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0. INTRODUCTION 3

Chapter 0

INTRODUCTION

1. Logic as an applied science. The study of logic as a part of philosophy has
been in existence since the earliest days of scientific thinking. Logic (or math-
ematical logic, from now logic) was developed in the 19th century by Gottlob
Frege. Logic has been a device to research foundations of mathematics (based
on results of Hilbert, Gödel, Church, Tarski), and main areas of Logic became
full-fledged branches of Mathematics (model theory, proof theory, etc.). The
elaboration of mathematical logic was an important part of the process called
“revolution of mathematics” (at the beginning of the 20th century). Logic had
an important effect on mathematics in the 20th century, for example, on alge-
braic logic, non-standard analysis, complexity theory, set theory.

The general view of logic has changed significantly over the last 40 years
or so. The advent of computers has led to very important real-word appli-
cations. To formalize a problem, to draw conclusions formally, to use formal
methods have been important tasks. Logic started playing an important role in
software engineering, programming, artificial intelligence (knowledge represen-
tation), database theory, linguistics, etc. Logic has become an interdisciplinary
language of computer science.

As with such applications, this has in turn led to extensive new areas of
logic, e.g. logic programming, special non-classical logics, as temporal logic, or
dynamic logic. Algorithms have been of great importance in logic. Logic has
come to occupy a central position in the repertory of technical knowledge, and
various types of logic started playing a key roles in the modelling of reasoning
and in other special fields from law to medicine. All these developments assign
a place to Applied Logic within the system of science as firm as that of applied
mathematics.

As an example for comparing the applications and developing theoretical
foundations of logic let us see the case of artificial intelligence (AI for short).

AI is an attempt to model human thought processes computationally. Many
non-classical logics (such as temporal, dynamic, arrow logics) are investigated
nowadays intensively because of their possible applications in AI. But many
among these logics had been researched by mathematicians, philosophers and
linguists before the appearance of AI only from a theoretical viewpoint and the
results were applied in AI later (besides, new logics were also developed to meet
the needs of AI). In many respects the tasks of the mathematician and the AI
worker are quite similar. They are both concerned with the formalization of
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4 MATHEMATICAL LOGIC FOR APPLICATIONS

certain aspects of reasoning needed in everyday practice. Philosopher, mathe-
matician and engineers all use the same logical techniques, i.e., formal languages,
structures, proof systems, classical and non-classical logics, the difference be-
tween their approaches residing in where exactly they put the emphasis when
applying the essentially same methods.

2. Classical and non-classical logics. Chapter 2 is devoted to “classi-
cal first-order logic” and to logics closely related to it, called “classical logics”.
Classical first-order logic serves as a base for every logic, therefore it is consid-
ered as the most important logic. Its expressive power is quite strong (contrary
to propositional logic, for example) and it has many nice properties, e.g. “com-
pleteness”, “compactness”, etc., (in contrast to second-order logic, for example).
It is said to be the “logic of mathematics”, and its language is said to be the
“language of mathematics”. The reader is advised to understand the basic con-
cepts of logic by studying classical first-order logic to prepare the study of other
areas of logic.

However, classical logics describe only static aspects of the modelled seg-
ment of the world. To develop a more comprehensive logical model multiple
modalities are to be taken into consideration: - what is necessary and what
is occasional, – what is known and what is believed, – what is obligatory and
what is permitted, – past, present, future, – sources of information and their
reliability, – uncertainty and incompleteness of information – among others.

A wide variety of logics have been developed and put to use to model the
aspects mentioned above (in artificial intelligence, computer science, linguistics,
etc.). Such logics are called non-classical logics. We sketch some important
ones among them in Chapter 3 without presenting the whole spectrum of these
logics, which would be far beyond the scope of this book.

3. On the concept of logic. Since many kinds of special logics are used in
applications, a “general frame” has been defined for logic (see Chapter 1), which
is general but efficient enough to include many special logics and to preserve
most of their nice properties.

It is worth understanding logic at this general level for a couple of reasons.
First, we need to distinguish the special and general features of the respective
concrete logics anyway. Second, it often happens that researchers have to form
their own logical model for a situation in real life. In this case they can specialize
a general logic in a way suitable for the situation in question. The general theory
of logic or Universal Algebraic Logic is a new, and quickly developing area inside
logic (see Andréka, H., Németi, I., Sain, I., Universal Algebraic Logic, Springer,
[14]).

Chapters 1. and 3. are based, among others, on the papers, Andréka, H.,
Németi, I., General algebraic logic: A perspective on What is logic, in What is
logical system, Oxford, Ed. D. Gabbay, 1994, [11], and Andréka, H., Németi,
I., Sain, I., Kurucz, A., Applying Algebraic Logic; A General Methodology.
Lecture Notes of the Summer School ”Algebraic Logic and the Methodology of
Applying it”, Budapest 1994, 67 pages, [13].

We note that there is a clear difference between a concrete logic (with fixed
“non-logical symbols”) and a class of concrete logics (only the “logical symbols”
are fixed). The latter is a kind of generalization of the concrete ones, of course.
Usually, by “logic” we understand a “class of logics”, but the reader should be
careful, the term “logic” because the term is used also for a concrete logic. We
must not confuse the different degrees of generalizations.
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0. INTRODUCTION 5

4. Areas of mathematics connected with logic. An important aspect of
this study is the connection between Logic and the other areas of mathematics.
There are areas of mathematics which are traditionally close to Logic. Such
areas are: algebra, set theory, algorithm theory.

For example, modern logic was defined originally in algebraic form (by Boole,
De Morgan and Peirce). An efficient method in Algebra (in Logic) for problem
solving is the following: translate the problem to Logic (to Algebra) and solve it
in logical (in algebraic) form. The scientific framework of this kind of activity is
the discipline called Algebraic Logic founded in the middle of the 20th century
(by Tarski, Henkin, Sikorski, etc.). This area is treated in Chapter 4.

There are areas in mathematics which originally seemed fairly remote from
Logic but later important and surprising logical connections were discovered
between them. For example, such an area is Analysis. In the sixties, Abraham
Robinson worked out the exact interpretation of infinitesimals through a sur-
prising application of the Compactness Theorem of First Order Logic. Many
experts believe this theory to be a more natural model for differential and in-
tegral calculus than the traditional model, the more traditional ε − δ method
(besides analysis Robinson’s idea was applied to other areas of Mathematics
too, and this is called non-standard mathematics). This connection is discussed
in Section 2.4.3.

We also sketch some connections between Logic and Probability theory
(3.6.1).

5. The two levels of logics. Every logic has two important “levels”: the
level of semantics and that of proof theory (or proof systems or syntax). For most
logics these two levels (two approaches) are equivalent, in a sense. It is important
to notice that both levels use the same formal language as a prerequisite. So
every logic has three basic components: formal language, semantics and proof
theory (see [11], [13]). We make some notices on these components, respectively.

The concept of language is of great importance in any area of logics. When
we model a situation in real life the first thing we choose is a suitable language
more or less describing the situation in question. We note that today the theory
of formal languages is an extensive, complex discipline and only a part of this
theory is used in Logic directly.

Logical semantics is the part of logic which is essentially based on the the-
ory of infinite sets. In general, in the definitions of semantics, there are no
algorithms. Nevertheless, it is extraordinarily important in many areas of ap-
plications. Semantics is a direct approach to the physical reality.

Proof theory is the part of logic which is built on certain formal manipula-
tions of given symbols. It is a generalization of a classical axiomatic method.
The central concept of proof theory is the concept of a proof system (or calcu-
lus). Setting out from proof systems algorithms can be developed for searching
proofs. These algorithms can then be implemented on computers.

What is about the connection between these two approaches to Logic? The
“strength” of a logical system depends on the degree of equivalence between
the semantic and the proof-theoretical components of the logic (such result are
grouped under the heading of “completeness theorems” for a particular logic).

The two levels of logic together are said to be the “double construction” of
logic. First-order logic is complete, therefore, the “double construction” of logic
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6 MATHEMATICAL LOGIC FOR APPLICATIONS

has repercussions with respect to the whole mathematics.
In addition to strength of a logic there are famous limits of logics (also that of

first-order logic): undecidability and incompleteness (see Church and Gödel’s re-
sults). These limits have interesting practical, philosophical and methodological
consequences for the whole science.

Throughout the Chapters 1 and 2 (and partially in Chapter 3) we treat the
main components of logic and their relationships systematically.

6. On the reading of the book. We suppose that the reader has some
experience in Logic. This does not mean concrete prerequisites, but a kind of
familiarity with this area. For example, the reader will understand Chapter 1,
the general frame of Logic, more comprehensively if he/she knows concrete logics
(in any case, the reader is urged to return once more to Chapter 1 after reading
Chapters 2 and 3).

Today Logic is a large area inside science. To give a more or less comprehen-
sive overview of this huge domain, we were forced to be selective on the topics
and the theoretical approaches we survey. As regards the proofs of the theorems
and further examples connected with the subject, we must refer the reader to
the literature. Some important references are: [11], [13], [14], [34], [51], [145],
[23], [43], [96], [156], [5], [71].

7. Acknowledgement. We say thanks to Gábor Sági for his useful advices
and notices. Furthermore, we say thanks also to our students at the Techni-
cal University Budapest (to mathematicians and software engineers) for their
valuable notes.
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1. ON THE CONCEPT OF LOGIC 7

Chapter 1

ON THE CONCEPT OF
LOGIC

In this chapter we give general definitions pertaining to classical and non-
classical logics, which we specialize, detail and illustrate with examples later in
the book. We present the general concepts concerning the main parts of logic:
syntax, semantics, proof theory and their connection, respectively.

1.1 Syntax

First, we sketch the general concept of syntax of logics (the language L).
This kind of syntax does not differ essentially from the syntax used in symbol
processing in Computer Science, or in a wider sense, musical notes in music or
written choreography in dance.

Syntax is given in terms of a set of symbols called alphabet and a set of
syntactical rules. In this book we assume that the alphabet is countable (finite
or infinite), with possible exceptions being explicitly mentioned when necessary.
The alphabet of a logic consists of two kinds of symbols. One of them are the
logical symbols, the other are the non-logical ones. There is associated with each
non-logical symbol particular a natural number or 0, the arity corresponding to
the symbol. The sequences of such arities have importance in logic, it is called
the type of the language.

A finite sequence of the alphabet which has a meaning (by definition) is
called a formula. The set of formulas is denoted by F and is defined by the
syntactical rules.

Besides formulas, there are other finite sequences of the alphabet which have
importance, namely terms. These sequences are used to build up formulas. The
term expression covers both formulas and terms.

Assume that in a language L there is given a set P of symbols (called atomic
formulas) and another set Cn (called connectives) such that for every connective
c ∈ Cn has a natural number (the rank) k. Then, the set F of formulas coincide
with the smallest set satisfying the conditions (i) and (ii) below:

(i) P ⊆ F ,

Ferenczi–Szőts, BME tankonyvtar.ttk.bme.hu



8 MATHEMATICAL LOGIC FOR APPLICATIONS

(ii) c(α1, . . . αk) ∈ F ,
where α1, . . . αk are arbitrary formulas in F , and the connective c has the
rank k.

The terminology “logical language” (or “language”, for short) is used at least
in two contexts in the literature. The one is for a concrete logical language,the
other for a class of such concrete languages (this latter is called general lan-
guage). A general language is specified by the logical symbols used, while a con-
crete language is specified by the concrete non-logical symbols of the alphabet
(for example, the operations and constants +, ·, −, 0, 1 as non-logical symbols
specify the concrete first-order language of real numbers as a specialization of
the general language of first-order logic).

Some remarks concerning syntax are:

• It is important to realize that the definition of a logical language, and
also, almost the whole study of logic uses metalanguages. The definitions
in this book use natural language as the metalanguage, as it is usual.

• Generally, a logical language can be defined by context-free formal gram-
mar: the alphabet and the types of the expressions correspond to the set
of terminal symbols and to the non-terminal symbols, respectively.

A terminological remark: formulas in a logical language correspond to
“sentences” in a formal grammar. The word “sentence” in a logical lan-
guage means a special class of formulas, which cannot be specified by
a formal grammar. Let us think of programming languages, where pro-
grams can be defined by a context-free grammar, but important aspects
of syntactic correctness cannot be described by thereby.

• Syntax can be defined as an algebra too: formulas form the universe of
the algebra and the operations correspond to the rules of syntax. This
algebra is a “word algebra” with equality being the same as identity (two
different formulas cannot be equal). With the sets of atomic formulas
and logical connectives in the language we can associate the word algebra
generated by the set of atomic formulas using the given logical connectives
as algebraic operations, in the usual algebraic sense.

• We can use prefix (Polish notation), infix or postfix notations for the ex-
pressions of the language. For example, taking a binary operation symbol
O and applying it to the expressions α and β, the notations Oαβ, αOβ
and αβO are prefix, infix and postfix notations, respectively. Any of these
notational conventions has advantages as well as disadvantages. For ex-
ample, the infix notation can be read easily, but brackets and punctuation
marks (commas and points) are needed in the alphabet, and also, various
precedence rules must be specified. Infix and postfix notations are useful
to manipulate formulas by computers; e.g. to evaluate expressions auto-
matically. For automated processing the so-called parsing tree provides
an adequate representation of expressions.

There are two usual additional requirements concerning syntax:

tankonyvtar.ttk.bme.hu Ferenczi–Szőts, BME



1. ON THE CONCEPT OF LOGIC 9

• The set of formulas should be a decidable subset composed from the alphabet
(decidability of the syntax).

• Formulas should have the unique reading property.

The unique reading property means that for every expression of the language
there is only one way to construct it by the rules of syntax (that is, every
expression has a unique parsing tree).

Most logical languages have both properties.

1.2 Basic concepts of semantics

First we introduce a general concept of “logic”, approaching this concept
from the side of logical semantics.

Let us assume that a language L is given. Semantics is defined by a class
of “models” (interpretations) and a “meaning function”, which provides the
meaning of an expression in a model. The following formal definition pertains
to many well-known logics:

1.1 Definition (logic in the semantical sense) A logic in the semantical sense
is a triple

LS = 〈F , M, m〉

where F is a set of formulas in L, M is a class (class of models or structures),
and m is a function (meaning function) on F ×M, where we assume that the
range of m is a partially ordered set.

Sometimes we shall denote the members of LS in this way: 〈FL, ML, mL〉.

1.2 Definition The validity relation � (“truth for a formula on a model”) is
a relation defined on F ×M in terms of the meaning function m (notation:
M � α, where α ∈ F , M ∈M) as follows:

M � α if and only if m(β,M) ≤ m(α,M) for every β ∈ F (1.1)

where ≤ is the given partial ordering on the range of m and α is a fixed formula.

If there is a maximal element in the range of m, then (1.1) means that
M � α if and only if m(α,M) is maximal (for two-valued logic M � α if and
only if m(α,M) is true).

We note that it often happens that the validity relation is defined first, then
the meaning function in terms of �.

Now, we list some definitions concerning logics above:

Ferenczi–Szőts, BME tankonyvtar.ttk.bme.hu



10 MATHEMATICAL LOGIC FOR APPLICATIONS

1.3 Definition
A formula α is said to be universally valid if M � α for every model M , where
M ∈M (notation: � α).

M is a model of a given set Σ of formulas if M � α for every α ∈ Σ(notation:
M � Σ).

α is a semantical consequence of a given set Σ of formulas if M � α for
every model M such that M � Σ (notation: Σ � α). The set of all semantical
consequences of Σ is denoted by ConsΣ.

A theory of a given class N of models is the set Γ of formulas such that
α ∈ Γ if and only if M � α for every M ∈ N (notation: ThN or ThM if
N = {M}).

A theory ThN is decidable if the set ThN is a decidable subset of F . In
particular a logic is decidable if ThM is decidable, where M is the class of its
models.

If the truth values “true” and “false” are present in the range of the meaning
function (they are denoted by t and f), then a formula α is called a sentence if
m(α,M) ∈ {t, f} for every model M .

1.4 Definition
A logic has the compactness property if the following is true for every fixed set
Σ of formulas: if every finite set Σ′ (Σ′ ⊆ Σ) has a model, then Σ also has a
model.

A logic has Deduction theorem if there is a “formula scheme” Φ(α, β) such
that Σ ∪ {α} � β is equivalent to Σ � Φ(α, β) (an important special case when
Φ(α, β) is α → β).

Some comments on these definitions:
• Models (or structures) represent a particular domain of real life in logic

(in a sense).

• Notice that the symbol � is used in three different senses (and the intended
meaning is determined by the context):

for validity relation: M � α,

for universal validity: � α,

for semantical consequence: Σ � α.

• Compactness is an important property of a logic because it allows a kind
of finitization. An equivalent version of compactness is the following:

If Σ � α, then Σ ′ � α for some finite subset Σ’ of Σ.

• Compactness and Deduction theorems together will provide a connection
between the concepts of semantical consequence and universal validity.

• A version of the indirect inference rule is the following equivalence: Σ � α
if and only if Σ ∪ {¬α} has no model.

• Algebras can also be associated with models, but we skip the details here.
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1. ON THE CONCEPT OF LOGIC 11

• Now we define another important concept of logic, that of regular logic.
This is a stronger, but at the same time more specific concept than the
concept of logic discussed above.

Let a language L and a model M be fixed. A connective is said to be derived
in L if it can be defined in terms of the basic logical connectives of L.

1.5 Definition (regular logic) A logic LS is called a regular logic, if the fol-
lowing properties (i), (ii), (iii) are satisfied:

(i) (principle of compositionality). Assume that in L with every logical con-
nective c of rank k an operation C of rank k is associated in the range of
m. Then,

m(c(α1, . . . αk),M) = C(m(α1,M), . . .m(αk,M))

must hold for arbitrary formulas α1, . . . αk.

(ii) Assume that ∇ is a binary derived connective in L and T is a derived
constant (as special connective) with the meaning “true”. Then,

M � α∇β if and only if m(α,M) = m(β,M), and

M � T ∇β if and only if M � β.

are required.

(iii) ( substitution property) Assume that L contains a set Q of atomic for-
mulas. Then, for an arbitrary formula α, containing the atomic formulas
P1, . . . Pn

� α(P1, . . . Pn) implies � α(P1/β1, . . . Pn/βn)

must hold for arbitrary formulas β1, . . . βn, where P1/β1, . . . Pn/βn denote
the result of every occurrence of Pi being substituted simultaneously with
βi, i = 1, . . . , n.

(i) means that m “preserves” syntactical operations, that is, from the alge-
braic viewpoint, m is a homomorphism from the word algebra of formulas to the
algebra corresponding to the model. Compositionality ensures that the mean-
ings of formulas in a fixed model constitute such an algebra which is “similar”
to the word algebra (this is one of the foundations of the so-called algebraic
semantics).

In (ii), the operation ∇ is a weakening of the operation ↔ (biconditional);
therefore, if the biconditional can be formulated in the language, ∇ can be
replaced in (ii) by ↔.

For regular logics, it is possible to prove stronger (but still general) results
than for those in Definition 1.1.
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12 MATHEMATICAL LOGIC FOR APPLICATIONS

1.3 Basic concepts of proof theory

First, we define a central concept of proof theory: the concept of proof system
(or calculus).

A proof system is defined by a set of axioms, a set of inference rules and the
concept of proof. Now we sketch these concepts, respectively.

Let us extend the language by an infinite sequence X1, X2, . . . of new vari-
ables (called formula variables). First, we define the concept of “formula scheme”
by recursion.

Formula schemes are obtained by applying finitely many times the following
rules:

(i) the formula variables X1, X2, . . . are formula schemes,

(ii) if Φ1,Φ2, . . . are formula schemes and c is a k-ary logical connective in the
language, then c(Φ1,Φ2, . . . ,Φk) is also a scheme.

A formula α is an instance of a scheme Φ if α is obtained by substituting
all the formula variables in Φ by given formulas.

An “axiom” of a calculus (a logical axiom) is given as a formula scheme (but
the term “axiom” is usually used for both the scheme and its instance).

An inference rule is 〈〈Φ1,Φ2, . . . ,Φn〉 , Φ〉, where Φ1,Φ2, . . . ,Φn,Φ are for-
mula schemes, Φ1,Φ2, . . . ,Φn are called the premises, Φ is called the conclusion.
Another well-known notation for an inference rule is: Φ1,Φ2,...Φn

Φ .

The next important component of proof systems is the concept of proof.
There are several variants of this concept. We define an important one together
with the concept of provability for the case of the so-called Hilbert style proof
systems. This definition is very general and simple.

Let us assume that a set of axioms and a set of inference rules are fixed (we
skip the details).

1.6 Definition A formula α is provable (derivable) from a set Σ of formulas
(notation: Σ ` α) if there is a finite sequence ϕ1, ϕ2, . . . , ϕn (the proof for α)
such that ϕn = α and for every i ∈ n,

(i) ϕi ∈ Σ, or

(ii) ϕi is an instance of an axiom (scheme), or

(iii) there are indices j1, j2, . . . , jk < i and an inference rule
〈〈Φ1,Φ2, . . . ,Φk〉 , Φ〉 in the system such that

〈〈
ϕj1j

, ϕj2 , . . . , ϕjk
〉
, ϕi
〉

is
an instance of this rule (i.e. the formulas ϕj1j , ϕj2 , . . . , ϕjk , ϕi are in-
stances of the schemes Φ1,Φ2, . . . ,Φk, Φ in this rule, respectively).
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1. ON THE CONCEPT OF LOGIC 13

There is an important additional requirement for proof systems: the set of
axioms and the set of inference rules should be decidable.

The relation ` is called the provability relation. ` is a relation on P(F)×F
(where P(F ) is the power set of F). If the proof system (calculus) is denoted
by C, then the provability relation corresponding to C is denoted by `C (if
misunderstanding is excluded we omit C from `C).

With different proof systems C1 and C2 we associate different provability
relations `C1 and `C2 , but it is possible that the relations `C1 and `C2 coincide
(this is true for every well-known calculus of first-order logic, for example).

Notice that with the concept of a proof system and the set Σ of formulas
above we can associate the classical axiomatic method.

We can classify proof systems according to the way they are put to use.
From this viewpoint there are two kinds of proof systems: deduction systems
and refutation systems. For a deduction system we set out from premises to
get the conclusions (e.g. Hilbert systems, natural deduction). For refutation
systems we apply a kind of indirect reasoning: the premises and the negation of
the desired conclusion are simultaneously assumed and we are going to “force” a
contradiction in a sense to get the conclusion (e.g. resolution, analytic tableaux).

Now we introduce the proof-theoretical concept of “logic”. Assume that a
fixed proof system C is given.

1.7 Definition (logic in proof-theoretical sense) A logic is a pair

LP =
〈
F , `C

〉
where F is the set of formulas in L and `C is the provability relation specified
by the proof system C.

Sometimes the dependence on L is denoted in the members of LP in this
way:

〈
FL, `CL

〉
.

We list some definitions for proof theory (we omit C from `C).

1.8 Definition
If Σ ` α holds, we say that α is a proof-theoretical consequence of Σ. The
set {α : Σ ` α, α ∈ F} of all the proof-theoretical consequences of a fixed Σ is
denoted by Ded Σ.
A set Σ of formulas is a theory if Σ = Ded Σ (that is Σ is closed under the
provability relation).
A theory Σ is inconsistent if both Σ ` ¬α and Σ ` α hold for some formula α.
Otherwise, the theory Σ is said to be consistent.
A theory Σ is complete if α ∈ Σ or ¬α ∈ Σ holds for every formula α.
A theory Σ is decidable if Σ is a decidable subset of F .
A theory Σ is axiomatizable if Σ = Ded Σ′ for some recursive subset Σ′ of F .

Now we list the most important general properties of a provability relation:
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14 MATHEMATICAL LOGIC FOR APPLICATIONS

(i) inclusion (reflexivity), that is β ∈ Σ implies Σ ` β,

(ii) monotonicity, that is Σ ` α implies Σ ∪ {β} ` α

(iii) cut, that is Σ ` ϕ and Λ ∪ {ϕ} ` α imply Σ ∪ Λ ` α, where α, β and ϕ
are formulas, Σ and Λ are arbitrary sets of formulas.

Finally, some words on the concept of automatic theorem proving (see Sec-
tion 2.3.5). A proof system does not provide a decision procedure, that is, the
provability relation is not a decidable relation. A proof system only provides
a possibility for a proof. An old dream in mathematics is to generate proofs
automatically. This dream got closer to reality in the age of computers. Al-
gorithms have to be constructed from calculi from which a derivation of the
required theorem is performed. Historically, resolution calculus was considered
as a base for automatic theorem proving. Since then, the devices of automatic
theorem proving have been multiplied.

1.4 On the connection of semantics and proof
theory

Now we turn to the connection between the two levels of logic, to the con-
nection between semantics and proof theory.

Let us consider a logic in semantic form and in syntactical form together,
with the same set F of formulas: in this way, we obtain a more comprehensive
notion of logic.

1.9 Definition A logic is the sequence

L =
〈
F , M, m, `C

〉
where the members of the sequence are the same as in the Definitions 1.1 and
1.7.

To obtain stronger results (e.g., proving completeness), it is necessary to
assume that the semantical part of L is a regular logic.

We list some concepts concerning the connection between the consequence
relation � and a provability relation `C .

1.10 Definition
A proof system C (or the relation `C , or the logic L) is strongly complete if
Σ � α implies Σ `C α for every set Σ of the formulas and every formula α. If
Σ `C α implies Σ � α for every Σ and α, then the proof system is said to be
strongly sound.

A proof system (or the relation `C , or the logic L) is weakly complete if � α
implies `C α for every formula α. In the opposite case, that is, if `C α implies
� α, then the proof system is said to be weakly sound.

tankonyvtar.ttk.bme.hu Ferenczi–Szőts, BME



1. ON THE CONCEPT OF LOGIC 15

Completeness theorems, i.e., theorems stating completeness together with
soundness for a given logic, are basic theorems of logics. Most of the important
logics have a kind of completeness property.

The strong completeness theorem is:

Σ � α if and only if Σ `C α

i.e. the semantical and the syntactical concepts of logical consequence are equiv-
alent (ConsΣ and Ded Σ coincide).

Remarks on completeness:
• The main idea of proof theory is to reproduce the semantical concept Σ � α

(or only the concept � α), using only finite manipulations with formulas
and avoiding the in-depth use of the theory of infinite sets included in
the definition of Σ � α. Strong completeness of a logic makes it possible
for us to use such a short cut (weak completeness makes it available the
reproduction for the case when Σ = ∅).

• Weak completeness and compactness imply strong completeness, as can
be shown.

• Another important version of strong completeness is:

A set Σ of formulas is consistent if and only if Σ has a model.

This version is the base of the famous model method for proving the relative
consistency of a system.

• Refutation systems impose a condition on a set Γ of formulas having no
model. Using this condition and the fact that Σ � α if and only if Γ =
Σ ∪ {¬α} has no model, we can prove Σ � α.

The following problem is of central importance in logic and it is closely
related to completeness and incompleteness:

Is it possible to generate in a recursive way the formulas of ThK, where K
is any fixed class of models, i.e., is there a recursive set Σ of formulas such that

ThK = Ded Σ (1.2)

There are two important special cases of (1.2), the cases when K =M and
K = {M}, where M is a fixed model andM is the class of the possible models.
If the logic has weak Completeness theorem, then in the case K = M the
answer is affirmative for the problem (1.2). But in the case K = {M}, if ThK is
strong enough (i.e. recursive relations can be defined in the theory), by Gödel
Incompleteness Theorem, the formula does not exist in general, so the answer is
negative for problem.

Setting out from a logic in the semantical sense (Definition 1.1) we can speak
of the (weak or strong) completeness of a logic without a concrete proof system.
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16 MATHEMATICAL LOGIC FOR APPLICATIONS

1.11 Definition A logic (in the semantical sense) is complete (weakly or
strongly) if there is a proof system C and a provability relation `C such that
supplementing the logic by `C the resulting logic is complete (weakly or strongly).

References to Chapter 1 are, for example: [11], [13], [30], [96].
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2. CLASSICAL LOGICS 17

Chapter 2

CLASSICAL LOGICS

In this chapter we mainly deal with first-order logic. The other logics treated
in this chapter are closely related to the first-order one. By investigating them
one can attain a better understanding about the limitations and the advantages
of first-order logic.

2.1 First-order logic

First-order logic (FOL) plays an exceptional role among logics. Any other
classical logic either has less expressive power (e.g. propositional logic) or does
not have the nice properties which first-order logic has. In a direct or an indirect
way almost every logic can be reduced to first-order logic in a sense (this does not
mean that other logics should be ignored). First-order logic is said to be “the
logic of classical mathematics”. Though mathematics also uses propositional
logic, second-order logic, etc. to a certain extent, the applications of these
logics can be somehow simulated by first-order logic. The language L of first-
order logic can be considered also as a collection of basic mathematical notations.
First-order logic is applied not only in mathematics but in almost every area of
Science, where logic is applied at all.

2.1.1 Syntax

The alphabet U of a first-order language L contains the connectives ¬, ∧, ∨,
→, ∀ and ∃ with ranks 1, 2, 2, 2, 2, 1 and 1, respectively, the equality symbol
=, a sequence x1, x2, . . . of individuum variables as logical symbols; furthermore
a sequence f1, f2, . . . of function symbols (including the individuum constants)
and a sequence P1, P2, . . . of relation symbols (including the propositional con-
stants) as non-logical symbols. The numbers of the arguments of the function
symbols and those of relation symbols are given by two sequences corresponding
to those of function and relation symbols (with members of the sequences being
natural numbers or 0, the two sequences being separated by a semicolon ;).

The symbols ¬, ∧, ∨, ∀, and ∃ correspond to the words “not”, “and”, “or”,
“for every”, “for some”, respectively. Defining a first-order language means
to specify the concrete (finite or infinite) sequences of its function symbols and
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18 MATHEMATICAL LOGIC FOR APPLICATIONS

relation symbols (and also the sequences of the number of their argument). This
double sequence is the type of the language.

For example, the alphabet of the language LR of ordered reals contains the
non-logical constants +, ·, −, 0, 1 and ≤ (the signs of addition, multiplica-
tion, minus, zero, one, less than or equal, respectively). The type of LR is
〈2, 2, 1, 1, 0, 0; 2〉 , where ; separates the arities of function symbols and that of
relation symbols.

Two remarks concerning the alphabet of L:
• Operations which can be expressed in terms of other operations can be

omitted from the alphabet. For example, → can be expressed in terms
of ¬ and ∨, therefore, → can be omitted. Sometimes extra symbols are
introduced for the truth values (“true” and “false”) into the logical lan-
guage.

• In first-order languages individuum constants and propositional constants
may form a separate category among non-logical symbols. Here we con-
sider them as function symbols and relation symbols with 0 argument,
respectively.

We define the expressions of first-order languages: terms and formulas.

2.1 Definition Terms are obtained by finitely many applications of the follow-
ing rules:

(i) the individuum variables and the individuum constants are terms;

(ii) if f is an n−ary function symbol and t1, . . . tn are terms, then ft1, . . . tn
is also a term.

2.2 Definition First-order formulas are finite sequences over the alphabet of
L, obtained by finitely many applications of the following rules:

(i) if P is a n−ary relation and t1, . . . tn are terms, then Pt1, . . . tn is a for-
mula,

(ii) t1 = t2 is a formula, where t1, and t2 are terms,

(iii) if α and β are formulas, then ¬α, ∧αβ, ∨αβ, → αβ, ↔ αβ are formulas,

(iv) if x is any individuum variable and α is a formula, then ∃xα and ∀xα are
formulas.

We note that first-order languages have the properties of unique readability
and decidability.

2.3 Definition Formulas occuring in the definition of a given formula are
called the subformulas of the given formula. A scope of a quantifier ∃ or ∀
in the formula ∃xα or ∀xα is the subformula α. A given occurrence of the
variable x in a formula is bounded if this occurrence is in the scope of some

tankonyvtar.ttk.bme.hu Ferenczi–Szőts, BME



2. CLASSICAL LOGICS 19

quantifier, in the opposite case this occurrence is said to be free. A variable x
is a free variable in a formula if it has a free occurence. A formula is said to be
a sentence (to be a closed formula) if it has no free variable.

The formulas in (i) and (ii) are called atomic formulas.
The concept of the substitution of a free variable by another variable can

also be defined, but, we skip the details.
Definitions (2.2) and (2.3) and the examples above use prefix notations for

the sake of brevity. But we use the usual infix notations when manipulating
formulas by hand (assuming that the language is extended by precedence rules
and brackets, well known from mathematical practice).

Examples for prefix expressions in the language LR of reals:
terms: +01, ·x1, ·x+ y0, −−1y1,
atomic formulas: ≤ ·xy1, ≤ 0 −1x, = ·0xx,
sentences: ∀x∃y = ·xy1, ∀x = ·x00, ∀x→ ¬ = x0→= ·x−1x1,
formulas with free variable: ∃y = ·xy1, → ¬ = x0→= ·x−1x1.

the infix versions of expressions above:
terms: 0 + 1, x · 1, x · (y + 0), y−1 − 1,
atomic formulas: x · y ≤ 1, 0 ≤ x−1, 0 · x = x,
sentences: ∀x∃y(x · y = 1), ∀x(x · 0 = 0), ∀x(¬x = 0→ x · x−1 = 1),
formulas with free variable: ∃y(x · y = 1), ¬x = 0→ x · x−1 = 1.

2.1.2 Semantics

2.4 Definition A model (or structure) A of type of L is a sequence

A =
〈
V A, PA1 , P

A
2 , . . . , f

A
1 , f

A
2 , . . .

〉
(2.1)

where V A is a non-empty set (the universe of A), PA1 , P
A
2 , . . . are concrete

relations on V A associated with the relation symbols P1, P2, . . . with arities given
in L, fA1 , f

A
2 , . . . are concrete functions on V A associated with the function

symbols f1, f2, . . . with arities given in L.

Briefly put, a model is a set V A equipped with certain relations (with func-
tions and individuum constants, in particular) on V A. The type of a model
(structure) is that of the language used. The superindices A′s in (2.1) are
omitted if misunderstanding is excluded.

The interpretations of the function-, constant- and relation symbols in L are
defined in (2.1). The interpretations of terms on A can be defined as usual.
However, the interpretation of variables is not determined by the model since
individuum variables are expected to denote any element of the universe. A
possible interpretation of the variables can be considered as a sequence q1,
q2, . . . , qi, . . . with members from the universe V , corresponding to the sequence
x1, x2 . . . , xi, . . . of the individuum variables, respectively. Thus q1, q2, . . . , qi, . . .
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20 MATHEMATICAL LOGIC FOR APPLICATIONS

(q for short) is the function on the natural numbers such that qi ∈ V and
xAi = qi, i = 1, 2, . . ..

We are going to define the interpretation of a formula α on A with free
variables. It will be defined as all the interpretations of the individuum variables
under which α is “true” on A. This set of interpretations of the individuum
variables will be called the “truth set of α in A” and it is defined by formula
recursion as follows:

2.5 Definition

(i) If Pt1, . . . tn is an atomic formula, including the individuum variables
xi1 , . . . xik , where P is P1 or P2 or P3 etc., then the truth set [Pt1, . . . tn]
of Pt1, . . . tn in A is the set{

q |
〈
tA1 (q), . . . , tAn (q)

〉
∈ PA

}
(2.2)

in particular the truth set [P (xi1 , . . . xik)] is{
q | 〈qi1 . . . qin〉 ∈ PA

}
. (2.3)

Also, if Pt1, . . . tn is t1 = t2 , then [t1 = t2] is

{q | t1(q) = t2(q)} .

(ii) If [α] and [β] are defined, then let the truth sets [¬α], [α ∧ β], [α ∨ β],
[α→ β] , [α↔ β] be V ω ∼ [α] , [α] ∩ [β] , [α] ∪ [β] , [¬α] ∪ [β] , [¬α] ∩
[¬β] ∪ [α] ∩ [β], respectively.

(iii) If [α] is defined, let

[∃xiα] =
{
q | qiv ∈ [α] for some v ∈ V

}
and

[∀xiα] =
{
q | qiv ∈ [α] for every v ∈ V

}
where qiv is obtained from q by substituting the ith member of qi with v.

We define the concepts of the meaning function and validity relation in terms
of the concept of truth set:

2.6 Definition The value of the meaning function m for the formula α and
model A is the truth set [α] of α in A where the partial ordering on V ω is set
inclusion.

It is easy to check that A � α if and only if [α] = V ω. The truth values
“true” and “false” are represented by V ω and ∅.

In particular, if α is a sentence (a closed formula), α is true on A if and
only if [α] = V ω. α is called to be true for an evaluation q of the individuum
variables (in notation A � α [q] ) if and only if q ∈ [α].
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2. CLASSICAL LOGICS 21

One of the main purposes in logic is to find the “true propositions” on a
given model, that is to find the theory of the model.

For example, let R =
〈
R,+R, ·R, 0R, 1R ≤R

〉
is the structure of the ordered

real numbers, where R is the set of real numbers, and the operations, constants
and the relation ≤R are the usual ones. The type of R is the same as that of
LR. The theory ThR of the reals consists of all the true propositions on R,
formulated in terms of LR.

Some comments on these definitions:
• To understand the intuition behind the concept of a truth set, see the

following example. Let us consider the formula x3 ≤ x4. The truth set of
this formula is:

{q | q ∈ V ω, q3 ≤′ q4, q3, q4 ∈ V } (2.4)

where ≤′ is the interpretation of ≤.

One can see that only the third and fourth members of the q’s play a role
in (2.4). Therefore, we can rewrite (2.4) in this way:

{〈q3, q4〉 | q3 ≤ q4, q3, q4 ∈ V } .

In general, since every formula has only finitely many free individuum
variables, a truth set “depends on only finitely many members of the
sequence of the individuum variables”. Nevertheless, for the sake of uni-
formity, we assume that formally the relations corresponding to formulas,
i.e. the truth sets are infinite dimensional. From a geometrical point of
view this means that a truth set corresponding to a formula with n free
variables can be seen as an infinite dimensional “cylinder set” based to an
n-dimensional set.

• Notice that “the truth” of a proposition is encoded in our Definition(2.5) as
the relation ∈, in a sense: A � α [q] if and only if q ∈ [α]. This corresponds
to the general definition of relations: a relation R is called “true” in a point
q if and only if q ∈ R.

• We note that there is another, more traditional way to define the relation
A � α, without the concept of truth sets.

• Notice that (iii) in Definition (2.5) reflects exactly the intended meaning
of quantifiers “for every element of the universe” or “for some elements of
the universe”. Infinite unions or intersections also can be used to define
quantifiers.

• We treat first-order logic “with equality”. This means that equality = is
introduced in the language as a logical symbol and by definition, it denotes
the identity relation in every model.

• Notice that if the quantifiers were omitted from the language, the expres-
sive power of the logic would be much weaker (we would obtain a kind of
propositional logic).
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22 MATHEMATICAL LOGIC FOR APPLICATIONS

2.1.3 On proof systems and on the connection of seman-
tics and proof theory

Some important positive results for first-order logic:

2.7 Theorem First-order logic is weakly complete and sound, so � α if and
only if ` α for some provability relation `.

In other words the theory of first-order logic is axiomatizable.

2.8 Theorem First-order logic is compact.

A consequence of the theorems above is: First-order logic is strongly com-
plete.

The so-called Hilbert proof system, for example, is a strongly complete proof
system for first-order logic. But there are many other well-known strongly com-
plete proof systems for first-order logic: deduction systems (natural deduction,
Gentzen’s sequent calculus, etc.) and refutation systems (resolution, analytic
tableaux), too.

The axioms and inference rules of the Hilbert proof system:

2.9 Definition Axioms for first-order Hilbert system (Hilbert calculus)

(i) α→ (β → α).

(ii) (α→ (β → δ))→ ((α→ β)→ (α→ δ)).

(iii) (¬α→ ¬β)→ (β → α).

(iv) ∀x(α→ β)→ (α→ ∀xβ), where x is not free in α.

(v) ∀xα(. . . x . . .)→ α(. . . x/t . . .), where . . . x . . . denotes that x is a free vari-
able in α, and t is such a term that the free variables occuring in t remain
free after applying the substitution x/t.

(vi) x = x,

(vii) x = y → t(. . . x . . .) = t(. . . x/y . . .).

(viii) x = y → α(. . . x . . .) = α(. . . x/y . . .).

The axioms (vi)-(viii) are called the axioms of equality.

2.10 Definition The inference rules are:
〈〈Φ→ Ψ,Φ〉 ,Ψ〉 ( modus ponens),
〈〈Φ〉 ,∀xΦ〉 ( generalization).
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We must not confuse the relation � and the connective → but of course
the deduction theorem establishes an important connection between them. The
deduction theorem says that σ � α if and only if � σ → α , where σ and α are
sentences. Among others, as such, the investigation of the consequence relation
σ � α can be reduced to the investigation of the special relation � σ → α. This
result can be generalized from σ to a finite set Σ of closed formulas.

There are famous limitations of first-order logic:
• First-order logic is not decidable (by Church theorem). This means that

the theory of the deducible sentences (i.e. ThM, where M is the class of
first-order models) is not decidable.

• If a first-order theory is “strong” enough (i.e. recursive relations can be
interpreted in the theory), then the theory is not axiomatizable, by Gödel’s
first Incompleteness Theorem; as a consequence, not decidable either (un-
decidability can be derived from Church theorem).

Another version of incompleteness is the following: if an axiomatizable,
consistent first-order theory is “strong” enough, then it is not complete.

• In general, a modelM is not determined by its theory ThM (by Löwenheim–
Skolem theorem, see Section 3.4.1).

• If a theory is strong enough, then its inconsistency cannot be proven inside
this theory (by Gödel’s second Incompleteness Theorem).

References to Section 2.1 are, for example: [51], [23], [25].

2.2 Logics related to first-order logic

In this section we are concerned with propositional logic as a restriction,
and with second-order logic as an extension of first-order logic, respectively.
Propositional logic is also called as 0th order logic (we do not discuss nth order
logics, in general). Finally, we survey many-sorted logic which is a version of
first-order logic (it is equivalent to that, in a sense).

2.2.1 Propositional Logic

Classical propositional logic is a base for every logic. It has many nice
properties but its expressive power is not very strong. Nevertheless, there are
many applications of this logic. It plays a central role in logical design (e.g. at
designing electrical circuits) or at the foundations of probability theory (see the
concept of “algebras of events”, Section 4.2), among others.

We introduce the language and the semantics of propositional logic indepen-
dently of first-order logic.

The alphabet of the language contains the logical connectives ¬, ∧, ∨, →,
↔ and the infinite sequence P1, P2, . . . of propositional symbols as non-logical

symbols.
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2.11 Definition Formulas are obtained by finitely many applications of the
rules below:

(i) the propositional constants are formulas,

(ii) if α and β are formulas, then ¬α, ∧αβ, ∨αβ, → αβ, ↔ αβ are also
formulas.

Let P denote the set of propositional constants.

2.12 Definition A model M in propositional logic is a mapping from the set
of propositional constants to a set of two elements {t, f} of truth values, that
is a mapping gM : P → {t, f}.

Obviously {t, f} can be considered with the order t < f .

2.13 Definition ( meaning function m(α,M) for a fixed model M, m(α) for
short)

(i) if α is a propositional constant, then m(α) = gM (α)

(ii) if m(α) and m(β) are defined, then

m(¬α) = t if and only if m(α) = f ,

m(α ∧ β) = t if and only if m(α) = t and m(β) = t,

m(α ∨ β) = f if and only if m(α) = f and m(β) = f ,

m(α→ β) = f if and only if m(α) = t and m(β) = f ,

m(α↔ β) = t if and only if m(α) = m(β).

Propositional logic is obviously a regular logic.
It is easy to check that the validity relation � (or truth evaluation) satisfies

the following one: M � α holds if and only if m(α) = t holds.
It is customary to define m by a truthtable. There are also other ways

to define the meaning function, for example, as a special case of the meaning
function defined in the first-order case or to introduce it as a homomorphism
into Kripke models (see later in Section 3.1) or using the Boolean algebra of two
elements (see in Section 4.1).

As regards the proof theory of propositional logic, all the proof systems men-
tioned in the first-order case have a version for propositional logic.

All the nice properties of first-order logic – strong completeness, compact-
ness, deduction theorem, etc. – are true for propositional logic. Beyond these
common properties there is an important difference between first-order logic
and propositional logic: propositional logic is decidable. The reason of decid-
ability is the finite character of the definition of truth evaluation (and that of
the meaning function): in propositional logic there are no variables running over
an infinite set (there are no quantifiers).
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There is a close connection between propositional logic and the part of first-
order logic which does not include variables and quantifiers. In this fragement
terms are built from constants and function symbols, step by step. Such terms
are called ground terms. Formulas are built as in first-order logic, but instead of
terms, only ground terms are used in their definition. Formulas defined in this
way are called ground formulas. Atomic ground formulas can be interpreted in
first-order models. Since there are no variables, all of the ground formulas are
true or false. The meaning function of a compound formula can be defined in
the same way as for propositional logic. This latter kind of logic is widely used
in resolution theory.

2.2.2 Second order Logic

The same way as first-order logic is an extension of propositional logic,
second-order logic is an extension of first-order logic. In first-order languages,
quantifiers apply only to individuum variables. If we need quantifiers to apply
to relations or functions in a sense, we have to use second-order logic. We shall
see, that the expressive power of second-order logic is stronger than that of
first-order logic but the nice properties of first-order logic are not inherited.

We introduce second-order logic as an extension of the first-order one and
only the differences will be mentioned.

The alphabet of first-order logic is extended by two new kinds of symbols,
those of relation and function variables. The difference between relation con-
stants and relation variables (function constants and function variables) is sim-
ilar to that of individuum constants and individuum variables.

So the alphabet of second-order logic is such an extension of the first-order one
which contains the following new logical symbols: for every natural number n a
sequence of relation variables Xn

1 , X
n
2 , . . . and a sequence of function variables

Un1 , U
n
2 , . . . with rank n (as well as the usual sequences of individuum variables,

relation constants P1, P2, . . . and function constants f1, f2, . . . that are already
part of the languages).

The definitions of second-order terms and second-order formulas are also
extensions of those of first-order ones. The following additional rules are stipu-
lated:

For terms:
• If t1, . . . tn are terms and Un is a function variable with rank n, then
Unt1, . . . tn is a term.

For formulas:

• If t1, . . . tn are terms and Xn is a relation variable with rank n, then
Xnt1, . . . tn is an atomic formula.

• If α is a formula and Y is any (individuum-, relation- or function-) variable,
then ∀Y α and ∃Y α are also formulas.

For example, the formalization of the property “well-ordered set” is a second-
order formula (an ordered set is well ordered if every non-empty subset has a
minimal element):

∀X(∃z(z ∈ X → ∃y(y ∈ X ∧ ∀z(z ∈ X → y ≤ z))))
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where X denotes a unary relation variable.

As regards the semantics of second-order logic, the concepts of first-order
model and second-order model coincide.

The definitions of the meaning function and the validity relation (truth on a
model) are analogous with the first-order case, only some additional conditions
are needed.

Proof theory can also be defined for second-order logic, but we do not go into
the details here.

Most of the nice properties of first-order logic fail to be true for second-order
logic. For example, completeness and compactness fail to be true. Since there
is no completeness, the role of proof theory is different from that of first-order
logic, it is “not equivalent” to the semantics.

Remember that we prefer decidable calculi. Undecidable inference rules can
be defined for variants of second-order logic to make them complete.

Second order logic is much more weaker than first order logic, but its ex-
pressive power is considerable. Second-order logic occurs in mathematics and at
applications. There are important properties (second-order properties) which
can be formalized only by second-order formulas. Such properties are among
others: “the scheme of induction”, “well-ordered set”, “Archimedian property”,
“Cantor property of intervals”, etc. Second order properties of graphs are im-
portant in complexity theory. Sometimes, second-order formulas are replaced
by infinitely many first-order ones. But the expressive power of the latter is
weaker than that of second-order logic.

We list some important properties of classical logics in the following table:

logic Axiomatizability Decidability Compactness
propositional yes yes yes
1st order yes no yes
2nd order no no no

Here axiomatizability means that the relation � (semantic consequence) is
recursively enumerable, decidability means that � is recursive (or equivalently,
ThM is axiomatizable or decidable, whereM is the class of first-order models).

n-th order logics (n ≥ 3) are generalizations of second-order logic. Their
logical status is similar to that of the second-order one. The approach in which
all the n-th order variables (n = 0, 1, 2, . . .) are considered simultaneously is
called type theory. Type theory can be considered as “ω-order logic”.

An extraordinary important result (due to Leon Henkin) is in higher order
Logic that there is a semantics for the type theory such that the logic obtained
in this way is complete. This semantics is sometimes called internal or Henkin’s
semantics, and the models of this semantics are called weak models or internal
models. The idea of this semantics is that only those evaluations of the variables
are defined in the model which are necessary for completeness. In this way, a
complete calculus can be defined also for second order logic. Furthermore, this
semantics applies, e.g., in non-standard analysis, algebraic logic, etc.
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2.2.3 Many-sorted logic

Many-sorted logic is a version of first-order logic. Quantifiers and the argu-
ments of the functions and relations are restricted in a sense. Many-sorted logic
can be applied on the areas, where non-homogeneous structures occur. Such
area is, for example, the theory of vector spaces. Vector space can be defined as
a so-called “two-sorted” structure consisting of the set of vectors and the set of
scalars. We can use many-sorted logic when we would have to use higher-order
logics or non-standard analysis, among others. It is widely used in the theory
of computer science, in defining abstract data types or in dealing with typed
programming languages.

When defining many-sorted logic we set out from first-order logic. Let us fix
a non-empty set I, the elements of which are called sorts.

2.14 Definition
The alphabet of many-sorted logic has

the usual logical symbols: ¬, ∧, ∨, →, ↔, ∀ and ∃, further
the individuum variables and the equality are “indexed” by values from I (by

the sorts), so for every i (i ∈ I) we have
a sequence xi1, x

i
2, . . . of individuum variables,

an equality symbol =i.
There is a finite or infinite sequence f1, f2, . . . of function symbols and a

sequence P1, P2, . . . of relation symbols as in ordinary first-order logic.
Further, with every relation symbol P a finite sequence of sorts 〈i1, . . . in〉

(i1, . . . in ∈ I) is associated, where n is the rank of the relation symbol. Sim-
ilarly with every function symbol f a finite sequence of sorts 〈i1, . . . in, in+1〉
(i1, . . . in ∈ I) is associated, where n is the rank of f and in+1 is called the sort
of the value of f .

Terms of sorts are obtained by finitely many applications of the following
rules:

(i) the individuum variables and the constant symbols of their sorts are terms,

(ii) if the sorts of the terms t1, . . . tn are i1, . . . in, respectively, and f is a
function symbol of sorts 〈i1, . . . in; in+1〉, then ft1, . . . tn is also a term of
sort in+1.

The definition of formulas is the usual recursive definition, ensuring consis-
tency between sorts. Only the definitions of atomic formulas need to be modified
somehow:

If R is a relation symbol of sorts 〈i1, . . . in〉 and t1, . . . tn are terms of sorts
i1, . . . in respectively, then Rt1 . . . tn is a formula.

2.15 Definition A many-sorted model M is a sequence which contains
a collection {Vi | i ∈ I} of sets (corresponding to the universe of a first-order

model)
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a subset PM ⊆ Vi1×. . .×Vin for every relation symbol P with sort i1, . . . in in
the language,

a function fM : Vi1 × . . . × Vin → Vin+1
for every function symbol f with

sorts i1, . . . in, in+1 in the language.

The definitions of the meaning functionm and the concept of validity relation
are obvious (taking into account that the variable xik runs on Vi).

Many-sorted logics can be transformed into first-order logic. Let us intro-
duce a new relation symbol Ri for every sort i to perform the following trans-
lation: The translation of a sentence ∃xiα is ∃x(Ri(x)∧ α), and that of ∀xiα is
∀x(Ri(x) → α). The quantifiers in these formulas are often called bounded
quantifiers.

Conversely, it is often simple to translate first-order formulas to many-sorted
formulas.

For example, we often need first-order formulas of the form ∀x(P1x→ β) or
∃x(P1x ∧ β). They can be converted into many-sorted formulas ∀x1β or ∃x1β
introducing the sorts indexed by 1 and 2 and the variables x1 and x2, where
x1 runs over the set of sort 1 that is over elements of the original universe with
property P1.

Because of the close connection with first-order logic, all properties of first-
order logic remain true for many-sorted logic.

References to Section 2.2 are, for example: [11], [13], [51], [74], [120].

2.3 On proof theory of first order logic

Proof theory plays an important role in many applications of logic, e.g. in
logic programming, in program specifications, etc. In this section we sketch two
proof systems: the deduction system called natural deduction and the refutation
system called resolution. This latter is the base of the PROLOG logic program-
ming language and historically, it was the base of automatic theorem proving.

2.3.1 Natural deduction

The origin of this calculus goes back to [76], and we present it in the form as
it is presented in [135]. This calculus reflects the construction of mathematical
proofs.

First we treat the inference rules of the system. For any logical symbol there
are inference rules of two types:
• introduction rule: this rule produces a formula from formulas in terms of

logical symbol, like α β
α∧β ;

• elimination rule: this rule dissects a formula eliminating a logical symbol,
like α∧β

α .
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∧I :
α β

α ∧ β ∧E :
α ∧ β
α

α ∧ β
β

∨I :
α

α ∨ β
β

α ∨ β ∨E :

[α] [β]
⇓ ⇓

α ∨ β γ γ

γ

→ I

[a]
⇓
β

α→ β
→ E

α α→ β

β

¬I

[α]
⇓
⊥
¬α ¬E

[¬α]
⇓
⊥
α

⊥I
α ¬α
⊥ ⊥E

⊥
α

∀I :
β(xi/aj)

∀xiβ
∀E :

∀xiβ
β(xi/t)

∃I β(xi/t)

∃xiβ
∃E :

β[xi/aj ]
⇓

∃xiβ γ

γ

= I
t = t

= E
t1 = t2 α

α(t1/t2)

Table 2.1: Rules of Natural Deduction

The following table includes the inference rules of Natural deduction. If C
is a connective or a quantifier, the corresponding elimination and introduction
rules are denoted by CE and CI respectively.

The syntactic vocabulary is expanded by the symbol ⊥ to denote falsity,
and by an enumerable set of constants {ai}i∈ω. In the table t, t1, t2 are terms
of the expanded language. In rule =E one is allowed to substitute only some
occurrences of t1 by t2, in the other cases xi/t means that all occurrences of xi
are to be substituted by t. In rules ∀I and ∃E the constant aj is used with the
condition that it occurs neither in the assumptions of the derivation of β[xi/aj ]
or of the subderivation β[xi/aj ]⇒ γ respectively, nor in the conclusion γ.

As examples we explain the rules ∨E and →I from the table

The meaning of the ∨E rule is: If the premis is α ∨ β, and also a proof of
γ from α, and a proof of γ from β are given, then we can conclude γ. The
formalized version of this inference has also to include proofs of γ from α and
β respectively. “The proof of γ from α” is denoted by [α] =⇒ γ (the notation
will occur vertically in the rules). The two proofs of γ depend on α and β
respectively, however neither α nor β is a premis of the whole inference. So
if the two ”subproofs” gets into the proof of γ from the disjunction α ∨ β,
assumptions α and β have to be discharged (cancelled). Brackets [] denote
discharging.

Let us consider the of→I rule. The elimination rule for implication is Modus
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Ponens, but how to prove α→ β? The meaning of the →I rule is the following:
if there is a derivation of β from α (i.e. [α]⇒ β ) then α→ β can be considered
to be proved. By Deduction Theorem this rule is expected to be correct. Clearly
whereas α is a premise of the derivation of β, α is not a premise of α → β, so
α has to be discharged.

If a rule includes the discharge of a formula, only some occurrences have to
be discharged, maybe none of them (so discharge is always a possibility, but not
an obligation).

The ¬E rule, the formal version of “reductio ad absurdum”, is sometimes
questioned in mathematics as well as in logics. If it is omitted, intuitionistic
logic is obtained. This rule is equivalent to the “excluded middle” principle. If
even the rule ⊥E is omitted, then proof system of the so called minimal logic is
obtained.

In Natural Deduction a proof of a formula α from a set of formulas Σ has a
tree structure. The root of the tree is labeled by formula α, the elements of Σ
may label some leaves, and some leaves may be labeled by a discharged formula.
The other nodes can be constructed using the inference rules. We do not define
here the structure of Natural Deduction proofs in an exact way, but two proofs
are given as examples; namely the proofs of the universal validity of formulae
.α→ ¬¬α and ∃xi¬α→ ¬∀xiα.

To understand the derivations the discharged formulae and the step when
they are discharged are marked by the same index.

[¬α]1 [α]2

⊥
⊥I

¬¬α
1 ¬I

α→ ¬¬α
2 →I

In the second example elimination rules are also used. Notice that first the
elimination rules are used, and after them the introduction rules.

[∃xi¬α]3
[¬α(xi/a)]1

[∀xiα]2

α(xi/a)
∀E

⊥ ⊥I

⊥
1∃E

¬∀xiα
2¬I

∃xi¬α→ ¬∀xiα
3 →I

The Natural Deduction proof system is complete for the semantical conse-
quence relation of first order classical logic. If the ¬E rule is omitted, it is
complete for the intuitionistic semantical consequence relation.

An important problem of proof theory is to establish the existence of the so
called normal form of a proof, that is, the simplest derivation. Note that the
inference rules have a kind of symmetry - the elimination and introduction rules
can be considered as the inverses of each other. The application of an elimination
rule to a formula obtained by its inverse introduction rules is superfluous. In a
normal form such pairs are not allowed. More formally, each “path”1 of a normal
derivation consists of a (maybe empty) sequence of applications of introduction
rules being followed by a (maybe empty) sequence of applications of elimination
rules.

1The definition of the notion of path in a Natural Deduction proof is complicated, that is
why we do not discuss it here.

tankonyvtar.ttk.bme.hu Ferenczi–Szőts, BME
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The following proposition (the basic theorem of proof theory) holds: Every
derivation can be transformed into a normal form.

2.3.2 Normal forms

To prepare the ground for the discussion of resolution we survey the normal
forms of first order logic. Such “canonical” forms make the manipulation of
formulae easier.

2.16 Definition (prenex normal form) If a formula α is of the form
Q1x1 . . . Qnxnα

′, where Qi can be universal or existential quantifier, and α′

is quantifier free formula, it is said to be in prenex normal form.

The sequence of quantificationsQ1x1 . . . Qnxn is called the prenex (or prefix),
and formula α’ is called the matrix (or the kernel) of α.

For every first order formula there is an equivalent one in prenex normal
form. We remark that prenex normal forms of a formula are not unique.

The next type of normal forms we consider is a simplification of the prenex
normal form by eliminating existential quantifiers.

Notice that in a given model the truth of ∀x1∃y1α means the existence of
a function Y1(x) such that ∀x1α(y1/Y1(x1)) is true in this model. The under-
lying idea of universal Skolem normal form is that the language is expanded
by function a function symbol to denote function Y1. The function symbols so
introduced so are called Skolem functions.

2.17 Definition (Skolem normal form) Let α be a sentence in prenex normal
form. The following algorithm generates the Skolem normal form of α:

1. If the prenex of α consists of only universal quantifiers, the algorithm
stops, α is already in Skolem normal form.

2. Let α be of the form ∀x1 . . . ∀xj∃yiβ for some j and i. Let us expand the
language by an j-ary function symbol Yi which do not occur in the alphabet
of the language, and let α be substituted by ∀x1 . . . ∀xjβ(yi/Yi(x1, . . . xj)).

3. Go to 1., and repeat these steps.

Notice that if j = 0 in step 2., that is α is ∃y1β, then the Skolem function
turns out to be a constant function.

If in the definition the role of universal and existential quantifiers are re-
versed, the so called existential Skolem normal form is obtained.

Skolem normal form simplifies the prenex form, however equivalence to the
original formula does not hold (they are only co-satisfiable):

2.18 Theorem (Skolem normal form) The Skolem normal form of α is satisfi-
able if and only if α is satisfiable.
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The following definition provides a normal form for the matrix of a prenex
formula.

2.19 Definition (conjunctive normal form) If a quantifier free formula β is of
the form (l11 ∨ . . . ∨ l1n1

) ∧ . . . ∧ (lm1 ∨ . . . ∨ lmnm
), where lji are literals (atomic

formulae or negations of an atomic formulae), β is said to be in conjunctive
normal form.

The disjunctions li1∨. . .∨lini
are called clauses (a finite disjunction of literals).

A clause can be considered as the set of its literals.
Just like in the case of prenex normal form, for quantifier free formula there

is an equivalent one in conjunctive normal form. Straightforward algorithms
can be constructed to generate normal forms, but we do not discuss the details
of them. We remark that the conjunctive normal forms of a formula are not
unique. An appropriate concept of disjunctive normal form can also be defined,
where the roles of ∨ and ∧ are exchanged.

If the matrix of a formula in Skolem form is rewritten into conjunctive nor-
mal form, the so called strong Skolem form is obtained. Strong Skolem form
syntheses all the other normal forms. The prefix can be moved into the matrix
because of the conjunctive nature of the matrix:

∀xC1(x) ∧ . . . ∧ ∀xCm(x). (2.5)

A strong Skolem form can be represented by the set {C1, . . . Cm} of the
clauses in its matrix. Here with a clause C we have to associate the universally
quantified formula ∀x C.

Notice that we can obviously achieve that the individuum variables in the
respective clauses C1, . . . Cm in 2.5 are disjoint sets. This procedure is called
separating the variables.

2.3.3 Reducing the satisfiability of first order sentences to
propositional ones

For the semantics of propositional logic there are effective ways to decide
the consequence relation. Moreover it is quite easy to construct algorithms to
compute it on different architectures. Although most practical problems require
the application of first order logic, there do not exist effective algorithms for
FOL (while there are such algorithms for propositional logic) This is why the so
called Herbrand’s theorem is of great importance. Herbrand’s theorem reduces
the unsatisfiability of a first order formula set to the unsatisfiability of a set of
ground formulae, which can be considered propositional ones.

Let α be a quantifier free formula. A ground instance of α is a formula
obtained by substituting variable free terms for the variables in α. The logic
of ground instances is called zero order logic. Zero order logic is equivalent
to propositional logic, since there is a one-to-one map between the set of the
ground instances of atomic formulae and the set of the predicate letters.

Our goal is now is the following: for any first order formula set Σ, find a
zero order one Σ0 such that Σ is unsatisfiable if and only if Σ0 is.
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2. CLASSICAL LOGICS 33

Suppose that language L does not include equality. Let α be of Skolem form
∀x1 . . . ∀xmα’. Let αgj denote a ground instance of α. A version of Herbrand’s
theorem is:

2.20 Theorem (Herbrand’s theorem) ∀x1 . . . ∀xmα′ is unsatisfiable if and only
if there are ground instances α′g1 , . . . , α

′g
n of α′ such that the set {α′g1 , . . . , α′gn }

is unsatisfiable.

It is easy to check that there is an equivalent form of Herbrand’s theorem
concerning semantic consequence. Assume that the elements of Σ are of univer-
sal prenex forms and β is of existential prenex form. In this case Σ � β holds if
and only if Σg � βg1 ∨ . . .∨ βgm holds, where Σg includes the ground instances of
the matrices of Σ, and βgi runs over all the ground instance of the matrix of β
or every (0 < i ≤ m).

Herbrand’s theorem can be used to extend propositional calculi to a first
order ones - this is called “lifting” the calculus. The simplest one is outlined
below: it has the property of completeness because of Herbrand theorem.

Let Σ be a set of quantifier free first order formulas and consider the set
of ground instances Σg of Σ. To prove the unsatisfiability of Σ execute the
following procedure:

2.21 Definition (Davis–Putnam method) 2

1. Let Ψ be a finite subset of Σg.

2. Try to prove the unsatisfiability of Ψ by propositional logic.

3. If it is proved, let us terminate the procedure. If not, let the new Ψ a
superset of Ψ in Σg and go to step 2.

Since propositional calculi are decision calculi, the procedure terminates, if the
sets of ground instances are choosen with care (e.g. ground instances of every
formula in Σ are selected in some steps). The algorithm is non-deterministic:
the selection of the and the ground substitutions in step 2 is not determined. A
search strategy is, however, expected to define a deterministic algorithm.

Proof procedures based on Davis–Putnam method were applied in theorem
provers (e.g. in resolution), but they proved to be hopelessly ineffective.

There is another, more effective method of lifting: using metavariables. If
a human agent uses a calculus that is based on Herbrand’s theorem, (s)he has
a plan and maybe a good hypothesis what term has to be used when ground
instances are generated. However a search strategy of a proof procedure is
almost a blind search - that is why Davis–Putnam method is so ineffective. Let
us recall the ∀E rule: ∀xiβ

β[t/xi]
. Here t is a metavariable standing for a term of

the object language. If infinitely many ground terms are represented by a single
metavariable in a proof procedure, then the procedure gets more effective. Later
the process of finding the proof may create constraints for the metavariables,
and the proper terms can be constructed. If this method is used, the syntactic

2This method was introduced for resolution calculus, however it can be used for any propo-
sitional calculus.
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vocabulary needs to be supplemented by a set of metavariables. Lifting by
metavariables can be applied any propositional calculus if it is applied to ground
formulae.

2.3.4 Resolution calculus

Resolution is a relatively simple calculus, but the price of this simplicity is
that the calculus can be applied directly to strong Skolem normal forms only.
So strong Skolem normal form has to be constructed before starting resolution.

We noticed in the section on normal form that every formula can be repre-
sented by a finite set of clauses using the strong Skolem form of the formula.
Moreover we shall see, during the resolution procedure only clauses are used,
so the procedure resolution is, “closed” with respect to clauses. This is the
background of the terminology: resolution uses the “language of clauses”.

Resolution is a refutation calculus, where we apply a kind of indirect ar-
gument, that is, the set Σ of premises is supplemented by the negation of the
formula α to be proven, and we aim at getting contradiction. Now we survey
the preparation, needed to start the proof of Σ � α using resolution calculus:

1 Form Σ′ = Σ∪{¬α}.

2 Convert the sentences in Σ′ into strong Skolem normal forms.

3 Form the set of clauses occurring in these normal forms and separate the
sets of the individuum variables occurring in them so that a set of clauses
S is obtained.

Remember that a clause can be considered as a set of literals, therefore it is
meaningful to speak about the clause consisting of one literal (called unit clause),
and the empty clause (denoted by �) too. The empty clause is unsatisfiable,
since a clause is true in a model iff there is a literal in the clause that is true
in the model. Therefore � can be considered as the symbol of falsityin the
language.

An important notion connected with resolution is the complementary pair
of literals: an atomic formula and its negation forms a complementary pair. It
is not important which element of the pair is the atomic formula - therefore the
notation l, ¬l is introduced for complementary pair. C \ {l} will denote the
clause originated from the clause C omitting the literal l from the disjunction
in C.

First we discuss resolution for propositional logic.

2.22 Definition (propositional resolution rule) Clauses C1, C2 can be resolved
if there are literals l1 ∈ C1, l2 ∈ C2 such that l1, l2 form a complementary pair3.
In this case their resolvent is Res(C1, C2) is C1 \ {l1} ∪ C2 \ {l2}.

Res(C1, C2) can be denoted by Resl1 ,l2 (C1, C2) too, and it is called a re-
solvent with respect to the complementary pair l1 and l2. C1, C2 are called the

3It is said that C1, C2 are clashing clauses or clashes on the complementary literals.
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parents of resolvent Res(C1, C2). Clearly the resolvent of a complementary pair
is the empty clause.

It can be easily checked that {C1, C2} is satisfiable if and only if Res(C1, C2)
is. This fact implies that the resolution rule alone constitutes a sound calculus.

2.23 Definition (resolution proofs) A clause C can be proved from a set S of
clauses by propositional resolution if there is a finite sequence C1, C2 . . . Cn =
C of clauses such that for all 1 ≤ i ≤ n Ci ∈ S or Ci = Res(Cj , Ck) for
some j, k < i.

2.24 Theorem (completeness of propositional resolution) A set S of proposi-
tional clauses is unsatisfiable if and only if the empty clause � can be derived
by propositional resolution from S.

Resolution incorporates several well-known inference rules, as the following
table shows.

parent clauses resolvent simulated rule
{P}, {¬P,Q} {Q} Modus Ponens: P, P → Q ` Q
{P}, {¬P} � ¬elimination: P,¬P ` ⊥

{¬P,Q}, {r,¬Q} {¬P, r} chaining: P → Q, Q→ r ` P → r

Now let us turn to first order resolution. Resolution is define for the first
order logic where = is not a logical symbol, so the axioms of equality are not
logical axioms.

The success of first order resolution is due to the first order resolution prin-
ciple. A special way of lifting has been worked out for the resolution. It is
known that if a pair of first order clauses has a pair of resolvable ground in-
stances, usually there are infinitely many such pairs. The goal is to construct a
clause as “first order resolvent” that can represent as MANY ground resolvents
as possible - maybe all of them; as the scheme below shows:

C1, C2 7−→ “first order resolution” → Res1(C1, C2)
↓ ↓

substitution substitution

↓ ↓
Cg1 , C

g
2 7−→ “ground resolution” → Resg(C1, C2)

First some definitions connected with substitutions for the individuum vari-
ables have to be given. If p is an expression in L and σ is a substitution for
some free variables, then σ applied to p will be denoted by pσ.

2.25 Definition (unifier) Given two expressions p1, p2, a unifier of them is a
substitution σ that it makes them identical: p1σ = p2σ. If there is a unifier of
p1, p2, they are said to be unifiable.

A natural partial ordering between substitutions can be defined: σ1 is more
general than σ2 if and only if there is a substitution λ such that λσ1 = σ2.
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2.26 Definition (most general unifier) A substitution µ is called most general
unifier (mgu) of expressions p1, p2 if and only if it is a unifier of p1, p2, and it
is the most general among the unifiers of p1, p2, that is, for any unifier σ of p1,
p2 there is a substitution λ such that λµ = σ. The most general unifier of p1,
p2 is denoted by mgu(p1, p2).

2.27 Theorem If two expressions are unifiable, they have a most general uni-
fier.

We emphasize that it is decidable whether two expressions are unifiable or
not, moreover the most general unifier is computable.

Notice that deciding that two terms is unifiable means deciding that the two
terms may denote the same element of Herbrand universe - that is, they have
equal instances too. This fact is the basis of the following definition:

2.28 Definition Literals a1 and ¬a2 constitute a first order complementary
pair if and only if a1 and a2 are unifiable.

2.29 Definition (first order resolution) Clauses C1, C2 can be resolved if and
only if there are literals l1 ∈ C1, l2 ∈ C2 such that l1, l2 form a first order
complementary pair. Let µ = mgu(l1,¬l2). Then Res(C1, C2) is (C1µ\{l1}µ)∪
(C2µ \ {l2}µ).

The first order resolution rule alone does not constitute a complete calculus,
as the following example shows. Let us consider the clause set

{{r(x1, x2), r(y1, y2)}, {¬r(x3, x4),¬r(y3, y4)}}

which is clearly unsatisfiable. However, first order resolution generates only the
variants of the clause {r(x5, x6),¬r(y5, y6)} and of the original clauses. There-
fore first order resolution has to completed by a new rule.

2.30 Definition (factorization) A clause can be factorized if there are two
unifiable literals l1, l2 in C. Then a factor of C is Cµ, where µ = mgu(l1, l2).

Cµ can be denoted by Cl1 ,l2 and it is called a factor of C with respect to the
literals l1 and l2.Notice that the main difference between first order resolution
and factorization is that the first one concerns two clauses while the second one
concerns only one.

The concept of proof for first order resolution is analogous to propositional
resolution but the clauses occurring are first order clauses, the resolvent is first
order one and the definition must be supplemented by the condition that Ci in
the proof can also be a factor of Cj for some j < i .
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The inference rules first order resolution and factorization introduced above
are called together as unrestricted binary resolution (in short binary resolution).

Now we state the completeness theorem for first order resolution:

2.31 Theorem (completeness of first order resolution) A set S of first order
clauses with pairwise disjoint sets of individuum variables is unsatisfiable if and
only if the empty clause � can be derived by binary resolution from S.

2.3.5 Automatic theorem proving

Traditionally calculus has been considered a tool to test whether an argu-
ment is a correct proof. However, with the development of computing there has
emerged the demand to create programs that generate proofs, that is, automatic
theorem provers. The automatic theorem provers have been intended to be used
in problem solving, program verification as well as to prove mathematical the-
orems.

We emphasize that, in general, a proof system does not provide a decision
procedure, that is, the provability relation is not a decidable relation.A proof
system is not an algorithm, but it may be extended to an algorithm. It only
provides a possibility for a proof. Clearly, simple procedures can be written for
the inference rules - they can be considered to be rewriting rules too4. However,
to organize these procedures- that is the inference rules - into a process that
proves theorems, we have to step outside logic. The automatic theorem provers
work in the same way: the consequences of the input set of sentences are gen-
erated in some order, and the program tests whether the theorem to be proved
is among them. R. Kowalsky ingenuity created a conceptual framework for this
situation introducing the notion of the proof procedure. A proof procedure based
on a proof system consists of a set of sentences, the set of inference rules and
a search strategy. The triple 〈FL , `C , Str〉 of syntax, proof system and search
strategy (Str) is called a proof procedure.

Clearly, the sentences5 and the inference rules that generate the consequences
are provided by the logic in question; these two constituents generate the conse-
quences of the input sentences, that is, the search space. The search strategy is
a (maybe partial) ordering over the search space: it tells that in the actual state
of the search space which rule has to be applied to which sentences (generated
elements of the search space) with the purpose of generating new elements. But
a search strategy does not specify the process of search in every step. As a sec-
ond step towards automatic theorem proving, a theorem prover program “fills
the gaps”, turns the proof searching procedure into an algorithm. A theorem
prover can be conceived of an implementation of a proof procedure.

Resolution calculus is considered a base of automatic theorem proving, more-
over it was developed for that purpose - even now some consider resolution as
the calculus for theorem provers. The reason is simple: the state of the art of

4The effect of computing is that the notion of “rewriting” has got into the logical termi-
nology, see “relo”.

5More precisely the syntax of the sentences.

Ferenczi–Szőts, BME tankonyvtar.ttk.bme.hu



38 MATHEMATICAL LOGIC FOR APPLICATIONS

computing technology of the sixties it was an important requirement to have eas-
ily representable structure; moreover, having only two very simple rules helped
the construction of theorem provers. However, soon it has been realized that
the search space can grow beyond control very fast - this phenomenon is called
“combinatorial explosion”. Several attempts have been proposed to overcome
it. During the past decades, researchers have worked out several versions (the
so called refinements) of resolution. They constrain the growth of the search
space by constraining the condition of the execution of resolution rule. Some
of the variants of resolution organize the clauses into some structure like con-
nection graphs, or into tables [26]. These variants are very effective for ground
clauses, however, they are usually lifted by the Davis–Putnam method with
metavariables - which spoils effectiveness. Similarly some project concentrated
on the search strategy: the general results in the area of search have been trans-
ferred into that of proof procedures. However, no adequate cost-function has
been found. Several experiments have proven that there does not exist “best”
resolution proof procedure, moreover a proof procedure that provides the best
efficiency in the case of a task, may fail to generate the proof for another one.

For several decades resolution is not the proof system generally applied in
theorem proving - Natural Deduction and related proof systems are also applied
for theorem prover systems.

The most fruitful trend gives up automatic theorem proving and develops
proof assistants. A proof assistant helps the user to describe a plan of the proof;
it executes the prescribed steps and completes the proof automatically generated
segments. The higher order proof assistant Isabelle is maybe the best example,
for further information visit e.g. http://isabelle.in.tum.de/.

References to Section 2.3 are, for example: [51], [23], [49], [34], [163], [74],
[35].

2.4 Topics from first-order model theory

Model theory is a quite modern area of mathematics, on the border of logic
and universal algebra.

Historically, in mathematics fixed structures were investigated (e.g. the 3
dimensional space in geometry or the natural numbers in arithmetics, etc.).
But, on the one hand, it turned out that, in general, axioms do not characterize
completely a structure and; on the other hand, generalizations of classical math-
ematical areas were developed (spaces with metric, fields, topology, etc.). A new
research area started: given an axiom system what kind of structures satisfy the
axioms? Mathematicians started thinking about several models simultaneously.
This was the beginning of model theory, too.

In what follows below, model will understood as a first-order model (first-
order structure). Some problems from model theory: What is the relationship
between different models of a given axiom system? How to generalize famil-
iar algebraic concepts (subalgebra, homomorphism, generating system, etc.) to
models? How to construct models in terms of other models (products, embed-
dings, etc.) and when does the new model preserve the properties of the old
ones? Starting from a class of models of a given type, is it possible to axiomatize
the class? What is the relationship of the syntactical properties of an axiom
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system and the structural properties of the models satisfying this axiom system?
How to characterize proof theoretical concepts (e.g. consistency, completeness,
independence) in terms of models?

Today model theory is a very broad research area. In this section we outline
only some selected areas and ideas which seem to be interesting for the purposes
of this book.

First we treat the concept of non-standard model and the problem of axioma-
tizability of a given model. Then, we deal with theorems on reducing satisfiability
of a given formula set to another formula set. Finally, a relatively new area of
mathematics is considered: non-standard analysis.

2.4.1 Characterizing structures, non-standard models

One of the basic problems of logic is how to characterize a given structure,
e.g., the geometry of the three-dimensional space or the structure of the real
or natural numbers. For example, as is known, non-Euclidean geometries sat-
isfy the “the minimal axiom system” of Euclidean geometry, so they can be
considered as a “non-standard” model of the “Euclidean geometry”.

As a generic example, first we deal with the structure of the natural numbers,
and then we deal with arithmetics.

The language of arithmetics contains the function symbols 0, s (successor),
+, · with arity 0, 1, 2, 2 respectively. The structure of natural numbers is: N =〈
N, 0N , sN ,+N , ·N

〉
, where N is the set of natural numbers, 0N is number zero,

sN is the successor operation, +N , ·N are the familiar operations on N defined
as usual. ThN is called the theory of number theory and N is called standard
model.

Axioms of arithmetics (ThN ):
∀x(¬s(x) = 0)

∀x∀y(s(x) = s(y)→ x = y)

∀x(x+ 0 = x)

∀x∀y(x+ s(y) = s(x+ y))

∀x(x · 0 = 0)

∀x∀y(x · s(y) = x · y + x)).

The first two axioms ensure that any model of arithmetics must have an
infinite universe. Partial recursive functions can be defined in the language, and
computations with natural numbers can be performed using the axioms.

However, it is quite easy to construct structures satisfying these axioms in
such a way that the basic properties of natural numbers (like commutativity)
do not hold. Therefore, further axioms are needed.

For this purpose the formula scheme for induction is introduced:

Φ(0) ∧ ∀x(Φ(x)→ Φ(s(x)))→ ∀xΦ(x).
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In this scheme Φ is a formula variable standing for first-order formulas with
one free variable (so the schema represents infinitely many sentences, see Sec-
tion 2.3).

The axiom system above together with the induction scheme is called Peano’s
axiom system, denoted by Pe.

A basic group of problems connected with ThN (as well as for a theory ThA
of any structure A) is the following one:

1. Is ThN axiomatized by Peano’s axioms? If not, is it possible to complete
this axiom system? If so, is it decidable?

2. To what extent is the structure N characterized by ThN ?

The following theorem which draws upon Gödel’s and Church’s famous re-
sults, answers the first group of problems:

2.32 Theorem ThN is not axiomatizable (not recursive enumerable) and not
decidable.

A corollary of this theorem is Gödel’s incompleteness theorem: Ded Pe is
incomplete.

Otherwise Ded Pe = ThN would be recursive enumerable. Similarly, we
get a negative answer for the other questions in 1.

Assume that the cardinality of the language is countable. For the second set
of problems there is a general answer:

2.33 Theorem (Löwenheim–Skolem–Tarski) If a theory has an infinite model,
it also has a model with a universe of cardinality λ for every infinite cardinal λ.

Therefore, for any cardinality, ThN has a model of cardinality λ. For exam-
ple, the axiom system Zermelo–Fraenkel’s system of axioms (of set theory) has
a countable model, too. In the light of the theorem, the second question can be
sharpened as follows:

Does ThN have a model with a countable universe which is not isomorphic
to N?

The answer is affirmative. Models of ThN not isomorphic to the standard
model are called the non-standard models of number theory. Elements of the
universe of a non-standard model different from the natural numbers are called
non-standard numbers. These definitions can be generalized:

If A is a model, then a model B of ThA which is not isomorphic to A is
called a non-standard model of ThA.

Let us summarize the answers for the problems 1 and 2 above: ThN cannot
be described by the axiomatic method (contrary to the intuition of Leibniz,
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Frege, Hilbert, and others). This famous result is referred to as a limit of proof
theory. Another important result is this: even the complete theory ThN does
not determine the structure N itself.

These results can be generalized from the number theory for theories being
“strong enough”. This latter means that recursive relations “are representable”
in the theory. Most of the important theories used in mathematics have this
property (real numbers, sets, etc.), therefore, these theories have non-standard
models and these models are intensively investigated. Similarly, theories of
abstract data types have non-standard models, as is shown below.

The following question is: Is it possible to characterize the structure N in a
unique way by choosing a suitable logic other than first-order logic?

Second order logic is suitable for this purpose. Let us replace the following
axiom for induction scheme in Peano’s axioms:

∀Z(Z(0) ∧ ∀x(Z(x)→ Z(s(x)))→ ∀xZ(x))

where Z is a relation variable. It can be seen that this new system of axioms
characterizes N in a unique way in second-order logic.

But notice the difference between the second-order axiom and the Peano
induction scheme. The first one states something about all relations defined on
N , while the second one only about relations that can be defined in the first
order language of number theory.

Now we encounter an example from data base theory. We deal with abstract
data types. We meet a similar situation here as in the case of characterizing
arithmetics.

Let us take the example of stacks, precisely stacks of numbers. A two-sorted
language Lstack is considered with sorts number and stack. The language has
the following non-logical symbols:

λ 〈; stack〉 constant for the empty stack
push 〈stack,number;stack〉 constructor function
pop 〈stack,number,stack;〉 selector

Notice that the selector is given as a relational symbol for two reasons. The
first is that the operator has two values, the second is that the selector is not
defined for the empty stack.

The constant λ and the constructor function push generate the stacks that
can occur in applications, these can be called standard stacks. The standard
model S is a model such that Snumber and Sstack consist of natural numbers
and standard stacks, respectively. Functions and relations are defined in the
standard way.

Let us see an axiom system for stacks, where xi is a number variable and si
is a stack variable.

The definition of the empty stack: ∀x1∀s1¬pop(λ, x1, s1).
The selector is a partial function:
∀s1∀x1∀x2∀s2∀s3(pop(s1, x1, s2) ∧ pop(s1, x2, s3)→ x1 = x2 ∧ s2 = s3)
The definition of the selector: ∀x1∀s1pop(push(s1, x1), x1, s1).
Equality of stacks:
∀s1∀s2(s1 = s2 ↔ ∃x1∃s3(pop(s1, x1, s3) ∧ pop(s2, x1, s3)))
Induction scheme for stacks:
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Φ(λ) ∧ ∀s1∀x1(Φ(s1)→ Φ(push(s1, x1)))→ ∀s1Φ(s1).

Notice that the induction scheme is very similar to the one of arithmetics.
In fact, for almost every abstract data type an induction scheme of the same
structure can be given.

Clearly there are non-standard models of the axioms, and in these structures
the non-standard stacks are infinitely deep. Notice that in first-order logic we
cannot express that “finitely many applications of pop reach the empty set”,
because the logical content of the phrase “finitely many” cannot be expressed.

2.4.2 Reduction of satisfiability of formula sets

We stated in Section 2.1.3 that first-order logic is compact. We formulate
now a version of the Compactness theorem. Let Σ be a set of first-order formulas.

2.34 Theorem (compactness of first-order logic) Σ is satisfiable if and only if
every finite subset of Σ is satisfiable.

Compactness has many important applications. Such an application can be
found in Section 2.4.3 (non-standard analysis). For another example we mention
the following proposition:

The property “finite” can not be formulated in terms of a first-order formula
(being finite is not a “first-order property”).

To see this, let us assume that the meaning of a first-order formula α is “a
set is finite”. Consider now, for any n the following formula:

ϕn =

= ∃v1∃v2 . . . ∃vn−1(v1 6= v2 ∧ v1 6= v3 ∧ . . . v1 6= vn ∧ v2 6= v3 ∧ . . . ∧ vn−1 6= vn)

(“the size of a set is larger or equal than n”) and let us choose the set

{ϕn | n ∈ ω} ∪ {α} .

By applying the compactness theorem, we can also prove for the set Σ in the
compactness theorem above. Now, on the one hand, every finite subset of Σ is
satisfied (there is a finite set with size ≥ n). On the other hand, by compactness,
Σ has a model A which is infinite, by construction. This obviously contradicts
the finiteness property expressed by α.

Similarly, applying the compactness theorem we can prove the following
propositions:

If a formula set Σ has a model with any finite cardinality, then Σ has an
infinite model, too.

“Being a graph on the plane” is not a first-order property.
Yet another important type of reduction theorems are the Herbrand-type

theorems. The point is here to reduce the unsatisfiability of a first-order formula
to a set containing propositional formulas.

Assume that the formula in question is of the form ∀x1∀x2 . . . ∀xmα , where
the formula α is quantifier free. As is known, every first-order formula can be
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transformed into such a form (“Skolem normal form”). Assume that there is
a constant symbol in the language L and consider the closed formulas in L
obtained from the formula α, from functions and constants of L step by step,
i.e. consider the “ground instances” of α (see Section 2.3.3). Let {Sr | r ∈ Q}
denote the set of the ground instances of α. The ground instances are quantifier
and variable free formulas, therefore, they obviously can be considered also as
propositional formulas.

2.35 Theorem (Herbrand) ∀x1∀x2 . . . ∀xmα is unsatisfiable if and only if there
is a finite unsatisfiable subset of the formula set {Sr | r ∈ Q} in propositional
logic.

This theorem allows us to reduce unsatisfiability in first-order logic to propo-
sitional logic. This kind of reduction is important because handling formulas in
propositional logic is easier than in first-order logic. The main application of
Herbrand theorem can be found in resolution theory, i.e. in automatic theorem
proving (Davis–Putnam method).

Both compactness theorem and Herbrand’s theorem include a finitization
proposition. Finitization has central importance in mathematics, but, in gen-
eral, it is not a decision procedure.

2.4.3 On non-standard analysis

Today, non-standard analysis is a separated area within mathematics. Many
theories exist for the topic. The extended logical theory of non-standard analysis
uses type theory, in particular, Henkin’s semantics. The theory is based on a
general compactness theorem or, equivalently on generalized ultraproducts.

There is also an axiomatic introduction to non-standard analysis, making
reference to logic unnecessary. This is used for example in non-standard proba-
bility theory or in non-standard measure theory (mathematical logic is present
in an abstract level in these areas, see Boolean algebras).

In this section we do not go into the details of the general theory. We are
going to discuss an interesting extension of the usual concept of real numbers,
called non-standard real numbers. The non-standard models of real numbers are
an important instance for the general concept of non-standard models. We show
some basic ideas of non-standard analysis, using only first order logic. This is
meant to be an elementary and didactic introduction, and in this respect we
follow the textbook [51]. Some words on the history of the theory:

In the 17th century, Newton and Leibniz developed the differential and inte-
gral calculus using infinitely small, but non-zero quantities (so-called infinitesi-
mals). In absolute value, these quantities are less than any usual positive real
number (they may occur in denominators). Mathematicians heavily criticized
Newton and Leibniz’s Calculus because, among others, the concept of infinitesi-
mals was not defined in a rigorous way from the viewpoint of mathematics. The
exact foundations of the calculus were developed only in the 19th century (due
to Bolzano, Weierstrass and others) introducing the so-called ε − δ technique
and eliminating the concept of infinitesimals from the theory. This theory was
exact but it did not seem to be an ideal model for the concept of limit from an
intuitive viewpoint.
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In 1961, a logician and algebraist, Abraham Robinson lay an exact founda-
tion for infinitesimals, using logic. Robinson applied his method to many other
areas of mathematics (to algebra, set theory, topology, etc.), too. His general
theory is also known as non-standard analysis.

The history of non-standard analysis is remarkable from the viewpoint of
logic. The application of logic and the clarity of the logical concepts allowed
mathematicians to develop the exact theory of infinitesimals.

Now we sketch some concepts of this theory:

By real here we mean a usual (standard) real number or else an attribute will
be attached to the noun to warn the reader. Let L be a fixed language of real
numbers such that L contains the most important real functions and relations
and for every real i L contains a constant symbol ci. So L is an extension of the
usual language of reals and it should be considered to be as large as possible.
Let ν denote the type of L. Denote by Q the standard model of the reals of
type ν with universe R, where R is the set of the usual reals. ThQ is called the
standard theory of the real numbers.

2.36 Definition
Let A be an arbitrary model of type ν, with universe A. An element r ∈ A is
said to be infinitesimal if 0 < |r| < cAi for every positive real i, where cAi and
|| are the interpretations of ci and the magnitude in A.

An element r ∈ A is said to be infinite if
∣∣cAi ∣∣ < r for every real i. An

element is finite if it is not infinite.
Let A and B be models of type ν. B is an elementary extension of A if A is

a submodel of B and for every formula α(x1 . . . xn) and elements a1 . . . an ∈ A:
A �α(a1 . . . an) if and only if B �α(a1 . . . an).
In particular, A and B are “ elementary equivalent” if A �α if and only if

B �α for every sentence α.

Elementary extension means that B inherits all the first-order properties of
A. Elementary extension is an instance of the important “transfer principle” in
mathematics.

2.37 Theorem (Existence of infinitesimals) There is a model B such that B is
an elementary extension of the standard model Q of reals. In this case, there
are infinitesimals in B.

Some remarks on the theorem:

• B is a non-standard model of ThQ because B cannot be isomorphic to
Q since it contains infinitesimals. We introduce the following notational
convention: if f is a concrete function or relation on the standard model
Q, then let ∗f denote the corresponding function or relation on B, that
is, the extension of f to B. So f and ∗f are interpretations of the same
function or relation symbol in the language L.
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• The language L plays an important role in dealing with non-standard
models because it is a “bridge” between the standard model Q and non-
standard model B. Because of the property “elementary extension”, the
first-order properties of Q are inherited by B. But, for example, the
property “every bounded set has a least upper bound” is not a first-order
property of Q and therefore, the satisfaction of this property on B is not
necessary. In fact, this proposition is false on B, since the set I of infinite
numbers is bounded in B by any infinite number, but there is no least
infinite number.

• The non-standard model is not a unique extension of standard reals, i.e.
there is no “standard” non-standard model (while the original standard
model is unique, by definition).

What is about the proof of the existence theorem? One possible proof of
the theorem is an application of the compactness theorem, another one is an
application of the concept of the algebraic construction “ultraproduct” (as is
known, these two techniques are often equivalent). The first possible proof
ensures only the existence of a non-standard model, the second one is stronger
because it also yields a construction for this model. We sketch the main ideas
of these proofs.

As regards the proof using the compactness theorem, consider the following
set Σ of formulas:

Σ = ThQ ∪{0 < x ∧ x < ci | i ∈ R}

that is ThQ (the set of the truth propositions on R which can be formulated in
terms of the language L) is extended with the set of formulas
{0 < x ∧ x < ci | i ∈ R} defining the infinitesimal x.

Both ThQ and any finite subset of {0 < x ∧ x < ci | i ∈ R} are obviously
satisfiable onQ. So the compactness theorem applies to Σ, and as a consequence,
ThQ has a model with infinitesimals (and this model is obviously an elementary
extension of Q).

As regards the other proof of existence theorem we give an intuitive descrip-
tion, which does not require us to discuss the exact definition of ultraproducts.

The procedure of constructing non-standard reals from standard ones is sim-
ilar to that of constructing reals from rational numbers. Recall that the reals are
certain sequences of rationals, e.g. decimals (more exactly they are equivalence
classes of certain sequences of rationals). The case for non-standard numbers is
similar: the new real numbers (the non-standard numbers) are certain sequences
of standard reals (more exactly they are equivalence classes of certain sequences
of reals).

A zero-sequence of reals (a real sequence with limit zero) represents a number
infinitesimal. A sequence of real numbers with “limit” infinite represents a non-
standard infinite number. A constant sequence, i.e. a real sequence consisting
of a given standard real i represents the standard number i.

Now we check the definition of positive infinitesimal (positive and less than
any positive standard real) in terms of sequences of reals:

A zero-sequence of positive reals (that is a positive infinitesimal) must be
“less” than any constant real sequence (a standard number). Roughly speaking,
the meaning of “less” here is the following: “the ith member of the first sequence
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is less than that of the second sequence, with the exception of finitely many i ”.
This is satisfied by any zero- and constant sequence, as can be seen applying
the concept of convergence of a zero-sequence.

A standard real function f can be considered as a function defined on the
new numbers, i.e. on the members of a sequence of reals. This extension can
be considered as ∗f defined on the non-standard numbers. Notice that it is an
instance of the “transfer principle”, too.

The following theorem allows us to visualize the world of the new numbers
in a non-standard model B.

2.38 Theorem (decomposition of non-standard numbers) In a non-standard
model B for every finite number r there is a standard real s and an infinitesimal
p such that r = s+ p. This decomposition is unique.

Here s is called the standard component of r. This theorem shows that for
every finite number there is a standard number which is “infinitely close” to r.
“Infinitely close” means that their difference is infinitesimal, this relation being
denoted by ∼.

Finally, as an illustration for the application in the Calculus, here is the
definition of continuity and differentiability of a standard real function at a
standard point a:

2.39 Definition
f is continuous at a if and only if x ∼ a implies ∗f(x) ∼ f(a) for any non-
standard x (if x is infinitely close to a, then∗f(a) is infinitely close to f(a)).

f is differentiable at a if and only if the standard part of the quotient
∗f(a+h)−f(a)

h is the same constant for every infinitesimal h (this constant is
called the derivative at a).

The other concepts and theorems of Calculus also can be formulated in a
non-standard way, e.g. limit, integral.

References to Section 2.4 are, for example: [51], [23], [15], [117], [106].
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Chapter 3

NON-CLASSICAL
LOGICS

Considering the general definition of logic we can see that, in general, varying
the set F of formulas or varying the meaning function m or varying other
parameters of a logic we obtain new logics.

Logics which are not classical are called non-classical ones. We treat in this
section such non-classical logics that seem to be interesting from the viewpoint
of applications.

Setting out from classical logics and varying a given parameter mentioned
above could be a starting point for classifying non-classical logics. Modal-,
temporal-, arrow logics are obtained by extending the language, while we ob-
tain many valued- and probability logic by extending the range of the meaning
function. Intuitionistic logic is obtained among others by restricting the prov-
ability relation.

3.1 Modal and multi-modal logics

Modal propositional logic is a generalization of classical propositional logic.
New unary logical constants will be introduced, which modify the meaning of
propositions. The meaning of the original propositional formula can be modified
applying the so-called modal operators � and ♦ to the formula. For example, “P
is true” can be modified as “it is necessary that P is true” or, “it is known that
P is true” or, “it is believed that P is true”, and all these modified meanings
can be expressed by the formula �P . Another modification of “P is true” is “it
is possible that P is true”, which can be expressed by the formula ♦P .

Multi-modal propositional logic is a class of modal logics. Here there are
many copies of the modal operator pair � and ♦. These copies are indexed by
elements of an index set I, they are �i and ♦i (i ∈ I). Examples for multi-modal
logics: temporal-, stratified-, dynamic, etc. logics.

Modal logic is one of the most important logics as regards possible applica-
tions. Modal logic plays an important role, among others, in Artificial Intelli-
gence. Another application of modal logic is the investigation of executions of
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a given computer program: �α can be interpreted so that “every terminating
execution brings about α true” and ♦α can be interpreted so that “there is some
execution which brings about α true”. These readings of � and ♦ are connected
with dynamic logic.

Multi-modal logic is applied in Artificial Intelligence, too, for example, when
we speak of several agent’s beliefs or knowledges. In this case �iα means that
the ith agent believes or knows α. Important multimodal logics are: dynamic
and temporal logics.

We sketch now the classical propositional modal logic L.

The alphabet of the language L of L is that of propositional logic supple-
mented by two new logical constants, which are the following two unary symbols:
� (box) and ♦ (diamond). To get the definition of a formula, that of a proposi-
tional formula is supplemented by the following: if α is a formula then, �α and
♦α are also formulas.

3.1 Definition The model (or frame) C for L is defined as a triple

C = 〈W, S, {C(p) | p ∈W}〉 (3.1)

where W is any set (the set of the worlds), S is a binary relation on W (the
accessibility relation), and C(p) is a classical interpretation of the propositional
symbols (a mapping from the set of propositional symbols to the set of truth
values, truth and false).

We are going to define the meaning function m in terms of the validity
relation � (rather than defining validity in terms of meaning function).

We define p C α (p forces α in C), we will omit the subscript C from now
on:

3.2 Definition

(i) If P is a propositional symbol, then p  P if P is true in C(p)

(ii) if p  α and p  β are defined, then ¬α, ∧αβ, ∨αβ, → αβ, ↔ αβ is true
if and only if α is false, α and β are true, α or β is true, α is false or β is
true, α and β are simultaneously true or false, respectively,

(iii) if q  α is defined for all q ∈ W , then p  �α (p ∈ W ) if and only if for
all q ∈W such that pSq, q  α,

(iv) if q  α is defined for all q ∈W , then p  ♦α (p ∈W ) if and only if there
is q ∈W such that pSq and q  α.

Notice that points (i)-(ii) are the same as for the classical proposition case.

3.3 Definition Having the relation p C α, the value of the meaning function
m for the formula α and frame C is the set {w ∈W | w C α}. We say that α
is forced in the frame C (or α is true in C, C � α) if w C α for every w ∈W .
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It is easy to check that the connection between the modal operations � and
♦ is that � is equivalent to ¬♦¬.

The definitions above are due to Carnap and Kripke.

There are important specifications of modal logic according to the properties
of the accessibility relation S (see Definition 3.1). For example, if S is reflexive,
transitive and symmetric (i.e. it is an equivalence relation), we obtain the modal
logic S5, and if the symmetricity is not required here, we obtain the logic S4.

In a frame of S5 every world is accessible from any other one, therefore,
sometimes S will not be indicated. Then, the definition of � is: p  �α
(p ∈ W ) if for all q ∈ W , q  α. Restricting S5 to classical propositional
language we can associate a modal frame of S5 with the collection of models
of classical propositional logic. So the semantics of classical propositional logic
can be defined as a modal semantics.

Concerning the proof theory of modal logics there are strongly complete and
sound inference systems for modal logics, among others for S4 and S5. Consid-
ering the Hilbert system for propositional logic, besides modus ponens an addi-
tional inference rule, the “necessitation rule” 〈〈Φ〉 ,�Φ〉 is needed. Furthermore,
a new axiom is also needed (the so-called K axiom: �(Φ→ Ψ)→ (�Φ→ �Ψ)).
Many properties of S can be postulated by axioms, e.g. reflexivity can be pos-
tulated by the scheme Φ → �♦Φ, transitivity by the scheme �Φ → ��Φ,
etc.

We note that general modal logic has no Deduction Theorem with respect to
→, in general. For example, α → �α is not valid but α � �α holds. However
some modal logics have Deduction theorem, e.g. in S4, Σ ∪ {α} � β if and only
if Σ � �(α→ β).

As regards the intuitive meanings of the modal operator �, there are several
approaches.

The basic meaning of � is: “it is necessary that” (for �α: “it is necessary
that α is true”). In Kripke’s terminology this means in a frame that “it is
true in every possible world w, accessible from the actual world”. Similarly, the
meaning of ♦ is “it is possible that” and this means in a frame that “it is true at
least in one accessible possible world w”. In these contexts S must be assumed
to be reflexive.

Another possible meaning of � is “it is known” (for �α : “it is known, that
α is true”) or another one is: “it is believed”. Here S must be assumed to be
reflexive, transitive. With these meanings of modal operators we can associate
modal logics which are “between” S4 and S5.

A further possible reading of �α is “α will be true at all future times”. This
meaning is connected with temporal logic, which we discuss later.

***

We outline first-order modal logic referring only to the differences in com-
parison with the propositional case:

To get the syntax of the first-order case, the alphabet of classical first-order
logic is extended by the operators � and ♦. The definition of formulas is the
usual.
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Definition 3.1 of a modal frame is modified so that C(p) means a usual first-
order model. Let C(p) denote the universe of C(p).

While the definition of a first-order modal model is straightforward, to define
the forcing relation we have to solve certain problems. Several versions exist.
The problems are: how to define the interpretations of terms and how to define
the meaning of quantifications? These two problems are obviously closely related
to each other.

If only one possible world is considered, the interpretation of a term is defined
as in first-order logic. In the case of several worlds the problem is whether the
interpretations of terms should coincide in the worlds accessible from a given
world in question.

A term is called rigid for a modal frame C if its interpretations coincide in
the worlds in C. There are two basic types of rigidity:

(i) every term is rigid

(ii) variables are rigid, but the other terms are not.

We can associate different meanings (definitions) of quantification with the
above-mentioned different types of rigidity (including the case of non-rigidity).
We do not discuss here the possible definitions of quantification.

It is hard to find a complete calculus for first-order modal logic. Complete-
ness depends on the definition of quantifiers and the accessibility relation. For
modal logics S4 and S5 completeness can be proven.

We note that rigidity and the condition C(p) ⊆ C(q) are quite restrictive
(e.g. for temporal logic, where objects often come to exist and perish). It is
usual to introduce a special non-logical predicate with the intended meaning
“alive”. The intended meaning has to be described by axioms.

***

Multi-modal logics are generalizations of the simplest modal logic. We only
list the differences between modal and multi-modal logics.

As we have mentioned, the alphabet of the language of this logic contains a
set of pairs of modalities denoted by �i and ♦i (i ∈ I).

In the recursive definition of formulas the following modification is needed:
if α is a formula, then �iα and ♦iα are also formulas.

A frame here is the triple: C = 〈W, {Si | i ∈ I} , {C(p) | p ∈W}〉, where
{Si | i ∈ I} is the set of the accessibility relations, corresponding to the op-
erators �i and ♦i.

The definition of p C α is modified so that instead of �, ♦ and S, the
modalities �i , ♦i and the relation Si are used. The definition of the meaning
function m is analogous with the definition given earlier.

3.2 Temporal logic

Temporal logic is a special multi-modal logic. Usage of temporal logic allows
us to manipulate relations pertaining to time, without defining the concept of
time.
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In temporal logic there are two pairs of modal operator symbols, the future
operators F and G and the past operators P and H, where F and P are operators
of type “box”, G and H are operators of type “diamond”. The meanings of the
future operators F and G applied to formula R are: “R will be always true” and
“R will be true at some time”, respectively. The meanings of the past operators
P and H: “R has always been true” and “R has been true”. These are the usual
temporal quantifiers. In different versions of temporal relations other quantifiers
are also used expressing certain temporal relations, such relation is e.g. “until”.

Temporal logic is applied mainly in the specification and verification of dy-
namic systems such as computer hardware and software. It plays an important
role in the specification and verification of concurrent programs and hardware
components, too. Some kinds of temporal logic (e.g. McDermott’s logic, Allen’s
logic) enable one to prove results about facts, events, plans or history. These
applications have importance, among others, in artificial intelligence.

Now we sketch some related concepts of temporal logic.

3.4 Definition A temporal frame is the sequence

C = 〈T, SF , SP , {C(t) | t ∈ T}〉

where T is a set of points of time, SF and SP are the accessibility relations
( temporal precedences) corresponding to the future operator F and the past

operator P respectively, furthermore, SP = S`
F is assumed (where ` is the

converse operator, so sSP t is true if and only if tSF s is true).

Since SP = S`
F , a temporal frame is usually defined in a simplified form

C = 〈T, R, {C(t) | t ∈ T}〉

where R = SF (therefore, SP = R`).
Using the general Definition 3.2 ((iii) and (iv)), we get

s  Fα (s ∈ T ) if t � α for all t ∈ T such that sRt (3.2)

s  Gα (s ∈ T ) if t � α for some t ∈ T such that sRt (3.3)

Similar definitions apply for P and H. Obviously the meanings of 3.2 and 3.3,
respectively: s forces Fα in C if α is true for every future times, and s forces
Gα in C if α is true for some future time.

If constraints are assumed for the temporal precedence relation we obtain
different versions of temporal logic. The logic without these restrictions is called
minimal temporal logic.

The classical picture of time is that time is a linear continuum (for example,
in physics). We need two restrictions on R to express linearity. These are
transitivity and trichotomy, respectively:

∀t∀s∀r((Rts ∧Rsr)→ Rtr) (3.4)

∀t∀s∀r(Rts ∨ t = s ∨Rst). (3.5)
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Time can also be modelled as “branching time”, where we have to postulate
the property of “backwards linearity” (or “left linearity”).

∀t∀s∀r((Rtr ∧Rsr)→ Rts ∨ t = s ∨Rst)

rather than trichotomy.
Here for any given time, several different futures are possible. For example,

using “branching time” we can model the execution of a non-deterministic al-
gorithm. “Forwards linearity”(or “right linearity”) can be defined in a similar
way.

Further possible properties of time are those of ordering: ordering with or
without endpoints, dense or discrete ordering, etc.

We skip the details of the possible proof systems for temporal logics. Basic
temporal logic (as a multimodal logic) has a complete proof system. Regarding
the extensions of basic temporal logic, some of them are axiomatizable (e.g. the
model of transitive time), while some of them are not (e.g. the model of discrete
time).

First-order temporal logic can also be defined also as a special first-order
modal logic.

3.3 Intuitionistic logic

Intuitionistic logic is the most important by-product of intuitionistic mathe-
matics. Intuitionists hoped to eliminate all non-constructivist tools from math-
ematics. Sometimes we do not realize that intuitionistic logic is used. Such a
logic is, for example, the “logic of Horn formulas”, which is used in logic pro-
gramming. To motivate the discussion that follows,we outline some principles
of intuitionistic mathematics (and also that of constructivism).

Let us first consider the constructive notion of proof. This notion is interest-
ing for us because it brings us closer to the theory of computation. Considering
the clauses below one can see what it means to prove a non-atomic formula ϕ
in the terms of the proofs of its components:

1. α ∧ β is proven iff α is proven and β is proven,

2. α ∨ β is proven iff α is proven or β is proven,

3. α→ β is proven iff every proof of α can be converted into a proof of β,

4. ∃xα(x) is proven iff for some element a of the domain of quantification
α(x/a) is proven,

5. ∀xα(x) is proven iff for every element a of the domain of quantification
α(x/a) is proven.

These principles provide the simplest version of constructionism. From the
point of view of computing, clause (4) is the most important one: to prove
the existence of an element satisfying a specification, such an element has to
be selected. The development of several logics is motivated by constructionism,
and from the viewpoint of computer science the most important one is Martin
Löf’s type theory (see e.g. [156]).
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Intuitionistic first-order logic meets the principles listed above. The syntax
of intuitionistic logic is the same as that of first-order languages, however, a new
symbol ⊥ meaning “false” is introduced and, as a consequence, negation can be
expressed in terms of implication. In particular, formulas of form ¬α can be
rewritten into α→ ⊥.

Regarding calculus, a calculus for intuitionistic logic can be obtained from
classical first-order calculus by omitting some axioms and rules. The following
proposition holds: Intuitionistic logic is “conservative” with respect to classical
logic in the sense that every formula that is provable in intuitionistic logic can
already be proven in classical logic.

For example, the following sentences can be proven in intuitionistic calculus:
α → ¬¬α, ¬(α ∧ ¬α), ¬(α ∨ β) ↔ (¬α ∧ ¬β), ¬(α ∧ β) ← (¬α ∨ ¬β),
(α→ β)→ (¬β → ¬α), ∃x¬α(x)← ¬∀xα(x) etc.

However, several important tautologies of classical logic cannot be proven in
intuitionistic logic, some of the most important ones are:

• ¬α ∨ α (excluded middle),

• ¬(α ∧ β)→ (¬α ∨ ¬β) (a part of deMorgan’s Laws),

• (¬α→ ¬β)→ (β → α),

• ¬∀xα(x)→ ∃x¬α(x).

It can be seen that instead of some equivalences only implications can be
proven. The reason is that in an intuitionistic calculus, it is more difficult to
prove negated statements than positive ones. Similarly it is more difficult to
prove formulas with ∨ than in classical logic, because to prove α∨β we have to
prove α or β.

Maybe the most important difference between intuitionistic and classical
logics is that the connectives and quantifiers do not depend on each other.
Therefore, there are no conjunctive or prenex normal forms ((the latter is true
because the sentence ¬∀xα(x)→ ∃x¬α(x) is not provable in intuitionistic logic).

For intuitionistic logic different semantics have been worked out, the simplest
and most intuitive one is the Kripke’s semantics (see below) which is based on
first order modal frames.

3.5 Definition (intuitionistic model) A model C of intuitionistic logic is a
model (frame) of modal logic:
〈W, S, {C(p) : p ∈W}〉 satisfying the following conditions:

(i) S is a partial ordering with a minimal element,

(ii) if p is accessible from q (qSp holds), then the universe of C(q) is a subset
of the universe of C(p),

(iii) if p is accessible from q (qSp holds), then all the atomic formulas true in
C(q) must be true in C(p), too.
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Clearly the third condition holds for every positive formula (in a positive
formula connectives → and ¬ do not occur).

Let 〈W, S, {C(p) : p ∈W}〉 be an intuitionistic model. The property “p ∈
W forces a formula α in C”, that is p  α is defined by recursion as follows:

3.6 Definition (forcing relation)

(i) if α is atomic, then p  α iff C(p) � α,

(ii) p  α ∧ β iff p  α and p  β,

p  α ∨ β iff p  α or p  β,

(iii) p  α→ β iff for every q ∈W if pSq and q  α, then q  β,

p  ¬α iff for every q ∈W if pSq, then q  ¬α,

(iv) p  ∀xα iff for every q ∈W if pSq, then for every element a

of the universe of C(q), q  α(x/a),

(v) p  ∃xα iff there exists an element a of the universe of C(p) such that

p  α(x/a).

Concerning (iii) if ¬α is considered as a short form of α→ ⊥, then the fact
that no p ∈W forces ⊥ implies the following: p  ¬α if and only if for no q ∈W
such that pSq and q  α.

The meaning function can be defined as in the basic modal case. Then, the
truth on a model: W � α if and only if all p ∈W forces the sentence α.

Calculus can be introduced for first-order intuitionistic logic. The following
completeness property is true:

Intuitionistic first-order calculus is strongly complete for the above Kripke
semantics.

Notice that a first-order intuitionistic model is a special first-order modal
frame. In Definition 3.6 the condition of forcing for formulas α→ β and ∀xα is
the same as in the case of first-order modal logic. So the semantics of intuition-
istic logic can also be given by translating it into first-order modal logic, where
the class of frames is restricted to the frames corresponding to the models of
intuitionistic logic. The transformation can be performed by writing the modal
quantifier � before every subformula of the form α → β, ¬α and ∀xα. Then,
an intutionistic sentence α is true on an intuitionistic model C if and only if α
translated into a first-order modal logic is true on C as a frame in modal logic.

Some concluding remarks concerning intuitionistic logic:
Compactness is the consequence of completeness.
The Deduction Theorem applies to intuitionistic logic in the same form as to

the classical first-order one: Σ ∪ {α} � β is equivalent to Σ � α → β, because
of the → introduction rule and completeness.

Having completeness it is easier to prove that a sentence is not provable in
intuitionistic logic: it is enough to prove that it is not universally valid, that is
to give a model that does not satisfy the formula.
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3.4 Arrow logics

Manipulating relations is in the focus in many areas of applications, e.g. in
the theory of Databases. Arrow logics is based on the fundamental operations
with relations besides propositional connectives, to establish a kind of logic of
relations.

We sketch two types of arrow logics: Relation logic and Logic of relation
algebras.

3.4.1 Relation logic (RA)

The alphabet of the language is: ∧, ¬, and a binary operation symbol
◦ (composition) as logical connectives and the infinite sequence P1, P2 . . . of
propositional constants.

The definition of formulas is the same as that of propositional formulas with
the additional condition: if α and β are formulas, then α ◦ β is also a formula.

3.7 Definition The model of relation logic is the same 〈W, v〉 as that of propo-
sitional logic mentioned at modal logic S5 with the restriction that the set W
is of the form U × U for some set U (so the elements of W are ordered pairs
〈u1, u2〉, where u1, u2 ∈ U).

The definition of the operation ◦:

3.8 Definition 〈u1, u2〉 � α ◦ β if 〈u1, u〉 � α and 〈u, u2〉 � β for some u ∈ U ,
where 〈u1, u〉 , 〈u, u2〉 ∈W .

The definitions of the meaning function and validity relation are the same
as in the propositional case.

It can be proven that theories of the models (or model classes) may be not
decidable for this logic. The main reason is the hidden quantifier in the definition
of the operation ◦. But relation logic itself is decidable.

3.4.2 Logic of relation algebras

This logic is an extension of RA.
The alphabet of RA is extended by two new logical connectives: by a unary

operation symbol ` (converse) and the identity relation symbol Id.

In the definition of formulas the following two additional stipulations are
needed:

If α is a formula, then α` is also a formula,
Id is a formula.

The concept of model coincides with that of a model of RA.
The definitions of the operations ` and Id:
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3.9 Definition 〈u1, u2〉 � α` iff 〈u2, u1〉 � α for some 〈u2, u1〉
〈u1, u2〉 � Id iff u1 = u2.

Definitions of the meaning function m and the validity relation are the same
as in RA and in propositional logic.

It can be proven that this logic is not decidable.

The so-called relation set algebras are “algebraizations” of the logic of rela-
tion algebras. These algebras are “algebraization” of this logic.

Let U be a given set.

3.10 Definition The relation set algebra R with base U is the structure

R = 〈A, ∪, ∩, ∼EU
, EU , ∅, ◦, a, Id〉

where ∪, ∩, and ∼EU
denote the usual union, intersection and complementation,

EU is an equivalence relation on U (so EU ⊆ U×U), ◦ is the operation relation
composition, a is the operation converse, Id is the identity relation restricted to
EU and the universe A is assumed to be closed under all the operations included
in R.

3.5 Many-valued logic

We survey two types of many-valued logics: Kleene’s and  Lukasiewicz’s logic.

First we discuss Kleene’s logic. For it a new truth value will be introduced
denoted by “u”. The meaning of “u” will be “undefined”.

The motivation of Kleene’s logic is in the theory of recursive functions,
among others. Namely, a machine may not provide answers (true or false) for
certain inputs because of going into an infinite loop or of its limited capacity,
etc.. This situation can be expressed by an undefined truth value u.

The language of this logic contains the logical connectives ¬, ∧, ∨ and →.
The set of formulas is that of propositional formulas formed by these connectives.
Let P denote the set of atomic formulas.

3.11 Definition The class M of models consists of functions
{gM : P → {t, f, u}}, where t, f and u denote the truth values (called
true, false, and undefined or not known) and the (natural) ordering on these
truth values is: f < u < t.

The definition of the meaning function m is recursive and similar to the
modal or propositional case. Assume that the model M (and gM ) is fixed.
Then
• if α is an atomic formula, then m(α) is defined,
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• if the values of m(α) and m(β) are defined for the formulas α and β and
these truth values are t or f , then the definition of m for ¬, ∧, ∨ and→
is the same as for propositional logic,

• if one of the values of m(α) and m(β) is u, then the result is u except for
the cases f ∧ u = u ∧ f = f, t ∨ u = u ∨ t = t and u→ t = f → u = t.

Notice that there are no tautologies in this logic, and, in particular, α→ α
is not a tautology because of u→ u = u.

The relation � is defined so that M � α if and only if m(α) = t, as usual.

Another many-valued logic is  Lukasiewicz’s 3-valued logic. The only formal
difference between  Lukasiewicz’s logic and Kleene’s logic relates to the connec-
tive conditional →. Now let us denote the third truth value by i rather than by
u.

Let the definition of i→ i be t in  Lukasiewicz’s logic.
A consequence of this definition is that each instance of the scheme α → α

is a tautology.
Apart from this definition, the essential difference between these two logics

is in their motivations. The meaning of i could be the claim that a statement
will be true in the future (contrary to the fatalist position that a statement
about the future is now either true or false). In this case a statement is neither
true nor false but it is undetermined (not only that its truth value is not known
but it does not have it). This logic can be regarded as the “logic of definitions”.

There are known generalizations of  Lukasiewicz’s logic to n truth values
(n ≥ 3) and to infinitely many values.

We note that the definition of semantics of first-order 3-valued logic is anal-
ogous with that of classical first-order logic, based on a 3-valued propositional
logic rather than on classical propositional logic.

***

Now we present an example to illustrate how a many-valued logic can be
used to study problems from real life.

3-valued first-order logic seems to be suitable to describe the activity of
certain intelligent robots. We assume that the robot is moving between states,
collecting facts about its environment. In general, it collects data, its knowledge
is incomplete. We assume that it never revises or discards its belief.

We can describe the activity of the above robot modifying Kleene’s 3-valued
first-order logic L, by taking the partial ordering in which u is less than either
f or t.

Let the models of L represent the states of the robot. Let us fix the partial
ordering u < f , u < t, denoted by ≤ on the set {t, f, u} of the truth values. Let
M be the class of models of L. Assume that A and A′ are models of L with
the same universe A.

The model A′ is said to be an extension of the model A if

RA(a0, . . . an−1) ≤ RA
′
(a0, . . . an−1) (3.6)

for every relation symbol R of the language and elements a0, . . . an−1 in A, in
notation: A � A′.
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The following monotonicity proposition states that property (3.6) remains
true for all the sentences of the language. Let αA denote the truth value of the
sentence α in the model A.

Proposition: A � A′ implies αA ≤ αA′ for every sentence α.

Let h be an operation defined on the models of L. If A � A′ implies h(A) �
h(A′), then h is said to be monotonic. The following fixed point proposition is
true:

Proposition: For any model A of L such that A � h(A) there exists the least
model A′ such that A � A′ and h(A′) = A′.
A′ is said to be the fixed point of h. The function h represents the transition

of the robot from one state to another. The monotonicity theorem reflects the
requirement that the robot should not revise or discard its belief. The fixed point
A′ represents the complete information that can be obtained by the procedure
represented by h (but some things may remain undecided).

3.6 Probability logics

3.6.1 Probability logic and probability measures

By modus ponens, α and α → β together imply β. A familiar incorrect
inference is to conclude α from α → β and β. This inference is incorrect, but it
occurs in “real life”, especially in diagnostic problems. For example, if A means
that “all the driving mechanisms of an aeroplane stop working during flying”
and B means that “the aeroplane crashes”, then A → B can be considered as
true. therefore, if A is satisfied, then B is also true, by modus ponens. But
conversely, if we know only the truth of B, then we must not conclude the truth
of A. But the following question arises: Assumed the truth of B and A → B
what is the chance (probability) of A being true?

Drawing a conclusion from A→ B and B to A (somehow) is a special kind
of inference, an inference “backwards” (retroduction, inductive reasoning). In
general, inferences like this very often occur in real life and they are a subject
of probability logic and probability theory, too. Obviously, there is a close
connection between probability logic and probability theory, we return to this
connection in the next section. From the viewpoint of logic, investigating these
kind of inferences means to investigate probabilities defined on logical formulas.
The problem above is connected with propositional formulas and propositional
logic. We discuss here a more general case: a probability logic related to first-
order logic.

Probability logic can be considered as a logic with infinitely many truth
values, which are real numbers between 0 and 1. There is a wide scale of
probability logics. Here we introduce a logic that is based on ordinary first-
order logic and its models are first-order models equipped with a probability
measure. The proof theory of probability logic is strongly limited, this is why
we do not discuss it here.

Now we sketch some concepts:
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The set of formulas is the same as in first-order logic. For the sake of
simplicity we assume that the language has no function symbols but has constant
symbols. Denote by F the set of formulas.

We are going to define the concept of a “probability model”, that is, the
concept of model for probability logic.

Let M be a given first-order model of type of L with universe U and let [α]
denote the truth set of α. The truth sets on M form a so-called “cylindric set
algebra” B with unit Uω (this fact will be discussed in Section 4.2)

3.12 Definition A non-negative real function P defined on the sets
{[α] | α ∈ F} is said to be a probability on the given first-order model M if

(i) 0 ≤ P [α] ≤ 1 for every α,

(ii) P [α] = 1, if [α] = Uω,

(iii) P [α ∨ β] = P [α] + P [β], if [α] ∩ [β] = ∅.

It can be proven that the definition of P does not depend on the formula α
representing the set [α]. The probability on M can be considered as a usual
probability measure defined on the Boolean part of the cylindric set algebra
B corresponding to M . Intuitively, P [α] means the probability that a randomly
selected evaluation satisfies α in M .

In the above definition there is no quantifier and only the Boolean part of
B is used. We extend the definition of probability so that it should reflect the
presence of quantifiers. As is known (see [23]) in algebras corresponding to
first-order models, the following relation is true

[∃xα] = sup
n

⋃
i∈n

[α(x/xi)] (3.7)

where xi is not free in α,
⋃

means Boolean supremum, that is these algebras
are closed under the suprema corresponding to existential quantifiers. A similar
relation is valid for universal quantifiers, too.

We use (3.7) to define the concept of quantifier probability (for short, Q-
probability) on a model M .

3.13 Definition A probability P defined on the model M is said to be a quan-
tifier probability (Q-probability) if the following property is satisfied for every
formula α and individuum variable x:

P [∃xα] = sup
n
P [
∨
i∈n α(x/xi)] (3.8)

where x1, x2, . . . is the sequence of the individuum variables being not free in α.

Condition (3.8) means a kind of continuity of the probability, i.e. a partial
continuity (with respect to the sums in (3.7) and also to the products corre-
sponding to universal formulas), reflecting the presence of quantifiers in the
logic.

Ferenczi–Szőts, BME tankonyvtar.ttk.bme.hu



60 MATHEMATICAL LOGIC FOR APPLICATIONS

Quantifier probabilities can be constructed on M by restricting well-known
product measures defined on Uω. Assume that the universe U of the model
M is countable.

3.14 Theorem Let µ be a σ-additive probability on U and consider the infi-
nite power of µ on the power σ-algebra with unit Uω. Then the restriction of
this power of µ to the cylindric set algebra corresponding to M is a quantifier
probability.

3.15 Definition A model K for probability logic is a first-order model M
equipped with a quantifier probability P defined on M . The value of the mean-
ing function for a formula α and model K is the real number P [α] where the
ordering is that of the reals.

For the validity relation: K � α holds if and only if P [α] = 1 in K.

We can define probabilities (and quantifier probabilities) directly on the set
F of formulas of the language, too. This is the base of a possible proof theory
for probability logic (not detailed here).

For example, the definition of probability on F is:

3.16 Definition A non-negative real function P defined on the set F of formu-
las is said to be a probability on F if for every formulas α and β the following
conditions are satisfied:

(i) 0 ≤ P (α) ≤ 1,

(ii) P (α) = 1, if � α,

(iii) P (α ∨ β) = P (α) + P (β), if � ¬(α ∧ β).

Consequences of this definition are: P (α) = P (β) if � α↔ β and P (¬α) =
1− P (α).

It is easy to see that a probability on F can be considered as a probabil-
ity measure defined on the Lindenbaum–Tarski algebra corresponding to F (see
Section 4.1). Property (3.8) can also be defined for this algebra and probability.

There are many procedures for constructing probabilities on F : to take the
average of probabilities defined on different models (by integral), to extend prob-
abilities from a subset of F (e.g. from the quantified formulas), to transform
probabilities to F from models, etc.

We note that Scott and Krauss introduced σ-additive probabilities for infini-
tary logics (see [142]). The above properties and definitions can be generalized
to that case as well.
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3.6.2 Connections with the probability theory

Although probability logic and probability theory are concerned with essen-
tially the same kind of problems, the emphasis they put on these problems as
well as the approach to solving them are radically different.

Recall that in Kolmogorov’s well-known probability theory the probability is
considered as a probability measure defined on a Boolean set algebra.

From a logical point of view, this set algebra (the algebra of events) inter-
prets the language of propositional logic (in fact, in probability theory infinitary
propositional logic is used because probability theory utilizies σ-algebras, but we
can safely confine our attention to ordinary propositional logic without loss of
generality; see [44].). Thus, Kolomogorov’s probability theory is based on propo-
sitional logic: for example, the concept of conditional probability may be seen
as the probability associated with the entailment α � β in propositional logic.

In view of the foregoing discussion, we may raise the following question: Are
there any direct applications of probability logic in probability theory, or an
influence exerted on probability theory by probability logic?

We may answer this question by pointing out that by the use of certain
logical techniques and results (see Chapter 4), we can generalize the notion of
probability from the level of structures of propositional logic (i.e., from Boolean
set algebras) to those related to first-order logic (e.g., to algebras corresponding
to first-order models or Lindenbaum–Tarski algebras).To see this, let us consider
the following illustration.

First-order logic finds its main applications in the theory of stochastic pro-
cesses in probability theory. For example, some first-order properties of a real-
ization X(t) of a real stochastic process are:

monotonicity of X(t): ∀t∀s(t < s→ X(t) ≤ X(s)),
boundedness of X(t) : ∃s∀t(X(t) ≤ s),
X(t) takes n different values at most:

∃s1 . . . ∃sn∀t(X(t) = s1 ∨ . . . ∨X(t) = sn).

In probability theory, the extension of the usual probabilities to the sets
representing the above mentioned properties requires non-traditional methods,
because these sets proved to be non-traditional from the viewpoint of the tradi-
tional probability and measure theory. Various “roundabout methods” must be
applied in classical probability theory in order to reduce this extension problem
to traditional results (see the separability theorems due to Doob and others).

Analyzing this extension problem from the viewpoint of logic we can see that
the point is the first-order character of these properties. This is why classical
probability theory based on propositional logic can handle this problem only
with difficulties. Using the concepts and theorems listed in the previous section
an elegant solution can be given for this extension problem, but we do not go
into details of the solution here.

Finally, we note that there are special theories of probability in which the
logical relevance of theories are emphasized. Such a probability theory is the
so-called Logical probability theory that was elaborated by Rudolf Carnap, one
of the pioneers of probability logic, who considered probability theory as a kind
of inductive logic.
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References to Chapter 3 are, for example: [11], [13], [154], [156], [145] [160],
[142], [39], [58], [136], [91].
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Chapter 4

LOGIC AND ALGEBRA

It is a historical fact that modern logic was developed in an algebraic form
in the 19th century (Boolean, De Morgan, Pierce, etc.). The intensive research
of the connection between algebra and logic was initiated in the first half of
the 20th century by Tarski and his school. It turned out that the logic–algebra
connection is a deep and important relationship in mathematics. The branch
of mathematics investigating this connection is called Algebraic Logic. This
connection is nicely illustrated by the so-called characterization theorems in
which varieties and their algebraic properties are characterized by the formal
properties of the axioms defining the variety (e.g. such a theorem is the one
according to which: a class of algebra is closed under homomorphisms if and
only if its axioms are positive sentences).

Algebraic logic can be applied everywhere, where logic is applied at all. The
logic–algebra connection often allows us to make a more elegant and simple
treatment of applications than merely using logic, e.g., the algebraic theory of
specification and verification, algebraic semantics of programming languages,
etc. “Logical algebras” as Boolean, cylindric and relation algebras play an
important role in database theory, logic programming, logic design, the theory
of automata, artificial intelligence.

There are two directions in the research of the logic–algebra relationship:
starting from logic and starting from algebra. Here we will mainly concentrate
on the first one. The basic idea of this approach is the following: If a problem
is given in logic, we try to translate it to the language of algebra. Then, we try
to solve it in algebraic form using algebraic techniques (in doing so, we often
need universal algebra). If the problem is solved we translate the solution back
to logic.

Recall that we distinguished between two different facets of logic: that of
semantics and that of proof theory. In accordance with this distinction, we
distinguish the algebraization of semantics and the algebraization of proof the-
ory. By virtue of a logic having completeness, we can conclude that the two
algebraizations coincide.

Any algebraization can be characterized by using purely logical concepts or
by using purely algebraic ones. This will be yet another aspect to be considered
when dealing with algebraizations.

The question, whether there is an “algebraization” for a given logic can be
answered by “yes” for most well-known logics under appropriate conditions, but
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this may not be true of particular logics (such as the modal logics S1,S2,S3). We
do not give details here concerning the conditions needed for algebraization. A
collection of general theorems shows that if a logic is algebraizable, then with the
logical properties definite algebraic properties can be associated and vice versa.
For example, such a theorem is the following: a logic has a kind of (strong)
compactness if and only if its algebraization is closed under ultraproducts.

There are famous algebraizations for propositional logic (Boolean algebras),
for first-order logic (cylindric algebras, polyadic algebras), for arrow logics (cer-
tain relation algebras), for intuitionistic logic (Heyting algebras), among others.
We give here the details concerning the algebraization of propositional logic and
only sketch that of first-order logic and arrow logic.

4.1 Logic and Boolean algebras

Now, as a generic example, we discuss the classical connection of proposi-
tional logic and algebra (more precisely, that of propositional logic and Boolean
algebra). First we assume that the reader is familiar with the concepts of
Boolean algebra.

We introduce an important class of Boolean algebras. Let U be an arbitrary
set.

4.1 Definition A field of sets (or a Boolean set algebra) with unit U is a
structure

H = 〈H, ∪, ∩, ∼U , U, ∅〉

where H is the universe consisting of certain subsets of U, and H is closed under
the set operations ∪, ∩, ∼U and contains the sets U and ∅.

So the similarity type of a field of sets is 〈2, 2, 1, 0, 0; 〉.

Let L be the language of propositional logic, Σ be a theory in L (Σ is defined
in a semantic way, so Σ is closed for �) andMΣ be such a set of Σ-models that
for every model M satisfying all the formulas in Σ, a model M ′ ∈ MΣ can be
found such that M is elementarily equivalent to M ′. For a given formula α, let
M(α) denote the set of models in MΣ satisfying the formula α.

It is easy to see that M(a)′s form a field of sets with universe MΣ. This
field of sets is denoted by EΣ and is called the field of elementary classes.

4.2 Definition The algebraization of propositional logic based on semantics is
the class I(EΣ) of algebras, where I denotes isomorphic closure and Σ varies
over the possible theories on the possible propositional languages.

The algebraization of a concrete logic is the concrete algebra I(EΣ) with the
fixed models of the fixed theory Σ.
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Recall that a class of algebras is called a variety if it can be axiomatizable
by a set of equations.

4.3 Theorem (algebraization of propositional logic)

(i) the algebraization I(EΣ) of propositional logic coincides with the isomor-
phic closure of the class of field of sets.

(ii) I(EΣ) is a variety and it is the class of Boolean algebras.

By (ii), I(EΣ) is axiomatizable, moreover, it is finitely axiomatizable (by the
Boolean axioms). Thus part (ii) is like a Completeness Theorem in Logic, be-
cause a kind of semantics (an “algebraic semantics”) is characterized by axioms
(by Boolean axioms).

By the famous representation theorem of Stone (namely, that every Boolean
algebra can be represented as a field of sets) the propositions (i) and (ii) are
equivalent.

Until now our discussion of the propositional logic was based on logical
semantics. But it is possible to base it on proof theory, too.

Let us fix a proof system, say, a Hilbert type system, and a consistent theory
Σ. We introduce an equivalence relation ∼ defined on the formulas in L by

α ∼ β if and only if Σ ` α↔ β.

Let ‖α‖ denote the equivalence class containing the formula α. We can define
the Boolean operations and constants 0 and 1 for the objects ‖α‖:

‖α‖+ ‖β‖ = ‖α ∨ β‖ , ‖α‖ · ‖β‖ = ‖α ∧ β‖ , −‖α‖ = ‖¬α‖ ,
0 = ‖α ∧ ¬α‖ , 1 = ‖α ∨ ¬α‖ .

We can prove that we obtain a Boolean algebra in this way (it is denoted by
BΣ and called the Lindenbaum–Tarski algebra corresponding to the language L
and theory Σ).Σ = ∅ is an important special case: it can be seen that B∅ is a
so-called “absolutely free” algebra. We will denote B∅ by Fr below.

4.4 Definition The algebraization of propositional logic based on a given proof
system is the class I(BΣ) of algebras, where Σ varies over the possible theories
on the possible propositional languages.

The following proposition is true:

4.5 Theorem EΣ and BΣare isomorphic algebras (EΣ ' BΣ).

This isomorphism corresponds to a completeness theorem for propositional
logic (the proof also makes use of Completeness theorem of Logic), in particular,
to the completeness of the given (Hilbert style) proof system. A Corollary is
that Theorem 4.3 is true for the algebraization BΣ besides EΣ. Therefore, the
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algebraizations I(EΣ) and I(BΣ) coincide (they are exactly the class of Boolean
algebras).

Summing up the algebraizations above, with propositional logic using se-
mantics and proof theory we can associate directly the classes I(EΣ) and I(BΣ)
respectively, and indirectly the concept of I(set of fields) and a “class of abstract
Boolean algebras”. All of these classes coincide.

Now we are in the position to formulate in an exact way the statement men-
tioned in Section 2.2.1 that the meaning (interpretation) functions of proposi-
tional logic (propositional models) can be considered as homomorphisms to the
Boolean algebra of two elements.

4.6 Theorem The meaning function m defined in Definition 2.13 can be con-
sidered as a homomorphism from Fr to the Boolean algebra of two elements.

We note that formula algebras can be introduced only using semantics. Let
us introduce an equivalence relation ≡ defined on the formulas in L:

α ≡ β if and only if M(α) =M(β).

Let ‖α‖′ be the equivalence class containing α. We can define the Boolean
operations +, ·, − and constants 0 and 1 for the objects ‖α‖′. By the com-
pleteness theorem, the algebras obtained in this way are also isomorphic to
Lindenbaum–Tarski algebras.

We can make a “dictionary” (table) how to assign Boolean algebraic concepts
to concepts of propositional logic, and vice versa.

Boolean algebras Propositional logic
+, ·,−, relation ≤ ∨, ∧, ¬, relation �
Boolean filter logical theory
Boolean ultrafilter complete logical theory
Boolean constant 1 set of tautologies
Boolean ultrafilter theorem Lindenbaum theorem
homomorphism from Fr into D propositional model
Boolean algebras are a variety propositional logic has completeness

Recall that Lindenbaum’s theorem states that every consistent theory can
be extended to a complete and consistent theory.

Until now, we have started out from logic (propositional logic) and investi-
gated how to assign an algebraization to logic. But what is about the opposite
procedure, what kinds of usual algebraic objects define a logic and how?

An example of this procedure is the definition of propositional semantics,
based on algebra. We use a kind of inverse of Theorem 4.6. With an absolutely
free Boolean algebra Fr and a set hi (i ∈ I) of homomorphisms from Fr to
the Boolean algebra of two elements D we can associate the formulas of a
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propositional language and a set of propositional models. Therefore, the pair〈
Fr, {hi}i∈I

〉
can be considered as a kind of propositional semantics.

4.2 Algebraization of first-order logic

We are going to define the algebraization of first-order logic as an extension
of that of propositional logic. We have to find the algebraic counterpart of the
logical connectives of first-order logic not included in propositional logic: ∃, =
and the individuum variables x1, x2, . . . (quantifier ∀ can be expressed by ∃ and
¬).

The main idea is that the constants ∃ and = will be modelled together with
those individuum variables to which they are applied. For each quantification
∃xi, an operation (the so-called i-th cylindrification) will be introduced and
for each equality xi = xj , i = 1, 2, . . . , j = 1, 2, . . . a 0-ary operation will be
introduced (this called ij-th diagonal). That is, infinitely many operations are
considered.

Now we define the algebraization of the concept of “first-order model”. The
starting point is that the “truth sets” associated with a model M form a Boolean
set algebra K (field of sets). This Boolean structure reflects point (ii) of the
definition of “truth set” concerning propositional operations but does not re-
flect point (iii) concerning quantifiers and the presence of equality. K must be
extended by the set operations “cylindrifications” and by the constants “diago-
nals”. Now the definition is:

4.7 Definition A cylindric set algebra B of ω dimension is a special field of sets
〈B, ∪, ∩, ∼U , Uω, ∅〉, extended by an infinite collection of unary operations
Ci, i ∈ ω (the i-th cylindrifications) and by an infinite collection of constants
Dij , i, j ∈ ω (the ij-th diagonal elements):

B = 〈B, ∪, ∩, ∼U , Uω, ∅, Ci, Dij〉i,j∈ω

where Ci is such that for every a ∈ B

Cia =
{
x | xiu ∈ a, x ∈ Uω, u ∈ U

}
(xiu is obtained from x by replacing the i-th member of x by u) and

Dij = {x | xi = xj , x ∈ Uω}

further the universe B is assumed to be closed under all the operations in B.

Geometrically, Cia means “forming a cylinder set” (see in Section 2.1.2)
parallel to the i-th axis with respect to the element a ∈ Uω and the constant
Dij means the ij-th “bisector” as a hyperplane. From the viewpoint of logic
Ci and Dij correspond to forming an existential quantification with respect to
the variable xi, and correspond to the equality xi = xj , respectively.

We can check that with a first-order model (with universe U) we can associate
the cylindric set algebra (with unit Uω) such that the elements of this algebra
are the truth sets of formulas in the language (i.e. relations defined on U). This
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is why a cylindric set algebra is also-called an “algebra of relations” (but it is
not the usual relation algebra).

An immediate generalization of the concept of cylindric set algebra is the
“generalized cylindric set algebra”. Here, the unit U in the above definition of
cylindric set algebra is assumed to be of the form

⋃
k∈K

Uk, where Ui ∩ Uj = ∅

if i 6= j, i, j ∈ K. With a set of first order models with disjoint universes, a
generalized cylindric set algebra can be associated.

This concept has a similar role in the first order case as the role of field of
sets in the propositional case. In contrary to fields of sets the class of generalized
cylindric set algebras is not finitely axiomatizable, moreover it is not axiomatiz-
able with a finite scheme. This is one of the most important differences between
the algebraization of propositional logics and that of first-order logics.

A concept analogous to Boolean algebras in the first-order case is the concept
of (abstract) “cylindric algebra” (not defined here).

We can generalize the algebras EΣ and BΣ defined in the previous section
to obtain special cylindric algebras. These extensions correspond to first-order
semantics and a concrete calculus, respectively.

Using these concepts the algebraization of first-order logic can be introduced
in a similar way as that of propositional logic. Of course, the algebraization of
propositional logic and that of first-order logic have many common and different
features. The situation in the first order case is more complicated than the
propositional one. For example, with first order logic, only particular (“locally
finite”) cylindric algebras can be associated, these kinds of algebras cannot be
defined by a first order schema.

Further important algebraizations of first order logic are the polyadic algebras
and quasi-polyadic algebras, due to Halmos ([92]).

Further important kind of algebraization is the class of relation algebras. A
relation algebra is a direct algebraization of “the logic of relation algebras” (see
Section 3.4.1). The status of relation set algebras is similar to that of “cylindric
set algebras”. Beside relation set algebras, abstract relation algebras can be
defined, too. It can be shown that relation algebras are closely related to a
first-order logic with three variables. Relation algebras can be considered as an
algebraization of first-order logic, too, but they do not characterize first-order
logic in a direct way. The advantage of this algebraization is that only finitely
many operations are used, and, further, relation algebras are not of infinite
dimensional (as opposed to ω-dimensional cylindric algebras).

References to Chapter 4 are, for example: [126], [96], [23], [92], [97], [60],
[52], [9]
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Chapter 5

LOGIC in COMPUTER
SCIENCE

The role of logic in computer science is twofold:
One role is that logic helps the foundation of several fields of computer

science. Its main reason is that logic is the only discipline which studies meaning
in a strict formal way (that is, in mathematical way). This is why logic today
is widely recognized to be one of the fundamental discipline of computing and
problem solving (maybe the most important one).

The other role of logic in information systems is that logic provides not only
a theory, but the languages and calculi of logics can be transformed into direct
tools of software development technologies (VDM, Z, HOL, TLA+ and so on),
database systems and knowledge representation. Special logics can even be used
as programming languages (like PROLOG, DATALOG).

We intend to show how logics help solving problems in some field of computer
science - we, unfortunately, cannot provide a complete review in this book, but
there are handbooks that we suggest the interested reader should consult (see the
references). In this book only some interesting classes of problems are discussed
such as
• how formal semantics can be provided for programming languages?

• how to ensure that programs (or other dynamic systems) behaves as it is
intended (how to verify them)?

• how to represent knowledge in a formal way?

However no complete study can be given even for the selected topics - only
the basic notions, some interesting aspects and approaches are discussed. Sim-
ilarly, for lack of space, we cannot go into the details of some important areas
of applications as database theory, functional programming, logic design etc.

5.1 Logic and Complexity theory

There is a close traditional connection between Logic and Algorithm theory,
Logic and Automaton theory and between Logic and Complexity theory (e.g.
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there are elegant proofs for Incompleteness theorems, undecidability of first
order logic using the concept of Turing machine). Here we sketch some results
mainly on the connections of Logic and Complexity theory.

We assume a minimal knowledge on basic concepts of computability and
complexity theory: the concepts of the most known complexity classes P and
NP, that of completeness with respect to a given complexity class, the reducibil-
ity of a problem to another one, etc. We accept here the hypothesis P 6=NP,
as usual.

There are classical results in Complexity theory which are related to Logic.
These are connected with important logical problems which are complete with
respect to a given complexity class. Such a logical problem is the problem called
SAT, that is, the problem of satisfiability of a propositional formula given in
conjunctive normal form. As it is known, SAT is a NP-complete problem. A
similar problem is the problem HORNSAT, that is, the problem of satisfiability
of a finite set of propositional Horn clauses. It is known that HORNSAT is
a P-complete problem. Other similar problems originated from logic are: the
problems 3SAT, Max-2SAT, etc..

Problems above as complete problems are characteristics of a given com-
plexity class. These kinds of results are important also from the viewpoint of
applications. For example, the fact that HORNSAT is in P is the theoretical
basis of logic programming (PROLOG is based on SLD algorithm concerning
problem HORNSAT).

There is a less traditional connection between Logic and Complexity theory
which is more direct and comprehensive. This connection is a bit similar to the
logic-algebra connection. This is a kind of translation from complexity theory
to logic and vice-verse. More exactly: given a complexity class C we try to find
a logical language S and a set Σ of formulas in S such that with every problem
Q (or with a problem equivalent to Q) in C, we can associate a formula in Σ
which formalizes Q. And conversely, with any formula in Σ one can associate
a problem in C.

The language of first order logic is not suitable for choice of S, some ex-
tensions are needed. The main reason is that the concept of recursion is not
expressible in terms of a first-order language. Second-order logic and its lan-
guage seems to be sufficient. This is confirmed by the following theorem: A
language S is “recognized” by an automaton if and only if S is“definable” in
(monadic) second order logic.

The language S chosen for the characterization of complexity classes is the
second order language of graphs. The class of models is restricted to the class of
finite graphs. S contains only the binary relation symbol E, interpreted as “to
be an edge” of the graph. Only relation variables (and no function variables)
are used: one n-ary relation variable Pn for every natural number n.

The class of formulas of the form ∃Piψ(Pi, x1, . . . xk) is considered, where Pi
is the only relation variable, and x1, . . . xk are the free individuum variables in
ψ.

5.1 Definition (∃Pψ graph problem) “The ∃Pψ graph problem”: Is the for-
mula ∃Piψ(Pi, x1, . . . xk) true for a given finite graph G =

〈
G,EG

〉
and evalua-

tion 〈a1, . . . ak〉 ∈ Gk ?
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For example, let us see the property “unreachability” in graphs that is the
property “there is no path between given two nodes”. A possible formalization
of this property is

∃P (ρ ∧ ¬P (x, y))

where ρ = ∀u∀v∀w(Puu ∧ (Euv → Puv) ∧ (( Puv ∧ Pvw)→ Puw)). Here P
should be a reflexive, transitive relation containing E. The formula says that
there is such a reflexive, transitive closure of E for which P (x, y) is not satisfied.

5.2 Theorem (Fagin) Any ∃Pψ graph problem is in NP and conversely, every
decision problem of graphs which is in NP can be reduced to a ∃Pψ graph
problem.

A related result is Courcelle’s celebrated theorem: Each problem definable in
monadic second-order logic with additional predicates evaluating the size of sets,
can be solved in linear time on graphs with bounded tree width. This general and
strong result allows many applications.

The next question is: how to characterize the problems in P inside NP,
using logic.

Recall that a prenex normal form is a strong Skolem form if its prefix con-
tains only universal quantifiers (it is an universal formula) and the kernel is of
conjunctive normal form. A Skolem form is a Horn formula if in any conjunction
of the kernel there is at most one literal without negation.

5.3 Definition (second order Horn formula) A formula ∃Pψ ∈ Σ is a second
order Horn formula if ψ is a Horn formula with respect to P (the members of the
conjunctions in the kernel of ψ are allowed to contain P at most once without
negation).

For example the conjunction members Puu, ¬Euv∨ Puv, ¬Puv∨¬ Pvw∨
Puw, ¬Pxy of the Skolem form of formula ∃P (ρ ∧ ¬P (x, y)) satisfy this condi-
tion, therefore this Skolem form is a second-order Horn formula.

It is not difficult to check that if ∃Pψ is a second order Horn formula then
the ∃Pψ graph problem is in P (for example the problem “unreachability”).
Unfortunately, the converse of this proposition fails to be true, a modification is
needed.

Let us consider linear ordered graphs rather than “ordinary” graphs. The
ordering is defined for the vertices of the graph. Linearity means that the
ordering is irreflexive, trichotome and transitive. Let us extend the language S
by a binary relation symbol R which is always interpreted as a linear ordering.

We can define a new problem called ∃Pψ ordered graph problem similarly to
the ∃Pψ graph problem but restricting the graphs (the models) in the original
definition to linear ordered graphs.
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Intuitively, with an ordering of a graph we can associate a sequence of the
elements of the graph. These elements, in the given order can serve as input for
an automaton (e.g. a Turing machine).

The following theorem gives a logical characterization for the class P:

5.4 Theorem (characterizing class P)

(i) If ∃Pψ is a Horn formula of second order then the ∃Pψ - problem is in
P.

(ii) Every decision problem of ordered graphs in P can be reduced to a ∃Pψ
ordered graph problem.

Many other complexity classes can be characterized using logic. In order to
do this different kinds of logics are needed. The so called “fixed-point logics”
seem to be very adequate tool for this purpose. Complexity classes P ,PSPACE,
LOGSPACE, NLOGSPACE can be characterized as the finitely axiomatizable
classes in certain fixed-point logics.

Some remarks concerning applications and advantages of the connection be-
tween logic and complexity theory:
• This connection may help to recognize that a concrete problem is in a

given complexity class (by expressing the problem in a suitable logical
language), and it may provide us with better understanding of a given
complexity class using the given logic.

• Logical characterizations allow us to convert problems, methods and re-
sults of complexity theory into logic and vice versa (for example, the state-
ments LOGSPACE6=SPACE or P=NP can be converted to logical state-
ments and they can be investigated in logic, too).

• This connection allow us to consider a logical language associated with
a given complexity class also as a programming language of higher level.
Conversely, given a programming language, considering it as a logical lan-
guage we may try to find a complexity class associated with this language.
These kind of connections are actively investigated for different program-
ming languages, among others for some kinds of the language DATALOG.

While we know that existential second-order logic precisely captures NP on
the class of all finite structures, most other logical charatcterizations known
up-to-date are restricted to particular classes of finite structures.

When considering the invariant versions of the above logics (e.g., order-
invariant formulas, arithmetic-invariant formulas, etc.), one obtains charatcter-
izations of the according complexity classes with respect to the class of all finite
structures. However, these logical systems do not have a decidable syntax.

In the last few years, a lot of research has been devoted to identifying larger
and larger classes of finite graphs for which decidable characterizations of pre-
cisely the graph properties computable in polynomial time can be found.

In the literature, several computation models that operate directly on struc-
tures (rather than on their string encodings, as Turing machines or random
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access machines) have been proposed; the one of the most prominent is Gure-
vich’s abstract state machines. Based on the latter, Blass, Gurevich, and Shelah
introduced two complexity classes for choiceless polynomial time computations
with or without counting facilities, called CPT+C and CPT, respectively. The
according machine models operate directly on structures in a manner that pre-
serves symmetry at every step of a computation. The computations are called
“choiceless”, because they disallow choices that violate the inherent symmetry
of the input structure. This inability of making choices is compensated, among
others, by parallelism (i.e., the power to explore all choices in parallel).

References to Section 5.2 are, for example: [129], [31], [79], [112], [111], [1],
[27].

5.2 Program verification and specification

5.2.1 General introduction

Software industry has a very dubious character, since there is no reliable
quality control for its products. This was the origin of the so called “software
crisis” at the beginnings of sixties. Since then software engineering has devel-
oped several software technologies to overcome the crisis.

The idea to use logic for the verification of programs exists parallel to the
problem of quality control. To discuss the different logic based approaches first
the meanings of programs have to be clarified and to overview the program
properties that can be investigated by logics.

Data types are interpreted in relational structures (e.g. in many sorted mod-
els). The so called state transition semantics is considered. The simplest notion
of a state is an evaluation of program variables. Statements of the programming
language as well as programs are considered state transitions. A state transition
is defined as the set of pairs of input and output states. So the meaning of a pro-
gram is the set of pairs 〈qi, qo〉 such that there is an execution with output qo for
input qi. This set is called the input-output relation of the program. Clearly the
input-output relation is a partial function in the case of deterministic programs.
The sequence of states of an execution - called trace - is sometimes considered
as the meaning of the program.

The most apparent program properties are correctness and termination,
however, the concept of correctness has to be clarified. Correctness can be
defined with respect to (w.r.t.) a specification expressed by a pair of formulas
〈ϕ(x), ψ(x)〉. Formula ϕ(x), called precondition, constraints the input state of
the program, and ψ(x), called postcondition, specifies the output state. Notice
that while these two conditions contain the same variables, they refer to different
evaluations. While a pair of pre- and postconditions may specify the program
execution partially, the weakest precondition and strongest postcondition can be
considered as the total specification of the program.

Let p be a (non deterministic) program, ϕ and ψ be first order formulas. The
following definitions give the meaning of some generally used program proper-
ties.
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5.5 Definition (safety - invariance - properties) The safety (invariance) prop-
erties express that a “good property” is always true. Some of the important
ones:

• “ a program p is partially correct w.r.t.〈ϕ(x), ψ(x)〉” means that “ if the in-
put state satisfies condition ϕ(x), each output state of p satisfies condition
ψ(x)”;

• “ program p has invariant ψ(x) at a point of the program w.r.t precondition
ϕ(x)” means that “ if the input state satisfies condition ϕ(x),condition
ψ(x) holds when any execution of p reaches the point marked by the
invariant”.

5.6 Definition (liveliness - eventually - properties) The liveliness (eventually)
properties express that a “good property” eventually happens. Some of the
important ones:

• “ program p quasi-terminates w.r.t precondition ϕ(x)” means that “ if the
input satisfies condition ϕ(x), program p has a terminating execution
path”;

• “ program p terminates w.r.t precondition ϕ(x)” means that “ if the input
satisfies condition ϕ(x), every execution path of program p terminates”;

• “ program p is quasi-totally correct w.r.t. 〈ϕ(x), ψ(x)〉” means that “ if
input satisfies condition ϕ(x), program p has an output state satisfying
condition ψ(x)”;

• “ program p is totally correct w.r.t. 〈ϕ(x), ψ(x)〉” means that “ if input
satisfies condition ϕ(x), every output state of program p satisfies condition
ψ(x)”.

The traditional notation for partial correctness is {ϕ}p{ψ}, for total cor-
rectness is [ϕ]p[ψ].

Theoretical computer science usually considers some metalanguage as pro-
gramming language. If it contains some kind of iteration, its precise form
does not count: the theoretical results do not depend on the detailed syn-
tax. In the definitions non-deterministic programs are supposed, which have
well-defined starting point and termination. In the case of deterministic pro-
grams the notions “quasi-terminating” and “terminating” coincide; similarly,
the notions “quasi-totally correctness” and “totally correctness” coincide. No-
tice that termination can be expressed in terms of total correctness with true
as postcondition; further, looping can be expressed by partial correctness with
postcondition false. In the case of a program which fulfills its function continu-
ously (like operation systems, word processors etc.), the state of termination is
not characteristic. In that cases the postcondition can be assigned to any point
of the program.

Naturally, there are many other interesting program properties that can be
investigated by logic. For example, whether a parallel (or cooperative) program
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is deadlock-free. Recently, almost any program property has been discussed in
terms of logic except for performance properties. As an example, we refer to
[104], which studies the formal handling of “secure information flow”. Nowadays
the multi-agent technology raises the problem of spatially distributed computa-
tion. In this case we have to be able to express statements like “there is a process
at location n, which is able to satisfy specification Ā”. The interested reader
may want to visit web-site research.microsoft.com for further information.

In the following, we outline the theoretical base of program verification.
All the statements are independent of the precise syntax of the programming
language; we only have to suppose that some form of iteration is included. In
the traditional research “while language” is used. Variants of state transition
semantics are considered as the semantics of the programming language.

First [63] proposed a method to prove partial correctness, his method was
formalized as a calculus by “Hoare”. The method basically is an induction on
the structure of the program. The Floyd-Hoare calculus consists of inference
rules corresponding to the program constructions. Let us see two examples, the
introduction rules for the sequence of statements and for while statement.

{ϕ}p1{λ} , {λ}p2{ψ}
{ϕ}p1;p2{ψ}

; I (5.1)

ϕ ∧ ¬α→ ψ , ϕ ∧ α→ λ , {λ}p{λ} , λ ∧ ¬α→ ψ

{ϕ} while α do p od {ψ}
while I

(5.2)

Note that in both cases an invariant assertion (denoted by λ) is used for
the decomposition of the program construction in question. In the first case the
invariant can be generated automatically; however, to find a suitable invariant
for loops needs human intuition, that is, understanding the program.

5.2.2 Formal theories

To formalize computing has been a great challenge for logic. There are
several approaches, let us list some of them:
• Relation algebras and its logics are widely used, since relations can be

considered as meanings of programs.

• New logics are defined for modelling computing. New connectives are de-
fined as in linear logic (see [81]), or semantics is modified as in dynamic
predicate logic1 (see e.g. [86]). The most widely known such logic is dy-
namic logic, which is discussed below.

• Non-classical logics are used e.g., intensional logic or different temporal
logics (discussed below).

1It is interesting that the semantical approach behind this logic originates in modelling of
computing; however, it is used in linguistics rather than in computing. In spite of the similar
name, dynamic predicate logic and dynamic logic are two basically different logics.
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• Even first order classical logic can be used - a version is discussed below.

Naturally, the most important problem is the completeness of the proof sys-
tem to be used. The issue can be raised independently on the logic in question.
It seems that no proof system proving partial correctness can be complete, since
looping can be expressed as partial correctness - and it is known that termination
is an undecidable problem. It is strange that it was not realized while methods
to prove program properties were developed. The reason is that a special notion
of completeness was investigated. The first results of non-completeness were de-
veloped in the late seventies, see [77] and [162]. There were several attempts to
cope with it, e.g. the notion of arithmetical completeness was used to character-
ize computational logics. Arithmetical completeness compares a computational
logic to the logic of arithmetics: it means that the logic in question would be
complete if arithmetics was.

The real solution for the problem of completeness was given by the Hungarian
school, namely in [10] it is created a complete computational logic, by modifying
the notion of termination. This will be discussed in the subsection below about
first order programming theory.

Definabilty may also play an important role in programming theories, how-
ever we do not have enough space to discuss it.

Dynamic logic

Dynamic logic was developed in the late seventies; [93] is a good summary.
Dynamic logic is a multi-modal logic, where modal operators are labelled by

programs. It means that classical logics are extended by modal operators [p]
as a box operator and 〈p〉 as a diamond operator, where p denotes a program.
Notice that programs are defined by a grammar too, so different programming
languages have different dynamic logics. However, the properties of different
dynamic logics do not differ. Generally, non-deterministic programming lan-
guages are considered, and a meta language armed with test statement and
iteration is defined as programming language. Here we outline dynamic logics
as it was defined by Harel and his co-workers, however now new logics are based
on traditional dynamic logic, e.g., mu-calculus combines dynamic logic with
the fixed-point operator.

In the semantics of dynamic logic the set of worlds is the set of states and the
accessibility relation is represented by the executions of the program in question.
For every world the same structure is rendered, which represents the data types
of the programming language in question.

To get the definition of the meaning function of first order dynamic logic,
that of classical first order logic has to be modified as follows.

5.7 Definition (meaning of dynamic modal operators)
Let Pp denote the input-output relation of p. The truth set of [p]α is the set:
{q | 〈q, a〉 belongs to Pp for any evaluation a ∈ [α]},
the truth set of 〈p〉α is the set:
{q | 〈q, a〉 belongs to Pp for some evaluation a ∈ [α]}.
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Remember that q ∈ [α] denotes that q is included in the truth set of α.
Intuitively [p]α says that α is true after any execution path of p, and 〈p〉α

says that there is an execution of p such that α is true after it2. Note that he
truth set of the formulae are the set of inputs. We defined first order dynamic
logic; however, propositional one is important, too.

The important program properties can be expressed in dynamic logic as
follows:

program p is partially correct w.r.t. 〈ϕ,ψ〉 ϕ→ [p]ψ
program p is quasi-totally correct w.r.t. 〈ϕ,ψ〉 ϕ→ 〈p〉ψ
program p quasi-terminates w.r.t. precondition ϕ ϕ→ 〈p〉 true.

For deterministic programs total correctness is the same as quasi-total cor-
rectness, however, for non-deterministic programs it is complicated to construct
the formula expressing total correctness.

The inference rules (5.1) and (5.2) can be expressed by dynamic logic axioms:
((ϕ→ [p1]λ) ∧ (λ→ [p2]ψ))→ (ϕ→ [p1; p2]ψ),
((ϕ ∧ ¬α→ ψ) ∧ (ϕ ∧ α→ λ) ∧ (λ→ [p]λ) ∧ (λ ∧ ¬α→ ψ))→

(ϕ→ [while α do p od]ψ)
respectively. Clearly these axioms can be expressed as inference rules, too.

5.8 Theorem (compactness and completeness)
Propositional as well as first order dynamic logics are not compact.
Propositional dynamic logic is weakly complete, but it is not strongly complete.
First order dynamic logic is not weakly complete.

The theorem above holds for the traditional interpretation of termination;
however, the negative results can be turned into positive, as it will be shown in
the discussion of first order logic with explicit time below.

Notice that dynamic logic is adequate also to model any processes if they
can be decomposed into elementary subprocesses.

Temporal logic

Temporal logic was first used in [133] to characterize a method of proving pro-
gram properties. Since then, temporal logic has been widely used, mainly for
parallel programs.

Temporal logic applied to programming uses other temporal operators than
the standard ones described in Section 3.2. The modalities referring to the
past are superfluous. The time scale is a discrete ordering, representing the
steps of the execution of a program. To handle such a timescale new operators
are introduced. Different approaches may use different operators, e.g. [133]
introduces modality “until”, [79] uses modalities 1 with the meaning “it is true
in the first moment” and “next” with the meaning “it is true in the next time
moment”.

While the syntax of dynamic logic contains the syntax of the programming
language, the elements of the syntax of the programming language do not occur
in the temporal logical description of the execution of a program. For a program

2Remember that non deterministic programs are being discussed.
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a set of axioms is generated, which describe the possible traces. We do not have
enough space here to detail how to perform it. Non rigid constants correspond
to program variables, while rigid variables are used in the formulas describing
properties of states. The history of a program variable can be obtained by a
function that maps the time scale to the evaluations of a constant representing
the program variable3. However, [112] adds “actions” to his time logic (TLA),
which has been developed into a practical specifying language - below we discuss
it. In TLA actions are introduced directly, it makes the descriptions of the
program executions easier and more to intuitive. It is a peculiarity of the logic
that actions are formulae at the same time: an action is true in a time structure
if it transmits the first state into the second one.

In the propositional case temporal computational logic can be embedded into
dynamic logic, that is, any temporal formula can be expressed by a dynamic
formula. However [79] proves that the two first order logics cannot be compared:
there is a temporal formula that cannot be expressed in dynamic logic, and a
dynamic formula that cannot be expressed in temporal logic.

Traditionally, temporal logic uses the ordered set of natural numbers as the
time scale, and therefore it is not complete in the first order case. [110] provides
a comprehensive overview of the result of the traditional approach. If the time
scale belongs to a more general class (like the class of sets with discrete ordering
and successor and precedessor functions), a complete temporal logic can be
developed. [12] provides a survey of temporal logics with general time scales
used for programming theories.

First order logic with explicit time

First order logic with explicit time can be used to characterize program execu-
tion. It can be considered as a translation of temporal logic into first order one.
It was published first in [80], a detailed discussion can be found in [79].

For the sake of simple presentation we use a many sorted logic. Beside data
type sorts additional sorts are added:

• time sort (t), corresponding to the time scale of temporal logic,

• function sorts4 (dt) for any data sort d, representing the history of a
program variable of sort d in the execution, so they stand for functions
mapping time to data.

The language has to be supplemented with additional non-logical symbols to
handle time (e.g. constant 0 for starting moment, function s with the meaning
“next”, and the predicate ¡). For any data sort d function symbol appd with
arity 〈t, dt; d〉 is added to the language, that is, its interpretation in a model is a
function that tells us what is the value of the function in a given moment. Let
us denote the set of sentences of the completed language by Ft.

Axioms are needed to ensure that in every model the interpretations of the
additional symbols reflect their intuitive meanings. These axioms belong in the
following three groups, where t denotes a time variable, f and g denote function
variables:

3÷ In intensional logic such functions can be referred in the language, they form the
“intensions” of the constants.

4 Some authors use the terms path or intension.
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• Axioms for time, describing a discrete ordering.

• Induction axiom scheme for time: (α(0)∧∀x(α(x)→ α(s(x))))→ ∀xα(x).

• Axioms for function sort:

– axioms for equality: ∀t appd(f, t) = appd(g, t) → f = g for every
data sort d;

– different versions of comprehension scheme expressing that there are
as many elements of function sort as we need, that is e.g. for ev-
ery definable function there exists an element of the function sort:
∀t∃!yα(t, y)→ ∃f∀tα(t, appd(f, t)).

Models satisfying these axioms are called models with inner time. Let us
denote this class by Mt. A model is called a standard model if the time sort is
isomorphic with natural numbers. Let Ms

t denote the class of standard models.
Logic 〈Ft,Ms

t ,m〉 is called standard time logic, 〈Ft,Mt,m〉 is called time logic.
In standard time logic the interpretation of termination is the traditional

one: the program stops after finitely many steps. However, in time models the
program may stop at a non standard moment. To characterize the traces in
non-standard moments the description of the program has to be completed by
an induction axiom, saying that

if “a property is true at the starting point”, and “if this property is true in a
moment, it remains true in the next moment”

then “this property is true in every time moment”.

5.9 Theorem (completeness) Standard time logic is not complete, time logic is
strongly complete.

In time logic it is clear why traditional programming logics are not complete.
While data are considered as models of the axiom system in question, time is
supposed to be a standard model, which cannot be axiomatized. The inter-
pretation of termination spoils completeness even in the case of logics where
time does not appear explicitly. If also non-standard time scales are considered,
completeness is ensured. First [10] realized this. Induction axiom for traces can
be expressed in dynamic logic as well as in temporal one, so complete versions
of these logics can also be created - see [79].

Clearly, temporal logic can be transformed into time logic, this can be proved
about dynamic logic, too.

5.2.3 Logic based software technologies

The analysis of programs by logical means first aimed to prove various prop-
erties of existing programs. However, the paradigm changed soon: the aim
became to write correct programs, and logic based software development tech-
nologies have been developed to this aim. Techniques follow a top-down devel-
opment strategy and may consist of
• a specification language, which supports to specify software products in

several levels,
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• methods to prove that refinements of the specifications are correct,

• methods to generate code for the specification.

Specification languages are generally based on logic. Note that pure logic
cannot be used, because

• a specification has to be structured, that is, some kinds of units are needed,
which can refer one to another - but logic studies only sets of sentences,
no other structure;

• the type structure of programming language has to be represented in the
logic used for specification;

• the specification speaks about higher order objects (e.g., functions) - con-
structions to define such objects have to be provided for the specification
language.

[112] illustrates how a specification language is built up5.

The earlier specification languages, which are studied and/or used in practice
even now, are

• VDM (Vienna Definition Method), whose development started in the late
seventies, the first detailed report is [28], and

• Z, which was developed through the 1980s, the first reference manual was
published in 1989: [146].

[103] and [102] are thorough tutorials of VDM and Z respectively.
Stepwise refinement is the focus of these tools. The specification language

helps the specification of the data types used in the system and the specification
of states and state transformations (that is, specification of programs). The
specification consists of two parts, the first is the definition of non logical sym-
bols - this is done by set theoretical formalism. In the case of the definition
of data types the second part consists of axioms, in the case of definition of
program modules it consists of their specifications (usually in the form of pre-
and postconditions).

The steps of program development consist of defining refinements of the
existing definitions and proving the correctness of the refinements. The re-
finements may create new specifications in the same logics - in this case the
correctness proof can be supported by one of the calculi for the logic used in the
system (generally, the first order one). However, in several cases, the refinement
interprets a data type of the higher level specification in another data type (e.g.
sets are interpreted in sequences). In this case the transformation between log-
ics has to be handled. At the end of the refinement process the specifications
are transformed into programs - for this purpose special calculus is provided,
similarly to the Floyd-Hoare calculus.

There are several studies comparing the two systems, like [27], [94]. They
mostly conclude that there are neither important theoretical nor practical dif-
ferences between the two systems. Naturally, the two systems differ in several

5The concrete language is TLA+, but the paper illustrates some general problems and
solution.
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points of view, and we think that the main difference is that relational algebraic
operators - including operators for the specification of relational data bases -
are built into Z. Both systems use naive set theory for specification, however
[78] argues that the theory of hereditary finite sets would be more adequate for
this purpose.

The most recent system following the same line is the B method, which is
able to handle object oriented systems too - at least in some extent. To learn
more about it visit www.b-core.com.

There are systems which combine specification with verification: a specifi-
cation of a complex system can be described by them, and a proof procedure is
provided to prove correctness:

• ESC/Java is a programming tool for finding errors in Java programs at
compile time, which uses program verification techniques. See research.

compaq.com/SRC/esc.

• TLA+, which is the extension of time logic with actions. “TLA BOOK”
is a detailed introduction to the specification language, and it illustrates
in details how to use such a specification language. For more information
visit http://research.microsoft.com/users/lamport/tla/tla.html.

• Spin is a popular software tool that can be used for the formal verification
of distributed software systems. The tool was developed at Bell Labs in the
original Unix group of the Computing Sciences Research Center, starting
in 1980. “Holzmann” presents techniques of using the SPIN model checker
to verify correctness requirements for systems of concurrently executing
processes. For more information visit spinroot.com/spin/whatispin.

html.

• PVS is a verification system: that is, a specification language integrated
with support tools and a theorem prover. The interested reader may visit
pvs.csl.sri.com.

• HOL-Z is a proof environment for Z and HOL6 specifications on the one
hand and the generic theorem prover Isabelle on the other, see
abacus.informatik.uni-freiburg.de/holz.

The systems outlined show that program verification is in the main stream of
computer science, and it is suitable for practical applications. However, proving
the correctness of systems demands huge resources, both in the computing and
in human resources to create the specification of the system and to outline the
plan of the proof. However, in critical safety systems program verification is
applied. “,,,” describes the use of TLA+ by an Intel processor design group.

References to Section 5.2 are, for example: [48], [71], [118].

6HOL stands for higher order logic.
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5.3 Logic programming

The history of logic programming started with an application which was
based on a resolution proof procedure, which used only so called Horn clauses
and proved surprisingly effective. First it was thought that a logic program gives
a specification of “what” the program is supposed to do that is that it specifies
the input-output relation. However soon it was realized that using Horn clauses
not only “what” to do is specified, but also “how” to do - at least to some
extent. In other words: not only the input-output relation is specified, but an
algorithm too. So there came a change of the paradigm in the application of
theorem proving: to use logic as a programming language. A new slogan was
announced by R. Kowalsky:

ALGORITHM = LOGIC + CONTROL.

The slogan expresses that the formulas of the logic programming language de-
scribe the essence of the algorithm, and the search strategy of the logic pro-
gramming language fills the gaps. However the real merit of the slogan is that
the segments of logic that are usable as a programming language, are ideal
algorithm description languages.

For some years it was thought that the new paradigm can be extended to
the whole first order logic, however, soon it was realized that the secret of the
effectiveness is restricting the class of formulae. So even nowadays PROLOG and
its relatives (including DATALOG) are the commonly used logic programming
languages. One of the most interesting question of logic programming is which
segments of logics can be considered as programming languages. This question
has both theoretical and practical aspects.

A logic programming language is a proof procedure, that is, a proof system
and a search strategy. An axiom system is considered a logic program, the
proof of a theorem the execution of a logic program. Since logic programming
originates in problem solving, it can be supposed that the logic program consists
of universal formulas and the theorem to be proved is an existential one. The
theoretical condition of “being a logic programming language” is that every proof
has to provide terms for the existentially bound variables as the result of the
computation; it is explained below in details.

Let Σ be a set of universal formulas, and let a theorem to be proved given
in the form ∃xα(x) (called goal or query). Recall that, according to Herbrand’s
theorem, Σ � ∃xα(x) is equivalent to Σ � α(t1)∨ . . .∨α(tn) for some sequences
t1, . . . tn of terms. But, it is important to ensure this equivalence for one se-
quence ti only, that is to ensure the relation Σ � α(ti) for some i. The property
Σ � α(ti) is called the “existence of correct answer” in the logic programming
community. Clearly, the expectation for “existence of correct answer” is a strong
restriction for the segment of logic used in logical programming.

The correct answer condition can be reformulated with the help of the prov-
ability relation too: Σ � α(ti) if and only if Σ ` α(ti) for a sequence ti. The
terms in ti can be considered as the output of the “computation”. Notice that
this property one of the principles of intuitionistic proof systems.

It is more difficult to formulate precisely the practical aspects of the question
that which proof procedures can be considered logic programming languages.
On the one hand the search for the proof has to be effective, on the other hand
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the “programmer” have to have the chance to foresee the process of search for
the proof. Here lies the secret of the wide spread usage of PROLOG: a logic
program can be viewed and understood as a set of sentences of logic as well as
a program, anticipating the execution.

5.3.1 Programming with definite clauses

Here we sketch the logical background of the programming language PRO-
LOG, and data base query language DATALOG, that is, programming with
definite clauses.

Suppose that a first order language L is given without equality. Clauses will
be meant here as first order clauses.

5.10 Definition (Horn clauses) Clauses with at most one positive literal are
called Horn clauses. Clauses with precisely one positive literal are called definite
Horn clauses (in shortly definite clauses).

Let the set Σ of axioms (Horn clause program) consist of definite clauses,
where a definite clause may be written in the form A1 ∧ . . .∧An → B, (A1, . . . ,
An, B are atomic formulas, 0 ≤ n). Notice that n = 0 is allowed, in this case
the atomic formula in the implicative form is denoted by → B.

Let the theorem (query, or goal) is ∃xα(x) where α is of the form A1∧. . .∧An
(it is denoted by A1 ∧ . . . ∧ An → by the logic programming community). The
clause form (let’s denote it β) of the negation of ∃xα(x) is obviously a negative
clause. The following theorem states that correct answer problem has a positive
solution for these formulas.

5.11 Theorem (existence of correct answer) If Σ � ∃xα(x) then Σ � α(x/t)
for some sequence t of terms.

The resolution rule that is used in PROLOG is called SLD resolution (S
stands for selection function, L for linear resolution, D for definite clauses7).

5.12 Definition (SLD resolution rule) Let Q be a negative clause in the form
G1 ∧ . . . ∧Gn →, and let S be a definite clause in the form A1 ∧ . . . ∧An → B.
Q and S can be resolved if and only if literals G1, and B can be unified. Let
µ = mgu(G1, B). ResSLD(Q,S) = A1µ ∧ . . . ∧Anµ ∧G2µ . . . ∧Gnµ→.

Notice the following properties of SLD:
• Two definite clauses are not allowed to be resolved.

7For general clauses one of the most effective refinement of resolution is the so called SL
resolution (linear resolution with selection function). However the secret of the SL resolution
is the elegant and effective way how it executes the resolution steps between two derived
clauses - and this step does not occurs in the case of definite clauses, so in this case SL turns
to be input resolution with selection function.
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• The derived clauses are negative clauses, they are of the form of the goals.

• It is determined which literal of the negative clause has to be resolved
This constraint is called using selection function, it saves completeness.
In traditional PROLOG systems the clauses are stored as sequences of
literals, therefore the first literal of the negative clause is selected for
resolution. For this reason the ordering of literals in the derived clause is
important.

5.13 Definition (SLD derivation) Suppose that Λ is a set of definite clauses,
and C is a negative Horn clause. The SLD derivation of a clause K is a sequence
〈C1, . . . , Ck〉 of negative Horn clauses such that C1 = C, . . . , Ck = K and Ci is
obtained as ResSLD(Ci−1, Cm) for some Cm ∈ Λ.

Let Λ and C be as in the definition.

5.14 Theorem (Completeness of SLD resolution) Λ ∪ {C} is unsatisfiable if
and only if there is a derivation of the empty clause � by SLD resolution from
the set Λ ∪ {C}.

There is a version of completeness that states the “existence of correct an-
swer”. Let Σ and ∃xα(x) the same formula set and formula as in Theorem
5.11, and let Λ be the clause set corresponding to S = Σ ∪ {¬α(x)}, and let us
suppose that the empty clause can be derived from S by SLD resolution. Let
σij be denote the most general unification applied to xj in the i-th step of the
derivation.

5.15 Corollary (existence of correct answer) Let us consider terms
tj = xjσ

1
j ...σ

n
j , where n is the length of the derivation. Then t = 〈t1, ...tm〉 is a

correct answer, that is Σ � α(ti).

For definite clauses a so called “procedural semantics” was also provided:
a definite clause is a procedure with B as the head and A1 ∧ . . . ∧ An as the
body. Each Ai calls procedures whose head can be unified with Ai. In this inter-
pretation “calling a procedure” corresponds to an execution of SLD resolution
inference rule.

Let us see a simple example. In logic programs we often use data type list
that is the language has a constant “nil” for empty list, and a binary function
“.” for list constructing operation. The logic programs act over the Herbrand
universe generated by them that is they act over lists. The following simple pro-
gram defines the “element of a list” relation (small case letters denote constants
and upper case letters denote variables):

Element(X, L.X)←
Element(X, L.Y)←Element(X, L)

saying that “X is element of a list if it is the head of the list, or if it is the
element the tail of the list”.
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Notice that the same program can be used for different aims. The goal
Element(a,l) tests whether a is an element of l, Element(X,l) takes an element
of l (the head - if the search strategy is considered too), Element(a,Y) creates
a partially defined list with a as an element (as head).

If procedural semantics is considered then it can be said that a sophisticated
calling mechanism is used for the parameters: the same parameter can be input
or output one depending on the call of the procedure. It is called “call by need”.

Further interesting properties of logic programming languages are as follows:

• there are no iteration in them, only recursive algorithms can be written

• there is no assignment statement, only bounding of variables.

Clearly the search space of SLD resolution can be considered a tree, where
the branches are derivations. So the problem of the search for the answer (for
the empty clause) is transparent. So the search for the solution is built into
the interpreters. In PROLOG-like logic programming languages the depth first
search strategy is used, therefore procedure calls (execution of resolution steps)
can be backtracked.

These features were soon built into other programming languages too.
The most important features of the paradigm “programming with Horn

clauses” can be summarized as follows:

1. The existence of a single intended model (the least Herbrand model) yields
the semantics for Horn clause programs and ensures the existence of cor-
rect answer.

2. The Herbrand universe allows the programmer to use function symbols in
the language as constructors of abstract data types, to encode objects as
terms and to represent recursive definitions of these objects by means of
Horn clauses.

3. Horn programs can specify any recursively enumerable set, so program-
ming with Horn clauses captures the commonly accepted notion of com-
putability.

4. Programming with Horn clauses is declarative due to the separation of
logic, represented by sets of Horn clauses, from uniform control, repre-
sented by SLD resolution.

5.3.2 On definability

To understand the theoretical base of logic programming first we summarize
some aspects of the theory of definability. Definability has an extensive theory
in logic. We only discuss a special part of it, the theory of inductive definitions.
This topic is particularly important in applications.

Let L be a first order language, and let R be a new k-ary relational symbol.
Let L′ be the language obtained from L by expanding it with R. The models of
L′ are denoted by 〈M,R′〉, where M is a model of L and R’ is the interpretation
of M .
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We remark that only the case of one symbol R is discussed here for the
sake of simplicity. But everything what is said in this section is true for the
simultaneous introduction of more than one relational symbols.

5.16 Definition (different forms of definitions) A sentence of the form
∀x(R(x) ↔ α(x)) is called an explicit definition of R, if α(x) is a formula
of L (that is, it does not contain R).
A set of formulae ΣR consisting of formulae of L′ including relational symbol
R is called the implicit definition of R. If for a model M of L and relation R′

it holds that 〈M,R′〉 � ΣR then it is said that ΣR defines R′ in M . If R′is the
only interpretation of R such that it satisfies ∆R, it is said that ΣR uniquely
defines R′ in M .
A sentence ∆R of the form ∀x(R(x) ↔ α(x,R)) is called the inductive defini-
tion of R, if α(x,R) is a formula of L′. α is called the defining formula of the
definition8.

The basic question of definability theory is that what kind of definition
can uniquely define a relation. Clearly, an explicit definition uniquely define
the relation in question, since the defining formula defines a well determined
relation in every model of L. As regards implicite definitions see the following
theorem:

5.17 Theorem (definability) Suppose that an implicite definition ΣR uniquely
defines a relation on each model of L. Then there is an explicit definition of the
relation.

Clearly, inductive definitions are “implicit definitions” of special form. The
theorem implies that inductive definitions themselves are very weak concepts,
this is why they are further analyzed below. If first order logic is considered,
its expressive power is not greater than that of implicit definitions. However, in
the theory of inductive definition strong results can be found (for the theory of
inductive definability see [7]).

5.18 Definition (least fixed point of an inductive definition on a model) Let

M be a model of L and R̂ be a relation defined by ∆R = ∀x(R(x) ↔ α(x,R)).

R̂ is the least fixpoint of ∆R, if for any R′ defined by ∆R it holds that9⊆ R′.

It can be proven that in general the least fixed point of an inductive definition
cannot be defined uniquely in first order logic. The defining formula α(x,R) can
be considered as a set theoretically operator in algebraic logic. As regards the
terminology “least fixed point” of an inductive definition, it is the same as
the least fixed point of the set theoretical operator associated to the defining
formula.

Some inductive definitions do not define relations at all (simplest example:
R(x) ↔ ¬R(x)); or even if there are defined relations on M , there is no least
one (simplest example: R1(x)↔ ¬R2(x), R2(x)↔ ¬R1(x)).

8Note that if ∆R defines R′ in 〈M,R′〉, then the truth set of the defining formula in 〈M,R′〉
provides precisely R′.

9RelationR̂ is the least one in the set of defined relations according to the ordering ⊆ (set
theoretical inclusion).
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5.19 Definition (PE definition) If relation symbol R occurs only positively in
a disjunctive normal form of the defining formula α, then the definition ∆R is
said to be positive. If the universal quantifier does not occur in some prenex
form of α then the definition ∆R is said to be existential. The positive existential
definitions are called PE definitions.

5.20 Theorem (existence of least fixed point) For any model M positive defini-
tions have a least fixed point, positive existential definitions have a recursively
enumerable least fixed point.

The construction providing the least fixed point for ∆R in terms of a sequence
of relations on M is defined as follows:

R0 = ∅
R1 = {q | 〈M,R0〉 � α(q)}
...
Rn+1 = {q | 〈M,Rn〉 � α(q)}

5.21 Theorem (construction of least fixed point) If ∆R is a PE definition then
∪n<ωRn is the least fixed point of ∆R in a model M .

This construction has a more general form too: if any set of k-tuples is taken
as R0, the construction provides the least fixed point that includes R0.

For positive definitions there exists a so called greatest fixed point too, and
for positive universal definitions the complementer set of the greatest fixed point
is recursively enumerable.

Inductive definability is applied in several fields of Computer Science, there-
fore some logics are defined with built-in fixed point operators, that is, in these
logics there is a logical symbol, e.g. fxd for the least fixed point. In the defini-
tion of the syntax the condition “if α is a formula then fxdα is a formula” is
inserted. The meaning of a formula fxdα is the least fixed point of the definition
∀(R ↔ α) where ∀ means universal closure. Clearly, this operator leads out of
first order logic, since in several cases the least fixed point cannot be explicitly
defined.

Here is an example: the least fixed point of the definition

R(x)↔ (x = 0 ∨ ∃y(x = s(y) ∧R(y)))

is the set of natural numbers in every model of the Peano axioms, but it can
not be defined in first order logic.

About fixed point logics see [49].
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5.3.3 A general paradigm of logic programming

Since the meaning of a program is a relation, namely, the input-output rela-
tion, the general form of logic programs may be specified inspecting the defini-
tion of this relation. The existence of the least fixed point ensures the fulfillment
of the existence of a correct answer, therefore positive inductive definitions are
the adequate candidates for logic programs. Since the answer must also be com-
putable, positive existential (PE) definitions can be considered logic programs.
More precisely, a logic program is a set of PE definitions; however, every result
for one definition holds for sets of definitions, too. Any kind of calculus can
be attached to the class of PE definitions, the special syntax makes them quite
similar.

It is shown below how we obtain a definite clause program from a PE defi-
nition if resolution is to be used. For resolution the definition has to be trans-
formed into clausal form.

Let ∆R = ∀x(R(x) ↔ α(x,R)) be a PE definition. For the first step of the
transformation the following theorem is needed:

5.22 Theorem (about least fixed point) There exists the least relation satisfy-
ing formula ∀x(R(x)← α(x∧, R)), and it is the same as the least fixed point of
∀x(R(x)↔ α(x,R)).

So, if we are only interested in the least fixed point, ∆ can be substituted
by ∀x(R(x)← α(x,R)). Let us execute the following transformations:

∀x(R(x)← α(x,R))
if and only if

∀x(R(x)← ∃y(α1(x, y,R) ∨ . . . ∨ αn(x, y,R))
where αi(x, y) is a conjunction for every 1 ≤ i ≤ n

if and only if
∀x∀y(R(x)← α1(x, y,R)) ∨ . . . ∨ αn(x, y,R))

if and only if
∀x∀y(R(x)← α1(x, y,R))∧ ...∧∀x∀y(R(x)← αn(x, y,R))

which can be written as a set of Horn clauses
{∀x∀y(R(x)← α1(x, y,R), ...∀x∀y(R(x)← αn(x, y,R))}.

Finally, if there are atoms of the form x = t in a conjunction αi(x, y,R),
let us substitute x by t in the conjunction. In this way a definite Horn clause
program is obtained.

Let us consider the program defining the “element of a list” relation, which
was given above. It can be gained from the definition

∀X,YElement(X,Y)↔ ∃T(Y=T.X) ∨ ∃Z,T(Y=T.Z∧Element(X,T)).

The transformation into definite clause program:
∀X,Y(Element(X,Y) ← (∃T(Y=T.X) ∨ ∃Z,T(Y=T.Z∧Element(X,T)))) iff
∀X,Y(Element(X,Y) ← ∃Z,T(Y=T.X ∨ (Y=T.Z∧Element(X,T)))) iff
∀X,Y,T,Z(Element(X,Y) ← (Y=T.X ∨ (Y=T.Z∧Element(X,T)))) iff
∀X,Y,T(Element(X,Y)←Y=T.X)∧

∀X,Y,Z,T(Element(X,Y)← (Y=T.Z∧Element(X,Y)))
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Written as Horn clause program:
Element(X,T.X),
Element(X,T.Z)←Element(X,T)

The selection of other calculi than SLD resolution, may result a logic pro-
gramming language different from the languages based on resolution, see [152].

It is the user’s free choice what (s)he considers a logic program: the implica-
tive sentences (the sets of definite clauses) or the definition with equivalence
(completed definition of the definite clause program).

5.3.4 Problems and trends

One of the most controversial issues of logic programming was the question
of negation, which in fact includes two questions:

1. How to infer negative information from a definite program?

2. How negative literals can be used in logic programs?

If we want to answer the first question, first a decision has to be made: when
can a negative literal be considered a consequence of a logic program? There
are three alternative answers:

1. If a tuple q does not belong to the least fixed point, then ¬R(x)[q] holds.
In this case the logic program is considered with implication instead of
equivalence. Clearly if the least fixed point is not recursive, there is no
complete calculus for negation. Sometimes this condition is called closed
world assumption in the context of data bases.

2. If a tuple q does not belong to the greatest fixed point, then ¬R(x)[q] holds.
This answer is adequate for the inductive definability approach. There
is no complete calculus for this case, since the complementer set of the
greatest fixed point of a PE definition may not be recursively enumerable.
In this case the tuples can be partitioned into three sets: the least fixed
point, the complementary set of the greatest fixed point, and the difference
between the greatest and the least fixed points. This fact suggests that
an adequate semantics can be defined based on three valued logic.

3. A negative literal holds if it is the semantic consequence of the completed
definition of the logic program. This answer takes into consideration the
whole class of models, therefore it is not adequate for the inductive defi-
nition approach. However, we have complete inference rule only for this
solution: the so called negation as failure. Negation as failure was intro-
duced for definite clause programs; it says that the negative literal holds if
the positive cannot be proved from the logic program (set of Horn clauses).
Negation as failure was criticized as a “non logical” method, however, soon
its completeness was proved. Moreover, if Natural Deduction is applied to
PE definitions to prove a negative literal (starting from the “¬ introduc-
tion rule”) the structure of the proof corresponds precisely to the negation
as failure method.
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Notice that an answer for the first question does not work for the second
one. If negative literals occur in the defining formula, the existence of the least
fixed point cannot be ensured. There were several trials to interpret a defined
relation as the meaning of the non-positive definition (see e.g. [19]): the generally
known approaches are the stratified programs, well founded semantics, which
is the three valued version of stable model semantics [161]. Gergely and Szabó
proposed an interesting kind of logic program, the so called quasi equations.
A quasi equation consists of the separate definitions of the positive and the
negative literals: R(x)← ρ1(x), ¬R(x)← ρ2(x).

In the last decades stable model semantics initiated a new paradigm of logic
programming, which differs from PROLOG-like logic programming in several
important aspects - therefore we discuss it in a more detailed way. If negated
atoms are used in the body of a Horn clause, the logic program may not have
a least model - only several minimal ones. The great change came when the
stable model semantics was introduced: let us consider not one intended model,
but a family of intended models. From this decision a new variant of logic
programming - called stable logic programming (SLP, for short), or recently
answer set programming - has been born.

If function symbols are used as in Horn logic programming (allowing to
express any partial recursive function by its recursive definition) and several
“intended” models are considered, then the length of execution of a logic pro-
gram increases well beyond acceptable notions of computability. Therefore in
SLP function symbols cannot be used, thus syntax is the same as the syntax
of DATALOG. Note that in this case the Herbrand universe is finite, the set of
ground atoms (Herbrand base, as it is called in the logic programming commu-
nity) is finite. Therefore the first order logic of that language can be transformed
into propositional logic.

The stable models of a logic program can be understood as follows. Let P
be a logic program, and let be Pg be the set of the ground instances of clauses
in P . For the sake of simplicity we identify models with their positive diagrams,
that is with the set of positive ground atoms. Let M be such a set of positive
ground atoms, it is called a stable model of P if M coincides with the least
model of the reduct PMg of Pg with respect to M . It is obtained from Pg in two
steps:

• for every ground atom p ∈M all the clauses containing not(p) are omitted,

• from the body of every remaining clause the negative literals are omitted.

Clearly M is a model of P too. Stable models have several “nice” properties,
which we cannot explain here - these are defined and discussed in the literature
about different theories about negation in logic programming. However, we
mention that the definition of stable models - as the other constructions in
this field - is greatly inspired by the developments in the field non-monotone
logics, which we discuss later.[118], which is an easy and interesting introduction
into stable logic programming, recommended to the interested reader. Another
related reference is [19].

SLP is a basically different paradigm from the traditional Horn logic pro-
gramming from the point of view of programmers, too. While traditionally the
result of a computation is a term (or some terms), in the answer set program-
ming the result are sets of atomic statements (facts). An example: traditionally
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a path in a graph is expressed as a list of edges, while in answer set program-
ming as a set of edges. In the traditional case the result holds in every intended
model (the term belongs to every fixed point of the definition), in answer set
programming different results are supplied for different intended models.

There are software implementations to compute answer sets, e.g.
DeReS (http://www.cs.engr.uky.edu/ai/ders.html),
dlv (http://www.dbai.tuwien.ac.at/proj/dlv),
smodels (http://www.tcs.hut.fi/Software/smodels/).

With the development of the field of knowledge based systems new types of
reasoning, different from deduction, were applied, like abduction and induction.
Soon the logic programming languages corresponding to them have appeared:

• Abductive logic programming is an expansion of the traditional one. Beside
the logic program a set of atomic formulas is given, which can be taken
as hypothesis. If the deduction fails, some of these atoms can be used
as input clauses to continue the derivation. Then the result has to be
understood “assuming hypotheses ...”. About the application of abductive
logic programming see e.g. [105].

Inductive logic programming “is concerned with the development of in-
ductive learning algorithms that use first order definite clause logic as the
knowledge representation” - this is how the Introduction of [125] defines
the field. Inductive logic programming reverses the task of logic program-
ming: positive and negative examples are given, and a logic program has
to be synthesized which computes all the positive examples and none of
the negative ones. Background knowledge in the form of definite clauses
can help induction. Inductive logic programming can be used in knowl-
edge extraction (data mining) as well as in optimizing logic programs. For
a detailed discussion see [124].

A logic programming language is a proof procedure, therefore the PE defi-
nitions as programs and the selected calculus have to be completed by a search
strategy. The problem of search strategy is presented here for definite clause pro-
grams. Because of the restricted set of formulas used in the proofs the search
space turns to be of a tree structure, more precisely an and-or tree. There are
two questions to be decided by a search strategy:

1. If a goal is given in the form of A1∧ . . .∧An →, it has to be decided which
literal Ai has to be eliminated first (which has to be resolved upon). The
node in the search tree corresponding to this decision is an and node,
since all the literals has to be eliminated. In the traditional definition
of PROLOG the goals - as well as all the clauses - are represented as
sequences of literals, and the first literal is selected.

2. For a selected literal a definite clause has to be selected, which can be
resolved upon the literal. This selection is represented by an or node.

In the traditional definition of PROLOG the and nodes do not occur in the
search tree, since the selection function determines the literal to be eliminated.
So, an or tree is obtained. The definite clauses with the same relation symbol
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in their heads10 are ordered, and they are selected in this order. The search
strategy is depth first traversing of the search tree. Notice that this search
may lead the execution into an infinite branch even if the empty clause can
be generated, spoiling completeness. However, the programmers can influence
the process of the search by the order of clauses and the order of literals in the
clauses - therefore it is the programmer’s responsibility to write programs which
do not loop11

The fact that the logic program interpreters (compilers) are based on search
suggests the application of parallel execution. In that case the and-or tree
representation is adequate. Two kinds of parallelism are distinguished:

• if branches coming from an and node are traversed parallel, we speak
about and-parallelism;

• if branches coming from an or node are traversed parallel, we speak about
or-parallelism.

While the or-parallelism does not raise theoretical problems, and-parallelism
does so. The difficulty is that literals in a goal may contain the same variable.
The two occurrences have to bind the same way, so the two branches cannot be
traversed independently of each other.

An interesting version of logic programing is the so called Tabled Logic Pro-
gramming, or shortly tabling. At a very high level, during the computation
of a goal, each sub goal S is registered in a table the first time it is called,
and unique answers to S are added to the table as they are derived. When
subsequent calls are made to S, the evaluation ensures that answers to S are
read from the table rather than being re-derived using program clauses. Even
from this simple description, a first advantage of tabling can be seen, namely,
that it provides termination to various classes of programs. One powerful fea-
ture of tabling is its ability to maintain other global elements of a computa-
tion in the “table,” such as information about whether one sub goal depends
on another, and whether the dependency is through negation. By maintain-
ing this global information, tabling can be used to evaluate normal logic pro-
grams under the Well-Founded Semantics. To learn more about tabling, visit
the home page of the XSB Research Group: http://xsb.sourceforge.net,
or http://www.cs.sunysb.edu/~warren/xsbbook/book.html, the latter be-
ing the draft of a book about programming in Tabled PROLOG.

“Pure”12 logic programming is applicable to computation on abstract data
types constituting a Herbrand universe. However, abstract data types and data
types, involving real computation (e.g. numbers) are mostly used together. Even
in the first variants of PROLOG there were so called “built in” predicates eval-
uating arithmetic expressions. However, this evaluation can be performed only
if all the variables in the expression are bound. Constraint logic programming
extends this feature with constraints satisfaction. The constraints (mainly in
the form of equalities, inequalities) encountered in the process of proving the
goal are placed into a set called constraint store. If a variable occuring in a

10They form a “partition” in the PROLOG terminology.
11Moreover commands to effect search are included in PROLOG.
12A logic program is pure if every step of the execution is executed by an inference rule.
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constraint gets bound, the actual value is substituted in the constraint, and it
is evaluated, if possible. If the evaluation gives false, the execution backtracks.
When there is no literal to be eliminated by the inference rules, the system of
the collected equations and inequalities is solved by mathematical methods. An
operational semantics is given to constraint logic programming. If the reader
wants to learn more about to constraint logic programming, [138] is suggested.

There are several constraint logic programming languages, like ECLiPSe
(http://eclipse.org/), GNU PROLOG (http://www.gprolog.org/),
Oz (http://www.mozart-oz.org/), SWI-Prolog (http://www.swi-prolog.org/).
GNU Prolog and SWI-Prolog are free software.
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Chapter 6

KNOWLEDGE BASED
SYSTEMS

One of the main fields of Artificial Intelligence (AI) is automatic problem
solving. In the last decades this field has given birth to several practical re-
sults, first expert systems, later knowledge based systems became a solid part of
software industry.

A knowledge based system basically consists of two constituents: the knowl-
edge base and the reasoning engine. In the case of the traditional program
systems the domain specific knowledge is hidden in the code; therefore it is dif-
ficult to verify it, and it is almost impossible to maintain the system. On the
other hand, in the case of knowledge based systems the knowledge is stored in
the knowledge base in a descriptive form. The content of the knowledge base
is interpreted by the reasoning engine. [134] provides a thorough and practical
study of logic based problem solving.

It stands to reason to chose a logic as a knowledge representation language
- in this case the reasoning engine is a corresponding theorem prover for the
selected logic. However, there are difficult problems, the most important ones
being listed below.

• The combinatorial explosion may spoil the effectivity of the theorem prover
as a reasoning engine. Therefore sometimes specific segments of logics are
considered as a knowledge representation language, like logic programming
languages, and description logics (later will be discussed).

• The amount of the represented knowledge is usually big, therefore, search
for the relevant knowledge related to a problem or a query is one of the
greatest problems. Therefore soon it was realized that knowledge must be
structured1. First different associative knowledge representation methods
were worked out, like associative networks and frames. Recently these
tools are called structured inheritance networks. The most successful ver-
sion was the KL-One knowledge representation language. For its theo-
retical foundation a logic called Description Logic (DL) was worked out -
however, soon it was discovered that DL itself is an adequate knowledge
representation language. DL is detailed later.

1Notice that we have met similar situation when software specification was discussed.
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There is an approach in logic called labelled deduction, which introduces
and studies structures of formulas as “data base” instead of set of formulas
as theories (see [72]).

• In most domains of the practice (like medicine, geology etc.) the rigidity of
logics hinders its use as a knowledge representation language. There are no
clear cut definitions, the statements are meant “in general” or “normally”.
However, tools for exception handling are missing from traditional logics.
To compensate the lack of exception handling a new branch of proof sys-
tems was developed: non-monotonic reasoning, which is discussed in the
next section.

• Again, in most domains the characteristic reasoning of the discipline is not
deduction as formalized in mathematical logics. Therefore, different ways
of plausible reasoning - borrowed from the field of philosophical logic - are
studied by AI researchers and are used in knowledge based systems. The
methodical development of knowledge based systems may also use some
kind of logics, e.g. logic based induction may help knowledge acquisition.

6.1 Non-monotonic reasoning

6.1.1 The problem

To illustrate the need of non-monotonic reasoning let us see the “paradig-
matic” example that is the sentence “Birds fly.”, which is translated into logic
with the use of a bounded universal quantifier as ∀x(bird(x) → fly(x)). How-
ever, what happens if the discourse is about an ostrich? To overcome the prob-
lem, inference rule ∀xα(x) ` α(x/t) is replaced with inference rules that do not
allow substitution without constraints.

Let us look at some theories.
Historically, the first one was Reiter’s default logic (defined in [139]), in which

new rules can be formed as 〈〈α, β〉β〉 with the meaning “if α is proved and β is
consistent with the set of sentences generated so far, conclude that β is true”.

Another approach is circumscription (defined in [119]), which collects excep-
tions (maybe of different types) and an inference step can be executed only if
exceptional situation are excluded. If we go back to the paradigmatic example,
the sentence about birds may be formalized as ∀x(bird(x) ∧ ¬abnormalb(x)→
fly(x)), and sentences like ∀x(ostrich(x) → abnormalb(x)) have to be added.
The extensions of the different abnormal predicates must be the minimal defined
relations - notice the similarity with logic programming. It is not suitable to use
equivalence in the definition of abnormality, since the content of the knowledge
base generally is not closed, later new exceptions have to be added. If equiv-
alence was used, it would mean the modification of a sentence, however, using
the implicative form, only a new sentence has to be added.

The approaches outlined above are basically ad hoc inference rules, and their
practical use is doubtful: sometimes search strategy may effect what sentences
are inferred.
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However, the introduced rules spoil the monotonicity of the provability re-
lation. Let us go back to the paradigmatic example, and let us suppose that
Koko is a bird (bird(Koko)). If nothing else is known about this bird, we can
conclude that Koko flies (fly(Koko)). If later we learn that Koko is an ostrich
(so abnormalb(Koko) is true), the inference turns out to be false - the derived
sentence (and all of its consequences) have to be deleted. Notice that non-
monotonicity not only goes against the purity of proof systems as defined so
far, but the revision of the knowledge base causes practical problems, too.

The problem of non-monotonic reasoning has been a challenge also for logi-
cians, and new logics are worked out, like autoepistemic logic, outlined below.
Moreover several logics rooted in different motivations can be considered non-
monotonic ones, like probability logic or the logic of conditionals.

Before discussing some questions in a more detailed way, let us speak about
the root of the problem. The basic fallacy is that sentences as “Birds fly” are not
variants of universal sentences like “Every bird flies”. Linguists call sentences
like “Birds fly” generic sentences. Such sentences state a characteristic feature
of a gens, a species, a group. Sentence “Birds fly” means that the ability of
flying is a characteristic feature of birds, but it cannot be instantiated for every
bird. It can be understood as “Normally birds fly”, and such a reading is the
usual in the context of non-monotonic logics.

6.1.2 Autoepistemic logic

Autoepistemic logic is concerned with beliefs and changes of beliefs. It is a
non-monotonic logic, that is, the set of beliefs that are justified on the basis of
given premises does not necessarily increase monotonically as the set of premises
increases.

Databases based on autoepistemic logic have the ability to record whether
their knowledge about a fixed object is complete or not. In Artificial Intelligence
autoepistemic logic is intended to model the reasoning of an ideally rational
agent. Let us see a simple example.

Let us assume that one of the basic principle of the agent’s thinking is “If
I do not believe something, it does not holds”. So far she has not learnt that
“My first teacher, Mr. U died”, Since she has no basis to think so, she does not
believe it. Therefore she thinks that “Mr. U lives”. Later she learns that “Mr.
U died”. Then she has to update her knowledge and beliefs about the world:

1. “Mr. U lives” and all of its consequences has to be omitted.

2. “Mr. U died” has to be added.

3. “I believe that Mr. U died” has to be added.

4. The new set of knowledge and beliefs has to be closed under logical con-
sequence.

Now, we sketch some basic concepts of autoepistemic logic. Our approach
to autoepistemic logic is that of proof theory.

The language of this logic is like an ordinary modal (propositional) logic with
the difference that the operator ♦ is missing and � is denoted by B. Definition
of formulas is the same as in modal logic.
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The meaning of the unary operator B is “believed”, so the meaning of the
formula B(P ) is “P is believed”, where P is a propositional symbol.

A central concept is the concept of theory (or stable theory).

6.1 Definition A set T of formulas is said to be a stable theory in L if the
following three conditions hold:

(i) if P1, . . . Pn ∈ T and P1, . . . Pn ` Q then Q ∈ T (where ` means ordinary
logical consequence),

(ii) if P ∈ T then B(P ) ∈ T ,

(iii) if P /∈ T then ¬B(P ) ∈ T .

The concept of stable theory corresponds to theory in ordinary logic. Con-
dition (iii) is remarkable. It is an inference rule of non-standard form: if P is
not a theorem then Q is a theorem where Q = ¬B(P ) (a usual rule of inference
is of the form: if P is a theorem then Q is also a theorem).

An autoepistemic theory represents the information we have and our belief
in a given stage (moment). It is maximal in the sense that no further conclusions
could be drawn in this stage.

Even if we have a new piece of information, extending the actual stable the-
ory with it is impossible. In this case another stable theory is needed. Theories
can change essentially stage by stage, when certain formulas are removed and
others are added. As in classical logic, different axioms (premises) can generate
different theories, the same conclusion could be true in one theory and false in
another theory.

The following theorem concerns a stable theory generated by a set Σ of
premises.

6.2 Theorem (stable extension) An autoepistemic theory T is a stable exten-
sion of the formula set Σ if it is the least set of sentences satisfying the following
conditions:

(i) Σ ⊆ T ,

(ii) T is closed under ordinary logical consequence (` relation of classical
logic),

(iii) if P ∈ T then B(P ) ∈ T ,

(iv) if P /∈ T then ¬B(T ) ∈ T .

Clearly, the stable extension of Σ is the minimal stable theory containing Σ.

The concepts of stableness can be characterized using semantics, too. It can
be proven that a somewhat modified semantics of the modal logic S5 can be
considered as a possible semantics of autoepistemic logic.
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6.1.3 Non-monotonic consequence relations

While in the study of non-monotonic logics first different calculi were sug-
gested, the research programme of focusing on the consequence relation of non-
monotonic logics was first proposed by [73]. This proposal was elaborated by
D. Lehman and his co-workers by creating a theory of non-monotic consequence
relation comprising both proof and model theoretical aspects (see e.g. [108]).

Let us introduce a symbol `n as a binary relation between formulas, and let
us call expressions like α `n β conditional assertions, with the following intuitive
meaning: “if α holds, then normally β holds”. Notice that in a conditional
assertion α has to be true according to the semantics of classical logic, and the
word “normally” is applied only to β. Using our example: “Birds fly” can be
written as bird(x) `n fly(x), or b `n f in propositional form. The symbol `n
is a metapredicate, it does not belong to the alphabet of the object language.
However, we stipulate that conditional assertions occur in the knowledge base.
A non-monotonic inference rule infer conditional assertions from conditional
assertions. Notice also that this interpretation of non-monotonic reasoning is
in accordance with the interpretation of generic sentences in natural languages.
Also, some kind of concept of a “normal world” can be defined:

a model A is normal w.r.t. α if and only if for every β which is the conse-
quence of α (α `n β), A � β holds.

[73] proposed to accept three characteristic features of the non-monotonic
consequence relation (compare them with the properties of the provability rela-
tion):

α `n α Reflexivity
α ∧ β `n γ α `n β

α `n γ
Cut

α `n β α `n γ
α ∧ β `n γ

Cautious Monotonicity

The above presented features characterize the non-monotonic consequence
relation independently of the logical connectives of the logic - that is why the
rule of the substitution of equivalent formulas is missing. [108] completes the
characteristics of non-monotonic consequence relation with the following two
rules:

` α→ β γ `n α
γ `n β

Right Weakening

` α↔ β α `n γ
β `n γ

Left Logical Equivalence

Notice that Left Logical Equivalence is weaker than Left Weakening which
holds with respects to the traditional provability relation: `β→α, α`γβ`γ . Substi-
tuting Left Logical Equivalence for the classical rule of Left Weakening is im-
portant in characterizing the non-monotonic consequence relation, as it can be
illustrated by our paradigmatic example.

Let us assume that we have the following axioms: ∀x(ostrich(x)→ bird(x)),
∀x(madár(x) ↔ bird(x)) and conditional assertion bird(x) `n fly(x) is in the
knowledge base. It can be inferred by Left Logical Equivalence thatmadár(x) `n
fly(x), however ostrich(x) `n fly(x) can not.
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6.3 Definition (cumulative consequence relation) A consequence relation is
said to be cumulative if and only if it contains all instances of the Reflexivity
axiom and is closed under the inference rules Cut, Cautious Monotonicity, Right
Weakening and Left Logical Equivalence.

Cumulative consequence relations can be characterized by semantic means
too, namely by a generalization of Shoham [1984]. The intuitive idea is that
there is a “more preferred” relation on the class of models, and a conditional
assertion α `n β holds if and only if β holds in the most preferred models of α.
[108] generalizes this idea. The concept of state is introduced, which is a set of
models, and the “more preferred” relation are defined between states.

6.4 Definition (cumulative model) A triple 〈S, l, ≺〉 is a cumulative model if
and only if

• S is a set called the set of states,

• l is a function labeling every state with a non empty set of models,

• ≺ is a binary relation on S satisfying the smoothness condition defined
below.

For the next definition the notion minimal is generalized for arbitrary an
binary relation ≺: s (s ∈ A) is minimal w.r.t. ≺ if and only if there is no z ∈ A
such that z ≺ s.

6.5 Definition (smoothness) Let A be a set, and let ≺ be a binary relation on
A. It is said that B ⊆ A is smooth w.r.t. ≺, if and only if for every element
t ∈ B if t is not minimal w.r.t. ≺, then there is an element s of B such that s
is minimal w.r.t. ≺.

A state s satisfies a formula α if and only if every model in l(s) satisfies α.
In the following definitions α̂ denotes the set of states satisfying α.

6.6 Definition (smoothness condition) A relation ≺ in a cumulative model
〈S, l,≺〉 satisfies the smoothness condition if and only if for every formula α the
set α̂ is smooth w.r.t. ≺.

6.7 Definition (cumulative consequence relation)
Let a cumulative model W = 〈S, l,≺〉 is given. The consequence relation gener-
ated by W (denoted by Wn ) is as follows:
α Wn β if and only if for any s minimal in α̂ s satisfies β.
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6.8 Theorem (representation) A consequence relation is a cumulative conse-
quence relation if and only if it is generated by some cumulative model.

The concept of a cumulative consequence relation can be refined adding new
plausible rules; similarly, the concept of a cumulative model can be modified by
restricting the function l and/or the relation ≺.

It is interesting that for any proposed non-monotonic calculus there can be
found some plausible property of the consequence relation which is not satis-
fied. [108] quotes some properties which are not satisfied even their proposed
system. These are different from the inference rules presented so far, namely
they concern the absence of certain pairs from the consequence relation. Let us
see an example:

α 0n γ β 0n γ
α ∨ β 0n γ

Disjunctive Rationality

We may conclude that the research of the consequence relation provides a
deeper insight in non-monotonic logics; however, we do not have yet a system
which would satisfy all the plausible requirements on non-monotonic reasoning.

References to Section 6.1 are, for example: [69], [108].

6.2 Plausible inference

Logic was developed with the purpose of characterizing sound human rea-
soning in general. However in the 20. century research in logics provided the
formalization of special reasoning characteristic of different disciplines, domains.
Moreover, the formal reasoning can be turned into practical tools in knowledge
based systems. Therefore several ways of plausible reasoning got into the focus
of research, namely induction, abduction, retroduction, different kinds of simi-
larity based reasoning (analogical reasoning, case based reasoning). It is hard
to clarify even the concept of plausible reasoning. Strictly speaking, every non
sound reasoning belongs to it. Plausible reasoning is sometimes characterized as
a kind of reasoning in which the result of some plausible proof can be defeated
(refuted). If this property is in focus, the term defeasible reasoning is used. In
D. M. Gabbay’s opinion the main characteristic of plausible reasoning is that
different chains of inference for and against a statement have to be weighed to
reach a decision.

In another approach plausible reasoning is rather generating hypotheses than
inferring a statement. So the scheme of plausible reasoning is as follows:

1. generating hypotheses,

2. accepting the most plausible one - if human intuition does not help, some
kind of search strategy can do it,

3. testing the accepted one - this can be done by deduction.
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For the first step, for hypotheses generation special logical calculi may be
introduced. We only discuss induction and retroduction (or abduction2) in short.

Induction is a well known term of philosophical logic, it means to extract
general rule from examples. In AI induction can be used in several fields such
as machine learning, knowledge extraction.

The term retroduction as a way of reasoning, was first used by the outstand-
ing American mathematician, Peirce [131]. It is a backward reasoning searching
for the cause of some phenomenon. Such kind of reasoning is used in diagnostic
problems (in medicine as well as in technical problems) and crime detection too.

Both induction and retroduction can be considered to be the inverse of de-
duction: the inference rules have to be reversed. Such a calculus keeps falsity
instead of truth. To show an example of an non deductive inference rule, and
to illustrate the difference between the ways of reasoning, let us see the case of
Modus Ponens3:

α→ β, α ` β deduction
α, β `ind α→ β induction:

if in the cases when α holds, β also holds, then α → β
can be assumed as a hypothesis

α→ β, β `ret α retroduction:
knowing the rule α→ β and having β, α can be assumed
as a hypothesis

Plausible inferences are greatly different from proofs in logics discussed so
far. Clearly the main difference is that the inferred statement is only a plausible
consequence, even in the case when the axioms used in the inference hold. So
we cannot speak about correctness and completeness of a calculus. However
there are other differences too.

Note that the above rules for induction and retroduction outline only the
logical nature of the plausible inference in question. The inference rules to be
applied in a knowledge based system require a lot of conditions. Let us consider
induction. From only one pair of formulae α, β we cannot infer α → β. The
number of such pairs used in the inference characterizes the strength of the
inference. Note that such notion as the “strength” of a proof is meaningless in a
logic with a correct calculus. Another difference is that the number of inferences
of a statement is an important factor in accepting the statement. These features
can be considered as elements of the search strategy in a plausible inference
method.

Another important factor is that plausible reasoning can be used only if it is
based on an ontological basis. In the case of induction, from formulae α, β we
can infer α → β as well as β → α. There must be some factor outside of logic
that allows us to select one of them. Let us see an example. The fact that in the
stomach of patients having gastric ulcer there are special bacteria was the base
of the hypothesis that this kind of bacterium causes gastric ulcer. Purely on a
logical base the following hypothesis may stand as well: this kind of bacterium
can survive in a stomach only if there is ulcer there. Clearly, the reason, why the
first conclusion was inferred is that there is a bias in the field of medical research

2The word abduction is used in different meanings in AI literature - that is why we use
the term retroduction, which is introduced parallelly with abduction by C. S. Pierce, see eg.
[131]

3Note that non-monolotic reasoning is realy a way of plausible deduction - this was dis-
cussed in a seperate section only because of historical reasons.
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that diseases are usually caused by pathogenes. Such bias can be expressed by a
formula. However, in such cases the rules of plausible inference have to be used
together with other kinds of inference rules. So far a proof system has been
considered to consist of a pair of set of axioms and a set of rules, but in the
case of plausible logics the situation is more complex. There are theoretically
true sentences and empirical facts in the set of axioms, and there are correct
and plausible inference rules as well. Moreover, inferred formulae have to be
distinguished according to how they are inferred (how strong the inference is),
and how many arguments provide some truth values to them. Therefore it is
useful to introduce truth values of different kinds.

The classical truth values (true, false) are usually used for theoretical knowl-
edge, empirical knowledge may has specific truth values. The empirical (fac-
tual) truth values are characterized by their degree of certainty, like “empirically
true”, “empirically false”, “empirically contradictory”, “uncertain”. They can
be precisely defined depending on the presence or absence of justifying and
rejecting examples, e.g., by the following rules:

• a statement takes the truth value “empirically true”, if there are arguments
for it, and there are no arguments against it,

• a statement takes the truth value “empirically false”, if there are no ar-
guments for it, and there are arguments against it,

• a statement takes the truth value “empirically contradictory”, if there are
arguments for it, and there are arguments against it,

• a statement takes the truth value “uncertain”, if there are no arguments
for it, and there are no arguments against it.

The degree of certainty of an empirical statement can be characterized more
precisely by some numerical scale. [16] writes about (and uses) several such val-
ues. Let p be the number of arguments “for”, and c be the number of arguments
“against”. Then the fraction

p

p+ c

expresses the “promixity” of the empirical truth. The scale is from 0 to
1, where 0 stands for “empirically false”, and 1 corresponds to truth value
“empirically true”. A special case is uncertainty, when the value is 0

0 .
Another kind of truth value is computed as

p− c
p+ c

It characterizes the nature of uncertainty. The scale is from −1 to 1, where
−1 means “empirically false”, 1 means “empirically true”. All the other values
expresses some kind of contradiction, 0 characterizing the pure case of “empir-
ically contradictory”, when there are precisely the same amount of arguments
“for” and “against”.

Since cognitive systems are in the focus of AI research, plausible reasoning
methods are widely studied and used in several fields. In several cases non
logical tools are used for plausible reasoning. However, there are also logical
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proof systems suggested and used in practice. As an example, [16] describes
a well developed general frame of logical systems for learning. Their general
logic is the abstraction of JSM4 method ([61], [62], a detailed description can be
found in [16] too). Different versions of the method were used for data analysis
in medical diagnosis, pharmacology and sociology. JSM method is really a
hybrid method. It has logical rules, but the objects that the reasoning is about
are represented by data structures (sets, graphs). Above these data structures
a metric of similarity is defined, and inference depends on the measures of
similarities.

References to Section 6.2 are, for example: [16], [149].

6.3 Description Logic

As we have wrote at the beginning of this chapter, for long different kinds of
associative structures have been used for knowledge representation, now called
structured inheritance networks. There are some logics to formulize such con-
structions, the most known and used is the Description Logic (DL).

The most important features of structured inheritance networks are as fol-
lows:
• The syntactic building blocks are concepts, individuals and the so called

roles, expressing relations between individuals.

• Concepts are connected together in a network using the roles and metare-
lations (in particular subsumption relation between concepts).

• The expressive power of the language is restricted, that is, a rather small
set of (epistemologically adequate) constructors are used for building com-
plex concepts and roles.

• Implicit knowledge about concepts and individuals can be inferred auto-
matically with the help of inference procedures. In particular, inference of
the subsumption relationships between concepts and the instance of rela-
tionships between individuals and concepts plays an important role. The
inference is controlled by the network mentioned in the second point.

The fourth feature clearly suggests to construct a kind of logic for structured
inheritance networks. The third one shows that it will be a sublanguage of first
order one. The first one characterizes the set of the non logical symbols of the
language: they can be unary predicates (concepts), constants (individuals) and
binary predicates (roles). The real problem lies in satisfying the second feature
- this has been done by Description Logic.

The language of DL really consists of two sublanguages - one for describing
general statements (formulae with free variables in classical first order logic),
and one for describing facts about individuals. Therefore a DL theory consists
of two sets of formulae, the first one is called Tbox (terminological box), the

4the letters J, S, M are the initials of John Stuart Mill, famous British philosopher. The
method is founded on his rules for inductive reasoning.
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second one is called Abox (assertion box). The language for Abox is a restricted
0th order logic, the real interesting topic is the language for Tbox. Below we
discuss this language.

There is a great family of Description Logics, their common feature is that
predicates are used as constant symbols, so no variables are used. The difference
between the different DL languages is in their expressive power, that is, what
kind of constructors are used to construct complex formulae. The following
definition provides the most often used ones.

6.9 Definition (constructors of DL languages) Let C, D be concepts (unary
relations), R be a binary relation of a DL language, I a first order model
with universe A, and let CA, DA, RA denote the truth sets of C, D and R
respectively. Let ∇ denote any of the following relation symbols: ≤, ≥, =. The
following table defines the most widely used constructors to create complex DL
formulae.

name formula truth set
Top > A
Bottom ⊥ ∅
Intersection C uD CA ∩DA

Union C tD CA ∪DA

Negation ¬C A�CA
Value restriction ∀R.C

{
a ∈ A : ∀b

(
〈a, b〉 ∈ RA → b ∈ CA

)}
Existential quantification ∃R.C

{
a ∈ A : ∃b

(
〈a, b〉 ∈ RA ∧ b ∈ CA

)}
Numerical restriction ∇nR.C

∣∣{a ∈ A : ∃b
(
〈a, b〉 ∈ RA ∧ b ∈ CA

)}∣∣∇n
Note that the above defined formulae can be transformed into the first or-

der logic. Let us see an example. If Φ denotes the transforming function,
the transformed version of value restriction is ∀y (R(x, y)→ Φ (C (y))). Every
transformed formula can be written using of two variables, with the exception of
numerical restrictions. This is very important, because the first order language
with two variables is decidable.

So far the equivalents of open formulae are defined. The following definition
define the sentences that can be used in DL, called Tbox axioms. Notations in
the previous definition are used and S denotes a binary relation symbol.

6.10 Definition (Tbox axioms) The following axioms can occur in a Tbox.:
name axiom meaning
concept inclusion C v D CA ⊆ DA

concept equality C ≡ D CA = DA

role inclusion R v S RA ⊆ SA
role equality R ≡ S RA = SA

The language of Abox is similar to the first order language, as the following
definition shows. Let C be an arbitrary concept, and let R be a binary relation,
a and b be constant symbols.
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6.11 Definition (Abox formulae) Formulae in the form C(a) and R(a, b),
¬R(a, b) are Abox formulae.

It can be seen that Abox formulae depends on the Tbox: the formula has
to be created in the Tbox, and only then we can tell that the formula stands
for a constant. Since Tbox formulae are equivalent to formulae of one free
variable, only formulae about one constant can be formulated in the language
defined so for. Therefore constructors to bridge the gap between Tbox and
Abox are introduced, like the so called fills constructor R: a with the truth set{
d ∈ A : 〈d, a〉 ∈ RA

}
.

The version of DL defined so far - as the most widely used versions - is de-
cidable. With respect to a particular set of Tbox axioms, proofs of the following
properties are usually required:

• satisfiabilty,

• subsumption of concepts,

• equality of concepts,

• disjointness of concepts.

The usual Abox problems are the following ones:

• retrival problem, that is, “find a constant a such that I � C(a)”,

• realization problem, that is, “find the most specific concept C such that
for a given constant a I � C(a)”.

Clearly all these problems can be reduced to unsatisfiability, so the semantic
tableaux method can be used as a calculus tuned to DL logic. Theorem provers
(like RacerPro, see [90], and Pellet, see [144]) work well for Tbox problems,
but in the case of great Abox they fail. However, most practical realizations of
DL involves huge Abox. Therefore using other calculi is an important research
topic. A rich family of resolution based DL theorem prover methods has been
worked out, see e.g., [115], [100].

Description Logic is used in several fields, however, its most important ap-
plication is that the most widespread ontology description language OWL, is
based on DL. A generally accepted definition of ontology is as follows:

An ontology is a formal, explicit specification of a shared conceptualization.
Conceptualization refers to an abstract model of some phenomenon in the world
by having identified the relevant concepts of that phenomenon. Explicit means
that the type of concepts used, and the constraints on their use are explicitly
defined. Formal refers to the fact that the ontology should be machine-readable.
Shared reflects the notion that an ontology captures consensual knowledge, that
is, it is not private of some individual, but accepted by a group.

Ontologies are used in several ways.

• A Tbox can be considered specification of a data base. Since a Tbox has
a formal description language, its software realization can be used as a
model of the data base. Interface can be built between the Tbox and the
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data base, and inferences can be made about the data base. Moreover, an
Abox can be used as data base. Such a system is called RDF5 store, see

• Ontology can be considered a knowledge representation tool. Rules can
be added to the DL description; usually, the ontology editors have also
some rule description language.

• Ontologies are widely used in semantic web, [151] is a good introduction
into this field.

References to Section 6.3 are, for example: [21], [151], [147].

5RDF is a simple knowledge representation tool, developed for web technology, see
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