lubrication
equation could conveniently be put in the same form as all the other prior lubrication
equations.

VX = VX p + VXc (36)

where

VX p = k0β

2

⎛
1 − ψp

⎜
(37)

VXc = VW ψc (38)

Accordingly, the total mass flow rate q can be written as a linear sum of the corre-
sponding mass flow rates qp and qc.

q = qp + qc (39)

Since the velocity profile of the Couette flow is symmetric, it is clear that the Couette
flow rate qc is always given by the same quantity ρUh/2 as for the continuum case,
regardless of the Knudsen number. According to Eq. (39), the part of the total mass
flow rate q that is dependent on the Knudsen number must come from the Poiseuille
flow. Therefore, the final form of the generalized Reynolds equation can take the
same form as all the other prior lubrication equations, the only difference being in
the expression of the Poiseuille flow rate.

In order to obtain the non-dimensional form of the generalized Reynolds equation,
we make the Poiseuille flow rate qp non-dimensional by

Q p (D) = − qp

h2
(

d p
dx

)
/
≤

2RT
(40)

Here, D is the inverse Knudsen number and defined by

D =
≤

π

2Kn
(41)

Normalizing Q p (D) by the continuum Poiseuille flow rate Qcon (D), we can finally
express the nondimensional form of the generalized Reynolds equation as
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d

d X

[
P H3

⎬
Q p (D)

Qcon (D)

⎭
d P

d X

]
= Λ

d

d X
(P H) (42)

Looking at Eq. (42), we realize that the history of generalizing the Reynolds equa-
tion was indeed the history of generalizing the Poiseuille flow rate Q p (D). In fact,
the Poiseuille flow rates Q p (D) for Reynolds’ original theory of hydrodynamic
lubrication, Burgdorfer’s modified Reynolds equation, and its higher order approxi-
mation model are given, respectively, by D/6, D/6

⎛
1 + 3

≤
π/D

⎜
and D/6 (1 + 3≤

π/D + 3π/2D2
⎜
.

We end this section by providing the readers with a brief sketch of the numerical
procedure of solving the generalized Reynolds equation. The Poiseuille flow rate
can be obtained by first solving Eq. (34) for the velocity profile ψp numerically and
then by integrating the result along every section in the separation gap according to
the formula of mass flow rate by way of Eq. (37). Since the generalized Reynolds
equation differs from all the prior lubrication equations only in the Poiseuille flow
rate, one can easily modify any of the available simulation codes for the head-
disk interface by computing Q p with the Poiseuille flow rate database available
in the literature [11]. In the same paper [11], there is also proposed an effective
interpolation scheme to speed up the process of computing Q p using the database so
that one can solve the generalized Reynolds equation as fast as the slip flow Reynolds
equations.

2.4 Benchmark Results

Since it boils down to the comparison of mass flow rates to distinguish all the four
models reviewed in Sects. 2.1 through 2.3, the mass flow rate Q p of each model was
evaluated as a function of the inverse Knudsen number D [2]. Figure 3 reveals that the
first order slip model underestimates the actual mass flow rate, whereas the second
order slip approximation overestimates it. Note that the solution obtained from the
generalized Reynolds equation describes its asymptotic behavior in the region of
D ∧ 1.

As mentioned in Sect. 2.1, the bearing number Λ is the ratio of Couette flow rate
to Poiseuille flow rate. As it increases, the Couette flow becomes dominant over the
Poiseuille flow, diminishing the effect of the Knudsen number. This is why there is
no significant difference in mass flow rate among the models for a certain range of
Knudsen numbers. Figure 4, which shows the relation between the bearing number Λ

and the load capacity W , verifies that as the bearing number increases with the inverse
Knudsen number held at a fixed value, all the load capacities asymptotically approach
a constant value. However, it needs to be stressed that, under those experimental
conditions in which the Poiseuille flow becomes dominant, the numerical solutions
of the generalized Reynolds equation are demonstrated to be in good agreement with
the experimental results [12].
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3 On a New Head-Disk Interface Design

Apparently even the generalized Reynolds equation is limited in its application to
the future head-disk interface where the magnetic spacing is projected to be around
2–3 nm. It should be pointed out that the magnetic spacing referred to earlier is
no longer a physical clearance, but should be understood in the sense that the
reader/writer element can sense it only magnetically. In fact, a new concept called
the “lube-surfing head-disk interface scheme” was proposed a few years ago as part
of the efforts to develop hard disk drives capable of storing data at the recording
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Fig. 5 A schematic description of lube-surfing head-disk interface (Source [1])

density of 10 Tb/in2 (see Fig. 5) [13]. In this newly proposed scheme, the head slider
steadily flies over the disk so that it can support its reader/writer element surfing
through the lubricant layer of a thickness of a few nanometers. In order to design
such head sliders, it would be necessary to take into consideration the lubricant film
flow on a rotating disk and its interaction with the head slider in flight as well. It
is well-established that in very thin liquid films of less than several molecules thick
near a solid wall, the classical Reynolds equation breaks down. For the flow behav-
ior of a collection of molecules near a solid wall, microstructural effects such as the
micro-inertia of the liquid and the nonlocal surface stress play relevant roles.

Eringen and Okada [14, 15] developed a nonlocal theory of lubrication capable of
describing the physics of dynamic processes in very thin liquid films at the molecular
level and it can predict the forces of interaction between the head slider and the
lubricant film. We believe that, leveraging on the nonlocal lubrication theory, it
should be possible to develop a new head-disk interface design methodology for
the likes of the lube-surfing head-disk interface scheme, whereby one can address
questions regarding the ways in which an appropriate head-disk interface can be
designed by combining it with the generalized Reynolds equation.
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Nonstationary Analysis of Blast Furnace
Through Solution of Inverse Problem
and Recurrence Plot

Junichi Nakagawa

Abstract A recurrence plot is a method for directly visualizing, on a two-dimens-
ional surface, information regarding the proximal points and distance between two
points created using time delay coordinates from temporal sequence data This method
qualitatively captures the nonstationary nature of temporal sequence data. However,
as the complexity of phenomena increases, the plotted structure of visualizations
using two-dimensional surfaces also becomes complex. This can cause problems
when trying to interpret changes in the plotted structure. This paper proposes a
method of recurrence plot structural analysis, that is, on the basis of deterministic
principles. Furthermore, because the proposed method is applied to a blast furnace,
which involves the handling of enormous quantities of high-temperature molten iron
as well as complex phenomena accompanying reactions in the gas, liquid and solid
phases, direct measurement of the internal states when they are treated as spatial
distributions is an extremely difficult process. Thus, this study undertakes an analysis
of the principles of the determinable properties underlying the temperature shifts in
the thermoelectric couples embedded in the brickwork of the furnace floor.

Keywords Nonstationary · Recurrence plot · Blast furnace · Inverse heat conduc-
tion problem

1 Introduction

Blast furnaces are a typical complex process, involving all the phenomena accom-
panying reactions between the gas, liquid, and solid phases. Also, since blast fur-
naces must handle enormous quantities of high-temperature molten iron, any direct
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measurement of the internal states when they are to be treated as spatial distributions
is an extremely difficult process.

One problem with blast furnaces is the abnormal states believed to occur when
a malfunction causes furnace conditions to diverge from a stationary state. Since
furnaces are usually controlled so as to avoid abnormal states as much as possible, it
is rare for these abnormal states to continue in a stationary manner, and the ones we
see are transition processes. Accordingly, in order to respond to this sort of problem, it
is important to discover and quantify universal attributes from the conditions present
in transition processes.

One of the main factors in determining the longevity of blast furnaces is the
thickness of the brick of the furnace floor. The furnace floor is usually covered by
a coagulated layer comprised mainly of a compound of molten metal and coke,
called the “furnace upheaval,” that protects it from direct contact with molten metal
which can cause damage the brick. However, if for any reason a sudden dynamic
change occurs inside the furnace, a local increase in the flow rate of molten iron
accompanying the rise or fall of the furnace core, called the “deadman” may cause
the furnace upheaval to disappear, causing the brick to suffer damage from the heat
of the molten metal [1].

When a furnace is in operation, it is desirable to detect as early as possible any
sudden dynamic changes within it that might cause damage to the furnace floor brick,
and to take the appropriate action to bring these internal changes under control.
However, since direct internal measurement of the furnace is extremely difficult, as
outlined above, we are forced to estimate any changes in the furnace’s internal state
from the extremely limited temperature measurement information coming from the
thermocouples embedded in the brick of the furnace floor.

This paper applies the inverse problem to the heat transfer phenomenon of blast
furnaces, on the basis of temporal sequence data consisting of thermocouple mea-
surement values. Here, the inverse problem has a twofold meaning. One is the inverse
heat conduction problem to reconstruct a heat flux on an inaccessible boundary. The
other is the identification of the system’s characteristic nonstationary principles.

In the inverse heat conduction problem, for the nonstationary heat conduction
equation, we are required to reconstruct a heat flux on an inaccessible boundary from
measurements made near the accessible boundary. There are a number of numerical
methods for solving the inverse heat conduction problem. However, most of them
require some data to serve as the initial conditions. On the other hand, in many
practical situations such as blast furnaces, we cannot know the initial condition
because we have to estimate the problem for a process that has already started. One
of the main purposes of this paper is to propose a numerical method which does
not need initial data for reconstructing the boundary values and is stable against the
intrinsic instability of the inverse heat conduction problem.

On a reconstructed attractor created to bring about a one-to-one corresponding
relationship with the original dynamic system, we attempt to analyze the infor-
mation regarding internal furnace changes contained within the temporal sequence
data. One challenge to identifying the nonstationary states of dynamic systems with
comparatively large degrees of freedom and split-second timing is to discover the
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system’s characteristic nonstationary and nonlinear principles. In order to do this,
it is necessary to analyze attributes related to transitions over time in the dynamic
structure of transitional dynamic trajectories and to visualize transitions over time in
the structure of attractors. We use the recurrence plot method, as it displays excellent
capabilities in this area. A recurrence plot [2] is a way of directly visualizing, on a
flat two-dimensional surface, information regarding the proximal points and distance
between two points created using time delay coordinates from temporal sequence
data. This method is effective for qualitatively capturing the nonstationary nature
of temporal sequence data [3, 4]. However, as the complexity of a phenomenon
increases, the plot structure of a visualization using a two-dimensional surface also
becomes complex. This can cause problems when trying to interpret changes in the
plot structure.

Thus, in this paper, we extract detection functions from the recurrence plot by
using the principles of the measure of determinism and we pose the problem of
processing of temporal sequence data as an inverse heat conduction problem and
numerically index the recurrence plot structure. Then, we discuss the nonlinear prin-
ciples applicable to bringing back under control a furnace experiencing a sudden
increase in heat flux that potentially can damage its floor.

2 Formulation of the Inverse Heat Conduction Problem

Let us consider the one-dimensional heat equation:

πt u = ℘π2
x u(x, t), 0 < x < l, t > 0 (1)

Here, ℘ > 0 is a given constant which represents the thermal diffusion coefficient.
The inverse heat conduction problem for (1) is to determine

f (t) ≡ πx u(0, t), t > 0 (2)

and
u0(x) ≡ u(x, 0), 0 < x ≤ l (3)

from
πx u(l, t) ≡ g(t) = u(l − ωx) − u(l), t > 0 (4)

and
u(l, t) ≡ h(t), t > 0. (5)

Let 0 < t1 < · · · < tM be given. Our task is to reconstruct the values of f (t) and
u0(x) from discrete noisy values of g(t j ) and h(t j ), j = 1, 2, . . ., M .

We refer the reader to [5] in which the algorithm for solving the inverse heat
conduction problem is shown.
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3 Results of Numerical Experiment

In this section, we will give an example to test the algorithm described in the previous
section.

Figure 1 displays temperature values from two thermocouples set at different
depths in a refractory material. The thermocouples are, respectively, positioned at
0.85 and 0.95 m from the inner surface. We set the heat flux at the inner boundary as
in Fig. 2 and reconstructed it using the temperatures shown in Fig. 1. Figure 2 is the
numerical result. From it, we can see that the calculated value is quite close to the
set value.

For the sake of comparison, other numerical results are shown in Fig. 2. Beck’s
method [6] is based on the variational principle. Since this method requires an initial
value, its numerical performance is poor for small t due to a long time required
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to converge to a stable answer. Although the initial values were set to be constant
(25 ◦C) at all positions of the material, there is a subtle temperature gradient.

The pseudo-stationary condition is calculated with Formula (6).

qst = εωT

l
(6)

Here, ε represents the thermal conductivity of the furnace floor brick, which
is here set as 21 W/m · K. In addition, l represents the distance between the two
thermocouples and ωT represents the difference in temperature values at any given
time. The numerical performance is worse for all t.

4 Reconstruction of Heat Flux in Blast Furnace

Figure 3 displays temperature measurement values from two thermocouples set at
different depths in the brick of the floor of a blast furnace. The distance between
them is 0.1 m.

Figure 4 displays the change in pseudo-stationary heat flux, calculated with For-
mula (7) based on the temperature measurements made with the two thermocouples.

qst = εωT

l
(7)

Here, ε represents the thermal conductivity of the furnace floor brick (14 W/m
· K). The distance between the thermocouples is denoted by l, and the difference
in temperature measurement values at any given time between the thermocouples is
denoted by ωT . The dotted line in the diagram is the shutdown period; it represents
the times when the operation of the blast furnace is suspended for scheduled repair.

Figure 5 displays the change in nonstationary heat flux calculated with the inverse
heat conduction problem method.

We can see that the changes in the heat flux estimated by inverse heat conduction
problem method in Fig. 5 are large in comparison with those in Fig. 4. This difference
is due to a heat transfer delay, caused by heat transfer resistance occurring between
the positions of the thermocouples in the blast furnace brick and the surface of the
brick. Another reason for why the change in heat flux is larger in Fig. 5 is that the
measurement errors in the original temperature data from the thermocouples have
been amplified by the inverse problem. However, if this amplification of measurement
errors has occurred its influence would extend across all time periods to the same
extent, but we can see that the scope of the changes in heat flux in Fig. 5 depends
on the period of time. Also, around the vicinity of 1,650 h, the scope of changes in
the heat flux is almost to the same extent and at the same time as in Fig. 3 showing
the change in stationary heat flux (where there is no amplification of measurement
errors). This leads us to judge that the influence from amplification of measurement
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Fig. 5 Change in nonstationary heat flux

errors was not extensive. In the next section, taking Figs.3 and 4 as the objects of
analysis, we will develop our argument by focusing on discrepancies in the results
of analysis between those cases in which the heat transfer delay has been considered
and cases in which it is not.
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5 Analysis of Recurrence Plot

In order to create a recurrence plot methodology [4], we first must imagine an image
formed of N × N pixels. Then, we must consider an index i of temporal sequence
data in the x direction of this image and an index j of temporal sequence data in the
y direction, and obtain both the points where these meet {i, j} within the distance
between the two points D{i, j} .

D(i, j) = |X (i) − X ( j)| (8)

Here, X (i) and X ( j) are reconstructed vectors formed using the observed tem-
poral sequence data {x(t), t = 0, 1, 2, . . ., N }:

X (i) = (x(i), x(i + α), . . . , x(i + (m − 1)α ) (9)

X ( j) = (x( j), x( j + α), . . . , x( j + (m − 1)α ) (10)

The 14 h maximum value for the response time of 6–14 h [7, 8] reported as the
response characteristics of the blast furnace is used here as the time delay α . The
dimension m of the space of the reconstructed states was set at 7, in consideration
of the embedding theorem [9, 10] and the values of the correlation dimensions d of
the stationary heat flux and nonstationary heat flux (calculated using the correlation
dimensional analysis presented in [8]), which were respectively 2.2 and 2.9. Also,
the Euclidean distance was used in calculating the distance between the two points
X (i) and X ( j). When the threshold β is appropriately stipulated,

D(i, j) < β (11)

a black point is plotted at the pixel lying at point (i, j).
The threshold value β is set for optimum visual clarity of the recurrence plot.

If β is too small, the plot becomes too sparse; conversely if it is too large, the plot
becomes too dense, making it difficult to ascertain the plot structure. The value of
β is often set somewhere between 0.01 times and 0.28 times the maximum value of
D(i, j) [3, 11, 12].

Figures 6 and 7 display the recurrence plots of the temporal sequence data from
the stationary heat flux of Fig. 4 and the non-stationary heat flux of Fig. 5. Here, β is
set at 0.065 of the maximum value of D (i,j).

The patterns of the recurrence plots depicted in Figs. 6 and 7 resemble each other to
a certain extent. This suggests that the macro structure of the reconstructed attractors
between the stationary heat flux and the nonstationary heat flux is conserved. Also, in
comparison with Fig. 6, the thick shading is preserved in the plot pattern in Fig. 7. This
is nearly identical to the macro structure of reconstructed attractors outlined above,
but fine differences are observable. The following section analyzes the mechanisms
that are expressed in this shading structure.
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Fig. 8 Detection of determinism from stationary heat flux

6 Detecting Determinism from a Recurrence Plot

In order to analyze the shading structure in the recurrence plot described above
from the perspective of deterministic principles, we took the diagonal line of the
recurrence plot as the transverse axis, and assigned the plot running parallel to the
diagonal line on the transverse axis of the graph. The re-depicted results of Figs. 6
and 7 are displayed as Figs. 8 and 9. Here, the time component until r × m = 98 h is
displayed on the vertical axis of the graph.

In some places on Fig. 8, some whited-out sections can be seen, but it can be seen
that apart from these whited-out sections the parallel lines mostly continue along
the horizontal axis of the graph. On the other hand, in Fig. 9 some upsets in the
continuity of the parallel lines can be seen around the starting point in time where
the heat flux values in Fig. 5 increased (in the vicinity of 520 h). This appears in the
recurrence plot pattern from Fig. 7 as the shaded section. This suggests that the level of
determinability decreases before a state changes greatly. We believe that this decrease
in determinability can be seen in the shading pattern of the recurrence plot in Fig. 7.

7 Quantitative Evaluation Index for Determinism

As outlined above, a numerical index should be developed for the determinability
of the continuity of the parallel lines in Figs. 8 and 9. The plotted points for the
times t listed in Figs. 8 and 9 are defined as a numerical index for the principle of
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Fig. 9 Detection of determinism from nonstationary heat flux

determinability for the ratio of the recurrence points forming parallel lines to the
diagonal line in the recurrence plot. Here, ωt represents the sampling time for the
original temporal sequence data.

Here, the concept of %determinism defined by Webber Jr, and Zbilut [13] is
identical to the ratio of the recurrence points forming parallel lines to the diagonal
line in the recurrence plot, so we shall refer to this numerical index as %determinism.
Figs. 10 and 11 represent the temporal changes in %determinism of Figs. 8 and 9. In
Fig. 11, the %determinism values decreased right before 520 and 2,150 h (the times
at which large changes in heat flux began).

8 Discussion

The “shutdown period” refers to the period, usually every day or two, where the
production of molten iron in the blast furnace is suspended for conservation and
maintenance purposes. We have observed some cases where the shutdown operation
can trigger changes in the internal state of the blast furnace. Accordingly, just as
Fig. 12 indicates the changes in the internal state of the blast furnace, Figs. 13 and 14
plot the relationship between level change Q in heat flux value before and after
the shutdown operation and the %determinism value directly before shutdown D.
Figure 13 represents the case of stationary heat flux and is based on the results of
Figs. 4 and 10. On the other hand, Fig. 14 represents the case of nonstationary heat
flux, based on the results of Figs. 5 and 11.
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Fig. 11 % Determinism of nonstationary heat flux

In Fig. 14, a mutual relationship can be seen; as the % determinism value D directly
before the shutdown period decreases, the level change Q in heat flux values before
and after shutdown increases. This figure illustrates that when the %determinism
value is small, operations such as the “shutdown period” will stimulate the system,
leading to a greater chance of shifting the system from its current state to another
state. Accordingly, we believe that this means the %determinism value is a kind of
numerical index expressing the stability of the system.

On the other hand, the mutual relationship outlined above cannot be seen in
Fig. 13. This suggests that, in the same fashion as the heat transfer phenomenon, in
systems where the diffusion effect of a physical quantity becomes a problem, signal
deterioration due to diffusion resistance has a large influence on the microstructure
of the recurrence plot.
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Fig. 14 Relationship between %determinism value D and heat flux change Q (Case of nonstationary
heat flux)

9 Conclusion

We applied recurrence plotting methods to heat transfer phenomena in blast furnace
floors by analyzing the determinable properties underlying rises or falls in tempera-
ture of the thermocouples embedded in the furnace floor brickwork.

Due to the heat transfer resistance of the furnace floor brick, signals from the
thermocouples deteriorate, but it was shown that an inverse analysis of signals sent
from the thermocouples compensates the influence of heat transfer resistance by
calculating the nonstationary heat flux at the inner surface. Also, in order to extract
a measure of determinability from the recurrence plots, we proposed taking the
diagonal lines of recurrence plots as the transverse axis and assigning plots running
parallel to these lines on the transverse axis of the graph as away of re-depicting
recurrence plots. In the same diagram, for the points plotted at a given time t, by
calculating the ratio of the recurrence points forming parallel lines to the diagonal
line in the recurrence plot, we were able to obtain the % determinism value, which
is a numerical index for principles of determinability.

Furthermore, we discovered a mutual relationship between the % determinism
value directly before shutdown and the change in heat flux before and after the
shutdown period. It was shown that when the % determinism value is small, shutdown
operations can stimulate the system, possibly causing it to shift from its current state
into other states. It is believed that this is one of the main factors in rises or falls in
signal levels from thermocouples.

Recurrence plot methods based on the derivation of the measure of determinability
illustrated in this paper can be applied to many kinds of phenomena besides blast
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furnaces. Verifying the effectiveness and universality of this method remains an issue
for the future work.
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Time-Periodic Nonlinear Steady Field Analysis

Kenji Miyata

Abstract Error correction Time interval Flexible (ETF) method is presented to fastly
obtain time-periodic nonlinear fields in the presence of extremely slow decay fields.
The analysis variables are corrected by using the steady-state condition with respect
of time variations of the fundamental components. The ETF method is classified into
Self ETF and Mutual ETF methods. The time interval of error corrections is flexibly
selected, and then step-by-step continuous error corrections are available by using
the Mutual ETF method. The ETF method improves the convergence properties of
the conventional method like the simplified Time-Periodic Explicit Error Correction
(TP-EEC) and the simplified polyphase TP-EEC methods. The presented methods
were verified in three-variable simultaneous equations as a simple linear example
problem and a nonlinear magnetic field simulation of a synchronous motor by the
finite element method as a multivariable problem.

Keywords Time-periodic solution · Steady field · Correction · Transient field ·
Magnetic field

1 Introduction

A highly accurate time-periodic solution of nonlinear time-differential equation can
be derived in several ways. As a standard technique, the shooting method [1, 2]
is more commonly used in a case of a small-scale system like an electric circuit.
The time-periodic finite element method [3, 4] can be powerfully used in the two-
dimensional finite element analysis of electromagnetic field. The harmonic balance
finite element method [5] uses nonlinear analysis in frequency domain where a large-
scale matrix equation must be analyzed.
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A step-by-step solution in the transient analysis is corrected toward a
steady-state one-half periodic solution every one-half period in Time-Periodic
Explicit Error Correction (TP-EEC) method [6, 7]. The correction toward a steady-
state is executed every one-sixth of period in three-phase AC TP-EEC method
[8, 9] proposed by Tokumasu as the polyphase AC TP-EEC method in a general
form. The TP-EEC and polyphase AC TP-EEC methods are very powerful tech-
niques to obtain secure periodic solutions in several corrections. In other words,
however, the TP-EEC and polyphase AC TP-EEC methods require one-half and
one-sixth period of calculations for one correction, respectively. The Error correc-
tion Time interval Flexible (ETF) method [10] as a new correction method requires
only transient calculation in a time interval much shorter than one-half of period.
The ETF method improves the convergence property of the conventional methods
like the simplified TP-EEC and the simplified three-phase AC TP-EEC, and so on.

2 Principle and Formulations of the ETF Method

In the ETF method, all or a part of variables, where their time differentials affect the
transient behavior, are corrected by using the steady-state condition with respect of
time variation of a fundamental wave component. The ETF method is categorized
into self and mutual types, i.e., Self ETF and Mutual ETF methods. The Self ETF
method uses self field only, while the Mutual ETF method uses plural fields with
phases different from each other in the polyphase AC system.

2.1 Self ETF Method

The variables are conveniently represented in complex notation. The complex vari-
able z1 becomes z∈

1, z2, and z∈
2, after rotation by π, ℘, and π + ℘, respectively, in

electrical angle (See Fig. 1).
Here, we define ωz1 and ωz2 as the time variations from z1 to z∈

1 and from z2 to
z∈

2, respectively. Supposing that alternating field z1reaches the steady state, z∈
2 can

be expressed with the time variations ωz1 and ωz2. When the complex variable z1
is normalized to 1, the complex variables of z∈

1, z2, and z∈
2 can be written as follows:

z∈
1 = e jπ , z2 = e j℘, z∈

2 = e j(℘+π) (1)

Then the time variations ωz1 and ωz2 become

ωz1 = z∈
1 − z1 = e jπ − 1, (2)
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Fig. 1 Phasor diagram to
derive a correction formula
based on the Self ETF method
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ωz2 = z∈
2 − z2 = e j℘

(
e jπ − 1

)
. (3)

Therefore we obtain the following equation

z∈
2 = aωz1 + bωz2, (4)

a = 1

2

⎧
sin ℘

sin π
+ cos ℘

1 − cos π

⎨
, b = 1

2

⎧
sin ℘

sin π
− cos ℘

1 − cos π

⎨
. (5)

Equation (4) can be used as an error correction formula to get a steady-state solution,
and is rewritten in the following form,

z∈new
2 = aωz1 + bωz2 (6)

In the case of π = ℘, Eq. (6) becomes

z∈new
2 = ωz2 −

⎧
ωz2 − ωz1

4 sin2 (π/2)

⎨
. (7)

Especially, in the case that ℘ = π = ε/2, Eq. (7) leads to the correction formula
based on the simplified TP-EEC method,

z∈new
2 = 1

2
(ωz1 + ωz2) = 1

2

⎩
z∈

2 − z1
)

(8)

Furthermore, in the case that ℘ = π << 1, Eq. (7) is approximated to

z∈new
2

⊂= ωz2 −
⎧

ωz2 − ωz1

π2

⎨
⊂= ωz2 − α2z2

απ2 (9)

The correction formula approximately reduces to the following error correction for-
mula of z2 based on the TDC method [11] without time averaging process,

z∈new
2 = ωznew

2 + znew
2 , znew

2
⊂= −α2z2

απ2 , (10)
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Fig. 2 Phasor diagram to
derive a correction formula
based on the Mutual ETF
method
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where ωznew
2 indicates the time variation z∈

2 − z2 after z2 is corrected. As mentioned
above, the Self ETF method contains both the simplified TP-EEC and the approximate
TDC method.

2.2 Mutual ETF Method

In the polyphase system, the field can be quickly corrected by using the information
of another AC field with the different phase. The variables are also represented in
the complex notation. We use the three complex variables z1, z2, and z3 displayed
in Fig. 2. The variables z2 and z3 have lagging angles of ℘1 and ℘2, respectively,
to the variable z1. The variables z1, z2 and z3 become z∈

1, z∈
2 and z∈

3, respectively,
after rotating by electrical angle π . The time variations of z1, z2 and z3 during the
time interval are described as ωz1, ωz2 and ωz3. When the complex variable z1 is
normalized to be 1, the complex variables of z2, and z3 can be written as follows;

z2 = e− j℘1 , z3 = e− j℘2 , (11)

then we obtain
ωz1 = e jπ − 1, ωz2 = ⎩

e jπ − 1
)

e− j℘1 ,

ωz3 = ⎩
e jπ − 1

)
e− j℘2 .

(12)

The variable z∈
1 can be expressed in the style of a linear combination of ωz1, ωz2

and ωz3 as follows:

z∈
1 = e jπ = βωz1 + ϕωz2 + Ωωz3. (13)

By substituting Eq. (12) into Eq. (13), the parameters ϕ and Ω can be written using
the parameter β as follows;

ϕ = 1

sin (℘1 − ℘2)

⎫⎧
β − 1

2

⎨
sin ℘2 + 1

2
cot

⎧
π

2

⎨
cos ℘2

⎬
, (14)

Ω = 1

sin (℘2 − ℘1)

⎫⎧
β − 1

2

⎨
sin ℘1 + 1

2
cot

⎧
π

2

⎨
cos ℘1

⎬
. (15)
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Then we obtain the following correction formula;

znew
1 = βωz1 + 1

sin (℘2 − ℘1)

⎫⎧
β − 1

2

⎨
F + 1

2
cot

⎧
π

2

⎨
G

⎬
(16)

where F and G are given by

F = sin ℘1ωz3 − sin ℘2ωz2, (17)

G = cos ℘1ωz3 − cos ℘2ωz2. (18)

The special case with β=0 leads to the following correction formula;

znew
1 = sin ℘2ωz2 − sin ℘1ωz3 + cot (π /2) (cos ℘1ωz3 − cos ℘2ωz2)

2 sin (℘2 − ℘1)
(19)

with the self time variation ωz1not used. Another special case with Ω = 0 leads to
the following correction formula;

znew
1 = 1

2
ωz1 + cot (π /2)

2 sin ℘1
(ωz2 − ωz1 cos ℘1) (20)

by using the time variations ωz1 and ωz2.
The correction equation based on three-phase AC ETF method can be derived

from Eq. (16) with the three-phase condition (℘1 = 2ε/3 and ℘2 = 4ε/3). Taking
into account that the variables z1, z2 and z3 compose a cyclic system, we obtain

znew
1 = β1ωzsum − 1

2
(ωz2 + ωz3) + cot (π /2)

2
→

3
(ωz2 − ωz3) , (21)

znew
2 = β2ωzsum − 1

2
(ωz3 + ωz1) + cot (π /2)

2
→

3
(ωz3 − ωz1) , (22)

znew
3 = β3ωzsum − 1

2
(ωz1 + ωz2) + cot (π /2)

2
→

3
(ωz1 − ωz2) , (23)

where ωzsum = ωz1 + ωz2 + ωz3. The summation of Eqs. (21)–(23) is

znew
1 + znew

2 + znew
3 = (β1 + β2 + β3 − 1) ωzsum, (24)

and therefore the three-phase balance condition
⎩
znew

1 + znew
2 + znew

3 = 0
)
is iden-

tically satisfied when β1 + β2 + β3 = 1. Furthermore, Eqs. (21)–(23) under the
condition π = ε/3 reduce to the following correction formulae based on the three-
phase AC TP-EEC method,
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znew
1 = β1 (ωz1 + ωz2 + ωz3) − ωz3, (25)

znew
2 = β2 (ωz1 + ωz2 + ωz3) − ωz1, (26)

znew
3 = β3 (ωz1 + ωz2 + ωz3) − ωz2, (27)

where the condition β1 = β2 = β3 = 1/2 is usually used because of good correcting
performance over all higher order time-harmonic wave sources.

2.3 Discussion of the ETF Method

Both the Self and Mutual ETF methods mentioned above allow flexible time intervals
between successive error corrections. The computational cost of error corrections is
very low comparably to the simplified TP-EEC method. Step-by-step error correc-
tions become available without higher order time-harmonic wave source. When the
source terms include time-harmonic wave components, successive corrections by
the ETF method work effectively only for the special time interval of half period
or 1/(2n) of one period as the simplified TP-EEC and the simplified polyphase AC
TP-EEC methods, because the correction formula of the ETF method utilizes the
steady-state condition of the fundamental wave component.

The correction performance of the long time interval ETF method like the sim-
plified TP-EEC or the simplified polyphase AC TP-EEC methods can be improved
by the initial corrections based on the short time interval ETF method. Thus, it is
very useful to use the hybrid ETF method, i.e., the serial usage of the short and long
time-interval ETF methods. The simple case of three variables is shown in the three-
phase linear AC system and the electromagnetic nonlinear field analysis as following
sections.

3 Simple Example of Transient Analysis in a Three-Phase
AC System

Several error correction methods including the ETF method are tested in the steady-
state problem written by the following linear simultaneous equations of three vari-
ables;

⎭
 3 −1 −1

−1 3 −1
−1 −1 3




⎡
⎣

dU/dπ

dV/dπ

dW/dπ

⎤⎦
⎪ +

⎡
⎣

U
V
W

⎤⎦
⎪ =

⎢
n

bn

⎡
⎣

cos nπ

cos n (π − 2ε/3)

cos n (π − 4ε/3)

⎤⎦
⎪, (28)

where the angle π is used as a time variable. The theoretical steady-state solution is
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Fig. 3 Comparison among several correction methods with a source including only a fundamental
wave. a Overall view. b Initial-stage view

Uth = ⎥
n an cos (nπ + θn), an = bn/

√
1 + g2

n,

Vth = ⎥
n an cos

⎛
n

⎩
π − 2ε

3

) + θn
⎜
, θn = − tan−1 gn,

Wth = ⎥
n an cos

⎛
n

⎩
π − 4ε

3

) + θn
⎜
, gn = n

⎛
3 − 2 cos

⎩2nε
3

)⎜
.

(29)

When the source term in the right hand side of Eq. (28) has only a fundamental wave
component; i.e., b1 = 1, and bn = 0 for n > 1, the computational result is shown
in Fig. 3. Figure 3b indicates the initial stage of Fig. 3a in a scaled-up horizontal
axis. The free parameters β1, β2 and β3 are all set to be 1/2 in Eqs. (21)–(23) and
Eqs. (25)–(27) because the simplified three-phase AC TP-EEC method indicates a
maximum performance of error corrections. The error of correction φ is defined as
follows;

φ =
⎝

(U − Uth)
2 + (V − Vth)

2 + (W − Wth)
2. (30)
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The number of time divisions per one period is 180 so that the time width of one
time step corresponds to an angle of 2⊃. Self ETF (π = ℘ = 2⊃) indicates corrections
every 2 time steps, while Mutual ETF (π = 2⊃) indicates corrections every time step.

The TDC method presents the following correction formula,

Znew (π − β) = −
( β

sin β

) d2 ∧z←
dπ2 , (31)

where <z> indicates an time average of z, β is expressed in an angle as one-half of
time span for time averaging, and the angle π is used as a time variable. The time
average process is required to reduce harmful effects due to several higher order
time-harmonic modes. This example has no higher order time-harmonic modes, and
so TDC has no time average process.

Figure 3 indicates that the correction performances of Self ETF (π = 2⊃), Mutual
ETF (π = 2⊃), and TDC exceed those of the other correction methods.

Next, Fig. 4 shows the results in the case where third, fifth, and seventh order time-
harmonic modes are included in the right hand side source term with b1 = 1 and
b3 = b5 = b7 = 0.01. Successive corrections are executed for TP-EEC, Self ETF
(℘ = π = 90⊃) (simplified TP-EEC) and Mutual ETF (π = 60⊃) (simplified three-
phase AC TP-EEC), while only initial two times of corrections are executed for TDC
and Self ETF (℘ = π = 2⊃) and only initial eight times of corrections are executed for
Mutual ETF (π = 2⊃). Figure 4 indicates that the correction performances degrade
for TDC and Self ETF (℘ = π = 2⊃) and Mutual ETF (π = 2⊃). The higher order
time-harmonic source terms do not allow the correction methods like TDC and short
time interval ETF methods to execute successive corrections. However, the correction
performance is improved by the initial short time interval ETF method followed by
the simplified TP-EEC or the simplified polyphase AC TP-EEC methods. The result
of example calculations is shown in Fig. 5. The successive corrections by Mutual
ETF (π = 60⊃) (i.e., the simplified three-phase AC TP-EEC method) follow the
initial strong corrections; the initial two times of corrections by TDC and Self ETF
methods and eight times of corrections by Mutual ETF (π = 2⊃). The combination of
Mutual ETF (π = 2⊃) and Mutual ETF (π = 60⊃) presents a maximum performance
of corrections.

4 Nonlinear Example of Magnetic Field Analysis
in a Synchronous Motor Coupled with an External
Power Supply Circuit

The ETF method is applied to a numerical simulation of magnetic field of a permanent
magnet synchronous motor coupled with an external power supply circuit to verify
the performance by comparing with the conventional methods. The transient non-
linear magnetic field is analyzed in the edge-element based finite element method.
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The discretized model of the synchronous motor is shown in Fig.6, where the number
of elements is 8,682. The motor with four poles and six slots has a doubly periodic
structure which allows numerical analysis in a half cut model. The specifications of
the motor are listed in Table 1. The slide surface between the rotor and the stator is
equally divided by 180 in the circumferential direction. In the rotor moving simula-
tion, the rotor is stepwisely rotated with the step width of the minimum mesh size,
and so the number of time divisions in one electrical period is 180. The rotation speed
is 3,000 min−1 and the maximum voltage between two windings is 200 V.
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Fig. 6 2D finite element
model of a synchronous motor
(number of elements: 8,682)

Stator

RotorPermanent Magnet

Coil

Table 1 Specifications of the
synchronous motor

Maximum diameter of rotor 54.8 mm
Inner diameter of stator 56.0 mm
Outer diameter of stator 103 mm
Core length 55 mm
Remanent magnetization of permanent 1.315 T

magnet
Conductivity of permanent magnet 6.94 × 105 S/m

Fig. 7 External power supply
circuit connected with coils
embedded in the FEM region
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R

R
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VUV

VWU

VVW

L

L

L

The coupled system of the motor and the external power supply is schematically
shown in Fig. 7. The three stator windings are connected in star configuration with
electric resistances of 0.2� including coil resistances and no external inductance.

The three-phase coil currents are converged in 4,000 time steps with no correction
in the transient magnetic field analysis coupled with the external power supply circuit.
Figure 8 indicates the comparison of computational results by using several types of
correction methods showing waveforms of U-phase coil current, torque and eddy
current loss. Corrections by the simplified TP-EEC method are executed every 90
time steps corresponding to one-half of period, while corrections by the simplified
three-phase AC TP-EEC method are executed every 30 time steps corresponding
to one-sixth of period. Both the simplified TP-EEC and the simplified three-phase
AC TP-EEC methods give successive corrections, and TDC method with no time
averaging process gives 10 corrections in the initial stage.

In Fig. 8, Mutual ETF (π = 2⊃ ≈ 60⊃) indicates that 10 times of corrections by
the Mutual ETF method with π = 2⊃ are followed by the successive Mutual ETF
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Fig. 8 Comparison among several correction methods in the analyses of torque, eddy current loss,
and coil current of the synchronous motor model. a Coil current waveform of U-phase. b Waveform
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method with π = 60⊃ (i.e., the simplified three-phase AC TP-EEC method). The
waveforms of eddy current losses are separately shown in Fig. 8c.1, c.2 together with
the real steady-state solution obtained as a calculation result after 50,040th time step
corresponding to 278 periods.

In order to evaluate easily the precision of converged steady solution, Fig. 9 shows
the scaled-up view of waveforms of coil current and torque, and a transient behavior
of peak of eddy current loss together with the real steady solutions. and indicates the
high performance of Mutual ETF (π = 2⊃ ≈ 60⊃). As shown in Fig. 9a, b, waveforms
of three-phase coil currents and torque are converged to steady state in 120 time
steps by using Mutual ETF (π = 60⊃) (i.e., the simplified three-phase AC TP-EEC
method), while converged to steady state in 40 time steps by using Mutual ETF
(π = 2⊃ ≈ 60⊃) (i.e., initial ten times step-by-step successive corrections by Mutual
ETF (π = 2⊃) followed by Mutual ETF (π = 60⊃), that is, the simplified three-phase
AC TP-EEC method). The number of time steps required to obtain a steady solution
is reduced to one-third by using Mutual ETF (π = 2⊃ ≈ 60⊃) compared with the
simplified three-phase AC TP-EEC method as a conventional one. On the other hand,
the steady-state solution of eddy current loss requires comparatively larger number
of time steps. As shown in Fig. 9c, the number of time steps required to obtain a
steady-state solution of eddy current loss within the precision of 0.2 % is 190 for the
simplified three-phase AC TP-EEC method, while 100 (about one-half of the former
case) for Mutual ETF (π = 2⊃ ≈ 60⊃). Generally, TDC does not allow successive
corrections and indicates the convergence property like a damped wave in Fig. 9c.
Self ETF (π = ℘ = 2⊃) and Mutual ETF (π = 2⊃) allow successive corrections,
and the steady solutions of eddy current loss deviate −11 and 2.4 %, respectively,
from the real solution. Therefore, the process of switching to the simplified TP-EEC
or the simplified three-phase AC TP-EEC is necessary in the same way as Mutual
ETF (π = 2⊃ ≈ 60⊃). In this example, the high performance correction methods are
Mutual ETF (π = 2⊃ ≈ 60⊃), Mutual ETF (π = 60⊃) and Self ETF (℘ = π = 90⊃)
in the order of convergence speed.

5 Conclusions

We have presented the ETF method as an effective correction method to obtain a
steady-state solution of nonlinear field with a long time constant. The ETF method
is classified into two categories of Self ETF and Mutual ETF methods. Self ETF
method uses self field only, while Mutual ETF method uses plural fields with phases
different from each other in the polyphase AC system. In the ETF method, transient
fields are effectively corrected toward the steady fields by using the relationship
between the fundamental wave components of the nonlinear field and their time
variations in the steady state. The simplified TP-EEC and TDC methods belong to
the Self ETF method, while the simplified AC TP-EEC method belongs to the Mutual
ETF method. In the ETF method, the time interval to obtain time variations can be
flexibly selected, and then a shortest time interval is selected to realize step-by-step



466 K. Miyata

corrections in the Mutual ETF method. The short time interval ETF method has a
powerful performance in an initial stage, but its single use is restricted due to harmful
effects of higher order time-harmonic modes. The convergence property of the long
time interval ETF method, like the simplified TP-EEC and the simplified three-phase
AC TP-EEC, is improved by several corrections in an initial stage by the short time
interval ETF. The hybrid ETF method, i.e., the serial usage of the short and long time-
interval ETF methods, is verified by the test example calculation of the nonlinear
magnetic field analysis coupled with a power supply circuit in a synchronous motor
with eddy current fields.
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Abstract The mathematical models used in first-principles calculations are
summarized, and the uses of mathematics in various industries are introduced.
The different approximations used to obtain the Hartree-Fock equation from the
Schrödinger equation for multi-atom systems are summarized, and difficulties in
solving the Hartree-Fock equation in a self-consistent way are presented. Novel
algorithms are needed in order to reduce computational costs of large systems.

Keywords First-principles calculations · Hartree-Fock · molecular orbital · SCF ·
DFT · computer simulation · materials science · electron correlation

1 Introduction

The diverse features of materials are determined by their electron states, which are
in turn described by quantum mechanics. All material properties subject to a non-
relativistic limit, such as total energy, energy levels, electron density, electrostatic
potential, dielectric moments, frequencies and elastic moduli, can be understood
by solving the Schrödinger equation for multi-atom systems. The time-independent
Schrödinger equation for multi-atom systems is as follows:

Hπ = Eπ (1)
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Here, H is the Hamiltonian and π is the wave function of the system. Nn is the
number of nuclei; n is the number of electrons; Ma and ZA are the mass and electric
charge of nucleon A, respectively; RAB is the distance between nucleons A and B; m
is the electron mass; ri A is the distance between the ith electron and the Ath nucleon;
and ri j is the distance between the ith and jth electrons. The terms on the right side
in Eq. (2) are the kinetic energy of the nuclei, the kinetic energy of the electrons,
the Coulomb energy between the nuclei and electrons, the Coulomb energy of the
electrons, and the Coulomb energy of the nuclei, respectively. This equation dates
from the 1920s, just after quantum mechanics was established. However, only small
systems, such as hydrogen atoms, can be exactly solved because it is impossible to
analytically solve three body systems. Moreover, even with powerful computers, it
quickly becomes computationally too expensive to calculate Eq. (2) as the number
of atoms included in the calculation is increased. P. A. Dirac noted this difficulty,
writing as follows:

The underlying physical laws necessary for the mathematical theory of a large part of physics
and the whole chemistry are thus completely known, and the difficulty is only that the exact
application of these laws leads to equations much too complicated to be soluble [3].

Thus, approximations are required to overcome this difficulty. The term “first-
principles calculation” means not to use any empirical parameters; however, it does
use approximations. Various mathematical models have been used to reduce the
calculation costs while keeping accuracy as high as possible [5, 7, 12].

2 Mathematical Models Used in First-Principles Calculations

2.1 Born-Oppenheimer Approximation

Velocities of nuclei are considerably smaller than those of electrons because of their
larger masses. Therefore, the Born-Oppenheimer approximation assumes the nuclei
to be in the resting state. Under this approximation, the first term in Eq. (2) becomes
negligible and the fifth term becomes a constant. Therefore, the remaining terms,
which are related to electrons, can be separated, and the Schrödinger equation for
the electrons can be written as

Heπe = Eeπe, (3)
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2.2 Molecular Orbital Method

The one-electron Hamiltonian, hi , and the one-electron wave function, ℘i , satisfy
the following equation:

hi℘i = ωi℘i , (5)

where ωi is the eigenvalues of the energy. ℘i is called the molecular orbital. When
hi is the result of taking the mean field approximation, the Hamiltonian of such an n
electron system can be expressed by the sum of hi :

He =
n∑
i

hi . (6)

Suppose that the total wave function, π0, is the product of n electron wave function,
℘i . Then π0 is an eigenvalues of He:

π0 = ℘1℘2 · · ·℘n (7)

Heπ0 = Eπ0. (8)

π0 is called the Hartree product. The total energy, E, is the sum of the eigenvalues
corresponding to the one-electron energies, ω1:

E =
n∑
i

ωi . (9)

The one-electron wave function, ℘I , can be expressed as a superposition of N basis
functions:

℘i =
N∑

ε=1

Cεiαε. (10)

Here, Cεi are called molecular orbital coefficients. The atomic orbitals of real atoms
have known shapes, and they are used as the basis functions in the linear combination
of atomic orbitals (LCAO) approximation. Moreover, Gaussian functions can be used
as atomic orbitals in the LCAO method. Molecular orbitals satisfy orthonormality:

⎨
℘⊂

i ℘ j dr =βi j . (11)
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Thus, the n electrons problem becomes a one-electron Schrödinger equation. Note
that the mean field assumption has been used in this approximation. The effect of
the approximation will be described in the Sect. 2.8.

2.3 Pauli Exclusion Principle

The Pauli exclusion principle requires that the wave function should be antisymmetric
when two electrons are exchanged. Since the Hartree product in Eq. (7) does not
satisfy this requirement, the Slater determinant is used instead:

π = 1→
n!

⎩⎩⎩⎩⎩⎩⎩⎩⎩

℘1(1) ℘2(1) · · · ℘n(1)

℘1(2) ℘2(2) · · · ℘n(2)
...

...
. . .

...

℘1(n) ℘2(n) . . . ℘n(n)

⎩⎩⎩⎩⎩⎩⎩⎩⎩
. (12)

The Slater determinant, Y, is expressed by using the Hartree product Y0 and the
anti-symmetrical operator Â:

π = →
n! Âπ0 (13)

Â = 1

n!
n!∑
pn

(−1)pn P̂n, (14)

where P̂n is the permutation operator and pn is the number of permutations. π

satisfies orthonormality: ⎨
π⊂πdr =1. (15)

In order to derive a convenient relationship, the expectation value of Ŝ, which is a
symmetric operator under the exchange of two coordinates, is taken:

⎨
π⊂ Ŝπdr =n!

⎨
Âπ⊂

0 Ŝ Âπ0dr . (16)

Since Â is Hermitian,

⎨
π⊂ Ŝπdr =n!

⎨
π⊂

0 ÂŜ Âπ0dr . (17)

Moreover, since Ŝ is symmetric, ÂŜ = Ŝ. Therefore,
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⎨
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0 Ŝ Âπ0dr
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π⊂ Ŝπdr =
n!∑
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(−1)pn

⎨
π⊂

0 Ŝ P̂nπ0dr . (18)

The next section shows that a calculation of physical properties that would
otherwise involve Slater determinant can be performed using Hartree products.

2.4 The Hartree-Fock Method

Equation (4) can be separated into one-electron and two-electron parts, as follows:

He =
n∑
i

hi +
n∑

i< j

gi j , (19)

hi = −�
2∈2

i

2m
−

Nn∑
A

Z Ae2

ri A
, (20)

gi j = e2

ri j
. (21)

The expectation value of the energy is

Ee =
⎨

π⊂ Hπdr

=
n∑
i

⎨
π⊂hiπdr +

n∑
i< j

⎨
π⊂gi jπdr . (22)

After transformation with Eq. (18),

Ee =
n∑
i

n!∑
pn

(−1)pn

⎨
π⊂

0 hi P̂nπ0dr +
n∑

i< j

n!∑
pn

(−1)pn

⎨
π⊂

0 gi j P̂nπ0dr . (23)

The orthonormality of the orbitals means that the first term on the right side is not
zero only when P̂n is the identity permutation.

The first term in Eq. (23) =
n∑
i

⎨
℘⊂

i hi℘i dr . (24)
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Moreover, when P̂n is the identity permutation, or i and j are exchanged, the
second term is not zero.

The second term in Eq. (23) =
n∑

i< j

⎨ ⎨
℘⊂

i ℘⊂
j gi j℘i℘ j dr1dr2− (25)

n∑
i< j

⎨ ⎨
℘⊂

i ℘⊂
j gi j℘ j℘i dr1dr2

= 1

2


⎫ n∑

i, j

⎨ ⎨
℘⊂

i ℘⊂
j gi j℘i℘ j dr1dr2−

n∑
i, j

⎨ ⎨
℘⊂

i ℘⊂
j gi j℘ j℘i dr1dr2

⎬
⎭ . (26)

Thus,

Ee =
n∑
i

hii + 1

2

n∑
i, j

(Ji j − Ki j ). (27)

Here,

hii =
⎨

℘i (1)⊂h1℘i (1)dr1, (28)

Ji j =
⎨ ⎨

℘⊂
i (1)℘⊂

j (2)g12℘i (1)℘ j (2)dr1dr2, (29)

Ki j =
⎨ ⎨

℘⊂
i (1)℘⊂

j (2)g12℘ j (1)℘i (2)dr1dr2. (30)

Since the electrons in the Slater products are distinguishable, hi i is usually expressed
by the coordinates of the first electron, and Ji j and Ki j are expressed by the coordi-
nates of the second electron.

From the variational principle, the wave function, π, that makes the total energy
a minimum, is the solution in the real system. This indicates that the set of ℘i should
be obtained which minimizes Ee under the condition

∫
℘⊂

i ℘ j dr =βi j and should be
found in the set of Cεi in Eq. (10) corresponding to them. The condition which Cεi

should satisfy can be obtained by using the Lagrange multiplier method:

N∑
ε=1

(Fμε − ωi Sμε)Cεi = 0. (31)

Here,

Fμε = hμε +
N∑

ϕ,Ω

PϕΩ {2(με |ϕΩ) − (μΩ |ϕε)} , (32)
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hμε =
⎨

α⊂
μ(1)h1αε(1)dr1, (33)

(με |ϕΩ) =
⎨ ⎨

α⊂
μ(1)αε(1)g12α

⊂
ϕ (2)αΩ (2)dr1dr2, (34)

PϕΩ =
n/2∑

i

C⊂
ϕi CΩ i , (35)

Sμε =
⎨

α⊂
μ(1)αε(1)dr1. (36)

Equation (31) is named the Hartree-Fock-Roothaan equation. It can be written in
matrix form:

FC = SCω. (37)

Now, the problem of solving the Schrödinger equation of multi-atom systems Eq. (1)
becomes tone of solving the Hartree-Fock-Roothaan Equation (37). This problem
is named the Hartree-Fock method. Since F contains P and P contains C, this is a
nonlinear equation.

2.5 Procedure for Solving the Equation

Since Eq. (37) is a nonlinear equation, it is usually solved using the self-consistent
field (SCF) procedure. Generally S ⊃= I because atomic orbitals are not usually orthog-
onal. Therefore, Eq. (37) is a generalized eigenvalue problem. In computer calcu-
lations, S is orthonormalized before solving the eigenvalue problem, to increase
computing performance. A unitary matrix exists to orthonormalize S, since S is
Hermitian:

U+SU = I. (38)

F∧ and C∧ are obtained by using U, as follows:

F∧ = U+FU, (39)

C∧ = U−1C. (40)

By using F∧ and C∧, Eq. (37) becomes

F∧C∧ = C∧ω. (41)
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Fig. 1 Flowchart of SCF calculation

C∧ is obtained after orthonormalization of F∧, and C is obtained from the following
equation:

C = UC∧. (42)

Figure 1 shows a flowchart of the SCF calculation.

2.6 Occupied and Unoccupied Orbitals

N molecular orbitals and energy levels are obtained from the Hartree-Fock-Roothaan
Equation (10) when N basis functions are used. Taking account of spin, two electrons
are allowed to occupy an orbital, each orbital is filled up with two electrons starting
from the lowest energy level in the ground state. Therefore, n/2 orbitals are occupied
in an n electron system (occupied orbitals). The remaining N − n/2 orbitals are
unoccupied (Fig. 2). The unoccupied orbitals are important when excited states or
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Fig. 2 Occupied and
unoccupied orbitals

chemical reactions induced by thermal energy or light are studied. They also play an
important role in electron correlations, as described later.

2.7 Difficulty of Calculations

The outline of the Hartree-Fock method, which is a basic mathematical model of
first-principles calculation, was reviewed in the previous section. Calculations can
be performed by following the flow chart in Fig. 1. However, difficulties arise during
actual calculations. Though it is desirable that the total energy of the system converge
rapidly, as shown in Fig. 3a, this becomes hard to guarantee as the system size
increases. The difficulties typically fall into one of the two situations below.

(a) Total energy does not converge.

The total energy does not always converge; it may oscillate around a higher energy
than the convergence condition, as shown in Fig. 3b. In this case, the selection of basis
functions or structure (atom configuration) is sometimes important. Convergence is
also dependent on the solvers of the SCF calculation. Numerous methods have been
proposed, such as SD, CG, DM [11], QC [1], DIIS [9] and EDIIS [6]. However, each
of these methods has its problems, and the appropriate method depends on the system
to be solved. Though first-principles calculations are the nonempirical methods, at
present, the SCF calculation requires a lot of know-how based on experience. Novel
algorithms, which are versatile enough to be used on any system, must be developed
to make first-principles calculations easy to use.

(b) Converging, but time-consuming.

Figure 3c shows an example where the SCF calculation converges but consumes a
lot of time. Calculation of the two-electron integrals is the most time-consuming
process; here parallelization algorithms [8] can be used to shorten the calculation
time. The data involved in the two-electron integrals becomes large as the system size
increases, and critically affects the calculation time. It should be considered whether
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Fig. 3 Convergence issue affecting SCF calculations

the data are on memories, on hard disks or the integrals are calculated every time
without storage. In practice, one has to make optimizations taking account of the size
of the calculation and the performance of the hardware, such as CPUs, memories,
hard disks and I/O.

2.8 Electron Correlation

The Hartree-Fock method is the basis of other first-principles calculations. However,
it does not include the effect of electron correlation, such as electron-electron scat-
tering or reorganization of the electron configuration, because it uses the mean field
approximation, which assumes one electron moves in an averaged potential gener-
ated by the other electrons. Therefore, the Hartree-Fock method is inaccurate for
strong correlated electron systems. In such cases, post Hartree-Fock methods are
used. There are essentially three such methods, i.e., the configuration interaction
method (CI), the coupled cluster method (CC), and the perturbation method. All
methods use the unoccupied orbitals for reorganization of the electron configuration
induced by the electron correlation. The Slater determinant from the Hartree-Fock
method is used as a ground state Ω0, and excited states, wherein electrons are excited
into unoccupied orbitals, are added in order to increase the degree of freedom of the
electron configuration (Fig. 4).

In the CI method, the excited states are superimposed linearly, as follows:
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Fig. 4 Excited states for taking account of electron correlations

πCI = θ0 +
(∑

i

CCI
i T̂i

)
θ0, (43)

where T̂i is the excitation operator to create i electron excited states from the ground
state Ω0. πCI satisfies the Pauli exclusion principle by using Slater determinants
for the excited states. The wave functions including electron correlations can be
obtained by using the variational principle to determine CCI

i . When all excited states
on n electrons are considered, an exact electron correlation is obtained (full CI).

In the CC method, the following wave function is used:

πCC = exp

(∑
i

CCC
i T̂i

)
θ0. (44)

A Taylor expansion yields

πCC = θ0 +
⎡
⎣

(∑
i

CCC
i T̂i )

)
+ 1

2

(∑
i

CCC
i T̂i

)2

+ . . .

⎤⎦
⎪θ0. (45)

The difference from the CI method is the term of 1
2

⎢⎥
i CCC

i T̂i

)2 + . . . . Thus, the

CC method contains higher-order excited states despite using the same number of
coefficients as the CI method. Therefore, the CC method is more accurate than the
CI method.

In the perturbation method, the effects of well-known weak interactions perturbing
the main interaction, which are calculated successively:

H = H0 + V . (46)

Here, H0 is the main nonperturbative interaction and V is the weak perturbative
interaction. Once the wave function and eigenvalues of H0 are obtained,

H0π
(0)
i = E (0)

i π
(0)
i . (47)
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The superscripts in parentheses express the degree of perturbation. When there is no
degenerate energy levels, the true wave function πi and eigenenergies Ei are written
as follows:

Hπi = Eiπi , (48)

πi = π
(0)
i + π

(1)
i + π

(2)
i + · · · (49)

= π
(0)
i +

∑
n ⊃=

∫
π

(0)
n V π

(0)
i dr

E (0)
i − E(0)

n

π(0)
n + · · · , (50)

Ei = E (0)
i + E(1)

i + E(2)
i + · · · (51)

= E (0)
i +

⎨
π

(0)
i V π

(0)
i dr +

∑
n ⊃=

⎩⎩⎩∫ π
(0)
i V π

(0)
n dr

⎩⎩⎩2

E (0)
i − E(0)

n

+ · · · . (52)

The perturbation method is useful when V is considerably smaller than H0. The
Møller-Plesset (MP) method uses the ground state (Hartree-Fock configuration) as
H0. Since E(0)

i is usually greater than 99 % of the total energy, this is a good approx-
imation. In the calculation procedure, H0 is calculated with a standard SCF first, and
then successive perturbation terms are calculated after that. The perturbation part
does not have convergence problem because it is not SCF calculation. Principally,
accuracy increases as the degree of perturbation increases. These post-Hartree-Fock
methods require longer calculation times than the Hartree-Fock method, which cal-
culates only the ground state, and hence, novel computing techniques need to be
developed in order to reduce this time.

There is another way to consider electron correlations: the density functional
method (DFT). Like the Hartree-Fock method, the DFT method uses the mean field
approximation; however, it uses only electron densities and does not use wave func-
tions. The DFT method is generally more accurate than the Hartree-Fock method but
has similar calculation costs.

2.9 Accuracy and Calculation Cost

The accuracy of first-principles calculations is determined by the size of the basis
functions and the theoretical model of electron correlation. Extremely high accuracy
is obtained when a large basis set and the CC method with three-electron excited
states are used. For example, the energy obtained by such method is consistent with
the experimental value within 0.02 eV. However, a tradeoff exists in that any increase
in accuracy is at the expense of a higher calculation cost (Fig. 5). For this reason,
relevant basis functions and theoretical models should be carefully chosen in order
to reduce calculation time while keeping a certain level of accuracy.
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Fig. 5 Relationship between basis functions, theoretical model, and accuracy

2.10 Structure Optimizations

The structure of the system under study must be known before starting the
calculations. It is preferable to determine the structure accurately by experiment.
However, this is not always possible. In such cases, the structure can be numerically
optimized; first, an SCF calculation is performed by taking account of the fifth term
in Eq. (2), which is the Coulomb energies of the nuclei and was ignored in Eq. (4).
Then, forces at the position of each atom are obtained from the first-order derivative
of the potential energy, and the atoms are displaced according to the forces. After
that, a new SCF calculation is performed on the new structure. This procedure is
iterated until a convergence condition is reached, e.g., the variation of the average
force of all atoms falls below a certain value. More stable (lower energy) structures
are found in this way, but the search for the minimum potential energy is conducted
in the 3N-dimensional space formed by N nuclei (Fig. 6). That means one must try
to find the global minimum amidst possibly many local minima in a large space.
This method entails large calculation costs, because it contains two loops: one for
the SCF calculation and one for the structure search. In order to make the search
efficient, a rough search is used at the beginning and it is successively refined. Vari-
ous search algorithms have been proposed, including the Berny [10], GDIIS [4] and
eigenvalue-following [2]. However, faster algorithms would be welcomed.

3 Summary

Various approximations are used in first-principles calculations because of the
difficulty in exactly solving the Schrödinger equation of multi-atom systems. It is
important to know the contribution of these approximations to the final accuracies.
It is desirable to calculate a system on which there is experimental data first in order
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Fig. 6 Structure optimization
by searching for the global
minimum of potential energy

to confirm the accuracy of a method. If there is no experimental data, it is possible
to estimate the accuracy by performing a higher level calculation with larger basis
functions and a more detailed theoretical model, because the higher level calcula-
tion guarantees higher accuracy, as shown in Fig. 5. Novel algorithms are needed in
order to reduce the costs of the SCF calculation and structure optimization. Super-
computers are used for large-scale simulations, and efficient algorithms for large-
scale parallel computing are necessary in order to use them efficiently. The advent
of new mathematical methods will benefit computational materials science.
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Abstract This chapter discusses applications of the symbolic approach to the
manufacture of hardware and software. Two example applications, one hardware
and the other software, are illustrated. The first example is the design of a hard disk
drive (HDD) head by using quantifier elimination (QE), and the other is software
validation using symbolic execution. Both examples demonstrate the strengths of
the symbolic approach over conventional numerical approaches. While there are, of
course, challenges facing the symbolic approach such as faithful modeling and the
need for abstraction, it is an extremely powerful and game-changing technology.
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1 Introduction

This chapter discusses manufacturing and mathematics, in particular, applications of
symbolic approach to manufacturing.

A number of mathematical approaches, not just symbolic, but also numerical
analysis and optimization, are used in various aspects of manufacturing hardware and
software. The methodologies and associated challenges of applying mathematics to
manufacturing can be generally described as follows:

1. Modeling: To model the target system
2. Analysis: To simulate and analyze the target system’s behaviors in its environment
3. Design:

• To formulate the design as a mathematical problem according to the given
design goals

• To solve the above mathematical problem

4. Validation:

• To show that the system design is correct and defect-free
• To make sure the system does not fall into undesirable states

In the case of the hard disk drive (HDD) head discussed in Sect. 2, the steps above
can be described as follows:

1. Modeling: To build a mathematical model for the actuator’s control system. This
model takes parameters for the arm’s actuator controller and ouputs the calculated
position of the head (which is attached to the arm)

2. Analysis: To simulate the arm’s actuator model with the head defined by design
parameters within the actual environment (considering air-resistance and other
interactions with its environment) and analyze its movements and states

3. Design: To build target functions, which evaluates the head’s states such as its
hovering height and angle. Then to find a set of design parameters to optimize
the target functions

4. Validation: To verify that the design based on the parameters obtained from (1),
(2), and (3) is actually within the given specifications

This paper describes two applications of the mathematical symbolic approach to
hardware and software manufacture. The design (Step 3 above) of an HDD head and
software validation (Step 4 above) are illustrated in Sects. 2 and 3.

Unlike numerical approaches, the symbolic approach supports formulas without
instantiating their variables, and this is one of its strengths. Let us see how this can
be true by examining a simplified version of the HDD design problem presented in
Sect. 2.

Let us assume, due to design constraints, that the hovering height, x2 +bx +a, of
the HDD head needs to be more than a given d, where x represents the arm position
(of HDD head) and a and b are design parameters. If we put c = a −d, this condition
can be written as x2 + bx + c > 0 for ∈x .
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We need to determine appropriate values for the design parameters, b and c (a to
be exact, but we will use c for the sake of simplicity). If we were to take a numerical
approach, we would assign random values to b, c, and x and see if the conditions
hold. Or we would change the values incrementally in order to let them reach the
solutions gradually. Such numerical approaches have merits; for instance, they are
independent of the kind of formula and elements involved in the problem. On the
other hand, they also depend on “luck” and more importantly, one cannot tell how
good the obtained solution is.

If we use a symbolic approach (that is, using a discriminant for the quadratic
equation in this simplified example), the range for b and c can be strictly expressed
as b2 − 4c < 0. (Note that the variables, b and c, remain variables, i.e., symbols.)
This range can be plotted in a two-dimensional coordinate system (it would be one
of the two regions separated by the quadratic function). As such, one can obtain a
very good understanding of the solution space for the design parameters, (b, c),
and pick any set of b and c in the region. This is of critical importance in the
manufacture of hardware where manufacturing variances are unavoidable. If (b, c)
is picked within the solution space, but too close to the boundary, there will be a very
large chance that the end result will be out of specification because of manufacturing
variances. Numerical approaches do not reveal whether the solution is well within
the solution space, which makes it difficult for them to provide enough of a buffer
against manufacturing variances. Symbolic approaches provide a solution space and
allow the design parameters to be picked within the region in order to avoid the
effects of manufacturing variances and gain a higher yield.

What are the merits of symbolic approaches in software manufacturing?
Let us assume that we want to make a website safer by performing SQL injection

penetration tests. An SQL injection attack causes the back-end database of the website
to take an unexpected action through the entry of special strings on the site’s input
fields and/or URLs. The special strings are passed through a set of programs from
the front-end Web server to the back-end database, where the SQL commands are
formed and passed to the database. For example, if an SQL command includes within
it the substring, “;SHUTDOWN;”, an unexpected termination of the database occurs.

In order to avoid such vulnerabilities, human testers input many different strings
at the website to see whether unexpected and dangerous SQL commands can be
formed and passed to the database. This is not a numerical approach, per se, but it is
conceptually very close to one, as its uses specific values for variables (i.e., it instan-
tiates variables instead of keeping them as symbols). It would be more efficient if we
could use computers instead of human testers to input special strings automatically
for such tests, but it makes no difference to the approach’s essence. The issue is that
there may be infinitely many strings that could be input and that it would be impossi-
ble to test all of them. Hackers are very creative and they are always coming up with
new and unexpected attack methods.1 Testing with specific values only nominally
improves a website’s safety as it tries only previously known strings.

1 In one case, they bypassed the check by entering “;SHUTDOWN;” in HEX and turning it back
into the standard coding just before the SQL command was sent to the database.
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In symbolic execution, a symbolic approach for software validation, the string
for an input field, s, for example, does not get instantiated (i.e., it does not get
assigned a specific value) in the program. Instead, the program is executed with
s being a variable (symbol) all the way. When the program reaches a conditional
branching, it may not be able to decide which branch to take. In such cases, it
continues by executing each branch with the condition for the corresponding branch
added. When it reaches a statement in which an SQL command string is formed,
the SQL command string should be expressed as a function, SQL(s), of the input
string, s, along with the conditions collected on the path to the statement. Then, one
solves the proposition, “SQL(s) includes ‘;SHUTDOWN;’ as its substring.” If the
proposition has no solution, it means there is no s which poses a SHUTDOWN threat
to the database. If the proposition has a solution, s0, it means that the database will
shutdown unexpectedly if s0 is in the input field. In that case, code to reject s0 in the
input field can be added to make the website safer.

The first approach of testing with specific values can cover only a finite (and
very limited) set of points in an infinitely large input space. The second approach of
symbolic execution finds solutions in an infinitely large input space, if they exist. If
there is no solution in the symbolic execution, we can assert that the website does
not have such a vulnerability.

As described above, symbolic approaches are very powerful for both hardware
and software. However, they are not a panacea. In particular, their modeling capa-
bilities are weak. Many details can be lost when you try to break down reality into
manipulatable symbolic expressions. A real situation consists of numerous elements
and can constitute an extremely complex system. It is naive to think the whole of
physical reality can be expressed as a set of symbolic expressions. The situation is
similar for software. It is possible to execute the program symbolically and solve
the proposition at the end if the program is relatively small. Unfortunately, recent
software programs often consist of hundreds of thousand or sometimes even millions
of lines of code. In order to make software validation applicable to large pieces of
software, abstraction of the parts irrelevant to the validation becomes a necessity.

Therefore, in applying the symbolic approach to real-world manufacturing prob-
lems, it is imperative to abstract out or omit irrelevant parts of the problem. Another
possibility is to use high-performance computers or distributed computing, such as
cloud computing, to extend the symbolic approach’s scalability.

In what follows, we describe how the symbolic approach can be applied to real-
world manufacturing problems. Section 2 describes the problem of HDD head design,
and Sect. 3 describes the problem of software validations. The last Sect. 4 includes
a summary and discusses future prospects of mathematical symbolic approaches in
manufacturing and other applications.
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2 Hardware Design

In manufacturing, there is a compelling need for mathematical optimization
technologies to make the design process more efficient, cut costs, and create products
with high added value. Current mathematical optimization technologies are mainly
composed of various numerical algorithms that are broadly used in science and engi-
neering. However, there are many issues when it comes to solving practical problems
numerically. For example, many optimization problems in industry include “non-
convexities,” which make obtaining a globally optimal solution difficult. Moreover,
multi-objective design in manufacturing requires repeated simulations on a wide
variety of parameters in order to find the optimal design.

Symbolic approaches are promising ways of tackling such issues. They are based
on symbolic and algebraic computations that handle mainly polynomials with inde-
terminate elements and parameters as they are. We call the optimization methods
based on the symbolic approach “symbolic optimizations”. A key tool of symbolic
optimization is quantifier elimination (QE) (see [1, 2] for a description of QE). Sym-
bolic optimization enables us to solve nonconvex optimization problems exactly and
parametric optimization problems directly. In other words, we can obtain feasible
parameter regions in a parameter space for given specifications. This brings with it
a deeper understanding of design problems and systematic flows for multi-objective
design. Recently, symbolic optimization has been applied to design and verification
problems in many fields (see [1]).

In the following, we show a symbolic optimization accomplished by QE and its
application to a problem of designing a HDD.

2.1 Optimization Using Symbolic Approaches

QE is a symbolic and algebraic algorithm that deals with first-order formulas. First-
order formulas consist of polynomial equations, inequalities, quantifiers (∈, ⊂), and
boolean operations (→,⊃,∧,¬, etc.). QE outputs an equivalent quantifier-free for-
mula for a given first-order formula. For example, QE derives an equivalent quantifier-
free formula b2 −4c < 0 for the input formula ∈x(x2 +bx +c > 0) over the field of
real numbers. If all variables in a given first-order formula are quantified, QE returns
true or false for the input formula. In this paper, we consider real QE.

Now let us show how we can solve optimization problems by using QE.

Objective function: f (x1, . . . , xn) ← min

Constraints: g1(x1, . . . , xn)π10, . . . , gk(x1, . . . , xn)πk0 (1)

where πi ≈ {≤=,<, >,∀,≥}. Optimization problem (1) can translated into a QE
problem (first-order formula) as follows:
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⊂x1 . . . ⊂xn(k − f (x1, . . . , xn) = 0 → ℘(x1, . . . , xn)) (2)

where ℘(x1, . . . , xn) ∞ ∧
i (gi (x1, . . . , xn)πi 0) and k is a newly introduced variable

assigned to the objective function f (x1, . . . , xn). Performing QE on the first-order
formula (2), we obtain a formula ω1(k) that shows the possible range of k, i.e., f .
Thus, the minimal value of k in ω1(k) is the minimum of the objective function f
and it is the globally minimal value.

We briefly summarize the properties of symbolic optimization below.

• Optimization problems can be solved parametrically, meaning all feasible regions
of the parameters in the parameter space can be obtained.

• Nonconvex optimization problems can be solved exactly.
• The feasibility of the optimization problem can be exactly verified.

Effective exploitation of these properties leads to efficiency and performance advan-
tages.

2.1.1 Example

Here, we will consider the following optimization problem.

Objective function: 2x1 + x2 ← min
Constraints: 4x1 + x2 ∀ 9, x1 + 2x2 ≥ 4, 2x1 − −3x2 ≥ −6

(3)

This problem reduces to the following QE problem.

⊂x1⊂x2(k −(2x1 +x2) = 0→4x1 +x2 ∀ 9→x1 +2x2 ≥ 4→2x1 −−3x2 ≥ −6) (4)

Performing QE on (4), we obtain the feasible region of k:

2 ∀ k ∀ 6.

This implies that the maximum of k is 6 and the minimum is 2; that is, the maximum
of the objective function 2x1 + x2 is 6, and the minimum is 2.

Next, we consider the following multi-objective optimization (MOO) problem,
which simultaneously optimizes more tha one objective function. For a nontrivial
multiobjective optimization problem, there is no single solution that simultaneously
optimizes each objective. In fact, most MOO problems appearing in real-world prob-
lems have trade-offs between two or more conflicting objective functions. In that case,
there exists (a possibly infinite number of) Pareto optimal solutions. A solution is
called Pareto optimal, if none of the objective functions can be improved in value
without degrading some of the other objective values. We note that all Pareto optimal
solutions are considered equally good, so we need additional subjective preference
information to order them. Hence, solving an MOO problem entails computing Pareto
optimal solutions. (See [3] for a description of MOO.)
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Fig. 1 Feasible region of objective functions for MOO problem (5). a Feasible region by QE.
b Feasible solutions by GA

Let us demonstrate how MOO problems are solved by using QE. Consider the
following MOO problem.

Objective functions: f1(x1, x2), f2(x1, x2),← min
f1 = x2

1 + x2
2 , f2 = 5 + x2

2 − x1,

Constraints: −5 ∀ x1 ∀ 5,−5 ∀ x2 ∀ 5.

(5)

We first translate the MOO (5) into the following QE problems.

⊂x1⊂x2(y1 = x2
1 + x2

2 → y2 = 5 + x2
2 − x1 → −5 ∀ x1 ∀ 5 → −5 ∀ x2 ∀ 5) (6)

where y1 and y2 are newly introduced variables assigned to the objective functions
f1 and f2, respectively. By performing QE on the formula, we obtain the following
formula that describes the feasible regions of y1, y2 (i.e., f1, f2) in the f1- f2 objective
space.

(y2 − y1 + 25 ≥ 0 → y2
2 − 60y2 − y1 + 925 ≥ 0→

y2 ∀ 30 → y1 ≥ 25)⊃
(4y2 − 4y1 − 21 ∀ 0 → y2 ≥ 30 → 4y1 ∀ 101)⊃
(y2 − y1 + 15 ≥ 0 → y2

2 − 60y2 − y1 + 925 ∀ 0)⊃
(y2 − y1 + 25 ≥ 0 → y2

2 − 10y2 − y1 + 25 ∀ 0)⊃
(4y2 − 4y1 − 21 ∀ 0 → y2 ≥ 5 → y1 ∀ 25 → 4y1 ≥ 1).

This region is shown in gray in Fig. 1a. The Pareto optimal solutions are obtained as
a Pareto optimal front (the dashed red line in the figure). Figure1b shows the Pareto
optimal solutions obtained by a numerical method based on the genetic algorithm
(GA). This is a typical output of a numerical approach; it is not easy to see the Pareto
optimal front or the feasible regions of the objective functions.
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Fig. 2 Slider of HDD and its air bearing surface (ABS)

2.2 Application: Design of Shape of HDD Slider Air Bearing
Surface

We applied symbolic optimization to the design of the optimal shape of an HDD slider
(Fig. 2). The slider is a thin, nearly square, flat part attached to the actuator arm of the
HDD. On the top of the slider is a magnetic head that writes (or reads from) binary
information on the disk. The surface of the slider, designed on the nanometer scale,
is shaped so as to stabilize the head. The design problem is to determine the shape,
or the pattern, of the slider’s surface. When the disk rotates, the slider lifts or hovers
by air pressure like a glider. To ensure high read/write performance and durability
at the same time, it is very important to control the relative position between the
slider head and the disk. For example, the distance between them, called the flying
height, is one of the most important indicators that affect the quality of hard disk
drives because contact between the head and disk might cause a system crash. The
relative angles between the slider and disk, such as pitch and roll angles, are also to
be controlled. These performance indicators form a set of objective functions in the
design problem of the hard disk slider. Environmental changes are also taken into
consideration. Reduced atmospheric pressure at high altitude changes the relative
position. In our case, we have nine objective functions in total to be optimized,
indicating that this is a multiobjective optimization problem.

A typical way of designing an air bearing surface (ABS) is as follows. A designer
first draws a basic geometrical shape of the surface and chooses a set of parameters
to be optimized as well as their ranges. For a set of real values for the parameters, a
simulator computes various physical values related to the slider’s relative position to
the disk. We treat the simulator as a black box. Conventionally, the design problem
is solved by using numerical methods for multiobjective optimization on the basis
of metaheuristic approaches.

Instead, we shall take the symbolic approach explained in Sect. 2.1. First, we need
to make an approximate model (a model expressed in terms of polynomials) for the
objective functions. After that, we apply the symbolic method using QE. The result
of the symbolic optimization is the feasible region of the objective functions. For
example, Fig. 3 shows the feasible region for two of nine objective functions (say, f1
and f2).
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Fig. 3 Feasible region of objective functions f1 and f2

By taking a symbolic approach, we can obtain a Pareto optimal front with all
feasible regions in the objective space. It follows that it greatly reduces the total time
to determine the design solution. For example, it can reduce the time required for
completing the ABS design from 14 days to one day.

3 Software Validation

3.1 Background: Why the Technology is Important for Today’s
Society

Software permeates every aspect of society. It is especially apparent that software
plays a huge role in PCs, smart phones, and tablets that people use every day. Software
has also become crucial in places not so visible to everyone. From social infrastructure
like financial systems and transportation systems to everyday appliances and modern
cars with more than 200 computer chips, software continues to become more and
more prevalent and critical to their functionalities.

Concepts like the Smart (Power) Grid, Smart City, and Smart Home have started
being implemented, and this surely means the pace of software penetration into
society can only accelerate.

Not only can one lose one’s money to bugs (i.e., “defects”) in software; software
bugs can also precipitate dire consequences for society, including loss of life. For
example, at least six patients lost their lives due to a bug in one model of medical
accelerator. This and other cases, which exemplify what sorts of disaster a software
bug is capable of causing, can be found in [4].

Unfortunately, software bugs will always be there, and there are several reasons
why. We list two reasons here. First is that software systems have become too large
and complex, and the entirety of the system states is simply beyond human com-
prehension. A huge system is divided into modules and the specifications for each
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module are written as “what” the module is supposed to do. Since there can be many
modules interacting with one particular module, it would be an extremely difficult,
if not impossible, task to give a correct set of specifications. This is particularly true
when we take into account that huge systems tend to be maintained for long period
of time. We also have to consider that specifications are usually written in natural
language2 and that it is difficult to remove ambiguity completely from them.

Second, there is the “how” issue. Even if the program specifications (the “whats”)
are perfect, they need to be interpreted and written step by step in a programming
language as “hows”. There may be a gap between “what” is to be achieved and “how”
it is implemented, and this is one more place where bugs can slip in.

Software is tested to check if it functions as it is supposed to before it goes into
production. However, it is virtually impossible to cover all possible execution paths.
When the program size grows, the resources necessary for testing grow exponen-
tially compared to the resources used to write the program. Testing is currently quite
a labor-intensive task3 and an attempt at being comprehensive may incurs a tremen-
dous amount of time and money. In today’s cost-conscious world, system integrators
cannot afford such (comprehensive and somewhat complete) testing or else the added
costs would make their services or products too expensive. System integrators have
to limit their resources for testing to keep costs manageable. Therefore, software
systems are likely distributed with undiscovered and potentially critical bugs still
in them.

This is where software validation comes in. Software validation can automate
some of software testing processes to make them more cost-efficient, and it enables
a larger test coverage for possible software states.4

3.2 History of Software Validation

Software validation originated in the 1960s. It initially took a very rigorous approach
in which the “what” of a program is described in a formal language and is compared
with the actual program to “prove” whether the “what” and the program match
exactly.

Eventually, people realized that this approach is not of much use in real-world
programming. A programmer needs to learn a formal language, which is often very
difficult and different from ordinary programming languages, and writing “what”
in a formal language can entail as much, if not more, effort as writing the actual
working program. Because of this, the rigorous approach has remained applicable

2 Only a very few people write (can write) program specifications in formal language.
3 For example, human testers may have to manually input data on Web browsers to test a website
software system.
4 [5, 6] are general introductions to software validation. Please refer to [7] for a detailed description
of the symbolic execution (outlined in Sect. 3.3) that is being developed at Fujitsu Laboratories of
America.
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Fig. 4 Mini-program foo(a, b, c) {
int a,b,c;
c = a + b;
if (c > 0) {

c++;
}
return c;

}

only to small-scale programs, and it hasn’t reached a critical mass of users within
the programming community. In other words, the approach is inadequate for dealing
with most software that has a sizeable amount of code.

A change came around 1998. Instead of pursuing stringent proofs of exact
matches, researchers started focusing on ways of finding more bugs even if they
sacrificed rigorousness and completeness in doing so. Prior efforts were not in vain,
but there is no denying that it was research in the ivory tower. The industry asked
academia what it is useful for and academia changed its direction so that programs
could be validated directly without specifications given in a formal language. Since
then, universities and corporations such as CMU, Stanford University, Microsoft,
NASA, UC Berkeley, NEC, and Fujitsu have been instrumental in making software
validation applicable to ever growing realms of software.

3.3 Symbolic Execution

Here, we will use a simple example to illustrate how symbolic execution works and
discuss its merits, limits, and future prospects.

Consider the mini-program in Fig. 4 to be validated. Suppose it needs to always
satisfy the following property5:

(a > 1) → (b > 0) ← (c > 4) (7)

We proceed as follows to see if the program always satisfies this condition.
First, we negate (7) and obtain the following negated property:

(a > 1) → (b > 0) ← (c <= 4) (8)

If this negated property has a solution (a0, b0, c0) at the end of execution, the solution
is a counter example and this implies that the program does NOT always satisfy the
original property, (7). On the other hand, we can conclude that the program DOES

5 We use the term, “property” for a condition in symbolic execution.
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a = x, b = y, c = z ,  = { }   

 = { z = x + y }   

= { (z = x + y) & (z > 0) }   = { (z = x + y) & (z  0) }   

= { (z = x + y+ 1) & (z > 0) }    is symbolic expression 
x , y, z are symbolic integers 

Path (1)

Path (2)

0 0c c

Fig. 5 Symbolic execution flow

Equations at the End of Path (1)

x > 1
y > 0
z = x + y
z <= 0
z <= 4

Solve using ILP
- No solutions
- Property holds

Pre-conditions

Post-condition

Equations at the End of Path (2)

x > 1
y > 0
z = x + y + 1
z > 0
z <= 4

Solve using ILP
- SOLUTION FOUND !!
- Counter example: x = 2, y = 1, z = 4

Pre-conditions

Post-condition

Fig. 6 Set of equations to be solved at the end of each path

always satisfy the original property, (7), if the negated property, (8), has no solution
at the end of program execution.

In order to see which is the case, we execute the program symbolically. Figure 5
depicts the process. In the first step, we substitute variables, a, b, and c in the program
with corresponding symbolic variables, x , y, and z, as shown in the top box of Fig. 5.
At the assignment statement, c = a+b, we add z = x +y to the symbolic expression,
ε. As we cannot fix its boolean value at the conditional statement in the next step
of the program, we go down both paths separately, each path with the corresponding
condition, z ∀ 0 or z > 0, added to ε. Eventually, Path (1) and Path (2) reach
their last statements and ε has the condition for the function execution to follow
each path.

As in Fig. 6, we add the negated property, (8), to ε at the end of each path.
(The negated property consists of the precondition and the postcondition.) We solve
the set of conditions thus obtained for each path using, for example, integer lin-
ear programming (ILP). For Path (1), there is no solution, meaning this path has
the original property, (7). For Path (2), there exist solutions (for example, x = 2,

y = 1, z = 4) and this path does NOT have the original property, (7). The solu-
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a

b

c

Conventional testing

Symbolic execution

Fig. 7 Conventional testing and symbolic execution

tions for Path (2) serve as test data, which cause errors (i.e. do not satisfy the given
condition, (7)), and we can use them to find bugs.

As Fig. 7 shows, conventional testing covers only a finite number of points in the
variable space to check if they have a certain property. However, symbolic execution
can cover the whole variable space at once to see if there is any possible variable set
in the space that violates a condition.

This characteristic of symbolic execution makes it extremely powerful, especially
for checking terminal conditions6 and paths rarely traversed in ordinary executions
of the program.7

Symbolic execution is an extremely powerful tool, but it has limitations. The
number of paths can explode. When there are too many conditionals in a program,
the number of paths can increase uncontrollably and make the state space (i.e. the set
of paths that the symbolic execution traverses) explode. The same happens when too
many symbolic variables are used. In both cases, a computer’s processing power and
memory capacity can be easily exceeded. Numerous methods and techniques have
been devised to make symbolic execution applicable to large programs by placing
weaker or fewer restrictions on things like the number of conditionals and symbolic
variables. Such efforts have borne fruit and there are cases where symbolic execution
was applied to programs with hundreds of thousands or even millions of lines of code.

There are mainly two fronts to explore. One is appropriate abstraction of the
program in order to contain state space explosions. For example, symbolic execution
could be strictly applied to only the modules in question and the rest of the program
is abstracted out. Another example is to use only three states, zero, positive, and
negative, for integer and real number variables. There are many more ways to reduce
complexity, and this is currently an active research area.

6 Conditions like c > 545 for a real number, c. The conditions cannot be checked completely with
only specific numbers like c = 546, 545.1, 545.01, ....
7 Conventional testing requires specific values for variables in order for the function executions to
traverse rarely traversed paths, and finding such values is quite difficult. On the other hand, symbolic
execution follows all the paths in the same manner.
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The other front is to use distributed computing such as cloud computing. Here,
tasks are distributed to multiple computing nodes to support the larger state space
for symbolic execution.

4 Summary

We illustrated how symbolic approaches are applied to hardware and software man-
ufacturing processes. This is part of a bigger trend in which mathematics is making
manufacturing technologies more effective.

Recently, model-based development (MBD) has been introduced to make the
design process more efficient, to reduce costs, and to create higher value products.
The symbolic approaches described in this paper, we believe, are a very good fit for
MBD and that continued efforts in applying mathematics to manufacturing will be
critical to the advancement of MBD.

For wider acceptance of mathematical approaches in manufacturing, easy-to
-understand-and-use software tools and/or push-button solutions are crucial. In the
future, research results from the field of artificial intelligence (e.g., automated math-
ematical problem solving [8]) will be employed to make them possible.

We also foresee that accumulated knowledge about mathematical applications in
manufacturing will become important in other systems, including socio-economic
systems and energy management systems.
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Error Correcting Codes Based on Probabilistic
Decoding and Sparse Matrices

Hironori Uchikawa

Abstract These days we encounter many digital storage and communication devices
in our daily lives. They contain error correcting codes that operate when data is read
from storage devices or received via communication devices. For example, you can
listen to music on a compact disc even if its surface is scratched. This article intro-
duces low density parity check (LDPC) codes and the sum-product decoding algo-
rithm. LDPC codes, one class of error correcting codes, have been used for practical
applications such as hard disk drives and satellite digital broadcast systems because
their performance closely approaches the theoretical limit with manageable com-
putational complexity. In particular, it is shown that an optimal decoding algorithm
from the viewpoint of probabilistic inference can be derived with LDPC codes.

Keywords LDPC ·Error correcting ·Probabilistic decoding ·Sparse ·Sum-product
algorithm · MAP

1 Communication System Model and Error Correcting Codes

A communication system model for transmitting information from a source to a des-
tination through a channel is shown in Fig. 1. Let us define a transmitted message
of length k from the source as m = m1m2 . . . mk . The message m is mapped to a
length-n codeword x = x1x2 . . . xn , where n > k at the encoder to protect the mes-
sage from noise in the channel. The codeword x is transmitted through the channel.
The resulting output of the channel is a received word y = y1 y2 . . . yn , which is fed
into the decoder. Our model of the channel is that of the discrete probabilistic chan-
nel. More precisely, the channel is described as a conditional probability distribution
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Fig. 1 Communication system model

PY|X(y|x). The decoder produces a decoded codeword x̂ or a decoded message m̂.
Note that, from the viewpoint of communication systems, the decoder should produce
a decoded message m̂ instead of decoded codeword x̂. Since mapping at the encoder
is one to one, the decoder usually produces a decoded codeword x̂ in the model on
coding theory studies.

For the sake of simplicity, the alphabets of message symbol mi (1 ∈ i ∈ k),
codeword symbol xi (1 ∈ i ∈ n), and received word symbol yi (1 ∈ i ∈ n)

are assumed to be binary, {0, 1}, in this article. The channel is also assumed to
be a memoryless binary symmetric channel with an independent and identically
distributed conditional probability

PY|X(y|x) =
n∏

i=1

PY |X (yi |xi ),

where

PY |X (yi |xi ) =
{

1 − p xi = yi

p xi ⊂= yi

where the probability p in the range 0 ∈ p ∈ 1 denotes the crossover probability of
the channel.

Now we define the information rate as R = k/n. Shannon showed that there exists
an error correcting code that can lower the decoding error probability as much as
possible if the rate R is less than the channel capacity C derived from the probability
distribution of the channel [5]. Constructing error correcting codes with a rate closely
approaching the capacity with low computational encode and decode operations is
one of the ultimate goals for researchers in coding theory.

2 Probabilistic Decoding

The decoding of error correcting codes can be regarded as an inference problem: to
infer the most likely x from the received word y. Here, we use probability as a tool
for dealing with the likelihood.

Assume that a codeword x = x1x2 · · · xn is uniformly chosen from a codebook and
transmitted through the channel; then the receiver gets the message y = y1 y2 · · · yn .
The optimal decoding rule to minimize the symbol error probability is expressed as

x̂i = argmax
xi →{0,1}

PX |Y(xi |y), (1)
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where the notation argmaxxi →{0,1} returns the argument of xi to maximize the right
term in (1). Since xi is a binary symbol, argmaxxi →{0,1} returns 0 or 1, whichever
has the highest probability, by comparing PX |Y(xi = 0|y) and PX |Y(xi = 1|y). The
decoding algorithm in (1) is called the maximum a posteriori probability (MAP)
decoding because it gives x̂i that maximizes the a posteriori probability (APP)
PX |Y(xi |y).1

In order to make Eq. (1) computable by using the conditional probabilities of the
channel PY |X (y|x), Eq. (1) can be transformed as follows.

x̂i = argmax
xi →{0,1}

PX |Y(xi |y)

= argmax
xi →{0,1}

⎧
⊃xi

PX|Y(x|y) (2)

= argmax
xi →{0,1}

⎧
⊃xi

PY|X(y|x)PX(x)

PY(y)
(3)

= argmax
xi →{0,1}

⎧
⊃xi

PY|X(y|x)PX(x) (4)

= argmax
xi →{0,1}

⎧
⊃xi

⎨
⎩ n∏

j=1

PY |X (y j |x j )


⎫ I[x → C] (5)

where
⎧
⊃xi

indicates the summation over all the alphabets of x except for xi , i.e.,
⎧
⊃x1

means

⎧
x2→{0,1}

⎧
x3→{0,1}

· · ·
⎧

xn→{0,1}
.

Equation (2) is derived from marginalization2 and the transformation from (2) to (3)
is given by the Bayes rule:

PY,X(y, x) = PX|Y(x|y)PY(y)

= PY|X(y|x)PX(x).

Since PY(y) does not affect the operation argmaxxi →{0,1}, Eq. (4) is derived. In the
last step, we the fact that transmitted codewords are chosen uniformly at random

1 Sometimes called symbol MAP decoding to distinguish it from the MAP algorithm that maximizes
the APP of the codeword X.
2 More precisely, it is the opposite way to marginalization. Marginalization is the computation to
obtain the probability distribution with fewer variables from a multivariate probability distribution,
e.g. the marginal distribution of the random variable A is given by PA(a) =

⎧
b→B

PAB(a, b), where

B is the domain of the random variable B.
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Fig. 2 Distributive law:
eliminating 1 multiplication

ax+ ay → a(x+ y)

and the channel is memoryless. The indicator function I[condition] returns 1 if the
condition is satisfied; otherwise, it returns 0.

Can we calculate Eq. (5) when the code length is large? The answer is no because
the scale of the summation

⎧
⊃xi

increases exponentially with code length n. Thus, we

need a more efficient algorithm.

3 Computation Reduction by Using the Distributive Law

The computation of the APP has a sum-product form in (5). If we can take common
factors out from the summation, i.e., by applying the distributive law, the number
of computations decreases. For example, we can eliminate 1 multiplication by using
the distribution law in Fig. 2.

In the following, we demonstrate APP computation reduction by using the code

C1 = {x → {0, 1}7|H1xT = 0},

where the parity-check matrix H1 is defined as

H1 =
⎬
⎭1 0 0 1 1 0 0

1 1 0 0 0 1 0
0 1 1 0 0 0 1


 (6)

From (5), the APP of the transmitted symbol x1 is given as

PX |Y(x1|y) =
⎧
⊃x1

I[H1xT = 0]
7∏

j=1

PY |X (y j |x j ), (7)

where xT denotes the transposition of x. Since H1xT = 0 can be written as the
product of each parity equation, Eq. (7) is transformed to

PX |Y(x1|y) =
⎧
⊃x1

I1I2I3

7∏
j=1

PY |X (y j |x j ), (8)
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where

I1 = I[x1 + x4 + x5 = 0],
I2 = I[x1 + x2 + x6 = 0],
I3 = I[x2 + x3 + x7 = 0].

Each indicator function corresponds to the respective parity equation. Then Eq. (8)
is further factorized as

PX |Y(x1|y) = PY |X (y1|x1)
⎧
⊃x1

I1I2I3

7∏
j=2

PY |X (y j |x j ) (9)

= PY |X (y1|x1)

⎨
⎩⎧

x4x5

I1

∏
j ∧→{4,5}

PY |X (y j ∧ |x j ∧)


⎫

×
⎨
⎩ ⎧

x2x3x6x7

I2I3

∏
j ∧∧→{2,3,6,7}

PY |X (y j ∧∧ |x j ∧∧)


⎫ (10)

= PY |X (y1|x1)

⎨
⎩⎧

x4x5

I1

∏
j ∧→{4,5}

PY |X (y j ∧ |x j ∧)


⎫

×
⎨
⎩⎧

x2x6

I2

∏
j ∧∧→{2,6}

PY |X (y j ∧∧ |x j ∧∧)

(⎧
x3x7

I3

∏
j ∧∧∧→{3,7}

PY |X (y j ∧∧∧ |x j ∧∧∧)

)
⎫,

(11)

where
⎧
xa xb

denotes the summation of all the alphabets of both xa and xb, i.e.
⎧
x4x5

shows
⎧

x4→{0,1}

⎧
x5→{0,1}

.

Since the PY |X (y1|x1) is common for all terms, we obtain Eq. (9). Then Eqs. (10)
and (11) are derived by factorizing equations according to the form of each indicator
function.

Equation (11) has fewer computations, 20 multiplications and 6 additions, com-
pared with 96 multiplications and 14 additions in (7). The reader might think that
the benefit of the distributive law is limited because the number of computations is
already small in (7). Since the number of computations grows exponentially with the
code length, we cannot compute in the form of (7) when the code length is large. On
the other hand, the form of (11) can be computed efficiently by using the sum-product
algorithm described in the following section.
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Fig. 3 Bipartite graph of the
parity-check equation in (6)
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4 Tree and Sum-Product Algorithm

In the previous section, we saw that the APP equation is factorized by each indicator
function with the distributive law. It is preferred that the factorization is available for
any code. However, the transformation is limited only if the corresponding bipartite
graph forms a tree.

A bipartite-graph representation of the parity-check matrix in (6) is shown in
Fig. 3. The bipartite graph consists of variable nodes (circle) corresponding to code
bits and check nodes (rectangular) corresponding to parity-check equations. An edge
(v, c) between the variable node v and the check node c denotes the relation between
the corresponding code bit and parity-check equation. For example, the variable node
v1 corresponding to x1 connects the check nodes c1 and c2 corresponding to the first
and second parity-check equations, respectively.

If there is only one path from a node a to a node b in a graph, i.e., there is no
cycle in the graph, such a graph is regarded as a tree. You can see that the graph in
Fig. 3 has no cycle; thus, the graph is a tree. When a graph is a tree, the APP can be
computed efficiently by using the sum-product algorithm.

The sum-product algorithm is also called the message passing algorithm because
the sum-product algorithm is a sequence of message passing between nodes. The
algorithm sets the variable node whose APP we want to compute as the root node,
e.g., v1 in Fig. 3. Toward the root node, messages computed by (12) and (13) at each
node are sent from leaf nodes, which are at the tree’s boundaries, e.g., v2, v3, . . . , v7
in Fig. 3. After the root node has received all messages through its edges, the APP
of the root node is obtained by (14).

Variable node operation

Mv j ←ci (x j ) = PY |X (y j |x j )
∏

i ∧→I ( j)\{i}
Mci ∧←v j (x j ) (12)
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Check node operation

Mci ←v j (x j ) =
⎧
⊃x j

Ii

∏
j ∧→J (i)\{ j}

Mv j ∧←ci (x j ∧) (13)

Tentative estimation

g(x j ) = PY |X (y j |x j )
∏

i→I ( j)

Mci ←v j (x j ) (14)

where I ( j) denotes the set of check-node indices connected to the variable node v j

(rows whose parity-check equation includes the symbol x j ), J (i) denotes the set
of variable-node indices connected to the check node ci (symbol indices involved in
the i th parity-check equation), and S \{i} denotes the subset of S except the set {i}.

Since the leaf node v3 is a variable node, a message Mv3 is set as

Mv3←c3(x3) = PY |X (y3|x3),

and then transmitted to the check node c3. Since every leaf node has one edge, the
corresponding message equation does not have the product in (12). Although, due
to the space limit, the only example we showed was the computation for the variable
node v1, we can compute other variable nodes in the same way.

5 Sum-Product Decoding Algorithm

Individually computing the APP of each symbol x j (1 ∈ j ∈ n) referred to as a
root node is not computationally efficient. Thus, all nodes operate simultaneously
and iteratively until all of the parity-check equations are satisfied. Such an iterative
decoding algorithm is called the sum-product decoding algorithm and shown below.

Sum-product Decoding Algorithm
Step 1 INITIALIZATION

Set the maximum number of iterations to K and k = 1. Also set
Mci ←v j ∧∧ (x j ∧∧) = 1 for all 1 ∈ i ∈ m, j ∧∧ → J (i), x j ∧∧ → {0, 1}.

Step 2 VARIABLE NODE OPERATION
For each variable node v j (1 ∈ j ∈ n), proceed with the variable node
operation (Eq. (12)).

Step 3 CHECK NODE OPERATION
For each check node ci (1 ∈ i ∈ m), proceed with the check node
operation (Eq. (13)), where m denotes the number of rows in the parity-
check matrix.
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Step 4 PARITY-CHECK OPERATION
For each variable node v j (1 ∈ j ∈ n), proceed with the tentative
estimation (Eq. (14)); then make a tentative decision for 1 ∈ j ∈ n,

x̃ j =
{

0 (g(x j = 0) ≈ g(x j = 1)),

1 (otherwise),

and a tentative codeword x̃ = x̃1 x̃2 . . . x̃n . If H x̃T = 0, then output x̃
as the decoded codeword and stop; otherwise, go to Step 5.

Step 5 TERMINATION
If k = K , then declare a decoding failure and stop; otherwise, set
k = k + 1 and go to Step 2.

We discuss only the case in which a bipartite graph forms a tree; however, bipartite
graphs corresponding to parity-check matrices used in practice are not trees. When
a bipartite graph is not a tree, the sum-product decoding algorithm computes the
approximate APP. However, it has been observed that we can obtain reasonable error
correction performance when a subgraph for a variable node as a root with depth of
at least 6 has a tree form, where depth denotes the number of edges in the path from
a root node.

How do we design a parity-check matrix so that a subgraph for each node forms
a tree? In the next section, it will be revealed that the sparsity of LDPC codes has an
important role for the answer.

6 Low Density Parity Check Codes

LDPC codes were invented by Gallager in his dissertation [1], and are a class of
linear block codes defined by sparse parity-check matrices. Sparsity means that the
number of nonzeros (“1” for binary codes) is relatively small. In general, the average
number l of nonzeros in columns is 2 ∈ l ∈ 8, but it is not proportional to the code
length n. You can see that the number is much smaller when you compare with that
for Hamming codes, known as 1 bit correction codes. The number of nonzeros in

columns for Hamming codes is at least
log2 n

2
on average.

Since parity-check matrices are sparse, the number of edges in corresponding
bipartite graphs becomes small so it is hard to induce short cycles. Thus, a subgraph
for a variable node as a root easily forms a tree of depth more than 4 so that a good
approximate APP can be obtained by the sum-product algorithm.

Here, we show a construction introduced by Gallager [1]. This construction pro-
duces a parity-check matrix H (n,l,r) that has n columns, ln

r rows, l nonzeros in each
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column, and r nonzeros in each row. For simplicity, we assume that n can be divided
by r .

Construct the sub matrix H (n,l,r)
0 ,

H (n,l,r)
0 :=

⎬
⎡⎡⎡⎡⎡⎭

h(r)

s(r)(h(r))

s(2r)(h(r))
...

s(n−r)(h(r)),


⎣⎣⎣⎣⎣

where h(r) denotes a length-n row vector having non zeros at the first r entries and
zeros at remaining entries, and s(r)(h) denotes a cyclic shift function that shifts h by
r entries to the right in a cyclic manner.

By using H (n,l,r)
0 , we can construct a parity-check matrix H (n,l,r) as follows.

H (n,l,r) =

⎬
⎡⎡⎡⎡⎭

H (n,l,r)
0

π1(H (n,l,r)
0 )
...

πl−1(H (n,l,r)
0 )


⎣⎣⎣⎣ , (15)

where πi (H (n,l,r)
0 ) (1 ∈ i ∈ l − 1) is a permutation function that permutes columns

of H (n,l,r)
0 randomly.

For example, H (8,2,4) is constructed as follows.

H (8,2,4) =

⎬
⎡⎡⎭

1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
1 0 0 1 1 0 1 0
0 1 1 0 0 1 0 1


⎣⎣

We demonstrate the decoding performance of an LDPC code over the binary
symmetric channel in Fig. 4. The parity-check matrix used in the simulation was
constructed from (15). The size of the parity-check matrix is 510 × 1020 and the
numbers of nonzeros in each row and column are l = 3 and r = 6, respectively.
We used the sum-product decoding algorithm with a maximum of 500 iterations.
For comparison, we also show the decoding performance of a Bose-Chaudhuri-
Hocquenghem (BCH) code [2] in Fig. 4. The length of the BCH code is 1023 and
the design distance is 103, which means the code can correct up to 51 errors in each
codeword so that the lengths and rates of both codes are almost equivalent.

In Fig. 4, the decoding error probability of the BCH code is almost 1 at the
crossover probability of 0.06. By contrast, the LDPC code achieves a decoding error

probability of
1

100
.
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Fig. 4 Simulation results for a memoryless binary symmetric channel

7 Conclusions

In this article, we showed that a computationally efficient form for MAP decoding, the
optimal with respect to probabilistic inference, can be derived from the distributive
law. We also discussed computation of the derived equation by using the sum-product
decoding algorithm. Finally, we showed that sparse parity-check matrices for LDPC
codes are essential to compute good approximate APPs by using the sum-product
decoding algorithm.

To clarify the concepts of this study, we explained ideas using toy examples
instead of describing theorems and proofs. Readers interested in the mathematical
background of this study should see [3]. And readers interested in practical imple-
mentations and code designs should read [4].
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