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Chapter 1 

Accuracy Paradox & Apportionment 
Paradox 

 

 

 

Accuracy Paradox 

The accuracy paradox for predictive analytics states that predictive models with a given 
level of accuracy may have greater predictive power than models with higher accuracy. It 
may be better to avoid the accuracy metric in favor of other metrics such as precision and 
recall. 

Accuracy is often the starting point for analyzing the quality of a predictive model, as 
well as an obvious criterion for prediction. Accuracy measures the ratio of correct 
predictions to the total number of cases evaluated. It may seem obvious that the ratio of 
correct predictions to cases should be a key metric. A predictive model may have high 
accuracy, but be useless. 

In an example predictive model for an insurance fraud application, all cases that are 
predicted as high-risk by the model will be investigated. To evaluate the performance of 
the model, the insurance company has created a sample data set of 10,000 claims. All 
10,000 cases in the validation sample have been carefully checked and it is known which 
cases are fraudulent. To analyze the quality of the model, the insurance uses the table of 
confusion. The definition of accuracy, the table of confusion for model M1

Fraud, and the 
calculation of accuracy for model M1

Fraud is shown below. 

where 

TN is the number of true negative cases 
FP is the number of false positive cases 
FN is the number of false negative cases 
TP is the number of true positive cases 

Formula 1: Definition of Accuracy 



 Predicted Negative Predicted Positive

Negative Cases 9,700 150 

Positive Cases 50 100 

Table 1: Table of Confusion for Fraud Model M1
Fraud. 

 

Formula 2: Accuracy for model M1
Fraud 

With an accuracy of 98.0% model M1
Fraud appears to perform fairly well. The paradox 

lies in the fact that accuracy can be easily improved to 98.5% by always predicting "no 
fraud". The table of confusion and the accuracy for this trivial “always predict negative” 
model M2

Fraud and the accuracy of this model are shown below. 

 Predicted Negative Predicted Positive

Negative Cases 9,850 0 

Positive Cases 150 0 

Table 2: Table of Confusion for Fraud Model M2
Fraud. 

 

Formula 3: Accuracy for model M2
Fraud 

Model M2
Fraudreduces the rate of inaccurate predictions from 2% to 1.5%. This is an 

apparent improvement of 25%. The new model M2
Fraud shows fewer incorrect predictions 

and markedly improved accuracy, as compared to the original model M1
Fraud, but is 

obviously useless. 

The alternative model M2
Fraud does not offer any value to the company for preventing 

fraud. The less accurate model is more useful than the more accurate model. 

Model improvements should not be measured in terms of accuracy gains. It may be going 
too far to say that accuracy is irrelevant, but caution is advised when using accuracy in 
the evaluation of predictive models. 

 
 
 



Apportionment Paradox 

An apportionment paradox exists when the rules for apportionment in a political 
system produce results which are unexpected or seem to violate common sense. 

To apportion is to divide into parts according to some rule, the rule typically being one of 
proportion. Certain quantities, like milk, can be divided in any proportion whatsoever; 
others, such as horses, cannot—only whole numbers will do. In the latter case, there is an 
inherent tension between our desire to obey the rule of proportion as closely as possible 
and the constraint restricting the size of each portion to discrete values. This results, at 
times, in unintuitive observations, or paradoxes. 

Several paradoxes related to apportionment, also called fair division, have been 
identified. In some cases, simple adjustments to an apportionment methodology can 
resolve observed paradoxes. Others, such as those relating to the United States House of 
Representatives, call into question notions that mathematics alone can provide a single, 
fair resolution. 

History 

The Alabama paradox was discovered in 1880, when it was found that increasing the 
total number of seats would decrease Alabama's share from 8 to 7. There was more to 
come: in 1910, Virginia lost a seat to Maine although its population had grown faster 
than Maine's. When Oklahoma became a state in 1907, a recomputation of apportionment 
showed that the number of seats due to other states would be affected even though 
Oklahoma would be given a fair share of seats and the total number of seats increased by 
that number. 

The method for apportionment used during this period, originally put forth by Alexander 
Hamilton but not adopted until 1852, was as follows (after meeting the requirements of 
the United States Constitution, wherein each state must be allocated at least one seat in 
the House of Representatives, regardless of population): 

 First, the fair share of each state, i.e. the proportional share of seats that each state 
would get if fractional values were allowed, is computed. 

 Next, the fair shares are rounded down to whole numbers, resulting in unallocated 
"leftover" seats. These seats are allocated, one each, to the states whose fair share 
exceeds the rounded-down number by the highest amount. 

Impossibility result 

In 1982 two mathematicians, Michel Balinski and Peyton Young, proved that any method 
of apportionment will result in paradoxes whenever there are three or more parties (or 
states, regions, etc.). More precisely, their theorem states that there is no apportionment 



system that has the following properties (as the example we take the division of seats 
between parties in a system of proportional representation): 

 It follows the quota rule: Each of the parties gets one of the two numbers closest 
to its fair share of seats (if the party's fair share is 7.34 seats, it gets either 7 or 8). 

 It does not have the Alabama paradox: If the total number of seats is increased, no 
party's number of seats decreases. 

 It does not have the population paradox: If party A gets more votes and party B 
gets fewer votes, no seat will be transferred from A to B. 

Examples of paradoxes 

Alabama paradox 

The Alabama paradox was the first of the apportionment paradoxes to be discovered. 
The US House of Representatives is constitutionally required to allocate seats based on 
population counts, which are required every 10 years. The size of the House is set by 
statute. 

After the 1880 census, C. W. Seaton, chief clerk of the United States Census Bureau, 
computed apportionments for all House sizes between 275 and 350, and discovered that 
Alabama would get 8 seats with a House size of 299 but only 7 with a House size of 300. 
In general the term Alabama paradox refers to any apportionment scenario where 
increasing the total number of items would decrease one of the shares. A similar exercise 
by the Census Bureau after the 1900 census computed apportionments for all House sizes 
between 350 and 400: Colorado would have received three seats in all cases, except with 
a House size of 357 in which case it would have received two. 

The following is a simplified example (following the largest remainder method) with 
three states and 10 seats and 11 seats. 

 With 10 seats With 11 seats 

State Population Fair share Seats Fair share Seats

A 6 4.286 4 4.714 5

B 6 4.286 4 4.714 5

C 2 1.429 2 1.571 1

Observe that state C's share decreases from 2 to 1 with the added seat. 

This occurs because increasing the number of seats increases the fair share faster for the 
large states than for the small states. In particular, large A and B had their fair share 
increase faster than small C. Therefore, the fractional parts for A and B increased faster 
than those for C. In fact, they overtook C's fraction, causing C to lose its seat, since the 
Hamilton method examines which states have the largest fraction. 



New states paradox 

Given a fixed number of total representatives (as determined by the United States House 
of Representatives), adding a new state would in theory reduce the number of 
representatives for existing states, as under the United States Constitution each state is 
entitled to at least one representative regardless of its population. However, because of 
how the particular apportionment rules deal with rounding methods, it is possible for an 
existing state to get more representatives than if the new state were not added. 

Population paradox 

The population paradox is a counterintuitive result of some procedures for 
apportionment. When two states have populations increasing at different rates, a small 
state with rapid growth can lose a legislative seat to a big state with slower growth. 

The paradox arises because of rounding in the procedure for dividing the seats.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 2 

All Horses are the Same Color & Infinite 
Regress 

 

 

 

All Horses are the Same Color 

The horse paradox is a falsidical paradox that arises from flawed demonstrations, which 
purport to use mathematical induction, of the statement All horses are the same color. 
There is no actual contradiction, as these arguments have a crucial flaw that makes them 
incorrect. This example was used by George Pólya as an example of the subtle errors that 
can occur in attempts to prove statements by induction. 

The argument 

The flawed argument claims to be based on mathematical induction, and proceeds as 
follows: 

Suppose that we have a set of five horses. We wish to prove that they are all the same 
color. Suppose that we had a proof that all sets of four horses were the same color. If that 
were true, we could prove that all five horses are the same color by removing a horse to 
leave a group of four horses. Do this in two ways, and we have two different groups of 
four horses. By our supposed existing proof, since these are groups of four, all horses in 
them must be the same color. For example, the first, second, third and fourth horses 
constitute a group of four, and thus must all be the same color; and the second, third, 
fourth and fifth horses also constitute a group of four and thus must also all be the same 
color. For this to occur, all five horses in the group of five must be the same color. 

But how are we to get a proof that all sets of four horses are the same color? We apply 
the same logic again. By the same process, a group of four horses could be broken down 
into groups of three, and then a group of three horses could be broken down into groups 
of two, and so on. Eventually we will reach a group size of one, and it is obvious that all 
horses in a group of one horse must be the same color. 



By the same logic we can also increase the group size. A group of five horses can be 
increased to a group of six, and so on upwards, so that all finite sized groups of horses 
must be the same color. 

Explanation 

The argument above makes the implicit assumption that the two subsets of horses to 
which the induction assumption is applied have a common element. This is not true when 
n = 1, that is, when the original set only contains 2 horses. 

Let the two horses be horse A and horse B. When horse A is removed, it is true that the 
remaining horses in the set are the same color (only horse B remains). If horse B is 
removed instead, this leaves a different set containing only horse A, which may or may 
not be the same color as horse B. 

The problem in the argument is the assumption that because each of these two sets 
contains only one color of horses, the original set also contained only one color of horses. 
Because there are no common elements (horses) in the two sets, it is unknown whether 
the two horses share the same color. The proof forms a falsidical paradox; it seems to 
show something manifestly false by valid reasoning, but in fact the reasoning is flawed. 
The horse paradox exposes the pitfalls arising from failure to consider special cases for 
which a general statement may be false. 

Infinite Regress 

An infinite regress in a series of propositions arises if the truth of proposition P1 requires 
the support of proposition P2, the truth of proposition P2 requires the support of 
proposition P3, ... , and the truth of proposition Pn-1 requires the support of proposition Pn 
and n approaches infinity. 

Distinction is made between infinite regresses that are "vicious" and those that are not. 
One definition given is that a vicious regress is "an attempt to solve a problem which re-
introduced the same problem in the proposed solution. If one continues along the same 
lines, the initial problem will recur infinitely and will never be solved. Not all regresses, 
however, are vicious."  

The infinite regress forms one of the three parts of the Münchhausen Trilemma. 

Aristotle's answer 

Aristotle argued that knowing does not necessitate an infinite regress because some 
knowledge does not depend on demonstration: 



“ 
Some hold that, owing to the necessity of knowing the primary 
premises, there is no scientific knowledge. Others think there is, but 
that all truths are demonstrable. Neither doctrine is either true or a 
necessary deduction from the premises. The first school, assuming that 
there is no way of knowing other than by demonstration, maintain that 
an infinite regress is involved, on the ground that if behind the prior 
stands no primary, we could not know the posterior through the prior 
(wherein they are right, for one cannot traverse an infinite series): if on 
the other hand – they say – the series terminates and there are primary 
premises, yet these are unknowable because incapable of 
demonstration, which according to them is the only form of knowledge. 
And since thus one cannot know the primary premises, knowledge of 
the conclusions which follow from them is not pure scientific 
knowledge nor properly knowing at all, but rests on the mere 
supposition that the premises are true. The other party agree with them 
as regards knowing, holding that it is only possible by demonstration, 
but they see no difficulty in holding that all truths are demonstrated, on 
the ground that demonstration may be circular and reciprocal.  

Our own doctrine is that not all knowledge is demonstrative: on the 
contrary, knowledge of the immediate premises is independent of 
demonstration. (The necessity of this is obvious; for since we must 
know the prior premises from which the demonstration is drawn, and 
since the regress must end in immediate truths, those truths must be 
indemonstrable.) Such, then, is our doctrine, and in addition we 
maintain that besides scientific knowledge there is its original source 
which enables us to recognize the definitions. ”

  — Aristotle, Posterior Analytics (Book 1, Part 3)  

Consciousness 

Infinite regress in consciousness is the formation of an infinite series of "inner observers" 
as we ask the question of who is observing the output of the neural correlates of 
consciousness in the study of subjective consciousness. 

Optics 

Infinite regress in optics is the formation of an infinite series of receding images created 
in two parallel facing mirrors. 

 

 



Chapter 3 

Drinker Paradox & Lottery Paradox 

 

 

 

Drinker Paradox 

The drinker paradox is a theorem of classical predicate logic that states: There is 
someone in the pub such that, if he is drinking, everyone in the pub is drinking. The 
actual theorem is 

. 

The paradox was popularised by the mathematical logician Raymond Smullyan, who 
called it the "drinking principle" in his book What Is the Name of this Book? 

Proof of the paradox 

The paradox is valid due to the nature of material implication in formal logic, which 
states that "If P, then Q" is always true if P (the condition or antecedent) is false. 

The proof begins by recognizing it is true that either everyone in the pub is drinking (in 
this particular round of drinks), or at least one person in the pub isn't drinking. 

On the one hand, suppose everyone is drinking. For any particular person, it can't be 
wrong to say that if that particular person is drinking, then everyone in the pub is 
drinking — because everyone is drinking. 

Suppose, on the other hand, that at least one person isn't drinking. For any particular 
nondrinking person, it still can't be wrong to say that if that particular person is drinking, 
then everyone in the pub is drinking — because that person is, in fact, not drinking. In 
this case the condition is false, so the statement is true. 

Either way, there is someone in the pub such that, if they are drinking, everyone in the 
pub is drinking. Hence the paradox. 



Discussion 

This proof illustrates several properties of classical predicate logic that do not always 
agree with ordinary language. 

Non-empty domain 

First, we didn't need to assume there was no one in the pub. The assumption that the 
domain is non-empty is built into the inference rules of classical predicate logic. We can 

deduce D(x) from , but of course if the domain were empty (in this case, if 
there were nobody in the pub), the proposition D(x) is not well-formed for any closed 
expression x. 

Nevertheless, free logic, which allows to empty remains, still has nothing like the drinker 
paradox in the form of the theorem: 

 

Or in words: 

If there is anyone in the pub at all, then there is someone such that, if they are drinking, 
then everyone in the pub is drinking. 

Excluded middle 

The above proof begins by saying that either everyone is drinking, or someone is not 
drinking. This uses the validity of excluded middle for the statement S = "everyone is 
drinking", which is always available in classical logic. If the logic does not admit 
arbitrary excluded middle—for example if the logic is intuitionistic—then the truth of 

must first be established, i.e., S must be shown to be decidable. 

As a simple example of one such decision procedure, if there are finitely many customers 
in the pub, one can , or find one person who doesn't drink. But if S is given no semantics, 
then there is no proof of the drinker paradox in intuitionistic logic. Indeed, assuming the 
drinkinginfinite domains leads to various classically valid but intuitionistically 
unacceptable conclusions. 

For instance, it would allow for a simple solution of Goldbach's conjecture, which is one 
of the oldest unsolved problems in mathematics. It asks whether all even numbers greater 
than two can be expressed as the sum of two prime numbers. Applying the drinking 
principle, it would follow that there exists an even number greater than two, such that, if 
it is the sum of two primes suffice to check whether that particular number is the sum of 
two primes, which has a finite decision process. If it were not, then obviously it would be 
a refutation of the conjecture. But if it were, then all of them would be, and the conjecture 
would be proven. 



Nevertheless, intuitionistic (free) logic still has something like the drinker paradox in the 
form of the theorem: 

 

If we take N(x) to be , that is, x is not drinking, then in words this reads: 

If there isn't someone in the pub such that, if anyone in the pub isn't drinking, then 
they aren't drinking either, then nobody is in the pub. 

In classical logic this would be equivalent to the previous statement, from which it can be 
derived by two transpositions. 

Material versus indicative conditional 

Most important to the paradox is that the conditional in classical (and intuitionistic) logic 
is the material conditional. It has the property that is true if B is true or if A is 
false (in classical logic, but not intuitionistic logic, this is also a necessary condition). 

So as it was applied here, the statement "if he is drinking, everyone is drinking" was 
taken to be correct in one case, if everyone was drinking, and in the other case, if he was 
not drinking — even though his drinking may not have had anything to do with anyone 
else's drinking. 

In natural language, on the other hand, typically "if...then" is used as an indicative 
conditional. 

Lottery Paradox 

Henry E. Kyburg, Jr.'s lottery paradox (1961, p. 197) arises from considering a fair 1000 
ticket lottery that has exactly one winning ticket. If this much is known about the 
execution of the lottery it is therefore rational to accept that some ticket will win. 
Suppose that an event is very likely only if the probability of it occurring is greater than 
0.99. On these grounds it is presumed rational to accept the proposition that ticket 1 of 
the lottery will not win. Since the lottery is fair, it is rational to accept that ticket 2 won't 
win either--indeed, it is rational to accept for any individual ticket i of the lottery that 
ticket i will not win. However, accepting that ticket 1 won't win, accepting that ticket 2 
won't win, and so on until accepting that ticket 1000 won't win: that entails that it is 
rational to accept that no ticket will win, which entails that it is rational to accept the 
contradictory proposition that one ticket wins and no ticket wins. 

The lottery paradox was designed to demonstrate that three attractive principles 
governing rational acceptance lead to contradiction, namely that 

 It is rational to accept a proposition that is very likely true, 



 It is not rational to accept a proposition that is known to be inconsistent, and 
 If it is rational to accept a proposition A and it is rational to accept another 

proposition A', then it is rational to accept A & A', 

are jointly inconsistent. 

The paradox remains of continuing interest because it raises several issues at the 
foundations of knowledge representation and uncertain reasoning: the relationships 
between fallibility, corrigible belief and logical consequence; the roles that consistency, 
statistical evidence and probability play in belief fixation; the precise normative force that 
logical and probabilistic consistency have on rational belief. 

History 

Although the first published statement of the lottery paradox appears in Kyburg's 1961 
Probability and the Logic of Rational Belief, the first formulation of the paradox appears 
in his "Probability and Randomness," a paper delivered at the 1959 meeting of the 
Association for Symbolic Logic, and the 1960 International Congress for the History and 
Philosophy of Science, but published in the journal Theoria in 1963. This paper is 
reprinted in Kyburg (1987). 

A Short Guide to the Literature 

The lottery paradox has become a central topic within epistemology, and the enormous 
literature surrounding this puzzle threatens to obscure its original purpose. Kyburg 
proposed the thought experiment to get across a feature of his innovative ideas on 
probability (Kyburg 1961, Kyburg and Teng 2001), which are built around taking the 
first two principles above seriously and rejecting the last. For Kyburg, the lottery paradox 
isn't really a paradox: his solution is to restrict aggregation. 

Even so, for orthodox probabilists the second and third principles are primary, so the first 
principle is rejected. Here too you'll see claims that there is really no paradox but an 
error: the solution is to reject the first principle, and with it the idea of rational 
acceptance. For anyone with basic knowledge of probability, the first principle should be 
rejected: for a very likely event, the rational belief about that event is just that it is very 
likely, not that it is true. 

Most of the literature in epistemology approaches the puzzle from the orthodox point of 
view and grapples with the particular consequences faced by doing so, which is why the 
lottery is associated with discussions of skepticism (e.g., Klein 1981), and conditions for 
asserting knowledge claims (e.g., J. P. Hawthorne 2004). It is common to also find 
proposed resolutions to the puzzle that turn on particular features of the lottery thought 
experiment (e.g., Pollock 1986), which then invites comparisons of the lottery to other 
epistemic paradoxes, such as David Makinson's preface paradox, and to "lotteries" having 
a different structure. This strategy is addressed in (Kyburg 1997) and also in (Wheeler 
2007). An extensive bibliography is included in (Wheeler 2007). 



Philosophical logicians and AI researchers have tended to be interested in reconciling 
weakened versions of the three principles, and there are many ways to do this, including 
Jim Hawthorne and Luc Bovens's (1999) logic of belief, Gregory Wheeler's (2006) use of 
1-monotone capacities, Bryson Brown's (1999) application of preservationist 
paraconsistent logics, Igor Douven and Timothy Williamson's (2006) appeal to 
cumulative non-monotonic logics, Horacio Arlo-Costa's (2007) use of minimal model 
(classical) modal logics, and Joe Halpern's (2003) use of first-order probability. 

Finally, philosophers of science, decision scientists, and statisticians are inclined to see 
the lottery paradox as an early example of the complications one faces in constructing 
principled methods for aggregating uncertain information, which is now a thriving 
discipline of its own, with a dedicated journal, Information Fusion, in addition to 
continuous contributions to general area journals. 

 

 

 

 

 

 

 



Chapter 4 

Paradoxes of Material Implication 

 

 
 
 

The paradoxes of material implication are a group of formulas which are truths of 
classical logic, but which are intuitively problematic. One of these paradoxes is the 
paradox of entailment. 

The root of the paradoxes lies in a mismatch between the interpretation of the validity of 
implication in natural language, and its formal interpretation in classical logic, dating 
back to George Boole's algebraic logic. Implication, in logic, describes conditional if-
then statements, e.g., "if it is raining, then I will bring an umbrella," which in classical 
logic is given a truth-functional interpretation by means of reformulating it in terms of 
disjunction and negation, in this example, it is not raining, or I will bring an umbrella, or 
both. This truth-functional interpretation of implication is called material implication. 

The paradoxes are given formally by the formulas: 

1. , which is the paradox of entailment 

2.  
3.  
4.  

The paradoxes of material implication arise because of the truth-functional definition of 
material conditional – i.e., if/then – statements under which a conditional is said to be 
true merely because the antecedent is false or the consequent is true. By this criterion, "If 
the moon is made of green cheese, then the world is coming to an end," is true merely 
because the moon isn't made of green cheese. By extension, any contradiction implies 
anything whatsoever, since a contradiction is never true. (All paraconsistent logics must, 
by definition, reject (1) as false.) On the other hand, "If the White Sox win the World 
Series next year, then the Yankees won it in 2009," is true simply because the Yankees 
did win the World Series in 2009. By extension, any tautology is implied by anything 
whatsoever, since a tautology is always true. 



Paradox of entailment 

As the most well known of the paradoxes, and most formally simple, the paradox of 
entailment makes the best introduction. 

In natural language, an instance of the paradox of entailment arises: 

It is raining 

And 

It is not raining 

Therefore 

George Washington is made of plastic. 

This arises from the principle of explosion, a law of classical logic stating that 
inconsistent premises always make an argument valid; that is, inconsistent premises 
imply any conclusion at all. This seems paradoxical, as it suggests that the above is a 
valid argument. 

Understanding the paradox of entailment 

Validity is defined in classical logic as follows: 

An argument (consisting of premises and a conclusion) is valid if and only if there 
is no possible situation in which all the premises are true and the conclusion is 
false. 

For example an argument might run: 

If it is raining, water exists (1st premise) 
It is raining (2nd premise) 
Water exists (Conclusion) 

In this example there is no possible situation in which the premises are true while the 
conclusion is false. Since there is no counterexample, the argument is valid. 

But one could construct an argument in which the premises are inconsistent. This would 
satisfy the test for a valid argument since there would be no possible situation in which 
all the premises are true and therefore no possible situation in which all the premises are 
true and the conclusion is false. 

For example an argument with inconsistent premises might run: 



Matter has mass (1st premise; true) 
Matter does not have mass (2nd premise; false) 
All numbers are equal to 42 (Conclusion) 

As there is no possible situation where both premises could be true, then there is certainly 
no possible situation in which the premises could be true while the conclusion was false. 
So the argument is valid whatever the conclusion is; inconsistent premises imply all 
conclusions. 

Explaining the paradox 

The strangeness of the paradox of entailment comes from the fact that the definition of 
validity in classical logic does not always agree with the use of the term in ordinary 
language. In everyday use validity suggests that the premises are consistent. In classical 
logic, the additional notion of soundness is introduced. A sound argument is a valid 
argument with all true premises. Hence a valid argument with an inconsistent set of 
premises can never be sound. A suggested improvement to the notion of logical validity 
to eliminate this paradox is relevant logic. 

Simplification 

The classical paradox formulas are closely tied to the formula, 

  

the principle of Simplification, which can be derived from the paradox formulas rather 
easily (e.g. from (1) by Importation). In addition, there are serious problems with trying 
to use material implication as representing the English "if ... then ...". For example, the 
following are valid inferences: 

1.  
2.  

but mapping these back to English sentences using "if" gives paradoxes. The first might 
be read "If John is in London then he is in England, and if he is in Paris then he is in 
France. Therefore, it is either true that if John is in London then he is in France, or that if 
he is in Paris then he is in England." Either John is in London or John is not in London. If 
John is in London, then John is in England. Thus the proposition "if John is in Paris, then 
John is in England" holds because we have prior knowledge that the conclusion is true. If 
John is not in London, then the proposition "if John is in London, then John is in France" 
is true because we have prior knowledge that the premise is false. 

The second can be read "If both switch A and switch B are closed, then the light is on. 
Therefore, it is either true that if switch A is closed, the light is on, or if switch B is 
closed, the light is on." If the two switches are in series, then the premise is true but the 



conclusion is false. Thus, using classical logic and taking material implication to mean if-
then is an unsafe method of reasoning which can give erroneous results. 

 

 

 

 

 

 

 

 

 

 
 



Chapter 5 

Raven Paradox 

 

 
 
 

The Raven paradox, also known as Hempel's paradox or Hempel's ravens is a 
paradox proposed by the German logician Carl Gustav Hempel in the 1940s to illustrate a 
problem where inductive logic violates intuition. It reveals the fundamental problem of 
induction. 

The paradox 

 
A black raven 

 
 

Non-black non-ravens 



Hempel describes the paradox in terms of the hypothesis: 

(1) All ravens are black. 

In strict logical terms, via the Law of Implication, this statement is equivalent to: 

(2) Everything that is not black is not a raven. 

It should be clear that in all circumstances where (2) is true, (1) is also true; and likewise, 
in all circumstances where (2) is false (i.e. if we imagine a world in which something that 
was not black, yet was a raven, existed), (1) is also false. This establishes logical 
equivalence. 

Given a general statement such as all ravens are black, we would generally consider a 
form of the same statement that refers to a specific observable instance of the general 
class to constitute evidence for that general statement. For example, 

(3) Nevermore, my pet raven, is black. 

is clearly evidence supporting the hypothesis that all ravens are black. 

The paradox arises when this same process is applied to statement (2). On sighting a 
green apple, we can observe: 

(4) This green (and thus not black) thing is an apple (and thus not a raven). 

By the same reasoning, this statement is evidence that (2) everything that is not black is 
not a raven. But since (as above) this statement is logically equivalent to (1) all ravens 
are black, it follows that the sight of a green apple offers evidence that all ravens are 
black. This conclusion is contrary to common sense reasoning and seems paradoxical, as 
it implies that we have gained information about ravens by looking at an apple. 

Proposed resolutions 

Two apparently reasonable premises: 

The Equivalence Condition (EC): If a proposition, X, provides evidence in favor 
of another proposition Y, then X also provides evidence in favor of any 
proposition which is logically equivalent to Y. 

and 

Nicod's Criterion (NC): A proposition of the form "All P are Q" is supported by 
the observation of a particular P which is Q. 

can be combined to reach the seemingly paradoxical conclusion: 



(PC): The observation of a green apple provides evidence that all ravens are 
black. 

A resolution to the paradox must therefore either accept (PC) or reject (EC) or reject 
(NC) or reject both. A satisfactory resolution should also explain why there naively 
appears to be a paradox. Solutions which accept the paradoxical conclusion can do this 
by presenting a proposition which we intuitively know to be false but which is easily 
confused with (PC), while solutions which reject (EC) or (NC) should present a 
proposition which we intuitively know to be true but which is easily confused with (EC) 
or (NC). 

Approaches which accept the paradoxical conclusion 

Hempel's resolution 

Hempel himself accepted the paradoxical conclusion, arguing that the reason the result 
appears paradoxical is because we possess prior information without which the 
observation of a non-black non-raven would indeed provide evidence that all ravens are 
black. 

He illustrates this with the example of the generalization "All sodium salts burn yellow", 
and asks us to consider the observation which occurs when somebody holds a piece of 
pure ice in a colorless flame which does not turn yellow: 

This result would confirm the assertion, "Whatever does not burn yellow is not sodium 
salt", and consequently, by virtue of the equivalence condition, it would confirm the 
original formulation. Why does this impress us as paradoxical? The reason becomes clear 
when we compare the previous situation with the case of an experiment where an object 
whose chemical constitution is as yet unknown to us is held into a flame and fails to turn 
it yellow, and where subsequent analysis reveals it to contain no sodium salt. This 
outcome, we should no doubt agree, is what was to be expected on the basis of the 
hypothesis ... thus the data here obtained constitute confirming evidence for the 
hypothesis. 
 
In the seemingly paradoxical cases of confirmation, we are often not actually judging the 
relation of the given evidence, E alone to the hypothesis H ... we tacitly introduce a 
comparison of H with a body of evidence which consists of E in conjunction with an 
additional amount of information which we happen to have at our disposal; in our 
illustration, this information includes the knowledge (1) that the substance used in the 
experiment is ice, and (2) that ice contains no sodium salt. If we assume this additional 
information as given, then, of course, the outcome of the experiment can add no strength 
to the hypothesis under consideration. But if we are careful to avoid this tacit reference to 
additional knowledge ... the paradoxes vanish. 



The standard Bayesian solution 

One of the most popular proposed resolutions is to accept the conclusion that the 
observation of a green apple provides evidence that all ravens are black but to argue that 
the amount of confirmation provided is very small, due to the large discrepancy between 
the number of ravens and the number of non-black objects. According to this resolution, 
the conclusion appears paradoxical because we intuitively estimate the amount of 
evidence provided by the observation of a green apple to be zero, when it is in fact non-
zero but very small. 

I J Good's presentation of this argument in 1960 is perhaps the best known, and variations 
of the argument have been popular ever since  although it had been presented in 1958 and 
early forms of the argument appeared as early as 1940. 

Good's argument involves calculating the weight of evidence provided by the observation 
of a black raven or a white shoe in favor of the hypothesis that all the ravens in a 
collection of objects are black. The weight of evidence is the logarithm of the Bayes 
factor, which in this case is simply the factor by which the odds of the hypothesis 
changes when the observation is made. The argument goes as follows: 

... suppose that there are N objects that might be seen at any moment, of which r are 
ravens and b are black, and that the N objects each have probability 1/N of being seen. 
Let Hi be the hypothesis that there are i non-black ravens, and suppose that the 
hypotheses H1,H2,...,Hr are initially equiprobable. Then, if we happen to see a black 
raven, the Bayes factor in favour of H0 is  

average  

i.e. about 2 if the number of ravens in existence is known to be large. But the factor if we 
see a white shoe is only 

average  

 
and this exceeds unity by only about r/(2N-2b) if N-b is large compared to r. Thus the 
weight of evidence provided by the sight of a white shoe is positive, but is small if the 
number of ravens is known to be small compared to the number of non-black objects. 

Many of the proponents of this resolution and variants of it have been advocates of 
Bayesian probability, and it is now commonly called the Bayesian Solution, although, as 
Chihara observes, "there is no such thing as the Bayesian solution. There are many 
different 'solutions' that Bayesians have put forward using Bayesian techniques." 
Noteworthy approaches using Bayesian techniques include Earman, , Eells , Gibson , 



Hosaisson-Lindenbaum , Howson and Urbach , Mackie  and Hintikka, who claims that 
his approach is "more Bayesian than the so-called 'Bayesian solution' of the same 
paradox." Bayesian approaches which make use of Carnap's theory of inductive inference 
include Humburg, Maher,  and Fitelson et al.. Vranas introduced the term "Standard 
Bayesian Solution" to avoid confusion. 

The Carnapian approach 

Maher accepts the paradoxical conclusion, and refines it: 

A non-raven (of whatever color) confirms that all ravens are black because  
(i) the information that this object is not a raven removes the possibility that this 
object is a counterexample to the generalization, and 
(ii) it reduces the probability that unobserved objects are ravens, thereby reducing 
the probability that they are counterexamples to the generalization. 

In order to reach (ii), he appeals to Carnap's theory of inductive probability, which is 
(from the Bayesian point of view) a way of assigning prior probabilities which naturally 
implements induction. According to Carnap's theory, the posterior probability, P(Fa | E), 
that an object, a, will have a predicate, F, after the evidence E has been observed, is: 

 

where P(Fa) is the initial probability that a has the predicate F; n is the number of objects 
which have been examined (according to the available evidence E); nF is the number of 
examined objects which turned out to have the predicate F, and λ is a constant which 
measures resistance to generalization. 

If λ is close to zero, P(Fa | E) will be very close to one after a single observation of an 
object which turned out to have the predicate F, while if λ is much larger than n, P(Fa | 
E) will be very close to P(Fa) regardless of the fraction of observed objects which had 
the predicate F. 

Using this Carnapian approach, Maher identifies a proposition which we intuitively (and 
correctly) know to be false, but which we easily confuse with the paradoxical conclusion. 
The proposition in question is the proposition that observing non-ravens tells us about the 
color of ravens. While this is intuitively false and is also false according to Carnap's 
theory of induction, observing non-ravens (according to that same theory) causes us to 
reduce our estimate of the total number of ravens, and thereby reduces the estimated 
number of possible counterexamples to the rule that all ravens are black. 

Hence, from the Bayesian-Carnapian point of view, the observation of a non-raven does 
not tell us anything about the color of ravens, but it tells us about the prevalence of 
ravens, and supports "All ravens are black" by reducing our estimate of the number of 
ravens which might not be black. 



The role of background knowledge 

Much of the discussion of the paradox in general and the Bayesian approach in particular 
has centred on the relevance of background knowledge. Surprisingly, Maher shows that, 
for a large class of possible configurations of background knowledge, the observation of 
a non-black non-raven provides exactly the same amount of confirmation as the 
observation of a black raven. The configurations of background knowledge which he 
considers are those which are provided by a sample proposition, namely a proposition 
which is a conjunction of atomic propositions, each of which ascribes a single predicate 
to a single individual, with no two atomic propositions involving the same individual. 
Thus, a proposition of the form "A is a black raven and B is a white shoe" can be 
considered a sample proposition by taking "black raven" and "white shoe" to be 
predicates. 

Maher's proof appears to contradict the result of the Bayesian argument, which was that 
the observation of a non-black non-raven provides much less evidence than the 
observation of a black raven. The reason is that the background knowledge which Good 
and others use can not be expressed in the form of a sample proposition - in particular, 
variants of the standard Bayesian approach often suppose (as Good did in the argument 
quoted above) that the total numbers of ravens, non-black objects and/or the total number 
of objects, are known quantities. Maher comments that, "The reason we think there are 
more non-black things than ravens is because that has been true of the things we have 
observed to date. Evidence of this kind can be represented by a sample proposition. But 
... given any sample proposition as background evidence, a non-black non-raven confirms 
A just as strongly as a black raven does ... Thus my analysis suggests that this response to 
the paradox [i.e. the Standard Bayesian one] cannot be correct." 

Fitelson et al. examined the conditions under which the observation of a non-black non-
raven provides less evidence than the observation of a black raven. They show that, if a is 
an object selected at random, Ba is the proposition that the object is black, and Ra is the 
proposition that the object is a raven, then the condition: 

 

is sufficient for the observation of a non-black non-raven to provide less evidence than 
the observation of a black raven. Here, a line over a proposition indicates the logical 
negation of that proposition. 

This condition does not tell us how large the difference in the evidence provided is, but a 
later calculation in the same paper shows that the weight of evidence provided by a black 

raven exceeds that provided by a non-black non-raven by about . 
This is equal to the amount of additional information (in bits, if the base of the logarithm 
is 2) which is provided when a raven of unknown color is discovered to be black, given 
the hypothesis that not all ravens are black. 



Fitelson et al. explain that: 

Under normal circumstances, may be somewhere around 0.9 or 
0.95; so 1 / p is somewhere around 1.11 or 1.05. Thus, it may appear that a single 
instance of a black raven does not yield much more support than would a non-black non-
raven. However, under plausible conditions it can be shown that a sequence of n 
instances (i.e. of n black ravens, as compared to n non-black non-ravens) yields a ratio of 
likelihood ratios on the order of (1 / p)n, which blows up significantly for large n. 

The authors point out that their analysis is completely consistent with the supposition that 
a non-black non-raven provides an extremely small amount of evidence although they do 
not attempt to prove it; they merely calculate the difference between the amount of 
evidence that a black raven provides and the amount of evidence that a non-black non-
raven provides. 

Rejecting Nicod's criterion 

The red herring 

Good  gives an example of background knowledge with respect to which the observation 
of a black raven decreases the probability that all ravens are black: 

Suppose that we know we are in one or other of two worlds, and the hypothesis, H, under 
consideration is that all the ravens in our world are black. We know in advance that in 
one world there are a hundred black ravens, no non-black ravens, and a million other 
birds; and that in the other world there are a thousand black ravens, one white raven, and 
a million other birds. A bird is selected equiprobably at random from all the birds in our 
world. It turns out to be a black raven. This is strong evidence ... that we are in the second 
world, wherein not all ravens are black. 

Good concludes that the white shoe is a "red herring": Sometimes even a black raven can 
constitute evidence against the hypothesis that all ravens are black, so the fact that the 
observation of a white shoe can support it is not surprising and not worth attention. 
Nicod's criterion is false, according to Good, and so the paradoxical conclusion does not 
follow. 

Hempel rejected this as a solution to the paradox, insisting that the proposition 'c is a 
raven and is black' must be considered "by itself and without reference to any other 
information", and pointing out that it "... was emphasized in section 5.2(b) of my article 
in Mind ... that the very appearance of paradoxicality in cases like that of the white shoe 
results in part from a failure to observe this maxim." 

The question which then arises is whether the paradox is to be understood in the context 
of absolutely no background information (as Hempel suggests), or in the context of the 
background information which we actually possess regarding ravens and black objects, or 
with regard to all possible configurations of background information. 



Good had shown that, for some configurations of background knowledge, Nicod's 
criterion is false (provided that we are willing to equate "inductively support" with 
"increase the probability of"). The possibility remained that, with respect to our actual 
configuration of knowledge, which is very different from Good's example, Nicod's 
criterion might still be true and so we could still reach the paradoxical conclusion. 
Hempel, on the other hand, insists that it is our background knowledge itself which is the 
red herring, and that we should consider induction with respect to a condition of perfect 
ignorance. 

Good's baby 

In his proposed resolution, Maher implicitly made use of the fact that the proposition "All 
ravens are black" is highly probable when it is highly probable that there are no ravens. 
Good had used this fact before to respond to Hempel's insistence that Nicod's criterion 
was to be understood to hold in the absence of background information: 

...imagine an infinitely intelligent newborn baby having built-in neural circuits enabling 
him to deal with formal logic, English syntax, and subjective probability. He might now 
argue, after defining a raven in detail, that it is extremely unlikely that there are any 
ravens, and therefore it is extremely likely that all ravens are black, that is, that H is true. 
'On the other hand', he goes on to argue, 'if there are ravens, then there is a reasonable 
chance that they are of a variety of colours. Therefore, if I were to discover that even a 
black raven exists I would consider H to be less probable than it was initially.' 

This, according to Good, is as close as one can reasonably expect to get to a condition of 
perfect ignorance, and it appears that Nicod's condition is still false. Maher made Good's 
argument more precise by using Carnap's theory of induction to formalize the notion that 
if there is one raven, then it is likely that there are many. 

Maher's argument considers a universe of exactly two objects, each of which is very 
unlikely to be a raven (a one in a thousand chance) and reasonably unlikely to be black (a 
one in ten chance). Using Carnap's formula for induction, he finds that the probability 
that all ravens are black decreases from 0.9985 to 0.8995 when it is discovered that one 
of the two objects is a black raven. 

Maher concludes that not only is the paradoxical conclusion true, but that Nicod's 
criterion is false in the absence of background knowledge (except for the knowledge that 
the number of objects in the universe is two and that ravens are less likely than black 
things). 

Distinguished predicates 

Quine argued that the solution to the paradox lies in the recognition that certain 
predicates, which he called natural kinds, have a distinguished status with respect to 
induction. This can be illustrated with Nelson Goodman's example of the predicate grue. 
An object is grue if it is blue before (say) 2015 and green afterwards. Clearly, we expect 



objects which were blue before 2015 to remain blue afterwards, but we do not expect the 
objects which were found to be grue before 2015 to be grue afterwards. Quine's 
explanation is that "blue" is a natural kind; a privileged predicate which can be used for 
induction, while "grue" is not a natural kind and using induction with it leads to error. 

This suggests a resolution to the paradox - Nicod's criterion is true for natural kinds, such 
as "blue" and "black", but is false for artificially contrived predicates, such as "grue" or 
"non-raven". The paradox arises, according to this resolution, because we implicitly 
interpret Nicod's criterion as applying to all predicates when in fact it only applies to 
natural kinds. 

Another approach which favours specific predicates over others was taken by Hintikka. 
Hintikka was motivated to find a Bayesian approach to the paradox which did not make 
use of knowledge about the relative frequencies of ravens and black things. Arguments 
concerning relative frequencies, he contends, cannot always account for the perceived 
irrelevance of evidence consisting of observations of objects of type A for the purposes of 
learning about objects of type not-A. 

His argument can be illustrated by rephrasing the paradox using predicates other than 
"raven" and "black". For example, "All men are tall" is equivalent to "All short people are 
women", and so observing that a randomly selected person is a short woman should 
provide evidence that all men are tall. Despite the fact that we lack background 
knowledge to indicate that there are dramatically fewer men than short people, we still 
find ourselves inclined to reject the conclusion. Hintikka's example is: "... a 
generalization like 'no material bodies are infinitely divisible' seems to be completely 
unaffected by questions concerning immaterial entities, independently of what one thinks 
of the relative frequencies of material and immaterial entities in one's universe of 
discourse." 

His solution is to introduce an order into the set of predicates. When the logical system is 
equipped with this order, it is possible to restrict the scope of a generalization such as 
"All ravens are black" so that it applies to ravens only and not to non-black things, since 
the order privileges ravens over non-black things. As he puts it: 

If we are justified in assuming that the scope of the generalization 'All ravens are black' 
can be restricted to ravens, then this means that we have some outside information which 
we can rely on concerning the factual situation. The paradox arises from the fact that this 
information, which colors our spontaneous view of the situation, is not incorporated in 
the usual treatments of the inductive situation. 

Proposed resolutions which reject the equivalence condition 

Selective confirmation 

Scheffler and Goodman took an approach to the paradox which incorporates Karl 
Popper's view that scientific hypotheses are never really confirmed, only falsified. 



The approach begins by noting that the observation of a black raven does not prove that 
"All ravens are black" but it falsifies the contrary hypothesis, "No ravens are black". A 
non-black non-raven, on the other hand, is consistent with both "All ravens are black" 
and with "No ravens are black". As the authors put it: 

... the statement that all ravens are black is not merely satisfied by evidence of a black 
raven but is favored by such evidence, since a black raven disconfirms the contrary 
statement that all ravens are not black, i.e. satisfies its denial. A black raven, in other 
words, satisfies the hypothesis that all ravens are black rather than not: it thus 
selectively confirms that all ravens are black. 

Selective confirmation violates the equivalence condition since a black raven selectively 
confirms "All ravens are black" but not "All non-black things are non-ravens". 

Probabilistic or non-probabilistic induction 

Scheffler and Goodman's concept of selective confirmation is an example of an 
interpretation of "provides evidence in favor of" which does not coincide with "increase 
the probability of". This must be a general feature of all resolutions which reject the 
equivalence condition, since logically equivalent propositions must always have the same 
probability. 

It is impossible for the observation of a black raven to increase the probability of the 
proposition "All ravens are black" without causing exactly the same change to the 
probability that "All non-black things are non-ravens". If an observation inductively 
supports the former but not the latter, then "inductively support" must refer to something 
other than changes in the probabilities of propositions. A possible loophole is to interpret 
"All" as "Nearly all" - "Nearly all ravens are black" is not equivalent to "Nearly all non-
black things are non-ravens", and these propositions can have very different probabilities. 

This raises the broader question of the relation of probability theory to inductive 
reasoning. Karl Popper argued that probability theory alone cannot account for induction. 
His argument involves splitting a hypothesis, H, into a part which is deductively entailed 
by the evidence, E, and another part. This can be done in two ways. 

First, consider the splitting: 

 

where A, B and C are probabilistically independent: 

and so on. The condition which is necessary for such a 
splitting of H and E to be possible is P(H | E) > P(H), that is, that H is probabilistically 
supported by E. 



Popper's observation is that the part, B, of H which receives support from E actually 
follows deductively from E, while the part of H which does not follow deductively from 
E receives no support at all from E - that is, P(A | E) = P(A). 

Second, the splitting: 

 

separates H into , which as Popper says, "is the logically strongest part of H 

(or of the content of H) that follows [deductively] from E," and , which, he 
says, "contains all of H that goes beyond E." He continues: 

Does E, in this case, provide any support for the factor , which in the 
presence of E is alone needed to obtain H? The answer is: No. It never does. Indeed, E 

countersupports unless either P(H | E) = 1 or P(E) = 1 (which are possibilities 
of no interest). ... 
This result is completely devastating to the inductive interpretation of the calculus of 
probability. All probabilistic support is purely deductive: that part of a hypothesis that is 
not deductively entailed by the evidence is always strongly countersupported by the 
evidence ... There is such a thing as probabilistic support; there might even be such a 
thing as inductive support (though we hardly think so). But the calculus of probability 
reveals that probabilistic support cannot be inductive support. 

The orthodox approach 

The orthodox Neyman-Pearson theory of hypothesis testing considers how to decide 
whether to accept or reject a hypothesis, rather than what probability to assign to the 
hypothesis. From this point of view, the hypothesis that "All ravens are black" is not 
accepted gradually, as its probability increases towards one when more and more 
observations are made, but is accepted in a single action as the result of evaluating the 
data which has already been collected. As Neyman and Pearson put it: 

Without hoping to know whether each separate hypothesis is true or false, we may search 
for rules to govern our behaviour with regard to them, in following which we insure that, 
in the long run of experience, we shall not be too often wrong. 

According to this approach, it is not necessary to assign any value to the probability of a 
hypothesis, although one must certainly take into account the probability of the data 
given the hypothesis, or given a competing hypothesis, when deciding whether to accept 
or to reject. The acceptance or rejection of a hypothesis carries with it the risk of error. 

This contrasts with the Bayesian approach, which requires that the hypothesis be assigned 
a prior probability, which is revised in the light of the observed data to obtain the final 
probability of the hypothesis. Within the Bayesian framework there is no risk of error 
since hypotheses are not accepted or rejected; instead they are assigned probabilities. 



An analysis of the paradox from the orthodox point of view has been performed, and 
leads to, among other insights, a rejection of the equivalence condition: 

It seems obvious that one cannot both accept the hypothesis that all P's are Q and also 
reject the contrapositive, i.e. that all non-Q's are non-P. Yet it is easy to see that on the 
Neyman-Pearson theory of testing, a test of "All P's are Q" is not necessarily a test of 
"All non-Q's are non-P" or vice versa. A test of "All P's are Q" requires reference to some 
alternative statistical hypothesis of the form r of all P's are Q, 0 < r < 1, whereas a test of 
"All non-Q's are non-P" requires reference to some statistical alternative of the form r of 
all non-Q's are non-P, 0 < r < 1. But these two sets of possible alternatives are different ... 
Thus one could have a test of H without having a test of its contrapositive. 

Rejecting material implication 

The following propositions all imply one another: "Every object is either black or not a 
raven", "Every Raven is black", and "Every non-black object is a non-raven." They are 
therefore, by definition, logically equivalent. However, the three propositions have 
different domains: the first proposition says something about "Every object", while the 
second says something about "Every raven". 

The first proposition is the only one whose domain is unrestricted ("all objects"), so this 
is the only one which can be expressed in first order logic. It is logically equivalent to: 

 

and also to 

 

where indicates the material conditional, according to which "If A then B" can be 

understood to mean "B or ". 

It has been argued by several authors that material implication does not fully capture the 
meaning of "If A then B". "For every object, x, x is either black or not a raven" is true 
when there are no ravens. It is because of this that "All ravens are black" is regarded as 
true when there are no ravens. Furthermore, the arguments which Good and Maher used 
to criticize Nicod's criterion relied on this fact - that "All ravens are black" is highly 
probable when it is highly probable that there are no ravens. 

Some approaches to the paradox have sought to find other ways of interpreting "If A then 
B" and "All A are B" which would eliminate the perceived equivalence between "All 
ravens are black" and "All non-black things are non-ravens." 

One such approach involves introducing a many-valued logic according to which "If A 
then B" has the truth-value I, meaning "Indeterminate" or "Inappropriate" when A is false. 
In such a system, contraposition is not automatically allowed: "If A then B" is not 



equivalent to "If then ". Consequently, "All ravens are black" is not equivalent to 
"All non-black things are non-ravens". 

In this system, when contraposition occurs, the modality of the conditional involved 
changes from the indicative ("If that piece of butter has been heated to 32 C then it has 
melted") to the counterfactual ("If that piece of butter had been heated to 32 C then it 
would have melted"). According to this argument, this removes the alleged equivalence 
which is necessary to conclude that yellow cows can inform us about ravens: 

In proper grammatical usage, a contrapositive argument ought not to be stated entirely in 
the indicative. Thus: 
From the fact that if this match is scratched it will light, it follows that if it does not light 
it was not scratched. 
is awkward. We should say: 
From the fact that if this match is scratched it will light, it follows that if it were not to 
light it would not have been scratched. ... 
One might wonder what effect this interpretation of the Law of Contraposition has on 
Hempel's paradox of confirmation. "If a is a raven then a is black" is equivalent to "If a 
were not black then a would not be a raven". Therefore whatever confirms the latter 
should also, by the Equivalence Condition, confirm the former. True, but yellow cows 
still cannot figure into the confirmation of "All ravens are black" because, in science, 
confirmation is accomplished by prediction, and predictions are properly stated in the 
indicative mood. It is senseless to ask what confirms a counterfactual. 

Differing results of accepting the hypotheses 

Several commentators have observed that the propositions "All ravens are black" and 
"All non-black things are non-ravens" suggest different procedures for testing the 
hypotheses. E.g. Good writes: 

As propositions the two statements are logically equivalent. But they have a different 
psychological effect on the experimenter. If he is asked to test whether all ravens are 
black he will look for a raven and then decide whether it is black. But if he is asked to 
test whether all non-black things are non-ravens he may look for a non-black object and 
then decide whether it is a raven. 

More recently, it has been suggested that "All ravens are black" and "All non-black 
things are non-ravens" can have different effects when accepted. The argument considers 
situations in which the total numbers or prevalences of ravens and black objects are 
unknown, but estimated. When the hypothesis "All ravens are black" is accepted, 
according to the argument, the estimated number of black objects increases, while the 
estimated number of ravens does not change. 

It can be illustrated by considering the situation of two people who have identical 
information regarding ravens and black objects, and who have identical estimates of the 
numbers of ravens and black objects. For concreteness, suppose that there are 100 objects 



overall, and, according to the information available to the people involved, each object is 
just as likely to be a non-raven as it is to be a raven, and just as likely to be black as it is 
to be non-black: 

 

and the propositions are independent for different objects a, b and so on. Then 
the estimated number of ravens is 50; the estimated number of black things is 50; the 
estimated number of black ravens is 25, and the estimated number of non-black ravens 
(counterexamples to the hypotheses) is 25. 

One of the people performs a statistical test (e.g. a Neyman-Pearson test or the 
comparison of the accumulated weight of evidence to a threshold) of the hypothesis that 
"All ravens are black", while the other tests the hypothesis that "All non-black objects are 
non-ravens". For simplicity, suppose that the evidence used for the test has nothing to do 
with the collection of 100 objects dealt with here. If the first person accepts the 
hypothesis that "All ravens are black" then, according to the argument, about 50 objects 
whose colors were previously in doubt (the ravens) are now thought to be black, while 
nothing different is thought about the remaining objects (the non-ravens). Consequently, 
he should estimate the number of black ravens at 50, the number of black non-ravens at 
25 and the number of non-black non-ravens at 25. By specifying these changes, this 
argument explicitly restricts the domain of "All ravens are black" to ravens. 

On the other hand, if the second person accepts the hypothesis that "All non-black objects 
are non-ravens", then the approximately 50 non-black objects about which it was 
uncertain whether each was a raven, will be thought to be non-ravens. At the same time, 
nothing different will be thought about the approximately 50 remaining objects (the black 
objects). Consequently, he should estimate the number of black ravens at 25, the number 
of black non-ravens at 25 and the number of non-black non-ravens at 50. According to 
this argument, since the two people disagree about their estimates after they have 
accepted the different hypotheses, accepting "All ravens are black" is not equivalent to 
accepting "All non-black things are non-ravens"; accepting the former means estimating 
more things to be black, while accepting the latter involves estimating more things to be 
non-ravens. Correspondingly, the argument goes, the former requires as evidence ravens 
which turn out to be black and the latter requires non-black things which turn out to be 
non-ravens. 

Existential presuppositions 

A number of authors have argued that propositions of the form "All A are B" presuppose 
that there are objects which are A. This analysis has been applied to the raven paradox: 

... H1: "All ravens are black" and H2: "All nonblack things are nonravens" are not strictly 
equivalent ... due to their different existential presuppositions. Moreover, although H1 and 
H2 describe the same regularity - the nonexistence of nonblack ravens - they have 



different logical forms. The two hypotheses have different senses and incorporate 
different procedures for testing the regularity they describe. 

A modified logic can take account of existential presuppositions using the 
presuppositional operator, '*'. For example, 

 

can denote "All ravens are black" while indicating that it is ravens and not non-black 
objects which are presupposed to exist in this example. 

... the logical form of each hypothesis distinguishes it with respect to its recommended 
type of supporting evidence: the possibly true substitution instances of each hypothesis 
relate to different types of objects. The fact that the two hypotheses incorporate different 
kinds of testing procedures is expressed in the formal language by prefixing the operator 
'*' to a different predicate. The presuppositional operator thus serves as a relevance 
operator as well. It is prefixed to the predicate 'x is a raven' in H1 because the objects 
relevant to the testing procedure incorporated in "All raven are black" include only 
ravens; it is prefixed to the predicate 'x is nonblack', in H2, because the objects relevant to 
the testing procedure incorporated in "All nonblack things are nonravens" include only 
nonblack things. ... Using Fregean terms: whenever their presuppositions hold, the two 
hypotheses have the same referent (truth-value), but different senses; that is, they express 
two different ways to determine that truth-value 

 

 

 

 

 

 

 



Chapter 6 

Unexpected Hanging Paradox 

 

 
 
 

The unexpected hanging paradox, hangman paradox, unexpected exam paradox, 
surprise test paradox or prediction paradox is a paradox about a person's expectations 
about the timing of a future event (e.g. a prisoner's hanging, or a school test) which he is 
told will occur at an unexpected time. 

Despite significant academic interest, no consensus on its correct resolution has yet been 
established. One approach, offered by the logical school of thought, suggests that the 
problem arises in a self-contradictory self-referencing statement at the heart of the judge's 
sentence. Another approach, offered by the epistemological school of thought, suggests 
the unexpected hanging paradox is an example of an epistemic paradox because it turns 
on our concept of knowledge. Even though it is apparently simple, the paradox's 
underlying complexities have even led to it being called a "significant problem" for 
philosophy. 

Description of the paradox 

The paradox has been described as follows: 

A judge tells a condemned prisoner that he will be hanged at noon on one weekday in the 
following week but that the execution will be a surprise to the prisoner. He will not know 
the day of the hanging until the executioner knocks on his cell door at noon that day.  

Having reflected on his sentence, the prisoner draws the conclusion that he will escape 
from the hanging. His reasoning is in several parts. He begins by concluding that the 
"surprise hanging" can't be on a Friday, as if he hasn't been hanged by Thursday, there is 
only one day left - and so it won't be a surprise if he's hanged on a Friday. Since the 
judge's sentence stipulated that the hanging would be a surprise to him, he concludes it 
cannot occur on Friday. 

He then reasons that the surprise hanging cannot be on Thursday either, because Friday 
has already been eliminated and if he hasn't been hanged by Wednesday night, the 
hanging must occur on Thursday, making a Thursday hanging not a surprise either. By 



similar reasoning he concludes that the hanging can also not occur on Wednesday, 
Tuesday or Monday. Joyfully he retires to his cell confident that the hanging will not 
occur at all. 

The next week, the executioner knocks on the prisoner's door at noon on Wednesday — 
which, despite all the above, was an utter surprise to him. Everything the judge said came 
true. 

Other versions of the paradox replace the death sentence with a surprise fire drill, 
examination, or lion behind a door or when the bin will be emptied. 

The informal nature of everyday language allows for multiple interpretations of the 
paradox. In the extreme case, a prisoner who is paranoid might feel certain in his 
knowledge that the executioner will arrive at noon on Monday, then certain that he will 
come on Tuesday and so forth, thus ensuring that every day really is a "surprise" to him. 
But even without adding this element to the story, the vagueness of the account prohibits 
one from being objectively clear about which formalization truly captures its essence. 
There has been considerable debate between the logical school, which uses mathematical 
language, and the epistemological school, which employs concepts such as knowledge, 
belief and memory, over which formulation is correct. 

The logical school 

Formulation of the judge's announcement into formal logic is made difficult by the vague 
meaning of the word "surprise". An attempt at formulation might be: 

 The prisoner will be hanged next week and the date (of the hanging) will not be 
deducible in advance from the assumption that the hanging will occur during the 
week (A). 

Given this announcement the prisoner can deduce that the hanging will not occur on the 
last day of the week. However, in order to reproduce the next stage of the argument, 
which eliminates the penultimate day of the week, the prisoner must argue that his ability 
to deduce, from statement (A), that the hanging will not occur on the last day, implies 
that a last-day hanging would not be surprising. But since the meaning of "surprising" 
has been restricted to not deducible from the assumption that the hanging will occur 
during the week instead of not deducible from statement (A), the argument is blocked. 

This suggests that a better formulation would in fact be: 

 The prisoner will be hanged next week and its date will not be deducible in 
advance using this statement as an axiom (B). 

Some authors have claimed that the self-referential nature of this statement is the source 
of the paradox. Fitch has shown that this statement can still be expressed in formal logic. 
Using an equivalent form of the paradox which reduces the length of the week to just two 



days, he proved that although self-reference is not illegitimate in all circumstances, it is in 
this case because the statement is self-contradictory. 

Objections 

The first objection often raised to the logical school's approach is that it fails to explain 
how the judge's announcement appears to be vindicated after the fact. If the judge's 
statement is self-contradictory, how does he manage to be right all along? This objection 
rests on an understanding of the conclusion to be that the judge's statement is self-
contradictory and therefore the source of the paradox. However, the conclusion is more 
precisely that in order for the prisoner to carry out his argument that the judge's sentence 
cannot be fulfilled, he must interpret the judge's announcement as (B). A reasonable 
assumption would be that the judge did not intend (B) but that the prisoner misinterprets 
his words to reach his paradoxical conclusion. The judge's sentence appears to be 
vindicated afterwards but the statement which is actually shown to be true is that "the 
prisoner will be psychologically surprised by the hanging". This statement in formal logic 
would not allow the prisoner's argument to be carried out. 

A related objection is that the paradox only occurs because the judge tells the prisoner his 
sentence (rather than keeping it secret) — which suggests that the act of declaring the 
sentence is important. Some have argued that since this action is missing from the logical 
school's approach, it must be an incomplete analysis. But the action is included 
implicitly. The public utterance of the sentence and its context changes the judge's 
meaning to something like "there will be a surprise hanging despite my having told you 
that there will be a surprise hanging". The logical school's approach does implicitly take 
this into account. 

Leaky inductive argument 

The argument that first excludes Friday, and then excludes the last remaining day of the 
week is an inductive one. The prisoner assumes that by Thursday he will know the 
hanging is due on Friday, but he does not know that before Thursday. By trying to carry 
an inductive argument backward in time based on a fact known only by Thursday the 
prisoner may be making an error. The conditional statement "If I reach Thursday 
afternoon alive then Friday will be the latest possible day for the hanging" does little to 
reassure the condemned man. The prisoner's argument in any case carries the seeds of its 
own destruction because if he is right, then he is wrong, and can be hanged any day 
including Friday. 

The counter-argument to this is that in order to claim that a statement will not be a 
surprise, it is not necessary to predict the truth or falsity of the statement at the time the 
claim is made, but only to show that such a prediction will become possible in the interim 
period. It is indeed true that the prisoner does not know on Monday that he will be 
hanged on Friday, nor that he will still be alive on Thursday. However, he does know on 
Monday, that if the hangman as it turns out knocks on his door on Friday, he will have 
already have expected that (and been alive to do so) since Thursday night - and thus, if 



the hanging occurs on Friday then it will certainly have ceased to be a surprise at some 
point in the interim period between Monday and Friday. The fact that it has not yet 
ceased to be a surprise at the moment the claim is made is not relevant. This works for 
the inductive case too. When the prisoner wakes up on any given day, on which the last 
possible hanging day is tomorrow, the prisoner will indeed not know for certain that he 
will survive to see tomorrow. However, he does know that if he does survive today, he 
will then know for certain that he must be hanged tomorrow, and thus by the time he is 
actually hanged tomorrow it will have ceased to be a surprise. This removes the leak from 
the argument. 

In other words, his reasoning is incorrect, as if the hanging was on Friday, he will have 
found it unexpected because he would have expected no hanging. It would be true even if 
the judge said:"You will unexpectedly be hanged today". 

Additivity of surprise 

A further objection raised by some commentators is that the property of being a surprise 
may not be additive over cosmophases. For example, the event of "a person's house 
burning down" would probably be a surprise to him, but the event of "a person's house 
either burning down or not burning down" would certainly not be a surprise, as one of 
these must always happen, and thus it is absolutely predictable that the combined event 
will happen. Which particular one of the combined events actually happens can still be a 
surprise. By this argument, the prisoner's arguments that each day cannot be a surprise do 
not follow the regular pattern of induction, because adding extra "non-surprise" days only 
dilutes the argument rather than strengthening it. By the end, all he has proven is that he 
will not be surprised to be hanged sometime during the week - but he would not have 
been anyway, as the judge already told him this in statement (A). 

The epistemological school 

Various epistemological formulations have been proposed that show that the prisoner's 
tacit assumptions about what he will know in the future, together with several plausible 
assumptions about knowledge, are inconsistent. 

Chow (1998) provides a detailed analysis of a version of the paradox in which a surprise 
examination is to take place on one of two days. Applying Chow's analysis to the case of 
the unexpected hanging (again with the week shortened to two days for simplicity), we 
start with the observation that the judge's announcement seems to affirm three things: 

 S1: The hanging will occur on Monday or Tuesday. 

 S2: If the hanging occurs on Monday, then the prisoner will not know on Sunday 
evening that it will occur on Monday. 

 S3: If the hanging occurs on Tuesday, then the prisoner will not know on Monday 
evening that it will occur on Tuesday. 



As a first step, the prisoner reasons that a scenario in which the hanging occurs on 
Tuesday is impossible because it leads to a contradiction: on the one hand, by S3, the 
prisoner would not be able to predict the Tuesday hanging on Monday evening; but on 
the other hand, by S1 and process of elimination, the prisoner would be able to predict the 
Tuesday hanging on Monday evening. 

Chow's analysis points to a subtle flaw in the prisoner's reasoning. What is impossible is 
not a Tuesday hanging. Rather, what is impossible is a situation in which the hanging 
occurs on Tuesday despite the prisoner knowing on Monday evening that the judge's 
assertions S1, S2, and S3 are all true. 

The prisoner's reasoning, which gives rise to the paradox, is able to get off the ground 
because the prisoner tacitly assumes that on Monday evening, he will (if he is still alive) 
know S1, S2, and S3 to be true. This assumption seems unwarranted on several different 
grounds. It may be argued that the judge's pronouncement that something is true can 
never be sufficient grounds for the prisoner knowing that it is true. Further, even if the 
prisoner knows something to be true in the present moment, unknown psychological 
factors may erase this knowledge in the future. Finally, Chow suggests that because the 
statement which the prisoner is supposed to "know" to be true is a statement about his 
inability to "know" certain things, there is reason to believe that the unexpected hanging 
paradox is simply a more intricate version of Moore's paradox. A suitable analogy can be 
reached by reducing the length of the week to just one day. Then the judge's sentence 
becomes: You will be hanged tomorrow, but you do not know that. 

 

 

 



Chapter 7 

Banach–Tarski Paradox 

 

 
 
 

 
 

A ball can be decomposed into a finite number of point sets and reassembled into two 
balls identical to the original. 

The Banach–Tarski paradox is a theorem in set theoretic geometry which states that a 
solid ball in 3-dimensional space can be split into a finite number of non-overlapping 
pieces, which can then be put back together in a different way to yield two identical 
copies of the original ball. The reassembly process involves only moving the pieces 
around and rotating them, without changing their shape. However, the pieces themselves 
are complicated: they are not usual solids but infinite scatterings of points. A stronger 
form of the theorem implies that given any two "reasonable" objects (such as a small ball 
and a huge ball), either one can be reassembled into the other. This is often stated 
colloquially as "a pea can be chopped up and reassembled into the Sun". 

The reason the Banach–Tarski theorem is called a paradox is because it contradicts basic 
geometric intuition. "Doubling the ball" by dividing it into parts and moving them around 
by rotations and translations, without any stretching, bending, or adding new points, 
seems to be impossible, since all these operations preserve the volume, but the volume is 
doubled in the end. 

Unlike most theorems in geometry, this result depends in a critical way on the axiom of 
choice in set theory. This axiom allows for the construction of nonmeasurable sets, 
collections of points that do not have a volume in the ordinary sense and require an 
uncountably infinite number of arbitrary choices to specify. Robert Solovay showed that 
the axiom of choice, or a weaker variant of it, is necessary for the construction of 
nonmeasurable sets by constructing a model of ZF set theory (without choice) in which 
every geometric subset has a well-defined Lebesgue measure. On the other hand, 
Solovay's construction relies on the assumption that an inaccessible cardinal exists 



(which itself cannot be proven from ZF set theory); Saharon Shelah later showed that this 
assumption is necessary. 

The existence of nonmeasurable sets, such as those in the Banach–Tarski paradox, has 
been used as an argument against the axiom of choice. Nevertheless, most 
mathematicians are willing to tolerate the existence of nonmeasurable sets, given that the 
axiom of choice has many other mathematically useful consequences. 

It was shown in 2005 that the pieces in the decomposition can be chosen in such a way 
that they can be moved continuously into place without running into one another. 

Banach and Tarski publication 

In a paper published in 1924, Stefan Banach and Alfred Tarski gave a construction of 
such a "paradoxical decomposition", based on earlier work by Giuseppe Vitali 
concerning the unit interval and on the paradoxical decompositions of the sphere by Felix 
Hausdorff, and discussed a number of related questions concerning decompositions of 
subsets of Euclidean spaces in various dimensions. They proved the following more 
general statement, the strong form of the Banach–Tarski paradox: 

Given any two bounded subsets A and B of a Euclidean space in at least three 
dimensions, both of which have a non-empty interior, there are partitions of A and B into 
a finite number of disjoint subsets, A = A1 ∪ ... ∪ Ak, B = B1 ∪ ... ∪ Bk, such that for 
each i between 1 and k, the sets Ai and Bi are congruent. 

Now let A be the original ball and B be the union of two translated copies of the original 
ball. Then the proposition means that you can divide the original ball A into a certain 
number of pieces and then rotate and translate these pieces in such a way that the result is 
the whole set B, which contains two copies of A. 

The strong form of the Banach–Tarski paradox is false in dimensions one and two, but 
Banach and Tarski showed that an analogous statement remains true if countably many 
subsets are allowed. The difference between the dimensions 1 and 2 on the one hand, and 
three and higher, on the other hand, is due to the richer structure of the group Gn of the 
Euclidean motions in the higher dimensions, which is solvable for n =1, 2 and contains a 
free group with two generators for n ≥ 3. John von Neumann studied the properties of the 
group of equivalences that make a paradoxical decomposition possible, identifying the 
class of amenable groups, for which no paradoxical decompositions exist. He also found 
a form of the paradox in the plane which uses area-preserving affine transformations in 
place of the usual congruences. 

Formal treatment 

The Banach–Tarski paradox states that a ball in the ordinary Euclidean space can be 
doubled using only the operations of partitioning into subsets, replacing a set with a 
congruent set, and reassembly. Its mathematical structure is greatly elucidated by 



emphasizing the role played by the group of Euclidean motions and introducing the 
notions of equidecomposable sets and paradoxical set. Suppose that G is a group acting 
on a set X. In the most important special case, X is an n-dimensional Euclidean space, and 
G consists of all isometries of X, i.e. the transformations of X into itself that preserve the 
distances. Two geometric figures that can be transformed into each other are called 
congruent, and this terminology will be extended to the general G-action. Two subsets A 
and B of X are called G-equidecomposable, or equidecomposable with respect to G, if 
A and B can be partitioned into the same finite number of respectively G-congruent 
pieces. It is easy to see that this defines an equivalence relation among all subsets of X. 
Formally, if 

 

and there are elements g1,...,gk of G such that for each i between 1 and k, gi (Ai ) = Bi , 
then we will say that A and B are G-equidecomposable using k pieces. If a set E has two 
disjoint subsets A and B such that A and E, as well as B and E, are G-equidecomposable 
then E is called paradoxical. 

Using this terminology, the Banach–Tarski paradox can be reformulated as follows: 

A three-dimensional Euclidean ball is equidecomposable with two copies of itself. 

In fact, there is a sharp result in this case, due to Robinson: doubling the ball can be 
accomplished with five pieces, and fewer than five pieces will not suffice. 

The strong version of the paradox claims: 

Any two bounded subsets of 3-dimensional Euclidean space with non-empty interiors are 
equidecomposable. 

While apparently more general, this statement is derived in a simple way from the 
doubling of a ball by using a generalization of Bernstein–Schroeder theorem due to 
Banach that implies that if A is equidecomposable with a subset of B and B is 
equidecomposable with a subset of A, then A and B are equidecomposable. 

The Banach–Tarski paradox can be put in context by pointing out that for two sets in the 
strong form of the paradox, there is always a bijective function that can map the points in 
one shape into the other in a one-to-one fashion. In the language of Georg Cantor's set 
theory, these two sets have equal cardinality. Thus, if one enlarges the group to allow 
arbitrary bijections of X then all sets with non-empty interior become congruent. 
Likewise, we can make one ball into a larger or smaller ball by stretching, in other words, 
by applying similarity transformations. Hence if the group G is large enough, we may 
find G-equidecomposable sets whose "size" varies. Moreover, since a countable set can 
be made into two copies of itself, one might expect that somehow, using countably many 
pieces could do the trick. On the other hand, in the Banach–Tarski paradox the number of 



pieces is finite and the allowed equivalences are Euclidean congruences, which preserve 
the volumes. Yet, somehow, they end up doubling the volume of the ball! While this is 
certainly surprising, some of the pieces used in the paradoxical decomposition are non-
measurable sets, so the notion of volume (more precisely, Lebesgue measure) is not 
defined for them, and the partitioning cannot be accomplished in a practical way. In fact, 
the Banach–Tarski paradox demonstrates that it is impossible to find a finitely-additive 
measure (or a Banach measure) defined on all subsets of a Euclidean space of three (and 
greater) dimensions that is invariant with respect to Euclidean motions and takes the 
value one on a unit cube. In his later work, Tarski showed that, conversely, non-existence 
of paradoxical decompositions of this type implies the existence of a finitely-additive 
invariant measure. 

The heart of the proof of the "doubling the ball" form of the paradox presented below is 
the remarkable fact that by a Euclidean isometry (and renaming of elements), one can 
divide a certain set (essentially, the surface of a unit sphere) into four parts, then rotate 
one of them to become itself plus two of the other parts. This follows rather easily from a 
F2-paradoxical decomposition of F2, the free group with two generators. Banach and 
Tarski's proof relied on an analogous fact discovered by Hausdorff some years earlier: the 
surface of a unit sphere in space is a disjoint union of three sets B, C, D and a countable 
set E such that, on the one hand, B, C, D are pairwise congruent, and, on the other hand, 
B is congruent with the union of C and D. This is often called the Hausdorff paradox. 

Connection with earlier work and the role of the axiom of choice 

Banach and Tarski explicitly acknowledge Giuseppe Vitali's 1905 construction of the set 
bearing his name, Hausdorff's paradox (1914), and an earlier (1923) paper of Banach as 
the precursors to their work. Vitali's and Hausdorff's constructions depend on Zermelo's 
axiom of choice ("AC"), which is also crucial to the Banach–Tarski paper, both for 
proving their paradox and for the proof of another result: 

Two Euclidean polygons, one of which strictly contains the other, are not 
equidecomposable. 

They remark: 

Le rôle que joue cet axiome dans nos raisonnements nous semble mériter l'attention 
(The role this axiom plays in our reasoning seems to us to deserve attention) 

and point out that while the second result fully agrees with our geometric intuition, its 
proof uses AC in even more substantial way than the proof of the paradox. Thus Banach 
and Tarski imply that AC should not be rejected simply because it produces a paradoxical 
decomposition. Indeed, such an argument would also reject some geometrically intuitive 
statements! 

However, in 1949 A.P. Morse showed that the statement about Euclidean polygons can 
be proved in ZF set theory and thus does not require the axiom of choice. In 1964, Paul 



Cohen proved the equiconsistency of the axiom of choice with the rest of set theory, 
which implies that ZFC (ZF set theory with the axiom of choice) is consistent if and only 
if ZF theory without choice is consistent. Using Cohen's technique of forcing, Robert M. 
Solovay later established, under the assumption that the existence of an inaccessible 
cardinal is consistent, that in the absence of choice it is consistent to be able to assign a 
Lebesgue measure to any subset in Rn, contradicting the Banach–Tarski paradox (BT). 
Solovay's results extend to ZF supplemented by a weak form of AC called the axiom of 
dependent choice, DC. It follows that 

Banach–Tarski paradox is not a theorem of ZF, nor of ZF+DC (Wagon, Corollary 13.3). 

Most mathematicians currently accept AC. As Stan Wagon points out at the end of his 
monograph, the Banach–Tarski paradox is more significant for its role in pure 
mathematics than it is to foundational questions. As far as the axiom of choice is 
concerned, BT plays the same role as the existence of non-measurable sets. But the 
Banach–Tarski paradox is more significant for the rest of mathematics because it 
motivated a fruitful new direction for research, amenability of groups, which has nothing 
to do with the foundational questions. 

In 1991, using then-recent results by Matthew Foreman and Friedrich Wehrung, Janusz 
Pawlikowski proved that the Banach–Tarski paradox follows from ZF plus the Hahn–
Banach theorem. The Hahn–Banach theorem doesn't rely on the full axiom of choice but 
can be proved using a weaker version of AC called the ultrafilter lemma. So Pawlikowski 
proved that the set theory needed to prove the Banach–Tarski paradox, while stronger 
than ZF, is weaker than full ZFC. 

A sketch of the proof 

Here we sketch a proof which is similar but not identical to that given by Banach and 
Tarski. Essentially, the paradoxical decomposition of the ball is achieved in four steps: 

1. Find a paradoxical decomposition of the free group in two generators. 
2. Find a group of rotations in 3-d space isomorphic to the free group in two 

generators. 
3. Use the paradoxical decomposition of that group and the axiom of choice to 

produce a paradoxical decomposition of the hollow unit sphere. 
4. Extend this decomposition of the sphere to a decomposition of the solid unit ball. 

We now discuss each of these steps in more detail. 

Step 1. The free group with two generators a and b consists of all finite strings that can 
be formed from the four symbols a, a−1, b and b−1 such that no a appears directly next to 
an a−1 and no b appears directly next to a b−1. Two such strings can be concatenated and 
converted into a string of this type by repeatedly replacing the "forbidden" substrings 
with the empty string. For instance: abab−1a−1 concatenated with abab−1a yields 
abab−1a−1abab−1a, which contains the substring a−1a, and so gets reduced to abaab−1a. 



One can check that the set of those strings with this operation forms a group with neutral 
element the empty string e. We will call this group F2. 

 
 

The sets S(a−1) and aS(a−1) in the Cayley graph of F2 

The group F2 can be "paradoxically decomposed" as follows: let S(a) be the set of all 
strings that start with a and define S(a−1), S(b) and S(b−1) similarly. Clearly, 

 

but also 

 

and 

 

The notation aS(a−1) means take all the strings in S(a−1) and concatenate them on the left 
with a. 

Make sure that you understand this last line, because it is at the core of the proof. Now 
look at this: we cut our group F2 into four pieces (actually, we need to put e and all 
strings of the form an into S(a−1)), then "shift" two of them by multiplying with a or b, 
then "reassemble" two pieces to make one copy of F2 and the other two to make another 
copy of F2. That's exactly what we want to do to the ball. 

Step 2. In order to find a group of rotations of 3D space that behaves just like (or 
"isomorphic to") the group F2, we take two orthogonal axes, e.g. the x and z axes, and let 
A be a rotation of arccos(1/3) about the first, x axis, and B be a rotation of arccos(1/3) 
about the second, z axis (there are many other suitable pairs of irrational multiples of π, 



that could be used here instead of arccos(1/3) and arccos(1/3), as well). It is somewhat 
messy but not too difficult to show that these two rotations behave just like the elements 
a and b in our group F2. We'll skip it, leaving the exercise to the reader. The new group 
of rotations generated by A and B will be called H. We now also have a paradoxical 
decomposition of H. (This step cannot be performed in two dimensions since it involves 
rotations in three dimensions. If we take two rotations about the same axis, the resulting 
group is commutative and doesn't have the property required in step 1.) 

Step 3. The unit sphere S2 is partitioned into orbits by the action of our group H: two 
points belong to the same orbit if and only if there's a rotation in H which moves the first 
point into the second. (Note that the orbit of a point is a dense set in S2.) We can use the 
axiom of choice to pick exactly one point from every orbit; collect these points into a set 
M. Now (almost) every point in S2 can be reached in exactly one way by applying the 
proper rotation from H to the proper element from M, and because of this, the 
paradoxical decomposition of H then yields a paradoxical decomposition of S2. The 
(majority of the) sphere can be divided into four sets (each one dense on the sphere), and 
when two of these are rotated, we end up with double what we had before. 

Step 4. Finally, connect every point on S2 with a ray to the origin; the paradoxical 
decomposition of S2 then yields a paradoxical decomposition of the solid unit ball minus 
the center.   

N.B. This sketch glosses over some details. One has to be careful about the set of points 
on the sphere which happen to lie on the axis of some rotation in H. However, there are 
only countably many such points, and it is possible to patch them up. The same applies to 
the center of the ball. 

Some details, fleshed out: 

In Step 3, we partitioned the sphere into orbits of our group H. To streamline the proof, 
we omitted the discussion of points that are fixed by some rotation; since the paradoxical 
decomposition of F2 relies on shifting certain subsets, the fact that some points are fixed 
might cause some trouble. Since any rotation of S2 (other than the null rotation) has 
exactly two fixed points, and since H, which is isomorphic to F2, is countable, there are 
countably many points of S2 that are fixed by some rotation in H, denote this set of fixed 
points D. Step 3 proves that S2 − D admits a paradoxical decomposition. 

What remains to be shown is the Claim: S2 − D is equidecomposable with S2. 

Proof. Let λ be some line through the origin that does not intersect any point in D—this is 
possible since D is countable. Let J be the set of angles, α, such that for some natural 
number n, and some P in D, r(nα)P is also in D, where r(nα) is a rotation about λ of nα. 
Then J is countable so there exists an angle θ not in J. Let ρ be the rotation about λ by θ, 
then ρ acts on S2 with no fixed points in D, i.e., ρn(D) is disjoint from D, and for natural 
m<n, ρn(D) is disjoint from ρm(D). Let E be the disjoint union of ρn(D) over n = 0,1,2,.... 



Then S2 = E ∪ (S2 − E) ~ ρ(E) ∪ (S2 − E) = (E − D) ∪ (S2 − E) = S2 − D, where ~ 
denotes "is equidecomposable to". 

For step 4, it has already been shown that the ball minus a point admits a paradoxical 
decomposition; it remains to be shown that the ball minus a point is equidecomposable 
with the ball. Consider a circle within the ball, containing the centre of the ball. Using an 
argument like that used to prove the Claim, one can see that the full circle is 
equidecomposable with the circle minus the point at the centre of the ball. (Basically, a 
countable set of points on the circle can be rotated to give itself plus one more point.) 
Note that this involves the rotation about a point other than the origin, so the Banach–
Tarski paradox involves isometries of Euclidean 3-space rather than just SO(3). 

We are using the fact that if A ~ B and B ~ C, then A ~ C. The decomposition of A into C 
can be done using number of pieces equal to the product of the numbers needed for 
taking A into B and for taking B into C. 

The proof sketched above requires 2×4×2 + 8 = 24 pieces, a factor of 2 to remove fixed 
points, a factor 4 from step 1, a factor 2 to recreate fixed points, and 8 for the center point 
of the second ball. But in step 1 when moving {e} and all strings of the form an into 
S(a−1), do this to all orbits except one. Move {e} of this last orbit to the center of the 
second ball. This brings the total down to 16 + 1 pieces. With more algebra one can also 
decompose fixed orbits into 4 sets as in step 1. This gives 5 pieces and is the best 
possible. 

Obtaining infinitely many balls from one 

Using the Banach–Tarski paradox, it is possible to obtain k copies of a ball in the 
Euclidean n-space from one, for any integers n ≥ 3 and k ≥ 1, i.e. a ball can be cut into k 
pieces so that each of them is equidecomposable to a ball of the same size as the original. 
Using the fact that the free group F2 of rank 2 admits a free subgroup of countably 
infinite rank, a similar proof yields that the unit sphere Sn−1 can be partitioned into 
countably infinitely many pieces, each of which is equidecomposable (with two pieces) 
to the Sn−1 using rotations. By using analytic properties of the rotation group SO(n), 
which is a connected analytic Lie group, one can further prove that the sphere Sn−1 can be 

partitioned into as many pieces as there are real numbers (that is, pieces), so that each 
piece is equidecomposable with two pieces to Sn−1 using rotations. These results then 
extend to the unit ball deprived of the origin. In 2010 an article of Vitaly Churkin was 
published that gives a new proof of the continuous version of the Banach–Tarski paradox. 

The von Neumann paradox in the Euclidean plane 

In the Euclidean plane, two figures that are equidecomposable with respect to the group 
of Euclidean motions are necessarily of the same area, therefore, a paradoxical 
decomposition of a square or disk of Banach–Tarski type that uses only Euclidean 
congruences is impossible. A conceptual explanation of the distinction between the 
planar and higher-dimensional cases was given by John von Neumann: unlike the group 



SO(3) of rotations in three dimensions, the group E(2) of Euclidean motions of the plane 
is solvable, which implies the existence of a finitely-additive measure on E(2) and R2 
which is invariant under translations and rotations, and rules out paradoxical 
decompositions of non-negligible sets. Von Neumann then posed the following question: 
can such a paradoxical decomposition be constructed if one allowed a larger group of 
equivalences? 

It is clear that if one permits similarities, any two squares in the plane become equivalent 
even without further subdivision. This motivates restricting one's attention to the group 
SA2 of area-preserving affine transformations. Since the area is preserved, any 
paradoxical decomposition of a square with respect to this group would be 
counterintuitive for the same reasons as the Banach–Tarski decomposition of a ball. In 
fact, the group SA2 contains as a subgroup the special linear group SL(2,R), which in its 
turn contains the free group F2 with two generators as a subgroup. This makes it plausible 
that the proof of Banach–Tarski paradox can be imitated in the plane. The main difficulty 
here lies in the fact that the unit square is not invariant under the action of the linear 
group SL(2,R), hence one cannot simply transfer a paradoxical decomposition from the 
group to the square, as in the third step of the above proof of the Banach–Tarski paradox. 
Moreover, the fixed points of the group present difficulties (for example, the origin is 
fixed under all linear transformations). This is why von Neumann used the larger group 
SA2 including the translations, and he constructed a paradoxical decomposition of the unit 
square with respect to the enlarged group (in 1929). Applying the Banach–Tarski method, 
the paradox for the square can be strengthened as follows: 

Any two bounded subsets of the Euclidean plane with non-empty interiors are 
equidecomposable with respect to the area-preserving affine maps. 

As von Neumann notes, 

"Infolgedessen gibt es bereits in der Ebene kein nichtnegatives additives Maß (wo das 
Einheitsquadrat das Maß 1 hat), dass [sic] gegenüber allen Abbildungen von A2 invariant 
wäre." 
"In accordance with this, already in the plane there is no nonnegative additive measure 
(for which the unit square has a measure of 1), which is invariant with respect to all 
transformations belonging to A2 [the group of area-preserving affine transformations]." 

To explain this a bit more, the question of whether a finitely additive measure exists, that 
is preserved under certain transformations, depends on what transformations are allowed. 
The Banach measure of sets in the plane, which is preserved by translations and rotations, 
is not preserved by non-isometric transformations even when they do preserve the area of 
polygons. The points of the plane (other than the origin) can be divided into two dense 
sets which we may call A and B. If the A points of a given polygon are transformed by a 
certain area-preserving transformation and the B points by another, both sets can become 
subsets of the A points in two new polygons. The new polygons have the same area as the 
old polygon, but the two transformed sets cannot have the same measure as before (since 
they contain only part of the A points), and therefore there is no measure that "works". 



The class of groups isolated by von Neumann in the course of study of Banach–Tarski 
phenomenon turned out to be very important for many areas of mathematics: these are 
amenable groups, or groups with an invariant mean, and include all finite and all solvable 
groups. Generally speaking, paradoxical decompositions arise when the group used for 
equivalences in the definition of equidecomposability is not amenable. 

Recent progress 

 Von Neumann's paper left open the possibility of a paradoxical decomposition of 
the interior of the unit square with respect to the linear group SL(2,R) (Wagon, 
Question 7.4). In 2000, Miklós Laczkovich proved that such a decomposition 
exists. More precisely, let A be the family of all bounded subsets of the plane with 
non-empty interior and at a positive distance from the origin, and B the family of 
all planar sets with the property that a union of finitely many translates under 
some elements of SL(2,R) contains a punctured neighbourhood of the origin. 
Then all sets in the family A are SL(2,R)-equidecomposable, and likewise for the 
sets in B. It follows that both families consist of paradoxical sets. 

 It had been known for a long time that the full plane was paradoxical with respect 
to SA2, and that the minimal number of pieces would equal four provided that 
there exists a locally commutative free subgroup of SA2. In 2003 Kenzi Satô 
constructed such a subgroup, confirming that four pieces suffice. 
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Coastline Paradox 

 



 
 
An example of the coastline paradox. If the coastline of Great Britain is measured using 
fractal units 100 km long, then the length of the coastline is approximately 2800 km. 
With 50 km units, the total length is approximately 3400 km (600 km longer). 

The coastline paradox is the counterintuitive observation that the coastline of a landmass 
does not have a well-defined length. This results from the fractal-like properties of 
coastlines. It was first observed by Lewis Fry Richardson. 

More concretely, the length of the coastline depends on the method used to measure it. 
Since a landmass has features at all scales, from hundreds of kilometers in size to tiny 
fractions of a millimeter and below, there is no obvious limit to the size of the smallest 
feature that should not be measured around, and hence no single well-defined perimeter 
to the landmass. Various approximations exist when specific assumptions are made about 
minimum feature size. 

For practical considerations, an appropriate choice of minimum feature size is on the 
order of the units being used to measure. If a coastline is measured in miles, then small 
variations much smaller than one mile are easily ignored. To measure the coastline in 
inches, tiny variations of the size of inches must be considered. However, at scales on the 
order of inches various arbitrary and non-fractal assumptions must be made, such as 
where an estuary joins the sea, or where in a broad tidal flat the coastline measurements 
ought to be taken. 

 
Extreme cases of the coastline paradox include the fjord-heavy coastlines of Norway, 
Chile and the Pacific Northwest of North America. From the southern tip of Vancouver 
Island northwards to the southern tip of the Alaska Panhandle, the convolutions of the 



coastline of the Canadian province of British Columbia make it over 10% of the entire 
Canadian coastline—25,725 km vs 243,042 km over a linear distance of only 965 km, 
including the maze of islands of the Arctic archipelago. 

 

Paradoxical Set 

 
 

 
 
The Banach–Tarski paradox is that a ball can be decomposed into a finite number of 
point sets and reassembled into two balls identical to the original. 

In set theory, a paradoxical set is a set that has a paradoxical decomposition. A 
paradoxical decomposition of a set is a partitioning of the set into exactly two subsets, 
along with an appropriate group of functions that operate on some universe (of which the 
set in question is a subset), such that each partition can be mapped back onto the entire 
set using only finitely many distinct functions (or compositions thereof) to accomplish 
the mapping. Since a paradoxical set as defined requires a suitable group G, it is said to 
be G-paradoxical, or paradoxical with respect to G. 

Paradoxical sets exist as a consequence of the Axiom of Infinity. Admitting infinite 
classes as sets is sufficient to allow paradoxical sets. 

Examples 

Natural numbers 

An example of a paradoxical set is the natural numbers. They are paradoxical with 
respect to the group of functions G generated by the natural function f: 

 

Split the natural numbers into the odds and the evens. The function f maps both sets onto 
the whole of . Since only finitely many functions were needed, the naturals are G-
paradoxical. 



Banach–Tarski paradox 

The most famous, and indeed motivational, example of paradoxical sets is the Banach–
Tarski paradox, which divides the sphere into paradoxical sets for the special orthogonal 
group. This result depends on the axiom of choice. 
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Gabriel's Horn 

 
 

 
 

3D illustration of Gabriel's Horn. 

Gabriel's Horn (also called Torricelli's trumpet) is a geometric figure which has 
infinite surface area but encloses a finite volume. The name refers to the tradition 
identifying the Archangel Gabriel as the angel who blows the horn to announce Judgment 
Day, associating the divine, or infinite, with the finite. The properties of this figure were 
first studied by Italian physicist and mathematician Evangelista Torricelli. 

Mathematical definition 

Gabriel's horn is formed by taking the graph of , with the domain (thus 
avoiding the asymptote at x = 0) and rotating it in three dimensions about the x-axis. The 
discovery was made using Cavalieri's principle before the invention of calculus, but today 
calculus can be used to calculate the volume and surface area of the horn between x = 1 
and x = a, where a > 1. Using integration, it is possible to find the volume V and the 
surface area A: 

 



 

a can be as large as required, but it can be seen from the equation that the volume of the 
part of the horn between x = 1 and x = a will never exceed π; however, it will get closer 
and closer to π as a becomes larger. Mathematically, the volume approaches π as a 
approaches infinity. Using the limit notation of calculus, the volume may be expressed 
as: 

 

This is so because as a approaches infinity, 1 / a approaches zero. This means the volume 
is π(1 - 0) which equals π. 

As for the area, the above shows that the area is greater than 2π times the natural 
logarithm of a. There is no upper bound for the natural logarithm of a as it approaches 
infinity. That means, in this case, that the horn has an infinite surface area. That is to say; 

as  

or 

 

Apparent paradox 

When the properties of Gabriel's Horn were discovered, the fact that the rotation of an 
infinite curve about the x-axis generates an object of finite volume was considered 

paradoxical. However the explanation is that the bounding curve, , is simply a 
special case–just like the simple harmonic series (Σ1/x1)–for which the successive area 
'segments' do not decrease rapidly enough to allow for convergence to a limit. For 
volume segments (Σ1/x2) however, and in fact for any generally constructed higher 
degree curve (eg y = 1/x1.001), the same is not true and the rate of decrease in the 
associated series is sufficiently rapid for convergence to a (finite) limiting sum. 

Christiaan Huygens and François Walther de Sluze found a surface of revolution with 
related properties: an infinitely high solid with finite volume (so it can be made of finite 
material) which encloses an infinitely large cavity. This was obtained by rotating the non-

negative part defined on 0≤x<1 of the cissoid of Diocles around the y-axis. De 
Sluze described it as a "drinking vessel that has small weight but that even the hardiest 
drinker could not empty". 



Together these two paradoxes formed part of a great dispute over the nature of infinity 
involving many of the key thinkers of the time including Thomas Hobbes, John Wallis 
and Galileo. 

 

Missing Square Puzzle 

The missing square puzzle is an optical illusion used in mathematics classes to help 
students reason about geometrical figures. It depicts two arrangements of shapes, each of 
which apparently forms a 13×5 right-angled triangle, but one of which has a 1×1 hole in 
it. 

Solution 

 

The key to the puzzle is the fact that neither of the 13×5 "triangles" is truly a triangle, 
because what would be the hypotenuse is bent. A true 13 × 5 triangle cannot be created 
from the given component parts. 

The four figures (the yellow, red, blue and green shapes) total 32 units of area, but the 
triangles are 13 wide and 5 tall, so it seems, that the area should be 

units. But the blue triangle has a ratio of 5:2 (=2.5:1), while the red 
triangle has the ratio 8:3 (≈2.667:1), and these are not the same ratio. So the apparent 
combined hypotenuse in each figure is actually bent. 

The amount of bending is around 1/28th of a unit (1.245364267°), which is difficult to 
see on the diagram of this puzzle. Note the grid point where the red and blue hypotenuses 
meet, and compare it to the same point on the other figure; the edge is slightly over or 
under the mark. Overlaying the hypotenuses from both figures results in a very thin 



parallelogram with the area of exactly one grid square, the same area "missing" from the 
second figure. 

According to Martin Gardner, the puzzle was invented by a New York City amateur 
magician Paul Curry in 1953. The principle of a dissection paradox has however been 
known since the 1860s. 

The integer dimensions of the parts of the puzzle (2, 3, 5, 8, 13) are successive Fibonacci 
numbers. Many other geometric dissection puzzles are based on a few simple properties 
of the famous Fibonacci sequence. 

Similar puzzles 

 
 

 
 

 
Sam Loyd's paradoxial dissection. In the "larger" rearrangement, the gaps between the 
figures have a combined unit square more area than their square gaps counterparts, 
creating an illusion that the figures there take up more space than those in the square 
figure. In the "smaller" rearrangement, the gaps take up one fewer unit squares than in the 
square. 

A different puzzle of the same kind (depicted in the animation) uses four equal 
quadrilaterals and a small square, which form a larger square. When the quadrilaterals are 
rotated about their centers they fill the space of the small square, although the total area 
of the figure seems unchanged. The apparent paradox is explained by the fact that the 



side of the new large square is a little smaller than the original one. If a is the side of the 
large square and θ is the angle between two opposing sides in each quadrilateral, then the 
quotient between the two areas is given by sec2θ − 1. For θ = 5°, this is approximately 
1.00765, which corresponds to a difference of about 0.8%. 
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Smale's Paradox 

 
 

 
 

A Morin surface seen from "above". 

In differential topology, Smale's paradox states that it is possible to turn a sphere inside 
out in a three-dimensional space with possible self-intersections but without creating any 
crease, a process often called sphere eversion (eversion means "to turn inside out"). This 
is surprising, and is hence deemed a veridical paradox. More precisely, let 

 

be the standard embedding; then there is a regular homotopy of immersions 

 

such that ƒ0 = ƒ and ƒ1 = −ƒ. 



History 

This 'paradox' was discovered by Stephen Smale (1958). It is difficult to visualize a 
particular example of such a turning, although some digital animations have been 
produced that make it somewhat easier. The first example was exhibited through the 
efforts of several mathematicians, including Arnold Shapiro and Bernard Morin who was 
blind. On the other hand, it is much easier to prove that such a "turning" exists and that is 
what Smale did. 

Smale's graduate adviser Raoul Bott at first told Smale that the result was obviously 
wrong (Levy 1995). His reasoning was that the degree of the Gauss map must be 
preserved in such "turning"—in particular it follows that there is no such turning of S1in 
R2. But the degree of the Gauss map for the embeddings f, −f in R3 are both equal to 1, 
and do not have opposite sign as one might incorrectly guess. The degree of the Gauss 
map of all immersions of a 2-sphere in R3 is 1; so there is no obstacle. 

Proof 

Smale's original proof was indirect: he identified (regular homotopy) classes of 
immersions of spheres with a homotopy group of the Stiefel manifold. Since the 

homotopy group that corresponds to immersions of in vanishes, the standard 
embedding and the inside-out one must be regular homotopic. In principle the proof can 
be unwound to produce an explicit regular homotopy, but this is not easy to do. 

There are several ways of producing explicit examples and mathematical visualization: 

 the method of half-way models: these consist of very special homotopies. This is 
the original method, first done by Shapiro and Phillips via Boy's surface, later 
refined by many others. A more recent and definitive refinement (1980s) is 
minimax eversions, which is a variational method, and consist of special 
homotopies (they are shortest paths with respect to Willmore energy). The 
original half-way model homotopies were constructed by hand, and worked 
topologically but weren't minimal. 

 Thurston's corrugations: this is a topological method and generic; it takes a 
homotopy and perturbs it so that it becomes a regular homotopy. 

 

Hausdorff Paradox 

In mathematics, the Hausdorff paradox, named after Felix Hausdorff, states that if you 
remove a certain countable subset of the sphere S2, the remainder can be divided into 
three disjoint subsets A, B and C such that A, B, C and B ∪ C are all congruent. In 



particular, it follows that on S2 there is no finitely additive measure defined on all subsets 
such that the measure of congruent sets is equal (because this would imply that the 
measure of A is both 1/3 and 1/2 of the non-zero measure of the whole sphere). 

The paradox was published in Mathematische Annalen in 1914 and also in Hausdorff's 
book, Grundzüge der Mengenlehre, the same year. The proof of the much more famous 
Banach–Tarski paradox uses Hausdorff's ideas. 

This paradox shows that there is no finitely additive measure on a sphere defined on all 
subsets which is equal on congruent pieces. (Hausdorff first showed in the same paper the 
easier result that there is no countably additive measure defined on all subsets.) The 
structure of the group of rotations on the sphere plays a crucial role here — the statement 
is not true on the plane or the line. In fact, as was later shown by Banach, it is possible to 
define an "area" for all bounded subsets in the Euclidean plane (as well as "length" on the 
real line) such that congruent sets will have equal "area". (This Banach measure, 
however, is only finitely additive, so it is not a measure in the full sense, but it equals the 
Lebesgue measure on sets for which the latter exists.) This implies that if two open 
subsets of the plane (or the real line) are equi-decomposable then they have equal area. 
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Borel–Kolmogorov Paradox 

In probability theory, the Borel–Kolmogorov paradox (sometimes known as Borel's 
paradox) is a paradox relating to conditional probability with respect to an event of 
probability zero (also known as a null set). It is named after Émile Borel and Andrey 
Kolmogorov. 

The paradox lies in the fact that a conditional distribution with respect to such an event is 
ambiguous unless it is viewed as an observation from a continuous random variable. 
Furthermore, it is dependent on how this random variable is defined. 

A great circle puzzle 

Suppose that a random variable has a uniform distribution on a sphere. What is its 
conditional distribution on a great circle? Because of the symmetry of the sphere, one 
might expect that the distribution is uniform and independent of the choice of 
coordinates. However, two analyses give contradictory results: 

1. If the coordinates are chosen so that the great circle is an equator (latitude 
θ = 0), the conditional distribution for a longitude Φ defined on the interval (–π,π) 
is   

 
2. If the great circle is a line of longitude with Φ = 0, the conditional distribution 
for θ on the interval (–π/2,π/2) is   

 



One distribution is uniform, the other is not. Yet both seem to be referring to the same 
great circle in different coordinate systems. 

 

Many quite futile arguments have raged - between otherwise competent probabilists - 
over which of these results is 'correct'. 

—E.T. Jaynes 

Explanation and implications 

In case (1) above, the conditional probability that the longitude Φ lies in a set E given that 
θ = 0 can be written P(Φ ∈ E | θ = 0). Elementary probability theory suggests this can be 
computed as P(Φ ∈ E and θ=0)/P(θ=0), but that expression is not well-defined since 
P(θ=0) = 0. Measure theory provides a way to define a conditional probability, using the 
family of events Rab = {θ : a < θ < b} which are horizontal rings consisting of all points 
with latitude between a and b. Rab can be used to construct a function fE(θ) = P(Φ ∈ 
E|θ=θ), which can then be evaluated at fE(0) to give P(Φ ∈ E|θ=0).  

The resolution of the paradox is to notice that in case (2), P(θ ∈ F | Φ=0) is defined 
using the events Lab = {Φ : a < Φ < b}, which are vertical wedges (more precisely lunes), 
consisting of all points whose longitude varies between a and b. So although P(Φ|θ=0) 
and P(θ|Φ=0) each provide a probability distribution on a great circle, one of them is 
defined using rings, and the other using lunes. Thus it is not surprising after all that 
P(Φ|θ=0) and P(θ|Φ=0) have different distributions. 

 

The concept of a conditional probability with regard to an isolated hypothesis whose 
probability equals 0 is inadmissible. For we can obtain a probability distribution for [the 
latitude] on the meridian circle only if we regard this circle as an element of the 
decomposition of the entire spherical surface onto meridian circles with the given poles 

—Andrey Kolmogorov 

… the term 'great circle' is ambiguous until we specify what limiting operation is to 
produce it. The intuitive symmetry argument presupposes the equatorial limit; yet one 
eating slices of an orange might presuppose the other. 

—E.T. Jaynes 

Further example 

An implication is that conditional density functions are not invariant under coordinate 
transformation of the conditioning variable. 



Consider two continuous random variables (U,V) with joint density pUV. Now, let W = V / 
g(U) for some positive-valued, continuous function g. By change of variables, the joint 
density of (U,W) is: 

 

Note that W = 0 if and only if V = 0, so it would appear that the conditional distribution of 
U should be the same under each of these events. However: 

 

whereas 

 

which are not equal unless g is constant. 

 

Berkson's Paradox 

Berkson's paradox or Berkson's fallacy is a result in conditional probability and 
statistics which is counter-intuitive for some people, and hence a veridical paradox. It is a 
complicating factor arising in statistical tests of proportions. Specifically, it arises when 
there is an ascertainment bias inherent in a study design. 

It is often described in the fields of medical statistics or biostatistics, as in the original 
description of the problem by J. Berkson. 

Statement 

The result is that two independent events become conditionally dependent (negatively 
dependent) given that at least one of them occurs. Symbolically: 

if 0 < P(A) < 1 and 0 < P(B) < 1, 
and P(A|B) = P(A), i.e. they are independent, 
then P(A|B,C) < P(A|C) where C = A∪B (i.e. A or B). 

In words, given two independent events, if you only consider outcomes where at least one 
occurs, then they become negatively dependent. 



Explanation 

The cause is that the conditional probability of event A occurring, given that it or B 
occurs, is inflated: it is higher than the unconditional probability, because we have 
excluded cases where neither occur. 

P(A|A∪B) > P(A) 
conditional probability inflated relative to unconditional 

One can see this in tabular form as follows: the gray regions are the outcomes where at 
least one event occurs (and ~A means "not A"). 

 A ~A 

B A & B ~A & B 

~B A & ~B ~A & ~B 

For instance, if one has a sample of 100, and both A and B occur independently half the 
time (So P(A) = P(B) = 1/2), one obtains: 

 A ~A 

B 25 25 

~B 25 25 

So in 75 outcomes, either A or B occurs, of which 50 have A occurring, so 

P(A|A∪B) = 50/75 = 2/3 > 1/2 = 50/100 = P(A). 

Thus the probability of A is higher in the subset (of outcomes where it or B occurs), 2/3, 
than in the overall population, 1/2. 

Berkson's paradox arises because the conditional probability of A given B within this 
subset equals the conditional probability in the overall population, but the unconditional 
probability within the subset is inflated relative to the unconditional probability in the 
overall population, hence, within the subset, the presence of B decreases the conditional 
probability of A (back to its overall unconditional probability): 

P(A|B, A∪B) = P(A|B) = P(A) 
P(A|A∪B) > P(A). 

Examples 

A classic illustration involves a retrospective study examining a risk factor for a disease 
in a statistical sample from a hospital in-patient population. If a control group is also 
ascertained from the in-patient population, a difference in hospital admission rates for the 



case sample and control sample can result in a spurious association between the disease 
and the risk factor. 

As another example, suppose a collector has 1000 postage stamps, of which 300 are 
pretty and 100 are rare, with 30 being both pretty and rare. 10% of all her stamps are rare 
and 10% of her pretty stamps are rare, so prettiness tells nothing about rarity. She puts the 
370 stamps which are pretty or rare on display. Just over 27% of the stamps on display 
are rare, but still only 10% of the pretty stamps on display are rare (and 100% of the 70 
not-pretty stamps on display are rare). If an observer only considers stamps on display, he 
will observe a spurious negative relationship between prettiness and rarity as a result of 
the selection bias (that is, not-prettiness strongly indicates rarity in the display, but not in 
the total collection). 
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Boy or Girl Paradox 

The Boy or Girl paradox surrounds a well-known set of questions in probability theory 
which are also known as The Two Child Problem, Mr. Smith's Children and the Mrs. 
Smith Problem. The initial formulation of the question dates back to at least 1959, when 
Martin Gardner published one of the earliest variants of the paradox in Scientific 
American. Titled The Two Children Problem, he phrased the paradox as follows: 

 Mr. Jones has two children. The older child is a girl. What is the probability that 
both children are girls? 

 Mr. Smith has two children. At least one of them is a boy. What is the probability 
that both children are boys? 

Gardner initially gave the answers 1/2 and 1/3, respectively; but later acknowledged that 
the second question was ambiguous. Its answer could be 1/2, depending on how you 
found out that one child was a boy. The ambiguity, depending on the exact wording and 
possible assumptions, was confirmed by Bar-Hillel and Falk, and Nickerson. 

Other variants of this question, with varying degrees of ambiguity, have been recently 
popularized by Ask Marilyn in Parade Magazine, John Tierney of The New York Times, 
Leonard Mlodinow in Drunkard's Walk, and numerous online publications. One scientific 
study showed that when identical information was conveyed, but with different partially-
ambiguous wordings that emphasized different points, that the percentage of MBA 
students who answered 1/2 changed from 85% to 39%. 

The paradox has frequently stimulated a great deal of controversy. Many people, 
including professors of mathematics, argued strongly for both sides with a great deal of 
confidence, sometimes showing disdain for those who took the opposing view. The 
paradox stems from whether the problem setup is similar for the two questions. The 
intuitive answer is 1/2. This answer is intuitive if the question leads the reader to believe 
that there are two equally likely possibilities for the sex of the second child (i.e., boy and 
girl), and that the probability of these outcomes is absolute, not conditional. 



Common assumptions 

The two possible answers share a number of assumptions. First, it is assumed that the 
space of all possible events can be easily enumerated, providing an extensional definition 
of outcomes: {BB, BG, GB, GG}. This notation indicates that there are four possible 
combinations of children, labeling boys B and girls G, and using the first letter to 
represent the older child. Second, it is assumed that these outcomes are equally probable. 
This implies the following: 

1. That each child is either male or female. 
2. That the sex of each child is independent of the sex of the other. 
3. That each child has the same chance of being male as of being female. 

These assumptions have been shown empirically to be false. It is worth noting that these 
conditions form an incomplete model. By following these rules, we ignore the 
possibilities that a child is intersex, the ratio of boys to girls is not exactly 50:50, and 
(amongst other factors) the possibility of identical twins means that sex determination is 
not entirely independent. However, this problem is about probability and not about 
obstetrics or demography. The problem would be the same if it were phrased using a gold 
coin and a silver coin. 

First question 

 Mr. Jones has two children. The older child is a girl. What is the probability that 
both children are girls? 

In this problem, a random family is selected. In this sample space, there are four equally 
probable events: 

Older child Younger child 

Girl Girl 

Girl Boy 

Boy Girl 

Boy Boy 

Only two of these possible events meets the criteria specified in the question (e.g., GG, 
GB). Since both of the two possibilities in the new sample space {GG, GB} are equally 
likely, and only one of the two, GG, includes two girls, the probability that the younger 
child is also a girl is 1/2. 

Second question 

 Mr. Smith has two children. At least one of them is a boy. What is the probability 
that both children are boys? 



This question is identical to question one, except that instead of specifying that the older 
child is a boy, it is specified that at least one of them is a boy. If it is assumed that this 
information was obtained by considering both children, then there are four equally 
probable events for a two-child family as seen in the sample space above. Three of these 
families meet the necessary and sufficient condition of having at least one boy. The set of 
possibilities (possible combinations of children that meet the given criteria) is: 

Older child Younger child 

Girl Girl 

Girl Boy 

Boy Girl 

Boy Boy 

Thus, if it is assumed that both children were considered, the answer to question 2 is 1/3. 
In this case the critical assumption is how Mr. Smith's family was selected and how the 
statement was formed. One possibility is that families with two girls were excluded in 
which case the answer is 1/3. The other possibility is that the family was selected 
randomly and then a true statement was made about the family and if there had been two 
girls in the Smith family, the statement would have been made that "at least one is a girl". 
If the Smith family were selected as in the latter case, the answer to question 2 is 1/2. 

However, if it is assumed that the information was obtained by considering only one 
child, then the problem becomes the same as question one, and the answer is 1/2. 

Variants of the question 

The Boy or Girl paradox has appeared in many forms. One of the earliest formulations of 
the question was posed by Martin Gardner in Scientific American in 1959: 

 Mr. Smith has two children. At least one of them is a boy. What is the probability 
that both children are boys? Mr. Jones has two children. The older child is a girl. 
What is the probability that both children are girls? 

In 1991, Marilyn vos Savant responded to a reader who asked her to answer a variant of 
the Boy or Girl paradox that included beagles. In 1996, she published the question again 
in a different form. The 1991 and 1996 questions, respectively were phrased: 

 A shopkeeper says she has two new baby beagles to show you, but she doesn't 
know whether they're male, female, or a pair. You tell her that you want only a 
male, and she telephones the fellow who's giving them a bath. "Is at least one a 
male?" she asks him. "Yes!" she informs you with a smile. What is the probability 
that the other one is a male? 

 Say that a woman and a man (who are unrelated) each has two children. We know 
that at least one of the woman's children is a boy and that the man's oldest child is 



a boy. Can you explain why the chances that the woman has two boys do not 
equal the chances that the man has two boys? 

In a 2004 study, Fox & Levav posed the following questions to MBA students with 
recent schooling in probability: 

 Mr. Smith says: ‘I have two children and at least one of them is a boy.' Given this 
information, what is the probability that the other child is a boy? 

 Mr. Smith says: ‘I have two children and it is not the case that they are both girls.' 
Given this information, what is the probability that both children are boys? 

Ambiguous problem statements 

The second question is often posed in a way that leaves multiple interpretations open. In 
response to reader criticism of the question posed in 1959, Gardner agreed that a precise 
formulation of the question is critical to getting different answers for question 1 and 2. 
Specifically, Gardner argued that a "failure to specify the randomizing procedure" could 
lead readers to interpret the question in two distinct ways: 

 From all families with two children, at least one of whom is a boy, a family is 
chosen at random. This would yield the answer of 1/3. 

 From all families with two children, one child is selected at random, and the sex 
of that child is specified. This would yield an answer of 1/2. 

Grinstead and Snell argue that the question is ambiguous in much the same way Gardner 
did.. Similarly, Nickerson argues that it is easy to construct scenarios in which the answer 
is 1/2 by making assumptions about whether Mr. Smith is more likely to be met in public 
with a son or a daughter. Central to the debate of ambiguity, Nickerson says: 

Bar-Hillel and Falk (1982) point out that the conclusion [that the probability is 1/3] is 
justified only if another unstated assumption is made, namely that the family not only is a 
member of the subset of two-child families that have at least one boy but that it is a 
randomly selected member of that subset, which is tantamount to assuming that all 
members of this subset [that is, the three members BB, BG, and GB] are equally likely to 
be represented on the street by a father and son. But this assumption would be reasonable 
only in a land where fathers who had a son and a daughter would walk only with the son. 

Scientific investigation 

A 2005 article in The American Statistician presents a mathematician's solution to the 
Boy or Girl paradox. The authors consider the version of the question posed by Marilyn 
vos Savant in Parade Magazine in 1997, and conclude that her answer is correct from a 
mathematical perspective, given the assumptions that the likelihood of a child being a 
boy or girl is equal, and that the sex of the second child is independent of the first. This is 
in conflict with others' conclusion that a similarly-worded problem is ambiguous. 



On empirical grounds, however, these authors call the solution into question. They 
provide data that demonstrate that male children are actually more likely than female 
children, and that the sex of the second child is not independent of the sex of the first. 
The authors conclude that, although the assumptions of the question run counter to 
observations, the paradox still has pedagogical value, since it "illustrates one of the more 
intriguing applications of conditional probability." Of course, the actual probability 
values do not matter; the purpose of the paradox is to demonstrate seemingly 
contradictory logic, not actual birth rates. 

The Boy or Girl paradox is of interest to psychological researchers who seek to 
understand how humans estimate probability. For instance, Fox & Levav (2004) used the 
problem (called the Mr. Smith problem, credited to Gardner, but not worded exactly the 
same as Gardner's self-admitted ambiguous version) to test theories of how people 
estimate conditional probabilities. However, their question was still ambiguous, since it 
didn't address why Mr. Smith would only mention boys.. In this study, the paradox was 
posed to participants in two ways: 

 "Mr. Smith says: 'I have two children and at least one of them is a boy.' Given this 
information, what is the probability that the other child is a boy?" 

 "Mr. Smith says: 'I have two children and it is not the case that they are both 
girls.' Given this information, what is the probability that both children are boys?" 

The authors argue that the first formulation gives the reader the mistaken impression that 
there are two possible outcomes for the "other child", whereas the second formulation 
gives the reader the impression that there are four possible outcomes, of which one has 
been rejected (resulting in 1/3 being the probability of both children being boys, as there 
are 3 remaining possible outcomes, only one of which is that both of the children are 
boys). The study found that 85% of participants answered 1/2 for the first formulation, 
while only 39% responded that way to the second formulation. The authors argued that 
the reason people respond differently to this question (along with other similar problems, 
such as the Monty Hall Problem and the Bertrand's box paradox) is because of the use of 
naive heuristics that fail to properly define the number of possible outcomes. 

 

Burali-Forti Paradox 

In set theory, a field of mathematics, the Burali-Forti paradox demonstrates that naively 
constructing "the set of all ordinal numbers" leads to a contradiction and therefore shows 
an antinomy in a system that allows its construction. It is named after Cesare Burali-Forti, 
who discovered it in 1897. 

Stated in terms of von Neumann ordinals 

The reason is that the set of all ordinal numbers Ω carries all properties of an ordinal 
number and would have to be considered an ordinal number itself. Then, we can 



construct its successor Ω + 1, which is strictly greater than Ω. However, this ordinal 
number must be an element of Ω since Ω contains all ordinal numbers, and we arrive at 

 

Stated more generally 

The version of the paradox above is anachronistic, because it presupposes the definition 
of the ordinals due to von Neumann, under which each ordinal is the set of all preceding 
ordinals, which was not known at the time the paradox was framed by Burali-Forti. Here 
is an account with fewer presuppositions: suppose that we associate with each well-
ordering an object called its "order type" in an unspecified way (the order types are the 
ordinal numbers). The "order types" (ordinal numbers) themselves are well-ordered in a 
natural way, and this well-ordering must have an order type Ω. It is easily shown in naïve 
set theory (and remains true in ZFC but not in New Foundations) that the order type of all 
ordinal numbers less than a fixed α is α itself. So the order type of all ordinal numbers 
less than Ω is Ω itself. But this means that Ω, being the order type of a proper initial 
segment of the ordinals, is strictly less than the order type of all the ordinals, but the latter 
is Ω itself by definition. This is a contradiction. 

If we use the von Neumann definition, under which each ordinal is identified as the set of 
all preceding ordinals, the paradox is unavoidable: the offending proposition that the 
order type of all ordinal numbers less than a fixed α is α itself must be true. The 
collection of von Neumann ordinals, like the collection in the Russell paradox, cannot be 
a set in any set theory with classical logic. But the collection of order types in New 
Foundations (defined as equivalence classes of well-orderings under similarity) is 
actually a set, and the paradox is avoided because the order type of the ordinals less than 
Ω turns out not to be Ω. 

Resolution of the paradox 

Modern axiomatic set theory such as ZF and ZFC circumvents this antinomy by simply 
not allowing construction of sets with unrestricted comprehension terms like "all sets 
with the property P", as it was for example possible in Gottlob Frege's axiom system. 
New Foundations uses a different solution. 

 

 

 

 

 



Chapter 13 

Elevator Paradox 

 
 
 
 
 

The elevator paradox is a paradox first noted by Marvin Stern and George Gamow, 
physicists who had offices on different floors of a multi-story building. Gamow, who had 
an office near the bottom of the building, noticed that the first elevator to stop at his floor 
was most often going down, while Stern, who had an office near the top, noticed that the 
first elevator to stop at his floor was most often going up. 

At first sight, this created the impression that perhaps elevator cars were being 
manufactured in the middle of the building and sent upwards to the roof and downwards 
to the basement to be dismantled. Clearly this was not the case. But how could the 
observation be explained? 

Modeling the elevator problem 

 
 

Near the top floor, elevators to the top come down shortly after they go up. 

Several attempts (beginning with Gamow and Stern) were made to analyze the reason for 
this phenomenon: the basic analysis is simple, while detailed analysis is more difficult 
than it would at first appear. 

Simply, if one is on the top floor of a building, all elevators will come from below (none 
can come from above), and then depart going down, while if one is on the second from 
top floor, an elevator going to the top floor will pass first on the way up, and then shortly 



afterward on the way down – thus, while an equal number will pass going up as going 
down, downwards elevators will generally shortly follow upwards elevators (unless the 
elevator idles on the top floor), and thus the first elevator observed will usually be going 
up. The first elevator observed will be going down only if one begins observing in the 
short interval after an elevator has passed going up, while the rest of the time the first 
elevator observed will be going down. 

In more detail, the explanation is as follows: a single elevator spends most of its time in 
the larger section of the building, and thus is more likely to approach from that direction 
when the prospective elevator user arrives. An observer who remains by the elevator 
doors for hours or days, observing every elevator arrival, rather than only observing the 
first elevator to arrive, would note an equal number of elevators traveling in each 
direction. This then becomes a sampling problem — the observer is sampling 
stochastically a non uniform interval. 

To help visualize this, consider a thirty-story building, plus lobby, with only one slow 
elevator. The elevator is so slow because it stops at every floor on the way up, and then 
on every floor on the way down. It takes a minute to travel between floors and wait for 
passengers. Here is the arrival schedule for people unlucky enough to work in this 
building; as depicted above, it forms a triangle wave: 

Floor Time on way up Time on way down

Lobby 8:00, 9:00, ... n/a 

1st floor 8:01, 9:01, ... 8:59, 9:59, ... 

2nd floor 8:02, 9:02, ... 8:58, 9:58, ... 

... ... ... 

29th floor 8:29, 9:29, ... 8:31, 9:31, ... 

30th floor n/a 8:30, 9:30, ... 

If you were on the first floor and walked up randomly to the elevator, chances are the 
next elevator would be heading down. The next elevator would be heading up only 
during the first two minutes at each hour, e.g., at 9:00 and 9:01. The number of elevator 
stops going upwards and downwards are the same, but the odds that the next elevator is 
going up is only 2 in 60. 

A similar effect can be observed in railway stations where a station near the end of the 
line will likely have the next train headed for the end of the line. Another visualization is 
to imagine sitting in bleachers near one end of an oval racetrack: if you are waiting for a 
single car to pass in front of you, it will be more likely to pass on the straight-away 
before entering the turn. 

More than one elevator 

Interestingly, if there is more than one elevator in a building, the bias decreases — since 
there is a greater chance that the intending passenger will arrive at the elevator lobby 



during the time that at least one elevator is below them; with an infinite number of 
elevators, the probabilities would be equal. 

In the example above, if there are 30 floors and 58 elevators, so at every minute there are 
2 elevators on each floor, one going up and one going down (save at the top and bottom), 
the bias is eliminated – every minute, one elevator arrives going up and another going 
down. This also occurs with 30 elevators spaced 2 minutes apart – on odd floors they 
alternate up/down arrivals, while on even floors they arrive simultaneously every two 
minutes. 

Watching cars pass on an oval racetrack, one perceives little bias if the time between cars 
is small compared to the time required for a car to return past the observer. 

The real-world case 

In a real building, there are complicated factors such as the tendency of elevators to be 
frequently required on the ground or first floor, and to return there when idle. These 
factors tend to shift the frequency of observed arrivals, but do not eliminate the paradox 
entirely. In particular, a user very near the top floor will perceive the paradox even more 
strongly, as elevators are infrequently present or required above their floor. 

There are other complications of a real building: such as lopsided demand where 
everyone wants to go down at the end of the day; the way full elevators skip extra stops; 
or the effect of short trips where the elevator stays idle. These complications make the 
paradox harder to visualize than the race track examples. 

 

 

 

 

 



Chapter 14 

Gödel's Incompleteness Theorems 

 

 
 
 

Gödel's incompleteness theorems are two theorems of mathematical logic that establish 
inherent limitations of all but the most trivial axiomatic systems for mathematics. The 
theorems, proven by Kurt Gödel in 1931, are important both in mathematical logic and in 
the philosophy of mathematics. The two results are widely interpreted as showing that 
Hilbert's program to find a complete and consistent set of axioms for all of mathematics 
is impossible, thus giving a negative answer to Hilbert's second problem. 

The first incompleteness theorem states that no consistent system of axioms whose 
theorems can be listed by an "effective procedure" (essentially, a computer program) is 
capable of proving all facts about the natural numbers. For any such system, there will 
always be statements about the natural numbers that are true, but that are unprovable 
within the system. The second incompleteness theorem shows that if such a system is 
also capable of proving certain basic facts about the natural numbers, then one particular 
arithmetic truth the system cannot prove is the consistency of the system itself. 

Background 

In mathematical logic, a theory is a set of sentences expressed in a formal language. 
Some statements in a theory are included without proof (these are the axioms of the 
theory), and others (the theorems) are included because they are implied by the axioms. 

Because statements of a formal theory are written in symbolic form, it is possible to 
mechanically verify that a formal proof from a finite set of axioms is valid. This task, 
known as automatic proof verification, is closely related to automated theorem proving. 
The difference is that instead of constructing a new proof, the proof verifier simply 
checks that a provided formal proof (or, in some cases, instructions that can be followed 
to create a formal proof) is correct. This process is not merely hypothetical; systems such 
as Isabelle are used today to formalize proofs and then check their validity. 

Many theories of interest include an infinite set of axioms, however. To verify a formal 
proof when the set of axioms is infinite, it must be possible to determine whether a 
statement that is claimed to be an axiom is actually an axiom. This issue arises in first 



order theories of arithmetic, such as Peano arithmetic, because the principle of 
mathematical induction is expressed as an infinite set of axioms (an axiom schema). 

A formal theory is said to be effectively generated if its set of axioms is a recursively 
enumerable set. This means that there is a computer program that, in principle, could 
enumerate all the axioms of the theory without listing any statements that are not axioms. 
This is equivalent to the existence of a program that enumerates all the theorems of the 
theory without enumerating any statements that are not theorems. Examples of effectively 
generated theories with infinite sets of axioms include Peano arithmetic and Zermelo–
Fraenkel set theory. 

In choosing a set of axioms, one goal is to be able to prove as many correct results as 
possible, without proving any incorrect results. A set of axioms is complete if, for any 
statement in the axioms' language, either that statement or its negation is provable from 
the axioms. A set of axioms is (simply) consistent if there is no statement such that both 
the statement and its negation are provable from the axioms. In the standard system of 
first-order logic, an inconsistent set of axioms will prove every statement in its language 
(this is sometimes called the principle of explosion), and is thus automatically complete. 
A set of axioms that is both complete and consistent, however, proves a maximal set of 
non-contradictory theorems. Gödel's incompleteness theorems show that in certain cases 
it is not possible to obtain an effectively generated, complete, consistent theory. 

First incompleteness theorem 

Gödel's first incompleteness theorem states that: 

Any effectively generated theory capable of expressing elementary arithmetic cannot be 
both consistent and complete. In particular, for any consistent, effectively generated 
formal theory that proves certain basic arithmetic truths, there is an arithmetical statement 
that is true, but not provable in the theory (Kleene 1967, p. 250). 

The true but unprovable statement referred to by the theorem is often referred to as “the 
Gödel sentence” for the theory. The proof constructs a specific Gödel sentence for each 
effectively generated theory, but there are infinitely many statements in the language of 
the theory that share the property of being true but unprovable. For example, the 
conjunction of the Gödel sentence and any logically valid sentence will have this 
property. 

For each consistent formal theory T having the required small amount of number theory, 
the corresponding Gödel sentence G asserts: “G cannot be proved to be true within the 
theory T”. If G were provable under the axioms and rules of inference of T, then T would 
have a theorem, G, which effectively contradicts itself, and thus the theory T would be 
inconsistent. This means that if the theory T is consistent then G cannot be proved within 
it, and so the theory T is incomplete. Moreover, G's claim about its own unprovability is 
correct. In this sense G is not only unprovable but true. Thus provability-within-the-
theory-T is not the same as truth. 



Each effectively generated theory has its own Gödel statement. It is possible to define a 
larger theory T’ that contains the whole of T, plus G as an additional axiom. This will not 
result in a complete theory, because Gödel's theorem will also apply to T’, and thus T’ 
cannot be complete. In this case, G is indeed a theorem in T’, because it is an axiom. 
Since G states only that it is not provable in T, no contradiction is presented by its 
provability in T’. However, because the incompleteness theorem applies to T’: there will 
be a new Gödel statement G’ for T’, showing that T’ is also incomplete. G’ will differ 
from G in that G’ will refer to T’, rather than T. 

To prove the first incompleteness theorem, Gödel represented statements by numbers. 
Then the theory at hand, which is assumed to prove certain facts about numbers, also 
proves facts about its own statements, provided that it is effectively generated. Questions 
about the provability of statements are represented as questions about the properties of 
numbers, which would be decidable by the theory if it were complete. In these terms, the 
Gödel sentence states that no natural number exists with a certain, strange property. A 
number with this property would encode a proof of the inconsistency of the theory. If 
there were such a number then the theory would be inconsistent, contrary to the 
consistency hypothesis. So, under the assumption that the theory is consistent, there is no 
such number. 

Meaning of the first incompleteness theorem 

Gödel's first incompleteness theorem shows that any consistent formal system that 
includes enough of the theory of the natural numbers is incomplete: there are true 
statements expressible in its language that are unprovable. Thus no formal system 
(satisfying the hypotheses of the theorem) that aims to characterize the natural numbers 
can actually do so, as there will be true number-theoretical statements which that system 
cannot prove. This fact is sometimes thought to have severe consequences for the 
program of logicism proposed by Gottlob Frege and Bertrand Russell, which aimed to 
define the natural numbers in terms of logic (Hellman 1981, p. 451–468). Some (like Bob 
Hale and Crispin Wright) argue that it is not a problem for logicism because the 
incompleteness theorems apply equally to second order logic as they do to arithmetic. 
They argue that only those who believe that the natural numbers are to be defined in 
terms of first order logic have this problem. 

The existence of an incomplete formal system is, in itself, not particularly surprising. A 
system may be incomplete simply because not all the necessary axioms have been 
discovered. For example, Euclidean geometry without the parallel postulate is 
incomplete; it is not possible to prove or disprove the parallel postulate from the 
remaining axioms. 

Gödel's theorem shows that, in theories that include a small portion of number theory, a 
complete and consistent finite list of axioms can never be created, nor even an infinite list 
that can be enumerated by a computer program. Each time a new statement is added as an 
axiom, there are other true statements that still cannot be proved, even with the new 



axiom. If an axiom is ever added that makes the system complete, it does so at the cost of 
making the system inconsistent. 

There are complete and consistent list of axioms that cannot be enumerated by a 
computer program. For example, one might take all true statements about the natural 
numbers to be axioms (and no false statements), which gives the theory known as "true 
arithmetic". The difficulty is that there is no mechanical way to decide, given a statement 
about the natural numbers, whether it is an axiom of this theory, and thus there is no 
effective way to verify a formal proof in this theory. 

Many logicians believe that Gödel's incompleteness theorems struck a fatal blow to 
David Hilbert's second problem, which asked for a finitary consistency proof for 
mathematics. The second incompleteness theorem, in particular, is often viewed as 
making the problem impossible. Not all mathematicians agree with this analysis, 
however, and the status of Hilbert's second problem is not yet decided. 

Relation to the liar paradox 

The liar paradox is the sentence "This sentence is false." An analysis of the liar sentence 
shows that it cannot be true (for then, as it asserts, it is false), nor can it be false (for then, 
it is true). A Gödel sentence G for a theory T makes a similar assertion to the liar 
sentence, but with truth replaced by provability: G says "G is not provable in the theory 
T." The analysis of the truth and provability of G is a formalized version of the analysis 
of the truth of the liar sentence. 

It is not possible to replace "not provable" with "false" in a Gödel sentence because the 
predicate "Q is the Gödel number of a false formula" cannot be represented as a formula 
of arithmetic. This result, known as Tarski's undefinability theorem, was discovered 
independently by Gödel (when he was working on the proof of the incompleteness 
theorem) and by Alfred Tarski. 

Original statements 

The first incompleteness theorem first appeared as "Theorem VI" in Gödel's 1931 paper 
On Formally Undecidable Propositions in Principia Mathematica and Related Systems I. 
The second incompleteness theorem appeared as "Theorem XI" in the same paper. 

Extensions of Gödel's original result 

Gödel demonstrated the incompleteness of the theory of Principia Mathematica, a 
particular theory of arithmetic, but a parallel demonstration could be given for any 
effective theory of a certain expressiveness. Gödel commented on this fact in the 
introduction to his paper, but restricted the proof to one system for concreteness. In 
modern statements of the theorem, it is common to state the effectiveness and 
expressiveness conditions as hypotheses for the incompleteness theorem, so that it is not 



limited to any particular formal theory. The terminology used to state these conditions 
was not yet developed in 1931 when Gödel published his results. 

Gödel's original statement and proof of the incompleteness theorem requires the 
assumption that the theory is not just consistent but ω-consistent. A theory is ω-
consistent if it is not ω-inconsistent, and is ω-inconsistent if there is a predicate P such 
that for every specific natural number n the theory proves ~P(n), and yet the theory also 
proves that there exists a natural number n such that P(n). That is, the theory says that a 
number with property P exists while denying that it has any specific value. The ω-
consistency of a theory implies its consistency, but consistency does not imply ω-
consistency. J. Barkley Rosser (1936) strengthened the incompleteness theorem by 
finding a variation of the proof (Rosser's trick) that only requires the theory to be 
consistent, rather than ω-consistent. This is mostly of technical interest, since all true 
formal theories of arithmetic (theories whose axioms are all true statements about natural 
numbers) are ω-consistent, and thus Gödel's theorem as originally stated applies to them. 
The stronger version of the incompleteness theorem that only assumes consistency, rather 
than ω-consistency, is now commonly known as Gödel's incompleteness theorem and as 
the Gödel–Rosser theorem. 

Second incompleteness theorem 

Gödel's second incompleteness theorem can be stated as follows: 

For any formal effectively generated theory T including basic arithmetical truths 
and also certain truths about formal provability, T includes a statement of its own 
consistency if and only if T is inconsistent. 

This strengthens the first incompleteness theorem, because the statement constructed in 
the first incompleteness theorem does not directly express the consistency of the theory. 
The proof of the second incompleteness theorem is obtained, essentially, by formalizing 
the proof of the first incompleteness theorem within the theory itself. 

A technical subtlety in the second incompleteness theorem is how to express the 
consistency of T as a formula in the language of T. There are many ways to do this, and 
not all of them lead to the same result. In particular, different formalizations of the claim 
that T is consistent may be inequivalent in T, and some may even be provable. For 
example, first-order Peano arithmetic (PA) can prove that the largest consistent subset of 
PA is consistent. But since PA is consistent, the largest consistent subset of PA is just 
PA, so in this sense PA "proves that it is consistent". What PA does not prove is that the 
largest consistent subset of PA is, in fact, the whole of PA. (The term "largest consistent 
subset of PA" is rather vague, but what is meant here is the largest consistent initial 
segment of the axioms of PA ordered according to some criteria; for example, by "Gödel 
numbers", the numbers encoding the axioms as per the scheme used by Gödel mentioned 
above). 



In the case of Peano arithmetic, or any familiar explicitly axiomatized theory T, it is 
possible to canonically define a formula Con(T) expressing the consistency of T; this 
formula expresses the property that "there does not exist a natural number coding a 
sequence of formulas, such that each formula is either one of the axioms of T, a logical 
axiom, or an immediate consequence of preceding formulas according to the rules of 
inference of first-order logic, and such that the last formula is a contradiction". 

The formalization of Con(T) depends on two factors: formalizing the notion of a sentence 
being derivable from a set of sentences and formalizing the notion of being an axiom of 
T. Formalizing derivability can be done in canonical fashion: given an arithmetical 
formula A(x) defining a set of axioms, one can canonically form a predicate ProvA(P) 
which expresses that P is provable from the set of axioms defined by A(x). 

In addition, the standard proof of the second incompleteness theorem assumes that 
ProvA(P) satisfies that Hilbert–Bernays provability conditions. Letting #(P) represent the 
Gödel number of a formula P, the derivability conditions say: 

1. If T proves P, then T proves ProvA(#(P)). 
2. T proves 1.; that is, T proves that if T proves P, then T proves ProvA(#(P)). In 

other words, T proves that ProvA(#(P)) implies ProvA(#(ProvA(#(P)))). 
3. T proves that if T proves that (P → Q) and T proves P then T proves Q. In other 

words, T proves that ProvA(#(P → Q)) and ProvA(#(P)) imply ProvA(#(Q)). 

Implications for consistency proofs 

Gödel's second incompleteness theorem also implies that a theory T1 satisfying the 
technical conditions outlined above cannot prove the consistency of any theory T2 which 
proves the consistency of T1. This is because such a theory T1 can prove that if T2 proves 
the consistency of T1, then T1 is in fact consistent. For the claim that T1 is consistent has 
form "for all numbers n, n has the decidable property of not being a code for a proof of 
contradiction in T1". If T1 were in fact inconsistent, then T2 would prove for some n that n 
is the code of a contradiction in T1. But if T2 also proved that T1 is consistent (that is, that 
there is no such n), then it would itself be inconsistent. This reasoning can be formalized 
in T1 to show that if T2 is consistent, then T1 is consistent. Since, by second 
incompleteness theorem, T1 does not prove its consistency, it cannot prove the 
consistency of T2 either. 

This corollary of the second incompleteness theorem shows that there is no hope of 
proving, for example, the consistency of Peano arithmetic using any finitistic means that 
can be formalized in a theory the consistency of which is provable in Peano arithmetic. 
For example, the theory of primitive recursive arithmetic (PRA), which is widely 
accepted as an accurate formalization of finitistic mathematics, is provably consistent in 
PA. Thus PRA cannot prove the consistency of PA. This fact is generally seen to imply 
that Hilbert's program, which aimed to justify the use of "ideal" (infinitistic) 
mathematical principles in the proofs of "real" (finitistic) mathematical statements by 
giving a finitistic proof that the ideal principles are consistent, cannot be carried out. 



The corollary also indicates the epistemological relevance of the second incompleteness 
theorem. It would actually provide no interesting information if a theory T proved its 
consistency. This is because inconsistent theories prove everything, including their 
consistency. Thus a consistency proof of T in T would give us no clue as to whether T 
really is consistent; no doubts about the consistency of T would be resolved by such a 
consistency proof. The interest in consistency proofs lies in the possibility of proving the 
consistency of a theory T in some theory T’ which is in some sense less doubtful than T 
itself, for example weaker than T. For many naturally occurring theories T and T’, such as 
T = Zermelo–Fraenkel set theory and T’ = primitive recursive arithmetic, the consistency 
of T’ is provable in T, and thus T’ can't prove the consistency of T by the above corollary 
of the second incompleteness theorem. 

The second incompleteness theorem does not rule out consistency proofs altogether, only 
consistency proofs that could be formalized in the theory that is proved consistent. For 
example, Gerhard Gentzen proved the consistency of Peano arithmetic (PA) using the 
assumption that a certain ordinal called ε0 is actually wellfounded. Gentzen's theorem 
spurred the development of ordinal analysis in proof theory. 

Examples of undecidable statements 

There are two distinct senses of the word "undecidable" in mathematics and computer 
science. The first of these is the proof-theoretic sense used in relation to Gödel's 
theorems, that of a statement being neither provable nor refutable in a specified deductive 
system. The second sense, which will not be discussed here, is used in relation to 
computability theory and applies not to statements but to decision problems, which are 
countably infinite sets of questions each requiring a yes or no answer. Such a problem is 
said to be undecidable if there is no computable function that correctly answers every 
question in the problem set. 

Because of the two meanings of the word undecidable, the term independent is 
sometimes used instead of undecidable for the "neither provable nor refutable" sense. The 
usage of "independent" is also ambiguous, however. Some use it to mean just "not 
provable", leaving open whether an independent statement might be refuted. 

Undecidability of a statement in a particular deductive system does not, in and of itself, 
address the question of whether the truth value of the statement is well-defined, or 
whether it can be determined by other means. Undecidability only implies that the 
particular deductive system being considered does not prove the truth or falsity of the 
statement. Whether there exist so-called "absolutely undecidable" statements, whose truth 
value can never be known or is ill-specified, is a controversial point in the philosophy of 
mathematics. 

The combined work of Gödel and Paul Cohen has given two concrete examples of 
undecidable statements (in the first sense of the term): The continuum hypothesis can 
neither be proved nor refuted in ZFC (the standard axiomatization of set theory), and the 
axiom of choice can neither be proved nor refuted in ZF (which is all the ZFC axioms 



except the axiom of choice). These results do not require the incompleteness theorem. 
Gödel proved in 1940 that neither of these statements could be disproved in ZF or ZFC 
set theory. In the 1960s, Cohen proved that neither is provable from ZF, and the 
continuum hypothesis cannot be proven from ZFC. 

In 1973, the Whitehead problem in group theory was shown to be undecidable, in the first 
sense of the term, in standard set theory. 

In 1977, Paris and Harrington proved that the Paris-Harrington principle, a version of the 
Ramsey theorem, is undecidable in the first-order axiomatization of arithmetic called 
Peano arithmetic, but can be proven to be true in the larger system of second-order 
arithmetic. Kirby and Paris later showed Goodstein's theorem, a statement about 
sequences of natural numbers somewhat simpler than the Paris-Harrington principle, to 
be undecidable in Peano arithmetic. 

Kruskal's tree theorem, which has applications in computer science, is also undecidable 
from Peano arithmetic but provable in set theory. In fact Kruskal's tree theorem (or its 
finite form) is undecidable in a much stronger system codifying the principles acceptable 
on the basis of a philosophy of mathematics called predicativism. The related but more 
general graph minor theorem (2003) has consequences for computational complexity 
theory. 

Gregory Chaitin produced undecidable statements in algorithmic information theory and 
proved another incompleteness theorem in that setting. Chaitin's theorem states that for 
any theory that can represent enough arithmetic, there is an upper bound c such that no 
specific number can be proven in that theory to have Kolmogorov complexity greater 
than c. While Gödel's theorem is related to the liar paradox, Chaitin's result is related to 
Berry's paradox. 

Limitations of Gödel's theorems 

The conclusions of Gödel's theorems are only proven for the formal theories that satisfy 
the necessary hypotheses. Not all axiom systems satisfy these hypotheses, even when 
these systems have models that include the natural numbers as a subset. For example, 
there are first-order axiomatizations of Euclidean geometry, of real closed fields, and of 
arithmetic in which multiplication is not provably total; none of these meet the 
hypotheses of Gödel's theorems. The key fact is that these axiomatizations are not 
expressive enough to define the set of natural numbers or develop basic properties of the 
natural numbers. Regarding the third example, Dan E. Willard (Willard 2001) has studied 
many weak systems of arithmetic which do not satisfy the hypotheses of the second 
incompleteness theorem, and which are consistent and capable of proving their own 
consistency. 

Gödel's theorems only apply to effectively generated (that is, recursively enumerable) 
theories. If all true statements about natural numbers are taken as axioms for a theory, 
then this theory is a consistent, complete extension of Peano arithmetic (called true 



arithmetic) for which none of Gödel's theorems hold, because this theory is not 
recursively enumerable. 

The second incompleteness theorem only shows that the consistency of certain theories 
cannot be proved from the axioms of those theories themselves. It does not show that the 
consistency cannot be proved from other (consistent) axioms. For example, the 
consistency of the Peano arithmetic can be proved in Zermelo–Fraenkel set theory (ZFC), 
or in theories of arithmetic augmented with transfinite induction, as in Gentzen's 
consistency proof. 

Relationship with computability 

The incompleteness theorem is closely related to several results about undecidable sets in 
recursion theory. 

Stephen Cole Kleene (1943) presented a proof of Gödel's incompleteness theorem using 
basic results of computability theory. One such result shows that the halting problem is 
unsolvable: there is no computer program that can correctly determine, given a program 
P as input, whether P eventually halts when run with some given input. Kleene showed 
that the existence of a complete effective theory of arithmetic with certain consistency 
properties would force the halting problem to be decidable, a contradiction. This method 
of proof has also been presented by Shoenfield (1967, p. 132); Charlesworth (1980); and 
Hopcroft and Ullman (1979). 

Franzén (2005, p. 73) explains how Matiyasevich's solution to Hilbert's 10th problem can 
be used to obtain a proof to Gödel's first incompleteness theorem. Matiyasevich proved 
that there is no algorithm that, given a multivariate polynomial p(x1, x2,...,xk) with integer 
coefficients, determines whether there is an integer solution to the equation p = 0. 
Because polynomials with integer coefficients, and integers themselves, are directly 
expressible in the language of arithmetic, if a multivariate integer polynomial equation p 
= 0 does have a solution in the integers then any sufficiently strong theory of arithmetic T 
will prove this. Moreover, if the theory T is ω-consistent, then it will never prove that 
some polynomial equation has a solution when in fact there is no solution in the integers. 
Thus, if T were complete and ω-consistent, it would be possible to algorithmically 
determine whether a polynomial equation has a solution by merely enumerating proofs of 
T until either "p has a solution" or "p has no solution" is found, in contradiction to 
Matiyasevich's theorem. 

Smorynski (1977, p. 842) shows how the existence of recursively inseparable sets can be 
used to prove the first incompleteness theorem. This proof is often extended to show that 
systems such as Peano arithmetic are essentially undecidable. 

Proof sketch for the first theorem 

Throughout the proof we assume a formal system is fixed and satisfies the necessary 
hypotheses. The proof has three essential parts. The first part is to show that statements 



can be represented by natural numbers, known as Gödel numbers, and that properties of 
the statements can be detected by examining their Gödel numbers. This part culminates in 
the construction of a formula expressing the idea that a statement is provable in the 
system. The second part of the proof is to construct a particular statement that, 
essentially, says that it is unprovable. The third part of the proof is to analyze this 
statement to show that it is neither provable nor disprovable in the system. 

Arithmetization of syntax 

The main problem in fleshing out the proof described above is that it seems at first that to 
construct a statement p that is equivalent to "p cannot be proved", p would have to 
somehow contain a reference to p, which could easily give rise to an infinite regress. 
Gödel's ingenious trick, which was later used by Alan Turing in his work on the 
Entscheidungsproblem, is to represent statements as numbers, which is often called the 
arithmetization of syntax. This allows a self-referential formula to be constructed in a 
way that avoids any infinite regress of definitions. 

To begin with, every formula or statement that can be formulated in our system gets a 
unique number, called its Gödel number. This is done in such a way that it is easy to 
mechanically convert back and forth between formulas and Gödel numbers. It is similar, 
for example, to the way English sentences are encoded as sequences (or "strings") of 
numbers using ASCII: such a sequence is considered as a single (if potentially very large) 
number. Because our system is strong enough to reason about numbers, it is now also 
possible to reason about formulas within the system. 

A formula F(x) that contains exactly one free variable x is called a statement form or 
class-sign. As soon as x is replaced by a specific number, the statement form turns into a 
bona fide statement, and it is then either provable in the system, or not. For certain 
formulas one can show that for every natural number n, F(n) is true if and only if it can be 
proven (the precise requirement in the original proof is weaker, but for the proof sketch 
this will suffice). In particular, this is true for every specific arithmetic operation between 
a finite number of natural numbers, such as "2×3=6". 

Statement forms themselves are not statements and therefore cannot be proved or 
disproved. But every statement form F(x) can be assigned with a Gödel number which we 
will denote by G(F). The choice of the free variable used in the form F(x) is not relevant 
to the assignment of the Gödel number G(F). 

Now comes the trick: The notion of provability itself can also be encoded by Gödel 
numbers, in the following way. Since a proof is a list of statements which obey certain 
rules, we can define the Gödel number of a proof. Now, for every statement p, we may 
ask whether a number x is the Gödel number of its proof. The relation between the Gödel 
number of p and x, the potential Gödel number of its proof, is an arithmetical relation 
between two numbers. Therefore there is a statement form Bew(x) that uses this 
arithmetical relation to state that a Gödel number of a proof of x exists: 



Bew(y) = ∃ x ( y is the Gödel number of a formula and x is the Gödel number of 
a proof of the formula encoded by y). 

The name Bew is short for beweisbar, the German word for "provable"; this name was 
originally used by Gödel to denote the provability formula just described. Note that 
"Bew(y)" is merely an abbreviation that represents a particular, very long, formula in the 
original language of T; the string "Bew" itself is not claimed to be part of this language. 

An important feature of the formula Bew(y) is that if a statement p is provable in the 
system then Bew(G(p)) is also provable. This is because any proof of p would have a 
corresponding Gödel number, the existence of which causes Bew(G(p)) to be satisfied. 

Diagonalization 

The next step in the proof is to obtain a statement that says it is unprovable. Although 
Gödel constructed this statement directly, the existence of at least one such statement 
follows from the diagonal lemma, which says that for any sufficiently strong formal 
system and any statement form F there is a statement p such that the system proves 

p ↔ F(G(p)). 

We obtain p by letting F be the negation of Bew(x); thus p roughly states that its own 
Gödel number is the Gödel number of an unprovable formula. 

The statement p is not literally equal to ~Bew(G(p)); rather, p states that if a certain 
calculation is performed, the resulting Gödel number will be that of an unprovable 
statement. But when this calculation is performed, the resulting Gödel number turns out 
to be the Gödel number of p itself. This is similar to the following sentence in English: 

", when preceded by itself in quotes, is unprovable.", when preceded by itself in 
quotes, is unprovable. 

This sentence does not directly refer to itself, but when the stated transformation is made 
the original sentence is obtained as a result, and thus this sentence asserts its own 
unprovability. The proof of the diagonal lemma employs a similar method. 

Proof of independence 

We will now assume that our axiomatic system is ω-consistent. We let p be the statement 
obtained in the previous section. 

If p were provable, then Bew(G(p)) would be provable, as argued above. But p asserts the 
negation of Bew(G(p)). Thus our system would be inconsistent, proving both a statement 
and its negation. This contradiction shows that p cannot be provable. 



If the negation of p were provable, then Bew(G(p)) would be provable (because p was 
constructed to be equivalent to the negation of Bew(G(p))). However, for each specific 
number x, x cannot be the Gödel number of the proof of p, because p is not provable 
(from the previous paragraph). Thus on one hand the system proves there is a number 
with a certain property (that it is the Gödel number of the proof of p), but on the other 
hand, for every specific number x, we can prove that it does not have this property. This 
is impossible in an ω-consistent system. Thus the negation of p is not provable. 

Thus the statement p is undecidable: it can neither be proved nor disproved within the 
system. 

It should be noted that p is not provable (and thus true) in every consistent system. The 
assumption of ω-consistency is only required for the negation of p to be not provable. 
Thus: 

 In an ω-consistent formal system, we may prove neither p nor its negation, and so 
p is undecidable. 

 In a consistent formal system we may either have the same situation, or we may 
prove the negation of p; In the later case, we have a statement ("not p") which is 
false but provable. 

Note that if one tries to "add the missing axioms" to avoid the undecidability of the 
system, then one has to add either p or "not p" as axioms. But then the definition of 
"being a Gödel number of a proof" of a statement changes. which means that the 
statement form Bew(x) is now different. Thus when we apply the diagonal lemma to this 
new form Bew, we obtain a new statement p, different from the previous one, which will 
be undecidable in the new system if it is ω-consistent. 

Proof via Berry's paradox 

George Boolos (1989) sketches an alternative proof of the first incompleteness theorem 
that uses Berry's paradox rather than the liar paradox to construct a true but unprovable 
formula. A similar proof method was independently discovered by Saul Kripke (Boolos 
1998, p. 383). Boolos's proof proceeds by constructing, for any computably enumerable 
set S of true sentences of arithmetic, another sentence which is true but not contained in 
S. This gives the first incompleteness theorem as a corollary. According to Boolos, this 
proof is interesting because it provides a "different sort of reason" for the incompleteness 
of effective, consistent theories of arithmetic (Boolos 1998, p. 388). 

Formalized proofs 

Formalized proofs of versions of the incompleteness theorem have been developed by 
Natarajan Shankar in 1986 using Nqthm (Shankar 1994) and by R. O'Connor in 2003 
using Coq (O'Connor 2005). 



Proof sketch for the second theorem 

The main difficulty in proving the second incompleteness theorem is to show that various 
facts about provability used in the proof of the first incompleteness theorem can be 
formalized within the system using a formal predicate for provability. Once this is done, 
the second incompleteness theorem essentially follows by formalizing the entire proof of 
the first incompleteness theorem within the system itself. 

Let p stand for the undecidable sentence constructed above, and assume that the 
consistency of the system can be proven from within the system itself. We have seen 
above that if the system is consistent, then p is not provable. The proof of this implication 
can be formalized within the system, and therefore the statement "p is not provable", or 
"not P(p)" can be proven in the system. 

But this last statement is equivalent to p itself (and this equivalence can be proven in the 
system), so p can be proven in the system. This contradiction shows that the system must 
be inconsistent. 

Discussion and implications 

The incompleteness results affect the philosophy of mathematics, particularly versions of 
formalism, which use a single system formal logic to define their principles. One can 
paraphrase the first theorem as saying the following: 

We can never find an all-encompassing axiomatic system which is able to prove all 
mathematical truths, but no falsehoods. 

On the other hand, from a strict formalist perspective this paraphrase would be 
considered meaningless because it presupposes that mathematical "truth" and "falsehood" 
are well-defined in an absolute sense, rather than relative to each formal system. 

The following rephrasing of the second theorem is even more unsettling to the 
foundations of mathematics: 

If an axiomatic system can be proven to be consistent from within itself, then it is 
inconsistent. 

Therefore, to establish the consistency of a system S, one needs to use some other more 
powerful system T, but a proof in T is not completely convincing unless T's consistency 
has already been established without using S. 

Theories such as Peano arithmetic, for which any computably enumerable consistent 
extension is incomplete, are called essentially undecidable or essentially incomplete. 



Minds and machines 

Authors including J. R. Lucas have debated what, if anything, Gödel's incompleteness 
theorems imply about human intelligence. Much of the debate centers on whether the 
human mind is equivalent to a Turing machine, or by the Church–Turing thesis, any finite 
machine at all. If it is, and if the machine is consistent, then Gödel's incompleteness 
theorems would apply to it. 

Hilary Putnam (1960) suggested that while Gödel's theorems cannot be applied to 
humans, since they make mistakes and are therefore inconsistent, it may be applied to the 
human faculty of science or mathematics in general. If we are to assume that it is 
consistent, then either we cannot prove its consistency, or it cannot be represented by a 
Turing machine. 

Avi Wigderson (2010) has proposed that the concept of mathematical "knowability" 
should be based on computational complexity rather than logical decidability. He writes 
that "when knowability is interpreted by modern standards, namely via computational 
complexity, the Gödel phenomena are very much with us." 

Paraconsistent logic 

Although Gödel's theorems are usually studied in the context of classical logic, they also 
have a role in the study of paraconsistent logic and of inherently contradictory statements 
(dialethia). Graham Priest (1984, 2006) argues that replacing the notion of formal proof 
in Gödel's theorem with the usual notion of informal proof can be used to show that naive 
mathematics is inconsistent, and uses this as evidence for dialethism. The cause of this 
inconsistency is the inclusion of a truth predicate for a theory within the language of the 
theory (Priest 2006:47). Stewart Shapiro (2002) gives a more mixed appraisal of the 
applications of Gödel's theorems to dialethism. Carl Hewitt (2008) has proposed that 
(inconsistent) paraconsistent logics that prove their own Gödel sentences may have 
applications in software engineering. 

Appeals to the incompleteness theorems in other fields 

Appeals and analogies are sometimes made to the incompleteness theorems in support of 
arguments that go beyond mathematics and logic. A number of authors have commented 
negatively on such extensions and interpretations, including Torkel Franzén (2005); Alan 
Sokal and Jean Bricmont (1999); and Ophelia Benson and Jeremy Stangroom (2006). 
Bricmont and Stangroom (2006, p. 10), for example, quote from Rebecca Goldstein's 
comments on the disparity between Gödel's avowed Platonism and the anti-realist uses to 
which his ideas are sometimes put. Sokal and Bricmont (1999, p. 187) criticize Régis 
Debray's invocation of the theorem in the context of sociology; Debray has defended this 
use as metaphorical (ibid.). 



The role of self-reference 

Torkel Franzén (2005, p. 46) observes: 

Gödel's proof of the first incompleteness theorem and Rosser's strengthened version have 
given many the impression that the theorem can only be proved by constructing self-
referential statements [...] or even that only strange self-referential statements are known 
to be undecidable in elementary arithmetic. To counteract such impressions, we need 
only introduce a different kind of proof of the first incompleteness theorem. 

He then proposes the proofs based on Computability, or on information theory, as 
described earlier here, as examples of proofs that should "counteract such impressions". 

History 

After Gödel published his proof of the completeness theorem as his doctoral thesis in 
1929, he turned to a second problem for his habilitation. His original goal was to obtain a 
positive solution to Hilbert's second problem. At the time, theories of the natural numbers 
and real numbers similar to second-order arithmetic were known as "analysis", while 
theories of the natural numbers alone were known as "arithmetic". 

Gödel was not the only person working on the consistency problem. Ackermann had 
published a flawed consistency proof for analysis in 1925, in which he attempted to use 
the method of ε-substitution originally developed by Hilbert. Later that year, von 
Neumann was able to correct the proof for a theory of arithmetic without any axioms of 
induction. By 1928, Ackermann had communicated a modified proof to Bernays; this 
modified proof led Hilbert to announce his belief in 1929 that the consistency of 
arithmetic had been demonstrated and that a consistency proof of analysis would likely 
soon follow. After the publication of the incompleteness theorems showed that 
Ackermann's modified proof must be erroneous, von Neumann produced a concrete 
example showing that its main technique was unsound (Zach 2006, p. 418, Zach 2003, 
p. 33). 

In the course of his research, Gödel discovered that although a sentence which asserts its 
own falsehood leads to paradox, a sentence that asserts its own non-provability does not. 
In particular, Gödel was aware of the result now called Tarski's indefinability theorem, 
although he never published it. Gödel announced his first incompleteness theorem to 
Carnap, Feigel and Waismann on August 26, 1930; all four would attend a key 
conference in Königsberg the following week. 

Announcement 

The 1930 Königsberg conference was a joint meeting of three academic societies, with 
many of the key logicians of the time in attendance. Carnap, Heyting, and von Neumann 
delivered one-hour addresses on the mathematical philosophies of logicism, intuitionism, 
and formalism, respectively (Dawson 1996, p. 69). The conference also included Hilbert's 



retirement address, as he was leaving his position at the University of Göttingen. Hilbert 
used the speech to argue his belief that all mathematical problems can be solved. He 
ended his address by saying, 

"For the mathematician there is no Ignorabimus, and, in my opinion, not at all for natural 
science either. ... The true reason why [no one] has succeeded in finding an unsolvable 
problem is, in my opinion, that there is no unsolvable problem. In contrast to the foolish 
Ignoramibus, our credo avers: We must know. We shall know!" 

This speech quickly became known as a summary of Hilbert's beliefs on mathematics (its 
final six words, "Wir müssen wissen. Wir werden wissen!", were used as Hilbert's epitaph 
in 1943). Although Gödel was likely in attendance for Hilbert's address, the two never 
met face to face (Dawson 1996, p. 72). 

Gödel announced his first incompleteness theorem at a roundtable discussion session on 
the third day of the conference. The announcement drew little attention apart from that of 
von Neumann, who pulled Gödel aside for conversation. Later that year, working 
independently with knowledge of the first incompleteness theorem, von Neumann 
obtained a proof of the second incompleteness theorem, which he announced to Gödel in 
a letter dated November 20, 1930 (Dawson 1996, p. 70). Gödel had independently 
obtained the second incompleteness theorem and included it in his submitted manuscript, 
which was received by Monatshefte für Mathematik on November 17, 1930. 

Gödel's paper was published in the Monatshefte in 1931 under the title Über formal 
unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I (On 
Formally Undecidable Propositions in Principia Mathematica and Related Systems I). As 
the title implies, Gödel originally planned to publish a second part of the paper; it was 
never written. 

Generalization and acceptance 

Gödel gave a series of lectures on his theorems at Princeton in 1933–1934 to an audience 
that included Church, Kleene, and Rosser. By this time, Gödel had grasped that the key 
property his theorems required is that the theory must be effective (at the time, the term 
"general recursive" was used). Rosser proved in 1936 that the hypothesis of ω-
consistency, which was an integral part of Gödel's original proof, could be replaced by 
simple consistency, if the Gödel sentence was changed in an appropriate way. These 
developments left the incompleteness theorems in essentially their modern form. 

Gentzen published his consistency proof for first-order arithmetic in 1936. Hilbert 
accepted this proof as "finitary" although (as Gödel's theorem had already shown) it 
cannot be formalized within the system of arithmetic that is being proved consistent. 

The impact of the incompleteness theorems on Hilbert's program was quickly realized. 
Bernays included a full proof of the incompleteness theorems in the second volume of 
Grundlagen der Mathematik (1939), along with additional results of Ackermann on the ε-



substitution method and Gentzen's consistency proof of arithmetic. This was the first full 
published proof of the second incompleteness theorem. 

Criticism 

In September 1931, Ernst Zermelo wrote Gödel to announce what he described as an 
"essential gap" in Gödel’s argument (Dawson:76). In October, Gödel replied with a 10-
page letter (Dawson:76, Grattan-Guinness:512-513). But Zermelo did not relent and 
published his criticisms in print with “a rather scathing paragraph on his young 
competitor” (Grattan-Guinness:513). Gödel decided that to pursue the matter further was 
pointless, and Carnap agreed (Dawson:77). Much of Zermelo's subsequent work was 
related to logics stronger than first-order logic, with which he hoped to show both the 
consistency and categoricity of mathematical theories. 

Paul Finsler (1926) used a version of Richard's paradox to construct an expression that 
was false but unprovable in a particular, informal framework he had developed. Gödel 
was unaware of this paper when he proved the incompleteness theorems (Collected 
Works Vol. IV., p. 9). Finsler wrote Gödel in 1931 to inform him about this paper, which 
Finsler felt had priority for an incompleteness theorem. Finsler's methods did not rely on 
formalized provability, and had only a superficial resemblance to Gödel's work (van 
Heijenoort 1967:328). Gödel read the paper but found it deeply flawed, and his response 
to Finsler laid out concerns about the lack of formalization (Dawson:89). Finsler 
continued to argue for his philosophy of mathematics, which eschewed formalization, for 
the remainder of his career. 

Wittgenstein and Gödel 

Ludwig Wittgenstein wrote several passages about the incompleteness theorems that 
were published posthumously in his 1953 Remarks on the Foundations of Mathematics. 
Gödel was a member of the Vienna Circle during the period in which Wittgenstein's early 
ideal language philosophy and Tractatus Logico-Philosophicus dominated the circle's 
thinking; writings of Gödel in his Nachlass express the belief that Wittgenstein willfully 
misread Godel's theorems. 

Multiple commentators have read Wittgenstein as misunderstanding Gödel (Rodych 
2003), although Juliet Floyd and Hilary Putnam (2000) have suggested that the majority 
of commentary misunderstands Wittgenstein. On their release, Bernays, Dummett, and 
Kreisel wrote separate reviews on Wittgenstein's remarks, all of which were extremely 
negative (Berto 2009:208). The unanimity of this criticism caused Wittgenstein's remarks 
on the incompleteness theorems to have little impact on the logic community. In 1972, 
Gödel wrote to Karl Menger that Wittgenstein's comments demonstrate a fundamental 
misunderstanding of the incompleteness theorems. 

"It is clear from the passages you cite that Wittgenstein did "not" understand [the first 
incompleteness theorem] (or pretended not to understand it). He interpreted it as a kind of 
logical paradox, while in fact is just the opposite, namely a mathematical theorem within 



an absolutely uncontroversial part of mathematics (finitary number theory or 
combinatorics)." (Wang 1996:197) 

Since the publication of Wittgenstein's Nachlass in 2000, a series of papers in philosophy 
have sought to evaluate whether the original criticism of Wittgenstein's remarks was 
justified. Floyd and Putnam (2000) argue that Wittgenstein had a more complete 
understanding of the incompleteness theorem than was previously assumed. They are 
particularly concerned with the interpretation of a Gödel sentence for an ω-inconsistent 
theory as actually saying "I am not provable", since the theory has no models in which 
the provability predicate corresponds to actual provability. Rodych (2003) argues that 
their interpretation of Wittgenstein is not historically justified, while Bays (2004) argues 
against Floyd and Putnam's philosophical analysis of the provability predicate. Berto 
(2009) explores the relationship between Wittgenstein's writing and theories of 
paraconsistent logic. 

 

 

 

 

 

 

 



Chapter 15 

Gambler's Fallacy 

 

 
 
 

The Gambler's fallacy, also known as the Monte Carlo fallacy (because its most 
famous example happened in a Monte Carlo casino in 1913) or the fallacy of the 
maturity of chances, is the belief that if deviations from expected behaviour are 
observed in repeated independent trials of some random process, future deviations in the 
opposite direction are then more likely. For example, if a fair coin is tossed repeatedly 
and tails comes up a larger number of times than is expected, a gambler may incorrectly 
believe that this means that heads is more likely in future tosses. Such an expectation 
could be mistakenly referred to as being due, and it probably arises from one's experience 
with nonrandom events (e.g. when a scheduled train is late, we expect that it has a greater 
chance of arriving the later it gets). This is an informal fallacy. It is also known 
colloquially as the law of averages. 

The gambler's fallacy implicitly involves an assertion of negative correlation between 
trials of the random process and therefore involves a denial of the exchangeability of 
outcomes of the random process. In other words, one implicitly assigns a higher chance 
of occurrence to an event even though from the point of view of 'nature' or the 
'experiment', all such events are equally probable (or distributed in a known way). 

The reversal is also a fallacy, the inverse gambler's fallacy, in which a gambler may 
instead decide that tails are more likely out of some mystical preconception that fate has 
thus far allowed for consistent results of tails; the false conclusion being: Why change if 
odds favor tails? Again, the fallacy is the belief that the "universe" somehow carries a 
memory of past results which tend to favor or disfavor future outcomes. 



An example: coin-tossing 

 
 
Simulation of coin tosses: Each frame, you flip a coin that is red on one side and blue on 
the other, and put a dot in the corresponding column. As the pie chart shows, the 
proportion of red versus blue approaches 50-50 (the Law of Large Numbers). But the 
difference between red and blue does not systematically decrease to zero. 

The gambler's fallacy can be illustrated by considering the repeated toss of a fair coin. 
With a fair coin, the outcomes in different tosses are statistically independent and the 
probability of getting heads on a single toss is exactly 1⁄2 (one in two). It follows that the 
probability of getting two heads in two tosses is 1⁄4 (one in four) and the probability of 
getting three heads in three tosses is 1⁄8 (one in eight). In general, if we let Ai be the event 
that toss i of a fair coin comes up heads, then we have, 

. 

Now suppose that we have just tossed four heads in a row, so that if the next coin toss 
were also to come up heads, it would complete a run of five successive heads. Since the 
probability of a run of five successive heads is only 1⁄32 (one in thirty-two), a believer in 
the gambler's fallacy might believe that this next flip is less likely to be heads than to be 
tails. However, this is not correct, and is a manifestation of the gambler's fallacy; the 
event of 5 heads in a row and the event of "first 4 heads, then a tails" are equally likely, 
each having probability 1⁄32. Given the first four rolls turn up heads, the probability that 
the next toss is a head is in fact, 

. 

While a run of five heads is only 1⁄32 = 0.03125, it is only that before the coin is first 
tossed. After the first four tosses the results are no longer unknown, so their probabilities 
are 1. Reasoning that it is more likely that the next toss will be a tail than a head due to 
the past tosses, that a run of luck in the past somehow influences the odds in the future, is 
the fallacy. 



Explaining why the probability is 1/2 for a fair coin 

We can see from the above that, if one flips a fair coin 21 times, then the probability of 
21 heads is 1 in 2,097,152. However, the probability of flipping a head after having 
already flipped 20 heads in a row is simply 1⁄2. This is an application of Bayes' theorem. 

This can also be seen without knowing that 20 heads have occurred for certain (without 
applying of Bayes' theorem). Consider the following two probabilities, assuming a fair 
coin: 

 probability of 20 heads, then 1 tail = 0.520 × 0.5 = 0.521 
 probability of 20 heads, then 1 head = 0.520 × 0.5 = 0.521 

The probability of getting 20 heads then 1 tail, and the probability of getting 20 heads 
then another head are both 1 in 2,097,152. Therefore, it is equally likely to flip 21 heads 
as it is to flip 20 heads and then 1 tail when flipping a fair coin 21 times. Furthermore, 
these two probabilities are equally as likely as any other 21-flip combinations that can be 
obtained (there are 2,097,152 total); all 21-flip combinations will have probabilities equal 
to 0.521, or 1 in 2,097,152. From these observations, there is no reason to assume at any 
point that a change of luck is warranted based on prior trials (flips), because every 
outcome observed will always have been as likely as the other outcomes that were not 
observed for that particular trial, given a fair coin. Therefore, just as Bayes' theorem 
shows, the result of each trial comes down to the base probability of the fair coin: 1⁄2. 

Other examples 

There is another way to emphasize the fallacy. As already mentioned, the fallacy is built 
on the notion that previous failures indicate an increased probability of success on 
subsequent attempts. This is, in fact, the inverse of what actually happens, even on a fair 
chance of a successful event, given a set number of iterations. Assume you have a fair 16-
sided die, and a win is defined as rolling a 1. Assume a player is given 16 rolls to obtain 
at least one win (1−p(rolling no ones)). The low winning odds are just to make the 
change in probability more noticeable. The probability of having at least one win in the 
16 rolls is: 

 

However, assume now that the first roll was a loss (93.75% chance of that, 15⁄16). The 
player now only has 15 rolls left and, according to the fallacy, should have a higher 
chance of winning since one loss has occurred. His chances of having at least one win are 
now: 

 



Simply by losing one toss the player's probability of winning dropped by 2%. By the time 
this reaches 5 losses (11 rolls left), his probability of winning on one of the remaining 
rolls will have dropped to ~50%. The player's odds for at least one win in those 16 rolls 
has not increased given a series of losses; his odds have decreased because he has fewer 
iterations left to win. In other words, the previous losses in no way contribute to the odds 
of the remaining attempts, but there are fewer remaining attempts to gain a win, which 
results in a lower probability of obtaining it. 

The player becomes more likely to lose in a set number of iterations as he fails to win, 
and eventually his probability of winning will again equal the probability of winning a 
single toss, when only one toss is left: 6.25% in this instance. 

Some lottery players will choose the same numbers every time, or intentionally change 
their numbers, but both are equally likely to win any individual lottery draw. Copying the 
numbers that won the previous lottery draw gives an equal probability, although a 
rational gambler might attempt to predict other players' choices and then deliberately 
avoid these numbers. Low numbers (below 31 and especially below 12) are popular 
because people play birthdays as their so-called lucky numbers; hence a win in which 
these numbers are over-represented is more likely to result in a shared payout. 

A joke told among mathematicians demonstrates the nature of the fallacy. When flying 
on an aircraft, a man decides to always bring a bomb with him. "The chances of an 
aircraft having a bomb on it are very small," he reasons, "and certainly the chances of 
having two are almost none!" 

A similar example is in the book The World According to Garp when the hero Garp 
decides to buy a house a moment after a small plane crashes into it, reasoning that the 
chances of another plane hitting the house have just dropped to zero. 

The most famous example happened in a Monte Carlo casino in the summer of 1913, 
when the ball fell in black 26 times in a row, an extremely uncommon occurrence (but, 
no more or less common then any other 67,108,863 26-ball combinations, neglecting the 
0 or 00 spots on the wheel), and gamblers lost millions of francs betting against black 
after the black streak happened. Gamblers reasoned incorrectly that the streak was 
causing an "imbalance" in the randomness of the wheel, and that it had to be followed by 
a long streak of red. 

Non-examples of the fallacy 

There are many scenarios where the gambler's fallacy might superficially seem to apply, 
but actually does not. When the probability of different events is not independent, the 
probability of future events can change based on the outcome of past events. Formally, 
the system is said to have memory. An example of this is cards drawn without 
replacement. For example, if an ace is removed from a deck, the next draw is less likely 
to be an ace and more likely to be of another rank. The odds for drawing another ace, 
assuming that it was the first card drawn and that there are no jokers, have decreased 



from 4⁄52 (7.69%) to 3⁄51 (5.88%), while the odds for each other rank have increased from 
4⁄52 (7.69%) to 4⁄51 (7.84%). This type of effect is what allows card counting schemes to 
work (for example in the game of blackjack). 

The outcome of future events can be affected if external factors are allowed to change the 
probability of the events (e.g., changes in the rules of a game affecting a sports team's 
performance levels). Additionally, an inexperienced player's success may decrease after 
opposing teams discover his or her weaknesses and exploit them. The player must then 
attempt to compensate and randomize his strategy.  

Many riddles trick the reader into believing that they are an example of the gambler's 
fallacy, such as the Monty Hall problem. 

Non-example: unknown probability of event 

When the probability of repeated events are not known, outcomes may not be equally 
probable. In the case of coin tossing, as a run of heads gets longer and longer, the 
likelihood that the coin is biased towards heads increases. If one flips a coin 21 times in a 
row and obtains 21 heads, one might rationally conclude a high probability of bias 
towards heads, and hence conclude that future flips of this coin are also highly likely to 
be heads. In fact, Bayesian inference can be used to show that when the long-run 
proportion of different outcomes are unknown but exchangeable (meaning that the 
random process from which they are generated may be biased but is equally likely to be 
biased in any direction) previous observations demonstrate the likely direction of the 
bias, such that the outcome which has occurred the most in the observed data is the most 
likely to occur again. 

Psychology behind the fallacy 

Amos Tversky and Daniel Kahneman proposed that the gambler's fallacy is a cognitive 
bias produced by a psychological heuristic called the representativeness heuristic. 
According to this view, "after observing a long run of red on the roulette wheel, for 
example, most people erroneously believe that black will result in a more representative 
sequence than the occurrence of an additional red", so people expect that a short run of 
random outcomes should share properties of a longer run, specifically in that deviations 
from average should balance out. When people are asked to make up a random-looking 
sequence of coin tosses, they tend to make sequences where the proportion of heads to 
tails stays close to 0.5 in any short segment more so than would be predicted by chance; 
Kahneman and Tversky interpret this to mean that people believe short sequences of 
random events should be representative of longer ones. 

The representativeness heuristic is also cited behind the related phenomenon of the 
clustering illusion, according to which people see streaks of random events as being non-
random when such streaks are actually much more likely to occur in small samples than 
people expect. 
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