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Preface

xi

The essays collected in this volume are previously unpublished contributions to philo-
sophical logic from some of the most respected researchers in the field. In inviting these
specialists to write on their specialities, I have sought to combine a representative
breadth of coverage with an accessible depth of philosophical and mathematical
sophistication that offers a clear picture of the historical development and current state
of the art in philosophical logic. To whatever extent the book succeeds in meeting its
objective, credit is due to the superb work of the logicians and philosophers who agreed
to be part of this immoderate editorial undertaking.

My strategy has been to identify what I consider to be the most important topic areas
in philosophical logic from the standpoint of students as well as professional scholars,
and then in each case to recruit three or more of the best experts I could find who I
thought were likely to disagree in interesting ways, encouraging each to address the
questions they believe most important in their own way and in their own voice, without
concern for what any of their co-contributors have to say. The result is a remarkable
testimony to a thriving industry in contemporary philosophical logic, and, despite some
detractors’ premature eulogies of its imminent demise, the vitality of contemporary
analytic philosophy.

With the exception of my introductory essay, the papers are clustered thematically,
although the order is not always obvious. The first invisible division in the text proceeds
from milestones in the history of logic to the relation of symbolic logic to ordinary lan-
guage. Logical paradoxes and their philosophical implications are then introduced as
essential for understanding Tarski’s truth semantics and responses especially to the liar
paradox which have been so fundamental in shaping the theory of meaning in modern
philosophical logic. A discussion of selected paradoxes is accordingly followed by a
choice of topics involving Tarski’s concept of truth and Russell’s theory of definite
description in classical semantics that continue to play an essential role in current dis-
cussions in philosophical logic. The stage is thereby set for investigations of more recent
trends in logic, emphasizing alternative concepts of logical consequence, and questions
of existence presuppositions and ontology in logic. Metatheoretical considerations
about the scope and limits of logic come next, advances that are naturally comple-
mented by a suite of papers on the logical foundations of set theory and mathematics.
Here another invisible threshold is attained, after which nonclassical logics begin to



appear, starting with modal logics in several categories, a larger section than most,
because of the importance of modal logics in the development of set theoretical seman-
tics and their many applications, followed by intuitionistic, free and many-valued logics,
inductive, fuzzy and quantum logics, relevance, and paraconsistent logics. In the final
grouping of papers, two sections complete the book’s discussion of the implications for
and practical applications of philosophical logic in machine theory and cognitive
science, and the mechanization of logical inference and automated theorem and proof
discovery.

Although some of the papers are more technical than others, all are intended for an
introductory audience, and can be read with good understanding by beginning stu-
dents in philosophy who have completed a first course in symbolic logic. This is espe-
cially true if the essays are read sequentially as they are presented within each section
and from section to section. Inevitably, a full understanding of some topics treated at
earlier stages of the book may require familiarity with principles and methods of logic
that are considered in detail only in later sections, for which some looking ahead may
occasionally be required. Additional background materials related to the study of philo-
sophical logic can also be found in my simultaneously published Blackwell collections,
Philosophy of Logic: An Anthology and Philosophy of Mathematics: An Anthology. The
present volume will serve its purpose if it helps provide readers at all levels with a 
sufficient sense of interest in its subject to pursue advanced study of the concepts,
methods, and problems of philosophical logic.
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1

Introduction: Logic, Philosophy, 
and Philosophical Logic 

DA L E JAC Q U E T T E

1 Philosophy as Logic

It has been many years since Bertrand Russell provocatively identified philosophy with
logic. Although some logicians and philosophers continue to accept Russell’s thesis, 
not least because it bears the stamp of Russell’s authority in both fields, most 
commentators today prefer to describe the relationship between logic and philosophy
as more complex. If logic remains important to philosophy, and philosophy to logic, it
is undoubtedly because of what each can offer the other as an autonomous discipline.

Logic is no longer the monolithic edifice to which Russell could point in 1914, when
in Our Knowledge of the External World, he made his famous observation that: “[E]very
philosophical problem, when it is subjected to the necessary analysis and purification,
is found either to be not really philosophical at all, or else to be, in the sense in which
we are using the word, logical” (1914: 42). When contemporary philosophers speak of
logic, they generally mean to refer to any of a variety of alternative formal symbolisms
that can be used to formulate particular aspects of the formal inferential structures of
language, including but not limited to languages in which philosophical ideas are con-
veyed. While logic is a useful tool in clarifying and perspicuously representing philo-
sophical reasoning, many philosophers believe that there are areas, indeed, most parts,
of legitimate philosophical inquiry, that have nothing directly to do with the special-
ized study of formal symbolic logic. Such a conclusion is especially plausible when phi-
losophy is viewed broadly to include literary as well as scientific projects, particularly
those that do not use or take any special notice of logic and mathematics, and that may
even disclaim efforts to arrive at the truth about any philosophical subject, as in 
certain outgrowths of postmodern philosophy. Russell also feels the need to qualify 
the identification of philosophy with logic, adding immediately after his statement
quoted above: “But as the word ‘logic’ is never used in the same sense by two different
philosophers, some explanation of what I mean by the word is indispensable at the
outset” (1914: 42).

The fact, as Russell observes, that philosophers have many different ideas of logic
constitutes one of the most fundamental problems for philosophical logic and the phi-
losophy of logic. To define the concept of logic, to understand the diverse kinds of
systems that have been considered logics, and to arrive at a satisfactory definition of



the concept of logic that applies alike to Aristotelian syllogisms, Boolean algebras,
Frege’s Begriffsschrift, Whitehead and Russell’s Principia Mathematica, and unlimitedly
many nonstandard formal systems, and informal logic in several traditions, grading off
into rhetoric, argumentation theory, and discourse analysis, is a formidable task. What
makes all of these projects logical, a part or different forms of logic, or distinct logics?
A working definition that may be correct if somewhat uninformative as far as it goes is
to say that logic in any of its manifestations is the systematic study of principles of
correct reasoning. The principles of logic can then be explored formally or informally,
and by any of a number of different styles of exposition, some of which may be highly
specialized in dealing with very particular areas of reasoning.

Logic is both a symbolism for the expression of the formal structures of thought and
an inference mechanism for calculating and drawing conclusions from assumptions in
reasoning. The dual nature of logic has figured prominently in the range of issues that
have come to be associated with the problems of philosophical logic.

2 Logic and Philosophy of Language

A primary source of problems in philosophical logic is the analysis of language.
Philosophers are interested in language and semantics or theory of meaning for 
a number of reasons. The problems and methods of applied logic in studying 
the philosophy of language are directly associated with the traditional domain of
philosophical logic.

Language facility distinguishes human beings from other animals we know of,
higher primates who have been taught by humans to make limited use of sign-language
and computer push-button languages notwithstanding. Philosophers interested in
human nature and what makes our species unique in the animal kingdom as a result
are attracted to problems of understanding language as a way of gaining insight into
the human condition. The complexity of language and the difficulty of formulating an
adequate theory of meaning for ordinary and scientific language by itself is a sufficient
invitation for many philosophers to answer the challenge of articulating a philosophi-
cal semantics. More importantly, logicians and philosophers in the analytic tradition
have considered unclarities in the expression of philosophical ideas to be the founda-
tion of philosophical puzzles and paradoxes, and have accordingly sought to solve,
avoid, or at least gain a better perspective on the problems by way of the theory of
meaning.

This is undoubtedly part of what Russell means in pronouncing all of philosophy
properly so-called identical with logic. Symbolic logic has been the tool of choice for
philosophers investigating the properties of language in philosophical logic, because it
is itself a language whose syntax and semantics are at the disposal and under the
control of the logician where they can be better studied in more ideal abstract terms.
A formal system of logic considered as a language has definite advantages over collo-
quial discourse as a model of how language works, where its factors are more readily
discerned and rigorously formulated independently of the ambiguities and etymologi-
cal confusions that are endemic to natural language, which, as Ludwig Wittgenstein
aptly remarks in the Tractatus Logico-Philosophicus (1922: 4.002), “is a part of the
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human organism and is not less complicated than it.” Even for philosophical logicians
who do not seek to replace ordinary language with an ideal language like Frege’s
Begriffsschrift or Whitehead and Russell’s Principia Mathematica, but, like Wittgenstein,
hope to understand how language generally is capable of expressing meaning, the use
of symbolic logic has remained an indispensable instrument in philosophy of language.
The fact that logic lends itself to more sharply and univocally defined distinctions makes
it convenient for the analysis of concepts in philosophy, including the semantic princi-
ples by which logical formulas are themselves precisely interpreted. The usefulness of
logic in philosophical applications has played a major role in the development of sym-
bolic logic, which in turn has opened up new possibilities for logic’s use in refinements
of philosophical techniques.

How, then, has the partnership between philosophical logic and philosophy of lan-
guage taken shape? In too many ways for the story to be told in a summary that does
not distort the true riches of ingenuity, invention, and discovery on the part of philoso-
phers and logicians in the annals of recent and contemporary analytic philosophy.
Nevertheless, something of the flavor of work in this exciting field can be conveyed 
from a brief discussion of a few well-chosen examples. We turn next to consider some
instructive concrete possibilities.

3 Modes and Methods of Philosophical Logic

Logic is formal, and by itself has no content. It applies at most only indirectly to the
world, as the formal theory of thoughts about and descriptions of the world. Logic 
can be used in many ways to state, clarify, and express ideas, and to authorize the
derivation of consequences, when its formulas are assigned substantive content in
application. Although logic in its pure form is unfreighted with philosophical truths, 
it can contribute in definite ways to the clarification and solution of philosophical 
problems.

Philosophical logic often combines an application of logical symbolisms with a com-
mitment to specific philosophical ideas. Symbolic logic, even in its purest form, is also
not entirely free of philosophical ideology, although some logicians have made it their
mission to try to make logic as neutral a vehicle as possible for the unbiased expression
of the logical form of philosophical disagreements on every conceivable topic, includ-
ing those most closely related to the conceptual presuppositions of classical logic. To
the extent that substantive philosophical positions are built into the interpretation of
symbolic logic, the use of logic in addressing philosophical problems may seem highly
effective and convincing. In that case, of course, it is not logic alone that is doing the
work, but whatever philosophical theses have been packed into its symbolism.

There is often a temptation to use philosophical logic in this way. A logical notation
is loaded with philosophical cargo to enable it to appear at least to make progress
against outstanding philosophical problems. Logic as a branch of mathematics
deservedly carries a certain authority in intellectual disputes. We should recognize,
however, that when a logical formalism appears to solve a philosophical problem, it
seldom does so by itself, but only by virtue of the philosophical ideas it is used to express.
That being the case, we need to question whether the philosophy shouldered by philo-
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sophical logic is sound or faulty, just as we would need to do if we had set about con-
sidering the philosophical issues directly without the intervention of a symbolic logical
notation. If logic helps the cause of clarifying and solving or avoiding philosophical
problems, it does so thanks largely to the ability of its formal structures to sort out and
more clearly represent a choice of philosophical ideas, and not by means of substan-
tive philosophical assumptions hidden in the background of a particular logical system.

In his “Introduction” to Wittgenstein’s Tractatus, Russell recognizes the potential of
a logical symbolism to clarify philosophical concepts. He states: “a good notation has a
subtlety and suggestiveness which at times make it seem almost like a live teacher.
Notational irregularities are often the first sign of philosophical errors” (1922: 17–18).
The value of an adequate logical notation is that it provides information about the
logical form of the ideas it expresses. It can call attention to logical structures that might
otherwise be overlooked in informal expression, including tipoffs about conceptual
inconsistencies. This, after all, is a primary pragmatic justification for the use of sym-
bolic logic. It teaches us things that we could not (or not as easily) learn without its for-
malisms. Such discoveries are often made as logicians explore the scope and expressive
flexibility of a formal system. They emerge in the study of a formalism’s mathematical
multiplicity, in Wittgenstein’s terminology, its shared isomorphism or lack thereof with
the features of thought or discourse it is supposed to formalize, together with its inter-
nal logical interrelations and deductive consequences.

Russell, in his own celebrated application of philosophical logic in the analysis of
definite descriptions, in his essay “On Denoting” (Mind 1905), seems nevertheless to
have decanted a significant amount of philosophy into a logical vessel in order to gain
philosophical mileage from what appears to be purely logical distinctions. Russell’s
theory of descriptions has been enormously influential in the rise of analytic philoso-
phy, to such a degree that F. P. Ramsey in his essay “Philosophy” was moved to eulogize
it as “that paradigm of philosophy.” The theory has indeed been a model for some of
the best work in philosophical logic for over a century. It is worthwhile, therefore, to
consider the theory in detail, to understand how it combines philosophy with logic, and
the amount of labor borne by logic as opposed to the prior philosophical commitments
deeply integrated into Russell’s logic.

4 Logic as Philosophy in Philosophical Logic

We can identify at least three characteristics of Russell’s theory that provide enduring
guidelines for philosophical logic. Russell’s breakdown of definite descriptions into an
existence clause, uniqueness clause, and predication of a property to a uniquely
denoted entity, using the devices of symbolic logic to conjoin these three formalized con-
ditions, demonstrate the power of symbolic logic to present the analysis of a complex
concept into more basic components for philosophical purposes. Russell’s method has
very properly been compared to that of an optical prism that takes a single beam of
white light and breaks it up into its constituent spectrum of colors. The colors are not
added or produced by the prism, but are there all along, inherent in the white light,
although it takes a special instrument to reveal their presence. The same is true of
definite descriptions, to which Russell applies symbolic logic in order to break apart 
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and discover by reflection the three conditions concealed within the apparently simple
word ‘the.’

This observation leads to the second noteworthy feature of Russell’s analysis. Russell
makes an inestimable contribution to the flowering of analytic philosophy by suggest-
ing that the logical form of a proposition, as judged in terms of its superficial gram-
matical structure, is not necessarily its real, underlying form, appreciated by means of
logical analysis. I cannot put the point better than Wittgenstein in Tractatus (1922:
4.0031), when he declares: “Russell’s merit is to have shown that the apparent logical
form of the proposition need not be its real form.” Wittgenstein no doubt puts his finger
on a major ingredient in the appeal of Russell’s theory of descriptions. By suggesting
that philosophical logic has as part of its project to uncover the real underlying or ulte-
rior logical form of sentences in ordinary thought and language, Russell inspired gen-
erations of philosophers with a vision of logical analysis excavating the subterranean
logical structures beneath the surface of colloquial discourse.

Third, Russell’s theory is rightly dignified as a wellspring of contemporary analytic
philosophy because of its dramatic use of logical methods in disambiguating philo-
sophically equivocal linguistic expressions. Russell considers among others the problem
of interpreting the sentence, ‘The present king of France is not bald.’ The dilemma he
intuits is that if the sentence is taken to mean that there is a present king of France
who is not bald, then the sentence should be false. To declare the sentence false, at least
when we are operating within the parameters of ordinary language, wrongly seems to
entail that there is a present hirsute king of France. Russell’s genius in the theory of
definite descriptions is partly seen in his recognition that symbolic logic permits the
exact disambiguation of the scope of the negation operator that is blurred in everyday
speech. He accordingly distinguishes between saying ‘There exists one and only one
present king of France and it is not the case that he is bald,’ versus ‘It is not the case
that there exists one and only one present king of France and he is bald (or, it is not the
case that he is bald).’ The first sentence is false, but its proper negation is the second
sentence, which does not commit the speaker to the existence of a hirsute present king
of France.

Although the distinction can also be indicated as here in a modified form of ordi-
nary English, Russell finds that it is only in symbolic logic that the full force of placing
the negation sign externally, with the entire proposition in its scope, as opposed to inter-
nally, governing only the predication of the property of being bald in the third clause
of the formal analysis of the definite description, can be fully and unequivocally appre-
ciated. In standard logical notation, the difference is formalized as that between
~($x)(Kxf & ("y)((Kyf ∫ x = y) & Bx)) as opposed to ($x)(Kxf & ("y)((Kyf ∫ x = y) & ~Bx)).
The difference in the scope of the negation, and the difference it makes in the truth
values of the two propositions, is so immediately apparent as to powerfully iconically
recommend the use of symbolic logic as a general method of clarifying logical obscu-
rities and circumventing conceptual confusions.

Having acknowledged the strength of Russell’s analytic paradigm, it may also be
worthwhile to consider its underlying philosophical assumptions. Russell is interested
not only in the truth value of sentences ostensibly designating nonexistent objects like
the present king of France, but also in understanding predications of properties to fic-
tional creatures, like Pegasus, the flying horse of ancient Greek mythology. Russell
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regards proper names like ‘Pegasus’ as disguised definite descriptions, which he inter-
prets according to his three-part analysis as consisting of an existence claim, a unique-
ness claim, and the predication of a property to the uniquely designated entity. If I say,
then, that ‘Pegasus is winged,’ Russell interprets this sentence as falsely asserting that
there exists a flying horse, there is only one flying horse, and it is winged. From this it
appears to follow that something of metaphysical significance has been derived from
Russell’s skillful use of philosophical logic; namely, that it is false to say of any nonex-
istent object like Pegasus that the object has any of the properties attributed to it in
myths, legends, or storytelling contexts.

If we look at the logical symbolism Russell employs, we see that in this case it reads:
($x)(Fx & ("y)(Fy ∫ x = y) & Wx). The formula, it must be said, is supposed to be judged
false only because the quantifier in ($x)(Fx . . .) is interpreted as meaning that there
actually exists such an object in the logic’s semantic domain that truly possesses the
property F, of being a flying horse. Russell as a matter of fact has no way to construe
an object like Pegasus in his logic other than as the value of an existentially loaded
quantifier-bound variable. This is probably not the place to dispute with Russell about
whether such a logical treatment of names like ‘Pegasus’ is philosophically justified or
not. It is nevertheless important to recognize that Russell’s evaluation of such sentences
as false is predetermined by his existence presuppositional semantics for the ‘existen-
tial’ quantifier, and by the fact that his logic permits no alternative means of considering
the semantic status of sentences ostensibly containing proper names for nonexistent
objects. This makes it an altogether philosophically foregone conclusion that sentences
like ‘Pegasus is winged,’ which many logicians would otherwise consider to be true
propositions of mythology, are false. The point is that Russell is able to produce this
philosophical result from his logical analysis of the meaning of the sentence only
because the position is already loaded into the presuppositions of the syntax and
semantics of his interpretation of formal symbolic logic. The interesting philosophical
question that Russell would be hard-pressed to answer satisfactorily is whether his logic
is philosophically adequate to the proper analysis of problematic sentences in this cat-
egory. It is not a conclusion of logic alone that Russell advocates, whether correct or
incorrect, but of an applied philosophical logic that is heavily but not inevitably imbued
with a prior metaphysical commitment to an existence-presuppositional extensional
syntax and semantics.

A good logical notation, as Russell says, can function philosophically much like a
living teacher. As a pure formalism, however, logic is not an autonomous authority on
any matter of philosophical truth. It has, in itself, no philosophical implications, and
in its applications in philosophical logic, as Russell’s example illustrates, it is capable of
supporting only those philosophical conclusions with which it is deliberately or inad-
vertently invested by logicians. This, then, is another sense in which Russell in his most
important contributions to philosophical logic identifies logic with philosophy.

5 On Philosophical Presuppositions and Copia of Logical Systems

The perspective we have arrived at in understanding the relation between logic and phi-
losophy can help to answer a difficult question about the nature of logic and the status
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of multiple logical systems. Why are there so many different systems of logic? Is there
just one underlying logic, of which all the various systems are alternative partial
expressions? Or are there many different logics that are related to one another by a
network of partially overlapping family resemblances?

If we consider work in contemporary theoretical logic at face value, there seem to
be indefinitely many logics. Alethic modal logics are concerned with matters of neces-
sity and possibility; doxastic logics are designed to explain the logical structures of belief
states; epistemic logics are offered to formalize valid inferences about knowledge. There
are specialized logics of quantum physical phenomena, deontic logics of obligation and
permission, and many others. An important source of the proliferation of logical
systems in contemporary logic and philosophy is in philosophical issues arising from
dissatisfaction with classical logics in dealing with specific aspects of scientific and
everyday reasoning. This is the basis for work in many-valued logics, free logic, rele-
vance, and paraconsistent logics, and logics of beingless intended objects, that do not
limit logical inference to existent entities in referring to and truly predicating proper-
ties of objects, and for the paraconsistent stance that logical inconsistencies need not
explosively entail any and every proposition, but that contradictions can be tolerated
without trivializing all inferences.

Applications of logic to philosophical problems of these kinds are a continuing basis
for innovations in formal symbolic logic and the development of new nonstandard
systems of logic. Logic is also concerned with abstract theoretical matters concerning
its own formal symbolisms and the properties, such as the scope and limits of logical
and mathematical systems considered as a whole, in the study of logical metatheory.
The advance of logic has been nourished by its theoretical and practical applications in
set theory, computer engineering, artificial intelligence modeling, formal semantics and
linguistic analysis of scientific theory, philosophical argument, and colloquial lan-
guage. There is valuable feedback between logical theory and practice, much as there
is in pure and applied mathematics. The need for new formalisms is sometimes made
urgent by the limitations of received systems that are only discovered when we try to
apply them to real problems. At the same time, developments in symbolic logic that are
undertaken purely for the sake of their theoretical interest frequently suggest new appli-
cations of logical analysis for which no need had previously been perceived.

The number of distinct logical systems inevitably raises the philosophical question
of how the multiplicity of logics should be understood. Some logicians are partisan
defenders of particular logical formalisms as the ideal single correct logic. Others are
tolerant of many logics, adopting an attitude according to which particular formal
systems may be appropriate for particular analytic tasks, but that no single logic or
cluster or family of logics deserves to be called the one and only correct system of logic.
Those who favor a single correct system of logic must either regard alternative logics
as incorrect, however formally interesting, or else interpret them as representing con-
flicting incompatible opinions about the best and uniquely correct logical system. Such
a contrast of philosophical positions about the nature of logic and the uniquely correct
logic or plurality of alternative logics has positive analogies in the opposition of moral
absolutism and moral relativism, and in questions of privileged objective truth versus
subjectivism, perspectivalism, and syncretism in the theory of knowledge. It would not
be surprising to find philosophers who incline toward relativism in ethics or epistemol-
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ogy also to prefer a tolerant attitude about the peaceful coexistence of many different
logical systems, and for their adversaries who think in terms of moral and epistemic
absolutes to embrace a single correct logic that either defeats the ostensible alterna-
tives, or resolves apparent conflicts between many if not all of them in a greater over-
arching synthesis.

Philosophy thrives on just such tensions and ambiguities, and philosophical logic is
no exception. All of the diverse formal syntactical distinctions available in contempo-
rary symbolic logic can be put to good use in clarifying philosophical ideas and drawing
more precisely interpreted distinctions than are otherwise possible in ordinary lan-
guage, or even in specialized but nonsymbolic philosophical terminologies. The
methods of set theory, model set theoretical semantics, and axiomatizations of many
types of philosophical concepts are among the widely used formalisms in present-day
philosophical logic. The future will likely see more sophisticated logical machinery, and
with it an even greater upsurge in the number and variety of logical systems and dis-
tinctive categories of logic and philosophical logics. If there is a logic of knowledge and
a logic of moral obligation, then there can surely be multiple logics of deductively valid
inference, each tailored to a particular philosophical conception of how even the most
basic logical operations may be thought to function. We can nonetheless continue to
expect that partisan champions in philosophical logic will want to refer to a preferred
formalism as logic full stop, or as the one and only correct or underlying primary or
essential logic. The awareness of philosophical commitment and presupposition even
in the most rigorous abstract logical symbolisms, and of philosophical logic as an appli-
cation of logic in which philosophical ideas are already deeply infused, can help to make
logic a more powerful ally of philosophical analysis.
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Ancient Greek Philosophical Logic

RO B I N S M I T H

Ancient Greek logic was inseparable from ancient Greek philosophy. The formal theo-
ries developed by major logicians such as Aristotle, Diodorus Cronus, and Chrysippus
were in large part influenced by metaphysical and epistemological concerns. In this
brief essay, I will try to give some picture of this interrelationship. For reasons of space,
I make no attempt to cover, or even to mention, every aspect of ancient Greek logic. 
I have preferred instead to concentrate on illustrating its philosophical aspects.

1 The Origins: Parmenides and Zeno

Greek philosophical logic originates with Parmenides (c. 510–c. 440 BCE). Though
Parmenides cannot be said to have had a logic, or even an interest in studying the valid-
ity of arguments, his views did much to set the agenda out of which many things in
Greek philosophy, including logic, later arose. His philosophical position is both simple
and mystifying: being is, whereas not being is not and cannot either be thought or said.
Consequently, any type of expression that implies that being is not or that not being is
must be dismissed as nonsense. For Parmenides, this includes any reference to change
(since it must involve the coming to be of what is not and the not being of what is) 
or multiplicity (since to say that there are two things is to say that something is not
something else). The conclusion is that what is is one, unchanging, and uniform,
without distinctions. Much of subsequent Greek philosophy is an effort to avoid these
consequences and defend the coherence of talk of motion and multiplicity.

A second, and more explicitly logical, impact of Parmenides’ thought on Greek phi-
losophy is through its defense by Parmenides’ follower Zeno of Elea (c. 490–c. 430 BCE).
According to Plato’s Parmenides, Zeno’s goal was to defend Parmenides’ views from the
objection that they were absurd or in contradiction to our ordinary beliefs. In response,
Zeno argued that the beliefs that there is motion and that there is a multiplicity of enti-
ties have consequences that are even more absurd because self-contradictory. This was
the point of his celebrated arguments against motion and multiplicity.

To consider one example, Zeno gives the following argument (paraphrased) that
motion is impossible:



In order to move from point A to point B, you must first reach the point halfway between
them. But before you can reach that point, you must reach the point halfway to it.
Continuing in this way, we see that before you can reach any point, you must already have
reached an infinity of points, which is impossible. Therefore, motion is impossible.

This argument rests only on the assumptions that motion is possible, that in order to
move from one point to another one must first pass through the point halfway between,
and that there is a point halfway between any two points.

Zeno’s arguments take a particular form: beginning with premises accepted by his
opponent, they derive conclusions that the opponent must recognize as impossible.
Aristotle says that in introducing this form of argument, Zeno was the originator of
‘dialectic’. The meaning of this word is contested by scholars, but we may note three
features of Zeno’s argument: (1) it is directed at someone else; (2) it takes its start from
premises accepted by that other party; (3) its goal is the refutation of a view of that
other party. These three characteristics can serve as a rough definition of a dialectical
argument.

2 Dialectic and the Beginnings of Logical Theory

In the later fifth century BCE, professional teachers of oratory appeared in Athens. These
were most often the same people called (by us, by their contemporaries, and often by
themselves) ‘Sophists’. We know that a number of the Sophists had interesting (and
quite divergent) views on philosophical matters. Teaching oratory was a profitable
occupation, and several Sophists seem to have amassed fortunes from it. The content
of their instruction, to judge by later treatises on rhetoric, would have included such
things as style and diction, but it would also have included some training in argumen-
tation. That could have ranged from teaching set pieces of argument useful for specific
situations, all the way to teaching some kind of method for devising arguments accord-
ing to principles. One theme that emerges in several sophistic thinkers is a kind of
relativism about truth. This is most forcefully put by Protagoras (c. 485–415 BCE), who
began his treatise entitled Truth with the line, “Man is the measure of all things; of
things that are, that they are, and of things that are not, that they are not.” Plato tells
us in his Theaetetus that this meant “whatever seems to be true to anyone is true to that
person”: he denied that there is any truth apart from the opinions of individuals. For
Protagoras, this appears to have been connected with a thesis about the functioning of
argument in a political situation. Whoever has the most skill at argument can make 
it seem (and thus be) to others however he wishes: in Protagoras’ world, persuasive
speech creates not merely belief but also truth.

Even apart from this perhaps extreme view, we find the themes of the variability 
of human opinion and the power of argument widespread in fifth-century Athens.
Herodotus’ history of the Persian Wars present a picture of opinions about right and
wrong as merely matters of custom by displaying the variability in customs from one
people to another. The treatise known as the Twofold Arguments (Dissoi Logoi) gives a
series of arguments for and against each of a group of propositions; the implication is
that argument can equally well support any view and its contradictory.
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Contemporary with the Sophists was Socrates (469–399 BCE), whose fellow
Athenians probably regarded him as another Sophist. Socrates did not teach oratory
(nor indeed does he appear to have taught anything for a fee). Instead, he engaged
people he encountered in a distinctive type of argument: beginning by asking them
questions about matters they claimed to have knowledge of, he would lead them, on
the basis of their own answers to further questions, to conclusions they found absurd
or to contradictions of their earlier admissions. This process, which Plato and Aristotle
both saw as a form of dialectical argument, usually goes by the name of ‘Socratic 
refutation.’ In overall form, it exactly resembles Zeno’s arguments in support of
Parmenides. Socrates insisted that he knew nothing himself and that his refutations
were merely a tool for detecting ignorance in others.

Plato (428/7–348/7 BCE) did not develop a logical theory in any significant sense.
However, he did try to respond to some of the issues raised by Parmenides, Protagoras,
and others. In his Theaetetus, he argues that Protagoras’ relativistic conception of truth
is self-refuting in the sense that if Protagoras intends it to apply universally, then it must
apply to opinions about Protagoras’ theory of truth itself; moreover, it implies that 
the same opinions are both true and false simultaneously. He also partially rejects
Parmenides’ thesis that only what is can be thought or said by distinguishing a realm
of ‘becoming’ that is not simply non-being but also cannot be said simply to be without
qualification.

Plato’s most celebrated philosophical doctrine, his theory of Forms or Ideas, can 
be seen as a theory of predication, that is, a theory of what it is for a thing to have a
property or attribute. In very crude outline, Plato’s response is that what it is for x (e.g.
Socrates) to be F (e.g. tall) is for x to stand in a certain relation (usually called ‘partici-
pation’) to an entity, ‘the tall itself,’ which just is tall. In his Sophist, Plato begins to
develop a semantic theory for predications. He observes that truth and falsehood are
not properties of names standing alone but only of sentences produced by combining
words. ‘Theaetetus’ and ‘is sitting’ are, in isolation, meaningful in some way but neither
true nor false. We find truth or falsehood only in their combination: ‘Theaetetus 
is sitting.’ For Plato, a major achievement of this analysis is that it allows him to under-
stand falsehoods as meaningful. In the sentence ‘Theaetetus is flying,’ both ‘Theaetetus’
and ‘is flying’ are meaningful; their combination is false, but it is still meaningful.

Aristotle (384–322 BCE), Plato’s student, developed the first logical theory of which
we know. He follows Plato in analyzing simple sentences into noun and verb, or subject
and predicate, but he develops it in far greater detail and extends it to sentences which
have general or universal (katholou, ‘of a whole’: the term seems to originate with
Aristotle) subjects and predicates.

Aristotle also gives an answer to Protagoras and to related positions. Specifically, in
Book IV of his Metaphysics, he argues that there is a proposition which is in a way prior
to every other truth: it is prior because it is a proposition which anyone who knows
anything must accept and because it is impossible actually to disbelieve it. The propo-
sition in question is what we usually call the principle of non-contradiction: “it is impos-
sible for the same thing to be both affirmed and denied of the same thing at the same
time and in the same way” (Met. IV.3, 1005b19–20). He argues that it follows from this
principle itself that no one can disbelieve it. At the same time, since it is prior to every
other truth, it cannot itself be proved. However, Aristotle holds that anyone who claims
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to deny it (or indeed claims anything at all) already presupposes it, and he undertakes
to show this through what he calls a “refutative demonstration” (Met. IV.4).

3 Aristotle and the Theory of Demonstration

When Aristotle says that the principle of non-contradiction cannot be proved because
there is nothing prior from which it could be proved, he appeals to a more general thesis
concerning demonstration or proof: no system of demonstrations can prove its own first
principles. His argument for this appears in his Posterior Analytics, a work best regarded
as the oldest extant treatise on the nature of mathematical proof. The subject of the
Posterior Analytics is demonstrative sciences: a demonstrative science is a body of knowl-
edge organized into demonstrations (proofs), which in turn are deductive arguments
from premises already established. If a truth is demonstrable, then for Aristotle to know
it just is to possess its demonstration: proofs are neither a means of finding out new
truths nor an expository or pedagogical device for presenting results, but rather are
constitutive of knowledge. Though he does not limit demonstrative sciences to mathe-
matics, it is clear that he regards arithmetic and geometry as the clearest examples of
them. Both historical and terminological affinities with Greek mathematics confirm this
close association.

A demonstration, for Aristotle, is a deduction that shows why something is neces-
sarily so. This at once imposes two critical limits on demonstrations: nothing can be
demonstrated except what is necessarily so, and nothing can be demonstrated except
that which has a cause or explanation (the force of the latter restriction will be evident
shortly).

Since demonstrations are valid arguments, whatever holds of valid arguments in
general will hold of them. Therefore, a natural place to begin the discussion of demon-
strations would be with a general account of validity. Aristotle announces exactly that
intention at the beginning of his Prior Analytics, the principal subject of which is the
‘syllogism’, a term defined by Aristotle as “an argument in which, some things being
supposed, something else follows of necessity because of the things supposed.” This is
obviously a general definition of ‘valid argument.’ However, Aristotle thought that all
valid arguments could be ‘reduced’ to a relatively limited set of valid forms which he
usually refers to as ‘arguments in the figures’ (modern terminology refers to these forms
as ‘syllogisms’; this can lead to confusion in discussing Aristotle’s theory).

Aristotle maintained that a single proposition was always either the affirmation or
the denial of a single predicate of a single subject: ‘Socrates is sitting’ affirms ‘sitting’ of
Socrates, ‘Plato is not flying’ denies ‘flying’ of Plato. In addition to simple predications
such as those illustrated here, with individuals as subjects, he also regarded sentences
with general subjects as predications: ‘All Greeks are humans,’ ‘Dogs are mammals,’
‘Cats are not bipeds.’ (Here he parts company from modern logic, which since Frege 
has seen such sentences as having a radically different structure from predications.)
Aristotle’s logical theory is in effect the theory of general predications. In addition to
the distinction between affirmation and denial, general predications can also be divided
according as the predicate is affirmed or denied of all (universal) or only part (particu-
lar) of its subject. There are then four types of general predications:
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Affirmed (affirmative) Denied (negative)

Universal ‘Every human is mortal’ ‘No human is mortal’
Particular ‘Some human is mortal’ ‘Not every human is mortal’

Aristotle then explores which combinations of two premises that share a term will
imply a third sentence having the two non-shared terms as its subject and predicate.
He distinguishes three possibilities based on the role of the shared term (the ‘middle,’
in his terminology) in the premises: it can be predicate of one and subject of the other
(he calls this the ‘first figure’), predicate of both (‘second figure’), or subject of both
(‘third figure’). He carries out his investigation by first taking four combinations in the
first figure as basic. He then systematically examines all other combinations in all the
figures, doing one of two things for each of them: (1) in some cases, he shows that a
conclusion follows by deducing that conclusion from the premises, using as resources
one of the four basic forms and a limited stock of rules of inference; (2) in other cases,
he shows that no conclusion follows by giving a set of counterexamples to any possi-
ble form of conclusion. As a result, he not only has an enumeration of all the valid
forms of ‘argument in the figures,’ he also has shown that all of them can be ‘reduced’
to the basic four forms. He even shows that two of the basic forms can be derived from
the other two using somewhat longer deductions. Following this treatment, he argues
that every valid argument whatsoever can be ‘reduced’ to the valid forms of argument
‘in the figures.’ His defense of this is necessarily more complex, since it includes analy-
sis of a variety of forms of arguments, for each of which he proposes ways to extract a
figured argument.

I will not pursue here the details of his theory (see Corcoran 1973; Ĺukasiewicz
1957; Smiley 1974; Smith 1989). My concern instead is with the character of the
whole enterprise. Aristotle’s overriding concern is with demonstrating that every 
valid argument whatsoever can be reduced to a very small number of valid forms. This
is not the sort of result that an author of a handbook for testing arguments for 
validity would want. It is, however, precisely the kind of result that someone interested
in studying the structures of proofs would find valuable. And that is precisely the 
use we find Aristotle making of it. The only work of his that makes substantive use 
of the results proved in the Prior Analytics is the Posterior Analytics. Aristotle uses those
results as the basis for a crucial argument to establish his position on the structures 
of demonstrative sciences. On this basis, I am persuaded that the theory contained 
in the Prior Analytics was developed largely to serve the needs of Aristotle’s theory 
of demonstration, especially this argument: here, as in much of the early history 
of modern symbolic logic, logical theory arose to meet the needs of the philosophy of
mathematics.

4 The Regress Argument of Posterior Analytics I.3

The argument to which I am referring is Aristotle’s response to a problem about the
possibility of demonstration that he presents in Posterior Analytics I.3: if demonstra-
tions must rest on premises already demonstrated, then how is demonstration possible
at all? Here is Aristotle’s presentation of the positions in the debate:
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Some think that, because of the need to know the first things scientifically, there is no 
scientific knowledge. Others think that there is and that there is a demonstration of them
all. Neither of these views is either true or necessary. Now, as for those who suppose that
there is no scientific knowledge at all, they claim that it can be led into infinity, so that 
we do not know the posterior things from prior things of which none are first (and they
are right, for it is impossible to go through infinite things). And if they do come to a 
stop and there are starting points, these will not be known just because there is no demon-
stration of them (which alone they say is scientific knowledge). And if it is not possible 
to know the first things, then neither is it possible to know those which follow from them
scientifically, in the absolute or correct sense, but only from the assumption ‘if these are
so.’ The other group agrees about scientific knowledge (that is, that it comes only through
demonstration) but think that nothing prevents there being demonstration of everything
because demonstration can be in a circle, that is, reciprocal. (Posterior Analytics I.3,
72b5–18)

Though this regress argument is frequently used as an early example of the kind 
of skeptical problem central to modern epistemology, a careful study of Aristotle’s
response to it shows that he has rather different concerns. He is really setting the stage
for a complex and sophisticated argument about the structures of systems of mathe-
matical proofs.

Even before Aristotle arrived in Athens, Plato’s Academy was becoming a focal point
for new developments in mathematics. In addition to proving new results and search-
ing for the solutions to outstanding puzzles, Greek mathematicians had begun to
arrange their accumulated knowledge systematically as a single structure of proofs.
The ultimate outcome of this process, a century after Aristotle, was Euclid’s Elements.
However, though we do not know its contents, Hippocrates of Chios (fl. 440 BCE) com-
posed an Elements in the late fifth or early fourth century, and Theudius of Magnesia
(fl. c. 350? BCE) put together a treatise during Aristotle’s lifetime that incorporated work
by a number of other prominent mathematicians, including Archytas (428–347 BCE),
Eudoxus (400–347 BCE), Leodamas (fl. c. 380 BCE), Theaetetus (c. 415–c. 369 BCE), and
Menaechmus (c. 350? BCE). Euclid’s Elements (c. 295 BCE) presupposes a certain overall
structure for a mathematical system. At its basis are propositions which are not proved
in the system; some of these are definitions, some are ‘common conceptions’ (koinai
ennoiai), and some are ‘things asked for’ (aitemata: the customary translation is ‘postu-
lates’). Further propositions are added to the system by logical deduction from these
first propositions and any others already proved; these are called theorems. Now, it is
precisely this picture of a demonstrative system that is at issue in the passage quoted
above from Posterior Analytics I.3, and one of the main goals of the treatise is to argue
for it. Specifically, Aristotle argues that any demonstrative system must contain first
propositions which are not demonstrated, or even demonstrable, in that system.

Aristotle’s response to the regress argument appears at first to be a mere assertion:
there are first principles that can be known without being demonstrated. We should
then expect him to tell us straightaway what this other means of knowledge of these
first principles is. Instead, he expends a great deal of argument trying to prove that the
regress of premises always ‘comes to a stop,’ and it is in this argument that he needs
the results established in the Prior Analytics. In order to appreciate the significance of
this, we need to take note of an important difference between Aristotle’s logical system
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and modern predicate (and propositional) logic. In Aristotle’s logic, it is possible for
there to be true propositions which cannot be deduced from any other set of true propo-
sitions whatsoever that does not already contain them. Aristotle’s logic contains only
predications, and the only rules of inference it knows about are those of the arguments
in the figures. Now, a true sentence ‘A belongs to every B’ can only be deduced from
premises of exactly one type: two premises of the forms ‘A belongs to every C’ and ‘C
belongs to every B.’ If there are no such true premises, then ‘A belongs to every B,’
though true, is absolutely undeducible, and thus indemonstrable in a purely logical or
semantic sense. Similar results hold for the other forms of sentence, though they are
more complicated because there are multiple ways of deducing each of them.

Aristotle calls such true but undeducible sentences ‘unmiddled’ (amesos: the stan-
dard translation ‘immediate,’ though etymologically correct, is highly misleading).
Since an unmiddled proposition cannot be deduced from anything, it obviously cannot
be the object of a demonstration. Moreover, any premise regress that encounters such
a proposition will come to a stop at that point. If every premise regress comes to a stop
in unmiddled premises, then it might seem that we have a serious problem for the
notion of demonstration, just as the anti-demonstrators of Aristotle’s regress argument
claimed. However, notice that it is a matter of objective fact which propositions are
unmiddled in this way: given the sum total of all the true propositions, we can apply a
set of mechanical procedures to find out which ones are unmiddled (Aristotle in effect
gives us such a set of procedures in Prior Analytics I.27). Moreover, if we did have knowl-
edge of just exactly the unmiddled propositions, then since they are the propositions in
which every regress comes to a stop, and since a regress can be reversed to become a
deduction, we would have knowledge of premises from which every other proposition
could be deduced. Since unmiddled propositions cannot be known except by non-
demonstrative means, it follows that the possibility of non-demonstrative knowledge of
the unmiddled propositions is both a necessary and a sufficient condition for the possi-
bility of demonstrations. Since there is no middle term explaining why an unmiddled
proposition is true, there is no explanation of its truth: it is, in effect, uncaused and
unexplained. Aristotle’s view is precisely this: demonstrations, which give the causes
why their conclusions must be true, ultimately rest on first premises for the truth of
which there is no further explanation or cause.

This brief account of Aristotle’s theory raises a host of important questions, most
critically the question of how it is possible to have knowledge of these first indemon-
strable premises. I will not try to pursue that issue further here (see Smith 1986 for a
little more detail). The point I wish to emphasize is that Aristotle’s logical theory arose
in response to a philosophical question about the possibility of proof. Aristotle’s logic
is, at its core, a philosophical logic.

5 Time and Modality: The Sea-Battle and the Master Argument

Necessity and possibility were subjects of major importance for ancient logicians. This
might be seen as part of the Parmenidean legacy, since Parmenides asserted that what
is must be and what is not cannot be: from there it is not a long distance to the view
that what is the case is necessary and what is not the case is impossible. On such a view,
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possibility and necessity collapse into one another. Only that which is, is possible; thus,
what is possible is simply what is necessary, and there are no possibilities that are not
actual. In other words, Parmenides’ position appears to lead to a universal determin-
ism or fatalism. Since such a view seems to rule out such things as free choice and delib-
eration, it runs into conflict both with common sense and with many philosophical
views. Not surprisingly, we find considerable discussion of necessity and possibility in
Greek philosophy. A good deal of that discussion involves the attempt to deal with these
concepts in a logical system. Once again, we find that Greek logical theory developed
in response to philosophical questions.

In Metaphysics IX.3, Aristotle ascribes the view that the modalities all collapse into
one another to “the Megarians” and is at some pains to argue against it. Though 
he does not tell us who these Megarians were, we can supply a little history from 
other sources. Euclid of Megara (c. 430–c. 360 BCE), an approximate contemporary 
of Plato, was a member of Socrates’ circle. He is said to have been influenced by
Parmenides’ views and to have maintained that “the good is one.” We are told that 
he attacked arguments “not from their premises but from their conclusions;” what 
this means is not clear, but one possible interpretation is that Euclid followed Zeno in
attacking rival positions by showing that they led to unacceptable consequences. A
small circle of followers assembled around him, and from the beginning they appear to
have had a strong interest in argumentation, especially in its dialectical form, in refu-
tations, and in logical puzzles and paradoxes. Kleinomachus of Thurii, perhaps one 
of the first generation of Megarians, is said to have been the first to write on ‘predi-
cations and propositions.’ Eubulides, coming a generation or two later, is credited 
with the discovery of a number of paradoxes, including two of the most durable and
difficult: the Liar and the Sorites. Eubulides engaged in a somewhat vitriolic controversy
with Aristotle.

Now, Aristotle thought that the solution to Eleatic and Megarian arguments against
motion and change could be found in a robust notion of potentiality. Aristotelian poten-
tialities might be described as properties that point outside the present time. A lump of
bronze, for instance, has the potentiality of being a statue, even though it is not one
now, because it could, while remaining the same bronze, acquire the appropriate shape.
Socrates, who is now seated, has the potentiality of standing up because he could, at
some other time, acquire the property of standing up without ceasing to be Socrates.
An intact garment has the potentiality of being cut up; a stone at the top of a hill has
the potentiality of being at the bottom of the hill; a log has the potentiality of burning;
an illiterate person has the potentiality of learning to read.

Potentialities make change possible, for Aristotle, since they allow him to describe
change not at the coming to be of what was not but merely as the actualization of what
was already in potentiality. For the bronze to become a statue, it is not necessary (as
the Megarians might have it) that the lump of bronze cease to be and a new bronze
statue emerges ex nihilo; instead, the same bronze persists, but a shape already pos-
sessed by it in potentiality becomes its actual shape. Aristotle extends this to a general
definition of motion as “the actuality of what is in potentiality insofar as it is in poten-
tiality.” On this basis, he thinks that he can respond to Zeno’s paradoxes of motion by
claiming that a body in motion, while it is in motion, is never actually at any location:
it is actually only in motion, only potentially at any of the points along its path. Were
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it to stop, of course, it would actually be located at some point; but then, it would no
longer be in motion.

I will not discuss here whether this is an effective response to Zeno: what is impor-
tant is that it depends on a notion of potentialities as properties which things can have
at a given time without exhibiting them at that time. The potentiality (capacity, ability)
which Socrates has of standing up does not manifest itself while he is seated, but it is
there nonetheless: when he stands, of course, it is no longer a potentiality but an actu-
ality. Precisely this point is what the Megarians denied. They held that the only possi-
ble evidence for the claim that Socrates can stand up is for him actually to do so:
however, his standing will provide no evidence that he could have stood up a moment
ago while he was sitting, but only evidence that he can stand now while he is standing.

So far, this may seem to be primarily a matter of metaphysics. In On Interpretation 9,
however, Aristotle presents us with an argument resting on logical principles. The 
background of the argument is the notion of a ‘contradiction’ or ‘contradictory pair’
(antiphasis): two propositions with the same subject, one of which denies of that subject
exactly what the other affirms of it (for example, ‘Socrates is seated,’ ‘Socrates is not
seated’). In general, Aristotle says that for any contradictory pair at any time, one of
the pair is true and the other false. He finds a problem, however, if we allow this to
extend to propositions about the future. All we need is the additional thesis that what-
ever is true about the past is now necessarily true and the general semantical principle
that if a proposition is true, then whatever it says is the case is indeed the case. Imagine
now that yesterday, I said, ‘There will be a sea-battle tomorrow.’ By the general princi-
ple governing contradictory pairs, either this sentence or its contradictory ‘There will
not be a sea-battle tomorrow’ must have been true when I made my statement. If the
sentence was true, then it is now a truth about the past that it was true, and therefore
it is now necessary that it was true; therefore, it is now necessarily true that there is a
sea-battle today. If, on the other hand, my statement was false, then by similar reason-
ing it is now necessarily false that there is a sea-battle today. Since my statement was
either true or false, then it is now either necessary or impossible that there is a sea-
battle today. But this can be generalized to any event at any time, since (as Aristotle
says) surely it does not matter whether anyone actually uttered the sentence: thus,
everything which happens happens of necessity, and there are no possibilities which do
not become actual. It is far from clear just how Aristotle responds to this puzzle, except
that he is certain that its conclusion must be rejected. One interpretation is that in order
to avoid the repugnant conclusion, he restricts the application of the law of excluded
middle to future propositions (the literature on this argument is enormous: see the
Suggested Further Reading below for a few places to start).

Aristotle does not tell us the source of the argument to which he is responding in On
Interpretation 9, though it is a reasonable guess that its author was Megarian. One piece
of evidence in favor of that is the ‘Master’ argument developed by Diodorus Cronus (c.
360–c. 290 BCE). Our sources identify Diodorus as a Megarian (though some scholars
have disagreed); his dates are unclear, and it is just possible that Aristotle is actually
responding to Diodorus, though I think it more likely that he is replying to an ancestor
of the Master developed by other Megarians. In any event, the Master began with 
a proof that the following three propositions form an inconsistent triad, so that the 
affirmation of any two entails the denial of the third:
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1. What is past is necessary.
2. The impossible does not follow from the possible.
3. There is something possible which neither is nor will be true.

The first of these recalls the argument of On Interpretation 9. What the second means
is not totally clear, but one reading is ‘a possible proposition cannot entail an impos-
sible one.’ We do not know how Diodorus argued for the incompatibility of this triad,
but we do know the conclusion he drew from it: he affirmed the first two propositions
and deduced the denial of the third, so that for him ‘possible’ was equivalent to ‘either
now true or true in the future.’ His view here conflicts directly with Aristotle, who
asserts that there are possibilities that never become actual. What Diodorus may have
been doing, in addition to defending a Megarian view of universal necessitation, was
finding a way to talk about possibilities in a Megarian view of the world. That 
is, his position would allow him to assert that there is indeed a meaning for the word 
‘possible,’ even though nothing can happen except what does happen.

The later history of the Master is closely associated with the Stoic school, which
began with Zeno of Citium (335–263 BCE). Zeno learned logic from Megarian teachers,
and Zeno and his follower Cleanthes (331–232 BCE) responded to the Master.
Subsequently, Chrysippus (c. 280–207 BCE), the most distinguished logician among the
Stoics and probably the most gifted and prolific logician of the Hellenistic period,
affirmed the first and third propositions of the Master and denied the second: he argued
that ‘an impossible can follow from a possible.’ To understand his response, we need
first a brief sketch of his theory of propositions. For Chrysippus, a proposition – that is,
what is true or false – is really an incorporeal entity, roughly the meaning of a sentence
that expresses it (the Stoics called this a lekton, ‘sayable,’ which might plausibly be 
translated ‘meaning’ or ‘sense’). There are similarities between this notion and, say, a
Fregean notion of the sense of a proposition, though there are important differences.
One important difference is that the Stoics thought of at least some propositions as
changing their truth values over time, for example the proposition expressed by ‘It is
day’ is at one time true and at another false while remaining the same proposition.
Another Stoic thesis, and one that is crucial to Chrysippus’ solution, is that proposi-
tions about individuals specified by demonstratives ‘perished’ when the individuals
ceased to exist. If I point to Dion and say ‘He is alive,’ then I utter a proposition the
subject of which is fixed by a demonstrative (in modern terms, an indexical). However,
if Dion dies, then I can no longer point to Dion at all, since he does not exist; therefore,
the proposition that was formerly expressed by ‘He is alive’ also ceases to exist rather
than becoming false. Now, Chrysippus offers for consideration the proposition ‘If Dion
has died, then this one has died’ (pointing to a living Dion, obviously). Since ‘this one’
refers to Dion, this conditional sentence is obviously true: its consequent follows from
its antecedent. However, when Dion has died, the antecedent of the conditional
becomes true while its consequent perishes: in fact, it is in a sense impossible for ‘This
one has died’ ever to be true, since the condition for its truth is also the condition for
its perishing. Therefore, we have an example of something impossible following from
something possible.

Both the Stoics and Aristotle, then, investigated logical modalities in order to 
reconcile logical theory with their views about determinism. Chrysippus, who was a 
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determinist, could nevertheless argue that his views did not entail that only what is
necessary is possible, since he can produce an example of a proposition that is possible
but that neither is nor will be true: ‘This one has died.’ Aristotle, who rejects universal
necessitarianism and develops a complex theory of potentialities to accommodate his
views on motion and deliberation, at least recognizes that his position will require some
radical modification of his logical theory. (For more on the Master argument, see the
readings cited below, especially Fine 1984; Gaskin 1995; Prior 1967.)

6 Sentential Logic in Aristotle and Afterwards

Aristotle never developed an account of sentential logic (the inferences that rest on sen-
tential operators such as ‘and,’ ‘or,’ ‘if,’ ‘not’). In my opinion, this is closely connected
with his use of his logical theory in the Posterior Analytics. His argument that ‘every
regress terminates’ can only work if the logic of arguments ‘in the figures’ is the only
logic there is; and for that to be so, every proposition must either affirm or deny a pred-
icate of a subject. In fact, Aristotle thinks that this is so, and he undertakes to show 
it in the Prior Analytics. This requires him to reject sentential composition: he does 
not recognize conjunctions, disjunctions, or conditionals as individual propositions.
Precisely how this is to work is not clear, though we can discern a few details. For
instance, because he treats affirmations and denials as two basic types of sentence, he
does not think of negations as compound sentences; he appears to regard conjunctions
not as single compound sentences but only as, in effect, collections of sentences (i.e.
their conjuncts); and he treats conditionals not as assertions but as agreements to the
effect that one sentence (the antecedent of the conditional) entails another (the con-
sequent). Subsequent logicians, including Aristotle’s own close associate Theophrastus,
did not follow him in this and instead offered analyses of the role of sentential compo-
sition in arguments. With Chrysippus, this develops into a full-fledged sentential logic,
resting on five ‘indemonstrable’ forms of inference. The Stoics stated these using ordinal
numbers as place-holders for propositions:

1. If the first, then the second; the first; therefore the second.
2. If the first then the second; not the first; therefore not the second.
3. Not both the first and the second; the first; therefore not the second.
4. Either the first or the second; the first; therefore not the second.
5. Either the first or the second; not the first; therefore the second.

The Stoics then demonstrated the validity of other valid arguments by means of these
indemonstrables (unfortunately, our knowledge of their views is very fragmentary: see
Kneale and Kneale 1978; Mates 1953; Mueller 1978 for reconstructions). There may
be some connection between the Stoic acceptance of sententially compound proposi-
tions and their views on the nature of propositions.

Aristotle may have another reason for being concerned about sentential logic. He
wanted to allow for possibilities that never become actual, and to do that he analyzed
possibility in terms of a notion of potentiality. This works best with subject–predicate
sentences, where possibility can be seen as a matter of the subject possessing a poten-
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tiality; it is very difficult to extend it to compound propositions. In fact, Aristotle appears
to have had some reservations about treating propositions as entities at all, perhaps
because this appeared to give support to the argument from the necessity of past truth
in On Interpretation 9. The Stoics, with their theory of ‘sayables’ as the bearers of truth
and falsehood and their acceptance of a kind of determinism, had a much easier time
developing a logic of sentential composition. Here again, a difference in logical theory
may have been closely entwined with a difference in philosophical standpoint.
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2

History of Logic: Medieval

E . P. B O S A N D B . G . S U N D H O L M

Seven ‘liberal arts’ constituted the curriculum at a medieval arts faculty. The three
‘trivial’ arts Grammar, Logic (Dialectica), and Rhetoric deal with the use of words rather
than with (real) things. These are dealt with in the four mathematical arts – Geometry,
Arithmetic, Astronomy, and Harmony (Music) – that comprise the quadrivium. The 
specific logical art is concerned with reasoning. The logical tradition is as old as Aristotle
and history knows periods of intense logical activity. Thus the subject is known 
under many names and, at different times, knows varying boundaries. Aristotle did 
not use the Greek logikè for the logical art, but preferred ta analytika (from the verb
analuo: to resolve (into premises or principles), from which the names of his ‘sweet
Analytics,’ that is Analytica priora and posteriora derive. The Greek logos can be found 
in the writings of both Plato and Aristotle, where it stands for (the smallest meaning-
ful parts of ) ‘speech’ whereby something can be said. The Greek logical terminology
was latinized by Cicero and Boethius, and the honour of having named the subject
belongs to the former who coined Logica. ‘Dialectica’, the alternative Platonic and Stoic
name for logic as part of the trivium, derives from the Greek for conversation, since, 
in this tradition, thinking is seen as the soul’s conversation with itself. The dialectician
investigates relations between (eternal) ideas which have to be respected if the think-
ing were to be proper. In the sixth century the logical works of Aristotle – Categories,
On Interpretation, the two Analytics, the Topics, and On Fallacies – came to be seen 
as an Organon (instrument, tool), and the term has stuck, for example in Novum 
Organon (1620), that is, Francis Bacon’s attempt to emend Aristotle’s instruments for
reasoning.

These names, under which the discipline has been known, relate to different aspects
of logic, or of how the subject should be seen. ‘Logic,’ thus, would be the study of (the
use of words for making) reasoned claims, and ‘Analytics’ resolves reasoning into
simpler parts in order to provide grounds. ‘Dialectics’ grounds reasoning in (eternal)
relations between logical entities, whereas when logic is thought of as an organon, it
serves as the tool for multiplying knowledge through the use of reasoning.

The purely formal logic of today is regularly confined to theory of (logical) 
consequence between well-formed formulas (WFFs). An analogous position within
medieval logic would cover only the topics dealt with in the Prior Analytics. Medieval
logic, however, covers a much wider range: it comprises also topics from philosophy of



language, for example the theories of signification and supposition (reference), episte-
mology, for example the theory of demonstration, and philosophy of science (method-
ology), for example the method of analysis and synthesis. Indeed, logic is sometimes
divided into Formal logic versus Material logic, which correspond to Aristotle’s two
Analytics, and cover, respectively, the theory of consequence and the theory of demon-
strations (or proofs). Today’s logician is primarily a ‘dialectician’ who studies relations
among logical entities, be they meaningful sentences, (abstract) propositions, or the
well-formed formulae of a formal language. The medieval logician, on the other hand,
was primarily concerned with the exercise of the faculties of the intellect. The use of
reasoning as part of the (human) act of demonstration was his main concern. Today
the theory of consequence holds pride of place in logic over and above the theory of
demonstration (which is commonly not even seen as a part of logic), but in medieval
logic their order of priority was the opposite. The Posterior Analytics was in no way
inferior to the Prior Analytics. The medieval logician does not primarily study conse-
quence-relations between logical entities; his concern is the act of knowledge that is
directed toward real things.

However, prior to studying proper acts of reason, one has to take into account 
also two other kinds of acts, since reasoning proceeds from judgments that are 
built from terms. In the first instance, the latter two notions are also the products of
mental acts according to certain operations of the intellect, namely apprehension and
judgment.

The medieval teaching on the act of reason can be summarized in tabular form:

Operation of the intellect Inner product of the act Outward sign

III (Simple) Apprehending, Concept, Idea, Notion, (Written/spoken) Term
Grasping (Mental) Term

III Judging, Judgment (made), (Written/spoken)
Composition/Division (Mental) Proposition: Assertion, Proposition
of two (mental)terms S is P

III Reasoning, Inferring (Mental) Inference (Written/spoken)
Inference, Reasoning

Its influence is still visible in the nineteenth century, after half a millennium, when tra-
ditional textbooks still show the time-honored structure, comprising the three parts: 
Of Terms, Of Judgement and Of Inference (sometimes adding a fourth, post-Port 
Royal Logic (1662), part: Of Method). It must be stressed that the medieval notion 
of ‘proposition’ that occurs twice in the second row, either as the traditional
subject/copula/predicate judgment made, that is, the mental proposition, or as its
outward linguistic guise, is not the modern one. The term proposition enters contempo-
rary logic as Bertrand Russell’s unfortunate (mis-)translation of Frege’s Gedanke
(‘Thought’). Thus, modern propositions are not judgments, but contents of judgments.
As such they may be given by nominalized that-clauses, for instance

that snow is white,
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which emphasizes their being abstract contents. This, though, is not the way to think
of medieval propositions, which are not contents, but combinations of terms S and P,
for instance,

[snow is white], and [Sortes is a man].

(The fourteenth-century complexe significabile, though, plays a role that is somewhat
analogous to that of the modern notions of proposition (content).)

In medieval logic there is a complete parallelism between thought and reality,
between mind and world. The important idea of carrying out purely mechanical,
‘formal,’ proofs, irrespective of content, emerges only with Leibniz, and does not yet
form part of the medieval tradition in logic. Owing to this logical ‘picture theory’ avant
la lettre for the relation between mind and world, the theory of categories, especially in
the form of simple predications, or categorizations, [a is an a], is sometimes seen as part
of logic (as well as of metaphysics).

The medieval theories as to the truth of propositional combinations of terms – 
categorical predications – vary. According to one theory, the (extensional) identity
theory, the proposition [S is P] is true when the supposition of both terms is the same,
that is, when both terms stand for the same entity. Thus, for instance, the predication
[Sortes is a man] is true when [Sortes] and [man] both supposit for the same entity,
namely Socrates. The main rival of the identity theory of truth is the (intensional) inher-
ence theory. According to it, the proposition [Sortes is a man] is true when humanity,
the property of being a man ‘inheres’ in (is contained in) the nature of what Sortes
stands for, namely, Socrates. In modern historical studies the rivalry between these
medieval theories is sometimes seen as absolute. However, sometimes a philosopher is
committed to (uses of ) both conceptions. It seems more likely, though, that the alter-
native conceptions of truth-conditions pertain to different kinds of predication, than
that the philosopher in question wavers between two absolute, all-encompassing 
theories. For instance, the substantival predication [Man is an animal] is held to be true
because the terms man and animal stand for the same entity, whereas the denomina-
tive predication [A man is white] is deemed true because whiteness inheres in what man
stands for.

A propositional combination of terms can be just apprehended, that is, grasped or
understood; it need not be judged, or, when considered in the exterior mode, asserted.
Of course, the medieval logicians also realized that not all traditional judgments have
categorical [S is P] form. There are also hypothetical and disjunctive judgments, which
take, respectively, the forms

[if J1, then J2] and [J1 or J2],

where J1 and J2 are judgments.
Terms can be divided into general, for instance, man, and singular, for instance, Sortes.

Accordingly, by the correlation between world and mind/language, so can their signi-
fications, that is, there is a matching division of singular and general natures. We then
get hierarchies of terms that can be ordered in a so-called Porphyrian tree:
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Substance

Corporeal Incorporeal

Body

Sensible Insensible

Animal

Rational Irrational

Rational Animal

Mortal Immortal

Man

Sortes Plato

HISTORY OF LOGIC: MEDIEVAL

27

With respect to such trees, we encounter reasonings based on predications:

Sortes is a man, and man is a rational animal. Therefore: Sortes is an animal.

We can, however, ascend in the Porphyrian tree:

An animal is a animate living body. Therefore: Sortes is a living body.

Apparently, predication is transitive when climbing in a Porphyrian tree: what is pred-
icated of a predicate of a subject, can be predicated also of the original subject.

However, not all categorical predication is transitive: the two premises

Sortes is a man and Man is a sort,

obviously, do not allow for the nonsensical conclusion

Sortes is a sort.

In order to account for the failure of transitivity in the case of iterated predication, con-
temporary logical semantics relies only on a (meager) reference relation, both relata of
which, namely, the expression and its reference, are construed as things. Medieval logic,
to its credit and great advantage, draws upon a richer spectrum of semantic notions.
In effect, the medievals split our modern notion of reference into two notions, namely
signification and supposition. The language studied by medieval logicians is a highly
stylized, technical Latin, with rigid syntactic rules and clear meaning and in this it
resembles, not our current metalinguistic predicate-calculus, but rather those inter-
preted formal languages that were used by Frege and others to inaugurate modern
logic. The carefully crafted systems of the Polish logician Stanislaw Lesniewski are par-
ticularly close to the medieval perspective, since they were cast in the mold of tradi-
tional logic, using the [S is P] propositional form, rather than the modern, Fregean
function/argument form [P(a)], as their point of departure. The expressions of these



formal languages were not seen just as things, but as signs, where a sign signifies by
making manifest its signification to mind. The notion of signification is the closest
medieval counterpart to our modern notion of reference. Thus, for instance, the signi-
fication of the name Sortes is the man Socrates and the signification of the general name
man is such that the name can be rightly predicated of men. Signification is context-
independent, but medieval logic also knows a context-sensitive notion, namely that of
supposition. Supposition primarily applies to terms that occupy the subject position in
[S is P] propositions. The supposition of a term, in a certain propositional context, is
what the term stands for in the context in question. What supposition the subject term
S takes depends on the signification of the predicate P. In the proposition

[Sortes is a man]

the term Sortes has personal supposition, because it stands for the individual Socrates.
If we consider the true propositions

[Man is a sort] and [Man is a word]

the term man has moved from predicate to subject position. In the proposition

[Man is a word]

it has material supposition, because it stands for the word and not the person whence
the modern use of quotation-marks is superfluous. It is the term man that has mater-
ial supposition and not the term ‘man.’ This reverses current (Carnapian) terminology,
where, when speaking about the word, one uses the ‘formal,’ rather than ‘the material
mode of speech.’ The medieval terminology material and formal supposition probably
derives from the fact that, under the influence of Aristotle’s theory of hylemorphism,
the subject S is seen as the matter of the categorical [S is P]-proposition, and the pred-
icate is its form. Similarly, in the proposition

Man is a sort

the term man has simple supposition; here it stands for the species of men rather than
for individual men. The failure of transitivity in the above inferences can then be
accounted for by observing that a shift in supposition occurs in the premises: in one the
supposition of man is formal whereas in the other it is simple, and so the inference is
barred.

The theory of consequence in medieval logic, of course, treats of the Aristotelian
theory of the syllogism, that is the theory of inference among categorical judgments.
Such judgments have the S is P form, but they are not just simple predications such as
[Sortes is (a) man]. The copula can vary both in quality and quantity. An affirmative
judgment has the form [S is P] and a negative one has the form [S is not P], whereas a
universal judgment has the form [all S are P] and a particular one has the form [some
S are P]. Thus, for instance, a particular negative judgment takes the form [some S are
not P]. Medieval logic summarized the basic inferential properties between such cate-
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gorical judgments in the Aristotelian square of opposition. In An. Pr. Aristotle had orga-
nized the syllogism according to three ‘figures’ (subsequently also a fourth figure was
considered by Galen) and determined the ‘valid syllogistic modes’ by means of reduc-
ing the valid modes in later figures to the ‘perfect’ syllogisms in the first mode. The well-
known mnemonic descriptions ‘Barbara, Darii, Celarent, etc.’ of the valid modes of
inference were given in the Middle Ages; these descriptions provide codes for the reduc-
tion of the validity of modes in the later figures to the primitive validity of the perfect
modes in the first figure. Decent expositions can be found in any number of texts on
traditional logic.

As is well-known, the Aristotelian theory validates inferences that are not held to be
valid in current logic. First among these is the instantiation of universal judgments:

All swans are white. Therefore: there is a white swan.

Aristotelian terms were reached by epagogé (Aristotelian induction). You grasp the
concept swan by seeing an instance thereof, which particular exemplar serves as an
exempla gratia for the sort in question. Thus the inference is valid and the universal 
categorical judgments carry ‘existential import.’ Today, within current predicate logic
the example would be regimented as

"x(Swan(x) … White(x)). Therefore: $x(Swan(x) & White(x))

which inference is not valid. Only the step to the conclusion

$x(Swan(x) … White(x))

is valid. This, however, is not a regimentation of ‘there is a white swan,’ but only of
‘there is something which is such that if it is a swan then it is white,’ and this claim,
given the premise that everything is such that if it is swan then it is white, is completely
trivial as long as the universe of discourse is not empty: any object is such an object.
The inference from an affirmative universal proposition to an affirmative particular one
is an example of ‘alternation.’ Other similar kinds of inference concern ‘descent’ from
the universal judgments to a conjunctive one:

All men are mortal. Therefore: Peter is mortal and John is mortal.

(Of course, there is no need to limit ourselves to just two conjuncts here. Mutatis mutan-
dis this remark applies also to the examples given in the sequel.) Similarly,

Some men are mortal. Therefore: Peter is mortal or John is mortal.

is a descent to a disjunctive proposition. One can also descend with respect to terms:

All men are mortal. Therefore: John and Simon are mortal.

Aristotelian logic, when cast in the mold of traditional syllogistic theory, is a term-
logic, rather than a logic of propositions. The medievals liberated themselves from 
the term-logical straitjacket of the Aristotelian syllogistics, first by considering also 

HISTORY OF LOGIC: MEDIEVAL

29



syllogisms with singular judgments, that is, categorical [S is P] propositions of the form
[s is P], where s is a singular term. Here the so-called expository syllogism played an
important role:

This thing (hoc) is a man, but this thing runs. Therefore: A man runs.

However, gradually also other forms of inference than term-logical syllogisms were
studied by medieval logicians, including the pure and mixed hypothetical syllogisms. A
pure hypothetical syllogism takes the form

If P then Q and if Q, then R. Therefore: If P, then R.

The mixed forms of the hypothetical syllogism include the well-known modus (ponendo)
ponens inference:

If P, then Q, but P. Therefore Q.

Here we have left the term-logic of syllogistic theory; the connections are here not
between terms, but between propositions. This shift in perspective led, (± 1300) to the
appearance of a new logical genre. Then tracts bearing the title On Consequence begin
to appear, and consequence becomes the main topic of study in medieval logic.

In such tracts rules for the holding of consequences were set out. Today, in elemen-
tary logic classes, when the analysis of natural language arguments is treated, students
are taught to search for argument indicator words, such as ‘thus,’ ‘therefore,’ ‘hence,’
‘whence,’ ‘because,’ etc. However, today we also make a clear distinction between impli-
cation, consequence, inference and causal grounding:

• ‘implies’ is an indicator-word for implication, which is a propositional connection
between proposition(al content)s.

• ‘follows from,’ ‘is a consequence of ’ and ‘if . . . is true, then – is true’ are indicator-
phrases for consequence, which is a relation between proposition(al content)s.

• ‘thus,’ ‘therefore’ are indicator words for inference, which is a passage from premise
judgment[s] (assertion[s]) to a conclusion judgment (assertion).

• ‘because,’ ‘is a cause (ground, reason) for’ are indicator words for causal grounding,
which is a relation between events, or states of affairs.

However, in medieval logic, si (if ), igitur (therefore), sequitur (follows) and quia (because)
are all indicator-words for one and the same notion of a consequentia. This notion sur-
vives terminologically in modern logic under two different guises, namely, on the one
hand, as the notion of (logical) consequence between WFFs that derive from Bolzano’s
Ableitbarkeit and that was made famous by Tarski, and, on the other hand, as the
sequents (German Sequenzen) that were used by Gentzen. The medieval theory of con-
sequences, accordingly, can rightly be seen as a partial anticipation of contemporary
sequent-calculus renderings of logical systems. The modern notion of logical conse-
quence has its medieval counterpart in the notion of a formal consequence, that is, one
that holds ‘in all terms,’ for instance:

All men are mortal. Sortes is a man. Therefore: Sortes is mortal.
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This consequence remains valid under all (uniform) substitutions (salva congruitate) of
other terms put in place of Sortes, mortal, and man. Formal consequence is opposed to
material consequence, for instance the consequence

Sortes is a man. Therefore: Sortes is mortal.

holds only materially, since it does not hold ‘in all terms.’ Material consequence can be
compared to (Carnap’s contemporary notion of) ‘meaning postulates.’

Another very interesting, late addition to medieval logic is the theory of obligations,
which is concerned with the proper rules for disputation and questioning. Thus, for
instance, if I have asserted a conjunctive proposition, I have incurred an obligation and
might be held to be asserting each conjunct separately. This theory lies on the border-
line between logic, semantics, and pragmatics, incorporating also elements of the
theory of speech acts. To an amazing extent, it constitutes an anticipation of the
current dialogicial approach to logic and semantics that was designed by Lorenzen and
Lorenz, or the game-theoretical semantics that we owe to Hintikka.

In contemporary philosophical logic, logical paradoxes and their resolution – their
diagnosis and prevention – are treated if and when they arise. Their treatment does not
constitute a separate branch of logic. In (late) medieval logic, however, a novel genre
was added to the standard logical repertoire and tracts devoted solely to the treatment
of Insolubilia begin to appear.

Not all of medieval logic is confined to logic texts, though. The role that philosophy
served in medieval academic life was primarily that of an ancilla theologicae (‘a servant
of theology’). Therefore, one can often find passages that are highly relevant from a
logico-semantical point of view also outside tracts that are devoted specifically to
matters logical. In particular, treatments of delicate theological questions, for instance,
in the Commentaries on Peter Lombard’s Sentences (that is, the obligatory introductory
compendium to the study of theology), often contain material that is highly illuminat-
ing from a logical point of view. The vexing questions concerning the nature of the
Trinity and the interrelations of Its Persons illustrate this sufficiently. Two other topics
that stand out in this respect are the question whether God’s existence can be demon-
strated and the treatments of the various Names of God. Thomas Aquinas does not
enjoy a high reputation as a logician; his fame rests on his contribution to metaphysics
and the philosophy of mind. Nevertheless, his Summa Theologica contains much that 
is of great relevance for contemporary philosophy of logic and language. Thus, for
instance, in his discussion of the Names of God in Question 13 Aquinas anticipates
Frege’s ideas concerning names with different modes of presentation of the same
object.

Furthermore, concerning the demonstrability of God’s existence we read:

A proposition is per se nota because the predicate is included in the nature of the subject:
for instance, Man is (an) animal, for animal is contained in the nature of man. (Summa
Theologica, I.ii.)

This passage ought to yield a déjà lu experience. Most of us, certainly, will have read this
explanation of a proposition per se nota. The German text from which we know it is not
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medieval, but was published 500 years later, in 1781, by a professor of philosophy at
Königsberg in Eastern Prussia. There, though, the same formulation is used to explain
the notion of an analytic judgment.

A Timeline of Medieval Logicians
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XIII (cont.)
Boethius of Dacia (c. 1270)
Henry of Ghent (c. 1217–93)
Ralph Brito (c. 1290–1330)
Siger of Kortrijk (d. 1341)
Simon of Faversham (c. 1300)
John Duns Scotus (1265–1308/9)

XIV
Walter Burleigh (c.1275–1344/5)
William of Ockham (1285–1347)
Robert Holkot (c.1290–1349)
William of Heytesbury (d.1272/3)
Gregory of Rimini (c.1300–1358)
John Buridan (c.1300–after 1358)
Nicholas of Autrecourt (c.1300–after 1358)
Richard Billingham, (c.1350–60)
Albert of Saxony (1316–1390)
Marsilius of Inghen (c.1340–1396)
Vincent Ferrer (c.1350–1420)
Peter of Ailly (1350–1420/1)
Paul of Venice (1369–1429)
Paul of Pergola (1380–1455)
Peter of Mantua (d. 1400)

Before XI
Porphyry (232–305)
Augustinus (354–430)
Boethius (480–524)

XI
Abbo of Fleury
Garlandus Compotista
Anselm of Canterbury (d.1109)

XII
Peter Abailard, 1079–1142
Adam Parvipontanus
Gilbert of Poitiers, 1080–1154
Alberic van Reims
John of Salisbury, c. 1120–1180

XIII
Peter of Spain (d.1277)
William of Sherwood (1210?–66/70)
Robert Kilwardby (d. 1279)
Albert the Great (1200–80)
Roger Bacon (1215–94)

A Guide to the Literature

The Aristotelian Organon is, of course, a prerequisite for medieval logic. G. Patzig,
Aristotle’s Theory of the Syllogism (First German edn 1959) English translation by 
J. Barnes (Reidel: Dordrecht, 1969) is still the classical treatment of Aristotle’s theory,
and Paul Thom, The Syllogism (Munich: Philosophia Verlag, 1981) offers a most thor-
ough modern presentation. A. N. Prior’s lemma “Logic, Traditional” in: Paul Edwards
(ed.), Encyclopaedia of Philosophy (New York: Macmillan, 1967) gives a compact, yet
lucid overview. H. W. Joseph and R. D. McKirahan, Principles and Proofs (Princeton
University Press, 1992) treats of Aristotelian demonstrative science, a topic of para-
mount importance for medieval logic. Valuable surveys of medieval logic can be found
in the general histories by W. Kneale and M. Kneale, The Development of Logic (Oxford:
Clarendon, 1962) and I. M. Bochenski, Formale Logik, English tr. by Ivo Thomas: A



History of Formal Logic (Notre Dame University Press, 1963). Surveys of medieval logic
have been offered by E. A. Moody, Truth and Consequence in Medieval Logic (Amsterdam:
North-Holland, 1953), Norman Kretzmann, “Semantics, History of ” in: Paul Edwards
(ed.), Encyclopaedia of Philosophy (New York: Macmillan, 1967), Jan Pinborg, Logik and
Semantik im Mittelalter (Stuttgart-Bad Cannstatt: Fromann-Holzboog, 1972). Of these
we have found the trenchant studies of Pinborg and Kretzmann especially useful.
Moody draws liberally upon the notations and conceptual resources of modern
(Frege–Russellian) predicate logic for his exposition of medieval notions, but the extent
of his success in doing so is doubtful, owing to the differences in the forms of judgments
used: medieval logic used the form of judgment (S is P) whereas (post-)Fregean logic
uses the form of judgment (the judgable content A is true). It is still very much an open
question how best to utilize the insights and achievements of modern metamathemat-
ical logic (which builds on Fregean logic) for the study of medieval logic in a non-
anachronistic way. The systems of Lesniewski are based on traditional rather than
Fregean logic, and might work much better here. A standard reference is D. P. Henry’s
lucid Medieval Logic and Metaphysics (London: Hutchinson, 1972) that also serves as an
admirable introduction to Lesniewski.

The German Historisches Wörterbuch der Philosophie gives an incomparable survey of
medieval logic. Individual, detailed lemmas, for instance, those on “Prädikation” and
“Logik” have been of great help to us. This dictionary is also an invaluable guide, not
just to medieval logic, but to the entire conceptual development of logic.

The Cambridge History of Later Medieval Philosophy, eds. N. Kretzmann, J. Pinborg,
and A. Kenny (Cambridge University Press, 1982) is a universal compendium of
medieval logic, with a companion volume of original texts The Cambridge Translations
of Medieval Philosophical Texts: vol. I, Logic and the Philosophy of Language, eds. N.
Kretzmann and E. Stump (Cambridge University Press, 1988). The equally monu-
mental Logica Modernorum, vol. II (two parts), (Assen: Van Gorcum, 1967) by L. M. de
Rijk, contains the original sources for the theory of supposition and other basic 
properties of terms.

Among original works we have found the William of Sherwood’s thirteenth- 
century textbook Introduction to Logic (English translation by Norman Kretzmann),
(Minneapolis: University of Minnesota Press, 1966) a useful general introduction to
most issues covered in the present chapter. A later treatment, by almost a century and
a half (±1400), of roughly the same material is offered by Paul of Venice in the Logica
Parva (ed. and tr. by A. Perreiah), Philosophia Verlag (Washington: Catholic University
of America Press, 1984). The British Academy supports a multi-volume edition/trans-
lation of the magisterial Logica Magna by the same Paul of Venice. William of Ockham’s
Summa Logicae has been partly rendered into English: part I (tr. M. Loux) and part II 
(tr. A. Freddoso and H. Schurmann) (Notre Dame University Press, 1974, 1980).
Furthermore, the series Philosophisches Bibliothek, published by Felix Meiner Verlag,
(Hamburg, contains many bilingual (Latin/German) editions, with introductions and
careful annotations, of important works in medieval logic.

The Routledge series Topics in Medieval Philosophy contains volumes of interest for
the general philosopher: Ivan Boh, Epistemic Logic in the Later Middle Ages (London,
1993) is particularly interesting on the epistemological aspects of the theory of con-
sequences, while A. Kenny, Aquinas on Mind (London, 1993) spells out interesting par-
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allels between medieval conceptions and those of Wittgenstein. Simo Knuuttila,
Modalities in Medieval Philosophy (London, 1993) contains much that is of interest for
the modern theory of modality, as does John Duns Scotus, Contingency and Freedom:
Lectura I 39 (ed. and tr. by A. Vos Jaczn. et al.), New Synthese Historical Library, vol. 42
(Dordrecht: Kluwer, 1994). Mikko Yrjönsauuri’s Helsinki dissertation Obligationes –
14th Century Logic of Disputational Duties, in: Acta Philosopphica Fennica, 55 (1994),
summarizes much of what is known about the theory of obligations. G. E. Hughes, John
Buridan on Self-Reference (Cambridge University Press, 1982) is a perfect example of a
medieval treatment of logical paradoxes.

There are two (English language) journals devoted to medieval philosophy, namely
Vivarium and Medieval Philosophy and Theology. Of these, the first has a long tradition
of articles within medieval logic and semantics. The History and Philosophy of Logic, The
Journal of Philosophical Logic, and The Notre Dame Journal of Formal Logic also publish
articles on medieval logic.
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3

The Rise of Modern Logic

RO L F G E O RG E A N D JA M E S VA N E V R A

The history of some sciences can be represented as a single progression, with each 
dominant theory coming to the fore, then eventually falling, replaced by another in 
succession through the centuries. The development of physics, for instance, can be
understood as such a chain, connecting Newton in the seventeenth century with
Einstein in the twentieth. Logic did not progress in this way; no dominant theory com-
manded it (a tapestry more than a chain) until the first decades of the twentieth
century. No self-sustaining internal theory held sway before then, nor was there much
rigor externally imposed. Even Aristotle, as one commentator put it, was more vener-
ated than read, and most versions of syllogistic logic proposed after the Middle Ages did
not measure up to the sophistication of his own system.

1 The Dark Ages of Logic

In 1543 the French humanist and logician Peter Ramus (1515–72), who had made a
name for himself with his dissertation Whatever Aristotle Has Said is False, published his
Dialectic, a slim book that went through 262 editions in several countries and became
a model for many other textbooks. Ramus gratified the taste of the times by writing an
elegant Latin, drawing his examples from Cicero and other classical authors, and by
neglecting most of the finer points of medieval logic and the associated ‘barbarous’
technical vocabulary. The book was committed not to logic as we now know it, but to
the art of exposition and disputation. Its first sentence, in an early English translation,
reads “Dialecticke otherwise called Logicke, is an arte which teachethe to dispute well.”
In the next centuries, logic as the art of rhetoric and disputation, became the domain
of textbook writers and schoolteachers, a prerequisite for careers in law or the church.
The major authors of modern philosophy and literature did not advance or even
concern themselves with logic so conceived, and generally treated it with derision. 
John Milton thought it a subject in which “young Novices . . . [are] mockt and deluded
. . . with ragged Notions and Babblements, while they expected worthy and delightful
knowledge” (On Education).

This was an age also of discovery in the sciences and mathematics. The textbook
logic ‘of the schools’ played no role in this. Francis Bacon claimed in the Novum



Organum that the “logic we now have” does not help us to discover new things, but “has
done more to . . . fasten errors upon us, than to open the way to truth” (Book 1,
Aphorism xii). He advocated instead rules of induction, a methodology of scientific
investigation. In the Discourse on Method Descartes made similar remarks and John
Locke, more radically, thought unaided natural reason to be more powerful than any
logical methodology:

Native rustic reason . . . is likelier to open a way to, and add to the common stock of
mankind, rather than any scholastic proceeding. . . . For beaten tracks lead this sort of
cattle . . . not where we ought to go, but where we have been. (Essay Concerning Human
Understanding, 4.17.7)

The “cattle,” poor drudges who taught logic to undergraduates, struck back by propos-
ing to ban Locke’s Essay from Oxford, since “there was a great decay of logical exercises
. . . which could not be attributed to anything so much as the new philosophy, which
was too much read” (Cranston 1957: 465ff ).

Hume continued Locke’s attack: “Our scholastic headpieces shew no . . . superiority
above the mere vulgar in their reason and ability” (Treatise on Human Nature, 1.3.15).
Denis Diderot’s article on logic in the Encyclopédie, the most widely consulted reference
work of the century, claimed that reasoning is a natural ability; to conduct logical
inquiries is like “setting oneself the task of dissecting the human leg in order to learn
how to walk” (Encyclopédie, Logique).

Gottfried Wilhelm Leibniz was the great exception to the logic bashing of the seven-
teenth and eighteenth centuries. He saw the general outline of what logic would much
later become, but left only fragments of a ‘universal characteristic’ through which it
would become possible, he thought, to settle philosophical disputes through calcula-
tion. In the New Essays Concerning Human Understanding, a dialogue in which he
responded to Locke, the latter’s representative Philateles eventually admits “I regarded
[logic] as a scholar’s diversion, but I now see that, in the way you understand it, it is
like a universal mathematics” (New Essays 4.17.9).

Traditionally, an exposition of logic followed the sequence: theory of terms or con-
cepts, their combination into judgments, and the composition of syllogisms from judg-
ments. This was now commonly prefaced by a discussion of the origin of concepts, as
inherent in the mind or deriving from sensation and perception. In the end, many logic
books contained more of these epistemological preliminaries than logic. There was,
further, especially in England, an ongoing emphasis on logic as the art of disputation.

2 Kant and Whately

For the disordered progress of logic to even get on a path that would lead to modern
logic, a reorientation and elimination of materials had first to occur. Neither Kant nor
Whately contributed substantially to the formal development of logic, but they played
a major role in this eliminative exercise.

Kant, unaware of earlier and since forgotten progress in logic, held that logic did 
not have to set aside any part of Aristotle’s theory, but also had not taken a single step
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forward, and “is to all appearances finished and complete” (Critique of Pure Reason, B
viii). But in early lectures, he had shared the general disdain for the subject: “It took
great effort to forget [Aristotle’s] false propositions. . . . Locke’s book de intellectu is the
ground of all true logica” (Kant 1992: 16, 24).

By 1781, the time of the Critique of Pure Reason, he had changed his mind; Locke
“speaks of the origin of concepts, but this really does not belong to logic” (Kant 1992:
439). While claiming earlier that the logician must know the human soul and cannot
proceed without psychology, he now held that “pure logic derives nothing from psy-
chology” (Critique of Pure Reason A54/B78).

Kant made two widely accepted distinctions: (1) he contrasted ‘organon’ and
‘canon.’ An organon (Kant uses the word in the sense Bacon gave it in the Novum
Organum) attempts to codify methods of discovery. But “logic serves as a critique of the
understanding, . . . not for creation.” He sensibly held that there is no universal method
of discovery, which rather requires a grasp of the special science that is to be advanced.
But since logic must be general, attending only to form and not to content, it can only
be a canon, a method of evaluation (diiudicatio). Methodological rules and theories of
the origin and association of ideas, though intended as improvements of logic, are not
even part of it. (2) Kant further divided logic into theoretical and practical. The latter,
important but derivative, dealt with honing the skill of reasoning and disputation,
while logic proper is a theoretical inquiry.

In the following decades nearly every German logic text was written by a student or
follower of Kant. A contemporary could rightly observe that Kant gained a pervasive
influence upon the history of logic. Regrettably, the overburden of psychology and epis-
temology in German logic treatises increased again in the course of the century, while
its formal development stagnated, in part because of Kant’s claim that it was a finished
science.

Richard Whately (1787–1863) contributed to logic at the level of theory rather 
than formal detail. Elements of Logic (1827), an enormously popular response to the
unrelenting criticism of the subject, was widely credited with reviving logic in 
England. Rather than fault logic for not doing what it cannot do (be an engine for dis-
covery, or an “art of rightly employing the rational faculties”), it is better to focus 
on formal structures. In Whately’s view, logic is an objective science like chemistry or 
mathematics, and its point (like that of the others) is the enunciation of principle 
apart from application. Faulting logic for not making people think better, “is as if
one should object to the science of optics for not giving sight to the blind” (Whately
1827: 12).

Whately considered logic to be immediately about language, rather than vaguely
conceived ‘thought.’ Unlike many of its loosely written predecessors, his book contains
a formally adequate presentation of the categorical syllogism. A syllogism is a ‘peculiar
form of expression’ into which any specific argument can be translated for testing valid-
ity. Properly understood, it is to an articulated argument as grammar is to language.
The ‘grammatical’ analysis of any argument will lead to syllogistic form, just as the
analytic devices of chemistry can be used on any compound and lead to basic elements.
He also pushed an analogy with mathematics: just as the variables in mathematics
stand for any number, so the letter variables used in stating syllogistic form stand for
any term.
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While Whately’s theory is nearer to our present conception of logic, his critics faulted
him for confining it within too narrow a scope. No longer would logic be the great
sprawling subject that could be redefined almost at will, and many longed for that lati-
tude. He prepared logic for innovation at the formal level.

3 Bernard Bolzano

At about the same time, Bernard Bolzano (1781–1848), “one of the greatest Logicians
of all time” (Edmund Husserl), published his four-volume Theory of Science
(Wissenschaftslehre (WL) 1837). It is the finest original contribution to logic since
Aristotle, and a rich source for the history of the subject. In WL no formal calculus 
or system is developed; it is, rather, a treatise on the semantic concepts of logic. It 
was celebrated for its resolute avoidance of psychology in the development of these 
concepts.

Bolzano defines a spoken or written sentence as a speech act that is either true or
false. Its content, that which is asserted or denied, is a proposition ‘in itself,’ explained
as “any claim [Aussage] that something is or is not the case, regardless whether someone
has put it into words, . . . or even has formulated it in thought” (WL § 19). He had little
interest in the ontological status of these abstract propositions and meant to assert
nothing deeper than we all do when we say that there are truths that are not yet known,
or mathematical theorems not yet proved.

Any component of such a proposition not itself a proposition is a Vorstellung (idea
or representation) in itself. The common sequence of first introducing terms or ideas
and then propositions as compounds of them is here reversed. Bolzano noted that no
one had successfully defined the type of combination of terms that generates a propo-
sition. Several of the attempts he examined did not distinguish propositions from
complex terms, ‘the man is tall’ from ‘the tall man,’ and others defined it in terms of
‘acts of the mind,’ contaminating logic with psychology (WL §§ 21–3).

Others (Hobbes, Condillac) identified propositions with equations, sometimes
writing ‘Caius is a man’ as ‘Caius = man.’ Condillac and others maintained further that
the principle on which all syllogisms rest is that two things equal to a third are equal
to each other. But, Bolzano notes, while all equations are propositions, not all proposi-
tions are equations (WL §§ 23.20) and paid no further attention to this doctrine.

Identifying propositions with equations demanded further adjustments, the ‘quan-
tification of the predicate.’ The German logician Ploucquet (1716–90) thought that in
an affirmative proposition the predicate cannot be different from the subject. Hence he
understood the proposition ‘All lions are animals’ as ‘All lions are some animals.’ In the
same vein George Bentham (1800–84), in a commentary on Whately’s book, sym-
bolized ‘All X are Y’ as ‘X in toto = Y ex parte’ or ‘All of X = Part of Y’ (Bentham 1827:
133). The doctrine is now usually associated with the name of William Hamilton
(1788–1856) who disingenuously claimed to have discovered it and gave it wide 
currency.

Back to Bolzano. He held that many propositions are not adequately expressed 
in common language. For instance, the proposition corresponding to the utterance 
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‘I have a toothache’ identifies speaker and time and is more adequately phrased 
as ‘Neurath has a toothache at t.’ Also, ‘There is an A’ is not, as it seems, about A’s, 
but about the idea A; it means that this idea refers to an object (cf. Frege on quantifiers,
below).

Bolzano’s most important contribution was his definition of logical consequence
using the mathematical technique of substitution on variables:

Propositions M, N, O, . . . follow from propositions A, B, C, D, . . . with respect to the vari-
able elements i, j, . . . if every set of ideas [Vorstellungen] whose substitution for i, j, . . .
makes all of A, B, C, D, . . . true also makes M, N, O, . . . true. (WL § 155)

For example, ‘a is larger than b, b is larger than c, therefore a is larger than c’ is valid
‘with respect to’ the set of ideas ‘a,’ ‘b,’ ‘c.’

It was generally understood, and often stated, that in a valid deductive argument,
the conclusion follows of necessity from the premises (cf. Aristotle, Prior Analytics
24b18). Bolzano’s definition, closely akin to that given a century later by Alfred Tarski,
was meant to explain the nature of this necessity.

If the variable elements i, j, . . . include all extralogical terms, then the consequence
is said to be logical, as in a valid categorical syllogism. The unusual triadic construction
of consequence also allows for enthymemes, or partly ‘material’ consequences, where
only a subset of extralogical terms is varied. For example, in the argument ‘All men are
mortal, therefore Socrates is mortal,’ any substitution on ‘mortal’ that makes the
premise true makes the conclusion true: though not a logical consequence, it is valid
with respect to ‘mortal’ (cf. George 1983).

Most logic texts of the period claimed, without supporting argument, that the 
so-called ‘laws of thought’ (identity, contradiction, and excluded middle) are the 
basic principles, the foundation on which all logic rests. While Bolzano agreed that
these principles are true – his own logic was bivalent – his understanding of logical 
consequence showed him that nothing of interest followed from them. Logic, he 
maintained, obeys these laws, but they are not its first principles or, as we would now
say, axioms (WL § 45).

He objected further to common attempts of grounding these laws in psychological
necessities. Typically, the law of contradiction was supported by claims that a whole
that is inconsistent cannot be united in a unity of thought, for example that round and
quadrangular cannot be thought together because “one representation destroys the
other.” Against this Bolzano noted that we can, and often do, entertain inconsistent
concepts. We can ask, for example, if there are regular dodecahedrons with hexagonal
sides. But such a figure is just as impossible as a round square, only not obviously so.
There are, in other words inconsistent ideas in themselves in Bolzano’s abstract realm,
and if entertained in a mind, they do not self-destruct.

Bolzano took mathematics to be a purely conceptual science, and disagreed with
Kant’s view that it was founded on intuition. Even in a diagram, what matters is what
is general in it: the concept and not the intuition. His pioneering contributions to func-
tional analysis entered the mainstream of mathematics in the nineteenth century,
while his logical writings were appreciated only in the next.
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4 John Stuart Mill

In his System of Logic (1843) Mill did not contribute to the development of logic as
formal science, but like Bacon, attacked it. He claimed that formal principles, especially
the syllogism, are a petitio principii since they can generate no new knowledge. One can
know that the major premise ‘All men are mortal’ is true only if one knows the truth
of the conclusion ‘Socrates is mortal.’ If that is still doubtful, the “same degree of uncer-
tainty must hang over the premiss” (System of Logic, 2.3.2). When Archbishop Whately
said that the object of reasoning is to “unfold the assertions wrapt up . . . in those with
which we set out,” Mill complained that he did not explain how a science like geome-
try can all be “wrapt up in a few definitions and axioms” (System of Logic 2.2.2). To
explain that this is indeed the case had been a main objective of logic and mathemat-
ics before and especially after Mill. He thought it a project doomed to fail and claimed
that the truths of geometry and arithmetic are empirically discovered by the simplest
inductive method, that is enumeration. If a large number of instances of, and no excep-
tions to, A’s being B is observed, it is concluded that all A’s are B. Now if we have two
pebbles and add another, then without exception we get three; neither do we ever
observe two straight lines enclosing a space, forcing our minds to accept the truth 
of these and other mathematical propositions. Mill concluded that the “principles of
number and geometry are duly and satisfactorily proved” by the inductive method 
of simple enumeration (System of Logic 3.21.2). Gottlob Frege later observed sarcasti-
cally that Mill never defined any number other than 3, nor did he illustrate the physical
facts underlying 1 or 0, nor what “observed fact is asserted in the definition of the
number 777846” (Frege 1884, § 7: 9).

Mill took the same empiricist and psychological approach to logic, whose “theoretic
grounds are wholly borrowed from Psychology, and include as much of that science as
is required to justify the rules of the [logical] art” (Mill 1865: 359). This holds in par-
ticular for the ‘laws of thought,’ which are grounded either in our psychological con-
stitution, or in universal experience (1865: 381). Echoing earlier claims, he thought it
impossible to entertain inconsistent concepts.

The System of Logic is best known for formulating rules for the discovery of causes,
his famous ‘canons’: the methods of agreement, difference, residues, and concomitant
variation. To illustrate the last: we take the moon to be the cause of tides, because the
tides vary in phase with the position of the moon.

For a while, Mill’s logic was the dominant text in logic and the philosophy of science
in Britain, his eloquence creating much support to the view that logic is methodology
and the art of discovery.

5 Boole, De Morgan, and Peirce

George Boole (1815–64) formulated his algebraic logic in conscious opposition to Mill’s
approach. Taking the mathematical analogy further than the loose suggestion of
Whately, he sought to use algebra as a formal structure within which inferences could
be perspicuously formulated. Logic should be a branch of mathematics, not of philoso-
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phy; this would excise methodology, rhetoric, and epistemology. But logic can be a
branch of mathematics only if the latter is not construed, as was common, as the
science of quantity, but as the science of symbolic operations in general.

In his Mathematical Analysis of Logic of 1847 Boole introduced the notion of an ‘elec-
tive symbol,’ for example ‘x’, which represents the result of ‘electing’ the x’s from the
universe; it is the symbol for the resulting class. xy is the result of electing y’s from the
class x, hence the intersection of the two classes. It holds that xy = yx and also that xx
= x. x + y is the union of the two classes, x - y elects the x’s that are not y. 0 is the empty
class and 1 ‘the universe,’ hence 1 - x is the class of non-x’s. It follows that 1x = x, 0x
= 0 and x(y ± z) = xy ± xz. A universal affirmative, ‘All x are y’ becomes ‘x(1 - y) = 0,’
which says that the class of things that are x and not-y is empty. While this is an equa-
tion, it should be noted that it does not identify the subject with the predicate, as we
find in earlier attempts of introducing algebraic notation into logic. A proof of the 
syllogism Barbara illustrates the algebraic method:

The syllogism Boolean computation Comment

All M are P 1. m(1 - p) = 0 the intersection of m and non-p = 0
All S are M 2. s(1 - m) = 0 the intersection of s and non-m = 0

3. m = mp algebraically from 1.
4. s = sm algebraically from 2.
5. s = smp mp for m in 4, licensed by 3.
6. s = sp s for sm in 5, licensed by 4.
7. s - sp = 0 algebraically from 6.

All S are P 8. s(1 - p) = 0 algebraically from 7. QED.

The conclusion follows by ‘multiplying’ and ‘adding,’ specifically by maneuvering the
middle term into a position where it can be eliminated. Syllogistics becomes part of the
algebra of classes and thus an area of mathematics. If every argument can be formu-
lated as a syllogism, then all of logic is a part of algebra.

For every analogy there is some disanalogy, and Boole’s link between logic and
algebra (as he was fully aware) was no exception. Some arithmetic functions (such as
division, and even some cases of addition and subtraction) did not easily admit of
logical interpretation. There are also difficulties in Boole’s rendition of existential propo-
sitions: he wrote ‘Some X are Y’ as v = xy where v stands for a class whose only defin-
ing condition is that it not be empty. But how can one define such a class? Also, his logic
was still a logic of terms. The recognition of even so elementary a sentential function
as negation came only later in the century.

Augustus De Morgan (1806–71) took a different path, retaining a closer connection
with traditional syllogistic logic but moving the subject far beyond its traditional limits.
When stripped of unnecessary restrictions, the syllogism would constitute an adequate
basis for the representation of all modes of deductive reasoning. In his Formal Logic
(1847), and in a later series of articles, he pushed the syllogistic structure so far that
he called the status of the standard copula – ‘is’ – into question. If that term could be
replaced by any term relating the other components in the statement, the reach of the
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syllogism would be broadened: categorical statements would become relational 
statements.

De Morgan’s more general interest in the logic of relations led him to examine inher-
ently relational arguments, such as ‘Every man is an animal. Therefore the head of a
man is the head of an animal’, which traditional syllogistic logic could not accommo-
date. He also introduced the concept of the ‘universe of discourse,’ still generally used,
as a way of targeting statements to a class of objects under discussion, rather than the
entire universe.

Charles Sanders Peirce’s (1839–1914) theory of logic was once characterized as
wider than anyone’s. He was the first to consider himself not primarily a mathemati-
cian or philosopher, but a logician, filtering through the sieve of logic every topic he
dealt with. On the formal level, he developed the logical lineage of Boole and De Morgan
by refining the logic of relations, and devising more abstract systems of algebraic logic.
He viewed it as a new and independent stage in the development of logic. The algebra
of logic should be self-developed, and “arithmetic should spring out of logic instead of
reverting to it.” He developed a version of the modern quantifier, and of sentential func-
tions. In both cases, it has been argued that, although Frege is often credited with intro-
ducing both notions into logic, it was Peirce and his students who were there first.
Earlier he thought that logic is part of ‘semiotics,’ the theory of signs, their meaning
and representation. Later he took it to be that theory, and while first taking logic to be
descriptive, he later thought it to address cognitive norms.

Peirce introduced the memorable division of arguments into deduction, induction,
and hypothesis, the last also called abduction and, more recently, ‘inference to the best
explanation.’ He illustrated them as follows, using the then common terms ‘Rule’ for
the major premise, ‘Case’ for the minor, and ‘Result’ for the conclusion of a categorical
syllogism (Peirce 1931: 2.623):

Deduction: Rule: All the beans in this bag are white.
Case: These beans are from this bag.

\ Result: These beans are white.
Induction: Case: These beans are from this bag.

Result: These beans are white.
\ Rule: All the beans in this bag are white.

Hypothesis: Rule: All the beans in this bag are white.
. . . Result: These beans are white.
\ Case: These beans are from this bag.

In the last example the conclusion (the ‘case’) is accepted because on the available evi-
dence it is the best explanation of why the beans are white.

6 Gottlob Frege

Frege (1848–1925) was a German mathematician and philosopher who set logic on a
new path. He sought to connect logic and mathematics not by reducing logic to a form
of algebra, but by deriving mathematics, specifically arithmetic, from the laws of logic.
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He saw that a philosophy of language was a prerequisite for this and developed much
of it in his Conceptual Notation (Begriffsschrift) of 1879. Like Bolzano, but more polemi-
cally, Frege opposed any attempt to import psychology into logic, repeatedly attacking
Mill for this confusion. The meaning of sentences, for instance, is not explained by the
mental states of speakers, but by investigating the language itself.

From the premise ‘Castor is a sibling of Pollux,’ two conclusions can be drawn by
the very same principle of inference: ‘Someone is a sibling of Castor’ and ‘Someone is a
sibling of Pollux.’ Traditionally, ‘Castor’ was construed as a different kind of sentential
component than ‘Pollux,’ the first being the subject, the second lodged inside the predi-
cate, so that the two conclusions followed by different principles. To correct this and
other shortcomings of the traditional analysis of sentences, Frege replaced it with one
built on functions.

In the equation ÷4 = |2| we distinguish function (‘÷’), argument (‘4’), and value
(|‘2’|). The function is said to ‘map’ the argument to the value. ‘÷( )’ by itself is an
‘unsaturated’ expression that has a gap (shown as ‘( )’) to be filled by an argument.

Frege construed sentences in the same way, ‘( ) is a planet’ as a sentential function.
If an argument, here called a name (an expression like ‘Mercury,’ ‘Sirius’ or ‘the planet
nearest the Sun’) is inserted, a sentence results: ‘Mercury is a planet’ for example, 
or ‘Sirius is a planet.’ Sentential functions, like mathematical functions, can take 
more than one argument, as in ‘( ) is a sibling of { }’, etc. In the Castor–Pollux example,
the two arguments have the same status, and thus the single rule now called $-
introduction, or existential generalization, legitimates both conclusions.

A function symbol refers to, or denotes, a concept, the name an object. Concepts and
objects belong to distinct ontological categories. When a concept-term is an argument
in a sentence, as in ‘Red is a color,’ the sentence is said to be on a ‘higher level’ than
those whose arguments refer to objects.

As in the mathematical case, a sentential function maps its argument(s) to a value,
but there are only two of these, the True and the False, the truth values of sentences.
Thus the concept ‘( ) is a planet’ maps ‘Mercury’ to Truth, ‘Sirius’ to Falsehood. In
Frege’s terms, Mercury ‘falls under’ the concept, Sirius does not. This is not just a more
complicated way of saying that the one sentence is true, the other false. It is, rather, an
analysis of what that means.

A further profound innovation was the quantifier. In mathematical texts quantifi-
cation is usually tacit. For instance, ‘x + 0 = x’ is true if it holds for every integer. If sen-
tential connectives are brought into play, this no longer works: ‘Fx,’ if taken in the sense
of a mathematical formula, will mean that everything is F, and its denial ‘ÿF(x)’ that
nothing is F, since it is true if ÿF(a) ÿF(b) etc. But ‘Not everything is F’ cannot be
expressed in this way. For this, a special sign, a quantifier with a scope is needed. In
current notation we can then distinguish between ÿ"F(x) and "xÿF(x). Frege took
quantifiers to be higher level functions. The sentence ‘There is a planet’ is to be ren-
dered as ‘There is at least one thing such that [( ) is a planet].’ The quantifier is here
construed as a function that has another function as its argument.

Frege emphasized the importance of the ‘deductive method.’ Claims in a deductive
science must be justified by a proof, which in his and all later logicians’ view, is a
sequence of propositions, each of which is either an assumption, or follows from pre-
vious members of the sequence by clearly articulated steps of deduction.
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With this understanding of the structure of propositions, of quantification, and of
the nature of a proof, Begriffsschrift develops an axiomatic system of sentential logic,
based on two principles (actually two sets of axioms), one dealing with conditionals,
the second with negation. The rule of modus ponens is employed to generate the first
consistent and complete (as was shown much later) system of sentential logic.

A third principle, substitutivity, is introduced: if a = b, then F(a) is equivalent (as we
now say) to F(b). With the introduction of a fourth principle, now ‘universal instanti-
ation’ or "-elimination, a system of second order predicate logic is developed.

It seems that substitutivity fails in so-called oblique (or as we now say opaque) con-
texts. According to Frege, they are dependent clauses introduced by such words as ‘to
say,’ ‘to hear,’ ‘to believe,’ ‘to be convinced,’ ‘to conclude,’ and the like. Now ‘N believes
that the morning star is a planet’ may be true, while ‘N believes that the evening star
is a planet’ false, even thought the two heavenly bodies are identical, apparently vio-
lating substitutivity. To save this principle, Frege introduced the important distinction
between sense (Sinn) and reference (Bedeutung) (1892). ‘The morning star’ refers to the
same object as ‘The evening star’ but they have a different sense. This is not the mental
content associated with the signs, but their ‘common meaning,’ an objective entity
determining the reference. Frege made the attractive assumption that in opaque con-
texts such expressions do not name an object, but their own sense, allowing substitu-
tion with any name of identical sense. Consider the sentence ‘K believed that the
evening star is a planet illuminated by the sun.’ Here ‘the evening star’ may be replaced,
salva veritate by ‘the brightest star-like heavenly body in the evening sky,’ provided the
two expressions have the same sense for K. Similarly, sentences in oblique contexts have
as their reference not their truth value, but the thought or sense they express. In this
way, substitutivity, for Frege an incontrovertible principle of logic, can be made to work
in opaque contexts.

Frege’s main object was to show that arithmetic can be derived from logic alone, a
project now called ‘logicism.’ For this he needed a definition of ‘number’ (in the sense
of ‘positive integer’), which he tried to provide in his famous monograph The
Foundations of Arithmetic (1884).

How, then, are numbers to be given to us, if we cannot have any ideas or intuitions of
them? Since it is only in the context of a sentence that words have any meaning, our
problem becomes this: To define the sense of a sentence in which a number word occurs.
(Frege 1884: § 62)

This illustrates Frege’s ‘linguistic turn,’ foreshadowing and inspiring twentieth century
analytic philosophy: the question how we come to know numbers is transformed into
one about the meaning of sentences in which number words occur. No further intu-
ition or idea is needed or even possible. The quotation also states Frege’s ‘context prin-
ciple’: that only in the context of a sentence does a word have meaning. We have already
seen that it makes no sense to ask for the meaning of ‘red’ if we do not know whether
it occurs as function or as argument. Only in a sentence can we discern the grammati-
cal role of its elements, and thus their meaning. As well, to determine the meaning of
a word, one must know whether or not it occurs in an opaque context.

To give a definition of number, Frege used ‘Hume’s Principle’: “When two numbers
are so combined as that the one has always a unit answering to every unit of the other,
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we pronounce them equal” (Foundations § 63, Hume, Treatise of Human Nature 1.3.1).
Plainly, though true and obvious, this is not a principle of logic. He therefore tried to
deduce it from what he took to be such a principle, the notorious Fifth Principle (in addi-
tion to the four of Begriffsschrift) which he introduced in his later work, The Basic Laws
of Arithmetic of 1894. This is the so-called unrestricted comprehension (or abstraction)
axiom, to the effect that any concept determines a set that has as its elements the objects
that fall under the concept. While he expressed some uneasiness about the principle,
he thought it a law of logic that one always has in mind when speaking about the exten-
sions of concepts. Bertrand Russell discovered that a paradox (which bears his name)
results from this. The concept ‘( ) is not a horse’ determines the set of all objects not a
horse, which includes that set itself. It is thus a set that has itself as an element. Consider
now the set S determined by the predicate ‘( ) is not an element of itself ’. If S is an
element of itself, then it is not. But if S is not an element of itself, then it is, a 
contradiction from which in Frege’s and all ‘classical’ systems of logic any conclusion
whatever follows, rendering the system worthless. A postscript to the second volume of
his Basic Laws (1903) states:

Nothing can be more unwelcome to a scientific author than that, after the conclusion of
his work, one of the foundations of his building is made to crumble. A letter from Mr.
Bertrand Russell placed me in this situation just as the printing of this volume was almost
finished. (Frege 1903)

Russell’s discovery showed that the axioms of arithmetic (now commonly stated in the
form Guiseppe Peano gave them) cannot be formally and consistently derived from
Frege’s principles (to say nothing of all of arithmetic, which cannot be so derived even
given the axioms (Gödel 1931). But only in recent years has it been shown that these
axioms follow from the principles of logic (minus the ill-fated Fifth) together with
Hume’s Principle. This is now called ‘Frege’s Theorem.’

7 The Austrian School

Franz Brentano (1838–1917), observed that all ‘psychological phenomena’ are tar-
geted on some object: when we think, we think of something, when we value, we value
something. These are intentional objects whose existence or nonexistence need not be an
issue. Brentano shied away from allowing the contents of mental acts to have a form
of being, taking this to be an unseemly Platonism. But his students Kasimir Twardowski
(1866–1938) and Edmund Husserl (1859–1938) did just that, following Bolzano. Both
distinguished content from object, with the object determined by the content. This is a
distinction analogous to Frege’s between sense and reference. Although they used
figures of speech like the mind grasping its objects, they did not draw on psychological
theories, and must be absolved of psychologism. Students of Twardowski formed the
distinguished school of Polish logicians of the first part of the twentieth century. Of
their many achievements we mention only Lesniewsky’s (1886–1939) exploration of
mereology of 1916, a subject that has only recently come to greater prominence. He
distinguished the part–whole relation from that of class membership: an element of a

THE RISE OF MODERN LOGIC

45



class is not a ‘part’ of it, though a subset is. Importantly, membership is not transitive:
if s is an element of t, and t of u, then s is not an element of u, whereas a part of a part
is a part of the whole.

Alexius Meinong (1853–1920), another of Brentano’s students, inquired into the
nature of intentional acts that lack existing objects and are ‘beyond being and non-
being.’ When we think or speak of Hamlet, the content does not refer to a mental image,
but to a ‘subsisting’ object that has lots of properties and satisfies certain identity con-
ditions: the same person killed Polonius and loved Ophelia. Such talk does not lack
logical structure. Meinong has more recently been credited with inspiring free logic: a
logic without existence assumptions, and work in the logic of fiction. For a long time,
however, he was known only in caricature through Bertrand Russell’s famous article
“On Denoting” (1905).

8 Bertrand Russell

In 1905 Russell published “On Denoting,” his finest philosophical essay, as he thought.
It became a milestone in the development of analytic philosophy. A distinction is here
made between proper names and expressions like ‘the so and so,’ which he titled defi-
nite descriptions. In English grammar, ‘The present king of France is bald’ has the subject
‘the present King of France’ and the predicate ‘bald.’ But this is misleading. According
to Russell, a proper understanding should distinguish three components of its meaning:
(1) there is now at least one King in France (2) there is now at most one king in France
and (3) every object satisfying (1) and (2) is bald. The sentence is true if all three con-
ditions are satisfied, false if there is no king, if there is more than one king, or if there
is a single non-bald king. But if this is what the sentence says, then ‘the present king
of France’ is not part of its proper logical phrasing; a language constructed to strict
logical standards will not contain a symbol for it. The misleading ‘surface structure’ of
the sentence disguises its underlying logical structure.

Russell’s conclusions are these: (1) Definite descriptions are not names, as Frege 
had thought; if they were, there would have to be objects to which they refer, leading
to Meinong’s ontological excesses. (2) Natural language structure and grammar are
misleading and must be distinguished from the deeper logical structure. This was 
a landmark discovery, leading many philosophers to argue that metaphysical and 
even political convictions often gain their plausibility from deceptive natural language
expressions. (3) Expressions like definite descriptions, but not only they, can be defined
only in their contexts, by definitions in use. ‘The present king of France’ is not treated 
as a stand-alone expression and given an ‘explicit’ definition. Rather, the meaning 
and function of such expressions is conveyed through the analysis of the sentences 
in which they occur. (4) It is not necessary, as Meinong had thought, to populate the
world with nonexisting, merely subsisting objects as the referents of definite descrip-
tions. But there are problems. Some apparent names are disguised descriptions:
‘Hamlet’ is short for ‘the Prince of Denmark’. Unfortunately, then, ‘Hamlet loves
Ophelia’ is just as false as ‘Hamlet loves Desdemona’, since the prince is fictional. Rather
than accept this one might wish to introduce a fictional, subsisting object to answer to
the term ‘Hamlet’.
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Despite his discovery of the paradox, Russell held that logicism could be made to
work, if the comprehension axiom were restricted. He proposed several solutions, even-
tually the theory of types, fully articulated in the monumental Principia Mathematica
authored by Russell and A. N. Whitehead (1910–13, three volumes, 1,000 pages),
through which Frege’s contributions entered the mainstream of logic. The preface
states that “in all questions of logical analysis our chief debt is to Frege.”

The theory of types stratifies expressions in a hierarchical order so that elements of
a set are on a lower level than the set, making it impossible for a set to be a member of
itself. A ‘ramified’ theory of types is introduced to solve as well the so-called semantic
paradoxes, notably the liar paradox ‘what I now say is false’. Russell and Whitehead
were more successful in this than Philetas of Cos (third centuy BC) whose gravestone
reads “I am Philetas; the lying argument has killed me and the night – long ponder-
ing,” and more succinct than Chrysippus, who wrote 28 volumes on it (now lost:
Bochenski 1961: 131). But their theory was burdened by the need to recognize a 
separate definition for truth at each type level and the inability to define a number as
the set of all similar (two membered, three membered, etc.) sets. Strictly speaking, every
level has different 2s, 3s, 4s, etc., and strictly speaking also different logical principles.
They resolve this by using symbols that are ‘systematically ambiguous’ between types.
Further complex adjustments were needed, the axioms of reducibility and choice,
which are less than intuitively obvious as they should be for logicism really to succeed.
It was also supposed that the vast remainder of mathematics could somehow be
reduced to arithmetic, which seems ever more unlikely.

Russell and Whitehead did succeed, however, in deriving a significant portion of
mathematics from their principles: a comprehensive theory of relations and order,
Cantor’s set theory, and a large portion of (finite and transfinite) arithmetic. Principia
was also meant to be a kind of Lingua Universalis, a canonical language pure enough
to permit construction of disciplined discourse on the skeleton it provided. Its symbol-
ism was universally accepted, revisions to it addressing problems of readability rather
than substance. Some philosophers went farther and proclaimed it the ‘ideal language’:
either translate your claims into Principia notation or admit that they are meaningless.

We saw that several distinct areas of study were advanced under the name of logic.
There was the view that logic investigates cognitive performance, or else scientific
methodology and strategy of discovery, or that it is a branch of rhetoric. Setting aside
all these as having contributed little to formal logic as now understood, there were still
two distinct types of theory. Until Principia, and culminating in that work, the most
prominent of them was proof theory, the development of mathematically rigorous syn-
tactical procedures for deriving theorems from assumptions. Bolzano, representing the
other type of theory, gave a semantic definition of logical consequence, which does not
dwell on the process of derivation.

The most important development of logic after Principia was to bring these two
strands together. In propositional logic, for instance, truth tables (introduced by
Wittgenstein in 1922) allow a semantic test for the validity of formulas and proofs, a
continuation of Bolzano’s project. It was then proved that the Principia version of
propositional logic is complete, that is to say that every semantically valid formula can
be derived in it and that it is consistent, that is, that only such formulas (and hence no
contradiction) can be derived. Later Kurt Gödel proved that first order predicate logic is
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complete as well, but that higher order logic is not. Since the latter is needed to define
arithmetic concepts, this spelled the end of the logicist project.
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4

Language, Logic, and Form

K E N T BAC H

Despite their diversity, natural languages have many fundamental features in common.
From the perspective of Universal Grammar (see, e.g., Chomsky 1986), such languages
as English, Navajo, Japanese, Swahili, and Turkish are far more similar to one another
than they are to the formal languages of logic. Most obviously, natural language ex-
pressions fall into lexical categories (parts of speech) that do not correspond to the 
categories of logical notation, and some of them have affixes, including prefixes, suf-
fixes, and markings for tense, aspect, number, gender, and case. Moreover, logical for-
malisms have features that languages lack, such as the overt presence of variables and
the use of parentheses to set off constituents. The conditions on well-formed formulas
in logic (WFFs) are far simpler than those on well-formed (grammatical) sentences 
of natural languages, and the rules for interpreting WFFs are far simpler than those for
interpreting grammatical sentences. Compare any book on syntax and any book 
on formal logic and you will find many further differences between natural languages
and formal languages. There are too many approaches to the syntax of natural 
languages to document these differences in detail. Fortunately, we will be able to discuss
particular examples and some general issues without assuming any particular syntac-
tic framework.

We will focus mainly on logically significant expressions (in English), such as ‘and,’
‘or,’ ‘if,’ ‘some,’ and ‘all’ and consider to what extent their semantics is captured by the
logical behavior of their formal counterparts, ‘&’ (or ‘Ÿ’), ‘⁄,’ ‘…’ (or ‘Æ’), ‘$,’ and ‘".’
Rendering ‘if ’ as the material conditional ‘…’ is notoriously problematic, but, as we shall
see, there are problems with the others as well. In many cases, however, the problems
are more apparent than real. To see this, we will need to take into account the fact that
there is a pragmatic dimension to natural language.

Sentences of English, as opposed to (interpreted) formulas of logic, not only have
semantic contents but also are produced and perceived by speakers (or writers) and lis-
teners (or readers) in concrete communicative contexts. To be sure, logical formulas are
also produced and perceived by particular people, but nothing hangs on the fact that
they are so produced and perceived. In ordinary speech (or writing), it is not just what
a sentence means but the fact that someone utters (or writes) it plays a role in deter-
mining what its utterance conveys (Bach 1999a). So, for example, there is a difference
between what is likely to be conveyed by utterances of (1) and (2),



(1) Abe felt lousy and ate some chicken soup.
(2) Abe ate some chicken soup and felt lousy.

and the difference is due to the order of the conjuncts. Yet ‘and’ is standardly symbol-
ized by the conjunction ‘&,’ and in logic the order of conjuncts doesn’t matter. However,
it is arguable that (1) and (2) have the same semantic content and that it is the fact that
the conjuncts are uttered in a certain order, not the meaning of ‘and,’ that explains the
difference in how the utterances are likely to be taken.

One recurrent question in our discussion is to what extent rendering natural lan-
guage sentences into logical notation exhibits the logical forms of those sentences. In
addressing this question, we will need to observe a distinction that is often overlooked.
It is one thing for a sentence to be rendered into a logical formula and quite another
for the sentence itself to have a certain logical form. When philosophers refer to the
logical form of a sentence, often all they mean is the form of the (interpreted) logical
or semi-logical formula used to paraphrase it, often for some ulterior philosophical
purpose, for example to avoid any undesirable ontological commitments (see Quine
1960) or to reveal the supposedly true structure of the proposition it expresses. A
logical paraphrase of a natural language sentence does not necessarily reveal inherent
properties of the sentence itself. However, as linguists construe logical form, it is a level
of syntactic structure, the level that provides the input to semantic interpretation. The
logical form of a sentence is a property of the sentence itself, not just of the proposi-
tion it expresses or of the formula used to symbolize it.

The difference is evident if we consider a couple of simple sentences and how they
are standardly symbolized:

(3) There are quarks.
(4) Some quarks are strange.

In first-order predicate logic (3) and (4) would be symbolized as (3PL) and (4PL):

(3PL) ($x) Qx
(4PL) ($x) (Qx & Sx)

Whereas (3) expresses an existential proposition and (4) apparently does not, both sen-
tences are symbolized by means of formulas containing an existential quantifier. Not
only that, there appears to be nothing in (4) corresponding to the conjunction (‘&’) in
(4PL). These discrepancies do not, however, deter many philosophers and logic texts from
proclaiming that a formula like (4PL) captures the logical form of a sentence like (3).
Obviously they are not referring to logical form as a level of syntactic structure.

1 Sentential Connectives

In the propositional calculus, the words ‘and’ and ‘or’ are commonly rendered as truth-
functional, binary sentential connectives. ‘S1 and S2’ is symbolized as ‘p & q,’ true iff ‘p’
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is true and ‘q’ is true, and ‘S1 or S2’ as ‘p ⁄ q,’ true iff ‘p’ is true or ‘q’ is true. There are
two obvious difficulties with these renderings. For one thing, there is no limit to the
number of clauses that ‘and’ and ‘or’ can connect (not that their usual truth-functional
analysis cannot be extended accordingly). Moreover, ‘and’ and ‘or’ do not function
exclusively as sentential connectives, for example as in (5) and (6):

(5) Laurel and Hardy lifted a piano.
(6) Abe wants lamb or halibut.

Clearly those sentences are not elliptical versions of these:

(5+) Laurel lifted a piano and Hardy lifted a piano.
(6+) Abe wants lamb or Abe wants halibut.

So the use of ‘and’ and ‘or’ as subsentential connectives cannot be reduced to their use
as sentential connectives. It could be replied that this difficulty poses no problem for the
standard truth-functional analysis of ‘and’ and ‘or’ when used as sentential connec-
tives. However, such a reply implausibly suggests that these terms are ambiguous, with
one meaning when functioning as sentential connectives and another meaning when
connecting words or phrases. These connectives seem to have unitary meanings regard-
less of what they connect.

A further difficulty, perhaps of marginal significance, is that the truth-functional
analysis of ‘and’ and ‘or’ does not seem to handle sentences like ‘Give me your money
and I won’t hurt you’ and ‘Your money or your life,’ or, more domestically:

(7) Mow the lawn and I’ll double your allowance.
(8) Mow the lawn or you won’t get your allowance.

It might seem that these sentences involve a promissory use of ‘and’ and a threatening
use of ‘or.’ But that’s not accurate, because there are similar cases that do not involve
promises or threats:

(9) George Jr. mows the lawn and George Sr. will double his allowance.
(10) George Jr. mows the lawn or he won’t get his allowance.

Here the speaker is just a bystander. The ‘and’ in (9) seems to have the force of a con-
ditional, that is ‘If George Jr. mows the lawn, George Sr. will double his allowance.’ This
makes the ‘and’ in (9) weaker than the ordinary ‘and.’ And the ‘or’ in (10) has the force
of a conditional with the antecedent negated, that is ‘if George Jr. does not mow the
lawn, he won’t get his allowance.’

If we can put these difficulties aside, although they may not be as superficial as 
they seem, the standard truth-functional analysis of ‘and’ and ‘or’ does seem 
plausible. Grice’s (1989: ch. 2) theory of conversational implicature inspires the
hypothesis that any counterintuitive features of this analysis can be explained away
pragmatically.
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‘And’

As observed by Strawson (1952: 81) and many others since, the order of conjuncts
seems to matter, even though the logical ‘&’ is commutative: (p&q) ∫ (q&p). Although
there is no significant difference between (11a) and (11b),

(11) a. Uzbekistan is in Asia and Uruguay is in South America.
b. Uruguay is in South America and Uzbekistan is in Asia.

there does seem to be a difference between (12a) and (12b):

(12) a. Carly got married and got pregnant.
b. Carly got pregnant and got married.

and between (13a) and (13b):

(13) a. Henry had sex and got infected.
b. Henry got infected and had sex.

However, it is arguable that any suggestion of temporal order or even causal connec-
tion, as in (13a), is not a part of the literal content of the sentence but is merely implicit
in its utterance (Levinson 2000: 122–7). One strong indication of this is that such a
suggestion may be explicitly canceled (Grice 1989: 39). One could utter any of the sen-
tences in (12) or (13) and continue, ‘but not in that order’ without contradicting or
taking back what one has just said. One would be merely canceling any suggestion, due
to the order of presentation, that the two events occurred in that order.

However, it has been argued that passing Grice’s cancelability test does not suffice
to show the differences between the (a) and (b) sentences above is not a matter of lin-
guistic meaning. Cohen (1971) appealed to the fact that the difference is preserved
when the conjunctions are embedded in the antecedent of a conditional:

(14) a. If Carly got married and got pregnant, her mother was thrilled.
b. If Carly got pregnant and got married, her mother was relieved.

(15) a. If Henry had sex and got infected, he needs a doctor.
b. If Henry got infected and had sex, he needs a lawyer.

Also, the difference is apparent when the two conjunctions are combined, as here:

(16) I’d rather get married and get pregnant than get pregnant and get married.
(17) It’s better to have sex and get infected than to get infected and have sex.

However, these examples do not show that the relevant differences are a matter of lin-
guistic meaning. A simpler hypothesis, one that does not ascribe multiple meanings to
‘and,’ is that these examples, like the simpler ones in (12) and (13), are instances of the
widespread phenomenon of conversational impliciture (Bach 1994), as opposed to
Grice’s implic-a-ture, in which what the speaker means is an implicitly qualified version
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of what he says. Here are versions of (14a) and (16) with the implicit ‘then’ made
explicit:

(14a+) If Carly got married and then got pregnant, her mother was thrilled.
(16+) I’d rather get married and then get pregnant than get pregnant and then

get married.

(14a) and (16) are likely to be uttered as if they included an implicit ‘then,’ and are
likely to be taken as such. The speaker is exploiting Grice’s (1989: 28) maxim of
manner. Notice that if the contrasts in the pairs of conjunctions were a matter of lin-
guistic meaning, then ‘and’ (and sentences containing it) would be semantically
ambiguous. There would be a sequential ‘and,’ a causal ‘and,’ and a merely truth-
functional ‘and,’ as in (11). Each of our examples would be multiply ambiguous and
would require disambiguation. (13b), for example, would have a causal reading, even
if that is not the one likely to be intended. An additional meaning of ‘and’ would have
to be posited to account for cases like (18):

(18) He was five minutes late and he got fired?

where what is questioned is only the second conjunct. The pragmatic approach, which
assimilates these cases to the general phenomenon of meaning something more spe-
cific than what one’s words mean, treats ‘and’ as unambiguously truth-functional and
supposes that speakers intend, and hearers take them to intend, an implicit ‘then’ or
‘as a result’ or something else, as the case may be, to be understood along with what is
said explicitly.

‘Or’

Even though it is often supposed that there is both an inclusive ‘or’ and an exclusive ‘or’
in English, in the propositional calculus ‘or’ is symbolized as the inclusive ‘⁄.’ A dis-
junction is true just in case at least one of its disjuncts is true. Of course, if there were
an exclusive ‘or’ in English, it would also be truth-functional – an exclusive disjunction
is true just in case exactly one of its disjuncts is true – but the simpler hypothesis is that
the English ‘or’ is unambiguously inclusive, like ‘⁄.’ But does this comport with the fol-
lowing examples?

(19) Sam is in Cincinnati or he’s in Toledo.
(20) Sam is in Cincinnati or Sally (his wife) will hire a lawyer.

An utterance of (19) is likely to be taken as exclusive. However, this is not a consequence
of the presence of an exclusive ‘or’ but of the fact that one can’t be in two places at
once. Also, it might seem that there is an epistemic aspect to ‘or,’ for in uttering (19),
the speaker is implying that she doesn’t know whether Sam is in Cincinnati or Toledo.
Surely, though, this implication is not due to the meaning of the word ‘or’ but rather
to the presumption that the speaker is supplying as much relevant and reliable infor-
mation as she has (see Grice 1989: ch. 2). The speaker wouldn’t be contradicting herself
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if, preferring not to reveal Sam’s exact whereabouts, she added, “I know where he is,
but I can’t tell you.”

The case of (20) requires a different story. Here the order of the disjuncts matters,
since an utterance of “Sally will hire a lawyer or Sam is in Cincinnati” would not be
taken in the way that (20) is likely to be. Because the disjuncts in (20) are ostensibly
unrelated, its utterance would be hard to explain unless they are actually connected
somehow. In a suitable context, an utterance of (20) would likely be taken as if it con-
tained ‘else’ after ‘or,’ that is as a conditional of sorts. That is, the speaker means that
if Sam is not in Cincinnati, Sally will hire a lawyer, and might be implicating further
that the reason Sally will hire a lawyer is that she suspects Sam is really seeing his girl-
friend in Toledo. The reason that order matters in this case is not that ‘or’ does not mean
inclusive disjunction but that in (20) it is intended as elliptical for ‘or else,’ which is not
symmetrical.

One indication that ‘or’ is univocally inclusive is that it is never contradictory to add
‘but not both’ to the utterance of a disjunction, as in (21),

(21) You can have cake or cookies but not both.

However, it might be argued that ‘or’ cannot be inclusive, or at least not exclusively so,
since there seems to be nothing redundant in saying,

(22) Max went to the store or the library, or perhaps both.

The obvious reply is that adding ‘or perhaps both’ serves to cancel any implication on
the part of the speaker that only one of the disjuncts holds and to raise to salience the
possibility that both hold.

‘If ’

Since the literature on conditionals is huge, they cannot be discussed in detail here. But
we must reckon with the fact – nothing is more puzzling to beginning logic students
than this – that on the rendering of ‘if S1, then S2’ as ‘p … q,’ a conditional is true just
in case its antecedent is false or its consequent is true. This means that if the antecedent
is false, it doesn’t matter whether the consequent is true or false, and if the consequent
is true, it doesn’t matter whether the antecedent is true or false. Thus, both (23) and
(24) count as true,

(23) If Madonna is a virgin, she has no children.
(24) If Madonna is a virgin, she has children.

and so do both (25) and (26),

(25) If Madonna is married, she has children.
(26) If Madonna is not married, she has children.

Apparently the basic problem with the material conditional analysis of ‘if ’ sentences is
that it imposes no constraint on the relationship between the proposition expressed by
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the antecedent and the one expressed by the consequent. On this analysis (27)–(30)
are as true as (23)–(26),

(27) If Madonna is a virgin, she is a multi-millionaire.
(28) If Madonna is a virgin, she is not a multi-millionaire.
(29) If Madonna is married, she is a pop singer.
(30) If Madonna is not married, she is a pop singer.

This might suggest that ‘if ’ sentences are not truth-functional (indeed, Edgington
(1991) has argued that they are not even truth-valued).

However, it is arguable that the connection (what Strawson (1986) calls a “ground-
consequent relation”) between antecedent and consequent is not part of the conven-
tional meaning of an ‘if ’ sentence. Perhaps the implication of such a connection can
be explained pragmatically. So suppose that an ‘if ’ sentence is equivalent to a material
conditional, ‘p … q,’ true just in case either its antecedent is false or its consequent is
true. It is thus equivalent to ‘ÿp ⁄ q.’ Now as Strawson sketches the story, one would
not utter a conditional if one could categorically assert the consequent or the negation
of the antecedent. That would violate the presumption, to put it roughly, that a speaker
makes as strong a relevantly informative statement as he has a basis for making. As 
we saw above, it would be misleading to assert a disjunction if you are in a position to
assert a disjunct, unless you have independent reason for withholding it. In the present
case, you wouldn’t assert the equivalent of ‘ÿp ⁄ q’ if you could either assert ‘ÿp’ or
assert ‘q.’ But then why assert the equivalent of ‘ÿp ⁄ q’? The only evident reason for
this is that you’re in a position to deny ‘(p & ÿq)’ – ‘ÿ(p & ÿq)’ is equivalent to ‘ÿp ⁄ q’
– on grounds that are independent of reasons for either asserting ‘ÿp’ or asserting ‘q.’
And such grounds would involve a ground-consequent relation. So, for example, you
wouldn’t utter (23) if you could assert that Madonna is not a virgin or that she has no
children. However, in the case of (31),

(31) If Madonna has many more children, she will retire by 2005.

where you’re not in a position to deny the antecedent or categorically assert the 
consequent, you would assert it to indicate a ground-consequent relation between
them.

Although Strawson’s account is plausible so far as it goes, sometimes we have occa-
sion for asserting a conditional without implicating any ground-consequent relation
between its antecedent and consequent. Indeed, we may implicate the absence of such
a relation. This happens, for example, when one conditional is asserted and then
another is asserted with a contrary antecedent and the same consequent, as in the fol-
lowing dialogue:

Guest: The TV isn’t working.
Host: If the TV isn’t plugged in, it doesn’t work.
Guest: The TV is plugged in.
Host: If the TV is plugged in, it doesn’t work.
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Clearly the host’s second utterance does not implicate any ground-consequent relation.
As the propositional calculus predicts, the host’s two statements together entail that
the TV doesn’t work, period.

One last bit of support for the truth-functional account of conditionals comes from
cases like “If you can lift that, I’m a monkey’s uncle” or (32),

(32) If Saddam Hussein wins the Albert Schweitzer Humanitarian Award, Dr. Dre
will win the Nobel Prize for medicine.

In such cases, the antecedent is obviously false, and the speaker is exploiting this fact.
There is no entailment of a ground-consequent connection between the antecedent
and consequent, and the speaker is not implicating any. Rather, he is implicating that
the consequent is false, indeed preposterous.

One last point about conditionals is that sometimes they are used as if they were
biconditionals (symbolized by ‘∫’ rather than ‘…’). For example, it might be argued that
‘if ’ can sometimes mean ‘if and only if,’ as in (33),

(33) If Harry works hard, he’ll get promoted.

where there seems to be an implication that if Harry doesn’t work hard, he won’t get
promoted, that is, that he’ll get promoted only if he works hard.

We have not addressed the case of so-called subjunctive or counterfactual condi-
tionals (I say ‘so-called’ because, as Dudman (e.g. 1991) has repeatedly pointed out,
they need not be either subjunctive or counterfactual). The conditions on their truth is
a complex and controversial question (see the relevant essays in Jackson 1991), but
clearly the following conditionals differ in content:

(34) a. If Oswald didn’t shoot Kennedy, someone else did.
b. If Oswald hadn’t shot Kennedy, someone else would have.

Whatever the explanation of the difference, presumably it is not due to any ambiguity
in ‘if ’ but to something else.

There are a great many sentential connectives that we will not consider, such as
‘after,’ ‘although,’ ‘because,’ ‘before,’ ‘but,’ ‘consequently,’ ‘despite the fact that,’ ‘even
though,’ ‘however,’ ‘inasmuch as,’ ‘nevertheless,’ ‘provided that,’ ‘since,’ ‘so,’ ‘there-
fore,’ ‘unless,’ and ‘until.’ We cannot take them up here, but it is interesting to consider
which ones are truth-functional and which are not.

2 Quantifiers and Quantified Noun Phrases

Only the existential and universal quantifiers are included in standard first-order pred-
icate logic. The existential quantifier is commonly used to capture the logical properties
of ‘some’ and ‘a’ and the universal quantifier those of ‘every,’ ‘each,’ and ‘all’ (‘any’ is
a tricky case because it seems to function sometimes as a universal and sometimes as
an existential quantifier). But there are differences between ‘some’ and ‘a’ and between

KENT BACH

58



‘every,’ ‘each,’ and ‘all’ that are not captured by their formal symbolizations. For
example, only ‘some’ and ‘all’ can combine with plural nouns. Also, ‘some’ but not ‘a’
can be used with mass terms, as in ‘Max drank some milk’ as opposed to ‘Max drank 
a milk’ (‘Max drank a beer’ is all right, but only because the mass term ‘beer’ is used
here as a count noun, as in ‘Max drank three beers’). But these differences are superfi-
cial as compared with two deeper difficulties with the symbolization of quantifiers in
first-order predicate logic.

One difficulty was mentioned at the outset. A simple sentence like (4) is standardly
symbolized with existential quantification, as in (4 PL):

(4) Some quarks are strange.
(4PL) ($x)(Qx & Sx)

The difficulty is that there is nothing in (4) corresponding to the connnective ‘&’ in (4PL)
or to the two open sentences it conjoins. There is no constituent of (4PL) that corresponds
to the quantified noun phrase ‘some quarks’ in (4). The situation with universal quan-
tification is similar, illustrated by the symbolization of a sentence like (35) as (35PL):

(35) All fish are garish.
(35PL) ("x)(Fx … Gx)

In fact, not only is there is nothing in (35) that corresponds to the connective ‘…’ in
(35PL), but (35PL) is true if there are no Fs, as with (36),

(36) All four-legged fish are gymnasts.

This is not a difficulty only if (36) is equivalent to (37),

(37) Anything that is a four-legged fish is a gymnast.

and intuitions differ on that. In standard predicate logic, universal sentences of the form
‘All Fs are G’ are true if there are no Fs, and, according to Russell’s theory of descrip-
tions, sentences of the form ‘The F is G’ are true if there is no unique F. Of course, one
would not assert such a sentence if one believed there to be no F or no unique F, but
logic need not concern itself with that. In any case, clearly the forms of (4PL) and (35PL)
do not correspond to the grammatical forms of the sentences they symbolize.

These discrepancies might be thought to reveal a problem with English rather than
with predicate logic. Indeed, Russell regarded it as a virtue of his theory of descriptions
that the structure of the formal rendering of a description sentence does not mirror
that of the sentence it symbolizes. A sentence like (38),

(38) The director of Star Wars is rich.

should not be symbolized with ‘Rd,’ where ‘R’ stands for ‘is rich’ and ‘d’ stands for ‘the
director of Star Wars,’ but with the more complex but logically revealing (38PL):

(38PL) ($x)(Dx & (y)(Dy … (y = x) & Rx)
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(This is not Russell’s notation but one of several ways in modern predicate logic to
render his analysis.) Whereas (38) has ‘the director of Star Wars’ as its grammatical
subject and ‘is rich’ as its grammatical predicate, it is revealed by logical analysis not
to be of subject-predicate logical form. Hence the grammatical form of a sentence like
(38) is “misleading as to logical form,” as Russell was paraphrased by Strawson (1952:
51). The definite description ‘the director of Star Wars’ does not correspond to any con-
stituent of the proposition expressed by (38). Definite descriptions “disappear on analy-
sis.” The contribution they make to the propositions in which they occur is a complex
quantificational structure of the sort contained in (38PL).

Although Russell’s theory of descriptions is often taken as the paradigm of
how grammatical form can be misleading as to logical form, as we have seen, sentences
like (4) and (35), when symbolized in the standard ways, seem to be examples of
the same thing. However, it is arguable that this alleged misleadingness is entirely 
an artifact of the notation being used. Indeed, as Barwise and Cooper (1981) have
shown, the notation of first-order logic is not adequate for symbolizing such quantifi-
cational expressions as ‘most,’ ‘many,’ ‘several,’ ‘few.’ And there are numerical quanti-
fiers to contend with, like ‘eleven’ and ‘a dozen,’ and more complex quantificational
expressions, such as ‘all but one,’ ‘three or four,’ ‘fewer than ten,’ ‘between ten and
twenty,’ ‘at most ninety-nine,’ and ‘infinitely many.’ The notation of restricted quan-
tification can uniformly handle this rich diversity of locutions (see Neale (1990: 41ff.)
for a clear explanation of how restricted quantification works). Not only that, it does so
in a way that respects the structural integrity of the quantified noun phrases that it
symbolizes. So, for example, the sentences in (39) may be symbolized by the corre-
sponding formulas in (39RQ), where for simplicity the predicates are symbolized with
predicate letters:

(39) a. Most baseball players like golf.
b. Many philosophers like wine.
c. Few pro-lifers support gun control.
d. Eleven jurors voted guilty.

(39RQ) a. [Most x: Bx] Gx
b. [Many x: Px] Wx
c. [Few x: Lx] Cx
d. [Eleven x: Jx] Gx

Restricted quantification notation thus avoids first-order logic’s “notorious mismatch
between the syntax of noun phrases of natural languages like English and their usual
representations in traditional predicate logic” (Barwise and Cooper 1981: 165), and
instead symbolizes constituents with constituents, thus facilitating a more straightfor-
ward compositional semantics. In particular, it does not separate quantifiers from their
nominal complements. As a result, it removes any suggestion that grammatical form
is misleading as to logical form. This holds even for definite descriptions, which do not
disappear on the restricted quantification analysis.

The terms ‘only’ and ‘even’ pose some special problems. What propositions are ex-
pressed by (40) and (41)?
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(40) Only Ernie eats turnips.
(41) Even Ernie eats turnips.

(41) seems to entail that Ernie is not the sole individual who eats turnips, even though
there is no explicit indication who the other people are, much less an explicit quantifi-
cation over the group in question. (41) seems to say, in effect, that Ernie eats turnips
and that, of an unspecified group of people who eat turnips, Ernie is the least likely to
do so. Exactly what it says is a matter of some debate (see, e.g., Kay 1990, and
Francescotti 1995), but even if the paraphrase is correct, it is not obvious how to render
that into the notation of first-order logic or even restricted quantification. Even if it
could be so rendered, such a symbolization would have to contain structure that is not
present, or at least not evident, in (41) itself.

Let us focus on the somewhat simpler case of ‘only.’ Offhand, (40) seems to express
the proposition that Ernie and no one (in the contextually relevant group) other than
Ernie eats turnips. In first-order predicate logic, this can be rendered as (40PL):

(40PL) Te & ("x)(x π e … ÿTx)

Like (40), (40PL) entails both that Ernie eats turnips and that no one else does. A logi-
cally equivalent but distinct rendering of (40) is (40¢PL),

(40¢PL) Te & ("x)(Tx … x = e)

which says that Ernie eats turnips and anyone who does is Ernie. There has been a debate
in the literature about whether this is entirely accurate (see Horn (1996) and references
there), but the relevant question here concerns the relationship between (40) and the
first-order formula used to symbolize it. Both (40PL) and (40¢PL) contain elements of
structure that are not present, at least not obviously so, in (40). This can be avoided
somewhat if we render the second conjuncts of (40PL) and (40¢PL) in restricted quantifi-
cational notation. Then (40PL) becomes (40RQ) and (40¢PL) becomes (40¢RQ).

(40RQ) Te & [every x: x π e] ÿTx
(40¢RQ) Te & [every x: Tx] x = e

But still there are elements not ostensibly present in (40): conjunction, a universal
quantifier, an identity sign, and, in the case of (40RQ), a negation sign. We can elimi-
nate most of these elements and the structure they require if we treat ‘only’ as itself a
quantifier,

(40≤RQ) [Only x: x = e] Tx

Here the proper name ‘Ernie’ is treated as a nominal that combines (together with a
variable and an identity sign) with a quantifier to yield a quantified noun phrase.

There is a further problem posed by ‘only.’ Consider (42):

(42) Only Bernie loves his mother.
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What is the property that no one else (in the contextually relevant group) possesses?
On one reading of (42), it is the property of loving Bernie’s mother; on another, it is
the property of loving some contextually relevant male’s mother). These two readings
may be represented with the help of indices.

(42) a. Only Bernie1 loves his1 mother.
b. Only Bernie1 loves his2 mother.

But there is a third, reflexive reading of (42), on which the property in question is 
that of loving one’s own mother (for discussion of different approaches to reflex-
ivity, see Salmon 1992). There is no obvious way to use indices to reflect that (the
indices in (42) cover the options), but restricted quantificational notation can do the
trick:

(42) c. [Only x: x = b] (x loves x’s mother).

Notice that, as in (40RQ≤) above, ‘only’ is treated here as a quantifier and the proper name
as a nominal that combines with the quantifier to yield a quantified noun phrase.

3 Proper Names and Individual Constants

It is customary in logic to use individual constants to symbolize proper names, and to
assign only one such constant to a given individual. Doing so obliterates semantic dif-
ferences between co-referring proper names. It implicitly treats names as essentially
Millian, as contributing only their bearers to the semantic contents of sentences in
which they occur. From a logical point of view there is no difference between the propo-
sitions expressed by (43) and (44),

(43) Queen Noor skis.
(44) Lisa Halaby skis.

since Queen Noor is Lisa Halaby. They could be symbolized as ‘Sn’ and ‘Sh’ respectively,
but this would not exhibit any semantic difference, given that n = h. It might seem that
there is no such difference, insofar as co-referring names may be substituted for one
another without affecting truth value, but such substitution does seem to affect propo-
sitional content. As Frege (1892) pointed out, a sentence like (45) seems to be infor-
mative in a way that (46) is not:

(45) Queen Noor is Lisa Halaby.
(46) Queen Noor is Queen Noor.

Millianism, which provides the rationale for symbolizing proper names as individual
constants, must deny that there is any difference in propositional content between 
(45) and (46), even if it concedes a cognitive, but non-semantic, difference between
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them, or between (43) and (44). However, replacing a name with a co-referring one
does seem to affect both truth value and propositional content in the context of atti-
tude ascriptions:

(47) Prince Rainier believes that Queen Noor skis.
(48) Prince Rainier believes that Lisa Halaby skis.

It seems that (47) might be true while (48) is false and that they have different con-
tents, since they ascribe to Prince Rainier belief in two different things. Millians must
reject this, and explain away the appearance of substitution failure as based on some
sort of pragmatic or psychological confusion (see Salmon 1986; Braun 1998; Soames
2001), but many philosophers find such explanations, however ingenious, to be
implausible (see Bach 2000).

A further problem for Millianism is posed by existential sentences containing proper
names. If the contribution that a proper name makes to sentences in which it occurs
is its referent (if it has one) and nothing else, then how are sentences like the following
to be understood or symbolized?

(49) Bigfoot does not exist.
(50) Sting exists.

As first remarked by Kant, existence is not a property and ‘exists’ is not a predicate.
Bigfoot is not a creature which lacks a property, existence, that Sting possesses. That is
why sentences like (49) and (50) are ordinarily not symbolized as ‘ÿEb’ and ‘Ep.’ But
what is the alternative? In first-order predicate logic, there is no straightforward way to
symbolize such sentences, since ‘exists’ is symbolized by the existential quantifier, not
by a predicate, and combines with open sentences, not individual constants. A common
trick for symbolizing sentences like (49) and (50) is with identity, as in (49PL) and (50PL):

(49PL) ÿ($x) x = b
(50PL) ($x) x = s

However, (49) and (50) do not seem to contain anything corresponding to the variable-
binding existential quantifier ‘$x’ or to the identity sign ‘=’. It is not evident from their
grammatical form that (49) says that nothing is identical to Bigfoot and that (50) says
that something is identical to Sting.

In any case, in claiming that the meaning of a proper name is its referent, Millianism
has the unfortunate implication that a sentence like (49), which contains a name that
lacks a referent, is not fully meaningful but is nevertheless true. And if the meaning of
a proper name is its referent, then (50) presupposes the very proposition it asserts;
indeed, its meaningfulness depends on its truth.

The case of non-referring names has an important consequence for logic. In stan-
dard first-order logic, individual constants are assumed to refer, so that, by existential
generalization, ‘Fa’ entails ‘($x)Fx.’ This assumption conflicts with the fact that some
proper names do not refer. So-called free logics, which do not take existential general-
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ization as axiomatic, have been devised to accommodate empty names. However, adopt-
ing a free logic does not help explain how different empty names, like ‘Bigfoot’ and
‘Pegasus,’ can differ semantically. It provides no explanation for the difference in
content between (49) and (51),

(51) Pegasus does not exist.

Leaving aside the common controversies about proper names, consider uses of
proper names that tend to be overlooked by philosophers and logicians. For example,
names can be used as predicates (Lockwood 1975). Also, they can be pluralized and
combined with quantifiers as in (52),

(52) Many Kennedys have died tragically.

This conflicts the treatment of proper names as individual constants or logically sin-
gular terms, and suggests that proper names are more like other nominals than is com-
monly supposed. In syntax, it is common to treat nominals as constituents of noun
phrases, which included a position for a determiner as well, as in ‘a man,’ ‘few tigers,’
‘all reptiles,’ and ‘some water.’ And note that in some languages, such as Italian and
German, names are often used with definite articles.

A further complication is that proper names seem to function as variable binders. To
see this, notice that in the following two sentences,

(53) Marvin1 hates his1 supervisor.
(54) Every employee1 hates his1 supervisor.

the relation between the pronoun and the noun phrase that syntactically binds it
appears to be the same. It is sometimes suggested that the pronoun ‘his1’ is an anaphor
when bound by a singular referring expression, such as a proper name, and is a vari-
able when bound by a quantificational phrase. However, it is difficult to see what the
relevant difference here could be. Notice further that there are readings of (55) and
(56) in which the pronoun functions as a bound variable:

(55) Marvin and every other employee hates his supervisor
(56) Only Marvin hates his supervisor.

Against the suggestion that a proper name is a variable binder it could be argued, I
suppose, that in (55) and (56) it is the phrase in which the proper name occurs that
binds the pronoun, but consider the following example, involving ellipsis:

(57) Marvin hates his supervisor, and so does every other employee.

If the pronoun is not a bound variable, then (57) could only mean that every other
employee hates Marvin’s supervisor. It could not have a reading on which it says that
every other employee hates his respective supervisor.
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4 Adjectives

When a noun is modified by a adjective, it is customary to symbolize this by means of
conjunction. A sentence like (58) is standardly symbolized by (58PL) or in restricted
quantifier notation by (58RQ):

(58) Enzo has a red car.
(58PL) ($x)(Hex & (Rx & Cx)
(58RQ) [an x: Rx & Cx] Hex

Leaving aside the difference between (58PL) and (58RQ), notice that they both render the
modification as predicate conjunction. In effect, something is a red car just in case it is
a car and it is red. Intuitively, however, it seems that the modification restricts the sort
of thing in question. That is, just as ‘car’ applies to cars, so ‘red car’ applies to those
cars that are red. (58PL) and (58RQ) do not quite capture this.

Even so, using conjunction to adjectival modification does seem to explain why (59)
entails (60),

(59) Garfield is a fat cat.
(60) Garfield is a cat.

where ‘Garfield’ is the name of a child’s pet. As (59PL) and (60PL) represent these 
sentences,

(59PL) Fg & Cg
(60PL) Cg

the entailment is from conjunction to conjunct, and that is a formal entailment.
However, there is a problem here, as illustrated by (61) and (62),

(61) Springfield is a plastic cat.
(62) Springfield is a cat.

where ‘Springfield’ is the name of a child’s toy. (61) does not entail (62), since plastic
cats aren’t cats. Whether or not (59PL) is the best way to symbolize (59), surely (61PL),

(61PL) Ps & Cs

is not even a good way to symbolize (61). Plastic cats are not cats that are plastic (just
as counterfeit money is not money). Notice, however, that when ‘plastic’ modifies, say,
‘hat,’ the resulting phrase applies to a subcategory of hats. So sometimes the entail-
ment from ‘x is a plastic K’ to ‘x is a K’ holds, and sometimes it does not. This shows
that when the entailment does hold, it is not a formal entailment, and not explained by
logic alone. (For further discussion of these and other issues involving adjectives, see
Partee 1995.)
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5 Adverbs and Events

Consider the fact that (63) entails (64) and (65):

(63) Jack is touching Jill gently with a feather.
(64) Jack is touching Jill gently.
(65) Jack is touching Jill.

Standard symbolizations of these sentences make these entailments problematic,
because ‘touch gently’ is treated is a distinct predicate from ‘touch’ and whereas in (63)
the predicate is treated as three-place predicate, in (64) and (65) it represented as two-
place. Then these sentences come out (semi-formalized) as:

(63¢) Touch gently (Jack, Jill, a feather)
(64¢) Touch gently (Jack, Jill)
(65¢) Touch (Jack, Jill)

Special meaning postulates are needed to account for the entailments. It needs to be
assumed that to touch someone with something is to touch someone and that to touch
someone gently is to touch someone. Davidson (1967) suggested that such entailments
can best be explained on the supposition that sentences containing action verbs (or
other verbs implying change) involve implicit quantification to events. Then these sen-
tences can be symbolized as:

(63e) $e(Touching(Jack, Jill, e) & Gentle(e) & With(a feather, e).
(64e) $e(Touching(Jack, Jill, e) & Gentle(e)).
(65e) $e(Touching(Jack, Jill, e).

Given these symbolizations, (64) and (65) are formal entailments of (63).
Implicit event quantification also helps handle what Lewis (1975) calls adverbs of

quantification, such as ‘always,’ ‘never,’ ‘often,’ ‘rarely,’ ‘sometimes,’ and ‘usually.’ For
example, (66) can be symbolized as (66e):

(66) Jack always touches Jill gently.
(66e) "e(Touching(Jack, Jill, e) & Gentle(e)).

Despite the perspicuousness of this symbolization and the explanatory value of the pre-
vious ones, they all seem to suffer from a familiar problem: they introduce structure
that does not seem to be present in the sentences they purport to symbolize. However,
Parsons (1990) and Higginbotham (2000) have offered various reasons for supposing
that this problem is not genuine.

6 Utterance Modifiers

There are certain expressions that do not contribute to the propositional contents of
the sentences in which they occur and thus fall outside the scope of logical symboliza-
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tion. I don’t mean interjections like ‘Oh’ and ‘Ah’ but a wide range of expressions that
may be called ‘utterance modifiers.’ These locutions, like ‘moreover,’ ‘in other words,’
and ‘now that you mention it,’ are used to comment on the main part of the utterance
in which they occur, as in:

(67) Moreover, Bill is honest.
(68) In other words, Bill is a liar.
(69) New York is, now that you mention it, a great place to visit.

Such locutions are vehicles for the performance of second-order speech acts. Thus, for
example, ‘moreover’ is used to indicate that the rest of the utterance adds to what was
previously said, and ‘in other words’ indicates that the balance of the utterance will
reformulate something just said.

Because of the second-order function of an utterance modifier, it is not semantically
coordinate, though syntactically coordinate, with the rest of the sentence. If it is a con-
nective, it is a discourse as opposed to a content connective. To appreciate the difference,
compare the uses of ‘although’ in the following two utterances:

(70) Although he didn’t do it, my client will plead guilty.
(71) Although I shouldn’t tell you, my client will plead guilty.

In (70), the content of the main clause contrasts with the content of the subordinate
clause. The use of ‘although’ indicates that there is some sort of clash between the two.
In (71), on the other hand, there is no suggestion of any contrast between the client’s
pleading guilty and his lawyer’s divulging it. Here the speaker (the lawyer) is using 
the ‘although’ clause to perform the second-order speech act of indicating that he
shouldn’t be performing the first-order speech act of revealing that his client will plead
guilty.

There are a great many utterance modifiers, and I have catalogued and classified
them elsewhere (Bach 1999b: sec. 5). They can pertain to the topic of conversation,
the point of the utterance or its relation to what preceded, the manner of expression,
or various other features of the utterance. To illustrate their diversity, here are a few
more examples of them:

by the way, to sum up, in a nutshell, figuratively speaking, in a word, frankly, off the record,
to be specific, by the same token, be that as it may

It should be understood that these locutions do not function exclusively as utterance
modifiers. They function as such only when they occur at the beginning of a sentence
or are otherwise set off. But when they do so function, they do not contribute to the
primary propositional content of the sentence that contains them and therefore fall
outside the scope of logical symbolization.

7 Logical Form as Grammatical Form

Ever since Frege, Russell, and the early Wittgenstein, many philosophers have thought
that the structures of sentences of natural languages do not mirror the structures of
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the propositions they express. Whether their goal is to develop a language adequate to
science, to avoid unwanted ontological commitments, to provide a framework for the
analysis of propositions, or merely to adopt a notation that makes the logical powers
(formal entailment relations) of sentences explicit and perspicuous, philosophers have
generally not supposed that logical forms are intrinsic to natural language sentences
themselves. They have supposed, as Russell did in the case of sentences containing 
definite descriptions, that grammatical form is often misleading as to logical form. From
a linguistic point of view, however, logical form is a level of syntactic structure. The
logical form of a sentence is a property of the sentence itself, not just of the proposi-
tion it expresses or of the formula used to symbolize it. From this perspective, it makes
no sense to say that grammatical form is misleading as to logical form.

If logical form is a property of sentences themselves and not merely of the proposi-
tions they express or of the formulas used to symbolize them, it must be a level of gram-
matical form. It is that level which provides the input to semantic interpretation, the
output of which consists of interpreted logical forms. This is on the supposition that
natural language semantics is compositional, and that the semantics of a sentence is a
projection of its syntax. Anything short of that puts the notion of logical form in a dif-
ferent light. If it is essentially a property of propositions, not sentences, or merely a
property of logical formulas, then two structurally different sentences, or a sentence
and a formula, can express the same proposition, in which case to say that a sentence
has a certain logical form is just to say that it expresses a proposition of that form or
can be symbolized by a formula with that form. If logical form is not a property of sen-
tences themselves, any reference to the logical form of a sentence is just an elliptical
way of talking about a property of the proposition it expresses or of the logical formula
used to symbolize it.

There are various sorts of linguistic evidence for a syntactic level of logical form.
Consider first the case of scope ambiguity, as in (72),

(72) Most boys love some girl.

Its two readings are captured in semi-English restricted quantifiers as follows,

(73) a. [most x: boy x] ([some y: girl y] (x loves y))
b. [some y: girl y] ([most x: boy x] (x loves y))

where the order of the quantifiers determines relative scope. Here it might be objected
that this notation does not respect syntax because it moves the quantificational phrases
to the front, leaving variables in the argument positions of the verb. However, as May
(1985) explains, working within the syntactic framework of GB theory, such movement
of quantificational phrases parallels the overt movement of wh-phrases in question for-
mation, as in (74),

(74) [which x: girl x] (does Marvin love x)?

The transitive verb ‘love’ requires an object, and the variable marks the position from
which the wh-phrase ‘which girl’ has moved. There are constraints on wh-movement,
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and these, in conjunction with other syntactic constraints, explain why, for example,
(75a) and (75b) are grammatical and (75c) is not,

(75) a. Who does Jack believe helped Jill?
b. Who does Jack believe that Jill helped?
c. *Who does Jack believe that helped Jill?

why (76a) is ambiguous and (76b) is not,

(76) a. What did everyone see?
b. Who saw everything?

and why (77a) but not (77b) is possible with a co-referential interpretation,

(77) a. Who1 saw his1 dog?
b. *Who1 did his1 dog see?

May (1985) presents compelling arguments to show that what he calls “quantifier
raising” (QR) can explain not only scope ambiguities but a variety of other phenom-
ena. Of course, QR differs from wh-movement in that it is not overt, occurring only at
the level of logical form (LF). Positing QR at LF explains the bound-variable interpreta-
tion of VP-ellipsis, as in (78),

(78) Cal loves his mother, and so do Hal and Sal.

on which Hal and Sal are being said to love their own mothers, not Cal’s. It also explains
the phenomenon of antecedent-contained deletion, illustrated by (79),

(79) Clara visited every town that Carla visited.

(79) would be subject to an interpretive regress unless it has, at the level of LF, some-
thing like the following form,

(80) [every x: (town that Carla visited) x] (Clara visited x)

which is clearly interpretable. The linguistic arguments based on data like these cannot
be presented here, but suffice it to say that they all appeal to independently motivated
principles to explain the phenomena in question. The syntactic level of logical form is
supported by the same sorts of empirical and theoretical considerations that support
other levels of grammatical representation.

8 Summary 

There are many topics we haven’t even touched on here (see Further Reading), in-
cluding negation, modalities, mass terms, plural quantifiers, quantificational adverbs,
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higher-order quantification, quantifier domain restriction, implicit arguments, pro-
nouns and anaphora, prepositions, tense and aspect, context-dependence, vagueness,
and semantic underdetermination (sentences that do not express complete proposi-
tions, even with context-sensitive references fixed). We have not examined the linguis-
tic arguments for a syntactic level of logical form. Moreover, there are many different
syntactic frameworks and, as later chapters explain, many different types of logic and
various approaches to each. In short, there is an open-ended range of linguistic 
phenomena for a diversity of syntactic frameworks and logical theories to take into
account. Even so, as suggested by the limited range of phenomena we have discussed,
apparent divergences between the behavior of logically important expressions or con-
structions in natural languages and their logical counterparts are often much narrower
than they seem. And where grammatical form appears misleading as to logical form,
this appearance is often the result of limiting consideration to standard logic systems,
such as first-order predicate logic, and failing to appreciate that insofar as logical form
is a property of natural language sentences and not just a property of artificial forms
used to symbolize them, logical form is a level of grammatical form.
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73

5 

Puzzles about Intensionality

NAT H A N S A L M O N

I

Nonextensional notions – such as necessity, possibility, and especially notions of propo-
sitional attitude like believing that – raise a number of perplexing philosophical ques-
tions, some very old. One issue concerns the sorts of objects that are necessary or
possible or are believed or disbelieved. What exactly are they? The standard answer is
propositions, understood as units of information semantically expressed by declarative
sentences but not belonging to any particular language, like the common content of
‘Snow is white’ and the French ‘La neige est blanche.’ W. V. Quine (1956) has objected
to propositions as the contents of sentences and the objects of belief on grounds of an
alleged obscurity of the ‘conditions’ under which a pair of propositions p and q are the
same. Quine proposes replacing a sentence like

(1) Chris believes that the Earth is round,

which evidently entails the existence of a proposition (that the Earth is round), with

(2) Chris believes-trueENG ‘The Earth is round,’

which, Quine says, is committed to the existence of an English sentence but not to any
proposition thereby expressed. He cautions that believing-true a sentence is not to be
confused with believing the sentence to be true, since Chris (who may speak no English)
can believe that the Earth is round – or as we now put it, Chris can believe-trueENG ‘The
Earth is round’ – without believing that the English sentence ‘The Earth is round’ is
true (i.e. without believing-trueENG ‘ ‘The Earth is round’ is trueENG’). On closer inspec-
tion this proposal collapses. Quine’s cautionary remark raises the question of just what
belief-truth of a sentence is. Quine argues that one who accepts propositions cannot
legitimately complain that the notion of belief-truth is obscure, since (2) is definable for
the propositionalist as

(3) Chris believes the proposition expressedENG by ‘The Earth is round.’



On this explanation, the word for Quine’s surrogate notion might be more perspicu-
ously spelled ‘believes-the-contentENG-of.’ Truth, it turns out, is beside the point. Contra
Quine, however, (3) is exactly how the notion cannot be defined. If it is, then (2) is as
committed to the proposition that the Earth is round as (1) is. If (2) is to fulfill its
mission, its content must be explained without any appeal to the proposition that the
Earth is round. Furthermore, Alonzo Church (1956) demonstrated that (3) does not
mean the same as (1). Both designate the offending proposition, but (3) merely
describes it as whatever is expressed by a certain English sentence whereas (1) identi-
fies the actual proposition more directly. This is easily seen by translating both (1) and
(3) into another language, say, French, while preserving literal meaning:

(1¢) Chris croit que la terre est ronde.
(3¢) Chris croit la proposition expriméeANG par ‘The Earth is round.’

It is apparent that these sentences do not carry the same information for a French
speaker who speaks no English. Quine concedes Church’s point, protesting that he does
not claim that (2) has the same meaning as (1), only the same truth value. But if (1)
and (2) are alike in truth value, it follows once again that (2) is true only if there is a
proposition that the Earth is round. The case for propositions is strikingly powerful,
while no viable alternative has yet been offered.

Acknowledging propositions as the objects of belief and other attitudes provides an
answer to one question, only to raise a host of further questions. Kripke’s Puzzle about
belief concerns a normal French speaker, Pierre, who on reflection sincerely assents to
the French sentence ‘Londres est jolie.’ Later, Pierre learns the English language through
immersion. Aware that ‘London’ names the city where he now resides, but unaware
that it names the same city he calls ‘Londres,’ Pierre sincerely and reflectively assents
to ‘London is not pretty’ – while still sincerely and reflectively assenting to ‘Londres 
est jolie.’ Does Pierre believe (the proposition) that London is pretty? Assuming an
extremely plausible Principle of Disquotation, and assuming standard literal transla-
tion of French into English, any normal French speaker who sincerely and reflectively
assents to ‘Londres est jolie’ and who is not under any relevant linguistic confusion cul-
minating in misunderstanding, believes that London is pretty. Whereas by the English
version of Disquotation, Pierre’s assent to ‘London is not pretty’ likewise indicates a
belief that London is not pretty. Yet Pierre evidently does not contradict himself. Worse,
assuming a Strengthened Principle of Disquotation – that a normal speaker who is not
reticent or under a relevant linguistic confusion sincerely and reflectively assents to a
declarative sentence iff the speaker believes the proposition thereby expressed – Pierre’s
failure to assent to ‘London is pretty’ indicates he does not believe that London is pretty.

II

Another cluster of issues concerns the distinction of de dicto and de re. Quine noted that
a sentence like ‘The number of planets might have been even’ may be understood two
ways. On the de dicto reading, it expresses that the prospect of an even number of
planets is a possibility. This is true in some ordinary sense of ‘possible’ or ‘might,’ since
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there might have been ten planets instead of nine. On the de re reading the sentence
instead asserts something of the actual number of planets, that is nine: that it might
have been even instead of odd. This is false on any natural understanding of ‘might.’
The distinction arises also for belief. Thus ‘Smith believes the number of planets is even’
may be understood as expressing that Jones believes there are an even number of
planets (de dicto), or alternatively, that Smith believes of the number nine that it is even
(de re). (A common confusion conflates the distinction of de dicto and de re with Keith
Donnellan’s (1966) distinction between two types of uses of definite descriptions: the
attributive use on which ‘the such-and-such’ is used to mean whatever is uniquely 
such-and-such, and the referential use on which the description is used instead to name
something in particular to which the speaker is relevantly connected. That the two dis-
tinctions are different is proved by the fact that a de re reading allows the description to
be used referentially or attributively.) Kripke’s Puzzle demonstrates that de dicto be-
lief alone generates hard riddles. Adding de re attitudes into the mix compounds the
mystery. Whether or not Pierre believes that London is pretty, it seems beyond reason-
able dispute that Pierre believes of London that it is pretty. But if propositions are the
objects of de dicto belief, de re beliefs appear to be something else again. Is there some-
thing – some object – common to all who believe of Socrates that, say, if he is a man
then he is mortal? There is the man, Socrates himself, but is there anything else? If so,
what?

Related questions took on a distinctly logical flavor, and new questions in philo-
sophical logic arose, when Russell introduced his Theory of Descriptions, with its 
concomitant distinction between primary and secondary occurrence – a distinction 
that for all intents and purposes duplicates de re and de dicto, respectively, where defi-
nite or indefinite descriptions (‘denoting phrases’) are involved. Russell’s Puzzle of how
George IV could wish to know whether Scott is the author of Waverley without wishing
to know whether Scott is Scott was solved, in part, by recognizing two senses of
wondering whether Scott is the author of Waverley: King George may wonder whether
Scott and no one else wrote Waverley (secondary occurrence); or instead (or in addi-
tion), George may wonder concerning Waverley’s author (i.e. Scott), whether Scott is
him (primary). The de re is aptly represented using a pronoun (‘him’) or the logician’s
variable:

($x)[x is sole author of Waverley & George IV wondered whether: Scott = x],
($n)[there are exactly n planets & it is possible that: n is even]
(lx)[Pierre believes that: x is pretty](London), etc.

Assuming (with Russell, for the sake of illustration) that ‘Scott’ and ‘London’ are
genuine names, the attributed de re attitudes are indeed a wonder whether Scott is Scott
and a belief that London is pretty. Russell offered an answer to the question of what
interrelations of logical dependence exist, given that Scott = the author of Waverley,
between believing that Scott is the author of Waverley and believing that Scott is Scott.
His answer is: none. But deep questions concerning their connections remain.

Characteristic of representing the de re using the apparatus of first-order logic is the
occurrence of a variable within a nonextensional context bound from outside that
context. The question of what it is to believe (or wonder, etc.) something de re con-
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cerning Scott receives a sharpened formulation: what is the proper way to interpret an
open sentence of the form

George believes that: . . . x . . .

under the assignment of Scott as value for the free variable or pronoun? Quine’s Puzzle
about Ralph and Ortcutt is best posed using this apparatus. Given that Ralph believes
that the man in the brown hat is a spy but not that the man seen at the beach is a spy,
even though it is Ortcutt in both cases, what sense can be made of

(4) Ralph believes that: x is a spy

under the assignment of Ortcutt to ‘x’? Consider first an easier question: is (4) true or
false (in English, plus variables) under this assignment? Or in the terminology of Alfred
Tarski, does Ortcutt satisfy (4)? The obvious reply, as Quine set out the case, is that he
does. Quine misled a generation of readers into thinking his puzzle is to some extent a
puzzle of philosophical psychology, and is less tractable than it is, by objecting on the
questionable grounds that if Ortcutt satisfies (4), then Ralph believes that Ortcutt is a
spy even while sincerely and vehemently affirming ‘Ortcutt is no spy.’ Pace Quine, the
problem is not how to make Ralph come out consistent. The problem is one of philo-
sophical logic, and is concerned not so much with Ralph as with Ortcutt: is he believed
to be a spy? The answer is that despite Ralph’s denials, Ortcutt is indeed so believed. If
it follows from this (I agree that it does, though most might disagree, perhaps even
Quine) that Ralph also believes, de dicto, that Ortcutt is a spy, then so he does. Ralph’s
believing that Ortcutt is a spy while failing to assent to ‘Ortcutt is a spy’ violates Kripke’s
Strengthened Principle of Disquotation. But Kripke’s own examples demonstrate how
dubious that principle is. The principle should be measured against the examples, not
the other way around. Belief need not always culminate in assent – even belief with
understanding, on reflection, without reticence, etc. – witness Kripke’s Pierre. Pierre’s
doxastic disposition with regard to the question of London’s pulchritude parallels
Ralph’s with regard to Ortcutt’s participation in unlawful espionage.

Recognizing that Ortcutt satisfies (4) places an important restriction on the answer
to the question of how to interpret (4), but the question still needs an answer. Neo-
Fregeanism encompasses attempts to provide an answer faithful to the idea that the
objects of belief are propositions of a particular sort: Fregean thoughts, which are purely
conceptual through and through. Neo-Fregeanism faces a number of serious difficul-
ties. Indeed, Hilary Putnam’s imaginative Twin Earth thought-experiment seems to
demonstrate that de re belief and other de re attitudes are not adequately captured by
Fregean thoughts, since any pair of individuals who are molecule-for-molecule dupli-
cates will entertain the very same set of Fregean thoughts despite having different de
re attitudes. Neo-Russellianism provides a simple alternative solution: (4) attributes belief
of a singular proposition, which is about Ortcutt in virtue of including Ortcutt himself
among the proposition’s constituents. Neo-Russellianism does not merely avoid the
problems inherent in neo-Fregeanism. It is strongly supported by considerations from
philosophical syntax and logic. An English sentence of the form

a believes that f,
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is true if and only if the individual designated by a believes the proposition expressed
by f. Thus, for example, (1) is trueENG if and only if Chris believes the proposition
expressedENG by ‘The Earth is round,’ to wit, that the Earth is round. Likewise, then, (4)
is trueENG under the assignment of Ortcutt as value for the variable ‘x’ if and only if
Ralph believes the proposition expressedENG by ‘x is a spy’ under the same assignment
of Ortcutt to ‘x.’ What proposition does ‘x is a spy’ expressENG under this assignment?
(Cf. What does ‘He is a spy’ expressENG under the assignment of Ortcutt to the pronoun
‘he’?) The variable ‘x’ has an assigned value (viz., Ortcutt) but, unlike the description
‘the man in the brown hat,’ does not have a Fregean sense which determines this value.
If it did, (4) would be de dicto rather than de re. The variable’s only semantic content is
its value. The proposition expressed is thus exactly as neo-Russellianism says it is: the
singular proposition about Ortcutt, that he is a spy.

III

The de dicto/de re distinction may be tested by anaphoric links to a descriptive phrase.
Consider:

Quine wishes he owned a sloop, but it is a lemon.
Ralph believes a female spy has stolen his documents; she also tampered with the

computer.

These sentences strongly favor a de re reading. Appropriately understood, each evi-
dently entails the de re reading of its first conjunct, even if the first conjunct itself is
(somewhat perversely) read de dicto. If, as alleged, it is a lemon, then there must be an
it that is a lemon, and that it must be a sloop that Quine wants. Similarly, if she tam-
pered with the computer, then there must be a she who is a spy and whom Ralph sus-
pects of the theft. The de dicto/de re distinction comes under severe strain, however,
when confronted with Peter T. Geach’s (1967) ingenious Hob/Nob sentence:

(5) Hob thinks a witch has blighted Bob’s mare, and Nob wonders whether she (the
same witch) killed Cob’s sow.

This puzzling sentence seems to resist both a de re and a de dicto reading. If there is a
she whom Nob wonders about, then that she, it would appear, must be a witch whom
Hob suspects of mare blighting. But the sincere utterer of (5) intuitively does not seem
committed in this way to the reality of witches. Barring the existence of witches,
though (5) may be true, there is no actual witch about whom Hob suspects and Nob
wonders. Any account of the de dicto/de re that depicts (5) as requiring the existence of
a witch is ipso facto wrong. There is a natural reading of (5) that carries an ontological
commitment to witches, viz., the straightforward de re reading. The point is that the
intended reading does not.

A tempting response to Geach’s Puzzle construes (5) along the lines of

(5dd) (i) Hob thinks: a witch has blighted Bob’s mare; and (ii) Nob wonders whether:
the witch that (Hob thinks) blighted Bob’s mare also killed Cob’s sow.
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Yet this will not do; (5) may be neutral concerning whether Nob has a true belief about,
let alone shares, Hob’s suspicion. Nob’s wondering need not take the form “Did the same
witch that (Hob thinks) blighted Bob’s mare also kill Cob’s sow?” It may be that Hob’s
thought takes the form “Maggoty Meg blighted Bob’s mare” while Nob’s takes the form
“Did Maggoty Meg kill Cob’s sow?” If so, (5) would be true, but no fully de dicto reading
forthcoming.

Worse, Hob’s and Nob’s thoughts need not involve the same manner of specifica-
tion. It may be that Hob’s thought takes the form “Maggoty Meg has blighted Bob’s
mare” while Nob’s wondering takes the form “Did the Wicked Witch of the West kill
Cob’s sow?” This appears to preclude a neo-Fregean analysis along the lines of the 
following:

(F) ($a)[a co-represents for both Hob and Nob & Hob thinks a is a witch who
has blighted Bob’s mare & Nob thinks a is a witch & Nob wonders Did
a kill Cob’s sow? ].

Geach himself argues that since (5) does not commit its author to the existence of
witches, it must have some purely de dicto reading or other. He suggests an alternative
neo-Fregean analysis, evidently along the lines of the following:

(G) ($a)($b)[a is a witch-representation & b is a witch-representation & a and b
co-represent for both Hob and Nob & Hob thinks a has blighted Bob’s
mare & Nob wonders Did b kill Cob’s sow? ].

This proposal faces certain serious difficulties, some of which are also problems for 
(F): The relevant notion of a witch-representation must be explained in such a way as to
allow that an individual representation a (e.g. an individual concept) may be a witch-
representation without representing anything at all. More important, the relevant
notion of co-representation needs to be explained so as to allow that a pair of individual
representations a and b may co-represent for two thinkers without representing 
anything at all for either thinker. Geach does not explicitly employ the notion of co-
representation. I include it on his behalf because it, or something like it, is crucial to
the proposed analysis. Any analysis, if it is correct, must capture the idea that Hob’s
and Nob’s thoughts have a common focus. Though there is no witch, Hob and Nob are,
in some sense, thinking about the same witch. It is on this point that de dicto analyses
generally fail. Even something as strong as (5dd) – already too strong – misses this 
essential feature of (5). On the other hand, however the notion of vacuously co-repre-
senting witch-representations is ultimately explained, by contrast with (G), (5) evi-
dently commits its author no more to co-representing witch-representations than to
witches. More generally, any analysis along the lines of (F) or (G) cannot forever avoid
facing the well-known difficulties with neo-Fregean analyses generally (e.g. the Twin
Earth considerations).

An alternative approach accepts the imposingly apparent de re character of (5) at
face value, and construes it along the lines of the following:

(6) There is someone whom: (i) Hob thinks a witch that has blighted Bob’s mare;
(ii) Nob also thinks a witch; and (iii) Nob wonders whether she killed Cob’s sow.
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This happily avoids commitment to witches. But it does not provide a solution. Hob’s and
Nob’s thoughts need not concern any real person. Maggoty Meg is not a real person, and
there may be no one whom either Hob or Nob believe to be the wicked strega herself.

Some proposed solutions to Geach’s Puzzle make the unpalatable claim that Hob’s
and Nob’s musings concern a Meinongian Object – a particular witch who is both inde-
terminate and nonexistent. Many proposed solutions instead reinterpret de re attri-
butions of attitude so that they do not make genuine reference to the individuals
apparently mentioned therein by name or pronoun. These responses inevitably make
equally unpalatable claims involving de re constructions – for example, that Nob’s 
wondering literally concerns the very same witch/person as Hob’s belief yet neither
concerns anyone (or anything) whatsoever, or that de re constructions mention or gen-
eralize over speech-act tokens and/or connections among speech-act tokens. It 
would be more sensible to deny that (5) can be literally true on the relevant reading,
given that there are no actual witches. The problem with this denial is that its pro-
ponent is clearly in denial. As intended, (5) can clearly be true (assuming Hob and 
Nob are real) even in the absence of witches. Numerous postmodern solutions jump
through technical hoops to allow a pronoun (‘she’) to be a variable bound by a quan-
tifier within a belief context (‘a witch’) despite standing outside the belief context,
hence also outside the quantifier’s scope, and despite standing within an entirely sepa-
rate belief context. These ‘solutions’ do not satisfy the inquiring mind as much as boggle
it. It is one thing to construct an elaborate system on which (5) may be deemed true
without ‘There is a witch.’ It is quite another to provide a satisfying explanation of the
content of Nob’s attitude, one for which the constructed system is appropriate. How
can Nob wonder about a witch, and a particular witch at that – the very one Hob 
suspects – when there is no witch and, therefore, no particular witch about whom he
is wondering? This is the puzzle in a nutshell. It combines elements of intensionality
puzzles with puzzles concerning nonexistence and puzzles concerning identity, and has
been deemed likely intractable.

IV

The solution I urge takes (5) at face value, and takes seriously the idea that false theo-
ries that have been mistakenly believed – what I call myths – give rise to fabricated but
genuine entities. These entities include such oddities as: Vulcan, the hypothetical planet
proposed by Babinet and which Le Verrier believed caused perturbations in Mercury’s
solar orbit; the ether, once thought to be the physical medium through which light
waves propagate; phlogiston, once thought to be the element (material substance) 
that causes combustion; the Loch Ness Monster; Santa Claus; and Meinong’s Golden
Mountain. Such mythical objects are real things, though they are neither material
objects nor mental objects (‘ideas’). They come into being with the belief in the myth.
Indeed, they are created by the mistaken theory’s inventor, albeit without the theorist’s
knowledge. But they do not exist in physical space, and are, in that sense, abstract enti-
ties. They are an unavoidable by-product of human fallibility.

Vulcan is a mythical planet. This is not to say, as one might be tempted to take it,
that Vulcan is a planet but one of a rather funny sort, for example a Meinongian Object
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that exists in myth but not in reality. On the contrary, Vulcan exists in reality, just as
robustly as you the reader. But a mythical planet is no more a planet than a toy duck
is a duck or a magician is someone who performs feats of magic. A mythical object is
an imposter, a pretender, a stage prop. Vulcan is not a real planet, though it is a very
real object – not concrete, not in physical space, but real. One might say that the planet
Mercury is also a ‘mythical object,’ in that it too figures in the Vulcan myth, wrongly
depicted as being gravitationally influenced by Vulcan. If we choose to speak this way,
then it must be said that some ‘mythical planets’ are real planets, though not really as
depicted in the myth. Vulcan, by contrast with the ‘mythical’ Mercury, is a wholly mythi-
cal object, not a real planet but an abstract entity inadvertently fabricated by the inven-
tor of the myth. I shall continue to use the simple word ‘mythical’ as a shorthand for
the notion of something wholly mythical.

The existence of fictional objects, in something close to this sense, has been per-
suasively urged by Peter van Inwagen (1977) and Saul Kripke (1973) as an ontologi-
cal commitment of our ordinary discourse about fiction. Their account, however, is
significantly different from the one I propose. Kripke contends that a mythical-object 
name like ‘Vulcan’ is ambiguous between two uses, one of which is parasitic on the
other. It would be less deceptive to replace the ambiguous name with two univocal
names, ‘Vulcan1’ and ‘Vulcan2.’ The name on its primary use, ‘Vulcan1,’ was introduced 
into the language, sans subscript, by Babinet as a name for an intra-Mercurial 
planet. Le Verrier used the name in this way in theorizing about Mercury’s perihelion.
On this use, the name names nothing; ‘Vulcan1’ is entirely vacuous. Giving the name
this use, we may say such things as that Le Verrier believed that Vulcan1 affected
Mercury’s perihelion. Le Verrier’s theory is a myth concerning Vulcan1. The name on
its secondary use, ‘Vulcan2,’ is introduced into the language (again sans subscript) at a
later stage, when the myth has finally been exposed, as a name for the mythical planet
erroneously postulated, and thereby inadvertently created, by Babinet. Perhaps it would
be better to say that a new use of the name ‘Vulcan’ is introduced into the language.
‘Vulcan2’ is fully referential. Using the name in this way, we say such things as that
Vulcan2 was a mythical intra-Mercurial planet hypothesized by Babinet. The difference
between Vulcan1 and Vulcan2 could not be more stark. The mistaken astronomical
theory believed by Babinet and Le Verrier concerns Vulcan1, which does not exist.
Vulcan2, which does exist, arises from the mistaken theory itself. Vulcan2 is recognized
through reflection not on events in the far-off astronomical heavens but on the more
local story of man’s intellectual triumphs and defeats, particularly on the history of
science.

Kripke’s account is vulnerable to a familiar family of thorny problems: the classical
problem of true negative existentials and the more general problem of the content 
and truth value of sentences involving vacuous names. Vulcan1 does not exist. This 
sentence is true, and seems to say about something (viz., Vulcan1) that it fails to exist.
Yet the sentence entails that there is nothing for it to attribute nonexistence to.
Furthermore, on Kripke’s account, Le Verrier believed that Vulcan1 has an impact on
Mercury’s perihelion. What can the content of Le Verrier’s belief be if there is no such
thing as Vulcan1? Furthermore, is the belief content simply false? If so, then it may be
said that Vulcan1 has no impact on Mercury’s perihelion. Yet this claim too seems to
attribute something to Vulcan1, and thus seems equally wrong, and for exactly the same
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reason, with the claim that Vulcan1 does have such an impact. Kripke is aware of these
problems but offers no viable solution.

I submit that Kripke’s alleged primary use of a mythical-object name is itself a myth.
To be sure, Babinet believed himself to be naming a real planet in introducing a use of
‘Vulcan’ into the language. And other users like Le Verrier believed themselves to be
referring to a real planet. But this linguistic theory of the name ‘Vulcan’ is mistaken,
and is in this respect exactly like the astronomical theory that Vulcan is a real planet.
The two theories complement each other, and fall together hand in hand. The situation
should be viewed instead as follows. Babinet invented the theory – erroneous, as it turns
out – that there is an intra-Mercurial planet. In doing this, he inadvertently created
Vulcan. Indeed, Babinet even introduced a name for this mythical planet. The name
was intended for a real planet, and Babinet believed the name thus referred to a real
planet (de dicto, not de re!). But here again, he was simply mistaken. Other astronomers,
most notably Le Verrier, became convinced of Babinet’s theory, both as it concerns
Vulcan (that it is a very real intra-Mercurial planet) and as it concerns ‘Vulcan’ (that it
names the intra-Mercurial planet). Babinet and Le Verrier both believed, correctly, that
the name ‘Vulcan’, on the relevant use, refers to Vulcan. But they also both believed,
mistakenly, that Vulcan is a real planet. They might have expressed the latter belief by
means of the French version of the English sentence ‘Vulcan is a planet,’ or other
shared beliefs by means of sentences like ‘Vulcan’s orbit lies closer to the Sun than
Mercury’s.’ These beliefs are mistakes, and the sentences (whether English or French)
are false.

Importantly, there is no relevant use of the name ‘Vulcan’ by Babinet and Le Verrier
that is vacuous. So used the name refers to Vulcan, the mythical planet. Le Verrier did
not believe that Vulcan1 is an intra-Mercurial planet – or, to put the point less mislead-
ingly, there is no real use marked by the subscript on ‘Vulcan’ on which the string of
words ‘Vulcan1 is an intra-Mercurial planet’ expresses anything for Le Verrier to have
believed, disbelieved, or suspended judgment about. To put the matter in terms of
Kripke’s account, what Le Verrier believed was that Vulcan2 is a real intra-Mercurial
planet. Le Verrier’s belief concerns the mythical planet, a very real object that had been
inadvertently created, then named ‘Vulcan,’ by Babinet. Their theory about Vulcan was
completely wrong. Vulcan is in fact an abstract object, one that is depicted in myth as
a massive physical object.

A common reaction is to charge my proposal with miscasting mythical objects as
the objects with which myths are concerned. On the contrary, it is objected, if they exist
at all, mythical objects enter the intellectual landscape only at a later stage, not in the
myth itself but in the subsequent historical account of the myth. A robust sense of
reality demands that the myth itself be not about these abstract objects but about
nothing, or at most about representations of nothing. No one expresses this sentiment
more forcefully than Russell:

[Many] logicians have been driven to the conclusion that there are unreal objects. . . . In
such theories, it seems to me, there is a failure of that feeling for reality which ought to be
preserved even in the most abstract studies. Logic, I should maintain, must no more admit
a unicorn than zoology can; for logic is concerned with the real world just as truly as
zoology, though with its more abstract and general features. To say that unicorns have an
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existence in heraldry, or in literature, or in imagination, is a most pitiful and paltry evasion.
What exists in heraldry is not an animal, made of flesh and blood, moving and breathing
of its own initiative. What exists is a picture, or a description in words. . . . A robust sense
of reality is very necessary in framing a correct analysis of propositions about unicorns
. . . and other such pseudo-objects. (Russell 1919: 169–70)

I heartily applaud Russell’s eloquent plea for philosophical sobriety. But his attitude
toward ‘unreal’ objects is fundamentally confused. To repeat, a mythical planet is not
a massive physical object but an abstract entity, the product of creative astronomizing.
Likewise, a mythical unicorn or a mythical winged horse is not a living creature but a
fabricated entity, the likely product of blurred or fuzzy vision, just as mermaids are the
likely product of a deprived and overactive imagination under the influence of liquor –
creatures not really made of flesh and blood and fur or scales, not really moving and
breathing of their own initiative, but depicted as such in myth, legend, hallucination,
or drunken stupor.

It is frequently objected even by those who countenance mythical objects that the
Vulcan theory, for example, is merely the theory that there is an intra-Mercurial planet,
not the bizarre hypothesis that the relevant abstract entity is that planet. Babinet and
Le Verrier, it is observed, did not believe that an abstract entity is a massive heavenly
object. Quite right, but only if the sentence is meant de dicto. Understood de re – as the
claim that, even if there is such an abstract entity as the mythical object that is Vulcan,
Babinet and Le Verrier did not believe it to be an intra-Mercurial planet – it turns 
mythical objects into a philosophical black box. What role are these abstract entities
supposed to play, and how exactly are their myth-believers supposed to be related 
to them in virtue of believing the myth? In fact, this issue provides yet another reason
to prefer my account over Kripke’s. On my account, in sharp contrast, the role of
mythical objects is straightforward: they are the things depicted as such-and-such in
myth, the fabrications erroneously believed by wayward believers to be planets or 
the medium of light-wave propagation or ghosts, the objects the mistaken theory is
about when the theory is not about any real planet or any real medium or any real
ghost. It is not merely that being depicted as such-and-such is an essential property of
a mythical object, a feature the object could not exist without. Rather, being so depicted
is the metaphysical function of the mythical object; that is what it is, its raison d’être. To
countenance the existence of Vulcan as a mythical planet while at the same time
denying that Babinet and Le Verrier had beliefs about this mythical object, is in a very
real sense to miss the point of recognizing Vulcan’s existence. It is precisely the
astronomers’ false beliefs about the mythical planet that makes it a mythical planet; if
no one had believed it to be a planet, it would not be a mythical planet. Come to that,
it would not even exist.

Another important point: I am not postulating mythical objects. For example, I am
not postulating Vulcan. Even if I wanted to, Babinet beat me to it – though he postu-
lated Vulcan as a real planet, not a mythical one. Mythical objects would exist even if
I and everyone else had never countenanced or recognized them, or admitted them into
our ontology, etc. Rather, I see myself as uncovering some evidence for their indepen-
dent and continued existence, in something like the manner of the paleontologist who
infers dinosaurs from their fossil remains, rather than the theoretical physicist who 
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postulates a new category of physical entity in order to make better sense of things
(even if what I am actually doing is in important respects more like the latter).

Perhaps the most important evidence in favor of this theory of mythical objects is
its logical entailment by our thoughts and beliefs concerning myths. We are sometimes
led to say and think things like “An intra-Mercurial planet, Vulcan, was hypothesized
by Babinet and believed by Le Verrier to affect Mercury’s perihelion, but there has never
been a hypothetical planet whose orbit was supposed to lie between Mercury and
Venus” and “Some hypothetical species have been hypothesized as linking the evolu-
tion of birds from dinosaurs, but no hypothetical species have been postulated to link
the evolution of mammals from birds.” The distinctions drawn cannot be made without
a commitment to mythical objects, that is without attributing existence, in some
manner, to mythical objects. No less significant, beliefs are imputed about the men-
tioned mythical objects, to the effect that they are not mythical. Being wrongly believed
not to be mythical is just what it is to be mythical. Furthermore, beliefs are imputed to
distinct believers concerning the very same mythical object.

Further evidence – in fact, evidence of precisely the same sort – is provided by the
Hob/Nob sentence. Geach’s Puzzle is solved by construing (5) on its principal reading,
or at least on one of its principal readings, as fully de re, not in the manner of (6) but
along the lines of:

(7) There is a mythical witch such that (i) Hob thinks: she has blighted Bob’s mare;
and (ii) Nob wonders whether: she killed Cob’s sow.

This has the distinct advantage over (6) that it does not require that both Hob and Nob
believe someone to be the witch in question. In fact, it allows that there be no one in
particular whom either Hob or Nob believes to be a witch. It does require something
not unrelated to this, but no more than is actually required by (5): that there be some-
thing that both Hob and Nob believe to be a witch – something, not someone, not a witch
or a person, certainly not an indeterminate Meinongian Object, but a very real entity
that Nob thinks a real witch who has blighted Bob’s mare. Nob also believes this same
mythical witch to be a real witch and wonders about ‘her’ (really: about it) whether she
killed Cob’s sow. In effect, the proposal substitutes ontological commitment to mythi-
cal witches for the ontological commitment to real witches intrinsic to the straight-
forward de re reading of (5) (obtained from (7) by deleting the word ‘mythical’). There
are other witch-free readings for (5), but I submit that any intended reading is a variant
of (7) that equally commits the author to the existence of a mythical witch, such as:

(i) Hob thinks: some witch or other has blighted Bob’s mare; and (ii) the (same)
mythical witch that Hob thinks has blighted Bob’s mare is such that Nob
wonders whether: she killed Cob’s sow.

Significantly, one who accepts Kripke’s account may not avail him/herself of this solu-
tion to Geach’s Puzzle. On Kripke’s account it may be observed that

(i) Hob thinks: Meg1 has blighted Bob’s mare; and (ii) Nob wonders whether: Meg1

killed Cob’s sow.
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The Hob/Nob sentence (5) is not obtainable by existential generalization on ‘Meg1,’
since by Kripke’s lights, this name is supposed to be vacuous and to occur in non-
extensional (‘referentially opaque,’ ungerade) position. Nor on Kripke’s (1973) account
can ‘Meg2’ be correctly substituted for ‘Meg1’; Hob’s and Nob’s theories are supposed to
concern the nonexistent witch Meg1 and not the mythical witch Meg2. Kripke might
instead accept the following, as a later-stage observation about the Meg1 theory:

Meg2 is the mythical witch corresponding to Meg1.

Here the relevant notion of correspondence places ‘Meg2’ in extensional position. While
‘Meg2’ is thus open to existential generalization, ‘Meg1’ supposedly remains in a non-
extensional position where it is not subject to quantification. It is impossible to deduce
(5) from any of this. Geach’s Puzzle does not support Kripke’s account. On the contrary,
the puzzle poses a serious threat to that account, with its denial that Hob’s and Nob’s
thoughts are, respectively, a suspicion and a wondering regarding Meg2.

On my alternative account, we may instead observe that

Maggoty Meg is a mythical witch. Hob thinks she has blighted Bob’s mare. Nob
wonders whether she killed Cob’s sow.

We may then conjoin and EG (existential generalize) to obtain (7). In the end, what
makes (7) a plausible analysis is that it (or some variant) spells out in more precise lan-
guage what (5) literally says to begin with. Babinet and Le Verrier provide a real-life
case in which the thoughts of different thinkers converge on a single mythical object:
Babinet thought he had seen an intra-Mercurial planet, and Le Verrier believed that it
(the same ‘planet’) impacted Mercury’s perihelion. The primary lesson of Geach’s
Puzzle is that when theoretical mistakes are made mythical creatures are conceived,
and in acknowledging that misbelievers are sometimes related as Nob to Hob, or as Le
Verrier to Babinet, we commit ourselves to their illegitimate progeny.
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6

Symbolic Logic and Natural Language

E M M A B O RG A N D E R N E S T L E P O R E

Initially the connection between the formal notation of symbolic logic and ordinary
sentences of natural language might seem opaque. Why on earth would anyone want
to draw a parallel between the technical and abstract endeavors of formal logicians 
and what seems more properly an object of study for linguists? However, it has been a
common assumption of twentieth-century Anglo-American philosophy that symbolic
logic can reveal something important about language. The reasons for this assumption
are, in actual fact, not very hard to see.

Arguments (1) and (2) are deductively valid inasmuch as it is impossible for their
premises (their first two sentences) to be true and their conclusions (their last sentence)
false:

(1) If the Yankees won, then there will be a parade.
The Yankees won.
So, there will be a parade.

(2) If Socrates is a man, then he is mortal.
Socrates is a man.
So, he is mortal.

Moreover, the reason that (1) is valid does not seem to be independent of the reason
that (2) is: both seem valid because they share a common form. Each begins with a con-
ditional statement, followed by another premise that asserts the condition part (the
antecedent) of the first premise, and concludes with its consequent part. By virtue of
sharing this form, both arguments (and countless others) are not only valid but are
valid in virtue of this shared form.

Though (1) is about the Yankees and parades, and (2) is about men and their mor-
tality, when our concern is with inference (i.e. issues about which sentences can be
validly deduced, or ‘follow,’ from which others), it seems best to abstract away from any
particular content and concentrate instead on structure. The structure underlying an
argument (and hence, the structure underlying the sentences making up that argu-
ment) in virtue of which it has its inferential properties is known as its logical form. We
arrive at statements of logical form by replacing certain expressions (so-called non-



logical ones) with schematic letters and combining these with symbolic representations
of the logical components of the argument;1 for instance, (1) and (2) share the logical
form:

A … B
A
\ B2

(with ‘…’ representing the logical component ‘if . . . then,’ ‘A’ and ‘B’ standing for 
propositional claims, and ‘\’ indicating the conclusion). The logical representation of
a sentence then might be thought of as a structure that determines from which sentences
it can be validly deduced, and which sentences can be validly deduced from it and other
premises.

The notion of logical form has become commonplace in philosophical discussions of
language (at least in the analytic tradition), but theorists are not always explicit about
the kind of relationship they envisage between natural language sentences and state-
ments in logical form, or about the role they expect such symbolizations to be playing.
Our aim in this chapter, then, is to explore these questions; in Section 1 we will con-
centrate on the question of constraints on logical representations, while in Section 2
we concentrate on the nature of the relationship between natural language and logical
form.

1 What are the Constraints on Formal Representations?

Given what we have said so far, the only constraint that must be respected in mapping
natural language sentences onto a symbolic notation is that whatever form we assign
to a sentence, relative to an argument, must underwrite the logical properties of that
argument. However, this condition can lead to some prima facie surprising results; to
see this, let’s look at Frege’s system of predicate logic. Frege’s logical system was
designed to be able to cope with the sort of generality evidenced in sentences like ‘All
men are mortal’ or ‘Some girl is happy’ (i.e. claims which tell us about the range of
objects in the world which possess certain properties, rather than telling us any par-
ticulars about specific objects which possess those properties). He attempted to achieve
this end with two explicit quantifier symbols, ‘",’ ‘$’ (introduced to stand for the English
counterparts ‘all’ and ‘some’ respectively), which could combine with predicates (e.g.
‘is a man’) and variables (given by lower case letters from the end of the alphabet like
‘x’ or ‘y’) in order to represent general claims.

A standard practice for representing a universal sentence like ‘All men are mortal’
in the language of predicate logic is as ‘("x)(Man(x) … Mortal(x))’; which says in ‘logi-
cians’ English’: for all things, x, if x is a man then x is mortal. Although such a claim, if
true, entails something about individual males, it does not assert anything about one
particular man.

Suppose, though, that someone complains about the occurrence of the symbol ‘…’,
the notational counterpart, recall, for an English conditional (typically, an ‘if . . . then’
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statement). Unlike the first premises in (1) and (2), the universal English sentence ‘All
men are mortal’ makes no (overt) mention of conditionality, so why should its symbolic
representation do so? This is one respect in which we may find the Fregean represen-
tation of natural language sentences surprising.

A second area of divergence between the surface appearance of natural language
sentences and their formal representations in Fregean logic comes with respect to
numerical claims like ‘One girl is happy’ or ‘Fifteen men are mortal.’ Frege’s suggestion
is that, for all such counting quantifier expressions (like ‘one’ or ‘fifteen’), we use 
combinations of ‘"’ and ‘$’ claims to deliver the logical forms of sentences containing
them. So, for example, we can use an instance of the existential quantifier ‘$’ to sym-
bolically represent that there is (at least) one thing satisfying the given predicate 
(e.g. ‘($x)(Man(x))’). If we introduce another instance of the existential quantifier (e.g.
‘($y)(Man(y))’) and then state that the two existential claims are about distinct objects
(e.g. by using a non-identity claim ‘y π x’), the final product, symbolized as
‘($x)($y)((Man(x) & Man(y)) & y π x)’ can be used to symbolize the English sentence
‘There are (at least) two men.’

Obviously, we can go on ‘counting’ indefinitely, simply by introducing more existen-
tial quantifiers and more non-identities to those already introduced. This might seem
a rather laborious way of symbolically representing numerical claims, especially those
involving large numbers (imagine the length of the logical representation of ‘One
hundred and one Dalmatians came home’ on this model!); but the technique does allow
the Fregean system to formulate many more quantificational claims than we might
have envisaged at first, particularly given the limited base of ‘"’ and ‘$’. Despite con-
taining only two basic quantifier expressions, the Fregean system can express, and
therefore, formalize, any natural language claim involving a counting quantifier. In
short, though Frege’s system may introduce more parsimony than the project of codi-
fying logical inferences asks for or demands, if it achieves this end (i.e. if it captures all
the inferences that need to be captured), it’s hard to see what project is jeopardized by
doing it with a minimum of logical symbols.

The conditional form of universal statements in predicate logic, and the complexity
of statements involving count quantifiers, might be surprising to us but nothing so far
said would require withdrawing our proposed Fregean symbolizations based on this sort
of consideration. We have been assuming that symbolic representations function
merely to codify logical properties and relations involving natural language sentences.
If these symbolic representations contain elements not obvious in their natural lan-
guage counterparts, why should it matter as long as the right inferences are captured
in virtue of these assigned forms?

One reason for concern will be addressed in Section 2; for the moment we’ll assume
that the only self-evident constraint on an adequate symbolization is that it captures
correct logical inferences. It should be obvious that this condition can serve to rule out
certain suggestions about the logical form of natural language sentences – those which
fail to preserve logical inferences will be ruled out. However, it may also turn out that
this constraint is insufficient to chose between alternative logical renditions of a natural
language sentence; and when this happens, we might, perhaps, expect there to be
further constraints which come into play to help us choose. To see this, let’s consider a
particular example: for in the realm of definite descriptions we can see both the con-
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straint to capture logical inferences and the potential need for an additional constraint
in play. Questions about the appropriateness of any such additional constraint will then
lead us, in Section 2, to consider how we should construe the relationship between
natural language sentences and logical form.

Case study: Representing definite descriptions

The idea we will explore in this section is as follows: perhaps finding an adequate sym-
bolic notation for natural language is difficult not because of an absence of any sym-
bolic system which looks like it might be up to the job, but because of a surplus, each
of which is prima facie promising. One thought might be that what we need, when faced
with alternatives, is a way to choose amongst them. We can tie down the main point
here with reference to a well-explored example, viz., definite descriptions. These are
expressions of the form ‘the F,’ where ‘F’ is a complex or simple common noun, as in
‘The woman’ or ‘The woman who lived in New Jersey.’ These expressions have been a
focus for philosophical logicians, in part because of divergent intuitions about their lin-
guistic status, and accordingly, about which logical inferences they participate in. One
can find in the literature a myriad of different accounts of the logical form of definite
descriptions, but we’d like to explore just three which will help to demonstrate the con-
straints involved in a choice of symbolization.

The first proposal is Frege’s, who treated definite descriptions as members of his 
class of referring terms. The details of his larger philosophy of language are inessen-
tial here; what matters is that, according to him, definite descriptions are akin both to 
names (like ‘Bill Clinton’ or ‘Gottlob Frege’) and indexical expressions (like ‘I,’ ‘you’ and
‘today,’ which depend on a context of utterance for a referent).3 Each of these expres-
sions is treated identically within his system: each is assigned a designator which
appears in predicate assignments. ‘I am happy,’ ‘Bill Clinton is happy’ and ‘The presi-
dent of the US is happy’ can all be symbolized in Frege’s notation as ‘Ha’ (with ‘H’ 
symbolizing the predicate ‘is happy,’ and ‘a’ designating the object picked out by each
referring term).

Famously, Russell, disputed Frege’s analysis, arguing that definite descriptions are
not proper names, but instead belong to an alternative logical category in Frege’s
system: viz., the class of quantifier expressions.4 At first his suggestion might seem odd,
for the Fregean quantifiers were explicitly introduced to play roles equivalent to ‘all’ and
‘some,’ and prima facie, whatever the role of ‘the’ in our language, it isn’t playing either
of these. However, Russell’s contention is that we can symbolically represent definite
descriptions as complex entities constructed out of these two primitive Fregean quan-
tifiers. That is to say, he suggests that we can treat the definite article ‘the’ in a way
analogous to the account Frege gave for counting quantifiers like ‘two.’

Informally, a sentence of the form ‘The F is G’ is represented, according to Russell,
as making a uniqueness claim, viz., there is one and only one F that is G.5 So a sentence
of the form ‘The tallest man is happy’ will be analysed as stating:

(3) There is a tallest man; and
(4) there is only one tallest man; and
(5) whoever he is he is happy.
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Collectively these three claims are symbolized within Frege’s logical system as (DD):

(DD) ($x)(Tallest man (x) & ("y)((Tallest man (y) … y = x)& Happy(x)))

Whereas a sentence containing a genuine referring term is represented by Frege with
a simple formula (as in ‘Fa’), for Russell, a sentence with a definite description requires
a complex logical symbolization like (DD).

Finally, let’s introduce a third relatively recent development in quantification theory,
which gives us our last account of the logical form of descriptions. Many contempo-
rary theories of quantification, such as the ‘Generalized Quantifier’ (hereinafter, GQ)
theory of Higginbotham and May (1981), and Barwise and Cooper (1981), recommend
altering the way the relationship between a quantifier expression and the rest of the
sentence it appears in is handled, as well as acknowledging many more primitive quan-
tifier expressions than the two inherited from Frege.6 The first point relates to a feature
of Fregean quantification we noted at the outset: viz., that it needs to introduce the
logical connective ‘…’ into the formal representations of sentences containing ‘all’. The
reason for this is that the Fregean quantifiers ‘"’ and ‘$’ are unary or ‘free-standing’
expressions: they act autonomously to bind a variable, which can then go on to appear
in property assignments. It is this independent nature of the quantifier which leads to
the need for a logical connective: we treat ‘All men are mortal’ as containing a free-
standing quantifier – ‘"(x)’ – and then say of the variable which appears next to (and
hence which is bound by) the quantifier that: ‘if it is a man, then it is mortal.’

However, advocates of a theory of quantification like GQ reject this autonomy for
quantifier expressions; they maintain that quantifier expressions are ineliminably
bound to the common noun they modify. That is to say, rather than treating ‘all’ and
‘men’ as separable units within the logical form of ‘all men are mortal,’ they suggest
we should treat ‘all men’ as a single, indissoluble unit, which acts together to bind a
variable which then appears in the predicate assignment ‘is mortal.’ In the GQ system
of quantification, then, this kind of claim can be represented along the following lines:
‘[All (x): Man (x)] Mortal (x).’ On this kind of model, quantifier expressions are said to
be binary or restricted, requiring a common noun to act in tandem with a quantifier to
bind a variable.

Unlike predicate logic, GQ is a second-order logical system: roughly, this means that
the objects quantifiers are taken to range over are sets (of objects), rather than their
constituents (i.e. the objects themselves). Logical rules for GQ quantifiers are given in
terms of numerical relations between sets; for example a GQ quantifier might tell us
about the number of objects in common between two sets (i.e. the set of objects in the
intersection of two sets). The intuitive idea here is easy enough to see: for instance, the
sentence ‘All men are mortal’ can be understood as telling us that there is no object
which belongs to the first set, that is the set satisfying the general term ‘men,’ which
does not also belong to the second set, that is the set of things satisfying the general
term ‘mortal.’ In other words, the number of men that are non-mortal is zero. The GQ
rule for ‘all’ captures this numerical claim: take X to be the set of ‘F’-things and Y to be
the set of ‘G’-things, then a sentence of the form ‘All F’s are G’ is true just in case there
are zero objects left over when you take the set Y away from the set X (i.e. that every-
thing in X is also in Y). Similarly, for a quantifier like ‘some’; the GQ rule for ‘some’ is
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that a sentence like ‘Some man is mortal’ is true just in case the number of objects in
the intersection of the set of men and the set of mortal things is (greater than or equal
to) one.

This leads us on to a second area of difference between GQ and predicate logic rele-
vant for our concerns, for GQ theorists reject Frege’s technique for handling counting
quantifiers. Rather than analysing expressions like ‘three’ and ‘nine’ (which seem to
play the grammatical and inferential roles of quantifiers), with complex combinations
of ‘"’ and ‘$’ statements, GQ theory introduces symbols for them in the formal lan-
guage. For instance, it represents the quantifier ‘three’ by requiring that (at least) three
objects fall within the intersection of two sets X and Y in order for ‘Three F’s are G’ to
be true. The result is that GQ contains a logical element for each numerical expression
in the natural language that can modify a count noun. Again, however, if GQ is capable
of capturing all relevant inferential properties, no a priori reason exists for resisting
introducing additional logical items (with their additional rules of inference – a tech-
nical topic we do not need to discuss here).

Advocates of GQ can, then, agree with Russell (in opposition to Frege) that definite
descriptions are best represented as quantifier phrases, yet disagree that their best sym-
bolic representation is given by anything like (DD). The definite article ‘the’ in GQ is
symbolically represented by its own quantifier, which for ease of translation we might
represent by the symbol ‘[The x]’. ‘[The x: Fx] Gx’ is true just in case exactly one object
lies in the intersection of the ‘F’ and ‘G’ sets. This end result is similar to Russell, for
both systems treat phrases of the form ‘The F is G’ as being true just in case there is
exactly one thing which is F and it is also G;7 but the GQ theorist can obtain this same
semantic result without treating the natural language phrase ‘the’ as possessing a
complex, multiply quantified logical form (of the type given in (DD)).

To recap: we now have three distinct proposals for symbolizing sentences with defi-
nite descriptions: first, the Fregean treatment, in which they are handled as akin to sen-
tences with proper names; second, the Russellian analysis where they are treated as
combinations of universally and existentially quantified claims; third, GQ, where the
definite article is treated as a quantifier phrase, which requires a common noun to be
complete, and which maps on to its own unique element in the formal language. The
question now is: ‘how do we decide between all these alternative accounts?’

Recall, first, our initial adequacy constraint on symbolic representations: viz., that
they capture logically valid inferences involving the expression in question. One way of
understanding the objections Russell leveled at Frege’s account of definite descriptions,
then, is that the latter’s proposal fails this constraint (i.e. there are logically valid infer-
ences Frege’s notation fails to capture by virtue of symbolizing definite descriptions 
as singular terms). For instance, in ‘Everyone wants John,’ the quantifier expression
‘everyone’ is its subject, ‘John’ its object, and ‘wants’ its transitive verb. This sentence
is unambiguous, having only one possible translation into the formal system of predi-
cate logic. The second sentence ‘Everyone wants the winner,’ on the Fregean assump-
tion that ‘the winner’ is a referring term, ought then to be unambiguous as well. Both
should be symbolically representable in predicate logic as ‘Rab.’ But the definite descrip-
tion sentence is ambiguous; it has two readings, one in which there is a particular
person everyone wants, and another where everyone wants whoever has the property
of being the winner, regardless of whom he or she turns out to be.8
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The difference between these readings is sometimes indicated by saying that in one
the description takes wide scope over the rest of the sentence, and in the other it 
takes small scope. This feature of definite descriptions – that they enter into what we
might call ‘scope ambiguities’ – likens them more to quantifier expressions (since it is
a hallmark of expressions containing ‘all’ or ‘some’ that they display scopal ambiguity)
and less to singular referring terms. Indeed, if we symbolically represent them as 
singular referring terms (as Frege did), we have no way to explain this logical phe-
nomenon.9 In short, Frege’s treatment of definite descriptions is flawed; to capture all 
the inferential properties of sentences with the expression ‘the F’ we need to assign it
more structure than the Fregean analysis does. Thus a quantificational theory of
descriptions is preferable over the Fregean approach; but what are we to say about the
debate between the Russellian and GQ theorist? Since the two approaches agree about
inferential properties expressions of the form ‘The F is G’ possess, their disagreement
cannot emerge from the failure of either approach to accommodate such inferential
properties. Instead, it seems the GQ theorist assumes that it is permissible to invoke
wider features of our symbolization to decide between competing approaches. That is
to say, GQ theorists object to the Russellian approach to definite descriptions on the
grounds that Fregean logic is inadequate for formalizing natural language as a whole.
To see why the advocate of GQ might think this, we need now to take a slight diversion
through the analysis of quantifier phrases, before returning again to the issue of defi-
nite descriptions.

An initial point GQ theorists have pressed in their favor is that other expressions 
in natural language look intuitively to be playing the same logical role as ‘all’ or 
‘some’ (or ‘the’), but provably resist analysis in terms of the primitive Fregean quanti-
fiers ‘"’ and ‘$’. The problem is that, although any quantifier making a specific numer-
ical claim can be logically captured by a complex construction of Fregean quantifiers,
some quantificational elements in natural language make no such claims. Consider
‘many,’ ‘most,’ and ‘few’. These quantifiers are like traditional Fregean quantifiers inas-
much as sentences like ‘All men are mortal’ and ‘Most men are mortal’ seem to share
grammatical makeup, and convey general claims about the extension of certain 
properties, rather than making referential claims about a particular individual.
Furthermore, both apparently display the same kinds of ambiguity in linguistic con-
texts when nested inside other quantifiers. ‘Every boy loves many girls’ is ambiguous
between there being one single privileged set containing many girls which are loved by
all boys, and it being the case that, for each boy, there are many girls he loves, though
each boy may love a different set of girls. Since these expressions intuitively seem so
much like those expressions that Frege originally chose to symbolically represent as
quantifiers, why not treat them as such? But how can we accomplish this end armed
only with ‘"’ and ‘$’?

To see the problem that the Fregean system faces, let’s run through its options 
for an expression like ‘most’. First, we might try representing ‘Most girls are happy’ 
with either (6) or (7), thereby equating ‘most’ with one of the two existing quantifier
phrases:

(6) ($x)(Girl(x) & Happy(x))
(7) ("x)(Girl(x) … Happy(x))

EMMA BORG AND ERNEST LEPORE

92



(6) states only that some girl is happy, and (7) that all girls are happy, and neither of
these is what we need. (6) doesn’t even logically imply the ‘most’ statement, and the
‘most’ statement does not logically imply (7).

Alternatively, we might try representing ‘most’ as expressing a specific numerical
claim, since we know that expressions making these sorts of claims can be captured by
complex combinations of ‘"’ and ‘$’. Perhaps ‘most’ tells us that some specific number
of happy girls is greater than the number of unhappy girls; for example (8).

(8) ($x)($y)((Girl(x) & Happy(x)) & (Girl(y) & Happy(y)) & x π y) & ($z)((Girl(z) &
not–Happy(z)) & ("w)((Girl(w) & not–Happy(w)) … w = z)))

(8) states that there are at least two happy girls and only one unhappy girl; but intu-
itively, our original sentence does not logically imply (8). (8) provides a circumstance
in which our original sentence would be true, but it does not adequately logically
capture what the original sentence means (after all, ‘Most girls are happy’ would also
be true if five girls were happy and one unhappy, and in countless other situations as
well).

So, neither ‘"’, nor ‘$’, nor some combination of them, seems adequate for captur-
ing ‘most’; but now we are in a position to see that the problem lies not merely in our
limited range of quantifiers, but in the very form that Fregean quantifiers take. The
problem is that in order to logically represent ‘most’ correctly we need to see it as having
an intimate connection to the common noun it appears concatenated with (i.e. ‘girls’
in ‘most girls’). Unlike with ‘all’ and ‘some,’ we cannot simply ‘hive off ’ the quantifier
expression for analysis (as the Fregean system does) and see it as binding a variable
which then appears in predicate assignments, tied together by one of our sentential
connectives. We can see that this is so by allowing the advocate of predicate logic to
introduce a brand new quantifier expression, to add to ‘"’ and ‘$’.

Let’s use the symbol ‘S’ and simply stipulate that it stands for ‘most’. However,
although we are extending the Fregean system by one new quantifier, we will retain
the general picture of how quantifiers and predicates relate; that is to say, ‘S’, like ‘"’
and ‘$’, will be a unary (free standing) quantifier. So with ‘S’ we can construct the fol-
lowing kinds of formulae:

(9) (Sx)(Girl(x) & Happy(x))
(10) (Sx)(Girl(x) … Happy(x))

The problem with this suggestion is, first, that (9) states that ‘Most things (in the world?)
are happy girls’, a sentence which is false just in case girls are not the largest set of
objects in the world; so (9) seems an incorrect analysis of our original sentence.
Sentence (10), on the other hand, states ‘Most things are, if girls, then happy’, and the
logical rule for conditional statements tells us that if its first claim (its antecedent) is
false, then the whole ‘if . . . then . . .’ claim will be true (regardless of the truth or falsity
of the second claim, the consequent). Yet the antecedent in (10) will be false on almost
all occasions, for what it claims is that given most objects, they are girls. So, if the major-
ity of objects are not girls, this is sufficient to falsify the antecedent claim, and this in
turn is sufficient to make the whole conditional claim true. So (10) turns out to be true
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just in case girls do not form the majority of objects in the domain; on this construal,
‘Most girls are unhappy’ turns out to be true in exactly the same situation!

The problem with both (9) and (10) is that they issue in claims of truth or falsehood
based on considerations about the wrong sets of objects: (9) is false and (10) true just
in case there are less girls than boys and boats and trains, etc., all combined. Yet we
wanted a much more specific condition for the truth or falsehood of our original claim,
viz., that more girls be happy than unhappy.

What the failure of (9) and (10) demonstrates is that we cannot symbolically repre-
sent ‘Most girls are happy’ as containing two acts of predication, bound together by a
sentential truth-functional connective, and concerning a variable previously bound by
a distinct quantifier. Instead, what we need is to represent one predicate as an inelim-
inable part of the quantifier expression itself. Suppose we treat ‘most girls’ as an 
indissoluble unit that binds a variable then available for the predicate assignments ‘are
happy.’ Then we can formulate a sentence like ‘Most girls are happy’ as: [Most (x): Girls
(x)] Happy(x)’, which yields precisely the interpretation we were after – it tells us that,
given the set of girls, the majority of this set are happy. However, to adopt this kind of
proposal is precisely to reject the Fregean form of quantification for sentences involv-
ing ‘most,’ in favor of something like the GQ proposal which treats quantifiers as binary
expressions (i.e. as requiring both a quantifier phrase, like ‘most,’ and a common noun
to yield a complete expression).

Returning, finally, to the central debate about definite descriptions, we are ready to
draw a moral for logically representing these expressions. Advocates of GQ argue that
since English has expressions which logically play the same role as straightforward
quantified noun phrases, and yet which cannot be successfully formalized using either
‘"’ or ‘$’, combined with various sentential connectives, we must reject the Fregean
system of quantification as inadequate for capturing logical inferences in natural 
language. Since some intuitively quantified expressions in natural language require a
non-Fregean system of quantification, the conclusion drawn is that all quantified
expressions in natural language require a non-Fregean system.

In effect, the GQ theorist is assuming that our original constraint on an adequate
formalization (viz., that it capture inferential properties of a sentence) is insufficient. In
addition, the formalization must belong to a formal system adequate for symbolizing
other natural language expressions of the same type. There remains the question of
how to spell out the notion of ‘same type,’ but as a first approximation, we might appeal
to similarity in grammatical distribution and inferential properties (such as whether or
not the expression can be concatenated with a common noun to form a larger phrase,
and whether or not the expression gives rise to scope ambiguities in suitably complex
contexts, like those containing other quantifiers or intentional verbs). Because the
Russellian symbolization of ‘The F is G’ uses a logical system inadequate for expressions
of the same type, like ‘Most Fs are G,’ it is held to be inadequate simpliciter, despite 
capturing all the logical inferences definite descriptions support in natural language.
The GQ analysis of definite descriptions is therefore alleged to be preferable over its
Russellian competitor, because GQ is judged preferable over the Fregean quantifica-
tional system in general.

Note that, if we accept this line of argument, a traditional and persistent objection
to Russell’s theory of descriptions actually carries over to the formalization of all quan-
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tified claims in predicate logic. This objection is that the Russellian theory ‘butchers’
surface grammatical form, seeing an apparently simple sentence like ‘The F is G’ as pos-
sessing a vastly complex underlying content involving two distinct acts of quantifica-
tion, a conditional, a conjunction and an identity claim. Yet this apparently runs
counter to our intuitions about the grammar and structure of the original sentence.
The GQ analysis avoids this worry, positing a simple underlying logical form; but inter-
estingly it also suggests that this traditional objection can be leveled against other
logical form claims. The GQ theorist challenges us to explain why, since we cannot 
represent ‘Most girls are happy’ as containing a conditional or conjunctive element, we
should represent ‘All girls are happy’ and ‘Some girls are happy’ as containing a con-
ditional or conjunctive element.

In response to this kind of attack, advocates of the Fregean system might question
the crucial GQ assumption: why should we accept that a symbolization in a logical
system, L1, for a sentence, s1, of a natural language, N, is adequate only if L1 is capable
of symbolizing all sentences of the same type as s1 in such a way that the inferential
properties of those sentences are preserved? The Fregean who rejects this assumption
might recommend that we hold on to the predicate logic analysis for ‘all,’ ‘some,’ ‘the’
and other counting quantifiers, and employ a GQ analysis only for ‘non-standard’
quantifiers like ‘most’ and ‘few’ – ones that are probably not definable in terms of the
notation of the others.

One counter-response to this, of course, is that if we had started our formalization
of quantifier phrases by concentrating on expressions like ‘most’ we would have needed
a GQ-type analysis from the outset, and this would have rendered the Fregean treat-
ment otiose, since we could have handled all quantifiers within a single system of nota-
tion. Thus, the proposal that we adopt two different systems of quantification to handle
the class of quantifier phrases in natural language might seem to go against some quite
general philosophical principle, such as posit only the minimum set of explanatory
items needed to explain the data. However, the issue here is perhaps not as settled as
the GQ theorist presumes: there are technical costs involved in moving from the Fregean
system to the richer GQ system (which we cannot explore here), and there may still be
reasons that the Fregean can bring to light to license special treatment for ‘all’ and
‘some.’10 At the very least, we should note that the general philosophical principle
appealed to above cuts both ways – also telling in favor of the more austere two-
quantifier Fregean system, as against the ‘quantifier profligacy’ of GQ.

So, which approach should we adopt here? Who has got the constraints on symbolic
representations right? We have seen that a minimum condition on an adequate for-
malization for a natural language expression is that it capture all the inferential prop-
erties of that expression. A stronger condition is that the logical language be adequate
for capturing all the inferential properties of expressions of that type; and a (perhaps)
maximal condition is that the logical language be adequate for capturing all the infer-
ential properties of all the expressions of that language. Which of these conditions of
adequacy we choose to accept, and how we see them as playing out in practice, will
help us decide which kind of logical representations we accept.11 However, we might
begin to think now that perhaps we can simply sidestep this entire debate: for why can’t
we simply allow that a natural language sentence like ‘the F is G’ has multiple adequate
logical representations? Why should we presume that there must be, in the end, just
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one single ‘ideal’ notational language which, in some sense, ‘really’ gives the logical
form of natural language sentences? Considering these questions takes us on to 
the issue of how we should construe the relationship between logical form and natural
language.

2 What is the Relationship between a Natural Language Sentence
and its Formal Representation?

The debate in the previous section between Russell’s theory of descriptions and a GQ
analysis seemed so important because of an implicit assumption that one or other of
these accounts (or, perhaps, neither) gave the unique correct logical form for the
natural language expression. Indeed, this was precisely the assumption made by
Russell, who held that the formal language of Principia Mathematica was the unique,
ideal formal language within which to reveal the true underlying logic of our lan-
guage.12 It is because of this kind of assumption that the need to choose between 
formally equivalent representations (like the quantificational account of definite
descriptions, given by Russell, and GQ) seemed so pressing. But perhaps the assumption
is mistaken; indeed, it is explicitly rejected by the twentieth-century American philoso-
pher and logician W. V. O. Quine.

Quine claims that the sole purpose in symbolically representing a natural language
sentence in a regimented language is “to put the sentence into a form that admits most
efficiently of logical calculation, or shows its implications and conceptual affinities most
perspicuously, obviating fallacy and paradox” (Quine 1971: 452). There will be differ-
ent ways of doing this even with the same system of representation – since any logi-
cally equivalent formulation will do, and there will be infinitely many such sentences.
Consequently, talk of the logical form of a natural language sentence even within a
single system of symbolic notation might be misguided. The American philosopher
Donald Davidson, following Quine, sees logical form as relative to the logic of one’s
theory for a language (see Davidson 1984: 140).

This kind of approach avoids the central worry we have been pressing, for we have
no compunction to treat ‘All men are mortal’ as in any sense really containing a con-
ditional. It just so happens that one symbolic representation adequate for capturing
inferential properties of this sentence treats it in this way. Yet a liberal approach to
logical form faces its own problems; for there is one crucial aspect of our language that
creates a serious worry for anyone who believes that the notation we adopt in logically
regimenting our language is more a matter of taste than fact.

The productivity of natural language

One key aspect of natural language so far ignored but relevant to any question of admit-
ting multiple logical forms (for a single sentence) is that natural languages have no
upper bound on their number of non-synonymous expressions. This is because they
abound with constructions that generate meaningful complex expressions out of
simpler ones. Grammatical sentences can be formed in English by concatenating two
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sentences with either ‘and’ or ‘or’; for example (13) and (14) are concatenations of (11)
and (12):

(11) John left.
(12) Mary stayed.
(13) John left and Mary stayed.
(14) John left or Mary stayed.

Our language also exploits relative clause construction to create complex expressions
from simpler ones. For example, new definite descriptions can be devised from old ones
by adding restrictive relative clauses on head nouns, as in (15)–(17).

(15) The man left.
(16) The man whom I met yesterday left.
(17) The man whom I met yesterday who was eating breakfast left.

Though we can list only finitely many members of any of these various classes of
grammatical English constructions, a casual look should convince you that each is
unbounded. New sentences are formed by conjoining old sentences; new descriptions
by adding relative clauses on the head nouns of old ones. These are but a few of the
devices that render our language limitless.

Obviously, after performing these operations several times, say, conjoining a few 
sentences or relativizing a few clauses, speakers inevitably fail to comprehend the 
products. This is not a feature of English, however, but merely of how our minds and
memories are organized. Suppose that English speakers cannot comprehend sentences
with more than seven relative clauses. Would it follow that sentences with eight rela-
tive clauses are ungrammatical? Not at all. If increased memories or processing powers
allowed us to understand eight clause sentences, this would merely enhance an already
intact linguistic competence.

The relevance of unbounded classes to our current debate is this: since members of
each of these infinite sets of sentences stand in indefinitely many distinct logical rela-
tions to one another, no mere (finite) list can correctly or adequately complete the task
of codifying the set of logical inferences of a natural language. There are too many
inferences. Therefore, a theory must be devised about how to symbolically represent
them, in order that various inferential relations are ‘captured’ correctly. Once we see
how such theories are devised, we see why, though there may be indefinitely many 
logically equivalent formulations for any single natural language sentence, some are
preferable over others – and not just on pragmatic grounds of overall simplicity.

First, note that it’s no accident that both (18) and (19) are contained in (20).

(18) John left.
(19) Mary stayed.
(20) John left and Mary stayed.

Indeed, it’s the non-accidental occurrences of (18) and (19) in (20) that accounts for
their logical inter-relatedness. We see this in asking what is it about (20) in virtue of
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which it logically implies (18) and (19)? The answer is that (20) is true as a matter of
meaning alone in English just in case its components, (18) and (19), are true. Indeed,
generally, sentences devised from other sentences with the word ‘and’ have this logical
property as a matter of meaning alone. An excellent candidate that explains this logical
relation between conjunctions of sentences and their simpler components is meaning
rule (A).

(A) A conjunction is true just in case its conjuncts are true.

With enough such rules, we can show how every complex expression bears logical rela-
tions to simpler ones (and vice versa), relative of course to logical relations among their
simpler expressions, say, down to primitives – where primitive expressions stand in no
logical relation to one another.

As noted above, complex nouns can also be constructed out of simpler nouns and
relative clauses. From a primitive expression like ‘man,’ a complex expression like ‘man
who loves a woman’ can be formed, which in turn can be used to form a more complex
expression like ‘man who loves a woman who hates a dog’ and so on. Rules are required
to show how logical properties of such complex expressions are determined by those of
simpler nouns and relativizations on these nouns.

To figure out what such a rule might be, consider the primitive ‘man’ and the more
complex ‘loves a woman.’ The relative pronoun ‘who’ can grammatically conjoin these
expressions. How is the logical role of the complex ‘man who loves a woman’ predicted
from whatever logical roles its component parts might have? The complex expression
‘man who loves a woman’ is true of an individual just in case that individual has its
simpler components ‘man’ and ‘loves a woman’ true of him as well. A perfectly fine rule,
then, that enables us to project from the logical roles of simpler components to those
of the complex expression built up by relativization is meaning rule (R).

(R) A construction of the form – X who Y – (where X is a noun and Y is the rest of
the relative clause prefaced by ‘who’) is true of an individual just in case both
X and Y are true of this same individual.

It is both interesting and surprising how much (R) resembles (A). Like (A), (R) also sees
the components of complexes as making a conjunctive contribution. Conjunction by
itself explains that complex relativizations are true of something just in case their com-
ponents are as well, and this biconditional rule suffices to explain the logical relations
between the complex relativization and its simpler components.

When the project of symbolically representing natural language sentences into a
formal notation is seen from the perspective of the unboundedness of natural language,
and therefore, the unboundedness of inferential relations among sentences of natural
language, the idea of allowing all logically equivalent notations to be employed in rep-
resenting the same sentence becomes harder to swallow. Codifying known inferences
might be a project independent of any particular choice of formal notation, but our
logical representations must also make the right projections and predictions for infer-
ential relations. For this to be possible, we need a tighter connection between natural
language sentences and their formal representations than mere codification. To have
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any hope that a system of symbolic representation will work, we need to assume that
natural language sentences actually possess some kind of formal structure on the basis
of which we can project out to the explanations of the inferential properties of novel
linguistic items.

So, it seems that the laissez faire approach to logical form, which sees it merely as a
tool of codification, encounters difficulties when confronted with productivity. If we are
to be able to account for the limitless nature of our language, it seems that we must
posit structure inherent within natural language sentences, and the intriguing pro-
posal is that these same structures can account for the logical properties of the sen-
tences of the natural language. This realization reinstates the seriousness of the debate
between opposing accounts of the logical form of definite descriptions which closed the
first section of this chapter: it is not, it seems, sufficient for us simply to admit multiple
adequate logical representations for a sentence of the form ‘The F is G,’ for we need to
know which form captures its inherent logical form.13 This in turn brings us back to
the question of which constraints are correctly placed on our choice of logical form for
a sentence and whether such constraints will guarantee a unique logical form for each
sentence of natural language. Although we haven’t answered these questions in this
essay, we do hope to have shown why it is important to ask them. As noted earlier, the
notion of logical form has become commonplace in the philosophical arena at the turn
of the twenty-first century; however, if symbolic logic is really to advance our under-
standing of language, we need to be very clear from the outset about the relationship
envisaged between the two realms.

Notes

1 Exactly how this replacement takes place will vary, however, depending on the logical 
system in play; for instance, propositional logic will replace each whole proposition with a
schematic letter, whereas (as we will see below), a system like predicate logic will introduce
schematic letters for sub-propositional elements.

2 This argument form is so common as to have a special name: modus ponens.
3 Referring terms were to be handled by Frege’s notions of sense (the mode of presentation of

an object) and reference (the object), see Frege (1879).
4 Russell (1905).
5 Of course, we need to take into account context as well. If someone says, ‘The man left’,

what he said might be taken to be true in a context, say, where there are two women and
only one man, even perhaps some small children.

6 Higginbotham and May (1981), and Barwise and Cooper (1981).
7 Not all logical representations of definite descriptions agree on the claim of uniqueness; cf.

Szabo-Gendler (forthcoming).
8 We might think of the difference as turning on whether or not the property of ‘being the

winner’ figures essentially in the agent’s wanting.
9 We might also wonder how, on a Fregean analysis, we capture the valid inference from the

truth of ‘The man who broke the bank at Monte Carlo died’ to the truth of ‘Some man died.’
(Replacing ‘broke the bank at Monte Carlo’ with any other meaningful complex noun will
also underwrite the inference, and so it’s an inference we want to accommodate in virtue
of logical form.)
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10 The technical issues concern the fact that certain properties of Frege’s logical system (i.e.
‘closure’ and ‘completeness’) are lost in the move to GQ; these are quite complex technical
properties that need not concern us here.

11 The latter point matters, for the advocate of GQ could argue that our first and second con-
ditions collapse with respect to quantifier phrases, since sentences like ‘any girl is happy’
and ‘some girl is happy’ seem to be logically connected (the former apparently entailing the
latter), and this fact could prove difficult, if not impossible, to accommodate given different
methods of representation for the two sentences. Again, however, the details of this debate
go beyond our present concerns.

12 A similar assumption was also made by the early Wittgenstein, though he remained agnos-
tic on the choice of ideal language, merely holding that natural language items actually pos-
sessed some particular logical form, which would be revealed by a process of logical analysis.

13 Of course, the discussion about definite descriptions is meant as a paradigm example of the
issues discussed here, not as the only case of them. For another particularly clear example,
consider prepositional phrase modification and the apparently valid move from ‘John but-
tered some toast in the kitchen’ to ‘John buttered some toast.’ The question is: what kind of
logical form might capture this inference and will the form suggested be acceptable as the
genuine underlying logical form of the sentence? One suggestion for the logical form of such
sentences is Davidson’s ‘event’ approach (see Davidson 1967), which posits an ‘extra place’
in the logical form for an event variable; but a common objection to such an approach is
that it diverges too far from the surface form of the original sentences. The debate is thus
parallel to that had in the text concerning definite descriptions and the conditional repre-
sentation of ‘all’ statements: we have approaches which predict the right inferential rela-
tions, but which may be deemed unsuitable as the ‘real’ logical form of the sentence in
question due to divergences from surface form.
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7

Logical Paradoxes

JA M E S CA RG I L E

Logical paradoxes centrally involve difficulties in determining truth values. But not all
such difficulties are paradoxes and not all paradoxes are paradoxes of logic. Consider-
able trouble can be taken in trying to delineate the right subclass. But the questions
about truth value are often more interesting. It is better to begin by trying to answer
some notable problems of this sort, even at the risk of contributing to some subject
other than logic.

One such case, is the Eubulidean Liar (UL), attributed to Eubulides of Megara, who
is supposed to have said “What I am saying is false.” This could be an unproblematic
assertion made by a spy to an assistant as an aside about some item of misinformation
he is in the process of sending out in a broadcast. But when understood with a certain
kind of ‘self-reference’ the remark would be absurd. It was never offered as a sincere
effort at communication, but as a way of presenting a problem for rationalistic philos-
ophy. This problem may be better understood in the following version. The sentence

(A) The sentence A is not true,

is one which it seems could not be true. For if it were true, it would seem to follow that
it is not true. But if we conclude from this that the sentence A is not true, then it seems
this could not be right, being the very same words as the sentence A itself, which would
seem to suggest that A is true after all. This has led to the suggestion that allowing truth
to be attributed self-referentially, as in ‘No proposition is both true and false’ should be
somehow avoided or restricted.

The most reasonable way to follow that idea would be to deny that there is any such
property as truth. There is obviously an English predicate ‘. . . is true’ and the grammar
of A is unassailable. We can grammatically assert the sentence and grammatically
attribute to it its predicate. But this is no guarantee of asserting a proposition and
attributing a property. Formal logic is primarily concerned with sentences and predi-
cates. But philosophical logic must be concerned with propositions and properties. Both
propositions and sentences can be asserted or said and both predicates and properties
can be predicated or attributed or said of. But propositions and properties are more
important for philosophy, which makes for problems in the assimilation of formal logic
and its impressive results. The great precision and secure consistency of some systems



of formal logic may seem to point in favor of nominalism. But we can continue to value
this precision while keeping open the possibility of a consistent use of propositions and
properties in philosophy.

The primary connection between asserting or saying, and predicating or saying of,
is the property of truth. We have Rule R1: To assert a proposition is one and the same
thing as to predicate truth of it, and to deny a proposition is the same as predicating
nontruth, which in application to a proposition is the same thing as falsity. To call a
thing a nontruth is not to call it false. But to call it a nontrue proposition is to call it
false, and that is how it is natural to understand calling a proposition nontrue – as
merely short for ‘nontrue proposition.’ This fundamental connection does not apply at
all in the case of believing. To believe that a proposition is true is not the same as believ-
ing it. One may believe that what Bill will say tomorrow is true without believing what
Bill will say tomorrow, but to assert that what Bill will say tomorrow is true is to assert
that thing, whether or not you know what proposition it is. To assert a proposition is
to take a certain unique kind of responsibility for its being true. This is often done know-
ingly, but that an agent asserts a proposition does not in general entail that the agent
believes it or even has the ability to understand it or know what proposition it is.

The ruling that A does not express a proposition seems to be good reason to con-
clude it is not true. But then it seems that is a true judgment about A which is expressed
by A. To avoid that problem it would be tempting to conclude there is no such property
as truth. A better response is to assume that A expresses some proposition. Whatever
it is, A says it. But A says that whatever it says is not true. So by the above R1, A both
says and denies the same proposition, saying whatever it says and that whatever it says
is not true. This gives us an adequate basis for saying that A is not true.

It will be objected that this is just what A says. On the contrary, we cannot adequately
say in full what it is that A says. It is not that what A says is that A is not true and also
that what A says is that it is not true that A is not true. It is just that these are equally
good representations of what A says. That is good enough to show that whatever A says
is contradictory. It is not required that those equally good representations, which are
as good as we can get, are good enough to warrant either one being taken as making
it clear to us what A says. A is one of many counterexamples to the idea that to iden-
tify the proposition expressed by a sentence S it suffices to write ‘the proposition 
that . . .’ followed by the sentence S. Thus it would be quite wrong to think that ‘The
sentence A is true as a sentence of English if and only if the sentence A is not true’ 
is licensed by a correct rule for describing the content of a sentence of English.

This may be reinforced by considering

(A¢) The sentence A¢ is true.

We can say that what the sentence A¢ says is that what it says is true. That would indeed
be, by R1, to say whatever it is that A¢ says. That does not tell what A¢ says or offer any
ready guide as to what its truth value would have to be. If we rule that A¢ says nothing,
then we should treat anyone who claims that A¢ is true as speaking falsely. He might
have used the same words as A¢. So why not count A¢ as false also?

If a man says ‘What I am now saying is true’ (when it is clear there is no other ref-
erence) then he cannot be serious and we are right to rule that he has not asserted any
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proposition. Having so ruled, we must hold that one who says ‘What he said then was
true’ (when the reference is clear) is speaking falsely. This can be explained by appeal
to the thoughts expressed. When we treat sentences by themselves as doing the saying,
matters cannot be clarified by that means. It might be suggested that we should not
treat sentences in this way, but that is not a practical possibility. It is often important to
ask, not what the author of certain words, such as a constitution, intended, but what
has been said by them. Whether the founders of the USA intended their words to be
incompatible with the institution of slavery or not, it is important that the words were
not compatible with it.

Denying that A or A¢ say anything seems to provide good reason to call A true and
A¢ false. This then leads to paradox. We do better to note that if A says anything, that
thing is contradictory and thus false. Thus prepared, it is best to rule that A says some-
thing, albeit an obscure and worthless thing. If A¢ says anything, we have no reason
whatever to consider this thing to be false. To the extent that we have no reason either
to consider it true, we must consider this a bad mark against the practice of taking sen-
tences by themselves as saying things at all. But the consideration that A¢ is doing
absolutely nothing but endorsing whatever it is that it says may suffice as a reason for
counting it trivially true. For every saying endorses itself, being equivalent to calling
itself true. A¢ may be taken to report this triviality about itself.

The Epimenidean Liar (EL) can be put as follows: we build a one room shed known
as Building B, working in total silence. One of us then goes in and asserts

(B) Nothing true is asserted in Building B at any time

and nothing else. We then burn Building B to ashes. It seems that B cannot be true,
since it was asserted in Building B and having something true asserted there would
make B false. But if it is not true that no truth is asserted in B then it seems to follow
(since something has been asserted) that some truth has been asserted in B. Since this
cannot be B, and given the history of the building, we might then have to conclude that
elves or similar beings slipped in and made at least one false assertion while the build-
ing was there to house such assertions. But this is hard to bear. We seem to have to
avoid contradiction only by accepting a preposterous factual claim.

Here we appeal to the principle R2: that to assert that all Xs are Ys is to predicate
being a Y of every X. Thus to assert B in the building is to predicate nontruth of
everything asserted in the building. That is to assert that it is not true that everything
asserted in B is nontrue in the very course of asserting that everything so asserted is
nontrue. So the assertion of B in the building is false. Our assertion out of the building
is more fortunate, since it is not among the assertions it is calling nontrue.

It would not be clear to say that our assertion of sentence B is not self-referential
while the in-building assertion of it is, due to ambiguity concerning ‘self-reference.’ All
assertions are self-referential in the sense that to assert any proposition P is to assert
that everything whatsoever (including P) is such that P. (That (x)P is equivalent to 
P has been questioned for sentences of predicate logic in the ‘empty domain’ case, 
but this is an extremely eccentric system which should not influence our considera-
tions.) In that sense, both the in-building assertion of B and our assertion of it are self-
referential. On another interpretation of ‘reference’ we do not say that ‘All Fs are Gs’ is
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about itself unless it is an F. The in-building assertion of B says that if it is an in-
building assertion then it is not true. In that sense it is self-referential, while our judg-
ment about B is not an in-building assertion, so that in this other sense of ‘reference’
it is not self-referring.

The present line, that sentences such as B serve to reject all assertions of a given
kind, has been advocated by some thinkers who go further, to hold that such sentences
do not convey any additional assertion beyond each of those denials. Similarly, it is said
that to say ‘Everything he says is true’ is merely to endorse everything he says and not
to say anything further. This idea has the consequence that there would be no differ-
ence between asserting B in the building or outside it. Similarly, if someone asserts
‘Every Cretan assertion is false’ it would be irrelevant to the assessment of this perfor-
mance whether it was put forward by a Cretan. This is quite implausible. The paradoxes
are best answered, not by economies about meaning, but by paying attention to the full
meaning.

We may contrast problem cases superficially similar but involving belief rather than
assertion. Suppose that we build a Building C on exactly the lines of B, except that the
only person to go in does not know what building he is in. He believes (never mind how)
that Building C has been so constructed that any carefully considered belief held therein
is false. While waiting there to be called upon to leave, he reflectively believes (as
opposed to his unarticulated assumptions that he is in a building, clothed, etc.) only
that

(C) Any beliefs reflectively held in Building C are false.

If that were the only such belief in room C then we would appear to have a situation
similar to the EL. But the principle R2 is obviously false for beliefs. To believe that all C
beliefs are false is not to believe that it is false that all C beliefs are false. However, to
believe that all C beliefs are false (as opposed to merely believing such a thing as that
the sentence C expresses a truth) is to believe that you are not in building C. This is not
a separate belief, but rather, part of what it is to believe that all C beliefs are false. To
assert that all C beliefs are false is to predicate the falsity of every belief reflectively held
in Building C. The sincerity of that assertion would mean believing, not everything that
is thereby asserted, but only that all C beliefs are false. The assertor would unknowingly
predicate falsity of the belief he expresses in making the assertion. An assertor could
be fully informed as to what he is doing in asserting C, but then in order to persist he
must be insincere. To believe that all C beliefs are false is to believe among other things
that that belief is not one reflectively held in Building C. It is not possible to believe
directly (a notion which cannot be clarified further here) that your very belief is false
(or that it is true). There is no belief analogue to the Eubulidean Liar. The indirect cases,
such as C, always involve more content in the belief than is assumed in the formula-
tion of apparent conflicts about truth value.

Two innocent but logically acute persons might be conversing about C, one of them
standing in the yard of Building C, the other speaking to him from inside that building,
neither one knowing that building to be C. They could both believe that all C beliefs are
false and have essentially the same belief. It would be a belief including the mistaken
thought that the building housing a party to their conversation is of course not the
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Building C which they are conversing about. But if they asserted their common belief,
they would, unbeknownst to either, make different assertions.

Suppose that Bill declares that P, Q, R, S, and T, and Bob and Ben hear his declara-
tion and agree that everything that Bill declared is true. Bob remembers well that Bill
said that P, Q, R, S, and T, while Ben is unable to recall just what Bill said. Here we could
have many degrees between having only a confidence in Bill and not knowing at all
what he said, perhaps even disagreeing with those propositions while ignorant that
they are what Bill said, to being in Bob’s state of complete understanding. To say that
Bob and Ben agree on the proposition that everything that Bill said is true badly under-
describes this situation. We might best describe Bob as believing that Bill’s declaration
was that P, Q, R, S, and T and that as a matter of fact, P, Q, R, S, and T. Bob does agree
with Ben that ‘everything Bill said is true.’ But what this belief consists in would need
to be worked out in dialogue between them, so that Bob’s belief is reduced to Ben’s or
Ben’s expanded to Bob’s or to some intermediate compromise.

It is only in successful dialogue that we achieve a good understanding of what is
believed. A proposition is essentially something which can be conveyed to others in suc-
cessful dialogue, or a compound of such things. (It is the compounding that allows for
unbelievable propositions of various kinds.) Logic generalizes about these things, and
in thus stepping back from specific dialogue, loses track of the identity of the proposi-
tions and treats merely of sentences. In extreme cases we have sentences such as A or
A¢, which could never be used, in their logically problematic roles, in good dialogue, as
expressing contributions to the dialogue, though they can of course be objects of dialec-
tical discussion.

Besides the belief cases, there are puzzles in which someone fears that all his fears
are unfounded or hopes that all his hopes are unfulfilled, etc. Believing, hoping, fearing,
and asserting are all things done by people, but the former are attitudes, while assert-
ing is not. Finding common ‘propositional objects’ and restricting ‘self-reference’ or
rejecting a ‘global truth predicate’ or employing evaluation rules which do not assign
truth values to all propositions makes possible a uniform treatment of these puzzles.
But this is a costly uniformity which blurs important differences. It is important to note
the distinction between cases which require talking with someone who either expresses
an attitude or attributes one to someone else, and cases which involve just looking at
the powers of a sentence by itself.

For example, when someone claims an odd belief, we need to talk with that person
rather than making adjustments in logic. If a man claims to fear that all his fears are
unfounded we need to know if he intends to express fear that, among other things, his
fear that all his fears are unfounded is unfounded. If he does, then the problem is not
for logic, but for those who think this could be sincere.

The Geach–Lob implication liar (IL) involves

(D) D materially implies that P.

It seems that if D were false, then it would have to be true (and P false). Since that is
impossible, it seems that D is necessarily true, and thus that P is too. A suitable choice
of P can bring out how bad this would be. This paradox for the material conditional is
not essentially different from other paradoxes based on other truth functional connec-
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tives. Here we appeal to the rule R3: that to assert that if P then Q and that P, in one
assertion, is to assert that Q. Now the suitable choice of Q only yields a bad assertion,
not a bad problem. When P = (2 + 2 = 4) that version of D is true. When P = (2 + 2 =
5) that version is false. Similar considerations apply to cases based on other connec-
tives. (Our earlier case, A, could have been interpreted disjunctively, as saying that A
either expresses no proposition, or expresses a false proposition, and that would require
a principle for disjunction.)

The Grelling Liar (GL) involves the predicate ‘heterological’ defined as “a predicate
which expresses [as a term in some systematic usage – expression cannot be analyzed
here] a property of which it is not itself an instance.” This self-reference seems to
threaten both the saying that ‘heterological’ is heterological and the saying that it is
not. The answer is that there is no such property as that of being a predicate which
expresses a property of which it is not itself an instance, any more than there is such
a property as being a property which is not an instance of itself. It is common for logi-
cians to agree with this. But the crucial problem is to properly explain why it is so.

It is not that to say a term is heterological is to say nothing of it. It is rather, that it
is not to say the same thing for every term. ‘Heterological’ expresses a property in appli-
cation to ‘obscene,’ but the property is that of expressing the property of being obscene
while not possessing it. In application to ‘English’ the property is that of expressing the
property of being English while not possessing it. Even this much is often accepted. The
question still remains as to why it is so. For one may of course assert, about a term
whose meaning is unknown, that it is heterological. Why is this not merely to say that
there is some property it expresses but does not possess? (It is widely held to be an impor-
tant point of logic that to say that some F is a G is not to predicate being a G of any F.)

It is because R4: to assert that Some F is a G is to assert that if anything whatever
is such that everything other than it is not an F which is a G, then that thing is an F
which is a G. When we say that there is some property expressed by ‘obscene’ which is
not possessed by it, we assert of each thing there is that if nothing other than it is
expressed by ‘obscene’ then it is expressed by ‘obscene’ and not possessed by it. The one
and only thing which satisfies the antecedent condition of this conditional predication
is the property of being obscene, and so, for that reason, calling ‘obscene’ heterologi-
cal is to predicate not being obscene of it. By contrast, the predicate ‘heterological’ fails
to uniformly express any property. It always picks up its property from the term to which
it is applied, so that when applied to itself, there is no property to pick up. For that reason
it is not heterological – it does not possess a property it expresses, because it does not
express a property. (If we define ‘heterological’ differently, as ‘does not both express and
possess a property’ then it is heterological.)

Russell’s Paradox involves the predicate (RP) ‘class or set which is not a member of
itself.’ It seems that RP expresses a property, and since it is a truth of logic (call it the
Abstraction Principle) that to every property there corresponds the class of all and only
the things having that property, the Russell predicate, through expressing that prop-
erty, determines a class which, it seems, can neither belong nor fail to belong to itself.

Cantor’s paradox involves the same Abstraction Principle applied to the property of
being a thing to yield (UC) the Universal Class. Cantor’s Theorem says that every class
is of lower cardinality than its power class (the class of all its subclasses) which implies
that UC is of lower cardinality than its power class PUC. But this is incompatible with
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the requirement that any member of PUC must of course, like everything else, belong
to UC.

RP is logically similar to ‘heterological.’ To say (truly) that the class of men does not
belong to itself is to say it is not a man. To say (falsely) that the class of classes is not 
a member of itself is to say that it is not a class. There is no such property as being 
a non-self-membered class and thus no such class. This does not at all impugn the
Abstraction Principle. There are indeed other ways of forming classes than as the exten-
sions of properties, but they are inadequate for the determination of classes on the scale
of interest to mathematical study. Mental acts of attention can identify a class, but not
a very big one. Some will appeal to the mental powers of God, but they are especially
unsuited to the task of forming classes by mental attention, since God is equally and
perfectly aware of absolutely everything. God distinguishes things not by paying special
attention but by knowing what properties they have.

Versions of Cantor’s Theorem in first order set theories are unassailable specimens
of mathematical truth. But as a principle of philosophy, it is false. Its proof depends on
an alleged class essentially the same as the Russell Class. It is assumed that there is a
one-to-one mapping M between UC and PUC. Then it is held there would have to be a
class URC of all elements of UC which have the property RUP of not belonging to their
M-correlate from PUC. URC would have to be a member of PUC and have an M-
correlate X in UC. Now X is a member of URC if and only if it is not a member. The sit-
uation is exactly like Russell’s Paradox.

The answer should also be the same. There is no such property as RUP for the same
reason that there is no such property as RP. If there is such a property as existing (which
has, of course, been disputed), then the Abstraction Principle guarantees the existence
(and self-membership) of UC. Among its peculiarities will be its isomorphism with its
power class. This is more satisfactory philosophically than making it out to be a thing
which does not itself belong to any class. It would be better to say that Cantor’s Theorem
only holds for ‘sets’ and that UC is thus not a set in that sense.

One modal liar, (ML) is

(E) The proposition E expresses is not a necessary truth.

It seems to be (contingently) true that the proposition that E expresses is that the propo-
sition that E expresses is not a necessary truth. It seems that proposition could not fail
to be true. For if it were not true that that proposition is not necessary, it would be nec-
essary, which is incompatible with its not being true. But then, since it cannot fail to be
true, it must be necessary. But that implies that it is false.

Here it is best to answer that what E, as a matter of contingent fact, says, is that what
it says is nonnecessary. Since what it says is (at least) that it is nonnecessary, it must
then say that it is nonnecessary that it is nonnecessary. But this is, in the broad sense,
a contradiction, since it is necessarily true that if anything is nonnecessary, then it is
necessarily true that it is nonnecessary. That is the characteristic axiom of S5. Its utility
in this case is just one more indication of its truth.

Yablo’s infinite liar (YL), in one version, involves the sentence form

(F) Every sign along The Path numbered n or greater expresses a falsehood,
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where a sentence of that form is written on each of an infinite series of signs arranged
in such a way that each one points in the same direction along The Path and is labeled
with a number one less than the value of n in its sentence. (This has been held to have
the consequence that not a one of the signs in this series is self-referential.) Now, if any
one of the signs, X, were true, then every sign following it would be false. But then any
sign Y following X would be such that every sign following Y was false, which would
make Y true. Thus the truth of any sign X in the series entails a contradiction. So all
the signs in the series would have to be false. But that seems to entail that each sign in
the series would be true.

YL essentially involves the idea of a completed infinite series. If the signs were being
produced one a day into the indefinite future, there would be no basis for trouble. A
plain ordinary falsehood might turn up at any time, which would make the sentence
immediately before it unproblematically true and thus in turn, all the sentences pre-
ceding it unproblematically false. This might seem implausible if the signs are being
produced by a machine that merely puts up a duplicate sign a step down The Path each
day, with nothing in the machine’s repertoire to allow it to do anything else. But infi-
nite time allows all sorts of things to happen. If it is added to the specifications that the
machine is not going to break down, it will be a primary question whether this guar-
antee can be accommodated by a merely potential infinite. But if the complete infinite
series could exist, the above argument for a paradoxical contradiction would apply.

This has been seen by some as showing that logical paradox of the Liar type does
not depend on self-reference. As was observed above, this would depend on what is
meant by self-reference. In any case, that question would not be important on the
present approach, since this case of YL can be treated in the same way as EL. For any
n, sign n attributes falsity to what is said by sign n + 1 and to what is said by sign n +
2. But n + 1 attributes falsity to what is said by n + 2. So n attributes falsity to what is
said by n + 2 and also attributes falsity to that attribution of falsity. Thus sign n con-
tradicts itself for each n. This is assuming the series is infinite. (If it is not, the result is
different, but that need not be considered now.)

One Knower family paradox is (UK):

(G) No one knows that G is true.

This seems probably true by showing that the assumption to the contrary leads to a
contradiction. And yet giving this proof somehow cannot qualify anyone as knowing
H is true. Variations on this theme have been offered as the ‘Surprise Test Paradox.’ A
teacher announces “There will be a test tomorrow and none of you know that this
announcement is true.” There are actually a number of candidates for paradox about
‘surprise’ events and some involve no announcement at all, just a known tradition of
the ‘teacher’ being punished if he fails to spring a test which qualifies as a ‘surprise,’
and related arguments suggesting that he can (and cannot) succeed.

Paradoxes of the Knower family are not resolvable by the method used above for
paradoxes of assertion and predication. Attributing having an unknown truth value is
not like attributing truth or falsity or necessary truth or the like. These paradoxes need
to be treated in a way similar to the belief case C above. They are cases requiring talking
with alleged believers rather than cases which involve merely the logical powers of
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sentences by themselves. Does the assertor of G really believe that he does not know
that what he is saying is true? Consider

(G¢) No one believes that G¢ is true.

A foreigner could easily believe that G¢ expresses a true proposition, thanks to being
ignorant as to what proposition it does express. But is there a proposition G¢ expresses
to intelligent speakers of English, which none of them believe? If not, should we not
then conclude that no one believes, with full understanding, that G¢ is true? And then,
does not that proposition appear to be, after all, what one with a full understanding of
G¢ would see it as expressing? And doesn’t that put us in logical trouble? The mistake
here is in thinking that a proposition that turns up in the course of a certain line of
reflection on G¢ could have been the one G¢ by itself was expressing all along. No one
can believe G¢ in a certain self-referential way. One can use G¢ to express this thought.
But then, so used, G¢ is being believed true. To take that as proof that G¢ is false is to slip
into a confused equivocation. It is not the property of truth that needs stratifying here,
but the various thoughts that get associated with G¢.

A more serious problem about the applicability of the present approach can be
brought out by considering a case in which a dozen people are required by the law to
make exactly one deposition in regard to a certain case, and each one of them deposes
a token of

(H) Something deposed by one of the others is false.

This case can be presented without reference to people, in terms of sentences by them-
selves, so that our rules about assertion and predication should be the answer. We could
arbitrarily stipulate that a certain one of these depositions is false. That would have the
consequence that all the others are true, which works out nicely as far as consistency
goes. But this arbitrariness is obviously unacceptable. Here the above rule R4, which is
the basis for answering the Grelling paradox, is not adequate, because no one of the
depositions is such that no other of the depositions is a false one.

R4 is also not applicable to a version of Yablo’s paradox in terms of existential quan-
tification, in which the signs read

(I) Some sign along The Path, numbered n or greater, expresses a falsehood,

with each sign, as before, labeled with a number one less than the value of n in its sen-
tence. This is unproblematic if the series is finite, since the last sentence is then false,
making its predecessors true. But the infinite series raises the problem that if any one
of the signs were false, all its successors would have to be true, which is impossible,
leading to a contradiction just as with F. However, the treatment which works for YL-
F and EL does not work for YL-I. And R4 does not work either, for the same reason that
it does not work for H. 

It might be tempting to write off YL-I as just a paradox of the completed infinite.
Whether such paradoxes are logical paradoxes is the sort of question set aside at the
beginning of our discussion. It would depend on whether it is a truth of logic that there
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are completed infinites. But we can continue to spare ourselves this question by noting
the similarity between the problem of YL-I and that of the obviously finite case H. The
inadequacy of R4 is the same for each.

Let us proceed directly to R5: To assert that some F is a G is to assert that if anything
is such that nothing other than it is any better candidate for being an F that is a G than
it is, then it is an F that is a G. R5 deals nicely with H. Every one of the deposers i has
said of every other one of the depositions [{1,2, . . . 12} - i] that it is false, since every
member of [{1,2, . . . ,12} - i] is equally qualified for being a deposition other than i
which is false. But calling any one of these, j, false, is to attribute falsity to the claim
that some one of [{1,2, . . . ,12} - j] is false which is to endorse all those claims, while
calling all of them other than i false. Thus all the depositions are inconsistent and for
that reason all are false. And that is not sufficient to make any of them true, because
they have not claimed simply that one of them is false, as an external observer could
simply claim.

The same goes for YL-I. For any sign n, all the subsequent signs qualify equally as
candidates for a false subsequent sign and are thus, by R5, all called false by n. This
makes each sign n contradictory just as in the case of YL-G. They do not claim simply
that a subsequent is false, as an external observer could.

It will be objected that R5 does not sound at all like a logical rule, but more like some-
thing from ethics. The notion of being as good a candidate as there is, for being an F
that is a G, will be held to be objectionably vague. It may well be vague in many cases.
But in the two problem cases just considered it is perfectly clear. The problems in fact
arose from the fact that it would be absurdly arbitrary to treat one candidate as a better
case of an F that is a G than any among a set of others.
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Semantical and Logical Paradox

K E I T H S I M M O N S

1 Introduction

Consider the following array:

‘monosyllabic’ ‘French’ ‘inanimate’ ‘infinite’ . . .

‘monosyllabic’ f t f f . . .

‘French’ f f f f . . .

‘inanimate’ t t t t . . .

‘infinite’ f f f f . . .

. . . . . .. . . . . .. . . . . .

Down the side and along the top are the 1-place predicates of English, taken in the same
order. In each box, we put t or f according to whether the predicate at the side is true
of the predicate at the top. We obtain rows of ts and fs. For example, the row of values
associated with ‘monosyllabic’ is: ftff. . . . Consider the diagonal of values from the top
left towards the bottom right: fftf. . . . Observe that each f in this diagonal sequence cor-
responds to a predicate false of itself (‘monosyllabic,’ ‘French’ and ‘infinite’ are each
false of themselves). Now form the antidiagonal sequence by changing each f in the diag-
onal sequence to a t, and each t to an f. We obtain the sequence ttft . . . , where now
each t corresponds to a predicate false of itself. Notice that this antidiagonal sequence
cannot occur as a row: it differs from the first row in the first place, from the second
row in the second place, and, in general, from the nth row in the nth place. So there
can be no predicate of English true of exactly those English predicates false of them-
selves – for if there were such a predicate, its associated row would be our antidiagonal
sequence. But there is such a predicate – consider the predicate we’ve just used in the



previous sentence, namely ‘English predicate false of itself,’ or ‘heterological’ for short.
We are landed in paradox.

Now make some changes to the array. Replace each predicate by its extension, and
in each box put ‘Œ’ or ‘œ’ according to whether the extension at the side has for a
member the extension at the top. On certain natural assumptions, we obtain this array:

extension of extension of extension of extension of
‘monosyllabic’ ‘French’ ‘inanimate’ ‘infinite’ . . .

extension of œ œ œ œ . . .
‘monosyllabic’

extension of œ œ œ œ . . .
‘French’

extension of Œ Œ Œ Œ . . .
‘inanimate’

extension of œ Œ Œ Œ . . .
‘infinite’

. . . . . .. . . . . .. . . . . .

(In particular, we assume there are finitely many monosyllabic words, and infinitely
many French objects – consider the totality of French sentences. And we assume there
are infinitely many inanimate things, and infinitely many infinite things – just consider
the infinitely many infinite, and inanimate, extensions generated by the predicates
‘natural number greater than 1,’ ‘natural number greater than 2,’ and so on.) Again
we can form the diagonal sequence œœŒŒ. . . . The antidiagonal sequence is ŒŒœœ
. . . , where each Œ corresponds to an extension that is not a member of itself (such as
the extension of ‘monosyllabic’ and the extension of ‘French’). Again, this antidiago-
nal sequence cannot occur as a row. So, on pain of a contradiction, there can be no
English predicate whose extension is exactly the non-self-membered extensions of predi-
cates of English. But the italicized predicate in the previous predicate is such a predicate,
and we are landed in paradox again.

Our first paradox – the heterological paradox – is a member of the family of Liar para-
doxes. The Liar takes many forms: for example, versions of the Liar are generated by the
sentences “This sentence is false,” “This sentence is not true,” and “I am lying now.”
All forms of the Liar turn on the semantic notions of truth or falsity, and so they in
turn are members of the family of semantic paradoxes. Other members of this extended
family turn on the notion of reference or denotation – these are the so-called ‘defin-
ability paradoxes’ due to Richard, König and Berry (see Richard 1905; König 1905;
and for the Berry, Russell 1908). Consider, for example, Berry’s paradox. There are only
a finite number of English expressions with fewer than 28 syllables, and some of these
(like ‘the square of 3’) denote integers. But there are infinitely many integers. Let k 
be the least integer not denoted by an English expression in fewer than 28 syllables. This 
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italicized phrase denotes k, but it has fewer than 28 syllables – and we’ve reached a
contradiction. 

Our second paradox is a version of Russell’s paradox, couched in terms of exten-
sions. Russell’s paradox also arises for sets – consider the set of exactly the non-self-
membered sets, and ask whether or not it is a self-member. This version of Russell’s
paradox is one of several set-theoretical paradoxes discovered at the turn of the twen-
tieth century. Among these are Burali-Forti’s paradox, turning on the set of all ordinal
numbers, and Cantor’s paradox, concerning the universal set, the set of all sets.

Following Ramsey (1925), it has become standard to divide the paradoxes into 
two groups: the semantical paradoxes (such as the Liar and the definability paradoxes),
and the logical paradoxes (such as Russell’s, Burali-Forti’s, and Cantor’s). And the
attempts to resolve the two kinds of paradoxes have tended to go their separate ways.
There is something to this division: the semantical paradoxes arise from ordinary terms
of English, like ‘true’ and ‘denotes’, while the set-theoretical paradoxes arise in the setting
of a mathematical language, and turn on technical notions like set and ordinal number.

Nevertheless, we should be wary of the division, at least the way Ramsey draws it.
As we have seen, the heterological paradox and Russell’s paradox have a shared struc-
ture: each is generated by a diagonal argument. Diagonal arguments establish positive
theorems – for example, Gödel’s first incompleteness theorem, Tarski’s indefinability
theorem, and many theorems of recursion theory. But they also generate paradoxes.
(For more on the diagonal argument, see Simmons 1993.) The shared diagonal struc-
ture of the heterological paradox and Russell’s paradox encourages the search for a
common resolution. Moreover, Russell’s paradox for extensions is tied to predication –
and that encourages the thought that it belongs in the category of semantical paradox,
along with the heterological paradox.

So there may be a question about how best to classify the paradoxes. But there is no
doubt about their tremendous significance: they have forced logicians and philosophers
to rework the foundations of semantics and set theory.

2 Semantic Paradoxes: Some Proposals

The hierarchy

Think back to our first paradoxical array, where the top and the side were composed by
all the 1-place predicates of English, including the problematic ‘English predicate false
of itself.’ We can escape paradox if we restrict the array in some suitable way, so that
this and other paradox-producing predicates are excluded. Suppose the restricted side
and top is the collection D of semantically unproblematic 1-place predicates of English.
In particular, the predicate ‘English predicate in D false of itself ’ is excluded from D, on
pain of paradox. Here is an application of Russell’s Vicious Circle Principle: “Whatever
involves all of a collection must not be one of the collection” (Russell 1908: 155). We
might think of the predicate ‘English predicate in D false of itself ’ as standing above the
collection of predicates that it involves.

These ideas may lead us to a hierarchical account of truth and falsity. One such
account runs as follows. At the first level of the hierarchy are the expressions of English
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that do not contain any semantic terms (predicates like ‘monosyllabic’ and sentences
like ‘Aardvarks amble’). At the second level we find these first-level expressions together
with semantical predicates, like ‘true1,’ ‘false1,’ ‘true1 of itself,’ and ‘false1 of itself,’ which
apply only to sentences and predicates of the first level. We can think of the second-level
language as a metalanguage for the object language of the first level – the metalanguage
contains the semantical terms that apply to the object language. At the third level we
find all the second-level expressions (including all the first-level expressions), together
with semantical predicates, like ‘true2,’ ‘false2,’ ‘true2 of itself,’ and ‘false2 of itself,’ which
apply only to sentences and predicates of the second level. And so on.

Now semantical paradox does not arise. For example, we can no longer generate the
heterological paradox. There is no absolute predicate ‘English predicate false of itself,’
but rather relativized predicates of the form ‘English predicate falsea of itself ’ for some
ordinal a. This predicate is of level a + 1, and applies only to predicates of level a. So it
does not apply to itself – and a contradiction is no longer forthcoming.

Or consider the Liar sentence:

(L) (L) is not true.

Here we generate a contradiction by observing that

(1) “(L) is not true” is true if and only if (L) is not true.

This is an instance of Tarski’s famous truth-schema:

(T) X is true if and only if p,

where ‘p’ abbreviates a sentence, and ‘X’ is a name of that sentence (see Tarski 
1944: 15). Given (1), and given that ‘(L) is not true’ just is the sentence (L), we may
infer:

(2) (L) is true if and only if (L) is not true,

from which a contradiction immediately follows.
But if we adopt the hierarchical view, this derivation is blocked. Just as the truth (and

falsity) predicates are always relativized to a level, so is the truth-schema. The occur-
rences of ‘true’ in (L) and in (T) are relativized to some level. So (L) is to be understood
as ‘(L) is not trueb,’ for some ordinal b. The T-schema associated with ‘trueb’ is:

(Tb) X is trueb if and only if p,

for some ordinal b, where ‘p’ abbreviates a sentence of level b, and ‘X’ names that sen-
tence. Observe that, according to the hierarchical line, (L) is a sentence of level b + 1
and not of level b. So it may not be substituted for p in the schema (Tb), and this blocks
the Liar reasoning.

How attractive is the hierarchical resolution of semantical paradox? It faces a
number of serious difficulties. First, the splitting of ‘true’ and ‘false’ into an infinity of
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distinct, stratified predicates seems to go against the spirit of a natural language like
English. English doesn’t seem to be stratified, and the predicate ‘true’ appears to be 
univocal. Before his eventual endorsement of the hierarchical approach, Russell 
himself described it as “harsh and highly artificial” (Russell 1903: 528).

Second, the stratification of ‘true’ (and ‘false’) involves massive restrictions on oc-
currences of ‘true.’ On a standard hierarchical line, Tim’s utterance of “Aardvarks
amble” is of level 1; Joanne’s utterance of “ ‘Aardvarks amble’ is true” is of level 2; and
so on, through the levels. Joanne’s use of ‘true’ has in its extension all sentences of level
1 and no others. So all sentences of level 2 and beyond are excluded from the exten-
sion of Joanne’s use of ‘true’ (and any use of ‘true’ in a sentence of level 2). Gödel
remarked of Russell’s type theory that “each concept is significant only . . . for an infi-
nitely small portion of objects” (Gödel 1944: 149). A similar point can be made here
about the hierarchical line: an ordinary use of ‘true’ will apply to only a fraction of all
the truths.

Third, the hierarchical resolution invites a revenge Liar – a version of semantical
paradox couched in the very terms of the resolution itself. Consider the sentence:

(3) This sentence is not true at any level of the hierarchy.

Suppose (3) is true – that is, on the hierarchical line, true at some level r. Then what
(3) says is the case, and so (3) is not true at any level, and, in particular, not true at
level r. Suppose, on the other hand, that (3) is not true at any level. But that is just
what (3) says – so (3) is true (at some level). We obtain a contradiction either way: we
have traded the old paradoxes for a new one.

Truth-value gaps

Given these difficulties, we might wonder if we can dispense with the hierarchy. In the
terms of our first array, let us admit ‘English predicate false of itself,’ or ‘heterological,’
to the side and top, and make adjustments elsewhere. Now we should ask: what value
can we put in the ‘heterological’/‘heterological’ box in the leading diagonal? On pain
of contradiction we cannot put ‘t’ or ‘f ’ in this box. So a natural thought is to appeal
to truth-value gaps, and say that the predicate ‘heterological’ is neither true nor false of
itself. And we can put ‘u,’ say, in the ‘heterological’/‘heterological’ box. Now suppose
we form the antidiagonal by converting each t to an f, each f to a t, and leaving each u
unchanged. Observe that the antidiagonal is identical to the row associated with ‘het-
erological,’ and no contradiction arises. Contradiction arises if we assume heterologi-
cal is true or false of itself – but if it is neither, we escape the paradox. Similarly for Liar
sentences; for example, the sentence ‘This sentence is false’ only generates a contra-
diction if we assume it is either true or false.

The claim that Liar sentences are gappy seems natural enough – after all, the
assumption that they are true or false leads to a contradiction. Moreover, one can moti-
vate gaps independently of the Liar (e.g. by appeal to presupposition theory, or category
considerations, or vagueness).

With gaps on board, we can allow the predicate ‘English predicate false of itself ’ to
belong to the collection of English predicates – we have no need to invoke Russell’s
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Vicious Circle Principle. More generally, Kripke (1975) has shown that, if we admit
truth-value gaps, it is possible for a language to contain its own truth-predicate. By 
a fixed-point construction, Kripke obtains a language – call it Ls – that contains the
predicate ‘true-in-Ls,’ the extension of which is exactly the true sentences of Ls. And
similarly for the predicate ‘false-in-Ls.’ The language Ls exhibits a striking degree of
semantic closure. Ls has the capacity to express its own concepts of truth and falsity;
there is no need to ascend to a metalanguage.

So truth-value gaps are natural enough, and it might appear that they allow us to
dispense with the hierarchy. But a moment’s reflection shows that any such appear-
ance is deceptive. The ‘truth-value gap’ approach to semantic paradox faces its own
revenge Liar, couched in terms of gaps. Consider the sentence:

(4) This sentence is either false or gappy.

This Liar sentence generates a contradiction whether we assume it is true, false, or
gappy. In particular, if (4) is gappy, then it is either false or gappy – but that’s what (4)
says, so it’s true. A similar paradox is produced by the sentence:

(5) This sentence is not true,

as long as ‘not true’ is taken in a suitably wide sense, as coextensive with ‘false or gappy’
(and not with ‘false’). This is a perfectly natural sense of ‘not true.’ False sentences are
not true, of course, but so are gappy sentences – indeed, gappy sentences are, by defi-
nition, not true (and not false).

There is a revenge version of the heterological paradox too – just consider the pred-
icate ‘English predicate false or neither true nor false of itself ’ (‘superheterological’ for
short). Or to put it in terms of our array: form the antidiagonal by changing each t to
an f, each f to a t, and each u to a t. Now this antidiagonal cannot occur as a row of
the array, on pain of contradiction. And yet this antidiagonal sequence just is the row
associated with ‘superheterological.’

Perhaps we must appeal to the Vicious Circle Principle again, and exclude ‘super-
heterological’ from the class of English predicates that it involves. And that would lead
us back to the hierarchy. Similarly with Kripke’s language Ls. Although Ls contains its
own truth and falsity predicates, it does not contain ‘neither true-in-Ls nor false-in-Ls,’
or ‘not true in Ls’ (in the appropriately wide sense). If we admit these predicates into
Ls, the revenge Liar returns. According to the truth-gap approach, Liar sentences are
gappy, and they are not true; however, we cannot say so in Ls, but only in a semanti-
cally richer metalanguage. The language in which we state the gap account, in which
we express the notion of a truth-value gap, must be regarded as a metalanguage for Ls

(see Kripke 1975: 79–80, and fn. 34).

Return of the hierarchy?

The point here can be generalized. Suppose I offer a resolution of semantical paradox
that makes no appeal to a hierarchy. Let L be the object language, the language that
my semantical theory is a theory of. And let LT be the language in which I state my
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theory. We can ask: is LT a metalanguage for L, on pain of semantical paradox? This is
a crucial question, for if the answer is affirmative, then I have not dispensed with the
hierarchy, and I have not dealt with semantical paradox in all its forms.

It is a question we can raise not only for Kripke’s theory, but for a wide variety of
non-hierarchical theories of truth, such as the revision theory (see Gupta 1982; Gupta
and Belnap 1993; Herzberger 1982), McGee’s treatment of ‘true’ as a vague predicate
(McGee 1990), and Feferman’s type-free theory of truth (Feferman 1982). For example,
a key notion of the revision theory is that of stable truth. The leading idea is that Liar
sentences are unstable: if we ascribe truth to the Liar sentence (L), we must revise that
ascription, declaring (L) untrue, and then in turn revise that ascription, declaring (L)
true, and so on indefinitely. We can ask whether the notion of stable truth must be con-
fined to a metalanguage, on pain of the revenge Liar generated by

(S) (S) is not stably true.

Parallel questions can be raised for McGee’s notion of definite truth, and for the notion
of ‘not true’ in Feferman’s theory (where negation is classical). Observe that all 
these notions at issue – truth-value gaps, stable truth, definite truth, untruth – are
natural enough, and so it is all the more urgent that a purported solution to the Liar
come to grips with them. (For an extended discussion of these matters, see Simmons
1993.)

Dialetheism

We have seen that there are serious difficulties with the hierarchical approach. Now
suppose we become convinced that nonhierarchical approaches cannot really avoid the
hierarchy. In the face of this dilemma, we might seek more radical measures. According
to dialetheism, Liar sentences are both true and false (see, e.g., Priest 1979, 1984).
According to Priest, once we admit such truth-value ‘gluts’, we may dispense with the
object language/metalanguage distinction altogether (see Priest 1984: 161). Of course,
dialetheism requires that we abandon classical principles of semantics and logic – but
only for a certain class of pathological cases, like the Liar family. Perhaps we can cordon
off the paradoxical sentences, so that truth-value gluts will be the exception rather than
the rule, and classical principles will hold good everywhere else.

But it may not be so clear that the dialetheist can prevent the spread of pathology.
One dialetheist account of the truth conditions of ‘A is true’ and ‘A is false’ is summed
up by these tables:

A A is true A A is false

t t t f
p p p p
f f f t

where ‘p’ abbreviates ‘paradoxical’ (i.e. ‘true and false’) (see Priest 1979). Let L be a
Liar sentence. Then L is both true and false. By the truth tables,
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L is true ´ L
and L is false ´ L.

So ‘L is true’ and ‘L is false’ are paradoxical. Since, according to the present dialetheist
account, the conjunction of two paradoxical sentences is paradoxical, ‘L is true and L
is false’ – that is, ‘L is paradoxical’ – is paradoxical. So a defining claim of the dialethe-
ist account, that L is paradoxical, is itself paradoxical. The theory itself is not immune
from paradoxical assertions. And perhaps this should give us pause.

3 Sets and Extensions

Recall Russell’s paradox for sets. Given the set R of exactly the non-self-membered sets,
we obtain a contradiction if we assume it is self-membered, and if we assume it isn’t.
Nowadays, this paradox is no longer considered a real threat: it does not arise in the
received set theory, Zermelo-Fraenkel set theory (ZF).

ZF set theory embodies the combinatorial or iterative conception of set (see Boolos
1971). Think of a set as formed this way: we start with some individuals, and collect
them together to form a set. Suppose we start with individuals at the lowest level. At
the next level, we form sets of all possible combinations of these individuals. And then
we iterate this procedure: at the next level, we form all possible sets of sets and individ-
uals from the first two levels. And so on.

In pure set theory we start with no individuals, just the empty set f. Every pure set
appears somewhere in this endless cumulative hierarchy:
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Observe that no ZF set is a self-member. So if the Russell set R existed it would be the
universal set. But there is no universal set, since there is no end to the hierarchy. In this
way, Cantor’s paradox is avoided. And since it follows that there is no set R, Russell’s
paradox for sets is also avoided. (Similarly with Burali-Forti’s paradox: there is no set of
all ordinal numbers.)

ZF does provide a consistent set-theoretical basis for mathematics. But there are
costs. For one thing, we expect a well-defined predicate to have an extension. In par-
ticular, we expect the self-identity predicate to have an extension – but since there is no
universal set, ZF does not provide an extension for ‘x = x.’ Or again, since ZF provides a
clearcut concept of set, we expect the predicate ‘set’ to have an extension – and in ZF it
doesn’t. Note further that in ZF we quantify over sets, and so we need a domain of quan-
tification; but again no set in the hierarchy can serve as this domain.



Such considerations have led some to explore the prospects of a set theory with a
universal set (see, e.g., Quine 1937). Thus far those prospects do not seem very bright,
at least if we are after a set theory that is plausible and intuitive. A more entrenched
response has been to introduce another kind of collection: classes or proper classes.
Proper classes are collections ‘too big’ to be sets; there is, for example, a proper class of
all sets and a proper class of all ordinals. (Proper classes were first explicitly introduced
in von Neumann 1925; for a recent discussion, see Maddy 1983.) Of course, a version
of Russell’s paradox threatens proper classes too. Von Neumann’s way out placed a
restriction on proper classes: they cannot themselves be members. This restriction is
severe – we cannot even form the unit class of a proper class. There followed more
liberal theories of classes (see, e.g., Levy et al. 1973), but in none of these theories can
a proper class be a self-member, and so Russell’s paradox does not arise.

However, the introduction of classes seems merely to push the problem back. Still
there is no extension for ‘x = x,’ or for the predicates ‘class’ and ‘proper class.’ And no
class can serve as the domain of quantification over classes.

A more promising strategy, it would seem, is to develop a theory of extensions from
scratch. In my view, the notions of extension and set (or class) are independent and
mutually irreducible. We cannot reduce sets or classes to extensions, for extensions are
essentially tied to predication, and sets and classes are not. (Given some natural
assumptions, there are strictly more sets in the ZF hierarchy – and more classes – than
there are predicates in, say, English.) And we cannot reduce extensions to sets or classes.
No set can serve as the extension of ‘set,’ and no class can serve as the extension of
‘class’; and there are, as we have seen, self-membered extensions, but no self-membered
classes or ZF sets.

If we do develop a theory of extensions directly, we must of course find a way out of
Russell’s paradox for extensions. We saw in Section 1 that this paradox is best viewed
as a semantical paradox, and that it shares structural similarities with the heterologi-
cal paradox. All the better, then, if we can find a unified solution to this version of
Russell’s paradox, the paradoxes of definability, and the Liar paradoxes.

4 Three Paradoxes

In search of such a unified account, consider three paradoxes. First, suppose that I am
confused about my whereabouts (I think I am in room 102), and I write on the board
in room 101 the following denoting expressions:

(A) the ratio of the circumference of a circle to its diameter.
(B) the successor of 5.
(C) the sum of the numbers denoted by expressions on the board in room 101.

It is clear what the denotation of (A) and (B) are. But what is the denotation of (C)?
Suppose (C) denotes k. Then the sum of the numbers denoted by expressions on the
board is p + 6 + k. So (C) denotes p + 6 + k. So k = p + 6 + k. We are landed in a 
contradiction.

So we should conclude:
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(6) (C) is pathological, and does not denote a number.

Now we can reason that (A) and (B) are the only expressions on the board that denote
numbers. So we may conclude that the sum of the numbers denoted by expressions on the
board in room 101 is p + 6. Observe that in the previous sentence there occurs a token
of the same type as (C), call it (C*). Unlike (C), (C*) is not pathological, and it does have
a denotation. We may conclude:

(7) (C*) denotes p + 6.

How can two expressions – composed of exactly the same words with the same lin-
guistic meaning – differ so dramatically in their semantic status?

Suppose next that I write on the board in room 101 these two predicates:

(E) moon of the Earth
(F) unit extension of a predicate on the board in room 101.

The extension of predicate (E) is a unit extension, and so it is a member of the exten-
sion of (F). What about the extension of (F)? Suppose first that it is a self-member. Then
the extension of (F) has two members, so it is not a unit extension – and so it is not a
self-member. Suppose second that it is not a self-member. Then the extension of (F) has
just one member, so it is a unit extension – and so it is a self-member. Either way we
obtain a contradiction.

So we should conclude that (F) is a pathological predicate that fails to have an exten-
sion. But if (F) does not have an extension, then in particular it does not have a unit
extension. So the only unit extension of a predicate on the board in room 101 is the exten-
sion of (E). We’ve just produced a token of the same type as (F), call it (F*). But unlike
(F), (F*) has a well-determined extension (whose only member is the extension of (E)).
Again we can ask: how is that these two expressions – composed of the very same words
– differ in their semantic status?

Finally, consider the case of truth. If I write on the board in room 101 the following
sentence:

(L) The sentence written on the board in room 101 is not true,

then I have produced a Liar sentence. We are landed in a contradiction whether we
assume (L) is true, or not true. So we can conclude that (L) is semantically pathologi-
cal. As we have seen, semantic pathologicality may be cashed out in a variety of ways
– for example, perhaps (L) is gappy or unstable. But if (L) is pathological, then it is not
true. That is, we may conclude:

(L*) The sentence written on the board in room 101 is not true.

And while (L) is pathological, (L*) is true. Again, the two sentences differ in semantic
status, yet they are tokens of the same type.
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5 A Contextual Approach

How should we resolve these paradoxes? In each case, we have the same phenomenon:
a change in semantic value (in denotation, extension, or truth-value) without a change
in linguistic meaning. Such a change suggests some pragmatic difference.

Consider the case of denotation, though what we say about this case carries over to
the others. There are a number of differences between the context of (C) and the context
of (C*). Beyond the familiar contextual parameters of speaker, time, and place, there
are differences in discourse position, intentions, and relevant information as well. (C*) is
produced at a later stage of the discourse, after it has been established that (C) is patho-
logical. At this later stage, we reason in the light of (C)’s pathology – we may say that
the context in which we produce (C*) is reflective with respect to (C). Intentions shift too.
At the later stage, our intention is to treat (C) as pathological and see where this leads
us. But I have no such intention at the first stage – my intention in producing (C) is to
refer to expressions on the board next door. There is a corresponding shift in informa-
tion: the information that (C) is pathological is available throughout the later stage of
the reasoning, but it is not available to me when I first produce (C). These contextual
differences all contribute to a crucial contrast between the contexts of (C) and (C*): the
former is unreflective with respect to (C), and the latter is reflective with respect to (C).

If we accept the appropriateness of a pragmatic explanation, then we should expect
to find a term occurring in (C) and (C*), and in (1) and (2), that is context-sensitive.
When we inspect the terms occurring in these expressions, there seems to be only one
candidate: the predicate ‘denotes.’ Accordingly, let us represent (C) by

(C) the sum of the numbers denotedC by expressions on the board in room 101,

where the subscript indicates that the use of ‘denotes’ in (C) is tied to (C)’s unreflective
context of utterance.

To determine the denotation of (C), then, we must determine the denotationC of
expressions on the board – that is, the denotationsC of (A), (B), and (C). The conditions
under which an expression denotesC is given by a denotation schema (analogous to the
truth-schema):

s denotesC n iff p = n,

where instances of the schema are obtained by substituting for ‘p’ any referring expres-
sion, for ‘s’ any name of this expression, and for ‘n’ any name of an individual. When
we apply this C-schema to (C), we obtain a contradiction, and this leads to the conclu-
sion (8), represented by:

(8) (C) does not denoteC a number.

We go on to reason that (A) and (B) are the only expressions on the board that
denoteC numbers, since (C) does not. So we infer that the sum of the numbers denotedC
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by expressions on the board in room 101 is p + 6. In producing (C*) here, we have in
effect repeated (C). But we have repeated (C) in a new context, a context that is reflec-
tive with respect to (C). We no longer provide denotation conditions via the C-schema.
In this new reflective context – call it R – denotations are determined in the light of (C)’s
pathology. That is, denotations are determined by the R-schema:

s denotesR n iff p = n.

And (C*) does have a denotationR. Consider the biconditional:

(C*) denotesR k iff the sum of the numbers denotedC by expressions on the board in
room 101 at noon 7/1/99 is k.

The right-hand side is true for k = p + 6, since we have established that (C) does not
denoteC. And so we infer

(9) (C*) denotesR p + 6.

(C) and (C*) are semantically indistinguishable – the difference between them is a purely
pragmatic one. It is a matter of the denotation schemas by which (C) and (C*) are given
denotation conditions. At the first stage of the reasoning, (C) is assessed via the unre-
flective C-schema; at the second stage, (C*) is assessed via the reflective R-schema.
Notice that if we assess (C) via the R-schema, we find that (C), like (C*), denotesR p + 6;
and if we assess (C*) via the C-schema, we find that (C*), like (C), does not denoteC a
number. So the tokens of ‘denotes’ in (8) and (9) have different extensions: (C) and (C*)
are not in the extension of ‘denotesC,’ but both are in the extension of ‘denotesR.’ So
‘denotes’ is a context-sensitive term that may shift its extension with a change in
context – as it does in the move from (8) to (9).

We can give exactly parallel analyses of the cases of extension and truth. We take
‘extension’ and ‘true’ to be context-sensitive terms, and explain the difference between
(F) and (F*), and between (L) and (L*), in terms of a change in evaluating schemas.

6 A Singularity Proposal

The question naturally arises: what is the relation between the unreflective and reflec-
tive stages? A possible response here is a Tarskian one: when we move from the first
stage of the reasoning to the second, we push up a level of language. (For contextual
accounts of truth that appeal to a hierarchy, see Parsons 1974; Burge 1979; Barwise
and Etchemendy 1987; Gaifman 1988, 1992.) So, for example, the terms ‘denotesC’
and ‘denotesR’ belong to distinct levels, and the extension of ‘denotesR’ properly con-
tains the extension of ‘denotesC.’

We have already seen the difficulties that hierarchical accounts face. But a unified
hierarchical account of reference, extension, and truth faces a special difficulty. It is 
the case of extensions that presents the problem. Extensions can be self-membered; 
for example, as we saw in Section 1, the extension of the predicate ‘infinite extension’
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belongs to itself. According to the hierarchical approach, this predicate is of the form
‘infinite extensions.’ And the predicate itself is a predicate of Ls+1 and not of Ls. So the
extension of this predicate is not a self-member – it contains extensions of predicates
of Ls only. The hierarchical account cannot accommodate self-membered extensions.
A distinctive feature of extensions is regimented away.

But perhaps we can retain the contextual idea and jettison the hierarchy. This is the
idea behind the singularity theory (see Simmons 1993, 1994). Occurrences of ‘denotes,’
‘extension,’ and ‘true’ are to be minimally restricted, in accordance with the pragmatic
principle of Minimality. Suppose, for example, you say “ ‘The square of 1’ denotes 1.”
Here, your use of ‘denotes’ is quite unproblematic. Should (C) be excluded from its
extension? According to Minimality, the answer is no – because there is no need to
exclude it. We have seen that (C) denotesR p + 6 because the sum of the numbers
denotedC by expressions on the board is p + 6. And for the same reason, (C) denotesN

p + 6, where N is the context of your utterance, a context neutral with respect to (C).
If we adopt Minimality we respect a basic intuition about predicates. In general, if

an individual has the property picked out by the predicate j, then we expect that indi-
vidual to be in the extension of j. The more restrictions we place on occurrences of
‘denotes’ (or ‘extension’ or ‘true’), the more we are at odds with this intuition.
Minimality keeps surprise to a minimum.

So the present proposal identifies singularities of the concepts denotes, extension, 
and truth. For example, (C) is a singularity of ‘denotesC,’ because it cannot be given
denotationC conditions. Notice that (C) is a singularity only in a context-relative way –
it is not a singularity of ‘denotesR’ or ‘denotesN.’

No occurrence of ‘denotes’ or ‘extension’ or ‘true’ is without singularities. For
example, consider again (7):

(7) (C*) denotes p + 6.

Consider the following perverse addition to (7):

(10) And so the number denoted by (C*), plus the number denoted by ‘the square
of 1,’ plus the sum of the numbers denoted by phrases in this sentence, is 
irrational.

Given the context, the occurrences of ‘denotes’ in our continuation will be represented
by ‘denotesR.’ Consider the final definite description token in our utterance (beginning
‘the sum of ’) – call this token (D). (D) is a singularity of ‘denotesR’ – the R-schema
cannot provide it with denotation conditions.

The example of (D) brings out the anti-hierarchical nature of the singularity pro-
posal. Observe that we can reflect on (D), just as we earlier reflected on (C). In a suit-
ably reflective context, we can conclude that (D) denotes (p + 6) + 1 – since the only
denoting phrases in (10) that denoteR numbers are the first two phrases, and these
phrases denote p + 6 and 1 respectively. And by Minimality, (D) will have this denota-
tion when assessed by any schema other than the R-schema. In particular, the token
does denoteC – it is not a singularity of ‘denotesC.’ The C-schema does determine a deno-
tation for it. On a Tarskian account, the extension of ‘denotesC’ will be a proper subset
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of the extension of ‘denotesR.’ According to the singularity proposal, neither extension
includes the other.

Gödel once made the following tantalizing remark about the paradoxes:

It might even turn out that it is possible to assume every concept to be significant every-
where except for certain ‘singular points’ or ‘limiting points’, so that the paradoxes would
appear as something analogous to dividing by zero. Such a system would be most satisfy-
ing in the following respect: our logical intuitions would then remain correct up to certain
minor corrections, i.e. they could then be considered to give an essentially correct, only
somewhat ‘blurred’, picture of the real state of affairs. (Gödel 1944: 229)

I take the singularity proposal to be in the spirit of Gödel’s suggestion. According to the
present account, our intuitions about ‘denotes’ – and ‘extension’ and ‘true’ – are almost
correct. It is only in pathological or paradoxical contexts that we may mistakenly
suppose that certain phrases denote when they do not – and in such cases our appli-
cations of ‘denotes’ require only minimal corrections. We retain a single denotation
predicate which undergoes minimal changes in its extension according to context.
There is no wholesale revision of the notion of denotation; no division of ‘denotes’ into
infinitely many distinct predicates; no splitting of everyday English into an infinite hier-
archy of languages.

7 Universality

It is of course beyond the scope of this chapter to provide a formal theory of singular-
ities (see Simmons (1993) for a singularity theory of truth). But suppose we had such
a formal theory LT for an object language L containing the context-sensitive predicate
‘denotes,’ or ‘extension,’ or ‘true.’ Won’t we now face the familiar objection, that LT is
a metalanguage for L, and the hierarchy is inevitable? Moreover, since we may regard
LT as a classical formal language, it will be subject to Tarski’s theorem. So the seman-
tical predicates for LT will be contained in a further metalanguage, which in turn
cannot contain its semantic predicates. From LT, then, a whole hierarchy of languages
is generated.

But the singularity account is not without resources here. The context-sensitive
predicate ‘denotes’ applies to any denoting phrase of LT as long as that phrase is not
identified as a singularity – and similarly for any denoting phrase at any level of the
ensuing hierarchy. No language of the hierarchy is a metalanguage for L – ‘denotes’
applies to phrases of all levels. (Parallel remarks can be made about ‘extension’ and
‘true.’) The scope of ‘denotes’ is as close to universal as it can be.

According to Tarski, natural languages are “all-comprehensive” and “universal”:

The common language is universal and is intended to be so. It is supposed to provide 
adequate facilities for expressing everything that can be expressed at all, in any language
whatsoever; it is continually expanding to satisfy this requirement. (Tarski 1969: 89)

It is the apparent universal character of natural language that both generates seman-
tical paradoxes and makes them so difficult to solve. Any semantic account of ‘denotes,’
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‘extension,’ or ‘true’ will just be more English, and so the stage is set for a revenge Liar.
Whether the singularity account, or some other, can do sufficient justice to this feature
of natural language cannot be settled here. But the challenge remains. At root, seman-
tical paradox and the problem of universality are one and the same.
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9 

Philosophical Implications of
Logical Paradoxes

ROY A . S O R E N S E N

Dr. Seuss’ On Beyond Zebra opens with a young boy proudly writing on a blackboard.
Conrad Cornelius o’Donald o’Dell, has demonstrated his exhaustive knowledge of the
alphabet: A is for Ape, B is for Bear, . . . and Z is for Zebra. An older boy compliments
Conrad. He breezily concedes to young Conrad that most people stop with Z. But his
alphabet continues beyond Z. The extra letters let him spell new things. The older boy
thus introduces Conrad to an otherwise inaccessible realm of exotic creatures. For
instance, the Q-ish letter quan is for the vertically symmetric Quandary who lives on a
shelf

In a hole in the ocean alone by himself
And he worries, each day, from the dawn’s early light
And he worries, just worries, far into the night.
He just stands there and worries. He simply can’t stop . . .
Is his top-side bottom? Or bottom-side top?

A metaphysician who tags along on the tour given to Conrad will be reminded of other
never-never lands.

1 Paradoxes Stimulate Theory Development

Why aren’t statements that assert the existence of an entity trivially true? If ‘Santa
Claus exists’ is false, then the sentence must be about Santa Claus. ‘About’ is a two-place
relation, so the sentence is about Santa only if there is a Santa. But then ‘Santa Claus
exists’ is true! Alexius Meinong challenged the transition from ‘There is a Santa’ to
‘Santa exists.’ Meinong believed there is a complex domain of nonexistent objects that
have been neglected by metaphysicians much as astronomers long neglected dark
matter. Meinong’s metaphysics illustrates how a logical paradox can stimulate the
development of a philosophical theory.

The excesses of such a theory provoke debunkers. After initial sympathy with
Meinong, Bertrand Russell (1957) traced belief in nonexistent objects to an illusion
about ‘the.’ ‘The present king of France is bald’ appears to refer to the present king of



France. Russell dismantled this appearance. His theory of descriptions underwrites the
synonymy of ‘The present king of France is bald’ and ‘There is exactly one king of
France and whoever is king of France is bald.’ The first conjunct of this sentence can
be denied without referring to any particular entity.

The hypothesis that names are disguised definite descriptions subsumes ‘Santa Claus
does not exist’ under Russell’s theory. Subsequent philosophers supported Russell’s lin-
guistic thesis with increasingly sophisticated proposals as to what the disguised definite
description is. Typically, deflationary accounts generate auxiliary linguistic theories and
distinctions. After all, logic can be applied only with the help of assumptions about how
key locutions operate. Even those who do not accept the dissolutions (whether through
substantive doubts or indifference toward the motivating problem) have been impressed
by some of these auxiliary theories. Linguists were especially quick to incorporate the
great handmaiden of logic, H. P. Grice’s theory of conversational implicature.

When the theory development takes place within logic itself, the result is a powerful
constraint on all future theorizing. Any scientific result is a constraint in the sense that
it constitutes grounds against any future theory that conflicts with the result. But most
scientific results are domain specific and of a limited degree of necessity. For instance,
it is physically impossible to make a left shoe into a right shoe by turning it over through
a fourth dimension. But crystallographers, topologists and philosophers can coherently
study this kind of mirror reversal. They are interested in a wider domain of possibility.
Logic is at the limit of this scale of possibility. Consequently, logical impossibilities are
maximally coercive. Even the skeptic is careful to keep his scenarios within the bounds
of logical law.

2 An Analogy with Perceptual Illusions

Russell (1957: 47) tested his theory of descriptions by how it handled related paradoxes
such as the surprising informativeness of identity statements. He advised logicians to
keep a stock of logical puzzles on the grounds that these play the same role as experi-
ments do for scientists.

Some logicians are unimpressed with Russell’s analogy. They adopt the same atti-
tude toward logical paradoxes that the perceptual psychologist J. J. Gibson took toward
perceptual illusions. According to Gibson’s ecological view, perception must be under-
stood within the perceiver’s natural environment, as an adaptation toward practical
ends. Gibson dismissed perceptual illusions as largely irrelevant, confined to picture
books and computer generated toy worlds.

After the entrenchment of Aristotle’s logic, little distinction was made between
sophistry and logical paradoxes. The liar paradox and the sorites paradox (which are in
high esteem today) were regarded by almost all subsequent philosophers as isolated
curiosities. Medieval logicians are the important exceptions. Their highly structured
system of scholarly debate encouraged attention to logic and language. Contrary to
stereotype, they approached many philosophical issues with an escape artist’s mix of
imagination and rigor. Pseudo-Scotus’ paradox of validity and Jean Buridan’s variants
of the liar have found their way back into academic publications – and not just for their
antiquarian value.
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Currently, the dominant view in psychology is that perceptual illusions are more
than an entertaining sideline. As Hermann von Helmholtz said a century ago, illusions
are anomalies that provide clues as to how normal perception originates. Each sense is
a package of rough and ready modules that evolved to achieve collective reliability, not
individual reliability. Illusions arise when experimenters isolate systems under labora-
tory conditions or venture into environments and circumstances alien to our hunter-
gatherer heritage. If the detection of validity is also a ‘bag of tricks,’ then fallacies
should provide clues about normal reasoning. And indeed, psychologists have had
much to say about ‘cognitive illusions’ (ignoring base rates, confirmation bias in the
four card selection task, the Monty Hall problem). Yet they have had little to say about
logical paradoxes.

The silence of the psychologists is an anomaly for those who believe that there 
is only a quantitative difference between brainteasers of recreational logic and deep
logical paradoxes. Logical pedagogy reflects this gradualist sentiment. Raymond
Smullyan’s What is the name of this book? starts at the shallow end of the cognitive pool
and then moves cheerfully and continuously into deeper waters. There is no sharp line
between non-philosophical puzzles that have algorithmic solutions and philosophical
problems in which we only have a hazy idea of what would even count as progress.

The gradualist might venture a random walk theory of profundity. If we are re-
stricted to trial and error, it is statistically easier to solve an n step problem than an n
+ 1 step problem. The probability of solution is a geometrical rather than an arithmetic
function of the number of steps needed for a solution. Consequently, a problem that is
a few more steps from resolution will have a much lower probability of solution. These
recalcitrant problems are apt to be perceived as qualitatively different. In addition to
being more difficult to solve, the more complex problems will be less detectable. Lewis
Carroll produced thousands of unmemorable logic exercises but discovered only a
handful of logical paradoxes.

Gradualism breeds optimism about the ultimate solubility of philosophical problems.
If profound problems differ only in degree from solvable brainteasers, then philosoph-
ical progress is probable. The appearance of stagnation would be best explained as a
sampling illusion: as soon as philosophical problems get solved, they get exported to
some other field.

However, this optimism about philosophical progress comes at the price of defla-
tionism about philosophy. If philosophical problems are just highly complicated brain-
teasers, then why expect their solution to be more illuminating than the solution of a
highly complex brainteaser? Lewis Carroll’s immense corpus of puzzles contains coun-
terexamples to the thesis that sheer complexity always generates an appearance of pro-
fundity. To divert his Victorian mind from unwelcome thoughts, the sleepless Carroll
carried certain puzzle genres to awesome lengths. One genre involves inconsistent story
telling in which a contradiction can be derived from n statements in the story but not
any n - 1 of those statements. Carroll has stories in which n = 25 and even one in which
n = 50. These look like clerical feats rather than deep thinking.

To constitute a paradox, a problem must be an apparent counterexample to an
attractive principle. Arthur Prior’s runaway inference ticket, ‘tonk,’ is paradoxical
because it is a counterexample to the conventionalist thesis that the meaning of the
logical connectives is dictated by the truth-tables. Nelson Goodman’s new riddle of
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induction is a paradox because it refutes the assumption that induction is topic neutral.
Hilary Putnam contends that Heisenberg’s uncertainty principle refutes the principle
of distribution (A & (B ⁄ C) … (A ⁄ B) & (A ⁄ C)).

Anti-gradualists are apt to interpret the silence of the psychologists as a sign that
there is a qualitative difference between logical paradoxes and the shallower fare of
howlers, forehead slappers, and joke demonstrations that 1 = 0. Perhaps shallow logical
errors are just performance errors. The subjects tested by psychologists only have a
short time to answer the test questions and are vulnerable to distraction, memory over-
load, etc. Logical paradoxes, in contrast, have withstood the scrutiny of motivated,
leisurely study by experts. The error occurs at the level of theory rather than imple-
mentation. Or perhaps the deep logical paradoxes reflect some master cognitive flaw –
something akin to the transcendental illusion (of applying phenomenal categories to
noumena) that Immanuel Kant postulated to explain the antinomies of space and time.

Possibly, the logical paradoxes will help us discover a single grand truth that explains
the mix of anomalies. The random walk theory makes the opposite prediction that the
paradoxes will only have the coincidental patterns that one normally finds in a well-
shuffled deck of cards.

3 Do Logical Paradoxes Exist?

Kant believed there were no logical paradoxes. This is evident from his preface to the
second edition of the Critique of Pure Reason. In Kant’s opinion, Aristotle had success-
fully grasped the basic truths of logic in his theory of the syllogism just as Euclid had
grasped the basic truths of geometry with his axiomization. There are geometrical
sophisms and questions of application. But there are no anomalies within the theory
itself. After Aristotle, logic “has not had to retrace a single step, unless we choose to
consider as improvements the removal of some unnecessary subtleties or the clearer
exposition of its doctrine, both of which refer to the elegance rather than to the solid-
ity of the science. It is remarkable also, that to the present day it has not been able to
advance a step and is thus to all appearance complete and perfect.”

The history of logic refutes Kant. I mean to include the history that preceded Kant
(especially the medieval era). Plus the era to which he belonged. But most of all, Kant
is refuted by the history that followed him. Logic made great strides after the nineteenth
century, often under the stimulus of paradox.

Despite the historical record, there remain strangely rich grounds for doubting the
existence of logical paradoxes. For instance, most theories of belief imply that no one
can believe a contradiction (Sorensen 1996). Since the paradigm cases of logical para-
doxes involve belief in contradictions, the very existence of logical paradoxes is itself
paradoxical.

Another difficulty is taxonomic. Paradoxes are classified in terms of the propositions
they contain. Olber’s paradox of why the night sky is dark is an astronomical paradox
because its constituent propositions are astronomical. Presumably, a logical para-
dox contains logical propositions. However, there are conceptions of ‘proposition’ 
and ‘logic,’ which preclude the existence of logical propositions. In the Tractatus,
Wittgenstein reserves ‘proposition’ for statements reporting contingent states of affairs.
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Gilbert Ryle regarded logical laws as rules of inference. Since rules prescribe how we
ought to behave rather than describe how things are, logical laws are neither true nor
false. Logic can only be relevant to paradoxes as a means of relating propositions to
each other. Adjusting a rule of inference might resolve the paradox in the sense of dis-
solving the appearance of inconsistency. But there are no logical propositions that can
serve as members of a paradox. Or so one might infer.

The sharp distinction between inference rules and premises appears to undermine
the notion of a logical paradox. Ironically, this distinction was itself drawn in response
to a logical paradox. In 1895, Lewis Carroll published a dialogue in Mind between
Achilles and Tortoise. The Tortoise will grant Achilles any premise he wishes. But the
Tortoise insists that Achilles link the premises to the conclusion via a further premise,
which states that if the premises are true, then the conclusion is true. Since this extra
conditional is itself a premise, adding it to the premise set forces the addition of a new
linking premise. The common solution to this paradox is to deny that any extra premises
are needed to link the premises and the conclusion. They are instead linked by an 
inference rule.

Lewis Carroll’s puzzle about Achilles and Tortoise does dramatize the need to distin-
guish between premises and inference rules. However, it does not refute the basic inter-
changeability of premises and inference rules. The axiom that p can be considered as
an inference rule lets us introduce p without any premises. Carroll’s puzzle does show
that a system that contains just axioms cannot have any deductions. However, natural
deduction systems are practical examples of how a system may have deductions
without any axioms.

Once we agree that there are logical paradoxes, there remains the question of which
propositions are logical propositions. The sentence-level answer appeals to logical
words. Certain statements are guaranteed to have a truth-value by virtue of vocabu-
lary found in logical theories. This vocabulary uncontroversially includes the follow-
ing: and, or, not, all, some, is. These words are topic neutral, appearing across all
domains of discourse – not just in physics or tennis or algebra.

This does little to relieve the surprising amount of disagreement over what qualifies
as a logical word. There is consensus that all the vocabulary of first order predicate logic
with identity qualifies as logical. There is a debate over whether the introduction 
of predicate variables (to obtain second order logic) is just disguised set theory. Other
marginal examples of logical words tend to be diplomatically treated ‘as if ’ they were
logical words. The modal logician declares he will treat ‘necessary’ as a logical word
and thereby obtains a supplemental logic. The same is done for temporal logic (earlier
than), mereology (part of), deontic logic (permissible), epistemic logic (know), etc. 
The longer the list of logical words, the greater the number and variety of logical 
paradoxes.

It is more natural to characterize logical paradoxes at the theory-level. Given that
logic is the theory of what follows from what, there will be propositions about proposi-
tions. These meta-propositions about the consequence relation will sometimes be indi-
vidually plausible and yet jointly inconsistent. This conception of a logical paradox
accommodates the tendency to include meta-logical paradoxes as logical paradoxes.
The Lowenheim-Skolem paradox makes essential use of words that are about logic but
which are not logical words.
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The sentence-level conception of paradox accommodates the inclusion of puzzles
that inadvertently involve a logical truth or logical falsehood. The doctrine of the trinity
is sometimes described as a logical paradox because it is a paradox (to many Christians)
that involves violations of the law of identity.

Theory-level paradoxes arise out of logical doctrines and intuitions. For instance, we
believe logic must handle every possible state of affairs and hence it cannot imply the
existence of anything. We also believe in logical laws such as the principle that every-
thing is identical to itself. But since the quantifiers in standard logic have existential
import (x)(x = x) entails ($y)(y = y). Thus the empty universe is excluded as logically
impossible. So at least one of these propositions must be false. Which? Metaphysical
intuitions have little standing against science or mathematics. Why should logic be any
more deferential to metaphysics? Good bookkeeping requires the rejection of empty 
universe.

4 Imagination Overflows Logical Possibility

Logic is unnervingly forthcoming with respect to the philosophical question “Why is
there something rather than nothing?” But logic has a way of building up your nerve.
Intuitions and imposing theories about what is possible have both been challenged on
logical grounds.

Russell’s theory of definite descriptions shows how, in Ludwig Wittgenstein’s words,
“A cloud of philosophy is condensed into a drop of grammar.” Philosophy has no
monopoly on fog. Wittgenstein would see an analogy between the realm opened by Dr.
Seuss’s trans-Z letters and Georg Cantor’s ‘paradise’ of transfinite numbers. The the-
ologian-mathematician Cantor was trying to solve mathematical paradoxes involving
counting. On the one hand, there seem to be more natural numbers than even numbers
because the even numbers are properly included amongst the naturals. Yet it is possi-
ble to put the natural numbers into a one to one correspondence with the even
numbers. This mapping indicates the number of even numbers equals the number of
natural numbers. Instead of dismissing this correspondence as revealing that there is
something wonky in the notion of infinity, Richard Dedekind boldly defined ‘infinite set’
in terms of this paradoxical property of having a proper subset that is as large as itself.
Cantor took set theory much further. His innovative diagonal argument showed that
the set of real numbers is larger than the set of natural numbers. The argument gen-
eralizes to reveal a hierarchy of infinities that obey strange but elegant laws of addi-
tion, subtraction, and so forth. Most of those who become familiar with this transfinite
arithmetic emerge with Russell’s conviction that Zeno’s paradoxes now have a mathe-
matical solution. Set theory was speedily erected into a grand unifying theory of
mathematics.

What is the difference between ‘Cantor’s paradise’ and the realm the older boy offers
Conrad Cornelius o’Donald o’Dell? There cannot be any letters beyond Z because ‘The
letters from A to Z exhaust the alphabet’ is an analytic truth. Of course, one could
invent another alphabet in which Z is not the last letter. But then the older boy would
not be correcting Conrad’s initial impression that Z is the last letter. For young Conrad
was talking about the standard English alphabet. The suggestion that young Conrad is
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representationally deprived rests on an equivocation between the established alphabet
and a pseudo-alternative. Similarly, Wittgenstein balked at the suggestion that Cantor
had discovered numbers that had been previously overlooked by conceptually imma-
ture predecessors.

Philosophers have shrunk from Wittgenstein’s intimation that Cantor’s paradise is
as mythical as Meinong’s slum of nonexistents. They dwell on the ways in which para-
doxes expand our horizons. Russell writes warmly of how Cantor’s theory helps us dis-
tinguish between contradictions and possibilities that merely contradict our prejudice
for thinking in finite terms. W. V. Quine advises us to abandon the quest to translate
names into definite descriptions and to instead think directly in terms of Russell’s logical
notation for definite descriptions. Like any fluent speaker, we no longer need to trans-
late back into our native tongue. Russell has enriched our minds with a new tool of
thought. This kind of conceptual advance occurs in all fields. The scale of the effect
varies with the centrality of the subject-matter. Since logic is at the center of the web
of belief, the implications are wide indeed.

Although one may resist the Wittgensteinian assimilation of Cantor’s transfinite
numbers to Dr. Seuss’s trans-Z letters, all must concede the general point that a cogni-
tive advance often takes the form of an eliminated possibility. Children search their
drawers for lost dogs. They scuttle toward the opposite end of the bathtub to avoid being
sucked down the drain. This kind of open-mindedness needlessly alarms them and
slows their searches. As children mature, their conception of what is possible more
closely aligns with what is genuinely possible.

Some paradoxes rest on bogus possibilities. Consider the barber who shaves all and
only those who do not shave themselves. Does the barber shave himself? If he shaves
himself, then he is amongst those he does not shave. But if he does not shave himself,
then he is amongst those he shaves. Contradiction. The universally accepted solution
is that we should not assume that it is possible for there is to be a barber who shaves all
and only those he does not shave. We need to rein in our imagination.

And not just about barbers. Our imaginations systematically run afoul of
J. F. Thomson’s theorem:

Let S be any set and R any relation defined at least on S. Then no element of S has R to all
and only those S-elements which do not R to themselves. (Thomson 1962: 104)

If we let S be the collection of men, then this set contains no man who bears the rela-
tion of shaving all and only those men who not shave themselves. That dissolves the
barber paradox.

Thomson goes on to show how his ‘small theorem’ is at the root of Kurt Grelling’s
paradox about ‘heterological.’ The lesson is that there is no predicate that applies to all
only those predicates that do not apply to themselves. This reveals a sobering limit 
to stipulative definitions. We cannot make the heterological predicate exist by fiat.
Thomson could have gone up from predicates to larger linguistic units. In particular,
the liar paradox can be seen as a logically impossible sentence (or proposition or
thought).

Anyone who takes these rebuffs to intuition seriously will be more disposed to accept
a logician’s curt answer to “Why is there something rather than nothing?” They will
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be inclined to assimilate the possibility of an empty universe to the possibility of a
barber who shaves all and only those who do not shave themselves. Under this analogy,
revising logic to save the possibility of an empty universe is like revising logic to spare
the possibility of Russell’s barber.

Logically conservative responses to other paradoxes are repressive in some respects
and liberating in others. The mix of liberation and suppression can be subtly accom-
plished at the level of notation. Bertrand Russell’s notation in Principia Mathematica was
intended to explain the possibility of mathematical knowledge by reducing mathemat-
ics to logic and set theory (which Russell regarded as a branch of logic). Russell tends
to dwell on the doors opened by this notation. But he also gleefully observed that the
ontological argument for the existence of God cannot even be formulated in Principia
notation. This double-edged effect is natural because theories need to show us which
possibilities are genuine and which are bogus. A theory is expressively incomplete only
when it stops us from saying what we want to say.

5 Paradoxes Evoke Logical Analogies

The theme of repression and liberation can also be extended to styles of reasoning. The
arbitrary individuals which populate pre-twentieth-century proofs were long known to
have conflicts with laws of logic. For instance, an arbitrary number is neither odd nor
even and yet an arbitrary number has the disjunctive property of being either odd or
even! The anomalies were tolerated for lack of a better alternative. But once Gottlob
Frege developed an adequate (though more complicated) quantification theory, arbi-
trary individuals were unceremoniously jettisoned.

However, the dominant trend has been in the direction of liberation. The paradox’s
potential for innovation is pregnant in the common definition of a paradox as an argu-
ment from incontestable premises to an unacceptable conclusion via an impeccable
rule of inference. In Quine’s (1966) terminology, some paradoxes are “veridical”: their
conclusions are true – just surprisingly so. These arguments have promising futures as
instructive proofs.

A promising future is not destiny. The true conclusion of the veridical paradox does
not guarantee that the argument is sound. Quine neglects the historical point that
many veridical paradoxes are fallacious.

The Pythagoreans argued that the earth was a revolving, rotating sphere. Their con-
clusion is true and was as absurd to their contemporaries as Nicholas Copernicus’ con-
clusion was to his contemporaries. But unlike Copernicus, the Pythagoreans argued
fallaciously for their surprising truth. Typically, the brilliant argument for the initially
absurd conclusion is only the beginning of a successful proof. The valuable part of the
argument is its broad outlines, not its details. In other cases, the brilliant proof is only
accidentally correct and is of no lasting value whatsoever.

Even a sound veridical paradox may have flaws. Some are circular. Others are vul-
nerable to refutation by logical analogy. The basic argument that all identities are nec-
essary truths was regarded as sophistry before Saul Kripke championed it in Naming
and Necessity. Almost all philosophers believed that physicists had established numer-
ous contingent identities (such as Water = H2O) and that the curious argument just par-
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alleled Frege’s deliberately absurd arguments against unbelieved identities. Kripke
rehabilitated this ignored argument that all identities are necessary by offering an
attractive alternative interpretation of scientific identities and raising doubts about the
logical analogy.

Quine’s distinction between veridical and falsidical paradoxes is also non-exhaustive.
Consider Frank Ramsey’s proof that there are exactly two Londoners who have exactly
the same number of hairs on their heads. Ramsey notes that there are fewer than a
million hairs on any one’s head and there are more than a million Londoners. The con-
clusion follows by the pigeonhole principle: if there are more pigeons than pigeonholes,
then at least two pigeons must share a hole. The existence of like-haired Londoners is
not surprising. Even before hearing Ramsey’s argument, Londoners agree that there is
a high chance that two Londoners have the same number of hairs. What is paradoxi-
cal about Ramsey’s proof is the connection between the premises and the conclusion.
Londoners who are unfamiliar with the pigeonhole principle accept the premises and
the conclusion but deny that the conclusion is entailed by the premises.

Given the logical interchangeability of propositions and inference rules, one could
convert any inferential paradox into a propositional paradox. The paradoxical proposi-
tion is the conditional whose antecedent is the conjunction of the premises and whose
consequent is the conclusion. Or one could do the reverse, turning propositional sur-
prises into inference surprises. Perhaps, on the model of natural deduction systems, one
could turn all propositional paradoxes into inference paradoxes. But since any system
that allows deductions must have inference rules, there is an extra obstacle to a uni-
versal reduction to propositional paradoxes. In practice, we use systems that will ensure
that some paradoxes are propositional while others are inferential.

Some of the most interesting paradoxes are both propositionally and inferentially
paradoxical. The epistemicist argument that vague predicates have sharp thresholds
has an intrinsically surprising conclusion and a further surprise that there could be a
connection with such trivial facts such as ‘Bald men are logically possible.’

Fallacious paradoxes are often instructive disasters. They suggest analogous argu-
ments that avoid a critical mis-step while retaining some of the power of the original
paradox.

The liar paradox has been especially fertile. Kurt Gödel’s incompleteness theorems
are self-conscious, delicately re-moldings of the Richard paradox. Alan Turing’s first
example of an uncomputable function, the halting problem, was based on the liar.
Gregory Chaitin’s (1986) theorem that a computer cannot fully predict its own perfor-
mance was based on Berry’s paradox. The liar paradox contains a powerful style of rea-
soning that does not inevitably ignite into contradiction. Like engineers using
dangerous explosives to safely demolish buildings, meticulous thinkers gingerly titrate
the paradoxical reasoning in their refutations of completeness or computability or 
predictability.

When Russell (1917) was calculating how many things are in the universe, he was
led to a set that included everything. The number of things in this set must be the largest
number because there is nothing further to add! Russell therefore accused Cantor of
committing some subtle fallacy in his proof that there is no largest number.

A resemblance gave Russell second thoughts. The self-referential aspect of the uni-
versal set evokes a liar paradoxical set – a set that includes all and only those sets that
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do not include themselves as members. If this set contains itself as a member, then it
does not contain itself as a member. But if it does not contain itself as a member, then
it does include itself as a member. Contradiction. The set cannot exist! Accordingly,
Russell repudiated his objection to Cantor’s proof.

Contradictions hurt. Russell sent news of the paradox to Gottlob Frege just as Frege’s
magnum opus on arithmetic was going to press. Frege hastily inserted a patch-up
appendix. After this debacle, Frege never contributed anything of significance. Frege
thought that we had infallible access to logical truths by intuition. Russell’s paradox
shows that we can have a clear intuition that something is possible even though it is
demonstrably impossible.

Russell’s paradox shows that naive set theory must be revised in a way that restricts
the formation of sets. Accordingly, mathematicians have developed powerful set theo-
ries that unintuitively restrict the formation of sets. In particular, Zermelo-Fraenkel set
theory has achieved the main objectives envisaged by the founders of set theory. But it
has been a stop and go exploration. Each spurt ahead is accompanied by a look-about
for unexpected trouble.

6 An Implication about the Nature of Paradox

An alternative definition of ‘paradox’ is as a set of individually plausible but jointly
inconsistent propositions. This definition needs size limits to avoid counting Lewis
Carroll’s clerical inconsistencies as paradoxes. The immense scale of belief systems
guarantees many such inconsistencies. As the number of propositions in a set
increases, the number of conjunctions that can be formed from those propositions
grows exponentially. This ensures that consistency checking is an NP-complete
problem. Consequently, even a futuristic computer must eventually be overwhelmed
and fail to detect many inconsistencies.

The infeasibility of the consistency check may explain why people tolerate large-
scale inconsistency. However, their tolerance may also issue from their use of accep-
tance rules. People believe propositions to which they assign a negligibly small chance
of falsehood. Small chances of error accumulate so the same people also believe the
negation of the conjunction of their beliefs. Henry Kyburg’s lottery paradox crisply for-
mulates this anti-agglomerative pattern of belief formation in his lottery paradox.
Large-scale inconsistency will also be precipitated by meta-beliefs. Meta-beliefs are a
distinct but closely related source of inconsistency. Given that I really have first order
beliefs, my belief that some of my beliefs are false is enough to ensure that not all of my
beliefs can be true. For if all my first order beliefs are true, then my second order belief
is not true.

People find small-scale inconsistencies painful – the smaller the set, the more intense
the pain. Consequently, most paradoxes are formulated as a set of between three and
five propositions. More propositions may be involved but only as lemmas leading up 
to the key members of the paradox. The inverse relationship between size and pain 
also explains why the best known arguments have so few premises. The argument-
based definition of ‘paradox’ requires a small size constraint for the same reasons
required by the set-based definition. A set of n jointly inconsistent propositions can be
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turned into n valid arguments by using the remaining n - 1 members of the set as
premises.

The set-based definition is often read as having individually consistent members.
Indeed, they tend to be pictured as having the stronger property that each member is
compatible with any non-exhaustive conjunction of the remaining members (like the
inconsistent Carroll stories). The idea is that the victim of the paradox has exactly n
ways to regain consistency corresponding to the n ways of rejecting a member of the
paradox. Various ‘-isms’ correspond to each solution (Rescher 1985). Logic has a role
in structuring this menu of solutions. But it cannot dictate which member of paradox
should be rejected.

Pierre Duhem gained fame for a similar thesis in science. Logic may dictate that we
cannot believe both the theory and the conclusion based on an experiment. But it
cannot tell us whether we should abandon the theory or the experiment. The physicist
must instead rely on his ‘good sense.’

Such thoughts provide a congenial environment for Gilbert Harman’s (1986) dis-
tinction between proof and reasoning. Only reasoning concerns revision of one’s beliefs
and plans. Someone who believes ‘If p then q’ and then learns p need not conclude q.
He could instead revise his belief that ‘If p then q.’

The assumption of piecemeal consistency undergirds the hope that human incon-
sistency can be understood with a divide and conquer strategy. The divide and con-
queror says that the inconsistency of a self-deceived person is the result of believing
and disbelieving the same proposition in different ways (implicitly vs. explicitly, intu-
itively vs. theoretically, etc.). Thus the self-deceived widower unconsciously believes he 
is too old to marry his 18-year-old nanny but consciously believes he is not too old 
to marry his 18-year-old nanny. Another divide and conquer strategy is to analyze
inconsistency as disagreement between parts of a person. This hope is not restricted 
to philosophy. When modular psychologists attribute inconsistency, they assume 
that there is a disagreement between self-consistent homunculi.

The divide and conquer strategy systematically fails for logical paradoxes. The 
belief that there is a barber who shaves all and only those who do not shave them-
selves is a logical contradiction that is not a conjunction of opposed proposi-
tions. Ditto for the massive family of paradoxes that involve violations of Thomson’s 
theorem.

Many logical contradictions at the level of sentence logic are divisible. Human beings
are comfortable with conjunction and negation, and so tend to couch propositions in
a form amenable to the divide and conquer strategy. Since all sentential truth functions
can be expressed in terms of conjunction and negation, one might hope to reduce all
sentential contradictions to divisible contradictions. This seems psychologically unre-
alistic for belief in ostensibly non-conjunctive contradictions such as ~(P … P). The
anthrocentricism of the reduction is also disturbing. Consider a Neanderthal who com-
fortably wields the Sheffer dagger function but can only fumble along with negation
and conjunction. He can reduce all the contradictions of sentence logic to ones involv-
ing the dagger function. The Neanderthal’s contradictions are not amenable to the
divide and conquer strategy. Thus a human reduction of sentence contradictions to
ones involving negation and conjunction would not show anything universal about the
nature of contradictory belief.
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A graver objection is that some logical contradictions are at the level of predicate
logic. Many of these are clearly indivisible. When a contradiction has only variables and
a single quantifier binds those variables, the contradiction is indivisible. Three illustra-
tions: ($x)(Fx & ~Fx), (x)(x π x), ($x)(y)(Cxy & ~Cxy). Any paradox that contains a
logical falsehood as a member (or premise) is a logical paradox in the sentence-level
sense that it contains a logical proposition.

Logical paradoxes are unique counterexamples to the principle that logic alone never
implies a solution to a paradox. When one of the members of the paradox is a logical
falsehood, logic does dictate what must be rejected. Since the inference to a logical truth
is premiseless, the conclusion cannot be avoided by rejecting a premise.

Can logic itself be rejected? In Beyond the Limits of Thought, Graham Priest (1995)
contends that the liar paradox shows that some contradictions are both true and false.
He bridles against the limits of thought by rejecting standard inference rules.

If Priest is right, Duhem is wrong. For Duhem believed that standard logic structures
the issues by specifying all the responses that have at least a bare chance of being true.
If Priest is correct, then Duhem overlooked further true alternatives that a rational sci-
entist might adopt. Thus Priest offers the scientist more freedom than Duhem. But is
this the enhanced intellectual sweep of man who has dropped a false presupposition?
Or is it the pseudo-liberty offered to Conrad Cornelius o’Donald o’Dell?
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Part IV

TRUTH AND DEFINITE DESCRIPTION IN
SEMANTIC ANALYSIS
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Truth, the Liar, and Tarski’s Semantics

G I L A S H E R

1 Tarski’s Theory of Truth

The most influential (and arguably, the most important) development in the modern
study of truth was Tarski’s 1933 essay “The Concept of Truth in Formalized
Languages.” The theory formulated in this essay distinguished itself from earlier 
theories in a number of ways: (1) it was a formal, that is mathematical (or quasi-
mathematical) theory; (2) it offered a detailed, precise, and rigorous definition of truth;
(3) it confronted, and removed, a serious threat to the viability of theories of truth,
namely, the Liar Paradox (and other semantic paradoxes); (4) it made substantial 
contributions to modern logic and scientific methodology; (5) it distanced itself from
traditional philosophical controversies; and (6) it raised a spectrum of new philosoph-
ical issues and suggested new approaches to philosophical problems.

Historically, we may distinguish two goals of Tarski’s theory: a philosophical goal and
a (so-called) metamathematical goal. Tarski’s philosophical goal was to provide a defini-
tion of the ordinary notion of truth, that is the notion of truth commonly used in
science, mathematics, and everyday discourse. Tarski identified this notion with the
classical, correspondence notion of truth, according to which the truth of a sentence con-
sists in its correspondence with reality. Taking Aristotle’s formulation as his starting point
– “To say of what is that it is not, or of what is not that it is, is false, while to say of what
is that it is, and of what is not that it is not, is true” (Aristotle: 1011b25) – Tarski sought
to construct a definition of truth that would capture, and give precise content to,
Aristotle’s conception.

Tarski’s second goal had to do with logical methodology or, as it was called at the
time, metamathematics. Metamathematics is the discipline which investigates the
formal properties of theories (especially mathematical theories) formulated within 
the framework of modern logic (first- and higher-order mathematical logic) as well as
properties of the logical framework itself. Today we commonly call this discipline ‘meta-
logic.’ The notion of truth plays a crucial, if implicit, role in metalogic (e.g. in Gödel’s
completeness and incompleteness theorems), yet this notion was known to have 
generated paradox. Tarski’s second goal was to demonstrate that ‘truth’ could be used
in metalogic in a consistent manner (see Vaught 1974).



2 Tarski’s Solution to the Liar Paradox

One of the main challenges facing the theorist of truth is the Liar Paradox. There are
many versions of the paradox. (In antiquity, it was formulated in terms of ‘lie,’ whence
its name, ‘the liar paradox.’) Tarski formulates the paradox as follows:

Let c abbreviate the expression ‘the sentence printed on line 7 of the present page’.
Consider the sentence:

c is not true.

It is clear that:

(1) c = ‘c is not true’,
(2) ‘c is not true’ is true iff (if and only if) c is not true.

Using the laws of classical logic, we derive a contradiction from (1) and (2):

(3) c is true iff c is not true.

What is the source of the paradox? Tarski’s premises appear innocuous: (1) is an easily
verified empirical statement, and (2) is an instance of an uncontroversial schema,
namely, the Equivalence Schema,

(E) x is true iff p,

where ‘p’ represents a sentence and ‘x’ a name of this sentence. (A simple instance of
this schema is ‘Snow is white’ is true iff snow is white.) Assuming the laws of classical
logic are not the source of the paradox, it is natural to look for its source in c. One special
feature of c is its predicating a property involving truth of itself. Tarski identifies this
feature as responsible for the paradox. A language which contains its own truth pred-
icate as well as names of all its sentences Tarski calls semantically closed. (More gener-
ally, any language which has the resources for describing its own syntax and contains
its own semantic predicates (see below) is semantically closed.) Provided that such a
language has a reasonable logical apparatus, it generates paradoxical sentences. Tarski
concludes that semantically closed languages are inconsistent, that is they generate
sentences that cannot be consistently given either the value True or the value False. In
particular, the notion of truth (and other semantic notions) cannot be consistently
defined for such languages. This conclusion is far from trivial: Natural languages are
universal in the sense that anything that can be said by a speaker in any language can
be said by him/her in his/her natural language. As such, natural languages are (gen-
erally) semantically closed, and truth (and other semantic notions) cannot be defined
for such languages.

Not all languages, however, are semantically closed. Most mathematical and scien-
tific languages are not. Such languages Tarski calls semantically open. Tarski’s solution
to the Liar Paradox is to restrict the definition of truth to open languages. This solution
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requires that we think of languages as placed in a hierarchy: To define truth for a given
open language L (our ‘target language’ or, in Tarski’s terminology, ‘object language’),
we ascend to a higher (open) language, ML or meta-L, which has the resources for refer-
ring to all expressions (in particular, sentences) of L, and we formulate our definition
of truth for L in ML. Truth for ML is defined in a third open language, MML, still higher
in the hierarchy, and so on. This solution to the Liar Paradox is commonly called the
hierarchical solution.

Tarski directs his attention to a particular family of open languages, namely, lan-
guages formalized within the framework of modern mathematical logic. Each such 
language includes (1) a set of logical constants containing a complete collection of
truth-functional connectives (classically interpreted), the existential and/or universal
quantifier, and possibly identity; (2) an infinite set of variables; and (3) a set (possibly
empty) of nonlogical constants: individual constants, functional constants, and predi-
cates. (Note: If L is a Tarskian language of order n, then for each 1 £ i £ n, L has an
infinite set of variables of order i, and the number of its symbols and well-formed
expressions of order i is countable, that is it does not exceed the number of positive 
integers.) Since only interpreted sentences can be said to be true or false, Tarski restricts
his attention to interpreted languages, that is languages whose primitive constants
(logical and nonlogical) are fully interpreted. Such languages are naturally viewed as
formalizations of scientific and mathematical languages as well as of open segments 
of natural languages. Tarski refers to such languages as “formalized languages” (or
“formalized languages of the deductive sciences”). His goal is to construct a general
method for defining truth for formalized languages.

3 Tarski’s Method of Defining Truth for Formalized Languages

General principles

Given a formalized language L, the definition of truth for L is formulated in a meta- 
language of L, ML. To define truth for L in ML we introduce an uninterpreted 1-place
predicate, ‘T,’ into ML, and define it as a truth predicate for L, that is as a predicate satis-
fied by all and only true sentences of L. The definition of T is required to satisfy two con-
ditions: (1) it has to be formally correct, that is avoid paradox, and (2) it has to be
materially adequate, that is capture the idea that truth is correspondence with reality.

Formal correctness
To define T in a formally correct manner we follow the usual procedures for formally
correct definitions, and in particular we make sure that the circumstance responsible
for the Liar Paradox, namely, the truth for L being defined in L itself, does not arise. To
this end we construct ML as an essentially stronger language than L, that is ML has
expressions which are not translatable to L. In particular, the definition of T in ML is
not translatable to L.

Material adequacy
To ensure that the definition of T is materially adequate, we require that it satisfy the
following criterion (“convention,” in Tarski’s terminology):
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Criterion (T)

A definition of T (in ML) is a materially adequate definition of truth for L iff it implies,
for every sentence s of L, an ML-sentence of the form

T(s) iff p,

where ‘s’ stands for an ML name of s and ‘p’ for an ML sentence with the same content
as s (a translation of s to ML).

The idea is that given a sentence s of L, an adequate definition of truth for L implies
that s has the property T just in case things in the world are as s says. For example, if
s is the sentence ‘Snow is white,’ the definition of T implies that s has the property T
iff the stuff snow has (in reality) the property of being white. To satisfy this require-
ment, ML is required to contain, for each sentence s of L, a sentence with the same
content as s. Using the notational conventions that ‘snow is white’ is an ML-name of
the L-sentence ‘Snow is white,’ and ‘snow is white’ is an ML sentence with the same
content as ‘Snow is white,’ the definition of T implies the ML-sentence:

T(snow is white) iff snow is white.

In constructing a definition of truth for L in ML we have to take into account the 
fact that the number of sentences in any language formalized within the framework of
modern logic is infinite. A definition like

T(s) iff (s = snow is white and snow is white, or s = grass is red and grass is red, 
or . . .),

will not do, since such a definition would be infinitely long. To avoid this difficulty Tarski
uses the recursive method. The recursive method enables us to define predicates ranging
over infinitely many objects in a finite manner, provided certain conditions are satis-
fied. Such definitions are finitely long and they determine whether a given object falls
under a given predicate in finitely many steps. I will not specify the conditions for recur-
sive definitions here (for a good account see Enderton 1972, section 1.2), but the idea
is that if every sentence of L is uniquely generated from finitely many atomic sentences
(of L) by finitely many logical operations, and if the atomic sentences and logical oper-
ators of L are finitely specifiable, then truth for L can be recursively defined. Such a def-
inition determines the truth value of each sentence of L based on (1) the truth values
of its atomic constituents, and (2) its logical structure. For example, if the only logical
constants (operators) of L are Negation and Disjunction, then truth for L is definable
by specifying (1) the truth values of the atomic sentences of L, (2) a rule for determin-
ing the truth value of a Negation given the truth value of the negated sentence, and
(3) a rule for determining the truth value of a Disjunction given the truth values of its
disjuncts.

If L contains quantifiers, however, truth for L cannot be defined in this way.
Sentences involving quantifiers are generated not from atomic sentences but from
atomic formulas, including formulas with free variables (variables which are not in the
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scope of any quantifier), and such formulas do not have a truth value. (For example,
‘("x)Px’ is generated from the atomic formula ‘Px’ which, having a free variable, has
no truth value.) But truth for L can be recursively defined via an auxiliary notion, sat-
isfaction, applicable to formulas. The notion of satisfaction is an intuitive notion: The
atomic formula ‘x is even’ is satisfied (in the domain of the natural numbers) by 0, 2,
4, . . . More generally, ‘Rx1, . . . xn’ is satisfied by an n-tuple of objects, ·a1, . . . , anÒ, iff
a1, . . . , an (in that order) stand in the relation R (the relation referred to by ‘R’). The
definition of truth for L proceeds in two steps: (1) a recursive definition of satisfaction
for L, and (2) a (nonrecursive) definition of truth for L based on (1).

Tarski’s example

Tarski explained his method through an example. Using contemporary terminology, his
example can be concisely described as follows.

Object language: LC

The target language is the language of the calculus of classes (an interpretation of the
language of Boolean algebra). I will refer to it as ‘LC.’ LC is an interpreted first-order lan-
guage whose primitive vocabulary consists of the logical constants ‘~’ (negation), ‘⁄’
(disjunction) and ‘"’ (the universal quantifier), the nonlogical constant ‘Õ’ (a 2-place
predicate interpreted as class inclusion), and variables, ‘x1’, ‘x2’, ‘x3’, . . . , ranging over
all objects in the domain, DC, of LC. DC is a set of classes.

Meta-language: MLC

Truth for LC is defined in a meta-language, MLC. MLC relates to LC in the way described
above. In particular: (1) the syntax of LC is describable in MLC; (2) each constant of LC

has both a name and a translation (a constant with the same meaning) in MLC; (3) MLC

has an undefined 1-place predicate, ‘T,’ designated as the truth predicate of LC, as well
as other predicates definable as semantic predicates of LC; and (4) MLC has variables of
a higher-order than those of LC (or a set-theoretical apparatus richer than that of LC).

Definitions (in MLC)
Notation: Let ‘vi’ and ‘vj’ be schematic symbols representing arbitrary variables, xi and
xj, of LC, and let ‘F,’ ‘Y’ and ‘s’ be schematic symbols representing arbitrary ex-
pressions of LC. Let ‘ ’ and ‘ ’ be square quotes, where ‘ F ⁄ Y ’ stands for ‘the result
of concatenating the formula F, the symbol ‘⁄’ and the formula Y, in that order’ (see
Quine 1951). For each primitive constant c of LC, let c be a name of c in MLC and c a
translation of c to MLC.

Formula (of LC) – Inductive Definition

1. vi � vj is a formula.
2. If F is a formula, ~F is a formula.
3. If F and Y are formulas, F⁄Y is a formula.��

��
��

����

TRUTH, THE LIAR, AND TARSKI’S SEMANTICS

149



4. If F is a formula, "vi F is a formula.
5. Only expressions obtained by 1–4 are formulas.

Sentence (of LC)

s is sentence iff s is a formula with no free occurrences of variables.

Let g be any function which assigns to each variable of LC an object in the domain,
DC, of LC . We will call g ‘an assignment function for L’ and refer to g(vi) as ‘gi’.

Satisfaction (of a Formula of LC by g) – Recursive Definition

1. g satisfies vi � vj iff gi � gj

2. g satisfies ~ F iff ~ (g satisfies F).
3. g satisfies F ⁄ Y iff [(g satisfies F) ⁄ (g satisfies Y)].
4. g satisfies "vi F iff "g¢ (if g¢ differs from g at most in gi, then g¢ satisfies F).

T (Truth of a Sentence of LC)

T(s) iff: (1) s is a sentence, and (2) "g(g satisfies s).

4 Tarskian Semantics

Semantics and correspondence

Truth, for Tarski, is (as we have seen above) a correspondence notion. But truth is not
the only correspondence notion. The discipline which studies correspondence notions
in general Tarski calls ‘semantics’:

We shall understand by semantics the totality of considerations concerning those con-
cepts which, roughly speaking, express certain connexions between the expressions of a 
language and the objects and states of affairs referred to by these expressions. (Tarski
1936a: 401)

Some semantic notions express correspondence directly: reference, satisfaction, and 
definition are such notions: the name ‘Mount Everest’ refers to a mountain in the
Himalayas; the formula ‘x was assassinated’ is satisfied by John Kennedy; the expression
$y(x = y2) (where ‘x’ and ‘y’ range over the natural numbers) defines the set {0,1,4,9,16,
. . .}. Other semantic notions, for example ‘truth’, express correspondence indirectly.
Truth is a property of sentences rather than a relation between sentences and objects,
but truth holds of a given sentence only if the objects referred to by this sentence possess
the properties (relations) attributed to them by it. (To apply this principle to sentences con-
taining logical constants we either construe the logical constants as referential 
constants – that is Identity as referring to the identity relation, Negation as referring to
complementation, the Existential quantifier as referring to the higher-order property of
nonemptiness, etc. – or we construe statements containing logical constants as reducible
to statements (or formulas) satisfying the correspondence principle.)

��
��

��
��

��
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Correspondence and disquotation

Some philosophers regard semantic notions as disquotational notions: a sentence
enclosed in quotation marks has the property of being true iff this sentence, its quota-
tion marks removed, holds (Ramsey 1927). Tarski, however, views the two analyses as
equivalent:

A characteristic feature of the semantical concepts is that they give expression to certain
relations between the expressions of language and the objects about which these expres-
sions speak, or that by means of such relations they characterize certain classes of
expressions or other objects. We could also say (making use of the suppositio materialis)
that these concepts serve to set up the correlation between the names of expressions and
the expressions themselves. (Tarski 1933: 252)

We can explain Tarski’s view as follows: There are two modes of speech, an objectual
mode and a linguistic mode (‘material’ mode, in Medieval terminology). The correspon-
dence idea can be expressed in both modes. It is expressed by

‘Snow is white’ is true iff snow is white,

as well as by

‘ “Snow is white” is true’ is equivalent to ‘Snow is white.’

In the objectual mode we say that a sentence attributing the (physical) property of
whiteness to the (physical) stuff snow is true iff the (physical) stuff snow has the (phys-
ical) property of whiteness; in the linguistic mode we say that a sentence attributing
(the semantic property of ) truth to a sentence attributing whiteness to snow is equiv-
alent to a sentence attributing whiteness to snow.

Logical semantics

One of the most important achievements of Tarskian semantics is its contribution to
the definition of meta-logical notions (‘logical consequence,’ ‘logical truth,’ ‘logical
consistency,’ etc.). Shortly after completing his work on truth, Tarski turned his atten-
tion to the notion of logical consequence. Prior to Tarski, ‘logical consequence’ was
defined in terms of proof (the sentence s is a logical consequence of the set of sen-
tences G iff there is a logical proof of s from some sentences of G). Gödel’s in-
completeness theorem showed, however, that the proof-theoretic definition of ‘logical
consequence’ is inadequate: Not all theories formulated within the framework of
modern logic can be axiomatized in such a way that all their true sentences are prov-
able from their axioms. Using the resources of semantics on the one hand and set theory
on the other, Tarski developed a general method for defining ‘logical consequence’ for
formalized languages:

TRUTH, THE LIAR, AND TARSKI’S SEMANTICS

151



Semantic Definition of ‘logical consequence’

s is a logical consequence of G (in a formalized language L)

iff

there is no model (for L) in which all the sentences of G are true and s is false. (Tarski
1936b)

This definition (which can easily be converted to a semantic definition of other meta-
logical notions – ‘logical truth,’ ‘logical consistency,’ etc.) played a critical role in
turning logical semantics, or model theory, into one of the two main branches of con-
temporary (meta-)logic.

5 Three Criticisms of Tarski’s Theory

While Tarski’s theory of truth is widely viewed as one of the prime achievements of
twentieth-century analytic philosophy, its philosophical significance has been repeat-
edly questioned. Among the main criticisms of Tarski’s theory are: (A) Tarski’s hier-
archical solution to the Liar Paradox is applicable to artificial languages but not to
“natural” languages; (B) Tarski’s theory relativizes truth to language; (C) Tarski’s 
definitions of truth are trivial.

Limitations of the hierarchical solution

Many philosophers find Tarski’s solution to the Liar Paradox unsatisfactory on the
ground that it does not enable us to define truth for natural languages. These philoso-
phers are not dissuaded by Tarski’s claims that: (1) it is impossible to define truth for
natural languages, since being universal, such languages are inconsistent (Tarski
1933: 164–5), and (2) the hierarchical solution accounts for, and legitimizes, the use
of ‘true’ in many segments of natural language, namely, all segments which are open
and can be represented by artificial languages whose structure is precisely specified. In
particular, truth can be defined for all segments used in the formulation of scientific
theories (Tarski 1944: 347; 1969: 68). Soames (1999), for example, rejects the claim
that natural languages are inconsistent. Others point out that Tarski’s solution is too
strict: it eliminates not only paradoxical uses of ‘true’ and related notions (e.g. ‘false’)
in discourse, but also legitimate uses of these notions. One example, due to Kripke
(1975), is the following: Consider two sentences, the one uttered by Dean and the other
by Nixon during the Watergate crisis:

(4) All of Nixon’s utterances about Watergate are false,

and

(5) Everything Dean says about Watergate is false.
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This pair of sentences can be consistenty assigned truth-values, yet there is no room
for it in Tarski’s hierarchy: According to Tarski’s principles, (4) must belong to a lan-
guage higher in the hierarchy than the language to which (5) belongs, and (5) must
belong to a language higher in the hierarchy than the language to which (4) belongs.
But this is impossible.

Triviality and relativity to language

It is common to interpret Tarski’s theory as a reductionist theory or, more specifically, a
theory whose goal is to reduce the notion of truth for a given language to the satisfac-
tion conditions of the atomic formulas (the denotation conditions of the nonlogical
constants) of this language. (To simplify the discussion I will ignore the case of atomic
sentences containing logical constants, i.e. Identity). Given a language L, we determine
the truth value of sentences of L by first listing the denotations of the primitive non-
logical constants of L, and then applying the recursive ‘instructions’ in the definition
of truth for L to these lists. For example, if L is a language with two primitive nonlogi-
cal constants, an individual constant, ‘a,’ and a 1-place predicate, ‘P,’ whose denota-
tions are the number 1 and the set of all even natural numbers, respectively, we first
prepare a denotation list for L, <‘a,’1>, <‘P,’{0,2,4,6, . . . }>, and then we calculate the
truth value of sentences of L by applying the recursive rules in the definition of truth
to this list: ‘Pa’ is true (in L) iff 1Œ{0,2,4,6, . . . }, ‘~Pa’ is true (in L) iff ‘Pa’ is false (in
L), that is, iff 1œ{0,2,4,6, . . . }, etc.

Two influential criticisms, based on this analysis, are: (1) Tarski’s notion of truth is
trivial; (2) Tarski’s notion of truth is relative to language.

The triviality criticism
Tarski’s definition of truth for a language L reduces the truth of sentences of L to the
satisfaction of atomic formulas of L. But its treatment of atomic satisfaction is utterly
uninformative. Instead of identifying a feature (or features) in virtue of which an object
(an n-tuple of objects) satisfies a given atomic formula, it says that an object satisfies
an atomic formula iff it belongs to a certain list. (In the above example, an object sat-
isfies ‘Px’ iff it belongs to the list 0,2,4, . . . .) But a definition of this kind is a definition
by enumeration (‘x is a P iff x is 0 or x is 2 or x is 4 or . . .’), and as such it lacks infor-
mative value.

This criticism is forcefully articulated in Field (1972). Field likens Tarski’s definition
of satisfaction to a definition by enumeration of a scientific concept. Consider, for
example, a definition by enumeration of the concept valence:

("x){Valence (x) = n ∫ [(x = potassium & n = +1)V . . . V(x = sulfur & n = -2)]}.

The valence of a chemical element is an integer which represents the sort of chemical
combinations the element will enter into based on its physical properties. A definition
associating valences with physical properties of elements would be highly informative;
a definition by enumeration, on the other hand, would be utterly trivial. (Expanding
the definition from chemical elements to configurations of chemical elements by using
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recursive entries will not change the situation: if the ‘base’ is trivial, the definition as a
whole is trivial.)

Although Field is particularly concerned with one aspect of the Tarskian project,
namely its success in reducing semantic notions to nonsemantic (specifically, physical-
istic) notions, his criticism is not restricted to this aspect. The standards used in philos-
ophy, Field says, should not be lower than those used in other sciences, and a method
for defining truth by enumeration “has no philosophical interest whatsoever” (Field
1972: 369).

The relativity criticism
Another criticism of Tarski’s theory (based on the above interpretation) concerns its
relativization of truth to language. The argument can be summed up as follows: Tarski’s
method generates definitions of truth for particular languages, where (as we have seen
before) the notion of truth for a given language is based on a list of denotations specific
to that language (i.e. a list which cannot serve as a basis of a definition of truth for any
other language). For that reason, Tarski’s notion of truth is relative to language.
Blackburn (1984: 267) compares Tarski’s definitions of ‘true in L1,’ ‘true in L2,’ . . . , to
definitions of ‘well-grounded verdict on Monday,’ ‘well-grounded verdict on Tuesday,’
. . . In the same way that the latter would not amount to a definition of the absolute
notion ‘well-grounded verdict,’ so Tarski’s definitions do not amount to a definition of
the absolute notion ‘true’. Just as there is no philosophical interest in the relative
jurisprudential notion ‘well-grounded verdict on day X,’ so there is no philosophical
interest in the relative semantic notion ‘true in L.’

While the criticisms of Tarski’s hierarchical solution to the Liar Paradox have moti-
vated philosophers to construct new, nonhierarchical solutions to that paradox, the
triviality and relativity criticisms have led many philosophers to give up hope of an
informative theory of truth. Below I will describe a nonhierarchical solution to the Liar
Paradox, due to Kripke, and I will offer a new interpretation of Tarski’s theory as an
informative theory, immune to the relativity and triviality criticisms.

6 Kripke’s Solution to the Liar Paradox

In a 1975 paper, “An outline of a Theory of Truth,” Kripke offered a new, nonhierar-
chical solution to the Liar Paradox. The idea underlying Kripke’s proposal is this:
Instead of defining truth for an infinite hierarchy of languages that do not contain their
own truth predicate, we can define truth for a single language that does contain its own
truth predicate in an infinite number of stages. In Tarski’s method we start with a lan-
guage L0 which does not contain its own truth predicate, and construct stronger and
stronger languages, L1, L2, . . . , each containing a truth predicate, T1, T2, T3, . . . , for
the previous language in the hierarchy. In Kripke’s method we have a single language,
L, which contains its own unique truth predicate, T, and we define the extension of T
(i.e. the set of all sentences of L satisfying ‘Tx’) in stages: S0, S1, S2, S3, . . .

The definition of T proceeds by constructing two sets: S1 – the extension of T, and
S2 – the counter-extension of T. S1 is the set of all true sentences of L in the domain D
of L, S2 is the set of all false sentences of L in D plus all objects in D which are not sen-
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tences of L. (D may contain codes of sentences of L instead of sentences of L, but for
the sake of simplicity I will assume it contains (only) the latter.) Let us think of L as a
union of a Tarskian hierarchy, »{L0, L1,L2, . . .}, where ‘T1’, ‘T2’, ‘T3’, . . . represent
partial applications of T. S1 and S2 are constructed in stages as follows:

Stage 0: S1 = ∆
S2 = {a Œ D: a is not a sentence of L}

Stage 1: S1 = {a Œ D: a is a true sentence of L0 or a is a true sentence of L whose truth
value is logically determined based on the truth value of sentences of L0}

S2 = {a Œ D: a is a false sentence of L0 or a is a false sentence of L whose truth-
value is logically determined based on the truth-value of sentences of L0

or a is not a sentence of L}
Stage 2: S1 = {a Œ D: a is a true sentence of L0 or L1, or a is a true sentence of L whose

truth-value is logically determined based on the truth-value of sentences
of L0 or L1}

S2 = {a Œ D: a is a false sentence of L0 or L1, or a is a false sentence of L whose
truth-value is logically determined based on the truth-value of sentences
of L0 or L1, or a is not a sentence of L}

Thus, if ‘Snow is white’ and ‘Snow is green’ are sentences of L, then since both belong
to the L0 part of L, in stage 0 neither belongs to S1 or S2. In stage 1, ‘Snow is white’ and
‘~ Snow is green’ are among the sentences added to S1, and ‘Snow is green’ and ‘~ Snow
is white’ are among the sentences added to S2. In stage 2, ‘T “Snow is white” ’ and ‘T
“~ Snow is green” ’ are among the sentences added to S1, and ‘T “~ Snow is white” ’
and ‘T “Snow is green” ’ are among the sentences added to S2. And so on. The list of
stages can be extended into the transfinite, using standard set theoretic methods. Thus
we can have transfinite stages w, w + 1, w + 2, . . . , (where w is the smallest infinite
ordinal), including higher limit ordinals. (The details of the transfinite stages can be
omitted.)

Throughout the finite stages, S1 and S2 are continuously extended and their exten-
sions are forced by (1) the rules for the nonlogical, nonsemantic primitive constants of
L (i.e. the rules determining the denotations of these constants and the truth/satisfac-
tion of sentences/formulas composed of these constants (and, possibly, variables) –
eventually, facts about what constant denotes what object, property or relation, what
object has what nonlogical property and/or what objects stand in what nonlogical rela-
tion); (2) the rules for the logical constants of L; and (3) the rules for the semantic con-
stants of L. (See Rules I–III below.) Thus, ‘Snow is white’ and ‘NOT snow is green’ must
be added to S1 in Stage 1 (due to facts concerning the denotations of ‘snow,’ ‘white,’
and ‘green’ and the color of snow, as well as the semantic rule for ‘NOT’), ‘True “Snow
is white” ’ must be added to S1 in Stage 2 (due to the semantic rule for ‘true’ and the
fact that ‘Snow is white’ belongs to S1 in stage 1), ‘True “True ‘Snow is white’ ” ’ must
be added to S1 in Stage 3 (due to the rule for ‘true’ and the fact that ‘True “Snow is
white” ’ belongs to S1 in Stage 2), etc. And similarly for S2. We say that all the sentences
placed in S1 and S2 in the finite stages are grounded. However, since no sentence of L
contains infinitely many occurrences of ‘T,’ and in particular, infinitely many embed-
ded occurrences of ‘T’ (or other semantic predicates), eventually we arrive at a stage in
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which neither S1 nor S2 is properly extended. We call such a stage a fixed point. It is
important to note that not all sentences of L belong to either S1 or S2 in the least fixed
point. For example, Liar sentences as well as sentences like

(10) T(10)

do not. How does Kripke deal with such sentences?
To deal with paradoxical sentences Kripke constructs T as a partial truth-predicate

and L as a language with truth-value gaps: some sentences of L are either in the exten-
sion of T or in its anti-extension, but other sentences are in neither; some sentences of
L have a truth value, others do not. All paradoxical sentences are truth-valueless in
Kripke’s semantics, but sentences like (10) can either be assigned a truth value (True
or False) in later stages, or remain truth-valueless.

I will not formulate Kripke’s semantics for L in detail here. But the following are its
main principles:

I Rules for determining the denotation, satisfaction and truth-value of expressions of L0 (the
L0 part of L)
Same as in Tarski’s semantics.

II Rules for determining the truth-value and satisfaction of sentences and formulas of L gov-
erned by logical constants
Based on Kleene’s strong 3-valued semantics. (Coincides with Tarski’s semantics in the
bivalent part of L, in particular, in the L0 part of L.)

Let s1 and s2 be sentences of L. Then:

true if s1 is false
~s1 is false if s1 is true

undefined otherwise

true if at least one of s1 and s2 is true
s1Vs2 is false if both s1 and s2 are false

undefined otherwise

Let F be a formula of L, let g be an assignment function (as in Section 3), and let us
use ‘F is true under g’ for ‘g satisfies F’. Then:

true F is true under every g¢ which differs from g at 
most in gi

"viF is false under g if F is false under some g¢ which differs from g at 
most in gi

undefined otherwise

III Semantic rule for sentences governed by the truth predicate, T, of L (Kripke’s version of
Criterion (T)):

��

��

��
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Let s be a sentence of L and s a name of s in L. Then:

true iff s is true
T(s) is

false iff s is false

The definition of T can be viewed as completed in any of the fixed-points. If we view it
as completed in the least fixed-point, then only grounded sentences are in the exten-
sion of T. If we see it as completed in later fixed-points, some ungrounded sentences
(e.g. (10)) may also be in the extension of T. Paradoxical sentences are never in the
extension of T.

Two noteworthy features of Kripke’s method are: (1) it does not uniquely determine
the truth predicate of a given closed language; and (2) it allows empirical circumstances
to determine whether a sentence is paradoxical in a given language. The first point
should be clear by now: the semantic status of some sentences (i.e. being true, false, 
or truth-valueless) is ‘forced’ by the semantic rules, that of others is a matter of choice
or convention. Grounded and paradoxical sentences fall under the first category,
ungrounded nonparadoxical sentences fall under the second.

The role of empirical circumstances

One important intuition captured by Kripke’s proposal is that semantic properties of
sentences (being true, false, ungrounded, paradoxical, etc.) are often determined by
empirical circumstances. Consider, for example, the sentence

(11) ("x)(Px … Tx)

of a Kripkean language L. If P is an empirical predicate satisfied by exactly one object,
a, then: if a = ‘Snow is white,’ (11) is true; if a = ‘Snow is green,’ (11) is false; if a = (11),
(11) is ungrounded; and so on. And these semantic features hold or do not hold of (11)
empirically. The same applies to

(12) ("x)(Px … ~Tx).

If the only object satisfying ‘Px’ is ‘Snow is green,’ (12) is true; if it is ‘Snow is white,’
(12) is false; if it is (12) itself, (12) is paradoxical. And the truth, falsity, or parado-
xicality of (12) are due to empirical circumstances. In making statements, Kripke
observes, we often take a risk. Under certain circumstances a sentence is grounded and
true, under others – ungrounded and paradoxical.

This feature of Kripke’s theory enables it to assign a truth value to sentences which
(in the specific circumstances of their utterance) are not paradoxical, yet are regarded
by Tarski as illegitimate. Let us go back to (4) and (5). If at least one statement made
by Dean about Watergate is true and all Nixon’s statements about Watergate other than
(5) are false, then (4) is true and (5) is false.

��
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The ghost of Tarski

While Kripke’s method provides a semantics for languages containing their own truth
predicate, the account itself is carried out in a Tarskian meta-language. Furthermore,
some truths about sentences of a given Kripkean language L are, though expressible in
L, true only in its meta-language, ML. Thus, if s is a Liar sentence of L, the statements
‘s is not true,’ ‘s is ungrounded’ and ‘s is paradoxical’ are true in ML but lack a truth
value in L. In Kripke’s words: “The ghost of the Tarski hierarchy is still with us” (Kripke
1975: 714).

Kripke’s relegation of certain truths to the meta-language is not accidental. It is the
means by which he avoids the so-called strengthened Liar paradox. The strengthened Liar
paradox arises in languages with truth-value gaps as follows: Let

(13) ~T(13)

be a sentence of a 3-valued language L and let T be a truth predicate of L satisfying
Kripke’s version of Criterion T. Then: T((13)) iff (13) iff ~T(13).

Kripke avoids the strengthened Liar paradox by rendering (13) undefined but its
meta-linguistic correlate, ‘the sentence (13) of L is not true,’ true. This means that
Kripke’s method falls short of providing a complete semantics for natural languages
which, being universal, have no richer meta-languages.

Kripke’s solution to the Liar Paradox is not the only alternative to Tarski’s solu-
tion. For other alternatives see Martin (1984), Gupta and Belnap (1993), and 
others.

7 A Reinterpretation of Tarski’s Theory

The deflationist approach to truth

The view that the base entries in Tarski’s definitions render them uninformative has led
some philosophers to search for an informative base for Tarski’s definitions. Field
(1972) suggested that instead of using lists of reference as a basis for a definition of
truth, we use a general, informative theory of reference as such a basis, and pointed to
Kripke’s (1972) outline of a causal theory of reference as a promising starting point.
But the slow progress and difficulties involved in the development of an informative and
general theory of reference led Field (1986) and others to adopt a so-called deflationist
or minimalist attitude towards truth.

The deflationist attitude is reflected by such statements as:

[T]ruth is entirely captured by the initial triviality [that each proposition specifies its
own condition for being true (e.g. the proposition that snow is white is true if and
only if snow is white)]. (Horwich, 1990: xi)

Unlike most other properties, being true is insusceptible to conceptual or scientific
analysis. (Ibid.: 6)
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[The theory of truth] contains no more than what is expressed by the uncontro-
versial instances of the equivalence schema,

(E) It is true that p if and only if p. (Ibid.: 6–7)

While deflationists differ on many issues, most agree that a theory of truth need not
be more informative than Tarski’s theory. Some would like to extend Tarski’s definitions
to a greater variety of linguistic structures: indexicals, adverbs, propositional attitudes,
modal operators, etc., but none requires a more substantive analysis. According to
deflationists, “the traditional attempt to discern the essence of truth – to analyze that
special quality which all truths supposedly have in common – is just a pseudo-problem”.
(Horwich, 1990: 6) There is no substantive common denominator of all truths, and
therefore there is no substantive theory of truth. The task of a theory of truth is to gen-
erate a list of all instances of the Equivalence schema, and regardless of how this list is
generated, the theory of truth is still a collection of trivialities.

Critique of the deflationist approach

The deflationist approach is based on a traditional conception of theories: A theory of
a concept X is a theory of the common denominator of all objects falling under X. If
the common denominator of all these objects is trivial, X is trivial and a theory of X is
a collection of trivialities. This conception of a philosophical theory is, however, based
on an unfounded assumption: namely, that the content of a given concept X is the
common denominator of all instances of X. It is quite clear that the content of some
concepts is not exhausted, or even close to being exhausted, by the common denomi-
nator of their instances. The concept of game is a case in point (Wittgenstein, 1958).
Yet if ‘game’ is not a common-denominator concept, it is clearly not an empty or a
trivial concept. And neither is a theory of games empty or trivial. A theory of games
may not be able to condense all there is to say about games into a single principle,
expressible by a single formula, but it could identify a number of significant principles
governing games and describe their nature, workings, interrelations, and consequences
in a general and informative manner.

The question arises as to whether Tarski’s theory of truth is – or can be made to be
– substantive in this (non-traditional) sense.

What does Tarski’s theory actually accomplish?

One thing that both defenders and critics of Tarski’s theory agree about is its substan-
tial contribution to logic (see above). Now, it is striking that Tarski’s theory does not
make similar contributions to other disciplines. While Tarski’s definition of truth for a
language L yields, all by itself, a definition of logical consequence for L (assuming ML has
a sufficiently rich set-theoretical apparatus), it does not yield (all by itself ) definitions
of epistemic, modal, physical, or biological consequence for L. (Examples of the latter kinds
of consequence are: ‘a knows that P; therefore, a believes that P,’ ‘Necessarily P; there-
fore Possibly P,’ ‘The force exerted on body a at time t is zero; therefore the acceleration
of a at t is zero,’ ‘a is a human female; therefore a does not have a Y chromosome,’ etc.)
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Why does Tarski’s theory yield an account of logical consequence, but not of other types
of consequence? What features should a theory of truth have in order to yield a concept
of consequence of type X?

The answer to this question is quite clear. A consequence relation is a relation of
preservation (or transmission) of truth: If C stands in a consequence relation R to a set
of sentences, G, and all the sentences of G are true, then their truth is preserved through
R (or is transmitted to C through R). If R is a relation of consequence of type X, the
preservation (or transmission) of truth is due to the X-structure of the sentences of G
and X, that is due to the content and organization of constants of type X in these sen-
tences (where for non-X constants, only their identities and differences, but not their
content or interrelations, play a role). Thus, if C stands to G in a relation of logical con-
sequence, this is due (except in the trivial case of C ŒG) to the logical structure of the
sentences involved; if C stands to G in the relation of modal, epistemic, physical, or bio-
logical consequence, this is due to the modal, epistemic, physical, or biological struc-
ture of those sentences. To yield a definition of consequence of type X for a language
L, a definition of truth for L has to specify the contribution of X-structure to the truth
value of sentences of L. Tarski’s definition of truth for a language L is tuned to the logical
structure of sentences of L; therefore, it gives rise to the notion of logical consequence
for L. (Note that due to the generality of logic, it is common to conceive of non-logical
consequences of type X as based not only on the content and interrelations of the X
vocabulary, but also on the interrelations of the X vocabulary and the logical vocabu-
lary. Yet what renders these consequences X-consequences is the role played by the 
X-vocabulary.)

These observations suggest that what Tarski’s theory actually accomplishes is an
account of the contribution of logical structure to truth. Tarski’s theory tells us how the
logical structure of a given sentence affects its truth value, not how other types of
structure (modal, physical, . . .) do. Tarski’s theory, on this interpretation, is a theory 
of a specific, albeit basic and general constituent of truth, namely, its logical con-
stituent. Its goal is to describe, in an exhaustive, systematic and informative manner,
that part of the truth-conditions of sentences which is due to their logical struc-
ture. This interpretation explains why Tarski’s theory of truth is so important and 
fruitful in logic. Furthermore, it shields Tarski’s theory from the relativity and triviality 
criticisms.

Relativity
While the role played by nonlogical constituents of sentences in determining their truth
conditions is relative to language (in Tarski’s theory), the role of the logical constituents
is not. The denotation lists for the nonlogical constants vary from one Tarskian lan-
guage to another, but the semantic rules for the logical constants are fixed across 
languages. The difference between Tarski’s treatment of logically-structured and 
nonlogically-structured formulas of a given language is a difference between rule and
applications. To calculate the truth value of a sentence – say, ‘John loves Mary and John
loves Jane’ – of a Tarskian language L we take the fixed truth condition associated with
‘and’ in Tarski’s method and apply it to the truth conditions of ‘John loves Mary’ and
‘John loves Jane’ in L. We may say that the principles governing the contribution of
logical structure to truth are absolute; their instances (applications) – relative to language.
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But this is the case with any theory: the rule of, say, addition, is the same in all appli-
cations of arithmetic, but in biology this rule operates on sets (quantities) of biological
entities, while in theoretical physics it operates on sets (quantities) of abstract physical
entities.

Triviality
The triviality criticism, like the relativity criticism, is directed at Tarski’s treatment of
the nonlogical constituents of truth. Considering Tarski’s definition of truth for a given
language L, the claim is that the satisfaction and denotation conditions for formulas
and terms with no logical constants of L are given by enumeration (i.e. based on lists),
and as such they trivialize the entire definition. While this criticism is warranted with
respect to the interpretation of Tarski’s theory in section 5 above, it is unwarranted
with respect to the present interpretation. On the first interpretation, Tarski’s theory is
a reductionist theory. Its task is to reduce the notion of truth for a given language to the
satisfaction and denotation conditions of its nonlogically-structured formulas and its
nonlogical constants. As such, the burden of informativeness falls on its nonlogical
entries. Since these are trivial, the definition as a whole is trivial. But on the second,
logical interpretation, the burden of informativeness falls on the logical entries. (The
nonlogical entries play a merely auxiliary role.) So long, and to the extent that, the
logical entries are informative, the definitions of truth are informative.

Are the logical entries in Tarski’s definitions informative? To be informative, the
logical entries have to describe the truth conditions associated with different logical
structures based on principles, rather than by enumeration. Now, on a first reading, the
logical entries in Tarski’s definitions are not very informative. Take the logical con-
nectives. The entries for Negation and Disjunction essentially say that not s is true
iff s is not true, and that s or V is true iff s is true or V is true. These entries do not
explain the satisfaction conditions of ‘not’ and ‘or’; they take them as given. (‘Not’ in
the definiens merely repeats ‘not’ in the definiendum.) But on a less literal and more
charitable interpretation we may view the entries for the logical connectives as im-
plicitly referring to the highly informative Boolean, or truth-functional, account of
these connectives. The Boolean account provides (1) an informative a criterion of log-
icality for connectives, and (2) a systematic characterization of the satisfaction 
conditions of each logical connective based on this criterion. According to this 
characterization, Negation is characterized by a 1-place Boolean function, f~, defined
by: f~(T) = F and f~(F) = T, Disjunction is characterized by 2-place function fV, defined by:
fV(T,T) = fV(T,F) = fV(F,T) = T and fV(F,F) = F, and these definitions are precise and infor-
mative. In 1933 there did not exist an analogous criterion for logical predicates and
quantifiers, but in later years such a criterion, and a systematic characterization of the
satisfaction conditions of individual logical predicates and quantifiers based on it, 
have been developed. (See Mostowski 1957; Lindström 1966; Tarski 1966; Sher 
1991 and others.) Today, therefore, it is possible to avoid the triviality criticism alto-
gether by expanding Tarski’s definitions to languages containing any logical constant
satisfying this criterion and constructing (interpreting) the satisfaction entries for the
logical constants as referring to the informative characterizations of these constants
based on this criterion. (For further details and examples see Sher 1999b, Sections 6,
7, and 9).

��
��

TRUTH, THE LIAR, AND TARSKI’S SEMANTICS

161



8 Truth Beyond Logic

Aside from its direct contributions to pure logic, Tarski’s work on truth has indirectly
contributed to other fields as well. Kripke (1963) developed a semantics for modal logic
which incorporates elements from Tarski’s logical semantics; Hintikka (1962) and
others developed a semantics for epistemic statements based on Tarski’s semantics;
Davidson (1980, 1984) has begun an influential project of developing a general theory
of meaning for natural languages based on Tarski’s method; etc. How far Tarski’s
theory can be extended beyond logic without losing its informativeness is an open 
question.
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Truth, the Liar, and Tarskian 
Truth Definition

G R E G R AY

Alfred Tarski’s work on truth has become a touchstone for a great deal of philosophi-
cal work on truth. A good grasp of it is critical for understanding the contemporary 
literature on truth and semantics. In this essay, I will present a fresh interpretation of
Tarski’s view, one which aims to draw it out more fully in areas of philosophical inter-
est. This has required extrapolation (e.g. drawing explicit implications for concepts and
properties) and reverse engineering (e.g. introducing the notion of full conceptual
warrant) for which I will not offer textual justification here. My purpose is to introduce
Tarski’s central ideas briefly and in the most tenacious way I can. It is my hope that this
brief study will prove useful as a basis for further investigation.

1 Truth

Our topic of philosophical concern is truth, but we will be almost entirely concerned
with the concept of sentential truth, that is the relational concept of (something’s being)
a true sentence of (some language). We will also have to deal with certain language-
specific truth concepts, such as the concept of a true sentence of English. In addition to
sentential truth, one can speak of doxic truth and propositional truth – these being the
concepts of a true belief and a true proposition, respectively. Some think the concept of
propositional truth more fundamental than others. We need not join this debate here,
if we are careful to draw our conclusions with appropriate care.

The T-strategy

Underlying Tarski’s work is a basic observation about sentential truth, namely that
claims such as

‘snow is white’ is a true sentence of English if and only if snow is white
‘neige est blanche’ is a true sentence of French if and only if snow is white

seem quite obvious and unexceptionable, and they also state necessary and sufficient
conditions for the truth of the sentences mentioned in them without appeal to any



further semantic notions. Tarski’s starting point is the idea that such statements might
be helpful in characterizing sentential truth. If one of these sentences gives necessary and
sufficient conditions for the application of ‘is a true sentence of French’ to one sentence,
then together a full set of such sentences could give necessary and sufficient conditions
for the application of ‘is a true sentence of French’ to any sentence of French. Thus, if
some finite way of expressing this infinite set of conditions could be found, we would have
the makings of a definition of ‘is a true sentence of French,’ and this would be a start. The
sense in which such a definition might characterize or ‘capture’ a truth concept will be
an important question to take up later. Let us call the strategy of definition we’ve out-
lined, the T-strategy. The sentences we are concerned with are known as T-sentences.

DEFINITION A T-sentence in English for a language L, is any sentence which 
may be obtained from the T-schema,

s is a true sentence of L if and only if p,

by substituting for ‘s’ a syntactic description in English of a sentence of L, and substi-
tuting for ‘p’ a translation into English of that same sentence of L.

I have characterized T-sentences expressed in English. There are obvious correlates for
other meaningful languages. The T-strategy suggests that, if I wanted to characterize
sentential truth for the Xanadic language (my object language) and I wanted to express
myself in Polish (my meta-language), I should find some finite way of expressing the set
of conditions given by the class of T-sentences in Polish for Xanadic. More generally, to
make a definition realize the T-strategy for a language L in a language M, we will insist
the definition satisfy the following condition of adequacy.

CONVENTION T All the T-sentences in M for L are theorems of that theory which con-
sists of our definition statement (plus, perhaps, some axioms about syntax and
sequences).

The problem of generality

There is no obvious generalization of the T-sentences – one which would be equivalent
to stating that infinitude of sentences. So, the technical challenge of the T-strategy is
finding a finite way of expressing what the relevant T-sentences express. Call this the
problem of generality.

Tarski was not the first to see that something like T-sentences might be used to char-
acterize a truth concept nor the first to tackle the problem of generality. Tarski seemed
to think of certain familiar pronouncements about truth as unsatisfactory attempts at
solving the problem. One such was Aristotle’s famous dictum: to say that what is, is not
or that what is not, is, is false, while to say that what is, is or that what is not, is not, is true.
F. P. Ramsey pursued something like a T-strategy for doxic truth and expressed clearly
the challenge of achieving generality.

Suppose a man believes that the earth is round; then his belief is true because the earth is
round; or generalizing this, if he believes that A is B his belief will be true if A is B and false

TRUTH, THE LIAR, AND TARSKIAN TRUTH DEFINITION

165



otherwise. It is, I think, clear that in this last sentence we have the meaning of truth
explained, and that the only difficulty is to formulate this explanation strictly as a defini-
tion. If we try to do this, the obstacle we encounter is that we cannot describe all beliefs as
beliefs that A is B since the propositional reference of a belief may have any number of dif-
ferent more complicated forms. A man may be believing that all A are not B, or that if all
A are B, either all C are D or some E are F, or something still more complicated. We cannot,
in fact, assign any limit to the number of forms which may occur, and must therefore be
comprehended in a definition of truth; so that if we try to make a definition to cover them
all it will have to go on forever, since we must say that a belief is true, if supposing it to be
a belief that A is B, A is B, or if supposing it to be a belief that A is not B, A is not B, or if
supposing it to be a belief that either A is B or C is D, either A is B or C is D, and so on ad
infinitum. (Ramsey 1929: 9)

Tarski thought that he had an elegant solution to the generality problem, but recog-
nized two significant obstacles – natural language and the Liar Paradox. We will discuss
these in turn.

Conceptual status of T-sentences 

Before we proceed, however, let us consider more closely the conceptual status of T-
sentences. What one might hope to get out of a definition of ‘is a true sentence of ’ (or
‘is a true sentence of French’) using the T-strategy depends on the status of these T-
sentences. So long as the mentioned sentence is indexical-free, tenseless, and not vague
or ambiguous, each T-sentence gives a materially necessary and sufficient condition for
the application of the truth predicate in question to the mentioned sentence. What
more can be said? We should not rush to claim that T-sentences express conceptual
truths or are analytically true. There is, nonetheless, some interesting conceptual
linkage between the concept of sentential truth and the T-sentences – a linkage which
it is our current task to elucidate. Consider again a T-sentence such as

‘neige est blanche’ is a true sentence of French if and only if snow is white.

Such a sentence recommends itself to us, because it seems, roughly, that one who has
the proper linguistic understanding knows it to be true. There is something to this idea.
Let us begin with a case simpler than T-sentences.

DEFINITION For language M and sentence, s, of M, we shall say that s has simple con-
ceptual warrant in M iff one who understands s (as a sentence of M), is in a position to
know (on non-truth-functional grounds) that if (1) each predicate of s is subserved in
M by the concept it expresses in M, and (2) each singular referring term of s refers in
M, then s is a true sentence of M.

Understanding s as a sentence of M, as used here, is meant to imply of the agent that he
or she,

1. for each predicate, p, of s, grasps the concept, c, expressed in M by p and knows of
c that it is expressed in M by p, and
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2. associates with each singular referring term of s a condition and knows that 
it uniquely picks out the referent in M of the term if such there be, and nothing
otherwise.

To explain what is intended by saying that a predicate is subserved by a concept, I will
avail myself of the useful fiction that concepts come supplied with explicit application
rules which say what sorts of things are supposed to be included or excluded by the
concept.

DEFINITION A concept, c, subserves a predicate, p, of language M iff for all x in the
domain of discourse of M, (1) if the application rules for c imply that x falls under c,
then p applies in M to x, and (2) if the application rules for c imply that x fails to fall
under c, then p fails to apply in M to x.

Ordinarily, of course, if a predicate expresses a concept, that concept subserves the
predicate. However, a concept could subserve a predicate which did not express it, and,
just possibly, a predicate could express a concept that did not subserve it.

Sentences with simple conceptual warrant evidently include (1) the analytically true;
(2) sentences free logics treat specially, such as ‘if Vulcan is green, then Vulcan is green’;
as well as (3) some more interesting cases involving vacuous names, such as, ‘if Vulcan
is a planet, then Vulcan is a heavenly body.’ These sentences have exceptional concep-
tual credentials, though not all are guaranteed to be true. We note in passing that they
are all of a sort that we would be entitled to rely on for the purposes of scientific theo-
rizing – at least until such time that it became known that ‘Vulcan’ fails to refer.

T-sentences do not have simple conceptual warrant, but an extension of the same
idea applies to them.

DEFINITION For sentences M and L, and for t, a T-sentence in M for some language, L,
(where t has form d is a true sentence of l iff G ), we shall say that t has subtle con-
ceptual warrant in M just in case one who

(1) understands t as a sentence of M,
(2) recognizes that the sentence denoted in M by d is a sentence of the language denoted in

M by l,
(3) understands the sentence denoted in M by d as a sentence of the language denoted in M

by l,

is in a position to know (on non-truth-functional grounds) that

if each predicate of t is subserved in M by the concept it expresses in M, and each
singular referring term of t refers, then t is a true sentence of M.

Our T-sentences do have subtle conceptual warrant. The notion of subtle conceptual
warrant aims to capture the special sense in which these sentences are conceptually
underwritten. It grounds our feeling that example T-sentences are ‘iron clad.’ Let us say
of a sentence of a language M that it has full conceptual warrant in M just in case it has
either simple or subtle conceptual warrant in M.
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Exactly specified languages

Tarski did not think that there was a well-defined class of T-sentences for natural lan-
guages like English. He thought that it was not clearly determined what was the basic
vocabulary of English. Surely this is correct, since it is vague whether a new term in
use, for example ‘Za,’ should be thought of now as a term of English. Tarski also
thought indexicality and tense presented difficulties for working directly with a natural
language. These days, these are not seen as serious obstacles, because of the work of
Donald Davidson (1967: 34) and others.

In the face of these obstacles, Tarski chose to pursue the T-strategy with regard only
to languages with what he called an exactly specified structure. This would ensure that
a language under examination had a well-defined primitive vocabulary and grammar,
and this would help ensure that there could be a well-defined set of T-sentences for that
language. Simplifying Tarski somewhat, let us say that to exactly specify a language, one
must specify: a basic vocabulary, grammatical formation rules, the class of sentences,
a set of axioms, and inference rules. If a language is exactly specified in purely syntac-
tic terms, then it is said to be formalized.

The last two items on the specification list may seem objectionable. We do not think
of languages as coming equipped with inference rules and axioms. The worry subsides,
however, once we see that the inference rules and axioms in question are indeed deter-
mined (albeit not uniquely) by a meaningful language. First, logical relations between
meaningful sentences obtain in virtue of what those sentences mean, and a set of infer-
ence rules is a way of codifying logical relations. One might also think of the set of infer-
ence rules as a way of identifying and specifying the meanings of the logical terms of
the language. Either way, what we represent by including inference rules in a specifi-
cation is determined by the language itself, not super-added. Second, it is a constraint
on the axioms Tarski has in mind that they axiomatize the conceptually assertible sen-
tences of the language – and these are, I propose, just the sentences of the language
with full conceptual warrant. Thus, the axioms of an exact specification are also clearly
determined by the language.

Using exactly specified languages makes Tarski’s technical project more sure-footed,
but makes our philosophical job harder. Since we have good reason to believe that there
is no well-defined class of meaningful sentences for a natural language like English,
there can be no exact specification of such a language. For this reason, care and reflec-
tion is necessary in considering any results we may obtain.

One further notion which we will make use of in the sequel is that of an empirically
assertible sentence. Conceptually assertible sentences are ones which have exceptional
credentials in virtue of which, special knowledge to the contrary, they may be ‘treated
as true’ for the purposes of scientific and logical work. In an empirical language (e.g. a
language suitable for expressing physical theory as opposed to the language of arith-
metic) some sentences may be treated as true for the purposes of scientific theorizing
not in virtue of their conceptual standing, but in virtue of being empirically confirmed.
Keeping things as simple as possible, we will say that an empirically assertible sentence of
a language is one which has met a certain (unspecified) standard of confirmation, and
an assertible sentence of a language is one which is either conceptually or empirically
assertible.
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2 The Liar

Suppose, then, that we restrict further attention to languages with an exactly specified
structure. The next obstacle to pursuing the T-strategy is more grievous. Considerations
based on the Liar Paradox suggest that the T-strategy will lead us into inconsistency.

The Liar Argument 

For the sake of argument, let us assume that the definite description ‘the sentence with
feature f ’ uniquely denotes the sentence which is quoted in sentence (a) below. Our argu-
ment will be given in (a fragment of) English. Also, for simplicity, we will suppose that
‘L’ refers to a language which looks and is structured just like a fragment of English and
has no false cognates (so translation into English is transparent). Consider the follow-
ing Liar Argument which begins with a T-sentence.

(a) ‘The sentence with feature f is not true in L’ is true in L iff the sentence with
feature f is not true in L.

(b) ‘The sentence with feature f is not true in L’ is identical to the sentence with
feature f.

(c) So, ‘The sentence with feature f is not true in L’ is true in L iff ‘The sentence
with feature f is not true in L’ is not true in L.

It is worth stating carefully how this argument (sequence of sentences) poses a threat
to reason. First, suppose you think that (a) and (b) represent beliefs that you hold. Then,
certainly, (c) represents something that could be validly inferred from things you
believe. But (c) is logically self-contradictory, and this suggests that your beliefs are in
a sorry state indeed. You would be rationally compelled to conclude that you had a false
belief. It is hard to see how (b) could be the culprit, so suspicion falls on (a). However,
(a) could not represent a false belief you had, because we can prove (a) is not false:

After all, a claim [like (a) which is of the form] A iff B can be false only if (i) A is true
and B is false or (ii) A is false and B is true. Where A is ‘S’ is true and B is S, these com-
binations cannot occur, for (i) if S is false, then the claim that it is true cannot be true and
(ii) if S is true, then the claim that it is true cannot be false. (Soames 1999: 51)

The Inconsistency Argument

Thus, the Liar Argument presents us with an intolerable situation – a genuine affront
to reason. The Tarskian analysis of this situation is based on the following
Inconsistency Argument. Let M be a fragment of English sufficient for giving the Liar
Argument.

(1) Sentence (a) is a conceptually assertible sentence of M. (Premise)
(2) Sentence (b) is an empirically assertible sentence of M. (Premise)
(3) The ordinary rules of logic apply in M (i.e. the rules of inference of M under-

write the usual deductive moves). (Premise)
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(4) Thus, the deductively inconsistent sentence, (c), is derivable from (a) and (b) by
the rules of inference of M.

(5) It follows that the language M is inconsistent in the sense that a deductively
inconsistent sentence is derivable by the rules of inference of M from the 
assertible sentences of M.

This argument is not a problematical argument and its premises are ones that we 
have no reason at all to reject. Moreover, there are exactly specifiable languages 
for which these premises evidently hold, such as that fragment of English used in 
giving the Liar Argument earlier. For this reason Tarski held that an exactly specified
language as much like English as possible would be inconsistent – a claim that has been
a source of consternation and a subject of misinterpretation, for example Soames
(1999).

Incoherence of the concept

Examination of the Inconsistency Argument reveals that one of the sentences, (a) or
(b), must be assertible but not true in M. Again, suspicion falls only on (a). A simple argu-
ment showed that (a) cannot be false, so it is immediate that (a) must lack a truth value
(and so on some understandings of belief you would surely have been mistaken to think
it represented any belief you held).

Now, (a) is a T-sentence, and it is assertible because it has subtle conceptual warrant.
Since it is certainly possible for an agent to satisfy the antecedent epistemological con-
ditions for subtle conceptual warrant with respect to (a), we know by this that someone
could be in a position to know of (a) that

if each predicate of (a) is subserved in M by the concept it expresses in M, and each
singular referring term of (a) refers in M, then (a) is a true sentence of M.

We know that (a) is not a true sentence of M and it is evident that there is no reason 
to think that any singular term of (a) fails of reference. From these we infer that 
some predicate of (a) is not subserved in M by the concept it expresses in M. The 
only candidate is the predicative expression, ‘is a true sentence of.’ Thus, we are led 
to conclude that ‘is a true sentence of ’ is not subserved in M by the concept, c, that it expresses
in M, i.e. the concept of sentential truth. How could it possibly happen that we have 
made a predicate express some concept, and yet, in spite of our intentions, that 
concept does not subserve it? The only conceivable way this could happen is if it 
were strictly impossible for the concept to subserve it. Such an impossibility is guaran-
teed if

the application rules for c imply that the pair ·‘The sentence with feature f is not true
in L’, LÒ falls under c, and the application rules for c imply that ·‘The sentence with
feature f is not true in L’, LÒ fails to fall under c.

The concept of sentential truth is, in a word, incoherent.
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3 Tarskian Truth Definition

Evidently the T-strategy invites inconsistency since it is a T-sentence that sets up the
Liar Argument. Nonetheless, Tarski has the idea that the strategy still might be usefully
carried out by further restricting attention to exactly specified languages for which not
all the assumptions of the Inconsistency Argument hold. Specifically, Tarski proposed
that we can do this if we only consider object languages, L, which are not semantically
closed. Where a semantically closed language, L, is characterized loosely as one which
(1) has the resources to denote its own expressions, and (2) has the resources to predi-
cate truth in L of those expressions. The crux of the matter is that a semantically closed
language is one in which a liar sentence (like ‘the sentence with feature f is not true in
L’) can be formed, and this is a sort of thing we are now aiming to avoid. A complete
set of T-sentences for such a language must include a T-sentence for that liar sentence,
and thus, any language, M, in which we could pursue the T-strategy would be one in
which the T-sentence for the liar sentence was an assertible one, that is, premise (1) of
the Inconsistency Argument would hold. So long as we stick with languages that are
not semantically closed, however, we effectively avoid this.

I am simplifying. The existence of sentences that form Liar chains, means that there
are variants on the Liar and Inconsistency Arguments which will make the task of iden-
tifying the languages suited for Tarski’s definitional project trickier yet (cf. Kripke 1975:
54–5; Yablo 1993).

Truth definitions

We have now (let us suppose) identified a class of exactly specifiable languages for which
we might still hope to carry out the T-strategy. As stated earlier, Tarski’s insight was
that the problem of generality could be solved by employing the (now very familiar)
technique of recursive definition. Tarski proceeds by example, showing how to give a
recursive definition meeting Convention T for the language of the calculus of classes (a
quantified language ranging over sets and having a single predicate term expressing
the subset relation). Note, the language in which the definition is expressed is, perforce,
expressively richer than the object language, since the former has sentences that trans-
late all those of the object language, as well as the resources to denote the expressions
of the object language.

To give an example definition here, we will use a language, L, which has a two-place
predicate, ‘Õ’, for the subset relation, plus logical terms for negation, conjunction, and
quantification, and some individual variables.

DEFINITION Let an L-sequence, f, be a function from the variables of L into the domain
of discourse of L.

DEFINITION For a variable, a, of L, let an a-variant of an L-sequence f be any 
L-sequence, f ¢, which is just like f except possibly for the value f ¢ assigns to a.

DEFINITION For all L-sequences, f, and every formula, s, of L, f L-satisfies s iff

if s is of the form a Õ b for some variables a and b, then f(a) is a subset
of f(b),

��
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if s is of the form y & q for some formulas y and q, then f L-satisfies y
and f L-satisfies q,

if s is of the form y for some formula y, then f does not L-satisfy y,and

if s is of the form "a y for some variable a and formula y, then every
a-variant of f L-satisfies y.

DEFINITION For all sentences j of L, j is a true sentence of L iff j is L-satisfied by every
L-sequence.

This is not the definition we are looking for, but it is a simple matter to transform our recur-
sive definition of L-satisfaction into an explicit definition and combine it with our truth
definition to yield the following explicit truth definition.

DEFINITION (explicit): For all sentences j of L, j is a true sentence of L iff for all 
L-sequences, g, ·g,jÒ is a member of the least set, X, such that for all L-sequences, f, and
L-formulas, s,

if s is of the form a Õ b for some variables a and b, then ·f,sÒ ŒX iff f(a)
is a subset of f(b),

if s is of the form y & q for some formulas y and q, then ·f,sÒ ŒX iff
·f,yÒ ŒX and ·f,qÒ ŒX,

if s is of the form y for some formula y, then ·f,sÒ ŒX iff ·f,yÒ œX, and

if s is of the form "a y , then ·f,sÒ ŒX iff for every a-variant, f¢, of f, 
·f¢,yÒ ŒX.

It is widely accepted that these sorts of definitions do satisfy Convention T, and so we
surely have a definition suitable for a predicate which expresses the concept of a true
sentence of L.

Translingual truth predicates

Tarski succeeded in following the T-strategy to its completion, solving the problem of
generality by showing how to give a recursive definition, and this rises to the technical
challenge we identified at the outset. However, the sample definition Tarski gave is apt
only for a predicate expressing the monolingual concept of a true sentence of the lan-
guage of the calculus of classes. What about the relational concept of sentential truth? It
has often been said in criticism of Tarski that he showed “how to define ‘is a true sen-
tence of L’ for fixed L,” but failed to show us how to define the relational ‘is a true sen-
tence of ’ – the implication being that it is only the latter that expresses a concept in
which philosophers are really interested.

Yet, Tarski himself evidently thought that his technique could be generalized.
Indeed, there would seem to be no barrier, in principle, to the construction of a defini-
tion suitable for a two-place predicate, like ‘is a true sentence of ’ provided that the lan-
guage, M, in which the definition is to be given not be one for which the premises of the
Inconsistency Argument hold. This indirectly imposes a constraint on the object lan-
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guages over which the target truth predicate can range. There may be real difficulties
posed if the range of object languages is infinite, but such difficulties do not show that
there are no suitable metalanguages, M.

The complaint we are considering is really misplaced. What is true is that the lan-
guage in which a relational truth predicate was defined in the Tarskian way would have
to be a language with a restricted domain of discourse. However, this is no more than
the demand for consistency requires.

4 Discussion

The question of analysis

Does a Tarskian definition like the one just described provide a conceptual analysis of
the concept of sentential truth? Certainly not. One of Tarski’s main aims in giving a
definition is to ensure consistency with empirical facts. But the upshot of the
Inconsistency Argument is that the concept of sentential truth is incoherent in such a
way that anything that might pass for an analytical definition would surely not be con-
sistent in this way. So, it is very plainly not on the Tarskian agenda to provide an ana-
lytical definition. In fact, Tarski understands himself to be defining the set which is the
extension, not a predicate at all, so the definitional part of his project is not about giving
meanings (Coffa 1991: 293–6).

Still, it may come as a surprise that even a Tarskian definition for a semantically open
language like Quadling could not at least give us an analysis of the humble concept of
a true sentence of Quadling. Nonetheless, the denial of such analytic status is implied by
a family of arguments promulgated in the literature. If successful, these arguments
would show that if you introduced a new predicate using a Tarskian definition, this 
predicate would not mean the same thing as an antecedently meaningful truth predi-
cate that expressed one of our truth concepts. These arguments proceed by compar-
ing an example T-sentence to the result of performing definitional substitution on 
that T-sentence using a Tarskian truth definition. The arguments seek to impugn the
Tarskian definition by finding telltale differences between the two sentences that point
to differences in meaning. Philosophers have claimed differences in logical status,
modal status, subject matter, and informativeness. Arguments of this sort can be found
in Putnam (1985: 63–4); Soames (1995: 253–4). John Etchmendy (1988: 56–7) seeks
to use this sort of argument to draw a further conclusion, namely that Tarskian defini-
tions do not give any information about the semantics of their target language, appear-
ances notwithstanding. If this were correct, Tarski (1936) would not have contributed
to theoretical semantics in the way he is widely thought to have. For critical discussion
of these arguments, see Davidson (1990: 288–95); Garcia-Carpintero (1996); Heck
(1997).

Even if these arguments are correct, it would be a mistake to conclude as some do
that Tarskian definitions are merely extensionally correct or that Tarski thought only
as much. The appropriateness of the T-strategy depends on there being a significant con-
ceptual connection between the concept in question and the T-sentences, but Tarski’s
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notion of definition does not itself require ‘giving the concept.’ Yet, since Tarskian 
definitions realize the T-strategy, they inherit something of that conceptual connection.
If one satisfied the knowledge conditions set forth in the definition of subtle conceptual
warrant, and one knew that the language M was so chosen that the truth predicate would be
subserved by the concept it expresses, then one would be in a position to know that each 
of these T-sentences is true in M. Ditto for the Tarskian truth definition statement. For
this reason, we might with some justice say that a Tarskian truth definition for L ‘cap-
tures’ the concept of a true sentence of L, even though the definition is not a concept-
giving one.

Deflationism

The Tarskian view is often associated with deflationist views of truth. According to
some, the central tenet of deflationism is that there is no property of truth. If this is what
is meant by deflationism, then the Tarskian view of truth that we have outlined is most
certainly deflationist. In fact, Tarski was in possession of the best possible reason for
endorsing this deflationist thesis. Tarski’s view of truth delivers a simple argument to
the conclusion that there is no property (relation) of sentential truth. The argument I
have in mind relies on two general principles:

1. For any binary relation, R, necessarily, for any pair, x and y, either x is R-related to
y or x fails to be R-related to y.

2. For any R,p,M, if R is the relation of sentential truth, and p is a predicate which
expresses in M the concept of sentential truth, then for every x and y in the domain
of discourse of M, p applies in M to ·x,yÒ iff x is R-related to y.

Item (1) states a conceptual truth about properties; that is just the sort of thing that a
property was supposed to be. (2) articulates how the concept of sentential truth and
the property thereof would be related to a predicate that expressed that concept. Simply
put, a predicate is supposed to be ‘underwritten’ by the property (if any) associated with
the concept the predicate expresses.

Now, we reason as follows. By way of contradiction, suppose there is a property of
sentential truth, R. Then it is easy to see that (1) and (2) enable us to infer that any
predicate expressing the concept of sentential truth will have a proper extension, but
we know this is not so. Another way of seeing the point is to see that our supposition,
together with (1) and (2) ensure that premise (a) of the Liar Argument is true in M,
and we know that cannot be so. Therefore, by reductio, there is no property of senten-
tial truth. This reasoning can be repeated for monolingual truth properties such as being
a true sentence of French.

Thus, it is not hard to muster a deflationist conclusion from the Tarskian view as we
have developed it here. However, sometimes ‘deflationism’ is associated with the rather
more nebulous idea that truth is not a philosophically significant notion. Nothing we
have said suggests that one who held Tarski’s view should be a deflationist in this sense.
Indeed, it looks like the view may be committed in quite the opposite way. Tarskian 
definitions don’t give an analysis of our concept of sentential truth nor even of its sub-
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sidiary monolingual notions. This suggests that there may be something to these con-
cepts other than what the T-sentences codify. Working out a cogent disquotationalist
version of deflationism could be seen as the attempt to resist this suggestion. Space pro-
hibits further discussion here, but a locus classicus of the debate is Field (1987), and a
useful collection in this area is Blackburn and Simmons (1999). For an extended dis-
cussion of the disquotationalist proposal, see David (1994).

Making truth safe for science

Even though his analysis of the Liar pointed to the incoherence of the concept of sen-
tential truth, Tarski nonetheless saw value in carrying out his definitional project in a
restricted context. By doing so, he showed that one can appeal to the notion of senten-
tial truth in the conduct of inquiry without fear of introducing inconsistency. In so far
as the restricted class of languages in which this applies is broad enough for the conduct
of scientific inquiry (is it?), Tarski succeeds in making truth safe for science.

Note that success in this does not require that Tarskian definitions be analytical, nor,
contra Field (1972), that they offer any sort of physicalistic reduction of semantics.

5 Conclusion

We have presupposed throughout our discussion that there is a concept of sentential
truth and that, by dint of certain linguistic intentions, terms like ‘is a true sentence of ’
express it. But we should now step back and examine this presupposition. To tell the
story we have, we tacitly employed a conception of concept according to which, by
making the term ‘true’ express a certain concept, we would make it the case that the
word ‘true’ is supposed to work a certain way, it is supposed to apply to certain things and
it is supposed to fail to apply to certain other things, whether the term for whatever reason
actually succeeds in applying (failing to apply) to those things or not. We appealed earlier
to the fiction that concepts were things that came equipped with explicit application
rules to make this idea concrete. On this conception of concept, there is nothing funny
about speaking, as we have, of an incoherent concept.

However, philosophers have commitments about these things and there is a history
to the use of the word ‘concept.’ Some will hold that concepts are more akin to prop-
erties as I have characterized them. That is to say, some will hold that a concept is a
thing that partitions the things of the universe into two classes – those that fall under
the concept and those excluded by it – and if there isn’t such a partition, you don’t 
have a concept. Earlier reasoning showed, however, that there can be no such partition
when it comes to sentential truth. Thus, if we use ‘concept’ in this narrower sense, the
Tarskian view will certainly force us to say that there is not even a concept of senten-
tial truth. Instead, we should have to say, there is only a kind of predicate which, by
dint of our linguistic intentions, is supposed to work this way and is supposed to work
that way, when in fact nothing could possibly work this way and that way.

With such dramatic philosophical conclusions as these in the offing, it is easy to see
how Tarski’s work could become a centerpiece of the discourse on truth.
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Descriptions and Logical Form

G A RY O S T E RTAG

According to a tradition associated with Frege, Russell, and Tarski, logical form is 
that aspect of sentence structure relevant to inference, semantical evaluation, and
ontological commitment. More recently, Chomskian linguistics has given birth to an
alternative conception, taking Logical Form (henceforth, ‘LF’) to refer to the level of
grammatical description at which scope precedence among quantifiers and related
expressions is made explicit. Although syntactically motivated, LF is an attractive and
powerful medium for representing logical form in the sense associated with Frege,
Russell, and Tarski. The present chapter considers in detail Russell’s proposal concern-
ing the logical form (in the traditional sense) of sentences exemplifying the surface
grammar the F is G – namely, the Theory of Descriptions – and asks to what extent it
can be accommodated in a picture of logical form inspired by LF.

Due to considerations of space, an alternative approach to the logical form of
description sentences is not given emphasis equal to Russell’s, although I believe it to
be viable and worthy of consideration. This is the approach that takes descriptions to
be referential singular terms. My reasons for preferring Russell’s theory are given in the
subsection of Section 1, “Descriptions as singular terms”. In addition, the challenge to
Russell posed by the referential use of definite descriptions is not addressed in what
follows. I am assuming – what is perhaps not obvious – that the Russellian theory can
accommodate such usage.

1 Preliminaries

Formal aspects of Russell’s theory of descriptions

Russell’s rendering of a sentence exemplifying the surface form the F is G is as follows:

(1) G(ix)Fx

(1) corresponds more precisely to the quasi-formal English sentence: the x such that x
is F is G. (1) is defined in terms of (2):

(2) $x("y(Fy ∫ y = x) Ÿ Gx)



That is to say: something is both G and uniquely F. It will be useful to keep the English
language paraphrase in mind, since much in subsequent sections turns on it. Note that,
in (1), the variable ‘x’ as it occurs in ‘Fx’ is bound by the iota operator, ‘(ix).’ In its capac-
ity to bind a free variable, the iota operator is similar to the first order quantifiers ‘$x’
and ‘"x.’ Yet, whereas these operators, appended to ‘Fx,’ will produce a closed formula,
or sentence, the iota operator will produce an expression that functions, syntactically,
as a term. As we shall see, the qualification is important.

It will be noted that, as an analysis of (1), (2) is not quite right as it stands, since it
fails to tell us what to do when a description is embedded in a complex context – for
example (3):

(3) G(ix)Fx … p.

This sentence has the following two readings:

(3a) $x("y(Fy ∫ y = x) Ÿ (Gx … p))
(3b) $x("y(Fy ∫ y = x) Ÿ Gx) … p

(3a) claims that something is both G-only-if-p and uniquely F, whereas (3b) claims 
that something is both G and uniquely F, only if p. That these readings are truth-
conditionally distinct is easy to see: if nothing is F, then (3a) will be false, whereas (3b)
will be true. Intuitively, the respective readings correspond to what we take the scope
of ‘(ix)Fx’ to be in (3). If the scope of ‘(ix)Fx’ is the entire sentence (3), then (3a) is the
correct reading; if the scope of ‘(ix)Fx’ is restricted to ‘G(ix)Fx,’ then (3b) is the correct
reading.

Russell introduced a somewhat cumbersome notational device –‘(ix)Fx’ enclosed in
square brackets – to mark off the scope of ‘(ix)Fx.’ Assuming S is a context in which
‘G(ix)Fx’ can occur as a subformula, Russell’s idea is as follows: If the scope indicator
is prefixed directly to the formula in which the contained description occurs as an imme-
diate constituent (here, ‘G( )’), then the description takes narrowest scope. This situa-
tion is represented thus: S([(ix)Fx]G(ix)Fx). On the other hand, if the scope indicator is
prefixed to S, then the description has wide scope with respect to S (equivalently, the
scope of the description is said to be S itself ). The latter situation is represented in the
following manner: [(ix)Fx] S(G(ix)Fx). For example, in (3c), the description takes
narrow scope, indicated by the fact that ‘[(ix)Fx]’ is affixed directly to the simplest sub-
formula containing ‘(ix)Fx.’ In (3d) the description takes wide scope, as it is prefixed to
the entire formula:

(3c) [(ix)Fx] G(ix)Fx … p
(3d) [(ix)Fx] (G(ix)Fx … p)

We are now ready for the official definition of ‘(ix)Fx’ as stated in Principia 
Mathematica:

(*14.01) [(ix)Fx] Y(ix)Fx =df $x("y(Fy ∫ y = x) Ÿ Yx)
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(*14.01) does not define ‘(ix)Fx’ directly, but rather provides a procedure for eliminat-
ing it from any context in which it may occur. That is to say, it provides a contextual 
definition of ‘(ix)Fx.’ While Russell’s views on definition are complex and cannot 
be adequately treated here, it is important to bear in mind his claim that “a definition
is concerned wholly with symbols and not with what they symbolize”; they are, “strictly
speaking, typographical conveniences” (Whitehead and Russell 1925–7: 11). This
strongly suggests a reading of the definitions as merely providing abbreviations for
complex formulae. Yet, Russell does note that although a definition in his sense is 
always “theoretically . . . superfluous,” it does retain a certain pragmatic significance,
especially in those cases where the definiendum (the expression being defined) is 
familiar. In such cases the “definition contains an analysis of a common idea, and 
may therefore express a notable advance” (Whitehead and Russell 1929: 13). Applied
to definite descriptions, this is significant: it suggests that we notice a parallel between
the definiendum and something already familiar to us – definite descriptions as they
occur in, say, English. To choose to abbreviate ‘$x("y(Fy ∫ y = x) Ÿ Gx)’ with a formula
that has the argument structure of a simple predication (e.g. ‘Gt’) may be theoretically
arbitrary – in principle, another abbreviatory convention would have served as well –
but it makes a point about the logical form of English sentences exemplifying the F is G
that the alternative would not have: namely, that they can be eliminated in a similar
manner.

This point is worth emphasizing, since it is often assumed that Russell’s Principia
theory of descriptions has no bearing on the interpretation of definite descriptions in
English and other natural languages, and, indeed, that this was Russell’s official posi-
tion. Writing in response to Moore, Russell remarked that “the whole of my theory of
descriptions is contained in the beginning of 14 of Principia Mathematica,” adding that
“the reason for using an artificial language was the inevitable vagueness and ambigu-
ity of any language used for every-day purposes” (Russell 1944: 890). While some (e.g.
Mates 1973) have seen in this remark a concession that his theory is really only a formal
definition, this is in fact not the case: “The two definitions which embody the theory of
descriptions (*14.01.02), though formally they are merely nominal definitions, in fact
embody new knowledge; but for this, they would not be worth writing about” (Russell
1944: 891). This suggests quite clearly that Russell intends his definitions to provide
an analysis of definite descriptions. If he concedes anything, it is that his definitions do
not provide a general theory of the definite article, since, as Moore pointed out, the def-
inite article is used in ways that the theory cannot accommodate (notoriously, the
generic use of the).

Descriptions as singular terms

An alternative paradigm to Russell’s maintains that definite descriptions are semanti-
cal singular terms. On this approach, surface grammar does not mislead with respect
to logical form: ‘(ix)Fx’ is both grammatical subject and logical subject of ‘G(ix)Fx.’
Initially suggested by Frege, the singular term proposal is defended in Strawson (1950),
which criticizes Russell for identifying the presuppositions characteristic of description
sentences with the actual content of such sentences. As Strawson writes: “To use the
word ‘the’ in [the uniquely referring] way is . . . to imply (in the relevant sense of
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‘imply’) that the existential conditions described by Russell are fulfilled. But to use ‘the’
in this way is not to state that those conditions are fulfilled” (Strawson 1950: 147).

Consider, in this connection, (4):

(4) The present king of France is bald.

For Strawson, an utterance of (4) presupposes, and does not assert, that there exists a
unique French monarch. To see this, he has us imagine the following scenario.
Someone asks you, apparently seriously, whether the present king of France is bald. If
Russell is correct, it is appropriate to respond, “no, that’s false.” Clearly, however, a more
appropriate response would be to address the speaker’s beliefs, and not what she said.
One might respond, for example, by saying: “You seem to be laboring under a false belief
– France is not a monarchy.” This suggests that the propriety of a description – its
having a unique denotation – is not an aspect of the content of description sentences,
but of the rules dictating their correct use.

The notion of presupposition Strawson appeals to can be defined as follows: An utter-
ance u presupposes p just in case: if p is false, then u is neither true nor false. It follows
that sentences containing vacuous descriptions have no truth-value (since the relevant
uniqueness and existence propositions are false). This does appear to be the case with
post-Revolutionary utterances of (4). But if there are intuitions that favor Strawson,
there are also intuitions that favor Russell. Consider (5a/b):

(5a) If Ferdinand is not drowned, Ferdinand is my only son. (Russell)
(5b) Yesterday, I dined with the King of France. (Neale)

Russell remarks that the King in The Tempest might have uttered (5a), and suggests that
it would be true even if Ferdinand – the King’s only son – had, in fact, been drowned. In
addition, while Strawson would hold that an utterance of (5b) presupposes that France
has a single monarch, and thus should be without a truth-value, one is hard-pressed to
hear it as anything but false. So, it seems that appeals to usage provide little guidance in
determining whether or not the relevant uniqueness and existence propositions are 
part of what is said by a description sentence. Without decisive evidence in favor of the
presupposition doctrine, the Strawsonian challenge to Russell is inconclusive.

In addition, the singular-term interpretation of descriptions fails to provide a satis-
fying account of the propositional content of description sentences. A naïve applica-
tion of this interpretation would identify the proposition expressed by an utterance 
u of ‘the current US president is male’ with the ordered pair Bush, is maleÒ. This would
be to associate the wrong proposition with the utterance. What u said should be true
at any circumstance of evaluation E at which the US president (at E) is male. However,
a naïve application of the singular-term approach will entail that what I said in utter-
ing u is true at E just in case Bush exists at E and is a man at E – even if the US presi-
dent at E is woman! Thus, the naïve singular-term approach must be rejected.

The obvious solution is to relativize the reference relation to circumstance of evalu-
ation. On this view, u expresses · f, is maleÒ, where f is a partial function from a cir-
cumstance of evaluation E to the unique president, if there is one, at E. (Note that f
corresponds to one interpretation of Frege’s notion of sense.) The proposition · f, is
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maleÒ is true at E just in case the US president (at E) is a man (at E). This assigns the
correct proposition to u, at least, if we restrict our attention to those circumstances of
evaluation at which there is a unique US president. However, this proposal, while truth-
conditionally adequate, attributes a dimension to referential singular terms that is not
independently motivated. As Evans writes:

Simply in order to assimilate descriptions to referring expressions, we introduce a major
change in the semantic apparatus in terms of which we describe the functioning of refer-
ring expressions in general. As a consequence of this change, we ascribe to names, pro-
nouns, and demonstratives semantical properties of a type which would allow them to get
up to tricks they never in fact get up to; since their reference never varies from world to
world, this semantic power is never exploited. (Evans 1982: 56)

Adding an extra parameter to the reference relation is necessary if we are to provide
an adequate analysis of description sentences consistent with the thesis that descrip-
tions are referring expressions. Yet, it arbitrarily weakens the reference relation. While
in no way a decisive refutation of the referential interpretation of descriptions, this con-
sideration raises a genuine concern that the classification resulting from the analysis
“may not correspond to any natural semantical kind” (Evans 1982: 57). In sum: the
Strawsonian view can assimilate descriptions to the class of referential singular terms
only by characterizing that class in a manner that appears dangerously ad hoc.

While these considerations do not settle the question against the singular term
approach, the Russellian analysis seems at this point more promising.

2 Descriptions and Quantification

Restricted quantification

In Chomskian linguistic theory, ‘Logical Form’ (or LF) refers to a level of syntactic rep-
resentation at which the scope properties of quantified noun phrases are made explicit.
This level is posited to account for the distinct readings that can be assigned sentences
such as ‘Everyone thanked someone.’ A sentence that is n ways structurally ambigu-
ous at surface structure – the level that is realized phonologically – is assigned n dis-
tinct representations at LF. Although motivated by purely syntactic concerns, LF can
function as input to a semantic theory – a theory that assigns propositions or truth con-
ditions to sentences of English – more effectively than the language of Principia. This is
due to the fact that, at LF, natural language quantifiers are represented as restricted
quantifiers. In particular, they are represented as variable-binding devices constructed
by pairing a determiner (itself represented as a variable-binding device) with a predi-
cate and enclosing the result in brackets. Using this notation, we can represent (1) as
follows:

[the x: Fx] (Gx)

This allows for a perspicuous representation of scope. For example, the readings cap-
tured by (3a/b) correspond to (3a¢/b¢):
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(3a¢) [the x: Fx] (Gx … p)
(3b¢) [the x: Fx] (Gx) … p

Note that the current proposal does not entail that descriptions, any more than other
quantifier phrases, can occur as logical subjects. Indeed, it shows why certain appar-
ent grammatical subjects – that is expressions, like quantifiers, that are subjects at
surface structure – are not, ultimately grammatical subjects at all. The proposal main-
tains that it is characteristic of a quantifier that it can be ‘raised’ from the position in
which it occurs in S to a position preceding S, leaving behind a ‘trace’ which it binds
from its new location. To illustrate: the quantifier in ‘John admired [some vases]1’ can
be relocated to the left of the original sentence: ‘[some vases]1 John admired t1.’ The
quantifier and trace are co-indexed, indicating that the former binds the latter. The prin-
ciple allowing this movement is referred to as QR (for Quantifier Raising). While con-
straints on QR are an important aspect of the proposal under discussion, we will have
to take it as given that the position to which the quantifier is raised binds the ‘evacua-
tion site.’ (For details, see Heim and Kratzer 1997.) The power of this proposal can be
seen in the following application:

(6a) [each curator]1 admired [some vases]2

(6a) represents the surface form of ‘Each curator admired some vases.’ Intuitively, this
sentence is ambiguous between two readings. These readings can be supplied by suc-
cessive applications of QR:

(6b) [each curator]1 t1 admired [some vases]2

(6c) [some vases]2 [each curator]1 t1 admired t2

Alternatively, ‘[some vases]2’ in (6b) can be raised to the position immediately preced-
ing the sentence containing its trace, yielding the second reading:

(6d) [each curator]1 [some vases]2 t1 admired t2

Note that the movement characterized by QR is possible only for quantifiers (including
wh-phrases): names and other singular terms cannot be raised. Had we adopted the
Frege–Strawson approach, QR would not be applicable to descriptions.

The notation used above translates quite straightforwardly into the restricted quan-
tifier notation (with traces indicating argument positions in open sentences), suggest-
ing that the syntactic level at which disambiguation occurs is closely tied to, if not
identical with, the level at which semantic interpretation occurs.

Russell has been criticized for presenting apparently divergent pictures of the logical
form of description sentences. On the one hand, (*14.01) suggests that description sen-
tences are really only typographical abbreviations of more complex formulae. Yet, it
becomes virtually irresistible to read (*14.01) as simply providing the truth conditions
for sentences containing the iota operator. On the latter reading, the logical form of
‘G(ix)Fx’ is that of a singular sentence, albeit one whose truth conditions are given
quantificationally. We have seen how this latter view is mistaken – for Russell, descrip-
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tions are not semantical singular terms. Stephen Neale suggests that an advantage of
the restricted quantifier interpretation is that it eliminates any residual uncertainty sur-
rounding (*14.01) (Neale 1995: 779–80). His point is that the latter interpretation
reveals a feature of definite descriptions that (*14.01) obscures. Indeed, if we take the
notation at face value, then it appears that descriptions really are natural language
quantifiers. Small wonder, then, that when treated as singular terms in the syntax of
Principia Mathematica they don’t have meaning in isolation: they can’t be assigned
meanings in this manner precisely because, being quantifiers and not terms, they are
not the kinds of expressions that are assigned referents (and, at least for Russell, the
only meaning-candidate that a description, could have if it were, per impossible, to have
meaning in isolation, would be a referent). It is also notable that Russell’s initial pre-
sentation of the theory of descriptions in “On Denoting” classifies definite descriptions
with other natural language quantifiers (his term was “denoting phrase”), such as “all
men,” “some men,” and “no men.” Thus, the restricted quantifier notation has some
claim to capturing the essence of Russell’s theory.

This formalization suggests a new means of expressing (*14.01) – namely [EQ]:

[EQ]: [the x: Fx](Yx) = df[some x: [all y: Fy](y = x)](Yx)

Indeed, Neale has claimed that ‘[the x: Fx] (Yx)’ is “definitionally equivalent” to its
Russellian expansion (Neale 1990: 45). Yet, while it appears to place Russell’s theory
in a new and illuminating light, [EQ] raises certain difficulties of its own. We now turn
to a discussion of these difficulties.

The problem of incompleteness

One ubiquitous feature of natural language quantification is incompleteness or under-
specification. We often utter sentences such as (7), fully intending to say, and be taken
as saying, something true:

(7) Everyone left the party early.

Of course, if we assume that (7) requires contextual supplementation, then it should
be false (and, what is more, irrelevant) at any actual context, since it would make a
claim about every existing person. Nonetheless, there is a clear intuition that it can be
used to say something true and relevant. Similarly with (8): it can be uttered in many
contexts to express a true proposition, even though a naïve application of Russell’s
theory will assign it a false (and conversationally irrelevant) proposition:

(8) The senator will not seek re-election.

These intuitions are defeasible, of course – it may well be that speakers systematically
misidentify what they say, expressing false propositions when in fact they appear to be
expressing truths. The latter view – defended by Kent Bach (1988) – is attractive in that
it leaves our semantics untouched, requiring no supplementary apparatus to accom-
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modate contextual effects. Given the slender intuitive basis for such a view, however, it
is best considered only when all the available options have been found wanting; we shall
not consider it further here.

A central approach to incompleteness – which, unlike the approach just considered,
takes incompleteness to be a semantic phenomenon – is the explicit strategy (Neale
1990). On this approach, an utterance of (8) expresses a proposition that completes
the description ‘the senator’ (e.g. ‘The senior senator of New York will not seek re-
election’). Perhaps its most succinct formulation is to be found in Schiffer (1995), where
it is stated in the form of a ‘meaning rule’ for the F is G:

[ES] Utter the F is G only if you mean that [the x: Fx Ÿ H*x] (Gx),

where H* is a contextually-determined, implicitly referred-to property that completes
the F (this formulation departs slightly from Schiffer). According to [ES], descriptions
have a hidden or unarticulated constituent whether or not they are in fact incomplete.
In cases where the F is complete, H*x must be a property such that (Fx Ÿ H*x) ∫ Fx.

[ES] is an instance of a more general principle, which it will be convenient to state
for future reference (det is a placeholder for a determiner):

[ES-Q] Utter det F is G only if you mean that [det x: Fx Ÿ H*x] (Gx),

where H* is as before.
While the explicit approach is often interpreted as claiming that, typically, an incom-

plete description is elliptical for a contextually definite completion, the notion of ellipsis
involved is left at an intuitive level – it is not to be identified with the formal notion famil-
iar from syntactic theory. According to that notion, a sentence such as ‘John loves opera
and Mary does too’ is elliptical for ‘John loves opera and Mary loves opera’ in the fol-
lowing sense: the words ‘loves opera’ are “covertly present” in the former (Stanley and
Szabó 2000). That is, a grammatical rule has permitted the deletion of ‘loves opera’ in
the former sentence in such a way that the excised material can be reconstructed from
the resulting context. It is a merit of [ES] that it avoids this reading of the explicit
approach, since the syntactic reading assumes that the deleted descriptive material to
be recovered from the context is lexical. It is, to say the least, implausible that context
alone would allow the audience to recover the completion, if the latter is identified with
a string of lexical items.

In fact, a problem remains even if we follow [ES] in relaxing the conditions on com-
pletions. The central obstacle to acceptance of the explicit approach is that, typically,
when a speaker utters an incomplete description, there are a number of completing
properties that are equally compatible with her intentions, yet no one that is exclusively
so. Since [ES] implies that a definite description should be uttered only if there is a par-
ticular completion that the speaker intends, it fails to state the meaning rule that under-
lies the competent speaker’s mastery of the definite article, since the competent speaker
often utters description sentences with no particular completion in mind. Consider, for
example, (8). For any normal context in which (8) is truthfully uttered, there will be a
number of completions of this sentence, each of which are equally obvious ways of
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picking out the intended person, but none of which is significantly more obvious than
the others. On the other hand, [ES] requires that there is one property H*, such that in
uttering (8) in a normal context, the speaker asserts that the H* senator will not seek
re-election. As we have seen, there is reason to be skeptical that the speaker can have
the ‘meaning intentions’ in uttering (8) that [ES] requires, since it is unlikely that there
will be any one property that the speaker can have intended in exclusion of all others
(Schiffer 1995).

One natural modification is to eliminate the requirement that the completion be
unique. The suggestion is that, in uttering (8), the speaker did not intend to convey a
particular completion (or, equivalently, a determinate completing proposition), but
rather that she “sort-of-meant, or vaguely meant” several completions (or completing
propositions) (Schiffer 1995: 371). The suggested revision of the meaning rule would
run as follows:

[ES*] Utter the F is G only if you mean that [the x: Fx Ÿ H*x] (Gx),

where, for every candidate property H, ‘H*’ indeterminately refers to H (a candidate prop-
erty being a completion of the F compatible with the speaker’s intentions). The problem
with [ES*] is that it rather arbitrarily links quantifier incompleteness with content inde-
terminacy. But, in fact, there is no apparent content indeterminacy in a typical utter-
ance of (8). A more promising approach is to retain unmodified [ES] and maintain that,
despite appearances, speakers by and large have a determinate completion in mind
when uttering sentences such as (8). On this interpretation a speaker need not have
conscious access to the implicitly referred-to completing property in order to comply
with [ES] (cf. Loar 1976).

Note, however, that even if we assume that one or another implementation of
the explicit strategy is correct, another worry arises. I have been suggesting that
Russell’s theory requires contextual supplementation if it is to provide an adequate
account of our implicit capacity to assign the correct truth conditions to utterances
containing incomplete descriptions. Indeed, Neale writes that this idea was not foreign
to Russell:

[O]nce the philosophical underpinnings of the Theory of Descriptions are in focus, it is
clear that Russell is concerned with the propositions expressed by particular utterances of
sentences containing descriptive phrases; he is not primarily concerned with the more
abstract notion of the linguistic meanings of sentences-types. (Neale 1990: 67; empha-
sis in text)

Yet, if we also follow Neale in accepting that ‘[the x: Fx](Gx)’ is logically equivalent to
its expansion we are in for trouble. To see this, consider a revision of [EQ] suggested by
Neale’s remarks:

[EQ*] An utterance u at C of the F is G is equivalent to an utterance u* at C* of its
Russellian expansion exactly one thing is F and each thing that is F is G (where
C* differs from C only in respect of its containing u* where C contains u*).
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It should be clear that [EQ*] is stronger than [ES] combined with [EQ] – indeed, for the
Russellian, [EQ] should add nothing to [ES], which could be equivalently formulated as
follows:

[ES-2] Utter the F is G only if you mean that [some x: [all y: Fy Ÿ H*y] (y = x)] (Gx),

As a number of philosophers point out (where H* as in [ES] or [ES*] – for example,
Reimer (1992), Larson and Segal (1995) and Stanley and Williamson (1995) – a
description sentence S as uttered at a context C cannot be assumed to be equivalent to
its Russellian expansion S* uttered at a relevantly similar context C*. Consider, for
example, an utterance u at C of (9a):

(9a) The party was a success.

The Russellian must maintain that the same proposition, or, at least, a proposition with
the same truth conditions, would have been expressed by an utterance of (9b):

(9b) There was exactly one party, and every party was a success.

As suggested, [ES] and [ES-Q] do not provide a guarantee that the respective utterances
will be completed in the same way. The successive clauses in (9b) will not necessarily
refer implicitly to the completing property referred to in (9a). Nor will they necessarily
refer to one and the same property. They may refer, for example, to party we attended last
night and party we missed last night, respectively. If so, (9a) and (9b) will express distinct
propositions with potentially distinct truth-values.

In fact, the failure of [EQ*], while fatal to Russell’s theory, does not undermine an
attractive and closely related approach, one which drops [EQ*], but which accepts [ES]
(and thus [EQ]). This approach entails that, for every context C, the proposition
expressed by the F is G at C – namely, that [the x: Fx Ÿ H*x] (Gx) – is equivalent to the
proposition that [some x: [all y: Fy Ÿ H*y] (y = x)] (Gx). Of course, this fails to give us
an English equivalent for the F is G; it simply tells us, in a context-independent idiom,
what proposition it expresses. In fact, demanding an equivalent English sentence might
be asking for too much in any case, since failures of equivalence occur in other con-
texts. For example, the same sorts of considerations apply to Russell’s analysis of car-
dinality quantifiers. There is no guarantee that (10a) and (10b) uttered at relevantly
similar contexts, will be equivalent. Yet this is precisely what Russell’s analysis, together
with [ES-Q], would entail:

(10a) Two cars approached.
(10b) A car approached, a car distinct from the first approached, and no other cars

approached.

Thus, the theory that remains, while not quite Russell’s theory, cannot be assumed 
to be inadequate merely because it fails to meet the equivalence condition, since that
condition appears implausibly strong, threatening not simply Russell’s analysis of
descriptions, but his analysis of cardinality quantifiers as well.
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3 Descriptions and Predication

What is Russell’s theory of predicative descriptions?

Russell’s treatment of the indefinite description an F is well-known to logic students: it
simply assimilates an F to the quantifier some F. (11a) and (11b) alike are thus rendered
as (11c) (the use of ‘human’ in the analysis is discussed below):

(11a) Socrates met a man.
(11b) Socrates met some man / someone.
(11c) $x(Human(x) Ÿ Socrates met x)

Russell’s approach to occurrences of indefinite descriptions in predicative position – 
so-called predicate nominals – is modeled on his treatment of indefinite noun phrases
in subject position. (12a) is rendered as (12b):

(12a) Socrates is a man.
(12b) $x(Human(x) Ÿ Socrates = x)

In contrast, a simple predication such as (13a) is rendered as the atomic sentence (13b):

(13a) Socrates is human.
(13b) Human(Socrates)

(11a) and (12a) do not share the same logical form per se: the relation obtaining
between Socrates and the individual quantified over in (11a) is the has met relation,
whereas in (12a) it is the identity relation – a logical constant. Nonetheless, there is an
important sense in which Russell does ascribe the very same form to sentences exem-
plifying (11a) and sentences exemplifying (12a). They both exemplify the structure:
‘$x(Human(x) Ÿ R(Socrates, x)).’

It may initially appear perplexing that predicates and predicate nominals should
receive differential treatment, given that, as James Higginbotham (1993) has sug-
gested, the indefinite article in (12a) seems the “merest syntactic grace note.”
Addressing this concern, Russell writes:

The proposition ‘Socrates is a man’ is no doubt equivalent to ‘Socrates is human,’ but it is
not the very same proposition. The is of ‘Socrates is human’ expresses the relation of
subject and predicate; the is of ‘Socrates is a man’ expresses identity. It is a disgrace to the
human race that it has chosen to employ the same word ‘is’ for these two entirely differ-
ent ideas – a disgrace which a symbolic logical language of course remedies. The identity
in ‘Socrates is a man’ is identity between an object named . . . and an object ambiguously
described. (Russell 1919: 71) 

Russell supplies no argument for his claim that the copula in ‘Socrates is a man’ is, in
fact, the identity relation, or, more precisely, the relational property of being identical
to something human. (Strictly speaking, ‘Socrates is a man’ is not an identity sentence
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for Russell, since, as he would be the first to point out, ‘a man’ cannot occur as an argu-
ment of ‘Socrates = x’.) Surely, intuition is at best silent on this question, if not decid-
edly opposed to the identity interpretation. Still, Russell does provide us with a uniform
treatment of indefinites, and this counts in favor of his proposal. It would be strange if
indefinite descriptions unaccountably played two distinct logical roles – corresponding
to their respective syntactic roles as noun phrase and as predicate – especially given the
fact that interpreting the predicative occurrences according to Russell provides the intu-
itively correct truth-conditions for the relevant class of sentences. So, while it isn’t
directly supported by intuition, we have strong methodological reasons for favoring
Russell’s proposal. All other things being equal, then, it is to be preferred to an account
that assigns indefinites two distinct logical roles – as quantifiers and as predicates.

It will be observed that Russell’s approach requires, for every general term, a corre-
sponding predicate adjective true of exactly those things in its extension. For example,
to regiment (12a) there must be a (simple) predicate adjective true of exactly those
things in the extension of ‘man.’ While such an expression exists in the current case,
a corresponding adjective will not be available for every general term – for example
‘logician.’ This presents a difficulty: the Russellian cannot suppose that the predicate
corresponding to ‘a logician’ is just ‘a logician,’ as this presupposes an account of the
expression being analyzed. But, neither can she assume that ‘Logician(Russell)’ makes
sense – that a general term can function as an adjective – since this would effectively
undermine a distinction that she is at pains to uphold. What the Russellian must main-
tain is that the failure for there to be a predicate for every general term is a linguistic
accident – a defect of natural language. Although not fatal, this has the unwelcome
consequence that, for many sentences containing predicate nominals (such as ‘Russell
is a logician’), a Russellian paraphrase (in the same language) is unavailable.

Russell’s analysis of predicative occurrences of definite descriptions recapitulates his
strategy in analyzing indefinites. For Russell, the sentences ‘Whitehead met the author
of Principia’ and ‘Whitehead is the author of Principia’ exemplify a common structure:
‘[the x: x wrote Principia] (R(Whitehead, x)).’ (I adopt the restricted-quantifier notation
for readability.) The former translates as: ‘[the x: x wrote Principia] (Met(Whitehead,
x)),’ whereas the latter is: ‘[the x: x wrote Principia] (Whitehead = x).’ Again, this
account is attractive in that it treats definite descriptions in a uniform and truth-
conditionally adequate manner – showing, in effect, how their diverse surface syntax
belies a uniform logical role. In addition, it dovetails with Russell’s account of predicate
nominals, providing a uniform account of the predicative occurrence of both definite
and indefinite descriptions. It would be rather ad hoc to suppose that predicative an F
functions logically as a predicate but that predicative the F functions either as a term
or a quantifier. (But see Fiengo and May (1996) for considerations that favor such a
treatment.)

The picture that emerges is that sentences exemplifying a V-s an F possess the 
logical form ‘[some x: Fx] (V(a, x))’ (where a is a singular term and V is the relation
corresponding to ‘V’), while sentences exemplifying a BE an F possess the logical 
form ‘[some x: Fx] (a = x)’. Similarly, sentences of the form a V-s the F are analyzed
‘[the x: Fx] (V(a, x)), whereas sentences of the form a BE the F are analyzed as 
‘[the x: Fx] (a = x).’ For reference, let’s call this proposal Russell’s Theory of Predicative
Descriptions (RTPD).
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The argument from awkwardness

An important challenge to Russell’s proposal that quantifiers can be realized, at surface
grammar, as predicates is that it yields odd results. For example, it sanctions as gram-
matical such sentences as ‘John is most Democrats’ or ‘John is twelve apostles,’ both of
which seem to be uninterpretable and, indeed, ungrammatical. Prima facie, what I shall
call the argument from awkwardness appears to be a significant worry.

The first thing to say is that there is reason to think that our resistance to these 
sentences is pragmatic, since other such contexts are less objectionable:

John is everyone / one person who has read Richardson’s Clarissa in its entirety.
John is no one / someone you should meet.

In addition, similar examples involving quantifiers in subject position are equally 
unacceptable. That is, in general, those sentences with quantifiers in predicative 
position that strike us as unacceptable do not become any more acceptable if we 
place the predicatively-occurring quantifier in subject position. Consider ‘John is 
most Democrats’ or ‘John is both candidates.’ Moving the quantifier in ‘John is 
most Democrats’ to subject position (‘Most democrats are [identical to] John’) does 
not increase acceptability. Similarly, ‘Both candidates are [identical to] John’ is scarcely
better than ‘John is both candidates.’ This suggests that what explains the unaccept-
ability of quantifiers in predicative position is not that they are playing a role that 
quantifiers are strictly prohibited from playing. For, in general, substituting a deter-
miner for det (other than the, a, and some) and a name for t in ‘[det x: Fx] (x = t)’ will
either produce nonsense or, at best, express an intelligible but nonetheless awkward-
sounding sentence.

The Russellian response to the argument from awkwardness, then, is to demand a
context of the form Q BE a that is acceptable but whose acceptability is compromised
by converting it to a BE Q. Until such a case is presented, Russell’s picture is intact.

The argument from scope

Another argument, discussed by James Higginbotham (1987) and Delia Graff (2001),
concerns a diagnostic for determining whether or not a surface predicate is a quanti-
fier at the level of logical form. The idea is quite straightforward: if a certain predicate
is in fact just the surface realization of a quantifier, then it should exhibit properties
characteristic of quantifiers. In particular, it should interact with negation and similar
devices to produce distinct readings, depending on which expression is assigned
primary scope.

To fix ideas, let’s consider an example. According to the criticism, if, as we are sup-
posing, (14b) provides the logical form of (14a), then the negation of (14a) – namely,
(14c) – should be ambiguous as between (14d) and (14e):

(14a) John is a bachelor.
(14b) [an x: Bachelor (x)] (John = x)
(14c) John is not a bachelor.
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(14d) ÿ[an x: Bachelor (x)] ( John = x)
(14e) [an x: Bachelor (x)] ÿ ( John = x)

Yet, (14e) is clearly not an available reading of (14c). Intuitively, (14c) cannot be used
to say that there is a bachelor who, as it happens, is not John. Similarly, ‘John is not a
Martian’ does not have a reading according to which it entails that there are Martians.
So, it seems we have a good reason to doubt that Russell’s account of indefinite descrip-
tions applies to predicate nominals.

The same considerations do not extend unproblematically to definite descriptions in
predicative position, since (15a) below does appear to give rise to an ambiguity: both
(15b) and (15c) seem to be available readings of (15a):

(15a) John is not the mayor.
(15b) ÿ[the x: Mayor(x)] ( John = x)
(15c) [the x: Mayor(x)] ÿ ( John = x)

Nonetheless, Graff (2001) argues plausibly that the ambiguity admits of a pragmatic
explanation – that the availability of (15c) is determined by the mutually held assump-
tion that someone is the mayor (I have changed her example). To take another case, if I
utter, ‘Whitehead is not the sole author of Principia Mathematica,’ the reading accord-
ing to which ‘the sole author of Principia Mathematica’ takes scope over the negation
seems unavailable. The utterance in no way says or implies that Principia Mathematica
has a single author.

Thus, it looks as if a case can be made against RTPD, since it makes predictions 
about scope that seem not to be borne out by the data. Yet, there is a question as to the
validity of the scope test for quantifierhood. To see why this is so, consider (16a):

(16a) Mary is someone who smokes.

(16a) contains a quantifier in predicative position. Russell would render it as (16b):

(16b) [some x: Smokes(x)] (Mary = x)

Yet, negating (16a) does not generate an ambiguity between the readings supplied by
(16d/e), since there is no tendency to interpret (16c) as (16e):

(16c) Mary is not someone who smokes.
(16d) ÿ[some x: Smokes(x)] (Mary = x)
(16e) [some x: Smokes(x)] ÿ (Mary = x)

Similarly for the modal case:

(17a) John might be someone who will prove Goldbach’s conjecture.
(17b) Poss. [some x: Prove(x, p)] (x = John)
(17c) [some x: Prove(x, p)] Poss. (x = John)
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There is no reading on which (17a) entails that someone actually proved Goldbach’s
conjecture. Thus, (17c) is not an available reading of (17a).

These examples show that a quantifier in predicative position does not invariably give
rise to multiple readings when within the scope of negation or other operators. Why
this should be the case is not immediately clear, but the evidence suggests that it occurs.
If so, the Higginbotham–Graff diagnostic is inapplicable – it does not provide a positive
test for the presence of a quantifier: there are some quantifiers that occur in predica-
tive position that seem to take an obligatory narrow scope. It might be argued that all
that my examples show is that the predicative occurrences of someone who are not
quantificational, and precisely because they do not interact in expected ways with nega-
tion and related devices. But this would need further argument to be made plausible
since the semantic contribution of predicative occurrences of someone who appears to
be quantificational.

4 Conclusion

We have seen how Russell’s characterization of the logical form of description sentences
conflicts with a highly plausible proposal regarding incomplete quantification. One way
to resolve the tension is to retain the view that descriptions are restricted quantifiers
but at the same time to deny the most straightforward implementation of Russell’s
theory in an account of natural language quantification – namely, [EQ*]. This is to
concede that Russell’s theory cannot capture the competent speaker’s ability to assign
propositions to utterances of description sentences. But, as suggested, this is not really
all that much of a worry, since [EQ*] appears to be unreasonably strong in any case. In
addition, a close relative of Russell’s theory remains viable. The status of RTPD is a bit
more problematic. Although there are no serious arguments against the view, it can
hardly be said to be independently motivated. There are other issues that intersect with
the ones discussed which I have not been able to cover – the referential/attributive 
distinction, the ‘implicit’ approach to incompleteness, the Russellian treatment of
unbound anaphora, to name but a few. Publications addressing these topics can be
found under Further reading below.
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Russell’s Theory of Definite Descriptions 
as a Paradigm for Philosophy

G R E G O RY L A N D I N I

In one of his posthumously published writings, Ramsey spoke of the theory of definite
descriptions that Russell set out in his 1905 article “On Denoting” as a “paradigm for
philosophy” (Ramsey 1931: 263n). Russell had begun a new scientific method in phi-
losophy – the investigation of logical form – and its most salient example was the monu-
mental work Principia Mathematica. But what precisely was the paradigm? As it is
commonly articulated, Russell’s theory of definite descriptions exemplified a “theory of
incomplete symbols,” and a “misleading form thesis.” Haack puts it as follows: “If the
grammatical form of a recalcitrant sentence is taken as indicative of its ‘logical form,’
then, indeed, assignment either of ‘truth’ or ‘false’ to it gives rise to difficulty. Once,
however, it is recognized that the grammatical form of the sentence is misleading as to
its logical form, the difficulty vanishes” (Haack 1996: 53). But what is ‘logical form,’
and what is it to render the logical form of a statement? Is the analysis of logical form
a part of a theory of sense and reference, part of philosophical linguistics, part of the
philosophy of mind, part of metaphysics?

1 Russell’s Paradigm

In his now famous article “On Denoting,” Russell (1905) lays down the proscription
that in transcribing expressions of ordinary language into the canonical language of
symbolic logic, ordinary proper names and definite descriptions should be treated alike.
Moreover, transcriptions of ordinary statements involving proper names or definite
descriptions into symbolic logic are to have the syntactic form of quantificational state-
ments. Consider transcribing the sentence,

(1) Gödel was a mathematician.

In Russell’s view, ordinary proper names are “disguised definite descriptions.” Russell’s
technique requires that the name “Gödel” be associated with some definite description
‘the entity x such that Ax,’ where A contains descriptive information. It is not neces-
sary that every transcription associates the same descriptive information with the
name, so long as the descriptive attributes in question are coexemplifying. But some



description must be associated with the name. Let Ax be ‘x proved the incompleteness
of Arithemtic,’ and let us write this as ‘Px.’ Then letting ‘Mx’ represent ‘x is a mathe-
matician,’ sentence (1) is to be transcribed into symbolic logic as:

(1R) ($x)(Pz ∫z z = x .&. M(x)).

This says that one and only one entity proved the incompleteness of Arithmetic and
that one was a mathematician. For convenience, Russell introduces an abbreviated way
of writing sentences such as (1R). Where Bv is some well-formed formula, Principia
offers the following stipulative contextual definition:

(*14.01) [(iz)(Az)][B(iz)(Az)/v] = df ($x)(Az ∫z z = x .&. Bx/v).

The notation [(ız)(Az)][. . .] is Russell’s scope marker, and is required because the
context B might be syntactically complex. Consider, for instance,

(2) If Aeneas was not a Trojan then Virgil’s great epic is fiction.

Associate with the name Aeneas the descriptive information ‘x is founder of Rome’ (rep-
resented by ‘Ax’), and put ‘Tx’ for ‘x is a Trojan,’ and q for ‘Virgil’s great epic is fiction.’
Then there are the following possible transcriptions:

(2Ra) ~($x)(Az ∫z z = x .&. Tx) ⁄ q
(2Rb) ($x)(Az ∫z z = x .&. ~Tx) ⁄ q
(2Rc) ($x)(Az ∫z z = x .&. ~Tx ⁄ q)

They are not all equivalent if in fact nothing, or more than one thing satisfies the
description ‘x is founder of Rome.’ In such a case, (2Ra) would be true, (2Rb) would be
false if q is false, and true otherwise, and (2Rc) would be false no matter what q is. It
would not be possible, therefore, to write ‘~T(ız)(Az) ⁄ q’, since this would be ambigu-
ous as to the different scopes of the definite description. Accordingly, Russell introduces
his scope marker and writes,

~ (iz)(Az)[T(iz)(Az)] ⁄ q
(iz)(Az)[ ~T(iz)(Az)] ⁄ q
(iz)(Az)[ ~T(iz)(Az) ⁄ q]

respectively. When the scope marker is outside the entire formula, the description is said
to have ‘primary occurrence,’ and there will be one and only one such occurrence. All
other occurrences are called ‘secondary occurrences.’ Primary and secondary occur-
rences are always equivalent in truth-functional contexts when the description is sat-
isfied. Russell derives the theorem:

($x)(Az ∫z z = x) .…. T{(iz)(Az)[B(iz)(Az)]} ∫ (iz)(Az)[T{B(iz)(Az)}],

where T is any truth-functional context.
Russell adopts the convention of omitting scope markers when the smallest possible

scope is intended. The convention of omitting scope markers does not, as it has some-
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times been argued, cause difficulties concerning the order that definitions are to be
applied (Geach 1950). In Principia, the identity sign is defined as follows:

(*13.01) x = y = df (j)(jx ∫ jy).

It is not possible, however, to apply (*13.01) to

(iz)(Az) = (iz)(Az)

to yield,

(j)(j(ız)(Az) ∫ j(iz)(Az)).

Definitions such as (*13.01) apply only to genuine singular terms of the formal lan-
guage of Principia, and expressions such as ‘(iz)(Az)’ are not among its genuine singu-
lar terms. Thus, the smallest possible scope yields

(iz)(Az)[(iz)(Az) = (iz)(Az)].

Applying (*14.01) we get:

($x)(Az ∫z z = x .&. x = x).

It is only now that (*13.01) can be applied:

($x)(Az ∫z z = x .&. (j)(jx ∫ jx)).

The conventions on the omission of scope markers in Principia, together with the fact
that definite descriptions are not singular terms, fully determine the proper order of the
elimination of defined signs.

Scope markers act as though they bind occurrences of expressions of the form
‘(iz)(Az).’ If there are multiple occurrences of the same descriptive expression, it is
Russell’s intent that they each be tied to their scope marker. But it is possible to repre-
sent different scopes. For this, Russell adopts the convention that the left-most descrip-
tion be taken first, and then in order as one proceeds to the right. Thus, for instance,
restoration of scope markers in,

(iz)(Az) R (iy)(Ay)

yields the following:

(iz)(Az)[ (iy)(Ay)[(iz)(Az) R (iy)(Ay)] ].

Applying the contextual definition (*14.01), this is:

($x)(Az ∫z z = x .&. ($y)(Az ∫z z = y .&. xRy)).
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Ordinary grammar presents statements involving definite descriptions as if they are
subject predicate, but on Russell’s theory, ordinary grammar is misleading with respect
to the role such expressions play when transcribed into symbolic logic. The proper
logical grammar has a quantificational structure. The quantificational structures and
scope distinctions that accrue to the transcription of ordinary proper names and defi-
nite descriptions on Russell’s theory may be exploited to explain the role of such names
in existential, identity, doxastic, modal, fictional, and counterfactual contexts. To get a
glimpse of this, let us examine a few examples. Consider the statement,

Aeneas exists,

whose natural language syntax predicates ‘existence’ of the subject expression ‘Aeneas.’
This is transcribed as

($x)(Az ∫z z = x).

As we see, ‘existence’ is not to be adopted as a logical predicate. For convenience, Russell
introduces the definition,

(*14.02) E!(iz)(Az) = df ($x)(Az ∫z z = x).

Surprisingly, the superficial similarity of E!(iz)(Az) and j(iz)(Az), where j is a predicate
letter of the formal language, has mislead some into arguing that Russell has not given
a uniform treatment of the expressions of his formal language (Lambert 1990). But
quite clearly, (*14.02) is not intended to introduce a new predicate expression E! 
into the formal language. In the definition, E! is not separable from E!(iz)(Az), and it is
quite ungrammatical to write E!x. To be sure, one can write, ($x)(x = v), and so it has
appeared to some that one can predicate existence in spite of Russell’s best efforts to the
contrary. But the objection is misguided. The above formula does not express the state-
ment that v exists. It expresses the statement that some individual is identical with v.
It is the presence of the free individual variable v that commits one to existence here
and not identification with some individual. Indeed, formulas (j)(jv … jv) and jv, with
a free variable v, have equal claim with ($x)(x = v) to be called ‘existence predications.’
Russell anticipates Quine in maintaining that ontological commitment is given with 
the variables of quantification, and not by predication of a special existence (or being)
predicate.

The presence of quantificational structure also enables Russell’s theory to resolve
Frege’s famous puzzle concerning the informativity of identity statements made with
proper names. A pure predicate calculus contains no individual constants, or function
constants. But in applying the calculus, modern mathematical logic allows that one
may form a theory by adding proper axioms and any countable number of individual
constants and function constants to the base language of the predicate calculus. In ren-
dering the semantics of such an extended language, an interpretation of the language
is given which fixes an assignment of referents to the constants which does not vary in
the way that assignments to the individual variables does. The syntax does not encode
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any semantic information concerning interpretation of the constants. To understand
the semantic contribution that an individual constant makes to the meaning of an
expression containing it, one must understand the referent of the constant assigned 
by the interpretation. For instance, if an applied symbolic logic employed the indi-
vidual constants ‘Hesperus’ and ‘Phosphorus,’ then in grasping what the interpreta-
tion assigns to

‘Hesperus = Phosphorus’

we must grasp what the interpretation assigns to ‘Hesperus’ and to ‘Phosphorus.’ It
either assigns each the same entity (in the domain of the interpretation) or it does not.
In the first case, Russell rightly points out, the statement is uninformative, in the second
it is simply false (Whitehead and Russell 1962: 67). Russell, like Quine (1979) after
him, holds that in applying a symbolic logic to form a theory, we are not to add indi-
vidual constants (or function constants) to the language of symbolic logic. The only
singular terms of a theory are to be the individual variables. In Russell’s view, syntac-
tic structures should encode as much semantic information as possible. If ‘Hesperus’ is
associated with a definite description such as ‘the morning star’ and ‘Phosphorus’ with
‘the evening star,’ an ordinary language identity statement such as ‘Hesperus =
Phosphorus’ will be transcribed as:

(iz)(Mz) = (iz)(Ez).

Applying (*14.01), this is:

($x)(Mz ∫z z = x .&. ($y)(Ez ∫z z = y .&. x = y)).

(This says that there is exactly one M and exactly one E and that they are identical.)
Russell’s transcriptional technique of associating an ordinary proper name with a defi-
nite description enables his formal syntax to encode semantic information into identity
statements. In this way, the semantic informativity of an identity statement is part of
the formal syntax.

Russell holds that since the ordinary language syntax of definite descriptions does
encode semantic information, he can generate a ‘proof ’ that definite descriptions
should not be transcribed into symbolic logic as singular terms and must be treated as
‘incomplete symbols’ to be contextually defined. His proof is simple. Expressions of the
form,

c = (iz)(jz)

Russell explains, are never ‘trivial,’ for unlike expressions such as ‘c = d,’ they encode
semantic information in their syntax. Thus ‘(iz)(jz)’ cannot be a genuine singular term,
else the fact that its syntax encodes semantic information is lost. Russell’s ‘proof ’ does
show that definite descriptions are not ‘singular terms’ in the sense of being individual
constants whose syntax encodes nothing of the semantics. But this falls short of
demonstrating that the only way to syntactically encode this semantic information is
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by means of a theory of incomplete symbols. It is possible to both introduce proper
axioms which keep definite descriptions as singular referring expressions, and at the
same time capture the fact that they syntactically encode semantic information. Add
to the language one individual constant t, and the following axiom schema:

(ix)(Ax) = y .:∫:. Ay .&. Az ∫z z = y :v: ~($x)(Az ∫z z = x) & y = t

This approach has come to be called the ‘chosen object view,’ and a version of it was
adopted by Frege. The approach conveniently avoids the many complications of scope
imposed by Russell’s approach of contextual definition. It is, however, highly artificial.
If more than one entity satisfies the description, or if nothing does, the referent of the
definite description is simply identified as whatever the interpretation assigns to t.

The scope distinctions that accrue to proper names and definite descriptions in
Russell’s approach of contextual definition to transcription are indeed inconvenient,
but they are also precisely what is most attractive about the theory. They are the very
feature that is called upon to solve the puzzles that infest the use of names and definite
descriptions in ordinary inferences. For example, they explain how it is that the unas-
sailable law of identity appears, nonetheless, to fail in contexts which are not truth-
functional. Let T represent a sentential context that is not truth-functional. Then
primary and secondary scopes of a definite description (iz)(Az) will not be equivalent,
even when E!(ız)(Az). We may have,

T{B(iz)(Az)}
(iz)(Az) = (iz)(Bz)
~T{B(iz)(Az)}

For instance, let T be the context of an ascription of belief to Galileo Galilei. If the name
‘Hesperus’ refers non-descriptively in its occurrence in

(3) Galileo believed that Hesperus orbits the sun,

then the law of identity would apply, and the substitution of ‘Phosphorus’ for the name
should preserve truth. But the identity of Hesperus and Phosphorus does not entail 
that Galileo believed that Phosphorus orbits the sun simply because he believed 
that Hesperus does. Russell’s theory provides a solution. The names ‘Hesperus’ and
‘Phosphorus’ carry descriptive information relevant to the nature of Galileo’s belief. 
By associating ‘Hesperus’ with a definite description such as ‘the morning star,’ and
‘Phosphorus’ with ‘the evening star,’ we see that (3) is ambiguous between different
scopes. It may mean,

(3a) Galileo believes ($x)(Mz ∫z z = x .&. x orbits the sun)

which is a de dicto ascription to Galileo of particular descriptive information that he
employs in using the name Hesperus. Or it may mean,

(3b) ($x)(Mz ∫z z = x .&. Galileo believes x orbits the sun).
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In this case, one does not intend to give any information about the way in which Galileo
himself would express his belief. The ascription is said to be de re. Galileo is said to have
a ‘belief of ’ an object, the morning star, that it orbits the sun. We can see this even more
saliently if we quantify over attributes, replacing (3b) with

(3bb) ($j)(jz ∫z Mz .&. Galileo believes ($x)(jz ∫z z = x .&. x orbits the sun)).

In this way, we see clearly that in a de re ascription of belief the descriptive content
Galileo himself employs to single out Hesperus is left unspecified. Accordingly, 
since Hesperus (the morning star) is identical with Phosphorus (the evening star), we
have,

Mz ∫z Ez,

and so (3b) is equivalent to

(3c) ($x)(Ez ∫z z = x .&. Galileo believes x orbits the sun).

Similarly, (3bb) is equivalent to

(3cc) ($j)(jz ∫z Ez .&. Galileo believes ($x)(jz ∫z z = x .&. x orbits the sun)).

Thus if ‘Galileo believes Hesperus orbits the sun’ is to be understood by means of (3bb),
it follows that ‘Galileo believes Phosphorus orbits the sun’ as understood by means of
(3cc). No similar move is possible for (3a), and the contextual elimination of the ordi-
nary names leaves nothing to which the law of identity could apply.

As we see, the benefits of adopting a Russellian approach to the transcription of ordi-
nary names and definite descriptions are many. They are due to the possibility of finding
complex quantificational structures, logical forms, where ordinary language employs
simple grammatical forms. Interestingly, we shall see that it is precisely this feature that
has been the focus of criticism from those who object to the theory.

2 The Description Theory and Logical Form

The Description Theory of what an ordinary proper name denotes holds that associated
with each name as used by a group of speakers who believe and intend that they are
using the name with the same denotation, is a description or set of descriptions cull-
able from their beliefs which an item has to satisfy to be the bearer of the name. The
theory owes its origins to Russell’s thesis that ordinary proper names are disguised
descriptions, and to Frege’s famous position that a proper name expresses a Sinn (sense)
(for a given person at a time). Frege did not take the logical form of expressions involv-
ing proper names and definite descriptions to be quantificational, but in his 1892 article
“On Sense and Reference” he held that a name, just as a definite description, presents
descriptive qualities which the purported object referred to by the name must satisfy
(Frege 1980). Frege offers as an example the name ‘Aristotle,’ writing that its sense

GREGORY LANDINI

200



might, for one person, be taken to be ‘the pupil of Plato and teacher of Alexander 
the Great’ and for another person, ‘the teacher of Alexander the Great.’ This suggests
that the sense of a name (for a speaker at a time) will be the same as the sense of some
definite description. For this reason, the Description Theory is often attributed to 
both Frege and Russell.

As Evans rightly points out, the description may be arrived at by averaging out the
beliefs of different speakers; the theory is by no means committed to the thesis that
every user of the name must be in possession of a description, or figure in the cluster
of descriptive information every user of the name associates with the name (Evans
1973). Thus the Description Theory must be distinguished from what Evans calls the
“description theory of speaker’s denotation,” which holds that an ordinary proper
name denotes an entity upon a particular occasion of its use by a speaker just in case
that entity uniquely satisfies all (or most) of the descriptive information the speaker
associates with the name. In any event, the Description Theory construes Russell’s
theory of descriptions as a meaning analysis of the use of names and descriptions by
speakers of a language.

Strawson (1950) famously objected that Russell’s theory of definite descriptions 
misunderstands the function of singular noun phrases in communication and fails to
do justice to the use of referring terms in natural language. Donnellan (1966) con-
tinued this line of criticism of Russell’s theory, maintaining that one must distinguish
‘attributive’ from ‘referential’ uses of definite descriptions in natural language. With
the right stage setting, a person may succeed in referring to a person drinking water by
uttering ‘Who is the man drinking a martini?’ This is a ‘referential’ use of a definite
description, not the ‘attributive’ use which picks out an entity only in so far as it satis-
fies the description.

Russell held that a statement involving a definite description in a primary occurrence
entails an existential statement that some entity satisfies the description. Strawson chal-
lenged this, and Donnellan agreed that the relationship is properly one of the pre-
suppositions behind speech acts of communication. Donnellan modifies Strawson’s
account, arguing that different presuppositions explain the fact that both referential
and attributive uses presuppose existential statements. A referential use of a given 
definite description presupposes an existential statement that something satisfies the
description simply because, under normal circumstances of communication, a person
tries to describe correctly what he/she want to refer to because this is the best way to
get his/her audience to recognize what is being referred to. Nonetheless, it may well 
be possible for the audience to locate the referent independently of its satisfying the
descriptive information. So there is no entailment. On the other hand, an attributive
use of a definite description presupposes that something satisfies the description
because if nothing fits the description the linguistic purpose of the speech act (of assert-
ing, questioning, or ordering) will be thwarted. Donnellan’s distinctions are designed
to amend Strawson’s theory that definite descriptions are referential – a theory that
appeals to the presuppositions of acts of communication to explain whether statements
involving definite descriptions are truth-valued, or simply such that the speech act in
question misfires.

Following Russell’s own lead in his reply to Strawson, defenders of Russellian
description theories reject such objections because they seem based upon a misunder-
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standing of the intents and purposes of the theory. As Russell put it, the theory of
descriptions did not intend to account for the ‘egocentric’ use of words – words whose
reference is dependent on the pragmatic circumstances, times, and places of utterance
(Russell 1959: 239f). Strawson’s appeal to presupposition rests upon intuitions about
the kinds of assertions made by an utterance on an occasion of use. As Bach puts it:
“There is no legitimate notion of a semantic presupposition (as a property of sentences).
And it turns out that there are several different kinds of pragmatic presupposition, each
of which is a property of utterances” (Bach 1987: 98). Russell’s theory of definite
descriptions does not concern utterances or assertions. Donnellan’s distinction between
‘referential’ and ‘attributive’ occurrences of definite descriptions properly applies to the
use of definite descriptions. Whether a definite description is used attributively or ref-
erentially is a function of the sort of speech act a speaker makes on an occasion of utter-
ance. This is a pragmatic consideration, not a semantic one. And the same may be said
of the many other objections to Russell’s theory of definite descriptions that follow the
lead of Strawson. They rely upon the improper infusion of pragmatic elements into
semantics.

Of course, the distinction between pragmatics and semantics can be slippery.
Russell’s early ontology posited the existence of a true or false ‘proposition’ as the
‘meaning’ of an ‘asserted’ sentence, and this is easily conflated with the postulation of
utterances construed as the ‘meanings’ of a given type of speech act. Linguists tend to
assume that language must be semantically analyzed in terms of mental constructs.
Philosophers favor ontological approaches that render semantic analyses of natural
language in terms of intensional entities such as properties, propositions, nonexistent
objects, and the like. Both approaches to semantics leave themselves open to a blurring
of the semantics/pragmatics distinction. Propositions, for instance, may seem like ut-
terances, assertions, or speech acts of a sort, made on occasion of use. But ‘reference’
and ‘truth,’ which are normally semantic notions, are not properly semantic when
taken to be properties of utterances. One must be on the lookout for conflations of this
sort. Utterances involve the production of tokens of certain types of speech act, and
belong to the pragmatic study of how context of utterance and speaker’s intent con-
tribute to the communication of meaning. In Austin’s theory of speech acts, for
instance, utterances of complete sentences are classified as ‘locutionary’, ‘illocution-
ary,’ or ‘perlocutionary.’ Acts of referring and communication of one’s intended re-
ference, are components of illocutionary speech acts. When an illocutionary act is a
statement or a predication or other ‘conative’ act, it may be said to be true or false. These
notions of reference and truth are a part of pragmatics and not semantics. As Bach
(1987: 4) points out, not all notions of ‘truth’ and ‘reference’ are semantic. Perhaps we
can see the source of Russell’s sarcasm in writing that adherents of the ordinary lan-
guage philosophy of Austin and the later Wittgensteinians “are fond of pointing out,
as if it were a discovery, that sentences may be interrogative, imperative, or optative, as
well as indicative” (Russell 1959: 217).

Bach’s account of the pragmatics/semantics distinction is particularly illuminating.
Pragmatics is the theory of communication and speech acts. The semantics of an
expression, on the other hand, gives the information that a competent speaker can
glean from it independently of any context of utterance. Whenever he hears a particu-
lar utterance of it in a given context, he uses this information, in tandem with specific
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information available in that context, to understand the speaker’s communicative
intent. Semantic knowledge is not, on this view, supposed to be a compilation of general
pragmatic information governing different possible circumstances of utterance for an
expression of a given type. Semantic information can be gleaned independently of
context of utterance only in so far as it is encoded in the syntactic structures of the lan-
guage. The notion of semantics here is compositional – that is, there are complex
expressions whose content is determined by the content of their parts. The independ-
ence of the compositional semantics from pragmatics (where context of utterance is
involved) is a consequence of the adoption of theory of grammar according to which
the syntactic types of the language in question encode the whole of its combinatorial
semantics. In short, the province of semantics is linguistic grammatical types. An
example of the compositional approach is Tarski-style model theoretic formal seman-
tics, and its extensions to possible-worlds semantics for modal theories. The intent of
such accounts is to give a systematic combinatorial account of logical consequence for
syntactically formalized languages (whose formation and deductive transformation
rules are explicit) in terms of truth (reference and satisfaction) in the domain of an
interpretation.

Indeed, in contemporary discussions in the philosophy of mind and language, the
combinatorial semantic theories of modern philosophical linguistics is often offered as
an explanation of what Russell meant when he proclaimed that his theory of definite
descriptions reveals that ordinary grammatical form can by misleading with respect to
logical form. The so-called ‘logical form’ of a proposition or ‘assertion’ (in the seman-
tic sense) specifies the truth conditions of propositions in terms of the recursive opera-
tions of a logical syntax. Cocchiarella (1989) characterizes an even stronger sense of
logical form according to which logical forms specify not only the truth conditions of
an assertion, but they also specify the cognitive structure of the assertion itself by pro-
viding an appropriate representation of the referential and predicable mental concepts
that underlie the assertion.

This is an important enterprise in philosophical linguistics, and it is naturally allied
with Chomsky’s research program in linguistics. The leading idea here is that at least
some grammatical structures are transformations of other structures, where words and
phrases are displaced from syntactic positions typically associated with their semantic
roles. The idea of a transformational grammar places a premium upon reconciling the
quantificational structures produced by Russellian analyses of ordinary proper names
and definite descriptions, with certain features of the ordinary grammar of categorical
phrases. Phrases such as ‘all a,’ ‘some a,’ ‘any a,’ ‘every a,’ ‘the a’ (as well as ‘most a,’
and ‘few a’) where a is a common noun or noun phrase, do act as if plural subjects.
Consider the phrase

Some moment does not follow any moment.

In their efforts to transcend the subject-predicate forms of categorical logic, Russellian
and Fregean analyses abandoned the transformational nature of categorical phrases,
writing

($x)(Mx & ("y)(My … x does not follow y)).
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This does not respect the fact that in the original phrase, the expressions ‘some
moment,’ and ‘any moment’ appear in grammatical positions of singular terms. They
may be removed to form,

[]i does not follow []j.

If the integrity of the restricted quantifiers ‘some moment’ and ‘any moment’ as syn-
tactic/semantic units can be preserved, one can regard

[Some moment]i [any moment]j {[]i does not follow []j},

as a transformation of the original, enacted by a displacement of the phrases (governed
by the hypothesized transformation linguists call ‘quantifier raising’). Instead of ‘some
moment,’ and ‘any moment’ one can write ‘($xM),’ ‘(AyM)’ respectively and represent
the logical form with:

($xM)(AyM)(x does not follow y).

By construing categorical phrases as restricted quantifiers in this way, rules such as the
Subjacency Principle might then be called upon to explain transformational restrictions
of scope governing the use of determining phrases in natural language. For example,
‘some a’ normally has a wider scope that ‘any a,’ but in

A moment precedes any moment,

we see that ‘any a’ has wider scope than ‘a(n) a’ for this means that for every moment
there is some moment that precedes it. Allies of transformational grammar endeavor
to preserve the Frege/Russell view that the proper logical form of categorical phrases is
quantificational, while at the same time preserving the integrity of categorical phrases
as syntactic/semantic units that may be moved in syntactic transformations.

There is a large body of empirical work in linguistics suggesting that many logical
properties of quantifiers, names, definite and indefinite descriptions, and pronouns 
are best understood as involving such restricted quantificational logical forms. A
number of philosophers, notably Montague (1974), in the context of a type-stratified
set theory, Cocchieralla (1981), in the context of a type-free intensional logic of attrib-
utes, Evans (1985), and Neale (1990), have developed philosophical theories of this
sort. Cocchieralla (1977) construes ordinary proper names as sortal common names,
whose identity criteria single out at most one entity. Just as the referential concept
which underlies the use of sortal common nouns or noun phrases are associated with
certain identity criteria for identifying and reidentifying entities of a kind, so also do
ordinary proper names come with certain identification criteria – namely, those pro-
vided (in a given context) by the most specific sortal concept associated with the name’s
introduction into discourse. Thus the proper name ‘Ponce de Leon,’ just as a categori-
cal phrase ‘some S,’ is construed as involving the quantificational determiner ‘some’
and a common noun sortal S. In the case of a proper name, however, the sortal pro-
vides identity criteria for singling out at most one entity.
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Cocchiarella (1989) employs his type-free intensional logic of attributes to represent
referential concepts, be they for definite descriptions, indefinite descriptions or proper
names, as properties of properties. In his logic, attributes (properties and relations) have
both a predicable and an individual nature. They may have predicative occurrences or
themselves be subjects of predication. The referential (predicable) occurrence of a 
referential concept for a definite description ‘the S’ is represented as ‘($1xS).’ Using
Church’s lambda notation for properties, the referential concept ‘($1xS)’ is identified as
the property [lj($x)(Sz ∫z z = x .&.jx)]. The cognitive structure underlying an asser-
tion such as ‘the S is G’ is perspicuous in the following:

[lj ($x)(Sz ∫z z = x .&.jx](G).

Here we see the referential concept occurs predicatively in the assertion. By lambda
conversion, this is equivalent to the more usual

($x)(Sz ∫z z = x .&. Gx).

The occurrence of referential concepts (construed as properties of properties) as sub-
jects of predication explains how, in the presence of intentional verbs, their ordinary
referential use may be disengaged. Consider the following:

Ponce de Leon seeks the fountain of youth.

Russell’s analysis of definite descriptions cannot account for the difference in any
staightforward way. It would clearly not do to put:

($x)(Yz ∫z x = z .&. Ponce de Leon seeks x).

It does not follow from that fact that Ponce seeks the fountain of youth that there is such
a fountain of youth that he seeks. On the other hand, if Ponce finds the fountain of
youth, there is a fountain that he finds. The difference must, it seems, be grounded in a
difference of logical form, surface grammatical form notwithstanding. But to find a sec-
ondary occurrence of the definite description, and so a difference in the logical form,
Russell’s analysis would require a complicated reconstruction of the nature of the inten-
tionality hidden in the verb ‘to seek.’ Cocchiarella’s approach is to regard logical form as
reflecting the cognitive structure of the assertion by providing an appropriate represen-
tation of the referential and predicable mental concepts that underlie the assertion. The
definite description, ‘the fountain of youth’ and the proper name ‘Ponce de Leon’ corre-
spond to referential concepts, which have restricted quantificational forms. The relation
of seeking is intensional for its range but extensional for its domain. The structure of the
assertion that ‘Ponce de Leon seeks the fountain of youth’ is:

Seeks{($xPonce),($1xY)}.

Since ‘seeks’ is extensional in its domain, transformation of the referential concept
‘($xPonce)’ to a predicational (and thus referential) position is possible. Thus we get,
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($xPonce)Seeks{x, ($1yY)}.

No such transformation is possible for expressions occurring in the second argument
place of the relation sign. On the other hand, in the case of

Finds{($xPonce),($1yY)}.

Transformations are possible for both the domain and the range because ‘finds’ is exten-
sional in both occurrences. Thus the above is equivalent to:

($xPonce)($1yY)(Finds{x,y}).

The difference between the domain and the range of the intentional relation ‘seeks’ is
made more manifest if we take the following, which differs from Cocchiarella’s account
because it appeals to a partial analysis of the relation:

($xPonce)($m)(Mental-state-of-seeking(m) & Has(x,m) & ($y)(In{($1yY)yy, m})))

Ponce obviously is not seeking a property. On Cocchiarella’s analysis it is a referential
concept of a fountain of youth (represented as a certain property of properties) that
Ponce uses in the mental acts he employs in seeking.

By assimilating ordinary proper names to sortal quantifiers, a similar construction
may be employed for examples such as ‘Caesar worshipped Jupiter.’ Cocchiarella has:

($xCaesar)Worships{x, ($1yJupiter)}.

Using our technique of a partial phrarphrase, we have:

($xCaesar)($m)(Mental-state-of-worshipping(m) & Has(x,m) &
($y)(In{($1yJupiter)yy, m})).

As before, because of the intentional nature of the relation at its range, it does not
follow from the fact that Caesar worshipped Jupiter that there exists some entity Jupiter
that Caesar worshipped. Cocchiarella’s techniques have particularly useful applications
to the phenomena of anaphora. Consider the following difficult case:

Hob thinks some witch is afoot, and Nob wonders whether she (that witch) is evil.

The problem is to explain how the pronoun ‘she’ in the second clause is bound to the
quantifier ‘some witch’ in the first. Obviously, the following will not do

($1yW){($xHob)Thinks(x, Afoot(y)) & ($zNob)Wonders(z, Evil(y))}.

This introduces an ontological commitment to witches. By appealing to the referential
concept employed by both Hob and Nob, we can begin to see how to go about solving
the puzzle. I shall not spell out Cocchiarella’s complete solution here, but only suggest
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the direction. Where ‘($1y Wy & ($xHob)Thinks-About(x,y))’ represents the referential
concept ‘the witch that Hob thinks about,’ we have:

($xHob)Thinks{x, ($yW)Afoot(y)} & ($xNob)Wonders{x, ($1y Wy &
($xHob)Thinks-About(x,y)) Evil(y))}.

Referential concepts seem to play an important role in recovering the conceptual struc-
ture of the assertion.

As we are beginning to see, questions about the nature of reference and logical form
are entangled with the many issues in philosophical linguistics and cognate fields such
as the philosophy of mind and cognition. Indeed, in many cases the philosophy of lan-
guage is being altogether subsumed by philosophy of mind. Classical cognitivism posits
syntactically structured symbolic representations and defines its computational, rule-
based, operations so as to apply to such representations in virture of their syntactic
structures. Cognition is computational, and computations are defined over symbols
(representations) encoded into data structures that can be stored, moved, retrieved, and
manipulated according to a recursive set of rules. The representations of cognitive
structures offered by logical languages (and their formal semantics) have a lot to offer
here. By appeal to such representions, many standard problems (e.g. the incomplete-
ness and non-monotonicity of reasoning, the frame problem, etc.) are tamable. The rep-
resentation of logical form has important applications as an analytic tool; it offers a
formalization of knowledge-representation, and a model of reasoning. Indeed, it can
also be used as part of a programming language (e.g. Prolog). A computational model
offers a formal analysis of the sentences of natural language – a theory of logical form
that renders a perspicuous logical representation of the truth-conditions determined
by the content of those sentences. In this way, cognitive models based on logical form
serve to guide and test general arguments concerning the nature of cognitive processes.

Formal logic has been a very attractive tool for traditional models in cognitive
science, but we must not neglect the fact that there are new models of cognition that
employ connectionist (parallel distributed processing), and many of these are at the 
forefront of recent research. Connectionist (‘non-representational’) architectures have
been found to enjoy success where classical cognitivism is weakest – viz. in modeling
perceptual tasks such as face recognition, speech processing, and visual discrimination.
Connectionist models forgo decompositional recursive architectures; the contribution
of individual component units are minimized and the behavior of the system results
from the strength and kinds of interactions between the components rather than from
a recursive rule-governed process of manipulation of units. There are no fixed repre-
sentations upon which operations are performed. Instead, there are activated units
which function to increase or decrease the activation patterns of other units until a
stable configuration is reached. On such models, the notions of ‘reference,’ ‘represen-
tation,’ ‘proposition,’ ‘belief,’ and even ‘truth’ take on a new naturalized meaning. 
A connectionist system does not rely upon internal representations as its processing
units, and it does not need to represent all relevant aspects of its environment. It ‘tunes
itself ’ to its environment without operating on syntactically encoded representations
retrieved from memory. On a connectionist model, mental states do not have a combi-
natorial or structural semantics – the content of complex units is not determined, in
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some recursive way, by the content of their more simple parts. The complex behavior
of the system emerges in a way that is not built up piecemeal from operations at the
next lower level. Connectionist models are flexible and can respond to deformed inputs
or new inputs without supplement of new rules and new stored data. The performance
of the system degrades smoothly when parts are destroyed or overloaded, settling in
spite of the adversity into a state of equilibrium.

Now Fodor and Pylyshyn (1988), among others, have pointed out that features of
cognition that are involved in problem solving and reasoning are precisely the sort of
features that connectionist architectures find most difficult to model. Verbal behavior
is paradigmatic of structured combinatorial semantics, for it seems to require that
complex verbal forms be syntactically composed of recurring units. When one under-
stands an utterance of a sentence, one constructs a mental representation – a parsing
tree which displays the semantic content (truth-conditions) of the whole complex as a
function of the semantic content of its syntactically more simple parts. Psycholinguistic
theories differ in the nature of such trees and in how they are composed, but in all such
theories quantificational logical forms play a central role. Speakers of a language can
effectively determine the meaning or meanings of an arbitrary expression, and it is the
central task of a linguistic theory to show how this is possible. On mastering a finite
vocabulary and sets of rules, we are able to produce and understand a potentially infi-
nite number of sentence types. This seems impossible to explain without the postula-
tion of semantically structured representations. If one adopts a computational theory
of cognition, Fodor (1987) argues, then one must be prepared to accept that the trans-
formational grammar of current cognitive science is empirically well-corroborated, and
that this speaks in favor of an ontology of structured mental representations – a lan-
guage of thought.

The connectionist admits that perceptual (e.g. auditory and visual) experiences asso-
ciated with parsing the contents of utterances must be explained, but denies that the
actual cognitive architecture (the neural networks) which make linguistic under-
standing and communication possible has anything to do with their realizing struc-
tured mental representations. Given Church’s Thesis that the imprecise notion of
‘computation’ be identified with the rigorous notion of ‘recursiveness,’ traditional and
connectionist architectures will be able to emulate the behavior of one another. The
debate between traditional cognitive science (as a computational account of mind) and
connectionism is properly a debate about which research program is more likely to
render a naturalistic (causal/evolutionary) explanation of how neurons actually give
rise to human consciousness and animal cognition. There is a danger, therefore, in
aligning the Russellian notion of logical form, and the Description Theory of Reference,
too closely with philosophical linguistics and cognitive science. Science may, in the 
end, find that best account of language apprehension and cognition rejects structured
mental representations and transformational grammar.

3 Rigid Designators

As Russell saw matters, a good many metaphysical theories are generated from a failure
to properly analyze logical form. Unfortunately, the Russellian emphasis in analytic phi-
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losophy on logical form fell out of fashion with the collapse of the Frege/Russell logi-
cist program and the logical empiricism it spawned. This is writ large in modern modal
logic, with its semantics of possible worlds, entities existing at one world and not
another, and its ascriptions de re of essential properties. The new essentialist modal logic
has been a rich resource for those who challenge the Description Theory, and the
Russellian notion of logical form itself.

In the context of modal ascriptions, the law of identity, together with innocuous
looking assumptions, can yield startling results. Let us represent necessity by � and
possibility by ‡. Assuming that

(x) �(x = x),

that is that every entity is necessarily self-identical, one can derive:

(x)(y)(x = y … �(x = y)).

quite straightforwardly from the law of identity. Now if proper names are genuine sin-
gular terms, then by universal instantiation, we arrive at:

Hesperus = Phosphorus … �(Hesperus = Phosphorus).

This seems astonishing. By astronomical investigation a posteriori we come to discover
that Hesperus is identical with Phosphorus, and yet from the above this yields knowl-
edge of a necessity! Worse, with definite descriptions construed as singular terms, uni-
versal instantiation would seem to yield:

The morning star = the evening star … �(the morning star = the evening star).

Yet surely the morning star is contingently identical with the evening star. It may have
turned out that they were not both the planet Venus.

Russell’s theory of definite descriptions offers an explanation. Proper names are to
be transcribed in symbolic logic as definite descriptions, and definite descriptions are
‘incomplete symbols’ to be contextually defined. Universal instantiation does not apply
to definite descriptions, for they are not genuine terms of the formal language. On
Russell’s theory, one has:

E!(iz)(Az) :…: (x)Bx … (iz)(Az)[B(iz)(Az)].

Accordingly, since we have E!(iz)(Mz) and E!(iz)(Ez), Universal instantiation yields

(iz)(Mz) (iz)(Ez)[(iz)(Mz) = (iz)(Ez) .…. �{(iz)(Mz) = (iz)(Ez)}].

Eliminating the descriptions, this is:

($x)(Mz ∫z z = x .&. ($y)(Ez ∫z z = y :&: x = y … �(x = y))).

The result now appears innocuous.
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In a now famous argument, however, Quine attempted to show that singular expres-
sions embedded in the context of necessity are non-referential, and quantified modal
logic is illicit. The context of necessity is, as Quine puts it, ‘referentially opaque.’ Quine
observed that if ‘9’ in the true statement

(4) �(9 > 7),

refers to the number 9, then by the law of identity it may be replaced by the singular
expression ‘the number of planets’ without loss of truth value. But of course such a
replacement does alter the truth value, for

“�(the number of planets > 7)”

is false. In Quine’s view, the failure of the substitutivity of the co-referrential expres-
sions ‘9’ and ‘the number of planets’ in the context of necessity shows that the name
‘9’ in the expression ‘�(9 > 7)’ is an orthographical accident like the ‘nine’ as it occurs
in ‘Quinine water is therapeutic’ (Quine 1976). Quite obviously, ‘nine’ does not refer to
the number 9 in such an occurrence. The context is a referentially opaque with respect
to the occurrence of the expression ‘nine.’ It would be improper to form the context

‘Qui(x) is therapeutic’

and permit the variable x to then be bound by a quantifier. Similarly, Quine maintains
that the expression “�(x > 7)” is ill-formed.

With the help of the scope distinctions afforded by Russell’s theory of definite
descriptions, Smullyan (1948) shows how to maintain, in spite of Quine’s argument,
that the occurrence of ‘9’ in ‘�(9 > 7)’ is referential and refers to the number 9. Let
‘Px’ represent ‘x numbers the planets.’ Then the statement ‘�(the number of planets
> 7),’ that is,

(5) �((ix)(Px) > 7)

is ambiguous between the following:

(5a) �($x)(Pz ∫z z = x .&. x > 7)
(5b) ($x)(Pz ∫z z = x .&. �(x > 7)).

Sentence (5a) is false, but sentence (5b) is true and provable from (4) by the law of iden-
tity. There is a number that contingently numbers the planets and it is necessarily
greater than the number 7.

Quine, of course, was no stranger to the apparatus of Russell’s theory of definite
descriptions, and he certainly would have anticipated Smullyan’s use of the theory
against his argument. So it might at first appear perplexing why Quine had not real-
ized that his argument for the referential opacity of the context of necessity could be
undermined by Russell’s theory. But it must be understood that the source of Quine’s
objection to quantifying into the context of necessity lies in his empiricist conviction
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that the only necessity is logical necessity and that logical necessity is ‘truth in virtue
of logical form.’ The legacy of Frege and Russell is to have replaced the early empiricist
notion of ‘truth in virtue of meaning’ with the more refined notion of ‘truth in virtue
of logical form (generated by the logical particles alone).’ This is fundamentally a de
dicto notion whose semantics is rendered most straightforwardly in a Tarski-style formal
semantic account of logical truth. To embrace a Russellian approach to the failure of
the substitutivity of co-referentials in the context of necessity, as Smullyan does, one
has to allow expressions of de re necessity. Orthodox empircism is deeply troubled by de
re ascriptions which ground necessity in the metaphysical essential natures of entities
and not in the form of propositions. The intelligibility of de re ascriptions of necessity
required by a Russellian analysis, would, as Quine puts it, require the metaphysical
tangles of an Aristotelian Essentialism.

If necessity is to be understood as fundamentally an anti-essentialist notion of form,
then Smullyan’s employment of Russell’s theory of definite descriptions will be of little
help as a response to Quine’s argument for the referential opacity of contexts of ne-
cessity and the illegitimacy of quantified modal logic. Nonetheless, Quine is mistaken
in thinking that quantified modal logic is committed to any form of essentialist notion
of necessity. In the Kripke-style semantics for quantified modal logic, there is no assur-
ance that for every admissible extension of the predicate letters of a formula in a
domain (of a Tarski-style semantics for logical truth), there is a possible world in which
just those entities of the domain satisfy the predicate (Kripke 1963). For instance,
where F is a predicate letter of the language, there will be Kripke models in which an
essential sentence such as,

($x)�Fx

is true. This can only be so if no possible world in the model is a world where nothing
has F. The interpretation which assigns the empty-class to F has been left out. 
Parsons (1969) points out, however, that even in a Kripke-style semantics for quanti-
fied modal logic, with its different entities in different worlds, some among the models
will be ‘maximal models’ in which for each admissible extension of the predicate letters
there is a possible world where just those entities in the extension satisfy the predicate.
Accordingly, since Kripke’s notion of universal validity is understood as invariant truth
in every possible world of every model, no essentialist sentence will be universally valid.
Though some essentialist sentences will be true in a given model, no essential sentence
will be a thesis of a sound axiomatization of quantified modal logic. In a universally valid
formula, the only properties that will be necessarily possessed by entities are purely
logical properties such as ‘[lx Fx … Fx].’

Cocchiarella (1975) goes even further. Kripke’s notion of universal validity arbitrar-
ily omits some logically possible worlds. At first blush this is easy to miss, for Kripke’s
notion of universal validity is defined in terms of every possible world of every model. But
as we saw, the Kripke semantics does not measure what counts as a ‘possible’ world in
terms of the Tarski semantic conception of an admissible interpretation over a domain.
If necessity in quantified modal logic is to be interpreted as logical necessity (in such a
way that it coincides with the Tarski-style semantics of logical truth), then one must
adopt a ‘primary semantics’ for quantified modal logic in which every model is maximal.
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The Kripke semantics is a ‘secondary semantics’ for necessity because it omits some 
logically possible worlds. The differences are striking. For instance, Cocchiarella shows
that monadic modal logic is decidable in its primary semantics. It is undecidable, as
Kripke has demonstrated, in the secondary semantics. Moreover, Cocchiarella shows
that in its primary semantics modal logic is semantically incomplete. (Its logical truths
coincide with those of second-order logic, which is known to be semantically incom-
plete.) In Kripke’s secondary semantics, modal logic is semantically complete. Quine’s
empiricist objections to de re ascriptions of necessity are assuaged in the ‘primary
semantics.’ In such a semantics, each de re ascription is semantically equivalent to some
de dicto ascription (McKay 1975). In the primary semantics for quantified modal logic,
logical necessity is a formal notion – truth in virtue of form and not truth in terms of
the metaphysical essences of entities. Smullyan’s employment of the Russellian
approach to proper names and definite descriptions in quantified modal logic does not,
therefore, require any essentialist statement to be true.

Metaphysicians who agree that logical necessity should coincide with the semantic
conception of logical truth may, nonetheless, wish to reject the empiricist cannon that
the only necessity is logical necessity. They may wish to embrace a causal/physical form
of necessity. Ordinary language is rich with de re essentialist statements of this sort.
Indeed, such framework seems embedded in ordinary biological taxonomies based upon
genus and species. If there are natural kinds, then there is a form of causal/physcial
essentialism. As Cocchiarella (1984) points out, it is not the primary semantics for
logical necessity that would be appropriate in such contexts, but rather the Kripke-style
secondary semantics of ‘metaphysical’ necessity (to use Kripke’s expression). Kripke’s
metaphysical necessity would then be interpreted as causal necessity.

To semantically underwrite de re ascriptions of metaphysical necessity, Kripke and
Putnam have argued that mass terms for substances like ‘water,’ and ‘gold,’ and terms
for biological kinds like ‘horse,’ ‘cat,’ and ‘lemon,’ are rigid designators, properly under-
stood in terms of a causal theory of reference. Putnam developed a causal theory of
kind terms extensively (Putnam 1975). Natural kind terms are associated with sortal
concepts. But how precisely does the sortal concept direct the classification of entities
as being of the same kind? An account that seeks to specify the concept of, say, ‘gold’
by a description in terms of the manifest properties, relations, and appearances, will be
quite unsatisfactory. For example, early users of the natural kind word ‘gold’ could not
distinguish it from ‘fool’s gold’ (chalcopyrite). Not only do such accounts often fail to
provide necessary and sufficient conditions for being of the kind in question, they leave
wholly unexplained how it is that scientific categorizations have evolved. Newton’s 
conception of mass, for example, was quite different from that of Einstein, for central
among the manifest attributes he associated with the concept was that mass cannot 
be altered by acceleration. A descriptivist approach threatens to leave the history of
science irrealist and non-convergent, with new scientific theories changing the very
meanings of the fundamental terms of the old. Putnam was concerned to protect con-
vergent scientific realism. 

Putting aside for the moment Kripke’s conception of the philosophical underpin-
nings of his secondary semantics for metaphysical necessity, Putnam’s employment of
a causal theory of reference to underwrite convergent scientific realism can be inter-
preted as Cocchiarella suggests – viz. as an interpretation which takes Kripke’s meta-
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physical necessity to be causal/physical necessity. On Putnam’s causal account of ref-
erence, an entity x is (an) f (horse, birch tree, orange, gold, etc.) if and only if, given
good exemplars of f, the most explanatory and comprehensive true theoretical account
of the causal structure of the exemplars would group x alongside these exemplars.
Whether something is an f turns on the causal structure of the word; it is a matter of
whether it bears the relation ‘same f as,’ construed as a cross-causally-possible world
relation, to the good exemplars. Putnam’s semantics for natural kind world will accom-
modate the fact that one and the same concept of what it is to be an f would be unfolded
gradually in a succession of different and improving scientific conceptions of the ‘same
f as’ relation. The theory can explain how it is that what have appeared astonishingly
like fs (and may even have been thought to be among the exemplars of fs) turn out not
to be fs, and that because hidden structures dominate appearances, it explains how the
most improbable seeming specimens may in fact turn out to be fs.

We know a posteriori that water is ‘necessarily’ H20. It cannot causally have been 
otherwise. The necessity here applies not to identity as a logical relation, but to the re-
lation of ‘sameness of causal structure.’ A substance x is water if and only if it, in fact,
bears the trans-world relation of sameness of causal structure to the particular exem-
plars of the substance we call ‘water’ in the actual world. Given that water is, in fact,
H20, nothing counts as a causally possible world in which water does not have that
structure. Use of a natural kind term f is not understood in terms of some set of ideas
or concepts (intensions) associated with the term which supposedly determine its
extension, but rather by fixing on certain actual exemplars of substances that are
thought to have a common nature in being f ’s. Psychological states of linguistic speak-
ers, concepts, ideas, images, and the like, which are associated with use of the term
‘water’ do not determine the extension of the term. What determines the extension is
the actual chemical structure of water itself. In this use, natural kind terms such as
‘water’ behave like the indexicals ‘I’, ‘now,’ ‘this,’ ‘that.’ Their use is explained by prag-
matics, not semantics. That is, the reference of such terms is fixed by causal relations
that are external to the concepts employed by speakers of the language. In Putnam’s
view, natural kind predicates no not have sense.

Natural kind terms function as ‘rigid designators,’ indexically picking out the same
substances in all possible worlds in which they exist. The indexicality of such terms, as
they are often used in natural language, manifests itself in modal and counterfactual
contexts. The following is a true sentence:

It might (causally) have been the case that the substance that has all the manifest
properties and relations and appearances of water is not water but a substance 
XYZ.

The term ‘water’ in this sentence, is not synonymous with any evolving cluster of
descriptive information of manifest properties, relations, and appearances of water
which would purport to single out the extension of the term. This is the possible world
Putnam famously has called ‘twin Earth’ – a metaphysically (causally) possible world
in which what satisfies all that would be part the best descriptivist account of the
meaning of the term “water” (say before the chemical composition of water was
known), is nonetheless not water. Indeed, even the cluster of description information
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that included ‘substance whose chemical composition is H20’ is not determinative of
the extension of the kind term ‘water.’ For it is causally possible that modern physical
chemistry is incomplete, and that water turns out not to be a substance whose chemi-
cal composition is simply H20, but some more complicated molecule.

The extension of a natural kind predicate is not given by the descriptive information
associated with the predicate as it is used within a community. Something is water if
and only if it, in fact, has the same causal nature as the good exemplars of water. This
is so regardless of whether members of a linguistic community who use the term
‘water’ know what that causal structure is, and regardless of their conception of what
water is. The extension of a natural kind term (if it is known at all) may be known only
to a small community of scientific experts. According to Putnam’s thesis of the ‘divi-
sion of linguistic labor,’ the criteria of application of a natural kind term may be known
only to experts and every one else who acquires the kind term, and uses it indexically,
implicitly defers to the experts regarding its application. The pay-off that Putnam hopes
to obtain is the revitalization of convergent scientific realism. To return to our earlier
example, Newton was talking about mass because the good exemplars of the phenom-
ena of body’s having mass have the same causal nature as those studied by Einstein.
But, we shall have to willingly accept that Newton’s concept of mass (including the laws
he thought constitutive of the notion) did not determine its extension. Meaning, in the
sense of what it is that determines extension, is not matter of concepts in the minds of
speakers of a language.

The fact that we do use scientific kind terms such as ‘water,’ ‘H20,’ ‘Hydrogen,’ ‘elec-
tron,’ and the like indexically, leaving it to the world’s causal structure to fix extension,
seems no great surprise. The sting comes only if the causal theory is parlayed into a
general theory of reference – an externalist theory of the content of cognitive states. It
need not be so. In his discussion of ‘egocentric particulars,’ Russell himself admitted
that indexicals (he reduced them all to expressions involving the word ‘this’) fix refer-
ence via a causal chain: “the shortest possible chain from a stimulus outside the brain
to a verbal response” (Russell 1966: 112). But he emphatically asserted that no ego-
centric particulars are needed in a scientific account of the world. In his effort to defend
convergent scientific realism, Putnam may disagree, but the jury is out. Indeed, Laudan
(1981) has argued convincingly that Putnam’s causal theory of reference does not best
serve scientific realism. In any event, accepting the pragmatic fact that a natural kind
term may be used indexically (so that its extension is fixed externally and contextually),
does not by itself undermine the Description Theory’s role in computational accounts
human thought and cognition, or in accounts of the compositional semantic structures
(such as those of a Chomsky-style transformational grammar).

There are, however, far more unruly notions of metaphysical necessity that Kripke’s
secondary-semantics allows, and providing a viable semantics for these seems to call
for a thorough rejection of the Description Theory. With the collapse of logicism, the
nature of mathematical truth has remained a mystery, and its statements seem to 
be prime examples of a new form of metaphysical essentialism about numbers. The
number 9 is necessarily odd. Goldbach’s conjecture that every whole even number
greater than 2 is the sum of exactly two primes, if true, is a necessary truth. But even
more radically, Kripke’s secondary semantics opens the door to a unique form of de re
essentialism that is closer to a logical notion than a causal one, and yet it is a concep-
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tion of necessity that is based on neither the notion of truth in virtue of ontological
structure nor the Tarski-style semantics for logical truth. An Aristotelian essentialism
with respect to a conception of causal (physical) necessity is problematic enough for
empiricism. But this sort of logico-metaphysical necessity seems beyond the pale.

In embracing de re metaphysical necessity of this extreme form, as opposed to ortho-
dox empiricism’s conception of necessity as ‘truth-in-virtue of form’, Kripke is driven
to his anti-Russellian position that ordinary proper names are rigid designators (Kripke
1971). An individual constant ‘a’ is a rigid designator if and only if ($x) �(x = a). That
is, it designates the very same entity in every possible world. The use of ordinary proper
names in modal and counterfactual contexts reveals that they are rigid designators, not
definite descriptions. Consider the sentence,

The most famous among philosophers of antiquity might not have been most
famous among philosophers of antiquity.

On one reading, this sentence is true. Aristotle was indeed most famous among philoso-
phers of antiquity, but he might not have been. On another reading, it is logically con-
tradictory. Whoever was most famous among philosophers of antiquity was certainly
most famous among those philosophers. By syntactically signaling the presence of
descriptive semantic information, definite descriptions induce ambiguities of scope in
modal and counterfactual contexts. The use of ordinary proper names on the contrary,
relies upon the context of utterance to secure reference. In virtue of this, ordinary
proper names in modal and counterfactual contexts do not produce scope ambiguities.
They are not, therefore, synonymous with any definite description.

The Description Theory of reference in natural language offers a theory according
to which the sense of an ordinary proper name is the sense of some definite descrip-
tion, and accordingly the name refers to whatever satisfies the description. Ordinary
proper names, Kripke admits, are introduced into a language by means of a reference
fixing definite description, but he denies that this fixes the sense (meaning) of the proper
name. The descriptive apparatus initially employed to fix the reference of a name does
not, in general, continue to fix its reference in all further uses of the name. Taking an
example from Evans (1973), observe that

“It was Elhannan (of 2 Samuel 21:19) and not Goliath, who was the Philistine giant
slayed by David,”

is possibly true. Indeed, there is now significant historical evidence that it is in fact true.
But this certainly does not lead us to say that the name ‘Goliath’ refers, after all, to
Elhannan. The name ‘Goliath’ refers to the same person, irrespectively of whether or
not David slayed him. It cannot, therefore, be synonymous with a description such as
‘the Philistine giant slayed by David.’

Proper names are rigid, descriptions (except when the descriptive properties are
essential properties) are not rigid. Kripke explains the rigidity of ordinary proper names
by appeal to a causal theory of reference. The reference of a name is made rigid by the
existence of a certain reference-preserving causal/historical chain leading back to an
entity, and not by the fact that the referent satisfies a set of descriptive information asso-
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ciated with the sense of the name. Evans gives a succinct characterization: A speaker,
using a name N on a particular occasion, will denote some item x if there is an appro-
priate causal chain of reference-preserving links leading back from his use on that occa-
sion ultimately to the item x itself being involved in a name-acquiring transaction such
as an explicit dubbing (Evans 1973). Kripke denies that even an evolving and amend-
able cluster of descriptive identification criteria, some but not all of which must be 
satisfied by the name, can serve in a semantic theory of proper names. This parallels
an interesting result in formal semantics. No axiomatic first-order theory can fix its
interpretation. Indeed, according to the Löwenheim-Skolem theorem, any first-order
axiomatic theory with identity that has an infinite model, has a denumerable normal
model (where the identity sign is interpreted as identity) in the natural numbers. No
matter what new axioms are added to try to delimit the referents of its terms, it remains
that there are unintended interpretations that satisfy all the axioms. Similarly, no
matter what cluster of descriptive information is chosen to supplant a proper name,
one can always find an epistemically plausible situation in which the referent of the
proper name does not satisfy the descriptive information. It simply will not work for a
Description Theory to attempt to subsume the causal theory of reference by forming a
definite description which characterizes the relevant reference-preserving causal chain
associated with the use of the proper name. Such a description, like adding more axioms
to a first-order theory, cannot fix an intended interpretation. It is the world – the causal
chain itself – that fixes reference, not satisfaction of any description. Kripke concludes
that long ago Mill had matters right: ordinary proper names do not have sense.

Working out precisely what is required of a causal chain that it be ‘appropriate’
proves difficult. There can be troublesome cases of branching and deviant chains, and
of course the familiar problem explaining the use of fictional names. The theory also
faces very serious problems as to how to explain the failure of substitution of co-
referential proper names in the contexts of propositional attitudes. In fact, Kripke
himself has generated a new ‘puzzle about belief ’ involving translation and disquota-
tion that arises in such contexts (Kripke 1976). But we shall not be concerned with
these details. As we have seen, the distinction between semantics and pragmatics may
be exploited to come to the rescue of a Description Theory. The Description Theory was
originally intended as a purely semantic theory, not a pragmatic (cum semantic) theory
of speaker’s reference or communication. Indeed, while the causal theory of names
often secures the right references for ordinary proper names in modal and counterfac-
tual contexts, Evans (1973) has pointed out that it too fails to fully appreciate the extent
that determination of reference is contextual and pragmatic. He illustrates the point by
discussing an example from E. K. Chambers’s Arthur of Britain. Arthur, it seems, had a
son Anir whom legend has perhaps confused with his burial place. Evans writes: “If
Kripke’s notion of reference fixing is such that those who said Anir was a burial place
of Arthur might be denoting a person, it seems that it has little to commend it.” The
causal theory must accept that there can be cases of reference shifting. Accordingly,
Evans offers a hybrid theory of what is required for and expression to be a genuine
proper name. In general, he says, a speaker intends to refer to the item that is the domi-
nant causal source of his associated body of descriptive information.

The sources of Kripke’s rigid designators and his objections to the Description 
Theory are, however, quite different than the pragmatic considerations of Strawson,
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Donnellan, and the like, who rightly find the Description Theory to be an inadequate
account of how the names are actually used in communication. A Russellian might
simply acknowledge that a rigid pragmatic use of an ordinary proper name demands
that when transcribing modal sentences, the definite description chosen to replace the
ordinary proper name must always be rendered with primary scope. The source of
Kripke’s objections to the Description Theory lie in his advocacy of a secondary seman-
tics for a logico-metaphysical necessity, where worlds may well have greater or fewer en-
tities than there are in the actual world. Indeed, if one were to take such worlds
realistically, a singular term may refer rigidly to an entity that is not actual. A primary
occurrence of a definite description will always refer (if it refers at all) to an actual entity.

Russell’s view that ordinary proper names are ‘disguised definite descriptions’ was
the result of his quest to find logical structure where surface grammatical structure had
none. By doing such a conceptual analysis he thought philosophy could free itself from
what he regarded as muddles of metaphysics. On Kripke’s view, de re metaphysically nec-
essary truths are not to be construed as conceptual truths of form or meaning, and 
philosophy is not to be regarded as a discipline engaged in conceptual analysis.
Philosophy is engaged in discovering (at times a posteriori) de re logico-metaphysical
essences, just as the science of natural kinds is involved in the empirical discovery of
causal structures underlying substances. There is, therefore, on this conception of phi-
losophy, no need to follow Russell in searching for logical forms (logical structures)
obscured by surface grammatical forms in an effort to explain away metaphysical neces-
sity. If we take Kripke’s de re metaphysical necessity seriously, then we should be prepared
to reject a quantificational account of the logical form of statements involving proper
names. We should be prepared to reject the Russellian quest for logical form altogether,
and be content to say that proper names act as if indexicals, rigidly picking out their 
referents because of the metaphysical nature of the world and independently of any
speaker’s descriptive information. To return to the example that began this section, from,

(6) (x)(y)(x = y … �(x = y)),

and the astronomical discovery that the morning star = the evening star, one may not
conclude (by universal instantiation, and modus ponens) that,

�(the morning star = the evening star).

In the contexts of Kripke’s secondary semantics for metaphysical necessity, the axiom
of universal instantiation undergoes modification. The system does not allow universal
instantiation to definite descriptions. Thus the acceptance of (6) does not rule out de
dicto identity statements that are contingently true in virtue of their form. From (6) we
shall only be able to arrive at:

($x) �(x = a) & ($x) �(x = b) .…. a = b … �(a = b),

None the less, from (6) and the astronomical discovery that Hesperus = Phosphorus,
we saw that Kripke arrives a posteriori at the following:

�(Hesperus = Phosphorus).
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‘Hesperus’ and ‘Phosphorus’ are to be read transparently in virtue of their being rigid
designators. The logical form of this statement is not quantificational. We have de re
metaphysical (logical) necessity, and not a necessity grounded in propositional form.

4 Russell on Logical Form

We have come full circle. We argued that Russell’s theory of definite descriptions can
defend itself against the sort of objections voiced by Strawson, Donnellan, and the like,
by carefully distinguishing issues that pertain to pragmatics from those that are rele-
vant to combinatorial semantics. This, however, lends itself to too narrow a construal
of Russell’s notion of logical form – aligning it with the transformational grammars 
of contemporary philosophical linguistics. Moreover, we saw that the deep source of
Kripke’s objections to the Description Theory are not to be found in appeal to pragmatic
features of reference. They lie in his advocacy of a secondary semantics for a de re and
metaphysical necessity. In this regard, it is interesting to return to Russell’s own con-
ception of the paradigm for a new scientific philosophy that is exemplified by his 1905
theory of definite descriptions.

Russell, as Frege before him, embraced a conception of logic that is quite different
from the contemporary. Logic is not the mathematical study of formal systems, their
semantic completeness, consistency, and the like. Logic does not have as its main goal
the investigation of the combinatorial semantic notion of logical consequence (the con-
ditions of truth-preservation in inference so elegantly captured in a Tarski-style formal
semantics). For Russell, logic is a general science of ontological structure. The psy-
cholinguistic semantic structures postulated by philosophical linguistics and cognitive
science in their efforts to underwrite truth-preservation in inference will be included,
but the science of logic is not dependent upon any particular theory of language learn-
ing, meaning, or cognition. On the conception of logic that Russell held while advanc-
ing the ‘misleading form thesis’ of his theory of definite descriptions, logical analysis is
ontological analysis.

If we look at examples of analytic work on logical form that Russell endorsed, we
will be immediately struck by what is included. Russell took his program for a scientific
philosophy based on the analysis of logical form to be exemplified by the achievements
of mathematicians, such as Frege on the notion of cardinal number, Cantor on infin-
ity and continuity, Dedekind on the notion of irrationals, and Weierstrass on the notion
of the ‘limit’ of a function (Russell 1901). Their studies eventuated in new logical 
analyses of these notions. In Russell’s view, Cantor’s work on the transfinite put to rest
centuries of speculative metaphysics surrounding the ‘infinite’ and the notion of ‘con-
tinuity.’ Russell writes: “Continuity had been, until he [Cantor] defined it, a vague word,
convenient for philosophers like Hegel, who wished to introduce metaphysical muddles
into mathematics. . . . By this means a great deal of mysticism, such as that of Bergson,
was rendered inadequate” (Russell 1946: 829). With Cantor, the former notion of con-
tinuity which seemed impossible to render by any notion of magnitude, depends only
on the notion of order. The new constructions arithmetizing Analysis revealed that it
is order, not magnitude, that is basic to continuity. The derivative and the integral
became, through the new definitions of ‘number’ and ‘limit,’ not quantitative but 
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ordinal concepts. Continuity lies in the fact that some sets of discrete units form 
a dense compact set. “Quantity,” wrote Russell, “. . . has lost the mathematical impor-
tance which it used to possess, owing to the fact that most theorems concerning it can
be generalized so as to become theorems concerning order” (Russell 1946: 829).
Weierstrass had banished the use of infinitesimals in the calculus. He showed that 
the notion of the ‘limit’ of a function which used to be understood in terms of quan-
tity, as a number to which other numbers in a series generated by the function 
approximate as nearly as one pleases, should be replaced by a quite different ordinal
notion.

Naturally, Frege’s analysis of the notion of cardinal number is an important example
of logical form, and Russell heralds it as “the first complete example” of “the logical-
analytic method in philosophy” (Russell 1969: 7). But we do well to observe that Russell
also included Einstein on space–time, as an example of work that revealed logical form.
“Physics,” Russell tells us, “as well as mathematics, has supplied material for the phi-
losophy of philosophical analysis. . . . What is important to the philosopher in the
theory of relativity is the substitution of space–time for space and time.” With respect
to quantum theory, Russell continues, “I suspect that it will demand even more radical
departures from the traditional doctrine of space and time than those demanded by the
theory of relativity” (Russell 1946: 832).

Looking at the examples that Russell took to be paradigmatic of work towards a
theory of logical form a new perspective emerges. The interpretative tradition is mis-
guided when it maintains that for Russell a theory of logical form renders an account
of compositional semantic structures – a ‘meaning analysis’ which reveals that the
structures that underlie cognition may be hidden in the misleading surface grammar
of statements. Quite clearly the analyses offered in the work of Weierstrass, Cantor,
Frege, and Einstein are not accounts of the psycho-linguistic structures grounding
assertions involving notions such as ‘limit,’ ‘continuity,’ ‘natural numbers,’ or ‘space,’
and ‘time.’ They offer analyses that are quite different from the ordinary language
meanings of such notions. The fundamental idea underlying Russell’s science of logi-
cal form is not properly characterized as one of a meaning analysis (or semantics) of a
statement; it is rather that of an eliminativistic ontological analysis.

For example, eighteenth- and nineteenth-century physics and chemistry offered a
number of subtle fluid and aether theories that were highly successful at explaining a
wide variety of phenomena. In the process of theory change, the research programs
that gave rise to such theories were supplanted by atomistic physical theories couched
within a new research program. Empirical and conceptual problems pertaining to the
aether (such as its elasticity) were dropped, and an entirely new research program, with
a new language and a new set of empirical and conceptual techniques, was inaugu-
rated. Many successes of the earlier aether theories were retained by the theories of the
new research program. Retention, however, is only partial; the confirmed predictions
of an earlier theory in a rival research tradition do not always survive into the sup-
planting research tradition. Indeed, theoretical processes and mechanisms of earlier
theories are at times treated as flotsam (Laudan 1977). The supplanting tradition may
come to regard the terms of the earlier theories as non-referential, or regard earlier
ontologies as idle wheels that serve no explanatory purpose. This is precisely how
Russell viewed philosophy as a quest for logical form.
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Russell’s own work on logical form illustrates the method. His 1906 substitutional
theory of propositions, which plies his 1905 theory of definite descriptions toward a
solution of the paradoxes plaguing logicism, showed that a type-stratified theory of
attributes powerful enough to generate arithmetic can be proxied within a type-free ‘no-
classes’ and ‘no-propositional functions’ theory of propositions. Russell knew that a
type-stratified theory of attributes in intension (‘propositional functions’) would block
his paradox of predication – the paradox of the property P that a property exemplifies
if and only if it does not exemplify itself. But Russell held that any calculus for the
science of logic must adopt only one style of variables – individual/entity variables. The
Russell Paradox of the attribute which an attribute exemplifies just when it does not
exemplify itself, and the analogous paradox of the class of all classes not members of
themselves, were solved by Russell’s substitutional theory. The theory succeeds in
finding a logical construction which builds the type distinctions that dismantle the
paradoxes into the formal grammar of a ‘no-classes’ and ‘no-propositional-functions’
theory of propositional structure. The type-stratified language of attributes can be
proxied in the type-free grammar of the calculus for the logic of propositions. In this
way, Russell hoped to recover Logicism.

Russell’s substitutional theory shows that a type-stratified theory of attributes pow-
erful enough to generate arithmetic, can be supplanted by a type-free theory of pro-
positions. In the substitutional theory, the type-stratified language and ontology of
attributes in intension (and the contextual definition of class expressions set within) is
to be supplanted by the type-free substitutional theory, which would explain in an
entirely new way what the naïve theory of classes was (albeit confusedly) getting at,
and preserve, wherever possible, its mathematical uses.

At times Russell spoke of his theory of classes as if it offered a conceptual analysis
of the statements of the naïve theory of classes, showing that class expressions of ordi-
nary language, like definite descriptions, are not referential expressions. But properly
speaking Russell is offering a eliminativistic analysis. This explains why it is that 
Russell vacillated between describing his approach as the positive denial that there are
classes (so that class expressions are non-referential expressions), and describing it as
a form of agnosticism – recognizing from the perspective of the supplanting research
program that classes, if they exist, are idle wheels that play no role in mathematical
constructions. The approach is eliminivistic, but structurally retentive. “The only 
legitimate attitude about the physical world,” Russell writes, “seems to be one of com-
plete agnosticism as regards all but its mathematical properties” (Russell 1927: 271).
This view might best be called ‘structural realism.’ Einstein’s theory of relativity, 
for example, preserves Maxwell’s equations concerning the propagation of electro-
magnetic energy in the aether. But it wholly abandons the ontology of the aether.
Similarly, the major successes obtained by appeal to the existence of classes, the posi-
tive constructions of Cantor, Dedekind, Weierstrass, and Frege are to be retained within
Russell’s substitutional theory. Russell explained that “the principles of mathematics
may be stated in conformity with the theory,” and the theory “avoids all known con-
tradictions, while at the same time preserves nearly the whole of Cantor’s work on the
infinite” (Russell 1906: 213). The substitutional theory involves, as Russell put it, “an
elaborate restatement of logical principles.” The results obtained by appeal to the exis-
tence of classes are conceptualized in an entirely new way within the research program

GREGORY LANDINI

220



of the substitutional theory. There will be some loss – some flotsam – such as Cantor’s
transfinite ordinal number ww, the usual generative process for the series of ordinals,
and the class of all ordinals. But this loss is to be measured against the successes of the
new program. Indeed, had the program yielded the conceptual successes that Russell
had anticipated, one might venture to say that present mathematics would regard the
notion of a class as present physics regards phlogiston, caloric fluid, the aether, and
other relics of the past.

Russell’s work to build types (and Principia’s order/types) into formal grammar,
reveals how he understood the analysis of logical form. One language (and the onto-
logical entailments its predicates and grammar embody) is to be supplanted by another,
technical language, for the purposes of science. In the new language, the old philo-
sophical problems are solved. There are, for example, no entities of modern physics to
identify with phlogiston, or caloric (of the caloric theory of heat), or the aether (of the
wave theories of light). Transcription of the primitive’s ontological problem of the elas-
ticity of the aether, for example, will be impossible. It is rather that the new theory
renders an explanation of what (if anything) was correct in the primitive’s world view,
and shows why the primitive’s mistaken ontology was (to a limiting extent) on track.
So also, in the new language of logical form that Russell envisioned – the ‘logically
perfect language’ if you will – there are no predicate expressions ‘. . . exists,’ or ‘. . .  is
a class, ‘ or ‘. . . is true,’ or ‘. . . is a propositional function.’ These are pseudo-predicates.
But the logical grammar of the proper language for the calculus of the science of logic,
shows the extent to which the naïve ontologies of earlier metaphysical systems were on
the right track while capturing their important successes. Russell’s eliminativistic con-
ception of logical form offers a middle way between the Tarski-semantic conception 
of logical form employed by the Description Theory and the abandonment of logical
form found in Kripke’s defense of metaphyscial necessity. Russell’s account of natural
number, for example, is neither a meaning analysis of the concept ‘natural number’
nor is it properly understood an account of the metaphysical essence of natural
numbers. Russell’s program is one of analysis and reconstruction, where the “supreme
maxim of all scientific philosophizing” is to be this: “Wherever possible, logical con-
structions are to be substituted for inferred entities” (Russell 1914: 115). Inspired by
advances in mathematics, he contended that logic is the essence of philosophy: “every
philosophical problem, when it is subjected to the necessary analysis and purification,
is found either to be not really philosophical at all, or else to be, in the sense in which
we are using the word logical” (Russell 1969: 42).
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Necessity, Meaning, and Rationality: 
The Notion of Logical Consequence

S T E WA RT S H A P I RO

There are many ways of saying that a given proposition, or sentence, F is a logical 
consequence of a set G of propositions, or sentences: G entails F, G implies F, F follows
from G, F is a consequence of G, and the pair ·G,FÒ is valid. If a given F is a logical 
consequence of the empty set, we say that F is logically true, F is a tautology, or F is
valid.

The notion of logical consequence has always been an important item on the agenda
of philosophy. What is it? How do we determine that a given F is a consequence of a
given G? Can we know this infallibly? A priori? What role does consequence play in our
efforts to obtain knowledge? If F is a logical consequence of G, then what is the epis-
temic status of F vis-à-vis the members of G?

Logic is the study of correct reasoning, and has something to do with justification.
Logical consequence is an important ingredient in proof. Thus, we broach issues con-
cerning what reasoning is, and questions about what it is to reason correctly. The very
notion of rationality is tied in here. Other slogans are that logic is topic neutral, and
completely general, and that logical consequence is a matter of form. What do these
slogans mean?

There are actually several different notions that go by the name of ‘logical conse-
quence,’ ‘implication,’ etc. Some of them are controversial and some are, or may be,
related to others in interesting and important ways. The purpose of this article is to sort
some of this out.

1 Modality

As far as we know, the first systematic treatment of logic is found in Aristotle’s Prior
Analytics. In chapter 2 of book 1, we find:

A deduction is a discourse in which, certain things having been supposed, something dif-
ferent from the things supposed results of necessity because these things are so. By
“because these things are so,” I mean “resulting through them” and by “resulting through
them,” I mean “needing no further term from outside in order for the necessity to come
about”.



I will not attempt to recapitulate the efforts of scholars to probe the subtleties in this
text. To attempt a paraphrase, Aristotle’s thesis is that a given proposition F is a con-
sequence of a set G of propositions if (1) F is different from any of the propositions in
G, (2) F necessarily follows from the propositions in G (‘because these things are so’),
and (3) propositions not in G are not needed for this necessity ‘to come about.’

Contemporary practice is to drop clause (1) and allow that F follows from G when
F is a member of G, as a trivial instance of logical consequence. Aristotle’s phrase
“because these things are so” seems to imply that in order to have a consequence, or
‘deduction,’ the premises in G must all be true. With one notable exception (Gottlob
Frege), most modern conceptions of consequence do not follow this, and allow
instances of logical consequence in which the premises are false. For example, ‘Socrates
is a puppy’ follows from ‘All men are puppies’ and ‘Socrates is a man.’

What of Aristotle’s gloss of “because these things are so” as “resulting through
them,” and that as “needing no further term from outside in order for the necessity to
come about.” These clauses might indicate that the premises alone guarantee the con-
clusion, or that the premises are sufficient for the conclusion. Our first conception of
logical consequence is modeled on this reading of Aristotle’s definition:

(M) F is a logical consequence of G if it is not possible for the members of G to be
true and F false.

It is common nowadays to think of modal notions in terms of possible worlds. For what
that is worth, our thesis (M) becomes:

(PW) F is a logical consequence of G if F is true in every possible world in which
every member of G is true.

According to (M) and (PW), ‘Al is taller than Bill’ seems to follow from ‘Bill is shorter
than Al,’ since it is impossible both for Bill to be shorter than Al and for Al to fail to be
taller than Bill. Surely, ‘Al is taller than Bill’ holds in every possible world in which ‘Bill
is shorter than Al.’ Or so one would think. For another example, according to (M) and
(PW), ‘Hilary is wealthier than Barbara’ and ‘Barbara is wealthier than Nancy’ seems
to entail that ‘Hilary is wealthier than Nancy.’ Again, it is simply not possible for Hilary
to be wealthier than Barbara, Barbara to be wealthier than Nancy, and for Hilary to fail
to be wealthier than Nancy. To adapt an example from Bernard Bolzano, a religious
person who accepts (M) or (PW) might say that ‘Caius has an immortal soul’ follows
from ‘Caius is a human’ since (according to the person’s theology), the premise cannot
be true and the conclusion false.

On most contemporary accounts of logic, none of these conclusions is a logical con-
sequence of the corresponding premise(s). It is a routine exercise to formalize these
arguments and show that the conclusions do not follow (see below). Perhaps we can
bring (M) and (PW) closer to the contemporary notions by articulating the involved
modality, invoking a special notion of logical possibility and necessity. One tactic would
be to invoke Aristotle’s final clause, that a true logical consequence needs “no further
term from outside in order for the necessity to come about.” In the example about Bill
and Al, we need to invoke some ‘outside’ fact about the relationship between shortness
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and tallness in order for the ‘necessity to come about.’ In the second example, we need
the fact that relative wealth is transitive, and in the third example, our theologian needs
to invoke some theology for the conclusion to follow. The idea is that ‘Caius has an
immortal soul’ follows from ‘Caius is a human’ together with the relevant theology, but
‘Caius has an immortal soul’ does not follow from ‘Caius is human’ alone.

On the other hand, I would think that there just is no possible world in which Bill is
shorter than Al without Al being taller than Bill. Al being taller than Bill is part of what
it is for Bill to be shorter than Al. And I presume that most theologians would insist that
there are no possible worlds in which the relevant theology is false. Having an immor-
tal soul is part of what it is to be a human.

2 Semantics

According to Alberto Coffa (1991), a major concern of philosophers throughout the
nineteenth century was to account for the necessity of mathematics and logic without
invoking Kantian intuition. Coffa proposed that the most successful line came from 
the ‘semantic tradition,’ running through the work of Bolzano, Frege, and Ludwig
Wittgenstein, culminating in the Vienna Circle. The idea is that the relevant necessity
lies in the use of language, or meaning. This suggests the following proposal:

(S) F is a logical consequence of G if the truth of the members of G guarantees the
truth of F in virtue of the meanings of the terms in those sentences.

Thesis (S) rules out our theological example. I presume that even the most religious 
linguist or philosopher of language does not take it to be part of the meaning of the 
word ‘human’ that humans have immortal souls. One can perfectly grasp the relevant
meaning and not know the relevant theology. So according to (S), ‘Caius has an immor-
tal soul’ does not follow from ‘Caius is human.’ We are, however, still left with our other
two examples. According to (S), ‘Al is taller than Bill’ does indeed follow from ‘Bill is
shorter than Al,’ since the meanings of ‘taller’ and ‘shorter’ indicate that these rela-
tions are converses to each other. Similarly, meaning alone determines that ‘Hilary is
wealthier than Barbara’ and ‘Barbara is wealthier than Nancy’ together guarantee that
‘Hilary is wealthier than Nancy.’ The meaning of ‘wealthier’ indicates that it is a tran-
sitive relation.

The thesis (S) captures what is sometimes called ‘analytic consequence,’ which is
often distinguished from logical consequence, due to examples like those considered
here. We now turn to a refinement of the semantic idea.

3 Form

As noted above, there is a longstanding view that logical consequence is a matter of
form. As far as I know, Aristotle does not explicitly endorse this, but his work in logic is
surely consonant with it. He sometimes presents ‘deductions’ by just giving the forms
of the propositions in them. Moreover, to show that a given conclusion does not follow
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from a given pair of premises, Aristotle typically gives an argument in the same form
with true premises and false conclusion. It is most straightforward to interpret these
passages as presupposing that if an argument is valid, then every argument in the same
form is valid.

Consider a paradigm case of a valid argument:

All men are mortal; Socrates is a man; therefore, Socrates is mortal.

The validity of this argument does not turn on anything special about mortality and
Socrates. Any argument in the form

All A are B; s is an A; therefore s is a B

is valid. That is, if one fills in the schematic letters A, B with any predicates or common
nouns and s with any name or definite description, the result is a valid argument.

We might say similar things about the examples we used to illustrate the theses (M),
(PW), and (S). Consider the following ‘forms’:

s is human; therefore s has an immortal soul
s is shorter than t; therefore t is taller than s
s is wealthier then t; t is wealthier than u; therefore s is wealthier than u

An argument in one of these forms has the same status, vis-à-vis (M), (PW), or (S), as
the argument it was taken from. So one might think of these arguments as valid in
virtue of form.

Nevertheless, the prevailing view is that the examples illustrating the above theses
do not have a valid form. Although the one about shortness and tallness, for example,
does not turn on anything special about the denotations of ‘Bill’ and ‘Al,’ it does turn
on specific facts about (the meaning of) ‘shorter’ and ‘taller.’ On the prevailing view, the
requisite logical forms of the above arguments are

s is A; therefore s is B
s is S than t; therefore t is T than s
s is S than t; t is S than u; therefore s is S than u

It is, of course, straightforward to find arguments in each of these forms that have true
premises and false conclusion. So the original arguments are not valid in virtue of these
forms.

At this point, a stubborn opponent might complain that even though the paradigm
argument does not turn on anything special about Socrates, humanity, or mortality, it
does turn on the specific meaning of ‘all,’ ‘are,’ and ‘is.’ We can give the following ‘form’
to our paradigm valid argument:

P A is B; s is A; therefore, S is B,

and then give a counter-argument in that same ‘form’:
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Some men are British; Clinton is a man; therefore Clinton is British

This has true premises and a false conclusion. So even the paradigm argument is not
valid in virtue of the last-displayed ‘form.’

The standard response would be to claim that the last-displayed ‘form’ is not a logical
form of the paradigm argument. How, then, are we to characterize logical form? One
might say that a form is logical if the only terms it contains (besides the schematic letters)
are logical terms. Typically, these consist of truth-functional connectives (‘not,’ ‘and,’ ‘or,’
‘if . . . then’), quantifiers (‘some,’ ‘all’), variables, and perhaps the sign for identity.

We now face the task of characterizing the logical terms. How do we go about des-
ignating a term as logical? The logician, or philosopher of logic, has three options. One
is to attempt a principled definition of ‘logical term,’ perhaps by focusing on some of
the traditional goals and purposes of logic (see, for example, Peacocke 1976; Hacking
1979; McCarthy 1981; Tarski 1986; Sher 1991). The proposals and theories cover a
wide range of criteria and desiderata, such as a priori knowledge, analyticity, formal-
ity, justification, and topic-neutrality. It would take us too far afield to examine the pro-
posals here. A second tactic, implicitly followed in most logic textbooks, is to merely
provide a list of the logical terms, and to leave our task with this act of fiat. This is
perhaps a safe route, since it avoids some sticky philosophical questions, but it might
leave the readers wondering what is going on, and of course it provides no insight into
the choice of logical terms. A third option (following Bolzano) is to make the notions of
logical form and logical consequence relative. That is, one defines an argument to have
a certain logical form relative to a given choice of logical terms. The same argument
might be valid relative to one set of logical terms and invalid relative to another.

Some medieval logicians combined the notion of form with the modal conception of
consequence. They defined a conclusion to be a formal consequence of some premises if
(1) the argument is a consequence in the sense much like our (M) above, and (2) the
result of any uniform substitution of the terms results in an argument that is also a
consequence in that sense. In other words, suppose that F is a formal consequence of
G. Then if G¢, F¢ are the result of a uniform substitution of the terms, then it is not pos-
sible for the members of G¢ to be true and F¢ false.

Our next notion of consequence combines the notion of logical form with a seman-
tic conception like (S) above:

(FS) F is a logical consequence of G if the truth of the members of G guarantees
the truth of F in virtue of the meanings of the logical terminology.

Another popular option is to avoid explicit mention of semantic notions like meaning
altogether:

(Sub) F is a logical consequence of G if there is no uniform substitution of the non-
logical terminology that renders every member of G true and F false.

According to (Sub), logical consequence is defined solely in terms of logical form, sub-
stitution, and ordinary truth and falsehood. Prima facie, no metaphysically troublesome
modal or semantic notions are involved.
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4 Epistemic Matters

We still have not directly addressed the role of logical consequence in organizing and
extending knowledge. As noted above, a common slogan is that logic is the study of
correct reasoning. In particular, we reason from premises to conclusion via valid argu-
ments. If we believe the premises, we must believe the conclusion, on pain of contra-
diction – whatever that means.

Let us propose another definition of consequence:

(R) F is a logical consequence of G if it is irrational to maintain that every member
of G is true and that F is false. The premises G alone justify the conclusion F.

A theologian might admit that it is not irrational to hold that Caius is a human being
without an immortal soul. The theologian should concede that someone can know that
Caius is a human without knowing that he has an immortal soul. Some poor folks are
ignorant of the relevant theology. So prima facie, the conception of consequence under-
lying (R) differs from the one underlying (M) above. On the other hand, there does seem
to be something irrational in maintaining that Bill is shorter than Al while denying that
Al is taller than Bill – unless of course one does not know the meaning of ‘shorter’ or
‘taller.’ But perhaps one can also rationally deny that Socrates is mortal while affirm-
ing that all men are mortal and Socrates is a man – if one pleads ignorance of the
meaning of ‘all.’

What is the penalty for being irrational? What exactly is the ‘pain’ of contradiction?
The idea is that one who affirms the premises and denies the conclusion of a valid argu-
ment has thereby said things which cannot all be true. This broaches modal notions, as
in (M) and (PW) from Section 1 above, but the pain of contradiction goes further than
this. The charge is that our subject could have known better, and indeed should have
known better. In this sense, logical consequence is a normative notion.

The most common way to articulate the modality and normativity here is in terms
of deduction. If F is a consequence of G in this sense, then there should be a process of
inference taking one from members of G to F. One purpose of such a deduction is to
provide a convincing, final case that someone who accepts the members of G is thereby
committed to F. So we have:

(Ded) F is a logical consequence of G if there is a deduction of F from G by a chain
of legitimate, gap-free (self-evident) rules of inference.

Arguably, this notion also has its pedigree with Aristotle. He presents a class of syllo-
gisms as ‘perfectly’ valid, and shows how to reduce other syllogisms to the perfectly
valid ones by inference (see Corcoran 1974).

5 Recapitulation

I do not claim that the foregoing survey includes every notion of logical consequence
that has been seriously proposed and maintained. For example, there is a tradition,
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going back to antiquity and very much alive today, that maintains that F is not a logical
consequence of G unless G is relevant to F. But to keep the treatment from getting any
more out of hand, we will stick with the above notions. Here they are:

(M) F is a logical consequence of G if it is not possible for the members of G to
be true and F false.

(PW) F is a logical consequence of G if F is true in every possible world in which
every member of G is true.

(S) F is a logical consequence of G if the truth of the members of G guarantees
the truth of F in virtue of the meanings of the terms in those sentences.

(FS) F is a logical consequence of G if the truth of the members of G guarantees
the truth of F in virtue of the meanings of the logical terminology.

(Sub) F is a logical consequence of G if there is no uniform substitution of the 
non-logical terminology that renders every member of G true and F
false.

(R) F is a logical consequence of G if it is irrational to maintain that every
member of G is true and that F is false. The premises G alone justify the con-
clusion F.

(Ded) F is a logical consequence of G if there is a deduction of F from G by a chain
of legitimate, gap-free (self-evident) rules of inference.

Our next question concerns what to make of all these notions. They do not seem to be
pointing in the same direction. Nevertheless, one might hold that there is but a single
underlying notion of logical consequence. On this view, if there is a divergence between
two of the above notions, then we must conclude that (at least) one of them is incor-
rect. It fails to capture the true notion of logical consequence. On the other hand, the
logician might be more eclectic, proposing that there are different notions of conse-
quence, some of which are captured by the above notions. In this case, of course, the
various notions are not necessarily rivals, even if they differ from each other.

In any case, there are connections between the above notions. Trivially, if an argu-
ment is valid in the sense (FS) then it is valid in the sense (S). If the premises guaran-
tee the conclusion in virtue of the meaning of the logical terminology, then the
premises guarantee the conclusion in virtue of meaning. As we have seen, the converse
of this fails in cases where premises guarantee a conclusion in virtue of the meanings
of the non-logical terminology. If an argument is valid in the semantic sense (S) then
presumably it is valid in the modal sense (M) (and perhaps (PW)). That is, if the meaning
of the terms guarantees that the premises cannot all be true and the conclusion false,
then surely it is not possible for the premises to be true and the conclusion to be false.
The converse, from (M) to (S), depends on whether there are necessary truths that do
not turn on the meanings of terms. Our foregoing theologian thinks that there are such
truths (e.g. about immortal souls).

The relationship between (Sub) and (S) turns on the boundary between logical and
non-logical terms and the expressive resources available in the base language. For
example, suppose that we are dealing with a ‘language’ in which the only predicates
are ‘was US President sometime before January 1, 2000’ and ‘is male,’ and the only
singular terms are ‘Bill Clinton’ and ‘Hilary Clinton.’ Then the argument:

NECESSITY, MEANING, AND RATIONALITY

233



Bill Clinton is (or was) US President; therefore Bill Clinton is male

comes out valid according to (Sub). Any uniform substitution of the (available) non-
logical terminology that makes the premise true also makes the conclusion true. But,
of course, this argument is not valid on any of the other conceptions. Its coming out
as a (Sub)-consequence turns on the fact that the ‘language’ in question is amazingly
impoverished.

Suppose that we follow standard practice and assume (or stipulate) that the logical
terminology consists of truth-functional connectives, quantifiers, variables, and the
sign for identity. Consider the following argument:

(weird) for every x there is a z such that x π z; therefore for every x and every y there
is a z such that x π z and y π z.

The premise ‘says’ that there are at least two things and the conclusion ‘says’ that there
are at least three things. Both are true. Notice that neither of these propositions con-
tains any non-logical terminology. So there are no substitutions to make, and so the
argument is valid according to (Sub). This is not a comfortable result. Clearly, it is not
part of the meaning of the logical terminology that if there are at least two things then
there are at least three things. So (weird) is not valid according to (S) or (FS). Whether
(weird) is valid according to (M) depends on whether it is necessary that if there are
two things then there are three things. Whether (weird) is valid according to (R)
depends on whether one can rationally maintain that there are two things while
denying that there are three things in the universe. I do not venture an opinion on these
matters of metaphysics and epistemology.

Suppose that an argument is valid according to the modal conception (M), so that it
is not possible for its premises to be true and its conclusion false. Does it follow that it
is irrational to believe the premises and deny the conclusion? Can an argument be valid
in the sense of (M) even if no one knows, or can know, that the argument is valid?
Conversely, suppose that it is irrational to believe some premises and still deny a con-
clusion. Does it follow that it is impossible for the premises to be true and the conclusion
false? The philosophical literature reveals no consensus on these matters, and I propose
to stay out of the debates here.

Suppose that an argument ·G,FÒ is valid in the sense of (S) (or (FS)). Then if someone
knows that each member of G is true, then she can determine that F is true just by
reflecting on the meanings of the words. In other words, anyone who knows the lan-
guage and also knows every member of G thereby has the wherewithal to know that
F is true. To adapt Aristotle’s phrase, nothing ‘from outside’ the premises is needed to
determine the truth of the conclusion. Presumably, the meaning of the premises is not
outside of them. Thus, it is prima facie irrational to believe that the premises are true
and the conclusion false. So the argument is valid according to (R). Turning to the con-
verse, suppose that it is irrational to believe some premises while denying a conclusion.
Does it follow that the premises guarantee the conclusion in virtue of meaning? Once
again, it depends on the nature of the underlying notions. Are there any beliefs whose
irrationality does not turn on meaning?
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In addition to the nature of rationality, any connections between (Sub) and (R) turn
on issues concerning the logical/non-logical boundary and the expressive resources of
the language. I leave this as an exercise.

Turning to the deductive notion (Ded), we encounter the notion of a legitimate, gap-
free, self-evident rule. Another slogan of logic is that rules of inference are truth-
preserving. This seems to entail that if a legitimate, gap-free (self-evident) rule of
inference takes one from some premises to a conclusion then it not possible for the
premises to be true and the conclusion false. Thus, if an argument is valid in the sense
of (Ded) then it is valid in the sense (M).

In articulating (Ded), we can maintain the theses that consequence turns on
meaning (S) and that consequence is a matter of form (FS) by insisting that the only
legitimate, gap-free rules of inference are those that flow from the meaning of the
logical terminology (see Hacking 1979; Tennant 1987).

So it is plausible that if an argument is valid in the sense (Ded) then it is valid in the
senses (M), (PW), (S), and (FS). W. V. O. Quine argues that if the logical/non-logical
boundary is chosen judiciously and the language has sufficient expressive resources (as
above), then an argument is valid in the sense (Ded) only if it is valid in the sense (Sub).

The converses of these implications are more problematic. Are there necessary
truths that are not knowable via a derivation using only legitimate, gap-free self-evident
rules? If so, then there are arguments that are valid in the sense (M) (and (PW)) but
invalid in the sense (Ded).

What if the necessity in question turns on meaning alone (as in (S)), or what if the
necessity turns on the meaning of the logical terminology? In that case, can we con-
clude that there is a chain of legitimate, gap-free, self-evident rules that go from
premises to conclusion? This depends on whether all truths concerning meaning can
be negotiated via the requisite type of derivation. I reiterate the emerging policy of not
taking sides on debates like this.

The notions (Ded) and (FS) are equivalent (at least in extension) if the meaning of
every logical term is exhausted by legitimate, gap-free (self-evident) rules of inference
involving the term. This is also a matter of controversy. Some philosophers claim that
a term is logical only if its meaning is determined completely by matching introduction
and elimination rules (Hacking 1979; Tennant 1987). This view rules out the sort of
non-effective consequence relation advocated by other philosophers and logicians (see
Shapiro 1991: chapter 2).

6 Mathematical Notions

The foregoing notions, from (M) to (Ded), are intuitive conceptions of logical conse-
quence, dealing with either sentences in natural languages or propositions expressed by
such sentences. Most textbooks in logic give scant treatment to these intuitive notions,
and quickly move to developing a formal language, which is a rigorously defined set of
strings on a fixed alphabet. The books then focus exclusively on this ‘language,’ and at
least seem to leave the intuitive notions behind. The resulting mathematics is, of course,
interesting and important, but we can query its philosophical ramifications.
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Typically, parts of a formal language correspond, roughly, to certain parts of a
natural language. Characters like ‘&,’ ‘⁄,’ ‘Æ,’ ‘ÿ,’ ‘",’ and ‘$’ approximately corre-
spond to the English expressions ‘and,’ ‘or’, ‘if . . . then,’ ‘it is not the case that,’ ‘for
every,’ and “there is,” respectively. As above, these are logical terms. Some formal lan-
guages include specific non-logical terms, such as the sign for the less-than relation over
the natural numbers, but it is more common to include a stock of schematic letters
which stand for arbitrary, but unnamed, non-logical names, predicates, and functions.
So one can think of a formula of a formal language as corresponding to a logical form
in a natural language (or in the realm of propositions). The correspondence thus
engages the slogan that logic is a matter of form (as in (FS)).

Let g be a set of formulas and f a single formula of a formal language. A typical logic
text formulates two rigorous notions of consequence, two senses in which f follows
from g. For one of the notions of consequence, the author presents a deductive system
S, which might consist of a list of axioms and rules of inference. An argument ·g,fÒ in
the formal language is deductively valid (via S) if there is a sequence of formulas in the
formal language ending with f, such that each member of the sequence is either a
member of g, an axiom of S, or follows from previous formulas in the sequence by one
of the rules of inference of S. If ·g,fÒ is deductively valid via S, we write g �S f, or simply
g � f if it is safe to suppress mention of the deductive system.

The other rigorous notion of consequence invokes a realm of models or interpreta-
tions of the formal language. Typically, a model is a structure M = ·d,IÒ, where d is a set,
the domain of M, and I is a function that assigns extensions to the non-logical termi-
nology. For example, if c is a constant, then Ic is a member of the domain d, and if R is
a binary predicate, then IR is a set of ordered pairs on d. Then one defines a relation of
satisfaction between interpretations M and formulas f. To say that M satisfies f, written
M |= f, is to say that f is true under the interpretation M.

Finally, one defines f to be a model-theoretic consequence of g if every interpretation
that satisfies every member of g also satisfies f. In other words, f is a model-theoretic
consequence of g if there is no interpretation that satisfies every member of g and fails
to satisfy f. In this case, we write that the argument ·g,fÒ is model-theoretically valid,
or g |= f.

Model-theoretic consequence and deductive validity (via S) are both sharply defined
notions on the formal language. So relations between them are mathematical matters.
The system is sound if every deductively valid argument is also model-theoretically
valid, and the system is complete if every model-theoretically valid argument is also
deductively valid.

Typically, soundness is easily established, by checking each axiom and rule of infer-
ence. Completeness is a usually a deep and interesting mathematical result. Virtually
every system presented in a logic text is sound. Gödel’s (1930) completeness theorem
entails that first-order logic (with or without identity) is complete. Second-order logic
is not complete (see Shapiro 1991: chapter 4).

To begin an assessment of the philosophical import of the technical work, one must
explore the relation between the rigorous notions (of deductive and model-theoretic
consequence) and the intuitive notions broached above ((M) to (Ded)). Probably the
closest conceptual connection is that between the deductive notion of consequence
(Ded) and deductive validity via a standard deductive system. In so-called “natural
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deduction” systems each rule of inference corresponds to a legitimate, gap-free (self-
evident) inference in ordinary reasoning. So if an argument ·g,fÒ in the formal lan-
guage is valid via such a system, and if a propositional or natural language argument
·G,FÒ corresponds to ·g,fÒ, then F is a consequence of G in the sense (Ded). Although
it is not quite as straightforward, something similar holds for other deductive systems.
One typically indicates how each rule of inference corresponds to a chain of legitimate,
gap-free inferences concerning ordinary reasoning, and that each axiom can be estab-
lished by such rules.

Let S be a fixed, standard deductive system. One would like to establish a converse to
the above conditional linking (Ded) to deductive validity via S. Call the following bicon-
ditional Hilbert’s thesis:

There is a deduction of a proposition (or natural language sentence) F from a set G
of propositions (or natural language sentences) by a chain of legitimate, gap-free,
self-evident rules of inference if and only if there is a corresponding argument ·g,fÒ
in the formal language such that ·g,fÒ is deductively valid via S.

Perhaps one might restrict Hilbert’s thesis to cases where the ‘chain of gap-free, self-
evident rules of inference’ flow from the meaning of terminology that corresponds to
the logical terminology of the formal language. This would focus attention on argu-
ments that are valid in virtue of their logical form.

The philosophical interest of formal deductive systems depends on something like
Hilbert’s thesis. If there is no interesting connection between (Ded) (or (R)) and formal
deductive validity, then the technical work is a mere academic exercise. Hilbert’s thesis
is the same kind of thing as Church’s thesis, in that it identifies an intuitive, pre-
theoretic notion with a precisely defined mathematical one. The exact nature of the
identification depends on the relationship between formulas in the formal language and
propositions or natural language sentences (or whatever it is that (Ded) applies to). At
the very least, deductive validity via S is meant as a good mathematical model of (Ded).

Let us turn to model-theoretic consequence. The technical notion of satisfaction is
a relation of truth-under-an-interpretation. Roughly, the relation M |= f says that if the
domain of M were the whole universe and if the non-logical terms are understood
according to M, then f is true. So model-theoretic consequence recapitulates the slogan
that logical consequence is truth-preserving.

One might think of an interpretation as a possible world, which would link model-
theoretic consequence to the modal notion (PW) and thus to (M). However, the com-
plete freedom one has to ‘interpret’ the non-logical terminology (in the realm of
model-theoretic interpretations) does not sit well with the modal notions. Consider one
of our standby arguments: ‘Hilary is wealthier than Barbara; Barbara is wealthier than
Nancy; therefore Hilary is wealthier than Nancy.’ A straightforward formalization
would be Whb; Wbn; therefore Whn. To see that this formal argument is not model-
theoretically valid, consider an interpretation whose domain is the natural numbers,
and where W is ‘within 3’ (so that IW is {·x,yÒ : |x - y| ≥ 3}); Ih is 0; Ib is 2; and In is 4.
This interpretation satisfies (i.e. makes true) the premises but not the conclusion.
However, this interpretation has nothing to do with the modal status of the original
argument about the relative wealth. It does not represent a genuine possibility con-
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cerning the relative wealth of those women. In terms of (PW), the given interpretation
does not correspond to a genuine possible world.

For much the same reason, model-theoretic consequence systematically diverges
from the semantic notion (S), according to which F is a logical consequence of G if the
truth of the members of G guarantees the truth of F in virtue of the meanings of the
terms in those sentences. Again, it is part of the meaning of ‘wealthier’ that the rela-
tion is transitive. This feature of the meaning is lost in the given interpretation of the
formal argument over the natural numbers.

Model-theoretic consequence does better with (FS): F is a logical consequence of G
if the truth of the members of G guarantees the truth of F in virtue of the meanings
of the logical terminology. Within the framework, the extension of the nonlogical ter-
minology varies from interpretation to interpretation. So one can claim that the model-
theoretic validity of a given formal argument ·g,fÒ is independent of the meaning of
the nonlogical terminology. So, to the extent that model-theoretic validity depends on
meaning, it depends only on the ‘meaning’ of the logical terminology in the formulas.

But does model-theoretic consequence depend only on meaning (as required for
(FS))? Recall that the different interpretations have different domains. This feature of
model-theoretic semantics does not seem to correspond to anything in (FS). Why should
we vary the domain, in order to determine what follows from what in virtue of the
meaning of the logical terminology? What do the varying domains have to do with
meaning at all? One might show that the variation in the domains keeps arbitrary and
nonlogical features of the universe (such as its size) from affecting logical consequence,
ruling out arguments like the above (weird). But we need an argument to establish a
direct link between the semantic notion of meaning and the variation of domains from
interpretation to interpretation.

The fact that each interpretation has a domain, and that different interpretations
can have different domains, does fit in nicely with the modal notion (M). The domain
corresponds to what the totality of the universe might be. If we think of an interpre-
tation as a possible world (perhaps invoking the notion (PW)), then the domain would
be the universe of that world.

So perhaps model-theoretic consequence corresponds to a blending of a modal
notion like (M) or (PW) with the notion (FS) that revolves around logical form. We say
that F is a logical consequence of G in this blended sense if it is not possible for every
member of G to be true and F false, and this impossibility holds in virtue of the meaning
of the logical terms. In the terminology of possible worlds, F is a logical consequence
of G in this blended sense if F is true in every possible world under every reinterpreta-
tion of the non-logical terminology in which every member of G is true.

In sum, perhaps we have several intuitive notions of consequence corresponding, at
least roughly, to the formal notions of deducibility in a deductive system and model-
theoretic validity. From the soundness and completeness of first-order logic (with or
without identity), we have the two rigorous notions corresponding to each other exactly.
To stretch things a bit, the situation is analogous to that of Church’s thesis, where it was
shown that a number of different mathematical notions (recursiveness, l-definability,
Turing computability, Markov computability, etc.) each corresponding to a different 
pre-theoretic idea of computability, are all coextensive with each other. In the case of
Church’s thesis, this is sometimes taken to be evidence that all of the notions are correct

STEWART SHAPIRO

238



– that they do accurately capture the underlying notion of computability. Given the wide
range of notions of consequence noted above (not to mention those not noted above),
and the tenuous connections between them, we should not make too strong a conclu-
sion here in light of completeness. Perhaps we can tentatively suggest that validity in a
standard deductive system and model-theoretic validity correspond to something like a
natural kind. The exact nature of this natural kind, and its relationship to notions like
necessity, possibility, meaning, form, deduction, and rationality requires further study.
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Varieties of Consequence

B . G . S U N D H O L M

I

Contemporary – metamathematical – logic operates with two kinds of consequence. In
both cases the consequence in question is a relation among (sets) of well-formed for-
mulae (wffs) in a certain formal language L. In order to keep my exposition maximally
simple I shall first consider a language for the propositional calculus, using only the
connectives … (‘implication’) and ^ (‘absurdity’) as primitive, and with

p0, p1, p2, . . . , pk, . . . ,

as propositional letters.
The (well-formed formulae of the) formal language L are given by a standard induc-

tive definition:

(0) ^ is an (atomic) wff in L.
(1) pk is an (atomic) wff in L, for every k Œ N.
(2) When A and B are wffs L, then so is (A … B).
(3) There are no other wffs in L than those one obtains through finitely repeated

applications of (0)–(2).

The clauses (0) and (1) are the basic clauses for the inductive definition, whereas the
clause (2) constitutes the inductive clause. Jointly they tell us what to put into the induc-
tively defined class. The clause (3), finally, is the extremal clause, that tells us what to
exclude from the class in question. (In languages with such a sparse collection of prim-
itive notions, the other standard connectives are defined in the usual way from … and
ÿ (‘negation’), where the stipulatory definition

ÿA =def (A … ^)

takes care of the negation.)
Both kinds of consequence are inductively defined with respect to the build-up of the

well-formed formulae of the language in question. The first notion, which is the later



one from a chronological point of view, is semantical in that it makes use of interpreta-
tions, or models, for the formal language L.

We consider the two Boolean truth-values T(rue) and F(alse). A valuation v is a func-
tion from N to {T, F}. This valuation v is then extended to a valuation v* for all of L
via the following inductive definition:

(0) v*(^) = F, that is, from a contentual point of view, absurdity is false (under any
valuation);

(1) v*(pk) = v(pk) (which value Œ{T, F});
(2) v*(A … B) = T when v*(A) = T implies that v*(B) = T, and = F otherwise.

A valuation v such v*(j) = T is a model of the wff j. When S is a set of wffs in L, we
extend v* also to the set S

v*(S) = T when V* (y) = T, for all wffs y Œ S.

Finally we are ready to define the notion of (logical) consequence

the consequent j is a (logical) consequence of the set of antecedents S (in symbols S
|= j),
iff v*(j) = T for any valuation v* such that v*(S) = T.

We write

y|= j

for ‘{y}|= j.’ (The sign ‘=’ is known as a turnstile.)
Accordingly, j is a (logical) consequence of y when every model of a model of y is

also a model of j.
On this construal, then, (logical) consequence is a universal notion, defined by

means of universal quantification over functions (or sets), since one considers all
models satisfying a certain condition. (Thus, consequence is refuted by a counter-
model, that is, a valuation that makes the antecedent true and the consequent false.)
This universality of consequence is a typical feature which is retained also for more
complex languages: for instance the above pattern is kept also for the predicate calcu-
lus, albeit that the notion of valuation is considerably more intricate in that case.

II

The other notion of consequence for the language L is syntactical, rather than seman-
tical, in character. It is defined, not in terms of truth under all valuations, but in terms
of the existence of a ‘derivation’ from certain ‘axioms.’

Any wff of L that is an instance of one of the following schemata is an axiom:

(0) (A … (B … A));
(1) ((A … (B … C)) … ((A … B) … (A … C)));
(2) (((A … ^) … ^) … A);
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The theorems (‘derivable’ formulae) are then defined via (yet again!) an inductive 
definition:

(0) Any axiom is derivable (is a theorem).
(1) If (j … y) and j are derivable (theorems), then so is y.
(2) There are no other theorems than those obtained from repeated applications

of (0) and (1).

When the wff j is derivable we use a single turnstile, rather than the double semanti-
cal turnstile ‘|=’, and write ‘|-j.’

By the above definition every theorem is a theorem in virtue of a derivation. Such
derivations are in tree form and have axioms at their topmost leaves: there is no other
way to commence a derivation save by an axiom. Deeper down the tree is regulated by
the rule of modus ponens:

Properties of all theorems can then be established by ‘induction over the (length of the)
derivation.’

In order to obtain the syntactic notion of consequence we must extend the notion
of derivability to ‘derivability from assumptions in the set S.’ We proceed (yet again) via
an inductive definition:

(0) j is derivable from assumptions S whenever j is an axiom;
(1) j is derivable from assumptions in S whenever j Œ S;
(2) If (j … y) and j are derivable from assumptions in S, then so is y.
(3) No wff is derivable from assumptions in S save by a finite number of applica-

tions of (0)–(1).

The syntactic turnstile is then extended to cover also derivability from assumptions: we
write ‘S|-j’ when j is derivable from assumptions in S. Also theorems from assump-
tions in S have derivations (from assumptions in S); such derivations from assumptions
in S allow as top-formulae, not only axioms, but also wffs from the set S. We then see
that derivability from assumptions, that is syntactic consequence, does not share the
universal form of semantic consequence. On the contrary, syntactic consequence holds
in virtue of the existence of a suitable derivation. This generation of the syntactic notion
of consequence via axioms, rules of inference, and added assumptions is not the only
way of proceeding. In the early 1930s, Gentzen and Jaskowski took derivability from
assumptions as the basic notion in their systems of natural deduction, using no axioms,
but inference rules only, where outright derivability can be defined as derivability from
no assumptions.

III

The soundness and completeness theorems for a formal system relate the semantic and
syntactic notions of consequence. Soundness states that every syntactic consequence

| |
|

- … -
-

A B A
B.
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is also a semantic consequence, while the opposite direction is taken care of by com-
pleteness.

The above pattern of semantic and syntactic consequence relations is omnipresent
in current metalogic. Predicate logic, second- and higher-order systems, extensions to
infinitary languages, modal logics; all and sundry confirm to the basic pattern. In the
early days of mathematical logic the syntactic consequence-relation was the primary
one. A formal system was given showing how its theorems were generated from axioms
via rules of inference. However, as more experience was gained of matters semantical,
through the work of Alfred Tarski and his pupils, notably Dana Scott, the semantical
perspective gained prominence. Today it is fair to say that the semantical way of pro-
ceeding is the more fundamental one, partly also because some logics (systems), such
as full second-order logic or the logic of the so-called Henkin-quantifier, do not allow
for complete axiomatization.

The extension of the above (excessively simple) notion of valuation to the lan-
guage of first order logic proved non-trivial. In the case of a first-order language L, 
containing only the two-place predicate symbol R, the individual constant c, and 
for simplicity, no further function symbols, we interpret with respect to a relational
structure

A = ·A, RA, cAÒ,

where the set A π Ø. The problem here is that, in general, the domain of discourse, that
is, the set A, contains more elements than can be named by constants of L. This problem
– technical, rather than conceptual – was solved by Tarski using assignments. An assign-
ment is a function s Œ N Æ A, and the terms of the language L are evaluated relative
to this assignment:

(0) s*(c) = cA;
(1) s*(xk) = s(k).

The formulae are then evaluated in the obvious way mimicking the inductive steps for
the propositional calculus in the definition of the three-place metamathematical rela-
tion A|=s j – ‘the assignment s satisfies the wff j in the structure A’: 

(0) A|=s R(t1, t2) iff < s*(t1), s*(t2) > Œ RA;
(1) not: A |=s ^:
(2) A|=s (j … y) iff A|=s j implies A|=s y
(3) A|=s ("xkj) iff for all a Œ A, A|=s[a/k] j,

where the function s[a/k] Œ N Æ A is defined by

s[a/k] (m) =def s(m) if m π k;
=def a if m = k.

One should here note that traditionally, and unfortunately, the double turnstile is used
for two different notions, namely
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satisfaction – a three-place relation between a structure A, a wff j and an assign-
ment s,

and

(logical) consequence – a two-place relations between (sets of) wffs.

The above definitions, with the relativization to varying domains of discourse, are
essentially due to Tarski, and were, perhaps, first published in final form only as late as
1957. (Tarski’s earlier (1936) work on the definition of logical consequence had left
this relativization out of account.) Once this definition of satisfaction is given, the def-
inition of logical consequence also for this extended language of first-order predicate
logic is readily forthcoming, namely as the preservation of satisfaction by the same
assignment from antecedents to consequent.

IV

The above orgy of inductive definitions, which commenced in his famous work on the
definition of truth, was not Tarski’s only contribution to the theory of consequence
(-relations). Already in 1930 he considered an abstract theory of consequence that was
obtained by generalization from the syntactic consequence relation above. We consider
a set S of ‘sentences’ and a consequence operator Cn defined on sets of sentences. Tarski
then uses axioms such as:

(0) S π Ø and card(S) £ N0;
(1) If X Õ S, X Õ Cn(X) Õ S;
(2) If X Õ S, Cn(Cn(X)) = Cn(X);
(3) If X Õ S, Cn(X) = » {Cn(Y): Y Õ X and card(Y) < N0};
(4) For some x Œ S, Cn({x}) = S.

These axioms are clearly satisfied by the above notion of syntactic consequence: axiom
(2) says that using derivable consequences as extra assumptions does not add anything,
and axiom (3) expresses that a derivation makes use only of finitely many assumptions,
while the absurdity ^ serves as the omniconsequential sentence demanded by axiom
(4).

Around the same time, Gerhard Gentzen, building on earlier work by Paul Hertz,
gave a formulation of elementary logic in term of sequents. A sequent is an array of wffs

j1, . . . , jk fi y.

(In some systems Gentzen allows more then one ‘succedent-formula’ after the arrow.)
Then, the derivable objects of his sequent calculi are sequents, rather than wffs.

Derivations begin with axioms of the schematic form

A fi A,
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that is, the wff A is a consequence of, is derivable from, the assumption A. Depending
on which kind of calculus one chooses, the derivation then proceeds by adding complex
formulae using either (left and right) introduction-rules only, in which case we have a
sequent calculus, or introduction- and elimination-rules, which operate solely to the
right of the arrow, in which case we have a sequential formulation of natural deduction.
For instance, in the sequent calculus as well as in the sequential natural deduction cal-
culus, the (right) introduction rule for conjunction & (where the language has been
extended in the usual fashion) takes the form

where G and S are lists (or sets, or ‘multisets’) of wffs, depending on what representa-
tion has been chosen for sequents. The left introduction rule has the form

and is justified by (and describes) the natural deduction elimination-rules

If C can be obtained from assumptions A, B, then C can be obtained from an assump-
tion A&B, since, by the elimination rules, from A&B one gets both A and B.

V

The above pattern with two metamathematical consequence relations, one syntactic
and one semantic, is present throughout the whole gamut of (metamathematical) logic;
it has been carried out for classical logic (and its intuitionistic rival). Among so called
‘philosophical logics’ not only familiar modal logic(s) and the logic of counterfactual
conditionals have been so treated, but also more exotic members of the wide logical
family such as doxastic and erotetic logic, relevance logic, paraconsistent logic, and so
on, have been brought within the fold. You name your favorite logical system and the
chance is very high, indeed, that it has a syntax and semantics, with ensuing sound-
ness and completeness theorems. When the entire pattern cannot be upheld, the
semantic definition is generally given pride of place. Soundness of the syntactic conse-
quence relative to the semantic one is a sine qua non, whereas completeness of the syn-
tactic rule-system with respect to the semantic consequence is a strong desideratum,
naturally enough, but cannot always be guaranteed. As already noted, full second order
logic, with quantification over really all subsets of the universe cannot be effectively
axiomatized with decidable axioms and rules of inference. As is well-known (from the
work of Richard Dedekind), using full second-order quantification, it is possible to char-
acterize the natural numbers up to isomorphism. Thus, in view of Tarski’s theorem 
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concerning the arithmetical undefinability of arithmetical truth, theoremhood in
second-order logic cannot be arithmetical, much less recursively enumerable. So, there-
fore, there are no appropriate syntactic characterizations of this prior semantic notion
of second-order logical truth and consequence. This failure – unexpected, unavoidable,
and unwanted – of completeness in full second-order logic holds with respect to a prior
more or less ‘natural’ semantics. Sometimes though, especially in the case of various
(artificial) modal and tense logics, the opposite direction poses the challenging task of
actually designing syntactic rule-systems that (provably) have no complete semantics
of a given kind. Such constructions, though, are of limited philosophical interest in
themselves. To my mind, they can be compared to the construction of pathological
counter-examples in real analysis, for example of a non-differentiable contiunuous
function: that there is such a function is interesting, but the function itself is not very
interesting.

VI

The wffs are considered solely as metamathematical objects and also their ‘interpreta-
tion’ was metamathematical rather than semantic, that is, no proper meaning has been
assigned to the formulae. When considering natural-language interpretations of the
formal calculi, I shall use the following terminology. An assertion is commonly made
through the utterance of a declarative that expresses a statement. (This is not to say
that every utterance of a declarative is an assertion; it is, however, a convention con-
cerning the use of language that an utterance of a declarative, in the absence of appro-
priate counter-indications, is held to be an assertion.) The content of the statement
expressed by a declarative is a proposition. Propositions can be indicated by means of
nominalized declaratives, that is, by that clauses. Thus, for instance,

that snow is white,

is a proposition. However, one cannot make an assertion by means of a proposition
only; for this we need to add

. . . is true,

to the that-clause, in order to get a statement in declarative form, by means of which
an assertion can be effected. Thus

that snow is white is true

is the explicit form of the statement expressed by the declarative

snow is white.

The content of the statement in question is the proposition that snow is white. Thus
the declarative snow is white expresses the statement

VARIETIES OF CONSEQUENCE

247



that snow is white is true

which has the proposition that snow is white as its content.
When the wffs are interpreted as propositions, they may be thought of as that-

clauses, that is, nominalizations of declarative natural language sentences, such as

that snow is white and that grass is green,

an implication wff (j … y) is interpreted as, for instance, the proposition

that that snow is white implies that grass is green,

which is the same proposition as

the implication of that snow is white and that grass is green.

The sequent

j fi y,

on the other hand, is then interpreted as the consequence-statement

that grass is green is true under the assumption (on condition, provided) that that snow
is white is true.

However, the statement

that snow is white is true

is the same as the statement

snow is white,

that is, the same assertion would be effected by uttering either.
Accordingly, the above consequence-statement is the same statement as

grass is green under the assumption (on condition, provided) that snow is white,

or, indeed, in conditional form,

if snow is white, then grass is green.

(Thus, I take it, these example show that ‘implication’ is different from the conditional
‘if . . . , then ____’; an implication takes propositions (that is, what that-clauses stand
for) and yields a statement, whereas the conditional takes statements and yields a state-
ment. Finally, in order to saturate the expression ‘the implication of . . . and ____,’ 
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two that-clauses are needed, and we then get a term that stands for an implicational
proposition.)

VII

Both approaches to consequence – semantic and syntactic – have counterparts in a
long-standing logical tradition. In order to understand this it is necessary to memorize
one of the decisive steps in the development of logic that was taken by Bolzano in his
monumental Wissenschaftslehre, Theory of Science, from 1837. There he discarded the
traditional, two-term form of judgement [S is P] and replaced it with the unary form

the proposition A is true.

Bolzano’s propositions are Sätze an sich and serve as contents of judgments. Frege,
indeed, used “judgable content” for the very same notion. They are independent of any
Setzung whether by mind or language and do not belong in the physical or mental
realm, but belong to a platonic third realm, having no spatial, temporal, or causal fea-
tures. Thus they exhibit the same pattern as Frege’s Gedanken (“Thoughts”), that is, the
judgable contents in a later guise. Bertrand Russell, in what is surely the worst mis-
translation in the history of logic, rendered Frege’s “Gedanke” as “proposition” in The
Principles of Mathematics, and he and G. E. Moore, who had inspired Russell’s use, bear
the responsibility for the resulting confusion. Throughout the earlier logical tradition
the term proposition was invariably used for speaking about judgments and not about
their contents. This (unacknowledged and maybe even unwitting) change in the use of
the term has had dire consequences for our understanding of the theory of inference.

In the late middle ages (±1300) a novel genre was added to the logical repertoire.
Around that time tracts “on consequences” (De Consequentiis) begin to appear, in which
the theory of inference was treated differently from what had been common up till then.
The old theories had been squarely syllogistic in nature, studying (what amounts essen-
tially to) Aristotelian term-logic, whereas now one begins to find treatments of a more
propositional kind. Today, introductory courses in logic commonly teach students to
look for ‘inference indicators’ when analyzing informal arguments. Typical such indi-
cator-words are

therefore, thus, whence, hence, because, and, sometimes even, if . . . , then.

The medieval consequentia were at least of four kinds and knew the indicator words:

(i) si (if): If snow is white, then grass is green;
(ii) sequitur (follows from): That grass is green follows from that snow is white;

(iii) igitur (therefore): Snow is white. Therefore: grass is green;
(iv) quia (because): Grass is green.

Note that these words did not serve to indicate different notions: on the contrary, all
four point to one and the same notion. Thus the laws for consequentia should hold under
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all four readings. Today, it must be stressed, it would seem more apposite to distinguish
four different notions, rather than to have the four versions of the medieval notion:

(i¢) Conditional, which forms a statement out of statements;
(ii¢) Consequence, which forms a statement out of (modern) propositions;
(iii¢) Inference, which is a passage from known statement(s) to a statement;
(iv¢) Causal grounding, which is a relation between state of affairs or events.

The medievals applied a single correctness-notion tenere (holds) to consequentia. Each of
the four current notions, however, matches its own correctness-notion. The appropri-
ate notions of correctness are, respectively:

When correct
(i≤) conditionals are true;
(ii≤) consequences hold;
(iii≤) inferences are valid;
(iv≤) causal groundings obtain.

Unless we wish to follow the medieval pattern, we shall have to inquire into the concep-
tual order of priority, if any, among the various kinds of consequentia and their match-
ing correctness notions. It will then also prove convenient to add a fifth notion, namely

(v) Implication, which takes two propositions and yields a proposition, namely:
the implication of that snow is white and that grass is green
[= the proposition that that snow is white implies that grass is green].

Here the appropriate correctness notion is truth (for propositions), naturally enough.

VIII

Aristotle, in the Posterior Analytics, imposed three conditions on the principles that
govern demonstrative science: ultimately, a proof, or demonstration, has to begin with
principles that are (1) general, (2) per se, and (3) universal. The generality in question
means that first principles should be in a completely general form: they speak about all
things of a certain kind. Particular knowledge of particulars does not constitute the right
basis for logic. To some extent the demand for universality is related to this: it comprises
a demand for topic-neutrality. The general principles must be applicable across the board;
not only within geometry or arithmetic or biology, but in any discipline. These demands
for generality and universality on the basic principles of demonstrative science have a
counterpart in one of the ways in which the medieval treated of the validity of inference,
namely the Incompatibility theory. It goes back to Aristotle’s Prior Analytics and was
perhaps first clearly enunciated in the Stoic propositional approach to logic. It was firmly
upheld by Parisian logicians in the early fifteenth century. The general inference I:

J  . . . J
J
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is held to be valid if the truth of the premises J1, . . . , Jk is incompatible with the falsity of
the conclusion J. Thus, by trivial computation in Boolean and modal logic, we get

[A is true. Therefore: B is true] is valid
iff
[A true and B false] are incompatible
iff
ÿ‡[A true and B false]
iff
�ÿ[A true and B false]
iff
� [if A true, then not-(B false)]
iff
� [if A true, then B true].

The question is now how the modal box ‘�’, that is, the necessity in question, should
be interpreted. One natural way of proceeding here is to take necessity in the sense of
‘holds in all alternatives.’ This was done by an influential school of medieval logicians,
who read the universality and topic neutrality as ‘holds in omnis terminis’ and so the
logically valid is that which holds in all terms. The above chain of equivalences the 
continues:

for any variation ¢ with respect to sub-propositional parts
if A¢ true, then B¢ true.

This is how Bernard Bolzano defined his notion of Ableitbarkeit (consequence) in 1837;
note that this is a three-place relation between antecedent(s), consequent(s) and a col-
lection of ideas-in-themselves (that is, the relevant sub-propositional parts, with respect
to which the variation takes place). Logische Ableitbarkeit – logical consequence – then
involves variation of with respect to all non-logical sub-propositional parts. Similarly,
Bolzano held that a Satz an sich, that is, a proposition, was ‘analytic in the logical sense’
if the proposition remained true with respect to arbitrary variation at all nonlogical
sub-propositional parts. One century later, essentially the same characterization of
logical truth was offered by Ajdukiewicz and Quine (for sentences though, rather than
Bolzano’s propositions).

To some extent this notion of truth under variation is captured by the modern
model-theoretic notion. The parallel is not exact, though. In the Bolzano–(Ajdukiewicz–
Quine) conception variation takes place with respect to the proposition (or sentence),
whereas in the semantic, model-theoretic notion what is varied is not the metamathe-
matical counterpart to the proposition (sentence), that is, the well-formed formula. On
the contrary, the variation takes place with respect to the relational structure A. Thus,
if anything, it is the world, rather than the description thereof, that is varied. Thus, the
notion of a tautology, that is, a proposition of logic, from Wittgenstein’s Tractatus is a
better contentual counterpart to the model theoretic notion of logically true wff. A tau-
tology is a proposition which is true, come what may, independently of what is the case
in the world (irrespective of how the world is or of what states of affairs obtain in the
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world), and similarly for the notion of consequence. This onto-logical conception of
logical truth and validity seems to me to capture best the intuitions that are formalized
in the model-theoretic notion of semantic consequence.

IX

Given Bolzano’s form of judgment, the general form of inference I is transformed 
into I¢:

Bolzano reduces the validity of this inference I¢ to the logical holding of the sequent

A1, . . . , Ak fi C.

This, in turn, is equivalent to that

A1& . . . &Ak … C is logically true.

This reduction is exactly parallel to his reduction of the correctness (‘truth’) of the
statement to the propositional truth of the content A. Bolzano here says that the judg-
ment [A is true] is correct (richtig) when the proposition A really is true. Stronger still,
the judgment

[A is true] is (a piece of) knowledge (ist eine Erkenntnis)

when the proposition A is true. This, however, admits of the unpalatable consequence
that blind judgments are knowledge, irrespective of any epistemic grounding. (The apt
term blind judgment was coined by Franz Brentano.) The statement

The Palace of Westminster has 1,203,496 windowpanes

is knowledge if by fluke, but not by telling, I have happened to choose the right number
when constructing the example, that is, if the proposition

that The Palace of Westminster has 1,203,496 windowpanes

is a propositional truth (an sich, as Bolzano would say).
Entirely parallel considerations yield that also blind inference, without epistemic

warrant, is valid under the Bolzano reduction. This, to me, is sufficient to vitiate the
Incompatibility theory with its Bolzano reductions and thus I prefer to search for other
accounts of validity that do not allow for the validity of blind inference. One such is
readily forthcoming in the Containment theory. This also has Aristotelian roots, was
perhaps first adumbrated by Peter Abailard, and was squarely defended by ‘English 

 

A  is true . . . A  is true
C is true.
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logicians’ at Padua in the fifteenth century. Here an inference is valid if the truth of the
conclusion is somehow analytically contained in the truth of premises. The Bolzano-
reduction reduced the correctness of a judgment to the propositional (bivalent) truth
of its content. This, while pleasingly simple, leaves the vital epistemic justification com-
pletely out of the picture and it was left to Franz Brentano to suggest an evidence theory
of correctness (‘truth’) for statements:

a statement is correct if it can be made evident.

Correctness, or truth, at the level of statements (judgments), is accordingly a modal
notion.

Indeed, at this level, the equation

true = evidenceable, knowable, justifiable, warrantable,

holds. It must be stressed here that it is at the level of what is known that correctness
coincides with knowability. A true, or correct, statement is knowable, but one must not
export this to the propositional content of the statement in question. The object of the
act of knowledge is a judgment concerning the truth of a propositional content and it
is the statement which is knowable if correct. The notion of propositional truth,
whether bivalent or not, is not couched in terms of knowability; propositions are not
the objects of (acts of) knowledge.

X

Turning now to the validity of inference, we recall that the premise(s) and conclusion
of the completely general inference-figure, inference I, are statements (judgments).
Accordingly the appropriate notion of truth to be used here is that of knowability, and
the inference I has to preserve knowability from premise(s) to conclusion. Thus, one
has to know the conclusion under the assumption that one knows the premise(s). In
other words, the conclusion must be made evident, given that the premise(s) have been
made evident. This is now where the insights of the containment theory come to aid.
All (true, correct, that is) knowable judgments can be made evident, and for some judg-
ments their evidence(ness) rests ultimately upon that of other evident judgments.
Certain correct judgments, though, are such that their evidenceability rests upon no
other judgments than themselves: these are judgments which are per se nota, or ana-
lytic in the sense of Kant. The can be known ex vi terminorum, in virtue of the concepts
out of which they have been formed. Axioms in the original (Euclidean, but not
Hilbertian, hypothetico-deductive) sense are examples of this: they can be known but
they neither need nor are capable of further demonstration by means of other judg-
ments. In the same way certain inferences are ‘immediately’ evident upon knowledge
of the constituent judgments. Note though that the immediacy is not temporal but con-
ceptual; the inference in question neither can nor needs to be justified in terms of
further inferences. The introduction and elimination rules in the natural-deduction
systems of Gerhard Gentzen are examples of such immediate inferences.
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The validity of an inference is secured by means of the (constructive) existence (=
possibility to find) of a chain of immediately evident inferences linking premise(s) and
conclusion: the transmission of evidence finds place by means of immediate evident
steps that are such that when one knows the premise(s) and understands the conclu-
sion nothing further is needed in order to know the conclusion. The possession of such
a chain guarantees that the conclusion can be made evident under the assumption that
the premises have been made evident, that is, are known. Mere possession, though, does
not suffice for drawing the inference; in order to know the conclusion I must actually
have performed the immediate inferences in the chain. Thus, the modern notion of
syntactic consequence, under the containment theory of inferential validity, has a
counterpart in the chain of immediate inferences that constitutes the ground for the
validity of an inference.

Thus, we have found a difference between inferences and consequence: a correct
consequence, be it logical or not, preserves truth from antecedent propositions to con-
sequent proposition (possibly under all suitable variations) whereas a valid inference-
figure preserves knowability from premise-judgment(s) to conclusion judgment. In
particular, the inference S:

is valid; indeed, the holding (but not the logical holding, under all variations) of the
sequent A fi B is explained in such a way that the inference from the truth of propo-
sition A to the truth of proposition B is then immediate. Thus the holding of sequents
is reduced to, or explained in terms of, the validity of inference.

An attempt, on the other hand, to reduce the validity of inference to the (possibly
logical) holding of consequences to validity will engage us in an infinite regress of the kind
that Lewis Carroll ran for Achilles and the Tortoise in Mind 1895. Then the inference

A is true. Therefore: B is true

is valid if the sequent A fi B holds. But the inference

A fi B holds, A is true. Therefore: B is true

is certainly valid by the explanation of fi: A fi B holds when B is true if A is true. Thus,
by the reduction of validity, the (higher-level!) sequent

[A fi B, A] fi B

must hold. But then the inference

[A fi B, A] fi B holds, A fi B holds, A is true. Therefore: B is true

is valid. Thus, by the reduction of inferential validity to that of holding for consequence,
the (even) higher-level sequent

  
A B holds A is true

B is true
fi
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[[A fi B, A] fi B, A fi B, A] fi B

must hold. But then, yet again, a certain inference is valid and so we get a tower of ever
higher-level consequences that have to account for the validity of the first inference in
question.

The criticisms that have been voiced against Frege’s account of inference, on the
present analysis, are nugatory. Frege was absolutely right in that inference proceeds
from known premises and obtains new knowledge. This is also accounted for by the
explanation of validity. The conclusion-judgment must be made evident, given that –
under the assumption that – the premises are known. In the (logical) holding of con-
sequence, on the other hand, there is no reference to knowledge: a sequent holds if
propositional truth is transmitted from antecedent(s) to consequent. Thus, the criti-
cisms of Frege seem to stem from a conflation of (the validity of) inference with (the
holding of) consequence.
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16 

Modality of Deductively Valid Inference

DA L E JAC Q U E T T E

1 Validity and Necessity

An inference is deductively valid if and only if it is logically necessary that if its assump-
tions are true, then its conclusions are also true; or, alternatively, if and only if it is 
logically impossible for its assumptions to be true and its conclusions false.

Some type of modality evidently governs the truth conditions of assumptions and
conclusions in deductive inference. There are many different systems of alethic modal
logic, however, and the question of which modal system is appropriate for under-
standing the modality of deductive validity has not been rigorously investigated. In
what exact sense is it logically necessary for the conclusions of a deductively valid
argument to be true if its assumptions are true? In what exact sense it is logically 
possible for the conclusions of a deductively invalid argument to be false when its
assumptions are true? Does deductive inference presuppose the modality of, say, 
modal system S1, or T, S2, S3, S4, S5, the Brouwersche system, or yet another modal
logic?

I argue in what follows that the failure of the validity or Pseudo-Scotus paradox in
normal modal logics weaker than S5, and its provability in S5 and conservative exten-
sions of S5, suggests that the modality of deductively valid inference must be weaker
than S5. The sense in which it is logically necessary for the conclusions of a deductively
valid inference to be true if its assumptions are true, or logically impossible for its
assumptions to be true and its conclusions false, in that case must be defined in terms
of a modal logic weaker than S5.

2 The Validity Paradox

The validity paradox, also known as the Pseudo-Scotus, is most easily understood in an
impredicative formulation. Consider the following inference:

(V) 1. Argument (V) is deductively valid.

2. Argument (V) is deductively invalid.



The paradox proceeds by projecting argument (V) into a dilemma. We assume that
argument (V) is either deductively valid or deductively invalid. If (V) is deductively valid,
then it is also sound, since the assumption in (1) declares that the argument is deduc-
tively valid. Sound arguments by definition have true conclusions. So, if (V) is deduc-
tively valid, then, as its conclusion states, it is deductively invalid. The second horn of
the dilemma is more difficult. If (V) is deductively invalid, then, according to the defin-
ition of deductive validity, it is logically possible for the assumption of (V) to be true and
the conclusion false. The assumption of the second dilemma horn thus implies only
that it is logically possible, not categorically true, that argument (V) is deductively valid.
It does not follow simply that if argument (V) is deductively invalid, then it is deduc-
tively valid, but at most only that if (V) is deductively invalid, then it is logically possi-
ble that (V) is deductively valid. To go beyond this, trying to deduce that (V) is
deductively valid if and only if it is deductively invalid, is to commit the inelegant modal
fallacy of inferring that a proposition is true from the mere logical possibility that it is
true (see Jacquette 1996).

3 Gödel Arithmetizing the Validity Paradox

It might be thought that the validity paradox is improper because of its impredicative
form, violating the vicious circle principle. The impredicative expression of the validity
paradox as presented is nevertheless inessential. Impredication can be avoided by
Gödelizing the syntax of the inference.

The validity paradox (V) is Gödelized as (GV) for g V[subg(n)] � [subg(n)] = n Ÿ
subg(n) = V[subg(n)] � [subg(n)] , in order to prove that V[subg(n)] ´ [subg(n)]. The
Gödel number of the argument is determined by assigning natural numbers to syntax
items in the expression to be arithmetized. Each such number is made the exponent of
a corresponding prime number base taken in sequence in the same order of increasing
magnitude as the syntax (standardly left-to-right) in the expression to be coded. The
Gödel number of the expression is the product of these primes raised to the powers of
the corresponding syntax item code numbers. A Gödel substitution function, subg, 
substitutes for any whole number to which it is applied the unique syntax string, if any,
which the Gödel number encodes.

V [ subg ( _ ) ] � [ subg ( _ ) ]
| | | | | | | | | | | | | | |
1 2 3 4 5 6 7 8 9 2 3 4 5 6 7

The Gödel number of the validity paradox on this assignment of Gödel numbers to
syntax items in the formula is: 21 ¥ 32 ¥ 53 ¥ 74 ¥ 115 ¥ 136 ¥ 177 ¥ 198 ¥ 239 ¥ 292 ¥
313 ¥ 374 ¥ 415 ¥ 436 ¥ 477 = n. This number is substituted for blank spaces (alterna-
tively, free variables) to which the number 5 is here assigned in the open sentence 
above to complete the Gödel arithmetization in g V[subg(n)] � [subg(n)] = n, where
by stipulation, subg(n) = V[subg(n)] � [subg(n)] .

Angle quotes, , , are used conventionally to indicate that the Gödel-numbering
context is intensional, since a Gödel numbering context does not support intersubsti-
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tution of logically equivalent expressions that differ syntactically in any way. A distinct
Gödel number obtains for every distinct syntax combination, including logical equiva-
lents, like j ⁄ y and ÿj Æ y, where g j ⁄ y π g ÿj Æ y , even though [j ⁄ y] ´
[ÿf Æ y].

The Fundamental Theorem of Arithmetic guarantees that every number can be
decomposed into a unique factorization of prime number bases raised to certain powers.
When number n is factored in this way and the factors arranged in ascending order
(again, from left to right) according to the increasing magnitude of prime number
bases, the expression mapped into Gödel-numbered space can be read directly from the
exponents of each prime, and translated back into the original logical syntax by the
glossary of natural number assignments.

The Gödelized validity paradox is not impredicative, because the Gödelized paradox
argument is not defined in terms of propositions that explicitly mention the argument’s
label or name, (V). Self-reference is instead achieved only indirectly by the stipulation
that the Gödel number of the inference V[subg(n)] � [subg(n)] is n, and the definition of
the Gödel substitution function subg, by which the Gödel coded inference is recovered in
its exact syntax-item-by-syntax-item formulation. Gödelization avoids impredication in
the same way that it circumvents Russell’s simple type theory restriction on syntactical
self-predications. The Gödel sentence predicates a semantic property only of an object,
a substituend identical to the sentence obtained by applying the Gödel substitution func-
tion to a Gödel number, and not to another property represented by a predicate of the
same type. Gödelization thereby also avoids the need for explicit mention of the name or
label of a sentence or argument, achieving self-reference indirectly in the inference by
predicating a semantic property, validity or invalidity, of the substituend represented by
a Gödel code number defined as the Gödel code number of the inference itself.

4 The Validity Paradox in S5

A proof that the second dilemma horn fails in modal systems weaker than S5, but 
succeeds in modal S5 and its conservative extensions, can be formalized in this way for
Gödelized validity paradox (GV).

The role of the iterated modalities, and their implications for the second validity
paradox dilemma horn, are seen in the following derivation. Here it is obvious that the
inference from the assumption that (GV) is invalid to the conclusion that (GV) is valid
holds only in some but not all systems of modal logic, according to the world- or model-
accessibility relations by which each distinct modal logic is defined.

To symbolize the paradox requires a metalinguistic vocabulary to formally represent
specific logical and semantic properties of propositions and inferences. We stipulate as
primitive metalogical predicates that A is the property of being an assumption, C the
property of being a conclusion, effectively, of an argument. We assume Truth, T, as a
primitive bivalent relation of positive correspondence between a proposition and an
existent state of affairs that the proposition describes or otherwise linguistically repre-
sents. If the state of affairs the proposition represents does not exist, then the proposi-
tion is false. A state of affairs is the possession of a property by or involvement in a
relation of the objects in a well-defined semantic domain; a state of affairs Fa exists

V
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when an object a possesses a property or is involved in a relation F, and fails to exist
when a does not possess or is not involved in relation F. Ramsey reduction then states
that for any proposition j, j is true if and only if j, "j[Tj ´ j]. The principle effects
what is sometimes known also as the redundancy theory of truth, where to say that j
is true is just to say that j, and to say that j is to say that j is true. The principle allows
us to move freely back and forth from true propositions to true metalinguistic proposi-
tions that state that the propositions are true.

Validity, V, is defined as a relation among the truth conditions of the assumptions
and conclusions of an inference, such that it is logically impossible for the assumptions
to be true and the conclusions false. The truth of logically necessary propositions is
invoked in step (7) as �j Æ j. The formalism reflects the intuitive reasoning that if
(GV) is valid, then it is also sound, since its assumption says that it is valid. But, as we
have seen, since sound arguments necessarily have true conclusions, it follows in that
case that (GV), as its conclusion states, is invalid.

PROOF 1 Validity Horn of the Validity Paradox

(1) "x[Vx ´ �["y[Ayx Ÿ Ty] Æ "y[Cyx Æ Ty]]] Validity
(2) V[GV] Assumption
(3) �[["y[Ay[GV]] Ÿ Ty] Æ "y[Cy[GV] Æ Ty]] (1,2)
(4) "y[TAy[GV]] ´ V[GV] (GV)
(5) "y[TCy[GV]] ´ [GV] (GV)
(6) �[TV[GV] Æ T [GV]] (3,4,5)
(7) TV[GV] Æ T [GV] (6, �j Æ j)
(8) V[GV] Æ [GV] (7, Ramsey)

The second dilemma horn is more difficult. It is blocked by modal fallacy, except where
the accessibility relations defining a strong system of modality like S5 or its conserva-
tive extensions make it possible to infer necessity from possible necessity. To demon-
strate the difference in strengths of modalities in deriving the inference that [GV] Æ
V[GV], we first show that the inference fails in weak modal systems, and then offer a
formal proof of the second paradox dilemma horn invoking the characteristic axiom of
modal S5. This is how the proof is blocked in weak systems of modality:

PROOF 2 Failure of Invalidity Horn of Validity Paradox in Modal Systems Weaker than S5

(1) "x[Vx ´ �["y[Ayx] Ÿ Ty Æ ["y[Cyx Æ Ty]]]] Validity
(2) "x[ x ´ �["y[Ayx] Ÿ Ty Ÿ $y[Cyx Ÿ y]]] (1)
(3) [GV] Assumption
(4) �["y[Ay[GV]] Ÿ Ty Ÿ $y[Cy[GV] Ÿ y]] (2,3)
(5) "y[TAy[GV]] ´ V[GV] (GV)
(6) "y[TCy[GV]] ´ [GV] (GV)
(7) �[TV[GV] Ÿ [GV]] (4,5,6)
(8) �V[GV] (7, Ramsey)
(9) [GV] Æ �V[GV] (3–8)

The conclusion falls short of the second horn of the validity paradox in the categorical
form, [GV] Æ V[GV], and thereby of the entire validity paradox, [GV] ´ V[GV]. The
mere logical possibility of the deductive validity of (GV) is all that is validly derivable
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from the assumption that (GV) is deductively invalid, if the modality of deductive infer-
ence is weaker than S5.

By contrast, we now see how the proof goes through in modal system S5 and its con-
servative extensions. The proof depends on the principle that for any inference j, �(j
Æ �j), invoked at step (9), according to which it is logically necessary that if an argu-
ment is deductively valid, then it is logically necessarily valid, or valid in every logically
possible world. The intuitive justification is that the same abstract set of propositions,
true or false, for states of affairs that are realized or unrealized in any logically possible
world, is ideally available for combination into all the same arguments, and the same
logical laws of valid deductive inference standardly prevail, in every logically possible
world. The first unproblematic half of the paradox, that V[GV] Æ [GV], is recalled
without further ado as the conclusion of Proof 1, in step (20). We also appeal to weak
standard principles of Necessitation, �[j Æ y] Æ [�j Æ �y], in step (10), and Duality,
�j ´ ÿ�ÿj, in step (13). The proof hinges essentially on the characteristic axiom of
modal S5, ��j Æ �j, introduced in step (16).

PROOF 3 Invalidity Horn of the Validity Paradox in S5

(1) "x[Vx ´ �["y[Ayx Ÿ Ty] Æ ["y[Cyx Æ Ty]]]] Validity
(2) "x[ x ´ �["y[Ayx Ÿ Ty] Ÿ $y[Cyx Ÿ y]]] (1)
(3) [GV] Assumption
(4) �["y[Ay[GV] Ÿ Ty] Ÿ $y[Cy[GV] Ÿ y]] (2,3)
(5) �[$y[Cy[GV]] Ÿ y] (4)
(6) "y[TCy[GV]] ´ [GV] (GV)
(7) � [GV] (5,6)
(8) �V[GV] (7, Ramsey)
(9) �[V[GV] Æ �V[GV]] �(j Æ �j)

(10) �[j Æ y] Æ [�j Æ �y] Necessitation
(11) �[ÿ�V[GV] Æ ÿV[GV]] Æ [�ÿ�V[GV] Æ �ÿV[GV]] (10)
(12) �[V[GV] Æ �V[GV]] Æ [ÿ�ÿV[GV] Æ ÿ�ÿ�V[GV]] (11)
(13) �[V[GV] Æ �V[GV]] Æ [�V[GV] Æ ��V[GV]] (12, Duality)
(14) �V[GV] Æ ��V[GV] (9,13)
(15) ��V[GV] (8,14)
(16) ��V[GV] Æ �V[GV] (S5)
(17) �V[GV] (15,16)
(18) V[GV] (17, �j Æ j)
(19) [GV] Æ V[GV] (3–18)
(20) V[GV] Æ [GV] (Proof 1)
(21) V[GV] ´ [GV] (19,20)

5 Validity, Necessity, and Deductive Inference

The validity paradox can only be avoided by disallowing formulations of the modality
governing the logical necessity of deductively valid inference as strong as or stronger
than S5. The fact that the validity paradox goes through in modal S5 and stronger
logics, but not in weaker systems, suggests that the modality of deductive inference, on
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pain of contradiction in the derivation of inferences that are deductively valid if and
only if they are deductively invalid, must be weaker than S5. Needless to say, the status
of deductively valid inference in S5 is also thereby placed in doubt.

If S5 itself is redefined to embody a sufficiently nonstandard model of deductively
valid inference that avoids the validity paradox, then it might be possible to interpret
the modality of deductively valid inference in terms of such an appropriately nonstan-
dard S5. The defender of S5 as the modality of deductive validity nevertheless cannot
reasonably appeal to the intuition that a deductively valid inference accessible from the
actual world ought to be deductively valid in every logically possible world accessible
from any logically possible world. An equivalence relation for accessibility provided for
the model set theoretical semantics of S5, involving reflexivity, symmetry and transi-
tivity, must be adequate even for deductively valid inferences involving modal struc-
tures in which not all models contain all the same objects. It must be adequate, indeed,
for deductively valid inference in any modal environment weaker than S5, and so, by
the same reasoning, presumably, weaker than S4, and so on, down to the weakest modal
logic. The conclusion to which the provability of the validity paradox in S5 ultimately
points is that the modality of deductively valid inference in general cannot be stronger
than that formalized by the weakest modal system interpreted only as reflexive world-
accessibility.
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Bocheński, J. M. (1938) De consequentiis scholasticorum earumque origine. Angelicum, 15,
92–109.

Gödel, Kurt (1931) On formally undecidable propositions of Principia Mathematica and related
systems I [“Über formal unentscheidbare Sätze der Principia mathematica und verwandter
Systeme I,” Monatshefte für Mathematik und Physik, 38, 1931], translated by Jean van
Heijenoort (ed.), From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931.
Cambridge, MA: Harvard University Press, 1967, 596–617.

Jacquette, Dale (1996) The validity paradox in modal S5. Synthese, 109, 47–62.
Keene, G. B. (1983) Self-referent inference and the liar paradox. Mind, 92, 430–3.
Mates, Benson (1965) Pseudo-Scotus on the soundness of Consequentiae. In A. T. Tymieniecka

(ed.), Contributions to Logic and Methodology in Honor of J. M. Bocheński. Amsterdam: North-
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Quantifiers, Being, and Canonical Notation

PAU L G O C H E T

1 Introduction

Aristotle was the founder of logic and ontology. The first discipline is concerned with
the validity of arguments irrespective of their subject-matter. Its foundations were laid
down in the Prior Analytics. Topic neutrality is achieved by abstracting the form of the
arguments from their content, an operation which presupposes that we draw a distinc-
tion between the logical terms which make up the form (‘every M is L,’ ‘some M is L,’
‘A possibly belongs to no B’ . . .) and the non-logical terms which belong to the content.

The second discipline, called ‘first philosophy’ by Aristotle (and ‘ontologia’ by
Rudolphus Goclenius in the Lexicum Philosophicum (1613)) investigates being in its own
right, that is the categorial aspects of entities in general, and the modes and aspects of
being. It can be traced back to Aristotle’s Categories and Metaphysics.

The third notion occurring in the title is central both to logic and to ontology. Indeed
the question arises whether existence should be distinguished from being. For example,
in Principles of Mathematics (1903), Russell claims that such a distinction is in fact pre-
supposed by any denial of existence: “what does not exist must be something, or it would
be meaningless to deny its existence” (Russell 1903: 450).

The interplay between logic and ontology has inspired major philosophical works 
of the twentieth century such as Russell’s Philosophy of Logical Atomism (1918) and
Wittgenstein’s Tractatus logico-philosophicus (1921). Though both works now belong to
the history of the subject, the issue they address, that is whether a logical language
could be designed which would depict the main ontological structures of reality,
remains a live issue.

With Quine’s Word and Object (1960), a major shift of emphasis occurred. The mirror
of the most important traits of reality is no longer to be sought in language as such, but
in the theories about the world which scientists hold to be true, and only derivatively in
the language needed to formulate them.

According to Quine, the ontological work incumbent on philosophers consists of the
critical scrutiny of the realm of objects introduced into scientific theories by scientists.
It is “the task of making explicit what had been tacit, and precise what had been vague;
of exposing and resolving paradoxes, smoothing kinds, lopping off vestigial growths,
clearing ontological slums” (Quine 1960: 274).



Logic plays a major role in the work of attaining precision and explicitness just
described. The time has come to take stock of what has been achieved over the last 40
years by applying logic to ontology. Although my concern is thematic rather than his-
torical, I shall devote much space to a detailed presentation and examination of Quine’s
views on the interplay between logic, existence, and ontology.

The motivation for my choice lies in the influential and challenging character of
Quine’s theses. I shall try to isolate what I consider to be of lasting value in his doc-
trines. I shall also describe and critically examine the arguments offered by opponents
to Quine who claim that his logic is too restricted and his ontology too poor.

2 A Methodology for Ontology

For the philosopher who undertakes to clean up the conceptual framework built by 
the scientist and to purify it of unnecessary ontological excrescences, Ockham’s razor,
“Entia non sunt multiplicanda praeter necessitatem” is the main tool. To apply that precept,
however, we have to answer the preliminary question: ‘what are unnecessary entities?’
One possible answer is: entities are unnecessary if we can abstain from countenancing
them without sacrificing scientific truth.

That answer is controversial. One might argue that besides preserving the set of
truths of a given science, we should also be concerned about preserving the explanatory
power of our theories. One burning issue here is the question raised by the status of
natural kinds and natural kind words. Kripke and Putnam have argued that natural
kind words are rigid designators (Putnam 1975: 229–35). The very definition to the
concept of rigid designator as “term which designates the same entities in our world
and in all possible worlds” draws us willy-nilly into possible world semantics.

Quine has also contributed to the methodology of ontology by imposing a constraint
encapsulated in the motto: “No entity without identity” (see Haack 1978: chapter 4).
Such a requirement is fulfilled by sets: two sets are identical if and only if they have the
same members. It is not fulfilled, however, by the entities of linguistic semantics such
as concepts and propositions (for a defense of the latter see Orilia 1999).

The demand for clear identification criteria has far-reaching consequences in ontol-
ogy. It has a bearing on another burning issue under discussion today: that of the status
of possible objects. By Quine’s standards, possible objects are not eligible as entities.
They lack criteria of identification. Nobody, Quine complains, can decide whether “the
possible fat man in that doorway” and “the possible bald man in that doorway” denote
the same individual (Quine 1953, 1961: 4). (For another diagnosis of this puzzle, see
Cocchiarella 1987: 126 f.).

Fifteen years after Quine first published “On What There Is,” Kripke (1963) laid down
a semantics which extends the standard definitions of satisfaction and truth to a first-
order logic enriched with modal operators (see also Bayart 1958, 1959). The novelty
of this approach lies in the model which contains a set of possible worlds together with
an accessibility relation between worlds. The domains are allowed to vary from one
world to another. An individual a which shows up in the domain D1 of possible world
W1 may be absent from the domain D2 of possible world W2. That individual may also
be present, but then the question of identifying a across possible worlds arises.
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Quine argues that identifying individuals across possible worlds fundamentally
differs from the familiar task of reidentifying an individual across successive moments
of time. In the latter case, relevant criteria are available such as, if physical objects are
concerned, continuity of displacement, continuity of deformation and continuity of
chemical change. These criteria, however, cannot be extended across worlds “because
you can change anything to anything by easy stages through some connecting series
of possible worlds” (Quine 1981: 127).

Here again the problem is worth reconsidering in the light of recent developments.
Several authors (Gupta 1980; Cocchiarella 1984) have provided evidence showing that
the contrast between identification across moments of time and identification across
possible worlds is not so sharp as Quine contends.

3 The Need for a Criterion of Ontological Commitment

The history of philosophy is replete with discussions about abstract objects. Plato held
that Forms, such as Beauty, existed independently of the mind which conceived them
and of the particular objects in which they were exemplified. For Aristotle, however,
species differed from their instances but existed only in so far as they were instantiated
by the latter.

In the Middle Ages, the distinction between concrete and abstract objects prompted
a lasting discussion known as the debate on universals. A broad spectrum of positions
were defended, ranging from realism to nominalism. According to the latter, universals
are just words. The question has yet to be conclusively resolved. In the twentieth
century, Church diagnosed the source of the trouble in these terms: “No discussion of
an ontological question . . . can be regarded as intelligible unless it has a definite crite-
rion of ontological commitment” (Church 1958: 1012).

Quine came to grips with the problem and provided a definite criterion: “[i]n general,
entities of a given sort are assumed by a theory if and only if some of them must be counted
among the values of the variables in order that the statements affirmed in the theory be true”
(Quine 1953, 1961: 103).

Quine’s criterion is informative. It serves to uncover hidden ontological commit-
ments. Consider the following sentence due to Geach: “Some people admire only one
another” in which the number of mutual admirers remains unspecified. Kaplan, has
shown that Geach’s sentence implicitly quantifies over classes. Its formulation in first
order logic reads as follows (Quine 1982: 293):

$z($x(x e z).&"x([x e z Æ $y(x admires y)&"y(x admires y Æ x π y&y e z)])).

When combined with his views about predicates, Quine’s criterion of ontological com-
mitment ceases to be neutral. In Philosophy of Logic, Quine writes “Predicates are not
names, predicates are the other parties to predication” (Quine 1970: 27–8). This syn-
tactic consideration leads to ban second order logic statements such as $F " x Fx and
forces us to rewrite them in first order logic as $a " x x e a. This is not satisfying
however. As Boolos observes, the first formula is valid but the second is not (Boolos
1975: 512).
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Simons disentangled the two issues. He showed that we can quantify over variables
belonging to the syntactical category of predicates without committing ourselves to say
that predicates refer to properties. A restriction should be imposed upon Quine’s crite-
rion of ontological commitment. Not all quantification is committal: “nominal quan-
tification commits one to things denotable because names denote, while other forms of
quantification do not, since it is the office of names, and names alone, to denote, other
categories of expression having other offices, the variables of these categories inherit-
ing their offices from potential constants thereof ” (Simons 1997: 268).

Cocchiarella criticizes Quine for assuming that being is a genus. Quine’s criterion
does justice to primary substances and complete (saturated) objects but fails to do
justice to universals. Universals, Cocchiarella argues, have a predicable nature that con-
stitutes their universality. That predicable nature consists of a mode of being different
from the mode of being of saturated objects. Universals, unlike sets, are not generated
by their instances.

According to Cocchiarella, we need predicate variables taking universals as their
values if we want to represent not only saturated but also unsaturated entities in our
formal ontology. If, following Quine, we take predicate variables as schematic letters
which admit substitution but not quantification, we shall not be able to quantify 
over unsaturated entities such as natural properties and relations. Yet such a quanti-
fication is needed in the construction of a formal ontology for natural science (see
Section 7).

To capture the ontological distinction between individuals and universals, we have
to give predication precedence over membership and to recognize an ontological import
to predicates as such (Cocchiarella 1997).

4 The Role of a Canonical Notation

According to Quine, ontologists should not address the direct question ‘What objects are
there?’ Quine proposes a detour through existing scientific theories. Ontologists would
start with a given theory and ask themselves what objects it is committed to. He coined
the locution “semantic ascent” for referring to this shift of attention from the world to
theories and their languages.

Positive knowledge about the world is not confined to specialized sciences only.
Common sense knowledge expressed in everyday language is also knowledge. If we
want to spot the ontological commitments of our knowledge as a whole, a preliminary
task need to be performed. We have to regiment our language into a canonical system of
logical notation.

Several sections of Word and Object show how constructions of ordinary language
can be paraphrased into the artificial language of first-order logic. Some of these regi-
mentation exercises are known to whoever has learned to translate arguments couched
in natural language into the inferential schemes of standard first-order logic. For
instance, ‘Every man is mortal’ is paraphrased into ‘For every object x (if x is a man
then x is mortal).’ More drastic changes come next, such as the elimination of proper
names and the elimination of definite descriptions. These are specifically Quinean 
doctrines.

PAUL GOCHET

268



Indirect discourse, however useful it may be for historians, has a major drawback.
It violates “the substitutivity of identity: the putting of equals for equals” (Quine
1994b: 145). In the propositional attitude construction: ‘Ralph believes that Cicero
denounced Catiline,’ the substitution of ‘Tully’ for ‘Cicero’ may fail to preserve truth.
To prevent the unsafe substitution, Quine suggests a radical remedy: replacing indirect
quotation by direct quotation.

Far from distorting our picture of the world, such regimentation would help us see
the world aright. If we are ‘limning the true and ultimate structure of reality,’ Quine
maintains, the canonical scheme that suits us is “the austere scheme that knows no
quotation but direct quotation and no propositional attitudes but only the physical con-
stitution and behavior of organisms” (Quine 1960: 221).

5 The Ontology of Mathematics

Quine’s New Foundations for Mathematical Logic (1936) contains some technical inno-
vations which are philosophically significant. The first one is the notion of stratifica-
tion. A formula is called stratified if it is possible “to put numerals for the variables in
such a way that ‘e’ comes to occur only in contexts of the form ‘n e n + 1’ ” (Quine 1953,
1961: 91). Stratified formulas satisfy Russell’s type theory (1908). Unstratified formu-
las would have to be declared meaningless by Russell’s standards.

For Quine, on the contrary, unstratified formulas such as ‘y e y’ are meaningful, but
they are not eligible as instances of F in the comprehension axiom ($x) ("y) (y e x ´
F). Hence a formula can be meaningful without carrying any ontological commitment.

Russell’s type theory has forbidding ontological consequences: the universal class V
gives rise to an infinite series of quasi-universal classes. The null class also. The Boolean
class algebra “no longer applies to classes in general, but is reproduced within each
type” (Quine 1953, 1961: 92). The same is true of arithmetics. All that ontological infla-
tion would be cut down in one stroke by adopting the stratification theory of New
Foundations.

Stratification theory substitutes a syntactic hierarchy of formulas for the ontological
hierarchy of types of entities. It switches from the multilayered universe of objects to a
single universe of objects, with a general quantifier ranging over all the objects in the
universe. As Vidal-Rosset puts it, the syntactic device of stratification “frees set theory
from the realist assumption of types in the same way free logic purifies standard first-
order logic of its ontological commitments.” The claim that the existence of an infinite
set is a theorem, rather than a postulate, is another achievement of NF. That startling
thesis has been demonstrated later by Specker (1953) and Crabbé (1984).

Let us now move on to set theory and its logic and consider the theory of virtual
classes. As a preparatory step, the reader should remember here that the grammar of
first-order logic admits three basic constructions: (1) predication; (2) infixation or pre-
fixation of connectives; and (3) quantification over individual variables. Predication
unites a name with a predicate. Names refer to individuals. Predicates do not refer to
classes or properties, they are satisfied by individuals.

Quine’s statement already quoted “Predicates are not names; predicates are the
other parties to predication” (Quine 1970: 27–8) might strike the reader as dogmatic.
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It should not. A justification of this statement can be found later in the book. (We owe
the point to Fernandez de Castro). Quine observes that quantifying over predicate 
variables leads to an unconstrained principle of comprehension. From the logical 
triviality ("x)(Fx ´ Fx) we can derive the unwanted conclusion ($G) ("x) (Gx ´ Fx)
(Quine 1970: 68).

If we wish to refer to a class we need a class abstract, that is an expression like {x: 
Fx} which can be rendered in natural language by ‘the set of x that are F.’ Whenever
a class-abstract occurs only on the right of ‘e’ we can treat the whole combination ‘e{x:
Fx}’ as ‘F’ and say that ‘y e{x: Fx}’ reduces to ‘Fy’. Conversely we may jointly intro-
duce the membership symbol and the class abstract as fragments of a predicate. Most of
what is said of classes with the help of the two-place predicate ‘e’ can then be consid-
ered as a mere manner of speaking involving no reference to classes, that is no ontologi-
cal commitment to classes.

Set theory and its logic offers a new definition of natural numbers which again enables
the mathematician to reduce his ontological commitment without impoverishing
science. Let us start with Frege’s definition. Natural numbers are the common members
of all classes z such that 0 is a member of z and all successors of members of z are
members of z. Notice that the unavoidable quantification over classes makes the virtual
theory of classes inapplicable here.

If the Fregean definition of natural numbers is to achieve its purpose, infinite classes
are required. Quine, however, succeeded in showing that the need for infinite classes can
be circumvented. We can define numbers in terms of their predecessors. This amounts
to describing natural numbers as the members of all classes z which contain 0 if, besides
containing their members, they also contain the predecessors of their members. For 
the new definition to work, “there are going to have to be larger and larger classes
without end . . . but they can all be finite” (Quine 1963: 76). This meager basis should
be enough for deriving the law of mathematical induction. The strategy does not work
however for real numbers.

When put into an epistemological setting, Quine’s ontology for mathematics shades
into the structuralist position advocated in Mathematics as a Science of Patterns (Resnik
1997). Resnik’s position is foreshadowed by Quine in the following statement: “what
matters for any objects, concrete or abstract, is not what they are but what they con-
tribute to our overall theory of the world as neutral nodes in its logical structure”
(Quine 1995: 74–5).

The adoption of a structuralist ontology in which all that there is to an object is the
role that it plays in theory is compatible with realism. As Hylton observes, “there is no
issue concerning realism about objects which is separate from the issue of realism about
the theory which mentions them: to repeat, ontology is derivative upon truth; hence,
if we are realists about truth we are more or less automatically realists about objects
too” (Hylton 2000: 298).

6 The Notion of Existence

Non-denoting singular terms such as ‘Pegasus’ have unwanted consequences for stan-
dard logic. From the logical truth ‘("x)(x = x)’ we obtain ‘Pegasus = Pegasus’ by the 
law of universal instantiation. Applying the rule of existential generalization next, we
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derive the statement ‘($x)(x = Pegasus).’ A factual falsity has been inferred from a
logical truth. Clearly there is something amiss here.

Three solutions have been put forward. The most drastic one consists of first replac-
ing proper names by definite descriptions (‘Pegasus’ becomes ‘the unique object that
pegasizes’) which are eliminated by Russell’s technique at a later stage. The trouble is
that standard description theory, as opposed to free description theory (Lambert 1987),
has unwanted consequences. It leads to paraphrasing a true sentence such as “Theory
T is ontologically committed to the perpetual motion machine” into the false one “There
is one and only one perpetual motion machine and theory T is committed to it”
(Jacquette 1996: 56–69).

The second solution consists of modifying the laws of first-order logic in such a way
that it becomes free of existence assumptions with respect to singular terms. Hintikka
(1959) produced a free logic by submitting the application of the rule of existential gen-
eralization f(a/x) � ($x)fx to a condition: the truth of the premise ($x)(x = a) which states
that a exists.

The third solution consists of treating denotationless singular terms as denoting
nonexistent objects and taking bound variables as ranging over objects which are either
existent or nonexistent. On that account the use of a bound variable is noncommittal.
The task of expressing existence devolves to a special predicate, the predicate ‘exists’
(see Section 10).

A variant of the third approach can be found in a version of first-order logic which
operates with two pairs of quantifiers, viz (1) "a and $a which bind variables ranging
over existent (‘actual’) individuals and (2) " and $ which bind variables ranging over pos-
sible individuals. Distinct rules apply to possible and actual quantifiers. Whereas the law
of universal instantiation "xf Æ f(z/ x) is logically true for the possible quantifiers
without qualification, it holds for the actual quantifiers only on the proviso that an exis-
tential premise is supplied, premise which is false when the singular term is denota-
tionless. For actual quantifiers the law of universal quantification reads as follows: 
$a y(z = y) Æ [ax f Æ f(z/x)] (Cocchiarella 1990: 245).

7 The Ontology of Natural Sciences

According to Cocchiarella, the ontology of physics requires objects which blur the
sharp distinction drawn by Quine between objects located in time and objects located
in possible worlds. A first motivation for countenancing objects which transcend the
realia–possibilia dichotomy arises within the framework of the theory of special relativ-
ity. There can be objects, the theory says, that exist only in the past or future of our own
local time, but which however “might exist in a causally connected local time at a
moment which is simultaneous with our present” (Cocchiarella 1984: 351).

These things are real, even if not presently existing. Hence they are entitled to be
called realia instead of possibilia. They qualify as values of our bound variables.
Cocchiarella claims that a canonical notation reduced to standard first-order logic has
not enough expressive power. We need to enrich the language with two causal tense oper-
ators, viz. ‘Pc’ for ‘it causally was the case that’ and ‘Fc’ for ‘it causally will be the case
that,’ and to add the axioms and rules of quantified modal logic S4.
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Next, Cocchiarella spells out a semantics in which the accessibility relation between
possible worlds appears in the guise of a signal relation linking together momentary
states of the universe. Here again we see that a physicalistic interpretation can be
grafted onto the suspect notions of the semantics of modal logic and that the gap
between modality and time can be bridged.

Transuranic elements provide us with a second sort of entity which stand on the
border between the possible and the real. When the formation of the earth was com-
pleted, “it contained the atoms of only ninety-two chemical elements, with uranium
being the heaviest” (Cocchiarella 1986: 119). The question whether the universe
outside of the earth contains atoms of transuranic elements is an open question.
Whether these atoms exist or not, their elements as natural kinds are known so well
that atoms of those elements have been produced in accelerators. We have, therefore,
to reckon with transuranic substances that “as a matter of contingent fact, are and will
never be realized in nature by any objects whatever, but which, as a matter of natural
or causal possibility, could be realized” (Cocchiarella 1996: 45).

Aristotle held the view that universals such as the ultima species Man exist only in
so far as there are concrete human beings that instantiate them (Moderate Realism).
Transuranic substances which are not instantiated in concrete objects nevertheless
belong to the causal matrix of the universe. ‘Belonging to the causal matrix of the 
universe’ has to be understood analogically. Just as some modes of being in Aristotle’s
system of categories must be understood ‘analogically’ (we owe this point to
Cocchiarella).

To accommodate these transuranic substances, we need to relax Aristotle’s
Moderate Realism a little bit and replace ‘instantiate’ by ‘can instantiate.’ To express this
conceptual shift, we have to avail ourselves of the modal operator of causal realizability,
viz. <>c. The fundamental thesis of modal natural realism is stated in this way:

The colloquial rendering of the formula reads as follows: ‘for all n-place predicates it 
is causally possible that there exists a n-tuple of concrete objects which exemplifies it.’
Quine finds quantification over predicates objectionable. Predicates, he insists, are not
referring expressions. However, we can recast Cocchiarella’s formal representation of
modal realism in a way which complies with Quine’s requirement. It suffices to replace
the predicate variable by an individual variable (ranging over sets) and to bestow the
role of predicate to the set-membership predicate.

The predicate variable has been replaced by an individual variable K which takes
natural kinds as values. The colloquial rendering is now: “for natural kinds K, it is
causally possible that there exists a n-tuple of concrete individuals that is member of
K.” Admittedly Quine has misgivings about natural kinds which he takes to be vestigial
growths. Yet natural kinds satisfy the requirement of extensionality. Kinds “can be seen
as sets, determined by their members” (Quine 1969: 118). Hence my departure from
Quine’s standards is minimal.

( ( . . . ) . . ." <> $ < > < >K)  Kc i j i jx x x x e

( ( ) . . . ( ) ( . . . )" <> $ $F) Fc i j i jx x x x
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The distinction between natural kinds and conventional groupings, just like the dis-
tinction between lawlike statements and accidental generalizations, however elusive it may
be, is an essential ingredient of the standard account of science. As Peirce observes, pre-
diction would be impossible and induction baseless if there were no genuine laws; and
there would be no law if there were no real kinds (Haack 1992: 25).

8 Do Intensions Belong to the Furniture of the World?

I shall now consider a new argument put forward to support a much more dramatic
revision in ontological theory than the latter two. In Rethinking Identity and Metaphysics,
Hill challenges Quine’s extensionalist ontology and writes: “Intensions are part of the
ultimate furniture of the universe,” and “in limning the true and ultimate structure of
reality intensions must be given their due” (Hill 1997: 120). Even the description of the
mechanisms at work in a successful transplantation of organs requires that we appeal
to intensional notions.

Consider a man who donates a kidney to his twin brother. We can reconstruct the
reasoning of the surgeon along the following lines: whenever transplantation occurs
between twin brothers, the recipient’s immune system ‘thinks’ the donor’s kidney x to
be sufficiently like diseased kidney y not to reject x as foreign. Hence “x can be substi-
tuted for y, though they are not the same” (Hill 1997: 120).

One might object, however, that the physical exchange of kidneys and the logical sub-
stitution of terms are altogether different things which should be kept separate. One
might also question the claim that we are forced to make use of a non-mentalistic use
of ‘belief ’ in the description of the behavior of the immune system.

Alternative descriptions are available which do not rest upon the dubious notion of
the ‘body’s belief.’ Let us pay heed to the following dissymmetry: although the same
causes always have the same effects, the same effects do not always have the same
causes. If we bring it to bear on the issue, we can see the immune system’s behavior as
a case in which different causes produce the same effects.

In Matter and Memory (1929), Bergson considered two rival descriptive accounts of
the same chemical process. The first one used psychological terms, the second one used
physical terms. Bergson chose the second. Here are the scientific data: hydrochloric 
acid always acts in the same way upon carbonate of lime – whether in the form of
marble or of chalk. We might therefore be tempted to say that the acid perceives in the
various species (marble, chalk) the characteristic of a genus. Bergson took the other
option and said that “similarity . . . acts objectively like a force.” In a similar vein, I
suggest that we should favour the description which does not make use of the notion
of ‘body’ belief.’

9 How to Treat Intensional Contexts without Positing Intensions

Frege holds that when we embed a sentence such as ‘Cicero denounced Catiline’ into a
construction like ‘Ralph believes that . . . ,’ a shift of reference occurs in the embedded
sentence. The names now refer to whatever their customary sense was when they
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occurred in the independent clause. This shift is meant to explain why substituting
‘Tully’ for ‘Cicero’ in a belief construction may fail to preserve truth.

Frege’s appeal to semantic deviance prompted Davidson’s comment: “If we could
recover our pre-Fregean semantic innocence, I think it would seem to us plainly incred-
ible that the words ‘The earth moves,’ uttered after the words ‘Galileo said that,’ mean
anything different, or refer to anything else, than is their wont when they come in dif-
ferent environments” (Davidson 1968: 144).

Frege’s account compels us to say that in the sentence ‘Cicero denounced Catiline
and Ralph believes that Cicero denounced Catiline,’ the first occurrence of ‘Cicero’ (and
‘of Catiline’) does not have the same referent as the second one. The arbitrarily created
ambiguity precludes the derivation of the statement ‘($x) (x denounced Catiline and
Ralph believes that x denounced Catiline).’

Following Recanati’s (2000) lead, I shall argue that most of the facts which Frege
tries to account for in semantic terms, by positing intensional entities, can be dealt with
in pragmatic terms by carefully distinguishing the perspective of the ascriber of proposi-
tional entities from that of the ascribee. Making appropriate use of the ascriber–ascribee
contrast would require us to shift from what might be described as the ascriber’s ‘world’
to the ascribee’s ‘world’, but the ontology would remain that of the ascriber all along,
that is the singular terms would refer to the same objects, whether we were talking
about the actual world or about the ascribee’s belief world.

First we should stress that the problems raised by propositional attitudes are much
more complex than philosophers thought. As Recanati shows, three preliminary dis-
tinctions must be drawn if we want to do justice to the complexity of the data. First 
we should distinguish between (1a) descriptive phrases (such as ‘The President’) and
quantified phrases (such as ‘someone’) on the one hand and (1b) proper names (such 
as ‘Cicero’) on the other. Definite descriptions and quantifiers induce scope ambiguities:
‘Someone will be in danger’ does not have the same truth-conditions as ‘It will be 
the case that someone is in danger.’ Names do not induce scope ambiguities: ‘Cicero
will be in danger’ has the same truth-conditions as ‘It will be the case that Cicero is in
danger.’

Belief sentences with descriptive or quantified phrases, Recanati observes, are
ambiguous in a way that exactly parallels the ambiguities found in temporal sentences
with descriptive or quantified phrases. John believes that someone is a spy admits of
two readings. If ‘someone’ takes wide scope, we obtain (2a) the relational reading
of ‘believes,’ to use Quine’s terminology. The sentence says: ‘Someone is such that John
believes of him that he is a spy.’ If ‘someone’ takes the narrow scope, we obtain (2b)
the notional reading. The sentence now reads: ‘John believes that there are spies.’

When belief is relational, the ascriber and the ascribee refer to the same singular
object. When belief is notional, on the contrary, quantification is internal to the
ascribed content and not endorsed by the speaker. The ascriber makes no ontological
commitment. Believing in that sense has neither a converse nor a relatum. Hence the
exportation: ‘John believes there are spies therefore there are people John believes to be
spies’ is invalid.

The distinction between relational and notional readings of the sentences containing
propositional attitudes has been mistakenly conflated with a third one: the opposition
between two varieties of relational reading: (3a) the transparent and (3b) the opaque
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readings. In opaque readings, replacement of a singular term by a co-referential term
may fail to preserve truth.

The failure of the substitutivity principle applied to ‘Cicero’ in the opaque reading of
‘Ralph believes that Cicero denounced Catilina’ can be imputed to the double role played
by ‘Cicero.’ The name ‘Cicero’ denotes the same individual for both the ascriber and the
ascribee, but the ascribee, as opposed to the ascriber, is ready to use the name ‘Cicero,’
but not necessarily the name ‘Tully’ for Cicero. The opaque reading of the belief sen-
tence can thus be paraphrased to read:

Ralph believes of Cicero thought of as ‘Cicero’, that he denounced Catiline

The co-referentiality of ‘Cicero’ and ‘Tully’ licenses the replacement of ‘Cicero’ by
‘Tully’ when these names are used, but not when they are mentioned. Hence we cannot
obtain via the substitutivity principle:

Ralph believes of Tully thought of as ‘Tully’, that he denounced Catiline

which is the formal paraphrase of the opaque reading of ‘Ralph believes that Tully
denounced Catiline.’

Existential generalization, however, goes through. As ‘believes’ is relational we can
infer ‘($x) (Ralph believes that x denounced Catiline)’ from ‘Ralph believes that Cicero
denounced Catiline’ whether ‘believes’ is transparent or opaque.

The hybrid reasoning however causes a problem. Consider the inference: ‘Cicero
denounced Catiline and Ralph believes that Cicero denounced Catiline therefore there
is someone who denounced Catiline and who is believed by Ralph to have denounced
Catiline.’ In the premise, the first occurrence of ‘Cicero’ refers to Cicero whereas the
second refers to Cicero thought of as ‘Cicero’. Hence we cannot, on pain of equivocation,
represent its conclusion by an existential quantifier binding two occurrences of the
same variable x.

Hintikka’s epistemic logic is equipped to cope with that problem. Hintikka imputes
the failure of existential generalization in epistemic contexts to a failure of the 
presupposition of uniqueness if the singular term occurs inside the scope of the belief
construction. He imputes it to a failure of both an existence and a uniqueness 
presupposition if the singular term occurs inside and outside the scope of the belief
construction.

On Hintikka’s account, an inference of the form ‘bRc & Ba bRc therefore ($x) (xRc &
BaxRc)’ in which b occurs both inside and outside the belief operator ‘Ba’ is valid only
if we supply an auxiliary premise of the form ‘($x) (x = b & Bax = b).’ Admittedly we have
been forced to enlarge our logic, but we still do this without bringing intensions into our
ontology.

In the semantics for modal (viz. epistemic and doxastic) logic, what one quantifies
over is “the totality of those functions that pick out the same individual from the
domains of the different possible worlds” (Hintikka 1969: 137). The world lines which
tie up individuals across possible worlds, however, are human artefacts which do not
belong to the furniture of the world. Our departure from Quine’s ontology is thus reduced
to the minimum.

QUANTIFIERS, BEING, AND CANONICAL NOTATION

275



As far as Quine is concerned, he endorsed the purely extensionalistic treatment of
de re propositional attitudes worked out in Burdick’s paper (1982: 185–230; see Quine
1995: 98).

10 Fiction, Intentional Objects and Existence

However different the ontology of fiction may be from that of nonfictional prose, its logic
proves to be the same. Binary relations have a converse both in the real world and in
the world of fiction: “[r]eaders will automatically conclude that Gladstone shakes hands
with Holmes when reading that Holmes shakes hands with Gladstone” (La Palme Reyes
1994: 312).

Even though ‘Sherlock Holmes’ denotes nothing in the real world, it refers to some-
thing in fiction and even refers rigidly, that is it designates the same individual in all the
counterfactual situations defined relatively to the situations taken as being actual
within the work of fiction. Similarly ‘man’ is a natural kind.

The quantified phrase ‘every man,’ however, has a different domain in fiction and in
standard discourse. Should Conan Doyle ascribe immortality to one of his characters,
he would not falsify the sentence: ‘("x) (x is a man Æ x is mortal).’ The domain of fiction
does not intersect with the domain of science, even if a name like ‘Gladstone’ may occur
both in fiction and in history books. In the novels, ‘Gladstone’ designates a character.

Can we form the union of the two domains? Lauener gives a negative answer: “I do
not believe that lumping all the individuals into one huge pool would make sense”
(Lauener 1986: 285). Can we lump together possible worlds? Hintikka replies that we
cannot: “The . . . trouble . . . with Meinong’s jungle, is that it has not been zoned,
plotted and divided into manageable lots better known as possible worlds” (Hintikka
1989: 40).

Admittedly, if our concern is ontological, if we only care about the ‘furniture of the
world,’ then putting actual entities and fictional beings together would blur the dis-
tinction between reality and fiction and generate pure obscurantism. There is, however,
another approach, as Hintikka observes in Intentions of Intentionality (1975). Our
concern may be transcendental. We may be interested in bringing together all thinkable
objects (which include existents, inexistents, and even impossible beings).

If we want to quantify over that unified domain, however, we need neutral quanti-
fiers. Here we move beyond free logic, which remained content with neutral singular
terms, and we enter into Meinongian logic invented by Routley (1966) in ‘Some things do
not exist’ and developed by several authors. See the recent contributions due to
Jacquette (1996) and Pasńiczek (1998).

Far from being a gratuitous exercise, a logic of that kind is indispensable if we want
to represent, for example the inference which starts with the assumption that there is
a barber who shaves everybody in the village who does not shave himself and which
ends with the conclusion that there is not such a barber.

We need a Meinongian logic to assess reasoning about inexistents just as we need a
paraconsistent logic (or Batens’s adaptive dynamic logic) to assess the reasoning of the sci-
entist confronting an inconsistency. When Clausius discovered a contradiction between
Carnot’s theory and Joule’s ideas, he did not apply the principle ex falso sequitor quodli-
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bet, nor did he stop reasoning. He “implicitly used a logic that localizes the specific con-
tradictions and adapts itself to these” (Meheus 1993: 385).

11 Lesniewski’s Ontology

Consider the following syllogism:

All horses are animals
Bucephalus is a horse
Bucephalus is an animal.

It contains two types of predication: (1) generic/generic predication in the major premise
and in the conclusion, (2) individual/generic predication in the minor premise.
Representing that syllogism within the predicate calculus forces us to alter the purity
of logic by introducing a semantic distinction between singular names (‘Bucephalus’)
and general names (‘horse’, ‘animal’). Such a distinction blurs the fact that singular
names are logically and syntactically on a par with general names (Waragai 1999: 15).
Next we are led to fuse general names with the copula in front of them and to attribute
different meanings to the copula ‘is,’ depending on whether it occurs in a predication of
the first or of the second sort.

This has prompted several authors (among them Lejewski 1954) to switch from 
first-order predicate logic to the deductive system that Lesniewski created in 1920, that
is to ‘ontology.’ The latter is based upon a single copula in terms of which the other mean-
ings of ‘is’ can be defined. No distinction is made in the system between proper 
and general names. The task of expressing existence can be removed from the quanti-
fier and the identity can be made ontologically noncommittal, as it is the case in
Meinongian logic.

Lesniewski’s ontology has been recently shown to be interpretable in monadic
second-order predicate logic, which shows that its first-order part is decidable
(Cocchiarella forthcoming).
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Pasńiczek, J. (1998) The Logic of Intentional Objects. Dordrecht: Kluwer Academic Publishers.
Putnam, H. (1975) Mind, Meaning and Reality. Cambridge: Cambirdge University Press.
Quine, W. V. O. (1953, 1961) From a logical point of view. New York: Harper & Row.
Quine, W. V. O. (1960) Word and Object. Cambridge, MA: MIT Press.
Quine, W. V. O. (1963) Set Theory and its Logic. Cambridge, MA: Belknap Press of Harvard

University Press.
Quine, W. V. O. (1969) Ontological relativity and other essays. New York: Columbia University 

Press.
Quine, W. V. O. (1970) Philosophy of Logic. Englewood Cliffs, NJ: Prentice-Hall.
Quine, W. V. O. (1974) The Roots of Reference. La Salle, IL: Open Court.
Quine, W. V. O. (1981) Theories and Things. Cambridge, MA: Belknap Press of Harvard University

Press.
Quine, W. V. O. (1982) Methods of Logic. 4th edn. Cambridge, MA: Harvard University Press.
Quine, W. V. O. (1994a) Assuming objects. The Journal of Philosophy, 60, 171–92.
Quine, W. V. O. (1994b) Promoting extensionality. Synthese, 98, 143–51.
Quine, W. V. O. (1995) From stimulus to science. Cambridge, MA: Havard University Press.
Recanati, F. (2000) Opacity and the attitudes. In P. Kotatko and A. Orenstein (eds.), Knowledge,

Language and Logic: Questions for Quine. (pp. 367–407). Dordrecht: Kluwer Academic.
Resnik, M. (1997) Mathematics as a Science of Patterns. Oxford: Clarendon Press.
Ross, W. D. (1924) Aristotle’s Metaphysics, 2 vols. Oxford: Clarendon Press.
Ross, W. D. (1949) Aristotle’s Prior and Posterior Analytics: A Revised Text. Oxford: Clarendon Press.
Routley, R. (alias Sylvan) (1966) Some things do no exist. Notre Dame Journal of Formal Logic, 7,

251–76.
Russell, B. (1903) Principles of Mathematics. London: W. W. Norton.
Russell, B. (1908) Mathematical logic as based on the theory of types. In B. Russell, Logic and

Knowledge. (pp. 59–102). London: George Allen & Unwin.
Russell, B. (1918) The philosophy of logical atomism. In B. Russell, Logic and Knowledge. (pp.

177–281). London: George Allen & Unwin.
Simons, P. (1997) Higher-order quantification and ontological commitment. Dialectica, 51,

255–71.
Specker, E. (1953) The axiom of choice in Quine’s New Foundations for mathematical logic.

Proceedings of the National Academy of Science, 39, 972–5.
Vidal Rosset, J. (forthcoming) “New Foundation”: un exemple de la relativité des normes en

théorie des ensembles.
Waragai, T. (1999) Aristotle’s master argument about primary substance and Lesniewski’s

logical ontology: a formal aspect of metaphysics. In R. Rashed and J. Biard (eds.), Les doctrines
de la science de l’Antiquité à l’Age classique. (pp. 9–35). Leuven: Peeters.

Wittgenstein, L. (1961) Tractatus logico-philosophicus. (D. F. Pears and B. F. McGuinness trans.).
London: Routledge & Kegan Paul (original work published 1921).

Further Reading

Batens, D. (1994) Inconsistency-adaptive logics and the foundations of non-monotonic logics.
Logique et Analyse, 145, 57–94.

Bencivenga, E. (1986) Free logics. In D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical
Logic (vol. 3): Alternatives in Classical Logic. (pp. 373–426). Dordecht: Reidel.

QUANTIFIERS, BEING, AND CANONICAL NOTATION

279



Castaneda, H.-N. (1989) Thinking, Language and Experience. Minneapolis: University of Minnesota
Press.

Chakrabarti, A. (1997) Denying Existence. Dordrecht: Kluwer Academic Publishers.
Gochet, P. (1980) Outline of a Nominalist Theory of Propositions. Dordrecht: Reidel.
Gochet, P. (1986) Ascent to Truth. Munich: Philosophia Verlag.
Gochet, P., Gribomont, P. and Thayse, A. (2000) Logique, vol. 3. Paris: Editions Hermès.
Haack, S. (1996) Deviant Logic, Fuzzy Logic: beyond the Formalism. Chicago: Chicago University

Press.
Haller, R. (ed.) (1985–6) Non-existence and predication. Grazer Philosophische Studien, 25–6.
Haller, R. (ed.) (1995) Meinong and the theory of objects. Grazer Philosophische Studien, 50.
Hausser, R. (1999) Foundations of Computational Linguistics. Berlin: Springer Verlag.
Lambert, K. (1981) On the philosophical foundations of free logic. Inquiry, 24, 147–203.
Ludwig, K. and Ray, G. (1998) Semantics for opaque contexts. Philosophical Perspectives, 12,

141–66.
Lycan, W. (1999) The trouble with possible worlds. In M. Tooley (ed.), Analytical Metaphysics (vol.

5). (pp. 274–316). New York: Garland Publications.
Marcus, R. B. (1993) Modalities. New York: Oxford University Press.
Morscher, Ed., Czermak, J. and Weingartner, P. (eds.) (1977) Problems in Logic and Ontology. Graz:

Akademische Druk und Verlangsanstalt.
Nef, F. (1999) L’objet quelconque. Paris: Vrin.
Orenstein, A. (1977) Willard Van Orman Quine. Boston, MA: Twayne.
Orilia, F. (1987) Definite descriptions and existence attributions. Topoi, 6, 133–8.
Parsons, T. (1980) Nonexistent Objects. New Haven, CT: Yale University Press.
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From Logic to Ontology: Some Problems of
Predication, Negation, and Possibility

H E R B E RT H O C H B E RG

1 Negation and Nonexistence

Russell contrasted considering things “from a logical point of view” with linguistic 
and philosophical points of view, where ‘philosophical’ meant ‘ontological.’ This fits
with his suggesting ‘Philosophical Logic’ for the title of Wittgenstein’s Tractatus. While
Wittgenstein supposedly responded that the phrase was nonsense, ontological issues
raised by logic and ‘logical form’ are now a basic part of philosophical logic. One of the
oldest problems concerns negation. In a passage in The Sophist Plato writes: “When we
assert not-being it should seem, what we assert is not the contrary of being, but only
something other.” (Taylor 1971: 164). Taken with other passages, this suggests Plato
considers ‘x is not-F’ as (1) ‘(f )(f π F if fx)’ or (2) ‘(y)(y π x if Fy).’ [I use ‘if ’ to avoid
explicit use of a truth-functional conditional and obvious problems posed by using ‘…’
to eliminate ‘ÿ’.] While Taylor takes Plato to construe ‘not-F’ in terms of “being some-
thing other than what we call ‘F’,” he construes ‘other’ in a restricted sense that involves
F belonging to a group of incompatible properties. Owen rejects such an interpretation
of Plato and takes ‘x is not-F’ as ‘all attributes of x are different from F’, rather than as
‘some attribute of x excludes F’ (Owen 1986: 131, 114–15). Many Plato scholars con-
sider such readings problematic, but Owen, following (1), analyzes not-F in terms of the
Platonic forms of difference (π) and sameness (=). Forgetting ‘types’ and questions about
how Plato construes relations, obvious problems arise if ‘=‘ and ‘π’ are used to define
‘ÿ’, as the equivalences – (a) ‘ÿ(f = g) iff f π g’ and (b) ‘ÿ(f π g) iff f = g’ – are not de-
rivable. Consider (b). Using (1), ‘ÿ(f π g)’ becomes ‘(R)(π(R, π) if R(f, g))’. But we can
neither derive ‘f = g’ from that nor that from ‘f = g’, though ‘[(R)(π(R, π) if R(f, g))] iff
f = g’ may seem obviously true. The same holds for (a) and ‘[(R)(π(R, = ) if R(f, g))] iff
f π g’, using (2) in place of (1). ‘ÿÿFa iff Fa’ poses a related problem.

Bradley and Bosanquet suggested ‘ÿFx’ be construed as ‘($f)(fx & f is incompatible
with F),’ while Demos took ‘ÿp’ as ‘($q)(q is true & q is incompatible with (in opposition
to) p).’ Russell argued that Demos did not avoid negative facts, as incompatibility is a
form of negation, being the Scheffer stroke function, and that Demos’ view generated
a problematic regress, since ‘p and q are in opposition’ means ‘p and q are not 
both true’ (Russell 1918, 1919). But in the 1925 edition of Principia he wrote: “Given
all true atomic propositions, together with the fact that they are all, every other true



proposition can theoretically be deduced by logical methods” (Whitehead and Russell
1950: xv). Since atomic facts ontologically grounded true atomic propositions, this took
a set of atomic facts and the general fact that the set contained all the atomic facts to
avoid negative facts, though he spoke of atomic propositions, not atomic facts. A nega-
tion of an atomic proposition was true if it followed from the statement of the general
fact and the ‘list’ of true atomic propositions. This followed his rejecting conjunctive
facts due to ‘p, q |= p & q.’

Russell’s theme has been revived in recent years by views appealing to a ‘meta-fact’
about atomic facts or a class or totality of atomic facts or both. The simplest version of
such a view recognizes a domain of all atomic facts, a class, as the ontological ground
for true negations of atomic propositions. The class of all atomic facts is taken to suffice
as the truth maker for such negative truths, since it is purportedly not a fact that an
excluded atomic fact is not in the class. That is a consequence of an ontological analy-
sis of classes taking a class, say {a, b}, to suffice as the truth ground for statements like
‘a Œ {a, b}’ and ‘ÿc Œ {a, b},’ as opposed to holding that a relation, Œ, obtains or does
not between the term and the class. Moreover, one can argue that classes are presup-
posed by standard systems of logic, since the logical variables and quantifiers presup-
pose domains, which are classes, or ‘ranges’ of application. But recognizing such 
a ‘range’ implicitly recognizes a domain (class) comprised of all and only things satis-
fying some condition. As classes of particulars and properties correspond to individual
and predicate variables and quantifiers, respectively, the sentential variables can be
taken to correspond to a domain of facts, rather than to the ‘truth values’ used in 
the ‘evaluations’ in logic texts. This requires rejecting the ‘substitutional’ account of
quantification as untenable. On such an account, the quantifier sign ‘($x)’, for example,
is read in terms of ‘There is a name (constant)’ rather than ‘There is an object (in-
dividual).’ Supposedly one can then ‘semantically ascend’ to talk of signs, instead 
of things, and avoid ontological commitments to non-linguistic objects in the domain 
of a quantifier. Semantic ‘ascension’ has led to tortured attempts to prove that formal
systems can have non-denumerably many proper names. But that is of no import, for
one can simply assume that there are sufficiently many individual constants. The real
problem is the assumption that for every object there is a corresponding sign – a claim
that involves quantifying over objects as well as signs. The standard response, going back
to a 1968 argument of Belnap and Dunn, is the pointless and problematic claim that
such a use of an objectual quantifier can be construed substitutionally, involving a
further quantification over objects that is then treated substitutionally, and so on ad
infinitum.

Conjunctive and disjunctive facts may be avoided, as true conjunctions and dis-
junctions are so in virtue of the truth or falsity of component atomic sentences. But
negation raises a unique problem. The difference is reflected, first, by there being no
standard logical rule for negation corresponding to ‘p, q |= p & q,’ and, second, by an
evaluation assigning one of T or F, but not both, to the atomic sentences in a standard
bivalent logic. This latter point can be taken to reflect the traditional logical laws of
excluded middle and non-contradiction and their special status, though all tautologies,
being logically equivalent, are ‘equal.’ Such laws provide a basis for the use of truth
tables, as the ‘law of identity’ is presumed by any coherent system of signs. But 
the truth table for negation does not explicate the meaning of ‘ÿ’. Nor does it resolve
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questions about negative facts and the ontological correlate of the negation sign. What
a standard truth table shows is: (1) that ‘ÿ’ is taken as the sign for negation; (2) that
every sentence of the schema is taken to be true or false; and (3) that ‘or’ in (2) is used
in the exclusive sense since no sentence is both true and false. Some logical signs, and
concepts, are basic, and so-called elimination and introduction rules neither provide
analyses of them nor resolve ontological issues raised by them. Recent purported expli-
cations of the meaning of the quantifier signs, stemming from Wittgenstein’s Tractarian
views, by means of such rules also do not do what they purport to (Celluci 1995;
Martin-Löf 1996). Such rules merely codify the interpretation of the quantifier signs, as
truth tables do for truth functional signs, linking them to generality and existence.

Russell appealed to a general fact about all true atomic facts and, implicitly, a class
(‘list’) of atomic facts to ground the truth of true negations. Later, others took such a
class of atomic facts to suffice while some held that a general fact alone sufficed. All
such attempts fail to resolve the issue of negative facts. We can see why by returning
to the attempt to take the truth ground of ‘ÿ Fa’ to be a class, D, of atomic facts and a
general fact, (p)(p π Fa), with D giving the range of ‘p.’ ‘(p)(p π Fa)’ states that no fact
is a’s being F. But such a general fact involves an apparent negation. Limiting the dis-
cussion to a miniature world (model) with D = {Ga, Fb}, we can take Russell’s list in
terms of ‘(p)(p = Ga ⁄ p = Fb),’ stating that Ga and Fb are all the atomic facts, without
a negation. But that is still problematic. As ‘($x)($y)(x π y & (z)(z = x ⁄ z = y))’ states
that there are only two particulars, we can state that a and b are the only particulars
by ‘(x)(x = a ⁄ x = b).’ That entails, with an additional name ‘c,’ that ‘($x)(x = c)’ entails
‘(c = a ⁄ c = b).’ But as ‘(x)(x = a ⁄ x = b)’ does not entail ‘ÿ($x)(x = c),’ ‘(p)(p = Ga ⁄ p
= Fb)’ does not entail either ‘ÿ($p)(p = Fa)’ or’ ‘ÿ Fa’ is true.’ All that follows that is rel-
evant is ‘($p)(p = Fa) |= (Fa = Ga ⁄ Fa = Fb),’ which entails ‘(Fa π Ga & Fa π Fb) |= ÿ($p)
(p = Fa),’ assuming that we can instantiate to ‘Fa,’ as we assumed about ‘c’ above. Stating
that the nonexistence of Fa grounds the truth of ‘ÿFa’ thus involves ‘Fa π Ga & Fa π
Fb’ or ‘(p)(p π Fa),’ as well as the apparent implicit use of ‘Fa’ to represent a nonexistent
fact.

The issue raised by ‘(p)(p π Fa)’, or instantiating to ‘Fa’ from ‘(p)(p = Ga ⁄ p = Fb),’
recalls Meinong’s nonexistent objects and nonsubsistent objectives, since Fa does not
exist. The correspondence theory of truth, taking facts as truth grounds for sentences
(propositions), that Moore set forth in lectures of 1910–11 raised the issue that 
was put cryptically by Wittgenstein (1961: 4.022). An atomic statement, or a ‘thought’
that a is F, represents a situation – shows its sense – whether or not it is true, and 
states that it obtains. As showing or representing is a relation, between a statement 
or thought and a situation, that obtains whether or not the represented situation 
does, since the thought must have the same sense whether it is true or not, a problem
arises. Moore avoided the issue by saying that his talk of the ‘non-being’ of a fact 
was merely an unavoidable way of speaking, while taking the being of the fact that-p
to directly prove the truth of ‘the belief that-p.’ But holding, like Russell, that “Fa” is 
true iff the fact that-a is F exists’, his use of the clause ‘that-a is F’ pointed to the 
implicit recognition of facts as possibilities (situations) which may obtain (exist) 
or not. Thus correspondence was an ambiguous concept. In one sense ‘Fa’, whether 
true or not, corresponded to a possibility; in another sense, if true, it corresponded to
an existent fact.
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2 Designation and Existence

Carnap (1942: 24, 50–2) considered the issues of truth and reference in terms of the
semantics of ‘designation’. Consider (1) ‘a’ designates Theaetetus; (2) ‘F’ designates the
property of flying; (3) ‘Fa’ designates the state of affairs that Theaetetus is flying.
Carnap took (1)–(3) as semantical ‘rules’ for a schema. With designates as a semantical
relation, (3) is true even if ‘Fa’ is false. (1)–(3), as semantical rules, do not express
matters of fact. That such rules are rules of a particular schema is a matter of fact. The
same sort of distinction applies to ordinary language variants of (1)–(3) – ‘Theaetetus’
designates Theaetetus, etc. Considered as statements about the usage of terms, they
express matters of fact, but, properly understood, they are semantic rules. Taking the
signs as interpreted signs – symbols, in the sense of Wittgenstein’s Tractarian distinc-
tion between a sign and a symbol, there is, in a clear sense, an internal or logical rela-
tion involved in such rules. (1)–(3) express formal or logical truths, since the symbols,
not signs, would not be the symbols they are without representing what they represent.
This incorporates a ‘direct reference’ account of proper names and the direct repre-
sentation of properties and relations by primitive predicates. This was involved in
Russell’s notion of a “logically proper name” or label that functioned like a demon-
strative, as opposed to a definite description that ‘denoted’ indirectly, via the predicates
in the descriptive phrase. In the last decades of the century, with the decline of inter-
est in and knowledge of the work of major early twentieth-century figures, petty
debates have erupted about priority. One of the most absurd concerns whether Barcan
or Kripke originated Russell’s account, which was set out in the first decade of the
century and adopted by many since. The absurdity has been compounded by the mis-
leading linking of Russell with Frege in what some speak of as the ‘Frege–Russell’
account of proper names, which ignores Russell’s attack on Frege’s account in the
classic “On Denoting” (Russell 1956a; Hochberg 1984). The direct reference account
was ontologically significant for Russell and others who took the primitive nonlogical
constants (logically proper names and predicates), representing particulars and prop-
erties (relations) respectively, to provide the ontological commitments of the schema
(Bergmann 1947; Hochberg 1957). This contrasted with Quine’s taking quantification
as the key to ontological commitment – “to be is to be the value of a variable” – which
allows a schema limited to first order logic to contain primitive predicates while 
avoiding properties, by fiat. That fits Quine’s replacing proper names by definite des-
criptions, involving either primitive or defined predicates. For one only then makes 
ontological claims by means of variables and quantifiers, and predicates retain onto-
logical innocence (Quine, 1939, 1953). If primitive predicates involve ontological 
commitments, as in Carnap’s (2), attempting to eliminate all directly referring signs 
via descriptions faces an obvious vicious regress, aside from employing an ad hoc and
arbitrary criterion.

Wittgenstein simply ignored the problem about (3) by giving (1) and (2) the role of
(3), as Russell was to do in the 1920s under his influence. This was covered over by his
speaking of the ‘possibilities’ of combination being ‘internal’ or ‘essential’ properties of
the ‘objects’ that were combined. Carnap’s (3), which articulates Moore’s view, makes
explicit reference to a possible fact or situation. Russell had suggested using his theory
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of descriptions to avoid reference to possible facts, as well as to nonexistent objects
(Russell 1905). He developed that idea in 1913 (Russell 1984; Hochberg 2000), but
abandoned the book, partly due to Wittgenstein’s influence. Russell replaced (3) by 
“ ‘Fa’ is true iff the fact consisting of Theaetetus and the property of flying exists,”
thereby avoiding a designation relation connecting a sentence to a purported state of
affairs. What he suggested is more explicitly rendered by:

(3R) ‘Fa’ is true ∫ Fa ∫ E! ( p)(T(a, p) & A(F, p) & ƒ(jx, p)),

with ‘T,’ ‘A,’ and ‘ƒ’ for ‘is a term in,’ ‘is attributed in,’ and ‘is the form of ’ and Wx as
the form of monadic first-order exemplification. (3R) is a tripartite biconditional that is
an interpretation, but not designation, rule and a ‘rule of truth,’ specifying a truth
maker, that avoids possibilities and Meinongian nonsubsistent objectives. The relations
T, A, and ƒ do not raise the same problem, since atomic sentences, unlike names and
predicates, are not designators, as they are in Carnap’s (3). Since they do not designate
atomic sentences are not taken as names of situations in (3R), as Wittgenstein does take
them in the Tractatus, despite his claim to the contrary. We can now express the non-
existence of the purported fact that-a is F by:

(3N) ‘ÿFa’ is true ∫ ÿFa ∫ ÿE! ( p)(T(a, p) & A(F, p) & ƒ(jx, p)).

The question that arises is whether recognizing the class of atomic facts allows for 
specifying a truth maker in terms of (3N) without recognizing negative facts. One might
argue we can do so since an ontological ground for taking such statements to be 
true is acknowledged: the class or domain of atomic facts taken as the correlate of
the sentential variables. It is tempting to argue that it is no more a further fact that 
no such member of the class exists than it is a further fact that such a fact does exist,
if the sentence ‘Fa’ is true. As there is no need to hold that when an atomic fact 
exists there is an additional fact, the fact that the atomic fact exists, there is no need 
to recognize the fact that an atomic fact does not exist, a negative fact, when the atomic
fact does not exist. This is supposedly reinforced by recognizing that what makes a state-
ment of class membership true or false is not a relational fact involving the relation 
of class membership, but simply the class itself. One can apply the same idea in 
the case of true negations, by taking ‘Fa’ to be false given the class of atomic facts. If
the appeal to a set of facts, taken as the domain of atomic facts, is viable we can avoid 
negative facts. But there is a simple argument against such a view. We cannot 
say, where ‘ÿFa’ is true, that the fact Fa does not belong to the totality or is not
or that the fact Fa is not identical with any of the atomic facts by using ‘Fa’ or the
expressions ‘that-Fa’ or ‘the fact Fa’ to designate a nonexistent fact. Rather, we can only
describe such a fact and purport to denote it by a definite description to make such a
claim.

The claim that the fact Fa does not belong to the class of atomic facts thus involves
a description of that fact and a statement of the form ‘ÿ(( p)(T(a, p) & A(F, p) & ƒ(jx,
p)) Œ D),’ and not one like ‘ÿc Œ {a, b}.’ We cannot simply appeal to a class or domain
as the truth ground for either ‘The fact Fa does not exist’ or ‘ÿFa.’ For such attempts to
dispense with negative facts involve implicit claims that amount to:
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(N¢) (q)(q π ( p)(T(a, p) & A(F, p) & ƒ(jx, p))),

where the variables ‘q’ and ‘p,’ as earlier, range over existent atomic facts. (N¢) serves
the purpose of a list or corresponding universal disjunction or reference to the domain
D, while avoiding problems raised by infinite lists or disjunctions. If ‘π’ is a primitive
sign, as diversity is taken by some to be phenomenologically basic, as opposed to identity,
then (N¢) becomes:

(N≤) ($up)((T(a, p) & A(F, p) & ƒ(jx, p)) & (q)(q π p)),

using the subscripted ‘u’ for ‘uniqueness.’ This will obviously not do as an expression
of the truth ground for ‘ÿFa,’ since it states that there exists a fact, a’s being F, that is
diverse from every fact. Making sense of (N≤) requires accepting both existent (actual)
and merely possible facts, different senses of ‘exists’ and different variables to range over
such respective domains, as in some ‘free’ intensional logics. This is not acceptable to
one seeking to avoid negative facts by appealing to classes or totalities. Yet, to reject
diversity as basic, and treat ‘π’ in terms of ‘ÿ’ and ‘=’, treats (N¢) as ‘(q)ÿ(q = ( p)(T(a,
p) & A(F, p) & ƒ(jx, p)))’, and hence as:

(q)ÿ($up)((T(a, p) & A(F, p) & ƒ(jx, p)) & (q = p)).

This returns us to the problematic use of an embedded negated existential claim that
either repeats what we must account for or leaves us with the issue of negative facts.

The rejection of negative facts by simple appeals to classes or totalities is not viable.
Accepting them, however, poses a problem as to their analysis (Hochberg 1999: 193f).
But there is an alternative. Consider the following derivation, with ‘p’ and ‘q’ ranging
over monadic atomic facts (thus simplifying matters by omitting reference to the form
jx):

(DN) l a π b
2 F π G
3 (q)(q = ( p)(T(b, p) & A(F, p)) ⁄ q = ( p)(T(a, p) & A(G, p)))
4 (p)(q)[{(x)(y)(f)(g)((x = y) & (f = g) & T(x, p) & A(f, p) & T(y, q) & A(g, q)) 

∫ p = q}]
5 ($x, y, f, g )(x = a & y = b & F = f & G = g)

6 ÿE! ( p)(T(a, p) & A(F, p)).

Since (4) states that monadic (first order) atomic facts are the same iff their constituents
are the same, (DN) is a valid argument. Hence, as ‘ÿE! ( p)(T(a, p) & A(F, p))’ is taken
to be equivalent to, or a transcription of ‘ÿFa,’ we have derived the latter. For, assum-
ing ‘E! ( p)(T(a, p) & A(F, p)),’ we can instantiate (3) to (6) ‘Fa = Fb ⁄ Fa = Ga,’ using
the atomic sentences to abbreviate the corresponding descriptions of the relevant pur-
ported facts. But, by (4), (6) is false, so we arrive at ‘ÿFa’, that is ‘ÿE! ( p)(T(a, p) & A(F,
p)).’ We thus ‘ground’ the truth of ‘ÿFa’ without appealing to a negative fact by the use
of ‘ÿE!( p)(T(a, p) & A(F, p))’ as an implicit premise. (DN) differs in this crucial way
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from using a generalization like ‘(q)ÿ(q = ( p)(T(a, p) & A(F, p)),’ as a premise, to arrive
at ‘ÿE! ( p)(T(a, p) & A(F, p)).’ In the latter case, since the premise and conclusion are
trivially equivalent, we merely assume the negation to be derived and thereby acknowl-
edge, rather than avoid, negative facts. But (DN) requires (1) and (2), which can 
be taken as recognizing basic and specific facts of diversity. This raises two issues: Is
diversity or identity the fundamental concept? Are facts of diversity, or denials of iden-
tity, negative facts? In any case, (DN) can be seen as illustrating a sense in which Plato
was right.

3 Logical Truth, Modality, and Ontology

We avoid conjunctive facts since ‘p, q |= p & q’ justifies taking the facts that ground the
truth of the conjuncts as the truth makers for a true conjunction. But what ontologi-
cally grounds logical entailments and logical truths? To hold there is no ground can
lead one to follow logical positivists and rule out the question as a pseudo-question,
along with other ‘metaphysical’ questions, and to viewing logic as a matter of ‘con-
vention’ or as involving only ‘internal’ questions relative to a system. The convention-
alist move has variants other than the Viennese one. There is the French fashion that
includes ‘being responsible for your own birth,’ as we impose our concept of ‘birth’ on
Being (Sartre), and “your child not being your child without language” (Lacan), and
the anglo-American variants emphasizing ‘world making,’ ‘ways of life,’ ‘webs of
belief,’ ‘rules,’ ‘normative aspects’ and ‘social contexts.’ All of them, linked one way or
another to holism and German Idealism, have a hollow ring, as does Hume’s speaking
of the ‘necessity’ of logical entailment in terms of a psychological determination to
proceed from one idea to another. Employing model theory (set theory) to provide
‘semantics’ for logical systems does not change the basic issue, despite familiar prob-
lems that lead some to believe that logic rests on axiomatic systems that require ‘arbi-
trary’ (hence conventional) restrictions to avoid paradoxes. Neither positivism nor
conventionalism fits the obvious fact that coherent discussion of the issues assumes
fundamental and familiar logical truths and rules. In a different context, Moore
expressed the basic theme behind the logical realist’s rejection of the three-headed
Hydra of conventionalism–idealism–psychologism: the task is not to prove the obvious
but to clarify the grounds for it being so.

Ontologically grounding logical truth is traditionally linked with the explication of
‘necessity’ and ‘possibility’ and the question of whether there are necessities other than
logical ones. Concern with modalities dates from Aristotle through the medieval period
to the present. The logical positivists, following a theme in Russell and the early
Wittgenstein, sought to explicate ‘necessary truth’ in terms of logical truth. The latter
notion was sometimes considered in purely formal or ‘syntactical’ terms. Logical and
mathematical truths were taken to be so since they were theorems of certain calculi.
This led to Carnap’s distinguishing ‘external’ from ‘internal’ questions and declaring
the former ‘pseudo-questions.’ One could only consider questions about logical and
mathematical truth as questions about formulae being theorems of some system. Aside
from the inadequacy of such a view, given Gödel’s incompleteness result (Gödel 1986;
Lindström 2000), it is philosophically inadequate in a basic sense. Consider standard
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propositional logic, which is complete. It is a system of logical truths in virtue of the
concepts of truth, falsity, and negation and the logical ‘laws’ that truth tables are based
on. Speaking of logical or mathematical truth solely in terms of theorems of some
formal system takes one nowhere.

Carnap subsequently sought to explicate the notions of logical truth, necessity, and
possibility, by extending his 1942 system of semantics to modal logic. The development
of modern modal logic is taken to begin with Lewis’ and Langford’s work on proposi-
tional modal logic – their addition of modal signs (‘‡’ for ‘possible’) to propositional
calculi and employing a modal conditional of strict implication ‘p F q.’ But Carnap took
the modal concepts to be ‘unclear’ and ‘vague’ requiring an explication of
the notion of ‘logical necessity.’ He sought to provide one in terms of logical truth, taken
as a meta-linguistic ‘semantical concept’ (Carnap 1947: 174). It is fashionable, 
but more myth than fact, to date quantified modal logic from Barcan’s March, 1946
paper (Hughes and Cresswell 1996: 255; Boolos 1993: 225) that was received 
on September 28, 1945, having been extracted from a doctoral dissertation in progress.
The same journal published Carnap’s paper (1946) on quantification and modalities 
in June, having received it November 26, 1945. Carnap’s paper was based on Meaning
and Necessity, a book he had worked on in 1942, completed a first version of it in 
1943 and, after an extensive correspondence with Quine and Church, published 
in 1947 (Carnap 1947: vi). It was the third of a series of books on logic and semantics
done in the 1940s. In both earlier works of the trilogy he mentioned his work on a
system of quantified modal logic in the 1943 manuscript (Carnap 1942: 85, 92;
Carnap 1943: xiv).

Carnap’s 1946 paper contains one of the earliest semantics for a system of modal
logic that he altered and developed in the 1947 book. Barcan’s paper consists of simple
derivations from assumptions. One assumption, the Barcan formula, was among the the-
orems for which Carnap offered semantical proofs in 1946 and 1947. Semantics for
modal systems, of the general kind now associated with Kripke’s name, occur earlier
in the work of Kanger (1957) and Bayart, while Carnap is often said to have ‘antici-
pated’ them. Based on a theme in the Tractatus, reflecting the idea that a necessary truth
is true in all possible worlds, Carnap introduced ‘state descriptions,’ as sets or lists of
sentences, which we can consider, in terms of the miniature model we used for dis-
cussing negation, as sets of possibilities. In our simple case there are the sets: {Fa, Gb,
ÿFb, ÿGa}, {Fa, ÿGb, Fb, ÿGa}, etc. While ‘Fa’ would be true for only some such sets
or ‘worlds,’ ‘Fa ⁄ ÿFa’ would be true in all, and hence necessarily true. Thus ‘N(p ⁄ ÿp)’
is a theorem by a rule for ‘N’ (‘necessary’). Carnap’s system is, in effect, the one known
as S5, obtained by the addition of ‘‡p … N‡p’ to S4, ‘characterized’ by ‘Np … N(Np)’.
One adds these to a system, often called ‘T’, usually obtained by taking ‘N(p … q) … (Np
… Nq)’, ‘Np … p’ and all valid formulae of standard propositional logic as axioms, along
with rules like substitution, modus ponens, and ‘necessitation’ (if a formula is a theorem
then the formula preceded by ‘N’ also is). 

In S5 the modal concepts are not relativized to a possible world. The essential con-
ceptual change made after Carnap was that the modal concepts were relativized, so
certain ‘things’ (including ‘worlds’) were possible relative to some possible worlds but
not others. For example, a ‘world,’ w, with domain {a, b} can be said not to be ‘acces-
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sible from’ one, w*, with domain {b}, and Fa is not then ‘possible’ relative to w*
(whether ‘Fa’ is then rejected as a formula, taken to be without a truth value, etc. is
irrelevant). This illustrates the simple idea behind the later modifications of Carnap’s
semantics that led to formally characterizing different modal systems in terms of logical
characteristics (transitivity, symmetry, etc.) of a relation, on the set of worlds, and con-
structing models for alternatives to S5, such as S4, T, etc. But, from an ontological point
of view, we merely have various axiom systems about unexplicated and ungrounded
modal concepts or overly rich ontologies (if one speaks literally of ‘worlds’), though dif-
ferent systems appear to fit, more or less, different uses of ‘necessity’ and ‘possibility’ –
logical necessity, causal necessity, etc. One problematic mutation has been the construal
of causal notions in terms of a primitive counter-factual relation, p�Æq (had p
occurred q would have), and a triadic similarity relation, S, between possible worlds –
w is more similar to (closer to) w¢ than w≤ is – where conditions for S provide a ‘seman-
tics’ for ‘�Æ’. Such attempts are notoriously vague, either turning in transparent
circles by illicitly employing causal notions or introducing arbitrary stipulations (con-
ditions) relativizing S (closer in what way?). The appeal to possible worlds as entities is
often denied by claiming that talk of such worlds is merely a way of speaking, as Moore
once said about his referring to nonexistent facts. But philosophical honesty requires
literal talk or the admission that one merely speaks fancifully about linguistic struc-
tures, models, and connections among them. Recent revivals of Carnap’s construal of
state descriptions as sets of sentences take the form of construing possible worlds as
sets of sentences. This leads some to think that, as sets are ‘abstract entitites,’ they deal
with ‘metaphysics’ and ontology. Such pointless patterns invariably involve problem-
atic uses of the term ‘sentence’ and ignore the fact that atomic sentences require inter-
pretation rules like Carnap’s (3). Such rules introduce the basic problems posed by
possible facts and possible worlds that are obviously not resolved by talking about sets
of sentences. Modes of facts (possibility, actuality) and possible facts can ontologically
ground talk of possible worlds, taken as sets of facts where at least one element is a pos-
sible but not actual fact. But such modes, as modalities, are neither clarified nor codified
by the various modal logics. The same is true of (1) the use of ‘possible’ involved in con-
sidering the possibility of further objects, properties, and worlds; (2) the sense of ‘pos-
sible’ in the phrase ‘possible world’; and (3) the ‘modality’ involved in categorial
necessities – F necessarily being a property, etc. – based on exemplification and pre-
supposed by standard systems of logic as well as modal systems. The philosophical 
problems posed by modal logics might have led to their demise but for connections to
intuitionistic logic (Gödel 1933) and ‘reinterpretations’ of ‘N’ and ‘‡’ in terms of prov-
ability and consistency, in the development of a logic of provability related to Gödel’s
incompleteness results (Boolos 1993; Lindström 1996).

Predication and the categorially necessary distinction between terms and attributes
are at the core of two logical paradoxes – the Bradley–Frege paradox and the Russell
paradox. Both stem from mistaken ontological analyses of exemplification and confus-
ing properties with propositional functions. The first results from taking exemplifica-
tion as a relation connecting a term (terms) and a property (relation) to form a fact (or
proposition). It then seems that a further relation must connect the exemplification
relation itself to the term(s) and property (relation), and so on ad infinitum. This led
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Frege, and later Russell in the case of relations (sometimes properties as well), to insist
that no such relation was needed as ‘concepts’ were ‘incomplete’ or ‘unsaturated’ func-
tions that required being completed rather than being connected to terms (arguments).
It led Bradley to hold that exemplification was paradoxical and Sellars to argue that
realism about properties and relations was thereby refuted. The problem, which bears
on an earlier discussion, disappears on the analysis employing (3R). Consider the fact
( p)(T(a, p) & A(F, p) & ƒ(jx, p)). No connection of exemplification is involved. Monadic
exemplification is a logical form, Øx. We also have recognized logical relations, T, A and
ƒ, between a fact and its term, attribute, and logical form, but they are not exemplified
and do not give rise to further facts or possibilities. A relation of exemplification is not
illicitly used in clauses like ‘T(a, p)’, as there is no further fact that a and the described
fact exemplify T. For, by Russell’s theory of descriptions, ‘T(a, ( p)(T(a, p) & A(F, p) &
ƒ(jx, p)))’ – a stands in T to the fact that a is F – reduces to ‘E! ( p)(T(a, p) & A(F, p) &
ƒ(jx, p))’ – the fact that a is F exists. This is why T, A, and ƒ can be said to be logical rela-
tions without simply dismissing the problem. They are not relations that combine terms
into further facts. Hence no regresses arise. The point can be reinforced. Assume the
fact exists and we ‘name’ it ‘[Fa]’. ‘T(a, [Fa])’ is true since [Fa] exists, and not in virtue
of a further relational fact, as ‘a Œ {a, b}’ is true given {a, b}. The point also applies to
part-whole relations and mereological calculi.

The Russell paradox for properties arises from taking ÿjj (non-self-exemplification)
as a property, the so-called Russell property, and deriving a paradox from asserting that
such a property exists. Thus one avoids it by avoiding the existential claim. But there is
a further point. One need not even consider such an existential claim, since ‘ÿjj’ is a
dyadic abstract. Thus the attempt at self-predication involves the purported sentence
‘ÿjj(ÿjj)’. Since ‘ÿjj’ is dyadic, as are ‘jx’ and ‘x = x’, even when the terms are the
same, ‘ÿjj(ÿjj)’ is not even well-formed, being like ‘R(R)’ where ‘R’ is a dyadic pred-
icate. To consider ‘ÿjj(ÿjj, ÿjj)’ is pointless. For, to arrive at the familiar paradox,
one must employ a conversion rule that allows replacing both occurrences of the vari-
able ‘j’ in the predicate ‘ÿjj’ by the subject sign ‘ÿjj’ to arrive at ‘ÿÿjj(ÿjj)’. But
that involves replacing a monadic predicate variable by a dyadic predicate, which mixes
logical ‘types,’ in one of Russell’s unproblematic uses of ‘type.’ This is so irrespective of
illicitly assuming that ‘jj’ and ‘ÿjj’ represent relations or properties or forms – as
some pointlessly and problematically take ‘x = x’ and ‘ÿx = x’ to represent dyadic rela-
tions or monadic properties – of self-identity and non-self-identity. In the latter case we
have, at most, the dyadic relations of identity and diversity. Such philosophically prob-
lematic moves are aided by the formal device of forming ‘abstracts’ – as in the case of
lambda-abstracts. Thus, using ‘(lx,y)(x = y)’ for the identity relation or ‘function,’ one
forms ‘(lx)(x = x)’ to represent the monadic function of self-identity. One then easily
moves to ‘(lj)jj’ and ‘(lj)ÿjj’ to arrive at the purported Russell ‘property’ or func-
tion. The device is misleading, first, as such functions cannot be confused with proper-
ties, and, second, as forming such signs has no ontological significance whatsoever,
unless one postulates that corresponding, and problematic, entities exist. Such issues
aside, the basic distinction between monadic and dyadic predicates prevents the Russell
paradox for properties without resorting to a hierarchy of types or similar restriction,
which removes a ground for claiming arbitrary restrictions are required to avoid logical
paradoxes.
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19 

Putting Language First: The ‘Liberation’ of
Logic from Ontology

E R M A N N O B E N C I V E N G A

There are two ways of conceiving the relation between language and the world: they
differ by making opposite choices about which of them is to be assigned priority, and
which is to be dependent on the other. The priority and dependence in question here
are conceptual, not causal: at the causal level everyone agrees that certain portions of
the nonlinguistic world (intelligent entities, say) must be in place before meaningful
expressions come to pass, so what we are concerned with is how the notion of mean-
ingful is to be understood – whether ‘meaningful’ is defined as something that means
some portion of the world or rather as something that belongs to a self-sufficient struc-
ture of analogies and oppositions. For example, taking for granted that there would be
no meaningful expression ‘John’ unless some intelligent entity came up with it, is ‘John’
a meaningful expression because there is a John that it means or rather because it is a
certified component of the English language, categorized as a name and clearly distinct
from ‘Paul’ – though somewhat analogous to ‘Jack’? If you go the first route, I will say
that you are a realist at the conceptual (or transcendental) level; if you go the second
one, I will call you a conceptual (or transcendental) idealist. ‘Realist’ is a transparent
term, since ‘res’ is ‘thing,’ ‘object,’ in Latin and clearly this kind of realist puts things
(conceptually) first, considers them basic in her logical space; ‘idealist’ is more contro-
versial, since the ‘idea’ in it recalls a psychologistic jargon that is not as popular today
as it once was, so one might think that some other root, more clearly expressive of the
semantical, logico/linguistic character of the current analysis, should be preferred.
And yet, once we are clear about its implications, ‘idealist’ remains a better choice
because it lets us see the connections of this contemporary debate with other, classical
ones; later I will explore some such connections. Before I do that, however, I have to
explain what the contemporary debate looks like.

My example of a meaningful expression above was not chosen at random: in the case
of names there is more agreement than with any other part of speech concerning what
they mean. ‘John’ means a (male) human being, ‘Lassie’ means a dog, ‘the Queen Mary’
means a ship, and in general a name that means anything means an object – or, as
people say, denotes it or refers to it (the terminology is highly unstable: ‘reference’ and
‘denotation’ are used as translations of the Fregean ‘Bedeutung,’ but ‘meaning’ is also
used for the same purpose, consistently with Frege’s own suggestion, and indeed it is
the most natural English counterpart of this perfectly ordinary German word). There



are complications here, since names may be ambiguous and the objects meant may be
past or future as well as present ones, but none of that touches the essence of names’
favored condition: what kind or category the meaning of a name belongs to is hardly
ever an issue, much less so than, say, with predicates or connectives. Probably because
of this (and of the great importance that concrete, middle-sized objects like human
beings, dogs, and ships have in our form of life), it is around names that the realism/
idealism controversy has surfaced in the clearest form within contemporary logic. And
free logics have been its most conspicuous outcome.

Standard quantification theory (SQT) lets us prove theorems like

(1) Pa … $xPx,

one of whose substitution instances would seem to be

(2) If Pegasus is a winged horse then there exists a winged horse.

And that would seem to be a problem, because it would seem that the antecedent of (2)
is true and its consequent is false. As it turns out, no such problem arises if you are a
conceptual realist; for then you are faced by a simple, unproblematic dilemma. Either,
that is, Pegasus exists, and hence there does exist a winged horse after all (it is not for
logic to say what the criteria for existence are, you might add: it may well be that being
described in a story is a sufficient condition for existing), or Pegasus does not exist, and
then (2) is not a substitution instance of (1). For the individual constant a in (1) (I will
take symbols to be autonymous, that is, names of themselves) is supposed to stand for
an arbitrary name, and in a realist framework nothing can be a name unless there is
an object it names. Consistently with this view, in SQT a must receive an interpretation
in all models; in every possible world there must be an object it refers to – an object
existing in that world. If identity is added to the language, we can give direct expression
to this semantical condition by proving the theorem

(3) $x(x = a).

As for the deceptive appearance that ‘Pegasus’ is a name (and (2) is a substitution instance
of (1)), that will have to be dispelled, which can be done in one of two major ways. You
can either assign to ‘Pegasus’ a conventional reference, thus making it a name (Frege
(1893) used this strategy for his formal language, and Carnap (1947) generalized it 
to natural languages), or agree with Russell that (a) ‘Pegasus’ is a disguised definite
description, (b) definite descriptions (disguised or otherwise) are incomplete symbols,
that is, have no meaning in isolation but only in context, and (c) once the appropriate
contextual definiens is provided for the sentence that has the ‘grammatical form’ (2), no
apparent (and confusing) reference to Pegasus occurs in it (none could, because there
is no Pegasus for anything – or anyone – to refer to).

When the models of SQT graduate into the possible worlds of modal semantics (that
is, bring out explicitly what they were to begin with), one might be displeased by the
provability of stronger variants of (3). For the same unobjectionable
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(4) a = a

which lets us infer (3) by existential generalization would now (by existential general-
ization and necessitation) let us infer both

(5) �$x(x = a)

and

(6) $x�(x = a),

that is, both that necessarily there is an a (whatever name a might be) and that there is
an object which is necessarily (or essentially) a – that a refers to the very same object in
all worlds (and, again, a could be any name). But there are those who are perfectly
happy to live with these extreme consequences of realism: they accept the Barcan
formula

(7) �"xA Æ "x�A

and hence are prepared to admit that all possible worlds have the same domain of
objects – that a ‘possible world’ is a particular distribution of accidental properties over
these objects, the objects existing in this world, or more simply the objects.

If, on the other hand, you are an idealist, then you do not think that something 
is a name because it names an object; your definition of a name is not object-based 
(but language-based: a name is an expression belonging to a certain grammatical 
category), and it is perfectly possible that an expression satisfy this definition while 
there is no object that it names. So, if ‘Pegasus’ is taken to be one such nondenoting
name, (2) will be a substitution instance of (1) and its falsity will be enough to disprove
the logical truth of (1). Hence you will be forced to modify (specifically, to weaken) 
SQT so as to rule out that (1) be a theorem; a free logic is what results from this 
modification.

A (further) schematization of (1), that is,

(8) A(a/x) … $xA

(the Principle of Particularization) is often an axiom of SQT. When it isn’t, some equiv-
alent basic assumption is present – most typically, either the Principle of Specification

(9) "xA … A(a/x)

or the already cited Rule of Existential Generalization

A(a/x)(10) ———
$xA
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or the Rule of Universal Instantiation

"xA(11) ——— .
A(a/x)

For definiteness, I will assume a system SL containing axiom (9).
So the very first thing we need to do, to transform SL into a free logic, is to drop 

(9). But that is hardly enough: though from an idealist point of view it is illegitimate to
infer

(12) Pegasus is not a winged horse (~Pa)

from

(13) Nothing is a winged horse ("x~Px),

it is perfectly legitimate to infer

(14) The Queen Mary is not a winged horse (~Pb)

from it. For, remember, this idealism is the conceptual variety; so it is not supposed 
to impact your ordinary, empirical sense of what does exist. The Queen Mary exists,
hence whatever is true of everything existing is true of it. Therefore, (9) cannot just
be dropped: it must be replaced by a weaker variant of it, saying in effect

(15) ("xA Ÿ a exists) … A(a/x).

If identity is part of the language, (15) can be expressed as

(16) ("xA Ÿ $y(y = a)) … A(a/x);

if it isn’t, E! is introduced as a symbol for existence and (15) becomes

(17) ("xA Ÿ E!a) … A(a/x).

Nor is that enough either: just as you don’t want your new understanding of what a
name is to force you to deny that ‘the Queen Mary’ does name an object, and, in general,
to force you to admit fewer objects than the conceptual realist does, you also don’t want
to be forced to admit more. Your objects – though differently conceptualized – will be
the very same ones as before, the existing ones; your idealism will not lead you to intro-
ducing into the world any creatures of fancy. It will continue to be true for you that all
objects exist, that is,

(18) "xE!x;
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and, since (18) is not provable on the basis of the axioms you have allowed so far, it (or
some equivalent principle) will also have to be adopted as an axiom.

During the first phase of their history, from the mid-1950s to the mid-1960s, free
logics were developed much as I did so far, at a purely proof-theoretical level. The formal
systems were justified by intuitive semantical considerations, which sounded convinc-
ing to some and gratuitous to others (Church (1965), for example, pointed out that,
formally, one of these systems was a simple exercise in restricted SQT and hence claimed
that there was nothing ‘distinctive’ about it), and, because the correspondence of stan-
dard and free logics, respectively, to the realist and idealist, largely incommensurable
paradigms was not perceived, inarticulate invocations of ‘natural’ and ‘unnatural’ con-
sequences provided what little ground there was for philosophical discussion. But, even-
tually, the task of defining a formal semantics could no longer be postponed; and here
is where the conceptual issues started (however slowly) to come to the fore.

The semantics for SQT allows for no immediate extension that would assign a truth-
value to a sentence like

(19) Pegasus is white.

For, in that semantics, (19) is true if the object Pegasus belongs to the set W of white
things, and false if Pegasus does not belong to W; but, if there is no Pegasus, we are
stuck. Formally, a model for SQT is an ordered pair ·D, f Ò, where D (the domain) is a 
nonempty set and f (the interpretation function) maps the individual constants of the
language into D and the n-place predicates into Dn, and an atomic sentence

(20) Pa1 . . . an

is true if

(21) · f(a1), . . . , f(an)Ò Œ f(P)

and false if

(22) · f(a1), . . . , f(an)Ò œ f(P).

But, if some of the f(ai) are not defined, the expression preceding the membership sign
is not defined either, nor is a truth-value for (20).

A simple solution for this problem (adopted, for example, by Schock (1964) and
Burge (1974)) would consist of saying that, when Pegasus does not exist, it is auto-
matically not the case that Pegasus belongs to W; hence (19) is false. Formally, one
would consider (20) true if (21) is the case, and false otherwise – which includes all cases
in which some of the relevant expressions are undefined. As a result, all atomic sen-
tences containing nondenoting names would be false, and truth-values for complex
sentences could then be computed in a straightforward manner. But, as an indication
of how quickly dealing with nonexistents gets us into deep and controversial philo-
sophical issues, this solution (call it S) forces upon us a very definite (and, to some,
objectionable) view of the relation between natural and formal languages. For consider
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(23) Pegasus is not white.

If (23) is paraphrased as

(24) ~Pa,

then according to S (23) is true; but is there any reason why (23) could not also be para-
phrased as

(25) Pa,

where P stands for the predicate ‘not white’?
Some authors (the ones Cocchiarella (1974) calls logical atomists) would answer

‘No’: they would claim that the paraphrase of an ordinary sentence into a formal lan-
guage must bring out the ‘logical form’ of that sentence, hence the paraphrase of (23)
into the formal language of quantification theory must be (24) – since (23) is a nega-
tion. But others (the ones that in Bencivenga (1981a) I call logical pragmatists) would
agree with van Fraassen (1969: 90) that “the symbolization of a sentence as . . .
[atomic] indicates only the extent to which its internal structure has been analyzed,
and the depth of the analysis need only be sufficient unto the purpose thereof ”; hence
they would claim that (23) can be alternatively paraphrased as (24) or (25) depending
on what the context requires. If, for example, we are trying to decide on the validity of
the argument

(26) Pegasus is not white.
Therefore, something is not white.

there is no reason for the relevant paraphrase to use a negation sign. Since, on the other
hand, there is also no compelling reason why this paraphrase should not use a nega-
tion sign, the unacceptable consequence follows that (26) is valid or invalid depending
on how we decide to paraphrase (23) – if we paraphrase it as (25) then the premise 
of (26) is false when there is no Pegasus, hence the conclusion follows vacuously 
from that premise (and of course the conclusion always follows when Pegasus exists);
if we paraphrase it as (24) then the premise is true when there is no Pegasus and 
the conclusion is false in a world where W is empty. Thus the ‘straightforward’ solu-
tion S of a specific problem concerning nondenoting names would end up ‘resolving’ 
also such a general philosophical issue as the debate between logical atomism and 
pragmatism!

Those who find the outcome above disturbingly close to magic might be attracted by
another simple way out. We have a problem here because the interpretation function
of a model is not always total: it may be undefined for some individual constants. Let
us agree then to make it always total, by adding to each model an additional domain
(called the outer domain) and interpreting there the constants that remain undefined 
in the ordinary domain of quantification (the inner domain). Formally, a model in 
outer domain semantics (whose classical text is Leblanc and Thomason (1968)) is 
an ordered triple ·D, D¢, f Ò, where D and D¢ are disjoint sets and f maps the individual
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constants into D»D¢ and the n-place predicates into (D»D¢)n. The most obvious reading
of the outer domain makes it the set of nonexistent objects; after all, consistency
requires that

(27) E!a

be false whenever f(a)ŒD¢. And here again we encounter serious philosophical prob-
lems. For whether ‘there are’ (in whatever sense of that phrase) any nonexistent objects
would seem to be a metaphysical issue, and one that logic should remain neutral about;
otherwise, it is hard to see how people holding opposite positions on this issue could
even reason with one another. But the current ‘simple’ approach to our problem decides
the issue, making nonexistent objects a logical necessity. The realism/idealism contro-
versy I placed in the background of free logics lets us diagnose the confusion from which
this new bit of magic originates. Free logics only make sense from an idealist point of
view; but outer domain semantics continues to think of objects as conceptually primary
– it continues to think of the notions of truth, validity, and the like as dependent 
upon the notion of an object. So, when objects are not available, it brings them 
in anyway: nonexistent objects, which is as much as saying nonobjective objects, an
oxymoron demanded by the awkward, brutal superposition of two distinct and con-
flicting conceptual schemes. (We will see shortly that a more careful and discriminat-
ing operation relating the two schemes has much better chances of improving our
understanding.)

It begins to look as if ‘simple’ and ‘straightforward’ in this context have a tendency
to keep dangerous company with ‘conceptually confused.’ There is a good reason for
that. Formal semantics as we know it is already biased toward realism: its starting point
is indeed a domain, a set of objects, on which nothing is said and no conditions are
imposed – ‘object’ is a primitive notion in the realist’s logical space, hence one that is
going to enter into the definition of (all) others but that itself cannot be defined. Being
directly expressive of the idealist’s standpoint would require conceiving of semantics 
in an entirely new way, or maybe even challenging the very enterprise of semantics –
insofar as the latter is seen as the project of accounting for central logical notions in
terms of an objective interpretation of the various parts of speech. But, despite some
vague gestures in this direction (as when Meyer and Lambert (1968) say that ‘Pegasus
is a horse’ is true not because Pegasus is a horse but because ‘Pegasus’ is a horse-word),
no such revolutionary work is in sight. What has happened, instead, is that a number
of authors have painstakingly translated portions of the idealist framework into the
realist one – which may be a more immediately useful job, given the prominence of
realism in contemporary philosophy of logic, hence the expediency of gradually forcing
that prominent position away from itself, as opposed to just building an alternative
structure next door, where few are likely to look for it. Needless to say, the results of
these translations have been anything but straightforward, which some kibitzers have
considered a good ground for criticism.

The translation job was initiated (not under that description) by van Fraassen
(1966a, 1966b) with his semantics of supervaluations. Given a partial model M = ·D, f Ò
(that is, a model whose interpretation function is partial on the individual constants),
M will leave all atomic sentences containing nondenoting names truth-valueless. A
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classical valuation over M is any result of ‘completing’ M by assigning arbitrary truth-
values to all those atomic sentences (van Fraassen thinks of each such valuation as 
the result of adopting a specific ‘convention’). A classical valuation can be routinely
extended to a valuation of all sentences (and we can continue to call this extension 
a classical valuation); the supervaluation over M is the logical product of all classical 
valuations over M. Thus, for example, assume that f(a) is defined, f(b) is undefined, and
f(a)Œf(P), and consider the following sentences:

(28) Pb
(29) ~Pb
(30) PaŸPb
(31) Pa⁄Pb
(32) Pb⁄~Pb
(33) PbŸ~Pb.

In some classical valuations over M (28) will be true and in some it will be false, hence
in the logical product of all these valuations (28) will remain truth-valueless. The same
can be said about (29) and (30); but when it comes to (31)–(33) the situation is differ-
ent. Whatever truth-value the second disjunct of (31) might have in a classical valua-
tion over M, its first disjunct will always be true there, hence the disjunction will always
be true, hence the logical product of all these valuations will make (31) true. Also,
whatever truth-value the first disjunct of (32) might have in a classical valuation (over
any model), its second disjunct will have the opposite truth-value, hence the disjunction
will always be true and will remain true in every supervaluation. For similar reasons,
every supervaluation will make (33) false.

The problem with van Fraassen’s approach is that it is formulated at a sentential
level of analysis. ‘Conventions’ assign arbitrary truth-values to unanalyzed atomic 
sentences, hence have no way of bringing out the logical structure of those sentences
– no way of accounting for the specifics of predicate (let alone identity) logic. 
Since van Fraassen wants principles like (16) and (17) – or, for that matter, like the
uncontroversial

(34) "x(A … B) … ("xA … "xB)

and

(35) a = a

to turn out logically true, his only chance is to make them so by imposing (metacon-
ventional?) requirements on classical valuations. One can do better by developing this
approach at a quantificational level of analysis; that is, by thinking not so much of arbi-
trary assignments of truth-values to truth-valueless atomic sentences as of arbitrary
assignments of denotations to nondenoting names. One will then talk not of conven-
tions and classical valuations over a model M, but rather of extensions of M which
provide an interpretation for all the individual constants undefined in M; and the logical
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product which constitutes the final valuation for M (and which can still be called the
supervaluation over M) will be defined over these extensions. Then (34) and (35) will
be (logically) true for the same reason for which (31) and (32) are.

In this reformulation, the translation character of supervaluational semantics can
be made clearer. For the reformulation starts, in true realist fashion, by accounting for
the truth-values of (previously truth-valueless) sentences in terms of objects; but then,
by playing all possible characterizations of these objects against one another, it cancels
what is specific to any of them, and what finally emerges as true or false does so simply
as an expression of the rules constituting the language itself. (31) and (32) are true 
and (33) is false because of how negation, disjunction, and conjunction behave, not
because of what b is; since we are working in a realist framework, we must mobilize a
reference for b to activate the logical behavior of negation, disjunction, and conjunc-
tion, but once we have activated it that reference can (in effect) be discounted and 
forgotten. To use terminology coming from a different quarter, the reference of b is only
an intentional object: not the realist’s object, that is, but still enough of a presence 
for him/her to apply familiar conceptual moves, to allow him- or herself enough
maneuvering space, as it were – it is enough for concepts that he/she takes to be depen-
dent ones (negation and the like) to be called in play. After they are called in play, the
rug can be pulled from under his/her feet (this object by courtesy can be recognized for
what it is – that is, not an object at all) and (hopefully!) the structure thus built will
remain standing.

But there is a complication. Return to (1) – one of the characteristic schemes
marking the distinction between standard and free quantification theories. You would
expect (1) to be falsified in some partial model; so, to test your expectation, consider a
model M = ·D, f Ò where f(a) is undefined and f(P) is empty, and an extension M¢ = ·D¢,
f ¢Ò of M where f ¢(a)Œf ¢(P) – intuitively, in terms of the substitution instance (2), a world
in which there exist no winged horses and an extension of that world in which Pegasus
exists and is a winged horse. To begin with, (1) is truth-valueless in M, but once 
we move to M¢ it becomes true (Pegasus is a winged horse there but also exists there, 
hence there exists a winged horse). And, since it is easy to see that the same holds for
every extension of M (M¢ was selected as the most representative case – if Pegasus 
is not a(n existing) winged horse then the conditional is automatically true), the 
conclusion is that (1) is true in the supervaluation over M. And, again, this result can
be generalized; so (1) ends up being logically true, and we are back in standard quan-
tification theory.

What has gone wrong? That we have taken our maneuvering space too seriously, we
have treated the objects by courtesy as fully-fledged objects. As I explain in Bencivenga
(1987), the same danger arises in Kant’s transcendental philosophy. Because that 
philosophy is a delicate combination of transcendental idealism and empirical realism,
it too needs to translate from one framework into the other – specifically, to translate
realist criteria of objectivity into transcendental idealism. Intentional objects are a tool
that can be used in carrying out the translation; but it is important to realize that, when
this task is completed, they are not to be counted as objects at all. Intentional objects
are not more a kind of objects than alleged objects are; they are only a manner of speak-
ing. The only objects are the existing ones, the objects simpliciter; who thinks otherwise
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is going to fall into the trap of assigning objective status to God, the soul, the world, and
other fictional entities. The (conceptual) ‘construction’ of objects simpliciter takes time,
and during this time intentional objects play a role; but by the end they are supposed
to disappear. (In fact, Kant’s case is more complicated: the end is never reached and all
we are ever left with are objects by courtesy – phenomena. But here we can disregard
these additional complications.)

The situation we are facing in supervaluational semantics is analogous. When eval-
uating a sentence containing nondenoting names in a model M, we (in effect) perform
a mental experiment over M: we imagine, that is, that those names be denoting – that
the relevant objects exist. We do not believe they do; they have only an instrumental role
to play, and eventually we want to get rid of them. But (and here is where the problem
arises), during the mental experiment these ‘objects’ will not sit quietly and let us exploit
them: they will often contradict what real information we have, about objects in whose
existence we do believe. If we let them do that, by the time we are ready to drop them
they will have already done enough damage; hence we must prevent any such inter-
ference – never ‘revise’ what we already know on the basis of a mental experiment. To
return to the example above, we do know that there exist no winged horses; so when
we move to M¢ we don’t expect this (imaginary) model to tell us anything new about
that. It is Pegasus that we need to ‘know’ about – more precisely, it is Pegasus that we
need to bring in so that our rules for conditionals can operate appropriately. We need
a truth-value for the antecedent of (1), and that is why we are moving to M¢; we do not
need a truth-value for the consequent because we already have one, a real one, so what-
ever truth-value M¢ might assign it we are not interested in it. How can we formalize
this distinction of levels? How can we provide a rigorous articulation of the purely
instrumental role of the mental experiment – which is supposed to be canceled out at
the end and in the meantime is not supposed to challenge what is the case for objects
simpliciter, the only objects there really are? The answer is provided in Bencivenga
(1980, 1981, 1986), where the main formal tool is the valuation for M¢ from the point
of view of M, vM¢(M), defined as follows (I will only give the base of the recursive defini-
tion, for an atomic A; the rest is routine; vM and vM¢ are ordinary valuations for M and
M¢, respectively, defined as usual):

(36) vM¢(M)(A) = vM(A) if vM(A) is defined;
vM¢(M)(A) = vM¢(A) otherwise.

That is, this valuation gathers all the truth-values available in the real world and adds
fictional ones to them only where there are gaps, thus implicitly resolving all conflicts 
in favor of reality and leaving only an instrumental role to fiction. As a result, the
antecedent of (1) is true in it (because it is undefined in M and true in M¢) and its 
consequent is false (because it is false in M, hence we need not look any further). And
the supervaluation is constructed over all vM¢(M), where M¢ is an extension of M, thus
making (1) not logically true. I call the fundamental assumption embodied in (36) 
the Principle of the Prevalence of Reality: real information is always to prevail over fic-
tional ‘data.’ That such a principle be proffered in a context of transcendental idealism
will be found surprising only by those who forgot Kant’s relevant advice: it is precisely
realism at the conceptual, transcendental level that is responsible for the empirical ide-
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alism of people like Berkeley – that is, for the absurd thesis that the world is constituted
by ideas.

The deep and subtle connections between free logics (and especially free semantics)
and idealism should be apparent by now; in closing, I want to bring out another sense
in which free logics evoke fundamental philosophical tensions – and in this respect, too,
side with Kant, though here the opposition includes not only realists but also another
major brand of idealists, the Hegelian, ‘absolute idealism,’ variety. When motivating
the enterprise of ‘liberating’ logic from ontological commitments, people typically
voiced (more or less explicitly) such pragmatic criteria as I have myself hinted at above:
logic must be a neutral tool, one must be able to use the same logic when reasoning
across opposite metaphysical positions, one needs to leave the denotational character
of a name (say, ‘God’) open while one (for example) proceeds to prove that there exists
a denotation for it. All of that makes sense; but the ‘liberation’ in question involves
much more than pragmatics – indeed it is liberation of a much more literal kind than
one might expect.

That something which is not the case be logically possible is, as Kant (1964) noted,
a main instrument of defense against the strictures of reality; and, one might add, it
creates an arena for the imaginative exploration of alternatives to reality, maybe even
(who knows?) for the overcoming of those strictures. The opposite tendency is expressed
by those who want to make reality itself – as much as possible of it – a matter of logical
necessity. Requiring that all worlds have the same domain of objects is only the first
step in that direction; but the first step is also the most important one, and the one at
which the most vigorous resistance must be mounted – if one is going to be unhappy
with the final outcome. If no resistance is forthcoming, the fixity of ‘natural kinds’ and
other predicates will come next; one will begin to assert that “[w]ith possibilities, less
is more” (as does Almog 1991: 622, summarizing the conventional wisdom of the
Kaplan school), and will find oneself agreeing in fact (if not, God forbid!, in principle)
with the Hegelian reduction of history to logic – except that the old German master did
a much more thorough job of it.

In light of the above, it is a sobering exercise to remind oneself of these famous words
contained in the preface to Hegel (1991: 21–2): “To comprehend what is is the task of
philosophy, for what is is reason. . . . If . . . [a philosopher’s] theory builds itself a world
as it ought to be, then it certainly has an existence, but only within his opinions – a pliant
medium in which the imagination can construct anything it pleases.” For then one real-
izes that the space made available by free logics to a coherent thinking and talking about
nonexistents is not only of value for reflection and argument concerning mythological
winged horses; the very plausibility of normative and utopian claims requires that
breathing room. What sense would it make to blame some behavior as morally wrong
if this were the only possible world? How could we legitimately long for a state based
on ‘people’s rational choice’ if that nondenoting singular term (a nondenoting definite
description, for which free logics provide as much of an account as they do for nonde-
noting names) were destined to remain nondenoting? Which of the objects existing
here – the objects, that is – do we expect to become a denotation for it? Could any of these
objects do so? When we appreciate the point implied by such rhetorical questions, we
will see that free logics are the first, still quite tentative, but also absolutely crucial step
toward a logic of the free.
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Metatheory

A L A S DA I R U RQ U H A RT

1 Introduction

The older tradition in mathematical logic, represented by the foundational work of
Frege, Whitehead, and Russell, was one in which the aim was to develop as large a part
of mathematics as possible within a fixed axiomatic system. In general, questions that
fell outside the basic system (such as the system of type theory on which Principia
Mathematica is based), were ignored.

Under the influence of the great German mathematician David Hilbert, a new
approach became influential in the 1920s, sometimes called ‘metamathematics’ or
‘metalogic.’ This new approach, in contrast with the earlier, can be described as criti-
cal in spirit, both in the sense that the underlying ideas showed a strong Kantian influ-
ence, but also in that the trend was towards analysing logical systems from the outside,
rather than working within a fixed system of axioms. As a consequence of this change
in direction, logic became a much more mathematical subject than formerly, a trend
that continues to this day. The results that emerged from the research program of the
Hilbert school remain among the most striking in all of logic.

In the present chapter, we describe these results in non-technical language, and indi-
cate their philosophical significance. They are in many cases of a negative character,
showing that the optimistic goals of Hilbert’s foundational program could not be
achieved. Nevertheless, a central concept emerged from this research activity, that of
computability. The truly remarkable fact that this concept, in contrast to notions like
that of provability and definability, does not depend on the system with respect to which
it is defined, but is in a certain sense absolute, is fundamental to modern computer
science and technology.

We begin with an outline of Hilbert’s program in the foundation of mathe-
matics, the achievements of Gödel that contributed positively to Hilbert’s aims (the
completeness theorem) and results like his incompletenesss theorem that showed 
the original aims to the program to be untenable, and led to its demise, at least in its
original form. The essay also discusses the concept of computability that emerged in
the 1930s in the wake of the incompleteness theorems, and the resulting clarification
of the extent to which logic can be considered a purely formal subject. It concludes 



with a discussion of the philosophical bearings of the basic results, in particular the
question of the absolute or relative nature of logical concepts.

2 Hilbert’s Program

David Hilbert (1862–1943) dominated German mathematics in the first half of the
twentieth century. His formalist program, which attained its classical formulation in
the 1920s, was intended to provide a final solution to the foundational problems that
had arisen in the wake of the debates in the foundations of set theory, and the con-
structivist criticisms of the Dutch intuitionist L. E. J. Brouwer (1881–1966).

Brouwer had severely criticized the free use of classical logic as applied to infinite
structures, and in particular the law of excluded middle. Given a constructive reading
of the logical particles, the law of excluded middle can be read as asserting the uni-
versal solubility of all mathematical problems (that is to say, ‘P or not P’ asserts that
we have either a constructive proof of the proposition P, or a constructive refutation of
P). Since there is no warrant for this belief, Brouwer rejects the applicability of classi-
cal logic in general.

Hilbert presented himself as the champion of classical methods in mathematics,
making such ringing assertions as the following from an address of 1927:

Taking the principle of excluded middle from the mathematician would be the same, say,
as proscribing the telescope to the astronomer or to the boxer the use of his fists.

(van Heijenoort 1967: 476)

Hilbert spelled out his program in detail in a series of addresses from the 1920s that
can be found in translation in van Heijenoort’s collection of basic logical texts. He
accepted (in a sense) the constructivist criticism of classical logic, since he denies the
existence of the actual infinite. However, he wished to keep the powerful deductive tools
of classical logic and set theory, and so was forced to adopt an indirect strategy of
justification.

The essentials of Hilbert’s formalist program are as follows. Classical mathematics
is to be given a complete and fully rigorous formulation by employing the resources of
mathematical logic (making use of the work already done in this area by Frege,
Whitehead, and Russell). However, not all the statements occurring in such systems are
held to be directly meaningful. In particular, purely existential statements are to be read
as infinite disjunctions, and so we cannot directly attribute a constructive meaning to
them. The part of mathematics that is directly meaningful for Hilbert he describes as
the part consisting of finitary inferences, operating on concrete objects consisting of
strings of symbols.

If logical inference is to be reliable, it must be possible to survey these objects completely
in all their parts, and the fact that they occur, that they differ from one another, and that
they follow each other, or are concatenated, is immediately given intuitively, together 
with the objects, as something that neither can be reduced to anything else nor requires

ALASDAIR URQUHART

308



reduction. This is the basic philosophical position that I consider requisite for mathemat-
ics and, in general, for all scientific thinking, understanding and communication.

(van Heijenoort 1967: 376)

Thus the main goal of Hilbert’s program can be stated as the solution of the con-
sistency problem. We can regard the symbol sequences constituting the formalized
version of mathematical assertions as purely formal objects. It is then a mathematically
well-defined problem to show that a sequence of such objects satisfying the (purely
formal) conditions for being a correct proof cannot end with an obvious contradiction
like ‘0 = 1.’ To be a fully convincing demonstration, and avoid the charge of circular-
ity, the proof must itself be based only on finitary reasoning. Hilbert hoped that by com-
pleting such a consistency proof he would achieve a final vindication of classical
mathematics.

Hilbert was a congenital optimist, and in particular believed strongly in the solv-
ability of all mathematical problems, a faith that expressed itself in the phrase he used
as the conclusion of his last major public address: “We must know. We shall know”
(Ewald 1996: 1165). This credo forms the background to another major problem of
the Hilbert school, the Entscheidungsproblem or decision problem. The problem here is
to decide by a mechanical, algorithmic procedure for a given formula of first-order pred-
icate logic, whether it is logically valid or not.

If there were a positive solution to this problem, this would have extraordinarily far-
reaching consequences. In particular, all known mathematical theories can be formal-
ized in terms of finite sets of axioms in first-order logic. If the decision problem were
solvable, then it would be possible for any such theory to decide whether a given 
sentence is a theorem simply by forming the implication that has the conjunction of
the axioms as the antecedent, and the sentence as the consequent, and testing this
implication for validity. Hence, all mathematical problems would be solvable in princi-
ple by a purely mechanical procedure. Thus Hilbert’s belief in the solvability of all prob-
lems would be true, and what is more, in an extremely strong sense, since arbitrary
problems could be solved without the intervention of human ingenuity.

A final problem that is of a somewhat subsidiary character, but fits naturally 
into Hilbert’s formalist viewpoint, is the problem of completeness for first-order pre-
dicate logic. The problem was originally posed by Hilbert and Ackermann in their 
textbook of logic of 1928. We can define validity in predicate logic in two different 
ways, syntactically or semantically. The first definition of validity defines it in terms 
of derivability from a fixed set of axioms or rules, such as those originally proposed 
by Frege. The second definition defines it as truth in all possible interpretations. 
The second notion is not a finitistically meaningful notion, since it refers to the infinite
totality of all possible interpretations. The question is nevertheless a natural one for
Hilbert to ask, since it equates an infinitistic notion with a purely finitary, combinato-
rial notion.

In the 1930s, decisive progress was made on all three problems described above. As
an unexpected bonus, there emerged for the first time, a completely precise and
absolutely general notion of a mechanical or algorithmic procedure. In the following
sections, we shall describe the dramatic developments of this decade.
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3 Gödel’s Theorems

In 1930 and 1931, Kurt Gödel solved the completeness problem for predicate logic, and
made a basic contribution to the consistency problem. It was in the course of trying to
solve the latter problem that he made the unexpected discovery that any axiomatic
system containing a certain minimal part of number theory was necessarily incomplete.

Gödel’s proof that the formal rules originally given by Frege are complete for the
semantical concept of logical validity in first-order logic was published in 1930 (Gödel
1986: 102–23). Since then, many different versions of the proof have been given.
Perhaps the most intuitively understandable form of the proof is to consider it as arising
from the systematic search for a counter-model. This is the approach adopted when
using the well-known formalism of semantic tableaux – currently employed in many
introductory texts.

In the approach to completeness using analytic tableaux, the basic formalism con-
sists of a tree labeled with sentences. We label the root of the tree with the negation of
the formula in which we are interested. Each branch in the tree can then be considered
as part of a search for a model that makes the negated formula labeling the root true.
For example, if a branch in the tree contains an existential sentence $x Fx, then we
extend the branch by adding an instance Fa. Similarly, if a branch contains a disjunc-
tion A ⁄ B, then we split the branch into two branches, one containing A, the other B.
This search for a model must be carried out in a systematic way – we omit the details
here. Provided the search is in fact systematic, then completeness can be seen to hold
in the following sense. Either the search ends in failure, so that each branch terminates
with an explicit contradiction, or this does not happen, in which case a model can be
seen to exist. In the first case, the labeled tree is a proof of validity of the starting
formula. For the details of this version of Gödel’s completeness theorem, the reader is
referred to Smullyan’s elegant monograph of 1968.

The completeness theorem constitutes a vindication of Hilbert’s formalist program,
since it gives a purely syntactical, formal equivalent for the non-constructive concept
of semantical validity. Gödel’s next result, his great incompleteness theorem, threw in
doubt most of Hilbert’s formalist tenets.

In his original conception of the formalist program, Hilbert seems to have assumed
implicitly the completeness of the axiomatic systems from which he began. The 
empirical evidence for this assumption was overwhelming. The axiomatic systems for
number theory and analysis employed by the Hilbert school were more than adequate
for formalizing all of the basic mathematics of the day, and more abstract topics such
as functional analysis, the theory of transfinite cardinals and point set topology were
all easily accommodated in the formal system of set theory created by Hilbert’s col-
league Ernst Zermelo. It was a shock, then, when Gödel showed that even elementary
number theory is essentially incompletable.

Gödel’s famous first incompleteness theorem can be stated as follows. Let T be a
formal system of number theory so that all its theorems are true, and in which the pred-
icate “s is a sequence of formulas constituting a proof of the formula A in the system
T” is decidable, that is, there is an algorithm to decide for a given sequence s and formula
A whether or not the relation holds. Then if T contains a certain minimum amount of
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elementary number theory, it is incomplete, which is to say, there is a sentence G of T
so that neither G nor its negation is a theorem.

Gödel’s proof of the theorem (Gödel 1986: 144–95) involves the construction of a
self-referential sentence akin to the Liar paradox. Gödel’s basic insight was that by a
system of encoding (“Gödel numbering”), formulas of the number-theoretical language
could be considered as themselves being numbers (more precisely, Gödel’s encoding pro-
duces an isomorphic image of the logical system in the natural numbers). In particu-
lar, we can express in the system T a number-theoretical relation P(x, y) expressing the
fact that x is the code number of a sequence of formulas that is a proof in the system
T of the formula with code number y. Furthermore, since we have assumed that the
proof predicate of T is decidable, the relation P is decidable in T, that is to say, if for par-
ticular numbers m, n, the relation P(m, n) holds, then the sentence P(m, n) is provable
in T, where ‘m’ is the numeral denoting the number m, and if it does not hold, then
ÿP(m, n) is provable in T. Gödel can hence express the predicate ‘x is the code number
of a formula provable in T’ as the existential formula Prov(x) ´ $yP(y, x).

Gödel completes the proof of his first incompleteness theorem by making use of a
clever diagonal construction to construct a self-referential sentence G that (interpreted
via the coding devices) says of itself that it is not provable. More formally, we have as a
theorem of T:

G ´ ÿProv( G ),

where G stands for the code number of the sentence G itself. Gödel can now show
that neither G nor its negation is a theorem of T by an argument resembling the rea-
soning leading to the contradiction in the Liar paradox. In this case, though, the para-
doxical argument leads to incompleteness, not a contradiction.

We assumed in the above sketch of Gödel’s argument that all of the theorems of T
were true. However, an examination of the details of the proof shows that in demon-
strating G itself to be unprovable, it is sufficient to assume that T is consistent. (A few
years after Gödel’s result appeared, Rosser using a more complicated self-referential sen-
tence showed that the assumption of simple consistency was sufficient for incomplete-
ness.) What is more, the argument showing this has a constructive, in fact finitary,
character. It can therefore be formalized in T itself (since we assumed that T is adequate
for elementary number theory). Thus the implication

Con(T) Æ ÿProv( G )

is provable in T, where Con(T) is the statement formalizing the consistency of T.
However, since the consequent of this implication is provably equivalent to G itself in
T, it follows that if T itself is consistent, then Con(T) is unprovable in T.

This last result, known as Gödel’s second incompleteness theorem, clearly has strong
negative implications for Hilbert’s consistency problem. If we start from a system of
mathematics that encompasses the usual elementary forms of reasoning in number
theory, then it presumably should include all of finitary reasoning (there is some uncer-
tainty here, since Hilbert’s notion of ‘finitary reasoning’ is not completely clear). But
then if the system is consistent, it cannot prove its own consistency, and so a proof of
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its consistency by finitary means is impossible. Hence it appears that Gödel’s second
incompleteness theorem precludes mathematics pulling itself up by its own bootstraps,
as Hilbert had hoped.

Within the space of two years, Gödel had answered two of the fundamental prob-
lems of the Hilbert school. There remained the decision problem, though after the neg-
ative results of the incompleteness paper, it seemed most unlikely that this problem
could have a positive solution. Gödel himself, in fact, came very close to providing a neg-
ative solution in the later sections of his incompleteness paper, a part that is rarely cited,
since it was overshadowed by the later results of Church and Turing. However, these
results are of considerable philosophical interest.

It was pointed out above that the completeness problem is not formulable in finitary
terms, since it contains the non-constructive concept of semantic validity. However, it
is possible to imagine constructive analogues of the completeness problem. To be more
specific, let us imagine a formula of first-order predicate logic containing a certain
number of predicate and relation symbols. We might then ask whether a constructive
analogue of Gödel’s completeness theorem holds in the sense that for any such formula,
either it is provable by the usual axioms and rules for predicate logic, or, if it is not prov-
able, we can find mathematical predicates (say, relations and predicates definable in
number theory) so that when they are substituted for the atomic predicates in the
formula, the resulting mathematical formula is refutable in some fixed axiom system
for mathematics.

Gödel showed by analysing his unprovable formula G that for any consistent formal
system S for mathematics, there are unprovable formulas of predicate logic that cannot
be shown to be invalid by the substitution method in S. Looked at from the foundational
point of view, this shows that the attempted constructive reformulation of the com-
pleteness problem fails. It also shows that it is highly unlikely that there could be an
algorithm for the decision problem that could be proved to be correct in a standard
system for mathematics.

The techniques that Gödel employed in the proof just described are essentially the
same as those used a few years later by Church and Turing in showing the decision
problem unsolvable. However, Gödel himself did not draw this conclusion. The difficulty
lay in the fact that there was at that time no accepted precise definition delineating the
class of mechanical procedures or algorithms. The creation of this definition was the
next great step forward in logic, and is described in the next section.

4 Computability

Hilbert expected a positive solution to the decision problem, so that he was content to
formulate the problem in terms of the intuitive mathematical notion of an algorithm.
Gödel’s incompleteness results, though, clearly pointed towards the conclusion that the
problem was in fact unsolvable. To prove a negative result, however, it was essential to
give a precise mathematical delineation of the concept of a mechanical procedure, or
algorithm. This was first achieved by Alonzo Church and Alan Turing in 1936–37.
Although Church was first in proposing a precise definition of computability (so that
the identification of the intuitive with the mathematical concept is usually called
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‘Church’s thesis’), Turing’s conceptual analysis is usually held to be superior, and we
shall follow Turing here. The reader is referred to an article by Wilfried Sieg for a pen-
etrating account of the historical background to the work of Church and Turing (Sieg
1997).

Turing proceeded by giving a conceptual analysis of mechanical computation; the
intended notion is that of a human carrying out the steps of an algorithm (recall that
when Turing was writing, digital computers did not yet exist). His analysis can be
explained in terms of two basic types of conditions, boundedness conditions and locality
conditions (the terminology is that of Sieg). The computer (in the 1930s, when Turing
was writing, this was always taken to denote a human being) operates in discrete time
steps in a discrete symbol space – one can imagine a two-dimensional space, like a sheet
of paper, or a one-dimensional space, like the paper tape of a Turing machine. The com-
puter can perform the elementary actions of changing observed symbols and chang-
ing the set of observed symbols (moving in the symbol space). The boundedness
conditions are these: the computer can recognize only finitely many distinct symbols,
and has only a finite number of internal mental states (these are computational states,
and need not be taken as mental states in a broader sense). The locality conditions are
these: at each step, only finitely many symbols are observed, and in a single step, the
computer can only move to a new symbol that is within a bounded distance of a pre-
viously observed symbol.

Turing adds to this model a deterministic condition: the elementary actions per-
formed at each time step are uniquely determined by the current internal state, and the
currently observed symbol configuration. To specify the functions computed by such a
device, we need to add some conventions on input and output. With this, we have a
complete model for mechanical computation.

Turing argued that a mechanical model for computation such as we have described
in general terms above, is equivalent to the special case where the symbol space is one-
dimensional, and at each step, exactly one symbol in this space is being observed. This
is the well-known model of the Turing machine. The conceptual analysis sketched above
is convincing evidence that this model is in fact a universal model for computation, in
the sense that any mathematical function computed by an algorithm can be given in
the form of a Turing machine.

Assuming this analysis of computation, we can now give a completely general defi-
nition of formal system, a concept that underlies Hilbert’s conception of his program.
A formal axiomatic system, then, is one in which there is a mechanical procedure to
determine whether a string of symbols represents a meaningful assertion, and there is
a set of axioms and rules that are also mechanically checkable (that is to say, there is
an algorithm to determine whether or not a given string of symbols is or is not a proof
in the system). With this definition, it is possible to state and prove a completely general
version of Gödel’s incompleteness theorem.

We can define the function fM(n) computed by a machine M as follows. We shall say
that M halts if in the course of a computation it reaches a combination of internal state
and input symbol for which it has no instruction. We shall suppose that the input and
output of the machine consist of numerals in decimal notation. If M is given a number
n as input, then if M eventually halts with the decimal notation for a number o written
on the tape, then we say that o is the value of fM for the input n. Notice that in general,
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fM is only a partial function, since there may be numerical inputs for which M goes into
an infinite loop, for example, and never halts. We can define computable functions with
two or more inputs in the same way.

It is now relatively easy to prove the undecidability of the decision problem. Every
Turing machine can be specified by a finite list of instructions having a form such as:
‘If you are in state 3, and are looking at the symbol 1, then change it to a 0, and go left
one square.’ These can be encoded as single numbers, using the technique of Gödel
numbering, so that we can speak of the Turing machine Mk with code number k. We
define the halting problem to be the problem of deciding, given two numbers k and n,
whether the machine Mk eventually halts, when given input n.

We can prove the halting problem unsolvable by a straightforward diagonal argu-
ment. Let us suppose that the halting problem is solvable. Then there must be a Turing
machine M that when given the pair of numbers k and n, outputs 1 if the machine Mk

eventually halts, when given input n, otherwise 0. We can then use M to construct a
new machine M¢ that when given the single input k, halts if Mk given k as input fails to
halt, and otherwise fails to halt. (The details of the construction of M¢ from M are an
exercise in Turing machine programming that we leave to the reader.) But now let h be
the code number of the machine M¢, so that M¢ = Mh. Then on input h, Mh halts if and
only if it does not halt, a contradiction.

Given the basic undecidability result we have just proved, we can now show the deci-
sion problem unsolvable. The proof is essentially a large scale exercise in formalizing
assertions in first order logic. That is to say, given a machine M and input k, we can
write down a formula F(M, k) of first order logic that is valid if and only if M halts on
input k. It follows that the decision problem must be unsolvable, since any algorithm
solving it would lead to an algorithm solving the halting problem.

Our proof of unsolvability of the halting problem has another welcome corollary;
another proof of Gödel’s theorem. Let S be a standard formal system of number theory.
We can formalize the encoding of Turing machines in S, so that we can, for example,
write down a formula of S that expresses the fact that a number is a code number of a
Turing machine. Using methods similar to those used in proving the decision problem
unsolvable, we can find a formula H(x, y) so that H(k, n) is true if and only if the
machine Mk halts on input n. Now we claim that S, if consistent, cannot prove all true
statements of the form H(k, n) or ÿH(k, n). For suppose that it did; then we could solve
the halting problem as follows. We can write a programme to print out one by one all
the theorems of S (this is because we assumed that S is a formal system). Then to decide
whether or not machine Mk halts on input n, we simply have to wait to see whether
H(k, n) or ÿH(k, n) emerges as a theorem. This is impossible, so S is necessarily incom-
plete with respect to this class of statements. In fact, we can be a little more specific;
there must be a particular machine Mk and input n so that M in fact does not halt on
input n, but S cannot prove the statement ÿH(k, n).

A striking property of Turing’s definition is that it is absolute, that is to say, it does
not depend on the details of formalism used to define it. This aspect was stressed by
Gödel in remarks at Princeton in 1946 commenting on an address by Tarski:

Tarski has stressed in his lecture (and I think justly) the great importance of general recur-
siveness (or Turing’s computability). It seems to me that this importance is largely due to
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the fact that with this concept one has for the first time succeeded in giving an absolute
definition of an interesting epistemological notion, i.e., one not depending on the formal-
ism chosen. (Gödel 1990: 150)

The evidence for Church’s thesis is overwhelming, both in the sense that all known
functions that are intuitively computable are computable in the sense of Turing, but
also in the sense that many other proposed definitions (such as general recursiveness,
computability by Markov algorithms, computability by register machines and so on) are
equivalent to Turing’s definition. One might object, of course, that (as was pointed out
above) in the late 1930s the empirical evidence that the currently accepted formal
systems for mathematics were complete was also overwhelming. In the case of Church’s
thesis, however, we have available Turing’s conceptual analysis sketched above showing
that any alternative concept of computability must drop the boundedness and locality
conditions. A robust notion of quantum computation has recently emerged, that
involves dropping (in a sense) the locality condition. This new notion does not lead to
quantum computable functions that are not Turing computable, but it does open the
door to possibly large gains in efficiency based on the exploitation of new features due
to non-classical quantum effects.

5 Absolute and Relative in Logic

Hilbert’s program was based on a belief that all mathematical concepts and construc-
tions can be fully mirrored by formal, syntactical methods. Most of the results we have
discussed above show that such mirroring is in fact impossible. For example, the concept
of truth in number theory cannot be fully represented by provability in any formal
system. In a similar way, we can show that many other mathematical concepts, such
as the concept of a definable object, share the same essential incompletability with the
notion of mathematical truth. In all of these cases, the incompleteness is a manifesta-
tion of the diagonal method. Any attempt to characterize the concept in a fixed formal
framework leads by diagonalization to the construction of an object falling outside the
formal characterization.

It may be asked whether one could not recover the absolute character of logical con-
cepts by loosening the stringent finitistic character of Hilbert’s requirements. A strat-
egy of this sort was considered by Gödel in his 1948 Princeton lecture quoted above.
In the case of definability, the argument of Richard’s paradox of the least indefinable
ordinal number, makes it clear that any absolute notion of definability must take 
all ordinal numbers as definable. Gödel’s suggestion was to take definability in terms 
of ordinals as a possible definition of absolute definability. That is to say, a set is said to
be ordinal definable if there is a sentence of the extended language of set theory in
which all ordinals are primitive constants that uniquely defines it in the universe of all
sets. This definition has the required property that it is impossible to apply the diagonal
argument to find a set that is not definable; trivially, all ordinals are definable, so that
the argument of Richard’s paradox does not apply. On the other hand, the concept of
definable object is obviously highly non-constructive, about as far from Hilbert’s fini-
tistic ideas as one can imagine.
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It may seem surprising that an absolute concept, that of computability, emerged in
the 1930s, a time when most of the concepts of logic, such as provability, were shown
to have a relative, not absolute character. In fact, the absoluteness of this concept rests
on the assumed absoluteness of another concept, namely the concept of truth for state-
ments of number theory. This can be seen if we look at the definition of what it means
for a Turing machine M to compute a function of natural numbers. This can be stated
formally as: ‘For every input n, there is a computation of M that terminates with a
number o as output.’ This can be encoded as a universal-existential sentence of ele-
mentary number theory. However, we cannot replace the notion of arithmetical truth
here with a weaker notion such as the provability of the formalized version of the state-
ment in an axiomatic system for number theory. By arguments similar to those used
above in connection with the halting problem, we can show that no such system can
prove all and only the true statements of this type. This is yet another manifestation of
the incompleteness phenomenon.

Since we do seem to have a ‘clear and distinct perception’ of the notion of truth in
number theory, it has often been argued that this demonstrates a clear superiority of
humans over machines. More exactly, the incompleteness and undecidability results of
Gödel, Church, and Turing have been held to show that humans have an absolute
advantage over machines in that they are able to surpass any fixed machine in their
insight into mathematical truths. The best known arguments for this conclusion are
due to Lucas (1961) and Penrose (1989).

The Lucas/Penrose argument runs as follows. Let us suppose that we have pro-
grammed a computer to print out the theorems of a formal system of number theory
one by one (the fact that we can program a computer to do this can be taken as an alter-
native definition of ‘formal axiomatic system’). Gödel’s incompleteness theorem applies
to the formal system in question, so that there is for any such system a sentence G (the
Gödel sentence for the system), that must be unprovable, provided the system is con-
sistent. However, we, standing outside the formal system, and using our mathematical
insight, can see that the sentence G is true, and so we can surpass the capacity of any
fixed machine. This, according to Lucas and Penrose, proves that mechanical models of
the mind are impossible, in short, that our minds cannot be machines.

The problem with the Lucas/Penrose argument presented above is that the key
premise asserting that we can see the Gödel sentence to be true, remains undemon-
strated. In fact, there are good reasons for thinking it to be false. The Gödel incom-
pleteness theorem asserts a hypothetical proposition, namely that if the system in
question is consistent, then the sentence G is unprovable. However, this hypothetical is
provable in the system itself, under quite weak assumptions – in fact, this is the key idea
of Gödel’s second incompleteness theorem. For Lucas and Penrose to prove their case,
they have to argue that we can see G itself to be true. This entails that we are able to
show the system consistent.

There is no good reason to think that this last assumption is true. There are unsolved
problems of mathematics (the Riemann hypothesis is perhaps the best known case) that
have the property that if they are false, then this can be demonstrated by a simple coun-
terexample. It follows from this that if we add such assumptions to a formal axiomatic
system of mathematics, then the system is consistent if and only if the conjecture is
true. This means that proving the consistency of a system based on, say, a version of
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analytic number theory together with the Riemann hypothesis would be equivalent to
proving the Riemann hypothesis. The Riemann hypothesis, though, is one of the most
famous unsolved problems of mathematics, and it is unclear whether or not it will be
solved in the near future. Lucas’s and Penrose’s assertion of an absolute superiority of
minds over machines, then, seems to be without foundation.

Gödel himself tried to draw philosophical consequences from his incompleteness
theorem, but was well aware that the simple argument of Lucas and Penrose was inad-
equate, since it rests on the unsupported assertion that human mathematicians can
resolve all mathematical problems of a certain type. His most extended attempt at
spelling out the philosophical implications of his theorem is to be found in his Gibbs
lecture, delivered in 1951, but first published in the third volume of his collected works
(Gödel 1995). Gödel’s conclusion takes the form of a disjunction. If we make the
assumption that humans can indeed resolve all consistency questions about formal
systems of number theory, then an absolute superiority of humans over machines
follows by the Lucas/Penrose argument. However, if this assumption is in fact false,
then it follows that there must be mathematical assertions of a fairly simple type (since
consistency assertions can be expressed, through the device of Gödel numbering as
problems of number theory) that are absolutely unsolvable. In Gödel’s own words:

Either mathematics is incompletable in this sense, that its evident axioms can never 
be comprised in a finite rule, that is to say, the human mind (even within the realm of
pure mathematics) infinitely surpasses the powers of any finite machine, or else there 
exist absolutely unsolvable diophantine problems of the type specified.

(Gödel 1995: 310)

Gödel’s own philosophical argument is not open to the simple objection made above 
to the Lucas/Penrose argument. However, one might still object that it involves an un-
justified idealization of the human capacity for proving theorems. In particular, Gödel
presupposes that humanly provable mathematical propositions form a well-defined 
set. However, one could argue that the totality of humanly provable propositions is a
very ill-defined collection, with vague boundaries, quite unlike the set of theorems 
of a formal system.

The philosophical consequences of the incompleteness theorems in the broad sense
remain obscure and controversial. In the narrower sense, though, Gödel’s results
provide a fairly conclusive refutation of Hilbert’s formalist program in the foundations
of mathematics. This is a rare and very unusual instance of decisive progress in the
foundations of mathematics and logic.

References

Ewald, W. B. (ed.) (1996) From Kant to Hilbert: A Source Book in the Foundations of Mathematics,
vol. 2. Oxford: Clarendon Press.

Gödel, K. (1986) Collected Works, vol. 1: Publications 1929–1936, Solomon Feferman, John W.
Dawson, Jr., Stephen C. Kleene, Gregory H. Moore, Robert M. Solovay, and Jean van Heijenoort
(eds.). Oxford: Oxford University Press.

METATHEORY

317



Gödel, K. (1990) Collected Works, vol. 2: Publications 1938–1974, Solomon Feferman, John W.
Dawson, Jr., Stephen C. Kleene, Gregory H. Moore, Robert M. Solovay, and Jean van Heijenoort
(eds.). Oxford: Oxford University Press.

Gödel, K. (1995) Collected Works, vol. 3: Unpublished Essays and Lectures, Solomon Feferman, John
W. Dawson, Jr., Warren Goldfarb, Charles Parsons and Robert M. Solovay (eds.). Oxford: Oxford
University Press.

Lucas, J. R. (1961) Minds, machines and Gödel. Philosophy, 36, 112–27.
Penrose, R. (1989) The Emperor’s New Mind. Oxford: Oxford University Press.
Sieg, W. (1997) Step by recursive step: Church’s analysis of effective calculability. Bulletin of

Symbolic Logic, 3, 154–80.
Smullyan, R. (1968) First-Order Logic. Berlin: Springer (reprinted by Dover Publications 1995).
Van Heijenoort, J. (1967) From Frege to Gödel. Cambridge, MA: Harvard University Press.

Further Reading

Boolos, G. and Jeffrey, R. C. (1989) Computability and Logic, 3rd edn. Cambridge: Cambridge
University Press.

Kleene, S. C. (1952) Introduction to Metamathematics. New York: Van Nostrand.
Reid, C. (1970) Hilbert. Berlin: Springer-Verlag.

ALASDAIR URQUHART

318



319

21

Metatheory of Logics and the 
Characterization Problem

JA N WO L EŃ S K I

1 Introduction

The word ‘metatheory’ denotes or perhaps suggests a theory of theories. Metascientific
studies in the twentieth century used the term ‘metatheory’ to refer to investigations of
theories in a variety of disciplines, for example, logic, sociology, psychology, history, etc.
However, the philosophers of the Vienna Circle who made metatheoretical studies of
science the main concern of their philosophy restricted metatheory to the logic of
science modeled on developments in the foundations of mathematics. More specifically,
the logic of science was intended to play a role similar to metamathematics in Hilbert’s
sense; that is, it was projected as formal analysis of scientific theories understood as
well-defined linguistic items. The word ‘metamathematics’ was used before Hilbert, but
with a different meaning from his (see Ritter et al. 1980: 1175–8). In the early nine-
teenth century, mathematicians, like Gauss, spoke about metamathematics in an
explicitly pejorative sense. It was for them a speculative way of looking at mathematics
– a sort of metaphysics of mathematics. A negative attitude to metaphysics was at that
time inherited from Kant and early positivists. The only one serious use of ‘metamath-
ematics’ was restricted to metageometry, and that was due to the fact that the 
invention of different geometries in the nineteenth century stimulated comparative
studies. For example, investigations were undertaken of particular axiomatizations,
their mutual relations, models of various geometrical systems, and attempts to prove
their consistency. The prefix ‘meta’ presently suggests two things. First, it indicates 
that metatheoretical considerations appear ‘after’ (in the genetic sense) theories are 
formulated. Secondly, the prefix ‘meta’ suggests that every metatheory is ‘above’ a
theory which is the subject of its investigations. It is important to see that ‘above’ does
not function as an evaluation but only indicates the fact that metatheories operate on
another level than theories do. A simple mark of this fact consists in the fact that 
theories are formulated in an object language, and metatheories are expressed in a
related metalanguage.

It is probably not accidental that Hilbert passed to metamathematics through his
famous study of geometry and its foundations. Hilbert projected metamathematics as
a rigorous study of mathematical theories by mathematical methods. Moreover, the
Hilbertian metamathemics, due to his views in the philosophy of mathematics 



(formalism) was restricted to finitary methods. If we reject this limitation, meta-
mathematics can be described as the study of mathematical systems by mathematical
methods; they cover those that are admitted in ordinary mathematics, including infini-
tistic or infinitary – for instance, the axiom of choice or transfinite induction. However,
this description is still too narrow. Hilbert’s position in metamathematics can be
described as follows: only syntactic combinatorial methods are admissible in metathe-
oretical studies. However, the semantics of mathematical systems is another branch of
the methatheory of mathematics. It is interesting that the borderline between syntax
and semantics corresponds to some extent with the division between finitary and infini-
tary methods. I say ‘to some extent’ because we have also systems with infinitely long
formulas (infinitary logic). It is clear that the syntax of infinitary logics must be inves-
tigated by methods going beyond finitary tools. It was also not accidental that system-
atic formal semantics (model theory) which requires infinitistic methods appeared in
works by Alfred Tarski who, due to the scientific ideology of the Polish mathematical
school, was not restricted to the dogma that only finite combinatorial methods are
admissible in metamathematics. Today, metamathematics can be divided into three
wide areas: proof theory (roughly speaking, it corresponds to metamathematics in
Hilbert’s sense if proof-methods are restricted to finitary tools, or it is an extension of
Hilbert’s position if the above-mentioned restriction is ignored), recursion theory
(which is closely related to the decision problem, that is, the problem of the existence
of combinatorial procedure providing a method of deciding whether a given formula is
or is not a theorem) and model theory, that is, studies of relations between formal
systems and structures which are their realizations; model theory has many affinities
with universal algebra.

The metatheory of logics (plural is proper, because we have many competing logical
systems) is understood here as a part of metamathematics restricted to logical systems.
We can also use the word ‘metalogic’ and say that it refers to studies of logical systems
by mathematical methods. This word also appeared in the nineteenth century (see
Ritter et al. 1980: 1172–4), although its roots go back to the Middle Ages (Metalogicus
of John of Salisbury). Philosophers, mainly neo-Kantians, understood metalogic to be
concerned with general considerations about logic. The term ‘metalogic’ in its modern
sense was used for the first time in Poland (by Jan Ĺukasiewicz and Alfred Tarski) as a
label for the metamathematics of the propositional calculus. Thus, metalogic is meta-
mathematics restricted to logic, and it covers proof theory, investigations concerning
the decidability problem, and model theory with respect to logic.

When we say that metalogic is a part of metamathematics, it can suggest that the
borderline between logic and mathematics can be sharply outlined. However, questions
like ‘What is logic?’ or ‘What is the scope of logic?’ have no uniformly determined
answer. We can distinguish at least three relevant subproblems that throw light on
debates about the nature of logic and its scope. The first issue focuses on the so called
first-order thesis. According to this standpoint, logic should be restricted to standard
first-order logic. The opposite view contends that the scope of logic should be extended
to a variety of other systems, including, for instance, higher-order logic or infinitary
logic. The second issue focuses on the question of rivalry between various logics. The
typical way of discussing the issue consists in the following question: Can we or should
we replace classical logic by some other system, for instance, intuitionistic, many-
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valued, relevant or paraconsistent logic? This way of stating the problem distinguishes
classical logic as the system which serves as the point of reference. Thus, alternative or
rival logics are identified as non-classical. There are two reasons to regard classical
logics as having a special status. One reason is that classical logic appeared as the first
stage in the development of logic; it is a historical and purely descriptive circumstance.
The second motive is clearly evaluative in its character and consists in saying that clas-
sical logic has the most ‘elegant’ properties or that its service for science, in particular,
for mathematics, is ‘the best.’ For example, it is said that abandoning the principle of
excluded middle (intuitionistic logic), introducing more than two logical values (many-
valued logic), changing the meaning of implication (relevant logic) or tolerating 
inconsistencies (paraconsistent logic) is something wrong. It is also said that some 
non-classical logics, for example, intuitionistic or many-valued logics, considerably
restrict the applicability of logic to mathematics. It is perhaps most dramatic in the case
of intuitionistic logic, because it or other constructivistic logics lead to eliminating a
considerable part of classical mathematics. Thus, this argument says that only classi-
cal (bivalent or two-valued) logic adequately displays the proof methods of ordinary
mathematics. While the discussion is conducted in descriptive language, it appeals to
intuitions and evaluations of what is good or wrong in mathematics. The situation is
similar as far as the matter concerns metalogical properties of particular systems such
as completeness, decidability or the like, because it is not always obvious what it means
to say that a logic possesses them ‘more elegantly’ than a rival system. The priority of
classical logic is sometimes explained by pointing out that some properties of non-clas-
sical logic are provable only classically. This is particularly well-illustrated by the case
of the completeness of intuitionistic logic: Is the completeness theorem for this logic
intuitionistically provable? The answer is not clear, because the stock of intuitionisti-
cally or constructively admissible methods is not univocally determined, and they vary
from one author to another. Finally, our main problem (what is logic and what is its
scope?) is also connected with extensions of logics. If we construct modal logics, deontic
logics, epistemic logics, etc., we usually start with some basic (propositional or predi-
cate) logic. We have modal propositional or predicate systems which are based on clas-
sical, intuitionistic, many-valued or some other basic logic. Does any given extension
(roughly speaking, an extension of a logic arises when we add new concepts, for
example necessity, to old ones in such a way that all theorems of the system before
extension are theorems the new system) of a chosen basic logic preserve its classifica-
tion as a genuine logic or does it produce an extralogical theory? The a priori answer is
not clear, even when we decide that this or that basic system is the logic. The problem
of the status of extensions of logic is particularly important for philosophical logic
because it consists mainly of systems of this sort.

The three issues concerning the question ‘What is logic?’ are mutually inter-
connected. The choice between first-order logic or higher-order logic automatically
leads to the two other issues, because it equally arises with respect to any alternative
logic and any extension of a preferred basic logic. Thus, we have a fairly complex situ-
ation. Yet the above division into three issues does not exhaust all problems. Usually it
is assumed that first-order logic (classical or not) is based on the assumption that its
universe it not empty. However, as Bertrand Russell once remarked, that it is a defect of
logical purity, if one can infer from the picture of logic that something exists. This is
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perhaps the main motivation for so-called free logic, that is, logic without existential
assumptions (logic admitting empty domains). Is it classical or not? The described sit-
uation suggests a pessimism as far as the matter concerns a natural and purely descrip-
tive characterization of logic; it seems that an element of a convention is unavoidable
here. A further reason that the domain of metalogic cannot be sharply delimited is that
several metalogical or metamathematical results distinguish logical (even in a wider
sense) from other formal systems. Assume that we decide to stay with the first-order
thesis. The second Gödel theorem (the unprovability of the consistency of elementary
arithmetic) clearly separates pure quantification logic from formal number theory. It is
one reason that metamathematical results are of interest for metalogic. Metalogical
investigations also use several concepts that are defined in general metamathematics,
for example formal system, axiomatizability, consistency, completeness, provability, etc.
Fortunately, we are not forced to answer the borderline question in a final manner. My
aim in this essay is to review the most essential metalogical concepts. Classical first-
order logic is taken as the paradigm. The treatment is rather elementary. Although I
assume some familiarity with syntax and semantics of first-order logic as well as with
several simple concepts of set theory, most employed concepts are explained. However,
some important concepts of metalogic, for instance that of recursive function, do not
allow a brief and elementary clarification. On the other hand, it would be difficult and
not reasonable to resign from them. These concepts are marked by * and the reader is
asked to consult textbooks listed in the references. In particular, I recommend Hunter
(1971) and Grzegorczyk (1974); moreover, Pogorzelski (1994) is suggested as the
fullest survey of metalogic (I follow this book in many matters). Special attention will
be given to relations between syntactic and semantic concepts that are most strikingly
displayed by (semantic) completeness theorems. I do not enter into historical details,
although it seem to be proper to include dates when some fundamental theorems 
were proved (references to original papers are easily to be found in works listed in the
Bibliography).

The characterization problem is a special metalogical issue. It consists in giving suf-
ficient and necessary conditions which determine particular logics or classes of logics.
These conditions can be syntactic, semantic, or mixed. Let me explain the problem in
the case of the propositional calculus. It has been axiomatized in various ways.
However, one axiomatic base, rather long, is particularly convenient here. The axioms
are these (I use the Hilbert-style formalization use of axiom-schemata. Thus, the letters
A, B, C are metalinguistic variables referring to arbitrary formulas of the propositional
calculus and modus ponens (B is derivable from A and A Æ B) is the only inference rule:

(A1) A Æ (B Æ A)

(A2) (A Æ (A Æ B)) Æ (A Æ B)

(A3) (A Æ B) Æ ((B Æ C) Æ (A Æ C))

(A4) A Ÿ B Æ A

(A5) A Ÿ B Æ B

(A6) (A Æ B) Æ ((A Æ C) Æ (A Æ B Ÿ C))

(A7) A Æ A ⁄ B
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(A8) B Æ A ⁄ B

(A9) (A Æ C) Æ ((B Æ C) Æ (A ⁄ B Æ C))

(A10) (A ´ B) Æ (A Æ B)

(A11) (A ´ B) Æ (B Æ A)

(A12) (A Æ B) Æ ((B Æ A) Æ (A ´ B))

(A13) (A Æ B) Æ (ÿB Æ ÿA)

(A14) A Æ ÿÿA

(A15) ÿÿA Æ A

A nice feature of this set of axioms is that we can easily distinguish subsets related to
particular connectives. (A1)–(A3) characterize implication, (A4)–(A6) conjunction,
(A7)–(A9) disjunction, (A10)–(A12) equivalence, and (A13)–(A15) negation. Now if
we eliminate (A15), we obtain the axiom set for intuitionistic logic. Thus, we can say
that (A1)–(A15) solve the characterization problem for classical propositional logic, but
(A1)–(A14) do the same job for intuitionistic propositional logic, provided that the char-
acterization problem is to be solved by axiomatic methods. Other ways of characteriz-
ing logical systems proceed by matrices (truth-tables), semantic tableaux*, trees*,
semantic games* or Hintikka sets*, but all provide conditions which separate various
more or less alternative logics. One characterization result recently became particularly
famous. It is the celebrated Lindström theorem which establishes very general condi-
tions for first-order logic. This theorem and will be presented in a separate section below.

Formal metalogical results are interesting in themselves as well as being philosoph-
ically important. The problem of the nature of logic has a decisively philosophical char-
acter. Several accepted intuitions about logic have gained widespread acceptance: that
logic is formal, universal or topic-neutral, and provides sound (leading always from
truths to other truths) rules of inference. It is interesting to look at metalogical results
as capturing old intuitions; for example, that expressed in the following words of Petrus
Hispanus: dialectica est art artium et scientia scientiarum ad omnium scientiarun methodo-
rum principia viam habent (dialectics (that is, logic) is the art of arts and the science of
sciences that provides methodological principles for all sciences). Another illustration
of the philosophical importance of formal results is that, according to intuitionism,
intuitionistic and classical logic are simply incomparable. It is sometimes maintained
that differences between alternative logics consist in the assignment of different mean-
ings to logical constants and facts, and that these systems are not intertranslatable. As
the characterization problem displayed by axioms for the propositional calculus shows,
however, at least from the classical point of view, classical logic and all weaker systems
are perfectly comparable.

2 Logic via Consequence Operation and Semantics 

Intuitively speaking, logic provides manuals for proving some propositions on the basis
of some assumptions. These manuals consist of inference rules; for example, modus
ponens instructs us that we may logically pass from A and A Æ B as premises to B as
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conclusion. Assume that R is a set of inference rules. The notation X �R A expresses the
fact that a formula A is provable (derivable) from the set X of assumptions, relative to
rules of inference from R (I will omit the superscript indexing the provability sign in
due course). We define

(DCn) A Œ Cn(X) ¤ X � A.

Although Cn (the consequence operation) and � (the consequence operator) are mutu-
ally interdefinable, there is a categorial difference between them. Let L be a language
understood as a set of formulas. Cn is a mapping from 2L to 2L that transforms sets of
formulas into sets of formulas, and the consequence operator maps 2L into L, that is,
sets of formulas are transformed into single formulas.

The analysis of logic via the consequence operator is much more common than that
using Cn (see Segerberg (1982) for the first approach). It is also more closely related to
codifications of logic via natural deduction techniques or sequents which are also used
(see Hacking 1979) in analyzing the concept of logic. I will take another route, however,
and concentrate on the consequence operation (I follow Surma (1981); see also Surma
(1994)). The first question that arises here is this: how many consequence operations
do have we? The answer is that there are infinitely many Cn’s. Thus, we need to estab-
lish some constraints selecting a ‘reasonable’ consequence operation (or operations).
Tarski characterized the classical axiomatically Cn (in fact, Tarski axiomatized the con-
sequence operation associated with the propositional calculus; the axioms given below
concern the consequence operation suitable for first order logic). The axioms are these
(explanations of symbols: ∆, the empty set; L, language; N0, the cardinality of the set
of natural numbers; Õ, inclusion between sets; Œ, the membership relation (being an
element of a set); FIN, the class of all finite sets; », union of sets; {A}, the set consist-
ing of A as the sole element; «, product of sets; /, the operation of substitution for
terms):

(C1) ∆ £ L £ N0

(C2) X Õ CnX

(C3) X Õ Y fi CnX Õ CnY

(C4) CnCnX = CnX

(C5) A Œ CnX fi $Y Õ X Ÿ Y Œ FIN(A Œ CnY)

(C6) B Œ Cn(X » {A}) fi (A Æ B) Œ CnX

(C7) (A Æ B) Œ CnX fi B Œ Cn(X » {A})

(C8) Cn{A, ÿA} = L

(C9) Cn{A} « Cn{ÿA} = ∆
(C10) A(v/t) Œ Cn{"vA(v)}, if the term t is substitutable for v.

(C11) A Œ CnX fi"vA(v) Œ CnX, if v is not free* in X, for every B Œ X.

We can divide the axioms (C1–C11) into three groups. The first group includes (C1–C5)
as general axioms for Cn. (C1) says that the cardinality of L is at most denumerably
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(denumerably – finitely or so many as natural numbers) infinite, (C2) that any set is a
subset of the set of its consequences, (C3) established the monotonicity of Cn (in
general, a function f is monotonic if and only if x £ y entails fx £ fy; in fact, inclusion
is a kind of the £-operation), (C4) its idempotency (a function f is idempotent if and
only if ffx = fx), (C5) states the finiteness condition which means that if something
belongs to Cn(X), it may be derived from a finite subset of X. In other words: every infer-
ence is finitary, that is, performable on the base of a finite set of premises and, accord-
ing to the character of rules, finitely long. It is an important property, because there
are also infinitary logical rules, for example the w-rule which leads (roughly speaking)
from the infinite sequence of premises P(1), P(2), P(3), . . . to the conclusion "nP(n),
but it is commonly recognized that human beings cannot effectively use such rules.
(C1–C5) do not provide any logic in its usual sense. The logical machinery is encapsu-
lated by the rest of axioms (related to logic based on negation, implication, and the uni-
versal quantifier): (C6) is modus ponens (it shows that modus ponens is the inverse of
the deduction theorem), (C7) the deduction theorem (if B is derivable from the set X
plus A, then the implication A Æ B is derivable from X; if it is to be applied to predicate
logic, we must assume that A and B are closed formulas, that is formulas without free
variables), (C8)–(C9) characterize negation, and (C10–C11) characterize the universal
quantifier. We can also add axioms suitable for identity or introduce the consequence
operation for intuitionistic logic.

Logic (more precisely: classical first-order logic) can be defined as Cn∆. More 
formally we have:

(DL1) A Œ LOG ¤ A Œ Cn∆, or, equivalently LOG = Cn∆.

Of course, modifications of Cn in accord with the ideas of alternative logics lead 
to their related definitions. For example, intuitionistic logic is given by the equality 
LOGi = Cni∆. (DL1) looks artificial at first sight, because it is clear that the logical con-
tent is related to axioms imposed on Cn; clearly, the empty set here is a convenient
metaphor: we can derive something from the empty set only because of the logical
machinery already built into Cn. Hence, we have the problem of deciding what stipu-
lations about the consequence operation are proper for logic. This question concerns
general as well as special axioms. Worries concerning which logic, classical or some
alternative, is the ‘logic’ also remain on this approach; for example, we can consider
this question with respect to modal extensions or formal systems which contain rules
related to axioms of arithmetic. Are Cnm∆ (the set of modal consequences, relatively to
a system of modal logic, of the empty set) or Cnar∆ (the set of arithmetical consequ-
ences of the empty set) logics)? As far as the general axioms are concerned, we can, 
for instance, drop the requirement of monotonicity (it leads to non-monotonic logics
used in computer science) or finiteness (infinitary logic). Hence, any definition of
logic via the consequence operation needs an additional justification. I will present 
a motivation for classical logic which can be easily applied to other systems.

First of all, let us observe that (DL1) is equivalent to two other statements, namely
(an explanation concerning (DL3): an operation o closes the set X if and only if
oX Õ X, that is, applications of o to X do not produce elements which do not belong 
to X):
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(DL2) A Œ LOG if and only if ÿA is inconsistent.
(DL3) LOG is the only non-empty product of all deductive systems (theories), that

is, sets which satisfy the condition: CnX Õ X (are closed under Cn).

Now, (DL2) and (DL3) surely define properties which we expected to be possessed by
any logic. We agree that negations of logical principles are inconsistencies and that
logic is the common part of all, even mutually, inconsistent theories. Additionally, 
(DL3) entails that logical laws are derivable from arbitrary premises. Thus, we have 
the equivalence: A Œ Cn∆ if and only if A Œ CnX, for any X, and the equality LOG =
Cn∆ = CnX, for any X. These considerations show that (DL1) and its equivalents ex-
press an important intuition, namely that logic is universal in the sense that it does not
require any premises, or is deducible from arbitrary assumptions.

Yet one might argue that such a construction of logic is circular because it defines
logic by means of the prior assumption that something is logical. This objection can be
easily met by pointing out that our definitions are inductive, that is, selects logical
axioms as so called initial conditions and then shows how inductive conditions (in fact,
the rules of inference coded by Cn) lead step by step to new logical elements. On the
other hand, it is perhaps important for philosophical reasons to look at an independent
characterization of logic. This is provided by semantics and it is expressed by (a model
of a set X of sentences is a structure consisting of a universe of objects and a collection
of relations defined on the universe such that all sentences belonging to X are true; 
if we admit open formulas, that is, formulas with free variables, a model of a set X of
formulas is a structure in which all formulas belonging to X are satisfied):

(DL4) A Œ LOG if and only if for every model M., A is true in M.

This last definition describes logic as universal in the sense that logical laws are true in
every model (domain). It is related to the old intuition that logic is topic neutral, that
is, true or valid with respect to any particular subject matter. Intuitively, there is an
obvious link between (DL1)–(DL3) and (DL4). However, we have no formal tools that
prove all these definitions are equivalent. Since (DL1)–(DL3) are syntactical descriptions
of logic (they use the concepts of consequence operation or consistency which are just
syntactic), but (DL4) is semantic in its essence (it defines logic via the concept of a
model), any comparison of the two approaches requires a rigorous investigation of
how syntax and semantics are related. In fact, it consists in a comparison of the set of
theorems (the set of provable formulas) of a system under investigation with the set 
of its validities (truths, tautologies).

3 Metalogic, Syntax and Semantics

Although we basically intend to achieve a precise comparison of syntax and semantics
in logic, this section provides an opportunity to introduce several important metalogi-
cal concepts and properties (others will be defined in the next section). Let S be an arbi-
trary formal system formulated in a language L. The most important metalogical
concepts are summarized by the following list:

JAN WOLEŃSKI
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S is consistent if and only if CnS π L; if S contains the negation sign this definition is
equivalent to the more standard: S is consistent if and only if no inconsistent pair
(that is, consisting of A and ÿA) of formulas belongs to the consequences of S.

S is Post-complete (the name honors of Emil Post, an American logician who defined
the property in question) if and only if Cn(S » {A}) = L, for any formula A which
is not a theorem of S.

S is syntactically complete if and only if for any A, either A Œ CnS or ÿA Œ CnS.
S is semantically complete if and only if every provable formula of S is true in every

model of S and every validity (truth) of S is provable in it.
S is decidable if and only if the set of its theorems is recursive*.
S is axiomatizable if and only if there is a set Ax Õ S such that S = CnAx; if Ax is finite

(recursive) we say that S is finitely (recursively) axiomatizable.

Some comments are in order. Various labels for particular properties are employed by
various authors. For example, syntactical completeness is sometimes called negation-
completeness. Semantic completeness has in fact two ingredients. The direction from
provability to validity (every truth is provable) is considered as soundness (correctness,
adequacy) and semantic completeness proper, so to speak, is expressed by the reverse
implication (every truth is provable). The given definition of decidability is related to
the Church thesis*, that is, the proposal to identify intuitively calculable functions 
(calculable in the finite mechanically performable steps) with recursive functions.
Finally, the definition of axiomatizability does not exclude the situation that S forms 
its own axiomatic base.

We are mainly interested in properties of logic. The propositional calculus is consis-
tent, post-complete, syntactically incomplete (it is enough to consider a single variable;
neither p nor ÿp are theorems of propositional logic), sematically complete, decidable
(by the truth-table method) and finitely axiomatizable (by concrete formulas) or recur-
sively axiomatizable (by schemata). One qualification is needed with respect to the
concept of post-completeness. This property holds for the propositional calculus with
axioms as concrete formulas and the rule of substitution. Fortunately, we can define
another property, parallel to post-completeness which is possessed by the propositional
calculus when it is formalized by axiom-schemata. Now, first-order predicate logic is
consistent, not post-complete (if we add, for example, the sentence ‘there are exactly
two objects’ which is not a logical theorem as a new axiom, the resulting system is not
inconsistent), not syntactically complete, semantically complete (proved by Kurt Gödel
in 1929), undecidable (proved by Alonzo Church in 1936), and finitely or recursively
axiomatizable. All these facts apply to first-order predicate logic with identity. Gödel
proved in 1931 two famous theorems (both of which assume that arithmetic is 
consistent): (1) every formal system strong enough for the elementary arithmetic 
of natural numbers is syntactically incomplete; (2) the consistency of arithmetic is
unprovable in arithmetic; both theorems assume that arithmetic is consistent. The first
theorem implies that arithmetic is not recursively axiomatizable. Tarski showed in 1933
that the set of arithmetical truths is not definable arithmetically*. Finally, Church
proved in 1936 that arithmetic is undecidable. These four theorems are usually called
limitative theorems, because they point out limitations inherent to any formalism 
sufficiently rich to cover the arithmetic of natural numbers.
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For our aims, semantic completeness is the most important. In its most general form,
the completeness theorem (in its strong form) says (the symbol |= stands for validity):

(CT) S is semantically complete if and only if: S � A ¤ S |= A.

(CT) is equivalent to the Gödel–Malcev theorem:

(GM) S is consistent if and only if it has a model.

The proof of (GM) requires the axiom of choice* (or its equivalents) which means that
it is not a constructive theorem. The most popular proof of (CT) uses the Lindenbaum
lemma: every consistent set of sentences has a maximal consistent extension (maxi-
mality means here that adding any sentence to a maximally coinsistent set leads to
inconsistency); this lemma is also not constructive. If we put ∆ instead S in (CT), we
obtain ∆ � A if and only if ∆ |= A. By (DCn), it gives the weak completeness theorem

(CT1) A Œ Cn∆ ¤ ∆ |= A.

Since the right part of (CT1) expresses the fact that A is true in all models, it legitimizes
the equivalence of (DL1) and (DL4) for first-order predicate logic with identity. It should
be clearly noted that the completeness theorem, although it establishes the parity of
syntax and semantics in semantically complete systems, it does not provide in itself any
definition of logic. However, if we agree that universality is its characteristic property,
(CT1) shows that universality in the syntactic sense (provability from the empty set of
premises) is exactly equivalent to universality in the semantic sense (truth in all models
or logical validity). Moreover, this part of (CT) (or (CT1)) which expresses the sound-
ness property (if a formula is provable, it is also true) justifies the intuition that logical
rules are infallible: they never lead from truths to falsehoods.

The universality property is also displayed by another theorem, the neutrality
theorem, which asserts that first-order predicate logic with identity does not distinguish
any extralogical concept, that is, any individual constant or predicate parameter (ci, cj

are individual constants, Pk, Pn are predicate parameters, the notation A(c) and A(P)
means that a constant c (predicate parameter P) occurs in A):

(N) (a) A(ci) Œ LOG fi A(cj/ci Œ LOG; (b) A(Pk) Œ LOG fi A(Pn/Pk) Œ LOG.

This theorem says that if something can be provable in logic about an object or its prop-
erty, the same can be also proved about any other object or property. It is of course
another aspect of the topic-neutrality of logic.

4 The Characterization Problem for First-order Logic

The strong completeness theorem motivates a stronger understanding of logic. Let T
be an extralogical theory (axiomatized by the axioms belonging to the set Ax). Thus T
is the ordered triple (see Rasiowa and Sikorski 1970: 187).
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·L, Cn, AxÒ.

Now the consequence operation Cn operating on L and Ax generates the logic of T.
Denote logic in this extended sense by LOGT and logic given by (DL1) by LOG∆ (it 
operates on the empty set). Of course, LOG∆ Õ LOGT. The modification is not essential
for logic in this sense: the stock of logical rules, given by Cn∆, is the same. However,
this extended concept of logic, which focuses on its applications, leads to a more 
general formulation of the characterization problem.

Call a logic regular if its logical symbols obey classical (Boolean) principles (it is prac-
tically restricted to negation; roughly speaking, ‘Boolean’ means that our logic is per-
fectly two-valued); we also assume that L is countable, that is, contains at most
denumerably many sentences. A logic satisfies the compactness property (Com) if and
only if it has a model if its every finite subset has a model. A logic satisfies the
Löwenheim–Skolem property (LS) if and only if it has a countable model if it has an infi-
nite model. The Lindström theorem (proved by Per Lindström in 1969) is the statement:

(L) First-order predicate logic is the strongest logic which satisfies (Com) or (CT),
and (LS).

For example, second-order logic (first-order logic has quantifiers ranging over individ-
uals; second-order logic also admits quantification over properties – the sentence ‘for
any object x, there is a property P such that x has P’ is an example of a second-order
sentence) satisfies neither (Com) nor (LS), but (CT) holds for it, if we admit second-order
quantification over special entities, and logic with the quantifier ‘there are uncountably
many’ is complete, but then it does not obey (LS). Of course, (L) holds also for logic
defined by (DL1), that is, for Cn∆. Let me add that no counterparts of (L) are known
with respect to non-classical logics, in particular, intutionistic or many-valued logics.
The reason is that they are not regular.

There is a considerable debate concerning the interpretation and consequences of
(L) (see Barwise 1985). All parties agree that (L) asserts the limitations on the expres-
sive power of first-order predicate logic. In particular, several mathematical concepts,
like finiteness, cannot be defined in its language. Hovever, it is a matter of controversy
whether (L) determines that only first-order predicate logic deserves to be counted as
the logic. The first-order thesis, previously explained, restricts the scope of logic to first-
order logic, but the opposite standpoint maintains that if logic is to serve mathematics,
its expressive power must be much greater than that of first-order languages. It is now
clear why this problem becomes central when an extended concept of logic is assumed.
Since definability is traditionally regarded as a logical issue, its limitations are perceived
as limitations of the power of logic. I will come back to these questions in the next (and
final) section.

5 Final Remarks

In this section, I come back to philosophical issues concerning the concept of logic. Let
me start with the first-order thesis. Its opponents argue that it restricts the application
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of logic in science, in particular, in mathematics, which requires that logic should have
a considerable expressive or defining power in order to capture various mathematical
concepts. On the other hand, the first-order thesis focuses on the universality property
of logic and the infallibility of its inferential machinery (see Woleński 1999). Thus, we
have to do here with a conflict between two different expectations concerning logic. The
postulate that logic should have great expressive power recalls the ambitious projects of
logica magna or lingua characteristica proposed by Leibniz, Frege, or Russell and intended
as languages which are able to cover the whole of science or at least mathematics. The
first-order thesis motivated by (L) and (N) sees logic as providing universally valid theo-
rems, being the common part of all deductive systems, always generating a perfectly
sound inference machinery. The issue is serious because either we can have strict uni-
versality or languages with a great expressive power, but not both virtues together. We
can assume that Cn∆ always provides secure rules of inference. Thus, the point is what
should be regarded as logical: only propositional connectives, quantifiers, and identity,
or perhaps also other concepts, like finiteness. It is not surprising that (CT) contributes
to our understanding of the universality of logic. However, it was not expected that
(Com) and (LS) do too, though if first-order predicate logic does not distinguish any
extralogical concepts, it also should be neutral with respect to the cardinality of models,
that is, the number of elements in their universes. It is interesting that there are also
problems when we consider identity as a logical concept. The argument for its status as
a logical constant stems from the fact that first-order logic with identity relation satisfies
(CT), (N), and (L). On the other hand, identity enables us to define numerical quantifiers,
for example, ‘there are exactly two objects’, but there are doubts whether such phrases
deserve to be called logical. Thus we have reasons to say that the prospects for an answer
to the question ‘What is logic?’ that is unconditional and free of at least some degree or
arbitrariness, are not encouraging. The problem becomes still more complicated when
non-classical logics are taken into account.

New problems arise when extensions of a basic logic are analyzed. It may be demon-
strated by modal logic. Since modal systems are more closely treated in a separate
chapter in this Companion, I limit myself to a very sketchy remarks. We can and even
should ask whether � (necessity) and ‡ (possibility) are logical constants? One might
argue that since special conditions, related to particular modal systems, are imposed
on modal models, especially on so-called accessibility relations (for example, deontic
logic requires that this relation is irreflexive, the system T is associated with the condi-
tion of symmetry, etc.), modal logics are not universal. On the other hand, the system
K does not require any particular constraint. Yet we can say that its characteristic
formula �(A Æ B) Æ (�A Æ �B) is a modal translation of the theorem of first-order
logic "x(A Æ B) Æ ("xA Æ "xB). However, K is a very weak system and does not
display all traditional intuitions concerning logical relations between modalities. Thus,
we perhaps should decide: either universality (no special provisos on modal models) or
more content, like in the case of the controversy over the first-order thesis.

How then does metalogic contribute to our understanding of logic? The answer
seems to be this. Although metalogical theorems do not provide answers which are free
of conventional elements, they precisely show those points where intuitions go beyond
formal results.
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Logic in Finite Structures: Definability,
Complexity, and Randomness

S C O T T W E I N S T E I N

1 Validity in the Finite

Is it simpler to reason about finite structures or about arbitrary structures? Some of the
major results of logic in the twentieth century provide a clear and surprising answer
to one precise version of this question. Suppose first that we restrict our reasonings 
to propositions which are expressible in first-order logic. We may then understand the
question as asking for a comparison between the complexity of

1. determining whether a first order sentence is valid, that is, true under every inter-
pretation whatsoever, and

2. determining whether a first-order sentence is valid in the finite, that is, true under
every interpretation with a finite universe of discourse.

This question can be formulated more concisely and concretely in terms of Val, the set
of valid sentences of L, the first order language with identity and a single binary rela-
tion symbol E, and Fval, the set of sentences of L which are valid in the finite, namely:
is the decision problem for Fval simpler than the decision problem for Val?

Let’s begin by analyzing the complexity of the decision problem for Fval. It is easy to
see that we can make an effective list A1, A2, . . . of finite structures for L which con-
tains every such structure up to isomorphism. We may now subject a sentence j Œ L
to the following effective procedure: successively test whether A1 satisfies j, A2 satisfies
j, . . . ; at the first stage where the outcome is negative, halt the procedure and return
the answer ‘no.’ Clearly, this procedure yields the correct answer to the query ‘is j valid
in the finite,’ if the answer is negative, and yields no answer, otherwise. That is, the
complement of Fval is recursively enumerable, or in other words, Fval is co-r.e.

If we attempt such a direct approach to analyzing the complexity of Val, we are
stymied at the outset. There is no possibility of effectively generating a list of all struc-
tures up to isomorphism, since there are structures of every infinite cardinality; more-
over, there is, in general, no effective way to test whether a given infinite structure 
A satisfies a sentence j Œ L. Reflection on the apparent complexity of the notion of
validity provides the proper context in which to appreciate the extraordinary depth of
Gödel’s Completeness Theorem for first-order logic: there is a sound and complete 



effective proof procedure for first-order validity. In other words, Val is recursively enu-
merable – in order to discover that a first-order sentence is valid, if it is, we need only
look through an effectively generated list of finite objects and check that one is its proof.

So far so good: Val is r.e.; Fval is co-r.e. To complete the picture we need to invoke two
more fundamental results of twentieth-century logic. Church’s Theorem tells us that
Val is undecidable, from which it follows that Val is not co-r.e. On the other hand,
Trakhtenbrot’s Theorem (see Trakhtenbrot 1950) tells us that Fval is undecidable, from
which it follows that Fval is not r.e., that is, there is no sound and complete proof pro-
cedure for the first-order sentences which are valid in the finite. This suggests one
answer to the question with which we began: reasoning about finite structures is no
simpler than reasoning about arbitrary structures – there is an effective proof proce-
dure for validity, but no effective proof procedure for validity in the finite. Indeed, there
is a good sense in which we can say that the complexity of the decision problems for
Val and Fval are identical, namely, Val and Fval are Turing reducible to one another. That
is, there is a Turing machine which will decide membership in Val given an oracle for
Fval and there is a Turing machine which will decide membership in Fval given an oracle
for Val. Remarkably, Val and Fval turn out to have effectively the same information
content.

2 Model Theory in the Finite?

The last section suggests that, in a sense, there can be no proof theory for first-order
logic in the finite, since there can be no effective proof procedure for validity in the finite.
How about model theory? At the outset, there are disappointments. One of the central
results in the model theory of first-order logic, the Compactness Theorem, does not
extend to the finite case. Recall the Compactness Theorem: if every finite subset of a set
of first order sentences G is satisfiable, then G itself is satisfiable. Call a set of sentences
G satisfiable in the finite, if and only if, there is a finite structure A which satisfies every
sentence in G. It is easy to construct a set of first order sentences G such that every finite
subset of G is satisfiable in the finite, whereas G itself is not satisfiable in the finite. For
example, let G = {ln Ô n > 0}, where ln is a first order sentence in the pure language of
identity which is true in a structure A, if and only if, the size of A is at least n. Virtually
all the finite analogs of well-known consequences of the Compactness Theorem fail 
as well, for example, the Beth Definability Theorem, the Craig Interpolation Theorem,
most all ‘preservation theorems,’ etc. (See Gurevich (1984) for a compendium of such
results; a notable exception is van Benthem’s preservation theorem for the modal 
fragment of first-order logic, see Rosen (1997).)

Further contrasts between the finite model theory of first order logic and classical
model theory abound. A central phenomenon of first order model theory is that no infi-
nite structure can be characterized up to isomorphism by a set of first order sentences.
Recall that structures A and B are elementarily equivalent, if and only if, they satisfy
the same first-order sentences. It is a corollary of the Compactness Theorem that for
every infinite structure A, there is a structure B (indeed, a proper class of pairwise non-
isomorphic structures B) such that A is elementarily equivalent to B, but A is not iso-
morphic to B. In contrast, it is easy to show that for all structures A and B, if A is finite
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and B is elementarily equivalent to A, then B is isomorphic to A. Indeed, for every finite
structure A whose signature is finite, there is a single first-order sentence j such that
for every structure B, B satisfies j, if and only if, B is isomorphic to A.

3 Definability and Complexity

In light of all these contrasts, one might legitimately wonder what finite model theory
could be. The following sections attempt to answer this question by giving a feeling for
some of the techniques, results, and open problems of the subject. For the most part,
we will pursue questions in definability theory, that is, we will inquire into the expres-
sive power of various logical languages in the context of finite structures. We will see
that this study has close connections with the theory of computational complexity.

We collect together here some notions and notations that will ease our progress. 
A structure A, for us, consists of a universe of discourse ÔAÔ and interpretations for a
finite set of relation symbols and constant symbols; this set of symbols is called the sig-
nature of A. Whenever we mention two structures in the same breath, they are of the
same signature; whenever we speak of a collection of structures, they are of the same
signature. Let K be a class of structures. A collection of structures Q Õ K is a query rel-
ative to K, if and only if, Q is isomorphism closed in K, that is,

"A,B Œ K((A Œ Q Ÿ A � B) Æ B Œ Q).

We will drop the qualification ‘relative to K ’ when the background class is clear from
the context. Queries are the proper object of study in our investigation of definabil-
ity and complexity, since logical languages do not distinguish between isomorphic
structures.

We think of a logical language L as consisting of a set of sentences SL and a satis-
faction relation |=L. We will suppress the subscript to |= as it will generally be clear from
the context. Given a class of structures K and a sentence j Œ SL, we write j(K) for the
query defined by j relative to K, that is,

j(K) = {A Œ K Ô A |= j}.

We write L(K) for {j(K) Ô j Œ SL}, the set of queries which are L-definable relative 
to K.

In what follows, we will analyze and compare the logical and computational com-
plexity of queries relative to classes of finite structures. It will be convenient to intro-
duce, for each signature s, a canonical countable set of finite structures Fs which
contains, up to isomorphism, every finite structure of signature s. We let Fs be the set
of structures of signature s with universe of discourse [n](= {1, . . . , n}) for some n ≥
1. Unless otherwise indicated, all collections of finite structures we mention are under-
stood to be subsets of Fs for some s. We write D for F{E} where E is a binary relation
symbol; D is, for us, the class of finite directed graphs. For simplicity and concreteness,
our discussion will often focus on queries relative to D.
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In the following sections, we will address questions concerning the logical resources
that are required to define a given query Q Õ D. For example, we will consider whether
Q is definable in second-order, but not in first-order, logic; or whether Q is definable by
an existential second-order sentence, but not by the negation of such a sentence, etc.
We can think of this study as yielding information about the complexity of Q – for
example, if Q is not first-order definable, while Q¢ is, we might want to say that the 
definitional, or descriptive, complexity of Q¢ is no greater than that of Q. In this way,
we can think of the classes of queries L(D), for various languages L, as descriptive com-
plexity classes, in analogy with the resource complexity classes studied in the theory of
computation (see Papadimitriou (1994) for background on the theory of computa-
tional complexity). Let us pursue this analogy.

Consider a query Q Õ D. We have been thinking of Q under the guise of definabil-
ity. We can, on the other hand, think of Q as a decision problem: given an A Œ D answer
the question whether or not A is a member of Q. Rather than asking what logical
resources are required to specify Q, we can ask instead, what computational resources
are required to decide membership in Q. To make this precise, we can easily encode each
A Œ D as a bit string, thereby making it a suitable input to a Turing machine. If A is of
size n, the adjacency matrix of A is the n ¥ n matrix whose i, j-entry is a 1, if ·i, jÒ Œ EA,
and is a 0, otherwise. We encode A as the bit string c(A) which consists of the con-
catenation of the rows of the adjacency matrix of A, and for Q Õ D, we let c(Q) = {c(A)
Ô A Œ Q}. If Y is a resource complexity class, then we write Y(D) for the collection of
queries Q Õ D such that c(Q) Œ Y. (In a similar fashion, we may define Y(Fs) for any
signature s.) We are now in a position to make direct comparisons between resource
and descriptive complexity classes. In the following sections, we will see that many
important resource complexity classes, for example, P and NP, have natural logical
characterizations relative to various sets of finite structures.

4 First-Order Definability

One of the main tools for establishing limits on the expressive power of first-order logic
over arbitrary structures is the Compactness Theorem. As noted earlier, we are deprived
of the use of this tool in the context of finite structures, so we will need to rely on other
techniques. We begin with an exemplary application of the Compactness Theorem, so
we can appreciate what we are missing; the example will reappear throughout the fol-
lowing sections.

Let D* be the collection of arbitrary structures A of signature {E}; each A Œ D* is
a, perhaps infinite, directed graph. We call such a graph A simple, if and only if, EA is
irreflexive and symmetric, and we let G* be the collection of arbitrary simple graphs. A
simple graph may be visualized as a loop-free, undirected graph. Note that G* is first-
order definable relative to D*. Now let D*st (resp., G*st) be the collection of expansions 
of structures in D* (resp., G*) to the signature with two additional constant symbols s
and t – this is the collection of directed (resp., simple) source–target graphs. A graph 
A Œ D*st is reachable, if and only if, there is a path from sA to tA in A, that is, a sequence 
a1, . . . , an of nodes of A such that a1 = sA, an = tA, and for every 1 £ i < n, ·ai, ai+1Ò Œ EA.
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Let S* be the collection of A Œ G*st such that A is reachable. Is S* first order definable rel-
ative to G*st? An application of the Compactness Theorem provides a negative answer.
For suppose that there is a first-order sentence j with j(G*st) = S*. Let G be the set con-
sisting of the following sentences:

y0 ÿs = t

y1 ÿEst

y2 ÿ$x(Esx Ÿ Ext)

� �

Notice that a graph A satisfies the conjunction y0 Ÿ . . . Ÿ yn, if and only if, there is no
path in A of length £n from sA to tA. Therefore, the simple chain of length n + 1 with
end nodes labeled s and t satisfies y0 Ÿ . . . Ÿ yn, from which it follows that every finite
subset of G » {j} is satisfiable. Therefore, by the Compactness Theorem, G » {j} is 
satisfiable. On the other hand, it is clear that if a graph A satisfies G, then A is not 
reachable. But, this contradicts the hypothesis that j defines S*.

Now, let S � S* be the set of finite reachable simple source–target graphs. The ques-
tion whether S is first-order definable is no longer immediately accessible to an applica-
tion of the Compactness Theorem of the sort sketched above. The Compactness Theorem
can be pressed into service to answer the question by exploiting ‘pseudofinite’ structures,
that is, infinite structures which satisfy every first-order sentence which is valid in the
finite (see Gaifman and Vardi (1985) for details); but, we will follow a different approach,
due to Gurevich (1984), which proceeds via Ehrenfeucht games and yields additional
information. The approach involves a reduction from a query on linear orders.

Let Lst Õ F{<,s,t} be the set of finite linear orders with minimal element s and maximal
element t. The conjunction of the following first-order conditions defines Lst.

"xÿ(x < x) (irreflexive)

"x"y"z((x < y Ÿ y < z) Æ x < z) (transitive)

"x"y(x < y ⁄ y < x ⁄ x = y) (total)

"x(ÿ(x < s) Ÿ ÿ (t < x)) (endpoints)

Let M Õ Lst be the set of odd linear orders, that is, linear orders with universe [2n + 1],
for some n. Is M first-order definable relative to Lst?

Here is one strategy for attempting to show that M is not first-order definable. For
each first-order sentence j, show that there are A, B Œ Lst such that A and B agree
about j (either they both satisfy j or they both fail to do so), A Œ M, and B œ M. It is
clear that if we succeed in doing this, we have shown that M is not first-order defin-
able. (Indeed, the converse holds as well – the strategy is nothing more than a restate-
ment of what’s required.) What makes the strategy worth pursuing is that there is a
powerful, and entertaining, technique, the Ehrenfeucht game, for showing that pairs
of structures agree about first-order sentences. This technique applies to both finite and
infinite structures and, to some extent, fills the void left by the failure of compactness
in finite model theory.
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The Ehrenfeucht game is played between two players, conventionally called the
Spoiler and the Duplicator. The equipment for the game consists of two boards, one rep-
resenting the graph A and the other representing the graph B, and an unlimited supply
of pairs of pebbles ·a1, b1Ò, ·a2, b2Ò, . . . . The game is played through a sequence of
rounds as follows. At the ith round of the game, the Spoiler chooses one of the pebbles
from the pair ·ai, biÒ and places it on a node of the corresponding board A or B, the a
pebbles are played onto A and the b pebbles onto B. The Duplicator then places the
remaining pebble on the other board, completing the round of play. Suppose the game
has proceeded through n-rounds of play. Let ai be the node in A covered by ai and let bi

be the node in B covered by bi. Let f be the mapping which sends ai to bi for all 1 £ i £ n
and sends sA to sB and tA to tB. If f is a partial isomorphism from A to B (that is, a one
to one, edge preserving map) we say the Duplicator wins the game through n-rounds
of play. Thus, the Spoiler’s goal is to reveal structural distinctions between A and B, the
Duplicator’s goal is to hide them. We say that A is n-similar to B, if and only if, the
Duplicator has a strategy to win every play of the Ehrenfeucht game on A and B
through n-rounds. We say structures A and B are n-equivalent, if and only if, A and B
satisfy exactly the same first-order sentences of quantifier rank £n (recall that the quan-
tifier rank of a formula is the maximum depth of nesting of quantifiers in the formula).
The Ehrenfeucht–Fraïssé Theorem tells us that n-similarity and n-equivalence coincide,
that is, for all structures A and B and for every n, A is n-similar to B, if and only if, A is
n-equivalent to B (see Ehrenfeucht 1961; and Fraïssé 1954).

Armed with the Ehrenfeucht–Fraïssé Theorem, we can now implement our strategy
for showing that M is not first order definable. For each n, it suffices to construct a pair
of finite linear orders A and B such that A Œ M, B œ M, and A is n-similar to B. We
accomplish this by overkill – for each n, if A and B are finite linear orders of length >2n,
then A is n-similar to B. To see this, consider the following strategy for the Duplicator
in the n-round game played on two such linear orders. At round m, the Duplicator plays
as follows. Suppose, without loss of generality, that the Spoiler has played into A. This
play falls into one of m intervals into which A has been divided by the play of pebbles
at earlier rounds of the game and it determines distances d1 and d2 between the newly
pebbled point and the left and right endpoints of that interval, respectively. The
Duplicator plays into the corresponding interval in B so as to achieve the following
approximation between these distances and the corresponding distances d ¢1 and d ¢2
between the point he/she pebbles and the endpoints of his/her interval. Namely, for i =
1, 2 if di £ 2(n-m), then di = d ¢i, and if di > 2n-m, then d¢i > 2n-m. The initial condition on the
lengths of A and B insures that the Duplicator can maintain these approximations
through n-rounds of play. Thus, M is not first-order definable. Indeed, any first-order
definable collection of finite linear orders is a finite or cofinite subset of Lst.

Now, we reduce the problem of defining odd length linear orders (M) to the problem
of defining reachability (S ). Let r(x, y) be a first-order formula which is true of a pair
of elements of a linear order, if and only if, the second is the successor of the succes-
sor of the first, and let c(x, y) be the formula r(x, y) ⁄ r(y, x). Suppose A Œ Lst. We 
may use the formula c to define a simple source–target graph B from A. We let ÔBÔ =
ÔAÔ, sB = sA, tB = tA, and EB = {·u, vÒ Ô A |= c[u, v]}. Now, observe that the graph B thus
defined is reachable, if and only if, A Œ M. Suppose that there is a first-order sentence
q which defines S. Let q¢ be the result of replacing each subformula of the form Exy in
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q with c(x, y). Then, q¢ defines M. We have exhibited a ‘first-order reduction’ of M to
S; it follows at once that S is not first-order definable, since M is not. Such first-order
reductions are an important descriptive analog of the resource bounded reductions of
computational complexity theory.

The foregoing examples show that some simple properties of finite graphs are not
first-order definable. These examples can be easily multiplied – acyclicity, regularity, 2-
colorability, etc. all fail to be first-order definable. Lest the reader be left with the impres-
sion that no interesting classes of finite graphs are first-order definable, note that the
collection FR of finite nonempty ranks of the cumulative hierarchy of sets equipped
with the membership relation as their edge relation is first-order definable (see Dawar
et al. 1998). In Section 6, we will see that questions concerning the expressive power
of first-order logic relative to FR are directly related to open problems in the theory of
computational complexity.

5 Second-Order Definability

What logical resources are required to define reachability over finite graphs? As we’ve
just seen, first-order logic doesn’t suffice. There are several routes to the definability of
reachability. Let’s begin with Frege’s (1884). The transitive closure (sometimes called
the ancestral) of a binary relation R is the smallest relation (in the sense of inclusion)
which is transitive and includes R. For example, the relation ‘ancestor of ’ is the transi-
tive closure of the relation ‘parent of.’ If R is a binary relation, we write tc(R) for the
transitive closure of R.

Frege observed that the relational operator tc is uniformly definable by a formula 
t(x, y) of second-order logic; that is, for every structure A Œ D*, tc(EA) = {·u, vÒ Ô A |=
t[u, v]}. The formula t(x, y) may be chosen to be:

"P(("z(Exz Æ Pz) Ÿ "v"w((Pv Ÿ Evw) Æ Pw)) Æ Py).

This formula has a couple of noteworthy features. First, it is a universal second-order
formula, that is, it is of the form

"P1 . . . "Pnq

with q first order. Second, it is monadic universal, that is, each of the universal quan-
tifiers binds a monadic second-order variable. We call the fragment of second-order
logic consisting of all such formulas mon-P1

1. Now, let R* Õ D*st be the collection of
reachable directed source–target graphs. It is clear that t(s, t) defines R* relative to D*st;
directed reachability is mon-P1

1 definable.
Is R* also definable by a monadic existential second-order sentence? Since the full

existential fragment of second-order logic is compact, the argument we gave at the
beginning of Section 3 to show that S* is not first-order definable, also shows that S*
(and hence R* as well) is not definable by an existential second-order sentence, monadic
or otherwise. In the finite case, the situation is subtler. Paris Kanellakis observed (see
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Immerman 1999) that S is definable by a monadic existential second-order sentence
$Pq, where q is the conjunction of the following first order conditions.

Ps Ÿ $!x(Px Ÿ Esx) (s has degree 1 in P)

Pt Ÿ $!x(Px Ÿ Etx) (t has degree 1 in P)

"x((Px Ÿ x π s Ÿ x π t) Æ $y$z(Py Ÿ Pz Ÿ y π z Ÿ "w(Pw Æ
(Exw ´ (w = y ⁄ w = z))))) (all other nodes have degree 2 in P)

If a finite simple graph A satisfies q with respect to an assignment of a set of nodes X
to P, then the nodes in X form a simple chain with end nodes sA and tA. (The reader
should construct an infinite simple graph which is not reachable, but satisfies $Pq.)

Let R � R* be the collection of finite reachable source–target graphs; this class
differs from S in omitting the requirement of simplicity. Ajtai and Fagin (1990) estab-
lished that R is not definable by a monadic existential second-order sentence. Their
argument blends an extension of the Ehrenfeucht game to monadic existential second-
order logic with probabilistic techniques (see Section 8 for a discussion of such tech-
niques). This result establishes a difference in the descriptive complexity of S and R, the
former is definable in both mon-P1

1 and mon-S1
1 (the monadic existential fragment of

second-order logic), the latter only in mon-P1
1. From an intuitive point of view, the

problem of determining whether a finite directed graph is reachable is more complex
than the same problem restricted to simple graphs. It appears that descriptive com-
plexity provides a more convincing account of this intuitive distinction than analysis
of the computational complexity of these problems has yet been able to offer (see Ajtai
and Fagin (1990) for further discussion).

The foregoing considerations leave open the question whether R is definable by an
existential second-order sentence not subject to the monadic restriction. Rather than
exhibiting such a sentence directly, which is straightforward, we will see that a positive
answer to this question is a corollary of a celebrated result of Fagin (1974), namely:
for all s, NP(Fs) = S1

1(Fs) (S1
1 is the set of existential second-order sentences). Fagin’s

Theorem has been dubbed the first theorem of descriptive complexity theory. It equates
the important computational complexity class of queries whose decision problems are
solvable by nondeterministic Turing machines in polynomial time with the descriptive
complexity class of queries which are definable by existential second-order sentences.
Fagin’s Theorem provides a machine independent characterization of NP – in order to
verify that a query is in NP, one needn’t tinker with machines and time bounds, just
produce a S1

1 sentence which defines it. In a sense, Fagin’s Theorem shows that exis-
tential second-order logic is an alternative, what might be called, ‘higher-level,’ pro-
gramming language for specifying exactly the NP queries: the proof of the theorem
yields an effective procedure F for ‘compiling’ an arbitrary existential second-order 
sentence j into a polynomially clocked nondeterministic Turing machine F(j) 
which accepts the query defined by j and establishes that every query in NP is accepted
by one of the machines F(j). Thus, existential second-order logic yields an effective 
enumeration of the NP queries, with the relation of satisfaction as the enumerating
relation.
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To return to our story of reachability, R is in NP – indeed it is in NL, the class of prob-
lems solvable by nondeterministic Turing machines using only logarithmic work space,
and this class is included in P the class of problems solvable by deterministic Turing
machines in polynomial time. It is generally believed that both the inclusions NL Õ P
and P Õ NP are strict, but three decades of intense investigation have failed to produce
a proof for the strictness of either. Fagin’s Theorem opened up the possibility of attack-
ing such outstanding problems in the theory of computational complexity by means of
logical techniques. For example, in order to show that P π NP, it would suffice to show
that there is a query Q such that Q œ S1

1(D) and Q Œ P1
1(D), for, by Fagin’s Theorem,

this would establish that NP is not closed under complementation. The results men-
tioned earlier on the monadic fragments of P1

1 and S1
1 are of some interest in this con-

nection. We saw that R Œ mon-P1
1(D) whereas R œ mon-S1

1(D). This does not resolve
any outstanding problem concerning computational complexity since mon-S1

1 does not
correspond to any natural level of computational complexity. On the one hand, as we’ve
just noted, R is in NL but not in mon-S1

1. On the other hand, mon-S1
1 contains NP-

complete problems, that is, problems which are of maximal complexity among prob-
lems in NP with respect to polynomial time reduction. For example, the NP-complete
query graph 3-colorability is easily seen to be in mon-S1

1. Thus, though the result of
Ajtai and Fagin (1990) does not lead to a separation of computational complexity
classes, it does indicate how logic can contribute to a richer understanding of com-
plexity by focusing attention on complexity classes which are orthogonal to the stan-
dard computational complexity measures, yet natural from a descriptive point of view.

6 Inductive Definability

In this section, we will pursue a more constructive approach to the definability of the
set of reachable graphs. We will see that there are interesting connections between con-
structivity and complexity in this context.

One of the outstanding open problems of descriptive complexity theory concerns the
existence of logics which characterize computational complexity classes below NP. An
important result, due independently to Immerman (1986) and Vardi (1982), is that P
is characterized by FO + LFP relative to ordered finite structures. FO + LFP is the exten-
sion of first-order logic by a least fixed point operator for defining relations by induc-
tion. Least fixed point operators have played a major role in studies of definability on
fixed infinite structures (see Moshovakis 1974). Let j(R, x1, . . . , xk) be a first-order
formula with a distinguished k-ary relation symbol R. On a structure, A, we can use j
to define the relational operator, FA(X) = {·a1, . . . akÒ ÔA |= j[X, a1, . . . , ak]} (here, X is
a k-ary relation on A and the notation stands for the assignment of X to R). If j is an
R-positive formula, FA is monotone in the sense that for all X Õ Y Õ ÔAÔk, FA(X) Õ FA(Y).
We may view j as determining an induction on A the stages of which are defined as
follows: j0

A = 0/; jA
m+1 = FA(jm

A ). Since FA is monotone and A is finite, it follows immedi-
ately that for some m, jm

A = jA
m+1. The least such m is called the closure ordinal of j on A

and is denoted ÔÔjÔÔA. It is easy to see that ÔÔjÔÔA £ lk, for a finite structure A of size l (in
the case of an infinite structure A, the closure ordinal of an induction may be a trans-
finite ordinal a whose cardinality is equal to the cardinality of ÔAÔ). Moreover, one can
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readily verify that for m = ÔÔjÔÔA, jm
A is the least fixed point (lfp) of the relational opera-

tor FA, that is, FA(jm
A ) = jm

A and for all X Õ ÔAÔk, if FA(X) = X, then jm
A Õ X. We use j•

A,
to denote the least fixed point of the operator FA. For example, if c(R, x, y) is the formula

Exy ⁄ $z(Exz Ÿ Rzy)

then for every structure A Œ D, c•
A is the transitive closure of EA. We write FO + LFP for

the extension of first-order logic with the lfp operation which uniformly determines 
the least fixed point of an R-positive formula. That is, for any R-positive formula j, 
lfp(R, x1, . . . , xk)j is a formula of FO + LFP and A |= lfp(R, x1, . . . , xk)j[ā] if and only if,
ā Œ j•

A.
Let us attend once again to reachability. For c(R, x, y) as above, the sentence lfp(R,

x, y)c(s, t) defines R relative to D. This approach to the definability of R has been
regarded as more constructive than the Fregean approach described in the preceding
section: many find the general notion of iteration to be more transparent than univer-
sal second-order quantification. Since, as we will see in the next section, FO + LFP (D)
is properly included in P(D), the ‘more constructive’ approach actually yields a stronger
bound on the descriptive complexity of R . It is interesting to observe, as a corollary of
Fagin’s Theorem and the Immerman–Vardi Theorem, that in the case of finite ordered
structures, the relative power of first-order positive induction versus universal second-
order quantification amounts exactly to the question whether P = NP.

Let us look a bit more carefully at the case of ordered structures. For simplicity, let’s
focus on the set O Õ F{E,<} of ordered graphs – a structure A is a member of O, if and
only if, the reduct of A to {E} is in D and the reduct of A to {<} is in L, the set of finite
linear orders. The Immerman–Vardi Theorem tells us that FO + LFP(O) = P(O). It 
follows from the results of Section 4 that the set of ordered graphs of odd size, a query
in P(O), is not first-order definable relative to O. We may conclude that that FO(O) is
properly included in FO + LFP(O). In fact, there is no known example of an infinite
query Q Õ O such that FO(Q) = FO + LFP(Q). Kolaitis and Vardi (1992a) conjectured
that for every infinite query Q Õ O, FO(Q) is properly included in FO + LFP(Q). This
Ordered Conjecture is an important open problem in finite model theory which turns
out to have connections to a number of open problems in the theory of computational
complexity. Even the special case of this conjecture concerning the power of first-order
versus fixed point definability relative to the set FR of finite ranks of the cumulative
hierarchy of sets is open, and its resolution would have significant complexity theoretic
consequences (see Dawar et al. 1996; Gurevich et al. 1994). (This counts as a special
case, since a linear order is uniformly first-order definable on the structures in FR, see
Dawar et al. (1998).)

The Ordered Conjecture asks whether there is an infinite set of finite ordered struc-
tures relative to which first-order logic characterizes polynomial time computability. If
we turn our attention away from ordered structures, we can formulate what has been
regarded as the central open problem of descriptive complexity theory, namely: Is there
a logical characterization of polynomial time computability over structures without a
built-in order? Gurevich (1988) has given a rigorous formulation of this question. In
connection with Fagin’s Theorem, we noted that existential second-order logic charac-
terizes NP in a strong sense – not only is NP(Fs) = S1

1(Fs), for all s; there is an effective
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procedure for transforming sentences of existential second-order logic into polynomi-
ally clocked nondeterministic Turing machines that witness the membership of the
queries they define in NP. Likewise, in the case of P, we can ask if there is a logic L =
·SL, |=LÒ such that both SL and |=L are recursive and

1. L(Fs) = P(Fs);
2. there is an effective procedure F such that for every j Œ SL, F(j) is a polynomially

clocked deterministic Turing machine which accepts c(j(Fs)).

We call a logic meeting these requirements a logic for P. A logic for P amounts to 
an effective list of polynomially clocked deterministic Turing machines, each of which
decides a query, and which lists at least one machine deciding each query in P. The dif-
ficulty in constructing such an effective list lies in the requirement that the machines
must decide queries, that is, isomorphism invariant sets of structures. The set of
machines meeting this requirement is not recursively enumerable. This is not fatal to
the enterprise of constructing a logic for P, since we do not need to enumerate all the
polynomially clocked, isomorphism invariant machines, just a rich enough subset of
them. An obvious way to proceed would be as follows. A function C: D |Æ D is called
a graph canon, if and only if,

1. "G Œ D(G � C(G)), and
2. "G, H Œ D(G � H Æ C(G) = C (H)).

A graph canon extracts a unique representative from each equivalence class of D under
the equivalence relation of isomorphism. If there is a graph canon C that is computable
in polynomial time, then there is a logic for P. This is easily seen by composing C with
an effective list of polynomially clocked deterministic Turing machines which, for each
set of strings X Œ P, includes a machine which decides X – such an effective list can be
constructed absent the requirement that the machines decide queries. It is well-known
that if P = NP, then there is a polynomial time computable graph canon, which yields
the conclusion that if there is no logic for P, then P π NP. There is no evidence that the
converse holds, and the quest for a logic for P remains an active area of research in
descriptive complexity theory.

7 Infinitary Logics

In this section, we investigate a measure of logical complexity that has played a promi-
nent role in recent research in finite model theory. The measure is the total number of
variables, both free and bound, which occur in a formula of first-order logic, or its infini-
tary extension, L•w. First-order sentences which involve the reuse of bound variables
within the scopes of quantifiers already binding those same variables are generally
frowned on from a pedagogical and stylistic point of view. Thus, the study of finite vari-
able fragments of first-order logic and infinitary logic, whose point is to exploit the pos-
sibility of such reuse, typically seems a bit unusual, if not perverse, to most logicians.
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Consider the following sequence of first-order sentences, each of which contains
occurrences of only the two variables x1 and x2:

j0 Est

j1 $x1(Esx1 Ÿ Ex1t)

j2 $x1$x2(Esx1 Ÿ Ex1x2 Ÿ Ex2t)

j3 $x1$x2(Esx1 Ÿ Ex1x2 Ÿ $x1(Ex2x1 Ÿ Ex1t))

j4 $x1$x2(Esx1 Ÿ Ex1x2 Ÿ $x1(Ex2x1 Ÿ $x2(Ex1x2 Ÿ Ex2t)))

� �

Clearly, the sentences ji are pairwise inequivalent (consider the structures An for n > 1
which interpret E as the successor relation on [n] and assign 1 to s and and n to t; An |=
ji, if and only if, i + 2 = n). Note that although the sentences involve only two variables,
their quantifier rank is unbounded. Needless to say, these sentences cannot be brought
to prenex normal form without increasing the number of variables.

The logic L•w is the infinitary extension of first-order logic which is closed under the
formation of arbitrary conjunctions and disjunctions of sets of formulas. In Section 2,
we observed that every finite structure is characterized up to isomorphism by a single
first-order sentence, from which it follows that for every signature s, every query Q Õ
Fs is L•w definable. Thus, L•w is too strong to be of interest from the point of view of
finite model theory. Let us consider the weaker finite variable fragments of L•w. We define
Lk

•w to be the k-variable fragment of L•w, that is, Lk
•w consists of all formulas of L•w all 

of whose individual variables, either free or bound, are among x1, . . . , xk. We let Lw
•w =

»k<w Lk
•w. For example, let q, a sentence of L2

•w, be the infinite disjunction of the sen-
tences j0, j1, . . . , exhibited above. Observe that q defines R (directed reachability) 
relative to D (the set of finite directed graphs). This is no accident: Kolaitis and Vardi
(1992b) established that for every s, FO + LFP(Fs) Õ Lw

•w(Fs). Thus, the finite variable
fragment of infinitary logic provides a tool for analyzing inductive definability over finite
structures.

One of the main techniques for studying Lw
•w definability is the k-pebble game, a

variant of the Ehrenfeucht game, essentially due to Barwise (1977). In the k-pebble
game, instead of an unlimited supply of pebble pairs, the equipment contains only the
pebble pairs ·a1, b1Ò, . . . ·ak, bkÒ. At each round of play, the Spoiler may now either play
a pebble from a pair that has not yet been played and place it on the associated board,
or move a pebble that has already been played to a new position. As before, the
Duplicator must follow by moving the matched pebble on the other board. The winning
condition for the n-round game remains the same as before. There is also an infinite
version of the k-pebble game which we call the eternal k-pebble game. In this version,
play continues through a sequence of rounds of order type w. The Spoiler wins a play
of the eternal game, if and only if, he wins at some finite round; otherwise, the
Duplicator wins. We say that structures A and B are indistinguishable by sentences of
Lk

•w (A∫k
•wB), if and only if, for every sentence j Œ Lk

•w,

A |= j ¤ B |= j.
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Barwise proved that the Duplicator has a winning strategy for the eternal k-pebble game
played on A and B, if and only if, A∫k

•wB. Thus, we can show that a query Q Õ D is not
Lk

•w definable by exhibiting structures A, B Œ D, such that A Œ Q , B œ Q , and the
Duplicator has a winning strategy for the eternal k-pebble game played on A and B.

As an illustration of this technique, we show that P(D) Õ/ Lw
•w(D). We say that A Œ

D is an empty graph, if and only if, EA = 0/. It is easy to see, by playing the k-pebble game,
that for all empty graphs A and B, if A and B both have at least k nodes, then A∫k

•wB.
It follows at once that the set of graphs which have an odd number of nodes, a query
in P, is not definable in Lw

•w. It also follows that the languages Lk
•w form a strict hierar-

chy in terms of expressive power relative to D. We will meet Lw
•w again in the next

section.

8 Random Graphs and 0–1 Laws

In this section, we will take up some connections between finite model theory and 
combinatorics. We focus attention on the study of random graphs, an active area of
research in contemporary combinatorics.

Random graphs

Consider the following procedure for determining a directed graph with node set [n].
For each of the n2 ordered pairs of nodes flip a fair coin to determine whether or not
there is a directed edge from the first to the second; we assume the outcomes of the
tosses are mutually independent. For each n, this procedure gives rise to the uniform
probability distribution over Dn, the collection of directed graphs with node set [n]. We
may use this probability distribution to answer questions about how many graphs there
are with certain properties. We write Prn(q) for the probability (with respect to this 
distribution) that a graph with node set [n] satisfies q. Note that,

We will be interested in the behavior of Prn(q) as a function of n for various choices of
q. We write Pr(q) = limnÆ• Prn(q). In general, Pr(q) may not be defined. For example,
when q Œ S1

1 expresses the condition that there are an even number of nodes, Prn(q)
endlessly oscillates between the values 0 and 1 and thus has no well defined limit. On
the other hand, many interesting graph theoretic properties do possess a ‘limit proba-
bility’ with respect to the uniform distribution. We will see how logic provides some
explanation of this fact.

Let us begin with the example of connectivity: a directed graph A is connected, if
and only if, for each pair i, j of distinct nodes of A, there is a path from i to j. Let q be
the sentence of FO + LFP that defines the set of connected graphs relative to D. We wish
to discover whether Pr(q) is well defined, and if it is, whether we can determine its 

Prn q( ) =
card G ŒDn G{ = q}

cardDn
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value. In order to do so, we will attempt to approximate the value of Prn(q) for large
values of n.

Rather than dealing directly with q, let us consider the following first order condi-
tion which implies q. Let j be the following sentence:

("x)("y)(x π y Æ ($z)(x π z Ÿ y π z (Exz Ÿ Ezy).

The sentence j expresses the ‘two degrees of separation’ property – we can proceed
from any node to any other by a path of length two. Clearly, j implies q. Hence, for 
all n,

Prn(j) £ Prn(q).

Therefore, if we can show that Prn(j) becomes large, as a function of n, the same will
be true of Prn(q).

Let’s perform the calculation. Fix a pair of distinct nodes i, j Œ [n]. We say that a node
k links i to j, if and only if, there is an edge from i to k and an edge from k to j. Clearly,
for any fixed node k, distinct from i and j, the probability that k does not link i to j is .75.
So the probability that no node distinct from i and j links i to j is (.75)n-2. Now, there are
n(n - 1) ordered pairs of distinct nodes in [n]. Therefore, the probability that some pair
of distinct nodes in [n] fail to be linked is bounded from above by n(n - 1) ◊ (.75)n-2. That
is,

Prn(ÿj) £ n(n -1) ◊ (.75)n-2.

It is easy to show that

It follows at once that

Pr(q) = Pr(j) = 1.

So we have succeeded in analyzing the limiting behavior of graph connectivity by
reducing the problem to a simple calculation of the limiting behavior of a first-order
condition; and the limit probability of that condition is 1. To what extent can we gen-
eralize this example?

0–1 Laws

In this section we will consider a sweeping generalization of the preceding example of
connectivity. We say that a logical language L satisfies the 0–1 law with respect to the
uniform distribution over directed graphs, if and only if, for every sentence j of L,

   
lim . .
n

n
n n

Æ•

--( )◊ ( ) =1 75 0
2
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Pr(j) = 0 or Pr(j) = 1.

A bold generalization of the example of connectivity would be the following: FO + LEP
satisfies the 0–1 law for the uniform distribution over directed graphs. Indeed, this gen-
eralization is true, as was established by Blass et al. (1985). This result itself general-
ized the 0–1 law for first-order logic due to Fagin (1976) and Glebskij et al. (1969). A
striking generalization of these (and additional) results, which provides a beautiful
explanation for the limiting behavior of a variety of graph theoretic properties, is the
following 0–1 law for Lw

•w due to Kolaitis and Vardi (1992b): Lw
•w satisfies the 0–1 law

for the uniform distribution over directed graphs. Not only does this result generalize
the example of connectivity given above; its proof also follows the lines of the argu-
ment given for the example. In particular, the theorem is a corollary of the following
fascinating result, also due to Kolaitis and Vardi (1992b): For every k ≥ 2, there is a k-
variable first order sentence gk such that

1. Pr(gk) = 1, and
2. for every sentence q Œ Lk

•w, either gk |= q or gk |= ÿq.

In other words, for each k, there is a single first-order sentence which has limit proba-
bility 1 with respect to the uniform distribution on directed graphs and axiomatizes a
complete Lk

•w theory.
The sentence gk may be constructed as follows. A k-literal is a formula of the form

Exixj or its negation with 1 £ i, j £ k. A basic k-type is a maximal consistent conjunc-
tion of k-literals. A k-extension condition is a sentence of the form:

where j is a (k + 1)-type, y is a k-type, and y extends j. A graph satisfies such a k-
extension condition, if and only if, each of its size k - 1 subgraphs of type j can be
extended to a size k subgraph of type y. We let gk be the conjunction of all the l-exten-
sion conditions for 2 £ l £ k. The sentence gk expresses a ‘bounded principle of pleni-
tude:’ every subgraph of size l < k can be extended in every possible way to a subgraph
of size l + 1 (compare the two degrees of separation principle above). For k ≥ 3, it is not
at first sight obvious that there are finite structures with satisfy gk. However, an easy
computation, of just the sort sketched for the two degrees of separation principle,
reveals that Pr(gk) = 1 for all k ≥ 2. That is, for every e > 0, for large enough n, all but
an e fraction of the directed graphs of size n satisfy gk.

In order to verify that gk axiomatizes a complete Lk
•w theory, it suffices to show that

for all directed graphs A, B, if A |= gk and B |= gk, then A∫k
•wB. But this follows directly

from Barwise’s characterization of L∫k
•w given in Section 7, since it is easy to see that

the Duplicator has a winning strategy for the eternal k-pebble game played on A and
B, if both A and B satisfy gk. (Play the game! The description of gk as a bounded princi-
ple of plenitude is exactly what’s required for the Duplicator’s strategy.)

"x1 . . . "xk -1
i π j

xi π xj Ÿj( ) Æ$xk
i<k

xi π xk Ÿ y( )( ),
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Let us call a sentence j of first order logic stochastically valid, if and only if, Pr(j) =
1, and let Sval be the set of stochastically valid sentences of first order logic. It is clear
from the preceding discussion that G = {gk Ô k ≥ 2} axiomatizes a complete first-order
theory, a result due to Gaifman (1964). In particular, G axiomatizes Sval. It follows at
once that Sval is decidable. This provides an interesting contrast to the results described
in Section 1.

Acknowledgements

The preparation of this work was supported in part by NSF CCR-9820899. I would like
to thank the Graduate Program in Logic and Algorithms at the University of Athens
for support while on leave from the University of Pennsylvania and for providing the
stimulating research environment in which my work on this paper was completed. 
I am especially grateful to Steven Lindell for a decade of valuable discussions on the
topics of this paper and to Mary-Angela Papalaskari for valuable comments on earlier
drafts of this chapter.

References

Ajtai, M. and Fagin, R. (1990) Reachability is harder for directed than for undirected finite
graphs. Journal of Symbolic Logic, 55, 113–50.

Alon, N. and Spencer, J. (1992) The Probabilistic Method. New York: John Wiley.
Barwise, J. (1977) On Moschovakis closure ordinals. Journal of Symbolic Logic, 42, 292–6.
Blass, A., Gurevich, Y. and Kozen, D. (1985) A zero-one law for logic with a fixed point operator.

Information and Control, 67, 70–90.
Dawar, A. (1999) Finite models and finitely many variables. In D. Niwinski and R. Maron (eds.),

Logic, Algebra and Computer Science, vol. 46 of Banach Center Publications (pp. 93–117). Polish
Academy of Sciences.

Dawar, A., Lindell, S. and Weinstein, S. (1996) First order logic, fixed point logic, and linear order.
In H. Kleine-Buening (ed.), Computer Science Logic ’95 (pp. 161–77). Berlin: Springer.

Dawar, A., Doets, D., Lindell, S. and Weinstein, S. (1998) Elementary properties of the finite
ranks. Mathematical Logic Quarterly, 44, 349–53.

Ebbinghaus, H.-D. and Flum, J. (1999) Finite Model Theory. Berlin: Springer-Verlag.
Ehrenfeucht, A. (1961) An application of games to the completeness problem for formalized 

theories. Fund. Math., 49, 129–41.
Fagin, R. (1974) Generalized first-order spectra and polynomial-time recognizable sets. In R. M.

Karp (ed.), Complexity of Computation, SIAM-AMS Proceedings, vol. 7 (pp. 43–73).
Fagin, R. (1976) Probabilities on finite models. Journal of Symbolic Logic, 41(1), 50–8.
Fraïssé, R. (1954) Sur quelques classifications des systèmes de relations. Publications Scientifiques

de l’Université d’Algerie, Séries A, 1, 35–182.
Frege, G. (1884) Die Grundlagen der Arithmetik. Breslau: Wilhelm Koebner.
Gaifman, H. (1964) Concerning measures in first-order calculi. Israel Journal of Mathematics, 2,

1–18.
Gaifman, H. and Vardi, M. (1985) A simple proof that connectivity of finite graphs is not first

order. Bulletin of the EATCS, 43–5.

LOGIC IN FINITE STRUCTURES

347



Glebskij, Y., Kogan, D., Liogon’kij, M. and Talanov, V. (1969) Range and degree of realizability of
formulas in the restricted predicate calculus. Cybernetics, 5, 142–54.

Grohe, M. (1998) Finite variable logics in descriptive complexity theory. Bulletin of Symbolic Logic,
4, 345–98.

Gurevich, Y. (1984) Toward logic tailored for computational complexity. In M. Richter et al. (eds.),
Computation and Proof Theory (pp. 175–216). Heidelberg: Springer-Verlag.

Gurevich, Y. (1988) Logic and the challenge of computer science. In E. Börger (ed.), Current
Trends in Theoretical computer Science (pp. 1–57). Computer Science Press.

Gurevich, Y., Immerman, N. and Shelah, S. (1994) McColm’s conjecture. In Proceedings of the 9th
IEEE Symposium on Logic in Computer Science, pp. 10–19.

Immerman, N. (1986) Relational queries computable in polynomial time. Information and Control,
68, 86–104.

Immerman, N. (1999) Descriptive Complexity. New York: Springer-Verlag.
Kolaitis, P. G. and Vardi, M. Y. (1992a) Fixpoint logic vs. infinitary logic in finite-model theory. In

Proceedings of the 7th IEEE Symposium on Logic in Computer Science, pp. 46–57.
Kolaitis, P. G. and Vardi, M. Y. (1992b) Infinitary logics and 0–1 laws. Information and

Computation, 98(2), 258–94.
Moschovakis, Y. N. (1974) Elementary Induction on Abstract Structures. Amsterdam: North

Holland.
Otto, M. (1997) Bounded Variable Logics and Counting. Berlin: Springer-Verlag.
Papadimitriou, C. (1994) Computational Complexity. Reading: Addison-Wesley.
Rosen, E. (1997) Modal logic over finite structures. Journal of Logic, Language, and Information, 6,

427–39.
Trakhtenbrot, B. A. (1950) Impossibility of an algorithm for the decision problem in finite classes.

Dokdaly Akademii Nauk SSSR, 70, 569–72.
Vardi, M. Y. (1982) The complexity of relational query languages. In Proceedings of the 14th ACM

Symposium on the Theory of Computing, pp. 137–146.

Further Reading

Two excellent texts are available which cover the topics presented here in depth. They are
Ebbinghaus and Flum (1999) and Immerman (1999). An invaluable introduction to the theory
of computational complexity is Papadimitriou (1994). For readers wishing further background
on finite variable logics there are valuable survey articles by Dawar (1999) and Grohe (1998)
and an excellent monograph by Otto (1997). An excellent introduction to the theory of random
graphs is Alon and Spencer (1992).
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Logic and Ontology: Numbers and Sets

J O S É A . B E NA R D E T E

From the standpoint of philosophical logic, a great gulf separates elementary arith-
metic, understood here as involving only the so-called adjectival use of numerals, from
advanced arithmetic which features their substantival use, where the distinction turns
on a point of grammar. Thus, ‘5 is odd’ will count as a truth of advanced arithmetic,
with the substantival expression ‘5’ serving as a proper name that denotes a Platonic
entity (never to be seen on land or sea). If advanced, Platonic arithmetic takes numer-
ical sentences grammatically at face value, it is nominalistic, adjectival arithmetic that
proves more grammatically devious, in subjecting numerical sentences to a reductive
paraphrase via a detour through first-order predicate logic. Thus ‘there are at least 2
(i.e. two) Fs’ will be paraphrased as (1).

(1) ($x)($y) (Fx Fy & ~ (x = y))

For in (1) we are quantifying in Quine’s jargon (via the existential quantifiers ‘$x’ 
and ‘$y’) only over Fs, for example dogs, and any putative reference to 2 as a Platonic
object in our ontology is deftly conjured away, in accordance with his slogan
‘Explication is elimination’. Because philosophy of mathematics today can only be
described as being positively spooked by the neo-nominalist challenge – first implicitly
posed in Benacerraf ’s 1973 “Mathematical Truth” (Benacerraf and Putnam 1983)
and soon after, much more aggressively, implemented in Field (1980) – my own agenda
can be expected never to stray very far from the specter of that challenge.

In the nominalistic vein of (1) we can even take the proto-equation ‘Two and two
make four’ to say that if there are at least two Fs and at least two Gs (no F being a G),
then there are at least four Hs (every F and G being an H). Typographically, distinguish
now adjectival ‘two’ from substantival ‘2,’ thereby being afforded the opportunity of
registering ‘2 and 2 make 4’ at face value as a truth of advanced arithmetic. One and
the same unregimented English sentence, where ‘2’ and ‘two’ are taken to be synony-
mous, is seen here to be ambiguous, needing to be disambiguated as between a nomi-
nalistic ‘two’ and a Platonistic ‘2.’ Because the nominalistic version of the sentence can
be displayed as a valid statement-form of first-order logic, Frege’s program of reducing
arithmetic to logic is thereby vindicated. But only in respect to elementary arithmetic
(as herein defined). For the vernacular ‘5 (or five) is odd’ remains irreducible to first-
order logic.1



No accident surely that predicate logic is also styled as quantification theory, remind-
ing us that in addition to the general quantifiers ‘$’ and ‘"’ we are free to recognize 
the following numerical quantifiers: ‘there are at least (exactly) two (three, four . . .) Fs’
where the identity predicate found in (1) is smuggled in as a constituent of these
complex quantifiers. No more than an advertising trick of relabeling, these ostensibly
new quantifiers are already available for free in standard first-order predicate logic with
identity. Recalling one traditional definition of mathematics as the science of quantity,
we trust that more than a mere verbal trick is involved in now undertaking to recycle
Frege’s logistic thesis by assimilating mathematics as so defined to predicate logic 
characterized as quantification theory.

1 Sher’s Weak Logicism

Pursuing that suggestion, one may even dare to emulate Gila Sher (1991) by enrich-
ing standard first-order logic with such adjectival yet Cantorian quantifiers as ‘there
are uncountably many x,’ thereby inviting all of Cantor’s alephs into ‘logic.’ Not that
any pretense of reducing those alephs to logic along properly Fregean lines can be
expected here, seeing that they will be supplied outright by Zermelo-Fraenkel set theory,
taken to be coeval with logic itself. Even so, a convincing, recognizably Fregean case can
be made for allowing the Cantorian quantifiers (as embedded in an extended first-order
logic) to be certified as logical constants, thereby recasting set theory itself in terms of
a weak logicism. Thus Sher writes, “Frege construed the existential and universal quan-
tifiers as second-level quantitative properties that hold (or do not hold) for a first-level
property in their range due to the size of its extension” (Sher 1991: 10). We may then
suppose that the second-level property expressed by the Cantorian quantifier ‘there are
aleph-50 x’ will fail to hold of the property expressed by the first-level predicate ‘x is a
dog’ if only because the suggestion of there being aleph-50 dogs can only strike stan-
dard set theory as being impossibly droll, smacking of a category-mistake. Not at all the
sort of scenario one routinely envisages.

Moreover, let all of space–time be packed solid with dogs cheek by jowl; that will yield
no more than aleph-zero of them. A disappointing result really, for our program. In the
general case one wants to say that for any F (absent information to the contrary) it is
an open question how many Fs there are; and with dogs being the very sort of thing
paradigmatic of what the question ‘how many?’ addresses, all of the cardinal numbers,
transfinite as well as finite, ought to be available to draw upon. That at any rate is a
new slant on set theory, viewed precisely as the general theory of cardinality, that is
activated by Benacerraf ’s challenge, under the aegis of which the nominalist is free to
argue that ruling out aleph-50 dogs is tantamount to ruling out aleph-50 itself as a
genuine cardinal. No genuine cardinal, then no chance of figuring as a logical constant
in its capacity of being a genuine quantifier.

If Sher’s program draws on A. Mostowski’s seminal (1957) “On a Generalization of
Quantifiers,” the latter in its turn draws on Cantor’s generalization of the concept of
(finite) cardinality, both of which can only prove the more nominalistically attractive if
aleph-50 dogs were to be admitted as a serious option. The immediate obstacle lay in
the exiguous accommodations that all of (our) space–time affords to dogs, combined
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with the tacit insistence (reminiscent of Kant) that there can only be one Space. Long
out of favor, Kant’s synthetic a priori has recently been making a modest comeback
(notably in van Cleve 1999 but see also Tennant 1996), and it may now be invoked 
in support of the One Space thesis. Nominalists, however, will be least inclined to defer
to it, preferring to canvass the copious plurality of worlds of Lewis (1986) as well as
Everett’s ‘many worlds’ hypothesis in quantum physics. In rejecting any aprioristic con-
straint on the cardinality of dogs, one must recognize (according to the official seman-
tics anyway) that simply to say ‘There are aleph-50 dogs’ is to say that the set of dogs
is equinumerous (via one-to-one correspondence) with . . . Assume here the simplest
case where the (generalized) Continuum Hypothesis is true. Then the net result of filling
the gap – with the words ‘the power-set of the power-set of . . . the natural numbers’ –
will be that even nominalists can endorse the following argument A as valid: ‘there are
aleph-50 dogs, therefore there are at least aleph-50 Platonic objects,’ sticking with our
standard semantics. Assume, however, with Field (1993) that the (non)existence of sets
is a contingent matter, meaning that given any set of dogs those dogs can jointly exist
in the absence of all sets. Pretend now that the premise of A is true, and focus on the
very dogs themselves, ignoring their cardinality. Following Field, those dogs will be
found in a possible world where there are no sets, and there will even be aleph-fifty dogs
there, seeing that for each dog here there will be exactly one dog there (indeed the same
dog).

Not substantival ‘aleph-50’ then but rather an adjectival (and nominalistic) ‘aleph-
fifty’ emerges as a logical constant (and transfinite quantifier) in a Sherian extension of
first-order logic that a Fieldian nominalist can accept. Further warrant for speculations
in that vein will be found in the megethology of Lewis (1998: 203–29) where a nom-
inalistic universe is envisaged with quite as many entities as ZF supplies, doubtless to
be sought in his plurality of worlds.

2 Finiteness, an Infinite Sentence and Skolem

Recoiling from these excesses, one may well wish to stick with first-order logic plain and
simple, though (in the absence of both set theory and substantival arithmetic) Shapiro
(1991: 9) indicates how one will then lack even the mere means to say that there are
only finitely many dogs, or worse still (since it threatens first-order logic itself ) that
every first-order sentence consists of only finitely many expressions, thereby in effect
joining Field in his recent “doubts about the determinacy of the notion of finiteness”
(Schirn 1998: 99). It is here above all, with the finite itself, that nominalistic doubts
about numbers and sets trickle all the way down to logic. Encouraged, however, by at
least two linguists (Langendoen and Postal 1984), who insist that the grammar 
and syntax of ordinary language allow for sentences of (any arbitrary finite or) trans-
finite length, one can always liberalize our standard first-order logic and (try to) say 
in an infinitary notation, “There are exactly one or two or three or . . . dogs,” in the
adjectival mode of (1).2

How our failure to complete the sentence (whose length is presumed to be w + 5)
might bear on (the constraints of ) logic, may prove (a little) less obscure in the light of
a marvelous exchange in Shapiro (1991: 206) where in reply to “What I mean by
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‘natural number’ is ‘member of the sequence 0, 1, 2, 3 . . .’,” a Skolemite skeptic queries
the meaning (and use) here of the dots . . . , along the lines of the following, simpler
scenario of mine. Posit an infinite sequence of men, S, with a first, second, . . . where
the dots can be shown to harbor a genuine indeterminacy which – to our astonishment
– Skolem reads back into the natural numbers themselves. Naively, the two sequences,
that is N and S, are on a par but the second allows for a man in the (the?) infinite
sequence who is separated from the first man by infinitely many intermediate men.
Start with a shortest man 6 ft. tall launching an infinite progression with each man
taller than his predecessor yet with none reaching 7 ft. Here then is one infinite
sequence, S1, whose ordinality is w. Add to it a 7-ft man, yielding a second sequence,
S2, of order-type w + 1. Providing for S1, do the dots in my scenario of S also extend to
our last man in S2? Although the answer is doubtless no when it comes to the speech-
act pragmatics of most occasions where S1 will supply our standard or intended model
of S, I take Skolem to be saying that as to mere semantics ‘. . .’ as it figures in my sce-
nario is infected with indeterminacy as between S1 and S2.

Because the implicit exposure of most people to Peano’s (five) postulates for arith-
metic extends only to the first four, which allow for just the sort of nonstandard model
as my scenario (hence the need for Peano’s fifth postulate), it can be a great mystery
how the vulgar ever do acquire the concept of a natural number. Another, more philo-
sophically urgent puzzle turns on how we succeed in doing so, even as favored with the
fifth postulate of mathematical induction that – according to Skolem’s devious argu-
ment, as richly discussed both in Shapiro (1991) and in Lavine (1994) – also fails to
secure determinacy for it. Reminiscent of Kripgenstein’s ‘quus’ paradox with its skep-
ticism (Kripke 1982) as to how ‘+’ can signify addition rather than quaddition, Skolem’s
regarding ‘. . .’ will probably be fully resolved only after Kripgenstein’s much more
general worries about meaning and reference have been appeased, not to mention
Putnam’s (1977) “Skolemization of absolutely everything” (Putnam 1983: 15). If the
most intriguing response to Kripgenstein lies in the ‘saving constraint’ of objective 
similarity out in the world that is “not of our own making,” invoked in Lewis (1999:
45–55, 63–7) in order to fix content, one can at least see how it bears on Skolem, for
‘. . .’ is doubtless synonymous with ‘etc.’ which in its turn, just means ‘and (all) the
others (of the same sort)’ where what is to count as the same sort of like items needs
to be pinned down. No surprise surely if Tennant’s Schema C in the next section, which
undertakes to ground the natural numbers in logic itself, should come to supply a piece
in the puzzle.

3 Back to Strong Logicism?

Highly controversial, Crispin Wright’s (1983) reactivation of Frege’s logistic pro-
gram, which for decades just about everyone assumed to be a lost cause, has forced
researchers to rethink some of the more fundamental issues in logic. Benacerraf
himself in a retrospective look at responses to his 1973 challenge regards Wright’s
1983 as “the only line of inquiry that seems at all sensitive to arithmetical practice”
(in Schirn 1998: 57). Neatly sidestepping Russell’s Paradox of 1902 which ditched
Frege’s mature program, Wright reverts to an earlier version that features HP (Hume’s
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Principle) where the functional expression ‘the number of x such that x is F’ is abbre-
viated by ‘Nx : Fx’.

(HP) Nx : Fx = Nx : Gx iff the Fs can be placed in one-to-one correspondence with
the Gs.

Better still, Tennant (1997a: 310) features the simplified Schema C which directly
effects an a priori synthesis of adjectival with substantival (finite) arithmetic.

(C) There are n Fs iff Nx : Fx = n

where ‘n’ on the right indicates a numeral and ‘n’ on the left indicates its adjectival cor-
relate which is to be unpacked as in (1). Taking HP and C to be analytic propositions,
it will be easy now with either to produce an a priori proof of (the existence of ) the
natural numbers. Thus using C to derive ‘~($x) ~ (x = x) iff Nx:~(x = x) = 0,’ we find
that 0 emerges as the number of things which fail to be identical with themselves, while
1 emerges as Nx:(x = 0) and 2 as Nx:(x = 0 ⁄ x = 1), etc.

Being analytic, won’t all of these propositions, for example ‘($x) (x = 9),’ be on a 
par with ‘All bachelors are unmarried’ and hence merely verbal truths that can tell 
us nothing about the world, being true solely by convention? Prompted by early
Wittgenstein and dominant in the 1930s, the Conventionalist doctrine of analyticity,
which was widely used to deflate Frege’s program, has long been absent from contem-
porary discussions. Nor have I seen any sign of its being revived in response to Wright,
largely (I suppose) thanks to Tarskian semantics, with an assist from Davidson (1967a),
for whom to grasp the meaning of a sentence is to grasp its truth condition in terms of
a Tarskian biconditional. Thus to grasp the meaning of the sentence ‘All unmarried
men are unmarried’ is just to recognize that the sentence is true iff all unmarried 
men are unmarried, where our attention, initially fixed on a sentence, is guided away
from it to the world, maybe even to the state of affairs of each unmarried man’s 
being unmarried, though the genius of Tarski lay in declining to reify states of
affairs. The mere availability of that option, however, has been widely felt to dispel
Conventionalism. More characteristic of current controversy over neologicism – ranged
on one side are Wright, Hale (1988) and Tennant, on the other Dummett (1991),
Boolos (1998) and Field – is Field (writing in 1984), “I don’t see how the existence of
objects of any sort [e.g. numbers] can follow logically from the existence of objects of
an entirely different sort [e.g. planets]” (Field 1989: 166) as in ‘There are nine planets.
\ The number of planets is 9’ where our typographical innovation alerts us to a diffi-
culty that goes unnoticed in the vernacular when premise and conclusion are seen as
broadly synonymous.

Despite being widely though perhaps only subliminally shared, Field’s worry
detracted very little from the acclaim Davidson enjoyed when in “The Logical Form of
Action Sentences” (1967b), in a comparable case, he urged that the following should
count as a valid argument, to be certified as such by first-order logic: ‘Tom is walking
slowly. \ ($x) x is a walking & x is slow’ (Davidson 1982: 105–48) even though the
premise was standardly supposed, by Quine and Co., to involve ‘ontological commit-
ment’ only to Tom, while the conclusion was widely held at the time to feature a very
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dubious sort of entity, namely an event. Assume, however, that real logic is just first-
order logic (a view still very much in fashion), and try formalizing the valid argument
‘Tom is walking slowly. \ Tom is walking’ (where the adverb proves recalcitrant)
without positing in the premise (the event of ) Tom’s walking.

Still another example of Frege’s legerdemain of a priori synthesis, which cannot then
fail to smack of Kant’s synthetic a priori, is found in Armstrong’s aprioristic appeal 
to the principle Truthmaker – every true statement is made true by some object(s) 
– whereby the argument ‘Socrates is wise. \ There is at least one state of affairs 
(of Socrates being wise)’ emerges as valid (Armstrong 1997: 115). Frege, Davidson,
Armstrong: these eminent instances of (what one might pejoratively call) philosophi-
cal logic invite Field to reply, “Plain, flat-footed logic is good enough for me.” If in con-
nection with the former sort of logic my harking back to the synthetic a priori will strike
some readers as quaintly anachronistic, two considerations may appease them. First,
the more general. Frege invents modern logic for one purpose only, namely to prove in
detail the analyticity of arithmetic, as against Kant’s synthetic a priori construal of it
that may now be feared to infect HP and Schema C in a return of the repressed. Even
assuming their analyticity, however, Tennant (1997b: 293–4) rightly senses a difficulty
in Gödel’s true but unprovable sentence of arithmetic that might then be urged to have
a synthetic a priori status by way of contrast.

My second consideration bears directly on HP which Hale (1994: 124) urges us 
to view in terms of “a broader conception of analyticity that covers such cases” as
‘Nothing is both red and green all over,’ a proposition much contested over the years
that van Cleve (1999: 226–9) joins a distinguished tradition in defending as paradig-
matic of the synthetic a priori. Resolving this dispute between Hale and van Cleve offers
the best researchable prospects today for assessing neologicism.

4 Benacerraf ’s Challenge

By invoking Davidson’s events and Armstrong’s states of affairs – both taken to be con-
crete entities – as foils for understanding Frege’s abstract objects, we are given a window
of opportunity for meeting Benacerraf ’s challenge. Recall the truffle in Hermione’s
hand that causes her to believe in its existence, catering thereby to the recent shift in
epistemology, away from the traditional, internalist emphasis on evidentialism (the
weighing of evidence) and toward the new externalist focus on reliabilism, with under-
lying belief-forming mechanisms that track the truth. Platonic objects in their causal
impotence prove thus to be at a distinct naturalistic disadvantage when compared with
the true-belief-inducing efficacy of perceived truffles. An unfair contrast when it comes
to playing the ontology game! Contrast rather Frege in his ontology quantifying over 0
with Armstrong quantifying in his over the state of affairs of a truffle in his hand being
seen by him, altogether waiving the success or failure of either’s philosophical line of
argument. Although Armstrong’s everyday true belief in the truffle is caused by it, no
such reliable mechanism is naturalistically credible when he undertakes to posit in his
armchair ontology such recherché entities as his universals and states of affairs. Think
here of Hume: the belief in truffles is caused by force of nature or habit. Not so with
more rarefied speculations where ontologists go different ways. Let Armstrong’s 
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universals be allowed to exist. No matter. They play no role, externalist or internalist,
in explaining why Armstrong does and Quine does not believe in them.

Actually, truffles themselves lose their innocence on being co-opted into (or banished
from) the ontology game. After eliminating all Platonic objects, our nominalist may
become emboldened to wield Ockham’s razor afresh, now eliminating even truffles in
the course of quantifying only over the elementary particles of physics. So our belief in
truffles may not really be caused by them, but by elementary particles suitably arranged
(to mimic truffles)? If one recoils from this suggestion mereology may be invited to kick
in, on the ground that “mereological wholes” like truffles, “are not ontologically addi-
tional to all their [ultimate] parts,” namely the particles, being rather “identical with all
their parts taken together” (emphasis in original). Given the particles then, the truffles
are supplied by way of an “ontological free lunch” which “like other such lunches . . .
gives and takes away at the same time. You get the supervenient for free, but you do 
not really get an extra entity” (Armstrong 1997: 11–12). No extra entity? So ("x) (x 
is an elementary particle)? Even though ($y) (y is a truffle) & ~ ($z) (z is a truffle & z is
a particle)? That Armstrong’s legerdemain here may be all of apiece with Frege’s, one
is encouraged to believe when Tennant, affecting equal facetiousness, appeals to his
Schema C by way of “getting something for nothing” (Tennant 1997b: 322), and the
comparison between the two cases may even dispel the invidious bugbear of Platonism
that attaches to one of them. Not that an alternative model for understanding neo-
logicism cannot be found in Armstrong’s case for states of affairs, seeing that his inde-
pendent appeal to Truthmaker – arguably playing the role of Schema C – is not taken
by him to involve any ontological free lunch.

5 An Anti-realist Frege?

If sets have been seen as being constituted by their members (Parsons 1983: 217, 275
and 286), truffles have been taken to be constituted by elementary particles, and in
both cases the ‘constitution’ relation may be viewed either in a realist mode as being
metaphysically deep or in an anti-realist one as smacking of eliminativism. In this
scheme the causal impotence of the one sort of item and the (putative) causal efficacy
of the other may come to play very little role in any final reckoning.

In a somewhat different vein Dummett adjudges Wright’s neologicism to be a success
but only if it is viewed in terms of an anti-realist Frege of 1884 in Grundlagen. Not to
be confused with the realist Frege of 1893 in Grundgesetze who profits by his interim
discovery of the sense/reference distinction. The shift turns on the difference between
a thin (anti-realist) and a thick (realist) notion of reference where the former is content
to view “any legitimate question about the meaning of a term, that is, about what we
should call its reference [as being] reducible to a question about the truth or otherwise
of some sentence in the language” (Dummett 1991: 192). Thus ‘the number of planets’
will (trivially) succeed in denoting an object if ‘the number of planets = the number 
of Jones’s fingers’ is true, while (the really important point) the non-trivial truth-
condition of the sentence will be reductively satisfied just in case there are (exactly) 
nine planets and fingers. As of 1894, however, compositionality will decree that a
whole sentence can have a sense (and reference) only if each of its (unitary) parts
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antecedently has a sense (and reference), as when ‘that truffle’ embedded in ‘that truffle
is white’ comes to enjoy thick reference thanks to Benacerref ’s causal link.

Faithful then to the earlier anti-realist Frege, Wright’s neologicism is deemed by
Dummett to fail in its more ambitious goal of achieving thick reference for numerals.
What Dummett forgets to mention, however, is his amazing discussion (Dummett
1973: 503) where a Kantian Frege is envisaged even as to 1893, for whom arguably
all reference proves in the end to be thin.

Our ability to discriminate, within reality, objects of any particular kind results from our
having learned to use expressions, names or general terms, with which are associated a
criterion of identity. . . . [W]e can in principle, conceive of a language containing names
and general terms with which significantly different criteria of identity were associated,
and the speakers of such a language would view the world as falling apart into discrete
objects in a different way from ourselves. . . . [F]or Frege . . . it is we who . . . impose a
structure on [the world]. (Dummett 1973: 503)

How to square this Fregean anti-realism with our radical Ockhamist who, in refusing
to quantify over macro objects, allows only thin reference to ‘that truffle’ as it figures
in the true sentence ‘That truffle is white,’ should not be very difficult. One has only to
view the radical Ockhamist as clearing the ground for the still more radical position of
Putnam’s conceptual relativism (Putnam 1988: 113–16).

6 Second-order Logic and Sets

If an anti-realist neologicism affords one option, a realist version emerged in my pro-
posal to assimilate Tennant’s Schema C to Armstrong’s Truthmaker as, in the one case,
numbers and in the other case states of affairs are admitted to a realist ontology. As to
sets in particular, it is so-called second-order logic, which Quine famously distinguishes
from logic proper, that ostensibly treats ‘x e y’ as a(nother) logical predicate along with
‘x = y’. Take the second-order sentence ‘($F) (Socrates is F)’ which is routinely read
either as ‘there is a property Fness that Socrates has’ or as ‘there is a set of which
Socrates is a member.’ Frege, however, gives it a special twist: ‘There is something, for
example wise, that Socrates is’ as in ‘Wise is something that Socrates is which I am not,’
indicating how the first-order ‘($x) ($y) (x = y)’ supplies only one way of disambiguat-
ing ‘Something is something,’ for there is also the second-order reading, ‘Something
(e.g. Socrates) is something (e.g. wise)’ where a first-order ‘something’ is followed by a
second-order ‘something.’ ‘Wise is something’ is thus complete on one reading but
incomplete on the other when ‘Wise is something (that Socrates is)’ fails to yield a com-
plete sentence (as truncated). Hence Frege’s outré incomplete entities or quasi-entities
(his concepts and functions) none of which can be given a proper name.3

Psychologically at least, one can understand how the conceptual jump in Schema C
from non-objectual (adjectival) arithmetic to the objectual (substantival) variety might
cease to strike Frege as being objectionably abrupt only after he came to finesse the
passage by positing the tertium quid of his (arguably) Platonistic quasi-entities; and 
I can well imagine efforts today along this line to narrow if not perhaps quite close the
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gap, for example Hodes (1990: 255). I leave it as an open question whether accepting
second-order logic in terms of Frege’s second-order ‘something’ should persuade one
to regard Quine’s criterion of ontological commitment, enshrined in our first-order
‘something,’ as being unduly restrictive. In effect, then, I am asking the nominalist 
if he can live with Fregean second-order logic, being quite prepared to find that 
nominalists may divide on this issue owing to an inherent indeterminacy that infects
our notion of ontological commitment when it comes to Fregean concepts and 
functions.

More encouraging may then be felt to be mereology whereby ‘($F) Socrates is F’
receives this fourth, expressly nominalistic reading, ‘There is something (a mereologi-
cal whole) of which Socrates is a part.’ Virtually patented in Boolos (1984, 1985), the
new device of plural quantification supplies a fifth, nominalistic reading, ‘There are
some things such that Socrates is one of them’ where these last two readings (I verily
believe) echo in a deep way Frege’s second-order ‘something.’ How thanks to plural
quantification (2) can clarify in particular P(N), that is the problematic power-set of the
natural numbers, will emerge in the sequel.

(2) There are some natural numbers that no set has as its only members.

Mystifying? Not (a trivial case) if one’s set theory allows only finite sets. The trick will
be to see how (some) constructivists might entertain the truth of (2) even as regards
the infinite subsets of N where at least nominally P(N) can still exist with all of the
subsets of N, that is all which are left over after (2) has kicked in. Because not only Sher
(1991) but also Shapiro (1991) is engaged in investing set theory with a logical or
quasi-logical status, the one in a first-order framework, the other in a second-order
framework, the familiar reservations of constructivists pose a threat to both programs
that (2) can hardly fail to illuminate.

Not to be confused with Quine, however, who convicts second-order logic of just
being “set theory in disguise,” Shapiro sharply distinguishes his own, logical concep-
tion of set from the standard, non-logical, iterative conception of ZF where only the
former is to be equated with second-order logic. Always relative to some restricted uni-
verse of discourse, for example N, the first-order variables of Shapiro will range over
the objects in the domain, while the second-order variables will range over their various
subsets, reminding us of Tarski’s model theory. If set theory proper is dizzyingly verti-
cal, the logical conception of set is seen to be manageably horizontal, with a set of all
non-Fs, for example non-dogs, being allowed only in the latter, Boolean system which
smacks more of Aristotle than of Frege. Why the manageable system cannot really be
insulated from the high tides of ZF, becomes clear when one asks after the cardinality
of P(N) now that the Continuum Hypothesis has been shown, by Paul J. Cohen, to be
neither provable nor disprovable in ZFC. Arguably more subversive than even the 
constructivist challenge to classical mathematics, there is a widespread failure of
nerve today as to whether C.H. can be said to have a determinate truth value at all, 
in defiance of Excluded Middle that insists on it.

As to how this failure of nerve might threaten Shapiro’s logical conception of set, a
cheeky proposal by Field I find to be especially suggestive. Cheeky, I say, because as a
nominalist he might be expected to relish the spectacle of set theory imploding from
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within; and one can only query his good faith here in offering guidance to Platonists
trying to cope with ( just about) any Cantorian aleph being eligible, as a point of mere
logic, to fix the cardinality of P(N). Elaborating on the distinction between constructible
(rule-governed) and non-constructible (random) sets, Field would have us recognize the
term ‘set’ as systematically ambiguous, depending on whether we are referring to sets0,
sets1, sets2 . . . all the way up the hierarchy of ZF ordinals (Field 1994). When it comes
to sets0 then C.H. will be true and the cardinality of P(N) will be aleph-one. In all other
cases C.H. will be false, and the cardinality of P(N) will be, say, aleph-46 when it comes
to sets45.

If one’s first reaction to Field’s proposal will probably view it as being bent on trashing
set theory, an instructive byproduct of his suggestion is that (2) taken now as a schema
emerges as true whenever the vague term ‘set’ is replaced by any one of his subscripted
precisifications of it. And Field aside, an irenic constructivist who recognizes that (thanks
to Russell’s Paradox) there are already some things that no set has its only members
might allow in the same vein for there being some numbers, for example 8, 86, 862,
8625, . . . that by corresponding to the decimal expansion of a putative irrational
number which no (finite) rule can generate, that is, 8625 . . . , are thereby disqualified
from being the sole members of any set. No less accommodating, a moderate classicist
might now be prepared to retreat from his espousal of non-constructible sets to a backup
position supplied by (2) if only to stake out common ground in what has otherwise been
a longstanding deadlock. The key point, of course, is that what really matters here is that
some numbers do exist (or might, for all we know, exist) thanks to which (2) is or might
be true, and that the putative existence of a set that gathers them up (or does whatever
sets are supposed to do in respect of their members) can only play a secondary role.
Because this suggestion as to ‘what really matters’ relies on Boolos’s device of plural
quantification, label it P.Q. for future reference.

Field’s proposal takes on new importance when it is viewed in the light of Hallett’s
remarkable work (1984: 208) where, following Paul J. Cohen himself, he writes, “[W]e
have no positive reason to assume that even only one application of the power-set axiom
to an infinite set will not exhaust the whole universe,” which is as much as to say that
P(N) may not be a ZF set at all but rather a proper class of von Neumann. What may
be the case for Cohen, Field in effect takes really to be the case, and thereby daringly
proposes by means of philosophy alone to answer what is still standardly taken to be
an open question in mathematics proper, namely ‘what is the cardinality of P(N)?’ For
all of Field’s subscripted subsets of N will be seen by any true classicist to be proper
subsets of N, and hence no aleph will suffice to fix how “incredibly rich” (Cohen) is P(N),
precisely the “point of view” here which Cohen as of 1966 “feels may eventually come
to be accepted.”

7 Skolem (Again) and Megethology

“The proponents of second-order logic as logic”, Shapiro writes by way of exorcising
Skolem (1991: 204), “hold that second-order terminology . . . is sufficiently clear, 
intuitive, or unproblematic. . . . The claim is that once a domain (for the first-order 
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variables) is fixed, there is a reasonably clear and unambiguous understanding of such
locutions as . . . ‘all subsets’ thereof.” Unambiguous? Field we find, in coping with P(N)
and C.H., denies that, with his radical disambiguation of the term ‘set.’ But let that pass
and focus on our “reasonably clear understanding” of the locution ‘all subsets of N.’
Suppose that Jones (standing in for the constructivist) insists on each set’s having only
finitely many members. Does he mean something different from the rest of us by the
expression ‘all the subsets of the natural numbers’? Although many will be strongly
inclined to say yes, I doubt if they are fully registering my query as it is intended, with
heavy emphasis on the whole notion of meaning in analytical philosophy. For we can
hardly expect to bring Jones into line by saying, “So you’re thinking of (river) banks
while we’re talking about (money) banks,” seeing that – to pursue the analogy – he
denies that the term ‘bank’ as we use it, that is ‘set’ or ‘non-constructible set,’ can have
a nonempty extension.

Why not then suspend judgment as to consructivist demands, allowing that (2)
might well be true owing to P.Q.? For we can continue to believe in the existence of
(whatever should turn out to be) all the subsets of N. No longer indeed remaining faith-
ful to Shapiro’s “working realism” with its injunction to take classical mathematics at
face value, and there may now even be reason to fear being led down a slippery slope
to Skolemism where what counts as ‘all the subsets of N’ is always relative to this or
that frame of reference. Recall that Peano’s fifth postulate of mathematical induction
was presciently designed (really by Dedekind) to rule out Skolem’s nonstandard models
of N precisely by quantifying over all the subsets of N. So Skolem may then be vindicated
in either one of two ways: (a) Field’s insistence on disambiguating ‘set’ prompted by
C.H. and (b) worries about (2) having to do with constructivist scruples.4

Not for the first time do I now wish to show how, here in connection with our uneasi-
ness over (2), nominalistic considerations can be pressed into the service of classical set
theory itself. Returning then to mereology but not the free-lunch version of Armstrong
that undertakes to co-opt ‘x is a part of y’ as a topic-neutral logical constant, I rely
rather on a very topic-specific version of it that, in drawing on the familiar distinction
between things and the stuff of which they are composed, restores mereology to its
proper home, namely Helen Cartwright’s quantities. Pour some water into the Atlantic
ocean. Fifty years later someone might scoop it up from the Pacific. In the interim that
very (quantity of ) water will be sloshing about in a very scattered form. Pretend that
this ‘water’ is composed of Democritean atoms made of adamant where, in a world
with a simple infinity of them, there will be a distinct quantity of adamant corre-
sponding to each classical subset (which in turn corresponds to each mereological sum)
of those atoms. Mereology and (quantities of ) stuff thus appear to be tailor-made 
for each other, which explains why the negation of (3), which has been designed as a
mereological counterpart of (2), can strike us as an analytic proposition, featuring 
both nominalistic devices, namely plural quantification as well as mereology, that are
systematically combined to yield the megethology of Lewis’s thesis “Mathematics is
megethology” (Lewis 1993: 3–23). 

(3) There are some Democritean atoms the adamant of which fails to comprise
some adamant.
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Compare: there are some wooden houses the wood of which (they are composed) fails
to comprise some (quantity of ) wood. Here if anywhere mereology supplies an onto-
logical free lunch, and P(N) can thus be envisaged in an entirely nominalistic realiza-
tion yet free of all constructivist restrictions, thereby running afoul of Feferman (1998)
that takes his constructivist program to be mandated by his rejection of set-theoretical
Platonism. To the contrary, nominalists are free to divide, some opting for a classical,
non-constructivist mereology, while others insist on a restrictive, constructivist abridg-
ment of it. Platonism proves then to be largely a red herring when it comes to the key
issue. How the debate (over constructivist vs. non-constructivist mereology) will play
out in the coming decade, one can only await in suspense.

Because my Democritean scenario takes us beyond the actual world (recalling in this
respect my conceit as to aleph-50 dogs), it does look as if my gropings in this chapter
toward a replay of (something like) Frege’s logicism will have to look to Hellman (1989)
and Chihara (1990) for expressly modal foundations of mathematics. To the question
whether the modal operators ‘it is possible (necessary) that’ should count as logical 
constants, may then be added queries as to ‘x is a part of y,’ ‘x Œ y,’ ‘x is one of the 
ys,’ and even ‘x = y.’ How logic itself is finally to be characterized, can be expected to
accommodate various considerations raised in this chapter, having to do with numbers
and sets.

Notes

1 Because 5 is defined in the Frege–Russell program as the set of all sets with exactly five
members, a reduction of ‘5’ to ‘five’ is effected but only via the Platonic objects of set theory.
After Russell’s Paradox ZF set theory rules out any such set as being ‘too large.’ Acceptable
as a proper class, 5 in that role is debarred from being a member of any set or class. No set
or class then of natural numbers, spelling defeat of the program.

2 Responding in 1931 to Gödel’s true but (finitely) unprovable sentence, “Zermelo went on 
to propose a massive infinitary logic” along this line, writes Shapiro (1991: 191), where
“Zermelo argued that Gödel’s reasoning shows that any finitary notion of ‘proof ’ is inade-
quate.” Zermelo’s option remains problematically open to this day.

3 Although Dummett (1973: 243) concludes his ch. 7 on incomplete expressions by finding
Frege’s position to be “in the end unjustified,” in his later book (1981: 164), he reopens the
issue where “this conclusion now seems to be too strong.”

4 In an especially perspicuous defense of Skolemism (as against Benacerraf), Wright remarks
that “there are, I suppose, two routes into the informal notion of a subset of a given set. . . .
Neither of these routes, it seems to me, holds any very plausible promise of meeting the
Cantorian’s needs” (Benacerraf and Wright 1985: 135). If Wright now has grounds for
resisting (2), I have yet to learn of them, though I would not be surprised to meet a Skolemite
who felt threatened by (2).
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Logical Foundations of Set Theory
and Mathematics

M A RY T I L E S

For much of the twentieth century the philosophy of mathematics centered around
studies in the foundations of mathematics and these typically concentrated on set
theory, arithmetic and the theory of real numbers. They also typically involved work in
formal logic. Thus it is natural enough to think that we know what we should be talking
about when given the above title. But do we really? To make sure that we do, we had
better start by considering what it means to talk of foundations in general and logical
foundations in particular, especially in the context of mathematics. We also have to find
out how set theory gets into the act.

1 Foundations and Logical Foundations

I was especially pleased with mathematics because of the certainty and self evidence of its
proofs; but I did not yet see its true usefulness, and thinking that it was good only 
for the mechanical arts, I was astonished that nothing more noble had been built on 
so firm and solid a foundation. On the other hand I compared the ethical writings 
of the ancient pagans to very superb and magnificent palaces built only on mud and 
sand . . . when it came to the other branches of learning, since they took their cardinal
principles from philosophy, I judged that nothing solid could have been built on so inse-
cure a foundation. (Descartes 1960: 7–8)

The metaphor of building a dwelling on new, secure foundations pervades Descartes
two most popular works, Discourse on Method and Meditations, and is one of the 
ways in which he influenced subsequent developments in philosophy. It was only in 
the second half of the twentieth century that this quest for foundations ceased to 
dominate philosophical discourse, although it remains a persistent theme, especially
within the philosophy of mathematics, although even here it is increasingly being 
challenged.

When Descartes talked about foundations his conception of how to find them was
influenced by what he conceived to have been the ancient mathematical method of
analysis. Citing Pappus, he saw the method of analysis as a procedure for working back



to the first principles upon which any putative item of knowledge would be based. The
passage from Pappus in which analysis is described is as follows:

in analysis we assume that which is sought as if it were (already) done, and we inquire
what it is from which this results, and again what is the antecedent cause of the latter and
so on, until, by so retracing our steps we come upon something already known or belong-
ing to the class of first principles, and such a method we call analysis as being a solution
backwards.

But in synthesis, reversing the process, we take as already done that which was last
arrived at in the analysis and, by arranging in their natural order as consequences what
were before antecedents, and successively connecting than one with another, we arrive
finally at the construction which was sought, and this we call synthesis. (Editor’s note in
Euclid 1926: vol. I, pp. 138–9)

It is thus by analysis that we get back to first principles, but they are only shown to be
adequate as first principles if the corresponding synthesis can be completed, that is if
we can show that they provide a basis from which the knowledge to be grounded can
be deduced.

In Descartes’ hands the analysis which provides a grounding for knowledge involves
revealing the complexity of what is to be known by taking it apart into its simpler com-
ponents. This may involve analysis both of objects and of concepts. Indeed terms for
objects will have to be redefined by reference to the way the objects are constructed.
Cartesian foundationalism was inseparable from its mechanistic reductivism. An ade-
quate foundation is then also an ontological foundation; it tells us what our knowledge
is really knowledge about. It is also epistemological in the sense of showing that 
and how our knowledge claims are justified. If in addition one believes that it is 
the ability to provide a justification that constitutes possession of knowledge, then the
analysis–synthesis circuit is also a route to knowledge acquisition and analysis is a
method of discovery, as Descartes himself claimed.

Descartes was not, however, looking for logical foundations. A logical foundation
would be a set of first principles from which one can, using definitions and logically
valid deductive arguments provide proofs for the desired knowledge claims. Descartes
had a low opinion of logic, which in the seventeenth century encompassed little more
than the theory of syllogisms. He wanted his foundations to provide a bedrock on which
to build an edifice of human knowledge. The building would be raised by a process of
deductive synthesis from principles which could ‘clearly and distinctly perceived to be
true’ by a sequence of steps each of which was accompanied by the same sense of self-
evident correctness. These steps are neither confined to the rules of any formal logic
nor would logical validity automatically be sufficient for the kind of support required.
A deduction must reveal what it is in virtue of which the deduced statement is true. 
A logically valid indirect proof using reductio ad absurdum frequently does not do this,
it merely shows why the opposite of what is to be proved cannot be true. Moreover, if
analysis involves the analysis of objects, the reversing synthesis involves the construc-
tion of objects. Knowledge of objects is grounded in their method of construction, a
kind of construction altogether different from the construction of concepts using defi-
nition by genus and differentia (man is a rational animal, for example) which was the
form well-suited to syllogistic reasoning.
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2 Foundations for Mathematics

Why should mathematics be thought to need any foundation? This after all was the dis-
cipline which inspired Descartes, providing him with a paradigm of a structure solidly
erected on firm foundations. The mathematical work central to the formation of this
paradigm was Euclid’s Elements of Geometry. There the foundations, namely, axioms,
postulates and definitions, are laid out at the beginning of each book, and step by step
a body of knowledge is erected through the proof of theorems, later theorems building
on results established earlier. But, as a glance at Descartes’ own treatise on geometry
(Descartes 1925) quickly confirms, the mathematics of the seventeenth century was
already moving well beyond the confines of Euclidean geometry. Newton’s Principia
(Newton 1999), written in 1686, strikingly confirms both the hold of the Euclidean
paradigm as a paradigm for organizing a body of knowledge, and the extent to which
mathematics and its methods have moved away from classical geometry. Newton pro-
ceeds by presenting axioms and definitions. His laws of motion are presented as axioms.
His text consists of propositions proved on their basis but the means of proof introduce
mathematical methods unknown to Euclid. Like Descartes Newton uses algebraic
methods and builds an understanding of ‘complex’ motions on the basis of their com-
position from ‘simpler’ motions. This is what Kant (1996) would later call reasoning
from the construction of concepts, reasoning which he contrasted with logical rea-
soning (reasoning from concepts). Kant saw the distinctive power of mathematics as
deriving from the fact that it employs this form of constructive reasoning, reasoning
grounded in the way its objects are constructed in pure intuition. Reasoning from 
concepts according to the laws of syllogistic logic could establish analytic truths 
(those based on the analysis of concepts), whereas mathematical reasoning from the
construction of concepts establishes synthetic a priori truths.

In addition to using algebraic methods Newton introduced the language of fluxions
in the process of developing the techniques which were to become ‘infinitesimal cal-
culus.’ The soundness of proofs constructed by these means was quickly challenged
(by Berkeley (1992) and others). The methods used seemed to many to be inherently

insecure because they involved trying to treat continuous magnitudes as if they 
could be made up of infinitely many discrete parts. This in spite of the fact that Zeno’s
paradoxes (discussed by Aristotle (1996: 238b23–240b8), and used by him as a basis
for insisting on an absolute distinction between discrete and continuous magnitudes)
and other well-known paradoxes of the infinite suggested that such moves would lead
to inconsistencies and contradictions. The mathematics that, as its use proliferated,
came more and more urgently to seem to be in need of ‘foundations’ – solid construc-
tion on a secure base – was that of analytic geometry and the methods of infinitesimal
calculus.

The challenge that infinitesimals pose to a foundationalism centered on the idea of
knowledge based on methods of construction is that, even supposing there are infini-
tesimally small limits of division (analysis) of a continuous line, the reverse synthetic
process can never be humanly completed – it would be an infinite process. It would seem
to require an infinite mind to understand an infinitely complex whole on the basis of
its parts. Both Kant (1996: 531) and subsequently Cantor (see Dauben 1979: 130–1)
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firmly declared the idea that analysis should reveal infinite complexity – structure all
the way down – to be absurd. It is absurd to the extent that it violates a core principle
on which the Cartesian foundational program was mounted – understanding is
grounded in methods of construction. If we cannot locate simple parts at the end of a
finite analysis, we humans will never reach a foundation on which to begin building.
The challenge to provide a foundation for the new, infinitistic mathematics, was thus
to find a way round this problem.

3 Mathematics and Set Theory

In Descartes’ geometry, as also in Kant’s treatment of mathematics, the problem noted
above is finessed in the following way for the case of continua. They think of continu-
ous magnitudes as constructed objects by invoking the concept of continuous action
(motion). A line is constructed as the continuous motion of a point, which moves
according to a law given in the form of an algebraic expression. This law expresses a
complex ratio of distances from given, fixed lines (axes) whose value is constantly
expressed by the moving point, and which is thus exhibited by any and every point on
the constructed line. To study a curve through its algebraic characterization is then to
learn about it on the basis of its method of construction, which is not a building up of
discrete parts, but a continuous generation of a continuous whole.

This is a viable position as long as it is possible to think, as had been done since
Aristotle’s discussion of Zeno’s paradoxes, that there are two irreducibly distinct kinds
of whole – continuous and discrete. Europe inherited from the ancient Greeks the view
that mathematics has two distinct branches – geometry, the science of continuous mag-
nitudes, and arithmetic, the science of discrete magnitudes. Discrete magnitudes are
aggregates of parts (elements); they are formed by heaping together a number of dis-
crete items and are thus said to be ‘wholes given after their parts.’ A continuous whole,
on the other hand, can be divided without limit and can be divided anywhere; its parts
are ‘created’ by division which is a process of delimiting the boundaries of a part. Thus
a part here is always essentially a part of the whole from which it is marked off and it
is for this reason that continuous wholes are said to be ‘wholes given before their parts.’
Furthermore, because a continuous whole can be divided without limit, it potentially
contains infinitely many parts. The point of distinguishing firmly between wholes given
before and wholes given after their parts was to underscore the point that one cannot,
on pain of contradiction, think of a continuous whole as something constructed out of
the infinitely many parts it potentially contains; these parts cannot be treated as inde-
pendently given discrete parts to be heaped into an aggregate.

The position taken by Kant and Descartes proved unstable for two reasons. First it
was criticized for relying on the concept of motion, which, being drawn from mechan-
ics, was unsuitable for use in thinking through the foundations of pure mathematics.
Second, because it appears to place restrictions on the possible objects of mathemati-
cal study which mathematicians themselves saw no reason to recognize. It is possible
to write (construct) algebraic expressions which don’t correspond to any continuous
or even drawable curve. What reason could be given for ruling that the complex rela-
tionships expressed in such equations should not be legitimate objects of mathemati-
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cal investigation? In the eighteenth century mathematicians such as Euler and
D’Alembert argued over what was to count as a function. In the end the notion of a
function was liberalized in such a way that any collection of points in the plane could
count as the graph of a function, and any method of calculating a real number as value
for other real numbers as arguments would count as a function.

In many ways this simply reflects recognition that the move of introducing algebraic
methods into geometry, of which Descartes’ work was a part, and the introduction of
Cartesian coordinates presupposes that each point in the Euclidean plane can be
indexed by a pair of numbers, its coordinates. This in turn presupposes that a con-
tinuous line or plane can be represented by a set of numbers, or of pairs of numbers.
Thus one must after all be able to view a continuum as composed of infinitely many
points, in spite of the well-known contradictions arising from the supposition that one
can add dimensionless points, items having length zero, together in such a way that
they make up a continuous line having a positive length. The move thus involves uni-
fication of two opposed ways of thinking about part and wholes and their associated
concepts of magnitude. The challenge was to find a way of doing this while avoiding
the known and very real hazard of ending up with an inconsistent theory. Modern set
theory proposes a solution, but without, as we shall see below, solving all the puzzles.

Mathematicians were thus firmly pushed in the direction of thinking of the
Euclidean plane as an aggregate of points, if not as an aggregate constructed from
points. The direction taken by Hilbert, Cantor and others was not to think about how
to build up a continuum out of points, but to try to state the conditions which would
have to be satisfied by a given collection of infinitely many points for them to count as
constituting the points of a Euclidean plane, or a continuous line. Similarly instead of
thinking about functions by starting from the lines which are their graphs, a (real
valued) function of a single real variable is to be thought of as the set of ordered pairs
which would be the coordinates of the points on its graph. One can then investigate
what characteristics this set must possess if the function is to be continuous at a given
point, differentiable at that point, and so on. Indeed Hilbert (1971) provided a new
axiomatization of geometry along these lines and then proved that the real numbers
could be used to ‘construct’ a structure (model) in which the axioms were satisfied. This
appears to effect a reduction of geometry to the study of sets of points and their pos-
sible structures in conjunction with the study of real numbers.

But what is a real number? How are the real numbers defined? By making use of the
concepts ordered pair, and infinite sequence mathematicians such as Cantor and
Dedekind showed that one could start from the natural numbers – 0,1,2, . . . – to define
the integers (negative and positive whole numbers) as ordered pairs of natural numbers
where, for example, (1,2) represents 1–2, that is -1, and (2,1) represents 2–1, that is
1. Ordered pairs of integers represent the rational numbers, (1,4) is 1/4, etc. Real
numbers can be defined as infinite convergent sequences (Cauchy sequences) of ratio-
nal numbers. (A sequence of rational numbers is convergent if after some point the dif-
ference between successive terms gets smaller and smaller, as in 1, 1/2, 1/4, 1/8, . . .)
In each case it has to be shown that the representatives have all the properties required
of the numbers they are to represent. This is done by providing an axiomatic charac-
terization of the structure required and then showing that these entities and operations
defined over them can be shown to satisfy the axioms.
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These moves have three possible philosophic interpretations. One (the logisist) says
that the definitions show what the different kinds of numbers are and thus we have 
an ontological reduction of integers, rational and real numbers to natural numbers.
Another (the formalist) says that these constructions prove the consistency of the
axioms for integers, rational numbers and real numbers, relative to those for the
natural numbers and whatever is needed for the constructions in terms of ordered pairs
and infinite sequences. A third (the intuitionist) says that because the real numbers 
are defined as infinite, incompletable sequences, our reasoning about them has to
proceed in a different way that our reasoning about the integers or rational numbers,
assertion about real numbers cannot be presumed to obey the law of excluded middle.
Intuitionists and constructivists resist assimilations of mathematical reasoning to
logical reasoning along with any presumption that the infinite can be treated by
analogy with the finite.

If the reduction could continue and the natural numbers could themselves be
defined in terms of sets, then it would seem that one might be able to claim that set
theory provides the ultimate foundation for mathematics. All the objects seem to be
definable as sets and so in principle all theoretical results should be translatable, in prin-
ciple into language which talks only about sets and operations on sets. The Bourbaki
program, carried out by a group of French mathematicians, shows that this really is
possible for large areas of mathematics.

The step that is made in the development of modern set theory, which allows the
above constructions and allows it to accommodate aspects of the theory of both dis-
crete and continuous wholes, wholes given before and whole given after their parts, is
the distinction between set membership and set inclusion. The relationship between a
set and its members, corresponds to that between a discrete whole (aggregate) and its
parts and the relationship between a set and its subsets has to take over the work done
by the relationship between whole given before its parts and those parts.

Sets are assumed to be identical if and only if they have the same members, so in
this sense sets are defined by their members. Moreover, since the subset relationship 
can be defined in terms of the membership relation (A is a subset of B if and only all
members of A are members of B) the barrier between these two ways of thinking about
wholes and parts becomes permeable. In principle all sets are regarded as discrete
wholes, even though some are infinite. However, it is also assumed that a subset of a
given set A can be defined as the set of all elements of A having property P. This way
of defining sets makes them subsets of a given set, that is parts given after the whole. It
is further assumed that for any set A there is a set, the power set of A, containing as its
elements all and only subsets of A. The barrier between the theory of discrete and con-
tinuous wholes, wholes given before, and those given after their parts is transformed
into a double gulf (1) between finite and infinite sets and (2) between an infinite set and
its power set – the set of all its subsets. The power sets of infinite sets are resistant to
being treated as discrete wholes – things to which one might put a number in the same
sense in which one can put a number to a finite set. This resistance is reflected in the
independence of Cantor’s Continuum Hypothesis from the remaining axioms of ZF set
theory. (This hypothesis says that the cardinal number of the set of all subsets of the
natural numbers is the next infinite cardinal number after that of the set of natural
numbers. Cantor had already proved that the cardinal number of the set of real
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numbers is the same as the cardinal number of the set of all subsets of the natural
numbers.)

4 Sets, Classes, and Logic

So how does enquiry into the foundations of mathematics become a quest for logical
foundations? By relating sets to classes and in this way making set constructions the
product of corresponding logical operations for defining predicates. Then the way is
cleared for losing the distinction between the synthesis which is logical deduction from
first principles and the synthesis which is building up from simple component parts,
and hence also the distinction between logical analysis (analysis of concepts) and
analysis of objects. This will work if sets or classes are objects which can be constructed
by logical operations on their corresponding concepts, but would not be possible
without extending logic to cover relations and functions, as well as concepts, and the
various operations used by mathematicians to define these. Accomplishing this task
was Frege’s major achievement.

Frege (1950) aimed to show that arithmetic is a body of analytic truths; that it really
is a part of logic, in his new extended sense of logic. This includes the claims that classes
are logical objects, that numbers are classes and that the application of any arithmeti-
cal truth is a matter of logical deduction. If Frege had succeeded he would thus have
explained the universal applicability of arithmetic at the same time as providing it with
a foundation in logic and the theory of classes.

The notion of set, or class, invoked in an informal way by Cantor and other mathe-
maticians, already had a history in logic and attempts to introduce algebraic methods
into logic, from Leibniz to Venn, De Morgan, and Boole. In traditional logic a class is the
extension of a term – the collection of objects of which that term can be correctly pred-
icated. Classes are thus wholes to which the theory of discrete, rather than continuous
magnitude would apply.

The first thing that Frege needed to do was to introduce into logic a reflection of the
distinction between the membership and subset relations. In Aristotelian logic this was
not marked because singular statements, such as ‘Aristotle was bald’ were, for the pur-
poses of syllogistic logic, treated as universal sentences, that is by analogy with ‘All
Greek males are bald.’ Both of these would have been assigned the form ‘S a P’ and
would then be viewed as expressing either an intensional relation (the predicate P is
included in the concept of the subject S) or an extensional relation (the extension of
the subject term S is included in the extension of the predicate term P). Frege on the
other hand insisted on the distinction between object and concept as a logical distinc-
tion and one that should be reflected in logical notation. Objects have to be reflected at
the logical level if the application of numbers is to be a logical operation, for it is objects
that are counted and it is objects that are formed into sets. 

The logic we have inherited from Frege, via Russell and others, thus starts from the
singular sentence, P(a) which corresponds to the set theoretic form ‘a Œ {x : Px}.’ 
The universal then has the form ‘"x(S(x) Æ P(x))’ which in turn can be used to define
the subset relation; A Õ B if and only if "x(x Œ A Æ x Œ B). Frege also argued that set
theory had to be based in logic if it was to hope to account for numbers and our use of
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them. The idea of a set as an aggregate of objects runs into problems trying to account
for the bases of the system of natural numbers – 0 and 1. How can there be a heap con-
taining no objects? Moreover what is the difference between a heap containing a single
object and just a single object. Frege’s insistence that sets should be thought of as
classes, the extensions of concepts, avoids these puzzles. It is easy to define a concept
(‘is a round square’ or ‘x π x’ for example) under which no object can possibly fall, and
which hence has an empty extension. So 0 is the number of the concept ‘x π x.’
Similarly there can be concepts under which only one object falls (‘0 = x,’ for example)
whose extensions contain a single object. So 1 is the number of the concept ‘0 = x.’
Frege thus asserted that a statement in which a number is applied is a statement about
a concept; it says how many things fall under it. But he also insisted that numbers are
themselves objects which can be grouped into classes. He ends up defining numbers as
classes, saying that for any concept F, the number of Fs is the class of classes which are
equinumerous with the class of Fs. So, for example 1 becomes the class of all classes
equinumerous with the class of things identical to 0.

With the numbers so defined Frege shows, using only his logical principles and def-
initions, that they will satisfy the axioms for the natural numbers, given earlier by
Peano. This would justify his claim that the truths of arithmetic are really logical truths,
expressible using only logical concepts such as identity, object, concept, and class
together with logical operations, such as negation, conjunction, and the formation of
universal and existential generalizations (expressed with his newly introduced quanti-
fier/bound variable notation). Unfortunately, as is well-known, Frege’s logic was shown
by Russell to be inconsistent; it permits the existence of the class of all classes which do
not belong to themselves and if this class either belongs or does not belong to itself, a
contradiction results.

Russell’s response (Whitehead and Russell 1910–13) was to place restrictions on the
predicates which could be thought to determine classes. His vicious circle principle,
used in developing the ramified theory of types, bans classes from being defined and
formed by reference to more encompassing classes to which they would belong. So, for
example, no class can be defined by referring to the totality of all classes, since it would
itself belong to that totality. This principle insists that the ‘parts,’ or members, of a dis-
crete whole must be definable independently of that whole. In addition Russell insists
that classes are basically logical fictions, not genuine objects. In other words, statements
about a class should in principle be expressible as statements about the members of that
class. This would not be possible if the vicious circle principle were violated. His image
is then very reductivistically foundational, with a vision of a universe of classes which
can be built up successively from a given stock of individuals, and where the whole
superstructure could in principle be shown to provide only a shorthand for making
complex descriptions of that universe of individuals. This vision had great appeal 
to empiricists since it appeared to obviate the need to postulate the existence of
any abstract objects in order to account for mathematical knowledge and its wide
applicability.

The problem is that, as Russell himself was forced to recognize, this does not yield a
theory of classes which meets mathematicians’ requirements. If we remember that
what mathematicians required was a unification of the theory of wholes given before
their parts with that of wholes given after their parts, we can understand why Russell’s
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complex system, although much richer than anything achievable with traditional logic,
will not serve, for it is constrained to a theory of wholes given after their independently
specifiable parts and replaces set construction by logical construction of their defining
predicates.

In order to have a theory rich enough to develop mathematics Russell had to add
two specific axioms – Infinity, which says that there are infinitely many individuals, and
Reduction, which basically allows the existence of all subclassess of a given class, no
matter how defined, to be collected into a class. Both of these are existence axioms and
cannot easily be claimed to be logical truths. Moreover their use raises once again the
problem of consistency – how could one be sure that tacking these two axioms onto
the system will not render it inconsistent?

An alternative response to the problems with Frege’s logic was to axiomatize the
theory of sets and then think about how to prove the axiomatized theory consistent.
The axiomatization now regarded as standard is based on those of Zermelo and
Fraenkel (hence called ZF). It includes operations for building up sets member by
member, but also for an infinite set and for using predicates to mark off the subsets of
an already given set. The totality of subsets of a given set is asserted to exist without
any restriction which says that these have to be definable as the extensions of predi-
cates. Moreover, in many cases an additional axiom, the Axiom of Choice is added, and
this explicitly asserts the existence of sets as aggregates of objects for which there may
well be no such definition. Gödel (1938) showed that it is possible to provide a model
for the ZF axioms by restricting sets to those which are definable (the constructive uni-
verse). In this universe the axiom of choice and Cantor’s continuum hypothesis would
be true. However he and others have also argued that this universe is too restrictive for
mathematical purposes. Subsequently Cohen (1966) proved that both the axioms of
choice and the continuum hypothesis are independent of the remaining axioms of ZF
set theory. This means that the basic ZF axioms remain neutral on whether set con-
struction is reducible to logical construction, but to the extent that mathematics seems
to require use of the axiom of choice and to presume a universe containing non-
constructible sets, this reductive restriction is rejected.

The resulting relation between logic and set theory is complex. It is certainly not 
a matter of one providing a foundation for the other. ZF set theory is written in the 
language of classical first-order predicate logic and any results proved about theories
written in such a language apply to set theory. Some of those results, however, are
proved using set theory, since the semantic approach to the study of predicate logic,
relies on the concept of a model, and models are defined as structured sets. Results
about models are then proved in set theory. So there is a complex, symbiotic relation
between axiomatic set theory and predicate logic.

Hilbert’s (formalist) program was to develop finitary methods for theorizing about
formally expressed axiomatic theories with the aim of proving whether or not they are
consistent. The idea was that if it could be proved using only finitary methods that 
a theory of infinite sets was consistent (that no formal contradiction could be proved
from the axioms) then it would be safe to use. Again this is a way of seeking to use a
constructive base to legitimize something which goes beyond it.

Gödel (1962) contains his famous incompleteness results. His first incompleteness
theorem showed that any consistent formal system capable of expressing arithmetic
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would contain undecidable arithmetic sentences. On the assumption that any state-
ment about numbers is either true or false, this would imply that there would always
be some arithmetic truth that could not be proved in the particular formal system in
question. This creates a problem for the logicist who wants to say that every arithmetic
truth is a logical truth. It either has to be allowed that no formal system captures the
notion of logical truth, or that the logicist claim is false, or that not every statement
about numbers is determinately true of false. His second incompleteness result shows
that the consistency of such a system cannot be proved by means formalizable within
the system, which demonstrates that Hilbert’s program for providing an ultimate con-
sistency proof for infinitary methods by finitary means cannot be realized.

Where did this leave foundational programs? Although Gödel’s results undercut the
philosophical rationale for both logicist and formalist programs, foundational studies
had taken on a life of their own. New branches of mathematics, and new ways of study-
ing logics had been developed. There were plenty of things to be discovered about these
new domains and work in all these areas for a while continued to fall under the title
studies in the foundations of mathematics. Philosophers too needed to learn from the
technical results to try to decipher their philosophical significance. The idea that math-
ematics has a foundation in logic could still be pursued by debating the boundaries of
logic and the way in which a reduction to logic might be effected. However, that par-
ticular convergence of mathematics, set theory and logic required to reduce the con-
struction of mathematical objects to logical construction (definition of predicates),
which was central to the plausibility of the claim that mathematics could be provided
with a foundation in logic, proved to be relatively short lived. By the late twentieth
century logic, set theory and mathematics were developing on independent tracks,
interacting in complex ways, but none serving as a bedrock on which to raise the
others.

The weaker claim that any branch of mathematics can be given a logical founda-
tion, by being written as an axiomatized theory in the language of first order logic, leads
to a different way of saying that all mathematical truths are logical truths. One can
then say that what mathematicians prove are logical truths of the form ‘If P then A,’
where P is some finite conjunction of axioms. If the axioms are inconsistent, all such
statements are still be logical truths, given the materiality of the conditional in classi-
cal first-order logic. Unfortunately this gives a much too simplistic picture of mathe-
matical practice. Take for example, Wyle’s proof of Fermat’s last theorem. This appeals
to results in many branches of mathematics other than arithmetic. To even begin to
represent his proof as establishing a logical connection one would include the axiom-
atizations of all these other bits of mathematics, and give a logical representation of the
process of applying the results from one mathematical domain in another. Thanks to
the work of the Bourbaki group in showing how to do mathematics within the frame-
work of set theory, one might say that in principle this could be done within set theory;
but others would question whether such a thing (a full formal proof) would be able to
serve the functions of a proof – convincing people by helping them understand why
the conclusion is true.

The focus of foundational studies was set in the nineteenth century at a time when
it seemed that numbers of various kinds were the fundamental objects of mathemati-
cal investigation. In the twentieth century mathematics seemed to be equally concerned
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with the investigation of structures and procedures. Structures can be characterized
without saying how they can be built from objects. They can be characterized on the
basis of the kinds of transformations under which they are preserved. This idea gave
rise to a rival foundational bid from category theory, where objects are complex wholes
given before their parts and internal structure is revealed through a study of the way
they relate to other objects of their kind (category) through structure preserving 
mappings (morphisms).

The study of finitary procedures led to the theory of recursive and computable func-
tions and to the developments of electronic computers. The extensive use and deploy-
ment of these computers has in turn been instrumental in undermining some of the
presumptions which made foundational programs seem plausible. In particular devel-
opment of the study of fractals, and complex systems, coupled with earlier results in
nonstandard analysis, show that there is no more risk of contradiction associated with
infinitesimals and the idea of structure all the way down, than with infinitely large sets.

Attempts to make computers into expert systems have stimulated the study of alter-
native logics, some of which (particularly non-monotonic and fuzzy logics) depart 
radically from the systems developed by Frege and Russell. In addition uses such as 
computer modeling have meant that there is continued interest in mathematics devel-
oped by constructivists, those who resisted both the move to reduce mathematics to
logic and the use of infinitistic methods. Since computer memories are decidedly finite,
computer representations of the continuous have to be based on finitary, approxima-
tive methods.

So we are once again in a context where it is not at all clear what a logical founda-
tion for mathematics would look like, nor is it clear that logic is the place to look for
foundations or even that foundations are what we need to be looking for.
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25 

Property-Theoretic Foundations 
of Mathematics

M I C H A E L J U B I E N

1 Introduction

The main goal of this essay is to show how a certain comparatively weak theory of prop-
erties is adequate to provide a ‘foundation’ for classical mathematics. Theories of
properties have of course been enlisted in foundational efforts in the past. The most
prominent example is surely Whitehead and Russell’s (1910–13) theory of ‘proposi-
tional functions’ (where these entities are taken as properties and relations in inten-
sion). George Bealer (1982) has provided a more contemporary example. These theories
are very far-reaching and intricate, and they are also very different. Whitehead and
Russell’s is a ‘ramified type theory’ in which each propositional function appears at 
a certain level in a complex infinite hierarchy, but Bealer’s properties aren’t ‘stratified’
at all.

In the middle decades of the twentieth century ‘intensional’ entities such as proper-
ties and propositions were generally either regarded with great suspicion or else rejected
outright. This tendency often reflected the powerful influence of W. V. Quine, who
argued that ‘extensional’ entities – notably sets – are more respectable philosophically
and are capable of doing any work that might have seemed to require intensional enti-
ties (see Quine 1960). During this same period set theory flourished in its own right as
an autonomous branch of mathematics and came to be regarded very generally as the
ultimate foundation of classical mathematics. In this atmosphere the idea of property-
theoretic foundations was so far from most people’s minds that even Whitehead and
Russell’s effort was typically thought of as a foundation within a system of set theory,
with the apparent dependency of sets upon intensional entities ignored or forgotten (see
Parsons 1967).

But things have changed. In the past few decades intensional entities have come to
enjoy a great deal of attention along with greatly revived respectability. To a large extent
this traces to a surge of interest in modal logic, its semantics, and the philosophical 
discussion of alethic modality, especially the question of ‘essentialism.’ (Prominent 
contributors to these developments include Ruth Barcan Marcus and Saul Kripke.) The
resuscitation of such a seemingly paradigmatic intensional notion as modality brought
in its wake a renewed interest in all matters intensional, including of course intensional
entities. This in turn prompted a reexamination of Quine’s criticism of these entities,



and many have concluded that his criticism fails (e.g. Jubien 1996). Further, in a stun-
ning reversal, philosophers have begun to argue that sets – so recently celebrated as
paragons of clarity among abstracta – are in fact deeply obscure and mysterious (e.g.
Bealer 1982; Jubien 1989). David Lewis (1991) also argues that these entities are fun-
damentally mysterious, but then throws up his hands and accepts impure nonempty
sets (which he prefers to call classes) because he thinks they provide mathematics with
a much-needed foundation.

At the present moment we, therefore, find some philosophers accepting properties
and rejecting sets because, ironically, they think properties are clear while sets are
obscure. And we even find philosophers who accept sets doing so with real reluctance
because they concede the obscurity of the notion. As a very general comment, the 
stock in properties has been on a decades-long winning streak, while the stock in sets,
though perhaps solid, has sustained some long-term decline and has some jittery
holders.

So now is a good moment to revisit property-theoretic foundations of mathematics.
The foundation I will offer here may have an appeal that others lack. For it’s based on
a very ‘sparse,’ epistemically conservative theory of properties, one that postulates no
properties that aren’t intrinsic to their instances. In fact it doesn’t depend on postulat-
ing many properties or sorts of properties at all. It gets much of its foundational power
from a dose of mereology that will be discussed later.

2 On Foundations

What do we really mean by ‘foundations of mathematics’? Does mathematics even need
a foundation? (Putnam (1967) argues that it does not.) If it does, must it have only one
or is there room for many? The work that has historically been classified as ‘founda-
tions of mathematics’ is remarkably diverse, ranging from the purely logical to the
purely philosophical, and as a whole it provides no clear answers to these questions.
(Parsons (1967) provides a very meticulous survey of the topic.) I won’t make any effort
at a complete discussion, but I will try to distinguish two very broad senses in which
one might speak of foundations. These two notions are easily confused because the
concept of the reducibility of one formal theory to another plays a central role in each.
But in one of these senses there could only be one foundation of mathematics, while
in the other there are potentially many different, equally acceptable foundations.

The apparent subject matter of classical mathematics includes such seemingly
diverse entities as points, lines, natural numbers, real and imaginary numbers, ordered
n-tuples, infinite sequences, functions, vector spaces, topological spaces, groups, rings,
and so forth. Working mathematicians have typically proceeded as if these are 
independently existing ‘Platonic’ entities, and they haven’t worried too much about
whether this presupposition is ontologically defensible. But philosophers have often
worried about it, and they have explored many positions, most of which may be seen
as versions either of realism (Platonism), conceptualism, or nominalism, or as hybrids
involving the reduction of entities of some kinds to others. We may think of such philo-
sophical positions as ontological foundations, for at bottom they are claims about what
mathematical entities really exist, along with claims about their ultimate natures.
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For example, noting the reducibility of first-order versions of the various branches
of classical mathematics to set theory, it might be held that it is really only sets that
comprise the true subject matter of mathematics. Sets would be seen as abstract enti-
ties of their own special sort, and the idea that there are also such varieties of entities
as numbers, vectors, and functions (etc.) would be abandoned. In this way sets (and set
theory) would be seen as the ontological foundation of mathematics. A proponent of
this position would owe a principled reason for preferring sets over any other sort of
entities (such as properties) to which the apparent mathematical objects might also
happen to be reducible. One ingredient of the reason could be the recent ascendency
of sets themselves as apparent mathematical entities, but on its own this wouldn’t be
very convincing. For if the other apparent entities are up for grabs, why should sets be
any different? The important point here is that since any proposed ontological founda-
tion incorporates a claim about the real subject matter of mathematics, it is incompat-
ible with each of its ontological alternatives.

Although I cannot try to establish it here, I think it is far from clear that the origi-
nal motivation for seeking foundations required them to be ontological. Very roughly, I
think the motivation was the worry that certain concepts of analysis involving the infi-
nite were not well understood and threatened paradox. What is needed to address this
kind of concern is a way to arrive at an adequate grasp of the concepts, one that
increases our confidence that they aren’t inherently incoherent or paradoxical. There
is no good reason to suppose that this couldn’t be done without making controversial
ontological commitments. Nor is there any good reason to suppose it could only be done
one way. Because the primary goal of foundations in this sense is improved under-
standing, we may think of such foundations as epistemological.

One way to arrive at a better understanding of a given concept is to ‘model’ it with
other concepts. When specific theories are in hand, we may do this syntactically by car-
rying out a formal reduction of one theory to the other. If we initially understand the
structural features of the reducing concepts better than those of the given concept, we
automatically improve our grasp of that concept simply by doing the reduction. In the
case of analysis and set theory, very intricate notions are readily ‘modeled’ in a theory
whose sole primitive – the binary membership relation – is remarkably simple and, at
least structurally, very accessible.

The reduction of one theory to another is also, in effect, a relative consistency proof:
if the reducing theory is consistent, then so is the reduced theory. Of course this means
the reducing theory is, logically speaking, at least as strong as the reduced theory.
Despite this, it is possible to gain confidence in the coherence of the reduced theory as
a result of the reduction. For our initial, intuitive conviction that the reducing theory
is coherent may be substantially greater than our initial confidence in the coherence of
the reduced theory, perhaps as a result of a greater accessibility of its primitive con-
cepts. So the reduction can have the effect of boosting our confidence in the reduced
theory rather than undermining our confidence in the reducing theory. (Of course we
know from Gödel’s work that the consistency of any first-order theory strong enough
to reduce classical mathematics is in effect a matter of faith rather than proof.)

The reduction of analysis and the rest of classical mathematics to set theory should
be seen as a great conceptual advance whether one accepts the existence of sets or not.
For it shows that the various mathematical concepts are structurally related to the set
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concept in certain ways regardless of whether that concept actually has instances.
Since, under the epistemological conception of foundations, there would be no claim
that sets comprise the ultimate subject matter of mathematics, it may not even matter
whether they exist or not. We may be able to attain sufficiently improved understand-
ing and confidence simply as a result of the formal reduction.

But it is also possible that the foundational gain would be even greater if we 
were convinced that the reducing entities really did exist. For example, someone 
who already believes the real ontology of mathematics is just its apparent Platonic
ontology is likely to find it more satisfying to think that there actually exist non-
mathematical entities that display the structural complexity of the putative math-
ematical objects. For then the foundation would not only enhance clarity and the 
conviction of coherence, it might also make Platonic mathematical objects seem more
plausible by providing an independent precedent for Platonic entities of that level of
complexity.

I will stop short of endorsing an ultimate ontology for mathematics. Instead I’ll 
just mention what I think are the two most plausible candidates. They reflect a pair of
ontological convictions. One is that the philosophical difficulties of sets are so over-
whelming that sets should be rejected. The other is that the case for Platonic properties
is very strong and doesn’t rest on considerations about mathematics. Given these con-
victions, one candidate, inspired by Whitehead and Russell and by Frege, is that math-
ematics does have a genuinely ontological foundation in properties (and property
theory). On this view, properties are the ultimate (and exclusive) subject matter of
mathematics. Despite its historical moorings, this view would surely be seen as revi-
sionary. The other candidate is more of a ‘face-value’ position. It’s the view that math-
ematics really has no ontological foundation, that its ultimate subject matter is its
original apparent ontology (of course, not including sets), and that an epistemological
foundation in properties supports this ontology (as suggested above) while achieving
the original foundational goals of clarity and coherence. I believe there is a good deal
that can be said in favor of either of these positions. Of course they both require 
property-theoretic foundations, even if for one they are ontological and for the other
they are not.

3 Properties, Sums, Plurality, and Reality

The theory to be offered here is basically the outgrowth of three simple ideas, two meta-
physical and one purely logical. I believe both metaphysical notions are extremely 
compelling intuitively, and that the logical notion has a solid grounding in ordinary
language. The first idea is a Platonic principle about properties: that properties ‘cons-
titute’ things as being how they are. For a thing to be green just is for it to instantiate
the property of being green, nothing more, nothing less. A corollary of this principle 
of constitution is that for any entity at all, since it is a specific entity, there is a property
of being that entity. Intuitively, any such property must be intrinsic (and also essential)
to its unique instance, but it must not be a part of that instance. The theory will 
postulate properties of this kind and also the property of being self-identical, which 
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certainly is also intrinsic to each of its instances. The intrinsicalness of the postulated
properties (along with the fact that they are all instantiated) ensures that the theory 
is compatible with what is commonly called a ‘sparse’ conception of properties. And
because it postulates only these very basic sparse properties, the theory is conservative
epistemically.

The second idea is that any entities have a mereological sum, regardless of their indi-
vidual natures. So not only are there sums of physical objects, there are also sums of
abstract entities, and sums of entities some of which are concrete and others of which
are abstract. The sum of any entities has each of them as a part, and has no part that
isn’t a part of some of those entities. (For a defense of the idea that mereology extends
to the realm of the abstract, see Lewis (1991).)

The logical notion is ‘plural’ quantification. As it happens, plural quantifiers are
quite common in ordinary English (but the phenomenon is still relatively unexplored
in logic). Plural quantifiers range over the various pluralities of things, but without pre-
supposing that the pluralities are individual entities like sets (or ‘totalities’ of any other
kind). These quantifiers are not reducible to ordinary (singular) objectual quantifiers.
A classic example of an ordinary English sentence with a plural quantifier is ‘Some
critics admire only each other.’ It is clear what this sentence means, but that meaning
cannot be captured with ordinary first-order quantifiers. Another example is the first
sentence of the previous paragraph. (For more on plural quantification, see Boolos
(1984).)

Unfortunately, these three very appealing ideas cannot be adopted in full generality,
for then there would be a sum of everything, say S, and the property of being S would
have to be a part of S. This is harsh reality. To avoid the problem we have to restrict at
least one of the three ideas, and it is a further reality that no way of doing this can be
quite as elegant and simple as the unadulterated combination of ideas. But this kind of
reality has a familiar precedent, for the simplest and most elegant theory of sets – that
based on unrestricted comprehension – proved to be self-contradictory. Our approach
will be to limit the formation of sums and leave the other two notions alone. Other
approaches are also possible, but we will not debate the relative merits of the various
possibilities here. Our overall goal is merely to show that a great deal can be done even
with an epistemically conservative conception of properties.

4 Mereological Property Theory

One of the central concepts in this theory (MPT) is the binary relation of intrinsicalness,
which we will express with the symbol ‘m.’ Thus ‘xmy’ means that y is intrinsic to x.
Another key concept is expressed by the unary function symbol ‘b,’ which maps any
entity x to the ‘individuality’ property of being x (‘bx’). A third basic notion is the
part–whole relation of mereology, which we will express with the binary predicate letter
‘r,’ so that ‘xry’ means x is part of y. The theory will also employ identity and both sin-
gular and plural (objectual) quantification. Plural quantifiers will be enclosed within
square brackets (e.g. ‘["x]’ and ‘[$x]’) and singular quantifiers are left unenclosed (‘"x’
and ‘$x’). An occurrence of ‘[x]y’ (etc.) within the scope of a plural quantifier on x is
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understood to mean that y is an x (that is, y is one of the x’s). MPT has four nonlogi-
cal axioms and an axiom scheme. (Here we view the axioms for identity and the func-
tionality of b as logical axioms.)

This simply says that there is a unique property of which everything is an instance and
which has no proper parts. We will call this property ‘a’ in the metalanguage. A con-
sequence is that a instantiates itself. Of course there may be many distinct properties
of which everything is an instance, but in practice we only need one, and we can think
of it as the property of being self-identical. (An ‘impure’ version of MPT could be
obtained by replacing Axiom 1 with an axiom postulating the existence of a concrete
entity.)

For any entity x there is a unique property of being x, which is never a part of (and so
never identical with) x itself, which has x as its only instance, and which has no proper
parts. We will call any property that is a bx for some x a ‘b-property.’ Notice that the
‘atomicity’ of the b-properties ensures that any sum of given b-properties can have no
other b-properties as parts. The b-properties are therefore in a certain sense indepen-
dent of each other. We now adopt an axiom to ensure that the part–whole relation of
MPT conforms to that of standard mereology.

The first conjunct ensures the transitivity of the part–whole relation and the second
entails that any finite number of entities have a unique mereological sum. Hereafter we
will not hesitate (in the metalanguage) to write ‘x + y’ for the sum of x and y. (Obviously
+ is commutative and associative.) The next axiom provides us with an entity that has
infinitely many non-overlapping parts.

The entity x therefore has ba as a part and, for any part y other than x itself, it has 
by as a part provided that whenever a property bz is part of y, either z = a or z is 
also part of y. We may think of sums of b-properties that meet this last condition as 
‘b-transitive.’ Since ba is b-transitive, bba must be part of x. But since bba isn’t b-
transitive, the axiom doesn’t require bbba to be part of x. On the other hand, ba +
bba is b-transitive, so its b-property is part of x. And since ba + bba + b(ba + bba) 
is also b-transitive, its b-property is part of x, and so on. Next we introduce an axiom 
scheme that, in combination with Axioms 1 and 4, ‘generates’ a vast universe of
mereological sums.

4. :
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where x and y are free in the formula A(x,y). Although it looks rather complex, this
scheme merely says, for each ‘functional’ formula A(x,y) (with parameters as required),
that for any object z, and any w’s, if the w’s are parts of z, then there is a unique sum
of the A-images of those w’s. As a simple application, let z be any infinite sum con-
forming to Axiom 4. Then ba, bba, b(ba + bba), and so on are all parts of z. Let ‘the
w’s’ be the parts of z that are b-properties, and let A(x,y) be the formula ‘$s(x = bs &
$t(trs & ÿ(t = s) & y = x) ⁄ y = u)’, where u is parametrized to b(ba + bba). A(x,y) is
easily seen to be functional, for it maps each w = bs to itself if s has a proper part, and
maps every other w to b(ba + bba). So the axiom delivers a sum of which b(ba + bba)
is a part but ba and bba are not.

For another example, let A(x,y) be the formula ‘y = bx’ (which is obviously func-
tional). Again take z to be any sum conforming to Axiom 4, and let ‘the w’s’ be all parts
of z. Then the resulting v is the sum of all the b-properties of its parts. So, for example,
b(ba + b(ba + bba)) is part of v and so is bz.

Although it generates a boundless universe, MPT is very ‘minimalistic’ from a 
property-theoretic perspective. In a nutshell, it says that there is a property (self-
identity) that everything instantiates, that for anything at all there is the (mereologi-
cally atomic) ‘individuality’ property of being that thing, that there is a sum having infi-
nitely many b-properties among its parts, and that the (intra-theoretically describable)
functional relata of any parts of any entity has a sum. So, from the perspective of the
theory, the only properties that need exist are self-identity and various b-properties, and
the only nontrivial sums are those given by Axiom 4 and generated by Scheme 5. But
even this ‘minimal model’ would constitute a remarkably lavish universe of entities –
easily enough to provide an interpretation of ZF.

5 Foundations of Mathematics

Let’s begin by making the (uncontroversial) assumption that classical mathematics is
formally reducible to ZF. Then it suffices for our purposes if ZF, in turn, is formally
reducible to MPT. In other words, MPT is an adequate foundation provided that ‘Œ’ is
definable in the language of MPT in such a way that the translations of the ZF axioms
under the definition are theorems of MPT. A careful demonstration that this is indeed
the case would be lengthy and tedious. So in this section I will address the question
semantically rather than axiomatically, and will do so in an informal and rather incom-
plete way. The goal is just to provide the construction that delineates a ‘domain’ of a
‘model’ of ZF within an arbitrary ‘model’ of MPT, along with an ‘interpretation’ of ‘Œ’.
Verification that the result actually is a ‘model’ will be omitted.

For this project to make sense we must employ a conception of model (and interpre-
tation generally) that departs ontologically from the usual set-theoretic one. (Hence the
quotation marks in the previous paragraph.) The main reason, as I see it, for exploring
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property-theoretic foundations is the conviction that there really are no sets (whether
pure or impure) and it is an immediate consequence that the sort of set-theoretic con-
structions that are usually thought to be the objects of model theory simply do not exist.
If there are no sets, then model theory, as it is typically understood, has no subject
matter. So we need to reinterpret it, and various approaches are possible.

The approach we will adopt avoids thinking of models as individual entities at all.
Instead, the fundamental notion will be that of (plurally, now!) some entities modeling
a theory by virtue of relations they bear to each other. As an example, suppose we have
a first-order theory with a single binary relation symbol. In a typical model-theoretic
approach, an interpretation of the theory is an ordered pair consisting of a nonempty
set (the domain) and a set of ordered pairs of members of the domain (or some close
variation on this idea). Such an interpretation is a model if the axioms are true when
the quantifiers range over the domain and the relation symbol is interpreted as having
the set of ordered pairs as its extension. So one model might be the ordered pair of the
set of people who live in Detroit and the set of ordered pairs ·x,yÒ of Detroiters x and y
such that x is a parent of y. But, convenient though they may be, we don’t need the sets
and ordered pairs at all, because we understand perfectly well what it takes for the
axioms of the theory to be true of the people in Detroit when the relation symbol is
understood as expressing the parent-of relation. (Similarly, if there really are natural
numbers, then they – with their characteristic relations – obey the axioms of number
theory whether or not there exist any sets or ordered n-tuples of them from which to
concoct standard model-theoretic interpretations.)

Now, using plural quantifiers in the metalanguage, we can say what it means to
specify an interpretation without having to think of interpretations as specific entities of
any sort whatever. We succeed in ‘specifying an interpretation’ whenever we give a
clear specification of some entities (the intuitive domain) together with an appropriate
association of properties and relations with the nonlogical symbols of the theory. If the
theory’s axioms happen to hold for those entities under those associations, then we
have ‘specified a model.’ That there is no actual entity available to call ‘the model’ is at
worst a mild inconvenience (and indeed is one that could be avoided in a full-blown
property-theoretic model theory). The other side of this coin is that interpreting formal
theories via set-theoretic objects is just a minor convenience, and is in no way a special
source of mathematical or semantical rigor. In a successful case, the specification of the
various sets that comprise a set-theoretic interpretation of a given theory would have
exactly the same informal-though-precise status as the specifications of ‘interpreta-
tions’ in the present sense.

So now let’s suppose that we have an arbitrary model of MPT. Then it contains enti-
ties we may view as ordinal numbers. In fact Axiom 4 very conveniently delivers an
infinitude of such entities. We will define the ordinals in two stages, the first of which
replicates the intuitive notion of b-transitivity mentioned above.

DEFINITION 1 A sum T of b-properties is b-transitive if for all x, if bx is part of T,
then either x is part of T or x = a.

DEFINITION 2 A b-transitive sum T of b-properties is an ordinal if for any distinct x
and y, if bx and by are parts of T, then either bx is part of y or by is
part of x.
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As an example, consider ba + bba + bbba. It is b-transitive, but it isn’t an ordinal. For
notice that if x = a and y = bba, then both bx and by are parts of the sum, but bx is not
part of y nor is by part of x. On the other hand, ba + bba + b(ba + bba) is easily seen
to be an ordinal.

Because we have chosen not to view a as an ordinal, all ordinals are sums of b-
properties. The ordinals begin like this:

βa; βa + ββa; βa + ββa +β(βa + ββa); . . .

It is easy to see that the ordinals (up to any point) are well-ordered by the part–whole
relation. We may define a limit ordinal as any ordinal other than ba that has no part
bx such that every other b-part is part of x, and a successor ordinal as one that is neither
ba nor a limit. (The existence of a limit ordinal follows from Axiom 4 and Scheme 5.
To see this, note that the definitions of ‘ordinal’ and ‘limit ordinal’ may be captured by
formulas of MPT, say ‘O(x)’ and ‘L(x).’ Now let A(x,y) be the formula ‘(O(x) & "y((yrx
Æ ÿL(y)) & y = x) ⁄ y = u),’ with u parametrized to ba. Then A(x,y) is functional. Now
let the z of Scheme 5 be any sum that conforms to Axiom 4, and let ‘the w’s’ be all parts
of v. The object v delivered by the resulting instance of the scheme is then the sum of
all ‘finite’ ordinals and is easily seen to be a limit ordinal itself.) We may also define sur-
rogates for the natural numbers by setting 0 = ba and the successor of n = the sum of
n and bn.

We now employ transfinite induction to give the construction that will provide the
basis for the domain of our model of ZF. The rough idea is to mimic the power set oper-
ation at successor stages and to mimic unions at limit stages. The result is a hierarchy
of objects, each one a b-property, and hence each one a property with exactly one
instance. From this hierarchy we may ‘filter out’ the domain of the model, and then
define the surrogate of the membership relation. The first two stages of the construc-
tion are given explicitly by:

S(0) = 0 (i.e. βa) and S(1) = b0 (i.e. bba).

Next, for any ordinal a greater than 0, let

S(a + 1) = β(x + Âby:yrx), where S(a) = bx,

where ‘Sby : yrx’ denotes the sum of the b’s of the parts of x, guaranteed to exist by
Scheme 5. (Note that, on the left side, ‘+1’ means ordinal successor, not mereological
sum.) So, at a given stage a, S(a) is some b-property, say bx. Then S(a + 1) is the result
of applying b to the result of summing x with the sum of all objects by, where y is a
part of x. Finally, if l is a limit ordinal, let

S(l) = bÂS(Y):Yrl.

S(l) is therefore obtained by applying b to the sum of all earlier stages (which sum must
exist by an application of Scheme 5 to the ordinal parts of l via a functional formula
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reflecting the method of construction). Now, given the entire hierarchy of S(d)s, we are
able to describe the domain of the model: an object is in the range of the ZF quantifiers
iff it is a b-property that is a part of an instance of an S(d). To illustrate, consider the
first four stages:

S(0) = ba;
S(1) = bba; 
S(2) = b(ba + bba); and
S(3) = b(ba + bba + bbba + b(ba + bba)).

So, for example, b(ba + bba) is in the domain because it is a b-property that is a part of
the instance of S(3). But, for example, because ba + bba is not a b-property, it isn’t in
the domain even though it is a part of the instance of S(3) (and, for that matter, also a
part of the instance of S(2)). That each S(a) is a b-property contributed to the domain
by S(a + 1) is also illustrated here. For example, we have:

S(3) = b(S(0) + S(1) + bS(1) + S(2)).

Notice that every member of the domain is the result of applying the b-operator to a
or to a sum of b-properties. Intuitively, ba will represent the null set, and every other
member of the domain will represent the set whose members are precisely the sets 
represented by the b-properties that are parts of the sum. What makes this work is the
‘independence of individuality’ that is guaranteed by the atomicity of b-properties: no
sum of any specific b-properties can have a b-property as a part that isn’t one of those
specific b-properties. It is now easy to provide the interpretation of ‘Œ’ in the given
domain:

x Œy iff $z(y = bz & xrz).

Notice that there is no need for a clause stating that x is a b-property since only b-
properties fall in the range of the quantifiers in the first place. Thus it is clear that ba
is the unique object from the domain that has no members – it’s the surrogate of the
empty set. There are no deep difficulties in verifying the other axioms of (pure) ZF. Thus
we have shown how to construct a model of ZF from materials available in any model
of MPT. It follows that MPT has at least as much foundational punch as ZF.
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Modal Logic

J O H A N VA N B E N T H E M

1 Enriching Extensional Logic with Intensional Notions

When Frege wrote Begriffsschrift, he intentionally left out the key intensional notions
of traditional logic before him. On one telling page he enumerates a list of things for
which he sees no need – and readers of some erudition will recognize this anonymous
enemy as Kant’s famous “Table of Categories”, including Modality. Nevertheless, in this
century modal notions made their way back onto the logical agenda, leading to exten-
sions of classical systems with operators of necessity, possibility, entailment, and other
metaphysically inspired notions. These formalisms were influential as a tool for 
analyzing philosophical arguments. I still recall the shudder when reading my first
sequences of symbols claiming to be a proof of God’s existence ‘out of a box.’ But also,
the semantics of modal logics in terms of possible worlds has formed a powerful philo-
sophical union with the ontologies of Kripke and Lewis. These motivations also 
provided a watershed from mathematical logic, whose practitioners disliked modal logic
instinctively, even though they are willing to countenance such deviations as intu-
itionistic or quantum logic. But worse than that, by the early 1980s, modal logic had
also acquired powerful enemies within philosophy, preaching its imminent demise. I
remember sneaking through corridors in those days, avoiding encounters with ener-
getic colleagues who might be tempted to lend a helping hand to Historical Necessity.
But modal logic did not die, its enemies never managed to invent an equally powerful
substitute, its content and uses rather multiplied, and Handbooks wisely still include
the subject.

2 Changing Views of Modal Logic

In what follows, I present a modern account of modal logic – not as a metaphysical
system of any sort, but as a logical ‘fine-structure formalism’ for talking about actions,
knowledge, and many other concrete things all around us. This view is very different
from the original motivation in ‘philosophical logic,’ and I do not claim that it is uncon-
troversial in that field, especially among the ancien regime. But it is about time that a
broader community learns what is really going on.



We have come a long way since the 1960s, because of two separate developments.
First, what happened is a familiar phenomenon in science: originally non-intended
applications of a theory take over. In the case of modal logic, these started with tem-
poral and epistemic logic, then we had spatial logics, dynamic logics of action, and by
now also modal logics of grammatical derivation, generalized quantifiers, games, or
concept descriptions in AI. And this expansion is going on all the time. These applica-
tions provide new impetus to modal logic, at a time when it seems fair to say that ontol-
ogy is no longer a live source of inspiration. A second influence came from inside modal
logic. The mathematical theory of the subject that began to flourish in the 1970s
yielded (as abstract mathematics should) surprising new viewpoints on what makes
modal languages tick, which generated different perspectives – and in the end, a start-
ling inversion. Viewed in one way, modal logics are typically extensions of classical logic
with new operators. Viewed in another, and perhaps ultimately more insightful way,
modal logics are fragments of classical logical languages, that serve as milestones in a
natural ‘fine-structure hierarchy’ of expressiveness and reasoning.

Out of this historical panorama, we choose three notions as our major themes, viz.
fine-structure, information, and dynamics. These will be introduced by looking at the basic
modal language: propositional logic with box � and diamond ‡. But first, let us mention
another characteristic of much modal research: its exotic landscapes of different logics,
such as K, T, S4, S5, or more bizarre code names. This seems a huge difference with a
monotheistic religion like classical logic, which has only one set of validities – and hence
many people associate modal logic with heathen botany. Now, the mathematical theory
of the 1970s did create more unity in what has been called the ‘jungle of modal logics.’
Powerful meta-theorems appeared establishing properties like decidability, interpola-
tion, frame-correspondence or completeness for whole families of ‘modal logics’ at
once, or locating systematic failures – using methods from universal algebra and model
theory. Nevertheless, and more controversially than our stance so far, we think this
diversity is not a fundamental characteristic of the modal way of life – even though it is
certainly one of its useful conveniences. Such ‘logics’ are different modal theories of
special types of accessibility relation, comparable to special theories formulated on top
of classical predicate logic. Our exposition will therefore concentrate on modal base lan-
guages and their properties, with an occasional excursion into the special frame classes
of this other dimension of research.

3 A Précis of Basic Modal Logic

Language and interpretation

The basic modal language is very simple, and yet it has been a useful laboratory for new
basic techniques. We interpret formulas in so-called possible worlds models – the grand
name is still popular for its nostalgic mood – M = (W, R, V), according to the well-known
truth definition:

M, s |= ‡A iff for some t with Rst, M, t |=A
M, s |= �A iff for all t with Rst, M, t |=A
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It helps to think of the worlds as ‘states’ of some kind, while accessibility encodes 
possible moves that can be made to get from one state to another. But there are many
other useful concrete views of these, in essence, ‘decorated graphs’ (figure 26.1).

Invariance for Bisimulation

The expressive power of this language is measured by a suitable notion of similarity
between different models.

DEFINITION A bisimulation between two models M, N is a binary relation E between
their states m, n s.t. whenever m E n, then (a) m, n satisfy the same proposition letters,
(b1) if m R m¢ , then there exists a world n¢ with n R n¢ and m¢ E n¢, (b2) the same ‘zigzag
clause’ holds in the opposite direction.

Together, this ‘atomic harmony’ and the two zigzag clauses make bisimulation a natural
notion of ‘process equivalence’ – and indeed it was independently discovered in com-
puter science. Example (disregarding proposition letters): the two black worlds in M, N
are connected by the drawn bisimulation, consisting of all the matches indicated by
dotted lines – but there is no bisimulation which includes a match between the black
worlds in N and K (figure 26.2).

INVARIANCE LEMMA If E is a bisimulation between M and N, and m E n , then m, n
satisfy the same modal formulas.

That is, modal formulas are invariant for bisimulation. Thus, we can see the above failure
of bisimulation by noting that the model in the middle satisfies the formula

‡‡�^

in its root, whereas the one to the right does not. The converse to the Lemma only holds
for a modal language with arbitrary infinite conjunctions and disjunction – or for the
plain modal language over special models. For instance:

PROPOSITION If m, n satisfy the same modal formulas in finite models M, N, then there
is a bisimulation E between these with m E n.
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But there are still stronger definability results. For example, for any model M, s with a
designated world s, there is an infinitary modal formula fM,s true in only those models
N, t which are ‘bisimilar’ to M, s (i.e. some bisimulation links t to s).

Validity and proof systems

Universal validity is axiomatized in Hilbert-style by the so-called minimal modal logic:

1. all laws of propositional logic
2. a definition of ‡f as ÿ�ÿf
3. the modal distribution axiom �(f Æ y) Æ (�f Æ �y)
4. the necessitation rule ‘if �f, then ��f’

This looks like a standard axiomatization of first-order logic (with � as ", and ‡ as $),
but leaving out axioms with tricky side conditions on freedom and bondage: "xf Æ
[t/x] f and f Æ "xf. Modal deduction, either axiomatic or in other proof formats
(sequents, natural deduction), is simple reasoning in perspicuous notation.

Modal logic games

Not intrinsic to modal logic, but a pleasant dynamic trend is this. All our notions have
fine-structure as games. In an evaluation game, players Verifier (V) and Falsifier (F) dis-
agree about a formula. Disjunction is a choice for V, conjunction for F, negation is role
switch, ‡ makes V pick a successor of the current world, � does the same for F. A game
p is won by Verifier if the atom p holds in the current state, otherwise by Falsifier. A
player also wins the game if the other player must move, for a modality, but cannot.

FACT M, s |= f iff Verifier has a winning strategy
for the f-game in M starting from s.

For example, our first model picture induces the following game tree for formula ‡�‡p
starting from state 1, with bold-face indicating the winning positions for Verifier (figure
26.3).

In this game, V has two winning strategies: ‘left,’ and ‘right,’ ·‘right,’ ‘down’Ò. These
are indeed the two possible successful ways of verifying formula ‡�‡p in the given
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model M at world 1. Likewise, there are model comparison games between Duplicator
(maintaining an analogy) and Spoiler (claiming a difference), playing over pairs (m, n)
in two models M, N. These provide a fine-structured way of checking for the earlier
bisimulation. In each round Spoiler chooses a state x in one model which is a succes-
sor of m or n, Duplicator responds with a corresponding successor y in the other model.
If x, y are different in their atomic properties, Spoiler wins – if Duplicator cannot find
a matching successor: likewise.

For example, in the non-bisimulation example N, K in figure 26.2, starting from a
match between the two black worlds, Spoiler needs 3 rounds to win: forcing Duplicator
in 2 rounds into a match where one world has no successor, while the other does.

FACT (a) Spoiler’s winning strategies in a k-round game between M, s, N, t match the
modal formulas of operator depth k on which s, t disagree. (b) Duplicator’s
winning strategies over an infinite round game between M, s , N, t match the
bisimulations between them linking s to t.

One winning strategy for Spoiler in the preceding example exploits the earlier ‘differ-
ence formula’ ‡‡�^. Many other logical notions can be ‘gamified’. In particular, there
are construction games determining if a given formula has a model, or proof games
finding a derivation of it through a dialogue between two players.

Decidability and complexity

The basic modal language is a decidable ‘miniature’ of first-order logic. There are many
decision methods for validity or satisfiability, exploiting special features of modal for-
mulas – each with their virtues in generalization. Well-known methods are ‘selection,’
‘filtration,’ and ‘reduction.’

The deeper underlying issue is the precise computational complexity of various key
tasks for a logic. These include not just satisfiability or validity testing, but also model
checking and model comparison. Here are some landmark observations.

MODEL CHECKING Given a finite model M, s and a modal formula f, checking if M, s |=
f takes polynomial time in length(f) + size(M) .

This is better than for first-order logic, where the same task takes polynomial space.

SATISFIABILITY Checking if a given modal formula has a model takes polynomial space
in the size of the given formula.

MODAL LOGIC

395

Figure 26.3



For propositional logic the same task takes just non-deterministic polynomial time. For
the full first-order language, of course, it is undecidable.

MODEL COMPARISON Checking if there is a bisimulation between given finite M, s, N, t
takes polynomial time in the size of these models.

This may look surprising, but simple algorithms exist throwing out successive pairs of
worlds that cannot make any bisimulation. These benchmark complexity outcomes
may differ as modal languages are varied, allowing us to detect ‘jumps.’ Complexity
awareness is a new feature of increasing importance in logic.

Model theory

The model theory of basic modal logic is much like that of first-order logic: with 
classical highlights such as Craig interpolation, Los–Tarski preservation theorem for
universal modal formulas, etc. The analogy gets lost for many special modal logics,
where for example interpolation is much scarcer.

Translation

Modal operators behave much like first-order quantifiers. The following translation T
takes all modal formulas f to first-order formulas T(f) with one free variable x having
the same truth conditions on models M, s:

(a) T(p) = Px,
(b) T commutes with all the Boolean operators,
(c) T(‡f) = $y (Rxy & [y/x]T(f)), T(�f) = "y (Rxy Æ [y/x]T(f))

With some care, only two variables x, y are needed in all these first-order translations
(free or bound). E.g. �‡�p translates faithfully into the formula

"y (Rxy Æ $x(Ryx & "y(Rxy Æ Py))).

Here is the essential semantic feature that makes these translated modal formulas
special inside the full first-order language over R2, P1, Q1, . . .

MODAL INVARIANCE THEOREM The following assertions are equivalent for all first-order
formulas f = f (x): (a) f is equivalent to a translated modal formula, (b) f is invariant
for bisimulations.

The ‘modal fragment’ is a small fragment of FOL, sharing its ‘nice’ properties, but
remaining decidable. What you get for free on this view are ‘universal’ properties of
first-order formulas, such as the Löwenheim–Skolem Theorem. Not for free is, for
example, the Interpolation Theorem: modal consequences might have non-modal first-
order interpolants: honest work is required to show that indeed modal interpolants exist.
The fragmentist perspective is general: many other modal languages live inside first-
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order logic or other standard logics, under some translation transcribing their standard
semantics. We will see later what makes these fragments so well-behaved.

Landscapism

On top of the minimal logic, there are uncountably many different ‘modal logics.’ This
landscape has two major highways: because of this

THEOREM Every normal modal logic is either a subset of the logic Id (with characteristic 
axiom f ´ �f) or of Un (axiom �^).

On the former road lie the usual systems like T, S4, S5, on the latter, for example,
‘Gödel–Löb logic’ of arithmetical provability axiomatized by �(�f Æ f) Æ �f. Modal
logics in this landscape can be studied by proof-theoretic or semantic methods, with a
flourishing industry of completeness theorems providing bridges between the two.

Completeness

A typical modal completeness theorem runs like this.

THEOREM A formula is provable in K4 (K plus the axiom �f Æ ��f) iff it is true in
all models whose accessibility relation is transitive.

There are many techniques for proving such results, ranging from simple inspection of
the Henkin model of all complete theories in the logic to drastic ‘model surgery.’ The
motivation for completeness theorems can come from two directions. Either one has a
pre-existing logic given by axioms and rules (such as the above cases), and seeks a useful
corresponding model class – or one has a natural model class (say, some interesting
space–time structure), and wishes to axiomatize its modal validities for ‘simple reason-
ing.’ The literature is replete with both. In this survey, we do not pursue this complete-
ness line, since it gets so much exposure anyway.

Correspondence

The preceding correspondence between modal axioms and properties of the accessibil-
ity relation is a major attraction of modal logic. It can also be studied directly in the
semantics, calling a modal formula true in a frame (a model stripped of its valuation) if
it holds under all valuations. This line of research has produced two key results of a
model-theoretic nature:

THEOREM A modal formula defines a first-order frame-property iff it is preserved under
taking ‘ultrapowers’ of frames.

THEOREM A first-order frame-property is modally definable iff it is preserved under
taking (a) ‘generated subframes,’ (b) ‘p-morphic frame images,’ (c) ‘disjoint unions,’
and (d) ‘inverse ultrafilter extensions.’
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Known non-first-order modal principles are the McKinsey Axiom �‡p Æ ‡�p, and the
earlier-mentioned Gödel–Löb Axiom. Useful in practice is the Sahlqvist Theorem, describ-
ing an effective method for constructing first-order equivalents for most widely used
modal axioms, which has by now reached the world of automated theorem proving. It
proceeds by substituting first-order descriptions of ‘minimal valuations’ into a modal
axiom to get a natural first-order equivalent (if available).

EXAMPLE The above K4 axiom �p Æ ��p has a first-order translation "y (Rxy Æ Py)
Æ "y (Rxy Æ "z (Ryz Æ Pz)). A minimal valuation for p making the antecedent true
is Pu := Rxu. Substituting this into our formula, and dropping the then tautologically
true antecedent, we are left with a consequent of the syntactic form "y (Rxy Æ "z (Ryz
Æ Rxz))), which is precisely frame transitivity.

In a sense this whole mathematical theory is a study of simple modal fragments of the
complex realm of second-order logic, a perspective we will not pursue here.

The basic modal language has limited expressive power. But it has been the main
mathematical laboratory for notions, techniques, and results. In what follows here, we
look at some modern extensions, and new basic issues to which these give rise.

4 The Major Applications

Contemporary ‘applications’ of modal logic are not routine uses of existing notions and
techniques: they add things not dreamed of in the original framework. This short article
cannot really do justice to the variety of developments here. Here are some major direc-
tions that are arguably most influential in the ‘drift’ of the field.

Epistemic logic

Propositional attitudes like knowledge show logical behavior like that of ontological
modalities. In particular, the epistemic operator

Kif ‘agent i knows that f’ is like a universal modality stating that f is true in all of
i’s epistemically indistinguishable situations.

And the same is true to some extent for other epistemic propositional attitudes, such as
‘belief.’ On this view, accessibilities are often equivalence relations for each agent –
though alternatives exist. Languages like this express basic epistemic statement 
patterns that we often use in natural discourse, such as

Kif ⁄ Ki ÿ f ‘agent i knows whether f is the case’

and modal axioms acquire a new flavor:

Kif Æ Ki Kif ‘positive introspection’
ÿKif Æ Ki Ki ÿ f ‘negative introspection’
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But the major new theme in this epistemic setting is a ‘social one.’ It is not the Lonely
Thinker that is essential to understanding cognition, but interaction between different
agents in a group: KiKjf or KiÿKjf. What I know about your knowledge or ignorance is
crucial, both to my understanding and to my actions. (For example, I might empty your
safe tonight if I think you don’t know that I know the combination.) Some forms of
‘group knowledge’ even transcend simple iterations of individual knowledge assertions.
The central example here is common knowledge: if everyone knows that your partner is
unfaithful, but no more, you have private embarrassment – if it is common knowledge,
you have public shame and perhaps a need for violent action. Technically, common
knowledge works as follows:

CGf f holds at every world reachable via any finite chain of uncertainty relations
for actors in G.

For example, in the picture in figure 26.4, where p holds in the current world (the black
dot), in the black world, (a) agent Q does not know if p is the case: ÿKQp & ÿ KQÿp; (b)
agent A does know that p is the case: KAp; while (c) it is common knowledge in the
group {Q, A} that A knows whether p is the case: C{Q, A} (KAp ⁄ KAÿp). Incidentally, this
might be a good situation for Q to ask A a question about p: but more on epistemic actions
below.

Dynamic logic

Accessibilities can also be viewed as transitions for actions that change states. In
‘dynamic logic’ – originally designed to describe the execution of computer programs,
but now used as a general logic of action, we have

[p]f says that after every successful execution of action p, f holds.

Thus, modal statements relate actions to ‘postconditions’ describing their effects (and
also to ‘preconditions’ for their successful execution). A concrete model of this are
games, where actions are moves available to players. For example in the tree shown in
figure 26.5, player E has a strategy for achieving an outcome satisfying p.

This strategic assertion is captured by the dynamic modal formula [a»b]· c»dÒp.
Again we get a minimal modal logic for universal validity here, this time set up as a
two-level system treating propositions and actions (transition relations) on a par. This
joint set-up allows for a logical analysis of important action constructions, encoded in
valid principles for general operations as well as specific actions:
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[p;p¢]f ´ [p][p¢]f sequential composition
[p»p¢]f ´ [p]f & [p¢]f choice
[(f)?]y ´ (fÆy) test for proposition f

A major new feature here is unbounded finite repetition of actions: p*. This is typical for
computation, and it is not first-order definable. This shows in axioms

[p*]f ´ (f & [p][p*]f) fixed-point axiom
(f & [p*](f Æ [p]f)) Æ [p*]f induction axiom

Thus, dynamic logics resemble infinitary fixed-point extensions of classical logic, but
they do retain the ‘modal stamp’: being bisimulation-invariant, and decidable. Fixed-
point definitions are ubiquitous in computer science, but also in mathematics or lin-
guistics, because many natural notions involve a kind of ‘implicit’ recursion. An elegant
current system of this kind for actions is a generalization of dynamic logic allowing
arbitrary fixed-point definitions: the so-called ‘m-calculus.’

Temporal and spatial logic

A more traditional, but very lively application area of modal logic concerns ‘physical’
rather than ‘human’ nature. We mention this as a counterpoint to our cognitive slant.
One concrete interpretation of modal models is as flows of time, accessibility being
‘earlier than.’ The universal modality will then say ‘everywhere in the future,’ which
comes with an obvious dual ‘everywhere in the past.’ Temporal logics are prominent in
computer science and AI, where they show a great diversity beyond this basic modal
point of departure. In particular, they can live over different primitive entities: 
duration-less points, or extended ‘periods.’ Usually, the vocabulary of temporal lan-
guages is much richer than the basic modal language. A typical example are operators
allowing us a view of what goes on during the successful execution of a program or plan:

UNTIL fy at some point later than now f holds,
while at all intermediate points y is true

In this same physical arena, modal logics of space are also gaining importance, for
example in knowledge representation. One of these revives an old mathematical idea.
Let our models be topological spaces endowed with a valuation. Then the modality
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�f may be read as saying that the current point lies in the topological interior of
the set [[f]] of all points where f holds.

Then, modal laws come to encode various topological facts about space, for example:

�(f&y) ´ �f & �y says that open sets are closed under intersections.

This style of analysis may be extended to modal fragments of geometry. It provides an
alternative to our standard semantics quantifying over successors in some binary
world-to-world relation. (Technically, it is a ‘neighborhood semantics,’ of a sort devel-
oped in the 1960s to explore landscapes below the minimal modal logic K.) Thus our
spatial excursion also shows that the ‘standard approach’ is not sacrosanct.

AI, linguistics, mathematics

Modal logic has either been applied, or rediscovered, in such areas as artificial intelli-
gence (‘description languages,’ ‘context logics’, and ‘situation calculus’), linguistics
(‘categorial grammar,’ ‘feature logics’), and indeed mathematics, with flourishing areas
such as ‘provability logic,’ and in recent years also modal versions of set theory. This
list is not complete (intuitionistic logic or relevant logic or linear logic are also similar
in some of their key features), but it does show that modal structures occur naturally
across a wide range of disciplines.

5 Fine-Structure of Expressive Power

Modal logic today shows several new general themes that cut across these various appli-
cations. We mention a few, though there is certainly no consensus on a simple syn-
thesis out of the current research scene. One is extension of expressive power.

Logical extensions

Modal languages can be enriched over their original models. A popular ‘logical exten-
sion’ of this sort adds a universal modality

Uf saying that f is true at all worlds, accessible or not.

This gives more expressive power, which one can use to state ‘global facts,’ such as the
inclusion of one region of the model in another. But our standard techniques general-
ize, for example, the language of {�, U} matches up with ‘total bisimulations,’ whose
domains and ranges are the whole models being compared. And also: its minimal logic
remains decidable – though the complexity of validity goes up to exponential time.
(When added to more complex languages, indeed, U may push a decidable logic over
the brink into undecidability.) In earlier years, extending the basic modal language was
‘not done,’ because it would change the rules of the game, and make life too easy. Here
is another example. Having names for specific worlds would be a great convenience, both
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in practice and in the modal metatheory, but the basic language does not allow it. For
example, much has been made of the latter’s inability to express the frame property of
irreflexivity ("x ÿRxx). But this is expressed quite simply by the following axiom in an
extended modal language:

i Æ ÿ ‡i where the ‘nominal’ i is a special proposition letter ranging over only
singleton sets of worlds.

Nowadays the tendency is to add such devices freely, only subject to striking a good
balance between increased expressive power and manageable complexity. Another
example is the above operator ‘Until’ of temporal logic, where inhibitions as to enrich-
ment have always been weaker. What keeps these extensions ‘modal’ is that they allow
for bisimulation analysis, while staying decidable. Much is known by now about which
added operator leads to which jump in decidable complexity for our benchmark tasks
of satisfiability, model checking, and model comparison.

‘Geometrical’ extensions

By contrast to the preceding move, ‘geometric extensions’ enrich the similarity type of
our models, adding modalities with new accessibilities, as in epistemic or dynamic logic,
or in polyadic modal languages with n-ary alternative relations. For example an exis-
tential ‘dyadic modality’

‡fy is true at s iff t, u s.t. R3s, tu, f holds at t, y holds at u

Concrete interpretations for such ternary accessibility relations R include:

s is the concatenation of two expressions t, u,
s is the merge of the two resources t, u.

Guarded fragment

One limit to which many extensions of both types tend is the so-called Guarded Fragment
of first-order logic. This is defined inside the full first-order syntax by allowing only
quantifications of the ‘guarded’ form

$y(G(x, y) & f(x, y))

where x, y are tuples of variables, G(x, y) is an atomic formula whose variables occur
in any order and multiplicity, and f is a guarded formula having only variables from x,
y free. Many modalities are guarded in this syntactic sense:

‡p $y(Rxy & Py)
‡pq $yz(Rxyz & Py & Qz)

This sublanguage of first-order logic, where groups of objects are only introduced
‘under guards’ still yields to modal analysis supporting a ‘nice’ meta-theory.

$
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THEOREM The Guarded Fragment has a characteristic bisimulation.
THEOREM The Guarded Fragment is decidable in doubly exponential time.

These properties even transfer to certain extensions. Another interesting property
exemplified in this setting is robust decidability: small modal languages sometimes bear
the weight of expressive extensions that otherwise explode reasoning complexity. An
example are fixed-point operators for inductive definitions. On top of first-order logic,
these make the resulting language non-axiomatizable – when added to the Guarded
Fragment, however, they do not increase complexity at all.

Two dimensions

The earlier ‘landscape’ of modal logic was really one-dimensional: it kept the basic 
language constant in expressive power, varying deductive strength of special theories
expressed in it. But now we have a second dimension: systematic variation of expres-
sive power. This new two-dimensional landscape has many ‘thresholds of complexity’
which are currently being charted.

6 System Combination: Action and Information

Other main themes in general modal logic today are many agents, dynamics, and system
combination. The former has already occurred in our survey. As to the latter, many appli-
cations are ‘multi-modal,’ putting together various modal logics in one system: say of
action, knowledge, and time. There are several ways of doing this, ranging from mere
‘juxtaposition’ to more intricate forms of interaction between the component logics.
One then wants to predict expressiveness and complexity of the combination from those
of its parts – plus the mode of combination used. There is an incipient general theory
of relevant modes of combination, including new constructions of ‘product’ and ‘fiber-
ing.’ This style of thinking even shows in modern technical views of modal predicate
logic. One can ‘deconstruct’ this famous system into a combination of two modal logics:
a static one of world accessibility, and a dynamic one of object assignment to variables.
The main challenge arising then are the unpredictable effects of various combinations.
Disregarding further generalities concerning composition of logics, we describe two
rather exciting recent special combinations of long-standing modal ideas.

Information update

Models of epistemic logic serve as information states for groups of agents. Epistemic 
formulas are then evaluated against worlds in such states, telling us what is true or not
in them. But knowledge usually functions in communication: it is conveyed to others 
via speech acts, and influenced by theirs. To model such cognitive actions, we need to
combine two earlier systems: epistemic logic and dynamic logic. In particular, a com-
municative action changes the current epistemic model! In the simplest case, this
‘update’ works as follows:
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public announcement of a proposition f to a group of agents eliminates all worlds in the
current model M that satisfy ÿf

Suppose that in our earlier two-agent two-world picture Q asks A : “p?” and A then
truthfully answers ‘Yes.’ Then the ÿp-world gets eliminated, and we are left with a one-
world model where p has become common knowledge among {Q, A}. But more subtle
cases are possible, even with very simple models of this sort. For example, a question
itself may convey crucial information! Suppose that, by asking, Q conveys the infor-
mation that she does not know the status of p. Even if A did not know the answer at
the start, this may tell him enough to settle p, and thereby answer the question. Figure
26.6 shows one scenario where this happens.

But the modeling power of combined epistemic dynamics is still higher. Suppose
neither Q nor A knew about p, but A publicly asks expert R, whose answer A hears only
privately. Then A learns whether p, Q is no wiser about p, but it has become common
knowledge that A knows whether p. This requires ‘arrow elimination’ (figure 26.7).

These simple pictures hide delightful subtleties. For example, one may check that,
on this account, a public announcement that some formula f is the case need not
always result in our ‘learning that f’, in the form of an updated model where f holds!
(For, truth value switches may happen when we process an announcement of igno-
rance.) Precise algorithms for performing updates associated with communicative acts,
public or private, have been proposed in recent years – and these provide an entirely
new use of our ‘standard models.’ Eventually, in this view of communication, one
wants to describe not just information update, but also actions of ‘withdrawal’ or revi-
sion, triggered by propositions that contradict the content of our current information
state. These cognitive actions require modal logics of counterfactual conditionals that feed
into modern belief revision theory.

Game logics

There can be more than one attractive way of putting modal ideas together. Another
interesting mix of ‘epistemics’ and ‘dynamics’ occurs in the analysis of games. As
players move through a game tree, their information changes. Plain game trees are
described in dynamic logic, as we saw in an earlier section, though realistic reasoning
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about future game actions also require a logic of players’ preferences. Especially inter-
esting, however, are imperfect information games, where players may not know the
precise moves played by their opponents. Thus, in these games, the primary epistemic
uncertainty is between actions, and only in a derived sense between the resulting game
states. (Think of a card game where we cannot observe which initial hand Nature is
dealing to our opponent, or where some mid-play moves by our opponents may be par-
tially hidden.) An informative example is the earlier game tree, but now with an uncer-
tainty link for player E at the second stage – she does not know the precise opening move
played by A (figure 26.8).

We can view this as a model for an obvious combined dynamic-epistemic language,
having both epistemic modalities Ki and dynamic ones [a], which may interact. In par-
ticular, half-way, player E knows ‘de dicto’ that she has a winning move

KE(·cÒp ⁄ ·dÒp)

but she does not know any particular winning move ‘de re’:

ÿKE·cÒp & ÿ KE·dÒp!

Indeed, this game is ‘non-determined’ in a natural sense: E cannot force an outcome 
p, but neither can A force outcome ÿp. The general logic of these game trees is the
minimal propositional dynamic logic plus epistemic ‘multi-S5.’ But on top of that, the
combined dynamic-epistemic language can also express modes of playing games. Take
the game-theoretic notion of ‘Perfect Recall.’ This describes players whose own actions
never introduce any uncertainties that they did not have before. Properly understood,
this validates an interchange axiom

(turnE & KE[a]f) Æ [a]KEf:

what we know about the result of our own game moves is still known to us after we
perform them. (To understand this better, contrast the effects of non-‘epistemically
neutral’ actions like drinking genever.) Thus, we can correlate modal logics in this 
epistemic-dynamic language with special styles of playing a game. Another mode is
‘Bounded Memory’ – whose treatment requires a universal modality. This simple
example also illustrates a general point. Games are a nice target for logical analysis
because they show cognition at work under well-defined ‘laboratory circumstances.’
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7 Back to the Heartland

Modal logic started as an epicycle on standard logic. And it is still viewed by most people
as a ‘nonstandard’ topic beyond The Core. But latterly, it has started to influence the
heartland itself. We conclude with two examples of this 1990s trend.

Modal foundations of predicate logic

Predicate logic itself is a form of modal or dynamic logic! The key truth condition for
the existential quantifier reads

M, s |= $xf iff there exists d in DM s.t. M, s[x:=d] |= f

This has the modal pattern for evaluating an existential modality ·xÒ:

M, s |= $xf iff there exists t s.t. Rxst with M, t |= f

Viewed in this light, the usual set of ‘valid laws’ of first-order logic can be deconstructed
into several layers: (1) Its decidable(!) core is the minimal modal logic, which contains
such laws as Monotonicity: "x(fÆy) Æ ("xf Æ "xy). This level makes no presuppo-
sitions whatsoever concerning the form of the models, which could have any kind of
‘states’ and ‘variable shifts’ Rx. (2) Next, there are laws recording universal effects of
taking variable assignments for states, plus the special shift relation of ‘agreeing up to
the value for x.’ For example "xf Æ "x "xf expresses the transitivity of Rx: indeed, all
of S5 holds. (3) Most ‘specifically’, some first-order laws express existence properties for
states. Here is an example:

$x "yf Æ "y $xf expresses confluence: whenever s Rx t and s Ry u, then there also
exists a state v s.t. t Ry v and u Rx v (figure 26.9).

Thus, modal analysis reveals unexpected ‘fine-structure’ in the class of what is usually
lumped together as ‘standard validities’: they are valid for different reasons!

Moreover, on our general modal models, the predicate-logical language gets in-
creased expressive power, because new distinctions come up. For example:

polyadic quantifiers $xy•
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introducing two objects become different from iterations $x $y• or $y $x•.
Summing up, we get a highly unorthodox view. The ‘modal core’ of standard logic

is decidable, pace Church and Tarski – but piling up special (existential) model condi-
tions makes state sets behave so much like full function spaces DVAR that their total logic
becomes undecidable.

Dynamic predicate logic

Another dynamic view on first-order logic rather emphasizes the state change implicit
in evaluating an existential quantifier. We move to a new state containing a suitable
‘witness value’ for x. More generally, one can let first-order formulas denote actions of
evaluation:

(a) atomic formulas are tests if the current state satisfies the relevant fact,
(b) an existential quantifier picks an object and assigns it to x (random assignment),
(c) a substitution operator [t/x] is a definite assignment x:=t,
(d) a conjunction is a sequential action composition,
(e) a negation ÿf is a test for the impossibility of succesfully executing the action f.

The resulting ‘dynamified’ version of first-order logic has applications in the semantics
of natural language – as anaphoric pronouns ‘he,’ ‘she,’ ‘it,’ show this kind of dynamic
behavior. One nice illustration occurs with sentences like

$x Kx Æ Hx ‘if you get a kick, it hurts’

The standard logical folklore must ‘improve’ natural language here to arrive at the uni-
versal first-order form "x (Kx Æ Hx). But with dynamic semantics, this meaning arises
automatically, as any value assigned by the existential move in the antecedent will be
bound to x when the consequent is processed. This system has also inspired program-
ming languages for dynamic execution of specifications.

‘Dynamic predicate logic’ exemplifies a general paradigm of bringing out the implicit
cognitive dynamics which underlies existing logical systems. This allows one to view
natural language meanings in terms of updates of propositional content, perspective,
and other parameters that determine the transfer of information.

8 Conclusion

This survey is different in spirit from standard wisdom in philosophical logic. We have
presented modal logic as a tool for fine-structure analysis of the expressiveness and
complexity of logical languages, including effects of their combinations, and the major
applications (information, action) that drive abstract theory today. There is no uniform
conclusion, or even a new definition of modal logic in the end: the modern field is just
too rich for that. Our purpose with this short article will have been served if the reader
experiences a culture-shock, seeing the differences between reality and the picture still
painted by many ‘standard textbooks.’
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First-Order Alethic Modal Logic

M E LV I N F I T T I N G

1 Introduction

Propositional modal logic, with its possible world semantics, is now a standard part of
a philosophical education, while first-order modal logic is less familiar. But there are
several well-known problematic concepts that can be made more intelligible using a
first-order modal semantics; among these are existence, designation, identity, syn-
onymy, intension, and extension. I will address these and other issues. I will assume a
general familiarity with propositional possible world semantics, and begin at the 
quantificational level; (Hughes and Cresswell 1996) is a standard reference. I will not
attempt to move from semantics to proof procedures, length precludes that, but (Fitting
and Mendelsohn 1998) contains tableau systems that are appropriate for what is 
presented here.

I should begin by saying something about the status of possible worlds. It is some-
times asked what they are, or even where they are. These are the wrong questions to
be asking. Consider classical logic, for a moment. To say a formula F is valid is to say it
is true in all models. One does not inquire where these models come from – we are
talking formal mathematics, and they exist in the same sense that any mathematical
structure exists. (I grant that questions of mathematical existence can be tricky too,
but they are not what concern us now.) In addition, we occasionally apply classical logic
to the actual world – we extract a formal model from ‘reality.’ When we do so we must
stipulate the domain of quantification. This amounts to specifying what the ‘things’ of
the real world are. Do they include numbers? Do they include concepts like beauty?
Applying classical logic to the real world is not as straightforward as we often make it
seem, but nonetheless, we do it.

Modal models involve possible worlds. Generalizing from classical logic, a formula is
taken to be valid if it is true no matter what the domain and no matter what the inter-
pretation of symbols, and no matter at what possible world of a model we evaluate the
formula. This is a formal definition, just as in the classical case. Possible-world models
are mathematical structures too.

We still must deal with the desire to apply modal notions in the actual world. The
problem is much like that of applying classical logic to the actual world but now, in
addition to stipulating domains and interpretations, we must also stipulate possible



worlds. They are not ‘out there’ to be found with a telescope. Intuitively, they represent
how things might have been, and to a considerable extent, this is up to us. Is a situa-
tion in which Julius Caesar was a bottle of salad dressing really a way things could have
been, or not? It does not seem to me that such a question has an answer independent
of the asker, just as whether beauty is in the range of a quantifier or not probably
depends on who is using the quantifier, and for what purpose. In short, as a piece of
mathematics, possible world semantics is on the same footing as all mathematics. As a
way of understanding discourse about the real world, the semantics goes a long way
towards clarifying things, but there is considerable ambiguity or, if you prefer, 
flexibility.

In what follows I will sometimes be describing formal models, mathematical struc-
tures. But sometimes I will be using possible-world semantics informally, with some
intuitive notion of possible worlds which I assume is sufficiently understood by both me
and the reader to make the discussion mutual. In such situations, the real world will
generally be assumed to be among the possible worlds, and the quantification domain
will be assumed to include at least all real things. But keep in mind the discussion above
as to what is a real thing. By keeping the discussion imprecise I am, in effect, allowing
for a variety of different ways of understanding everyday modal discourse in terms of
possible-world semantics.

2 Intensions

Let us say an adult is someone 21 or older. The property of being an adult has a certain
extension: the set of people who are, in fact, 21 or older. At other times, or under imag-
ined circumstances, the same property will have a different extension. The intension of
the property is, in some indefinite sense, its meaning, and so determines its extension
under various circumstances. Trying to formalize meaning is a formidable task, and
reasonable people can differ about how this should be done. The common denomina-
tor among all such attempts is: the intension of a property should determine its exten-
sion, in every circumstance. If we ignore the issue of how, intensions simply become
maps from situations to extensions.

In addition to properties, we also need to treat individuals and individual concepts.
The number 9, and Bertrand Russell, are individuals, or individual objects. The number
of the planets, or the junior author of the Principia, are individual concepts. As things
are, they designate 9 and Bertrand Russell respectively, but under other circumstances
they might not have done so. Once again, some notion of meaning is involved. And
once again, however that notion of meaning is understood, an individual concept will
associate an individual object with each circumstance. Formalized it will simply be a
map from situations to objects.

This leads to the beginnings of a formal treatment – (Fitting and Mendelsohn 1998)
contains a fuller version of what follows. I’ll assume we have a first-order modal lan-
guage with relation symbols of various arities. The equality symbol, =, is among them.
(Since it’s what we’re used to, I’ll write = in the conventional infix position.) There will
also be constant symbols – typically c, d, . . . And there will be variables – typically x, y,
. . . Relation symbols will be used to represent properties in intension, and constant
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symbols will be used to represent individual concepts. Intensions determine extensions,
which are sets of objects, and likewise individual concepts determine objects, so we need
machinery for dealing with objects as well. I’ll assume variables have individual objects
as values. For an atomic formula, say P(c), it will be taken to be true at a possible world
if the individual object designated by c at that world is in the extensional property des-
ignated by P at that world.

There is yet one more piece of machinery that must be introduced, and it will be less
familiar. In classical logic, if F(x) is a formula, we can think of it as determining the
extensional property of being something that makes F true. But now we are trying to
think intensionally. Using � for the necessity symbol and P as a one-place relation
symbol, how should we understand the formula �P(x), that is, what intensional prop-
erty does it determine? In particular, for a constant symbol c, how should we read the
formula �P(c)? Should it be taken to say c has the P property necessarily, or that c has
the necessary-P property? These are not synonymous. Suppose, for instance, that c is
the richest-person-in-the-world individual concept, and P is the intensional property
being-wealthy (both notions change with changing circumstances). It seems likely that
P(c) is true under all circumstances – the richest person in the world, whoever that is,
is wealthy, however we measure wealth. Then �P(c) should be taken to be valid, since
P(c) is always true. On the other hand, while c designates the richest person in the world
currently, that person might be poor under other circumstances, so we cannot say, of
c, that the person has the necessarily-wealthy property. But then �P(c) should not be
taken to be valid. What is needed is some way of distinguishing between these two inter-
pretations of the single formula �P(c).

I’ll make use of a device called predicate abstraction. If F is a formula and x is a vari-
able, ·lx.FÒ is a predicate abstract. If t is a term – either a constant symbol or a vari-
able – and ·lx.FÒ is a predicate abstraction, ·lx.FÒ(t) will be counted as a formula. Then
�·lx.P(x)Ò(c) and ·lx.�P(x)Ò(c) are both formulas, and obviously different. The seman-
tics introduced below will give them different readings, corresponding to the two read-
ings of �P(c) above.

Now the class of formulas can be specified. It is built up in more-or-less the usual way,
using propositional connectives Ÿ, ⁄, …, ∫, and ÿ, modal operators � and � quanti-
fiers " and $, and predicate abstraction. I skip details, as they are quite straightforward
to supply. For simplicity, I’ll abbreviate formulas like ·lx.·ly.·lz.FÒ(e)Ò(d)Ò(c) by ·lx, y,
z.FÒ(c, d, e).

3 Models

A frame is a structure ·G, RÒ, where G is a (nonempty) set of possible worlds and R is a
binary relation on G of accessibility. Intuitively, one thinks of the members of G as rep-
resenting the way things are, and the various ways they could be – possible situations,
say. The accessibility relation tells us which situations are relevant to which. It is, by
now, common knowledge that placing natural restrictions on R produces well-known
modal logics. In many ways, S5 is the simplest of the modal logics, and the most natural
if � is to represent metaphysical necessity. For S5 R is simply the universal relation, the
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one that always holds. In what follows, I’ll assume this is my choice for R . Certain
things are simpler and more natural with such a choice, though much of what is said
applies more generally – see (Fitting and Mendelsohn 1998).

Certainly if things were different, different things might exist. An extended frame is a
structure ·G, R, DÒ where ·G, RÒ is a frame and D is a domain function mapping G to
nonempty sets. If G Œ G, think of D(G) as the set of objects existing in G. Also, by the
domain of the frame I mean the union of the domains of the various possible worlds. If
we understand possible existence to mean actual existence under other circumstances,
the domain of a frame consists of those things having actual or possible existence in
our formal setting.

A model is a structure ·G, R, D, I Ò where I is an interpretation in the extended frame
·G, R, DÒ. The domain of the model is the domain of the underlying frame. The inter-
pretation must meet three requirements. First, it should associate with every constant
symbol c a mapping, I(c), assigning to each possible world some member of the do-
main of the model. Second, it should associate with every n-place relation symbol R a
mapping, I(R), assigning to each possible world some n-place relation on the do-
main of the model. Third, it should associate with the equality symbol, =, the constant
mapping assigning to each possible world the equality relation on the domain of
the model.

The notion of interpretation captures the informal idea expressed earlier. Associated
with each relation symbol is a relation in intension – a map from possible worlds to rela-
tions in extension. Likewise, associated with each constant symbol is an individual
concept. Say we have a constant symbol c and a possible world G. I(c) is a function on
possible worlds, so I(c)(G) is some member of the domain of the model. There is no
requirement that it be something that exists at G; that is, it need not be in D(G). It makes
perfectly good sense to talk about Pegasus, who exists in a mythological world even
though he does not exist in ours. Similarly a relation symbol, at a world, is some rela-
tion in extension, but there is no requirement that things in that relation in extension
actually exist at that world. If there were such a requirement, we would be unable to
say that Pegasus has the property of being mythological.

4 About Quantification

If I claim that everything has a certain property, what am I claiming? I could mean
everything that actually exists has the property (actualist quantification). I could mean
everything that does or could exist has the property (possibilist quantification). In our
formal semantics, actualist quantifiers, at a world G, range over the domain of that
world, D(G). Possibilist quantifiers range over the domain of the model. Both are
natural, but for different purposes.

Here, possibilist quantification will be taken as basic, because there is an easy way
to define actualist quantification from it. Introduce a special one-place relation symbol,
E, and interpret it at each world as the set of things that actually exist there – an exis-
tence predicate, in other words. Formally, in a model ·G, R, D, I Ò, we will require that
I(E) be the function that maps each possible world G to D(G). Further, introduce rela-
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tivized quantifiers: ("Ex)F abbreviates ("x)[E(x) … F] and ($Ex)F abbreviates ($x)[E(x)
Ÿ F]. Intuitively speaking (since the full formal semantics has not been fully specified
yet), if ("x) and ($x) are read in a possibilist way, quantifying over the domain of
the model, then ("Ex) and ($Ex) correspond to actualist quantification, with things
restricted to world domains.

5 Truth in Models

Now comes the key definition: truth of formulas at possible worlds of a model.
Simultaneously, the meaning of predicate abstracts must also be defined. Formulas can
contain free variables, and so we need machinery for giving them values. A valuation is
a mapping from free variables to the domain of a model. Note that valuations do not
depend on possible worlds – free variables are supposed to represent objects, not inten-
sions. If v is a valuation and I is an interpretation, between them they supply mean-
ings for all terms. I’ll use the following notation. For a possible world G,

(1) If x is a variable, (v * I )(x, G) = v(x).
(2) If c is a constant symbol, (v * I )(c, G) = I(c)(G)

Thus for any term t, (v * I )(t, G) is the object associated with t at possible world G. I’ll
also use the following notation. If v is a valuation, x is a variable, and d is an object in
the domain of the model, v[x/d ] is the valuation that is like v except that it maps x to
d. And I’ll say a formula is an atom if it is of the form R(t1, . . . , tn) where R is an n-place
relation symbol and t1, . . . , tn are terms, or if it is of the form ·lx.FÒ(t) where ·lx.FÒ
is a predicate abstract and t is a term.

Now, the fundamental notion to be defined is symbolized M, G |�v F and is 
read: formula F is true at possible world G of model M with respect to valuation v.
Simultaneously meanings are assigned to predicate abstracts. Here is the definition.

Let M = ·G, R, D, I Ò be a model.

(1) For atoms, M, G|�v R(t1, . . . , tn) if ·(v * I )(t1), . . . , (v * I )(tn)Ò Œ I(R)(G).
(2) M, G|�v (X Ÿ Y) if M, G|�v X and M, G|�v Y, and similarly for the other propo-

sitional connectives.
(3) M, G|�v �X if M, D|�v X for every D Œ G such that GRD, and similarly for ‡X.
(4) M, G|�v ("x)X if M, G|�v[x/d] X, for every d in the domain of the model M, and

similarly for ($x).
(5) The interpretation I is extended to predicate abstracts as follows. I(·lx.FÒ) is

the map that assigns to possible world G the set {d | M, G|�v[x/d] F}.

The definition is technical, but the content is intuitive. Item 1 says an atom is true at a
world if the individual objects associated with the subject terms, at that world, are in
the extension of the predicate, at that world. Item 5 says the intension of a predicate
abstract, in a model, is determined in the obvious way by the behavior of the formula
being abstracted. The other items are essentially standard.
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6 Equality

Now that the technical definitions have been given, it is time to see how things behave.
I’ll begin with equality, whose interaction with necessity has always been considered a
bit tricky. Recall, R is taken to hold between any two worlds in our discussion, so the
underlying logic is S5.

Suppose c and d are constant symbols, so that c = d is a formula. To say it is true at
a possible world of a model is to say the interpretations of c and d, at that world, are in
the interpretation of = at that world. Since the interpretation of = is the equality rela-
tion at every possible world, this amounts to saying that c and d designate the same
object at the world. Formally we have the following: M, G|�v c = d ¤ I(c)(G) = I(d)(G).

What about necessary equality? If we say of two individual concepts that they are
necessarily equal, are we saying their equality is necessary, or are we saying they have
a ‘necessarily equal’ property. That is, are we asserting �·lx, y.x = yÒ(c, d) or are we
asserting ·lx, y.�(x = y)Ò(c, d)? The two are not synonymous.

Consider first �·lx, y.x = yÒ(c, d), or equivalently �(c = d). To say this is true at pos-
sible world G of a model is to say c = d is true at every world. By the analysis above, this
amounts to saying c and d designate the same object at every world. This is a strong
requirement, and it really amounts to saying c and d are synonymous. It is easy to
produce formal models in which (c = d) … �(c = d) is not valid, that is, in which (c = d)
… �·lx, y.x = yÒ(c, d) is not valid.

Now consider the other version, ·lx, y.�(x = y)Ò(c, d). Suppose that c and d happen
to designate the same object at possible world G of a model. Certainly, at every world,
that object is identical to itself. But this is just what it takes for ·lx, y.�(x = y)Ò(c, d) to
be true at G. Thus (c = d) … ·lx, y.�(x = y)Ò(c, d) is simply a valid formula.

The difference between the two versions is striking, at least until one realizes that
different things are really being said. We might read �·lx, y.x = yÒ(c, d) as asserting it
is necessary that c and d be equal. This is an assertion about their intensions and, as
noted above, really asserts synonymy. Likewise we might read ·lx, y.�(x = y)Ò(c, d) as
asserting the necessary equality of c and d, that is, of the objects designated by c and d.
Well, if objects are equal under any circumstances, they cannot be otherwise and so we
have, of c and d, that their equality implies their necessary equality.

Suppose we apply these observations to a few well-known problematic cases, dis-
cussed in Quine (1953a). Say we have a model in which the possible worlds include the
actual one and various alternatives to it – representing how things could have been.
Let ‘n’ be a constant symbol intended to be interpreted as the number of the planets,
which can vary in different possible worlds of our model. Also let ‘9’ be a constant
symbol interpreted as the number 9 at every possible world. (This assumes that
numbers are in the domain of our model, of course.) Now what about the assertion,
‘necessarily the number of the planets is nine’? If we read it as ·lx, y.�(x = y)Ò(n, 9) it
is true – the number of the planets is, in fact, 9, and 9 is 9 no matter what. But if we
read it as �·lx, y.x = yÒ(n, 9), it is quite different. This amounts to asserting synonymy,
and is false.

Or again, say ‘m’ and ‘e’ are intended to denote the morning and evening stars
respectively – in the actual world they denote the same object, but in other situations
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they need not do so. In the actual world, m = e is the case, and hence ·lx, y.�(x = y)Ò(m,
e) is true. But �·lx, y.x = yÒ(m, e) is not so. In words, it is true, of the morning star and
of the evening star, that they are identical, and this identity is necessary (as identity
between objects is always necessary, if true). But it is not true that the morning star
and the evening star are necessarily identical, that is, it is not true that the terms are
synonymous.

7 Rigidity

In an example above I used a constant symbol, ‘9’, which was interpreted to designate
the same object in all possible worlds – the number 9. This is an example of a rigid term.
For S5, rigidity can be expressed quite simply: a term c is rigid in a model just in case
the formula ·lx.�(x = c)Ò(c) is valid in the model. A little thought will make it clear it
is asserting that, whatever c designates at a world, it designates the same thing at all
worlds – in other words, its interpretation is a constant function.

Kripke and others have made the case that names in ordinary language are used
rigidly (Kripke 1980). According to this theory, a name like ‘Moses’ received its initial
designation at some point in the past and, by a complex process, some version of that
designation has been passed down to us. This contrasts with definite descriptions.
According to the Biblical account, Moses led the Israelites out of Egypt, but we can still
make sense of a claim that he might not have done so. ‘Moses’ designates rigidly, but
‘the person who led the Israelites out of Egypt’ does not. Definite descriptions will be
discussed later in this chapter.

8 De Re/De Dicto

Suppose we say ‘The British monarch is necessarily the head of the British government.’
This can be read in two different ways. On the one hand, we might be asserting the
necessity of a particular statement, ‘the British monarch is the head of the British gov-
ernment.’ In this case, the necessity operator is used in a de dicto way, applying to a sen-
tence (dictum). On the other hand, we might be ascribing a certain necessary property,
‘necessarily being the head of the British government,’ to an object, in this case the
person who happens to be the British monarch. Such a usage of necessity is de re, ascrib-
ing a necessary property to a thing (res). In the present example, the de dicto version is
correct, since the British monarch is defined to be the formal head of the British gov-
ernment. But the de re version is not correct since a British monarch could abdicate,
and so no longer be government head.

To formalize the notions of the previous paragraph, suppose we introduce a constant
symbol ‘m,’ intended to designate the ‘British monarch’ individual concept. That is, at
each possible world it designates whoever is British monarch under those circum-
stances. And suppose we introduce a one-place relation symbol ‘H,’ intended to desig-
nate the intensional notion of being the head of the British government. It is easy to
see that the de re version formalizes as ·lx.�H(x)Ò(m), while the de dicto version becomes
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�·lx.H(x)Ò(c). These certainly look different, and one can easily produce models in
which they are not equivalent.

It does sometimes happen that, for certain terms, de re and de dicto usages coincide.
Let us say that de re and de dicto are equivalent for a constant symbol c, in a model, pro-
vided ·lx.�FÒ(c) and �·lx.FÒ(c) are equivalent at every world of that model, for every
formula F. The question is, when does such a event occur? And the answer is quite
simple: de re and de dicto are equivalent for c in a model if and only if c is rigid in that
model. In particular, de re and de dicto are equivalent for names, assuming the Kripke
et al. thesis. A proof of all this is not difficult, but I omit it here – one can be found in
Fitting and Mendelsohn (1998).

9 Partial Designation

I’ve been assuming that terms always designate, but this is simplistic. A name, for
instance, takes on a designation at a certain time, and before that it designates nothing.
Definite descriptions provide another example. ‘The present King of France’ does not
designate, though there were times when it did. To treat such things the notion of model
must be somewhat expanded.

From now on the definition of interpretation is modified. If ·G, R, DÒ is an extended
frame, an interpretation I is a mapping that behaves as before on relation symbols, but
that assigns to each constant symbol c a mapping from some set of possible worlds (not
necessarily all of them) to the domain of the frame. If a possible world G is in the domain
of I(c), I’ll say c designates at G. The definition of (v * I ) must also be modified: if c does
not designate at G, (v * I )(c, G) is undefined, and otherwise things are as they were.

Of course the definition of truth in a model must be modified as well. Partial truth
assignments might be introduced – a formula could be true, false, or lack a truth value,
at a possible world. This is an interesting direction, but it is not what is done here. I will
simply assume that any ascription of a property to a term that does not designate is
false. Formally, item 1 of the definition of M, G|�v F is replaced by the following. (Recall,
atoms can involve relation symbols or predicate abstracts.)

1. For an atom R(t1, . . . , tn),
(a) if any of t1, . . . , tn do not designate at G then M, G |�/v R(t1, . . . , tn),
(b) if all of t1, . . . , tn designate at G then M, G,|�v R(t1, . . . , tn) just in case ·(v

* I )(t1), . . . , (v * I )(tn)Ò Œ I(R)(G).

The rest of the definition remains the same.
I am not assuming any formula involving a non-designating term is false – only

atoms. Among atoms, one in particular stands out: ·lx.x = xÒ. In a model, at a world,
if c fails to designate, ·lx.x = xÒ(c) will be false. But if c does designate, ·lx.x = xÒ(c) obvi-
ously must be true. Thus this abstract can serve as a convenient ‘designation’ predicate,
and we give it that official role: D abbreviates ·lx.x = xÒ. Now, c designates at a world
if and only if D(c) is true at that world. If c does not designate, ÿD(c) will be true. This
illustrates what was said above: there are true sentences involving non-designating
terms.
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10 Designation and Existence

Recall that earlier an existence relation symbol, E, was introduced. Using it, a pair of
interesting abstracts can be defined.

E abbreviates ·lx.E(x)Ò.
abbreviates ·lx. ÿ E(x)Ò.

Strictly speaking, E behaves the same as E and so is not really needed, but having it
makes a nice symmetry with . At a possible world G, E(x) is true just when x has as
value an individual object that exists at G. Likewise, at G, (x) is true just when x has
as value an individual object that is in the domain of the model but not in the domain
of G, in other words, an object having possible but not actual existence at G. Since our
possibilist quantifiers range over the domain of the model, we have the validity of
("x)[E(x) ⁄ (x)] – quantifiers range over what has actual or possible existence. We
also have that ("x)[ (x) ∫ ÿE(x)] is valid.

Constants are a different story, since they have intensional objects as values, and
such objects might be partial. If c does not designate at a possible world G, neither E(c)
nor (c) will be true at G, by part 1a of the definition of truth. On the other hand, if c
does designate at G, it must designate something that actually or possibly exists. Putting
all this together, we have the validity of D(c) ∫ [E(c)⁄ (c)] for constant symbols.

All this is a little reminiscent of Meinong (1889). Think of D(c) as analogous to
asserting that c has being. If c has being, it might or might not actually exist. In this
sense ‘the golden mountain’ has being, does not actually exist, but could. Where the
present treatment diverges from that of Meinong is, strictly interpreted, ‘the round
square’ cannot designate at any possible world since the conditions are contradictory,
and hence we cannot even say it has being. This point is related to the fact that, while
a pair of abstracts E and was introduced, there was no companion for D. An abstract
·lx. ÿ (x = x)Ò could be considered, of course. But, for every constant symbol c, ·lx. ÿ
(x = x)Ò(c) will always be false. If c does not designate, it is false because no abstract cor-
rectly applies to a nondesignating term. If c does designate, it is false because the object
designated must be self-identical. Roughly speaking, non-being is a property, but an
uninteresting one since it never correctly applies to any term.

Going a little further, suppose c does not designate at G. Then E(c) will not be true at
G, so ÿE(c) will be true. Of course (c) will not be true since c does not designate. It
follows that [ (c) ∫ ÿE(c)] does not hold. This looks like a clash with the validity of
("x)[ (x) ∫ ÿE(x)], but recall that quantifiers range over individual objects, while con-
stant symbols represent intensional objects, and may fail to designate. In fact univer-
sal generalization, ("x)F … ·lx.FÒ(c), is not valid – it fails when c does not designate.
What we have instead is the validity of ("x)F … [D(c) … ·lx.FÒ(c)].

11 Definite Descriptions

Definite descriptions, such as ‘the King of France,’ can be translated away into the prim-
itives of our language, or they can be treated as primitives themselves. I’ll straddle the
fence, so to speak, and present both approaches.
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To treat them as primitives the language must be enlarged, so that if x is a variable
and F is a formula, then x.F is a term with free variables those of F, except for x. The
term x.F is read, ‘the x such that F,’ or more briefly, ‘the F.’ The expanded definition
of the term uses formulas, but the definition of formula uses terms, so it no longer is
the case that terms can be defined first, and then formulas – the two must be defined
simultaneously. This complicates things, but the obvious mutually recursive definition
works fine. I’ll skip over the details.

Next, the definition of designation for terms must be extended to include them.
Suppose M = ·G, R, D, I Ò is a model and x.F is a definite description. I’ll say this def-
inite description designates at possible world G Œ G just in case there is exactly one d in
the domain of the model such that M, G|�v[x/d] F. Take I( x.F) to be the mapping whose
domain is the set of possible worlds at which x.F designates, and assigns to a possible
world G in its domain the unique d such that M, G|�v[x/d] F.

According to this definition, if x.F does not designate at possible world G, 
then ·ly.YÒ( x.F) is simply false at that world, for any formula Y. In particular,
·ly.FÒ( x.F) will be false. On the other hand, if x.F does designate at world G, it is
immediate from the definition that ·ly.FÒ( x.F) is true at G. We thus have the simple
principle D( x.F) ∫ ·ly.FÒ( x.F). In the present world it is not true that ‘the King of
France is King of France,’ because the definite description ‘the King of France’ does not
designate.

Russell (1905) showed that definite descriptions could be translated away in context,
essentially saying that while they have the appearance of terms, formulas containing
them are really abbreviations for more complex constructions. Stating Russell’s 
translation in present notation, ·ly.YÒ( x.F) is taken as abbreviating the formula
($z){("w)[·lx.FÒ(w) ∫ (w = z)] Ÿ ·ly.YÒ(z)}. That is, we have a formula asserting exactly
one object has the property ·lx.FÒ, and that object also has the property ·ly.YÒ. It is
not hard to see that a Russell approach is equivalent to the approach taking definite
descriptions as primitive. The same formulas are validated either way.

Ontological arguments provide interesting examples of definite descriptions at work.
Let’s begin with one in the Descartes style. Suppose we define God to be the necessar-
ily existent being – take g to be short for x.�E(x). A definite description has its defin-
ing property if and only if it designates, so we have the validity of D(g) ∫ ·ly.�EÒ(g).
But in this case we can do better – we also have D(g) ∫ �E(g). This is not because of
general principles about definite descriptions, but because of the particular form
involved, x.�E(x), and the fact that the underlying logic is S5. (Proof of validity takes
some work – give it a try.)

Continuing: for any term c, D(c) ∫ [E(c) ⁄ (c)]. It follows that E(g) … D(g) is valid.
Combining things, we have the validity of E(g) … �E(g). From this, by standard modal
logic manipulation, we get the validity of ‡E(g) … ‡�E(g). Since our modal logic is S5,
‡�X … �X, and so we have the validity of ‡E(g) … �E(g). This is a crucial step in
Descartes’ argument: God’s existence is necessary, if possible. To complete the proof, 
we must establish the validity of ‡E(g). Unfortunately, at this point Descartes 
simply assumed it to be the case. I’ll leave it to you to verify that ‡E(g), �E(g), and 
E(g) all turn out to be equivalent, so the Descartes assumption really begs the 
question.
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The first ontological argument, historically, was that of Anselm. I’ll conclude this
section with a very informal discussion of it. This time, define God to be the maximally
conceivable being. That is, God is the being such that I can conceive of nothing greater.
Now let g abbreviate the informal definite description, ‘the maximally conceivable
being.’ We have D(g) ∫ [E(g) ⁄ (g)], so if we assume that g designates (in the actual
world), we have either E(g) or (g). Making reasonable assumptions, if we had (g) we
would have a contradiction, because I can conceive of an existing God, and this would
be greater than a nonexisting God. Consequently we must have E(g). This part of the
argument is very imprecise, but we don’t need to make it sharper because it is clear that
it all depends on the initial assumption that g designates, and that was never verified.
In short, the Anselm argument makes a plausible case that ‘the maximally conceivable
being’ cannot designate a nonexistent being, but it does not establish that it designates
anything.

12 What Next?

I’ve sketched the semantics for a first-order modal logic, and showed how it could be
used to elucidate several topics of interest to philosophers. But the logic was, by design,
a limited modal logic. There were quantifiers over individual objects, and constant
symbols for individual concepts. One can complete the set by adding quantifiers over
individual concepts and constant symbols for individual objects (Fitting 2002a). One
can then consider whether or not to simply identify individual objects with individual
concepts that are rigid. Technical issues are one thing, philosophical implications
another. But this is beyond what we do here.

Going still further, one can introduce higher-type notions. We already have inten-
sional relations – we could allow quantification over them, then add relations of rela-
tions, quantify over them, and so on. The intensional/extensional split that we have
already seen continues upward through all these levels, and things become quite
complex. Gödel devised an ontological argument of genuine interest, but to study it
formally requires some machinery of this sort (Fitting 2002b).

Of course the more complicated things get, the less immediate our intuitions. The
modal logic presented here is complex enough for many purposes, yet simple enough
for us to grasp informally. Further exploration can be left to the intrepid.
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Proofs and Expressiveness in 
Alethic Modal Logic

M A A RT E N D E R I J K E A N D
H E I N R I C H WA N S I N G

1 Introduction

Alethic modalities are the necessity, contingency, possibility or impossibility of something
being true. Alethic means “concerned with truth.”

(Lacey 1976: 132)

The above dictionary characterization of alethic modalities states the central notions
of alethic modal logic: necessity, and other notions that are usually thought of as being
definable in terms of necessity and Boolean negation: impossibility, contingency, and
possibility. The syntax of modal propositional logic is inductively defined over a denu-
merable set of sentence letters p0, p1, p2, . . . as follows:

A:: = p|ÿA|(A ⁄ B)|�A

The other Boolean operations (�, ^, Ÿ, … and ∫) are defined as usual. A formula is read
as follows:

‘it is necessary that A’ is expressed as �A
‘it is impossible that A’ is expressed as �ÿA
‘it is contingent that A” is expressed as ÿ�A
‘it is possible that A’ is expressed as ÿ�ÿA

Usually, ‘it is possible that A’ is abbreviated ‡A, and if ‡ is primitive, �A is abbreviated
ÿ‡ÿA. Although one would expect that �A implies A, the weakest system of normal
modal propositional logic does not have �A … A as a theorem. This is understandable
from the point of view of the most prominent formal semantics for modal logic. The
basic semantic intuition behind alethic modal logic is that �A is true at a state (‘possi-
ble world’) s if and only if (iff) A is true at every state accessible from s. What exactly is
meant by accessibility of t from s is deliberatively left open, to make room for various
readings, like ‘t is compatible with the physical laws of s,’ ‘t is a conceptually possible
alternative of s,’ ‘t lies in the future of s,’ or ‘t is an output-state of a terminating per-



formance of some generic action in s.’ Clearly, if �A is true at s iff A is true always in
the future of s, the unprovability of �A … A is intuitively correct.

Modal reasoning has been discussed by Aristotle already, and the idea of necessary
truth as truth in all possible worlds is due to Leibniz, while its modern mathematical
rendition goes back to Kripke. Over the past century modal logic has been used exten-
sively to conceptualize and reason about a wide variety of modal and modal-like
notions, some of which were mentioned above. To stay within the number of pages
allotted to us, we have had to impose very drastic restrictions. First of all, our treatment
is mainly logical or even mathematical. Second, we have decided to focus on two topics
that, we think, are of relevance to anyone wanting to use modal logic for modeling and
analyzing informal notions: expressive power (what can we say with the logic?) and rea-
soning methods (what are the implications of what we are saying?). In both cases we will
focus on propositional modal logic; however, many interesting philosophical and math-
ematical phenomena and problems arise in modal predicate logic, and we will briefly
touch on some of them.

More concretely, we will survey the model theory of normal modal propositional
logic and present basic notions and results of completeness and correspondence theory.
Moreover, we indicate various ways of enhancing the expressive power of the language
of alethic modal logic. We present an overview of two important types of proof systems
for normal modal logics, namely labeled tableau systems and display calculi. The last
part of the chapter is concerned with several problems arising in modal predicate logic.
We conclude this chapter with pointers to important survey articles and volumes on
modal logic.

2 Model Theory

‘Revolutionary’ is an overused word, but no other word adequately describes the impact
relational semantics (i.e. the concepts of frames, models, satisfaction, and validity that
we are about to introduce) has had on the study of modal logic. Somewhere around
1960 modal logic was reborn as a new field, through the work of authors such as
Hintikka, Kanger, and Kripke. Below we recall the basic concepts that came with these
changes, and we discuss one of the key issues to which the new era gave rise: expres-
sive power.

Basics

A relational structure is simply a tuple (W,R1,R2, . . .) consisting of a domain W and rela-
tions R1, R2, . . . on this domain. A frame for the propositional modal logic introduced
in Section 1 is a relational structure F = (W,R) equipped with a single binary relation.
A frame (W,R) is turned into a model M = (W,R,V ) by equipping it with a valuation V,
that is a function mapping proposition letters in the language to subsets of the domain
W; note that models can be viewed as relational structures in a natural way, namely as
structures of the form (W, R, V( p0), V( p1), . . .), consisting of a domain, a single binary
relation R, and the unary relations given by V.
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In spite of their mathematical kinship, frames and models are used very differently.
Frames are essentially mathematical pictures of ontologies or structural properties that
are more or less invariant across situations, while the unary relations provided by val-
uations decorate frames with contingent information.

DEFINITION 1 Let w be a state in a model M = (W,R,V ). We inductively define the notion
of a formula A being true in M at w (notation: M,w |= A) as follows:

M,w |= p iff w Œ V( p)
M,w |= ÿA iff not M,w |= A
M,w |= A ⁄ B iff M,w |= A or M,w |= B
M,w |= �A iff for all v Œ W with wRv we have M,v |= A

It follows from this definition that M,w |= ‡A iff for some v Œ W with wRv we have M,v
|= A. Note also that the notion of truth is local: formulas are evaluated at some particular
state w. Moreover, � and ‡ both work locally: only states R-accessible from the current
one can be explored by our operators.

A formula A is globally or universally true in a model M (notation: M |= A) if it is true
at all states in M.

Finally, these notions can also be lifted to sets of formulas S: M,w |= S if M,w |= A for
every A Œ S; and M |= S if M |= A for every A Œ S.

One often finds the word ‘world’ (or ‘possible world’) being used for the entities in W;
this use derives from our intended alethic reading of the modal language. The machin-
ery of frames, models, and truth which we have defined is essentially an attempt to
capture – by mathematical means – the view (often attributed to Leibniz) that necessity
means truth in all possible worlds, and that possibility means truth in some possible world.

The truth definition stipulates that ‡ and � check for truth not at all possible worlds
(that is, at all elements of W) but only at R-accessible possible worlds. This may seem
a weakness of the truth definition – but in fact, it is its greatest source of strength.
Varying R is a mechanism which gives us a firm mathematical grip on the pre-
theoretical notion of access between possible worlds. For example, by stipulating that
R = W ¥ W we can allow all worlds access to each other; this corresponds to the
Leibnizian idea in its purest form. Going to the other extreme, we might stipulate that
no world has access to any other. Between these extremes there is a wide range of
options to explore. Should interworld access be reflexive? Should it be transitive? What
impact do these choices have on the notions of necessity and possibility? For example,
if we demand symmetry, does this justify certain principles, or rule others out?

Another philosophical issue concerns the ontological status of the states in possible
worlds models. Do possible worlds exist? If they exist, are they concrete or abstract enti-
ties? Lewis (1986) has been widely criticized for his concretist possible worlds realism;
a well-known defender of the existence of abstract possible worlds is Plantinga (1974).
Possible worlds anti-realists like Chihara (1998) try to explain away metaphysical com-
mitments of quantification over possible worlds in the metalanguage of modal logic. It
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seems fair to say that normally modal logicians do not feel hampered in their work by
these ontological disputes.

Recall that models are composite entities consisting of a frame (our ontology) and
contingent information (the valuation). We often want to ignore the effects of the val-
uation and get a grip on the more fundamental level of frames. The concept of validity
lets us do this.

DEFINITION 2 A formula A is valid at a state w in a frame F (notation: F,w |= A) if A is
true at w in every model (F,V) based on F; A is valid in a frame F (notation: F |= A) if it
is valid at every state in F.

For instance, �(A … B) … (�A … �B) is valid on all frames. In contrast, ‡‡p … ‡p is not
valid on all frames, while it is valid on all transitive frames.

What does logical consequence mean for modal languages? Just like we have local and
global notions of truth and validity, we have two consequence relations for modal for-
mulas. A piece of terminology: if S is a class of models, then a model from S is simply a
model M in S; if S is a class of frames, then a model from S is a model based on a frame
in S.

DEFINITION 3 Let S be a class of models or a class of frames. Let S and A be a set of
modal formula and a single formula. We say that A is a (local) semantic consequence of
S over S (notation: S |=S A) if for all models M from S, and all states w in M, if M,w |=
S, then M,w |= A.

As an example, suppose that we are working with Tran, the class of frames (W,R) in
which R is a transitive relation. Then {‡‡p} |=Tran ‡p, but ‡p is not a local consequence
of {‡‡p} over the class of all frames.

DEFINITION 4 Let A, S and S be as in Definition 3. Then A is a global semantic consequence
of S over S (notation: S |=g

S A) if for all structures (i.e. models or frames) S in S, if S |= S
then S |= A.

The local and global notions are different, yet there is a systematic connection between
them. One can show that, for S a set of formulas and F a class of frames, S |=g

F A is equiv-
alent to {�nB | B Œ S, n Œ w} |=F A.
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Table 28.1 Some axioms

Name Formula

D �p … ‡p
T �p … p
B p … �‡p
4 �p … ��p
5 ‡A … �‡A



Completeness

During the first years after the arrival of possible worlds semantics, the topic of
axiomatic completeness formed the bridge linking the new era with the previous syntac-
tic era. The core notion here is that of a normal modal logic, which is simply a set of for-
mulas satisfying certain syntactic conditions. The system K (after Kripke) is the minimal
(or ‘weakest’) system for reasoning about frames; stronger systems are obtained by
adding extra axioms.

A normal modal logic L is a set of formulas that contains all tautologies, �(p … q) …
(�p … �q), and ‡p ∫ ÿ�ÿp, and that is closed under the following three rules

1 Modus ponens: given A and A … B, prove B.
2 Uniform substitution: given A, prove C, where C is obtained from A by uniformly

replacing proposition letters in A by arbitrary formulas.
3 Generalization: given A, prove �A.

We write �L A to denote that A Œ L. If G » {A} is a set of formulas, then A is L-deducible
from G if either �L A or there are formulas B1, . . . , Bn Œ G such that �L (B1 Ÿ . . . Ÿ Bn)
… A. We call the smallest normal modal logic K, and a formula A is K-provable if �K A.
K is the minimal modal logic in the following sense: its axioms are all valid on all frames,
and all three rules of inference preserve validity, hence all K-provable formulas are
valid.

For many purposes K is too weak. For instance, if we are interested in transitive
frames, we would like a proof system which reflects this. For example, we know that
‡‡p … ‡p (or equivalently �p … ��p) is valid on Tran, the class of all transitive frames,
so we want a proof system that generates this formula. K does not do this, for ‡‡p … ‡p
is not valid on all frames.

We can extend K to cope with many such semantic restrictions by adding extra
axioms. Given a set of formulas G, we can add them as extra axioms to K, thus forming
the axiom system KG. Table 28.1 contains some familiar axioms with their traditional
names.

There is a precise sense in which K and its extensions KG capture frame classes. A
normal modal logic L is sound with respect to a class of frames F if for all formulas A,
�L A implies F |= A for any F Œ F. L is strongly complete with respect to F if for any set
of formula G » {A}, if G |=F A then G �F A. L is (weakly) complete with respect to F if for
any formula A, if F |= A, then �L A. Table 28.2 lists a number of well-known modal logics
together with classes of frames for which they are sound and strongly complete.

One of the most powerful methods for proving (strong) completeness results is based
on canonical models. Given a normal logic L, one proves its strong completeness with
respect to a class of frames F by showing that every L-consistent set of formulas can
be satisfied in a model based on a frame in F. The canonical model method builds this
model out of maximal L-consistent sets of formulas and uses L’s axioms to show that
the underlying frame is in F. More precisely, a set G is maximal L-consistent if it is 
L-consistent (i.e. G �/L ^) and any set of formulas properly containing G is not L-
consistent. By Lindenbaum’s Lemma, any L-consistent set can be extended to a
maximal consistent one. The set of maximal consistent sets forms the domain of a
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canonical model; the accessibility relation R in the canonical model is defined by wRv
if for all formulas A, A Œ v implies ‡A Œ w. Finally, the valuation V of the canonical
model is defined by V( p) = {w|p Œ w}.

Throughout the 1960s canonical models were the key tools used to analyze modal
logics. They seem to have first been used by Makinson (1966) and Cresswell (1967),
and in Lemmon and Scott (1977) (originally written in the mid-1960s) they appear
fully-fledged in the form that has become standard. For a long time it was thought that
every normal modal logic was complete with respect to some class of frames, and that
the canonical model method could be used to prove this. The matter was resolved in
1974, when Fine (1974) and Thomason (1974) published examples of incomplete
normal modal logics. We refer the reader to Chagrov and Zakharyaschev (1997) for a
modern perspective and state-of-the-art account of the canonical model method.

Measuring expressive power

After the discovery of the incompleteness result, and because of an increase in interest
from other disciplines to use modal logic as a description language for describing, for
example process graphs or syntactic structures, attention shifted in part to expressive
power. If we are using modal logic as a description language for talking about relational
structures, which properties can we express? Which properties escape our description
language? How can we overcome such limitations?

Before we can start answering such questions, we need to make a few things clear.
First of all, recall that there are two levels at which we can use modal languages as
description languages: the level of models and the level of frames, hence, the questions
above can also be posed at two levels. Second, to be able to specify properties of models
or frames that a modal language may or not may be able to express, we need some kind
of ‘background language.’ For modal languages as languages for describing models we
use a language of first-order logic which has unary predicate symbols P0, P1, P2, . . .
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Table 28.2 Some logics and their associated accessibility
conditions

Logic Conditions on accessibility

K none
KD seriality ("x$y xRy)
KT reflexivity
KB symmetry
KDB seriality, symmetry
KTB reflexivity, symmetry
K4 transitivity
K5 Euclidicity ("x"y"z

((xRy Ÿ xRz) … yRz)
KD4 seriality, transitivity
S4 (= KT4) reflexivity, transitivity
S5 (= KTB4 = KT5) universal



corresponding to the proposition letters in our modal language, as well as a single
binary predicate symbol R.

How are this background language and the modal language defined at the begin-
ning of this chapter related? Both can be used to talk about models of the kind used in
Definition 1. For the modal language we already know this, while the only things we
need to interpret the first-order language are a binary relation to interpret R (but the
models of Definition 1 have that) and unary predicates to interpret P0, P1, P2, . . . (and,
again, our models provide those, through the valuation). The modal truth definition
provides the bridge between the two languages. To see this, let x be a first-order vari-
able. The standard translation STx taking modal formulas to first-order formulas is defined
as follows:

STx(P) = Px,
STx(ÿf) = ÿSTx(f),
STx(f ⁄ y) = STx(f) ⁄ STx(y),
STx(�f) = "y (xRy … STy (f)),

where y is a fresh variable (that is, a variable that has not been used so far in the trans-
lation). Note that the standard translation is nothing but a transcription of the modal
truth definition in first-order logic.

As an example, STx(‡�p … p) is $y (xRy Ÿ "z (yRz … Pz)) … P(x).

PROPOSITION 1 On models, modal formulas are equivalent to their standard
translations. More precisely, let A be a modal formula. Then:

1. For all models M and states w of M: M,w |= A iff M |= STx(A)[w].
2. For all models M, M |= A iff M |= "x STx(A).

(For a first-order formula A(x), the expression M |= A(x)[w] means that A(x) is true in
M under the assignment of w to the free variable x in A(x).)

Proposition 1 may be interpreted as saying that, on models, the modal language is
nothing but a fragment of the first-order language that we have specified above. But
which fragment? The key notion required to answer this question is that of a bisimula-
tion, introduced by van Benthem (1976, 1983) in the course of his work on definabil-
ity and expressive power of modal logics.

Let M = (W,R,V ) and M¢ = (W¢,R¢,V¢) be two models. A nonempty binary relation 
Z Õ W ¥ W¢ is called a bisimulation between M and M¢ if the following conditions are
satisfied:

1. If wZw¢ then w and w¢ satisfy the same proposition letters.
2. If wZw¢ and wRv, then there exists v¢ (in M¢) such that vZv¢ and w¢R¢v¢ (the forth

condition).
3. The converse of 2: if wZw¢ and w¢R¢v¢, then there exists v (in M) such that vZv¢ and

wRv (the back condition).

Two states w and w¢ that are linked by a bisimulation are called bisimilar.
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PROPOSITION 2 Modal formulas cannot distinguish between bisimilar states. That is, for
all models M and the M¢ and all states w of M and w¢ of M¢, if there is a bisimulation
Z relating w to w¢, then M,w |= A iff M¢,w¢ |= A, for all modal formulas A.

What does Proposition 2 mean for our discussion on expressive power? By the proposi-
tion, if some property X is true of a state w and false of some w¢ that is bisimilar to it,
then X cannot be expressed by means of a modal formula. Let us make this more con-
crete: consider the models M and M¢ shown in figure 28.1. There exists a bisimulation
between the models; it is given by the following relation Z: Z = {(1,a), (2,b), (2,c), (3,d ),
(4,e), (5,e)}. Condition 1 of the definition of a bisimulation is obviously satisfied: Z-
related states make the same propositional letters true. Moreover, the back and forth
conditions are satisfied too: any move in M can be matched by a similar move in M¢,
and conversely.

There are some obvious differences between, for instance, the state 3 in M and the
state d in M¢, despite the fact that they are bisimilar. For instance, the property $y$z
(xRy Ÿ xRz Ÿ y π z Ÿ P(y) Ÿ P(z)) is true of 3 in M but not of d in M¢. Hence, by
Proposition 2, this property is not expressible by a modal formula.

But we can get more out of bisimulations. By a famous result due to van Benthem,
the inability to distinguish between bisimilar states is characteristic of the modal 
fragment:

THEOREM 1 (VAN BENTHEM CHARACTERIZATION THEOREM) Let A(x) be a first-order formula
(over a vocabulary consisting of R, P0, P1, P2, . . .). Then A(x) is equivalent to the
standard translation of a modal formula iff it cannot distinguish between bisimilar
states.

The above result was first proved by van Benthem (1976) in his PhD thesis; (see also
van Benthem 1983). Analogous bisimulation-based characterizations have since been
given for a wide variety of modal and modal-like languages; consult Blackburn et al.
(2001) for an overview.

We now turn to a brief discussion of the expressive power of the modal language as
a language for talking about frames. We start by explaining why frame definability is
intrinsically second-order, and give examples of frame classes that are modally defin-
able but not first-order definable. Recall that validity is defined as quantifying over all
states of the domain of a frame and over all possible valuations. But a valuation assigns
a subset of a frame to each proposition letter, and this means that when we quantify
across all valuations, we are implicitly quantifying across all subsets of the frame. We
can make this more precise in the following manner: we saw that at the level of models,
the modal language can be translated in a truth-preserving way into a first-order lan-
guage – but we can view the predicate symbols P0, P1, P2, . . . that correspond to the
proposition letters p0, p1, p2, . . . as monadic second-order variables that we can quan-
tify over. If we do this, we are in effect viewing the standard translation as a way of
translating into a second-order language with a binary relation symbol, and monadic
predicate variables P0, P1, P2, . . . This leads to the following result:

PROPOSITION 3 Let A be a modal formula. Then the following holds for any frame F and
any state w of F:
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1. F,w |= A iff F |= "P1 . . . "Pn STx(A)[w]
2. F |= A iff F |= "P1 . . . "Pn STx(A)

As a concrete example, it can be shown that a formula as simple as the McKinsey
formula ‡�p … �‡p is essentially a second-order formula when interpreted on frames:
there is an uncountable frame F on which the McKinsey formula is valid, while it is
invalid on each of Fs countable elementary subframes, thus showing that the McKinsey
formula violates the downward Löwenheim–Skolem Theorem, one of the essential
model-theoretic properties of first-order logic.

There are many modal formulas that define first-order conditions on frames. Tables
28.1 and 28.2 provide examples. Given that we have just seen that frame definability
is a second-order notion, this is a surprising result. It turns out that in many cases the
(often difficult to decipher) second-order condition produced by second-order transla-
tion is equivalent to a much simpler first-order condition. There exists an algorithm,
called the Sahlqvist–van Benthem algorithm, that computes a corresponding first-order
condition for a large class of modal formulas; this is the celebrated Sahlqvist Cor-
respondence Theorem.

To be able to define the class of formulas for which the Sahlqvist–van Benthem algo-
rithm works, we need the following shorthand: a boxed atom is a formula of the form
� . . . �p; in the case where the number of boxes preceding p is 0, the boxed atom �
. . . �p is just the proposition letter p. Next, a negative formula is one in which all occur-
rences of proposition letters are in the scope of an odd number of negation signs.
Furthermore, a Sahlqvist antecedent is a formula built up from �, ^, boxed atoms, and
negative formulas, using Ÿ, ⁄ and ‡. A Sahlqvist implication is an implication A … B in
which B is positive and A is a Sahlqvist antecedent. Finally, then, a Sahlqvist formula is
a formula that is built up from Sahlqvist implications by freely applying boxes and con-
junctions, and by applying disjunctions only between formulas that do not share any
proposition letters.

Examples of Sahlqvist formulas include �(p … ‡p), and the axioms D, T, B, 4, and 5
from table 28.1. Typically forbidden combinations in Sahlqvist antecedents are ‘boxes
over disjunctions,’ and ‘boxes over diamonds,’ as illustrated by the McKinsey formula.

THEOREM 2 (Sahqlvist Correspondence Theorem) Let A be a Sahlqvist formula. Then,
on frames, A is equivalent to a first-order condition CA(x) that is effectively computable
from A.
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The key idea underlying the proof of the above result is the following: strip off the initial
block of monadic second-order universal quantifiers in "P1 . . . "Pn STx(A), thus reduc-
ing it to a first-order formula. The obvious way of getting rid of universal quantifiers 
is to perform universal instantiation, but the key point underlying the proof of the
Sahqlvist Correspondence Theorem is that, in the case of Sahlqvist formulas, instanti-
ations can be chosen in such a way that the resulting first-order formula is equivalent
to (and not just implied by) the original second-order formula.

To illustrate the point, consider the Sahlqvist formula (p Ÿ ‡ÿp) … ‡p. Its second-order
translation is

"P (Px Ÿ $y (Rxy Ÿ ÿPy) … $z (Rxz Ÿ Pz)).

Pulling out the existential quantifier produces

"P"y (Px Ÿ Rxy Ÿ ÿPy … $z (Rxz Ÿ Pz)),

and moving the negative part ÿPy to the consequent we get

"P"y (Px Ÿ Rxy … Py ⁄ $z (Rxz Ÿ Pz)). (1)

The minimal instantiation to make Px true is one that assigns P to an object u iff u =
x. After instantiation we obtain

"y (Rxy … y = x ⁄ $z (Rxz Ÿ z = x)),

and it can be shown that this is actually equivalent to (1). The latter can of course be
simplified to "y (Rxy Ÿ x π y … Rxx).

The Sahlqvist Correspondence Theorem comes together with a Sahlqvist Com-
pleteness Theorem: not only does every Sahlqvist formula correspond to a first-order
property of frames, but when we use one as an axiom in a normal modal logic, that
logic is guaranteed to be complete with respect to the class of frames defined by the first-
order property! Moreover, the completeness result can be proved using the canonical
model method; see Blackburn et al. (2001) for details.

To conclude our discussion of Sahlqvist formulas, we want to mention a result due
to Kracht (1993, 1999), who has isolated the first-order formulas that are the corre-
spondents of Sahlqvist formulas, as an application of his so-called calculus of internal
describability. Unfortunately, the details are too technical to be included here; see also
Blackburn et al. (2001).

While Kracht’s result gives us insight into the first-order frame properties definable
by means of Sahlqvist formulas, it does not provide us with a complete description of
the modally definable properties. For this, we have to turn to the Goldblatt–Thomason
Theorem. The result characterizes the expressive power of modal languages on frames
in terms of four fundamental frame constructions: disjoint unions, generated subframes,
bounded morphic images, and ultrafilter extensions. Here, the disjoint union F of two
frames F1 and F2 simply has the disjoint union of the domains of F1 and F2 as its
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domain, while its relation is the disjoint union of the relations for F1 and F2. Moreover,
F1 = (W1, R1) is a generated subframe of F2 = (W2, R2) if W1 is a subset of W2 that is
closed under the addition of R2-related states, while R1 is simply the restriction of R2 to
W1. A bounded morphism is nothing but a functional version of our earlier notion of
bisimulation, adapted to the case of frames. And, finally, the ultrafilter extension of a
frame is a kind of completion of the original frame; they are built by using the ultrafil-
ters over a given frame as the states of a new frame, and defining an appropriate rela-
tion between them; see Blackburn et al. (2001) for formal and informal explanations.

THEOREM 3 (GOLDBLATT–THOMASON THEOREM) Let k be a class of frames that is defined
by a first-order sentence. That is, let k be such that for some first-order sentence A, we
have that, for all frames F, F Œ k iff F satisfies A. Then k is definable by means of a
modal formula iff it is closed under bounded morphic images, generated subframes,
disjoint unions while it reflects ultrafilter extensions in the sense that F Œ k whenever
the ultrafilter extension of F is in k.

The Goldblatt–Thomason Theorem was actually proved by Goldblatt. His original 
result was stronger than the one we have given, applying to any frame class that is
closed under elementary equivalence; this result was published in a joint paper with 
S. K. Thomason (1974).

3 Proof Theory

Although modern alethic modal logic started as a syntactic enterprise, its proof theory
was somewhat neglected after the advent of possible worlds semantics. An exception is
the development of semantic tableau calculi for modal logic. Tableau proof systems
amount to rules for the construction of countermodels and take into account the rela-
tional patterns of possible worlds models. We will first consider semantic tableaux and
then ‘display logic’, a generalization of Gentzen’s sequent calculus based on the idea of
residuation and Galois connection.

Tableau calculi

Tableau calculi incorporating the accessibility relation of possible worlds models were
first introduced by Kripke (1963) and were later ‘linearized’ by various authors, notably
Fitting (1983, 1993) and Mints (1992). The basic declarative unit of these calculi is
not just a formula A, but rather a formula plus label (s, A). In general, the label s is a
nonempty finite sequence of positive integers. A simplification is possible for S5. Since
S5 is characterized by the class of all frames with a universal accessibility relation R,
R can be neglected, and the label s may just be a single positive integer. A comprehen-
sive survey on tableau methods for modal and tense logics is Goré (1999). The use of
labels allows one to formulate tableau calculi for certain extensions of the minimal
normal modal logic K by imposing constraints on accessibility and on occurrences and
the shape of labels on tableau branches.
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A Gentzen sequent is an expression D Æ G, where D and G are finite sets of formu-
las, and D Æ G is to be understood as the claim that Ÿ D … ⁄ G is provable. In (exten-
sions of) classical logic, the latter formula is valid iff the set {A | A Œ D} » {ÿB | B Œ
G} fails to be satisfiable. Rules for manipulating the sequent D Æ G can therefore also
be stated as rules for manipulating the finite set {A | A Œ D} » {ÿB | B Œ G}. Although
tableau calculi are often presented using the set notation, we here prefer a sequent nota-
tion. We will use bold letters X, Y, Z (possibly with primes or subscripts) to denote arbi-
trary finite sets of labeled formulas. A sequent is an expression of the form X Æ Y, where
X is called the antecedent and Y is called the succedent of this sequent. We use s, s1, s2,
. . . to denote sequents and the ‘turnstile’ � to denote derivability between single
sequents and finite sets of sequents.

Tableau calculi are given by (finite) sets of derivation rules of the form s � s1, . . . , sn.
A tableau for a given sequent s is a tree of sequents rooted in s, such that every node of
the tree is an instantiation of one of the derivation rules of the tableau calculus under
consideration. A tableau for s is closed if every leaf of any branch of the tableau has the
form (s, B) Æ (s, B). We assume a binary relation of ‘accessibility’ between labels. This
relation may satisfy certain conditions, and a number of such conditions is defined in
table 28.3.

The logic K and various extensions of it that can be dealt with by means of labeled
tableaux, require certain properties of accessibility between labels. Table 28.4 lists such
systems together with the required properties of accessibility between labels. A label t
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Table 28.3 Conditions on accessibility

Name of condition Definition

general for every n, sn is accessible from s
symmetry for every n, s is accessible from sn
reflexivity s is accessible from s
transitivity if s is a proper initial segment of t, 

then t is accessible from s
universal any label is accessible from any label

Table 28.4 Some logics and their associated label
accessibility conditions

Logic Conditions on accessibility

K, KD general
KT general, reflexivity
KB, KDB general, symmetry
KTB general, reflexivity, symmetry
K4, KD4 general, transitivity
S4 (= KT4) general, reflexivity, transitivity
S5 (= KTB4) universal



occurring on a tableau branch is said to be a simple, unrestricted extension of a label s
iff (1) t is the result of extending s on the right with a single positive integer and (2) t
is not an initial segment of any label occurring on the branch. The label t is available
on a branch if it occurs on that branch. Right and left introduction rules for � can now
be stated in such a way that variations among the systems listed in table 28.4 can be
accounted for by side conditions on the left rule (cf. Fitting 1993: 402). These rules are
stated in table 28.5 together with the tableau rules for disjunction and negation.

For every logic L from table 28.4, let TL be its tableau calculus. Here is an example
(1) of a closed tableau for f Æ (1, ÿ�A ⁄ ��A) in T K4 and an example (2) of a closed
tableau for f Æ (1, ÿA ⁄ �ÿ�ÿA) in T KB.

(1) f Æ (1, ÿ�A ⁄ ��A) (2) f Æ (1, ÿA ⁄ �ÿ�ÿA)
f Æ (1, ÿ�A), (1, ��A) f Æ (1, ÿA), (1, �ÿ�ÿA)
(1, �A) Æ (1, ��A) (1, A) Æ (1, �ÿ�ÿA)
(1, �A) Æ (·1, 2Ò, �A) (1, A) Æ (·1, 2Ò, ÿ�ÿA)
(1, �A) Æ (·1, 2, 3Ò, A) (1, A), (·1, 2Ò, �ÿA) Æ f
(·1,2, 3,Ò, A) Æ (·1, 2, 3Ò, A) (1, A), (1, ÿA) Æ f

(1, A) Æ (1, A)

THEOREM 4 A modal formula A is a theorem of a logic L from table 28.4 iff there is a
closed tableau for f Æ (1, A) in TL.

Display calculi

The display calculus (Belnap 1992) is a generalization of Gentzen’s sequent calculus.
We will present display logic only to the extent needed to treat normal modal logics. A
more comprehensive presentation of display logic and its application to modal and non-
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Table 28.5 Tableau rules

Name Rule

L⁄ X, (s, A ⁄ B) Æ Y � X, (s, A) Æ Y X, (s, B) Æ Y
R⁄ X Æ (s, A ⁄ B), Y � X Æ (s, A), (s, B), Y

Lÿ X, (s, ÿA) Æ Y � X Æ (s, A), Y
Rÿ X Æ (s, ÿA), Y � X, (s, A) Æ Y

L� X, (s, �A) Æ Y � X, (t, A) Æ Y
for any t accessible from s provided
(i) for K, KB, and K4, t must be available on the branch;

(ii) for KD, KT, KDB, KTB, KD4, S4, and S5,
t must either be available on the branch
or be a simple, unrestricted extension of s

R� X Æ (s, �A), Y � X Æ (t, A), Y
provided t is a simple, unrestricted extension of s



classical logics can be found in Belnap (1982, 1990), Goré (1998), Kracht (1996),
Restall (1998) and Wansing (1998). The modal display calculus is based on the obser-
vation that the operators � (‘sometimes in the past,’ i.e. the possibility operator with
respect to the inverse R˘ of the accessibility relation R) and � form a residuated pair.
The following definition is taken from Dunn (1990: 32):

DEFINITION 5 Let A = (A, £) and B = (B, £¢) be partially ordered sets with functions f:
A Æ B and g: B Æ A. The pair ( f,g) is called

• residuated iff ( fa £¢ b iff a £ gb);
• a Galois connection iff (b £¢ fa iff a £ gb);
• a dual Galois connection iff ( fa £¢ b iff gb £ a);
• a dual residuated pair iff (b £¢ fa iff gb £ a).

Obviously, (�,�) forms a residuated pair with respect to the (local) semantic conse-
quence relation |= with respect to classes of Kripke frames. These ideas of residuation
and Galois connection can be generalized, but for our purposes we have all we need to
formulate introduction sequent rules for the modal operators. The polyvalent comma
as a structure connective in Gentzen’s sequent calculus is replaced by a number of
structure connectives: I (nullary), * (unary), • (unary), � (binary). Every formula A is a
structure, and we will use X, Y, and Z as variables for structures. The structures are
defined by:

X ::= A | I |*X | •X | X � Y.

A display sequent is an expression X Æ Y; X is called the antecedent and Y the succedent
of X Æ Y. The intended meaning of the structure connectives can be made explicit by
a translation t (X Æ Y) := t1 (X) … t2(Y) of sequents into formulas, where ti(A) = A (i =
1,2), and:

t1(I) = � t2(I) = ^
t1(*X) = ÿ t2(X) t2(*X) = ÿ t1(X)
t1(•X) = �t1(X) t2(•X) = � t2(X)
t1(X � Y) = t1(X) Ÿ t1(Y) t2(X � Y) = t2(X) ⁄ t2(Y).

Under the t-translation, the following basic structural rules are valid in every normal
modal logic:

(1) X � Y Æ Z�� X Æ Z � *Y�� Y Æ *X � Z
(2) X Æ Y � Z�� X � *Z Æ Y�� *Y � X Æ Z
(3) X Æ Y�� *Y Æ *X�� X Æ **Y
(4) X Æ • Y�� • X Æ Y.

Here, X1 Æ Y1�� X2 Æ Y2 is an abbreviation of X1 Æ Y1 � X2 Æ Y2 and X2 Æ Y2 � X1

Æ Y1. If two sequents are interderivable by means of (1)–(4), they are said to be struc-
turally or display equivalent. The name ‘display logic’ is due to the fact that any sub-
structure of a given display sequent s may be displayed as the entire antecedent or
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succedent of a structurally equivalent sequent s¢. In order to state this fact precisely, we
define the notion of antecedent and succedent part of a sequent. An occurrence of a
substructure in a given structure is called positive (negative), if it is in the scope of an
even (odd) number of *’s. An antecedent (succedent) part of a sequent X Æ Y is a 
positive occurrence of a substructure of X or a negative occurrence of a substructure
of Y (a negative occurrence of a substructure of X or a positive occurrence of a 
substructure of Y).

THEOREM 5 (DISPLAY THEOREM, Belnap 1982) For every display sequent s and every
antecedent (succedent) part X of s there exists a display sequent s¢ structurally
equivalent to s such that X is the entire antecedent (succedent) of s¢.

The structure connectives *, I and � give rise to introduction rules for the Boolean con-
nectives, and • permits formulating introduction rules for �. These introduction rules
are presented in table 28.6. Table 28.7 collects further structural rules that together
with the introduction rules ensure the classical and normal modal behavior of the
logical operations. A richer inventory of structural rules (and another choice of struc-
ture connectives) is called for in display calculi for substructural logics, see Goré (1998).
In addition to structural rules and introduction rules, every display calculus contains
two distinguished logical (structural) rules, namely identity for atoms and cut:

(identity) � p Æ p
(cut) X Æ A, A Æ Y � X Æ Y
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Table 28.6 Introduction rules for the logical operations

Name Rule

(Æ ÿ) X Æ *A � X Æ ÿA
(ÿ Æ) *A Æ X � ÿA Æ X
(Æ ⁄) X Æ A ∞ B � X Æ A ⁄ B
(⁄ Æ) A Æ X B Æ Y � A ⁄ B Æ X ∞ Y
(Æ �) •X Æ A � X Æ �A
(� Æ) A Æ X � �A Æ •X

Table 28.7 Additional structural rules

Name Rule

(I) X Æ Z �� I ∞ X Æ Z, X Æ Z �� X Æ I ∞ Z
(A) X1 ∞ (X2 ∞ X3) Æ Z �� (X1 ∞ X2) ∞ X3 Æ Z
(P) X1 ∞ X2 Æ Z � X2 ∞ X1 Æ Z
(C) X ∞ X Æ Z � X Æ Z
(M) X Æ Z � X ∞ Y Æ Z
(MN) I Æ X � •I Æ X



It can be shown by induction on formulas A that � A Æ A. The display calculus DK
consists of (id), (cut), the basic and additional structural rules and the introduction
rules for ÿ, ⁄, and �. As an example, figure 28.2 depicts a cut-free derivation of � (ÿA
⁄ B) Æ ÿ�A ⁄ �B, where (bs) indicates the repeated application of some basic struc-
tural rules.

Using induction on the complexity of X, it can be shown that in every extension of
DK by structural rules, � X Æ t1 (X) and � t2 (X) Æ X. This observation is used in the
proof of the characterization theorem.

THEOREM 6 In DK, � X Æ Y iff t1 (X) … t2 (Y) is provable in K.

A display sequent system is said to be a proper display calculus, if it satisfies certain con-
ditions C1–C8 first stated by Belnap (1982). A logic is said to be properly displayable, if
it can be presented as a proper display calculus. Every proper display calculus enjoys
cut-elimination (Belnap 1982) and even strong cut-elimination (Wansing 2002). In
this case, strong cut-elimination means that there is a set of reduction steps for turning
a given sequent proof into a cut-free proof of the same sequent such that – modulo
certain mild restrictions – every sufficiently long sequence of applications of these reduc-
tion steps to a proof P will return a cut-free proof P¢ of the same sequent. The class 
of all properly displayable extensions of the smallest normal temporal logic has been
characterized by Kracht (1996).

Here we will just consider display calculi for extensions of K by the familiar and
important axiom schemata D, T, 4, B and 5 that correspond to the seriality, reflexivity,
transitivity, symmetry, and Euclidicity, respectively, of the accessibility relation R. It
turns out that these axiom schemata can be captured by the purely structural rules
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Figure 28.2 A derivation in DK



stated in table 28.8. Let q Õ {D, T, 4, B, 5} , = {a¢ | a Œ q}. Let Kq be the result of
adding the axiom schemata from q to K, and let DKq¢ be the result of adding the struc-
tural rules from q¢ to DK.

THEOREM 7 In DKq, � X Æ Y iff t1 (X) … t2 (Y) is provable in Kq¢.

4 Modal Predicate Logic

While propositional modal logic has become a highly developed discipline with a broad
spectrum of choices as regards expressive power and reasoning methods, in some cases
the added modeling power of modal predicate logic is called for. Below we briefly discuss
some of the philosophical and mathematical issues involved with this choice.

In modal predicate logic there are various junctions where metaphysics, philosophy
of language and formal logic meet. Let F = (W, R) be a frame. If to every state s Œ W a
domain D = d(w) is associated, there are at least the following, well-known options:

1. ("s ŒW), d(s) π f; (varying domains);
2. ("s, t ŒW), d(s) π f and if sRt, then d(s) Õ d(t) (increasing domains);
3. ("s, t ŒW), d(s) π f and d(s) = d(t) (constant domains).

Is every individual present in every state? What are the effects a state transition can
have on a domain? It seems natural to assume that if sRt, individuals not already
present in s may appear in t or individuals present in s may disappear in t. With a fixed
set of individual constants, the assumptions of varying and increasing domains permit
non-designating ground (that is, variable-free) terms. In addition to the semantical
problem of interpreting non-designating ground terms and formulas containing such
terms, the metaphysical question arises, whether an individual may or not possess 
properties in a state where the individual does not exist. The assumption of constant
domains corresponds to the validity of the Barcan formula "x�A … �"xA and the
assumption of increasing domains corresponds to the validity of the converse Barcan
formula �"xA … "x�A. We refer to the recent Fitting and Mendelsohn (1998) for an
overview of discussions of these and related matters.

q
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Table 28.8 Axiom schemata and corresponding structural
rules

Schema Structural rule

D * • *I Æ Y � I Æ Y
T X Æ •Y � X Æ Y
4 X Æ •Y � X Æ • • Y
B * • *(X ∞ * • *Y) Æ Z � Y ∞ * • *X Æ Z
5 * • *X Æ Y � • * • * X Æ Y



There is a whole web of mathematical questions related to the Barcan formula and
its variations. As to proof-theoretical aspects, the standard ordinary sequent calculus
for K uses Gentzen sequents D Æ G and comprises just one introduction rule for �,
namely

D Æ A � {�B | B Œ D} Æ �A

If this calculus is enlarged by the familiar introduction rules for the universal quanti-
fier, the Barcan formula and its converse are derivable. This fact supports the idea that
modal logic requires a generalized notion of sequent.

It has often been observed that � is a universal quantifier over possible worlds in the
metalanguage of modal logic. In display logic, a universal quantifier prefix "x can be
treated like the necessity operator, by associating with "x a structure operation •x and
a binary relation Rx such that in succedent position •xA is interpreted as "xA and in
antecedent position as $x˘, the ‘possibility’ operator with respect to the converse rela-
tion Rx˘ of Rx. The Barcan formula and its converse then correspond to additional struc-
tural rules, for details see Wansing (1998):

X Æ •x • Y � X Æ ••x Y; X Æ ••xY � X Æ •x •Y.

Tableaux calculi for modal predicate logics with and without the Barcan formula can
be found in Mayer and Cerrito (2000).

Just like the identity of individuals gives rise to many philosophical questions in
modal predicate logic, it also gives rise to many deep mathematical questions. As a
result, various alternative semantic frameworks were developed for modal predicate
logic during the 1990s, including the Kripke bundles of Shehtman and Skvortsov
(1990) and the category-theoretic semantics proposed by Ghilardi (1991).

The notion of (axiomatic) completeness is another source of interesting mathemat-
ical questions in modal predicate logic. It turns out that the minimal predicate logical
extension of many well-behaved and complete propositional modal logics need not be
complete. The main (negative) result in this area is that among the extensions of S4,
propositional modal logics L whose minimal predicate logical extension is complete
must have either L � S5 or L Õ S4.3. This excludes completeness results for predicate
logical extensions for logics such as S4.1 and S4.3Grz. Positive completeness results are
known only for some boundary cases: the predicate logical extensions of S4, S4.2, S4.3,
and S5 and its extensions; see Cresswell (2001) for a recent overview.

Still further mathematical questions come up in the search for algorithmically 
well-behaved fragments of modal predicate logics; very powerful results were recently
obtained by Hodkinson, Wolter, and Zakharyaschev (2000).
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Further Reading

We conclude this chapter with some pointers to the literature on modal logic. First, details on the
history of modern modal logic are available, for instance, in Blackburn et al. (2001); Bull and
Segerberg (1984); Goldblatt (2000); Zakharyashev et al. (2000). Second, there are several survey
papers in recent and not so recent handbooks that can serve as valuable starting points for
further studies; these include Bull and Segerberg (1984). Third, there is a broad range of modern
textbooks on modal logic, ranging from the philosophically oriented: Girle (2000); Hughes and
Cresswell (1996) to the more mathematically inclined: Blackburn et al. (2001); Popkorn (1992).
Finally, the Advances in Modal Logic initiative, with its accompanying workshops, volumes, and
web site at www.aiml.net is a rich source of information.
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Alethic Modal Logics and Semantics

G E R H A R D S C H U R Z

1 Introduction

The first axiomatic development of modal logic was untertaken by C. I. Lewis in 1912.
Being anticipated by H. MacColl in 1880, Lewis tried to cure logic from the ‘paradoxes’
of extensional (i.e. truthfunctional) implication … (cf. Hughes and Cresswell 1968: 215).
He introduced the stronger notion of strict implication <, which can be defined with
help of a necessity operator � (for ‘it is neessary that:’) as follows: A < B iff �(A … B);
in words, A strictly implies B iff A necessarily implies B (A, B, . . . for arbitrary sen-
tences). The new primitive sentential operator � is intensional (non-truthfunctional): the
truth value of A does not determine the truth-value of �A. To demonstrate this it suf-
fices to find two particular sentences p, q which agree in their truth value without that
�p and �q agree in their truth-value. For example, it p = ‘the sun is identical with itself,’
and q = ‘the sun has nine planets,’ then p and q are both true, �p is true, but �q is
false. The dual of the necessity-operator is the possibility operator ‡ (for ‘it is possible
that:’) defined as follows: ‡A iff ÿ�ÿA; in words, A is possible iff A’s negation is not
necessary. Alternatively, one might introduce ‡ as new primitive operator (this was
Lewis’ choice in 1918) and define �A as ÿ‡ÿA and A < B as ÿ‡(A Ÿ ÿB).

Lewis’ work cumulated in Lewis and Langford (1932), where the five axiomatic
systems S1–S5 were introduced. S1–S3 are weaker that the standard systems of § 2.2,
but S4 and S5 coincide with standard S4 and S5 (for details on Lewis’ systems cf.
Hughes and Cresswell 1968: ch. 12; Chellas and Segerberg 1996). Lewis’ pioneer work
was mainly syntactic-axiomatic, except for the modal matrix-semantics (for details in
the ‘algebraic’ tradition, started by Lukasiewicz, cf. Bull and Segerberg 1984: 8ff). The
philosophically central semantics for modal logic is possible world semantics. It goes back
to ideas of Leibniz, was first developed by Carnap and received broadest acceptance
through the later work of Kripke. The actual world, in which we happen to live, is merely
one among a multitude of other possible worlds, each realizing a different but logically
complete collection of facts. The basic idea of possible world semantics as expressed by
Carnap (1947: 9f, 174f ) is:

(1) �A is true in the actual world iff A is true in all possible worlds.
‡A is true in the actual world iff A is true in some possible world.



Thus, the truth valuation of sentences is relativized to possible worlds (or just: worlds).
In order to obtain a recursive definition, the truth of modalized sentences (e.g. �A, ‡A)
must also be determined relative to possible worlds. Let W be a given set of worlds w,
w1 . . . Œ W; then (1) is rephrased as follows:

(1*) �A [or: ‡A] is true in a given w Œ W iff A is true in all [or some, resp.] 
w Œ W

What is the ontological status of possible worlds? Forbes (1985: 74) distinguishes
between three philosophical positions: (1) According to absolute realism, possible worlds
exist and are entities sui generies. Lewis (1973: 84ff ) has defended this position. (2) For
reductive realism, possible worlds exist but can be reduced to more harmless (e.g. 
conceptual or linguistic) entities. (3) For anti-realism, possible worlds don’t exist; so 
possible-world-sentences are either false or meaningless. While (1) and (3) are extreme
positions, some variant of position (2) is the most common view. Kripke (1972: 15), for
example, denies the ‘telescope view’ of worlds and conceives possible worlds as possi-
ble (counterfactual) states or histories of the actual world. (The ‘possible state’ – versus
‘possible history’ – interpretation is a further important choice; cf. Schurz 1997: 40f.)
Those who still regard Kripke’s counterfactual position as too problematic may alter-
natively conceive worlds as metalinguistic entities, namely as interpretation functions of
the object language (this was Kripke’s early view in 1959, whereas in 1963a he intro-
duced W as a set of primitive objects). Even more scrupulous, Carnap (1947: 9) had
identified worlds with object-language entities – his so-called state descriptions. Carnap’s
concept was generalized by Hintikka’s (1961: 57–9) to so-called ‘extended state
descriptions’ which in the terminology of the section below entitled “Axiomatic
Systems: Correctness, Completeness, and Correspondence” are nothing but worlds of
canonical models. In the upshot: possible world semantics does not force one into a par-
ticular metaphysical position.

A logically decisive but rarely discussed question is the determination of the set W
of possible worlds. There are two options:

C-SEMANTICS We identify W with the fixed set WL containing all worlds, or
interpretations, which are logically possible in the given language L. Then � is a
logically constant symbol with a logically fixed interpetation – that of logical necessity. A
(modal or non-modal) sentence is then defined as logically true iff it is true in all worlds
of WL.

K-SEMANTICS Alternatively, we consider W as a varying set of possible worlds, or
interpretations, which need not comprise all logically possible worlds. Then �, though
formally a logical symbol, has an implicitly varying interpretation (similar to " in first-
order logic because of the varying domain; cf. Schurz 1999). For example, if W contains
all logically possible worlds, then � means ‘logically possible,’ while if W contains only
all physically possible worlds, then � means ‘physically possible.’ In this setting, we
count a sentence as logically true only if its truth does not depend on such special
choices of W; thus we consider a (non-modal or modal) sentence as logically true iff it
is true in all worlds w Œ W for all sets of possible worlds W.
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C-semantics is the semantics of Carnap (1946: 34; 1947: 9f, 174f ). It leads to a modal
logic which is called C in Schurz (2000). C is stronger than S5 and exhibits non-
classical features such as failure of closure under substitution (in C, ‡p is a logically true
for every propositional variable p, but ‡(p Ÿ ÿp) is logically false), or axiomatization by
non-monotonic rules (if A is not a C-theorem, then ‡ÿA is a C-theorem; cf. Schurz 2000
and Gottlob 1999). These are largely ignored facts, due to certain confusing historical
peculiarities, for example that Carnap (1946) himself had announced to have obtained
Lewis’ system S5. But this result was based an ad hoc deviation: in his modal proposi-
tional logic, Carnap restricts the logical truths of C to the subclass of those formulas
which are closed under substitution (1946: 40, D4-1) and shows that the so restricted
class of theorems is equivalent to Lewis’ S5. For further details see Hendry 
and Pokriefka (1985) and Schurz (2000), who defends C in spite of its non-classical
features.

K-semantics has been introduced by Kripke (1959, 1963a, 1963b), whose papers
have opened the highway to the modern modal logicians’ industry. As proved by Kripke
(1959), K-semantics leads exactly to the system S5 (similar results were obtained by
Hintikka (1961) and Kanger (1957a), not to forget Prior (1957), the founder of tense
logic). K-semantics leads to modal logics which enjoy all classical properties of logics;
on the cost that standard modal logics do not contain non-trivial possibility theorems
(cf. Schurz 2000, theorems 3 + 4). Apart from this insufficiency, the theorems of S5
are rather strong: for example for every purely modal sentence A (each atomic subfor-
mula of A occurs in the scope of a modal operator), �A ⁄ �ÿA is S5-valid. The crucial
step which utilized K-semantics for weaker systems and added an almost unlimited
semantical flexibility to K-semantics was the introduction of the so-called relation R of
accessibility, or ‘relative possibility,’ between possible worlds, independently by Kanger
(1957a), Hintikka (1961) and Kripke (1963a). Thus, w1Rw2 means that world w2 is
accessible from (or possible with respect to) w1, and the refined modal truth clause goes
as follows:

(2) �A is true in a given w Œ W iff A is true in all w* such that wRw*.
‡A is true in a given w Œ W iff A is true in some w* such that wRw*.

By varying structural conditions on the relation R (e.g. reflexive, transitive, symmetric)
one gets different modal logics, among them the standard systems T, S4, and S5. A
multitude of similar results were produced in the following decades, with outstanding
modal logicians of the ‘2nd generation’ such as Lemmon and Scott, Segerberg or Fine,
to name just a few. While C-semantics was almost completeley neglected, K-semantics
dominated the development of modal logic, whence the remaining sections focus on K-
semantics. Due to K-semantical flexibility, various new philosophical interpretations of
the modal operator have been discovered. For example, in systems weaker than T, the
modal operator may be interpreted as ‘it is obligatory that . . . ,’ which leads to Kripkean
semantics for so-called deontic logics, or as ‘it is believed that. . . . ,’ which brings us into
epistemic logic, etc. (see Gabbay and Guenthner 1984, and ch. XIII of this volume). This
development led to a broader understanding of ‘modal logic’ as the logic of intensional
propositional operators, while the narrow meaning of modal logic as the logic of neces-
sity and possibility is expressed in the specification ‘alethic’ modal logic.
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So far we have discussed only modal propositional logic – from now on: MPL. Many
more difficulties are involved in modal quantificational (or predicate) logic – from now on:
MQL. Here we have, besides W and R, a domain D of individuals (i.e. objects). Here we
have two major choices.

CHOICE 1 Should we assume that singular terms denote the same object in all possible
worlds (rigid designators), or that their reference object varies from world to world (non-
rigid designators)?

CHOICE 2 Should we suppose that every object in D exists necessarily, that is exists in
all possible worlds (constant domain), or should we better admit that some individuals
may exist in one world without existing in another world (varying domains)?

Until today the difficulties connected with these choices have not been completely
solved.

Quine’s famous attack on the reasonableness of ‘de re’ modalities in 1943 started
the well-documented debate on these choices (see Linsky 1971). A formula is called
modally de re (in the ‘strong’ sense) iff an individual constant or variable in A occurs
free in the scope of ‘�’; otherwise it is called de dicto (Fine 1978: 78, 135, 143; Forbes
1985: 48f ). For example, �Fa and $x�Fx are de re, while �$xFx is de dicto. The crucial
semantical property of de re formulas is that their semantic evaluation requires an iden-
tification or correlation of objects across different worlds. For example, $x�Fx says that
in our world there exists an individual which in all possible worlds has property F – in
other words, F is an essential (i.e. necessary) properties of this individual. Hence we
assume that an object of our world – or at least some identifiable correlate of it – exists
in all other possible worlds. In contrast, �$xFx merely asserts that in all possible worlds
some individual exists which has property F; this does not presuppose any correlation
between individuals in different worlds. Thus, the semantical question of fixed versus
varying domains and rigid versus nonrigid designators does not concern de dicto but
only de re sentences.

Quine (1943) has argued that the reference of singular terms depends on contingent
facts, whence modal contexts are opaque: substitution of identicals fails in them. In his
famous example, both ‘�(9 > 7)’ and ‘9 = the number of planets’ are true, but ‘�(the
number of planets > 7)’ is obviously false. Quine concludes that modal de re statements
lack clear meaning. Ruth Barcan-Marcus, who developed Lewis-style MQLs in 1946,
gave a profound defence of MQL against Quine’s attack. In 1960 Barcan-Marcus
emphasized that the failure of substitution of identicals (a = b) … (A[a] ∫ A[b])) in MQLs
does not deprive de re sentences from clear meaning. She also shows that substitution
of necessary identicals (�(a = b) … (A[a] ∫ A[b])) still holds. In (1963), she argued that
the reference of proper names – in contrast to definite descriptions – should indeed be
regarded as the same across all possible worlds. In a modified form, this thesis was
defended by Kripke (1972); he suggested the name ‘rigid designator’ and made it
prominent, especially the connected thesis of necessities aposteriori (a = b … �(a = b); cf.
1972: 35–8).

Apart from Carnap’s early work, the first semantically interpreted MQL-S5 system
was developed by Kripke (1959), who assumes rigid designators and constant domain.
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Rigid designators are axiomatically reflected in the two theorems (ÿ)x = y … �(ÿ)(x =
y). Constant domains gets axiomatically cashed out in the Barcan formula BF: "x�A
… �"xA (introduced by Ruth Barcan 1946). Neither BF nor its converse cBF: �"xA
… "x�A are especially plausible; but varying domains cause drastic difficulties (see
below, “Nonrigid designators, counterpart theory, and worldline semantics”). A 
comparatively simple system based on varying domains and rigid designators was
developed by Kripke (1963b), on the cost of restricting necessitation rule. Hintikka
(1961: 63f ), argues in favor of varying domains and nonrigid designators (see also
Hughes and Cresswell 1968: 190). Later, Lewis (1968) argued that individuals at dif-
ferent worlds can never be identical, but can merely be so-called counterparts of each
other. His important philosophical point is that in order to avoid Quine’s de re skepti-
cism, it is not necessary to assume rigid designators; it suffices to assume the existence
of a counterpart relation. To say that F is an essential property of a (�Fa) means in Lewis’
theory that all counterparts of a in all possible worlds have property F (Lewis 1968:
118). Thus, although Kripke (1972) critizices Lewis, both agree in their essentialism,
that is in their optimistic view about de re modalities.

The metaphysically significant alternative to both Kripke and Lewis is de re 
skepticism. The de re skeptics doubt that identifications or correlations of objects across
possible world are an intelligible concept. Von Wright (1951: 26–8) suggested that in
a satisfying modal logic all de re modalities should be eliminable in favor of de dicto
modalities (see Hughes and Cresswell 1968: 184ff ). This position was reconstructed as
the position of ‘anti-Haecceitism’ by Fine (1978). According to its basic idea, the
naming of individuals in possible worlds rests on purely conventional grounds. Thus,
in an ‘anti-Haecceitist’ possible world model the accessible worlds should be closed
under local isomorphisms w.r.t. their domains of individuals; Fine calls such possible
world models homogeneous (1978: 283). A singular necessity statement �Fa is true in
a world w of a homogeneous model only if its universal closure "x�Fx is true, too. Fine
(1978: 281) proves that the quantificational system S5 + H is complete for the class of
homogeneous possible world models. This system is obtained from S5 by adding all "-
�-closures of axiom H: (Dif(x1, . . . , xn) Ÿ �A) … �"x1 . . . "xn(Dif(x1, . . . , xn) … A),
where Dif(x1, . . . , xn) =df Ÿ {xi π xj: 1 £ i < j £ n} and A’s free variables are among x1,
. . . , xn.

2 Modal Propositional Logics (MPLs)

Language

In what follows, capital Latin A, B . . . will vary over formulas of the object language
and capital Greek G, D, . . . over sets of them. F will always denote a frame and M a
model, F a set of frames and M a set of models, W a possible world set, R the accessi-
bility relation, and V a valuation function. The letters w, u, v will range over possible
worlds (all symbols may also be used in an indexed way). We use all standard symbols
of informal first-order logic and informal set theory, which forms our metalanguage (see
van Dalen et al. 1978); in particular fi is the implication sign of the metalanguage.
Our object language is L, the language of MPL. It contains as nonlogical symbols a
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denumerably infinite set of propositional variables P, and as primitive logical symbols
the truth-functional connectives ÿ (negation), ⁄ (disjunction) and the necessity 
operator �. The other truth-functional connectives Ÿ (conjunction), … (material 
implication), ∫ (material equivalence), T (Verum), ^ (Falsum) and the possibility oper-
ator ‡ are defined as usual (A Ÿ B =df ÿ(ÿA⁄ÿB), A … B =df ÿA ⁄ B, A ∫ B =df (A … B) Ÿ
(B … A), T =df p⁄ÿp, ^ =df pŸÿp, ‡A =df ÿ�ÿA). L is identified the set of its (well-formed)
formulas, that is sentences, which are recursively defined as follows: (1) p Œ P fi p Œ L,
(2) A Œ L fi ÿA Œ L, (3) A, B Œ L fi (A ⁄ B) Œ L, (4) A Œ L fi �A Œ L (nothing else).
P(A) = the set of propositional variables in A.

Possible Worlds Semantics

A frame is a pair F = ·W,RÒ where W π ∆ (a nonempty set of ‘possible worlds’) and R Õ
W ¥ W (the accessibility relation; uRv abbreviates ·u,vÒ Œ R). A model for L is triple M
= ·W,R,VÒ where ·W,RÒ is a frame (we say that M is based on this frame) and V: P Æ
Pow(W) is a valuation function which assigns to each propositional variable p Œ P the
set of worlds V(p) Õ W at which p is true (‘Pow’ for ‘power set’). We also write WF, RF

to indicate that W and R belong to F; and likewise for WM, RM and VM. The assertion
‘formula A is true at world w in model M’ (where w Œ WM) is abbreviated as (M,w) |= A
and recursively defined as follows: (1) (M,w) |= p iff w Œ V(p); (2) (M,w) |= ÿA iff not 
M |= A, and M |= A ⁄ B iff M |= A or M |= B; finally (3) (M,w) |= �A iff for all u Œ W such
that wRu, (M,u) |= A. Sentence A Œ L is defined as valid in model M, in short: M |= A, 
iff A is true at all worlds of M. The set of worlds verifying A in model M is also written
as ||A||M and considered as the proposition expressed by the sentence A in model 
M. Formula A is valid on a frame F, in short F |= A, iff A is valid in all models based 
on F. Formula A is valid w.r.t. (with respect to) a class of models M, in short M |= A, or
w.r.t. a class of frames F, in short F |= A, iff A is valid in all M Œ M, or on all F Œ F,
respectively. Analogously, a formula set G is valid in a model M, M |= G, iff all formulas
in G are valid in M; analogously for validity of G on F, w.r.t. M, and w.r.t. F. A formula
set G Õ L is said to be (simultaneously) satisfiable in a model M (or: w.r.t. a model-class
M) iff all formulas in G are true at some world in M (or: at some world in some M Œ M,
respectively), and G Õ L is (simultaneously) satisfiable on a frame F (or: w.r.t. a frame-
class F ) iff G is satisfiable on some model based on F (or: in some model based on some
F Œ F ).

Logics can be defined in a semantical way (this section) and in an axiomatic-
syntactical way (next section). Let M(F ) denote the class of all models based on some
frame in frame-class F, and call a model class M frame-based iff M = M(F) for some F.
Frame classes are defined by purely structural conditions on R and allow all possible
valuation functions. In contrast, not-frame-based model classes are defined by restric-
tions on the valuation function. A logic, however, should admit all possible valuations
of its nonlogical symbols (see Schurz 1999). Therefore, frame-classes and frame-based
model classes are the philosophically more important means to characterize modal
logics, as compared to not-frame-based model-classes (such as the ‘general frames’ of
cf. ‘More metalogical results on PMLs’ below). Semantically, a MPL L can be defined as
the set of formulas which are valid w.r.t. a given class F of frames: L = L(F ) = {A: F |=
A}; the so-defined L is a ‘normal’ MPL. Formula A is said to be a valid consequence of
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G w.r.t. frame class F, in short G |=F A, iff for all worlds w in all models M based on some
frame in F, (M,w) |= G implies (M,w) |= A. If G |=F A, we also say that the rule G/A (read:
‘G, therefore: A’) is valid w.r.t. frame class F. Validity of a rule means truth-preservation.
It is important to distinguish this from the admissibility of a rule, which means validity-
preservation (Schurz 1994). In first-order logic, for example, Modus Ponens MP: A, A
… B/B is valid (truth-preserving) while Universal Generalization UG: A/"xA is merely
admissible (validity preserving). We call a rule G/A (semantically) admissible w.r.t. frame
class F, in short F-admissible, iff F |= G implies F |= A. A rule is called frame-admissible iff
it preserves validity in every frame, and it is called model-admissible iff it preserves valid-
ity in every model. The reason for our definition of valid consequence (also called local
consequence by van Benthem 1983: 37f ) is that it implies the Deduction Theorem: G, A
|=F B fi G |=F A … B. This theorem does not hold for merely frame-admissible conse-
quences (which correspond to van Benthem’s ‘global’ consequence).

With FK for the class of all (Kripke) frames, the following implication relation holds:
G/A is FK-valid fi G/A is model-admissible fi G/A is frame-admissible fi G/A is FK-
admissible. We first consider the logic K (for Kripke) which is semantically defined as
the set of modal formulas which are FK-valid, K = L(FK). Some terminology: A[B/C]
denotes the result of replacing some occurrences of subformula B in A by C (so, strictly
speaking, ‘A[B/C]’ varies over several formulas). A substitution function s:P Æ L sub-
stitutes arbitrary formulas s(p) for propositional letters p. The substitution instance s(A)
results from A by replacing every p Œ P(A) in A by s(p).

FK-valid theorems
Taut: Every tautology
K: �(A … B) … (�A … �B) K‡: (ÿ‡A Ÿ ‡B) … ‡(ÿA Ÿ B)
T: �T T‡�: ÿ‡^
C: (�A Ÿ �B) … �(A Ÿ B) C‡: ‡(A ⁄ B) … (‡A ⁄ ‡B)
M: �(A Ÿ B) … (�A Ÿ �B) M‡: (‡A ⁄ ‡B) … (‡A ⁄ ‡B)

Further theorems (Ÿ, ⁄ bind stronger than …, ∫)
1. �A ⁄ �B … �(A ⁄ B),
2. ‡(A Ÿ B) … ‡A Ÿ ‡B,
3. �(A … B) … (‡A … ‡B),
4. �A Ÿ ‡B … ‡(A Ÿ B),
5. �(A ⁄ B) … ‡A ⁄ �B,
6. (‡A … �B) … �(A … B),
7. ‡(A … B) ∫ (�A … ‡B).

FK-valid rules
TautR – all tautological rules in particular MP: A, A … B/B.

Model-admissible rules
N: A/�B
E: A ∫ B / �A ∫ �B
RE: B ∫ C / A ∫ A[B/C]
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Further
All rules resulting from valid theorems by applying deduction theorem

A frame-admissible rule
Subst: A/s(A) for every s:P Æ L

PROOFS Exercise (see proof examples below). Hints: The tautological theorems and
rules hold because the clauses for truth-functional connectives are the same as in non-
modal logic. In other words, (classical) modal logics contain truth-functional logic. Rule
RE (‘replacing equivalents’) is a consequence of E (‘equivalence’) and proved by
induction on complexity of formulas. Rule N (‘necessitation’) and the principle K
(Kripke) are characteristic for normal logics validated by Kripke frames, while rule E and
principles M, C, and T are used to axiomatize the ‘weaker’ classical logics. Every �-
theorem has a ‡-dual which obtained by replacing ‘�’ by ‘ÿ‡ÿ’ and applying
tautological transformations. Note that � distributes over Ÿ in both directions (M, C),
but � distributes over ⁄ only in one direction (i); thus � behaves like an implicit
universal quantifier. The same relations hold, dually, between ‡ and ⁄ , Ÿ; so ‡ behaves
like an implicit existential quantifier.

PROOF OF VALIDITY OF (K) We prove |=FK �(A … B) … (�A … �B) by assuming, for an
arbitrary model M and world w in WM, that (a): (M,w) |= �(A … B), and (b): (M,w) |=
�A, and by proving that (a) and (b) implies (c): (M,w) |= �B. By (a) and truth clauses,
(M,u) |= A implies (M,u)|� B, for all u with wRu. By (b), (M,u)|� A holds for all u with
wRu. Therefore, (M,u) |= B holds for all u with wRu, which gives us (c). Q.E.D.

PROOF THAT N IS MODEL- (AND HENCE FRAME-) ADMISSIBLE By contraposition. Assume (for
arbitrary M) that M |π �A. Then there exists w Œ WM such that (M,w) |π �A and hence
u Œ WM with wRu such that (M,u) |π A. So M |π A. Q.E.D.

Syntactical substitutions are semantically mirrored by corresponding variations of the
valuation function. This is the content of the following substitution lemma: Define, for
arbitrary substitution function s and valuation function V, Vs(p) = V(s(p)), for all p Œ P;
and for given M = ·W,R,VÒ, let Ms = ·W,R,VsÒ; thus M and Ms are based on the same
frame. Then: For every A Œ L, M and w Œ WM: (M,w) |= s(A) iff (Ms,w) |= A

PROOF Exercise: By induction on formula complexity; (see, for example, van Benthem
1983: 27, Lemma 2.5).

PROOF THAT (SUBST) IS FRAME-ADMISSIBLE By contraposition. Assume, for arbitrary F =
·W,RÒ and s, that F |π s(A). Thus there exists M = ·W,R,VÒ based on F and w Œ WM such
that (M,w) |π s(A). By substitution lemma, (Ms,w) |π A, where Ms is based on F. Thus F |πA.
Q.E.D.

Closure under substitution is an important condition on logics. Expressing theorems
as schemata (with schematic letters A, B, . . . ranging over arbitrary formulas) is a
simple means of asserting that the theorems of a logic are closed under substitution.
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For example, the set of all schematic instances of the formula schema �A … A equals
the set of substitution instances of the formula �p … p. The preservation properties of
rules are summarized as follows (Schurz 1997: 52):

Rule preserves: truth at a world model-validity frame-validity
TautR + + +
N, E, RE - + +
Subst - - +

It is also important to prove that certain formulas are not theorems of a logic. This is
usually done by giving semantic counterexamples. For example, the logic K does not
contain the theorem T: �A … A, which says that whatever is necessarily true is also
true. T seems intuitively to be an indispensable meaning postulate for ‘necessity.’ A coun-
termodel for T is, for example, the Kripke frame F with W = {u,v}, R = {·u,vÒ} (graphi-
cally displayed as u Æ v), with a valuation function V(p) = {v} (it suffices to define V
for the variables of the evaluated formula; this is often expressed as a lemma, cf. van
Benthem 1983: 26, 2.4). We have (M,v) |= p and thus (M,u) |= �p, but (M,u) |π p, and
so, M |π T, whence F |π T and thus T œ K.

EXERCISE Give countermodels for �(A ⁄ B) … �A ⁄ �B (the converse of i) and for ‡A
Ÿ ‡B … ‡(A Ÿ B) (converse of ii).

We obtain stronger logics than K by imposing structural conditions on frames. The
logic T = K + T is semantically obtained by requiring frames to be reflexive, that is to
satisfy the frame condition Ref: "w: wRw. We make this more precise by assuming a
(first or higher order) quantificational language L(R) which contains the accessibility
relation R as its only nonlogical predicate and has models of the form ·W,RÒ. |=R denotes
the standard notion of verification for L(R)-formulas (note that in L(R)-contexts, ‘uRv’
abbreviates ‘Rxy’). Then we obtain:

T-CORRESPONDENCE THEOREM For every frame F: F |= T iff F |=R Ref.

PROOF Right-to-left: We show that if F is reflexive, then �A … A is true on every world
w Œ WM in every model M based on F. Assume (M,w) |= �A. Hence "u: wRu fi (M,u)
|= A. Since F is reflexive, wRw, so (M,w) |= A. Hence (M,w) |= �A … A. Left-to-right: We
show, by contraposition, that if a given F = ·W,RÒ is not reflexive, then we can construct
a countermodel on F refuting the T-instance �p … p. So assume w Œ WF is an irreflexive
point, that is ÿwRw. Let p be true at all u with wRu but false at w ({u:wRu} Õ v(p) and
w œ v(p)). Call the resulting model M. Now, (M,w) |= �p, but (M,w) |π p; so (M,w) |π �p
… p. Hence F |π T. Q.E.D.

This is an example of a correspondence result. It tells us that the frame condition Ref can
be defined by (or translated into) the modal formula T, and vice versa. Generally, we say
that a modal formula or formula schema X Œ L corresponds to a (first or higher order)
frame-condition CX Œ L(R) iff "F Œ KF: F |= X ¤ F |=R CX. In this case, the frames of the
modal logic K + X (obtained from K by adding the axiom schema X) are exactly all
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frames satisfying CX. A modal formula (schema) X is called elementary, or first-order
definable, iff X corresponds to a first-order condition CX. Correspondence theory is the field
which explores the possibilities of intertranslations between modal and quantificational
logic (van Benthem 1983, 1984; our notion of ‘correspondence’ corresponds to van
Benthem’s ‘global equivalence’; 1983: 48f ).

Correspondence results for the five standard principles of alethic PMLs
Modal Principle: Frame Condition:
D: ÿ�^ Ser: "u$v: uRv (R serial)
T: �A … A Ref: "w:wRw (R reflexive)
4: �A … ��A Trans: "u,v,w: uRv Ÿ vRw … uRw (R transitive)
B: ‡�A … A Sym: "u,v: uRv … vRu (R symmetric)
5: ‡A … �‡A Euc: "u,v,w: wRu Ÿ wRv … uRv (R euclidean)

PROOF Exercise (Chellas 1980: ch. 3.2).

Correspondence results hold only w.r.t. frames; they do not say that every model vali-
dating axiom X satisfies the corresponding frame-condition CX. It is easy to construct
models for a logic L which are not based on a frame for L. We call such models non-
standard L-models. For example, a irreflexive T-model can be constructed by taking 
an irreflexive two world frame u ´ v where both worlds access each other, and by defin-
ing a valuation function V which agrees on both worlds, that is for all p Œ P, u Œ V(p)
iff v Œ V(p). It is easily proved for the so obtained model M, by induction on formula-
complexity, that (M,u) |= A iff (M,v) |= A holds for all A Œ L. Thus, all instances of T are
verified on both worlds of M.

The above correspondence results imply that if a PML contains several modal prin-
ciples, its frames will satisfy all of the corresponding frame conditions. According to the
Lemmon-code (Lemmon and Scott 1966; see Bull and Segerberg 1984: 20f ), we denote
normal PMLs as ‘KX . . . ,” where X is a set of additional axiom schemata for these
logics (except for special names for logics like T, S4, or S5). Principle D has been 
suggested for deontic logics by von Wright. T was suggested by Feys and von Wright 
for the alethic logic KT (von Wright (1951) calls it M). B refers to the ‘Browersche
system’ KTB and 4 to Lewis S4 = KT4 (both B and 4 have been suggested by Becker),
and finally 5 refers to S5 = KT5. Observe the following implication relations between
frame-conditions and corresponding logics: (i) Ref fi Ser, thus KT = KDT; (ii) Sym fi
(Trans ¤ Euc), thus KB5 = KB4 = KB45; (iii) Trans fi (Euc ¤ (Sym Ÿ Trans)), thus
KT5 = KTB4 = KDTB45 = S5; (iv) Ser Ÿ Sym fi Ref, thus KDB = KDTB; (v) Ser Ÿ Sym
fi (Trans ¤ Euc), thus KDB4 = KDB5 = KDB45 = KDTB45 = S5.

PROOF Exercise (Chellas 1980: 164).

The possible combinations of these five principles produce 15 mutually nonequivalent
standard systems of PML (Chellas 1980: 132). Various theorems of PML’s stronger
than K are found in Hughes and Cresswell (1968: ch. 2–4) and Chellas (1980: 131ff );
here are some of them.
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EXERCISE – PROVE SEMANTICALLY (i) A … ‡A, �nA … A, A … ‡nA Œ KT (�n =df � . . . � n
times iterated); (ii) �(‡A … B) … (A … �B) Œ KB; (iii) �A ∫ ��A, ‡A ∫ ‡‡A, �‡�‡A
∫ �‡A, ‡� ∫ ‡�‡�A Œ S4; (iv) ‡�A ∫ �A, �‡A ∫ ‡A Œ S5. – A modality m is a possibly
empty sequence of �s and/or ‡s. Two modalities m1 and m2 are L-equivalent iff m1p ∫
m2p Œ L. The stronger a PML, the more modalities collapse, that is become equivalent.
In S5, all iterations of modal operators are either equivalent with ‘‡’ or with ‘�’, thus
S5 has only three modalities, namely � – Ø – ‡. For modalities in other systems cf.
Chellas (1980: 147ff ).

Important semantical operations which preserve truth and validity of formulas are the
formation of generated submodels (subframes) and disjoint unions of models (frames). This
follows from the fact that the truth of �-formulas in a world w depends only on that
part Mw of the given model M which is reachable from w by an R-chain. Mw is called
the w-generated submodel of M = ·W,R,VÒ and is defined as ·Ww, Rw, VwÒ, with Ww = {u
Œ W: wRu}, where R is the transitive closure of R, Rw = R«(Ww ¥ Ww), and Vw (p) =
V(p)«Ww (for all p Œ P). The w-generated subframe of F is defined accordingly as Fw =
·Ww,RwÒ. If M is a class of models with pairwise disjoint world sets, then the disjoint sum
of the models in M is defined as DS(M) = ·»{WM:M Œ M}, »{RM:M Œ M}, »{VM:M Œ
M}Ò; and likewise for DS(F ). It is straightforward to prove for all formulas A, models M
and w Œ WM, (i) (M,w) |= A iff (Mw,w) |= A, and hence M |= A iff Mw |= A, and F |= A iff Fw

|= A, and (ii) for all model-classes M (or fames-classes F ) with pairwise disjoint world
sets, M |= A iff DS(M) |= A (or, F |= A iff DS(F ) |= A). A third truth- and validity-preserv-
ing operation is the formation of p-morphic copies of models and frames. It generalizes
the notion of isomorphic copy and was introduced by Segerberg (1971: 37; also called
‘contraction’ by Rautenberg, ‘zigzag morphism’ by van Benthem and ‘reduction’ by
Chagrov and Zakharyaschev 1997).

PROOF Exercise (Hughes and Cresswell 1986: 72f, 80; Chagrov and Zakharyaschev
1997: ch. 2.3).

A model (or frame) which validates the formula set G is called a model (or frame) for G.
M(G), F(G) denote the set of models, or frames respectively, for G. The above results tell
us that, for every G, the sets M(G) and F(G) are closed under the formation of gener-
ated submodels (subframes), disjoint unions of frames, and p-morphic models (frames).
Preservation results of this sort have various important consequences. A simple
example are S5-frames. Their accessibility relation is reflexive, symmetric, and transi-
tive and, hence, an equivalence relation: it imposes a partition onto the world set W into
mutually disjoint and exhaustive ‘cells’ (subsets) W1, . . . , Wn (i.e. Wi « Wj = Ø, »iWi =
W), such that all worlds in the same cell are mutually accessible, and are inaccessible
to worlds in different cells. Hence, each S5-frame is the disjoint sum of universal frames
·Wi, Ri = Wi ¥ WiÒ. They correspond to Carnap’s and Kripke’s original S5-frames
without a relation R. It follows from the generated subframe theorem that all univer-
sal frames are in F(S5); that is, S5 is valid in all universal frames.

A final word on philosophical plausibility. Assume we understand possible worlds 
as variations of the real world which are possible relative to some background theory. If
this background theory is logic, then �A means that A’s truth is determined by princi-
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ples of logic alone. In this interpretation, all principles of S5 seem to be valid, in par-
ticular all modal iteration principles. For if it is determined by logic that A is true, then
it is also determined by logic – namely by metalogic – that A’s truth is determined by
logic: hence �A … ��A holds. Likewise, if it is not determined by logic that A is false,
then this fact is itself determined by logic: so ‡A … �‡A holds. The same reasoning
applies if the background theory contains logic + laws of physics. Then �A means that
A’s truth is determined by logic + laws of physics alone – so, also in this interpretation
of �A, S5 seems to be the right choice. To avoid confusions: of course, physical neces-
sity is stronger than logical necessity, but modal logics contain only those principles
which are closed under substitution and, hence, are independent from the content of a
nonlogical symbol. Proper physical necessity statements such as ‘it is necessary that
everything is composed of matter’ are content-specific and thus not part of a modal
logic.

In the above understanding of ‘�’ we must assume, in order to interpret iterated
modalities, that either the language of our background theory is closed (i.e. it can speak
about the truth of its own sentences; cf. part IV of this volume), or that it contains a
potentially infinite hierarchy of metalanguages. If we do not make these strong
assumptions, then our interpretation will validate only the weaker logic T. If we are
even more scrupulous and interpret truth-determination as syntactical derivability from
our background theory, then even T will be too strong, as soon as our background
theory contains arithmetic; the adequate logic for this interpretation is G, discussed
below. If, on the other hand, ‘�’ is interpreted in the sense of tense logic as ‘being true
in all future times’, then only S4 but not S5 is the philosophically adequate logic. These
remarks show that even in the narrow realm of alethic modal logics, different PMLs are
needed for different interpretational purposes.

Axiomatic systems: correctness, completeness, and correspondence

The standard axiomatization of the minimal normal MPL, K, is its definition as the
smallest set of L-formulas which contains all instances of the axiom schemata Taut
and K and is closed under the rules MP and N. The stronger alethic logics KX, with X
Õ {D,T,B,4,5}, are axiomatized by adding X as the set of so-called additional axiom
schemata. A formula A is provable in logic L, in short �L A, iff A has an L-proof, which
is a sequence ·B1, . . . , BnÒ of formulas such that Bn = A, and every Bi (1 £ i £ n) is either
instance of an axiom schema of L or follows from previous members of the sequence
by one of the rules of L. If �L A, we also call A a theorem of L, and identify L with the
set of its theorems: L = {A: �LA}. A formula A is said to be deducible from formula set
G, in short G �L A, iff �L Ÿ Gf … A for some finite subset Gf Õ G. In particular, �L A iff Ø
�L A. Finally, G is called L-consistent iff G �/L p Ÿ ÿp, and L is called consistent iff p Ÿ ÿp
œ L.

The above axiomatization of PML’s is a Hilbert-style axiomatization of their modal
part together with an unspecified (syntactic) determination of tautology-hood. This is
rather common for PMLs. If we additionally allow the application of tautological rules
TautR, we obtain a comfortable way of proving theorems (see exercise below). Of course,
various alternative but equivalent axiomatizations are possible. To highlight the 
relation of K to weaker PML’s, K may equivalently be axiomatized by rules MP + E and
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axiom schemata Taut + M + C + T (exercise below). G �L A may be equivalently defined
by the existence of a proof of A from axioms in L » G with modal rules restricted 
to formulas which do not depend on G (see Schurz 1997: 53). There exist also various
non-Hilbert-style axiomatizations for PMLs, such as sequent or tableau calculi (see, for
example, Fitting 1983; Wansing 1996).

EXERCISE (1.) Prove the theorems of K, T, S4 and S5 listed in § 2.2. Prove that axioms
Taut + M + C + T and rules TautR + E are an equivalent axiomatization of K (see, for
example, Chellas 1980: ch. 4, ch. 8; see also example below).

Example: proof of K from Taut + M + C + TautR + E:
1. (�(A … B) Ÿ �A) … �((A … B) Ÿ A) C-instance
2. ((A … B) Ÿ A) ∫ (A Ÿ B) Taut
3. �((A … B) Ÿ A) ∫ �(A Ÿ B) E from 2
4. (�(A … B) Ÿ �A) … �(A Ÿ B) TautR from 1,3
5. �(A Ÿ B) … �B M-instance
6. �(A … B) … (�A … �B) TautR from 4,5

PROOF OF N FROM TAUT + M + C + T + TAUTR + E Assume �L A. Hence �L A ∫ T, by TautR.
So �L �A ∫ �T, by E. Because �T is an axiom, we get �L �A by TautR. Q.E.D.

In general, a normal PML (i.e. a normal extension of K) is defined (after Lemmon and
Scott 1966) as any subset L Õ L which contains K and is closed under the rules MP, N,
and Subst. Clearly, every normal PML L is representable as L = KX, where X is some set
of additional axiom schemata X (Schurz 1997: 50, lemma 4). If X is recursively 
enumerable, then KX is called (recursively) axiomatizable (Chagrov and Zakharyaschev
1997: 495f ); if X is finite, KX is finitely axiomatizable. The class of a normal PMLs
forms the infinite lattice P with K as its bottom and L = the inconsistent logic as its top
(for various results on this lattice cf. Chagrov and Zakharyaschev 1997). Not all L Œ P
are axiomatizable.

The major properties of axiomatized logics (i.e. axiomatic systems) concern their cor-
rectness and completeness. Generally, an axiomatic system L is correct w.r.t. an underly-
ing semantics S iff everything what is L-provable is S-valid, and L is complete w.r.t. S iff
everything what is S-valid is L-provable. In modal logics, these notions can be defined
w.r.t. models as well as w.r.t. frames, as follows:

1. L is correct w.r.t. F iff �L A fi |=F A (for all A)
L is correct w.r.t. M iff �L A fi |=M A (for all A)

2. L is w.(eakly) complete w.r.t. F iff |=F A fi �L A (for all A)
L is w. complete w.r.t. M iff |=M A fi �L A (for all A)

3. L is s.(trongly) complete w.r.t. F iff G |=F A fi G �L A (for all G, A)
L is s. complete w.r.t. M iff G |=M A fi G �L A (for all G, A)

4. L is w./s. frame-complete (simpliciter) iff L is w./s. complete w.r.t. F(L).
L is w./s. model-complete (simpliciter) iff L is w./s. complete w.r.t. M(L).

Completeness simpliciter is defined w.r.t. the class of all frames or models for a logic.
Correctness is the converse property of weak completeness. A separate notion of
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‘strong’ correctness (G �L A fi G |=M/F A) is not needed: weak correctness implies strong
correctness because ‘�L’ is by definition finitary (G �L A iff �L Ÿ Gf … A). Correctness of
an axiomatic system L is standardly proved as follows: one demonstrates (1) that every
axiom of L is valid, and (2) that every rule of L preserves validity, and concludes, by
induction on the length of the L-proof of A, that A is valid w.r.t. the given M or F. Claim
2 has been established for all normal PMLs, and claim 1 for all PMLs KX with X Õ
{D,T,B,4,5}. Hence all the latter PMLs are correct w.r.t the corresponding classes of
models and frames. Moreover, all PMLs representable as KX are correct w.r.t. M(X) 
and F(X).

The standard technique to prove completeness rests on the following consistency-
formulation of completeness which is classically equivalent:

CONSISTENCY-LEMMA L is w. complete w.r.t. M [or F] iff every L-consistent formula A is
satisfiable in M [or F, resp.]; and L is s. complete w.r.t. M [or F] iff every L-consistent
formula set G is satisfiable w.r.t. M [or F, resp.]. Proof: Exercise.

Strong completeness is stronger than weak completeness because semantical conse-
quence is not by definition finitary. Strong frame- (or model-) completeness of L implies
frame- (or model-) compactness of L in the sense that a formula set G is satisfiable on an
L-frame [or in an L-model, resp.] whenever every finite subset of G is satisfiable on this
L-frame [or in that L-model, resp.]. Weak completeness plus compactness imply strong
completeness. If an axiomatic system L is correct and w./s. complete w.r.t. a given class
F or M, then it is said to be w./s. characterized by F or M. This means that the syntactic
definition of L (and of �L in the case of s. completeness) coincides with the semantic
one.

The canonical technique of proving model-completeness of a normal PML has been
introduced by Lemmon and Scott (1966) and Makinson (1966). It is an adaptation 
of the ‘Lindenbaum–Gödel–Henkin’ technique to modal logics. It consists in the con-
struction of the so-called canonical model Mc(L) of the given logic L, which contains
maximally consistent formula sets, that is maximal state descriptions, as its worlds (cf.
Hughes and Cresswell 1984: 22f; Chellas 1980: 173, def. 5.9):

DEFINITION OF THE CANONICAL MODEL (1) A formula set G is maximally L-consistent iff
G is L-consistent and no proper extension D of G is L-consistent. (2) The canonical
model Mc(L) of L (in the given denumerably infinite language L) is defined as ·Wc, Rc,VcÒ
where (2.1) Wc is the class of all maximally L-consistent formula sets, (2.2) Rc is defined
by "u,v Œ Wc: uRcv iff {A: �A Œ u} Õ v, and (2.3) for all p Œ P, Vc(p) is defined by "w
Œ Wc: w Œ Vc(p) iff p Œ w.

It is well-known from truth-functional logic that maximally L-consistent formula sets
enjoy the following maximality properties:

MAXIMALITY-LEMMA For all maximally L-consistent sets D and formulas A, B: (1) D �L

A implies A Œ D (deductive closure), (2) either A Œ D, or ÿA Œ D (completeness), and
(3) (A ⁄ B) Œ D iff (A Œ D or B Œ D) (primeness). Analogous properties exist for Ÿ and
…. Proof: Exercise (cf. Hughes and Cresswell 1984: 18f ).
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LINDENBAUM-LEMMA Every L-consistent formula set G can be extended to a maximally
L-consistent formula set D � G (proof cf. Hughes and Cresswell 1984: 19f ).

The central idea of the canonical model construction is to prove the following:

TRUTH LEMMA For all A Œ L and w Œ Wc: (Mc,w) |= A iff A Œ w.

The three lemmata imply strong completeness of L as follows. By maximality lemma
1, L is a subset of every world of Wc. So by truth lemma, Mc is an L-model. By
Lindenbaum-lemma, every given L-consistent G is subset of some world in Wc. So by
truth lemma, G satisfied in the L-model Mc; Q.E.D. To prove the truth lemma we 
need the following lemma which guarantees that Rc is well-behaved in the sense that
whenever ‡A Œ w Œ Wc, then $u with wRcu and A Œ u:

CANONICAL MODEL LEMMA (1) If ÿ�B Œ G and G is L-consistent, then {A: �A Œ G} »
{ÿB} is L-consistent, too. (2) "u Œ Wc: �A Œ u iff "v: uRcv fi A Œ v.

PROOF Exercise (Hughes and Cresswell 1984: 21f; Chellas 1980: 172).

PROOF OF THE TRUTH-LEMMA We prove the claim by induction on the complexity of L-
formulas. (1) For A = p Œ P: (Mc,w) |= p iff p Œ w holds for all w Œ Wc by definition of
Vc. (2) For A = ÿB: (Mc,w) |= ÿB iff (Mc,w) |π B iff B œ w by induction hypothesis, iff ÿB
Œ w by maximality lemma, 2. (3) For A = B ⁄ C: (Mc,w) |= B ⁄ C, iff (Mc,w) |= B or (Mc,w)
|= C, iff B Œ w or C Œ w by induction hypothesis and propositional logic, iff (B ⁄ C) Œ w
by maximality lemma, 3. (4) For A = �B: (Mc,w) |= �A iff "u: wRcu fi (Mc,u) |= A, iff
"u: wRcu fi A Œ u by induction hypothesis and first-order logic, iff �A Œ w by
canonical model lemma, 2. Q.E.D.

The foregoing proofs hold for all normal PMLs and thus establish:

PML-MODEL-CHARACTERIZATION-THEOREM Every normal PML L is strongly model-
complete, and is strongly characterized by M(L).

Frame-completeness is stronger than model-completeness: it implies not only that every
L-consistent formula (set) is satisfiable in some L-model, but that it is satisfiable in a 
standard L-model. So, to prove that L is s. frame-complete requires to prove something
additional, namely: that the frame of Mc(L) is a frame for L. Following Fine (1975a),
we call normal PMLs satisfying this condition canonical (in general, canonicity is rela-
tivized to the cardinality of P; but we always assume that P is denumerably infinite).
Canonicity implies strong frame-completeness; whether the reverse direction holds is
an open question. Clearly, K is canonical because Mc(K) is based on a frame. For
stronger systems, canonicity has to be proved for each additional axiom schema sepa-
rately. Axiom schema X is called canonical iff the frame of Mc(L) is a frame for L when-
ever L contains X. If X1, . . . , Xn are canonical, then every KX with X Õ {X1, . . . , Xn}
will be canonical, too.
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CANONICITY-THEOREM D, T, B, 4 and 5 are canonical.

PROOF Exercise (Hughes and Cresswell 1984: ch. 2; Chellas 1980: ch. 5.4).

EXAMPLE Proof of canonicity of 4: Assume 4 Œ L. To show that for "u,v,w in Mc(L),
uRcv Ÿ vRcw implies uRcw, we assume (a) {A: �A Œ u} Õ v, (b) {A: �A Œ v} Õ w, and
prove thereof that (c) {A: �A Œ u} Õ w. Take any �B Œ u. By deductive closure of
canonical worlds, �B … ��B Œ u, and thus ��B Œ u. So �B Œ v by (a) and B Œ w by
(b).Thus for all �B Œ u, B Œ w, which is exactly (c). Q.E.D.

In general, if a normal PML L is correct w.r.t. F, then it is also correct with respect
to every subclass F¢ Ã F; and if it is w./s. complete w.r.t. F, then it is also w./s. complete
w.r.t. every superclass F¢ … F (and likewise for models). It often happens that a normal
MPL L which is characterized by F(L) is also characterized by an interesting subclass F¢
Ã F(L). For example, every canonical L Œ P is strongly characterized by a single frame,
namely the frame of the canonical model Mc(L) (this follows direct from the complete-
ness proof ). Or, every L Œ P is w./s. characterized by the class of its generated subframes
(which follows from the generated subframe lemma). Another way of producing char-
acteristic subclasses of F(L) is based on the fact that the following first-order conditions
on frames cannot be expressed by modal formulas: Irr ÿwRw (irreflexivity), Asym uRv
… ÿvRu (asymmetry), Antisym uRv Ÿ u π v … ÿvRu (antisymmetry), Intrans uRv Ÿ vRw
… ÿuRw, and Anticon "u,v,w: u π v π w Ÿ uRw … ÿvRw (anticonvergence). In other
words, correspondence fails for these conditions in the right-to-left direction. For K, this
can be proved by the technique of unraveling, which is a validity-preserving transfor-
mation of arbitrary models into irreflexive, asymmetric, and intransitive models (due
to Dummett and Lemmon 1959; see Bull and Segerberg 1984: 45). Thus, K is also
strongly characterized by all irreflexive, asymmetric, and intransitive frames.

Characterization by subclasses is important for the PML’s of ordering relations. The
technique of bulldozing introduced by Segerberg (1971: 78ff ) transforms every reflex-
ive and transitive model M into a validity-preserving partially ordered model M; if M is
merely transitive then the ordering of M’s frame is strict. It follows from this that K4 is
strongly characterized by the class of strict partially ordered frames, and S4 by the class
of partially ordered frames. Finally, ramification transforms arbitrary [reflexive, transi-
tive] models into validity-preserving [reflexive, transitive, resp.] models based on tree-
frames (Chagrov and Zakharyaschev 1997: 32–5). Tree models represent branchings
of possible future states in time and are important for the logic of causality and
agentship (cf. Kutschera 1993, Prendinger and Schurz 1996).

A brief remark on classical modal logics concludes this section. They are weaker than
K and are mainly used for nonalethic (e.g. epistemic, deontic) interpretations of the
modal operator (for details see Segerberg 1971: ch. 1 and Chellas 1980: part III). The
minimal classical modal logic, E, is axiomatized by Taut, MP, and the rule E. E allows it
to regard the intensional operator � as applying to propositions; this requires truth-
preservation of � under replacements of logically equivalent sentences. M = E + M is
the minimal monotonic and C = E + M + C the minimal regular modal logic. If we finally
add T we get an alternative axiomatization of K. Semantically, classical modal logics
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are characterized by so-called neighborhood frames, which are pairs ·W,NÒ with W π f
a possible world set and N:W Æ Pow(Pow(W)) a function assigning to each world w Œ
W a neighborhood N(w) which contains exactly those ‘propositions’ (i.e. W-subsets)
which are necessarily true at w. Completeness proofs proceed via canonical neighbor-
hood models: E is characterized by the class of all neighborhood frames, and the seman-
tic conditions corresponding to M, C, and T are closure of neighborhoods under
supersets, finite intersections, and containment of W. K-neighborhood-frames with all
three properties can be transformed into point-wise equivalent Kripke frames, and C-
neighborhood frames can be transformed into Kripke-frames with an additional set of
so-called ‘queer’ worlds (Segerberg 1971: 23ff ).

Decidability and finite model property

A logic L Õ L is called decidable iff there exists an algorithm which tells for every A Œ L
after a finite number of steps whether or not A Œ L. Mere axiomatizability (i.e. recur-
sive enumerability) of a logic does not imply its decidability. It is a famous fact that a
logic L is decidable iff the theorems of L as well as the non-theorems of L (i.e. the ele-
ments of L – L) are recursively enumerable (Chagrov and Zakharyaschev 1997: 492).
A logic L is said to have the finite model property (f.m.p.) iff every L-consistent formula
A is satisfiable on a finite L-model. (Likewise for the ‘finite frame-property.’) A standard
way of proving the decidability of an axiomatizable logic is by proving that it has the
f.m.p. For, we can effectively enumerate all finite models of a given formula A and test
whether they are A-countermodels. So if an axiomatizable logic L has the f.m.p., then
after a finite number of steps either the enumeration of L-theorems will output A, or
the enumeration of L’s finite models will produce an A-countermodel (Chagrov and
Zakharyaschev 1997: 492). Note, however, that there are also decidable logics which
do not have the f.m.p. (Gabbay 1976: 258–65).

Note the following fundamental f.m.p.-theorem: For all L Œ P: L has the f.m.p. ¤ L
has the finite frame property ¤ L is w. complete w.r.t. L’s finite frames. The second
equivalence is an immediate consequence of the first, which has been proved by
Segerberg (1971: 29ff ) as follows: (1) for every model there exists an elementary equiv-
alent distinguishable model (where no two worlds verify the same formulas); and (2) if
a finite distinguishable models validates L, then its frame is an L-frame.

A standard technique to produce finite models for a given formula or finite formula
set is filtration. Assume G is a set of formulas closed under subformulas (i.e. if A Œ G,
and B is a subformula of A, then B Œ G). Given M = ·W,R,VÒ, two worlds u, v Œ WM are
called G-equivalent, in short u ∫Gv, iff they verify the same formulas in G (i.e. iff "A Œ
G: (M,u) |= A ¤ (M,v) |= A). For w Œ WM, [w]G =df {u Œ WM: w ∫G u} denotes the G-
equivalence class of w. Then, a model MG = ·WG,RG,VGÒ is called a G-filtration of M, iff
MG = {[w]G: w Œ WM}, VG(p) = {[w]G: w Œ v(p)} for all p Œ P, and R satisfies two condi-
tions (u, v Œ WM): (F1): If uRv, then [u]G RG [v]G, and (F2): If [u]G RG [v]G , then "A Œ G:
(M,u) |= �A fi (M,v) |= A. Note that there exist several G-filtrations of a given model M.
The frame ·WG,RGÒ is the corresponding G-filtration of ·W,RÒ.

FILTRATION THEOREM If MG is a G-filtration of M, then "A Œ G "w Œ AM: (M,w) |= A iff
(MG, [w]G) |= A. Proof: Exercise (Hughes and Cresswell 1984: 139).
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MG is a finite model whenever G is finite. Thus, by filtering a model M for an L-
consistent formula A through the (finite) set subf(A) of A’s subformulas, we obtain a
finite model Msubf(A) verifying A. To prove by this method that L has the f.m.p. requires
in addition to prove that the filtered model is indeed an L-model. A simple way to do
this is to show that the filtered frame ·Wsubf(A),Rsubf(A)Ò is a frame for L. This is easy for the
logics K, KD, and KT, since one can prove that every filtration of a frame preserves seri-
ality or reflexivity (Chellas 1980: 105). For other standard systems such as KB, K4,
S4, etc., special filtrations are necessary to demonstrate preservation of the corre-
sponding frame-properties (Chellas 1980: 106ff ). Segerberg has proved that all normal
extensions of K45 have the f.m.p. and, thus, can be classified as the logics of certain
simple frame classes (Segerberg 1971: 123ff ).

We finally remark that, though f.m.p. proves decidability for axiomatizable logics, it
does not produce a practically feasible decision method. Practically feasible decision
methods for standard systems are, for example, tableau methods (Hughes and Cresswell
1968: ch. 5–6; Chagrov and Zakharyaschev 1997: ch. 3.4).

More metalogical results on PMLs

Further examples of axiom schemata which are both first-order definable and canoni-
cal are:

Axiom schema: Corresponding first-order condition:
(Gk,l,m,n) ‡k�lA … �m‡nA R is k, l, m, n-incestual:

"u,v,w,w¢: uRkv Ÿ uRmw … $w¢(vRlw¢ Ÿ wRnw¢)
0.3: �(�A … B) ⁄ �(�B … A) R is locally strongly connected:

"u,v: $w(wRu Ÿ wRv) … (uRv ⁄ vRu)
0.3*: �(A Ÿ �A … B) ⁄ R is locally connected:

�(B Ÿ �B … A) "u,v: $w(wRu Ÿ wRv) Ÿ u π v … (uRv ⁄ vRu)
0.2: ‡�A … �‡A R is locally strongly convergent:

"u,v: $w(wRu Ÿ wRv) … $w¢(uRw¢ Ÿ vRw¢)
0.2*: ‡(A Ÿ �B) … �(A ⁄ ‡B) R is locally convergent:

"u,v: $w(wRu Ÿ wRv) Ÿ u π v … $w¢(uRw¢ Ÿ vRw¢)
Dense: ��A … �A R is dense: "u,v: Ruv … $w(uRw Ÿ wRv)
Triv: �A ∫ A Every world reaches only itself: "u,v: uRv … u = v
Ver: �^ Every world is a dead end: "u,v: ÿuRv
Altn: �A1 ⁄ �(A1 … A2) ⁄ . . . Every world reaches at most n distinct worlds:

. . . ⁄ �(A1 Ÿ . . . Ÿ An … An+1) "u, v1, . . . , vn+1: 
Ÿ {uRvi: 1 £ i £ n} … ⁄ {vi = vj: 1 £ i < j £ n}

Gk,l,m,n is a very general schema introduced by Lemmon and Scott (1966) (Hughes and
Cresswell 1984: 42); note that D is K-equivalent with G0,1,0,1 = �A … ‡A, T = G0,1,0,0, B
= G0,0,1,1, 4 = G0,1,2,0, 5 = G1,0,1,1, 0.2 = G1,1,1,1, Dense = G0,2,1,0. S4.2 = S4 + 0.2. Sahlqvist
(1975) has proved first-order definability and canonicity for a class of axiom schemata
which is even more general than Gk,l,m,n (cf. Chagrov and Zakharyaschev 1997: ch.
10.3). The schemata 0.3, 0.3* (introduced by Lemmon) and 0.2, 0.2* (introduced by
Geach) are important for the modal logics of orderings; 0.3, 0.3* are equivalent for
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reflexive frames, and 0.2, 0.2* for serial frames. S4.3 = S4 + 0.3 is the logic of linear
orderings. Likewise, K4.3 is the logic of strict linear orderings and KD4.3 the logic of
strict linear orderings without last element. By adding Dense one obtains the logics of
corresponding dense orderings. Ver and Triv are famous because they are character-
ized by the two singleton frames ·{w}, ·w,wÒÒ and ·{w}, ØÒ, respectively, and every con-
sistent L Œ P0 is either contained in Triv or in Ver (Makinson’s theorem). The logics
S5(Altn) are the only consistent extensions of S5 (Scroggs’ theorem; S5Alt1 = KTriv).
For more details and canonical axioms see, for example, Segerberg (1971); Hughes and
Cresswell (1984); or Chagrov and Zakharyaschev (1997).

Let us turn to examples where completeness and/or correspondence fails. We call an
axiom schema X (and the corresponding logic KX) non-compact iff it is weakly but not
strongly frame-complete, and frame-incomplete iff it is not even weakly frame-complete.
Examples of axiom schemata which are both non-compact and not elementary (not
first-order definable) are Löb’s axiom G (also called W) and McKinsey’s axiom 0.1, along
with their corresponding frame-condition:

(G) �(�A … A) … �A R is transitive and terminal, that is there are no infi-
nite R-chains w1Rw2 . . . wnRwn+1 . . .

(0.1) �‡A … ‡�A For no w Œ W there exist disjoint nonempty W-
subsets U, V, such that all w* Œ {w*:wRw*} have R-
successors in U and V

G-frames are irreflexive, and hence asymmetric, since a reflexive w implies the infinite
chain wRwRw . . . As a result, KG contains 4, but neither T nor D (Hughes and Cresswell
1984: 101). That the G-corresponding condition CG at the right side (proof see van
Benthem 1984: 195f ) is genuinely second-order is seen as follows. Consider the infinite
formula set D = {CG} » {xiRxi+1: i Œ w}. Every finite subset of D is satisfiable in a G-frame.
Since first-order logic is compact, it follows that if CG were first-order, then D would be
satisfiable in a G-frame. But it is not, since by asymmetry of R this would imply an infi-
nite ascending R-chain. So CG is not first-order (Chagrov and Zakharyaschev 1997:
166). That KG is not canonical can be proved by showing that the frame of Mc(KG) con-
tains reflexive worlds and, thus, is not a KG-frame: this follows from the fact that the so-
called Solovay’s logic S = KG + T is consistent, and hence, produces reflexive worlds in
Mc(KG) (Chagrov and Zakharyaschev 1997: 165). Weak completeness of KG is proved
by a suitable filtration of Mc(KG) (Hughes and Cresswell 1986: 47ff ).

Correspondence for the second-order condition corresponding to McKinsey’s axiom
0.1 is established in Fine (1975b). K0.1 has the f.m.p. and thus is w. frame-complete
(Fine 1975a), but it is not canonical (Goldblatt 1991). The logic KG (‘G’ for ‘Gödel’) has
become famous because it allows a translation of Gödel’s incompleteness proof for first-
order arithmetics into modal logic. If one translates �A into the arithmetical language
with Gödel-numbering g and provability predicate Pr(x), by the translation function
t(�A) = Pr(g(t(A))), then KG contain all modal theorems which are valid in this arith-
metical interpretation, and Gödel’s incompleteness results have a direct translation 
into the modal language (for details see Smorynski 1984). Also McKinsey’s axiom is
remarkable, for two reasons. First, 0.1 becomes canonical if it is added to K4 or S4:
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K4.1 = K4 + 0.1 and S4.1 = S4 + 0.1 are first-order definable and canonical (proved
in Lemmon and Scott 1966: 75). K4.1-frames are defined by the transitivity of R and
the condition that every world reaches a ‘dead end’ ("u$v: uRv Ÿ "w(vRw … v = w));
and S4.1-frames are additionally reflexive (van Benthem 1984: 202). Second, S4.1 is
then a simple example of a canonical PML with a frame-incomplete quantificational
counterpart (§3.1 below).

All K45-extensions and all S4.3-extensions are weakly frame-complete. Lemmon
conjectured in 1966 that all normal PMLs are w. frame-complete. In 1974, Fine and
Thomason gave first examples of frame-incomplete PMLs. A standard way of proving the
frame-incompleteness of L Œ P is the following: prove (i) that F(L) validates a certain
formula schema X, and (ii) that X is not derivable in L, by specifying a class M of non-
standard models of L which falsifies X. (Note that M cannot be standard because then
M would also verify X.) By correctness w.r.t. models, this implies that �/L X, and hence,
that L is frame-incomplete.

Model-classes for a given L, even if nonstandard, must preserve validity under the
rule of substitution. Such model-classes have been introduced as so-called general
frames by Thomason (1972) (for details see Chagrov and Zakharyaschev 1997: ch. 8).
A general frame G is defined as a pair G = ·F,PropÒ where F is an ordinary frame and Prop
Õ Pow(W) is a set of ‘valuation-admissible’ subsets of W which is closed under inter-
section, relative complement, and under the operation ‘�:W Æ W’ defined by �X = {w:
"u(wRu … u Œ X)}. The class M(G) of G-models is the class of all models based on F
with valuation function V:P Æ Prop taking values in Prop. By definition, G |= A iff M(G)
|= A. This definition entails, by the closure conditions on Prop, that whenever a general
frame G validates A, then G validates every substitution instance s(A) of A. Moreover,
to every model M = ·W,R,VÒ there corresponds a minimal general frame GM defined as
··W,RÒ,PropMÒ with PropM = the set of W-subsets which are the value of some L-formula
under V (Chagrov and Zakharyaschev 1997: 237). It follows that every substitution-
closed formula set and in particular every logic L Œ P which is valid in M must also be
valid in GM. As a result, model-completeness of a logic implies its completeness w.r.t.
general frames. (For details on general frames and their connection to modal algebras
see Chagrov and Zakharyaschev 1997.)

A simple example of a frame-incomplete PML is van Benthem’s logic KVB, where
VB = ‡�^ ⁄ �(�(�B … B) … B). It is easily checked that every frame for VB satisfies the
first-order condition that every world is a dead end or reaches a dead end, and hence,
validates the axiom ‡Ver = ‡�^ ⁄ �^. Van Benthem constructs a countably infinite
general frame with allowable values based on finite and cofinite W-subsets which vali-
dates VB but falsifies ‡Ver (Hughes and Cresswell 1984: 57ff ). Van Benthem’s exam-
ples shows also that first-order definability does not imply frame-completeness of a logic
(which was an earlier conjecture). That also the reverse implication relation does not
hold was demonstrated by an example of a canonical logic which is not first-order defin-
able, given by Fine (1975a), namely the logic KF = K + F =df ‡�A … ‡�(A Ÿ B) ⁄ ‡�(A
Ÿ ÿB).

Both examples show that there is no simple relationship between completeness and
correspondence. First of all, correspondence has two sides. Modal formulas may or may
not have corresponding frame-conditions (correspondence I), and frame-conditions
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may or may not have corresponding modal formulas (correspondence II) (van Benthem
1984: 192, 211). Concerning correspondence I, van Benthem (1984: 169ff ) shows
that every modal formula has a corresponding second-order frame condition; so the
only interesting question is whether a modal formula is elementary. Concerning cor-
respondence II, various examples of modally undefinable first-order conditions have
been given in §2.3. General theorems about correspondence I and II are found in van
Benthem (1983, 1984). The following connections between frame-completeness and
correspondence I have been proved in Fine (1975a): (1) If L Œ P is first-order definable
and w. frame-complete, then L is canonical, and (2) If L Œ P is natural, then L is first-
order definable. Naturality, as defined by Fine, is a stronger property than canonicity (a
generalization of Fine’s theorem for general frames in terms of ‘D-persistence’ is given
by van Benthem (1983); see Chagrov and Zakharyaschev 1997: 341–4).

For many purposes, one needs PMLs with several different modal operators, for
example an alethic-deontic PML for the is–ought problem (Schurz 1997). A multimodal
language LI contains a set {�i: i Œ I} of modal operators (I an index set). The simplest
kind of a normal PML in LI is a so-called combination (or join) of normal monomodal
�i-logics {Li: i Œ I}, denoted by �{Li: i Œ I}, and defined as the smallest normal PML
in LI containing every Li. Frames for these logics have the form ·W, {Ri: i Œ I}Ò.
Syntactically, �{Li: i Œ I} is obtained from the Li (i Œ I) by joining their representative
axiom sets Xi, and closing under substitution in the combined language LI. Hence,
�{Li: i Œ I} is representable as KIXI with XI = »iXi. Instead of proving metalogical prop-
erties like completeness, etc. for all possible multimodal combinations separately, 
it is more desirable to prove general transfer theorems in the following sense: whenever
all Li have a certain property, then �{Li: i Œ I} has it, too. The following general trans-
fer theorem holds for combined multimodal logics: (1) Weak and strong frame-
completeness, canonicity and f.m.p. transfer from the Li (i Œ I) to �{Li: i Œ I}; and (2)
decidability, interpolation, and Halldén-completeness transfer under presupposition of
weak completeness of the Li (i Œ I). The theorem was independently proven by Kracht
and Wolter (1991) and Fine and Schurz (1996) (the latter paper was been written up
in 1990 but its publication was delayed). If a multimodal logic contains in addition
interactive axioms which relate distinct modalities (e.g. �1�2A … �2�1A), then trans-
fer theorems are possible only in special cases (Fine and Schurz 1996: 210ff, for such
examples). The investigation of combined logics and transfer has become a topic of
increasing interest in modal logics; for a survey see Kracht and Wolter (1997).

3 Modal Quantificational Logics (QMLs)

Fixed domain and rigid designators: Q1MLs

LQ1 is the object language modal quantificational logics of ‘type 1,’ in short: Q1MLs.
It contains a set V of individual variables (x, y, . . .), in short: variables, a set C of indi-
vidual constants (a, b, . . .), in short: constants, and for each n ≥ 0, a set Rn of n-ary
relation symbols (F, G, Q, . . .). All these sets are denumerably infinite (0-ary relation
symbols are propositional variables). For reasons of simplicity we omit function
symbols; thus singular terms, denoted by t, t1, t2, . . . , are constants or variables; J(the
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set of all terms) =df V » C. The new primitive logical symbols are the universal quan-
tifier " ("x = ‘for all x:’), and the identity symbol, =. The existential quantifier $ ($x =
‘there exists an x:’) is defined as usual by $xA =df ÿ"xÿA. LQ1 is again identified with
the set of its (well-formed) formulas, which are recursively defined by the following
clauses: (1) t1, . . . , tn Œ J, Q Œ Rn fi Qt1 . . . tn Œ LQ1; (2) A, B Œ LQ1 fi ÿA, A ⁄ B,
�A Œ LQ1; and (3) x Œ V, A Œ LQ 1 fi "xA Œ LQ1.

We assume acquaintance with the notions of bound and free occurrences of vari-
ables. Variable x is called free in A iff A contains at least one free x-occurrence. Vf(A)
= the set of free variables in A; likewise for V(A), C(A), Rn(A). A* is an alphabetic variant
of formula A iff A* results from A by replacing every bound occurrence of some vari-
ables x1, . . . xn in A by variables y1, . . . yn, respectively, provided (for each 1 £ i £ n) that
no xi-occurrence in A lies in the scope of an "yi-quantifier and no free yi-occurrence
in A lies in the scope of an "xi-quantifier. A[t/x] denotes the result of the correct sub-
stitution of term t for variable x in A and is defined as the result of the replacement of
every free occurrence of x in A* by t; where A* is the first alphabetic variant of A
(according to a given formula enumeration) in which x does not occur in the scope of
a quantifier binding t. A[t1-n/x1-n] denotes the result of the correct (simultaneous) sub-
stitution of ti for xi in A (for all pairwise distinct xi).

The notion of a frame remains the same for all kinds of QML-semantics. The simplest
way of extending Kripke models to modal quantificational languages are Q1-models.
They contain one fixed domain D of objects, which is the same for all worlds in W, and
assume that singular terms are rigid – so only the interpretation of the relation symbols
is world-relative. More precisely, a Q1-model is a quadruple M = ·W,R,D,VÒ where ·W,RÒ
is a frame, D π Ø is a nonempty domain of individuals, and the valuation function V is
defined as follows: (1) V: J Æ D, hence "t Œ J: V(t) Œ D, and (2) for all n ≥ 0, V: W ¥ Rn

Æ Dn, hence V(w,R) =df Vw(R) Õ Dn. The value Vw(R) is also called the ‘extension’ of R
at world w, and the partial function V(R):W Æ Dn is called R’s intension (this view of
intension’ goes back to Carnap). The restriction of V to constants and relation symbols
is often called an interpretation of LQ1, and the restriction of V to variables an assign-
ment for variables. Because we treat free variables and constants semantically on a par,
we don’t need to distinguish between closed and open formulas. This setting is close to
Machover (1996: 151f ). Of course, variations are possible. For example, one may drop
constants and let free variables play their role, as in Hughes and Cresswell (1984); or
one may give free variables the closure-interpretation, as in Fine (1978).

M[x:d] denotes a model which is like M except that vM assigns d Œ D to x; and similar
for M[x1-n/d1-n]. The definition of ‘(M,w)|= A’ is as follows: for atomic formulas, (M,w)|=
Rt1 . . . tn iff ·V(t1), . . . , V(tn)Ò Œ vw(R) and (M,w)|= t1 = t2 iff V(t1) = V(t2); for A = ÿB, B
⁄ C, �B as in the propositional case; and for quantified formulas: (M,w) |= "xA iff "d
Œ D, (M[x:d],w) |= A. The other semantical notions are as in the propositional case. The
coincidence lemma tells us that (M,w) |= A[t/x] iff (M[x:vM(t)],w) |= A (Proof: exercise
(Hughes and Cresswell 1984: 168).

DEFINITION OF NORMAL Q1MLS Given a PML KX, its Q1-counterpart is denoted as Q1KX
and is defined as the smallest set of LQ1-formulas which contains all LQ1-instances of
the axiom schemata of KX plus the following axiom schemata for quantification (UI,
", UG, BF) and identity (I, rISub, rIÿ) (for all x Œ V, t Œ J ):
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UI: "xA … A[t/x] (‘universal instantiation’)
BF: "x�A … �"xA (‘Barcan formula’)
"1: "x(A … B) … ("xA … "xB)
"2: A … "xA, provided x is not free in A.
I: t = t
rISub: t1 = t2 … (A[t1/x] … A[t2/x]) (‘rigid identity-substitution’)
rIÿ: ÿt1 = t2 Æ �ÿt1 = t2 (‘rigid identity w.r.t. ÿ)

and which is closed under the rules of KX (TautR, MP, N) and under the rule:

UG: A/"xA (‘rule of universal generalization’).

Provability �L A and deducibility G �L A is defined as for PMLs.

RECAPITULATION OF NONMODAL QL Prove the dual axiom of ‘existential instantiation’ EI:
A[t/x] … $xA, and the dual rule of ‘existential generalization’ EG: A … B/$xA … B,
provided x œ Vf(B). Prove the equivalence of UG with UGt: A[x/t]/"xA, provided t œ
J(A). Prove that our axiomatization UI + "1 + "2 + UG (also used by Fine 1978) is
equivalent with UI + UG*: ‘A … B/A … "xB, provided x œ Vf(A)’ (used, e.g. in Hughes
and Cresswell 1984: 166).

SYNTACTICAL THEOREMS ABOUT Q1MLS (1) The rule UG is neither valid nor model-
admissible, but merely frame-admissible. (2) BF is valid in every Q1-model. (3) The
converse Barcan formula, cBF: �"xA … "x�A, is a Q1K-theorem. (4) The rigidity
principle rI: t1 = t2 … �(t1 = t2) is a Q1K-theorem, and the rigidity axiom rIÿ is a Q1B-
theorem. (5) The formula �$xA … $x�A is invalid.

PROOF Exercise (see examples below; for 3 see Hughes and Cresswell 1968: 143; for 4
see Schurz 1997: fn.s 108, 109). The counterintuitivity of 5 was illustrated by Quine
(1953, p. 148) as follows: it necessary that one player will win, but for no one of the
players is it necessary that just he will win (cf. Hughes and Cresswell 1968, p. 197).

DISPROOF OF MODEL-ADMISSIBILITY OF UG By the following countermodel M = ·{w}, Ø,
{d1, d2}, VÒ with Vw(F) = {d1}. It yields M |= Fa but M |π "xFx.

PROOF OF FRAME-VALIDITY OF UG BY CONTRAPOSITION Assume ·W,RÒ |π "xFx. So there exist
D, V, w such that for M = ·W,R,D,VÒ and w Œ WM, (M,w) |π "xFx. Hence $d Œ DM:
(M[x:d],w) |π Fx. Since the model M[x:d] is based on ·W,RÒ, this implies that ·W,RÒ |π Fx.
Q.E.D.

A general definition of normal Q1MLs requires a suitable formulation of the rule of
substitution for predicates. This rule was first described by Kleene (1971: 155–62) and
is explained as follows. A substitution instance of formula A w.r.t. an n-ary predicate
Q in ‘name form variables’ z1 . . . zn is a formula A* which results from the simultane-
ous replacement of every occurrence of a term-instance Qt1 . . . tn in A** by a corre-
sponding term-instance B[t1-n/z1-n], for a given formula (‘complex predicate’) B; 
where A** is the first alphabetic variant of A in which no free variable of B other than
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z1, . . . , zn gets bound (for details see Schurz 1995: 45–52). Important in our context is
the following QML-substitution-theorem: frame-validity of Q1ML-formulas is preserved
under substitution for predicates (proof see Schurz 1997: 46–8). This theorem guar-
antees that for every frame class F, L(F ) will be closed under substitution and, hence,
will be a normal Q1-logic. Moreover, our notion of substitution allows us to define a
normal Q1-logic as any formula set L Õ LQ1 which contains Q1K and is closed under
the rules of Q1K and under substitution for predicates. Q1P denotes the lattice of
normal Q1-logics.

As in the propositional case, every L Œ Q1P is representable (but not necessarily
axiomatizable) as Q1KX. L Œ Q1P is called propositionally representable iff L = Q1KX
for some X consisting solely of propositional axiom schemata – in other words, iff L is
the Q1-counterpart of the PML KX. Propositionally representable Q1-logics are the
standard case. However, X may also contain additional quantificational (or identity)
axiom schemata – on two reasons: First, some frame-complete PMLs have frame incom-
plete Q1-counterparts, which need additional LQ1-axioms to become frame-complete
(cf. Q1S4.1 below). Second, there exist interesting cases of additional schemata 
which are only characterizable by nonstandard model-classes, such as Fine’s anti-
Haecceitistic axiom H.

Correspondence, correctness, and w./s. completeness w.r.t. models or frames (and
related notions) are defined as in the propositional case. Of course, Q1-logics do neither
have the f.m.p. w.r.t the domain, nor are they decidable, because nonmodal first-order
logic lacks these properties. Correctness of Q1-logics is proved, as usual, by showing
that all Q1L-axioms are valid on all frames, and that all Q1K-rules preserve frame-
validity; this was done above. The correctness-proof also establishes that every propo-
sitionally representable Q1-logic corresponds to the same class of frames as its
propositional counterpart. This gives us a following frame transfer theorem from PMLs
to their Q1-counterparts: For every PML KX: F(KX) = F(Q1KX). Hence, if a frame-
condition CX corresponds to KX, then it corresponds also to Q1KX.

As in non-modal QL, the domain of the canonical model of a Q1ML is constructed
from the =-equivalence classes of terms. On this reason, the canonical worlds need 
not only be maximally L-consistent formula sets, they also have to be ‘w-complete’. 
The canonical model Mc(L,D) of a Q1-logic L is explicitly relativized to a saturated
formula set D which extends the given L-consistent formula set G and fixes the rigid term
identities. Implicitly, the notion of w-completeness and the canonical model is also 
relativized to the term set J(LQ1) of the given denumerably infinite language 
LQ1.

DEFINITION OF CANONICAL Q1-MODELS (1) A formula set G Õ LQ1 is w-complete (w.r.t.
LQ1) iff for every A Œ LQ1: G �L"xA iff G�L A[t/x] for every t Œ J(LQ1); G is called L-
saturated iff it is both maximally L-consistent and w–complete. (2) The canonical model
Mc(L,D) = ·Wc, Rc, Dc, VcÒ of L Œ Q1P for the L-saturated formula set D in given
language LQ1 is defined as follows: (2.1) W is the set of all L-saturated LQ1-formula
sets w which preserve the D-identities; that is for all t1, t2: t1 = t2 Œ w iff t1 = t2 Œ D (this
ensures constant domain and rigid designators); (2.2) Rc is as in the propositional case;
(2.3) for all t Œ J, Vc(t) = {t*: t = t* Œ D}, and for all Q Œ Rn and w Œ Wc, Vw(Q) = {·Vc(t1),
. . . , Vc(tn)Ò: Qt1 . . . tn Œ w}; (2.4) D = {Vc(t): t Œ J}.
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The proof of strong model-completeness proceeds in the following three steps (this
technique was suggested by Thomason (1970)):

STEP 1: LINDENBAUM–HENKIN-SATURATION-LEMMA Every L-consistent formula set G in
language LQ1 can be extended to an L-saturated formula set D in a language LQ1*
which differs from LQ1 only in that it contains an additional denumerably infinite set
C* of new constants (i.e. C* « C(LQ1) = Ø, C(LQ1*) = C » C*). Given an enumeration
of all formulas Ao, A1 . . . in LQ1* and of all constants in C*, one defines:

Do =df G,
Dn » {An, ÿB[a/x]} (where a is the first constant in C* - C(Dn,An)),

if Gn»{An} is consistent and An is of the form ÿ"xB
Dn+1 =df { Gn » {An}, if Gn»{An} consistent and An is not of the form ÿ"xB

Gn if Gn»{An} is inconsistent
D =df »{Dn: n Œ w}

For each n, there are infinitely many new constants remaining in C* - C(Dn,An); thus
the required new constant always exists. As in the non-modal case it is proved that D
is L-saturated (Garson 1984: 271).

STEP 2 New in the quantificational case is the proof of the canonical model lemma.
This lemma now assures the existence of a formula set which is not only maximally L-
consistent, but also w-complete w.r.t. the same language LQ1* of D. For Q1-logics, this
is proved by exploiting the Barcan formula.

CANONICAL Q1-MODEL LEMMA (1) If G, S Õ LQ1, G is w-complete, and S is finite, then G
» S is w-complete. (2) Every L-consistent and w-complete formula set G can be extended
to an L-saturated set D written in the same language (i.e. the language w.r.t which G
was w-complete). (3) If ÿ�B Œ w Œ Wc(L,D), and w is L-consistent, then {A: �A Œ w}
» {ÿB} is (3.1) L-consistent, (3.2) w-complete, (thus) (3.3) has an L-saturated
extension u written in the same language, such that (3.4) for all t1, t2: t1 = t2 Œ u iff t1

= t2 Œ D. (4) "u Œ Wc(L,D): �A Œ u iff "v Œ Wc(uRcv fi A Œ v).

PROOF Exercise. Hints: For 1 see Garson (1984: 274) (his lemma 1). For 2 see Garson
(1984: 274f ) (his lemma 2). The proof constructs D as above except that it shows that
for each An of the form ÿ"xB, the required constant a exists in the old language,
because Dn is already w-complete by 1 of our lemma. The proof of our lemma 1 + 2
rests solely on classical quantifier principles. 3.1 is proved as in the propositional case.
For 3.2, see Garson (1984: 275) (his lemma 3) – this proof depends on the Barcan
formula. 3.3 follows from 3.1 + 2 by 2. For 3.4, see Garson (1984: 277f ) – this proof
uses the rigidity axiom (rIÿ) and the theorem (rI). 4: this follows from 3 as in the
propositional case.

STEP 3 It is now straightforward to prove the Q1ML-Truth Lemma: For every A Œ LQ1*
and w Œ Wc: (Mc(L,D), w) |= A iff A Œ w. Proof by induction on formula complexity
(Garson 1984: 275f; Hughes and Cresswell 1984: 84, 176). The atomic case holds by
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definition, the steps for propositional operators are as before; the only new item are the
the following steps for the identity of formulas and quantifiers: Step 3.1: (Mc,w)|= t1 =
t2 iff vc(t1) = vc(t2) iff t1 = t2 Œ D (by definition of vc(t)) iff t1 = t2 Œ w (by def. of Wc). Step
3.2: (Mc,w)|= "xA iff "d Œ Dc: (Mc[x:d],w)|= A, iff "t Œ J(LQ1*): (Mc[x:vc(t)],w)|= A 
(by def. of Dc), iff "t Œ J(LQ1*): (Mc,w)|= A[t/x] (by coincidence lemma), iff "t Œ
J(LQ1*): A[t/x] Œ w (by induction hypothesis), iff "xA Œ w (by w-completeness of w).
Q.E.D.

Lindenbaum–Henkin and Truth Lemma establish as in the propositional case that:

Q1ML-MODEL-COMPLETENESS (1) Every normal Q1ML is strongly model-complete, and is
strongly characterized by the class of its models. (2) Q1K is canonical.

As in the propositional case, to prove that a Q1-logic L stronger than Q1K is canoni-
cal requires to show that the frame of L’s canonical model is an L-frame. It is natural
to conjecture that canonicity transfers from all propositionally representable Q1-logics to
their Q1-counterpart. This conjecture was stated as an open problem in Hughes and
Cresswell (1984: 183f ) and was (wrongly) positively answered by Garson (1984: 276),
But quite astonishingly, general canonicity transfer fails. An example of a canonical L
Œ P with a frame-incomplete Q1-counterpart is S4.1:

Q1S4.1-THEOREM (1) S4.1 is canonical. (2) Q1S4.1 is frame-incomplete. (3) Q1S4.1
+ (‡�$xA … ‡$x�A) is canonical.

PROOF For 1 see earlier. 2 is proved by showing that ‡�$xA … ‡$x�A is valid on all
S4.1-frames, but invalid in a certain nonstandard Q1S4.1-model; see Schurz (1997:
292f ), the proof is due to Kit Fine. A proof of 3 is found in Schurz (1997: 293–5).

The reason why the proof of canonicity works for S4.1 but not for Q1S4.1 is that the
first-order frame condition corresponding to S4.1 contains an existential quantifier.
This means in the propositional case that it has to be shown that a certain formula set
has a maximally consistent extension, while in the predicate logical case it has to be
shown that this formula set has a maximally consistent and w-complete extension; but
this is only possible if the additional axiom schemata (‡�$xA Æ ‡$x�A) is available.
However, the following restricted transfer theorem holds:

RESTRICTED Q1-CANONICITY-TRANSFER THEOREM (1) If a normal PML L = KX has the
subframe property (which means that L’s frames are closed under subframes), then
canonicity transfers from KX to Q1KX. (2) If L’s frames are definable by a purely
universal first-order formula, then L has the subframe property.

The proof of 1 is based on the fact that the frame of Mc(Q1KX) is isomorphic with a
subframe of Mc(KX) (see Schurz 1997: 295: for a similar result for intermediate logics
see Shimura 1993: 36). The proof of 2 is straightforward. The theorem covers the
axiom schemata D, T, 5, Altn, Ver, Triv, 0.3, because they correspond to universal first-
order formulas; moreover it covers all subframe logics in the sense of Fine (1985: 624;
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see Chagrov and Zakharyaschev 1997: 380ff ) which include, among others, KG and
KGrz. It is an open problem whether canonicity-transfer holds for larger classes of
normal Q1MLs. In lack of stronger transfer results, canonicity has to be proved for each
QML separately (see Gabbay (1976) and Bowen (1979) for various special canonicity
results).

The transfer problem from monomodal to multimodal logics exists also in the quan-
tificational case, but the propositional proof technique (§2.5) does not generalize to the
quantified case. So far, only canonicity transfer from monomodal Q1-logics to their mul-
timodal combination has been proved in Schurz (1997: 67).

Varying domains, rigid designators and free quantification: Q2-logics

The constant domain assumption implies that whatever exists in the actual world,
exists necessarily, that is in all possible worlds. Moreover, for every t Œ J, ‘t exists’ ($x(x
= t)) is a theorem of nonmodal QL. Hence, �$x(x = t) (‘t necessarily exists’) is a Q1K-
theorem for every t Œ J. This idealization is inadequate when worlds are interpreted as
possible states of the real world, because individuals do not have ‘eternal’ life. So there
is a need to develop semantics with varying domains.

In models with world-relative domains, every world w has its own domain Dw of indi-
viduals – those objects which exist in world w. Dw is the range of the quantifier at w:
"xFx is true at w iff every d Œ Dw has property F. The Barcan formula "x�A … �"xA
is now invalid: it might well be that all individuals in Dw have the property F at all worlds
v accessible from w, but some world v accessible from w has an individual in its domain
Dv which is not in Dw and does not have property F at v (i.e. not "v(Rwv fi "d Œ
Dv((M[x:d],v)|= Fx)). But also, the classical quantifier principles become problematic.
Recall that the converse Barcan formula cBF �"xA … "x�A is a theorem of every
normal modal logic with classical quantifier principles. But in models with world-
relative domains, cBF can only be valid if the condition of nested domains is satisfied:
uRv fi Du Õ Dv. In order to keep classical quantifier principles, Hughes and Cresswell
(1968: 171ff ), Gabbay (1976: 44ff ) and Bowen (1979: 8ff ) adopt this condition.

The nested domain condition is rather restrictive. For symmetric R it even implies a
constant domain for every generated model (recall syntactic Q1ML-theorem no. 4 in the
previous subsection); so the difference to Q1-logics would vanish for all QKB-
extensions with nested domains. But even if this condition is accepted, the classical
quantifier principles are problematic, at least if designators are rigid. Assume a œ Dw;
for example, a = Pegasus and w = the real world. What truth value should be given to
the sentence Fa, for example ‘Pegasus has wings,’ at world w? Since designators are
rigid, the so-called requirement of local predicates, which says that only objects which
exist at world w may be elements of predicate extensions at w, cannot avoid a conflict
with classical quantifier principles. For, if "xFx is true at worlds w, but V(a) œ Dw and
V(a) œ Vw(F), then ÿFa and hence (by classical quantifier principles) $xÿFx is true at
w, contradicting the truth of "xFx at w. A way out is to give sentences about nonexis-
tents at w no truth-value at w. This leads to a semantics with truth value gaps, which
has been developed by Hughes and Cresswell (1968: 170–3) and Gabbay (1976: 44ff ).

If truth-value gaps should be avoided, we must allow that individuals may have prop-
erties at a world without being existent at world w. For example, we must allow that
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‘Pegasus has wings’ is regarded as true at our world although Pegasus does not exist in
our world. Classical quantifier principles can then no longer be valid, for Fa Æ $xFx
comes out false at our world w. Hence, we must adopt the principles of free logic. I agree
with Garson (1984: 261) that free QMLs are the most adequate choice for models with
varying domains. In free logic, the classical UI-axiom is replaced by its free logic variant
fUI: "xA … (Et … A[t/x]); in words: ‘if all objects have property A, and t exists, then t
has property A.’ ‘Et’ is the existence predicate, defined as ‘$x(x = t).’ A like change is made
for the rule UG. A first system of this kind has been suggested by Kripke (1963b); but
Kripke only mentions this possibility (1963b: 70) and prefers to an axiomatization
which avoids formulas with constants or free variables. Fine (1978) has given an 
elaboration of this kind of free modal QL for S5, and several further systems are dis-
cussed in Garson (1984: 257, 285). We call these logics Q2-logics and define their basic
concepts as follows.

DEFINITIONS The Q2-language LQ2 is syntactically like LQ1, but it is interpreted in
different way. The existence predicate E in Q2-languages is defined by Et =df $x(x = t). An
Q2-model (based on frame ·W,RÒ) is a quintuple M = ·W,R,U,Df,VÒ, where U π Ø is the
total domain of possible individuals and Df: W Æ Pow(U) is the domain function assigning
to each world w Œ W its domain Dw Õ U. Dw is called the inner domain of w (the existing
objects of w) and U–Dw the outer domain of w (the nonexisting objects of w). (One could
add the requirement U = »wŒWDw; but this would not bring new theorems; see Schurz
(1997: 198).) The valuation function for terms and predicates and the truth clauses 
for atomic formulas, identity formulas, and propositionally compound formulas are as
in Q1-logics. The only new clauses concern quantification: (M, w) |="xA iff for every 
d Œ Dw, (M[x:d],w) |= A. This yields for the existence predicate: (M,w) |= Et iff v(t) Œ Dw.

The minimal normal Q2-logic, Q2K, is axiomatically defined like K1 except that (1)
the axiom schema BF is dropped, (2) the axiom UI is replaced by its free version fUI: "xA
Æ (Et Æ A[t/x]), and (3) the rule UG is replaced by its free version fUG: Ex Æ A/"xA
(Garson 1984: 252; Fine 1978: 131f, suggests an equivalent axiomatization which
keeps UG and adds ‘"xEx’). Exercise: Prove the duals fEI: (Et Ÿ A[t/x]) … $xA, and fEG:
A Ÿ Ex … B/$xA … B, provided xœVf(B). L is a normal Q2-logics, (L Œ Q2P) iff L extends
Q2K and is closed under the rules of Q2K and under substitution for nonlogical 
predicates. As before, every L Œ Q2P is representable as Q2KX. The strategy of proving
model-completeness which was used for Q1-logics fails for Q2-logics, because the Barcan
formula is missing which allowed us to construct saturated sets in the same language.
Fine (1978: 131–5) gives a proof of canonicity for Q2S5 based on so-called nice dia-
grams (these are saturated sets of formula-world pairs). As far as I can see, this tech-
nique generalizes to all Q2-logics containing Q2B, but not to all Q2-logics. A general
proof of model-completeness via a canonical model construction is possible by replac-
ing the rule (fUG) by the following stronger rule. A G-function is a function G: LQ2 Æ
LQ2 which assigns to each A Œ LQ2 a formula of the form G(A):= B0 Æ �(B1 Æ �(B2

Æ . . . �(Bn Æ A) . . .), for given B0, B1, . . . ,Bn (n ≥ 0) where B0 may be missing. The
stronger rule is:

GUG: G(Ex Æ Ax)/G("xA), provided x œ Vf(G("xA)
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With minor simplifications I am following Garson (1984: 282ff; Garson also replaces
fUI by GUI, but this replacement is redundant; see Schurz 1997: 199f ). GUG preserves
frame-validity and, thus, is correct w.r.t. the class of Q2-models. GUG also covers rule
(fUG*) (recall §3.1), and thus, it implies the axioms "1 + 2. A Q2-logic where UG + "1
+ 2 are replaced by GUG is called a QG2-logic. Model-completeness of QG2-logics can
be proved similar as for Q1-logics. The worlds of the canonical model Mc(L,D} (in given
LQ2*) are now all G-saturated formula sets; these are all maximally L-consistent
formula sets G which are G-complete: G �L G("xA) iff G �L G(Et … A[t/x]) for every t Œ
J*. The proof proceeds through the same steps as before; due to the stronger G-rule it
can be proved, without BF, that for every w Œ Wc with ÿ�B Œ w, {A: �A Õ w} » {ÿB}
can be extended to a G-saturated set in the same language. For terms and predicates,
Rc and Vc are defined as before; Uc = {Vc(t): t Œ J*}, Dfc: W Æ Pow(Uc) such that Dc(w)
= {Vc(t): Et Œ D}. We thus obtain the QG2ML-model-completeness-theorem: Every QG2-
logic L is correct and strongly complete w.r.t. the class of its Q2-models, and Q2GK is
canonical.

Garson (1984: 284f ) claims it as an open problem if and to which extent the rule
GUG is indeed stronger than UG. Schurz (1997: 200) gives a partial answer, by proving
the GUG-Theorem: In all Q2-logics which contain B, GUG is admissible. Hence, all
normal extensions of Q2B are strongly model-complete. It is an open problem whether
there exist model-incomplete Q2MLs that don’t extend Q2B.

Concerning frame-completeness, the same restricted tranfer result as for Q1-logics
can be proved for propositionally representable Q(G)2-logics. Schurz (1997: 201f )
defines a translation function t: LQ2 Æ LQ1 which translates Q2-formulas into seman-
tically equivalent Q1-formulas, and Q2-models into corresponding Q1-models. An
inverse translation is impossible: the LQ1-quantifier figures like a possibilistic quantifier
for translated LQ2-logics; thus LQ1 has greater expressive power than LQ2. With the
help of this translation function, various transfer theorems from Q1- to Q2-logics are
established; in particular the following frame-transfer: for every L Œ Q2P: F(L) = F(t(L)),
where t(L) is the Q1-translation of Q2-logic L. If X is propositional, then t(X) = X; hence
propositionally representable Q2-logics have the same frame-classes as their Q1-coun-
terparts. Whether transfer of frame-completeness from Q1MLs to Q2MLs is possible
remains an open problem (Schurz 1997: 204).

Nonrigid designators, counterpart theory, 
and worldline semantics: Q3-logics

Rigid designators presuppose that the fixation of their reference does not depend on
any contingent property of the individual to which they refer. This may be true for
mathematical objects such as ‘7’ or ‘9’ (Kripke 1972 uses them often as illustrations),
but is it possibly true for empirical objects? According to Putnam’s famous account of
meaning (1975), the fixation of rigid reference is based (1) on an indexical relation of
direct acquaintance with the individual in the present (hic et nunc) state (the act of ‘bab-
tizing’), and (2) on a unique relation of causal successorship or predecessorship.
Accordingly, there are two problems with that account. Concerning (2), nothing guar-
antees that the relation of predecessor- or successorship in past and future states is
uniquely determined. Take Frege’s old example of the morning and the evening star,
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both of which are identical with the planet Venus: assume that in some future time,
Venus splits into two planets, one appearing only at the morning and the other in the
evening, then, to what objects will the names ‘morning star’ and ‘evening star’ refer 
in that distant future state? (A more realistic example is the process of cell division.)
And concerning (1), the relation of ‘acquaintance’ in the act of ‘baptizing’ is never
absolutely ‘direct’ but always mediated through contingent properties.

Hintikka (1961) and Kanger (1957b) have already made suggestions for QMLs with
non-rigid designators, in short: nonrigid QMLs (also see Hughes and Cresswell 1968:
195). Syntactically, the axiom rIÿ has to be dropped for nonrigid QMLs, and the rigid
principle of substitution of identicals rISub must be restricted to nonmodal formulas as
follows:

ISub: t1 = t2 … (A[t1/x] … A[t2/x]), provided A does not contain ‘� ’.

As a result, the identity theorems of nonrigid QMLs are no longer closed under the
unrestricted rule of substitution for predicates. They are still closed under substitution
of arbitrary nonmodal formulas for predicates (cf. Schurz 1997: 221).

Semantically, nonrigid designators require a world-relativization of the valuation
functions for terms; v: J ¥ W Æ U where v(t,w) =df vw(t) is the extension of term t at
world w, and the partial function v(t): W Æ U such that v(t)(w) = vw(t) is the intension
of term t. The debate between Kripke and Lewis, whether individuals in different worlds
are strictly identical (Kripke) or merely counterparts of each other (Lewis), is logically
less decisive than one might think. Rigid designator axioms are also adequately char-
acterized by the unique counterpart view, according to which every individual possesses
a unique counterpart in every possible world (see also Forbes 1985: 60ff ). We just have
to assume that the valuation function v assigns to each term t and world w a pair ·d,wÒ,
which stands for the world-relativized individual d-in-w, such that the domain compo-
nent ‘d’ of this pair is the same in all worlds. Then, each world w has its own domain
D ¥ {w} and each world-relativized individual ·d,wÒ has a unique counterpart ·d,uÒ in
each world u Œ W. The resulting logic would be Q1ML (but the same modification can
be made for Q2MLs). Hence, the important point of a semantics for nonrigid designa-
tors, which do not obey rigid identity axioms, is the assumption of a counterpart rela-
tion which is not unique.

The real problem of nonrigid designators is the semantical interpretation of quanti-
fied de re formulas. Take, for example, (M,w) |= $x�Fx. This means formally that there
exists d Œ Dw such that for all w-accessible worlds v: (M[x:d],v) |= Fx. But how do we
define the x-variation V[x:d] of VM if designators are non-rigid? The most simple possi-
bility would be to assume that V[x:d] assigns d to x in all worlds. In the effect, this means
that variables are interpreted as rigid designators; only constants are nonrigid. This
option is chosen by Thomason (1970). However, the free quantification axiom (fUI)
becomes invalid in these systems: from the (fEG)-instance �(t = t) Ÿ Et … $x�(x = t) the
formula Et … $x�(x = t) is provable, though it is invalid, because it requires t to have
the same extension at all accessible worlds, which need not be the case (Garson 1984:
262). Hintikka (1970) suggests to replace (fUI) by a complicated instantiation rule,
which in case of Thomason’s system Q3-S4 reduces to "xA … (�Et … A[x/t]) (Garson
1984: 263); generalized completeness proofs for these kinds of systems have not been
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found. A possibility of handling systems with rigid variables and nonrigid constants,
elaborated by Bowen (1979), is to assume that terms are local, that is that their exten-
sions at worlds always exist in that world; this locality option becomes available when
terms are nonrigid. Bowen also accepts the nested domain condition, with the result
that classical quantification principles are valid in his systems, and generalized proofs
of model-completeness are possible.

All systems with rigid variables contain the theorem "x"y(x = y … �x ∫ y), which
a strict defender of nonrigidity wants to avoid. Another possibility of defining V[x:d]
would be to allow V[x:d] to be any function from W into D, satisfying only the restric-
tion that Vw(x) = d. In counterpart terminology, this means that anything may count
as a counterpart of d in other worlds. This semantics corresponds to Garson’s concep-
tual interpretation (1984: 266). Apart from the resulting incompleteness (Garson
1984: 266), this semantics validates the counterintuitive formula �$xFx … $x�Fx,
which is a clear reason to reject it (Hughes and Cresswell 1968: 197f ).

What one needs is a way to restrict the ‘allowed’ functions over which V[x:d] may
range, and the natural way to do this is by way of a counterpart relation which specifies
the counterparts of d Œ Dw in all w-accessible worlds. This account has been developed
by Lewis (1968), though not within the framework of modal logic but within that of
ordinary first-order logic, and by assuming universal frames. Specifically, Lewis intro-
duces the predicates Ww for ‘w is a world,’ ‘Ixw’ for ‘object x exists in world w,’ and Cxy
for ‘y is a counterpart of x.’ The counterpart relation need neither be symmetric nor
transitive. Let us present Lewis’ theory in the framework of modal logic, interpreting
Cxy as ‘y is a counterpart of x in a world w accessible from x’s world.’ Then Lewis’ pro-
posed semantical interpretation of de re sentences can be reformulated in this way
(1968: 118):

(M[x1-n:d1-n],u) |= �A iff for all w-accessible worlds v and all d¢1, . . . , d¢n such 
that each d¢i is a counterpart of di in v, (M[x1-n:d¢1-n],v) |= A.

(M[x1-n:d1-n],u) |= ‡A iff for some w-accessible worlds v and some d¢1, . . . , d¢n

such that each d¢i is a counterpart of di in v, (M[x1-n:d¢1-n],v) |= A.
(M,u) |= oA[t1/x1, . . . , tn/xn] iff (M[x1-n:v(t1-n)],u) |= oA, with o Œ {�,‡}; i.e., iff for 

all/some w-accessible worlds v and all/some d1, . . . , dn

such that each di is a counterpart of ti’s extension at w in v, 
(M[x1-n:d¢1-n],v) |= A.

The problem is that Lewis’ counterpart theory, if taken as a semantics for modal logic,
is logically not well-behaved. It is not closed under substitution, even not substitution
of atomic formulas for propositional variables. For example, �p … ��p will be valid on
a transitive frame, yet �Ft … ��Ft might be invalid in a Lewis model imposed on that
frame, because the counterpart relation need not be transitive. More drastically,
Wollaston (1994) shows that Lewis’ semantics invalidates the modal principles K and
M, and even the nonmodal principle UI. Ghilardi (1991) has developed a semantics for
nonrigid QML which adopts the nested domain condition and models counterpart rela-
tions as functions c: Du Æ Dv for uRv. His systems are logically well-behaved, but he
obtains drastic incompleteness results; for example the QML Altn is incomplete in his
semantics, though canonical in our Q1-, Q2- and Q3-semantics (cf. corollary 7.5 of
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Ghilardi). More recently, Skvortsov and Shehtman (1993) have introduced a new kind
of frame semantics, so-called metaframe semantics, which is a generalization of
Ghilardi’s functor semantics. They are able to show that completeness w.r.t. metaframes
generally transfers from a PML to its quantificational counterpart. Technically, this is a
great success. However, metaframe semantics is not based on domains of individuals,
but on domains of ‘abstract’ n-tuples which are not reducible to the nth Cartesian
product of an ordinary domain. So far, no one has given a philosophically transparent
interpretation of metaframe semantics.

The philosophically more transparent alternative is the substantial interpretation of
quantifiers, where quantifiers do not range over objects (term extensions), but over
functions from worlds into objects (term intensions). This suggestion has been intro-
duced by Hughes and Cresswell (1968: 198ff ) and is extensively elaborated in Garson
(1984: 267ff ); specifically in his system QS. One assumes here, for each world, a set of
term intensions, that is functions from W to D, which are the ‘substances’ which exist
at that world; quantifiers range over these term intensions. Schurz (1997) shows that
with some modifications, Garson’s semantics can be reinterpreted from the objectual
view as a certain kind of counterpart semantics, so-called world-line semantics. We call
the logics based on it Q3-logics, and explain it as follows.

A ‘term-intension,’ that is a function l:W Æ U is called a worldline (in analogy to
wordlines in Minkowski’s space–time diagrams). A worldline l lands object d at world w
if l(w) = d. The important component of Q3-models is a set L of worldlines (‘substances’)
which specifies the possible term intensions. L determines a four-placed counterpart
relation ‘object d1 in u has d2 as a counterpart in v’ defined as follows: there exists a
worldline in L which lands d1 at u and d2 at v. For each w Œ W, Uw is the set of objects
landed by some wordline at w, that is, the set of all w-counterparts of possible objects.
Predicate extensions at w are taken from Uw. To obtain a free logic version of this seman-
tics we also need a domain function Df which assigns to each world w a subset Dw Õ
Uw of objects existing in w. The world-specific sets of worldlines Lw over which quanti-
fiers range are given as the set of worldlines which land some object in Dw.

Q3ML-DEFINITIONS The Q3-language LQ3 is syntactically like an LQ1-language; the
existence predicate E is defined as in LQ2. A Q3-model based on a frame ·W,RÒ is a 6-
tupe ·W,R,L,U,Df,VÒ, with Ø π L Õ {l:W Æ U} a nonempty set of possible worldlines,
where U π Ø is a nonempty set of possible objects; Df: W Æ U such that Df(w) =df Dw Õ
Uw is the domain function, where Uw =df {d Œ U: $l Œ L(l(w) = d)} is the set of term-
extensions at w. We define Lw =df {l Œ L: $d Œ Dw(l(w) = d)}. Concerning V: for each t Œ
J, V(t) Œ L; and for each n-ary Q Œ Rn, Vw(Q) Õ Uw

n. M[x:l] denotes a model which is
like M except that it assigns the wordline l to x. The truth clauses are as follows: (i) (M,w)
|= Qt1 . . . tn iff ·Vw(t1), . . . , Vw(tn)Ò Œ Vw(Q); (M,w) |= t1 = t2 iff Vw(t1) = Vw(t2); for
propositional operators as before; and for the quantifier: (M,w) |= "xA iff for all l Œ Lw,
(M[x:l],w) |= A; this yields (M,w) |= Et iff Vw(t) Œ Dw for the existence predicate.

Worldline semantics is fully compatible with the objectual view. Identity and 
existence statements depend only on the extensions of terms. The truth clauses for
quantifiers may be rephrased in Lewis’ counterpart style where quantifiers range over
objects as follows: (M,w) |= "xA [$xA] iff for all [some, resp.] d Œ Dw and l Œ L such that
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Vw(l) = d: (M[x:l],w)|= A. For each particular formula, the quantification over worldlines
is eliminable, for example: (M,u) |= "x�Fx [$x‡Fx] iff for all [some, resp.] d Œ Dw , 
w-accessible world(s) v, and v-counterpart(s) d¢ of d: d¢ is in Vv(F).

The essential difference to Lewis’ counterpart semantics is threefold. First, the coun-
terpart relation defined by worldlines is symmetric and obeys further structural prop-
erties which are not satisfied by Lewis’ counterpart relation. Second, quantification over
counterparts is in worldline semantics governed by the quantifier, but in Lewis’ seman-
tics governed by the modal operator. The de re formulas "x�Fx and $x‡Fx are evalu-
ated in the same way, but the de re formulas "x‡Fx and $x�Fx are evaluated differently:
in Lewis semantics, (M,w) |= "x‡Fx iff for every d Œ Dw there exists some w-accessible
world u such that some counterpart d¢ of d in u is in Vu(F), while in worldline seman-
tics, (M,w) |= "x‡Fx iff for every d Œ Dw there exists some w-accessible world u such that
every counterpart d¢ of d in u is in Vu(F). Likewise for the formula "x�Fx. Third, Lewis’
semantics does not assign wordlines (term intensions) to terms t, but quantifies over
the counterparts of term extensions Vw(t) in de re scopes, while wordline semantics
determines the counterparts of Vw(t) by their wordlines l(t). For example, assume Dudu
is the name of an amoeba a at world w which in all accessible worlds u splits up into
two, namely b and c, where b keeps alive and c is dying in u, and we decide that Dudu
should name b (but not c) at all w-accessible u. Then the sentence ‘necessarily Dudu is
alive’ is true in worldline semantics, but false in Lewis style counterpart semantics. Note
finally that the language of worldline semantics has a greater expressive power than
that of Lewis’ counterpart semantics. Lewis’ modal operators (�L, ‡L) are definable
within worldline semantics as follows (Schurz 1997: 222):

�L A[t1-n/x1-n] =df "y1-n(Ÿ{ti = yi: 1 £ i £ n} … �A[y1-n/x1-n]), and
‡A[t1-n/x1-n]:= $y1-n(Ÿ{ti = yi: 1 £ i £ n} Ÿ ‡A[y1-n/x1-n]), where x1, . . . , xn = J(A).

The essential difference of worldline semantics as compared to Garson’s substantial
semantics is that Garson does not define the world-relative sets of worldlines (‘sub-
stances’) Lw by the extension of an ordinary existence predicate, as we did, but he intro-
duces them directly, without such a predicate, and the truth clause of his existence
predicate is: (M,w) |= Et iff v(t) Œ Lw (Garson 1984: 279). This turns his existence pred-
icate into an ‘intensional’ one which contains as its world-specific extension a set of
term intensions. As a result, substitution of E in the identity axiom (ISub) is not allowed
in Garson’s system (1984: 268); though it is allowed in our system. Besides this greater
simplicity, it seems to be philosophically more intuitive not to assume world-specifics set
Lw as a primitive notion, for the existence of worldlines (‘substances’) is not a contin-
gent matter; only the existence of objects is contingent.

The logic Q3K is defined like Q2K except that the rigid identity axiom rIÿ is dropped
and rISub is replaced by ISub above. ISub is only closed under restricted substitution
for predicates, while the other axiom schemata are closed under general substitution.
On this reason, normal Q3-logics cannot be defined as before. We rather have to define
a normal Q3-logic as a subset L Õ LQ3 which is representable as Q3KX, that is it con-
tains all axioms (not merely the schemata) of Q3K, is closed under the rules of Q3KX
(TautR, fUG, N) and contains all (unrestricted substitution) instances of the additional
set of axiom schemata X, except for additional identity axioms in X to which only non-
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modal substitution applies (Schurz 1997: 221). The canonical model Mc(L) of a Q3ML
L need no longer be relativized to an initial saturated set D which determines rigid iden-
tities. It is defined as ·Wc,Rc,Lc,Uc,Dfc,VcÒ, where Wc is now the set of all G-saturated
formula sets, Rc is as usual, and Vc(t): Wc Æ Uc is such that Vc,w(t) = {t¢ Œ J*: t = t¢ Œ
w}, Uc = {Vc,w(t): w Œ W,t Œ J*}, Lc = {Vc(t): t Œ J*}, Dfc:Wc Æ Pow(Uc) such that Df(w)
= {Vc(t): t Œ J*, Et Œ w}. Model-completeness is proved with help of the stronger G-rule
GUG in the same way as for Q2-logics (Garson 1984: 282ff ). We thus arrive at the
QG3ML-model-completeness-theorem: all normal QG3MLs are adequately characterized
by the class of their models, and Q3K is canonical. Q(G)3-logics behave similar as Q2-
logics: one can show that GUG is admissible in all normal extensions of Q3B, that
restricted canonicity-transfer holds, and that the frames of Q3-logics are the same as
their Q1-counterparts (Schurz 1997: ch. 10.8–10). A different technique proves
model-completeness for Q3-logics by introducing for each canonical world a new set of
constants. This proof avoids the stronger G-rules, but it is not completely general:
certain properties of the canonical frame cannot be proved in the standard way because
canonical worlds don’t share the same language (Garson 1984: 276–81).
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Epistemic Logic

N I C H O L A S R E S C H E R

1 Accessible Knowledge

The antecedents of epistemic logic – the logical theory of propositions regarding belief,
knowledge and, by extension, also assertion, assumption, and presupposition, go back
to the Middle Ages – especially to William of Ockham (see Boh 1993). However, as a
significant branch of philosophical logic, epistemic logic is an innovation of the period
1945–75, the first generation after World War II. At its center lies the relational oper-
ator Kxp for ‘x knows that p,’ where Kx can be thought of as a parametized modality
characterizing the person-relative epistemic status of a proposition. For such an oper-
ator to stand coordinate with something worthy of being called a ‘logic’ it is requisite
to begin with a detailed analysis of the sort of ‘knowledge’ that is to be at issue.
Construed in this way, with a focus upon knowledge (epistêmê) as such, epistemic logic
is part of a broader project that addresses also the logic of belief, supposition, conjec-
ture, etc. – that is, a logic of cognitive processes in general.

The conception of ‘knowledge’ represents clearly a flexible and internally diversified
idea. In general terms, it relates to the way in which persons can be said to have access
to information. This can, of course, occur in rather different ways:

• Occurrent knowledge This is a matter of actively paying heed or attention to
accepted information. A person can say: ‘I am (at this very moment) considering or
attending to or otherwise taking note of the fact that hydrogen is the lightest
element.’ The present evidence of our senses – ‘I see a cat on the mat’ – is an example
of this sort of thing.

• Dispositional knowledge This is a matter of what people would say or think if the
occasion arose – of what, for example, they would say if asked. Even when X is
reading Hamlet or, for that matter, sleeping, we would say that this individual knows
(in the presently relevant dispositional manner) that Tokyo is the capital of Japan.

• Accessible knowledge This is a matter not of what a person would say if asked (= dis-
positional knowledge) but of what one could say if he is sufficiently clever about
using the information that is at one’s disposal occurrently or dispositionally. In other
words it is what is implied by or inferable from the facts he already knows in any of
these senses.



As we propose to understand it here, knowledge will be construed recursively in that
third sense of what is inferentially accessible from one’s own information. For reasons
that will become increasingly clear below, our focus is upon available rather than occur-
rent knowledge. Accordingly, a person knows something (1) if this is known to him
occurrently, or (2) if this is known to him dispositionally, or (3) if this can be derived
by logical deduction or by other secure inferential means from information that is
(already) known to him. It is this recursive conception of knowledge that will concern
us here, the relationship Kxp, for ‘x knows that p,’ being understood in the specified
manner. We thus immediately secure such relationships as the Inferential Accessibility
Principle:

[Kxp & (p Æ q)] Æ Kxq

as well as the Knowledge Compilation (or Conjunctivity) Principle:

(Kxp & Kxq) Æ Kx(p & q)

(Note: In all such formulas, apparently free variables are to be thought of as bound by
initial universal quantifiers.)

Our knowers can systematically draw appropriate conclusions and ‘put two and two
together.’ The controlling consideration here is not that they are ‘logically omniscient,’
but rather that the availability-oriented sense of knowing that is at issue here provides
for such inferential projection. Admittedly, to construe knowing in terms of these capa-
bilities is to interpret the idea in a particularly generous sense. However, this approach
is amply justified by the aims of the enterprise in so far as one’s special interest is in the
limits of knowledge.

Given this inclusive and generous sense of knowing, it should be noted that if p is 
a thesis demonstrable on logico-conceptual grounds alone, then p will be universally
available since it can be deductively derived from any thesis whatsoever so that Kxp
can be held to obtain for any knower x. Accordingly, given the inferential accessibility
reading of K, we have

Np Æ ("x)Kxp

subject to the convention that N and P will represent logico-conceptual necessity 
and possibility, respectively, within the setting of modal system S5 of C. I. Lewis. This 
is simply an aspect of our governing supposition that logico-conceptual matters are 
universally accessible.

Inferential prowess notwithstanding, the ‘knowers’ at issue in this discussion are
finite knowers. Thus while we have it that Every knower knows something (i.e. some
truths, and specifically all necessary ones), and thus ("x)($p)Kxp, we also have it that:
Every knower is ignorant of some truth: ("x)($p)(p & ~Kxp). Moreover, any truth is a 
candidate for being known: whenever p is true, then P($x)Kxp.

As these remarks indicate, the present discussion will move beyond quantified modal
logic (QML) to articulate principles of a qualified modal epistemic logic (QMEL).
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2 Actual vs. Putative Knowledge

The distinction between actual and merely putative knowledge is critical for present
purposes: we can and must operate with the distinction between ‘our truth’ and ‘the
truth.’ Nevertheless, while we realize full well that some of the claims that we regard
as true will turn out to be false, we of course cannot particularize here: ‘Give me an
example of a proposition that you accept as true but that really isn’t’ represents an
absurd request. It lies in the nature of things that we see our truth as the truth in the
realm of specifics.

Rational people are committed to seeing their knowledge as real knowledge – and
therefore as subject to those principles which hold for genuine knowledge in general.
Now in taking ‘our own putative knowledge’ to be true – that is, viewing it as actual
knowledge – we accept the principle:

Kip Æ p (where i should be construed as ‘I myself ’ and/or ‘we ourselves’).

And since we standardly credit others with the same privileges and liabilities that we
claim for ourselves we can generalize the preceding principle to:

Kxp Æ p

When claiming Kxp we take the stance that p is something that x really and truly knows
to be so. That means that we take ourselves to know p to be true. On this basis, Kxp &
~p – ‘x knows that p but it isn’t so’ – is to all intents and purposes a self-contradiction.
We would not say that someone knows something if we thought that this were not so
but would instead have to say something like ‘he merely thinks he knows that p.’ For
this reason Kxp & ~Kip is also a comparable self-contradiction. To attribute knowledge
of a particular fact to another is also to claim it for oneself. On the other hand, the
generic ($p)(Kxp & ~Kip) – that is ‘x knows something I don’t’ – is a perfectly plausible
proposition. It is just that one cannot concretize it to the level of specifics: particulariz-
ing existential instantiation becomes impracticable here.

The thesis Kxp Æ p also means that no knower ever knows that he is mistaken about
something concrete that he takes himself to know. This was a commonplace among
medieval logicians, who held that Nihil scire potest nisi verum (see Boh 1993: 48). The
thesis Kxp & Kx(~Kxp) is thereby self-contradictory since its second conjunct entails the
denial of what the first conjunct affirms. The idea at issue here is not new but was also
a commonplace among medieval logicians. Thus Albert of Saxony (ca. 1325–90)
argued in his treatise on Insolubilia that “Socrates knows that he is mistaken in believ-
ing A” is a self-contradictory contention. (See Kretzmann and Stump 1988: 363–4.)

3 Levels of Acceptance and Rejection

In articulating epistemological principles we must come to terms with the fact that one
can distinguish three different levels or bases of assertability on which such principles
can be affirmed:
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1. Conceptual truth A thesis that holds good on logico-conceptual goals of meaning
and usage alone; its denial involves one in saying things which, while perhaps
understandable, are acceptable only subject to elaborate explanations and qualifi-
cation and in their absence are effectively paradoxical.

2. Contingent truth A thesis whose acceptability cannot be substantiated by any
amount of merely conceptual or verbal elucidation but whose validity roots in the
cognitively discernible contingent features of the real world.

3. Plausible truth-candidates A thesis not clearly spoken for by the available facts but
for whose substantiation cogent considerations of plausibility can be adduced and
which therefore merits at least qualified endorsement and provisional acceptance.

Each of these defines a level of tenability or assertability which may be characterized
as levels 1, 2, and 3, respectively. (The lower the tenability level of a principle, the more
unproblematic and probatively secure it will be.)

Let �Z indicate (as usual) that Z is an assertion of the system we are engaged in for-
mulating. Then with respect to level-one principles we have:

If �1 Z then NZ – and therefore also, as we have seen, N("x)KxZ

Since all the principles of our system are to be seen as matters of logico-conceptual
necessity, the unqualified prefix � is to be construed as �1. In being matters of logico-
conceptual necessity, all level-one principles are accordingly universally available in the
inferential-accessibility mode of knowledge.

With respect to level two principles by contrast we merely have:

If �2 Z then KiZ and thus also (but merely) ($x)KxZ (whence also Z)

Since i = we ourselves, it is unavoidable that Z be seen as representing something that
we really know to be true.

Finally, with respect to level-three principles we merely have

If �3 Z then Z

Here we do indeed regard the thesis in question as being true but without claiming
actual knowledge of the matter. For in general, the propositions we ourselves see as emi-
nently plausible are accepted by us as true. (In theory something viewed as highly plau-
sible can in fact be false, but we are of course incapable of giving a current first-hand
example: ‘I see p as deserving of acceptance, but it is false’ comes close to being a con-
tradiction in terms. Illustrations from the past or those involving others are, of course,
another matter.) Here at level three we claim truth in a tentative and provisional way
that falls short of actual knowledge. Accordingly, the inference

�3 Z then ($x)KxZ

is inappropriate – and thus a fortiori also the inference to KiZ. On the contrary, we have
it that if �3 Z then ~($x)KxZ. Nobody knows a level-three principle (ourselves included!):
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every assertion at level-three has to be seen as a truth that is not actually known. Such
theses may be surmised or presumed, but even at best they are plausible truths that
nobody knows to be such – such as the thesis ‘There are mountains on the far side of
the moon’ is the cognitive state of the art of the nineteenth century.

The existence of the third level of assertion is a reminder that epistemology is
broader than the theory of knowledge. For matters of presumption, conjecture, reason-
able belief, and warranted assertability also clearly fall within its purview.

On this basis, then, all three of these modes of ‘assertion’ do indeed convey a com-
mitment – an assertion. A claim that Z is the case obtains in every instance, but with
different assertoric modalities, so to speak. For in this context we must deploy the dis-
tinction between what is known to be true and what is accepted or asserted (as true)
on a weaker basis – conjuncture, plausible suppositions, or the like. The latter sort of
thing is being claimed as true, alright, but in a substantially less firm and confident tone
of voice. However, the tenability of level-three principles is at odds with acknowledg-
ing that someone knows the contrary. For note that when ("x)~Kx~Z is false, so that
~("x)~Kx~Z obtains, then of course we will have ($x)Kx~Z. This means that ~Z would
have to obtain (at least at level 2), so that Z would not be a level-three assertion after
all – contrary to our initial stipulation.

Despite the acceptability of ($p)(p & ~($x)Kxp), no particular proposition of the form
p0 & ~($x)Kxp0 is ever assertable at levels one or two. For asserting this at level one would
mean accepting Np0 which is at odds with ~($x)Kxp0. And asserting it at level two would
involve a commitment to Kip0 which is also at odds with ~($x)Kxp0.

One can, of course, use some epistemic principles to deduce others; here, as else-
where, inference from givens is a cognitively viable project. And the epistemic level of a
conclusion derived from premises cannot be greater than the largest index-level of the
premises required for its derivation. In point of cognitive tenability or assertability, the
status of a derived thesis cannot be weaker, so to speak, than the weakest link among
the premises from which it derives.

Theses that entail the negation (denial) of an assertion must themselves be denied
(at the appropriate level). We shall employ the symbol � to indicate denial/rejection.
This should be subscripted to indicate the appropriate level, subject to the convention
that � Z obtains at a level iff � ~Z does so.

4 Level One Principles: Logico-Conceptual Truths

Let us consider some examples of cognitive principles at each assertion level category,
beginning with the first, that of principles which inhere in the very nature of the logico-
conceptual construction of ‘knowledge’ as accessible knowledge. The following seven
basic principles obtain here:

K1 Knower capacity
("x)($p)Kxp and even more strongly ("x)($p)[Kxp & ~Np]

K2 Knower finitude
("x)($t)~Kxt or equivalently ~($x)("t)Kxt, where t ranges specifically over truths.
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K3 Knowledge authenticity
~($t)($x)Kx~t or equivalently ("t)("x)~Kx~t.

K4 Inferential accessibility
(p Æ q) Æ (Kxp Æ Kxq)

K5 Conjunctivity
(Kxp & Kxq) Æ Kx(p & q)

K6 Reflexivity
Kxp Æ KxKxp

K7 Truth Availability
("t)P($x)Kxt

Here N and P represent logico-conceptual necessity and possibility, respectively, and Æ
is a strong (logico-conceptual) implication such that p Æ q is equivalent with N(p Æ q).
Also, the variables t, t¢, t≤, etc. will serve to range over truths. And throughout, free
variables are to be taken as tacitly bound to initial universal quantifiers.

Each of these principles merits a brief explanation.

K1 ("x)($p)(Kxp & ~Np) simply asserts: Every knower knows something – and indeed
some contingent (i.e. non-necessary) truth or other. This obtains simply in virtue of
the fact that we are supposed to be talking about knowers.

K2 ("x)($t)~Kxt reflects the fact that we are dealing with finite knowers. In the present
context of discussion, no knower is omniscient; none knows of all truths that they
are true – not even on the present generously undemanding construal of knowl-
edge. Since t ranges specifically over truths we have it that, for example, ($t)Kxt
comes to ($p)(p & Kxp).

K3 ("t)("x)~Kx~t asserts: Only true propositions can be known. This thesis roots in the
very nature of ‘knowledge’ as this concept is generally understood. For it makes
no sense to say: ‘x knows that p, but p is not true.’ Of course, someone may think
or believe that he knows something that is false. But to say that he actually knows
it is to acknowledge its truth.

Let us further adopt the abbreviation Up for ~($x)Kxp or equivalently ("x)~Kxp – that
is, for ‘p is unknown.’ Then the just-stated finding means that ("t)U(~t). No one knows
something that is false, that is: Nobody knows an untruth to be the case. (But of course
one can know that it is an untruth.)

K4 (p Æ q) Æ (Kxp Æ Kxq). Knowers automatically know the things that follow from what
they know. This obtains because it is the tacit or implicit sense of ‘knowledge’ as
inferentially accessible information that is at issue in our discussion.

Since in virtue of K4 our knowers know all necessary propositions, we of course have
it that every knower knows that any given p is true-or-false: ("x)Kx(p ⁄ ~p) or equiva-
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lently ~($x)~Kx(p ⁄ ~p). But in view of K2 there certainly can be knowers who do not
know whether p is true or is false: ($x)(~Kxp & ~Kx~p).

K5 (Kxp & Kxq) Æ Kx(p & q). Knowers know conjointly and collectively anything they know
distributively. This too obtains in virtue of the generous accessibility-oriented sense
of ‘knowledge’ that concerns us here, which supposes that knowers ‘can put two
and two together.’

K6 Kxp Æ KxKxp. When knowers know something this very fact is cognitively accessible
to them. This again follows from the presently operative accessibility-geared sense
of knowledge. For clearly, when knowledge is construed as available knowledge –
that is, in terms of what can be inferred on the basis of what is known – then Kxp
will carry KxKxp in its wake. When a certain fact is known to someone, they are
in a position to infer that this is so. (Observe that K6 yields Kx~p Æ KxKx~p, which
is quite different from and emphatically does not imply ~Kxp Æ Kx~Kxp.)

K7 ("t)P($x)Kxt. Any actual truth is (in theory) knowable. Such potential availability
also inheres in our understanding of the relationship of knowers to knowledge.
(Note that this principle is equivalent with ~($t)NU(t): no truths are necessarily
unknown.

K7 stipulates that any truth is a candidate for knowledge. This reflects our present
understanding of N and P as logico-conceptual necessity/possibility rather than with
physical necessity/possibility. It is certainly conceivable that some region of physical
reality is such that its facts are inaccessible to intelligent creatures.

Could K7 be strengthened to ("t)P("x)Kxt? This would preclude the prospect of
‘blind spots’ – bits of self-knowledge inherently unavailable to the subject himself. (On
this theme see Sorensen 1988.) On this basis it seems unacceptable.

Note moreover that accepting ("t)P($x)Kxt does not mean that any truth is know-
able by some actual existent ("t)($x)PKxt? The knowability at issue looks not to actual
but to merely possible knowers.

5 Further Consequences

Given the principles K1–K7 formulated above, one can proceed to derive various further
epistemic principles by purely logical means:

K8 Conjunctivity
Kx(p & q) Æ (Kxp & Kxq)
Knowledge of a conjunction is tantamount to knowledge of its conjuncts.
This follows from K4 and K5.

K9 Substitutivity
(p Æ q) Æ (Kxp Æ Kxq)
To know something is to know it in all of its logically equivalent guises.
This thesis pivots on K3.
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K10 K-Consistency
Kxp Æ ~Kx~p
This follows directly from K3. (The prospect of ignorance – of having both ~Kxp
and ~Kx~p obtain – means that the converse does not hold.)

K11 Transmissibility
[Kxp & Kx(p Æ q)] Æ Kxq
This follows from K4 and K5.

K12 Self-limitation
("x)Kx($t)~Kxt
By K2 we have ("x)($t)~Kxt. And since this is a level 1 principle we will also have
("y)Ky("x)($t)~Kxt. This entails ("y)Ky($t)~Kyt. Not only are individuals not
omniscient, but they all know it.

In accepting that another knows a certain fact one is thereby effectively claiming that
fact as part of one’s own knowledge. And so, to know that another person knows some
specific fact one must know this fact oneself. We thus have:

K13 Knowledge cooptation
KxKyp Æ Kxp
To know that someone actually knows some fact to be so one must know this fact itself.

This principle can be derived from the preceding considerations by the following 
argument:

1. [Kxp & (p Æ q)] Æ Kxq From K3

2. (KxKyp & (Kyp Æ p)] Æ Kxp From (1) by substituting
Kyp/p and p/q

3. Kyp Æ p From K2

4. KxKyp Æ Kxp From (2), (3)

This means that the specifically acknowledged knowledge of others is also knowledge.
(Of course it will not be the case for unacknowledged knowledge. We certainly do not
have: Kxp Æ Kyp.)

Note further that we have the principle:

K14 Necessity cognition
Np Æ ("x)Kxp
Logico-conceptual truths are cognitively available to all.

This principle pivots on K4 via the following proof:

1. For any x: Kxq for some suitable q, by K1.
2. Whenever Np, then q Æ p, for any q, by mere logic.
3. Whenever Np, then Kxp rom (1) and (2) by K4.
4. ("p)(Np Æ Kxp) from (1)–(3).
5. ("p)(Np Æ ("x)Kxp) from (4) since x is a free variable. Q.E.D.
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Note, however, that the converse of K14 does not hold: some merely contingent fact
might well be known universally.

Via the substitution Np/p K14 yields:

K15 Necessity recognition
Np Æ ("x)KxNp
Knowledge of necessity is universal. This principle represents a salient feature of
inferentially accessible knowledge.

K1 has it that every knower knows some truth ("x)($t)Kxt. In virtue of K15, we have
the stronger thesis that there are truths that everyone knows ($t)("x)Kxt. For any nec-
essary truth clearly fills the bill here, given the presently operative liberal construction
of K as available knowledge.

6 Cognitive Limitations

Let us consider somewhat more closely the matter of ignorance and unknowing, recall-
ing that U(p) comes to: ~($x)Kxp or equivalently ("x)~Kxp.

Under what conditions on f would we have it as a general principle that f(p) entails
Uf(p)? Note that this would mean that f(p) Æ ~($x)Kxf(p) or equivalently ($x)Kxf(p) Æ
~f(p). Since K3 has it that the antecedent yields f(p), it follows that there can be no prin-
ciple of the indicated format as long as f(p) is self-consistent. No significant feature of
p is automatically unknowable.

A further important epistemic principle is represented by the thesis:

K16 Cognitive myopia
~($p)($x)Kx(~Kxp & p) or equivalently ("x)("p)~Kx(p & ~Kxp)
Nobody ever knows of a proposition that while they do not know it, it is nevertheless
true.

PROOF

1. Kx~Kxp Æ ~Kxp From K2

2. ~(Kx~Kxp & Kxp) From (1)
3 ~Kx(~Kxp & p) From (2), K14. Q.E.D.

It is important to observe that the thesis at issue here – or equivalently ("x)~($p)
Kx(p & ~Kxp) – differs significantly from ("x)~Kx($p)(p & ~Kxp) or equivalently
("x)~Kx($t)~Kxt or ("x)~Kx~("t)Kxt, that is, ‘For aught that anyone knows they know
it all.’ This latter contention is emphatically unacceptable.

A pivotal fact of the cognitive domain is:

K17 Knowledge limitation
~("t)($x)Kxt or equivalently ($t)("x)~Kxt or ($t)~($x)Kxt or ($t)Ut.
There are altogether unknown truths: it is not the case that all truths are known.
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This is easily established on the basis of the prior stipulations. For since K2 assures that
we are, by hypothesis, dealing with finite knowers, it transpires that for each knower xi

there is some truth that this knower does not know. Now let t* be the conjunction of all
these truths ti over our (obviously finite) collection of knowers. Then in virtue of K12

no knower knows t*. It follows that ($t)("x)~Kxt or equivalently ($t)U(t). Of course,
any such unknown truth will have to be a non-necessary, and thus contingent, truth,
given the presently operative inferential-accessibility sense of knowledge.

A different route to the same destination is that any level 3 thesis represents what
must be regarded as an unknown truth. (This will be amplified below.)

In general one cannot, of course, make the transition from ("x)($t)f(x, t) to
($t)("x)f(x, t). (Thus ‘For any integer there exists another that is greater’ does not entail
‘There exists an integer that is greater than any other integer.’) But in the special case
of f(x, t) = ~Kxt this inference is valid, as the preceding argumentation for K17 shows.
And a community of finite knowers is thereby subject to substantial limitations.

One might be tempted to offer the following objection to the just-indicated implica-
tion thesis: ("x)($t)~Kxt Æ ($t)("x)~Kxt: ‘What if one divided the realm of truth T into
two disjoint parts T1 and T2 such that x1 knows all (but only) T1 truths and x2 knows
all (but only) the T2 truths. Then clearly ("x)($t)~Kxt but not ($t)("x)~Kxt.’ However,
this objection is flawed. For the hypothesis that it projects cannot be realized in the cir-
cumstances of our discussion, where knowledge is inferentially transmissible in that
[Kxp & (p Æ q)] Æ Kxq. Thus consider a truth t1 v t2 where t1 Œ T1 and t2 Œ T2. Then by
inferential transmission this must be a known commonality for x1 and x2, so that the
disjointness condition cannot be met. The hypothesis of truth-division runs afoul of our
implicit availability construction of knowledge.

To be sure, K17 only assures the existence of unknown truth. To this point, we have
not claimed to provide an example of this. (This awaits the discussion of level three
principles in Section 8.)

What follows regarding p from ("x)~Kxp or equivalently U(p)? Certainly not not-p.
For if we had ("x)~Kxp Æ ~p then it would follow that p Æ ($x)Kxp which must of
course be rejected. On the other hand, poss(not-p), that is P~p, must indeed be held to
follow. For consider ("x)~Kxp Æ P~p which is equivalent with Np Æ ($x)Kxp. In view
of K14 this must be accepted on the presently operative construction of knowledge.

7 Level Two Principles and the Consideration that Knowledge of
Contingent Fact is itself Contingent

The epistemic principles to which we now turn reflect the contingent facts of life regard-
ing the ways and means of our knowledge of things. We shall continue to use the vari-
ables t, t¢, t≤, etc. to range over the limited propositional subdomain of specifically
contingent truths, with the variables t, t¢, t≤, etc. ranging over truths in general.)

An elemental principle of this domain is

K18 ($t)($x)~Kxt or equivalently ~("t)("x)Kxt.
There are contingent truths that not everyone knows.
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This follows from K2 in view of the fact that necessary truths are automatically known
to all (by K9). So here we still have a level 1 principle.

Another more positive principle is:

K19 ("x)($t)Kxt or equivalently ~($x)("t)~Kxt.
No knower is an utter ignoramus: every knower knows some contingent truth or other.

This principle projects K1 into the contingent domain and is a more or less natural sup-
position relative to the liberal construction of knowledge we have taken into view.
However, this new principle will obtain at level two; it does not follow from anything
that precedes.

The following important principle obtains:

K20 Wherever t is a contingent truth, then Kxt is also contingent: contingent truth is 
by nature cognitively contingent. That is to say we have both ("t)P($x)~Kxt
or equivalently ~($t)N("x)Kxt and also ("t)P($x)Kxt or equivalently
~($t)N("x)~Kxt.

The first of the two components holds because its denial ($t)N("x)Kxt falls foul of the
fact that it is only for necessary truths t that N("x)Kxt, seeing that N("x)Kxp Æ Np
follows from ($x)Kxp Æ p. And the second follows from ("t)P($x)Kxt – the potential
availability of truth stipulated by K7. And so for any specifically contingent (i.e. 
non-necessary) truth t we have it that P($x)±Kxt. Equivalently for no t do we have
N("x)±Kxt: neither ("x)Kxt nor ("x)~Kxt is ever necessary in the case of contingent
truths. Indeed it can be shown that even ($x)±Kxt is always contingent for contingent
t. That someone does (or does not) know a given contingent fact is always itself
contingent.

8 Level Three Principles: Plausible Truth-Candidates

It will be recalled from the discussion of Section 4 above that any level three principle
instantiates the idea of an unknown truth, seeing that if actual knowledge were being
claimed, then the assertion in question would have to be made at a lower (deeper) level.
Accordingly, the epistemic theses that will now be at issue have a standing of mere 
plausibility in contrast to knowability as such.

Every knower knows something. And we can actually even lay claim to a rather
stronger level three principle:

K26 ($t)("x)Kxt
There are (contingent) truths that everyone knows.

K26 means that we cannot accept it as a principle that only necessary truths are uni-
versally known. Thus while we have endorsed its converse (as per K15), we must reject:
("x)Kxp Æ Np. From ("x)Kxp – and indeed even from ($x)Kxp – we can infer that p is
true, but certainly not that it is necessary.
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Let us investigate the prospect of principles of the format: If f(p), then ("x)Kxf(p).
Note that

f(p) Æ ("x)Kxf(p)

holds when f(p) = Np in virtue of K16. On the other hand, f(p) = ("x)Kxp leads to ("x)Kxp
Æ ("y)Ky("x)Kxp. And this has some claim to plausibility. For when something is
obvious enough to be known to everyone, this fact itself is presumably something about
which people-in-general can secure knowledge. The principle in view thus holds at level
three.

It is of interest to ask what sort of knowledge follows from ignorance. Consider a
thesis of the format ~Kxp Æ Kxf(p). Since ~Kxp always obtains when p is false, this
would mean that Kxf(p) will always obtain when p is false – as f(p) must therefore also
do. Thus nothing of any real interest regarding someone’s knowledge follows on general
principles from his ignorance of a given fact.

9 Knowledge of the Unknown?

Consider the contention ‘I know that t0 is an unknown truth,’ symbolically Ki(t0 & Ut0).
In view of K8 his amounts to Kit0 & KiU(t0). But KiU(t0) comes to Ki~($x)Kxt0. This
entails ~($x)Kxt0 which in turn yields ~Kit0. And this produces a contradiction. There
is an instructive lesson here: We cannot concretize ($t)Ut in the mode of knowledge: That
is, we cannot instantiate this thesis by advancing a particular truth t0 which at once
and the same time we claim to know to be true and also characterize as an unknown.
It is perfectly true that ‘There are truths I do not know’ but I cannot possibly produce
any concrete examples in the mode of categorical cognition. Accordingly, the reality of
it is that we can only instantiate ($t)Ut in the mode of conjecture, which is to say at
the third level of assertion.

Clearly, whenever we assert a thesis Z at the third level, so that

�3 Z

we can indeed move on to the claim that Z is true (which, after all, is why we assert it),
but must nevertheless acknowledge that no one actually knows this to be so and accord-
ingly must ourselves refrain from claiming actual knowledge here. For if this were
known, so that ($x)KxZ then Z would obtain at the second level of assertion: �2Z. And
(by hypothesis) this is not the case.

‘But how can you possibly maintain something that you do not actually know to be
true?’ The appropriate answer, clearly, is: cautiously and tentatively, in the decidedly
guarded and hesitant tone of voice of mere conjecture. In other words, at level three.

10 Conclusion

This survey of principles of metaknowledge has not issued in one big culminating result
but rather in a diversified mosaic of smaller ones. Yet in the aggregate this complex 
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provides a unified overall picture of the epistemic situation from which some significant
overall lessons emerge.

Perhaps the most important of these lessons is that we must operate a two-tier epis-
temology – one that looks not just to knowledge alone but also to the lesser level of epis-
temic commitment represented by plausible conjecture or supposition. Another lesson
is that a systematic rational account of the cognitive situation is possible with ‘knowl-
edge’ understood as in the sense of inferentially accessible information. Last but not
least, we have seen that even under this most liberal and generous of constructions,
our ‘knowledge’ is such that we must recognize the existence of a whole spectrum of
cognitive limitations. For even as ‘knowledge’ in the mode of inferential accessibility is
logically self-ampliating in that we have

If Kxp and p Æ q, then Kxq

so also is ignorance, since we analogously have:

If ~Kxp and q Æ p, then ~Kxq

Both of these principles are two sides of the same coin. And the price we pay for the
knowledge-amplification assured by the former principle is that ignorance-proliferation
assured by its equivalent counterpart. Just as knowledge is self-ampliating, so is its lack.

In a world of finite beings even the most generous construction of ‘knowledge’ leaves
ample scope for ignorance. And one of the ironic aspects of this topic of metaknowl-
edge is that the very fact that our knowledge is limited inhibits our capacity to be spe-
cific about the matter by going on to specify just exactly what those limits are. Among
the most difficult sorts of knowledge to achieve is detailed information about the nature
of our ignorance.
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Deontic, Epistemic, and Temporal 
Modal Logics

R I S TO H I L P I N E N

1 Modal Concepts

Modalities (necessity, possibility, and related concepts and expressions) can be inter-
preted in different ways: for example, the possibility of a proposition or a state of affairs
can be taken to mean that it is not ruled out by what is known (an epistemic interpre-
tation) or believed (a doxastic interpretation), or that it is not ruled out by the accepted
legal or moral requirements (a deontic interpretation), or that it has not always been or
will not always be false (a temporal interpretation). These interpretations are sometimes
contrasted with alethic modalities, which are thought to express the ways (‘modes’) in
which a proposition can be true or false. For example, logical possibility and physical
(real or substantive) possibility are alethic modalities.

The basic modal concepts are represented in systems of modal logic as propositional
operators; thus they are regarded as syntactically analogous to the concept of negation
and other propositional connectives. The main difference between modal operators and
other connectives is that the former are not truth-functional; the truth-value (truth or
falsity) of a modal sentence is not determined by the truth-values of its subsentences.
The concept of possibility (‘it is possible that’ or ‘possibly’) is usually symbolized by ‡
and the concept of necessity (‘it is necessary that’ or ‘necessarily’) by �; thus the modal
formula ‡p represents the sentence form ‘it is possible that p’ or ‘possibly p,’ and �p
should be read ‘it is necessary that p.’ Modal operators can be defined in terms of each
other: ‘it is possible that p’ means the same as ‘it is not necessary that not-p’; thus ‡p
can be regarded as an abbreviation of ÿ�ÿp, where ÿ is the sign of negation, and �p
is logically equivalent to ÿ‡ÿp. Systems modal propositional logic or quantification
theory (predicate logic) are obtained by adding the symbols ‡ and � (and possibly other
modal signs), together with appropriate rules of sentence formation (e.g. if A is a
formula, ‡A and �A are formulas), to a system of (non-modal) propositional logic or
quantification theory.



2 The Semantics of Modalities and Systems of Modal Logic

As was observed above, modal sentences are not truth-functional: the truth-value of a
modal sentence is not determined by the truth-values of its constituent. Given a true
proposition p, ‘it is necessary that p’ may be true or false, depending on what p states
(the content of p), and if p is false, ‘possibly p’ may be true or false, depending on the
content of p. Consequently the logical relationships among modal propositions cannot
be explained solely by means of possible truth-value assignments to simple (atomic)
sentences, as in non-modal (truth-functional) propositional logic. A more complex
semantics is needed. Since antiquity, modal concepts have been regarded as analogous
to the quantifiers ‘some’ and ‘all,’ and modal propositions have been regarded as involv-
ing quantification over possible cases or possibilities of some kind. ‘It is necessary that
p’ can be taken to mean that p is true (or it is true that p) no matter how things turn
out to be, and ‘it is possible that p’ can be interpreted as saying that things may turn
out to be or might have turned out to be in such a way that p is true. If the ways in
which things can turn out to be are called possible scenarios, situations, or possible worlds,
this account can be formulated as the standard possible worlds interpretation of
modalities:

(CTN1) �p is true if and only if p is true in all possible worlds (situations),

and

(CTM1) ‡p is true if and only if p is true in some possible world (situation).

The possible worlds analysis of modalities goes back (at least) to the fourteenth century;
for example, it seems to have been the basis of Duns Scotus’s (1265–1308) modal
theory (Knuuttila 1993: 143–5). G. W. Leibniz’s use of the concept of possible worlds
in the seventeenth century suggests a similar analysis, even though Leibniz himself did
not analyze the concepts of necessity and possibility in this way. In the formal seman-
tics of modal logic, the truth of a sentence is truth at (or relative to) a possible world,
and modal formulas (sentences) are interpreted by means of a valuation function which
assigns a truth-value to each sentence at each possible world. Non-modal propositional
logic can be regarded as a limiting case in which only one possible world (the actual
world) is considered.

In many applications of modal logic, the modal status of a given proposition depends
on the situation in which it is evaluated. Many modal statements are contingent: what
is possible or necessary depends on the point of evaluation. For example, what is epis-
temically possible for an individual depends on what the individual in question knows,
and this varies from situation to situation. Thus the interpretation of modal sentences
should also depend on a relation of relative possibility among worlds. The worlds which
are possible relative to a given world (or situation) u are called the alternatives to u or
worlds accessible from u. Consequently conditions (CTN1) and CTM1) should be refor-
mulated as follows:
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(CTN2) �q is true at a world u if and only if q is true in all alternatives to u,

and

(CTM2) ‡q is true at a world u if and only if q is true in some alternative to u.

The alternativeness relation was introduced into modal semantics in the 1950s by
Marcel Guillaume (1958), Jaakko Hintikka (1957a, 1957b), Stig Kanger (1957), Saul
Kripke (1963), Richard Montague (1960), and others. According to (CTN2) and
(CTM2), an interpretation or a model of a (propositional) modal language is a triple M
= ·W, R, VÒ, where W = {u,v,w, . . .} is a set of possible worlds (also called the points of
the model), R is a two-place alternativeness relation defined on W, and V is an inter-
pretation function or a valuation function which assigns to each sentence A a truth-
value (1 for truth and 0 for falsity) at each possible world u. The pair ·W, RÒ is called
the frame of the model; thus a model consists of its frame and its valuation function.
‘V(A,u) = 1’ (the truth of A at u in M) is expressed ‘M, u |= A,’ briefly ‘u |= A;’ if A is not
true at u, it is false at u. (I shall use below A, B, etc., as metalogical symbols which rep-
resent arbitrary formulas of a formal language of modal logic.) A sentence is called valid
(logically true) if and only if it is true at every world u Œ W for any interpretation M,
and A is valid in a model M if and only if it is true at every point of the model. A sen-
tence B is a logical consequence of A if and only if there is no interpretation M and
world u such that M, u |= A and not M, u |= B. The valuation function is subject to the
usual Boolean conditions which ensure that the truth-functional compounds of simple
sentences receive appropriate truth-values at each possible world, in other words:

(Cÿ) u |= ÿA if-if (if and only if) not u |= A,
(C&) u |= A & B if-if both u |= A and u |= B,
(C⁄) u |= A V B if-if u |= A or u |= B or both, and
(C…) u |= (A … B) = u |= ÿA or u |= B or both.

The truth-conditions of simple modal sentences are expressed in terms of the alterna-
tiveness relation R as follows:

(CN) u |= �A if and only if v |= A for every v Œ W such that R(u,v),

and

(CM) u |= ‡A if and only if v |= A for some v Œ W such that R(u,v).

This semantics validates (for example) the following modal schemata:

(K) �(A … B) … (�A … �B);
(2.1) �(A & B) … (�A & �B); (The conjunctive distributivity of �.)
(2.2) (�A & �B) … �(A & B); (The aggregation principle for �.)
(2.3) �A … �(A V B);
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(2.4) �(A … B) … (‡A … ‡B);
(2.5) ‡A … ‡(A V B);
(2.6) ‡(A V B) … (‡A V ‡B); (The disjunctive distributivity of ‡.)
(2.7) ‡ (A & B) … ‡A.

This system, called the system K (from Kripke), can be characterized axiomatically by
a set of axioms (or axiom schemata) for propositional logic, the Modus Ponens rule, the
axiom schema (K) given above, the definition

(D‡) ‡A ∫ ÿ�ÿA,

and the modal ‘rule of necessitation’

(RN) From A, to infer �A.

Rule (RN) means that if A is provable, so is �A.
The system K involves no assumptions about the structural properties of the alter-

nativeness relation R. Different assumptions about the properties of R lead to different
extensions of K, that is, systems of modal logic including K. For example, the assump-
tion that R is a serial relation, that is satisfies the condition

(CD) For every u Œ U, R(u,v) for some v Œ U,

validates the principle that whatever is necessary is possible:

(D) �A … ‡A.

It is clear that this principle holds for most ‘standard’ concepts of necessity and possi-
bility. A counterexample to this principle would be a situation in which both a propo-
sition and its negation are necessary (�A & �ÿA); most interpretations of modal
expressions clearly exclude this. Alethic and epistemic modalities should also satisfy the
schema

(T) �A … A,

which is equivalent to

A … ‡A.

Whatever is necessary is true, and a proposition cannot be known (to be true) in the
proper sense of the word unless it is in fact true. Principle (T) distinguishes alethic and
epistemic modalities from deontic and doxastic interpretations. It is true in all frames
in which R is a reflexive relation, that is,

(CRefl) For every u Œ W, R(u,u).

Moreover, if R is transitive,
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(4S) �A … ��A

is valid, and the assumption that R is symmetrical validates the schema

(B) ‡�A … A.

The schema

(E) ‡A … �‡A.

holds in all symmetrical and transitive frames. By making various assumptions about
R it is thus possible to generate a great variety of modal systems. There is no single
‘correct’ system of a modal logic, but different systems are appropriate for different pur-
poses and applications. Modal systems can be characterized semantically by the prop-
erties of the R-relation, and syntactically by their characteristic axioms (or axiom
schemata), for example:

System KD (or briefly D): K + D;
System KT (briefly, T): K + T;
System KT4 (S4): KT + 4S; and
System KT5 (S5): KT + E or KT + 4S + B.

The expressions ‘S4’ and ‘S5’ are due to C. I. Lewis, who investigated in the 1910s the
concept of strict (necessary) implication, and developed five alternative axiom systems
for strict implication, S1–S5 (Lewis and Langford 1932). Lewis’s system S4 can be char-
acterized semantically by means of reflexive, and transitive frames, and the semantics
of Lewis’s S5 can explained by means of models in which R is an equivalence relation
(a reflexive, transitive, and symmetric relation). (For different systems and interpreta-
tions of modal logic, see Chellas 1980: ch. 4; van Benthem 1988; Hughes and Cresswell
1996: 23–71.)

3 Modality and Quantification

The systems characterized above are systems of propositional logic. When modal oper-
ators are added to predicate logic (quantification theory), possible worlds can serve 
their interpretive function only if they are thought of as having a structure of individ-
uals, properties, and relations. Thus the models of quantified modal logic provide, for
each world w, the set D(w) of individuals existing in that world, and a valuation func-
tion which assigns an extension (an object, a set of objects, or a relation) to each non-
logical expression at each possible world. In other words, a valuation function assigns
to each nonlogical expression a function from possible worlds to extensions. 
Such functions are called the intensions of individual terms, predicates, or relational
expressions.

The truth conditions of the sentences of modal quantification theory can be inter-
preted and formulated in different ways. For quantifiers, perhaps the most natural
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choice is to let them range over the world-relative domains (rather than over all possi-
ble individuals). According to this approach, the semantic rules for " and $ can be 
formulated, in a simplified and self-explanatory notation, as follows:

(CM") M, u |= "xA(x) if and only if for all individuals d Œ D(u), M, u |= A(d),

and

(CM$) M, u |= $xA(x) if and only if for some individual d Œ D(u), M, u |= A(d).

The semantic rules for modalities must also be revised, and as in the case of the quan-
tifier rules, different revisions are possible here. Perhaps the most reasonable interpre-
tation of the necessity operator is to regard a sentence of the form �A as true at u if
and only if A is true in all alternatives to u whose domain contains the individuals
denoted by the individual terms in A (including those assigned to individual variables)
(van Benthem 1988: 16).

The validity of various principles involving modalities and quantifiers depends on
the properties of the frames, in particular, on the relationships among the domains 
for different worlds. Of particular interest are in this context the following operator
exchange principles:

(3.1) �"xAx … "x�Ax
(3.2) "x�Ax … �"xAx
(3.3) �$xAx … $x�Ax
(3.4) $x�Ax … �$xAx

If nothing is assumed about the domains of different possible worlds, only principle
(3.1) is valid, and the rest of the formulas are invalid. However, formula (3.2) (called
the Barcan formula, see Barcan (1946: 2)) is valid if the following inclusion principle
holds for the domains D(u),

(3.5) If R(u,w), D(w) Õ D(u),

and principle (3.4) is valid in all frames satisfying the condition

(3.6) If R(u, w), D(u) Õ D(w).

The acceptability of (3.1)–(3.4) depends on the interpretation of the modal operators.
Above, the antecedents of (3.1) and (3.3) and the consequents of (3.2) and (3.4) are

de dicto propositions, which means that the modal operator is attached to a complete
proposition or dictum. The consequents (3.1) and (3.3) and the antecedents of (3.2) and
(3.4) are called modal propositions de re: the modal operators are attached to expres-
sions which contain a free individual term, thus the modality in question is ascribed to
the object or thing (res) to which the term is regarded as being applicable. Sentences
(3.1)–(3.4) describe possible relationships among de dicto and de re modalities.
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4 Deontic, Epistemic, and Temporal Modalities

If modal propositions are understood in terms of the possible worlds semantics, their
interpretation as deontic, epistemic, or temporal propositions depends on the interpre-
tation of possible worlds and the alternativeness relation between possible worlds. It is
often interesting to consider different (kinds of) modalities simultaneously; for example,
a statement of the form

If it is true that p, it is possible to know that p,

or more briefly, ‘if p is true, it is knowable,’ contains an alethic concept of possibility
and an epistemic modality (‘to know’). An analysis of such sentences requires models
which represent more than one concept of necessity and possibility, with a corre-
sponding multitude of alternativess relations. In such situations different modalities
(that is, different concepts of necessity and possibility) require special symbols. O and
P are often used for deontic necessity (the concept of ought or obligation) and possi-
bility (the concept of permissibility), the expressions Ki and Pi for the concept of (propo-
sitional) knowledge (‘i knows that . . .’) and the associated concept of epistemic
possibility (‘it is possible, for all that i knows, that . . .’), and Bi and Ci for the concepts
of belief and doxastic possibility. (If only one person’s knowledge or beliefs are being
considered, the subscript can be omitted.) It is possible to define several temporal read-
ings of � and ‡, for example, ‘it has always been the case that’ and ‘it was at some time
the case that,’ or ‘it will always be the case that’ and ‘it will at some time be the case
that.’ The pairs of operators mentioned above are interdefinable in the same way as �
and ‡. The latter symbols are usually reserved for alethic modalities. (Sometimes alethic
necessity is expressed by N or L and possibility by M.)

5 Epistemic Logic

The study of epistemic logic, like many other areas of philosophical logic, goes back (at
least) to the late scholastic philosophy. Many fourteenth-century treatises on philo-
sophical logic included a section on the logic of knowledge, often entitled De scire et
dubitare (‘On knowing and doubting’), which discussed sophisms and paradoxes involv-
ing the concepts of knowledge, belief, and doubt (Boh 1993: ch. 4). At the beginning
of the twentieth century Charles Peirce analyzed the semantics of modal notions, and
proposed an epistemic interpretation of modality, according to which a proposition is
possible if and only if “it is not known to be false in a given state of information.” Peirce
distinguished this epistemic concept of possibility from what he called “substantive pos-
sibility” (alethic possibility), and regarded modalities as quantifiers over “possible cases”
or “possible states of things” (Peirce 1931–35: vol. II, paragraph 2.347; vol. V, para-
graphs 5.454–455). Peirce and his scholastic predecessors regarded epistemic concepts
as modal concepts, but epistemic logic was not developed in a systematic way as a
branch of modal logic before Jaakko Hintikka’s Knowledge and Belief (1962), the first
book-length study of the subject.
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The epistemic alternatives to a given possible world (or knowledge situation) u are
the worlds (situations) not ruled out by what is known (or by what a certain person
knows) at u. The concept of doxastic alternativeness is related to the concept of belief
in a similar way. The most obvious logical difference between the concepts of knowl-
edge and belief is that the former should satisfy the T-axiom,

(KT) KA … A,

in other words, epistemic alternativeness relations must be reflexive, but the T-princi-
ple does not hold for the concept of belief. In this respect doxastic modalities resemble
deontic modalities. The assumption that the epistemic alternativeness relation is tran-
sitive validates the principle that knowing entails knowing that one knows (the 
KK-thesis),

(4SK) KA … KKA,

This thesis has sometimes been called, somewhat misleadingly, “the positive introspec-
tion axiom” (Fagin et al. 1995: 32). The transitivity of the epistemic R-relation means
that sentences of the form Kp can be transferred from a given world to its epistemic
alternatives: if Kp holds at u, then Kp (and not only p) holds in the epistemic alterna-
tives to u. The acceptability of the KK-thesis is sensitive to variations in the meaning of
‘know.’ The thesis has been part of many philosophers’ conception of knowledge since
antiquity, and it has sometimes been thought to characterize a “strong” concept of
knowledge (knowledge based on conclusive grounds). On the other hand, if knowledge
is regarded simply as true belief, the validity of the thesis depends on the validity of the
corresponding thesis about belief,

(4SB) BA … BBA.

This principle seems to hold at least for some varieties of belief. It helps to understand
G. E. Moore’s paradox of “saying and disbelieving.” If is obvious that a sentence of
the form

(5.1) p & ÿBp

is not inconsistent, but a first-person utterance of (5.1) seems inconsistent or para-
doxical. If the BB-schema is valid (i.e. if the doxastic alternativeness relation is transi-
tive), the proposition

(5.2) B(p & ÿBp)

is inconsistent, in other words, a person cannot sincerely assert (5.1) about oneself if
sincere assertion is regarded as an expression of belief (Hintikka 1962: 64–9). If knowl-
edge is regarded as true and conclusively justified belief, the KK-thesis means that a
person knows that p only if he is also justified in claiming that he knows that p, in other
words, the evidence for p is epistemically conclusive only if it justifies the correspond-
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ing knowledge-claim. The acceptance of this principle together with the epistemic ver-
sions of the rules and axioms of the modal system T amounts to the view that the logic
of knowledge corresponds to the Lewis system S4. On the other hand, the epistemic
versions of the modal axioms E and B do not seem to hold for the concept of knowl-
edge: a person cannot be expected to be fully informed about his ignorance. The concept
of belief obviously fails to satisfy principle T, but the doxastic counterpart of the 
principle D,

(DB) BA … ÿBÿA,

should hold at least for the concept of consistent or rational belief.
The meaningfulness of quantifying into a modal context – that is, the interpretation

of de re modal sentences – depends on the assumption that it is possible to make modal
assertions about individuals (objects) independently of how they are described. For
example, a sentence of the form

(5.3) $x�Fx

states that there is an individual which is F in all possible worlds (in which it exists).
The existential quantifier identifies an individual across possible worlds or connects the
‘appearances’ of the same individual in different situations. Some philosophers have
regarded such identifications as conceptually problematic. Epistemic modalities do not
seem to be subject to such conceptual difficulties. The epistemic variant of (5.3),

(5.4) $xKiFx,

says that some individual x is F in all situations not ruled out by (compatible with) what
i knows in a given situation, in other words, someone (or something) is known (by i) to
be F. This is of course quite different from saying that i knows that someone is F
(Ki$xFx). The latter sentence is true but the former false in a situation in which it is
known that there are spies, but their identity is unknown – it is not known who they
are. In ordinary language, (5.4) can be expressed by saying that i knows who is F. In
the same way, the sentence

(5.5) $xKi(x = c)

can be taken to mean that i knows who c is (Hintikka 1989: 20). Some more complex
sentences involving quantifiers and epistemic operators do not have any counterparts
in the standard first-order modal quantification theory. For example,

(5.6) Alma knows whom everyone admires most,

where every person may admire a different person (for example, his or her mother)
cannot be represented in standard first-order epistemic logic. The representation of
such sentences requires second-order epistemic logic or an independence-friendly logic
in which logical operators (for example, quantifiers and epistemic operators) can be
independent of each other (see Hintikka 1989: 27–8).
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Systems of epistemic logic based on S4, or any K-system, contain the rule of infer-
ence

(RNK) �A / �KA,

where � is the sign of provability, as well as the rule

(RMK) �A … B / �KA … KB.

The validity of these rules creates ‘the problem of logical omniscience’ for epistemic
logic: according to the epistemic interpretations of the K-systems, an inquirer knows
the logical consequences of whatever he knows, and belief systems are closed with
respect to logical deduction. These results motivated Hintikka’s reinterpretation of the
concept of logical consistency as (logical) defensibility or “immunity to [logical] criti-
cism” (Hintikka 1962: 31), and I. Levi’s interpretation of the logic of belief as the logic
of doxastic (or epistemic) commitments (rather than “active” beliefs, Levi 1997).
Another way to deal with the problem of logical omniscience is to place suitable syn-
tactic restrictions on knowledge-preserving deductive arguments (Hintikka 1989). On
the semantical (model-theoretic) side, similar results can be obtained by generalizing
the concept of possible scenario or situation to ‘seemingly possible’ scenarios, repre-
sented by so-called urn models (Rantala 1975).

In the past 30 years, epistemic logic has developed into a relatively autonomous field
of research, directed at problems and applications with no counterparts in other areas
of modal logic (see Fagin et al. 1995; Meyer and van der Hoek 1995). Epistemic logic
has been applied in interesting ways to philosophical semantics, epistemology and the
philosophy of science. For example, it forms the logical basis of the interrogative theory
of inquiry in which questions are treated as requests for knowledge or epistemic imper-
atives (Hintikka 1976, 1999).

6 Deontic Logic

The logic of normative concepts began to be investigated as a branch of modal logic in
the fourteenth century, when some scholastic philosophers observed the analogies
between deontic and alethic modalities, and studied the deontic (normative) interpre-
tations of various laws of modal logic (Knuuttila 1993: ch. 5). In the seventeenth
century, G. W. Leibniz (1930) called the deontic categories of the obligatory, the per-
mitted, and the prohibited “legal modalities” (“Iuris modalia”), and observed that the
basic principles of modal logic hold for the legal modalities. In fact, Leibniz suggested
that deontic modalities can be analyzed in terms of the alethic modalities: he suggested
that the permitted (licitum) is “what is possible for a good man to do,” and the obliga-
tory (debitum) “what is necessary for a good man to do.” In the twentieth century the
study of deontic logic as a branch of modal logic was initiated by Georg Henrik von
Wright’s pioneering work in the early 1950s (1951a, 1951b).

A simple system of deontic logic can be obtained by reading Leibniz’s definition of
the concept of obligation (ought) as
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(O.Lbnz1) A is obligatory for b if and only if A is necessary for b’s being a good
person,

that is,

ObA if and only if �(G(b) … A),

where O is the deontic counterpart of � and ‘G(b)’ means that b is ‘good’ (in the sense
intended by Leibniz). If the explicit reference to an agent is deleted, we obtain the 
definition:

(O.Lbnz2) OA ∫ �(G … A).

The corresponding Leibnizian concept of permission is expressed by

(P.Lbnz2) PA ∫ ‡(G & A).

These schemata can be regarded as partial reductions of deontic logic to alethic modal
logic. In the twentieth-century deontic logic, the Leibnizian analysis of the concepts of
obligation and permission was rediscovered by the Swedish philosopher Stig Kanger in
1950. Kanger (1971: 53) interpreted the constant G as “what morality prescribes.”
According to Kanger, OA (it ought to be the case that A) means that A follows from the
requirements of morality.

If the alethic �-operator satisfies the axioms and the rules of inference of the modal
system called KT (see above), the ought-operator defined by (O.Lbnz2) satisfies the
deontic K-principle

(KD) O(A … B) … (OA … OB)

and the rule of ‘deontic necessitation’

(RND) � A / � OA.

The additional assumption that being good is possible,

(DG) ‡G,

yields the deontic D-schema (the principle of deontic consistency),

(DD) OA … ÿOÿA.

The system of (propositional) deontic logic obtained by adding to propositional logic
the axiom schemata KD and DD and the rule RND is usually called the “standard system
of deontic logic,” abbreviated “SDL” (Føllesdal and Hilpinen 1971: 13–15). The theo-
rems and the (derived) rules of inference of the standard system include the deontic
variants of the schemata (1)–(7) and the rule
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(RMD) �A … B / �OA … OB.

This modal system is often called the system KD or simply D (Chellas 1980: 114).
The sentences of SDL can be interpreted in terms of possible worlds (or world states)

and an alternativeness relation between possible worlds in the same way as other
modalities. The deontic alternatives to a given world u are worlds (or situations) in
which everything that is obligatory at u is the case; thus the worlds related to u by R
may be termed deontically perfect or ideal worlds (relative to u); they are worlds in which
all obligations are fulfilled. If possible worlds are regarded as possible courses of events
or histories which are partly constituted by an agent’s actions, the semantics of SDL
divides such histories into deontically acceptable and deontically unacceptable histo-
ries. An action is permitted if and only if it is part of some deontically acceptable course
of events or if there is some deontically acceptable way of performing the action, and
an action is obligatory if and only if no course of events is acceptable unless it exem-
plifies the action in question. The set of acceptable courses of action (relative to a given
action situation) may be termed the field of permissibility (Lewis 1979). According to
the deontic consistency principle (DD), the field of permissibility is never empty: some
action is permissible in any situation. Additional structural assumptions about the R-
relation validate further deontic principles. It is clear that sentences of the form

(6.1) Op … p

are not logical truths, and therefore R cannot be regarded as a reflexive relation.
However, the schema

(6.2) O(OA … A)

seems to hold for the concept of ought (or the concept of obligation): it ought to be 
the case that whatever ought to be the case is the case. The validity of (6.1) follows 
from the assumption that the deontic alternativeness relation is secondarily reflexive,
in other words,

(C.OO) If R(u,v) for some u, then R(v,v).

SDL is quite a simple system, and cannot do justice to many complexities of norma-
tive discourse. This has been shown by various ‘paradoxes’ which result from attempts
to formalize complex normative statements by means of SDL. (For discussions of the
paradoxes of deontic logic, see Føllesdal and Hilpinen (1971: 21–6), and the articles in
Hilpinen 1981). For example, SDL does not suffice for the representation of many con-
ditional norms – and conditional norms abound in normative discourse. The following
example about the inadequacy of SDL is analogous to an example given by Chisholm
(1963); a situation of this kind is sometimes called ‘Chisholm’s paradox’:

(Ch1) Bertie ought to confess.
(Ch2) Bertie ought to warn Corky if he is going to confess.
(Ch3) If Bertie does not confess, he ought not to warn Corky.
(Ch4) Bertie does not confess.
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(Ch1)–(Ch4) seem to form a consistent set of (logically) mutually independent sen-
tences, but in SDL they cannot be represented as such. If (Ch2) is represented as having
the form

(6.3) O(s … r),

where ‘s’ is taken to mean that Bertie confesses and ‘r’ means that Bertie warns Corky,
(Ch1) and (Ch2) entail

(6.4) Or

If (Ch3) is regarded as having the same form as (Ch2), that is,

(6.5) O(ÿs … ÿr),

it is (in SDL) a logical consequence of (Ch1), and if it represented as

(6.6) ÿs … Oÿr,

(Ch3) and (Ch4) entail

(6.7) Oÿr,

which, according to SDL, is inconsistent with (6.4); thus the choice of (6.6) as the rep-
resentation of (Ch3) would make the set (Ch1)–(Ch4) inconsistent. On the other hand,
if (Ch2) is formalized as

(6.8) s … Or,

it is a logical consequence of (Ch4), which is also unacceptable.
Sentence (Ch3) tells what Bertie ought to do in a situation where he has failed to

fulfill his obligation to confess; thus it can be said to express a contrary-to-duty obliga-
tion (abbreviated ‘CTD’): Chisholm’s paradox may also be called the paradox of
contrary-to-duty obligation.

7 Temporal Frames

Some authors have proposed to avoid the inconsistency of between (6.4) and (6.7) by
relativizing the concept of obligation (or the concept of ought) time: it has been sug-
gested that (6.4) and (6.7) hold at different points of time (Åqvist and Hoepelman
1981). It is obvious that what is obligatory or permitted changes over time; thus it is
natural to assume, quite independently of the paradox of contrary-to-duty obligation,
that deontic concepts should be analyzed by means of temporally structured systems
of possible worlds, and that deontic logic should be based on tense logic (Thomason
1981, 1984; Horty 2001). The temporal structures required for the semantics of
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deontic modalities should involve a set W of world states or situations and a partial
ordering < on W such that for any u, v, w Œ W, if u < w and v < w, then u < v or v < u
or u = w. The relation < represents the temporal precedence among world-states.
According to the <-relation, time has a branching, tree-like structure: each world-state
has a unique past, but several possible futures. Temporal frames of this kind can also
be used in epistemic logic for the representation of epistemic and doxastic changes.
Maximal sets of linearly ordered world-states from W are called histories through the
tree T = (W, <); a set S is linearly ordered whenever for any u, v, w Œ S, either u < v or
v < u or u = v. Let H(u) be the set of histories that pass through u. The histories in H(u)
represent the possibilities open in (or accessible from) the situation u. The truth-
conditions of modal sentences can be defined for world-history pairs u/h such that h Œ
H(u) (for details, see Thomason 1984; Horty 2001: ch. 2). For example, a temporal
necessity operator � and a future tense operator F can be defined in this framework as
follows:

(CNtemp) M, u/h |= �A iff M,u/g |= A for every g Œ H(u);
(CFtemp) M, u/h |= FA iff M,v/h |= A for some v such that u < v.

According to (CNtemp), it is clear that if there is an h Œ H(u) such that �p holds at
u/h, �p holds at u/g for any history g Œ H(u); thus alethic modal sentences are deter-
minately true or false at (temporary) world states or situations. The truth of �p at u can
be taken to mean the truth of p is settled or fixed at u, or that p is “settled true” at u
(Horty 2001: 10). The deontic alternativeness relation R may be construed as a rela-
tion between a situation u and a history g Œ H(u): R(u,g) can be taken to mean that g
is one of the deontically preferred or deontically acceptable histories passing through
u. Relative to each situation u, the field of permissibility consists of the acceptable his-
tories in H(u). The truth-conditions of O-sentences can be defined as follows:

(COtemp) M,u/h |= OA iff M,u/g |= A for every g such that R(u,g).

According to (COtemp), p is obligatory in a given situation u if and only if p holds in
every deontically acceptable history in H(u). Like alethic sentences, deontic sentences
are determinately true or false at each u Œ W. In interesting cases (e.g. in Chisholm-
type examples) the proposition in the scope of O is not determinately true or false at
the situation of evaluation, but refers to the future, for example to the options available
to the agent (see Åqvist and Hoepelman 1981: 192). In the above example, (Ch1) (i.e.
Os) and (6.4) hold as long as confessing is one of the options available to Bertie, but as
soon this option is excluded and it is ‘settled’ that Bertie is not going to confess, (6.7) is
true.

8 Conditional Obligations and Rules of Detachment

There are also non-temporal versions of the CTD-paradox. For example, consider the
following example (due to Prakken and Sergot 1997): Assume that dogs are not per-
mitted in a certain village, but if anyone has a dog, there ought to be a warning sign
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about it in front of the owner’s house. Moreover, warning signs ought not to be posted
without sufficient reason; thus there ought to be no warning sign if there is no dog.
This example is formally analogous to Chisholm’s example, and an attempt to formalize
it in SDL leads to a similar inconsistency (Prakken and Sergot 1997; Carmo and Jones
2000).

The deduction of a contradiction from (6.4) and (6.7) depends on the principle of
normative consistency (DD),

OA … ÿOÿA.

This principle can be criticized independently of Chisholm’s example: (DD) excludes the
possibility of normative conflicts, but such conflicts are not unusual in morality and
law, and it may be argued that they do not amount to paradoxes (Chellas 1974: 24). If
the consistency principle is rejected, the deontic version of the aggregation principle
(2.2),

OA & OB … O(A & B),

should be rejected as well, because the latter principle undermines the distinction
between a conflict between obligations and the existence of a self-contradictory ob-
ligation. Normative conflicts can be distinguished from self-contradictory (impossible)
obligations. Thus logicians have developed systems of deontic logic in which (DD) and
the aggregation principle do not hold (Chellas 1980: 201–10, 272–5). Such systems
represent CTD-situations as involving conflicting obligations, but they do not offer any
analysis of CTD-obligations and their relationship to the ‘primary’ obligations.

As was observed above, the semantics of SDL is based on a division of worlds or 
situations into acceptable (deontically perfect) and unacceptable worlds, and the O-
sentences describe how things are in the deontically faultless worlds. But sentence
(Ch3) does not tell how things are in a deontically faultless world; it tells what the agent
(Bertie) ought to do under imperfect conditions, that is, in situations in which Bertie
does not act in accordance with his obligations. The situation could be described by
saying that among the (less than ideal) scenarios where Bertie does not fulfill his oblig-
ation to confess, those in which he does not warn Corky are deontically preferable to
the circumstances in which he (falsely) warns her. Thus Chisholm’s example requires
a distinction between different degrees of deontic perfection. (Ch2) can be taken to
mean that in deontically perfect circumstances where Berie confesses, he warns Corky,
and (Ch3) says that in the best worlds where he does not confess, he does not warn her
(Hansson 1969). Let us express these conditional obligations by

(8.1) O(r / s)

and

(8.2) O(ÿr / ÿs),

respectively. Let us call the worlds where p is true, ‘p-words,’ and let the p-worlds which
are normatively least objectionable relative to a given situation u be called deontically
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optimal p-worlds relative to u. The concept of a deontically optimal p-world is a gener-
alization of the concept of a deontically perfect world of SDL, and the assumption that
for any consistent proposition p, there is a nonempty set of deontically optimal p-
worlds, is a generalization of the SDL principle that any world has a nonempty set of
deontic alternatives. The truth of a conditional ought-statement O(q / p) at u can be
taken to mean that q is true in all deontically optimal p-worlds (relative to u). According
to this interpretation of conditional obligations, the principle of ‘deontic detachment,’

(DDet) O(B / A) … (OA … OB),

is a valid principle for conditional obligations, but the principle of ‘factual detachment,’

(FDet) O(B / A) … (A … OB),

does not hold. If (Ch2) and (Ch3) are interpreted in this way, (Ch1)–(Ch4) do not lead
to a contradiction: (Ch1) and (Ch2) entail the obligation Or, but (Ch3) and (Ch4) do
not entail Oÿr.

Chisholm’s paradox can also be avoided by replacing the truth-functional condi-
tional in (6.6) and (6.8) by an intensional (subjunctive) conditional without introduc-
ing a special concept of conditional obligation (Mott 1973). In the representation of
our example in SDL, the logical asymmetry between (6.3) and (6.6) is required by the
assumption of the logical independence of (Ch1)–(Ch4), and this leads to the incon-
sistency (6.4)–(6.7). If the two conditionals are expressed as intensional conditionals,
this problem does not arise. An intensional conditional (e.g. a subjunctive conditional)
‘q if p’ can be regarded as true in a situation u if and only if q is true in all possible
worlds (situations) in which p is true but which resemble u in other respects as much
as possible (Lewis 1973). The truth of such a conditional is not a consequence of the
falsity of p (or of the truth of q).

If ‘q if p’ is symbolized ‘p > q,’ and (Ch2) and (Ch3) are represented (respectively) by

(8.3) s > Or

and

(8.4) ÿs > Oÿr,

no contradiction will arise. If the modus ponens rule (the rule of factual detachment)
holds for the conditional connective, (Ch3) and (Ch4) entail (6.7), but (Ch1) and (Ch2)
do not entail (6.4). The former analysis of conditional obligations leads in our example
to the result that Bertie ought to warn Corky, but the second analysis gives the result
that Bertie ought not to warn Corky. Thus the two analyses involve two different 
concepts of ought (or ‘obligation’): the first interpretation of (Ch1)–(Ch3) takes the
statements in question as expressions of prima facie, defeasible (ideal or sub-ideal) oblig-
ations: (Ch1)–(Ch2) can be regarded as saying that in so far as Bertie ought to confess,
he ought to warn Corky. On the other hand, if he is in fact not going to confess (or if
this is regarded as being settled), he has an actual or practical (‘all-out’) obligation not
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to warn Corky; the second analysis concerns obligations of the latter type. The depen-
dence of the latter type of obligation (ought) on the former presents an interesting
problem for deontic logic and the theory of practical reasoning (Loewer and Belzer
1983). The paradoxes of conditional obligation and attempts to represent various CTD-
obligations and other conditional obligations in formal systems of deontic logic have
generated an extensive literature on the subject. (See Carmo and Jones 2000 and the
articles in Nute 1997.)

As was observed above, deontic propositions are often future oriented and relative to
time. This depends on another distinctive feature of deontic concepts, namely, that they
are usually applied to acts, and acts normally involve change and take place in time.
Philosophers and logicians have represented the concept of action in deontic logic in
different ways (Hilpinen 1993, 1997). First, deontic modalities have been combined
with action modalities, represented by modal operators which can be read ‘i brings 
it about that p’ or ‘i sees to it that p’ (Belnap 1991; Horty 2001). Another approach 
is to make a distinction between propositions, represented by propositional symbols,
and actions, represented by action terms (action descriptions), and construe deontic
concepts as operators which turn action terms into deontic propositions. The latter
approach has been adopted in dynamic deontic logic (Segerberg 1982). Both
approaches are based on temporal models involving temporally ordered world-states.
Like epistemic logic, deontic logic has developed during the past 20–30 years into an
autonomous discipline, with applications to computer science, legal informatics, moral
philosophy, and other fields (see the papers in McNamara and Prakken 1999).
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32

Intuitionism

D I R K VA N DA L E N AND M A R K VA N AT T E N

We will view intuitionism as a philosophical program in mathematics. It was founded
as such by the Dutch mathematician and philosopher L. E. J. Brouwer (1881–1966)
(van Dalen 1999a). The main reference for the technical results discussed here is
(Troelstra and van Dalen 1988); the original texts by Brouwer can be found in (Brouwer
1975); additional translations, and texts of other authors mentioned below, are in (van
Heijenoort 1967), (Mancosu 1998), and (Gödel 1990–95).

1 Logic: The Proof Interpretation

Various arguments for intuitionistic logic have been propounded, for example by Brouwer
(from the nature of mathematics), Heyting (from a concern for ontological neutrality),
Dummett (from considerations on meaning) and Martin-Löf (from type theory). These are
all different arguments but they lead to the same logic. We focus on Brouwer’s motivation.

Brouwer thinks of mathematics first of all as an activity rather than a theory. One
constructs objects in one’s mind. Mathematical truth, therefore, does not consist in cor-
respondence to an independent reality, but in the fact that a construction has been (or
could be) carried out. An intuitionist accounts for the truth of 2 + 2 = 4 by saying that
if one constructs 2, constructs 2 again, and compares the overall result to a construc-
tion of 4, one sees they are the same. This construction not only establishes the truth
of the proposition 2 + 2 = 4, but is all there is to its truth.

In Brouwer’s view, logic depends on mathematics and not vice versa. Logic notes and
studies regularities that one observes in the mathematical construction process. For
example, the logical notion of negation derives from seeing that some mathematical
constructions do not go through. One constructs 2 + 3 and sees that the outcome does
not match with a construction of 4; hence ÿ(2 + 3 = 4).

This suggests that the construction criterion for mathematical truth also yields an
interpretation of the logical connectives. We will now elaborate on this. Let us write ‘a
: A’ for ‘a is a construction that establishes A’ and call this a a proof of A.

A proof of ÿA has to tell us that A cannot have a proof; hence we read p : ÿA as ‘Each
proof a of A can be converted by the construction p into a proof of an absurdity (say,
0 = 1; abbreviated ^)’.



To extend this proof interpretation to the other connectives, it is convenient to have
the following notation. (a, b) denotes the pairing of constructions, and (c)0, (c)1 are the
first and second projections of c.

A proof of a conjunction A Ÿ B is a pair (a, b) of proofs such that a : A and b : B.
Interpreting the connectives in terms of proofs means that, unlike classical logic, the

disjunction has to be effective, one must specify for which of the disjuncts one has a
proof. A proof of a disjunction A ⁄ B is a pair (p, q) such that p carries the information
which disjunct is shown correct by this proof, and q is the proof of that disjunct. We
stipulate that p Œ {0, 1}. So if we have (p, q) : A ⁄ B then either p = 0 and q : A, or p = 1
and q : B.

The most interesting propositional connective is the implication. Classically, A Æ B
is true if A is false or B is true, but this cannot be used now as it involves the classical
disjunction. Moreover, it assumes that the truth values of A and B are known before
one can settle the status of A Æ B.

Heyting showed that this is asking too much. Consider A = ‘there occur twenty 7’s
in the decimal expansion of p,’ and B = ‘there occur nineteen 7’s in the decimal expan-
sion of p.’ ÿA ⁄ B does not hold constructively, but in the proof interpretation, A Æ B
is obviously correct.

It is, because, if we could show the correctness of A, then a simple construction would
allow us to show the correctness of B as well. Implication, then, is interpreted in terms
of possible proofs: p : A Æ B if p transforms each possible proof q : A into a proof p(q) : B.

The meaning of the quantifiers is specified along the same lines. Let us assume that
we are dealing with a domain D of mathematical objects. A proof p of "xA(x) is a con-
struction which yields for every object d Œ D a proof p(d) : A(d). A proof p of $xA(x) is a
pair (p0, p1) such that p1 : A(p0). Again, note the demand of effectiviness: the proof of an
existential statement requires an instance plus a proof of this instance.

The interpretation of the connectives in terms of proofs was made explicit by Heyting
(1934). Around the same time, Kolmogorov gave an interpretation in terms of problems
and solutions. The two are essentially the same. Note that in its dependence on the
abstract concept of proof, Heyting’s interpretation goes well beyond finitism (see ‘The
Dialectica interpretation,’ below).

Here are some examples of the proof interpretation.

1. (A ⁄ B) Æ (B ⁄ A). Let p : A ⁄ B, then (p)0 = 0 and (p)1 : A, or (p)0 = 1 and (p)1 : B. By
interchanging A and B we get, looking for q : B ⁄ A, (q)0 = 1 and (q)1 : B, or (q)0 = 0
and (q)1 : A. This comes to ((p)0) = (q)0 and (p)1 : B, or ((p)0) = (q)0 and (q)1 : A,
that is, ( ((p)0), (p)1) : B ⁄ A. And so lp.( ((p)0), (p)1) : A ⁄ B Æ B ⁄ A.

2. A ⁄ ÿA. p : A ⁄ ÿA ¤ (p)0 = 0 and (p)1 : A or (p)0 = 1 and (p)1 : ÿA. 
However, for an arbitrary proposition A we do not know whether A or ÿA has a proof,
and hence (p)0 cannot be computed. So, in general there is no proof of A ⁄ ÿA.

3. ÿ$xA(x) Æ "xÿA(x) 
p : ÿ$xA(x) ¤ p(a) : ^ for a proof a : $xA(x) 
We have to find a q such that q : "xÿA(x), i.e. q(d) : A(d) Æ ^ for any d Œ D. So pick
an element d and let r : A(d), then (d,r) : $xA(x) and so p((d, r)) : ^. Therefore we put
q(d)(r) = p((d, r)), so q = lr.ld.p((d, r)) and hence 
lp.lr.ld.p((d, r)) : ÿ $xA(x) Æ "xÿA(x).

sgsg
sgsg
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Brouwer employed a characteristic technique now known as ‘Brouwerian (weak) coun-
terexamples’ to show that certain classical statements are constructively untenable by
reducing them to unproven statements. To illustrate, here is a Brouwerian counterex-
ample to the classical trichotomy law "x Œ �(x < 0 ⁄ x = 0 ⁄ x > 0).

We compute simultaneously the decimal expansion of p and a Cauchy sequence to
be specified. We use N(k) as an abbreviation for ‘the decimals pk-89, . . . , pk of p are all 9.’
Now we define

an starts as an oscillating sequence of negative powers of -2. Should we hit 
upon a sequence of 90 nines in the expansion of p, an becomes constant from 
there on:

1, -1/2, 1/4, -1/8, . . . , (-2)-k, (-2) -k, (-2) -k, . . .

The sequence an satisfies the Cauchy condition and in that sense determines a 
real number a. The sequence is well defined, and, in principle, for each n we can check
N(n).

But of this a we cannot say whether it is positive, negative, or zero:

a > 0 ¤ N(k) holds the first time for an even number
a < 0 ¤ N(k) holds the first time for an odd number
a = 0 ¤ N(k) holds for no k

Since we as yet have no construction that determines whether N(k)s occur, we cannot
affirm a < 0 ⁄ a = 0 ⁄ a > 0 and hence the trichotomy law cannot be said to have a 
proof.

Moreover, the number a cannot be irrational, for then N(k) would never apply, and
hence a = 0, contradiction. This shows that ÿÿ(a is rational). On the other hand, there
is no proof that a is rational, so ÿÿA Æ A fails. Similarly, a = 0 ⁄ a π 0 has no proof.

This type of counterexample is called weak because it shows that some proposition
has no proof yet, but it does not at all exclude that such a proof will be found later. (A
sequence that Brouwer employed in his own writings is 0123456789 in the expansion
of p; but its occurence has now been proved.)

Strong counterexamples cannot always be expected. There are, for example,
instances of the Principle of the Excluded Middle (PEM) that have no proof (in any case,
not yet), but the negation of PEM cannot be proved! ÿ(A ⁄ ÿA) is equivalent to ÿA Ÿ
ÿÿA, which is a contradiction. However, strong counterexamples to some other clas-
sical principles do exist, and some will be shown in next section.

Although Brouwer had little interest in developing logic for its own sake, some of the
finer distinctions that are common today were introduced by him. In his 1907 thesis
one can already find the explicit and fully understood notions of language, logic, meta-
language, metalogic, etc. Also, Brouwer was the first to prove a non-trivial result in
intuitionistic logic, ÿA ´ ÿÿÿA (1923). He discussed logic in an informal manner;

   
a

k n N k

k n N k
n

n

k
=

- " £ ÿ
- £

Ï
Ì
Ó

-

-

( ) ( )

( ) ( )

2

2

if

if  and 

INTUITIONISM

515



Kolmogorov (1925) and Glivenko (1929) then presented formalizations of parts of
intuitionistic logic. A full system was given by Heyting (1930). As such it has become
a part of mathematical logic in its own right, independent of philosophical motivations.
Also, semantics other than the proof interpretation were developed that allow for
sharper technical results (see ‘Further semantics’, below).

Gödel (1933) defined a translation ° given by 

A° = ÿÿA for atomic A
(A Ÿ B)° = A° Ÿ B°
(A ⁄ B)° = A° ⁄ B°
(A Æ B)° = A° Æ B°
("xA(x))° = "xA° (x)
($xA(x))° = ÿ"xÿA° (x)

and proved that in predicate logic we have

G �c A ¤ G° �i A°

where G° = {B°|B Œ G}, and �c and �i denote classical and intuitionistic derivation rela-
tions, respectively.

Classically, a sentence A and its translation translation A° are equivalent, �c A ´ A°;
from an intuitionistic point of view, however, disjunctions and existential statements
will be weakened by the translation. Still, Gödel’s result shows that, formally, classical
predicate logic can be embedded into intuitionistic predicate logic.

Taking A = ^ and noting that ^° = ^, it follows that classical predicate logic is con-
sistent if and only if intuitionistic predicate logic is; so the philosophical advantages of
intuitionistic over classical predicate logic must lie in its interpretation and not in its
trustworthiness.

In fact, Gödel proved something stronger. Classical arithmetic (PA, i.e. Peano’s
axioms with classical logic as the underlying logic) can be embedded into intuitionistic
arithmetic (HA, i.e. Peano’s axioms with Heyting’s formalized intuitionistic logic as the
underlying logic):

PA �c A ¤ HA �i A°

In particular,

PA �c 0 = 1 ¤ HA �i ÿÿ0 = 1
¤ HA �i 0 = 1

So PA is consistent if and only if HA is.
However, it is not always possible to embed classical systems into their intuitionistic

counterparts. In particular, it turns out that intuitionistic analysis (second-order arith-
metic with function variables) contradicts classical analysis. This will be elaborated on
in the next section.
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2 Analysis: Choice Sequences

A choice sequence is a potentially infinite sequence of mathematical objects a = a(0),
a(1), a(2), . . . chosen, one after the other, from a fixed collection of mathematical
objects by the individual mathematician (from 1948 on, Brouwer explicitly speaks of
the creating subject, although he must have had the notion already in 1927). Here we
will limit our discussion to choice sequences of natural numbers and rationals. A choice
sequence is an incomplete object, for it is never finished.

Choice sequences come in many varieties, depending on how much freedom one
allows oneself in making the successive choices. The two extreme cases are the lawless
sequences, where there is no restriction whatsoever on future choices, and the lawlike
sequences, where one simply takes the numbers generated by a law or algorithm. One
may (but need not) identify ‘lawlike’ with ‘recursive’. (A lawlike sequence need not be
thought of as an incomplete object, provided one is willing to make the additional
abstraction from the temporal unfolding of the sequence.)

There are various reasons why this variety is relevant. First, a type need not be closed
under a given operation. Consider the sum of two lawless sequences g = a + b, i.e.

g = a(0) + b(0), a(1) + b(1), a(2) + b(2), . . .

This g is itself neither lawless (because it depends on a and b), nor lawlike (because a
and b are lawless). Second, lawlike sequences are needed to instantiate specific exis-
tence claims. Third, lawless sequences are important for metamathematical purposes.

Brouwer probably came to accept choice sequences as objects of intuitionistic math-
ematics in 1914, but theory development began in 1916–17. He showed how, using
choice sequences, one can formulate a theory of the continuum that does not let it dis-
solve into separate points. Thus, Brouwer was the first to show how to incorporate into
mathematics a point already made by Aristotle and others: a set of discrete elements
cannot represent the geometrical or intuitive continuum. Discreteness and continuity
are inseparable, complementary notions, that cannot be reduced to one another.
Neither Cantorian set theory nor earlier constructivist analyses of the continuum (e.g.
Poincaré, Borel, Brouwer in his dissertation of 1907, Weyl in 1918) had been able to
accommodate this insight.

How does this work? Brouwer identifies a ‘point’ with a choice sequence of numbers
that represent, through some coding, rational intervals on the continuum; these inter-
vals should satisfy the Cauchy condition. A point, then, is ‘becoming’ and often to some
extent undetermined. Brouwer then notices that, in general, extensional identity 
of choice sequences is undecidable. This models the non-discrete nature of the 
continuum.

The undecidability of extensional identity follows from the incompleteness of choice
sequences: at any particular time, all there is of a choice sequence is a finite initial
segment with an open end. Even if the initial segments of two sequences are the same,
still nothing can be said about whether they will always have the same values. (In the
case of two lawlike sequences, one may be able to show extensional identity by proving
equivalence of the laws governing them.)

INTUITIONISM

517



Choice sequences are generated freely, and at any time we have no more than a finite
initial segment of them, perhaps together with some self-imposed restrictions. But then
a sequence cannot, at any stage, have (or lack) a certain property if that could not 
be demonstrated from the information available at that stage. It follows that bivalence,
and hence PEM, does not hold generally for statements about choice sequences. For
example, consider a lawless sequence a of which we have so far generated the initial
segment 8, 1, 3, and the statement P = ‘The number 2 occurs in a.’ Then we cannot
say that P ⁄ ÿP holds. Note how this argument against the validity of PEM depends on
both the freedom of generation and the potential infinity of the sequences. We see that
acceptance of choice sequences as mathematical objects forces a revision of logic along
the lines of the proof interpretation given above. According to Placek (1999), this is
the strongest argument in favor of intuitionistic logic currently available. (The philo-
sophical thesis that logic may vary according to the ontological region one is speaking
about, has been elaborated by Tragesser (1977), taking his cue from Husserl; in cate-
gory theory, the phenomenon is familiar from topoi.)

Just as in classical mathematics elements are collected into a set, choice sequences
are held together in a spread (‘Menge,’ in Brouwer’s original, somewhat confusing ter-
minology). A spread law, which should be decidable, either admits an initial segment or
inhibits it; a further condition on the spread law is that of each admitted segment, at
least one immediate extension should be admitted as well. The admitted segments form
a growing tree, hence they are also known as nodes. Because of the second condition,
there will be no finite maximal paths in the tree. Choice sequences correspond to the
infinite paths, and are called the elements of the spread.

A special case is the universal spread, which admits all choice sequences. The spread
of all choice sequences satisfying the Cauchy condition is one way to represent the 
continuum.

For a few particular classes of choice sequences, there are translation theorems. For
simplicity, we look at the case of lawless sequences, but the arguments that follow are
general. Troelstra, developing earlier work by Kreisel, presented a formal system LS
describing lawless sequences, together with a mapping t into a subsystem without 
variables for lawless sequences IDB1, such that

1. t(A) ∫ A for A a formula of IDB1

2. LS � A ´ t(A)
3. (LS � A) ¤ (IDB1 � t(A))

Such translation theorems show the coherency of the translated notion as a mathe-
matical notion, and are important for metamathematical purposes. However, it 
cannot be concluded right away that translations explain lawless sequences away.
These translations take the form of equivalences. An interest in ontological reduc-
tion would demand that we regard them as contextual definitions of quantification 
over lawless sequences. However, such a demand would have to be supported by argu-
ments against such sequences that are independent of the axiomatization, for as the
translation is symmetric, it could just as well be taken to mean that in some cases, quan-
tification over lawlike sequences is best explained as quantification over lawless
sequences.
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More generally, such translations depend on specific axiomatizations of choice
sequences. (In fact, lawless sequences have been axiomatized in different ways (Kreisel,
Myhill, Troelstra), that are not always equivalent.) But an axiomatization is a way to
present mathematical content; it is not identical with it. Hence the need for indepen-
dent arguments. Brouwer certainly thought of choice sequences of any type as genuine
objects of mathematics, constructed by the creating subject. (A phenomenological jus-
tification of this conviction can be found in van Atten 1999.)

The incompleteness of choice sequences guarantees properties that are desirable to
model the continuum, but may at the same time seem to make them unworkable in
practice. For if mathematics is to be based on constructions, what place is there for
objects that at no stage have been completely constructed? Fortunately, there is a con-
tinuity principle. Essentially, this says that all one has to know to make a predication of
some choice sequence is an initial segment. Unlike the sequence itself, its initial 
segments are given in a finite construction.

(WC-N) "a$x A(a, x) fi "a$m$x"b[ m = m Æ A(b, x)]

where a and b range over choice sequences of natural numbers, m and x over natural
numbers, and m stands for ·a(0), a(1), . . . , a(m - 1)Ò, the initial segment of a of
length m. ‘WC-N’ stands for ‘Weak Continuity for Numbers’: weak, as it only says some-
thing about each a individually (local continuity).

From WC-N, two theorems follow that show that intuitionistic analysis is not just an
amputation of classical mathematics, but contains new results that are classically not
acceptable. (It is true that there is no contradiction between the classical and intu-
itionistic systems of analysis as such, as key terms (‘point,’ ‘function’) are defined dif-
ferently; but contradiction arises when one realizes that both systems try to capture the
same, pre-formal notions of ‘continuum’ and so on.) For an analysis of WC-N, see van
Atten and van Dalen 2002.

Veldman (1982) has shown that from WC-N one can derive

THE CONTINUITY THEOREM A real function whose domain of definition is the closed
segment [0, 1] is continuous on [0, 1]:

"e"x1$d"x2(|x1 - x2| < d Æ |f(x1) Æ f(x2)| < e)
for positive d, e and x1, x2 Œ [0,1].

THE UNSPLITTABILITY OF THE CONTINUUM The continuum cannot be split into two non-
trivial subsets: if � = A » B and A « B = Ø, then A = � or B = �.

Weyl announced the continuity theorem in 1921, but this is not really the same strong
result as Brouwer’s. Weyl defined real functions in such a way that they are continu-
ous by definition, that is, via mappings of the intervals of the choice sequence deter-
mining the argument to intervals of the image sequence. This way, the function type is
reduced from � Æ � to � Æ � (initial segments to initial segments). Brouwer, on the
other hand, established the continuity of functions from choice sequences to choice
sequences, by showing how this followed from intuitionistic principles and the func-
tional character (the "$!-combination).

a

ab
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Brouwer did not explicitly state the continuity theorem, instead he proved the
stronger

UNIFORM CONTINUITY THEOREM A real function whose domain of definition is the closed
segment [0, 1] is uniformly continuous on [0, 1]

"e$d"x1"x2(|x1 - x2| < d Æ |f(x1) Æ f(x2)| < e)

for positive d, e and x1, x2 Œ [0, 1].

Brouwer used the bar theorem (see below) to prove the uniform continuity theorem and
seems to have believed that the continuity theorem can only be obtained as a corollary
from it. Likewise, Brouwer in his proof of the unsplittability of the continuum appealed
to the fan theorem (see below), where the simpler WC-N suffices, for unsplittability is a
direct consequence of the continuity theorem: suppose � = A » B and A « B = Ø, then
f defined by

is total and therefore, by the continuity theorem, continuous. But then f must be con-
stant, so either � = A or � = B. An instance of unsplittability is that it is not true that
every real number is either rational or irrational. For if it were, we could obtain a non-
trivial splitting of the continuum by assigning 0 to rational, and 1 to irrational real
numbers.

Also note that WC-N by itself already suffices to refute PEM: consider "a["x(ax =
0) ⁄ ÿ "x(ax = 0)], ‘Every choice sequence is either the constant zero sequence, or not.’
This is equivalent to "a$z[(z = 0 Æ "x(ax = 0)) Ÿ (z π 0 Æ ÿ"x(ax = 0))]. Applying
WC-N to this gives:

"a$z$m"b( m = m Æ [(z = 0 Æ "x(bx = 0)) Ÿ (z π 0 Æ ÿ"x(bx = 0))])

Now take a = lu · 0 and determine the z and m that WC-N correlates to this a. Then
the above says that each b with an initial segment of m zeros will consist of zeros
throughout, which is of course not the case.

Also refuted by WC-N is Church’s Thesis in the form

CT "a$x"y$z[T(x, y, z) Ÿ U(z) = a(y)]

that says, for every sequence a there exists a Turing machine with index x that calcu-
lates, for a natural number y, the y + 1th member of the sequence (z represents the
computation process, and U(z) its result). CT fails if a ranges over the whole universe
and WC-N is true. For in that case, the index x would always have to be determined
from just an initial segment of a, which is impossible.

An application of WC-N to a predicate A(a, x) determines a set of initial segments
(nodes) that suffice to calculate an x such that A(a, x) holds. Such a set is called a bar.
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To see if one can arrive at stronger results in analysis, one would have to know whether
bars have structural properties. Brouwer managed to find such a property. For con-
venience, we consider a thin bar B, that is one with the property that if Œ B and 
< (in the ordering of the tree), then œ B (i.e. a thin bar contains no initial segments
that are longer than strictly necessary). Brouwer’s bar theorem shows that the collec-
tion of thin bars, call it ID, is inductively defined (they are well-ordered). The clauses
are:

1. Every singleton tree is in ID;
2. If T1, T2, T3, . . . are in ID, then so is the tree obtained by adding a top to the direct

sum of T1, T2, T3, . . .

This is a powerful insight, for it allows one to use induction in reasoning about thin
bars. One sees from the order of the quantifiers why uniform continuity is stronger than
ordinary continuity: for a given e, uniform continuity demands that the same d work
for the whole interval, whereas for ordinary continuity, d may vary with each x1. This
observation makes it plausible that uniform continuity should require knowledge of the
structure of the bar whereas ordinary continuity does not.

Brouwer’s proof of the bar theorem strongly depends on the intuitionistic notion
that truth of a proposition consists in having a construction for it, and on reflection on
the available means to construct proofs concerning bars.

A bar may well be an infinite tree (not in depth, but in width). A fan is a finitely
branching tree. A corollary of the bar theorem is the fan theorem: if B is a thin bar for
a fan, then there is an upper bound to the length of the nodes in B. Briefly put, a thin
bar for a fan is finite. (The contrapositive of the fan theorem is better known, but was
proven later (1927): König’s infinity lemma, which says that a fan with infinitely many
nodes contains an infinite path. It is not constructively valid, for there is no effective
method to pick out a path that is infinite.)

The unit continuum [0, 1] can be represented by a fan, for example by demanding
that for every n, the nth interval is of the form

where 2 £ a + 2 £ 2n+1, as then the number of alternatives at choice n is finite. Thus it
is that Brouwer could prove theorems about the continuum (such as the uniform con-
tinuity theorem) from a theorem on the constructively more tractable finitary trees.
This shows the power of the fan theorem.

The weak counterexamples, of which we saw an example in the section on logic,
require no more than lawlike sequences and intuitionistic logic. By exploiting the pres-
ence of sequences that are not lawlike but involve genuine choice, Brouwer in 1949
found a systematic and explicit way to construct strong counterexamples, which show
that, if one accepts non-lawlike sequences, certain classical principles are not only
without proof so far but could never be proven at all, as they are contradictory. These
strong counterexamples are based on the theory of the creating subject; we adopt
Kreisel’s terminology here.
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Let �nA stand for ‘the creating subject experiences A (has full evidence for A) at time
n’. The following principles (Kripke, Kreisel) are evident:

1. "n"m (�nA Æ �n+mA)
that is evidence never gets lost;

2. "n(�nA ⁄ ÿ�nA)
that is at every moment the creating subject can decide whether it has full evidence
for A or not;

3. A ´ $n�nA
A holds exactly if the creating subject has full evidence for it at some moment.
(Kreisel dubbed this the ‘Principle of Christian Charity,’ or, alternatively, the ‘Prin-
ciple of Infinite Vanity’.

These principles more or less define the intuitionistic conception of truth.
On the basis of 1–3, one can associate with each proposition A a choice sequence a

that ‘witnesses’ A:

The statement that such an a exists is known as ‘Kripke’s Schema’:

(KS) $a(A ´ $x · a(x) = 1)

Brouwer used the principles 1–3, and implicitly Kripke’s Schema, to establish strong
counterexamples.

For example, in 1949 he showed

ÿ"x Œ �(ÿÿx > 0 Æ x > 0)

and, by an argument of the same type,

ÿ"x Œ �(x π 0 Æ x # 0)

(# denotes apartness of two real numbers: a # b ∫ $n(|a - b| > 2-n). In the proof inter-
pretation, this is stronger than ÿ(a = b).)

In the proofs of these counterexamples choice sequences are employed that depend
on the creating subject’s having experienced either the truth or the absurdity of a par-
ticular mathematical assertion; these sequences are not lawlike. These methods are
very powerful, for example one can prove that already the irrationals are unsplittable
(van Dalen 1999b).

Besides analysis and counterexamples, other uses of choice sequences have been
found. They are used in certain completeness proofs for intuitionistic predicate logic,
and, together with KS, allow the definition of the (intuitionistic) powerset of � as a
spread.
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3 Further Semantics

As remarked, it is not easy to get model-theoretic results out of the proof interpreta-
tion, as the notion of ‘construction’ as employed there is still informal and not very 
specific. Therefore, various alternative semantics for intuitionistic logic have been devel-
oped (topological models, realizability, Kripke models, Beth trees, Martin-Löf ’s type
theory, the Dialectica interpretation, sheaf semantics, topos models). The investment
into various codifications of formal proof-notions should be rewarded by perspicuous
effectiveness: the first prize being the ‘existence property’ or ‘effective definability prop-
erty’: if $xP(x) is proved constructively, the interpretation should supply us with an
effective procedure to compute (or define) an object a and a proof of P(a).

We will present four: realizability, Kripke semantics, the Dialectica interpretation,
and Martin-Löf ’s type theory.

Realizability

Starting from the finitary standpoint of Hilbert-Bernays, Kleene suggested that 
provability in HA of a statement of the form "x$yf(x, y) should be taken to mean that
there exists a recursive (choice) function f such that "xf(x, f(x)). Thus, the original
statement is only an ‘incomplete communication’ (a notion introduced by Weyl), a full
statement gives the choice function as well. Similarly, $xf(x) is an incomplete commu-
nication of a full statement that specifies an object a such that f(a). The idea behind
Kleene’s recursive realizability (or 1945-realizability) is to code all the information nec-
essary to prove a particular statement f into a natural number n. The notation is n r f,
‘n realizes f’.

The defining clauses of r mirror those of the proof interpretation. We use some nota-
tion from recursion theory: {x}y for application, and Ø for convergence.

x r f := f for atomic f
x r (f Ÿ y) := (x)0 r f Ÿ (x)1 r y
x r (f ⁄ y) := ((x)0 = 0 Æ (x)1 r f) Ÿ ((x)0 π 0 Æ (x)1 r y)
x r (f Æ y) := "y(y r f Æ {x}y Ø Ÿ {x}y r y
x r $yf(y) := (x)1 r f((x)0)
x r "yf(u) := "y({x}y Ø Ÿ {x}y r f(y))

According to the first clause, any number realizes an atomic sentence; no number,
however, realizes a false atomic sentence. The second clause is obvious. The third clause
shows the effective nature of the disjunction: as we can effectively test whether (x)0 =
0 or (x)0 π 0, the ‘realizer’ of a disjunction gives us all the information needed to indi-
cate the desired disjunct. Similarly, the fifth clause says that a realizer of $yf(y) codes
the required instance and the information that realizes it. The fourth and sixth clauses
are like the proof interpretation: the realizer of an implication transforms any realizer
of f into a realizer of y; the realizer of a universal statement is a partial recursive func-
tion that yields a realizer for any instance.

Note that n r f is itself a formula of HA, so realizability can be viewed as an inter-
pretation of HA in itself. Therefore, it makes sense to ask for the truth of an instance of
n r f, or whether it is derivable in HA.
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Since the introduction of realizability by Kleene, many variations on the original
notion have been developed. In particular we mention ‘truth realizability’ rt, which is
defined like r but with an extra condition in the clause for implication:

x rt (f Æ y) := "y(y rt f Æ {x}y Ø Ÿ {x}(y) rt y) Ÿ (f Æ y)

Truth realizability is particularly useful in showing how realizability renders the rela-
tion between existential statements and instantiations explicit. One can prove that

HA* � t rt y Æ y and
HA* � y fi HA* � t rt y for a suitable term t,

where HA* is a suitable extension of HA in which partial terms are allowed, and which
allow for a formalization of the basis of recursion theory. This fact is used to obtain an
effective version of the existence property

HA* � $xP(x) fi HA* � P( ) for suitable 

Moreover, HA is closed under Church’s rule:

HA � "x$yP(x, y) fi HA � "x P(x, {e}xy) for a suitable e.

Since the index of the recursive (choice) function can be effectively determined, realiz-
ability provides the (admittedly not very practical) machinery needed to extract pro-
grams from proofs.

Kripke’s semantics

In Kripke’s semantics, the activity of the creating subject is modeled; it strongly resem-
bles the theory of the creating subject mentioned above. At each point in time, the
subject has constructed a collection of objects and has experienced a number of truths.
The subject is free to take its activity of construction to a next stage; at each moment
there is a number of possible next stages (or possible worlds). Thus, the stages for the
individual form a partially ordered set (even a tree) ·K, £Ò; k £ � is taken to mean ‘k is
before, or coincides with, �.’ We write ‘k |= A’ for ‘A holds at stage k;’ the standard ter-
minology is ‘k forces A.’ With every k Œ K we associate its local domain of objects created
so far, denoted by D(k). A reasonable assumption is that objects, once created, are not
destroyed later: k £ � fi D(k) Õ D(�).

The interpretation of the logical connectives now consists in spelling out the clauses
of the proof interpretation in this possible-world model of the subject’s activity. Then
the inductive definition of the forcing relation is obvious:

For atomic A, k |= A is given; ^ is never forced.

k |� A Ÿ B ¤ k |� A and K |� B
k |� A ⁄ B ¤ k |� A or k |� B
k |� A Æ B ¤ "� ≥ k(� |� A fi � |� B)

nn
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k |� A ¤ k |� A Æ ^
¤ "� ≥ k(� |� A fi � |� ^)
¤ "� ≥ k(� |�/ A)

k |� $xA(x) ¤ $a Œ D(k)k |� A(a)
k |� "xA(x) ¤ "� ≥ k"a Œ D(�) |� A(a)

Note that the cases of Ÿ, ⁄ and $ are determined on the spot, whereas Æ, ÿ and "
essentially refer to the future.

A Kripke model K is a concrete partially ordered set with an assignment of domains
and relations. A is true in a Kripke model K if for all k Œ K, k |� A. A is true, simpliciter,
if A is true in all Kripke models. Semantical consequence is defined as follows: G |� A iff
for all Kripke models K and all k Œ K, k |� C for all C Œ G Æ k |� A.

There is an extensive model theory for Kripke semantics. It is strongly complete for
intuitionistic logic, that is G �i A ¤ G |� A, and in particular �i A ¤ A is true. Predicate
logic is complete for Kripke models over trees, and for propositional logic we even have
the finite model property: �/ A fi A is false in a Kripke model over a finite tree.

From the completeness over tree models, one proves the disjunction property:

(DP) �i A ⁄ B fi �i A or �i B

A straightforward proof of DP is as follows. Suppose �/i A and �/i B, then there is a tree
model K1 that does not force A, and a tree model K2 that does not force B. Now K1 and
K2 are glued together: put the two models side by side and place a new node k below
both. In k no proposition is forced. The result is a correct Kripke model, and since �i A
⁄ B (given), k |� A ⁄ B, and hence k |� A or k |� B. But that contradicts the fact that A
and B are not forced in K1 and K2; therefore, �i A or �i B.

Similarly, there is the existence property

(EP) �i $xA(x) fi �i A(t) for a closed term t

The theorems support the intuitionistic intended meaning of ‘existence,’ but the
straightforward proofs use reductio ad absurdum and are therefore not constructive. Here
proof theoretical devices have come to the rescue (the normal form theorem):

1. If ⁄ does not occur positively in any formula in G �i A ⁄ B, then G �i A or G �i B
2. If $ and ⁄ do not occur positively in any formulas in G and G �i $xA(x), then G �i

A(t) for some closed term t.

The Dialectica interpretation

Gödel’s Dialectica interpretation (1958) is an interpretation of HA where, as the primi-
tive notion, ‘construction’ of the proof interpretation is traded in for ‘computable func-
tion of finite type over the natural numbers,’ axiomatized in his system T. The latter
notion is both more specific and less abstract (i.e. closer to Hilbert’s ‘concrete’ finitary
methods). The main result can be stated

If HA � A, then T � $x"yAD(x, y) (AD is quantifier-free; see below)
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This explains Gödel’s philosophical motivation to devise the interpretation; for com-
bined with a willingness to grant that the principles of T are evident, the main result
yields a consistency proof of HA (and, in combination with Gödel’s embedding of PA
into HA mentioned above, a consistency proof of PA). In other words, Gödel aimed to
show that if one wants to go beyond Hilbert’s finitary arithmetic (and to prove its con-
sistency, one has to), the required non-finitary elements need not be as abstract as the
intuitionistic notion of proof.

The interpretation AD of a formula A is defined by induction on the number of logical
operators in A (s . . . z and V . . . Z stand for finite (possibly empty) sequences of, respec-
tively, arbitrary type or higher type; in particular, x and u denote the sequences of free
variables in A and B):

AD := A for atomic A

For the induction step, suppose AD = $y"zAD(y, z, x) and BD = $v"wBD(v, w, u); then

(A Ÿ B)D = $yv"zw(AD(y, z, x) Ÿ BD(v, w, u))
(A ⁄ B)D = $yvt"zw((t = 0 Ÿ AD(y, z, x)) ⁄ (t = 1 ŸBD(v, w, u)))
(A Æ B)D = $V Z"yw(AD(y, Z(yw), x) Æ BD(V(y), w, u))
($sA)D = $sy"zAD(y, z, x)
("sA)D = $Y"szAD(Y(s), z, x)
(negation is defined by ÿA := A Æ 0 = 1)

The interpretation reduces the logical complexity of sentences at the cost of raising 
the type of the objects. The interplay between, on the one hand, the connectives and,
on the other, the quantifiers as constructively construed, introduces the higher-order
functions and thereby removes quantifiers from the connected statements. As state-
ments without quantifiers are decidable, the connectives between them become simple
computable (truth) functions.

For example, $xA(x) Æ $uB(u) (for atomic A and B) is translated as $U"x(A(x) Æ
B(U(x))). This renders exactly the constructive reading of the original formula: ‘Given
an object with property A, one can construct an object with property B’, that is, there
is a construction that takes an object with property A as input and yields an object with
property B as output. Such constructions are the values for U in the translated formula.

It cannot be excluded that an intuitionistic proof of a statement invokes proofs of
more complex statements; this exhibits a form of impredicativity in the proof interpre-
tation. The Dialectica interpretation does not fare better here, as functionals of a higher
type could be used to define functionals of a lower type. Also, unless one is willing to
take the notion of ‘computable functional’ as primitive, logic will be needed again in
the precise defintion of the intended class of functionals. For these reasons, it is not easy
to assess the exact epistemological advantage of the Dialectica interpretation.

Martin-Löf ’s type theory

Per Martin-Löf was the first logician to see the full importance of the connection
between intuitionistic logic and type theory. Indeed, in his approach the two are so
closely interwoven, that they actually merge into one master system. His type systems
are no mere technical innovations, but they intend to capture the foundational mean-
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ing of intuitionistic logic and the corresponding mathematical universe (Martin-Löf
1975, 1984).

Martin-Löf points out that we not only consider propositions (statements) but also
make judgments about them. That is, we may hold propositions true. The basic judg-
ments we have to consider are:

1. A is a type
2. A and B are equal types
3. a is an element of the type A
4. a and b are equal terms of the type A

We have the following correspondence between propositions and proofs on the one
hand, and types and elements on the other hand:

A is a type a is an element of the type A A is inhabited
A is a proposition a is a proof of the proposition A A is true

The type formation corresponds exactly to the formation of propositions, as used in
logic. It is a basic idea of Martin-Löf ’s type theory, that elements and types have canoni-
cal forms. This explains, for example, equality judgments. Why is 2 + 3 = 4 + 1 : � ?
That is to say, why are the terms 2 + 3 and 4 + 1 equal in the type � ? The answer is
that 2 + 3 and 4 + 1 have the same canonical form 5 (i.e. (1 + (1 + (1 + (1 + 1))))). The
rules for equality have to be understood in this way, for example

A particular feature of Martin-Löf ’s type theory that is the system does not take any-
thing for granted, but always makes explicit all required assumptions. Thus, when
making up a type from parts, all those parts have to satisfy the necessary requirements.

An informal example: in order to know that a + b is a number, we have to know that
a and b are numbers, formally stated: a and b Œ N fi a + b Œ N. Or, considering types
depending on a parameter, one has to make sure that the parameters are correctly
chosen: a Œ N fi A(a) is a type. Given the required rules for equality, substitution, etc.,
one goes on to list the various type constructions. Here are some basic rules governing
judgments:
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In the common set theoretical practice, Px : A.B(x) is the cartesian product, Sx : A.B(x)
is the disjoint sum of the family {B(x)|x Œ A}, A + B is the disjoint sum of two sets. 
The identity type is rather unusual, it is a set which is inhabited if t and s are identical,
otherwise it is empty.

Note that there is a dual reading: Px : A.B(x) becomes "x : A.B(x) in the logical 
notation, etc.

The characteristic properties of the various types and their canonical elements are
laid down by a number of rules:

Natural numbers

(0 is a natural number, and if t is a natural number then its successor St is also a natural
number). These rules introduce numbers.

Rxy is the recursor operator, its nature will be explained below.

The introduction rule is the common l-abstraction. The elimination rule yields the
application of the functional term t to the ‘input’ term t, usually written as t(t¢), or tt¢.

(elements of the disjoint sum are thought of as pairs, the first item is from the ‘para-
meter set’ A, the second on from the parametrized set Bx)

For the remaining rules see for example Troelstra and van Dalen (1988: 580).
In addition one has to give rules for ‘computing’ terms. Here are some examples:

Rx,y(0, t0, t1) � t0

Rx,y(St, t0, t1) � t1[x, t/y, Rxy(t1, t0, t1)
App.(lx · t, t¢) � t[t¢/x]
pi(t0, t1) � ti (i = 0, 1),
( p0(t), p1(t)) � t
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Where � stands for ‘converts to.’ In the formalism these conversions are also presented
in the form of rules.

The system with the above types and terms is a kind of minimal system, there are a
number of meaningful types to be added to make it more convenient and to strengthen
it. But as it is, one can demonstrate a few characteristic features.

The properties that one establishes for types and terms can immediately be copied
for propositions and proofs. If one suppresses, as is usual, the proof terms, the old
natural deduction rules reappear. Example:

Thus we can get the intuitionistic provable proposition by operating in type theory.
Actually we get a few extras for working in a constructive setting. For example, the

axiom of choice becomes derivable. In ordinary language the axiom reads:

"x Œ A$y Œ B(x)C[x, y] Æ $f Œ Px : A.B"x Œ A C[x, fx]

In type theory one can indeed find a term t such that:

t : Px : ASy : B.C[x, y] Æ Sz : (Px : A.B)Px : A.C[x, zx]

This confirms the intuitive argument that one would make in the proof interpretation.
Note that in the proper reading of the axiom of choice, one exploits the hybrid nature
of the system, terms may be elements or proofs. This is a strong practical feature of
Martin-Löf ’s type theory.

We have barely scratched the surface of the theory, but one can see the striking simi-
larity to the proof interpretation. To some extent, choice sequences have been incor-
porated in this framework as well, by admitting non-standard type theories.
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33 

Many-Valued, Free, and Intuitionistic Logics

R I C H A R D G R A N DY

Standard logic is a package with two parts – a formal deductive apparatus and a con-
ception of interpretation for the language. The deductive apparatus and the semantics
are mutually reinforcing and in this chapter we examine primarily the semantic
assumptions that formally justify the deductive machinery. The second part of the
package, the semantics of ‘standard’ logic, includes the assumptions that:

• there are two and only two truth-values, True and False,
• every sentence of the language has a determinate truth-value in each 

interpretation,
• the truth-value of any sentence of the language in an interpretation is determined

by the reference or extension of the parts of the sentence in that interpretation
(together with the universe of discourse.)

This chapter concerns three historically important forms of non-standard logics:

1. Many-valued logics reject the assumption that there are only two truth-values – it
explores the possiblities that some sentences may be neither true nor false. Among
the reasons for rejecting the assumption are the belief that statements about the
future, statements involving vague predicates or statements about quantum
mechanical properties are always either true or false. Most many-valued logics
begin by rejecting the law of excluded middle, though there are exceptions. The
number of values ranges from 3 to various infinite sets. The nature of the further
values varies widely from author to author as do the motivations for introducing
the additonal values.

2. Free logics reject the assumption that truth-values depend only on the referents and
extensions of the parts of the sentence. The primary motivation in this case is to
give a treatment of names that have no referent.

3. Intuitionist logic and other constructivist logics reject the basic assumption, shared
by classical logic and the alternatives listed above, that logic should be founded on
truth values, and instead proposes to base logic for mathematics on the concept of
a mathematical construction. The founder of intuitionistic logic, L. E. J. Brouwer,
proposed this logic only for reasoning about mathematics, but various authors



have subsequently argued at length that standard logic should be replaced by intu-
itionistic logic in other domains.

Two other forms of nonstandard logic are discussed in Part XII: “Relevance and
Paraconsistent Logics.”

1 Two- and Three-Valued Logics

Frege, one of the originators of modern logic, argued that sentences designate their
truth-values and assumed that there are just the two values True and False. Russell,
the greatest developer and promoter of modern logic, thought of sentences as denot-
ing propositions in his early work, including the monumental collaboration with
Whitehead in Principia Mathematica. However, Post (1921) proved that the axiomati-
zation for sentential logic given by Russell and Whitehead is complete with respect to a
two-valued interpretation.

POST’S THEOREM Any sentence which cannot be derived from the standard axiomati-
zation of sentential logic is false in a two-valued interpretation. The interpretation can
be explicitly constructed given the sentence.

Russell and Whitehead cited Post’s result approvingly in the preface to their second
edition, and the two-valued interpretation of logic became standard. The introduction
of the truth tables as a method of teaching and understanding the sentential connec-
tives in place of the complicated derivations from the axioms of Principia Mathematica
represented an enormous pedagogical gain, as well as a theoretical advance.

In the same article in which he proved the completeness of the axioms with respect
to two-valued interpretations, Post explored generalizations of the truth functions to
more values, and he is counted as one of the two founders of many-valued logic. Post’s
interests were entirely mathematical; he was interested in what happens when you gen-
eralize the two-valued interpretations to more values. His systems have been studied
extensively, especially in recent decades as they provide a theoretical structure for the
analysis of multi-valued switching circuits. However, they have not gathered much
attention from philosophers.

The other major founder of many-valued logic is LĹukasiewicz. He sketched the idea
of a many-valued logic in 1920 and published a systematic account in 1930 (both are
reprinted in Borkowski (1970)). Unlike Post, Ĺukasiewicz introduced three-valued logic
for philosophical reasons, to provide a more appropriate representation for the inde-
terminacy of the future. He apparently was led to this concern both by a historical
concern, studying Aristotle’s discussion of necessity, particularly his sea battle
example, and by a very contemporary concern about how to accommodate the inde-
terminism of modern physics within logic.

Aristotle’s sea battle argument is:

1. If there will be a sea battle tomorrow, then necessarily there will be a sea battle
tomorrow.
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2. If there will not be a sea battle tomorrow, then necessarily there will not be a sea
battle tomorrow.

3. Either there will or there will not be a sea battle tomorrow.
4. Therefore, either there will necessarily be a sea battle tomorrow or there will nec-

essarily not be a sea battle tomorrow.

Aristotle suggested that premise (3), the principle of excluded middle, A⁄~A, should be
rejected when A is a statement about a future contingency. Thus the motivation, if not
the details, of many-valued logic are as ancient as the study of logic itself. Ĺukasiewicz
developed this idea into a systematic logic.

In his original paper Ĺukasiewicz used 1 for truth and larger integers for other truth-
values, but he later switched to using 1 for truth, 0 for falsity and intermediate values
for other truth-values. Most, but not all other writers use this convention. Of course it
is one thing to decide that 1/2 is your third truth-value and another to give a philo-
sophical explanation of it. For Ĺukasiewicz the intermediate value is ‘indeterminate.’
Given this understanding, the most natural three-valued generalization of the two-
valued truth tables are the following, in which negation reverses the value,
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A ~A
1 0
1/2 1/2
0 1

conjunction takes the minimum value of the conjuncts.

and disjunction the maximum

A & B 1 1/2 0
1 1 1/2 0
1/2 1/2 1/2 0
0 0 0 0

A ⁄ B 1 1/2 0
1 1 1 1
1/2 1 1/2 1/2
0 1 1/2 0

For example, the conjunction of a true sentence and an indeterminate one would seem
to be indeterminate. It could become true if the indeterminacy was resolved in favor of
truth, or false if it were resolved in favor of falsity.

Note that when all the components of a sentence formed from these connectives are
all assigned value 1/2, then the entire sentence has value 1/2. If we introduce the con-
ditional as ~A⁄B, as is often done in two-valued logic, then conditionals would also have
this property and there would be no sentences which are logical truths. More con-
cretely, since that identification of the conditional with ~A⁄B makes A Æ A equivalent
to excluded middle A Æ A would not be a logical truth.



Instead of using that traditional, if often questioned, equivalence, Ĺukasiewicz
defined the conditional thus:

A Æ B 1 1/2 0
1 1 1/2 0
1/2 1 1 1/2
0 1 1 1 

One way of describing this table is that the conditional is false only in the case of True
Æ False, and is Indeterminate only in the two cases: True Æ Indeterminate and
Indeterminate Æ False. A rationale for these choices is that if A is true and B indeter-
minate, then the conditional A Æ B could be true if B were to be true, and false if it
were false. The choice of the value 1 when both components have value 1/2 is required
if A Æ A is to be logically true. Further, setting the value of (A Æ B), which we will
represent as V(A Æ B), equal to 1/2 when the components are both assigned 1/2 would
result in every sentence having value 1/2 when all its components do, and thus there
would be no logical truths.

Equivalence can be defined as usual as A ´ B iff (A Æ B) & (B Æ A). In all of the
systems we will be considering equivalence is so treated and we will not make explicit
mention of equivalence again. (In Ĺukasiewicz’ presentation of his system, he used only
negation and the conditional, having noted that A⁄B can be defined as (A Æ B) Æ B,
and then A&B can be defined by using the usual DeMorgan’s principle.)

In two-valued logic, we define a sentence to be logically true iff it is true in all inter-
pretations. When we have more than two truth-values, then we must indicate which
subset of the values are the designated values, those which are truth-like. Our defini-
tion now becomes

A IS A LOGICAL TRUTH iff it has a designated value in all interpretations.

Since Ĺukasiewicz’ motivation was to deny excluded middle, he chose only 1 as a des-
ignated value. This achieves the purpose of rendering excluded middle not a logical
truth. It has one somewhat counterintuitive consequence though, which is that under
an interpretation in which both components are assigned value 1/2, A&~A has the
same truth value as A⁄~A. This will be a consequence in any system of truth tables
generalized along the principles above that has an odd number of truth-values, but not
of those with an even number. This suggests that many-valued logics with an even
number of truth-values might be preferable. Issues of the indeterminacy of the future
are now generally studied within the framework of tense logic discussed in chapter 31,
“Deontic, Epistemic, and Temporal Logics.” Aristotle’s argument is generally regarded
as fallacious, but Ĺukasiewicz’s innovations have opened the possibilities for a variety
of other systems and ideas.

Another reason that has led philosophers and logicians to explore many-valued
logics is to attempt to avoid paradoxes such as the Liar. The Liar sentence L is:

L. Sentence L is false.

This produces a paradox: if the sentence is false, what it asserts is correct and it is true;
if the sentence is true, then what is asserts is correct and it is false. Introducing a third
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truth-value ‘paradoxical’ gives a way out of the paradox. Bochvar was the first to
suggest a three-valued logic as treatment for the paradoxes. His system differed from
Ĺukasiewicz’ since Bochvar’s third value was ‘paradoxical,’ in contrast to Ĺukasiewicz’
‘indeterminate.’ Bochvar had a double set of connectives, but we will only mention the
first set here. Since a paradoxical component, according to Bochvar infected an entire
sentence, his truth table for conjunction was:

A & B 1 1/2 0
1 1 1/2 0
1/2 1/2 1/2 1/2
0 1 1/2 1

In this system, every sentence of the language has value 1/2 when all of its compo-
nents are assigned 1/2, and thus there are no logical truths. There is, however, a related
notion, that of a sentence which is never false. This set coincides with the classical two-
valued logical truths.

However, the relief from paradox is at most temporary because the revised Liar L¢:

L¢: L¢ is false or indeterminate.

produces a new but closely related paradox.
The other relatively well-known system of three-valued logic is due to Kleene. His

motivation was to deal with statements or equations involving partially defined func-
tions and consequently his third truth-value was ‘undefined.’ Since a conjunction of a
false sentence and an ‘undefined’ could not turn out to be anything but false, his truth
tables for conjunction, disjunction, and negation were the same as Ĺukasiewicz.
However, for the conditional, Kleene regarded a conditional with both antecedent and
consequent ‘undefined’ to have the value undefined. Thus his conditional was charac-
terized as:

A Æ B 1 1/2 0
1 1 1/2 0
1/2 1 1/2 1/2
0 1 1 1

As in the Bochvar system no sentence receives value 1 on all interpretations. The most
significant and plausible application of Kleene’s system in philosophy was given by
Korner (1966) in relation to the concept of an inexact class. Various linguists have also
made use of the Kleene connectives in application to natural languages.

It is also worth mentioning that Reichenbach introduced a three-valued logic as part
of an attempt to provide a better logical framework in which to understand quantum
mechanics. This was a complex system with three negations and three conditionals.
This approach was superseded by quantum logic; it is controversial whether quantum
logic is to be considered a many-valued logic. For further discussion, we refer the reader
to Part XI, “Inductive, Fuzzy, and Quantum Logics for Probability.”
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2 Finite Valued Systems with more than Three Values

The Ĺukasiewicz three-valued generalization can be systematically carried further. 
The n-valued generalization consists of taking the values i/n - 1 for 0 £ i £ n - 1.
Conjunction will take the minimum value of the conjuncts, and disjunction the
maximum value; the value of a negation is 1 minus the value of the negated sentence.
For the conditional A Æ B we have two clauses:

V(A Æ B) = 1 if V(A) is less than or equal to V(B), and

V(A Æ B) = [1 - V(A)] + V(B) otherwise.

In all of the Ĺukasiewicz systems the only designated value is 1. Excluded middle will
not be logically true in any of these systems, though in the even valued systems
excluded middle is always truer than the contradiction A&~A. Systems with more than
1 designated value were mentioned by Post and this variation on Ĺukasiewicz systems
was studied by Slupecki and others.

Four-valued logic was proposed for modal logic, the values being ‘necessarily true,’
‘contingently true,’ ‘contingently false,’ and ‘necessarily false.’ The Ĺukasiewicz defini-
tions of the usual connectives can be used and a modal operator added. The necessity
operator will map ‘necessarily true’ onto itself and all other values onto ‘necessarily
false.’ While these truth tables have some uses, they have been superseded by the pos-
sible worlds approach to modal logic discussed in chapter 29, “Alethic Modal Logics and
Semantics.”

3 Infinite Valued Systems

The Ĺukasiewicz n-valued generalization can be systematically carried further –
Ĺukasiewicz also studied the cases where the set of truth-values consists of all rational
numbers in the interval [0,1] and where the values consist of all real numbers in the
same interval. As before, conjunction will take the minimum value of the conjuncts,
and disjunction the maximum value; the value of a negation is 1 minus the value of
the negated sentence. For the conditional A Æ B we again have the two clauses:

V(A Æ B) = 1 if V(A) is less than or equal to V(B), and

V(A Æ B) = [1 - V(A)] + V(B) otherwise.

Some applications and extensions of these systems will be discussed in later sections.
An important breaking point with respect to axiomatizability occurs in this region. All
of the finite Ĺukasiewicz logics are axiomatizable in both their sentential and quantifi-
cational forms. In the finite-valued logics the quantifiers are straightforward general-
izations of the principles for conjunction and disjunction. A universally quantified
expression has as its value the minimum of the values of the Fx. However, in the infi-
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nite case, the set of values of Fx may be a set whose minimum, greatest lower bound,
is not a member of the set. For this reason, the rationals [0.1] are a satisfactory logic
for sentential logic, but the full continuum [0,1] is required for quantificational
Ĺukasiewicz systems. It has been shown that the infinite-valued quantified Ĺukasiewicz
logic is not recursively axiomatizable.

4 Vagueness, Many-valued and Fuzzy Logics

Another philosophical perplexity for which many-valued logics have been prescribed
as remedy concerns vagueness. A natural first step in dealing with borderline cases
would be to introduce a third truth-value. However, this seems unsatisfactory for it
merely replaces the unrealistically sharp boundary between true and false with two
unrealistically sharp boundaries, one between true and indefinite, and the other
between indefinite and false. More finite values seem only to make the problem worse,
and even moving to the infinite case seems to render in appropriate results inasmuch
as seems counterintuitive to suppose that a vague statement has a precise real number
as its truth-value. However, an important proposal for analyzing vagueness has been
based on the continuum valued Ĺukasiewicz logic.

Zadeh (1975) first introduced the conception of a fuzzy set – a set for which mem-
bership is not a dichotomous matter but where the membership can take on any of the
continuum of values in [0,1] He then replaced the idea of a precise truth mathemati-
cal truth-value with fuzzy linguistic truth-values. His truth-values are the countably
infinite set: {true, very true, very very true, rather true, not true, false, very false, not
very true and not very false, . . . } each of which is a fuzzy subset of the continuum
[0,1]. Zadeh’s ideas were further developed by Goguen (1968–9) who related them to
inexact concepts.

Fuzzy logic and set theory have been enormously successful as tools in engineering
and artificial intelligence, and many intelligent control systems from elevators to
washing machines have been designed using fuzzy logic. However, as an approach to
vagueness it has not been widely accepted in the philosophical community. Part of the
resistance may be due to the fact that without the ‘fuzzy linguistic values’ the approach
imputes too much precision to vague contexts, and on the other hand the ‘fuzzy lin-
guistic values’ seem too unclear and undeveloped to be philosophically respectable. It
is also possible that philosophers lack the mathematical sophistication to fully appreci-
ate the approach.

5 Boolean Valued Systems

Another family of interpretations with a different flavor are the interpretations in
which the truth-values are the elements of a Boolean algebra. A Boolean algebra is a
generalization of principles that are common to elementary set theory and sentential
logic. A Boolean algebra consists of a set of elements B with two distinguished elements,
0 and 1, a one place operation – and two two place operations » and «, which satisfy
a set of equations to be enumerated in a moment. We are using the familiar symbols
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in bold for the Boolean notions for heuristic reasons, but it is important to distinguish
the Boolean symbol » from the set theoretic symbol ». We will see that the set theo-
retic operations are one instance of the Boolean operations.

Many alternative sets of axioms are available for Boolean algebras; a simple one that
is not too redundant, where x,y and z are any elements of B

B1 -0 = 1 -1 = 0

B2 x « 1 = x x » 0 = x

B3 x « - x = 0 x » - x = 1

B4 x « y = y « x x » y = y » x

B5 (x « y) » z = (x « z) » (y « z) (x » y) « z = (x » z) « (y » z)

One example of a Boolean algebra is to take B as the pair of truth-values {T,F}, with T
as 1, F as 0, and negation, conjunction, and disjunction as the operations. Another
family of examples of Boolean algebras is obtained by taking any nonempty set S, and
letting B be the power set, the set of all subsets of S, with S as 1, the empty set as 0, set
complement, union, and intersection as the operations.

What is of interest for our purposes it that if we take the elements of any Boolean
algebra as truth-values, and then let our valuation function be defined for negation,
disjunction, and conjunction by the Boolean operations, we find that we have a many-
valued logic which validates exactly the same set of sentences as the standard two-
valued. Post’s theorem is sometimes taken as establishing that standard logic is
two-valued, but in fact the correct statement is that standard logic is Boolean valued,
and the two-valued interpretation is just the simplest Boolean algebra.

The Boolean valued systems are importantly different from the Ĺukasiewicz and the
many-valued approaches discussed above because the values are not linearly ordered.
For example, if we take a two element set S = {a,b) we generate a Boolean algebra with
the four elements {a,b}, {a}, {b} and { }. If we now consider a disjunction A ⁄ B and
give an interpretation in which V(A) = {a} and V(B) = {b}, then the disjunction will
have the union of these as its value, that is {a,b}. Thus in Boolean valuations a dis-
junction receives the least value which is greater than or equal to the values of the two
disjuncts. Unlike the other many-valued logics above, a disjunction can be truer than
either disjunct.

6 Supervaluations are Boolean Valued Logics

Supervaluations are an approach that was first suggested by Mehlberg in connection
with vagueness, but were first developed formally by van Fraassen in the context of free
logic (to be discussed in the next section). If we consider a vague predicate such as
‘bald,’ there is a natural intuition that there are some clear positive applications some
clear negative applications and some borderline cases. One approach to vagueness is to
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use one of the Ĺukasiewicz systems and deny that excluded middle holds if we are con-
sidering a borderline case.

The supervaluation approach is to consider the set of all precisifications of the
concept bald, that is all of the ways that the concept could be turned into a precise one
by adjudicating among the borderline cases while preserving the positive and negative.
We then call a statement Supertrue if it is true in all precisifications. Given our remarks
above about Boolean algebras, it is evident that supervaluations are essentially a many-
valued approach in which the values are members of a Boolean set algebra – the rele-
vant set being that of the precisifications.

One of the advantages of this many-valued approach to vagueness is that we 
can make distinctions among the borderline cases. If Fred and Paul are both among
the borderline cases of bald, but Fred has more hair than Paul, then in a supervalua-
tion approach it will be true in fewer precisifications that ‘Fred is bald,’ and thus that
sentence will receive a lower truth value than ‘Paul is bald.’ The main philosophical
weakness of the approach is that the fundamental assumptions about precisifications
and the specification of positive and negative cases have not yet been made sufficiently
clear.

7 Free Logic

Arisototelian syllogistic logic assumed that the general terms involved in reasoning
were nonempty. That is, in treating sentences of the form ‘All Gs are Hs’ it was assumed
in evaluating the validity of arguments that there is at least one G and at least one H.
Thus ‘All unicorns are white’ would not fall within the scope of syllogistic in spite of its
form, since there are no unicorns. Modern logic does not make this assumption and
sentences of the form "x(Gx Æ Hx) are permitted even when G or H are assigned the
empty set.

However, standard logic does make existence assumptions in two forms. First, the
domain of quantification must be nonempty. The symbolic representation of the
assumption is the validity of the sentence "xGx Æ $xGx. Second, it is assumed that all
constants in the language denote some object. This is reflected in the validity of sen-
tences of the form Gc Æ $xGx.

Free logic dispenses with these assumptions. There are two main, and slightly dif-
ferent, motivations for this step. One is a methodological or ontological concern to make
the foundations of logic as free from existential assumptions as possible. The second is
an interest in applying logic to natural languages where, many believe, there are non-
denoting terms such as ‘Zeus’ and ‘Sherlock Holmes.’ (It should be noted that there are
opposing views on which ‘Zeus’ denotes a mythological god and ‘Sherlock Holmes’ a
fictional detective.)

As with many-valued logics, there are a variety of proposals for free logic systems
and a large and ongoing research program concerning them. In systems which include
identity as a logical operation, the fact that a constant c denotes can already be
expressed as $x(x = c); in systems which do not include identity, a new logical expres-
sion, usually either ‘E’ or ‘E!’ is introduced as a one-place predicate. Exactly how one
modifies the axioms and rules of inference of standard logic varies in detail depending

MANY-VALUED, FREE, AND INTUITIONISTIC LOGICS

539



on the particular formulation of standard logic, but the basic ideas are fairly straight-
forward. In place of the standard rule of existential introduction, which permits the
inference from Gc to $xGx, we have the slightly more complicated rule which requires
an additional premise, namely $x(x = c). Universal elimination (or instantiation) is 
similarly modified.

This negative pruning of the derivational system is straightforward and agreed
upon, but there agreement ends. The problems arise when we consider how to evalu-
ate the truth of Gc when ‘c’ is a non-denoting term. Negative free logic declares all atomic
sentences containing non-denoting terms to be false. Positive free logics declare at least
some atomic sentences containing non-denoting terms, for example c = c, to be true.
Neutral free logics are non-committal. Negative free logic satisfies the methodological
concern, but is less satisfying to those who are motivated by natural language consid-
erations because the latter often want a theory in which sentences such as ‘Zeus is
Zeus,’ ‘Sherlock Holmes is a fictional detective’ and perhaps even ‘Sherlock Holmes lived
in London’ are true.

There is also one version of positive free logic which satisfies the methodological but
not the linguistic concerns. On this theory not only is ‘c = c’ true for all terms, ‘c = d’
is also true for any pair of non-denoting terms. This makes ‘Zeus is Zeus’ true, but also
makes true the unwanted ‘Zeus is Sherlock Holmes’!

Matters become even more complex if we consider a language with a definite descrip-
tion operator. Following Russell we use ixGx to stand for ‘the object which is G.’
However, while Russell regarded statements including the description to be para-
phrasable into standard logic without descriptions, free logic takes the definite descrip-
tion as basic. And very unlike Russell, positive free logics treat some of the atomic
occurrences of non-denoting descriptions as true. One plausible further principle is to
extend the validity of self-identity to all descriptions regardless of whether they denote,
that is to make ixGx = ixGx valid regardless of the interpretation of G.

A tempting further extension would be to declare that each definite description sat-
isfies the condition of the description, that is to say that the winged horse is winged,
and so on. However this temptation must be resisted as it leads to an inconsistent system
when we take G as ~x = x, because then we obtain both ix(~x = x,) = ix(~x = x,) from
our previous principle, and ~[ix(~x = x,) = ix(~x = x,)] from our new principle.

Given the disagreement over which free logic principles are correct, it is not surpris-
ing that there are a variety of semantic proposals. Many of the proposals introduce a
second domain to the interpretations. The first domain is the domain over which quan-
tifiers range, but the non-denoting terms are associated with various objects in the
second domain. Technically the second domain is impeccable, but the philosophical
interpretations of it are varied and controversial.

A slightly different approach to free logic stems from a concern that logical princi-
ples should be true regardless of the denotation of terms, that is excluded middle should
be valid even in instances like ‘Either Zeus was blue-eyed or Zeus was not blue-eyed.’ A
method of achieving this end while avoiding issues about the truth of atomic sentences
is to use supervaluations. A supervaluation in this context is a set of interpretations
which assign objects to the constants which lack denotations in the starting interpre-
tation. Since any assignment of an object ‘Zeus’ will make one or the other of the dis-
juncts true, the disjunction true though neither disjunct is. Some authors describe
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supervaluations as ‘non-truth functional’ in this context, but the view given above
seems more accurate.

All of the above discussion, however, is based on free logics which accept the two-
valued assumption. That is, they reject the existence assumptions of classical logic but
accept the two-valuedness assumption. More radical approaches to free logic (Jacquette
1996) also move to a many-valued set of truth-values. It is possible that the combina-
tion of these approaches will prove more philosophically compelling than the separate
strands.

Further discussions of the topics of this section are to be found in Part IV: “Truth
and Definite Description in Semantic Analysis” and Part VI: “Logic, Existence, and
Ontology.”

8 Intuitionism

Intuitionistic logic was created by L. E. J. Brouwer, a Dutch mathematician, in response
to the set theoretic paradoxes, also discussed in Part VIII: “Logical Foundations of Set
Theory and Mathematics,” and also due to a general dissatisfaction with the under-
standing of the logic of mathematics as being a logic of independently existing objects,
properties, and relations. In Brouwer’s neo-Kantian philosophy, mathematics is a
human creation and the fundamental notion is one of a mathematical construct, rather
than truth and reference. For the classical logician, the statement that every natural
number has a successor is true because there exist infinitely many natural numbers
and the successor relation picks out a relation which holds between adjacent numbers.
For Brouwer, the statement that every natural number has a successor is known
because we know that there is a construction which for every natural number gives a
successor natural number.

Brouwer’s explanation of the logical connectives is given in terms of constructions.
A construction establishes a conjunction if it consists of two parts, one of which estab-
lishes each conjunct; a construction establishes a disjunction iff it establishes one of
the disjuncts and specifies which. A construction establishes a negation ~A iff it is a
construction which shows that if there were a construction establishing A, then we
could also establish 0 = 1. A construction establishes a conditional A Æ B iff it is a con-
struction which, applied to any construction which establishes A, establishes that B.
Note that in these last two clauses we are appealing to the application of constructions
to constructions.

For the quantifiers we have, in the domain of natural numbers, a construction estab-
lishes "xFx iff it is a construction which for any natural number n produces a con-
struction establishing Fn. Analogously, in the domain of natural numbers, a
construction establishes $xFx iff it is a construction which produces a natural number
n and a construction which establishes Fn.

Given this understanding of the connectives, instances of excluded middle such as
$xFx ⁄ ~$xFx, are not valid. If we take F to be a complex mathematical formula there
is no reason to think that we can either find a specific instance of F, or give a proof that
the existence of such an F would imply a contradiction. Similarly, the classically valid
inference from ~"xFx, which can be obtained by showing that the assumption "xFx
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leads to a contradiction, is insufficient to establish $x~Fx since the proof does not 
typically provide a specific counterexample n.

Another classical principle which is not valid is double negation elimination: ~~A Æ
A, although the subcase of it ~~~A Æ ~A is intuitionistically valid. Brouwer also
opposed the then standard view that logic provided a foundation for mathematics. 
In Brouwer’s view, mathematics required no foundation and logic was merely a 
reflection of mathematical practice not its basis. He also opposed the formalization of
logic.

However, his student, Heyting, in an effort to generate more interest in and sym-
pathy for intuitionism provided a formalization.

H1 A Æ (A & A)

H2 (A & B) Æ (B & A)

H3 (A Æ B) Æ ((A & C) Æ (B & C))

H4 ((A Æ B) & (B Æ C)) Æ (A Æ C)

H5 A Æ (B Æ A)

H6 (A & (A Æ B) Æ B)

H7 (A Æ (A ⁄ B))

H8 (A ⁄ B) Æ (B ⁄ A)

H9 ((A Æ B) & (C Æ B)) Æ ((A ⁄ C) Æ B)

H10 ~A Æ (A Æ B)

H11 ((A Æ B) & (A Æ ~B)) Æ ~A

Adding either excluded middle or double negation elimination, as H12, gives an axiom-
atization of the standard two-valued logic. Adding the usual axioms for the quantifier
expressions to Heyting’s system H1–11 provides an axiomatization of quantified in-
tuitionistic logic.

How do we know that excluded middle does not follow in some subtle way from these
axioms, showing that either Heyting’s axiomatization is wrong or that intuitionism is
incoherent? Heyting provided a three-valued interpretation in which all the Heyting
axioms always have value 1 but excluded middle does not. Since modus ponens can be
seen to preserve logical truth, excluded middle does not follow. This is an example of
the use of many-valued logics in independence proofs we alluded to in discussing three-
valued logics.

In Heyting’s interpretation, conjunction and disjunctions behave as in the
Ĺukasiewicz systems but negation and conditional are slightly different:
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Does this mean that intuitionistic logic and the rich structure of mathematical con-
structions can be represented by the three-value tables? No, because the Heyting inter-
pretation gives an interpretation on which excluded middle has value 1/2 while all the
axioms uniformly have value 1, but there are other schemas which receive value 1 on
all interpretations but are not intuitionistic truths. Specifically, it is not intuitionistically
valid to assert that for any four sentences A, B, C, and D

(A Æ B) ⁄ (B Æ C) ⁄ (C Æ D)

But this sentence must always receive value 1 according to the Heyting scheme.
The extension of this to n sentences is also not intuitionistically correct, but as we

observed earlier an n - 1 valued logic in which conditionals have value 1 when the
antecedent has a value less than or equal to that of the consequent, the principle will
always have value 1. Thus no finite valued logic can correctly represent intuitionism.
Jaskowski proposed an infinitely valued logic which does exactly match.

While Jaskowski’s proposal provides an exact characterization of the sentences
which are always true in Heyting’s logic, it seems to be a technical fact and does 
not provide any connection with the underlying motivations. Other semantics for 
intuitionistic logic which are not many-valued but rely instead on tree structures or
topological spaces seem somewhat more satisfying. Details can be found in Dum-
mett (1977).

9 Conclusions

The nonstandard logics discussed above were each proposed to deal with a philo-
sophical problem, and the innovator felt that moving beyond the standard framework
would provide progress toward an answer. Many of the systems have proved to be enor-
mously productive as applied to practical problems unforeseen by their inventors, and
almost all of them have provided fruitful ground for mathematical development.
However, none have succeeded in displacing standard two-valued logic based on truth
and reference in the philosophical canon. In many cases, as noted above, the many-
valued approaches proved to be first approximations to extensions or enrichments of
classical systems rather than replacements for them. Ĺukasiewicz’s concern for 
indeterminism is now addressed within tense logic; intuitionism is now seen, by most
logicians, as providing a more refined analysis of concepts and proofs within classical
mathematics rather than as challenging it. Of the major approaches discussed, free
logic remains the area most likely to be adopted as a new standard approach, although
it is possible that fuzzy logic or supervaluationism will become the standard in treat-
ments of vagueness.
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A ~A A Æ B 1 1/2 0
1 0 1 1 1/2 0
1/2 0 1/2 1 1 0
0 1 0 1 1 1
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34

Many-Valued Logic

GRZEGORZ MALINOWSKI

1 When is a Logic Many-Valued?

The most natural and straightforward step towards the construction of a many-valued
logic is to introduce logical values next to truth and falsity. Thereby, one has to reject
the principle of bivalence, that every proposition has exactly one of the two logical
values. Another, indirect way consists in challenging the classical laws concerning the
sentence connectives and introducing non-truth-functional connectives into the lan-
guage, among them the modal connectives of possibility and necessity. In either case
the semantics adequate is different from the classical, that is Boolean, thus the logic
under consideration is non-classical.

2 Roots, Motivations, and Early History

The roots of many-valued logics can be traced back to Aristotle (fourth century BC) who
considered, within the modal framework, future contingents sentences. In Chapter IX of
De Interpretatione Aristotle provides the time-honored sentence-example representing
this category: ‘There will be a sea-battle tomorrow.’ The Philosopher from Stagira
emphasizes the fact that future contingents are neither actually true nor actually false,
which suggests the existence of the ‘third’ logical status of propositions.

The prehistory of many-valued logic falls on the Middle Ages. More serious attempts
to create non-classical logical constructions, three-valued mainly, appeared only on 
the turn of the nineteenth century. The evaluation to what extent these different
approaches by Duns Scott, William Ockham, Peter de Rivo and Hugh MacColl, Charles
S. Peirce, Nicolai A.Vasil’ev were important for the topic is not easy. In most cases the
division of the totality of propositions into three categories was supported by some con-
siderations dealing with some modal or temporal concepts. Eventually, some criteria of
the distinction were applied and the propositions mostly were grouped as either ‘affir-
mative,’ ‘negative,’ or ‘indifferent.’

Philosophical motivations for logical many-valuedness may roughly be classified 
as ontological and epistemic. First of them focus on the nature of objects and facts, 
while the others refer the knowledge status of actual propositions. The ‘Era of many-



valuedness’ was finally inaugurated in 1920 by Ĺukasiewicz (1920) and Post (1920).
The thoroughly successful formulations of many-valued logical constructions were
possible in the result of an adaptation of the truth table method applied to the classi-
cal logic by Frege in 1879, Peirce in 1885 and others. The impetus thus given bore the
Ĺukasiewicz and Post method of logical algebras and matrices. Apparently different pro-
posals of the two scholars had quite different supports.

3 Ĺukasiewicz Three-Valuedness

Though 1920 is the year of publication of Ĺukasiewicz’s article in an official journal
Ruch Filozoficzny his finding was published as soon as March 7, 1918. In that paper
Ĺukasiewicz enriched the set of the classical logical values 0 and 1 with an intermedi-
ate value 1/2 and laid down the principles of his calculus referring to Aristotle’s argu-
ment. His future contingent proposition read “I shall be in Warsaw at noon on 21
December of the next year.”

First Ĺukasiewicz’s interpretation of the third logical value 1/2 was as a ‘possibility’
or ‘indeterminacy.’ Accordingly, the interpretation of negation and implication has
been extended in the following tables:
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x ÿx Æ 0 1/2 1

0 1 0 1 1 1
1/2 1/2 1/2 1/2 1 1
1 0 1 0 1/2 1

(the truth tables of binary connectives * are viewed as follows: the value of a is placed
in the first vertical line, the value of b in the first horizontal line and the value of a * b
at the intersection of the two lines).

The remaining standard connectives introduced through definitions

a ⁄ b = (a Æ b) Æ b
a Ÿ b = ÿ (ÿa ⁄ ÿb) 
a ∫ b = (aÆb) Ÿ (b Æ a).

have the tables:

⁄ 0 1/2 1 Ÿ 0 1/2 1 ∫ 0 1/2 1

0 0 1/2 1 0 0 0 0 0 1 1/2 0
1/2 1/2 1/2 1 1/2 0 1/2 1/2 1/2 1/2 1 1/2
1 1 1 1 1 0 1/2 1 1 0 1/2 1

A valuation of formulas in Ĺukasiewicz three-valued logic is any function v: For Æ
{0,1/2, 1} of the set of all formulas For compatible with the above tables. A tautology
is a formula which under any valuation v takes on the designated value 1.



The set Ĺ3 of tautologies of three-valued logic of Ĺukasiewicz differs from TAUT. So,
for instance, neither the law of the excluded middle, nor the principle of contradiction
is in Ĺ3. To see this, it suffices to assign 1/2 for p: any such valuation also associates 1/2
with EM and CP. The thorough-going refutation of these two laws was intended to
codify the principles of indeterminism.

Another property of new semantics is that some classically inconsistent formulas
are no more contradictory in Ĺ3. One such formula:

(*) p ∫ ÿp,

is connected with the famous Russell paradox of the ‘set of all sets that are not their
own elements.’ Russell’s set is defined by the equation

Z = {x : x œ x}.

And the resulting paradox

Z Œ Z ∫ Z œ Z,

is a substitution of (*). Russell paradox ceases to be antinomy in Ĺ3 since putting 1/2
for p makes the formula true and therefore (*) is non-contradictory. Ĺukasiewicz found
it a strong argument in favor of his three-valued logic.

4 Post Logics

Post’s proposal was made on the margin of the completeness proof of the classical logic.
It consists in defining n-valued (n finite) ‘logic algebras’ saving the classical property of
functional completeness of the set of connectives (the property permits the definition
of all other possible connectives), cf. Post (1920, 1921).

Following Principia Mathematica Post takes the negation (ÿ) and disjunction 
(⁄) connectives as primitive. For any natural n ≥ 2 he considers a linearly ordered 
set

Pn = { t1, t2, . . . , tn},

tn < tj iff i < j, with two operations: unary rotation (or cyclic negation) ÿ and binary dis-
junction ⁄, where

ti+1 if i π n
ÿ ti = ti ⁄ tj = timax{i,j}

t1 if i = n

Thus, for example for n = 4 the truth tables of these connectives are the following:
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It is easy to see that for n = 2 Post logic coincides with the negation–disjunction version
of the classical logic: the set P2 = { t1, t2} may be identified as containing 0 and 1, respec-
tively, and then the Post negation and disjunction are isomorphic variants of the classi-
cal connectives on P2. The relation to CPC breaks for n > 2. In all these cases truth tables
of negation are not compatible with the classical one is due to the fact that t1 always cor-
responds to 0 and tn to 1. Though ÿ tn = t1, ÿ t1 equals t2 and thus then is not tn.

Post considers tn as the distinguished value. Among special laws of all its logics 
(n > 2) the following many-valued counterpart of the classical law of the excluded
middle

p ⁄ ÿ p ⁄ ÿ ÿ p ⁄ . . . ÿ ÿ . . . ÿ p.
(n-1) times

deserves attention. The absence of the counterparts of some other classical tautologies
follows directly from the properties of negation.

The most important property of Post algebras is their functional completeness: by
means of the two primitive functions, every finite-argument function on Pn can be
defined. In particular, then, the constant functions may also be defined and hence the
‘logical values’ t1, t2, . . . , tn.

Post suggests interpreting the elements of Pn as (n - 1)-element-tuples P = (p1, p2,
. . . , pn-1) of ordinary two-valued propositions p1, p2, . . . , pn-1 subject to the condition
that the true propositions are listed before the false. Then

(ÿ) ÿP if formed by replacing the first false element by its denial, otherwise it is a
sequence of false propositions.
(⁄) When P = (p1, p2, . . . , pn-1) and Q = (q1, q2, . . . , qn-1), then P ⁄ Q = (p1 ⁄ q1, 
p2 ⁄ q2, . . . , pn-1 ⁄ qn-1).

For n = 4 one gets the following 3-tuples:

( 0, 0, 0 ) t1

( 1, 0, 0 ) t2

( 1, 1, 0 ) t3

( 1, 1, 1 ) t4.

This interpretation shows that the values in different Post logics should be understood
differently.
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x ÿx ⁄ t1 t2 t3 t4

t1 t2 t1 t1 t2 t3 t4

t2 t3 t2 t2 t2 t3 t4

t3 t4 t3 t3 t3 t3 t4

t4 t1 t4 t4 t4 t4 t4



5 Ĺukasiewicz Logics

In 1922 LĹukasiewicz generalized his three-valued logic and defined the family of many-
valued logics, both finite and infinite-valued, see Ĺukasiewicz (1970: 140). The set of
logical values of n-valued logic for any natural n ≥ 2 is

Ln = {0, 1/(n-1), 2/(n-1), . . . , (n-2)/(n-1), 1}.

First infinite logic is based on the set of all fractions in the real interval [0,1],

LN0 = {s/w: 0 £ s £ w, s, w Œ N and w π 0}

and the second on the whole interval [0,1], LN 1 = [0,1]. In all these cases 1 is taken as
the only designated value and the connectives are defined as follows:

1. ÿx = 1 - x
x Æ y = min(1, 1 - x + y)

2. x ⁄ y = (x Æ y) Æ y = max(x, y)
x Ÿ y = ÿ(ÿx ⁄ ÿy) = min(x, y)
x ∫ y = (x Æ y) Ÿ (y Æ x) = 1 - |x - y|.

To give an idea of what truth tables of finite valued logics look like, we now show the
tables of negation and implication in the five-valued logic of Ĺukasiewicz:
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x ÿx Æ 0 1/4 2/4 3/4 1

0 1 0 1 1 1 1 1
1/4 3/4 1/4 3/4 1 1 1 1
2/4 2/4 2/4 2/4 3/4 1 1 1
3/4 1/4 1/4 1/4 2/4 3/4 1 1
1 0 1 0 1/4 2/4 3/4 1

Ĺukasiewicz matrices have this exceptional property that in all of them the set {0,1} is
closed with respect to all connectives. This together with the fact that the tables for all
usual connectives on this set coincide with the classical truth tables yields the fact that
the set of all tautologies of every Ĺukasiewicz logic, Tautn, is a subset of the set of tau-
tologies of the CPC which actually is Taut2. The inclusion

Tautn Õ Taut2

extends to the famous Lindenbaum’s condition on mutual relations in the family of
finite Ĺukasiewicz logic. Namely, that for any natural n, m (both ≥ 2)

Tautn Õ Tautm if and only if m - 1 is a divisor of n - 1 .



Infinite Ĺukasiewicz matrices have the same set of tautologies equal to the intersection
of the contents of all finite matrices: « { Tautn: n ≥ 2, n Œ N}.

Contrary to Post none of the Ĺukasiewicz logics Ĺn (n π 2) is functionally complete
since no constant function except 0 or 1 is definable. Adding all suitable constants to the
stock of connectives makes each finite logic complete. McNaughton (1951) formulated
and proved an ingenious definability criterion for Ĺukasiewicz matrices, both finite and
infinite, showing the mathematical beauty of Ĺukasiewicz’s logic constructions.

As early as 1931 Wajsberg gave an axiomatization of Ĺ3. Taking the rules MP and
SUB he established the four axioms

W1 p Æ (q Æ p)
W2 (p Æ q) Æ ((q Æ r) Æ (p Æ r))
W3 (ÿp Æ ÿq) Æ (q Æ p)
W4 ((p Æ ÿp) Æ p) Æ p.

Since the other Ĺukasiewicz connectives are definable, the axiomatizability result 
obviously applies to the whole Ĺ3. It is worth noting that W1–W4 was the first axiom
system of many-valued logics. Still earlier, in 1930, LĹukasiewicz conjectured that his
N0-valued logic was axiomatizable (Ĺukasiewicz and Tarski 1930) by five axioms: W1,
W2, and

L3 ((pÆq)Æq)Æ((qÆp)Æp)
L4 (ÿpÆÿq)Æ(qÆp)
L5 ((pÆq)Æ(qÆp))Æ(qÆp).

The response came only in 1958 with two works showing the dependence, and thus,
the eliminability of L5. In addition, two further completeness proofs, one syntactic and
the other algebraic, were derived see Rose and Rosser (1958) and Chang (1959).

6 Kleene and Bochvar Logics

In 1938 two similar, though independent, three-valued systems of logic were invented
by Kleene and Bochvar. The epistemic arguments behind their construction relate to
indeterminacy or to meaninglessness.

Kleene’s (1938) main assumption is that there are propositions whose logical truth
(t) or falsity (f ) is either undefined, undetermined by means of accessible algorithms, or
is not essential. The third value of undefiniteness (u) is reserved for this category of
propositions. Further to that the tables of the standard connectives save the classical
behavior towards t and f and looks like:
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a ÿa Æ f u t ⁄ f u t Ÿ f u t ∫ f u t

f t f t t t f f u t f f f f f t u f
u u u u u t u u u t u f u u u u u u
t f t f u t t t t t t f u t t f u t



Kleene’s logic has no tautologies. This, somewhat striking, feature follows from the fact
that any valuation which assigns u to every propositional variable also assigns u to any
formula.

In 1952, in his monograph Introduction to Metamathematics Kleene refers to the con-
nectives of his 1938 logic as strong and introduces another set of weak connectives:
retaining the negation and equivalence he defines the three others by the tables
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Æ f u t ⁄ f u t Ÿ f u t

f t u t f f u t f f u f
u u u u u u u u u u u u
t f u t t t u t t f u t

The novel truth tables are to describe the employment of logical connectives in 
respect of those arithmetical propositional functions whose decidability depends on the
effective recursive procedures. They are constituted according to the rule of saying 
that any single appearance of u results in the whole context taking u. The original 
arithmetic motivation states that indeterminacy occurring at any stage of compu-
tation makes the entire procedure undetermined. While the first Kleene logic was made
to render the analysis of partially defined propositional functions possible, the second
was inspired by the studies within the mathematical theory of recursion, see Kleene
(1952).

Bochvar’s (1938) approach is directed towards solving paradoxes emerging with the
classical logic and set theory based on it. The propositional language of Bochvar logic
has two levels corresponding to the object language and to metalanguage. They both
contain connectives being counterparts of negation, implication, disjunction, con-
junction, and equivalence. The internal connectives are conservative generalizations of
the classical ones, in the sequel they will be denoted similarly. The external connectives
are devised to characterize the relationship between logical values of propositions. Both
sets are initially described using the values corresponding to two kinds of meaningful
sentences that is of truth (t) and falsity (f ), and the third value u reserved for mean-
ingless sentences.

The tables of internal connectives have been set according to the rule: ‘every com-
pound proposition including at least one meaningless component is meaningless, in
other cases its value is determined classically.’ Consequently, the internal Bochvar logic
coincides with the weak Kleene logic.

The external ‘metalinguistic’ connectives are supposed to express the predicates 
‘. . . is true’ and ‘. . . is false’ and have the following ‘meanings’:

external nexgation: ÿ* a ‘a is false’
external implication: a Æ* b ‘if a is true, then b is true’
external disjunction: a ⁄* b ‘a is true or b is true’
external implication: a Ÿ* b ‘a is true and b is true’
external implication: a ∫* b ‘a is true iff b is true’



As a result, the external logic is a ‘three-valued’ version of the classical logic. This is
due to the fact that the truth tables of all external connectives ‘identify’ the values u
and f, whereas the behavior of these connectives with regard to f and t is classical.

7 Towards a General Framework

With a view to unification, Rosser and Turquette (1952) established some special stan-
dard conditions that make finitely many-valued logics resemble the classical proposi-
tional logic. This, on a certain level of investigation, permitted the simplification or
solving of some metalogical questions, such as axiomatization and the extension to
predicate logics.

Assume that n ≥ 2 is a natural number and 1 £ k < n. Let En = {1, 2, . . . , n} be the
set of logical values and Dk = {1, 2, . . . , k} as the set of designated values. Rosser and
Turquette assume that the natural number ordering conveys decreasing degrees of
truth. So, 1 always refers to ‘truth’ and n takes the role of falsity.

Next come the conditions concerning propositional connectives, which have to rep-
resent negation (ÿ), implication (Æ), disjunction (⁄), conjunction (Ÿ), equivalence (∫)
and special one-argument connectives j1, . . . , jn. The respective connectives satisfy the
standard conditions if for any x, y Œ En and i Œ {1, 2, . . . , n}
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t f t f f t t t t t t f f t t f f t

Their truth tables are as follows:

ÿx Œ Dk if and only if x œ Dk

x Æ y œ Dk if and only if x Œ Dk and y œ Dk

x ⁄ y Œ Dk if and only if x Œ Dk or y Œ Dk

x Ÿ y Œ Dk if and only if x Œ Dk and y Œ Dk

x ∫ y Œ Dk if and only if either x, y Œ Dk or x, y œ Dk

ji(x) Œ Dk if and only if x = i .

Any many-valued logic Ln,k having standard connectives as primitive or definable is
called standard.

The class of many-valued logics, whose connectives fulfill standard conditions is
quite large. It contains, ‘obviously,’ all Post logics since they are functionally complete.
All finite Ĺukasiewicz logics are also standard; note that the mapping f(x) = n - (n - 1)
transposes the original values {0, 1/(n - 1), 2/(n - 1), . . . , n - 2/(n - 1), 1} onto {1,
2, . . . , n}. A moment’s reflection shows that original Ĺukasiewicz disjunction and con-
junction satisfy standard conditions. In turn, the other required connectives including
j’s, ji(x) = 1 iff x = i, are definable.



Using their framework, Rosser and Turquette positively solved the problem of axiom-
atizability of known systems of many-valued logic, including n-valued Ĺukasiewicz and
Post logics. Actually, any {Æ, j1, j2, . . . , jn} – standard logic Ln,k is axiomatizable by
means of the rule MP and SUB and the following set of axioms:

A1 pÆ(qÆp)
A2 (p Æ (q Æ r)) Æ (q Æ (p Æ r))
A3 (p Æ q) Æ ((q Æ r) Æ (p Æ r))
A4 ( ji(p) Æ ( ji(p) Æ q)) Æ ( ji (p) Æ q)
A5 ( jn(p) Æ q) Æ (( jn-1(p) Æ q) (. . . Æ (( j1(p) Æ q) Æ q) . . . ))
A6 ji(p) p Æ for i = 1,2, . . . , k
A7 ji(r)(pr) Æ ( ji(r - 1) (pr-1) Æ (. . . Æ ( ji(1)(p1) Æ jf (F(p1, . . . , pr-1, pr))) . . . ))

where f = f(i(1), . . . , i(r));

symbols F and f in A7 represent, respectively, an arbitrary connective and the function
associated with it.

The first three axioms describe the properties of pure classical implication sufficient,
among others, to get the deduction theorem in its classical version. The remaining
axioms bridge, due to the properties of j connectives and of the implication, the seman-
tic and syntactic properties. Checking the soundness of the axioms is easy and is heavily
based on procedures known from classical logic. The completeness proof, however,
requires much calculation and involves a complicated induction.

8 On Quantification

Many-valued predicate calculi are usually built along the classical pattern. In that case
a first-order language with two standard quantifiers, general " and existential $, are
considered. Mostly, the starting point is the substitutional conception of quantifiers
according to which " and $ are (infinite) generalizations of conjunction and disjunc-
tion, respectively. Accordingly, for a finite domain U = {a1, a2, . . . , an}, the commuta-
tive and associative connectives of conjunction (Ÿ) and disjunction (⁄):

"xF(x) ∫U F(a1) Ÿ F(a2) Ÿ . . . Ÿ F(an)
$xF(x) ∫U F(a1) ⁄ F(a2) ⁄ . . . ⁄ F(an)

(∫U means the equivalence of the formulae at any interpretation in U, a1, a2, . . . , an

being nominal constants ascribed to the objects of the domain). In finite-valued logical
calculi constructed upon linear matrices, quantifiers are defined ‘directly’ through alge-
braic functions related to the above-mentioned connectives. Thus, for example, for finite
Ĺukasiewicz and Post logics, for any interpretation f in a domain U

f("xf(x)) = min{ f(F(a)) : a Œ U}
f($xF(x)) = max{ f(F(a)) : a Œ U}.
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For other calculi, the semantic description of quantifiers may vary. Thus, for example,
the clauses defining quantifiers in the first-order Bochvar logic should as follows:

t when f(F(a)) = t for every a Œ U
f("xF(x)) = u when f(F(a)) = u for some a Œ U

f otherwise
f when f(F(a)) = f for every a Œ U

f($xF(x)) = u when f(F(a)) = u for some a Œ U
t otherwise.

Axiomatic systems of many-valued predicate logics are usually built as extensions of
axiom systems of the grounds of propositional calculi in a similar way to classical logic,
see Rasiowa and Sikorski (1963) and Rasiowa (1974). Proofs of completeness for
finitely-valued calculi do not, in general, create difficulties. Axiomatizability of several
important calculi of this kind are assured by Rosser and Turquette’s result extending
the standard condition’s approach to quantifiers, see Rosser and Turquette (1952).

Introducing quantifiers to logics with infinitely many values in the semantical plane
may be problematic. Thus, for example, applying the above-mentioned procedure to the
N0-valued Ĺukasiewicz logic is impossible since in the case when U is infinite it may
happen that the set { f(F(a)) : a Œ U} does not contain the least or the greatest element
and therefore min and max functions cannot be used in the definition. In turn, in the
N1-valued Ĺukasiewicz logic, the interpretations of quantifiers are introduced provided
that for any interpretation in a non-empty domain U

f("xF(x)) = inf{ f(F(a)) : a Œ U}
f($xF(x)) = sup{ f(F(a)) : a Œ U},

see Mostowski (1961). However, it appeared that N1-valued predicate calculus thus
obtained is not axiomatizable, Scarpelini (1962). The problem of the completeness of
this logic appeared extremely complex and the experience gained while attempting to
constitute such a proof raised the so-called continuous model theory (see Chang and
Keisler 1966).

Rosser and Turquette (1952) invented a general theory of quantification for a class
of finitely many-valued logics. Starting from the intuition that ordinary quantifiers are
functions on the set of pairs (x, F), where x is a nominal variable and F a formula, with
values in the set of formulae, Rosser and Turquette defined a generalized quantifier as
any formula of the form:

Q(x1, x2, . . . , xm, F1, F2, . . . , Ft),

where x1, x2, . . . , xm are nominal variables and F1, F2, . . . , Ft formulae built from pred-
icates, nominal and propositional variables, and connectives.

Carnielli (1987) admits a very general class of distribution quantifiers defined using
multiple-valued matrices as functions mapping subsets of the set of logical values into
values. This ingenious construction also directly extends a standard approach to clas-
sical quantifiers.
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9 Interpretation and Justification

Scholars of the philosophical foundation of logic widely criticized many-valued con-
structions. The first was the explanation of the logical value 1/2 in Ĺukasiewicz (1920)
resorting to ‘future contingents’ and a ‘possibility’ or undetermination of the 0–1 status
of propositions. As shown by Gonseth (1941), such interpretation is incompatible with
other principles of Ĺukasiewicz. Whenever a is undetermined, so is ÿa and then a Ÿ
ÿa is undetermined. That contradicts our intuition since, independently of a’s content,
a Ÿ ÿa is false. The upshot discovers that Ĺukasiewicz interpretation neglects the
mutual dependence of some ‘possible’ propositions.

Haack (1978) analyses Ĺukasiewicz’s way of avoiding the fatalist conclusion 
derived from the assumption that the contingent statement ‘I shall be in Warsaw 
at noon on 21 December of the next year’ is either true or false in advance of the 
event. She remarks that this way of rejecting bivalence is wrong, since it depends 
on a modal fallacy of arguing from “It is necessary that (if a, then b)” to “ If a, 
then it is necessary that b.” Urquhart (1986) sees the third logical value as the set 
{0,1} of two ‘potential’ classical values of a future contingent sentence and defines 
the implication as getting all possible values of implication. Thus, for example the 
implication having 0 as antecedent always takes value 1, the implication from 
1 to {0,1} takes {0,1} as the value and the implication from {0,1} to {0,1} has 
the value {0,1}. The last point is inconsistent with the Ĺukasiewicz stipulation, since
the output has to be 1. Therefore, Urquhart claims, the Ĺukasiewicz table is wrong. 
It may be of interest that the connective derived by Urquhart is the Kleene strong 
implication.

Reichenbach (1944) argued that adoption of three-valued logic would provide a
solution to some problems raised by quantum mechanics. In order to avoid ‘causal
anomalies,’ Reichenbach presents an extended version of the Ĺukasiewicz logic, adding
further negation and implication connectives. He refers to the third logical value as
‘indeterminate’ and assigns it to anomalous statements of quantum mechanics. The
weak point of Reichenbach’s proposal is that certain laws are also classified as ‘inde-
terminate’, such as for example, the principle of energy.

The mathematical probability calculus in its simplest form resembles many-valued
logic. Ĺukasiewicz, before 1918, invented a concept of logical probability referring to
propositions and not to events, see Ĺukasiewicz (1913). The continuators tried to create
a many-valued logic within which logical probability could find a satisfactory inter-
pretation, see, for example, Zawirski (1934), Reichenbach (1935). The Reichenbach–
Zawirski theory is based on the assumption that there is a function Pr ranging over the
set of propositions of a given standard propositional language, with values from the real
interval [0,1], such that 

P1 0 £ pr(p) £ 1
P2 Pr(p ⁄ ÿp) = 1
P3 Pr(p ⁄ q) = Pr(p) + Pr(q) if p and q are mutually exclusive (Pr(p Ÿ q) = 0)
P4 Pr(p) = Pr(q) when p and q are logically equivalent.
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Such probability, however, does not fit any ordinary extensional many-valued logic.
Identifying the logical value v(p) with the Pr(p) for Pr(p) = 1/2 from P2 and P3 we would,
for example, get that

1/2 ⁄ 1/2 = Pr(p ⁄ ÿp) = 1 and 1/2 ⁄ 1/2 = Pr(p ⁄ p) = Pr(p) = 1/2.

A very convincing interpretation of the N0-valued Ĺukasiewicz logic of Giles (1974) is
based on a dispersive physical interpretation of standard logical language. Each prime
proposition in a physical theory is associated through the rules of interpretation with
a certain experimental procedure terminating in one of the two possible outcomes, ‘yes’
and ‘no.’ The tangible meaning of a proposition is related to the observers and expressed
in terms of probability. In the case of prime propositions it is determined from the values
of probability of success ascribed by observers in respective experiment, whereas in the
case of compound propositions it is determined from the rules of obligation formulated
in the nomenclature of dialogue logic. The inductive clauses for the connectives, and
later for quantifiers, translated back to subjective probability function pr conform to the
original Ĺukasiewicz definitions. The set of tautologies of the dialogue logic, that is of
formulas to which any valuation assigns non-positive risk-value, coincides with the set
of tautologies of the infinite-valued Ĺukasiewicz logic.

Elimination of the Russell paradox was among the expectations of Ĺukasiewicz and
Bochvar. An interesting work on Ĺukasiewicz logics related to the question of the unlim-
ited consistency of the comprehension axiom, that is a first-order formula with Œ stating
the existence of all sets bearing logically expressible properties, was done. It started with
Moh Shaw Kwei’s (1954) result on the impossibility of the use of finite systems for the
purpose, and continued in the 1960s after Skolem (1957) put forward a hypothesis that
CA was consistent in N1-valued Ĺukasiewicz logic. Though several interesting results
have been obtained, the question, in its full generality, still remains open.

Scott (1973) replaces many logical values by many valuations using the truth t and
falsity f. A definite number of bivalent valuations generates a partition of the set of
propositions into types (indexes) corresponding to the original logical values – Scott
refers to them as to indexes. An n-element set of valuations can thus induce maximally
2n types. The actual number of types depends on limiting conditions imposed on valua-
tions. An accurate choice of these conditions leads to a relatively simple characteriza-
tion of the connectives of the logic under consideration. Applying his method, Scott
gets a description of the n-valued Ĺukasiewicz negation and implication connectives
through an (n - 1)-element set of valuations {v0, v1, . . . , vn-2}. The equalities of the
form ‘vi(a)’ should be read as ‘(the statement) a is true to within the degree i.’
Consequently, the numbers 0, 1, . . . , n - 2 stand for degrees of error in deviation from
the truth. Degree 0 is the strongest and corresponds to ‘perfect’ truth or no error: all
Ĺukasiewicz tautologies are schemes of the statements having 0 as their degree of error.
The measure of error of the Ĺukasiewicz implication expresses the amount of shift of
error between the degree of hypothesis and that of the conclusion.

Urquhart (1973) gave an interpretation motivated by the logic of tenses. The core
of it is the relation � between natural numbers of Sn = {0, 1, . . . , n - 2} and formulas.
‘x � a’ expresses that ‘a is true at x’ satisfies

If x � a and x £ y Œ Sn, then y � a.
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Adopting � to particular finite-valued logic requires specifying n, the language, and pro-
viding recursive conditions which establish the meaning of connectives. Accordingly,
each case results in some Kripke-style semantics with finite number of ‘reference points’
Sn. For Ĺukasiewicz and Post logics, Urquhart suggests a temporal interpretation: 0 is
the present moment and all other points of reference are future moments. A temporal
way of understanding Ĺukasiewicz negation and implication exhibits the sources of dif-
ficulties in getting plausibly intuitive interpretation of many-valued Ĺukasiewicz logic.
Urquhart eventually indicates clauses which ‘natural’ connectives of negation and
implication should satisfy.

10 Applications

Perhaps the most natural of all was the use of many-valuedness to the analysis of
vagueness, inexactness, and the paradoxes, see for example Williamson (1994). This
application finally gave an impetus to fuzzy set theory and, ultimately to the theory of
fuzzy logics, see Zadeh (1975). Zadeh (1965) defines a fuzzy set A of a given domain U
as an abstract object characterized by generalized characteristic function UA with
values in the real set [0,1]:

UA : U Æ [0,1].

The values of UA are degrees of membership of elements of U to a fuzzy set A. The
extreme values denote, respectively, not belonging to A and the entire membership of
A. So, an ordinary set is a special fuzzy set, having only 0 and 1 as possible degrees of
membership.

Fuzzy sets model inexact predicates appearing in natural languages. The values of
generalized characteristic functions are logical values of propositions obtained from the
predicates serving as a basis for a given fuzzy set. Consequently, with fuzzy set algebra
of fuzzy (sub)sets of a given domain U can be associated with an uncountable many-
valued logic. The inclusion and the operations of a (fuzzy) complement –, union » , and
intersection « are then stated by means of ‘generalized’ set-theoretic predicate Œ and
logical constants (implication, negation, disjunction, and conjunction, respectively).

The choice of the basic logic is to a great extent prejudiced. It occurred that the N1-
valued logic of Ĺukasiewicz is appropriate and it still remains favorite in the field. The
early accounts yielded the (first) understanding of the term ‘fuzzy logic’ as a certain
class of infinitely-valued logics, with Ĺukasiewicz logics in the foreground.

A typical case of modeling an inexact predicate within the above framework is the
following attempt of modeling the classical paradox of a bald man. Let us take the two
following, intuitively acceptable, propositions:

(1) A man with 20,000 hairs on his head is not bald
(2) A man who has one hair less than somebody who is not bald is not bald as 

well.

Applying the detachment rule 20,000, we get, by (1) and (2), that a man with no hair
is not bald either. The paradox will vanish when the logical value of any proposition ‘A
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man with n hair is not bald’ is identified with the degree of membership of a man with
n hairs to a fuzzy set ‘not-bald.’ Then, (2) will have a logical value less than 1, say 1 -
e, where e > 0. And, if in basic logic we use L¢ ukasiewicz’s implication. Then as a result
of 20,000 derivations we will obtain a proposition of the logical value amounting to 
1 - 20,000e, thus practically false.

Zadeh’s (1975) conception of a fuzzy logic conveyed the belief that thinking in terms
of fuzzy sets is a typical feature of human perception. Fuzzy logic identifies predicates
with fuzzy subsets of a given universe and logical values with fuzzy subsets of the set
of values of the basic logic. The logical values are labeled linguistic entities and, simi-
larly as predicates, may be modified by the so-called hedges. Finally, the procedure of lin-
guistic approximation compensates for the lack of closure of the object language and
the closure of the set of logical values onto logical connectives. Fuzzy logic is now an
autonomic discipline. It seeks to formulate several rules of approximate inference.

Zadeh’s fuzzy approach has found its place among accepted methods of artificial
intelligence, in computer science and steering theory. It confirmed its usefulness due to
reliable applications; see Turner (1984).

The use of many-valued matrices to the formalization of intensional functions, the
matrix approximation of syntactically founded non-classical logics and the testing of
independence of axioms are worth mentioning. The first use was already suggested by
Ĺukasiewicz, who insisted on the formalization of possibility and necessity within the
three-valued logic (see Section 2) and several years later proposed a four-valued system
of modal logic in Ĺukasiewicz (1953). This line of approach has been in some way con-
tinued since the algebraic interpretations of Ĺukasiewicz and Post logics incorporated
‘modal’ functions in a form of the Boolean-valued endomorphisms. However, from the
philosophical point of view these finite-valued interpretation of modalities have no par-
ticular value (since as already in 1940 Dugundji proved, no reasonable system of modal
logic may be finite-valued), the role of their counterparts in Post algebras occurred
which were crucial for the Computer Science applications.

Ĺoś (1948) showed that, under some reasonable assumptions, the formalization of
functions of the kind ‘John believes that p’ naturally leads to the many-valued inter-
pretation of the belief operators within the scope of the classical logic system. The
model situation considered is the case of two persons, who do not agree on all the issues,
which may be expressed in propositions. One then obtains four possible evaluations in
terms of pairs of classical logic values, that is the truth or falsity, which divides the set
of all propositions into four types (or classes) ultimately corresponding to non-classical
values. The connectives of negation and implication defined ‘naturally,’ in reference to
their classical counterparts in parallel use for every person, also behave classically.
Accordingly, we fall in the four-valued version of CPC. The shifting of approach onto
the case with more persons results in other formal many-valued interpretations of the
classical logic with additional operators. Ĺoś’s construction shows that it is possible to
get a many-valued interpretation of some special intensional functions simultaneously
adhering to the intuition of bivalence. Since many-valuedness thus received reflects
certain relation of two different arguments, a person and a proposition, it has to be clas-
sified as untypical semantic correlate.

The successful use of classical logic and Boolean algebras in switching theory and
in computer science became established. The algebraic approach enables the applica-
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tion of several techniques for the analysis, synthesis, and minimalization of multiplex
networks. And, as early as the 1950s, interests centered also on possibility of the use
of many-valued logics for similar purposes. These interests brought about the birth of
several techniques for the analysis and synthesis of electronic circuits and relays based
mainly on Moisil’s and Posts algebras, see for example Rine (1977). The practical
switchover of two oppositely oriented contacts positioned in parallel branches of a
circuit, which have to change their positions simultaneously is the simplest possible
electronic circuit to consider within a three-valued framework. Namely, there are good
reasons to drop the idealistic assumption affecting the circuit, for example using relays,
would really change the positions of both contacts instantly, that is that the circuit
would pass from state 1 to state 0. Then, obviously, we get a third state that might also
obtain. A generalization of the outlined construction for the case of any number of con-
tacts similarly results in n states. Finally, getting a description of a network composed
of such switchovers is performed using Moisil algebras, that is Ĺukasiewicz n-valued
algebras and Post algebras. The most important advantage of the many-valued
approach is the possibility of eliminating switching disturbances through the algebraic
synthesis of the networks, see, for example, Moisil (1972).

Post algebras found an important application in the systematization of theoretical
research concerning programs and higher level programming languages which
contain instruction branching programs – the constants e0, e1, . . . , en-1 of Post algebra
are then interpreted as devices which keep track of which appropriate branching con-
ditions W0, W1, . . . , Wn-1. Further to this, Post algebras of order w+ form a semantic
base for an w+-valued extension of algorithmic logic adapted to arbitrary ‘wide’ branch-
ing programs, see Rasiowa (1977).
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Ĺukasiewicz, J. and Tarski, A. (1930) Untersuchungen über den Aussagenkalkül. Comptes rendus

des séances de la Société des Sciences et des Lettres de Varsovie Cl. III, 23, 30–50.
McNaughton, R. (1951) A theorem about infinite-valued sentential logic. Journal of Symbolic

Logic, 16, 1–13.
Moh Shaw-Kwei (1954) Logical paradoxes for many-valued systems. Journal of Symbolic Logic,

19, 37–40.
Moisil, G. (1972) Essais sur les logiques non-chrisipiennes. Bucharest: Editions de l’Académie de la

Republique Socialiste de Roumanie.
Mostowski, A. (1961) Axiomatizability of some many-valued predicate calculi. Fundamenta

Mathematicae, 50, 165–90.
Post, E. L. (1920) Introduction to a general theory of elementary propositions. Bulletin of the

American Mathematical Society, 26, 437.
Post, E. L. (1921) Introduction to a general theory of elementary propositions. American Journal

of Mathematics, 43, 163–85.
Rasiowa, H. (1974) An Algebraic Approach to Non-classical Logics. Amsterdam: North-Holland.
Rasiowa, H. (1977) Many-valued algorithmic logic as a tool to investigate programs. In J. M.

Dunn and G. Epstein (eds.), Modern Uses of Multiple-Valued Logic (pp. 79–102). Dordrecht:
Reidel.

Rasiowa, H. and Sikorski, R. (1963) The Mathematics of Metamathematics. Warsaw: PWN.
Reichenbach, H. (1935) Wahrscheinlichkeitslehre. Leiden; English tr. The Theory of Probability.

Berkeley: University of California Press, 1949.
Reichenbach, H. (1944) Philosophical Foundations of Quantum Mechanics. Berkeley and Los

Angeles: University of California Press.
Rescher, N. (1969) Many-valued Logic. New York: McGraw-Hill.
Rine, D. C. (ed.) (1977) Computer Science and Multiple-valued Logic: Theory and Applications.

Amsterdam: North-Holland.
Rose, A. and Rosser, J. B. (1958) Fragments of many-valued statement calculi. Transactions of the

American Mathematical Society, 87, 1–53.
Rosenbloom, P. C. (1942) Post algebra. I. Postulates and general theory. American Journal of

Mathematics, 64, 167–88.
Rosser, J. B. and Turquette, A. R. (1952) Many-valued Logics. Amsterdam: North-Holland.
Scarpelini, B. (1962) Die Nichtaxiomatisierbarkeit des uendlichtwertigen Prädikatenkalküls von

Ĺukasiewicz. Journal of Symbolic Logic, 17, 159–70.
Scott, D. (1973) Background to formalisation. In H. Leblanc (ed.), Truth, Syntax and Modality

(pp. 244–73). Amsterdam: North-Holland.
Skolem, T. (1957) Bemerkungen zum Komprehensionsaxiom. Zeitschrift für Mathematische Logik

und Grundlagen der Mathematik, 3, 1–17.
Turner, R. (1984) Logics for Artificial Intelligence. Chichester: Ellis Horwood.
Urquhart, A. (1973) An interpretation of many-valued logic. Zeitschrift für Mathematische Logik

und Grundlagen der Mathematik, 19, 111–14.
Urquhart, A. (1986) Many-valued logic. In D. Gabbay and F. Guenthner (eds.), Handbook of

Philosophical Logic, vol. III (pp. 71–116). Dordrecht: Reidel.
Williamson, T. (1994) Vagueness. London and New York: Routledge.

GRZEGORZ MALINOWSKI

560



Zadeh, L. A. (1965) Fuzzy sets. Information and Control, 8, 338–53.
Zadeh, L. A. (1975) Fuzzy logic and approximate reasoning. Synthese, 30, 407–28.
Zawirski, Z. (1934) Stosunek logiki wielowartościowej do rachunku prawdopodobieństwa
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Inductive Logic

S T E P H E N G L A I S T E R

All inductive logicians aim to construct a formally articulated theory of good amplia-
tive (non-deductive) inference that parallels existing formal theories of good deductive
inference. They disagree, however, about the extent and respects of that parallel, as well
as about the exact formal resources that should be brought to bear. What I will call Good
Old-Fashioned Inductive Logic (GOFIL) holds that the parallels between deductive logic
and inductive logic are straightforward and extensive. (‘GOFIL’ and related acronyms
follow a well-known model due to John Haugeland.) On this view inductive logic, like
deductive logic, studies arguments, but whereas deductive logic studies the relation of
deductive validity between an argument’s premises and its conclusion, inductive logic
studies the degree to which those premises support or confirm that conclusion.

The obvious instrumentality with which to articulate this system of degrees is prob-
ability. The basic properties of probability are codified by axiomatizations such as those
of Kolmogorov and of Renyi. Advocates of GOFIL, together with many statisticians and
essentially all philosophers of probability, hold that it makes perfectly good sense to ask
– even that it is essential we ask – what probability is beyond those basic formal prop-
erties (Salmon 1967; Walley 1991; Hájek 1997). Taking existing uses of probability
concepts in both commonsense and science as the first word in matters of extra-formal
interpretation, GOFIL suggests that one thing probability is, particularly in epistemic
contexts, is a parameter expressing degree of confirmation. That is, the probability 
P(B | A) that conclusion proposition B is true given premise proposition A (= «Ai if the
argument has multiple premises) is understood as a measure of the objective, logical
degree to which A supports or confirms B. GOFIL therefore sponsors a so-called ‘logical’
interpretation of (two-place) probability (Keynes 1921; Jeffreys 1957; Carnap 1962).
Since Carnap’s version of GOFIL is the most developed and influential we will concen-
trate on that account. In section 1, then, we review the principal achievements of and
challenges faced by GOFIL á là Carnap.

Many of GOFIL’s achievements are detachable from that program’s commitment 
to a logical interpretation of probability. In section 2, we survey the reincarnation of
GOFIL in the context of a subjectivist interpretation of probability: a development we
will call Subjectivist Inductive Logic (SIL).

SIL rejects GOFIL’s logical account of probability, but it largely perpetuates GOFIL’s
basic conception of inductive logic as a matter of articulating standards of coherence



and consistency that can be used to assess particular inferences or inference forms. A
more radical departure from GOFIL refocuses attention away from issues of coherence
and consistency, and towards the study of various sorts of logical guarantees of con-
vergence to the truth. We discuss this New-Fangled Inductive Logic (NFIL) in section 3.

1 Good Old-Fashioned Inductive Logic (GOFIL): Carnap’s Program

Carnap developed his account of inductive logic through a long series of important
publications over 30 years, reaching an apex of both generality and compatibility with
standard probabilistic terminology in the posthumously published Carnap (1971,
1980). In this section, we will employ essentially the terminology used in this later
work.

Formal preliminaries

Let a family of properties, {F1, . . . , Fk} be a set of properties that are pairwise exclusive
and jointly exhaustive. Each property in the family thus functions as a complete char-
acterization of an individual in the logic. An atomic proposition is a proposition that
ascribes one of the properties, Fi, to an individual, for example F3b. A sample proposition
is a finite conjunction of atomic propositions in which each atomic proposition involves
a different individual, for example F3b « F3c « F4d. n(E) or n (if the reference is clear)
is the total number of individuals involved in E, and ind(E) is the set of individuals
involved in E. Let the empty sample proposition be the necessarily true proposition, W.

ni(E) or just ni (if the reference is clear) is the number of individuals to which E
ascribes property Fi, and n(E) or n (if the reference is clear) is the frequency vector 
·n1, . . . , nkÒ for E. The number of possible frequency vectors for a sample proposition 

E is , where n = n(E) = Sni. �Note that � The number of

possible sample propositions involving exactly ind(E) with a given frequency vector 

n is given by the multinomial coefficient for that vector, If there are q 

individuals overall then there are distinct sets of n individuals available to be

partitioned by n, hence possible realizations of n in that population.

Let P be a probability function on the algebra of atomic propositions for countably
many individuals. A singular predictive inference is a conditional probability, P(Fia | E),
where E is a sample proposition that does not involve individual a. A rule of succession
is a general formula for P’s singular predictive inferences. We define the unconditional
probability P(Fia) as P(Fia | E = W). Unconditional probabilities for arbitrary sample
propositions follow immediately, for example:

P(Fia « Fjb) = P(Fia) · P(Fjb | Fia)
P(Fia « Fjb « Fkc) = P(Fia) · P(Fjb | Fia) · P(Fkc | Fia « Fjb)
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and so on. All other unconditional probabilities follow by additivity of the probabilities
of these basic possibilities.

P is exchangeable just in case the probabilities of sample propositions are functions 
of their frequency vectors, that is P(E) = P(E¢) if n(E) = n(E¢). Put another way, P is
exchangeable just in case one doesn’t change probabilities merely by altering which
individuals have which properties.

To the continuum and beyond

Carnap’s first major work in inductive logic (Carnap 1962) culminates in a long appen-
dix on a particular logical probability or degree of confirmation function, c*. The rule
of succession for c* is

that is where E involves n individuals of which ni have property Fi.
C* gives equal prior probabilities for an individual having an arbitrary property, that

is for all Fi, c*(Fia | W) = 1/k, since ni = n = 0. This implies both that each possible fre-
quency vector for the whole population is allotted the same prior probability, and that
that allotment is split evenly among its realizations. For example, when the universe 
of individuals comprises two coin tosses, a and b, and the family of properties is just
{F1 = ‘heads’, F2 = ‘tails’} then the c* priors are:

c*(F1a « F1b| W) = c*(F2a « F2b| W) = 1/3
c*(F1a « F2b| W) = c*(F2a « F1b| W) = 1/6

That is, the outcomes of 0, 1, and 2 heads are given equal weight, notwithstanding
that there are more ways to get exactly 1 head.

Cases such as this almost immediately start one worrying that an alternative to c*
that assigns equal prior probability (here 1/4) directly to all the possible realizations of
all frequency vectors might be preferable. Carnap (1962) called this alternative, c†, and
noted that Peirce, Keynes, and Wittgenstein had all succumbed to its charms. In a tour
de force, however, Carnap showed that the rule of succession for c† is:

That is, c† makes a certain sort of empirical learning impossible: its singular predictive
inferences ignore all observed frequency information.

Whence comes the appeal of c†, say in the coin-tossing case above, if it is, in the
abstract, inductively catastrophic? Evidently its appeal in the case at hand is grounded
in the fact that we are jumping to the conclusion that the coin to be tossed is (close to)
objectively fair. If we assume this (or indeed any other particular bias for the coin) then
there is an important sense, underlined by Carnap’s result for c†, in which we already
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know everything there is to know about the coin we are tossing. The exact sequence of
heads and tails remains to be determined, of course, but that’s just the unfolding of a
chance process: it’s ‘whatever happens.’ And if we know the chance parameters for the
overall process then no stage of the unfolding chance process tells us anything about
any other stage of that process. c† is not an inductive catastrophe in the case of tossing
a coin with known bias, rather it’s a legitimate expression of the fact that there’s
nothing left to learn about the case at hand.

Reflecting on c† in this way helps us see that the basic inductive problem for Carnap
is equivalent (given two outcomes) to trying to figure out the bias of a coin from the
actual outcomes of a series of tosses. From this perspective, the degeneracy of c† is just
that it is appropriate only for a case in which exactly that inductive problem has already
been solved. In actual empirical applications, moreover, we are always open to revisit-
ing our estimates of a coin’s bias – a string of 1000 heads from a coin we believed fair
would always give us pause. It follows that c† is at best a contextually specific, conve-
nient approximation; one which Carnap himself analogizes to the use of 22/7 to
approximate p.

At the opposite extreme from c† is the so-called ‘straight rule,’ csr. This alternative to
c* ignores all prior probability information and simply predicts the continuation of the
components of the sample proposition’s frequency vector into the future, that is:

We can think of csr as at one end of a spectrum, giving no weight to the prior proba-
bilities, c† at the other end, giving incomparably great weight to the priors, and c* as
somewhere in between. Carnap (1952) makes the obvious weight parameter explicit,
yielding the following family of rules of succession:

where 0 £ l £ •. Since cl has continuum many instances, Carnap called this system
the ‘Continuum of Inductive Methods.’ Cl reduces to csr, c*, and c† when l is 0, k, and
• respectively.

Carnap (1980) generalizes still further, dropping the requirement of uniformity of
the prior probability, gi, that an individual will have property Fi:

where l is positive and finite and Sgi = 1. (Carnap (1980) analyzes extreme rules such
as csr and c† only in the limit, as l approaches 0 and • respectively.) We can think of
the probabilities generated by this sort of rule as a matter of first augmenting the n-
membered sample population with a virtual population comprising l individuals with
frequency vector ·lg1, lg2, . . . , lgkÒ, then recalculating the relative frequencies from
there. C* is the case where each property gets exactly one virtual representative (Jeffrey
1980: 2–3).
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Carnap presented many different sets of qualitative conditions on P over the years,
each of which he intended to be sufficient for his favored family of logical probabilities
at the time. Carnap (1980: section 19) proves that the following relatively sparse group
of conditions is sufficient for the l–g-continuum of inductive methods:

(l–g1) P is exchangeable.
(l–g2) P is regular: P(E) > 0 for all E.
(l–g3) Strict Instantial Relevance: P(Fib | Fia) > P(Fib).
(l–g4) Sufficientness: P(Fia | E) is a function just of n and ni.

Note that csr = c0,g conflicts with (l–g2) since if ni(E) = 0 then c0,g (E) = 0, and c•,g con-
flicts with (l–g3) since c•,g (Fib | Fia) = c•,g (Fib). Lastly, note that (l–g4) is vacuous if
there are only two possible properties, so that, strictly speaking, the given postulates
only imply the l–g-continuum for k ≥ 3. Carnap saw the problem, and solved it – 
inelegantly – by adducing a quantitative axiom of linearity to cover the k = 2 case. We
set aside this unfortunate wrinkle in Carnap’s approach here.

The basic problem

Before discussing relatively technical objections to and further developments of
Carnap’s program, it is worth asking about the extent to which that program succeeds
in meeting its original goals. Recall that the basic suggestion of GOFIL was that one
thing probability could be, particularly in epistemic contexts, is a parameter register-
ing degree of confirmation.

Now if, say, c* had emerged as a uniquely compelling inductive method then it would
have been possible for Carnap to declare victory: to say that probability in many epis-
temic contexts just is c*. But if, as Carnap clearly believed by 1952, c* is not uniquely
compelling so that, so to speak, degrees of confirmation are many while probabilities are
one, then the logical interpretation of probability has to be abandoned. P(B | A) can’t just
be the degree to which A confirms B since degree of confirmation turns out to have addi-
tional argument places that probability lacks. Moreover, Carnap agrees that the value of
l “is fundamentally not a theoretical question” but a “practical decision,” albeit one
which can be importantly informed by “theoretical results concerning the properties of
the various inductive methods” (Carnap 1952: 53). The l–g-continuum, of course, only
expands the role of practical decision making. But then, whatever else he might have
done, Carnap hasn’t provided a logical interpretation of (two-place) probabilities, fixed
as relations of entailment are fixed, simply by the nature of the underlying field of propo-
sitions. And assigning all particular degrees of support only relative to l- and g-values
that are themselves matters of decision raises the specter of circularity, or at least of a
kind of holism about probability (i.e. if those decisions, as it’s natural to suppose, already
involve probabilistic reasoning of some kind). This is unpromising ground on which to
try to erect a strictly logical interpretation of probability.

From the late 1950s onward, and especially in Carnap (1963), Carnap strongly
emphasizes the role of degrees of confirmation in helping determine expected utilities,
fair betting quotients, and so on. It is not clear whether Carnap intended this new
emphasis to solve or to concede defeat by the problems raised in this section. Whatever
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Carnap may have intended, strongly emphasizing betting behavior and decision
making invites exploration of how much of GOFIL can be retained given a subjectivist
interpretation of probability. And historically this path has been very popular. Indeed,
in one obvious respect, GOFIL apparatus immediately acquires a new luster in a sub-
jectivist setting: symmetry arguments and principles that are endlessly controversial
when wielded as additional universal postulates to help fix logical probabilities, are 
necessarily less objectionable when employed opportunistically, as tools for forming
subjective probability models of particular cases. We consider subjectivized inductive
logic in detail in section 2.

Other problems and developments

In this section, we briefly review some relatively technical problems for GOFIL.

Confirming universal generalizations
In domains where there are infinitely many individuals all of Carnap’s inductive
methods give zero prior probabilities (hence – except for csr – also zero posterior proba-
bilities on finite evidence) to universal generalizations (UGs). One response is simply to
accept the consequence, fashioning the point either as a sobering reminder of how far
the literally universal outstrips our abilities to probabilize (R. Price, De Morgan, Jeffrey),
or as a demonstration of how far the mathematics of infinity takes us away from the
sorts of epistemic contexts that matter (Ramsey, Savage, T. Fine). The other main
response is, of course, to try to modify Carnap’s apparatus to permit assigning positive
prior probability to UGs in infinite domains (and swifter confirmation in finite domains).
From a subjectivist perspective, the problem is no sooner stated than it is solved: simply
put finite probability where it’s needed and make appropriate adjustments elsewhere
(Jeffreys and Wrinch 1919; Earman 1992: 89–90). But how to justify this sort of
flexibility within a GOFIL setting?

Two attempts have been made to meet this challenge, both of which centrally involve
amending (l–g4) (actually both amendments address only the l-continuum, but 
the difference doesn’t matter here). Zabell (1997b) proposes the following minimal
modification:

(l–g4.1) P(Pia | E) is a function just of n, ni, except when E involves only a single
property.

and proves a remarkable theorem showing that essentially just exchangeability of P
determines both:

• the existence of prior and posterior probabilities for each UG, ("j)Fiaj;
• a formula that makes P(Fia | E) in these cases a weighted average of its l-continuum

value and the posterior probability for ("j)Fiaj.

The most extended response to the problem of confirming UGs within GOFIL is due 
to Hintikka and Niiniluoto (1980). The core of this response is the weakening of
(l–g4) to:
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(l–g4.2) P(Pia | E) is a function just of n, ni, and of the number of distinct prop-
erties not involved in E.

The thought behind the additional argument parameter here is that “it determines the
number of nonequivalent generalizations compatible with the sample” (Hintikka and
Niiniluoto 1980: 160). Coordinately, the underlying technical innovation of the so-
called H-N systems is to assign probabilities in the first instance directly to generaliza-
tions about which properties (and relations) are instantiated in a population (the
‘constituents’ of Hintikka (1966)). One can, it turns out, do this in a way that permits
(1) the calculation of all sample proposition probabilities, (2) positive probability for
UGs independently of the cardinality of the domain, and (3) much faster confirmation
of generalizations in finite domains. Carnap’s l-continuum even emerges as the sole H-
N system in which UGs fail to receive positive probability in infinite domains (Hintikka
and Niiniluoto 1980: 173).

New properties/species
Carnap’s inductive methods (as well as the H-N systems) suppose that we know all the
basic properties, {Fi}, in advance. But this is deeply unrealistic: real-world inductions
involve learning about new types almost as much as they do learning about new tokens
(of pre-digested types). Zabell (1992, 1997a) shows how to make a Carnapian frame-
work more realistic, by allowing for singular predictive inferences about novel prop-
erties or species.

Suppose for ease of exposition that the observables are letters in the alphabet.
Evidently the frequency vector (from nA to nZ) for the sample of observations DFBBBAA,
·2, 3, 0, 1, 0, 1, 0, 0, . . . , 0Ò is not an appropriate statistic unless we possess a prior
enumeration of all 26 types. If we knew just DFBBBAA, then the only available fre-
quency vector would seem to be the vector comprising the frequencies of the actually
observed types (from nA to nF), ·2, 3, 1, 1Ò. We can further imagine interpreting the
vector in the following minimal fashion:

“fourth species observed showed up twice,” “third species observed showed up three
times,”. . . .

If we now suppose that possible observations are indexed by times {1, . . . , n}, then the
frequency vector just for observed types can be thought of as constituting a partition
p of the index set {1, . . . , 7}. We can now generate a higher-order statistic for a par-
tition corresponding to the frequencies of the frequencies in the partition of the index set.
Let aj be the number of types with j observed tokens, that is the number of j-membered
partition cells in the partition of the index set. For example, a1(DFBBBAA) = 2,
a2(DFBBBAA) = a3(DFBBBAA) = 1.

Let Pn be a random variable taking as values possible partitions of {1, . . . , n} and
let a = ·a1, . . . , anÒ be the partition vector for an n-membered sample, so that, for
example, a(DFBBBAA) = ·2, 1, 1, 0, 0, 0, 0Ò. Suppose finally that one has a probability
over the space of possible partitions of {1, . . . , n} and say that that probability is par-
tition exchangeable iff all partitions with the same partition vector are equiprobable, that
is P(Pn = p1) = P(Pn = p2) if a(p1) = a(p2), where p1 and p2 are partitions of {1, . . . , n}.
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Zabell (1997a) shows that a new, three-parametered continuum of inductive
methods is implied by partition exchangeability, and three other conditions. The first
two conditions are just partition counterparts of regularity (l–g2) and sufficientness
(l–g4). The final condition governs the probability that the next individual is of a novel
species:

(Z) P(en+1 Œ St+1 | ·n1, . . . , ntÒ) is a function just of the number of species already
observed, t, and the sample size, n.

See Zabell (1997a: section 2) for the new continuum of predictive probabilities itself.
For some of the relations between the new continuum and the H-N systems, see Zabell
(1992: 218).

Note finally that some authors (Salmon 1967; Fine 1973) have worried that
Carnapian degree of confirmation values are inappropriately sensitive to refinements
in the space of properties. Zabell’s work, however, appears to demonstrate one way in
which such sensitivity is not only appropriate but essential.

Analogy
Carnap’s inductive logic can be understood as importantly anti-analogical. Whereas
exchangeability implies that order of individuals is unimportant, proximity of individ-
uals in some ordering or metric is often taken to be a reasonable basis for inference.
Similarly, whereas sufficientness conditions insulate predictions about one type from
(frequency) information about other types, proximity of types in some ordering or
metric is often taken to be a reasonable basis for inferring features of one type from
another.

We briefly discuss the weakenings of exchangeability that are needed for models of
the first sort of analogical reasoning in the discussion of “De Finetti’s exchangeability
reduction” below. Notable attempts to model the second sort of analogy in a broadly
Carnapian spirit include Niiniluoto (1981), Constantini (1983), Kuipers (1984),
Skyrms (1993), and Maher (2000).

2 Subjectivized Inductive Logic (SIL): De Finetti Regnant

We observed in the section “To the continuum and beyond”, above, that Carnap thinks
of the basic inductive problem as analogous to trying to divine the bias of a coin from
an actual sequence of tosses. The crucial point is that the system being theorized about
is supposed, conditional on any particular bias value(s), to produce sequences of (objec-
tively) independent, identically distributed (same objective probabilities each time for
the different possible outcomes) trials.

This situation is one of the most well-studied problems in statistics, and particularly
in Bayesian statistics. From a Bayesian statistical perspective, the problem is just to
choose an appropriate prior probability on the possible values of the bias parameter so
that (1) computation of posteriors is easy, and (2) convergence to the true bias is guar-
anteed. Sometimes statisticians recommend a uniform or ‘flat’ prior for these purposes.
At least equally commonly, however, they allow any member of the family of priors that
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essentially share the functional forms of the likelihoods (i.e. the probabilities of sample
propositions given values of the relevant bias parameter(s)) as functions of the bias
parameter(s). Most distinguished are the so-called natural conjugate priors. (When the
product of the prior and the likelihood yields a posterior distribution in the same family
as the prior, the prior is said to conjugate with the likelihood function. When that prior
conjugates with that likelihood by essentially sharing its functional form then the prior
is natural.) If the system generating the sample is binomial, the natural conjugate priors
are the Beta distributions; if it is multinomial the natural conjugate priors are the
Dirichlet distributions. These distributions themselves have multiple parameters. If
these parameters have uniform values the resulting Beta and Dirichlet distributions are
said to be symmetric. Flat priors result if that uniform value is 1 (Festa 1993: chapter
6; Tanner 1996).

Remarkably, the flat prior corresponds exactly to Carnap’s c*, the symmetric natural
conjugate priors to the l-continuum, and the natural conjugate priors in toto to the
l–g-continuum. GOFIL subjectivized – SIL – just is Bayesian statistics. The great con-
necting principle here is Carnap’s requirement that degree of confirmation functions
be exchangeable, that is (l–g1). Famously, De Finetti (1937) proved that any infinite
sequence of random variables (i.e. one for each trial) for which every finite subsequence
is exchangeable (i.e. according to a subjective probability P over those infinite sequences
of trials) has a unique representation as a (possibly continuously) weighted average or
mixture of probabilities, each one of which makes the random variables (r.v.s) inde-
pendent and identically distributed (IID). We will state De Finetti’s result precisely just
for the binomial case:

DE FINETTI REPRESENTATION THEOREM Let {Xi}i=1
• be an infinite sequence of {0, 1}-

valued random variables with {Xi}n
i=1 exchangeable for each n (according to P); then

there is a unique probability measure m on [0,1] such that for each fixed sequence of
zeros and ones {ei}n

i=1 we have

where

This theorem, together with its relatives for sequences of multinomial r.v.s, real-valued
r.v.s (De Finetti 1937), and beyond (Hewitt and Savage 1955), implies that choosing c*,
cl, and cl,g as rules of succession is equivalent to choosing the various distributions (or
distribution families) mentioned above as mixing measures for the relevant version of
De Finetti’s Theorem.

Probabilities with respect to infinite sequences of random variables are sometimes
decried as unrealistic (Jeffrey 1992), and in part for this reason, finite exchangeable
sequences of r.v.s have also been extensively studied. Probabilities for such sequences
have unique representations as mixtures of (non-IID) hypergeometric sequences.
Extendibility of a finite exchangeable sequence to longer and longer finite exchange-
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able sequences, however, ensures convergence to representability by a mixture 
of IID sequences (Diaconis 1977). We set aside the case of finite exchangeability 
here.

Conditionalizing an exchangeable probability P on outcomes of trials leaves the sub-
sequences of remaining outcomes exchangeable. By Bayes’ theorem and the weak law
of large numbers, the weights of subsequent mixing measures gradually become
focused on a single IID sequence, corresponding to a single parameter value (or vector
of parameter values) unless one’s original mixing measure starts out strangely skewed
away from the true parameters of the system, a possibility that natural conjugacy
blocks (Diaconis and Freedman 1986). The power of De Finetti’s representation
theorem is that it shows how this elegant model of learning from experience is implicit
in little more than an assumption of a particular sort of subjective indifference or sym-
metry in one’s personal probabilities – exchangeability – together with the assumption
that new information is assimilated via conditionalization. As we saw above, De Finetti’s
theorem also clarifies how to understand Carnap’s efforts from a subjectivist stand-
point. Over and above identifying the exchangeable probabilities, Carnap’s various 
conditions can be seen as limning the properties of various families of prior mixing
measures. De Finetti’s result also suggests a more general perspective, according to
which to equip a subjective probability with a symmetry of some kind just is to endow
the agent in question with a conception of objective chance. This vision, which can be
pursued through more and more abstract symmetries, often with mathematical roots
independent of De Finetti’s work, for example in ergodic theory, has proved tantalizing
(Skyrms 1984: chapter 3, 1994).

De Finetti himself boldly made two further claims on behalf of his theorem (and its
supporting materials): that it paved the way for the complete elimination of objective
probability or chance parameters from statistics, and that it solved Hume’s problem of
induction. Let us briefly consider these claims in turn.

De Finetti’s exchangeability reduction

An immediate, technical obstacle to any general reduction of IID notions – objective
independence and objective equiprobability – to exchangeability is that if the infinite
sequence of random variables take values in very rich spaces then no representation in
terms of mixtures of sequences of IID trials for those r.v.s may be possible (Dubins and
Freedman 1979). But let us set aside this relatively technical worry here.

In many cases, one needs to construct a subjective probability for a situation or phe-
nomenon. And when the phenomenon is an infinite (or infinitely extendible) sequence
of random variables it makes sense to ask whether exchangeability or some other
related symmetry assumption is justified or reasonable. It certainly looks as though the
better part of that justification will be an appeal to background knowledge about the
phenomenon in question, to our understanding of how ‘coin toss’ – or ‘urn model’ –
like the phenomenon is. If the phenomenon is judged to be ‘coin toss’ – like – or in the
simplest case just is the tossing of a coin of some kind, then an IID sequence can be
reasonably expected, and, in effect, only the constant probability of success parameter
remains to be determined. But if we had some specific and contrary background knowl-
edge about the coin in question, for example if we knew that the coin was made of some
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highly unstable material such that every heads outcome increases the probability of
heads on the next toss, then it would be perverse to assume exchangeability. In this 
sort of case the order of outcomes matters and not just the frequency vector, hence
exchangeability is inappropriate.

Subjectivists have developed models of phenomena that objectivists would describe
as exhibiting various sorts of parameterized dependency, under the generic heading of
partial exchangeability (De Finetti 1938). The best explored of these is Markov exchange-
ability which focuses not on invariance of probabilities under permutation of trials (and
on frequency vectors) but on invariance under switching of sub-sequences of trials 
that share starting and ending points (and on vectors of initial states and transition
counts). See Diaconis and Freedman (1980) and Skyrms (1994: section 5) for further
discussion.

The work in this area is impressive, and constitutes an absolutely essential broad-
ening of the base for De Finetti’s reductive proposal. It seems unlikely, however, that it
does much more than push our basic objection back a step. Even with a wider arrange
of symmetries to appeal to, the subjectivist still seems to have to play catch-up with
respect to the objectivist. There are, after all, essentially unlimited forms of dependency
and objective eccentric character, so that it is hard to see how to avoid the conclusion
that symmetries in subjective probabilities are normally best seen as responses to back-
ground knowledge about objective symmetry and dependency in the target phenome-
non rather than the other way around. Compare Gillies (2000: 77–84) and Walley
(1991: 460–7).

Hume and grue again

We will approach the question of what De Finetti-style subjectivist inductive logic 
(SIL) has to say about Hume’s problem of induction anachronistically, via Goodman’s
new riddle of induction. Let something be grue just in case it is green before some future
date D or blue after D. Thus grass is grue before D, but not afterwards, and so on.
Goodman thinks that we all agree that “Regularity in greenness confirms the predic-
tion of further cases; regularity in grueness does not” (Goodman 1983: 82). Put prob-
abilistically and in terms of singular predictive inferences: observing green individuals
leading up to D-Day raises the probability that the next observed individual (i.e. on or
after D-day) will be green whereas it does not raise the probability that it will be grue.
Goodman wonders about the basis for distinctions of the green/grue kind. After
reproaching Hume for failing to provide such a basis, Goodman himself offers an
account that stresses the asymmetrical rootedness of the predicate ‘green’ in past lin-
guistic and inductive practice (Goodman 1983: chapter 4). Let us now see whether SIL
can do as well or better.

In Goodmanian D-day cases, the crucial ‘next observed individual’ is held fixed at D-
day while we haplessly pile up observations prior to its fatefully dated occurrence. An
alternative is to treat the next observed individual as a kind of moving target: as we pile
up additional observations, the next observed individual, like the proverbial ‘free beer
tomorrow,’ skips ahead always to be observed next. Call these the fixed target and
moving target conceptions of ‘the next observed individual’ respectively (Earman 1992:
section 4.7).
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Jeffreys (1957) showed that inductive skepticism about the character of the next
observed individual in the moving target case (‘moving target inductive skepticism’) is
almost impossible to maintain, since

if P(("i)Fai) > 0. This sufficient condition surely has broad skeptical appeal – a skeptic
should want to avoid having to be a priori certain that ($i)ÿFai. This is evidently a kind
of limiting answer to Hume but it is also a partial answer to Goodman. Since Jeffreys’s
result does not turn on what ‘F’ means, contrary to what Goodman might be taken to
suggest, grue is on the same footing as green in the moving target sense. No contra-
diction results from raising the probabilities of both ‘the next observed individual is
green’ and ‘the next observed individual is grue’ in the moving target sense, since their
rates of convergence to the limits in question can, and indeed must be, different
(Howson 1973).

Blunting inductive skepticism about the character of the next observed individual in
the fixed target case (‘fixed target inductive skepticism’ – clearly the principal case for
both Goodman and Hume) requires De Finetti-style symmetry assumptions, not just
ringing the changes on the probability calculus. The limit we wish to evaluate in this
case (where indices of the ai now range over both positive and negative integers) is:

It matters here what ‘F’ means since suppose dayn+1 is the D-day for the green/grue
divergence and that ‘F’ means ‘is green.’ Then

implies that

where ‘F*’ means ‘is grue.’
But if P is exchangeable with respect to a given property (i.e. for the infinite sequence

of r.v.s comprising the indicator functions for the presence of that property) then the
moving target and fixed target limits have to agree. The grue/green case therefore
makes for the following inconsistent triad: (1) P is exchangeable with respect to both F
and F*; (2) P(("i)Fai) > 0; and (3) P(("i)F*ai) > 0.

Basic openminded-ness militates against denying either (2) or (3), so exchangeabil-
ity with respect to at least one of F and F* must go. Thus, once we grant the inductive
skeptic a fixed target at which to aim, symmetries in our subjective probabilities are
going to constitute most of our (broadly subjectivist) answer to that skeptic. Those sym-
metries constitute the respects of resemblance or uniformity that we are expecting to
continue into the future, and those determinate expectations implicitly involve us in
ignoring countless other abstractly possible respects of resemblance. This is De Finetti’s
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answer to Hume. It is conditional or coherence-minded in much the same way that
Goodman’s ‘past practice’ answer is. There’s nothing in the theory of exchangeability
to say which, if any, properties we should find exchangeable, just as Goodman does not
presume to say what our past practices should be. De Finetti’s advantage over Goodman
is just the clarity afforded within a probabilistic framework for stating and relating the
conditions of induction precisely: Bayesian projectibility (Skyrms 1994) is alive and
well whereas Goodman’s theory of projectibility, as opposed to Goodman’s sensational
riddle, is a philosophical and logical back-water.

3 New-Fangled Inductive Logic (NFIL)

Logical accounts of the truth-conduciveness of methods of inquiry reached technical
and philosophical maturity in the 1980s and 1990s, building on the seminal work of
Putnam (1965) and Gold (1965). This New-Fangled Inductive Logic (NFIL) takes guar-
antees of different senses of convergence to the truth to be the primary object of logical
study. Considerations of coherence or consistency – probabilistic or otherwise – are dis-
tinctly secondary: they warrant study principally for whether they are likely to block,
slow down, or otherwise interfere with convergence to the truth. Our bare-bones treat-
ment of NFIL follows Kelly (1996: chapters 3 and 4).

Consider an idealized scientist trying to determine by passive observation whether
some hypothesis, h, is true. We represent the scientist’s background knowledge as a set
of possible worlds, K, in some of which h is true and in some of which h is false. We
suppose that any world in K produces a stream of data, e, of which the scientist scans
only the initial segment, e|n, up to the current stage, n. The scientist is, we will assume,
equipped with an inductive method, a, drawn from some larger set of methods, M, and
that the scientist conjectures something about the status of the h after each new data
point. We further assume that all of the worlds in K are exhaustively observable. This
allows us to identify worlds with their unique data streams, and hypotheses with sets
of data streams. Given these identifications, the truth of a hypothesis depends just on
the data stream: h is true on e just in case e Œ h. Lastly, we will assume that the data
types are natural numbers and sundry other symbols, which we can think of as codes
for more realistic sorts of discrete data types.

Let us now formulate four, increasingly weak senses in which inductive method a
may converge to a verdict of some kind.

(C1) a produces b by stage n on h, e iff a(h, e|n) = b
(C2) a produces b with certainty on h, e iff there is a stage n s.t. a(h, e|n) = !, 

a(h, e|n + 1) = b, and, for all m < n, 
a(h, e|m) π !

(C3) a produces b in the limit on h, e iff there is a stage n s.t., for all m ≥ n, 
a(h, e|m) = b

(C4) a approaches b on h, e iff for each rational s Œ (0, 1], there is a  
stage n s.t. |b - a(h, e|m)| < s, for all 
m ≥ n
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Intuitively speaking, (C1) is convergence by a deadline n, (C2) is convergence to when
one is first prepared to say (‘!’) that one has the answer, (C3) is convergence in the sense
of eventual stability in ones conjectures, and (C4) is convergence in the sense of getting
closer and closer to some value.

The three most general notions of success for a method a on h, e involve a conjec-
turing that h is true (‘1’) just in case h is true (verification), conjecturing that h is false
(‘0’) just in case h is false (refutation), and both (decision). We provide clauses for the
four notions of verification our four senses of convergence induce; clauses for refuta-
tion and decision are similar.

(C1v) a verifies h by stage n on e iff [a produces 1 at n on h, e ´ e Œ h]
(C2v) a verifies h with certainty on e iff [a produces 1 with certainty on h, 

e ´ e Œ h]
(C3v) a verifies h in the limit on e iff [a produces 1 in the limit on h, e ´ e Œ h]
(C4v) a verifies h gradually on e iff [a approaches 1 on h, e ´ e Œ h]

The reliability of an inductive method a is a matter of quantifying over the possible
worlds/data streams on which a succeeds, for example:

(C1vK) a verifies h by stage n given K iff for each e Œ K, a verifies h at n on e

and so on for the rest. We can also quantify over the range of hypotheses that method
a can assess reliably, for example:

(C1vKH) a verifies H at stage n given K iff for each h Œ H, a verifies h at stage
n given K

Finally, one can ascend to the level of inductive problem solvability by generalizing over
the collections of methods in M, for example:

(C3rKHM) H is refutable in the limit given K by a method in M iff there is an 
a Œ M s.t. a refutes H in the limit given K

One can now set about exploring all these notions using the technical palette of the
theory of computability and recursion theory. Elementary but important results given
no restrictions on M include:

• Verifiability, refutability, and decidability are equivalent for (C1) (Kelly 1996: 45),
but not for any of the weaker senses of convergence we have defined (Kelly 1996:
68). For example, the existential hypothesis that mass m is divisible is verifiable 
with certainty but not refutable (hence not decidable) with certainty, and the same
existential within the scope of a universal (e.g. the hypothesis that mass m is infi-
nitely divisible) is refutable in the limit but not verifiable (hence not decidable) in the
limit.

• The whole structure can be characterized topologically, roughly by mapping exis-
tential and universal hypotheses onto open and closed sets respectively (Kelly 1996:
85; see also Schulte and Juhl 1996).
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• Decidability in the limit and gradual decidability are equivalent (Kelly 1996: 67).
The class of hypotheses that are so decidable can be classified in the finite Borel hier-
archy as D2

B.

NFIL affords an important, abstract yet flexible perspective on inductive inference. It rein-
vigorates the question of whether conditional, coherence-based answers to Humean and
other skepticisms, are answers at all. If the coherencies insisted upon block us from reli-
ably getting to the truth there’s a clear sense in which they aren’t. NFIL also provides
some external check on what might otherwise look like relatively innocuous or ‘merely
technical’ assumptions. Consistency, countable additivity, consideration just of proper-
ties (monadic predicates), and so on, are often adopted fairly peremptorily both inside and
outside of the GOFIL/SIL tradition. But such assumptions may have hidden costs or be
providing illicit benefits, and NFIL promises to help us see clearly whether this is so
(Earman 1992: chapter 9; Kelly 1996: chapter 13). NFIL also has the peculiarly philo-
sophical virtue of making strange bedfellows: from its perspective SIL approaches tend to
look much more of a piece with traditional, justification-centered programs in episte-
mology than is usually allowed (see Earman 1992: 219). Our own view is that the ar-
ticulation of the NFIL perspective on induction – a perspective for which Ramsey calls in
the final two sections of his “Truth and Probability” – is a very positive development, but
only time will tell whether this view is correct. In any case, both in its ingenuity and its
contentiousness, we expect the future of inductive logic to resemble its past.
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36

Heterodox Probability Theory

P E T E R F O R R E S T

The purpose of this chapter is to survey and assess the ways of departing from the
Bayesian orthodoxy about probabilities as they apply to reasoning. Most of these depar-
tures are no longer fashionable, but they deserve reconsideration. For a more histori-
cal survey readers are referred to Hailperin (1990).

Perhaps the least controversial departure from orthodoxy is the way of adapting the
standard theory to a non-classical logic. Next there is the Confirmation Theory program
based upon Carnap’s idea of a logical probability. This relies heavily on the standard
Calculus of Probabilities but goes beyond Bayesianism. After looking at a more modest
program concerning Proportional Syllogisms, Kyburg’s continuation of Carnap’s
program will be considered. Kyburg, unlike Carnap, rejects the assumption of precise
numerical probabilities in favor of ones which are fuzzy. Another approach that like-
wise rejects precise numerical probabilities is Levi’s theory wherein probabilities are not
so much fuzzy as indeterminate.

Again, there is a tradition going back to de Finetti of stating some axioms govern-
ing comparative probabilities, based upon the primitive relations: p is more probable than
q; and p and q are equiprobable. The aim of this qualitative approach is to show that these
comparisons may be faithfully represented by precise numerical probabilities.

Perhaps the central feature of the Bayesianism orthodoxy is the rule of Condition-
alization, namely that the probability after discovering new evidence should equal the
prior conditional probability on the supposition of that evidence. There are alternatives,
notably Imaging.

Finally, there is the impact of quantum theory, including perhaps the most deviant
theory of all, negative probabilities.

1 The Bayesian Orthodoxy

The Bayesian orthodoxy consists of four theses: (1) that probabilities are precise numer-
ical representations of subjective degrees of confidence; (2) that the standard rules hold
for the synchronic coherence of a system of subjective probabilities; (3) that the rule of
Conditionalization holds for diachronic coherence; and (4) that the systematic con-



straints on the rationality of inferences are precisely the requirements of synchronic
and diachronic coherence.1

The Dutch Book Argument for Bayesianism is based upon the assumption that sub-
jective degrees of confidence have, for their behavioral manifestation, a willingness to
take risks, which may be idealized as a public commitment to placing bets on the truth
or falsity of any proposition. The probability is taken to equal the betting quotient, that
is if the probability is p, the odds are in the ratio p : 1 - p. Your system of probabilities
is then said to be coherent if and only if someone who knows the odds you are com-
mitted to cannot make a Dutch book, that is, cannot place a system of bets with you
which is guaranteed not to make you anything and might result in your losing. As a
consequence it is inferred that numerical probabilities may be represented to be real
numbers in the interval 0 to 1 with the usual principles holding: If p entails q then
Prob(p) £ Prob(q); Prob(p&ÿp) = 0; Prob(p) + Prob(q) = Prob(p ⁄ q) + Prob(p&q); and
Prob(p|q) ¥ Prob(q) = Prob(p&q). Here Prob(p|q) is the conditional probability of p on
the supposition that q, which is taken to be manifested by the preparedness to take a
risk on p supposing q, itself idealized as the commitment to placing conditional bets on
the truth or falsity of p, where in the event of ÿq the bets are canceled. (See Kemeny
(1955) for the Dutch Book Argument for these rules.)

The rule of Conditionalization may be stated thus: Prob(p|q) is unchanged by the dis-
covery (with certainty) that q.2 The Dutch Book Argument for this, expounded by Teller
(1976) but originally due to Lewis, depends on the rather strong assumption that if
Conditionalization does not hold then before you discover that q you will have a public
commitment to stating odds for non-conditional bets to be made when and if you dis-
cover that q. Hence this diachronic Dutch Book Argument seems less persuasive than
the synchronic ones, which require only the commitment to bets here and now. There
are, however, other arguments for Conditionalization (see Teller 1976).

The final Bayesian thesis is obviously defeasible but the Bayesian orthodoxy is that
attempts, like Carnap’s, to impose further systematic constraints have failed.3

2 Idealization

All systematic theories of probable reasoning are highly idealized. That is, various sim-
plifications are assumed even though they are known to be false. The Bayesian assump-
tion that betting should reflect degrees of confidence is one such idealization. Consider
the bookies in the Dutch book argument who are out to make money from you no
matter what eventuates. Some of their bets may seem to them much too generous when
taken in isolation, but they make them out of a desire to profit come what may, which
is perfectly reasonable. Hence Dutch bookies themselves provide examples of perfectly
reasonable people whose degrees of confidence are not manifested by their betting
behavior. None the less we might well accept the basic Bayesian idea of degrees of belief
being represented by precise betting quotients as an idealization useful for modeling
certain features of the belief system of a reasonable person.

Idealization can be avoided if we want to, but we usually do not. For instance, typi-
cally, the underlying language will be closed under various operations such as nega-
tion, conjunction, and disjunction and so contain propositions of arbitrary length. Now
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we can easily put some restriction on the complexity of propositions considered.
Moreover, Bayesianism is usually thought of as having the consequence that everyone
should be certain of all mathematical theorems even those they do not understand. But
if we put a restriction on the language being considered and if we weaken the prin-
ciple that if p entails q Prob(p) £ Prob(q) so it holds only for various stated rules of
inference then if p is a theorem whose proof using these rules cannot be stated in the
restricted language we no longer require Prob(q) = 1 even if all the axioms from which
it is proved are certain. Such modifications to the system are, however, tedious and so
for most purposes may be ignored.

Another idealization worth noting is that we are not merely concerned with ideally
rational changes to a system of subjective probabilities, but that we are assuming the
person concerned is ideally rational at all times. Often, however, we change our mind
because we recognize that our previous state was not (ideally) rational. So for instance
new evidence might force us to take seriously a hypothesis we should have assigned a
non-negligible probability to, but had dismissed.

Yet again for some purposes we shall need to consider not just the ordinary real
numbers but nonstandard ones, obtained by adjoining infinitesimals. For instance,
suppose we have a continuum of hypotheses depending on a parameter l which could
be any positive real number, but is unlikely to be either very small or very large. (This
is an actual example based upon Carnap’s Confirmation Theory. See section 5.) Then
we might judge that it is as probable that l < 1 as that l > 1 but that it is more proba-
ble that l ≥ 1 than that l > 1, and likewise more probable that l £ 1 than that l < 1.
In that case we seem forced to assign not zero but infinitesimal value to the probability
that l = 1. This is analogous to saying that the open interval of real numbers (0,1) =
{x: 0 < x < 1} is infinitesimally smaller in size than the closed interval [0,1] = {x: 0 £ x
£ 1}. Perhaps the most natural theory of infinitesimals in this context is geometric
measure theory (Schanuel 1982). Another common idealization, then, is that we
ignore infinitesimals.

Bayesianism can and has been queried, even given its various idealizations (see
section 7). None the less the consequences of first three theses cohere well with our
intuitions and all the heterodox positions defended by me in this article either extend it
(thus violating the fourth thesis) or are less idealized.

3 Two Approaches to a Theory of Probability

The chief topic of this article is probability theory as it applies to reasoning. Here there
are two different approaches. The dominant strategy, illustrated by the Bayesian ortho-
doxy, is to think of probability theory as putting constraints on subjective probabilities
and on how they change with time, where a subjective probability, written Prob, is a
measure of just how confidently a proposition is asserted (if the probability is over 0.5)
or denied (if it is less than 0.5). The constraints are usually considered to be normative
and to be necessary conditions for rationality. The other approach, championed by
Carnap (1950) but going back to Keynes (1921) and ultimately to Johnson (1921–4),
is to think of an inference as having a probability which is 1 just in case the inference
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is deductively valid and 0 just in case the conclusion is inconsistent with the premisses.
This is called a logical probability and will be written ProbLog. It is thought of as pro-
viding a degree of logical confirmation. In that case the conditional probabilities are
more fundamental than the absolute ones which are defined thus: ProbLog(p) =
ProbLog(p|t) where t is any tautology.

We should anticipate a connection between logical and subjective probabilities.
Consider the idealized situation in which all evidence is certain. Then someone –
Carnap’s ‘Logically Omniscient Jones’ – whose subjective probability equalled the
logical probability on the evidence should not turn out to be irrational. That poses 
a problem if the probabilities are real numbers in the interval 0 to 1 inclusive. For 
then the two approaches differ in that for logical probabilities we have ProbLog(p|e) 
= 1 only if p is entailed by e, whereas there is nothing irrational about someone 
who has evidence e being certain of some contingent truth p (e.g. that the whole 
universe did not come into existence 47,842 years ago) which is not strictly entailed 
by e and hence having Prob(p|e) = 1. However, harmony can be restored if we allow 
the logical probabilities to take nonstandard values which include infinitesimals. 
In that case we could say that Problog(p|e) differs from 1 by an infinitesimal and that 
the corresponding subjective probability equals the logical probability modulo 
infinitesimals.

4 Adjustment for Nonclassical Logics

To illustrate the adjustments required if we reject the classical sentential calculus,
suppose we are considering the subjective probabilities. Then the standard calculus of
probabilities contains either as axioms or derived theorems:

Prob(p&ÿp) = 0; Prob (p ⁄ ÿp) = 1; and Prob(p) + Prob(ÿp) = 1.

These rules do not presuppose bivalence but they do presuppose the excluded middle
and non-contradiction. Thus suppose p is the Liar and, as dialethic logicians hold all
four of p, ÿp, p ⁄ ÿp and p&ÿp are logical truths. Then we have Prob(p&ÿp) = 1 π 0.
and Prob(p) + Prob(ÿp) = 2 π 1. Moreover, the standard calculus of probabilities implies
a probabilistic version of the supposedly counter-intuitive rule of disjunctive syllogism,
rejecting which is one of the motivations for relevance logic even when dialethic logic
is not embraced. Thus we find that Prob(p) ≥ Prob(p ⁄ q) + Prob(ÿq) - 1. So for instance
if p ⁄ q is asserted with 99 percent confidence, and ÿq asserted with 99 percent confi-
dence, it would be irrational to assert p with a confidence of less than 98 percent.

To accommodate heterodox logics we should adjust the calculus of probabilities.
Instead of requiring merely that probabilities take values in the interval 0 to 1, we
require in addition that the least upper bound of all probabilities is 1 and the greatest
lower bound is 0. We have the addition rule: Prob(p ⁄ q) + Prob(p&q) = Prob(p) +
Prob(q), and the usual multiplication rule: Prob(p|q) ¥ Prob(q) = Prob(p&q). Moreover
if p entails q then Prob(p) £ Prob(q). Given classical sentential calculus we then recover
the standard calculus of probabilities.

HETERODOX PROBABILITY THEORY

585



While these adjustments are fairly obvious there is an important feature of any
system in which it can happen that Prob(p) + Prob(ÿp) differs significantly from 1. For
in such a system there is a difference between confidently denying p, which corresponds
to Prob(p) being near 0, and asserting ÿp which corresponds to Prob(ÿp) being 
near 1.

5 Carnap’s Confirmation Theory

Confirmation theory is based upon a rather strong version of Foundationalism, accord-
ing to which given the total evidence any proposition p should have a unique proba-
bility assigned to it, namely the logical probability of the inference with the evidence
as premises and p as conclusion. Here we are to idealize the situation by ignoring the
very real possibility of evidence which is itself merely probable. In addition it is assumed
that the evidence is consistent. As mentioned above we would require these probabili-
ties to conform to the constraints on the subjective probabilities of someone who has
that evidence and no other evidence, but the latter will typically underdetermine the
probabilities, as in orthodox Bayesianism. Hence Carnap’s theory of logical probability
committed him to a stronger theory than that provided by the Standard Calculus of
Probability. Moreover, it is an attractive idea that the structure of propositions, expli-
cated by the calculus of predicates, should interact with probability theory. Hence he
embarked upon a research program to discover the correct assignment of ProbLog(p) for
every p in the calculus of predicates with suitable constraints on the interpretation of
the names and predicates. For then, given any inference with consistent premises, we
may take p as the conclusion and q as the conjunction of the premisses, in which case
ProbLog(p|q) = ProbLog(p&q)/ProbLog(q) is the logical probability of the inference in ques-
tion. Carnap had several attempts at providing a satisfactory confirmation theory. All
are based upon the extremely plausible principle of symmetry, namely that since the
names are assumed to lack content beyond the fact of their naming particulars the
logical probabilities must be invariant under permutation of names. Presumably that
is an idealization of the actual situation regarding the referring expressions occurring
in natural languages, but given the idealization the symmetry principle should be
uncontroversial. Carnap’s method was to seek the simplest confirmation theory which
met various intuitive constraints, such as that we can learn by ordinary induction. His
first choice (the c*-function of the appendix to Carnap (1950)) was unique but on
further consideration he came up with a continuum of confirmation theories, depend-
ing on a parameter l which was not fixed by intuition (Carnap 1952).

Perhaps because of Carnap’s penchant for technical exposition this continuum of
confirmation theories is not widely studied. This is a shame for the intuitive ideas are
both simple and appealing. What Carnap does is treat the logical probability of p on q
as having both an a posteriori and an a priori component. Suppose 10 Fs have been
observed and 9 were Gs. Suppose also that the classification of Fs is into five possible
kinds of equal status of which the Gs are one kind. We want to find the logical proba-
bility of an inference from those suppositions to the conclusion that b, some unobserved
F, is a G. Then the a posteriori component is 0.9 and the a priori component is 0.2, and
the probability we are seeking is somewhere in between 0.2 and 0.9. Where it is in the
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interval [0.2, 0.9] is determined by the weights assigned to the two components.
Carnap took these weights to be the number of observed Fs, in this case 10 and the
parameter l, the weight of the a priori, so in this case the probability would be:

(10 ¥ 0.9 + l ¥ 0.2)/(10 + l) = (90 + 2l)/(100 + 10l).

Carnap’s justification for the use of a linear weighting of the a posteriori and the a priori
is an appeal to simplicity. Hence it should be treated as a hypothesis about probabilities
which goes beyond our intuitions about them. If our aim is to find the best hypothesis
then the appeal to simplicity is warranted. And as a hypothesis there is room for further
empirical investigation of the most appropriate value for l. For each value of l we use
the l-confirmation theory to discover by induction the m for which the m-confirmation
theory is most reliable. So for each l there is a m = f(l), which is the value of the para-
meter implied by the original choice of the value l. The only acceptable values of l will
be the fixed points, that is those for which f(l) = l. Following Carnap we should reject
both very small and very large values for l as neglecting either the a priori or the a pos-
teriori. With good luck there might be jut one intermediate fixed point. And if that is
very near an integer then simplicity would dictate that we round it off, obtaining the
best hypothetical account of the unique logical probabilities. Perhaps we should have
doubts as to whether such probabilities deserve to be called ‘logical’ but they would
none the less provide a guide to reasoning.4

Carnap was criticized because his confirmation theory implied that induction does
not justify universal generalizations such as ‘All ravens are black’ but only statistical
generalizations such as ‘At least 99.9 percent of ravens are black’ and predictions such
as ‘The second raven I hear in 2005 will turn out to be black.’ I urge readers to judge
him to be right and his critics wrong, at least if we are ignoring such things as the pur-
poses of an agent (human or divine) or laws of nature. None the less the Confirmation
Theory research program was developed subsequently by Hintikka (1966) and more
recently Zabell (1996), so as to arrive at a theory which allowed confirmation of uni-
versal generalizations. In Hintikka’s theory there is a second parameter a, whose role
may be illustrated by considering the simple case in which l = •. Then if precisely n
ravens have been observed, all of them black, the probability that all ravens are black
is 1/(1 + 0.751-a). If n is 20 less than a, this probability is less than 0.4 percent. If n is
20 more than a then it is greater than 96.6 percent.

6 Proportional Syllogisms

Although Carnap’s program was technically superb it suffered from the obvious defect
that it was not applicable to anything other than a highly idealized language. Moreover
his method was based upon the principle of selecting only the simplest out of a very
many confirmation theories which were otherwise acceptable. But intuitively a slightly
more complicated theory is only somewhat less probable than the simplest one. Hence
even if there are precise logical probabilities even our best hypothesis about them will
be too conjectural to command assent. This suggests two rather different ways of con-
tinuing something like the Carnapian program. One of these is to grant that we do not
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know enough completely to constrain subjective probabilities but to insist that we can
go beyond the Bayesians by adopting what is intuitively the most secure part of
Carnap’s Program, namely that in the absence of either certain or probable evidence
to the contrary any set of m Fs are as likely to contain precisely n Gs as any other set of
m Fs. From this it follows that in many situations we may assign precise logical proba-
bilities to proportional syllogisms such as: Precisely K percent of Fs are Gs. This is an F,
so this is a G. In the appropriate circumstances the probability of the conclusion of that
inference on the premises (together with background evidence) is K/100. And one of
the defects of strict Bayesianism is that there can be quite coherent systems of subjec-
tive probabilities which capriciously assign higher or lower probability to some given F
being a G.

Proportional syllogisms illustrate the difficulty of finding a systematic theory of
probability. For unlike deductive logic the probability of an inference depends not just
on the inference schema but on the choice of predicates to substitute for the schematic
letters. For instance suppose we know that there are far more rabbits than bandicoots
but are otherwise ignorant of bandicoots. Perhaps we know that all rabbits love carrots.
Then we know the vast majority of rabbits-or-bandicoots love carrots and so, by a care-
less proportional syllogism, we might infer that very probably the first bandicoot we
ever meet will love carrots. Obviously something has gone wrong, but it is not that you
have relevant evidence about bandicoots. It is that ‘rabbit-or-bandicoot’ is the wrong
sort of predicate. This well-known problem applies also to the Carnapian program if we
attempt to apply it to natural languages. What it shows, I submit, is that any attempt
at a theory which extends Bayesianism must also contain a theory of natural kinds and
natural properties.

Granted that in suitable circumstances we know about the logical probabilities 
of proportional syllogisms we may then rely on the Williams–Stove justification of
ordinary induction (Stove 1986). This is based upon the quite uncontroversial math-
ematical fact that the vast majority of large samples are, to a good approximation, rep-
resentative of the population as a whole. This can be made quite precise as in Stove’s
example (Stove 1986: 67–71). Provided a fair proportion of the population have been
observed, and the circumstances are appropriate for making the proportional syllogism,
we may conclude, with high probability, that the observed members of the population
are, to a good approximation, representative. Moreover having some special informa-
tion about the sample, for example that it has all been observed prior to 2010 is, in most
circumstances, intuitively irrelevant and so does not defeat the proportional syllogism.
We may note that even if all the observed Fs have been Gs, the approximate nature of
the representation prevents any conclusion stronger than that some very high per-
centage of Fs are Gs, which is in agreement with Carnap’s Confirmation Theory.

Both Carnap’s Confirmation Theory and the more general reliance on proportional
syllogisms has been criticized for ‘generating knowledge out of ignorance.’ If knowl-
edge is meant quite literally then this is not the case. For instance, knowing only that
a coin has two sides and it is possible to toss a coin so that either heads or tails come
up we might well be very confident of not getting a run of 20 heads. This would not
count as knowledge even though actual experience, say with a biased coin, might, after
very many tosses have resulted in about the same degree of confidence, and, if we are
not being pedantic, count as knowledge. The difference lies in the sensitivity to further
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evidence. To count as knowledge even in a rather loose sense, a belief should not be too
sensitive to further evidence. If, however, by ‘knowledge’ we just mean being almost
certain then, far from seeing the generation of ‘knowledge’ out of ignorance as a defect,
we should see this as a way of reconciling empiricism with the a priori.

7 Kyburg’s Fuzzy Probabilities

Kyburg develops the Carnapian program by relying on proportional syllogisms.5 That
is, our knowledge of frequencies are taken as the sole determinant of the probabilities.
(Ignoring for simplicity ‘knowledge’ of frequencies itself based upon probabilistic evi-
dence.) Sometimes this results in precise numerical probabilities, but where there are
rival proportional syllogisms they specify no precise probability but rather a (closed)
interval. For instance, if we know that Tex is a Texan philosopher, that 30 percent of
philosophers are vegetarians but only 10 percent of Texans are, then the resulting
logical probability of Tex being a vegetarian is the closed interval [0.1, 0.3] or 
0.2 ± 0.1. (If a £ b, the closed interval [a,b] = {a £ x  £ b}.) We may think of these as 
fuzzy numbers, which may be added and multiplied, using the rules [a,b] + [c,d] = [a + c,
b + d], [a,b] ¥ [c,d] = [a ¥ c, b ¥ d]. Now the Addition Rule still holds, namely Prob(p&q) 
+ Prob(p ⁄ q) = Prob(p) + Prob(q), except that we are adding fuzzy numbers.

The most radical of Kyburg’s theses is his rejection of the standard multiplica-
tion principle that Prob(p&q) = Prob(p|q) ¥ Prob(q), even in the special case in which 
the probabilities are precise. This is based upon the use of proportional syllogisms 
to specify probabilities. An example of Kyburg’s (Harper 1982: 120) illustrates this
nicely. Suppose in the whole population 50 percent are R (red) and 40 percent of Rs
are also S (square). Now suppose a sample of 100 is taken out of this population. We
are not told what the proportion of Rs is in the population but we are told that not 40
percent but 50 percent of the Rs in the sample are also Ss. Now consider one member
of the sample. Because of Kyburg’s reliance on proportional syllogisms he asserts that
Prob(Sx ⁄ Rx) = 0.5 and Prob(Rx) = 0.5, but Prob(Rx&Sx) = 0.2, not the 0.25 it should
be according to the multiplication rule. Here I think Kyburg is mistaken. Intuitively 
our knowledge that in the sample 50 percent of Rs are Ss combined with what we
already know about the whole population provides some information about the way 
in which the sample is unrepresentative. Quite how we use this information is not 
clear but it shows that the conditions are not appropriate for making the proportional
syllogism. If so, Kyburg is mistaken about the consequences of his own reliance on pro-
portional syllogisms, but the underlying theory of fuzzy logical probabilities is still
tenable.

8 Levi’s Indeterminate Systems

Kyburg’s fuzzy probabilities are, as logical probabilities, assigned to inferences. As such
they have their (fuzzy) values regardless of the probabilities of other propositions. By
contrast Levi refines the theory of subjective probabilities by not requiring determinate
numerical probabilities. Instead the actual system is represented by means of a set of
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credence functions assigning precise numbers to propositions, each one satisfying the
standard diachronic and synchronic principles as accepted by Bayesians.6 So if we follow
van Fraassen’s method of supervaluation we would say that all the Bayesian rules are
definitely true. In addition Levi requires that the family of credence functions be convex.
That is, if f and g are two credence functions in the set S representing the system of sub-
jective probabilities, and if 0 < a < 1, then af + (1 - a)g is also a member of S.

As in the case of precise numerical probabilities there should be a connection
between subjective probabilities and logical ones. We would expect that any rational
indeterminate probability of the kind described by Levi should assign probabilities to
propositions within the interval assigned as a logical probability by a Kyburg-type
theory. In that case we could not, of course, follow both Kyburg, in his nonstandard
rule for conditional probabilities, and Levi.

9 Qualitative Theories of Probability

Many have thought that it would be more fundamental to consider a purely qualitative
system of subjective probabilities based upon a ranking of propositions as more or less
probable.7 Here we have two relations: the transitive and anti-reflexive relation of being
more probable (p > q) and the equivalence relation of being equiprobable, (p ~ q).
Moreover if p ~ q, q > r and r ~ s then p > s.

Because of the usual idealization we may assume (Axiom 1) that if p entails q, then
q ≥ p (i.e. either p ~ q or q > p). Write p ^ q if p and q are inconsistent. Then we have:

AXIOM 2 the intuitive rule that if p ^ q, if r ^ s, if p ≥ r, if q ≥ s and if r ⁄ s ≥ p ⁄ q then
p ~ r, q ~ s, and p ⁄ q ~ r ⁄ s.

Idealizing the situation so as to assume logical omniscience, we also have a two-part
Completability Principle (modeled on Ellis 1979: 9–16), as follows.

AXIOM 3 There must be an extension of the ranking to one satisfying both the
principles governing qualitative probability and trichotomy (i.e. given any p, q either 
p > q or p ~ q or q > p). Moreover, if all such extensions agree that p > q, or agree that
p ~ q, then we already have p > q, or p ~ q, respectively.

From these three axioms it is easy to show that if p ≥ q, or p ~ q, then ÿq > ÿp, or 
ÿq ~ ÿp, respectively, which would otherwise have been assumed as an axiom.

We say a credence function d is commensurate with the qualitative system if when-
ever a proposition p is more probable than proposition q then d(p) > d(q) and whenever
p and q are equiprobable then d(p) = d(q). Unfortunately Axioms 1 to 3 for qualitative
probabilities stated thus far do not ensure the existence of commensurate credence
functions even for a finite system of propositions. What is required is a strengthening
of Axiom 2, as follows:

AXIOM 2* For any m,n, suppose rj, j = 1, . . . , n are pairwise inconsistent, that is rj ^ rk

if j π k. And suppose that the pk = V{rj:j ŒAkj}, qk = V{rj:j ŒBkj}, where, for all k, Akj and
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Bkj are subsets of {1, . . . , n}. Further suppose that pk ≥ qk, for all k. Finally, suppose
that Vpk = Vqk, then if #Bkj ≥ #Akj for all k, j then pk ~ qk for all k.

It is easy to see that Axiom 2* is a necessary condition for there being a commensurate
credence function. For a finite system of propositions any system of qualitative proba-
bilities satisfying Axiom 1, Axiom 2*, and Axiom 3 has a commensurate credence func-
tion.8 Moreover the set C of all commensurate credence functions is convex and so forms
a Levi system, which is easily seen to be a faithful representation in the sense that if for
all d Œ C d(p) > d(q), or d(p) = d(q) then p > q, or p ~ q respectively. That this does not
extend to the infinite case could be shown by considering an example in which it would
be more appropriate to consider probabilities which can take infinitesimal values than
the ones actually being considered which are real valued only.9

If Axiom 2* is intuitive then this is a further way of justifying Levi’s system.
Otherwise it suggests that qualitative probabilities form an interestingly weaker kind of
system of subjective probabilities.

10 The Dynamics of Subjective Probability

Carnap’s theory of logical probability leaves no room for an interesting dynamics for
probabilities. For if the total evidence changes from e- to e+ then the probability of the
inference from the total evidence to some conclusion p changes from ProbLog(p|e-) to
ProbLog(p|e+) without any change in ProbLog(p|q) for any p or q. In the theory of subjective
probabilities the orthodoxy is the rule of conditionalization, according to which the new
subjective probability Prob+(p) on coming to be certain of new evidence e equals the old
conditional probability Prob-(p|e) provided Prob-(e) > 0. Now the Dutch Book Argument
for Conditionalization required commitment to the same rule by which subjective proba-
bilities change. Any rule other than conditionalization results in the possibility of a
Dutch Book. This does not exclude a position even more subjective than Bayesianism,
namely resisting the suggestion that there be a rule governing the dynamics of belief. In
spite of the Dutch Book Argument alternative rules such as imaging have been suggested. 

The difference between conditionalization and imaging is most easily seen by taking
the probability distributions to be given by a probability measure on the set of possible
worlds. The effect of coming to be certain of e is to excise all the ÿe-worlds, and redis-
tribute their probability to the e-worlds. Conditionalization does this by preserving the
relative probabilities of the e-worlds.

Imaging does this by re-assigning the probability previously assigned to a ÿe-world
to the nearest e-world(s). In addition to the Dutch Book Argument for conditionaliza-
tion there is Gärdenfors’ argument based upon the plausible principle that if initially
Prob(q) > 0 and Prob(p) = 1 then after discovering that q Prob(p) should remain equal
to 1. From this it is argued that no principle governing the change of subjective prob-
abilities can contradict conditionalization. (See Gärdenfors (1988) for this and a more
general discussion of imaging versus conditionalization. See also Teller (1976) for a
defence of conditionalization.) 

Gärdenfors’ case for conditionalization illustrates once again the role of idealization.
Suppose in fact Prob(e) is initially positive but rather small. Then the discovery that e
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might quite naturally prompt a reconsideration of the previous confidence that ÿe,
resulting in a backdated change to the earlier subjective probabilities. It is assumed,
however, that the person concerned is ideally rational at all times and so never has occa-
sion to regret the earlier confidence.

11 Probability Theory and Quantum Theory

Quantum theory is open to many rival interpretations. But for a long time the most
popular was to think of the state of a quantum theoretic system as specified by the prob-
abilities of the affirmative answer if various ‘questions’ are asked, that is if various 
two-valued ‘observations’ are performed.10 Often these ‘observations’ concern humanly
unobservable entities such as quarks. So we are here considering an ideal observer.
Obviously such two-valued questions correspond to propositions, so what started off as
a physical theory is treated as if it were a theory of probability. However the underly-
ing ‘Sentential Calculus’ is very far from classical. It is a Quantum Logic (qv) which in
the most straightforward case may be represented as the lattice of closed subspaces of
a Hilbert Space. The usual principles for the Calculus of Probability hold provided we
replace conjunction by the intersection, disjunction by the sum, and negation by the
orthogonal complement. In addition we require the probability distribution to be addi-
tive over the countable ‘disjunction’ of pairwise orthogonal observables. In these cir-
cumstances Gleason’s Theorem tells us that, with the exception of the special case in
which the Hilbert space has only two dimensions, any such probability distribution will
be a mixture of pure states specified by vectors in the Hilbert space, as in the formalism
of quantum mechanics.11

There is a rather commonsensical retort to this sophisticated but curious account.
It is to insist that the propositions which correspond to the idealized observations be
embedded in a larger system to include ones which are considered beyond even an ideal
observer to observe. Then, it is hoped an ideal observer who was also an ideal reasoner
could assign either precise numerical probabilities, or perhaps a Levi style family of cre-
dence functions, to all propositions so as to agree with the formalism in the case of the
observables. The problem with this is that for many propositions the probabilities
assigned would seem to be negative (Wigner 1932). In fact the currently popular
Consistent Histories formulation (Omnès 1994: 122–43) restricts the propositions con-
sidered to just those which have probabilities no greater than 1 and no less than 0. I
hold that this is all quite unnecessary because physicists have mistaken a mean value
for a probability. There is some relevant quantity Q (mass, charge, or the number of par-
ticles of the kind considered minus the number in a quantum vacuum) which can be
positive or negative, but whose mean value for the whole system is that of a single clas-
sical particle. Then the ‘probability’ assigned to the proposition that ‘it’ has such and
such position, momentum, spin, etc. is in fact to be interpreted as the mean value of Q
for all states such that p (see Forrest 1999).

If readers decline my kind offer to render quantum mechanics compatible with
common sense, they might prefer a Kyburg-style alternative. We could assign to all
propositions not allowed on the consistent histories approach, the default fuzzy proba-
bility [0,1].
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Notes

1 For a defence of Bayesianism see Earman (1992).
2 The case in which the new evidence is merely probable is discussed by Jeffrey (1965).
3 Given the first three Bayesian theses, once the initial unconditional probabilities are speci-

fied, all future unconditional probabilities are then determined, provided none of the new
evidence had previously had zero probability. So perhaps we should qualify the fourth thesis
by allowing additional rules to govern the case in which the evidence did previously have
zero probability. For instance there is the Levi–Gärdenfors method of Preservative Imaging
(see Gärdenfors 1988: 117–18).

4 See also Carnap’s remarks on what would, contingently, pick out one value of the parame-
ter (Carnap 1952: chapter 3). For a more recent investigation of empirical constraints on
logical probabilities, see Nolt (1990).

5 See Kyburg (1974), but perhaps the most accessible introduction to Kyburg’s work is
(Bogdan 1982), especially (Spielman 1982).

6 A good introduction to Levi’s theory is Levi (1980). See also Bogdan (1982).
7 A first, inadequate, axiomatization of qualitative probabilities is found in De Finetti (1932).

For a useful survey of some systems see the Appendix to Malmnäs (1981).
8 Axiom 2* is equivalent to strong coherence in the sense of (Malmnäs 1981: 17). Here we

identify a proposition with the set of all the ‘possible worlds’ at which it is true, where the
‘possible worlds’ may in turn be thought of as maximal consistent sets of propositions. The
existence of commensurate credence functions then follows from Theorem 1 (Malmnäs
1981: 31).

9 Consider a Boolean algebra with countably many atoms all of which are equiprobable. We
may arrange for the axioms of qualitative probability to be satisfied yet there is no com-
mensurate credence function.

10 See Mackey (1963) for one of the early expositions of this approach. See also Hooker
(1973).

11 For a lucid exposition of the formalism of quantum theory, including Gleason’s Theorem,
see Hughes (1989).
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37

Why Fuzzy Logic?

P E T R H Á J E K

It is generally understood that fuzzy logic deals with vague, imprecise notions and
propositions. In spite of several successful applications, the logician may (and should)
ask: is this really a logic? Does it have foundations, mathematical and/or philosophical?
I shall try to give a positive answer to this question, at least as mathematical founda-
tions are concerned, leaving philosophical foundations to professional philosophers.
Due to space limitation, I can offer only a survey; but the interested reader will find
enough references to detailed works.

1 Origin

Lotfi Zadeh is the author of the notion of a fuzzy set; his 1965 paper is a landmark
(Zadeh 1965). A fuzzy subset X of a set A is given by its characteristic function mX

assigning to each element a Œ A the degree mX(a) in which a belongs to X; mX(a) is a real
number from the unit interval [0, 1]. Natural language offers plenty of examples: think,
for example, of a set of people and its fuzzy subset of tall people (some are more tall,
some less). Naturally, one can similarly speak on fuzzy propositions, some being more
true and some less (‘John is tall’). Apparently the term ‘fuzzy logic’ first occurs in
(Goguen 1968–9) with a elucidating title “The logic of inexact concepts.” The begin-
ning of numerous applications of such fuzzy logic is Mamdani (1974), where the
author describes a controller based on “fuzzy IF-THEN rules.” Such rules are nowadays
very popular and may look for example as follows: ‘If the pressure is high and the
increase of pressure is high then turn the wheel far to the left.’ You see various fuzzy
notions; for example the meaning of high pressure is to be understood as a fuzzy subset
of the domain of pressures: each pressure is high is some degree. Observe the use of
natural language (Zadeh likes to speak on “computing with worlds”). There is also some
rudimentary logic (‘and’, ‘if-then’) but not much.

2 Many-Valued Logic

Clearly, the above resembles some many-valued logic; but for a long time, there were
nearly no contacts between what was called fuzzy logic and the many-valued logic



entertained by logicians. Early examples are Giles (1976) and Pavelka (1979). Recall
that 20th-century many-valued logic started in the 1920s and 1930s in the work of
Jan LLĹukasiewicz (1930; LLĹukasiewicz and Tarski 1930); later there were works on many-
valued logic related to intuitionistic logic (A. Heyting, K. Gödel (1932)). Their work was
continued by several authors (Dummett, Chang, Moisil, McNaughton, Scarpelini and
others), Gottwald in his 1988 German book on many-valued logic has a short chapter
relating many-valued logic to fuzzy logic. Note that Gottwald’s book is to appear soon
in a revised English version (Gottwald forthcoming). In the meantime, plenty of papers
appeared claiming to deal with fuzzy logic but being logically uninteresting. Mutual
contacts developed rather slowly.

3 Fuzzy Logic in a Broad and Narrow Sense

It turned out that one has to distinguish two notions of fuzzy logic. It was again Zadeh
who coined the terms “fuzzy logic in broad (or wide) and narrow sense.” In a broad
sense, the term ‘fuzzy logic’ has been used as anonymous with ‘fuzzy set theory and its
applications’; for good monographs on this logic see Zimmermann (1991) and Klir and
Yuan (1995); in the emerging narrow sense, fuzzy logic is understood as a theory of
approximate reasoning based on many-valued logic. Zadeh (1994) stresses that the
questions of fuzzy logic in the narrow sense differ from usual questions of many-valued
logic and concern more questions of approximate inferences than those of complete-
ness, etc.; nevertheless, with full admiration to Zadeh’s pioneering and extensive work
(see Klir and Yuan 1996) a logician will first study classical logical questions on com-
pleteness, decidability, complexity, etc. of the symbolic calculi in question and then try
to reduce the question of Zadeh’s agenda to questions of deduction as far as possible.
This is the approach in my monograph (Hájek 1998), which I sketch below.

4 The Basic Fuzzy Propositional Calculus

The calculus we are going describe is a result of the following ‘design choices’ (they are
not obligatory but are apparently rather reasonable:

1. The real unit interval [0, 1] is taken to be the standard set of truth values, 1 meaning
absolute truth, 0 absolute falsity. The usual ordering £ of reals serves as a com-
parison of truth-values; we build the logic as a logic with a comparative notion of
truth. Other structures of truth-values, possibly only partially ordered, are not
excluded.

2. The logic is truth-functional, that is connectives are interpreted via their truth 
functions; then for example the truth-value of a conjunction j&y is uniquely
determined by the truth-value of j, of y and by the chosen truth function 
of &.

3. Continuous t-norms are taken as possible truth functions of conjunction. These oper-
ations are broadly used by a fuzzy community; a binary operation * on [0, 1] is a

PETR HÁJEK

596



t-norm if it is commutative (x * y = y * x), associative (x * (y * z) = (x * y) * z), 
non-decreasing in each argument (if x £ x¢ then x * y £ x¢ * y and dually) and 1 is a
unit element (1 * x = x). The t-norm * is a continuous t-norm if it is continuous as
a real function. The three most important continuous t-norms are:

x * y = max(0, x + y -1) (LLĹukasiewicz t-norm),
x * y = min(x, y) (Gödel t-norm),
x * y = x · y (product t-norm).

(For the names see Historical remarks in Hájek (1998).) Note in passing that each
continuous t-norm is built from these three in a certain way.

4. The truth function of implication is the residuum of the corresponding t-norm. If *
is your continuous t-norm then its residuum is the operation fi defined as follows:

x fi y = max{z|x * z £ y}.

Note that x fi y = 1 iff x £ y; for x > y the residua of the above t-norms are

x fi y = 1 - x + y (LLĹukasiewicz),
x fi y = y (Gödel),
x fi y = y/x (product).

(One calls these implications R-implications, R for residuum.)
5. The truth function of negation is (-)x = x fi 0 (x implies falsity).

The resulting logic is called BL – the basic fuzzy propositional logic. We sketch its main
properties.

Work with propositional variables p1, p2 . . . and connectives &, Æ (strong conjunc-
tion, implication) and truth constant 0– (falsity). Formulas are defined in obvious way;
ÿj stands for j Æ 0. Given a continuous t-norm * (and thus its residuum fi), each
evaluation e of propositional variables by truth degrees from [0, 1] extends to an eval-
uation e* of all formulas; thus e*(0–) = 0, e*(j&y) = e*(j) * e*(y), e*(j Æ y) = e*(j) fi e*(y).
Call j a *-tautology if e*(j) = 1 for each evaluation e; call j a t-tautology if it is a *-
tautology for each * (i.e. however you interpret your propositional variables and con-
nectives, j is true).

The following t-tautologies are taken to be axioms of BL:

(A1) (j Æ y) Æ ((y Æ c) Æ (j Æ c))
(A2) (j&y) Æ j
(A3) (j&y) Æ (y&j)
(A4) (j&(j Æ y)) Æ (y&(y Æ j))
(A5a) (j Æ (y Æ c)) Æ ((j&y) Æ c)
(A5b) ((j&y) Æ c) Æ (j Æ (j Æ c))
(A6) ((j Æ y) Æ c) Æ (((y Æ j) Æ c) Æ c)
(A7) 0– Æ j
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The deduction rule is modus ponens (from j and j Æ y infer y), proofs and provability
are defined in the obvious way.

COMPLETENESS: For each formula j, BL proves j iff j is a t-tautology.

(For a proof see Cignoli et al. (submitted); Hájek (1998) presents another completeness
for BL, relating provability in BL to tautologicity with respect to so-called BL-algebras.
Each continuous t-norm defines a BL-algebra but not conversely.)

The three important t-norms defined above (LLĹ – LLĹukasiewicz, G – Gödel, P – product)
give us three important and well-known logics stronger than BL:

Ĺukasiewicz logic can be axiomatized by adding the schema of double negation j ∫ÿÿj
to BL. Formulas provable in this logic (developed also by Ĺ) are exactly all Ĺ-tautologies.
(See Cignoli et al. (2000) for extensive analysis and deep theory of Ĺukasiewicz logic.)

Gödel logic G (related to Godel (1932)) is BL plus the schema j ∫ (j&j) of idempo-
tence of conjunction. Formulas provable in G are exactly all G-tautologies.

Product logic P is BL plus two additional axioms (j Æ ÿj) Æ ÿj and ÿÿc Æ (((j&c)
Æ (y&c)) Æ (j Æ y)). (The latter axiom expresses cancellation by a non-zero element.)
P proves exactly all P-tautologies.

It should be mentioned that G contains the intuitionistic logic (so G is an inter-
mediate logic between intuitionistic and classical logic). Neither Ĺ nor P contain 
intuitionistic logic since they have a non-idempotent conjunction.

In BL we may define derived connectives: min-conjunction (j Ÿ y) ∫ j&(j Æ y)
whose truth function is a minimum, and max-disjunction (j ⁄ y) ∫ (((j Æ y) Æ y) y
((y Æ j) Æ ⁄) (maximum).

The truth function (-) of negation in Ĺ is (-)x = 1 - x; but the negation of G is Gödel
negation: (-)0 = 1, (-)x = 1 for x > 0. Also P has Gödel negation.

This means that in general the strong conjunction has in BL no dual disjunction;
only in Ĺ, whose negation is involutive, that is (-)(-)x = x, the strong disjunction 
(j ≈ y) ∫ ÿ(ÿj&ÿy) behaves well. But you may extend both G and P by Ĺukasiewicz
negation (if you want to work with so-called t-conorms; see Esteva et al. (2000)) for a
reasonable axiomatization.

Another important extension results when we add to Ĺukasiewicz logic truth con-
stant for each rational r Œ [0, 1] (Pavelka logic), postulating eL¢( ) = r. Then evidently
eL¢ ( Æ j) = 1 iff eL¢ (j) ≥ r, which gives us the possibility of expressing estimates of the
truth degree of a formula. This extension of Ĺ has very pleasing properties; an analo-
gous extension of G or P is more complicated. We note in passing that for example.
Novák et al. (2000) considers Pavelka logic to be the fuzzy logic; I do not share this
opinion.

Summarizing this section, continuous t-norm propositional logics are well under-
stood, have pleasant properties and are presently the subject of intensive study.

5 The Basic Fuzzy Predicate Calculus

Extending the developed propositional calculus to a predicate calculus is very natural
and a generalization of Tarskian truth definition is immediate. Take some predicates P1,
. . . , each having its arity (unary, binary, . . .), object variables x, y, . . . , connectives &,

r
rr
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Æ, truth constant 0–, quantifiers ", $. (We disregard object constants and function
symbols for simplicity.) Formulas are defined in the usual way. An interpretation (of P1,
. . . , Pn) is a structure M = (M,(rP)P predicate) where M is a nonempty set (domain) and for
each predicate P of arity n, rP is an n-ary fuzzy relation on M, that is a mapping asso-
ciating with each n-tuple (a1, . . . , an) of elements of M a truth degree rP(a1, . . . , an) Œ
[0, 1]. The truth-value of a formula j in M depends (besides M) on a given evaluation
e of object variables by elements of M (an M-evaluation, actual meaning of variables)
and on the chosen semantics of connectives, that is on the t-norm *. We write ||j||*M,e

for this. It is defined inductively as follows:

||P(x1, . . . , xn)||*M,e = rP(e(x), . . . e(xn));
||j&y||*M,e = ||j||*M,e * ||j||*M,e

||j Æ y||*M,e = ||j||*M,e fi ||y||*M,e

||(∀x)j||*M,e = inf ex||j||*M,e

||($x)j||*M,e = sup ex||j||*M,e

where ex runs over all evaluations differing from e at most in the value for the argument
x. The atomic case can be paraphrased thus: the formula saying that (x1, . . . , xn) are P
has the truth-value equal to the degree in which the objects e(x1) . . . e(xn) (being 
the meanings of x1, . . . xn) are in the relation rP (which is the meaning of P). The 
definitions for ", $ naturally generalize the two-valued case. Now the reader expects
the following definitions:

A formula j is a *-tautology (of the predicate calculus) if ||j||*M,e = 1 for each
interpretation M and M-evaluation e. j is a t-tautology if it is a *-tautology for each *.

We may call j *-true in M of ||j||*M,e = 1 for each e. Thus j is a *-tautology if j is *-true
in each interpretation.

Note that this may be generalized from t-norms to BL-algebras; then rP is a mapping
into the domain of the algebra. But for quantified formulas ||j||*M,e (L being a BL-algebra)
may be defined if the corresponding infimum/supremum does not exist in L. One
defines an L-safe interpretation to be an L-interpretation in which ||j||L

M,e is total; j is an
L-tautology if it is L-true in each L-safe interpretation.

The basic fuzzy predicate logic BL" has the above axioms for BL and the following
axioms for quantifiers:

("1) (∀x)j(x) Æ j(y)
($1) j(y) Æ (∀x)j(x)
("2) (∀x)(c Æ y) Æ (c Æ (∀x)y)
($2) (∀x)(j Æ c) Æ (($x)j Æ c)
("3) (∀x)(j ⁄ c) Æ ((∀x)j ⁄ c)

These formulas are well-known from classical logic; they are all predicate t-tautologies
(and even BL-tautologies – are L-true in each safe L-interpretation).

Deduction rules are modus ponens and generalization (from j infer ("x)j) – as in
classical logic.
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EXERCISE. Just for refreshment, take the trivial example 5.1.2 from Hájek (1998): M =
{1, 2, 3}, binary predicate likes. rlikes given by the table

1 2 3

1 1 0.3 0.7
2 0.9 0.9 0
3 0.9 0.1 0.2

Compute the truth value of ("x, y)(likes(x, y) Æ likes(x, x)) (saying ‘everybody likes
himself/herself most’) for Ĺ, G, P. (Hint: for Ĺ it is 0.9.)

What about completeness? Note that BL" is complete will respect to general interpreta-
tion: BL" proves j iff j is an L-tautology for each BL-algebra L. Similarly, the predicate
versions L¢ ", G", P" of the corresponding propositional logics are complete with
respect to (safe) interpretations over algebras from the corresponding subclasses of
the class of BL-algebras (called MV-algebras, G-algebras and product algebras for
Ĺukasiewicz, Gödel, and product logic respectively.

With respect to interpretations over [0, 1] the situation is more complicated: the set
of all predicate t-tautologies (i.e. formulas being *-tautologies for each continuous t-
norm *) is not recursively enumerable (for specialists: it is P2-hard). Similarly, neither
the set of predicate Ĺukasiewicz tautologies (tautologies w.r.t. Ĺukasiewicz t-norm) nor
the set of predicate product tautologies is recursively axiomatizable. (For BL" not yet
published; for Ĺ" first proved by Scarpelini, see Hájek (1998).) But the set of predicate
G-tautologies is completely axiomatized by BL" plus the axiom schema j ∫ (j&j).

To get a full picture of these logics one has to have some knowledge about formulas
provable in them; this is found in Hájek (1998). (Such knowledge is necessary for proofs
of completeness results.)

Again, various extensions of these logics have been described. Furthermore, there
are results on theories over these logics; we have no room to go into details. Similarly
as above, let us summarize that the basic fuzzy predicate calculus is reasonably well
developed and well behaving. Concerning the results on non-axiomatizability, compare
this with the situation of classical second order logic: in the intended standard seman-
tics it is not recursively axiomatizable, but it has a recursive axiomatization which is
complete with respect to a generalized (Henkin) semantics.

In the rest of this chapter we shall describe some uses of fuzzy logic that may be of
interest for the philosophically minded reader.

6 Similarity

Similarity is a fuzzy equality; the notion appears to be well-known in the fuzzy com-
munity. Let x ª y stand for ‘x is similar to y’; the following are axioms of similarity:

x ª x (reflexivity)
x ª y Æ y ª x (symmetry)
(x ª y&y ª z) Æ x ª z (transitivity).
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What do models of these axioms look like? First observe a non-model: For M being the
real line define x, y to be ‘similar’ if |x - y| £ 1. This is a crisp relation (yes–no) and is
not transitive: 3 and 4 are ‘similar,’ 4 and 5 also, but 3 and 5 not. Make it fuzzy: define

r ª (x, y) = max(0, 1 - |x - y|).

EXERCISE: Draw the graph of the function x ª 4: it is zero for x £ 3 and x ≥ 5 and goes
up linearly from the point (3, 0) to (4, 1) and the down linearly from (4, 1) to (5, 0).

Is this relation transitive? It depends on your logic. The axiom of transitivity does say
that if x ª y and y ª z are (absolutely) true then so is x ª z; but it says much more, namely
that the truth degree of x ª y & y ª z is less than or equal to the truth degree of x ª z.
Take Ĺukasiewicz logic and compute:

||x ª y&y ª z|| = max(0, ||x ª y|| + ||y ª z|| - 1).

If this is 0 nothing is to be proved; otherwise continue:

||x ª y|| + ||y ª z|| - 1 = 1 - | x - y| + 1 - |y - z| - 1 = 1 - (|x - y| + |y - z|) £ 1 - |x - z|

by the well-known triangle of inequality; and the last term equals ||x ª z||. Thus we have
verified that the truth value of the transitivity axiom is 1 (the axiom is absolutely true)
for our interpretation.

Similar examples for Gödel and product logic are easy to find. Now observe that 
if ª satisfies the axioms of similarity and we define x ª2 y to be x ª y & x ª y then ª2 is
again a similarity; for example in our example rª2(x, y) = max(0, 1 - 2|x - y|). For more
information see Hájek (1998).

7 The Liar and Dequotation

Here I assume some knowledge of Gödel’s technique of self-reference in arithmetic. N
stands for the structure of natural numbers with zero, successor, addition, and multi-
plication. PA is Peano arithmetic. The undefinability of truth in arithmetic means the
following: Add a unary predicate Tr to the language of arithmetic and add the axiom
schema of dequotation: j ∫ Tr( ) to the axioms of PA (j being an arbitrary sentence
of the langauge of PA extended by the predicate Tr, and being the numeral naming
the Gödel number of j). Then the resulting theory (PA+Tr) is contradictory over clas-
sical logic since one can construct the liar’s formula l such that (PA+Tr) proves l ∫
ÿTr( ) and hence proves l ∫ ÿl, which is classically inconsistent. Over Ĺukasiewicz
logic the last equivalence is not contradictory, it just forces the truth-value of l to be
1/2. But we may ask more: Take, inside Ĺukasiewicz logic, crisp Peano arithmetic, add
the predicate Tr (which may be fuzzy) and add the dequotation schema. Is this theory
consistent (over Ĺukasiewicz)?

This was answered in Hájek et al. (2000) as follows: (PA+Tr) is consistent over the
Ĺukasiewicz predicate logic, hence it has a model (which is crisp for arithmetic and fuzzy

l
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for Tr); but the standard model N cannot be expanded by a fuzzy predicate to a model of
(PA+Tr). All models of (PA+Tr) are nonstandard (not isomorphic to N). To prove the last
claim one constructs a formula that, over N, behaves as a ‘modest liar formula’ – saying
‘I am at least a little false.’ A detailed analysis shows that this leads to a contradiction.

Let us call the reader’s attention to the remarkable book, Grim et al. (1992), where
the authors present several self-referential formulas and analyze them by the frame-
work of Ĺukasiewicz (propositional) logic.

8 Very True

When describing fuzzy logic in the narrow sense, Zadeh claims that it should go beyond
the usual many-valued logic, admitting fuzzy truth-values like ‘very true,’ ‘more-or-less
true,’ etc. Such truth values are understood as fuzzy subsets of the set of truth-values
(‘true’ being just the diagonal; ‘very true’ being for example the fuzzy set with the char-
acteristic function x2 on [0, 1]). This was criticized by Haack (1996) as not well founded,
unnecessary, etc. Haack herself was criticized by Dubois and Prade (1993), defending
Zadeh and fuzzy logic. Here I do not want to enter this discussion but only want to show
that ‘very true’ accommodates well in the ‘standard’ many-valued approach to fuzzy
logic not going beyond it. The idea is to understand ‘very true’ as a new unary 
connective.

Recall that in the classical (two-valued) logic we may explicitly have, besides nega-
tion (which sends 1 to 0 and 0 to 1) a unary connective t (which sends 1 to 1 and 0 to
0). The formula tj (evidently equivalent with j) can then be read ‘yes, j’ or ‘truly, j’
or just ‘j is true’ (not understood as a metatheoretical statement on j, but just as a
part of the object language). In fuzzy logic each mapping of the interval [0, 1] into itself
may be taken as the truth function of a unary connective (such connectives are called
hedges); in particular the identity (t(x) = x for all x) may be taken as the truth function
of the fuzzy unary connective t, tj being read ‘yes, j’ or just ‘j is true.’ What about a
connective vt, where vt(j) is read ‘j is very true’? What properties shoud it have? Let
us call a mapping vt of [0, 1] into itself a truth-stresser (with respect to a continuous 
t-norm *) if the following holds for each x, y:

vt(1) = 1, vt(x) £ x, vt(x fi y) £ vt(x) fi vt(y).

Let BL(vt) be the extension of our logic BL by the following axioms for vt:

(VT1) vt(j) Æ j
(VT2) vt(j Æ y) Æ (vt(j) Æ vt(y))
(VT3) vt(j ⁄ y) Æ vt(j) ⁄ vt(y).

These axioms are *-tautologies iff vt is interpreted by a *-truth stresser. (VT1) says that
if j is very true then j (is true); (V2) says (modulo a simple transformation) that if both
j and j Æ y are very true then y is very true. (V3) says that if a disjunction j ⁄ y is
very true then one of the disjuncts is very true.
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One can show completeness of BL(vt) with respect to a naturally defined class of
BL(vt)-algebras. Several interesting examples of truth stressers (for a given t-norm) can
be given. For example, one can define vt(j) to be just j&j; or, independently on the 
t-norm take just vt(x) = x2 (real square – this is the product conjunction but works as
a truth stresser also for L¢ and G). Proofs are found in Hájek (submitted).

The above is possibly not too surprising but hopefully the reader will agree that
saying in fuzzy logic ‘j is very true’ we are doing nothing mysterious or deviant.
Similarly one could axiomatize other ‘fuzzy truth values.’

9 Probability

We stressed that probability on formulas (of classical logic) cannot be understood as an
assignment of truth-values in the sense of a (truth-functional) fuzzy logic; but still there
are bridges between probability and fuzziness. We describe one of them (see Hájek
(1998) originally started by Hájek et al. (1995)). Fuzzy logic speaks in a fuzzy way on
some quantities (e.g. ‘Temperature is high.’) Probability is also a quantity and one may
say ‘The probability of . . . is high’ or just ‘. . . is probable.’ The dots stand for any
formula of Boolean logic; the word ‘probably’ acts as a fuzzy modality. Consider a propo-
sitional language with two kinds of formulas: non-modal – formulas of the classical
propositional calculus built from propositional variables and connectives, and modal
formulas: atomic modal formulas have the form Pj where j is any non-modal formula
(Pj is read ‘j is probable’) and other modal formulas are built from the atomic modal
formulas using connectives of Ĺukasiewicz logic. A model of this is a (Kripke) structure
K = (W, e, m) where W is a nonempty set of possible worlds, e is a Boolean evaluation
assigning to each w Œ W and to each propositional variable p the value e(p, w) (zero or
one); finally m is a probability on subsets of W (assume W finite for simplicity). Each
non-modal formula has in each possible world either the value 1 or the value 0; the
truth value ||Pj||K of Pj in K is the probability of j, that is m{w|j true in w}). Sentences
built from atoms of the form Pj are evaluated using truth functions of Ĺukasiewicz
logic. The following formulas are then tautologies:

(FP1) P(ÿj) ∫ ÿPj
(FP2) P(j Æ y) Æ (Pj Æ Py),
(FP3) P(j ⁄ y) Æ ((Pj Æ P(j Ÿ y)) Æ Py).

EXERCISE. Denote by a, b, c, d the probability of jŸy, jŸÿy, ÿjŸy, ÿjŸÿy
respectively; thus for example a + b is the probability of j. Verify tautologicity of (F1)
to (F3). Note that for example (F2) reads: ‘If j Æ y is probable then if also j is probable
then y is probable.’

Postulating axioms of classical logic for non-modal formulas, axioms of Ĺukasiewicz
logic plus our (FP1) to (FP3) for modal formulas and taking as deduction rules modus
ponens and necessitation (from j infer Pj) you get a logic complete with respect to the
above semantics.
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10 Conclusion

Fuzzy logic in the narrow sense is a logic, a logic with a comparative notion of truth. It is
mathematically deep, inspiring and in quick development; papers on it are appearing
in respected logical journals. (Besides the monographs already mentioned, Hájek
(1998), Cignoli et al. (2000), let us also mention Turunen (1999), Gottwald (sub-
mitted), Novak et al. (2000) and (slightly older) Gottwald (1993).) The bridge between
fuzzy logic in the broad sense and pure symbolic logic is being built and the results are
promising.
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Relevance Logic

E DW I N D.  M A R E S

1 Non-Sequiturs are Bad

Since 1993, when Andrew Wiles completed his difficult proof of Fermat’s Last Theorem,
mathematicians have wanted a shorter, easier proof. Suppose when someone address-
ing a conference of number theorists suggests the following proof of the theorem:

The sky is blue.

\ There is no integer n greater than or equal to 3 such that 
for any non-zero integers x, y, z, xn = yn + zn.

This proof would not be well received. But it is valid, in fact sound, on the classical logi-
cians’ definition. The premise cannot be true in any possible circumstance in which the
conclusion is false. For the conclusion is necessarily true. And the premise is true. Thus
the argument is sound and known to be sound.1

The classical notion of validity does not agree with our pre-logical intuitions about
where the division between good arguments and non-sequiturs should be. Classical 
logic allows connections between premises and conclusions in valid arguments that 
are extremely loose. There needs to be more of a connection between the content of the
premises and conclusion in an argument that we are prepared to call ‘valid.’

Some classical logicians have defined content semantically, usually using possible
worlds, in such a way as to vindicate arguments like our proof of Fermat’s Last Theorem
(see e.g. Lewis 1988). On these views, there is a real relationship between the content
of the premises and that of the conclusion. I don’t want to argue in detail against such
attempts here. Such notions of content may be fine for some purposes. But, since they
approve of arguments like our proof, they do not coincide with the intuitions that we
usually apply when considering whether a proof is good or bad.

Another line of reply is that our notion of good proof is not completely logical, but
rather it is partly pragmatic.2 There is probably some truth to this claim, but we should
resist the temptation to push this problem completely into pragmatics. Theories of prag-
matics are notoriously vague. They tell us, for example, to reject the above argument
because it violates the Gricean maxim to ‘be relevant.’ What counts as relevant is left



unsaid in Grice’s theory. Surely, if there is a theory of relevance that is more rigorous
than this, it would be better, all things being equal, to appeal to the more rigorous
theory. And relevant logic does provide a very specific view about what counts as a 
relevant deduction.

The plan of this chapter is to use the natural deduction system for the relevance logic
R as a guide to the various elements of relevance logic – its proof theory, its semantics,
and their interpretation. Later we will introduce weaker relevance logics and two appli-
cations of relevance logics: one to the problem of conditionals and the other to the
theory of properties.

2 The Real Use of Premises

The problem with non-sequiturs like the one given above is that the premises of the 
inference appear to have nothing to do with the conclusion. Relevance logic attempts
to repair this problem, in part, by forcing a constraint on proofs that the premises really
be used in the derivation of the conclusion.

We will present this idea in the context of Anderson and Belnap’s natural deduction
system for the logic R. The idea is pretty simple. Each premise, or rather hypothesis, in
a proof is indexed by a number. The various steps in a proof are indexed by the numbers
of the premises which are used to derive the steps. For example, the following is a valid
argument in this system:

1. A Æ B{1} hyp.
2. A{2} hyp.
3. B{1,2} (1)(2) ¥ (Æ E)

where ‘Æ E’ is the rule of modus ponens or implication elimination. The numbers in
parentheses are the indices.

Throughout this chapter, we will be using the natural deduction system for the logic
R. This system allows free repetition of premises and the free reiteration of steps into
subproofs.

3 Implication

In natural deduction systems we do not usually merely display proofs with premises.
We discharge premises to prove theorems of a system. The key rule that we will use here
is the rule of conditional proof, or Æ I (implication introduction), viz.,:3

A{k} hyp.
...
Ba

A Æ Ba-{k} (Æ I)
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where k occurs in a. The proviso that k occur in a is essential. It ensures that, in this
case, A is really used in the derivation of B.

We can think of the problem of logical relevance in terms of inference, as we 
have been doing, but also in terms of implication. Relevance logic was developed in 
part to avoid the so-called paradoxes of material implication. These are formulae 
that are theorems of classical logic, but are counterintuitive when we think of the
arrow as meaning ‘implication’ in any ordinary sense, or pre-logical philosophical
sense, of that term. Among these paradoxes are the following (with names given where
they exist):

1. A Æ (B Æ A) (positive paradox)
2. A Æ (~A Æ B) (negative paradox)
3. (A Æ B) ⁄ (B Æ A)
4. (A Æ B) ⁄ (B Æ C)
5. (AŸ ~A) Æ B (ex falso quodlibet (EFQ))
6. A Æ (B Æ B)
7. A Æ (B⁄ ~B)

Consider, for example, the positive paradox. It says that any true formula is implied by
any formula at all. Implication is usually thought to indicate a tighter relationship than
one that can exist between any proposition and a true proposition, merely because the
latter is true. Similarly, negative paradox says that any proposition is implied by a false
proposition. Again, we have an indication that the material conditional (which always
makes a negative paradox true) is too loose a connection to capture the intuitive sense
of ‘implication.’

Relevant logics were introduced to avoid the paradoxes of implication. Now, this does
not mean that the semantics of relevant logics will show that all such paradoxes are
false in every circumstance. Rather, relevant logicians have developed semantic and
proof-theoretic techniques that do not force the paradoxes to be true. Thus, there are
at least two notions of relevance at play in relevance logic: (a) The system of proof
forces us actually to use every premise in a deduction; (b) the proof theory and 
semantics do not force us to accept the paradoxes of material implication.

Returning to our natural deduction system, consider the following attempt at a proof
of positive paradox:

1. A{1} hyp.
2. B{2} hyp.
3. A{1} (1) ¥ (reiteration)
4. B Æ A{1} (2) - (3) ¥ (Æ I)
5. A Æ (B Æ A)0/ (1) - (4) ¥ (Æ I)

The illegitimate move here is the use of an implication introduction in the fourth step.
2 does not belong to {1} and so we cannot discharge the second hypothesis here. The
other paradoxes are avoided in similar ways.
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4 From Proof Theory to Semantics

In 1972 Alasdair Urquhart presented a semantic interpretation of relevance numer-
als. He begins with the notion of a ‘piece of information.’ A piece of information is a
concept which encompasses but is more general than that of a possible world or an 
evidential situation (the latter is from Kripke’s semantics for intuitionist logic).

Pieces of information satisfy statements. To take an example from Urquhart (1992),
if we have a piece of information a that consists of the fact that Harry is taller than Fred
and the fact that Jim is taller than Harry, then

a |= Jim is taller than Fred.

The satisfaction relation (|=) holds between pieces of information and basic statements
of a language by virtue of the meanings of those basic statements. Here the meaning
of ‘is taller than’ includes its transitivity.

Among those facts that can be satisfied by pieces of information are what we might
call ‘informational links.’4 Among informational links are laws of nature – such as the
law that all pieces of matter attract all other pieces of matter – and convention con-
nections – such as the fact that all objects that are exactly a metre in length are the
same length as a particular bar in Paris. These informational links provide the truth-
makers for implicational statements.

But the truth-making relation between implicational statements and informational
links is not very straightforward. For example, if it is a law of nature (or, rather, an
instance of a law of nature) at a that A Æ B obtains at piece of information a and there
is a conventional link in a such that B Æ C holds in a, then it would also seem that 
a |= A Æ C. But there is no informational link in a which directly makes true A Æ C. 
Like ‘taller than,’ implication seems to be transitive by virtue of its meaning.

To enforce this and other features of implication on the model, Urquhart devised a
truth condition for implication using what is now called ‘fusion.’ Pieces of information
can be combined or ‘fused’ together. The fusion of two pieces of information a and b is
written ‘a � b’. a � b is itself a piece of information.

When we fuse two pieces of information a and b together, we apply the informational
links from a to the information in b. Thus, for example, suppose that it is a law in a that
all material objects attract all other material objects and among the facts in b are i is a
material object and j is a material object. Thus, in a � b we have the fact that i and j attract
one another.

So now we have a connection between informational links and fusion and a con-
nection between informational links and implication. Putting these together, we can
derive the following truth condition for implication:

a |= A Æ B if and only if "b(b |= A fi a � b |= B).

An implication is true at a piece of information, if whenever that piece of information
is fused with a piece of information which satisfies the antecedent the fusion satisfies
the consequent.
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There is a tidy connection between fusion and the natural deduction system. Here
is an instance of our Æ E rule:

1. A Æ B{1} hyp.
2. A{2} hyp.
3. B{1,2} (1)(2) ¥ (Æ E)

We can think of the subscripts as names of pieces of information. In line one, we have
the statement that A Æ B is true in a piece of information 1. In line two, we have A
holding in piece of information 2. And in line three we have B obtaining in 1 � 2. Thus,
Urquhart’s semantics provides us with a semantic understanding of the indices used
in our natural deduction system.

The connection between informational links and implication gives us a means of
interpreting relevant implication. Implications are made true by informational links or
the results of implicational links under certain closure principles, like transitivity. We
take from Devlin (1991) and Israel and Perry (1990) the idea that it is because of infor-
mational links and their closures that facts carry the information that other facts obtain.5

We follow a popular tradition in philosophy of language and hold that statements express
their truth conditions. We say that A Æ B means that A carries the information that B since
this formula expresses the ‘fact’ that there is an informational connection between A and
B or the result of one or more informational connection and certain closure principles.

5 Adding Conjunction

Let’s move to discuss another connective. The truth condition for conjunction in this
semantics is quite straightforward. That is,

a |= A Ÿ B if and only if a |= A and a |= B.

This is merely the same truth condition for conjunction that one finds in Kripke’s
semantics for modal and intuitionist logic.

As we saw in the previous section, Urquhart’s semantics gives us a clear relation-
ship between pieces of information and indices in the natural deduction system. 
If we apply this relationship to derive rules for conjunction, the truth condition given
above yields both introduction and elimination rules for that connective. First the intro-
duction rule:

From Aa and Ba, infer A Ÿ Ba.

And now the elimination rules:

From A Ÿ Ba, infer Aa

and

From A Ÿ Ba, infer Ba.
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Note that in the introduction rule the subscript on the two formulae to be conjoined is
the same. Before we can conjoin two formulae we have to know that they are true at
the same piece of information.

The restriction in this rule that the subscript must remain the same allows us to avoid
admitting a well-known proof for positive paradox (see Lemmon 1965). For if we were
to allow formulae with different subscripts to be conjoined, we would allow the follow-
ing proof:

1. A{1} hyp.
2. B{2} hyp.
3. A Ÿ B{1,2} (1)(2) ¥ (ŸI)
4. A{1,2} (3) ¥ (ŸE)
5. B Æ A{1} (2) - (4) ¥ (Æ I)
6. A Æ (B Æ A)0/ (1) - (5) ¥ (Æ I)

The illegitimate step here is step 3. It conjoins two formulae that do not have the same
index.

6 The Problem of Disjunction

The use of Urquhart’s semantics for relevant logic depends crucially on the notion of
a theory. We show that Urquhart’s semantics, given certain additional semantic pos-
tulates, is a semantics for a relevant logic by proving a completeness theorem. In a com-
pleteness proof for Urquhart’s semantics, we construct a model using theories as pieces
of information. A theory is a set of formulae closed under conjunction and provable
implication. Let us suppose that G is a theory. Then, if A Œ G and B Œ G then A Ÿ B Œ
G. Also, if A Œ G and A Æ B is a theorem of the logic we are using then B Œ G. To rep-
resent fusion in our model, we take a � b to be the set of formulae B such that there is
some formula A such that A Æ B is in a and A is in b. In other words, in constructing
a � b we take major premises from a and minor premises from b and perform modus
ponens on them. The result is a � b. This construction crucially depends upon the result
of a fusion between two theories itself being a theory. As we shall see, this is a very
important fact for Urquhart’s semantics.

Disjunction adds a new and difficult dimension to the semantics. The natural truth
condition for disjunction is the following:

a |= A ⁄ B iff a |= A or a |= B.

But theories, in general, do not meet the corresponding inclusion condition for dis-
junction, viz.,

A ⁄ B Œ G iff A Œ G or B Œ G.

Theories that do meet this condition are called prime theories. The Urquhart semantics,
however, does not work if we restrict ourselves to using prime theories. For the fusion
of two prime theories is not always a prime theory.
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Thus, either we are forced to modify the standard truth condition for disjunction 
or abandon the use of fusion in the semantics. Relevant logicians have tried both 
alternatives, each with success. Kit Fine (1974) has extended the Urquhart semantics
to include a treatment of disjunction by altering its truth condition. Richard Routley
and Robert Meyer, on the other hand, have retained the standard truth condi-
tion for disjunction and relinquished the use of fusion in their series of papers 
(1973, 1972a, 1972b); for a detailed discussion of this semantics see Routley et al.
(1982). In the following section, I give a brief overview of this semantics, which is also
known as the relational semantics.

7 Routley and Meyer’s Ternary Relation

To distinguish between the elements of Urquhart’s semantics and those of Routley and
Meyer’s relational semantics, let us call the latter situations, although in the literature
they are also called ‘worlds’ and ‘setups.’ The Routley–Meyer semantics replaces fusion
with a three-place accessibility relation on situations, R. The truth condition for impli-
cation is correspondingly changed:

a |= A Æ B iff "x"y((Raxy & x |= A) fi y |= B)

This truth condition might look like a ‘bolt from the blue,’ but it is actually a gen-
eralization of the truth condition for necessity from Kripke’s semantics for modal 
logic. Whereas Kripke uses a binary relation to interpret a monadic connective 
(necessity), Routley and Meyer use a ternary relation to interpret a binary connective
(implication).

We can view the relational semantics as generalizing fusion. Recall that we said 
that a � b results when the informational links from a are applied to the information 
in b. Adapting this idea to the ternary relation is quite easy. We say that Rabc
obtains when the information that results from the application of the links in a to 
the information in b is contained in c. To return to our previous example, suppose that
a contains the law that all matter attracts all other matter and b contains the informa-
tion that i and j are material objects. Then c contains the information that i and j attract
one another.

We can force implication to have the various properties that we want by accepting
certain postulates in our model theory. For example, if we want the statements satis-
fied by situations to be closed under modus ponens, we adopt the following postulate. For
all situations a,

Raaa.

For suppose that a |= A Æ B and a |= A. By the truth condition for implication, for all b
such that Raab, b |= B. But Raaa, by the above postulate. So, a |= B. Thus, a is closed under
modus ponens as we suggested. There are similar postulates that are required to satisfy
transitivity and other properties that one might desire implication to have.
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8 Rules for Disjunction

Now we return to our natural deduction system and add some rules for disjunction.
The introduction rules are quite obvious:

From Aa, to infer A ⁄ Ba.

and

From Ba, to infer A ⁄ Ba.

The elimination rule is a little more complicated:6

From A ⁄ Ba, A Æ Cb, and B Æ Cb,
infer Ca»b.

There is also a rule that ensures the distribution of conjunction over distribution (it
simply states that one can infer from A Ÿ (B ⁄ C)a to (A Ÿ B) ⁄ (A Ÿ C)a).7

9 The Semantics of Negation

The treatment of negation is one of the most controversial elements of relevant 
logic (see Copeland 1979). The key here is that in order to block ex falso quodlebet 
we need situations in our semantics that make contradictions true. In addition, in 
order to reject the paradox A Æ (B⁄ ~B) we need situations at which bivalence 
fails. Thus, we need a semantics for negation that does not force bivalence or con-
sistency on us.

Routley and Meyer’s model theory incorporates a device from a semantics developed
originally for relevant logic by Richard and Val Routley in 1972. This device is an 
operator on situations, which has become known as the Routley star. For each situa-
tion in the semantics, there is a situation that is its ‘star.’ The star of a situation a is a*.
Some situations (in some models) are identical with their stars, but not all. The truth
condition for negation then becomes:

a |=u ~A iff a* |=/ A.

The relative independence of a situation and its star allows inconsistencies and failures
of bivalence.

On the other hand, Routley and Meyer relate worlds to their pairs in order to satisfy
the various postulates governing negation. For example, they set a = a* in order to satisfy
A Æ ~~A and ~~A Æ A.

The problem with the Routley star is that many philosophers have had trouble
understanding what it is and what it is supposed to do with negation. Here we will use
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an explanation due to J. M. Dunn (1993). Dunn does not begin with the Routley star.
Instead, he postulates a binary relation C on situations that is supposed to relate situ-
ations to situations with which they are ‘compatible.’ For example, suppose there is
information in the present situation that a particular table is completely red. In another
situation, there is the information that it is completely green. These two situations 
are incompatible with each other. If there are no such conflicts, then situations are
compatible.

Note that situations need not be compatible with themselves. Situations are abstract
(‘ersatz’) entities and can contain conflicting information (e.g. that the table is red and
that it is green all over).

Now we have the following truth clause for negation:

a |=w ~A iff "b(Cab … b |=/ A)

Now we can use the compatibility relation to define the star operator. a* is the largest
situation that is compatible with a. a* is largest in the sense that it contains more infor-
mation than any other situation compatable with a.8

10 Rules for Negation

The introduction rule for negation is a form of the reductio rule:

From A Æ ~Aa, infer ~Aa. (~I)

The elimination rule is a form of modus tollens:

From ~Ba and A Æ Bb infer ~Aa»b. (~E)

We also add two double negation rules: From ~~Aa to infer Aa and the converse of this
rule.

11 Disjunctive Syllogism

The rule of disjunctive syllogism (DS) is

From A ⁄ Ba and ~Aa, infer Ba.

This is an intuitive rule of inference. We use it to ‘deduce’ the identity of the murderer
when reading mystery novels – we eliminate all but the guilty party. We use it when
determine who sits on university committees (‘X are going on leave. Y will say crazy
things. So, it has to be Z.’). In fact, we use DS all the time. But, if we add DS we get back
one of the paradoxes of implication. The following proof is due to C. I. Lewis (see Lewis
and Langford 1959):
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1. AŸ ~A{1} hyp.
2. A{1} (1) ¥ (ŸE)
3. A ⁄ B{1} (2) ¥ (⁄I)
4. ~A{1} (1) ¥ (ŸE)
5. B{1} (3)(4) ¥ (DS)
6. (AŸ ~A) Æ B0/ (1) - (5) ¥ (- I)

So, adding DS gets us EFQ.
Reactions to this proof are varied. Some, like Stephen Read (1988), claim that the

problem is not with disjunctive syllogism, but rather with our understanding of dis-
junction in natural language. We should interpret natural language disjunctions as an
intensional disjunction. In particular, we should treat it as fission, sybolised ≈. In R and
closely related relevant logics, fission can be defined as

A ≈ B =df ~A Æ B

Clearly, disjunctive syllogism is valid for fission. It is just a form of modus ponens 
(Æ E). What is not valid for fission is addition. We cannot infer from A to A ≈ B. This
blocks the step from lines 2 to 3 in the proof above. Thus the proof is blocked and 
so we can create a form of disjunctive syllogism without buying into a paradox of
implication.

Read’s solution has definite merits. I have found that students, who have not yet
become accustomed to the quirks of classical logic, find ⁄I a rather strange rule. When
I have shown Lewis’s proof during seminars, I have the audience vote to decide which
rule to reject. ⁄I is always the one they choose.

But there are problems with taking natural language disjunction to be intensional.
In particular, the truth condition for intensional disjunction does not look like anything
we would identify with natural language disjunction. That is,

a |= A ≈ B if and only if "b"c(Rbca … (b |= A or c |= B)).

Many relevant logicians have been reluctant to accept Read’s view because they do not
think that this truth condition looks like it explicates the meaning of natural language
disjunction.

There are other ways of dealing with the apparent validity of DS. We’ll take a look
at one due to Chris Mortensen (1986), with some minor changes made to fit the current
chapter.

Mortensen holds that we can use DS with extensional conjunction under certain 
circumstances. According to Mortensen, the problem with DS is that we cannot use 
it when reasoning about inconsistent situations. When we reason about consis-
tent situations, we can use it. For, the following argument is valid (Mortensen 
1986: 196):

1. If a situation a is consistent, a |= A ⁄ B and a |= ~ A, then a |= B. (hypothesis)
2. a is consistent hypothesis
3. a |= A ⁄ B hypothesis
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4. a |= ~A hypothesis
5. a |= B (1)(2)(3)(4) ¥ (modus ponens)

There are at least two interesting features of this argument. First, it is done within the
semantic metalanguage. Second, the nature of the first premise is worth nothing. It
tells us that consistent situations are closed under disjunctive syllogism. Note that this
is a premise – it is not proven by the argument. Nor does Mortensen establish it in any
other way. Mortensen says that it is justified by intuition (Mortensen 1986).

I do not have space here to argue the merits of either of these treatments of DS, 
nor do I have space to discuss other alternative approaches. I direct the interested reader
to the bibliographies in Anderson et al. (1992) and Read (1988) for readings on this
topic.

12 Logics Stronger than R

So far, we have been motivating the logic R. But there are many other relevant logics
that have been studied.

Logics stronger than (that contain more theorems than) but close to R, tend to be
only marginally relevant. For example, the logic R Mingle (RM) of Dunn and Storrs
McCall contains all the axioms and rules of R, plus the mingle axiom:

A Æ (A Æ A)

For a logic to be counted as relevant it must have the variable sharing property. That
is, if a formula A Æ B is a theorem, then formulae A and B must contain at least one
propositional variable in common. RM does not have the variable sharing property, but
does have a property very close to it, viz.,9

If A Æ B is a theorem of RM, then either
A and B share a propositional variable

or ~ A and B are both theorems of RM.

RM contains theorems that seem paradoxical from a relevant point of view. Among
these is ‘(A Æ B) ⁄ (B Æ A)’. Despite the semi-relevance of RM, it has its attractions
and it and systems very similar to it have their advocates (see, e.g. Avron 1990a,
1990b).

Slightly stronger than RM is the elegant logic RM3. RM3 is characterized by three-
valued truth tables. The three values that we will use are T, F, and B. T and F are true
and false respectively, and B is the value ‘both true and false.’ Dialetheists are philoso-
phers that hold that some sentences can be both true and false. Even if we are not
dialetheists, we can make sense of this truth-value by thinking about inconsistent fic-
tional stories. We can understand such stories by taking the inconsistencies in them to
be both true and false of the story. Both T and B are designated values in this seman-
tics. That is, a statement is considered to be (at least) true if it is T (perhaps best thought
of as ‘merely true’) or B.
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This is a simple, elegant logic that comes very close to being relevant.

13 Logics Weaker than R

On the other hand, many relevant logicians have argued for systems weaker than R.
In fact, the preferred logic of the Entailment volumes (Anderson and Belnap (1975) and
Anderson et al. (1992)) is the logic E of relevant entailment. E is meant to capture a
strict relevant implication. Given this, it was conjectured that E would be captured by
R extended by the addition of a necessity operator and some (S4-ish) axioms govern-
ing that operator. Unfortunately, NR or R�, as the resulting logic was called, was shown
to be somewhat stronger than E. As a result, relevant logicians could not accept both
that R is the logic of relevant implication and that E is the logic of necessary relevant
implication. (See Anderson and Belnap (1975) for a more detailed history.)

Other relevant logicians have given various reasons for adopting weaker logics, but
we will only look at one such motivation.

Some logicians have used relevant logics to develop naïve theories of truth and naïve
set theories. A naïve theory of truth both contains its own truth predicate and admits
Tarski’s truth schema, viz.,

True( A ) ´ A.

As we shall soon see, if we base a naïve theory of truth on the logic R, we end up with
a trivial system. That is, the resulting logic can prove every proposition.

A similar state of affairs holds for naïve theory of sets. A naïve set theory contains
an unrestricted comprehension principle, such as, for each formula A,

$x"y(A(y) ´ y Œ x).

Again, adding this principle (along with other standard principles of set theory) to R
yields a trivial theory.

Let’s use contraction to prove ‘Curry’s paradox’ in R with the naïve theory of truth.
My proof follows Meyer et al. (1979), and is done in the Hilbert-style axiom system.

��

EDWIN D. MARES

620

Ÿ T B F ⁄ T B F

T T B F T T T T
B B B F B T B B
F F F F F T B F

Æ T B F ~

T T B F T F
B T T B B B
F T T T F T

The truth tables for RM3 are the following:



We start with a definition of a proposition C:

C =df Tr( C ) Æ p

where p is any arbitrary proposition. We also define a biconditional (A ´ B =df

(A Æ B) Ÿ (B Æ A)).

1. C ´ (Tr( C ) Æ p) definition of C
2. C Æ (Tr( C ) Æ p) (1) ¥ (simplification)
3. Tr( C ) ´ C (T-schema)
4. C Æ (C Æ p) (2)(3) ¥ (replacement of equivalents)
5. �R (C Æ (C Æ p))Æ (C Æ p) (contraction)
6. C Æ p (4)(5) ¥ (modus ponens)
7. (Tr( C ) Æ p) Æ C (1) ¥ (simplification)
8. (C Æ p) Æ C (7)(3) ¥ (replacement of equivalents)
9. C (6)(8) ¥ (modus ponens)

10. p (6)(9) ¥ (modus ponens)

Thus, we can prove any arbitrary proposition in R with the naïve theory of truth. A
very similar proof can be used to show that every proposition is provable in R with a
naïve set theory.

Some relevant logicians hold that one problem with R is that it contains the 
principle of contraction, used in step three in the argument. In schematic form, con-
traction is

(A Æ (A Æ B))Æ (A Æ B).

Here is a proof of contraction in our natural deduction system:

1. A Æ (A Æ B){1} hyp.
2. A{2} hyp.
3. A Æ B{1,2} (1)(2) ¥ (Æ E)
4. B{1,2} (2)(3) ¥ (Æ E)
5. A Æ B{1} (2) - (4) ¥ (Æ I)
6. (A Æ (A Æ B)) Æ (A Æ B)0/ (1) - (5) ¥ (Æ I)

How should we block this proof? Note that hypothesis 2 is used in modus ponens at both
lines 3 and 4. One step towards rejecting contraction in a natural deduction system is
to restrict the use of premises in a proof. That is, we allow each hypothesis to be dis-
charged only once. This blocks the proof. (Of course, in setting up a natural deduction
system that does not prove contraction, we should be sure that there is no other way
to prove that thesis.)

There has been some success in developing naïve theories using weak relevant 
logics. Ross Brady has shown that a weak relevant logic can support a consistent 
naïve class theory and a consistent naïve set theory (see Brady 1983, 1989, and 
forthcoming).
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14 Relevant Logics and Natural Language Conditionals

In this and the next section, we will look at two applications of relevant logic and its
semantics.

As Dunn (1986) argues, we need a relevant theory of conditionals. For example,
consider the following example:

If you pick up a pregnant guinea pig by the tail,
all her babies will be born without tails.10

Intuitively, this statement is false. Taking the conditional to be a material implication,
however, makes it true.

Probabilistic treatments of the conditional, quite popular at the moment, do not
capture relevance phenomena adequately either. These treatments, for the most part,
accept Adam’s thesis. This thesis says that a conditional A fi B is assertable if and only
if the conditional probability Pr(B/A) is high. But there are cases in which the conse-
quent of a conditional has a high probability independently of the probability of the
antecedent. For example,

If John dropped this piece of chalk, Einstein’s theory of gravity holds.

There is clearly something wrong with this conditional. It makes it seem as if the truth
of Einstein’s theory of gravity was caused by John’s dropping this piece of chalk.
Conditional probability Pr(E/C) is high because the probability of E is high and is inde-
pendent of the probability of C. On the probabilistic theory of conditionals, this makes
the conditional assertable.

These brief, and rather dogmatic, remarks motivate a relevant treatment of the con-
ditional. But we cannot merely take the conditional to be a form of relevant implica-
tion. For the implications of the various logics we have seen have properties that the
natural language conditional does not have. For instance, the principle of strengthen-
ing the antecedent is valid for all these conditionals, that is, we can infer from the truth
of (A Æ C) to ((A Ÿ B) Æ C). But we cannot infer from ‘If Ramsey got a new chew toy
this afternoon, he is now happy’ to ‘If Ramsey got a new chew toy this afternoon and
he had a bath, he is now happy’.11

Instead, we can formulate another connective, which shares some properties with
relevant implication. The view that I present here is a simplification of that of Mares
(forthcoming), which in turn is a development of the theory of Dov Gabbay (1972,
1976). Here I develop this idea semantically.

In addition to the elements from the Routley–Meyer semantics, we add a four-place
accessibility relation, I. This relation holds between two propositions and three situa-
tions. Here a proposition will merely be a set of situations. Thus, |A| is the set of situa-
tions at which the formula A is true. The conditional is represented by the symbol fi.

Our truth condition for the conditional mirrors the Routley–Meyer truth condition
for implication.

a |= A fi B iff "x"y((I|A||B|axy & x |= A) … y |= B)
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The difference here, of course, is the insertion of the antecedent and consequent propo-
sitions into the accessibility relation. Why we need the consequent proposition repre-
sented here will be treated later. The inclusion of the antecedent proposition allows us
to block unwanted inferences such as strengthening of the antecedent. For we cannot
infer on this semantics from I|A Ÿ B||C|abc to I|A||C|abc. This blocks the inference from 
a |= A fi C to a |= (A Ÿ B) fi C.

There are some inferences, however, that we do want to hold of the conditional. One
way of understanding implication is as an idealization of the conditional. An analogy
might help here. Recall that we interpreted the implication of R in terms of universal
laws of nature, sufficient causal statements, and so on. Yet our standard laws of science
and causal statements are not universal or sufficient. They have ceteris paribus clauses
built into them. I suggest that the relationship between implication and the conditional
is akin to that between universal laws of nature and sufficient causal statements, on
the one hand, and ceteris paribus laws and normal causal statements on the other. The
latter have built into their interpretation unstated conditions that indicate where they
do and do not apply. Similarly, standard conditionals have unstated restrictions of these
sorts built into their interpretation. Thus, in the semantics of conditionals, the con-
ditional I|A||B|abc only holds when b and c satisfy the restrictions associated with the
proposition |A| and |B| at the situation a.

The inclusion of the consequent proposition is supposed to prevent certain irrele-
vances for appearing. For example, when I talk about what happens if a piece of chalk is
dropped, one of the background assumptions that I make is that the laws of gravity will
hold when I drop the chalk. But as we have said, we don’t want to accept the conditional,
‘If John dropped this piece of chalk, Einstein’s theory of gravity holds.’12 Rather, on the
present view the consequent cannot count as a background assumption. Thus the con-
sequent helps to determine which situations are used in the evaluation of the conditional.

We can represent the idea that the conditional is a relevant implication plus some
restrictions by the following principle:

I|A||B|abc
.

\ Rabc

This principle makes valid the thesis below:

(A Æ B) Æ (A fi B)

We can also force the conditional to satisfy modus ponens by adding the principle 
that I|A||B|aaa, for all propositions |A| and |B| and all situations a. Given the previous
principle, it makes sense to have the conditional satisfying modus ponens if the 
corresponding implication also satisfies modus ponens.

15 Theory of Properties

The doctrine of relevant predication is due to Dunn (1987, 1990a, 1990b).
Philosophers distinguish between those properties that an object really has from those
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that it has in a rather tenuous way. Consider the problem of Cambridge change. Two
hours ago, in Toronto (on the other side of the world from me), it was raining. Now it
has stopped. So we have a change from

Ed is such that it is raining in Toronto

to

Ed is such that it is not raining in Toronto.

Here there is a change, but not a real change in me. The change doesn’t really 
affect me.

The standard treatment of lambda abstraction in logic does not distinguish between
those properties that an object really has from those that it has only in this incidental
way. For ‘lx(Raining(toronto))ed’ is usually treated as a legitimate predication.

Dunn (1987, 1990a, 1990b) distinguish between ordinary predication and relevant
predication. A property j is had by an entity i relevantly if a thing’s being i implies that
it has j. In Dunn’s formalism,

(rxjx)i =df "x(x = i Æ jx).

The idea is that the property here is had by the thing by virtue of its being that thing.
Relevant implication is used to formalise the ‘in virtue of ’ here.

As Dunn puts it in (1990b), if i has a j relevantly, then for anything x,

~jx Æ x π i.

So not to have j is to make a thing, or in our own terms, to carry the information that
it is, not i.

To take an example, consider

Ronald Reagan is such that Socrates is wise.

We can ask what this ‘is such that’ is doing here. If it is there to indicate that ‘Socrates
is wise’ is relevantly predicated of Reagan it would seem to be false, for

(rxS)ron ´ "x(x = ron Æ S).

There is no reason to believe that x = ron Æ S for any x here, since just because S is true
does not mean that arbitrary statements imply it. And the sentence ‘x = ron’ seems to
have nothing to do with S. Thus, we can reject ‘(rxS)ron.’

16 Summary

This has been a rather opinionated introduction to relevant logic. I have used the
natural deduction system for R as a guide, since it is rather elegant and because I like
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it. And I have used a particular reading of the semantics in order to give the philo-
sophically inclined reader a way of understanding the system. There are many other
ways of understanding relevant logic, but in a short chapter one cannot cover them all.
So I have decided to treat only one interpretation at some length.
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Notes

1 It won’t help to argue that in a proof, all the steps in the proof must be transparent to the
people to whom the proof is presented, for even after it is pointed out to us that from it is a
theorem that A we can infer that B, therefore A, we still feel quite cheated by the so-called
proof.

2 For a very clear version of this approach, see, Robert Fogelin (1978).
3 Anderson and Belnap (1975) present their rules in ‘horizontal’ form: From A1, . . . , An infer

B. I will use both their method of presentation and the current ‘vertical’ method, depend-
ing on which is easier in a given context.

4 Here I am not presenting Urquhart’s theory. Rather, the present theory, in effect, is that of
Mares (1996). This view is an elaboration of Meyer’s interpretation of Urquhart’s seman-
tics. Meyer (in conversation) takes fusion to be the application of the ‘laws’ of one piece of
information to the facts in another piece of information.

5 Note that for Devlin and Israel and Perry (as for Mares 1996) the list of sorts of informational
links is much longer than the one that I gave earlier. A reasonably good list is at Devlin (1991:
12). I don’t agree with all the types of links that Devlin includes, especially empirical 
generalizations, but the reader can get the general idea of what I am talking about from 
that list.

6 I use what Anderson and Belnap (1975) call ⁄ Es, because it is simpler than the usual rule.
7 Ross Brady has developed a natural deduction system that is supposed to eliminate the need

for this additional rule for distribution. It has not yet been published.
8 In the full Routley–Meyer semantics there is a binary relation £ on situations. If Cab, then

either b < a* or b = a.
9 This is stronger than the closest property had by classical logic. For classical logic, if A Æ B

is a theorem, then either A and B share a variable or ~A is a theorem or B is a theorem. This
property is called ‘Halldén reasonableness.’

10 This example is courtesy of A. R. Anderson, but comes originally from a children's story. If
any reader knows the title and author of this story, I would appreciate the information.

11 Ramsey is a dog.
12 If we add ‘still’ in the consequent of the above conditional, it becomes acceptable; ‘still’ 

and ‘even’ would seem to be ‘relevance breakers’ and a non-relevant analysis of them is
appropriate.
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Further Reading

A longer, more technical but very readable introduction is J. M. Dunn (1986). Dunn and Greg
Restall have rewritten this article for a new addition of the Handbook of Philosophical Logic which
is forthcoming. Greg Restall has also written a textbook on substructural logics (2000), among
which are relevant logics. Mares and Meyer (2001) is a longer introduction than the current
piece and somewhat more detailed (although it does not deal with all the topics treated here).

For the more advanced reader, Anderson and Belnap (1975) and Anderson et al. (1992), as
well as Routley et al. (1982) contain most of the formal material on these logics. Of course, there
have been technical developments since these books were published.

On the more philosophical side, Read (1988) is an interesting attempt to interpret and defend
relevant logic. His work is idiosyncratic, but this is necessarily the case in relevant logic. Relevant
logic, unlike intuitionist logic for example, was not developed with the aim of articulating a philo-
sophical position. And relevant logic fits with many philosophical perspectives. It is my experi-
ence that there are as many interpretations of relevant logic as there are relevant logicians. For
a very different philosophical outlook, see Routley et al. (1982).
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On Paraconsistency

B RYS O N B ROW N

1 What is Paraconsistency?

The term paraconsistent logic is due to F. Miro Quesada. ‘Para’ can mean any of
‘against,’ ‘near,’ or ‘beyond.’ It’s not clear which of these Quesada had specifically in
mind, or whether he deliberately embraced the ambiguities inherent in the term. But
each of these meanings suits the programs of at least some who have worked on para-
consistent logic. The most radical paraconsistentists, the dialetheists, are indeed against
consistency, at least as a global constraint on our metaphysics. They hold that the world
is inconsistent, and aim at a general logic that goes beyond all the consistency con-
straints of classical logic. More modest practitioners of paraconsistent logic aim to give
us a logic suitable for treating nearly (but not quite) consistent sets. But the central
logical problem is something both the moderates and the radicals share: the classical
trivialization of inconsistent and unsatisfiable sets.

A set G is inconsistent iff its closure under deduction includes both a and ÿa for
some sentence a; it is unsatisfiable if there is no admissible valuation that satisfies all
members of G. Classical logic trivializes all such premise sets. That is, from any incon-
sistent premise set, we can derive any sentence in the language, and from any unsatis-
fiable premise set, every sentence in the language follows. Each term when I teach
introductory logic I have to explain this intuitively odd fact, which we can express
roughly as:1

Triv: {A,ÿA} �c B; {A,ÿA} |=c B

In that logic class I sometimes try to motivate this oddity by locating it in the context
of persuading others to accept various sentences. Of course we know the premise set
{A,ÿA} cannot be true. So, if someone grants you (or anyone) those premises, they
should be prepared to grant you anything at all (how could they object to B, having
already accepted A and ÿA?). But this defense is just a rhetorical dodge. It assumes
something that’s clearly false, that is that we can never have good reasons to accept
both A and ÿA, while not having any good reason to accept B.

More famously, C. I. Lewis argued for Triv by presenting a proof of it, along these
lines:



1. A premise
2. ÿA premise
3. (A ⁄ B) 1, ⁄-intro
4. B 2,3, disjunctive syllogism

The proof produces a challenge for those who reject Triv: Which of these two rules, ⁄-
intro or disjunctive syllogism, will they give up? Both seem pretty obviously sound. How
can we deny that A ⁄ B follows from A, given the standard understanding of ‘⁄’ as
inclusive disjunction? Similarly, how can we deny that B follows from A ⁄ B and ÿA,
given that ‘ÿ’ is negation and ‘⁄’ is inclusive disjunction? The usual answer (first pro-
posed by Anderson and Belnap2) is that disjunctive syllogism must fail in such cases.
After all, we obtained A ⁄ B by inferring it from our premise A. How can we then justify
turning around and inferring B with the help of our other premise, ÿA? This inference
depends on the assumption that the assertion of ÿA can be used to rule out that it’s
due to having asserted A that we are entitled to assert that A ⁄ B. But to assume this
is to deny that we ever reason with sets like {A,ÿA}, not to infer something we would
want to infer from such sets.

There are other reasons to adopt paraconsistent logic, reasons that are telling even
for those who accept the argument for trivialization above. For example, a deontic logic
that does not trivialize conflicting obligations, or an epistemic logic that does not trivi-
alize inconsistent beliefs, will require a paraconsistent consequence relation. And many
philosophers who accept Lewis’ trivialization argument are still prepared to accept non-
trivial but inconsistent obligations and/or beliefs. Inconsistent theories, such as Bohr’s
theory of the hydrogen atom, and the early calculus, provide another application that
calls for consequence relations that don’t trivialize inconsistent sets of sentences. We’ll
examine some logics specifically designed for these applications later; for now, we will
focus on Triv and the view of consequence relations that it derives from. Our first aim
will be a general taxonomy of paraconsistent logic based on alternative approaches to
avoiding Triv.

2 Motives for Paraconsistency

Many philosophers follow Lewis, and respond to Triv by accepting and defending it. One
of the principal arguments in favour of Triv is to say that Triv is just classical logic’s
way of telling you to get yourself a new set of premises. If your premises are unsatisfi-
able or inconsistent, then they cannot all be true, and you cannot accept them all
without at least implicitly contradiction yourself. But if you know that you are reason-
ing from a starting point that already contains an error, you should clear that error up,
not compound it by drawing further conclusions from your already erroneous
premises.

However, as many have pointed out, eliminating inconsistency from our premises is
easier said than done. There is a clear technical sense in which we can say that elimi-
nating inconsistency is difficult. Of course, before we can even try to eliminate an
inconsistency from our premises, we must find the inconsistency. But the consistency
of a set of sentences is not decidable, that is there is no procedure which will show
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whether or not an arbitrary set of sentences in a first-order language is consistent.3 So
inconsistencies may lie hidden in our set of accepted claims.

More importantly, there may be strong practical reasons for not eliminating an
inconsistency, even when we can see that one is present. For example, consider Bohr’s
model of the hydrogen atom. While Bohr used classical electrodynamics to model the
radiation the atom absorbs and emits, he also allowed the electron to orbit the nucleus
in a ‘stationary state’ without emitting any radiation and without the radiation it emits
in shifting between stationary states having a frequency related to the frequency of the
electron’s periodic motion around the nucleus. But classical electrodynamics requires
that all accelerated charges radiate, and that the radiation emitted by an accelerated
charge have a frequency related to the frequency of the accelerated motion. Bohr’s
model was clearly inconsistent – but these inconsistent features were indispensable to
capturing the phenomena Bohr was trying to understand. The upshot was an extended
period in which our best physical theories were clearly inconsistent. A similar situation
exists today, since our best theory of the structure of space–time, Einstein’s general
theory of relativity, is inconsistent with our quantum-mechanical view of micro-
physics.

Of course the importance of Triv depends on what we take to be the aim of logic,
and in particular that of consequence relations. One influential view is that conse-
quence relations are models of inference. By inference, we mean the process of adding
new sentences to those we have already accepted by reasoning (rather than by obser-
vation). But it’s clear that we would never accept every sentence. So if we ever accept
inconsistent premises as a starting point for inference, we must use a paraconsistent
logic in our inferences. Of course a defender of Lewis’ position might argue that we
never really accept inconsistent premises. But this seems untenable. After all, we are
finite thinkers who do not always see the consequences of everything we accept. In 
particular, as we saw above, we may well not know our premises are inconsistent.

However, the view that consequence relations aim to model inference is hard to
defend. First, as Gilbert Harman has argued, inference (in the sense of reasoning-driven
change of belief) does not always involve adding to our set of accepted sentences.
Sometimes, when we discover that some new sentence follows from the sentences 
we have already accepted, our response is to reject one or more of our premises 
rather than accept the new sentence. Second, real inference is constrained in ways that
logical consequence relations are not. Many inferences that are ‘logical’ in the sense
that they preserve truth and consistency are nevertheless a pointless waste of time for
anyone to carry out. For example, disjoining a sentence with itself, and conjoining a
sentence to itself, are perfectly correct from a merely logical point of view. But it would
be ridiculous to waste our time idly inferring such consequences of the sentences we
accept.

This leads to an alternative take on what the role of logic is. Inference is a highly
pragmatic process involving both logical considerations and practical constraints of
salience, along with rich evaluations of how best to respond both to our observations
and to the consequences of what we have already accepted. So the role of logical 
consequence relations is clearly not to tell us what we may or should infer from the 
sentences we accept. But consequence relations can still tell us what is involved in
accepting those sentences, that is they can operate as closure conditions on our com-
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mitments. What I mean by this is that, in accepting a set of sentences, we can fairly be
said to be committed to the consequences of those sentences – including the conse-
quences we would never infer, whether because inferring them would be a waste of
time, or because, rather than infer them, we would reject something that we now
accept. In fact, I believe it’s because we regard our commitments as closed under logical
consequence that we are inclined to either accept sentences we find ‘follow’ logically
from our commitments, or to reject some of the commitments they follow from.

This fits both our limits and our intuitions quite well. On the one hand, it does not
assume inference is monotonic, or that a proper logic must shape its consequence rela-
tion to fit the exigencies of actual inferential practice. But on the other hand, it allows
a substantial role for logical consequences in determining the content of our commit-
ments. Without some such closure operation on commitment, our commitments would
be too closely tied to the actual sentences we were willing to utter. And the point of
assertion is not just to utter a sentence, but to express a commitment to what that 
sentence says.

This view of consequence relations provides a conclusive argument for paraconsis-
tency. If we ever need to model commitments to inconsistent (and/or unsatisfiable) sets
of sentences, then we will need a paraconsistent logic to do it. Otherwise, such com-
mitments will be trivial, and indistinguishable from each other. For example, consider

1. Leibniz’ calculus. This mathematical theory is inconsistent because it treats infini-
tesimals as both equal to zero and not equal to zero. From an addition equation in
which an infinitesimal is an addend we can infer the corresponding equation
without the infinitesimal, but division by infinitesimals is still well defined.

2. Naïve set theory. This mathematical theory is inconsistent because it claims that
there exists a set corresponding to each condition on membership we can state. As
a result, it claims that the Russell set exists, viz. the set of all sets that are not
members of themselves. But if this set is a member of itself, then by its condition
of membership, it is not a member of itself. And if it is not a member of itself, then
by its condition of membership, it is a member of itself. So it is a member of itself
if and only if it is not a member of itself, that it is an inconsistent object.

If we use classical logic to model commitment to these theories, they are equivalent
(assuming we employ the same language to present them), and commitment to either
is trivial. Avoiding triviality and distinguishing commitment to Leibniz’ calculus from
commitment to naïve set theory will require a paraconsistent logic.

In a closely connected use of logic, it is standard to call a set of sentences closed
under a consequence relation a theory. If we are to cope constructively with inconsis-
tent theories, the consequence relation they are closed under will have to be a para-
consistent one. Further applications for paraconsistent logic arise in epistemic logic,
when we aim to model inconsistent beliefs, and in deontic logic, when we aim to model
inconsistent obligations or rules. Standard modal techniques in epistemic logic repre-
sent a belief state in terms of the sentences true at all worlds at which the subject’s
beliefs are all true. Similarly, standard modal techniques in deontic logic represent oblig-
ations by appeal to the sentences true at all the worlds at which those obligations are
met, and the demands of rules in a situation by appeal to the sentences true at all (later)
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situations at which the rules have been obeyed. The result, if these worlds and situa-
tions provide classical valuations of the sentences of our language, is that beliefs, oblig-
ations, and the demands of rules are represented by classical theories. Coping with
inconsistent beliefs, obligations, and rules will require instead that we represent them
by paraconsistent theories, that is as sets of sentences closed under a paraconsistent
consequence relation.

A more radical motivation for paraconsistency can be found in the work of the
Australian dialetheists. The motives we have considered so far are to provide a coher-
ent account of how to reason from inconsistent premises, or how to describe the
content of an inconsistent theory. But the dialetheists aim at a logic that will allow that
such theories are true. In particular, the dialetheists take paradoxes such as the liar and
the paradoxes of naïve set theory at face value. That is, they view these paradoxes as
proofs that certain inconsistencies are true. Consider the liar paradox:

L: This sentence is false.

The dialetheists claim that L is both true and false. We can prove this by reductio –
suppose, for reductio, that L is true. Then what it says must be true. But it says that L is
false. Therefore, if L is true, L must be false. Now suppose for reductio that L is false. But
L says that L is false. Thus what L says is true, so L is true. Thus if L is false, then L is
true. Therefore, L is true if and only if L is false. But if we accept the (semantic) law of
excluded middle, that is that every sentence is either true or false, it follows that L must
be both.4

Whether we want to reason in a non-trivializing way from inconsistent premises, or
to model inconsistent beliefs, obligations, or theories, or to reason about an inconsis-
tent metaphysics in which the liar sentence is both true and not true (and the Russell
set both is and is not a member of itself), we will need a paraconsistent logic. Of course
the particular kind of paraconsistent logic we will choose may depend on which of
these applications we have in mind. But we will address the problem of choosing
between various paraconsistent logics below.

3 The Sources of Trivialization

The usual definition of validity says that a sentence a can be validly inferred from 
a set of sentences G when and only when a is a semantic consequence of G, that is iff
G |= a, where:

(1) G |= a iff the truth of all G’s members guarantees the truth of a.

This definition provides us with a straightforward explanation of the importance of
deductive validity in evaluating arguments. Ideally, an argument should give conclu-
sive reasons in support of its conclusion. And part of what we ask of conclusive reasons
is that if the premises (the ‘starting points’ of reasoning) all hold, then the conclusion
will be guaranteed to hold as well. (Of course ‘holding’ here is just being true.) But as
introductory logic courses point out very early on, it is difficult, if not impossible, to say
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in general when an argument in a natural language is valid. To give such a general
account of validity, we would need a theory that identifies all the various sentences of
a natural language and then tells us, in a logically revealing way, what it takes for each
sentence to be true. Only then could we give general rules for determining whether
meeting the truth conditions for an arbitrary set of sentences will guarantee that the
truth condition for some other sentence is also met. Such a theory is far beyond us.

Logic courses that seek, nevertheless, to move towards such a theory quickly turn
away from arguments expressed in English, French, Japanese, etc., to arguments
expressed using formal languages with formal semantics. Such languages provide a
formal syntax telling us what strings of symbols count as sentences, and a formal
semantics specifying the truth (or ‘satisfaction’) conditions for sentences in the lan-
guage. With these in hand, we can say clearly what it would take for a set’s members
to be true, and then use formal methods to show whether arranging things so that they
are true will guarantee a conclusion sentence is true as well.

But there is another approach to capturing the notion of a valid argument, founded
in what we regard as simple rules of good reasoning. On this approach, we are given a
set of rules to follow in reasoning with sentences. These rules are based on the syntac-
tic structure of the sentences, that is the symbols and how they are arranged in each
sentence, rather than on an account of their truth conditions. A sequence of sentences
(sometimes accompanied by other book-keeping devices) that follows the rules is called
a derivation. The rules determine what sentences we may write down where in a deriva-
tion, and when a derivation is complete. The aim of this approach is to provide a set of
simple, obviously correct steps that are collectively sufficient to capture all the conse-
quences that follow from any premise set. This approach gives rise to the following
account of a consequence relation:

(2) G � a iff a can be derived from G.

One advantage of this approach to consequence relations is that it focuses our atten-
tion on the process of reasoning, rather than on ‘meanings’ that are taken to lie behind
that process. Either way, as we will see, such consequence relations suffer from a serious
limitation. In both cases, a tacit assumption is made about the premise sets we are
thinking of – an assumption whose failure must trivialize these consequence relations.

We say that G is consistent if and only if it is impossible to derive a sentence and its
negation from G,5 and that G is satisfiable if and only if some valuation assigns a 
designated value to every sentence in G. A set is maximally consistent if it is consistent
and adding any sentence to it would render it inconsistent. Similarly, a set is maximally
satisfiable if it is satisfiable and no proper superset is satisfiable. The standard account
of consequence relations results from a certain picture of what our consequence rela-
tions (|= and �) are supposed to preserve. Crudely, |= is said to preserve truth while � pre-
serves consistency. More carefully put, |= preserves the satisfiability of all satisfiable
extensions of the premise set, and � preserves the consistency of all consistent exten-
sions, in the following senses:

(3) G |= a iff "G¢[(G¢ …G & G¢ is satisfiable) Æ G¢,a is satisfiable].
(4) G � a iff "G¢[(G¢ …G & G¢ is consistent) Æ G¢,a is consistent].6
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That is, if G¢ extends G satisfiably or consistently, then every consequence of G must 
satisfiably or consistently extend G¢. We can say that the consequence relations |= and
� beg no questions, in the sense that closing G under |= or �adds nothing to G that is
incompatible with any semantically or syntactically acceptable extensions of G. And of
course, given the soundness and completeness of our system of derivation (3) and (4)
are simply alternative definitions of the same consequence relation.

The principal point of this section can now be set out. If G is unsatisfiable (or incon-
sistent), then G has no satisfiable (consistent) extensions. You can never make a set that
is already unsatisfiable or inconsistent into a satisfiable or consistent set by adding 
sentences to it. Thus every sentence trivially ‘preserves’ the satisfiability or consistency
of all satisfiable or consistent extensions of such sets. So clauses (3) and (4) are satis-
fied for every sentence a, that is, every sentence is a consequence of an unsatisfiable or
inconsistent set. The trivialization of unsatisfiable/inconsistent sets of sentences is
deeply embedded in these standard accounts of consequence relations.

A logic is (minimally) paraconsistent iff it resists this trivialization, that is iff for some
classically unsatisfiable or inconsistent set of sentences, the closure of the set under the
logic’s consequence relation is not the set of all sentences. But there are different ways
to go about producing such a logic, rooted in different choices about what we choose
to change in (3) and (4).

4 A Natural Taxonomy for Paraconsistent Logics

For a variety of reasons, including a focus on axiomatic presentations of logical 
systems and the vivid appeal of citing non-Euclidean geometries as a precedent, Jan
Ĺukasiewicz, Jaskowski, and some other early figures saw paraconsistent logic (and
nonclassical logic in general) on analogy with non-Euclidean geometry. Certain ‘logical
laws,’ they suggested, could be treated as analogous to Euclid’s parallel postulate in
geometry, that is as characteristic of a particular kind of logic, but not essential for all
logic.7 This approach suggests a taxonomy of paraconsistent logics based on the 
classical theorems and rules that they retain, and those they give up.

In accord with this, the best known contemporary taxonomy of paraconsistent logic
focuses on the tactics by which various paraconsistent logics avoid Triv, that is, the
changes that are made to classical axioms and/or derivation rules. In Priest et al.
(1989), three principal groups of paraconsistent logic are distinguished. First,
Jaskowski’s discursive logics are grouped with Rescher and Brandom’s semantics for
truth-value gaps and gluts and Schotch and Jennings’ weakly aggregative logics, under
the heading ‘non-adjunctive’ logics (Priest et al. 1989, p. 57). These logics block the
inference from {p, ÿp} to p Ÿÿp. While classical contradictions, such as p Ÿÿp, con-
tinue to be trivial for these logics, inconsistent sets that contain no contradictions can
have non-trivial consequences. Second, the C-systems of Da Costa, among others, are
labeled the ‘positive-plus’ logics. These logics lay the blame for trivialization on the clas-
sical theory of negation. They begin with an axiomatization of the positive (negation-
free) fragment of classical logic, and then add to it a weakened account of negation,
which blocks the derivation of arbitrary conclusions from {p,ÿp}, and even from {p Ÿ
ÿp}. The final (and preferred) place in the Priest/Routley/Norman taxonomy is reserved
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for relevance-based approaches. These include the more conservative American school
of non-dialetheic relevance logic, and the relevance-based dialetheic school originat-
ing in Australia. These logics block trivialization by means of a substantial departure
from classical logic, both with regard to how they treat negation and with regard to the 
conditional.

But the taxonomy I will apply here focuses instead on the various ways in which the
classical consequence relations can be modified to avoid Triv. This strategic choice seems
to me a better basis for distinguishing various approaches to paraconsistency. After all
(as we shall see) giving a fair interpretation of the inferential tactics employed will
depend on understanding the strategic maneuvers that lie behind those tactics. And
the result is both comprehensive and finer grained. Any paraconsistent logic must
change some part(s) of (3) and (4), just as every paraconsistent logic must make some
tactical modification(s) of the axioms and rules of deduction. And the very same
change in the tactical rules can be arrived at by quite different strategies for changing
(3) and (4); a tactical taxonomy must simply pass over these differences.

The trivialization of inconsistency that arises from clauses (3) and (4) above has its
roots in three distinguishable sources:

(A) The classical accounts of satisfiability and consistency
If we propose a logic according to which (some) classically unsatisfiable/inconsistent
sets turn out to be satisfiable/consistent after all, then of course preserving this new
form of satisfiability or consistency can be the basis of a consequence relation that does
not trivialize all classically unsatisfiable or inconsistent sets of sentences. This raises a
kind of puzzle, though not a terribly deep one, regarding whether such a logic is really
paraconsistent, since it simply aims to preserve a new form of consistency, and attrib-
utes this new form of consistency to sets of sentences that classical logic regards as
inconsistent.

(B) An unsatisfiable or inconsistent set lacks the only property that the onsequence relation
seeks to preserve. As a result, there are no grounds for constraining the consequences of such
sets
Thus the fact that the consequence relation is defined in terms of preserving consis-
tency or satisfiability, rather than some other (desirable) feature of our premise set is
essential to Triv. If we chose instead to preserve some new (desirable) feature of our
premise sets, then the fact that a set lacks consistency or satisfiability need not imply
that all constraints on the consequence relation are removed.

(C) The fact that the metalinguistic ‘Æ’ holds whenever the antecedent (i.e. that G ¢ is a con-
sistent or satisfiable extension of G) is false
If we were to alter our reading of this connective, we might create room to deny that
clauses (3) and (4) hold trivially whenever G is inconsistent. This third strategy has a
relevance flavor about it, though the paraconsistent relevance logics we will consider
here all locate the problem with (3) and (4) in the classical account of consistency and
satisfiability.

The roles of A, B and C in producing Triv lead to three basic strategies for 
avoiding it:
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Strategy A: New accounts of ‘truth’ and ‘consistency’

This is the road most traveled in paraconsistent logic. Its practitioners include those
who propose a dialetheic account of truth. But they also include more conservative
figures who take the new semantic values they propose for sentences to express epis-
temic commitment, or some other more metaphysically modest status than truth, tout
court. On our taxonomy, any paraconsistent semantics that operates by non-trivially
assigning designated values to all members of some classically unsatisfiable sets of sen-
tences falls into this group. That is, this approach assumes that whenever a is not a
(semantic) consequence of G in some logic, this must be because the semantics provides
an acceptable valuation V such that for all g Œ G, V(g) Œ {v: v is designated} and V(a)
œ{v: v is designated}. Though truth is the standard example of a designated value, it’s
not necessary to interpret all, or even any, designated value as a formal theory of truth.
N. D. Belnap, for instance, reads the values of Dunn’s four-valued logic epistemically, 
as “told true,” “told false,” “told both” and “told neither.” But even when we keep 
this interpretational latitude in mind, this account of the consequence relation is very
constraining. It focuses all our attention on the assignment of values to sentences, the
distinction between designated and undesignated values, and the consequence relation
we get when G |= a is said to hold if and only if a is assigned a designated value when-
ever all the members of G are assigned designated values.

Strategy B: Preservationism

This approach has been less widely pursued. But it has, as we will see, some clear advan-
tages over the first. The general idea has been put in various ways –

Don’t make things worse. (P. K. Schotch)
Find something you like about your premises, and preserve it. (R. E. Jennings)

As we have seen, from the classical point of view, there is nothing worse than an incon-
sistent, unsatisfiable set of sentences. Classical logic aims only to preserve consistency
and satifiability; once these are lost, there is nothing left that a classical logician cares
to preserve. But there are other features of premise sets that are worth preserving. Non-
triviality is the most obvious example, but we can (and will) be more specific. Going
from a set of sentences that merely includes p and ÿp for some sentence p, to the set of
all sentences clearly does make things worse. It takes us from a set that we could use 
to represent someone’s commitments or the contents of an inconsistent theory in a
non-trivial way, to a trivial representation of the commitments or the theory. And this
suggests that we pursue precisely the constructive project that Jennings proposes.

This proposal creates a significant widening of the options before us. To propose
another slogan, it liberates us from the tyranny of designated values. That is to say,
unlike the first approach, it does not demand that we find a way to assign a designated
value to the premises of a rejected consequence while assigning a non-designated value
to the conclusion. In fact, the whole business of assigning values to sentences can be
left just as classical logic has it, while we concern ourselves with features of sets that
some inconsistent sets possess, and that are worth preserving.
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Strategy C: A new metalinguistic ‘Æ’

Classically, the ‘Æ’ in clauses (3) and (4) holds if either the antecedent is false, or the
consequent is true. But if we demand some relevant connection between the antecedent
and the consequent before declaring that conditions (3) and (4) are met, then the 
mere fact that the antecedent is false does not imply that the whole statement is true.
Oddly, to the best of my knowledge those who have worked to apply relevance logic to
these issues have all focused on the first approach to paraconsistency, rather than this
one.

But there is an explanation of this. The tradition of relevance logic has endorsed the
‘preserving designated values’ account of consequence relations, while insisting that
the consequence relation (and its object language reflection, the conditional) must
respect considerations of relevance. Thus relevance logic demands that we reject both
{p Ÿ ÿp} |= q as a consequence, and (p Ÿ ÿp) Æ q as a conditional theorem. But if we
continue to view consequences as a matter of preserving designated values, then to
reject {p Ÿ ÿp} |= q, we must be able to assign a designated value to p Ÿ ÿp while not
assigning a designated value to q. And having done so, we will obviously be able to
assign a designated value to the antecedent of our conditional, while not assigning a
designated value to the consequent. So long as we treat the consequence relation as
merely preserving designated values, there is no need to think of the corresponding
conditional as preserving something more than designated values either. So from the
perspective of traditional relevance logics, changing the metalinguistic Æ in the sort
of way required here would involve doing just what the first approach to paracon-
sistency demands, namely producing a valuation which designates all the premises
while failing to designate the conclusion.

However, a broader perspective might hold that Æ must preserve something other
than designated values. This third approach is clearly distinct from the first, and worth
pursuing independently. I recommend it to anyone interested in such preservationist
conditionals.8

5 Paraconsistent Logics

Non-adjunctive logics

S. Jaskowski proposed the first formal paraconsistent logic in 1948 (reprinted in English
in 1969). His approach was motivated by the idea of a discussion involving more than
one participant, each contributing a consistent set of assertions. If we treat the asser-
tions of each participant as ‘holding’ for the discussion, we end up with a potentially
inconsistent set of sentences representing the overall product of the discussion. If we
want a consequence relation under which we can reasonably close such sets of sen-
tences, it must be a paraconsistent one. Moreover, the consequence relation should
reject adjunction, that is the principle that p,q |= p Ÿ q. After all, the fact that someone
has contributed p to the discussion and someone has contributed q to the discussion in
no way implies that anyone has contributed p Ÿ q. Neither contributor need be in any
way committed to p Ÿ q. In fact, both contributors may regard p and q as incompatible
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with each other. Jaskowski’s main concrete proposal for a logic that would respect these
constraints is his D2.

To produce D2, Jaskowski appeals to the possibility operator of the strong modal 
logic S5. He lays his proposal out in terms of a correspondence between a discussive
logic and an underlying modal logic. For each participant in the discussion, we con-
sider the worlds satisfying all the claims they contribute to the discussion. Then we say
that ‘p’ is discussively true if and only if ‘‡p’ is true at a world to which all and only
these worlds are accessible. We say, further, that p discussively implies q if and only if
‡p Æ q is true in the underying modal logic, and (in an oddly asymmetrical definition)
p and q are discussively equivalent if and only if (‡p Æ q) Ÿ (‡q Æ ‡p) holds in the
underlying logic.

In S5, as in all standard modal logics, {‡p, ‡q} |=/ ‡(p Ÿ q). Thus in D2, the corre-
sponding discussive logic, p,q |=/ (p Ÿ q). So the rejection of adjunction is supported by
this modal reading. Of course, the simplest view9 today of how to represent a few
people’s commitments would be to have a separate accessibility relation for each indi-
vidual, such that all and only the worlds at which someone’s commitments are true are
accessible to the actual world for that individual. The result, from the point of view of
modal logic, would be a set of necessity operators, one for each individual, with the
truth condition that p is discussively true if and only if �ip is true for some �i. This
approach to discussive logic would make it clear that (assuming for now the consistency
of each individual’s contribution to the discussion) each individual’s contributions to
the discussion should be closed under adjunction (in fact, will constitute a classical
theory), even though the sum total of those contributions should not. Retaining some
aggregative force here (particularly just how much we can or should retain) is an issue
we will return to when we discuss the weakly aggregative logics of Schotch and
Jennings.

This debate over the best means to arrive at a discussive logic aside, I’ll finish here
by making two points. First, Jaskowski’s systems clearly fall within our first class of
paraconsistent logics. p is ‘true’ in this logic if and only if ‘‡p’ true by the standards of
the corresponding modal logic. The consequences of a set of sentences, G, are precisely
those sentences a such that whenever ‡g is true for each g in G, ‡a will also be true in
the corresponding modal logic. Symbolically,

G |=d a iff ‡(G) |=L‡a, where |=L is the modal logic in question.

So preservation of truth for the admissible evaluations is the criterion of consequence
for discussive logics. Second, the consequence relation here is the classical singleton
consequence relation. A holds discussively if and only if some B such that {B} has A
as a classical consequence has been added to the discussion by some participant. And
the (propositional) theorems of the logic are simply the classical tautologies.

A different, very straightforward approach to non-adjunctive logic is due to Rescher
and Brandom (1980). Beginning with the set of classical valuations, they propose two
semantic operations: superposition and schematization. Applying superposition to two
valuations produces a valuation assigning t to every sentence assigned t by either 
of the input valuations. Applying schematization produces a valuation assigning t 
to only those sentences assigned t by both of the input valuations. The full set of
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Rescher–Brandom valuations results from closing the set of classical valuations under
superposition and schematization.

The upshot is very similar to Jaskowski’s D2: a logic whose theorems are just the
classical tautologies, and whose consequence relation (as defined over the class of all
such valuations) is the classical singleton consequence relation.

C-systems and weakened negation

Newton da Costa proposed his C-systems in the 1960s; a semantics for these logics did
not emerge until later. But we will focus on the semantics here, since they are quite
intuitive, and make it clear that da Costa’s approach belongs solidly in the first category
of our taxonomy. A da Costa evaluation maps every formula to t (the designated or
‘true’ value) or f, given an assignment to the sentence letters, as follows:

1. v(A Ÿ B) = t if and only if v(A) = t and v(q) = t
2. v(A ⁄ B) = t if and only if v(A) = t or v(B) = t
3. v(~A) = t if v(A) = f
4. v(A) = t if v(~~A) = t

This class of valuations gives us the non-implicational fragment of the weakest 
C-system, Cw. The C-systems are another example of our first class of paraconsistent
logics: G |=Cwa if and only if every valuation assigning 1 to all members of G also assigns
1 to a. As is clear from the clauses for valuations, da Costa’s logic is classical except in
terms of how it treats the negation ‘~’. But (in part as an inevitable result of this choice)
the negation is very nonclassical. In fact, Priest et al. (1989) argue that it is not a nega-
tion at all, but rather a “sub-contrary forming functor,” that is, a functor f such that
while (p Ÿ fp) can be true, (p ⁄ fp) must be true. They point out as well that many very
basic consequences involving classical negation fail for this negation. And while things
get (for those wffs that behave ‘consistently’) more classical in the stronger C-systems,
this does not help with the basic difficulties described by Priest, Routley, and Norman.

Further details of the C-systems and other systems that have emerged in the research
programs of da Costa and his colleagues are left aside here for want of space.10 The
main point I want to emphasize for now is that the issue of how to tell a real negation
from a pseudo-negation is a persistent problem for paraconsistent logic. It is by no
means an easy question to answer. The initial assumption tends to be that classical
negation is the paradigm case of a ‘real’ negation. But while this may represent the
position a paraconsistent logician must respond to when arguing with critics of para-
consistency, it is unfair to begin by assuming that all the features of the classical nega-
tion are features that a good negation should have. Paraconsistent logic must insist that
some, at least, of what classical logic does with negation is mistaken, at least in some
applications.

Relevance logics

These logics have their roots in the program of relevance logic pioneered by Ackermann,
and then developed and greatly extended by Anderson, Belnap, and their students. In
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these logics a tight correspondence is assumed to hold between conditional sentences
and the consequence relation. But both are taken to be subject to strong constraints of
relevance. In particular, a variable-sharing constraint is urged. {p, ÿp}|= q is rejected on
the grounds that there is no relevant connection of meaning between the premise set
and the conclusion. Such a connection (at the propositional level) would demand at least
that some variable appearing in the conclusion also appear in the premises. For reasons
of space, we’ll confine ourselves to examining three consequence relations that have
their roots in the relevance program, avoiding the issue of conditional sentences whose
logic and semantics would add quite a bit of complexity to the picture.

LP, the logic of paradox, is dramatically different from the C-systems in two respects.
First, its semantics allows for sentences to be assigned both true and false at one and
the same time. The values assigned to sentences in LP can be described as the nonempty
subsets of the set {true, false}. Thus an assignment will assign one of the values {t},
{f}, or {t,f} to each sentence. We begin with an assignment of values to the sentence
letters, and then extend it to the rest of the sentences following the clauses:11

1. (a) t Œ v(ÿA) iff f Œ v(A) (b) f Œ v(ÿA) iff t Œ v(A)
2. (a) t Œ v(A Ÿ B) iff t Œ v(A)) (b) f Œ v(A Ÿ B) iff f Œ v(A) or f Œ v(B)

and t Œ v(B)
3. (a) t Œ v(A ⁄ B) iff t Œ v(A) (b) f Œ v(A ⁄ B) iff f Œ v(A) and f Œ v(B)

or t Œ v(B)

The consequence relation is again defined in the standard way

G |=LP a iff every such valuation making t Œ v(g) for all g Œ G also makes t Œ v(a).

So once again we have an example of our first class of paraconsistent logics. The upshot
here is quite clean and straightforward. The theorems (i.e. the consequences of the null
set) are just the classical tautologies. And unlike the C-systems, the negation here looks
very much like classical negation. The usual equivalences all hold:

{ÿA Ÿ ÿB} |=LP ÿ (A ⁄ B); {ÿ(A ⁄ B)} |=LP ÿ A Ÿ ÿB;
{ÿA ⁄ ÿB} |=LP ÿ (A Ÿ B); {ÿ(A Ÿ B)} |=LP ÿ A ⁄ ÿB
{A} |=LP ÿÿ A; {ÿÿA)} |=LP A

Transitivity, as well as introduction and elimination inferences for Ÿ and ⁄ are all
retained.

The main classical principle that fails here (thereby preventing the trivialization of
inconsistent premise sets) is disjunctive syllogism:

A, (ÿA ⁄ B) |=/ B

The failure of this principle is easy to see. If v(A) = {t,f}, while v(B) = f, then A has a
designated value, as does (ÿA ⁄ B), but B does not.

Having introduced truth-value ‘gluts’ here, that is sentences assigned both true and
false, it might well seem natural to consider the possibility of truth-value gaps, that is
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sentences assigned neither true nor false. But in fact we can achieve the same effect
with gluts alone, if we recognize an important fact about them: Sentences that are both
true and false are both correctly assertable and correctly deniable.

Before we can apply this recognition to arrive at a different consequence relation in
the relevance family, we will have to take a short detour back into classical logic, to bring
clearly to mind some fundamental symmetries that apply there, and that have been lost
in the transition to LP. Just as (for classical logic) ‘truth’ is the value that sustains the
assertion of a sentence, that is that makes its assertion correct, ‘false’ is the value that
sustains the denial of a sentence, that is that makes it correct to deny that sentence.

The notion that there are two distinct attitudes we can take with regard to declara-
tive statements, assertion and denial, has often been rejected in favor of the view that
we can make do with assertion alone. And in the context of classical logic there seems
to be little reason to object to this. The position I take by denying that I am hungry
seems equivalent in every important respect to the one I take by asserting that I am not
hungry. However, a certain amount of expressive power is lost when we dispense with
denial as a separate attitude, and with it we lose the capacity to express an important
constraint on the consequence relation.

So far we have represented the consequence relation as a relation between sets of
sentences on the left and individual sentences on the right. This is pretty standard prac-
tice, but it has some drawbacks. It makes the consequence relation something asym-
metrical from the outset. But there are important and illuminating symmetries hidden
behind this asymmetrical veil. We can reveal them by adopting a picture of the conse-
quence relation that puts sets of sentences on both sides. We will say that G |=c D iff
every classical valuation satisfying all of G’s members also satisfies some member of D.
But now we can also say, equivalently, that this holds iff every classical valuation
making all of D’s members false also makes some member of G false.

If we have the notion of denial in hand, as well as the notion of assertion, then we
can describe the condition under which G |=cD holds in a different, but equivalent way.
We can require that if every member of D is correctly denied in some valuation, then
some member of G must also be correctly denied on that valuation. Of course, this is
just the contrapositive of the truth-preserving account (i.e. correct assertability) of
validity. However, preserving correct deniability from the right side of |= to the left, as
well as truth from the left to the right, can impose a real additional constraint on the
consequence relation when our logic is not classical.

In particular, consider LP. What values shall we preserve from right to left, given that
we preserve {t,f} and {t} from left to right? If the value {t,f} (often called ‘both’) is truly
paradoxical,12 one way to understand what we mean by that is to say that it sustains
both the correctness of asserting a sentence that has it, and the correctness of denying
that sentence. A sentence that is true and false both is both correctly assertable and
correctly deniable. LP is the logic we get when we take the first point (that such sen-
tences are correctly assertable) and ignore the second. As a result, LP preserves only
{f} from right to left. But what we really should demand is that LP preserve both {f}
and {t,f} from right to left:

G |=LP* D iff every LP valuation making t Œ v(g) for all g Œ G also makes t Œ v(d) for
some d Œ D,
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and every LP valuation making f Œ v(d) for all d Œ D also makes f Œ v(g) for
some g Œ G.

Such a logic preserves both LP-correct assertability from left to right, and LP-correct
deniability from right to left.

What is SLP, this symmetrical version of the LP logic? The answer is, it’s a step along
the way to a logic familiar to students of relevance logic, namely first degree entailment
(FDE).13 The symmetrical form of LP behaves just like FDE except when the premise 
set cannot be consistently asserted and the conclusion set cannot be consistently denied.
In these doubly (classically) trivial cases, this symmetrical version of LP trivializes just
as classical logic does. One further step is required to arrive at FDE. We must coordi-
nate our use of LP assignments to render the premises consistently assertable and the
conclusions consistently deniable. If and only if there is an LP valuation ‘satisfying’ the
premise set and an LP valuation ‘falsifying’ the conclusion set such that the two agree
on their classical sub-valuations, and don’t overlap on the sentence letters assigned
‘both,’ then the FDE consequence relation fails to hold between the premises and the
conclusion.

The main point that I want to make about SLP and FDE here is that they very simply
restore some fundamental symmetries present in classical logic, and given up in LP. For
instance, no sentence is trivial on the left in LP, that is, there is no sentence A such that
{A}|=LP D, for all sets D. But every sentence that is trivial on the right in classical logic
is also trivial on the right in LP. These right-trivial sentences are, of course, the classi-
cal tautologies. That is, A is a classical tautology iff G |=LP A, for all G. But in classical
logic there is a perfect symmetry (duality) between the sentences that are trivial on the
left and the sentences that are trivial on the right. For instance, (p Ÿ ÿp) is trivial on
the left, and (p ⁄ ÿp) is trivial on the right. LP forces us to surrender this symmetry;
SLP and FDE restore it.

One final point is in order here. It is possible to get exactly the same consequence
relations we have arrived at with the help of LP valuations while retaining a fully clas-
sical semantics. The trick is to change what the consequence relation is required to pre-
serve. Rather than preserve truth from left to right (and falsehood from right to left),
we can preserve a class of projections capable of producing a consistent image of our
inconsistent set. We omit the details for reasons of space – but the general lesson is well
worth drawing: one and the same consequence relation can be underwritten by quite
different semantics. As a result, a paraconsistent consequence relation that is arrived
at by one sort of change to our clauses (3) and (4) can (at least sometimes) also be
achieved by a different sort of change.

Adaptive logics

Diderik Batens, inspired initially by L. Apostel, is the central figure in a research
program working on a range of paraconsistent logics at the University of Ghent.
Together with students and colleagues he has focused on a class of logics which he calls
adaptive logics. The motives that lie behind these logics are a good fit with the preser-
vationist approach to paraconsistent logic: Batens and his co-workers have been con-
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cerned with not making things worse when inconsistency rears its ugly head. However,
the means by which they achieve these goals still focus, in the conventional way, on the
preservation of designated values. Thus Batens says,

An adaptive logic La localizes the abnormal properties of G, safeguards the theory from
triviality by preventing specific rules of L (the initial, non-paraconsistent logic) from being
applied to abnormal consequences of G, but behaves exactly like L for all other conse-
quences of G . . . The (dynamic) proof theory of adaptive logics is based on the idea that a
formula is considered to behave normally ‘unless and until proved otherwise’. The seman-
tics is better understood by another metaphor: La interprets G by eliminating its unneces-
sarily inconsistent L-models. For ACLuN2, e.g., the La-semantic consequences of G are the
formulas true in the Lf-models of G that are minimally abnormal (not more inconsistent
than required to make G true).14

Both the idea that we should not “make things worse,” as Peter Schotch urges, and the
idea that to constrain the consequences of a set of sentences we must find a way to
make the set ‘true’ in some sense, are in the air here. As a result, these systems con-
stitute a borderline case for this taxonomy. For reasons of space we will focus on the
propositional fragment PI of the base paraconsistent logic, CLuN, and then explain
briefly how the adaptive logic based on CLuN works.

PI includes sentence letters, and the usual truth-functional connectives. Their treat-
ment is modified, however, from the familiar classical one, by the explicit surrender of
the consistency assumption:

If, on some admissible valuation v, v(A) = t, then v(ÿA) = f.

This assumption is avoided by the simple expedient of making an assignment to the
negations (the formulae that have ‘ÿ’ as their main connective) a separate part of pro-
ducing a valuation:

So we take as the base of our evaluation both an assignment vb to the sentence letters
and an assigment vb to the negations:

S  Æ t,f
N Æ t,f

The valuation v that results from this assignment is arrived at by the following rules

v(S) = t iff vb(S) = t where S is a sentence letter
v(ÿA) = t iff v(A) = f or vb(ÿA) = t
v(A Ÿ B) = t iff v(A) = t and v(B) = t
v(A ⁄ B) = t iff v(A) = t or v(B) = t

This makes the main features of how this logic copes with inconsistency pretty clear.
Note in particular that the effect of assigning values directly to the negations is only to
make some negations true which would otherwise be false. Whenever a negation would
be true given the initial assignment to the sentence letters alone, it remains true after

ON PARACONSISTENCY

643



the effect of the vb assignment to the negations is factored in, since either the usual 
truth condition for ‘ÿ’ or setting vb(ÿA) = t is sufficient to make v(ÿA) = t. So we can
arbitrarily force any negation we like to receive the value true simply by assigning it
true in vb, but we cannot arbitrarily force negations to be false. Any negation whose
truth follows from the classical components of the PI valuation will be true in the PI
valuation. But in general many other negations will also be true.

It is dead simple, of course, to construct valuations that make an inconsistent set
such as {p,ÿp} true, while avoiding trivialization for some sets of sentences. The result-
ing logic is clearly paraconsistent.

PI and CLuN are clearly paraconsistent logics in the traditional, ‘truth’-preserving
mode. But the adaptive logics based on CLuN have something of the spirit of preserva-
tionism about them. A central idea for the propositional adaptive logic is the following
theorem:

�c A iff, for some C1, . . . Cn (n ≥ 0), �PI ((C1 Ÿ ÿC1) ⁄ . . . ⁄ (Cn Ÿ ÿCn) ⁄ A

That is, if A is a theorem of classical logic, then A will hold for PI as well, unless some
of the Ci behave inconsistently. This theorem suggests a plan for the adaptive logic.15 If
we begin with the assumption that our premises are consistent, we can prove anything
that classical logic allows us to prove. Suppose that we have proved A from our premises,
using classical logic. Then by the theorem, there is some set {Ci} of sentences whose
consistent behavior is sufficient to assure us that A really does follow (in the PI sense)
from our premises. But of course the assumption that the members of {Ci} do behave
consistently may turn out to be wrong. So the proof is tentative. It depends on the con-
sistent behavior of the {Ci} associated with A, which are kept track of at each step of
the proof. If we should find, in the course of proving further consequences of our
premises, that some Ci behaves inconsistently, we would have to withdraw our earlier
proof of A. So proofs within an adaptive logic can require the deletion of earlier lines
from the proof, based on what is shown later in the proof.

The result is a system of proof that allows us to derive the consequences that follow
from our premises in the minimally inconsistent PI models of our premises. So these
adaptive logics do involve a modification of the notion of a consequence. They make
consequences turn on preserving something other than satisfiability. More inconsistent
sets of sentences are, after all, still satisfiable, but we confine our attention to the 
minimally inconsistent sub-class of the models satisfying our premises, and define as a
consequence what holds in these. From the point of view of our semantic clause (3),
we have gone from requiring that a consequence a preserve the satisfiability of every
satisfiable extension of our premises G to requiring that a preserve the minimally-
inconsistent satisfiability of every minimally-inconsistent satisfiable extension of G.
This is clearly a preservationist maneuver.

Weakly aggregative logics

With the work of P. K. Schotch and R. E. Jennings we finally arrive at a logic that is
clearly and self-consciously preservationist. Rather than find a way of making premises
true and conclusions false in some valuation in order to defeat an undesirable conse-
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quence, Schotch and Jennings identify a set of desirable properties that some inconsis-
tent sets have, and propose a logic that preserves these properties.

To begin, we need the notion of a level, a generalization of consistency that our 
consequence relation will be required to preserve. The level of a set of formulae, G, is
the minimum number, n, such that G can be partitioned into n consistent subsets. A
formula a is a level preserving consequence (LPC) of G (G forces a, or, more formally,
G �LPC a), iff a is a classical consequence of some cell in every partition of G amongst
n sets. Three important consequences of this are immediately apparent. First, any set
not including a contradiction will have some well-defined level (possibly an infinite
level, if G is an infinite set). Second, no set with a well-defined level will have any con-
tradiction as an LPC. Third, no set including a contradiction has a well-defined level,
since no partition of such a set will have only consistent cells. We assign the ‘level’ •
to such sets. Since such sets lack the property (having a well-defined level) that these
logics aim to preserve, their consequences are trivial for this logic.

This non-adjunctive system goes beyond the completely non-adjunctive approaches
of Jaskowski, and of Brandom and Rescher, allowing a weakened form of aggregation.16

Given a level of 2, a set closed under LPC will include the disjunction of pairwise con-
junctions of all triples in the set; given a level of 3, the set will include the disjunction
of the pairwise conjunctions of all quadruples in the set, and so on. These disjunctions
of pairwise conjunctions capture fully the adjunctive strength of forcing: Where 
n is the level of G, closing under the classical consequences of singleton subsets of G
together with the rule 2/n + 1, which allows us to infer from any n + 1 formulae the
disjunction of all their pairwise conjunctions, is consistent and complete with respect
to forcing.17

Unlike the relevant systems18 Schotch and Jenning’s non-adjunctive logic agrees
with some important intuitions concerning inconsistent input and conjunctions: if a
set of claims including ‘p,’ ‘~p’ is closed under forcing – the Schotch/Jennings inference
relation – ~(p Ÿ ~p) is forced but (p Ÿ ~p) is not. So a computer using forcing would not
regard itself as having been told the conjunction was true in such a case. This seems
the right answer for an appropriately conservative inference engine to give.

Priest and Sylvan have objected to this, claiming that the computer has indeed been
told the conjunction is true by implication.19 Priest and Sylvan’s argument assumes
that the fact that conjunction just is the connective which gives a truth when the two
things it joins are true implies that if adjunction fails as a rule of inference, then the
connective it fails for can’t be conjunction. But a crucial assumption about inference
underlies this objection, viz. that truth-preservation is sufficient for the correctness of
an inference. If correctness requires more than just truth preservation, the failure of
{A,B} to imply (A Ÿ B) does not show the logic has a non-standard truth condition for
‘Ÿ.’ And this is precisely the case for LPC. LPC requires preservation of level as well as
truth. Adjunction is truth preserving, on Schotch and Jennings’ view – it fails to be a
rule of the system only because it fails to preserve level.

An interesting pragmatic element in inference emerges for non-adjunctive logics.
Some individual conjunction-introductions are guaranteed to be level-preserving, but
allowing conjunction-introduction in general leads to explosion. We must decide which
conjunctions to adopt (if any). Our reasons for choosing some rather than others 
will normally derive from our epistemic aims. These often make some conjunctions
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indispensable; but they usually leave us also with a wide field of potentially interesting
or desirable conjunctions whose value remains to be determined. On the question of
which non-level increasing conjunctions to adopt and which to avoid, the logic is silent:
adding them is just like extending any classical theory by adding further sentences con-
sistent with, but not implied by, the theory. Which non-level increasing conjunctions
we will accept depends on which are valuable – which seem required for effective 
application of the theory, which promise to produce interesting predictions without
absurdity, and so on.

With regard to applications, this feature of LPC suits Bohr’s theory of the hydrogen
atom very nicely. The development of old quantum theory (OQT) involved a gradual
clarification of which classical results can be applied in the quantum domain, and
when. These results emerged from a process of investigating which classical results 
can be conjoined with quantum principles to good effect, in effect a choice of level-
preserving conjunctions from among many candidates. Thus one prediction a forcing-
based model makes concerning OQT is confirmed by the history of OQT: the addition
of conjunctions of classical principles with quantum principles to the theory is amplia-
tive, and requires independent theoretical and/or empirical justification. Conjunction
introduction is not a trivial inference, but a substantial step that carries both risks and
potential rewards.

6 Current Issues

Paraconsistent logic remains controversial. Many logicians still defend Triv and reject
the entire field of paraconsistency as misguided. And even within the paraconsistent
camp, the different approaches involve very different views of negation, consequence
relations, and the nature of logic in general. As a result, proponents of one approach
are often very critical of others. The breadth and range of positions in this field, only
briefly and partially outlined here, makes giving a simultaneously brief and fair
summary of the state of the field an impossible task. In this last section I want to briefly
touch on two issues in paraconsistency that are at the center of my present work, and
indicate how I hope, in further work, to provide some insight into them. The positions
I will be sketching here are my own, and others will have their own responses (and, no
doubt, trenchant criticisms of mine). So at this point I surrender all pretence of giving
a balanced discussion.

Negation

As we have seen already, debates about negation, and especially about how to tell
whether an operator in some logic is really a negation, have played a central role in the
development of paraconsistent logic. On this issue I have a modest proposal: negation
is denial in the object language. This is, I think, at least as credible a position as the stan-
dard relevance view that the object language conditional must express the (metalin-
guistic) consequence relation. On this view, a satisfactory paraconsistent logic needs 
an extended understanding of deniability that corresponds to the extended notion of
assertability proposed by the logic. Only then can the symmetries between assertion 
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and denial, negated and un-negated sentences, and the duality of Ÿ and ⁄ be preserved.
This leads us to a requirement on a satisfactory paraconsistent logic that some present
systems meet and some fail: contraposition for the consequence relation:

G � D iff ÿ(D)� ÿ(G) (�/ÿ)
(ÿ(D) is the set of sentences that results by negating each element of D.)

The idea here is that when we put a set of sentences in premise position, we are treat-
ing them as in some sense assertable. We take G � D to say that if G is, in that sense,
assertable, then so is some member of D. More explicitly, for every assertable extension
of G, some element of D will be an assertable extension of the extension. So commit-
ting ourselves to D (in the sense of committing ourselves to accepting some member of
D) begs no questions. It does not in any way extend the commitment we have already
made in accepting G. But symmetrically, G should preserve the deniability of D, that is
some member of G must be an acceptably deniable extension of every acceptably deni-
able extension of D. So if ‘ÿ’ really is the object language ‘image’ of denial, then from
the right-to-left preservation of deniability must follow the left-to-right preservation of
the assertability of the negations.

Interpretation

B. H. Slater has offered a Quinean objection to paraconsistent logic.20 His claim is that
if, in some logic, {A, ÿA} �/ B, this is just evidence (and well-nigh conclusive evidence)
that ‘ÿ’ just isn’t negation. In reply to this, I have pointed out that some preservation-
ist logics, such as Schotch and Jennings’ forcing, retain a fully classical semantics. They
obtain {A, ÿA} �/ B not by making A and ÿA somehow ‘satisfiable’ or ‘consistent’, but
by finding another desirable property that {A,ÿA} has, and that {A,ÿA,B} lacks. But,
taking this reply a step further, I have also shown that LP can be given a preservation-
ist semantics based on using ambiguity to project consistent images of inconsistent sets
of sentences. Details aside, the first lesson I think we should draw from this is that we
should keep a healthy distance between our interest in various paraconsistent conse-
quence relations and the particular semantics and definitions of consequence that we
have used to arrive at them. The two are, in general, separable.

This also raises a more general question: can all non-preservationist paraconsistent
logics be reinterpreted in preservationist terms? At least in some cases, such 
reinterpretations seem to be illuminating. And they do have the rhetorical advantage,
when they begin from classical semantics, of saying nothing about the premise sets and
the new consequence relation that classical logicians are inclined to deny. Preserving
something other than satisfiability or consistency allows us not to argue with each
other about what satisfiability or consistency really mean. Of course, this is not meant
to cut off such discussions – as we remarked above, there is no reason to assume the
classical account of these things must be the right one. But if our concern is to arrive
at consequence relations for paraconsistent applications such as non-trivial incon-
sistent theories, we may do well to demonstrate the tenability and usefulness of such
relations within a classical framework before (or even rather than) taking on the job of
replacing it.
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Notes

1 Strictly speaking, this should be set out more generally:

G � a, G � ÿa G |= a, G |= ÿa
G � b G |= b

2 Woods (1975: 165–7).
3 We can show that a set is inconsistent, by showing that some contradiction follows from it.

And we can show that a set is consistent by presenting a model of it. But the process of
finding a model of a set of sentences is not something we can go through systematically in
such a way as to be sure that we will find a model at some finite point along the way if one
is to be found. And when we fail to show a contradiction follows from some set of premises,
our failure does not show that no contradiction follows.

4 Of course many have suggested that we reject excluded middle to avoid this unwelcome and
radical conclusion. For example, we can add a ‘gap’ value to our semantics, which is neither
true nor false, and assign ‘gap’ as the value of L. But as Graham Priest has often argued,
this is not enough to resolve the problem. We can replace L with L¢, the ‘strengthened liar’:

L¢: This sentence is not true.

Now we can argue much as we did before. Suppose L¢ is true. Then what it says must be
true, so L¢ is not true. Suppose L is not true. But this is precisely what L¢ says of itself. So
what L¢ says is true, so L¢ is true. Thus L¢ is true if and only if L¢ is not true. But now adding
the value ‘gap’ (or some other, non-true value) to the usual values true and false is no help.
See Priest (1995).

5 In fact, there are several notions of consistency, all closely related. A set that does not include
both a sentence and its negation is called negation consistent; any set that doesn’t include
every sentence in the language is said to be absolutely consistent. In classical logic, the
closure under deduction of any negation inconsistent set is the set of all sentences, i.e.
absolutely inconsistent. In fact, the closure under deduction of any set whose closure under
deduction is negation inconsistent is also absolutely inconsistent. The notion of consistency
I am using here is that of any set whose closure under deduction is negation consistent. If
we were sticking with classical logic, this would be equivalent to speaking of any set whose
closure under deduction is not absolutely inconsistent.

6 Here we’re using the notational convention that G, a = G » {a}. We could present (3) and
(4) in slightly different form:

(3¢) G |= a iff "G¢[(G¢ is a maximal satisfiable extension of G) Æ a ŒG¢].
(4¢) G � a iff "G¢[(G¢ is a maximal consistent extension of G) Æ a Œ G¢].

7 See Arruda (1989) for further details.
8 See Jennings and Johnston (1983), and D. Sarenac (2000) for work on such conditionals at

the object-language level.
9 Based on the simplest approaches to epistemic logic.

10 See Arruda (1989) for more information on these systems and their applications.
11 See Kleene (1952) for an equivalent set of valuations, though Kleene does not treat the third

(“paradoxical”) value as designated.
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12 See Priest (1995).
13 See Dunn (1986).
14 Batens (1998: 447).
15 For reasons of space the details must go unexplored here; see Batens (1998).
16 See Kyburg (1970).
17 See Schotch and Jennings (1989); Apostoli and Brown (1995).
18 See Belnap (1977) and Priest (1988).
19 Priest et al. (1989: 158).
20 Slater (1995).
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40 

Logicians Setting Together Contradictories: 
A Perspective on Relevance, Paraconsistency,

and Dialetheism

G R A H A M P R I E S T

You shall never be good logician, that would set together two contradictories: for that, the
schoolmen say, God cannot do.

(Thomas Cranmer, cited in the entry for “contradictory” in Little et al., 1973)

1 Introduction

There were doubtlessly many notable features of philosophy in the twentieth century.
Perhaps we will have to wait for the perspective afforded by the passage of time to see
clearly what they all were. But I think it true to say that one very notable feature 
is already visible. This is the final breaking of the taboo against inconsistency – the
“superstitious dread and veneration in face of contradiction” as Wittgenstein put it
(1978: 122). In Western philosophy, since Aristotle onwards, as the quotation from
Archbishop Cranmer illustrates, inconsistency has been the ultimate ‘no-no.’ Accounts
of truth, validity, rationality, have all taken it for granted. True, a few enterprising philo-
sophical spirits, notably Hegel, have challenged the orthodoxy. But this was secure
whilst its heartland in formal logic lay unchallenged. It is precisely this heartland that
was challenged in the twentieth century, and which allowed the unthinkable to become
thinkable. The challenge was laid down by paraconsistent formal logics. These logics
allow for a discriminating handling of inconsistencies, not the crude ‘contradictions
entail everything’ beloved by the latter-day friends of consistency.

This chapter is not about paraconsistent logics as such. There are many places where
readers may go to find out technical details of these logics if they are not already famil-
iar with them. The aim here is to provide a perspective on issues in the philosophy of
logic that arise in connection with paraconsistency. This terrain is itself large, though.
There is no hope of drawing a comprehensive map – even one of small scale. Rather,
readers should regard this essay as a geographical sampler which will (with a bit of
luck) encourage them to go and explore the terrain for themselves. Suggestions for
further reading are scattered through the chapter at appropriate places. (Short
accounts of paraconsistent logics can be found in the articles on paraconsistency in
Craig (1999) and Zalta (1999). A much more thorough account can be found in Priest



(2000a), which may be consulted for nearly all the formal details alluded to in this
chapter. Another good source of papers on paraconsistency in general is Priest et al.
(1989).)

The perspective of the terrain that I will offer here turns around the notion of worlds,
actual, possible, and impossible. This will put some order into affairs concerning para-
consistency and two closely connected, but distinct, notions: relevance and dialethe-
ism. I cannot claim that this perspective is a neutral one. On the other hand, I hope that
it is a bit more engaging than an account of the kind ‘x says this, and y says that.’

Before we start with matters of more substance, let me define some of the crucial
notions, so that we know what we are taking about. A propositional logic is relevant if,
whenever A Æ B is a logical truth, A and B share a propositional parameter, where Æ
is the conditional operator. A consequence relation, �, is paraconsistent if the inference
A, ÿA � B (for all A and B) fails. Dialetheias are truths of the form A Ÿ ÿA; and dialethe-
ism is the view that there are such things. Let us start with the first of these notions,
relevance.

2 Relevant Logic

The thought that for a conditional, A Æ B (‘if A then B’), to be true there must be some
connection between antecedent and consequent is a very natural one. That is, the
antecedent must, in some sense, be relevant to the consequent. The condition is not, of
course, satisfied by the material conditionals of classical or intuitionist logic; nor does
it appear to be satisfied by the strict conditionals of standard modal logics. In particu-
lar, let L be any logical falsehood; then the conditional L Æ B is both materially and
strictly valid. Yet, for an arbitrary B, there would seem to be no connection between
antecedent and consequent.

Providing an adequate analysis of the notion of the connection is another matter.
Even for propositional logics, this is not straightforward. One well-known approach
insists that for a conditional to be really logically valid it must be logically valid in a
truth-preservational sense, and must also satisfy some extra condition of relevance.
Thus, we might suggest, A Æ B is logically valid iff A Æ B is a classical tautology (that
is, in every interpretation in which A is true, so is B) and, further, R(A, B). Here, R(A,
B) is some suitable relationship; for example, that A and B share a propositional para-
meter. (For explorations of this idea, see the essays in Lehrer and Pollock 1979.)

The notion of conditionality that arises from this approach is a very tractable one,
but the approach raises an obvious question. If a conditional is truth-preserving, why
is it necessary to add some extra condition as well? After all, the whole point of a con-
ditional is that its truth provides a guarantee that we can proceed from antecedent to
consequent at will. What more than truth-preservation do you need?

A very different approach to relevant logic, that normally associated with the world-
semantics of standard relevant logics, regards relevance not as something that should
be tacked on to truth-preservation, but as something that falls out of a more adequate
notion of truth-preservation. What is wrong with the conditional L Æ B, for arbitrary
B, is precisely that there are situations in which L holds, but where B does not. For
example, let L be the claim that the Peano Arithmetic is complete. This is a logical 
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falsehood. Let B be the claim that Gödel proved that Peano Arithmetic is incomplete.
Then the conditional L Æ B is false precisely because there are situations in which
Peano Arithmetic is complete and (because of this, indeed) Gödel did not prove its
incompleteness.

Situations like this are not logically possible situations. They are logically impossi-
ble: logic (and arithmetic) must be different at these worlds. The notion of a physically
impossible situation will not raise an eyebrow in these enlightened times. We can all
imagine situations where things can accelerate through the speed of light; Newton
taught us what such situations might be like. But similarly, we can all imagine situa-
tions were the laws of logic are different. We all know what a situation would be like
where the law of double negation fails; Brouwer taught us what such situations might
be like.

In the simplified world-semantics of relevant logics, logically impossible worlds are
normally called non-normal, or irregular. Their salient feature is that at such worlds con-
ditionals have truth conditions different from those that they have at normal worlds. If
w is a normal world, A Æ B is true at w if at all worlds where A is true, so is B. The 
simplest policy at non-normal worlds is to assign A Æ B an arbitrary truth-value. The
rationale for this procedure is straightforward. It is precisely conditionals (or at least,
conditionals of this kind) that represent laws of logic. Hence, they should behave dif-
ferently at worlds where logic is different. How differently? There would seem to be no
a priori bound on what is logically impossible. Hence a conditional might take on any
value. Validity is defined in terms of truth-preservation at normal worlds. After all, we
want to know what follows from what where logic isn’t different. (For further details,
see Priest 2000b: chapter 9.)

The semantical procedure just described gives a relevant logic. The truth conditions
of conditionals at normal worlds are given in terms of truth preservation, but logically
valid conditionals are relevant: if A Æ B is logically valid, A and B share a propositional
parameter. And this arises because we take into our sweep logically impossible worlds.

The logic obtained in the way that I have described is, in fact, weaker than the logics
in the standard family of relevant logics. The stronger logics of the standard family 
are obtained by evaluating conditionals at non-normal worlds slightly differently.
Specifically, an interpretation is furnished with a ternary relation, R; and A Æ B is true
at w iff for all x and y such that Rwxy, if A is true at x, B is true at y. (See Restall 1993
and Priest 2000b: chapter 10.) What the ternary relation means and why one might
employ it in this way, is another matter, and one which is still philosophically sub judice.
(See chapter 38, “Relevance Logic,” of this volume for discussion, and for further 
references to relevant logic.)

Of course, the interpretations of a formal semantics are just abstract sets of certain
kinds. They are not themselves the situations about which we reason. (Though we cer-
tainly can reason about situations concerning sets.) The sets represent situations. What,
then, ontologically speaking, are the situations that they represent?

This is a thorny issue, but of a very familiar kind. There are many views concern-
ing what possible worlds are. (See, e.g., the essays in the anthology of Loux 1979.) Some
people, such as David Lewis, are realists about them: the worlds are exactly like the one
in which we live, but with their own space, time, and causation. For others, such as
Stalnaker, they are abstract objects of a certain kind, for example sets of propositions.
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For yet others, such as Routley or Sylvan, they are nonexistent objects of a certain kind.
The question of impossible worlds adds little, I think, to this debate. Whatever one takes
possible worlds to be, impossible worlds are exactly the same kind of thing. Even if one
is a realist about worlds, there is no reason, as far as I can see, why impossible worlds
could not be of the same kind – worlds just like ours, with concrete individuals in a
reality structured by its own space, time, causation, and now we add: logic. It is not
even difficult to draw a picture of what such worlds may be like, the art of Maurits Esher
often depicts situations where the logically impossible happens (such as geometric
objects assuming configurations impossible in Euclidean space). (For a discussion of
impossible worlds, see the essays in Detlefsen 1997.)

3 Paraconsistent Logic

The notion of negation, ÿ, is an important one, and features in many important laws
of logic. Negation is a contradictory-forming operator. That is, for any A, one of A and
ÿA must be true, and they cannot both be: �(A ⁄ ÿA) and �ÿ(A Ÿ ÿA). These are the
logical laws of excluded middle and non-contradiction. Given these laws, in every pos-
sible world, A ⁄ ÿA and ÿ(A Ÿ ÿA) hold. There will be impossible worlds where, for any
given A, A ⁄ ÿA fails, or A Ÿ ÿA holds, though. For exactly this reason the condi-
tionals B Æ (A ⁄ ÿA) and (A Ÿ ÿA) Æ B may fail in relevant logics.

But let us look a little more closely at possible worlds. Given that disjunction behaves
normally, the fact that A ⁄ ÿA holds at such a world entails that either A or ÿA holds.
It might be thought that the fact that ÿ(A Ÿ ÿA) holds at a world entails that one or
other of A and ÿA fails; but this does not necessarily follow, even given that conjunc-
tion behaves normally. Whether it does depends very much on the truth(-at-a-possible-
world) conditions of negation. How negation functions is not at all obvious. In the
history of philosophy, many such accounts have been given. According to some, con-
tradictions entail nothing; according to others, contradictions entail everything; and
according to yet others, contradictions entail some things but not others. Even in the
20th century, many different formal semantics for negation have been offered.

To see how it may be possible to have all of A, ÿA and ÿ(A Ÿ ÿA) holding at a world,
consider the following very simple semantics. At every world, w:

ÿA is true at w iff A is false at w
ÿA is false at w iff A is true at w

Now, suppose that it is possible for A to be both true and false at a world. Then at that
world, both A and ÿA are true. Moreover, given the law of excluded middle, one of A
and ÿA is true; so one of A and ÿA is false. Given that conjunction behaves normally,
it follows that A Ÿ ÿA is false; and so ÿ(A Ÿ ÿA) is true at the world as well.

Formal semantics where A may be both true and false are not difficult to construct.
But it is natural to ask whether there really are possible worlds at which something may
be both true and false. This is a fair question. I think it is also a fair answer that the best
reasons for thinking this to be possible are also reasons for thinking it to be actual. So
let us shelve this question for a moment.
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If there are possible worlds at which A and ÿA are true, and validity is defined in
terms of truth-preservation at all normal worlds, then the inference A Ÿ ÿA � B
(Explosion) will fail. The notion of consequence delivered will therefore be paraconsis-
tent. Relevant logics are not necessarily paraconsistent. For example, Ackermann’s
original relevant logic P¢ was not. But relevant logics in the standard Anderson–Belnap
family are. Conversely, many paraconsistent logics are not relevant (and may also
employ a quite different treatment of negation); for example, the da Costa logic Cw and
its like are not.

Given that the inference Explosion fails in a logic, it follows that there may be incon-
sistent but non-trivial theories – that is, sets of sentences closed under logical conse-
quence, which contain A and ÿA, for some A, but not every B. Such theories may not
be candidates for the truth in any serious sense. They may, as it were, be descriptions
of worlds that, though they are possible in a logical sense, are clearly very far from the
actual world. Recall, after all, that even consistent worlds where frogs turn into people,
and rich capitalists all give their money to the poor, are logically possible.

For all that, these theories may yet be important and interesting; and this is so for
many reasons. For a start, such theories can be mathematically interesting. They may
have a significant abstract structure which demands mathematical investigation, just
as much as consistent ones do. (After all, one does not have to be an intuitionist to find
intuitionist structures mathematically interesting.) Thus we have the rapidly develop-
ing study of inconsistent mathematical structures, a notable example of which are
inconsistent arithmetics. (For an introduction to the whole area of inconsistent math-
ematics, see Mortensen 1995.)

Inconsistent theories may have physical importance too. An inconsistent theory, if
the inconsistencies are quarantined, may yet have accurate empirical consequences in
some domain. That is, its predictions in some observable realm may be highly accurate.
If one is an instrumentalist, one needs no other justification for using the theory. And
even if one is a realist, one may take the theory, though false, to be a significant approx-
imation to the truth. This would seem to be how those who worked on early quantum
mechanical models of the atom regarded the Bohr theory, for example. The theory was
certainly inconsistent, as all agreed; yet its empirical predictions were spectacularly 
successful.

Finally, inconsistent theories may have practical importance too. This would be the
case if our best understanding of how a piece of technology functions were provided
by an inconsistent physical or mathematical theory of the kind we have just con-
sidered. Perhaps more importantly at the present, in information-processing of a kind
that is now essential to everyone’s life, there is always the possibility, indeed the high 
probability, of information that is inaccurate; inaccurate to the point of inconsistency.
Where we discover that our information is inaccurate we will, of course, want to correct
it. But on many occasions we may not know that it is inaccurate; nor may there 
even be a practical way of finding out. There is no algorithm, after all, for determining
when information expressed in the language of first-order logic is inconsistent. In 
such circumstances, employing a paraconsistent logic is the only sensible strategy. We
do not want our information-processor to tell us that the quickest way from Brisbane
to Sydney is via New York, just because it has corrupt information about bus times in
Moscow.
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Before we leave the issue of paraconsistency as such, let us return to the Bohr Theory
of the atom. A major reason why this was never regarded as a serious candidate for the
truth was not so much that it was inconsistent as that it refused to allow inferences that
were obviously truth-preserving, on pain of empirical inadequacy. In particular, it
refused to allow the inference of adjunction: A, B � A Ÿ B. This was because the theory
was chunked in a certain sense. The theoretical postulates were formed into certain
groups (not necessarily disjoint). In computing the stationary states of the atom the
quantum postulate was employed, but not Maxwell’s electrodynamic axioms. In com-
puting the results of transitions between the stationary states, Maxwell’s axioms were
employed. Within each chunk inference was allowed free reign. There was also a limited
amount of information which was allowed to permeate between the chunks; but what
one was not allowed to do was to take arbitrary information, A, from one chunk, and
add it to another, containing the information B, and so infer the conjunction A Ÿ B.
(See Brown 1993.)

The chunking strategy is one that is employed in certain kinds of paraconsis-
tent logics of the non-adjunctive variety. Specifically, given inconsistent premises
including A and ÿA, one is not allowed to put these together in the same chunk to infer
A Ÿ ÿA, and so an arbitrary B, classical logic being the logic standardly in force in each
chunk.

There are many ways of enforcing the chunking strategy, but the various details
need not concern us here. I want merely to note that the strategy has no intrinsic con-
nection with paraconsistency. For a start, there may be reasons for chunking informa-
tion that have nothing, as such, to do with inconsistency. For example, one might
chunk, not because failure to do so would lead to contradiction, but simply because
failure to do so would lead to empirical inadequacy: false observational predictions. Or
one may want to keep the information obtained from different sources in different
chunks, not because the chunks may be mutually inconsistent (though they may be);
but because information sources, such as witnesses, are notoriously unreliable. The fact
that the same information occurs in different chunks speaks to its reliability, and is
therefore itself a significant piece of information.

Moreover, and most importantly, there is no reason why the logic in force in each
chunk must be classical logic. It could itself be a paraconsistent logic. For example,
suppose that one of the sources of information was dialetheic, endorsing certain con-
tradictions (though not all). In this case, to determine the proper content of that chunk,
one would need a paraconsistent logic. Chunking strategies can, in fact, be employed
with any kind of logic within the chunks – even with different logics within different
chunks.

4 Dialetheism

Let us come back to worlds again. Someone may well hold that there are possible worlds
that are inconsistent without holding that the actual world is. After all, the actual world
is special. Truth at that world coincides with truth simpliciter. And truth has special
properties all of its own. For example, one might well hold that for any A, ÿA is true iff
A fails to be true, whilst this is not true of worlds in general. The claim that the actual
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world is inconsistent, though, is dialetheism. What reasons, then, are there for sup-
posing that some contradictions are true?

There are many such reasons. (A number are discussed in Priest 1987.) Perhaps the
best concerns the paradoxes of self-reference. One of the oldest, and most notorious, of
these is the liar. This is a sentence, L, of the form ÿT·LÒ, where T is the truth predicate,
and angle brackets represent some naming device. The T-schema, T·AÒ ´ A (for any
sentence A), is an intuitively correct principle about truth. Substituting L in this gives
T·LÒ ´ ÿT·LÒ; and contradiction is but a few logical moves away.

The liar paradox and self-referential arguments of its kind, like Russell’s paradox, 
are apparently sound arguments ending in contradiction. Of course, many other para-
doxes are this too. But it is a striking fact about the paradoxes of self-reference that,
though they have been the centre of so much philosophical attention for over 2000
years (at least the older ones), there is no consensus as to what, if anything, is wrong
with them.

There are also reasons for supposing that the failure to solve the paradoxes is not
simply a matter of lack of skill on the part of logicians. The paradoxes seem enormously
robust. When steps are put forward to solve them, the contradictions concerned just
seem to move elsewhere (in the shape of so called ‘strengthened paradoxes’). It seems
that contradiction is inherent in the various set-ups, and that all we can do is juggle it
around. It is like those old-fashioned children’s puzzles where one moves around pieces
inside a frame, to try to achieve some predetermined pattern. Given a space in the frame,
any adjacent piece may be moved into it. In this way, one can fill any given space; but
filling it always creates another. There is always a space somewhere.

The appearance of the inevitability of contradictions is, I think, correct. The con-
tradictions involved in the paradoxes of self-reference are, in a sense, inherent in
thought. Our conceptual structures give us, at once, mechanisms for totalization and
mechanisms that provide the ability to break out of any totality, such as diagonaliza-
tion. The two mechanisms together produce contradiction. (This theme is explored 
at length in Priest 1995.) If this is the case, then certain contradictions are not only
actually true, but, being inherent in thought, are necessarily true.

Of the other prima facie examples of dialetheias that one might cite, let us look at just
one more. Boundaries are very puzzling things. They are almost contradictory objects
by definition. For they both separate and join the areas of which they are the bound-
ary. It is not, perhaps, surprising, then, that various kinds of boundaries seem to realize
contradictions. Consider, for example, the boundary between the interior of a room
(that which is in it) and the exterior (that which is not in it). If something is located on
that boundary, is it in the room or not in it? Or suppose that a radioactive atom instan-
taneously and spontaneously decays. At the instant of decay, is the atom integral or is
it not? In both of these cases, and others like them, the law of excluded middle tells us
that it is one or the other. Yet the boundary is symmetrically placed with respect to each
of its sides; so the only possibility that Reason countenances is a symmetric one. Thus,
the object on the boundary of the room is both in it and not in it; and the atom at the
point of decay is both integral and non-integral.

We see, then, there are reasons, at least prima facie reasons, for supposing that there
are dialetheias. What reasons are there for holding such conclusions to be mistaken;
that is, for holding that for no A are A and ÿA both true?
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The classical defense of this view is to be found in Aristotle’s Metaphysics, G, 4; but
this is hardly very successful. The major argument in the chapter is tangled and con-
voluted. It is not clear how it is meant to work, let alone that it works. The other argu-
ments are short and similarly unsuccessful. Many of them do not even get to first base,
since their conclusion is patently that it is not the case that every contradiction is true
– or even that it is not possible to believe that every contradiction is true – things which
are quite compatible with some contradictions being true. Moreover, I know of no way
of reworking any of these arguments which makes them successful. (For a discussion
of all of this, see Priest 1998.)

It is a singular fact that no philosopher since Aristotle has attempted a sustained
defence of the view. What arguments are there? Here are a couple of notable ones. The
first starts from the claim that for any statement to be meaningful, it must exclude
something: it must say that we are in this situation, rather than that. But, the argument
continues, the negation of a sentence holds in exactly those situations that the sentence
does not hold in. Hence, we cannot have both A and ÿA holding at any situation, and
in particular, in the actual situation.

The argument appeals to a contentious theory of negation, one that a paraconsis-
tent logician is likely to dispute. But let us suppose, for the sake of the argument, that
the theory can be substantiated. The argument still fails. The claim that a meaningful
sentence must exclude something, the other of its major premises, is precisely not avail-
able to classical logicians. For according to them, all necessary truths hold at all worlds.
In particular, given the account of negation, the claim that "Aÿ(A Ÿ ÿA), since it holds
in all worlds, is itself meaningless! Ironically, it is the broader, relevant/paraconsistent,
perspective that can accommodate the view about meaning in question. For given that
there are impossible worlds, all claims, even logical truths, fail at some world.

A second argument appeals to the fact that we never observe contradictory situa-
tions: we never see a person both sitting and not sitting; we never see a group of people
in which there are both three and not three. (Even if contradictions arise at instanta-
neous transition states, being instantaneous, these are not observable.) So there is good
reason to believe that contradictions are never true. The argument is an inductive one,
which might be thought strange, since the conclusion is supposed to be a logical truth;
but one can collect a posteriori evidence for a priori truths: for example, it is a priori true
that if a is taller than b, and b is taller than c, then a is taller than c; and we can collect
evidence for this by going around measuring lots of as, bs, and cs.

The argument is not just an inductive one, though: it is not a very good inductive
one. For the crucial question is whether the sample from which we are inducing is, in
fact, a typical one; and the observable realm is not very typical in many ways. This is
one of the lessons of modern science. Unobservable realms, particularly the micro-
realm, behave in a very strange way, events at one place instantaneously affecting
events at others in remote locations. Indeed, it would sometimes (in the well-known
two slit experiment) appear to be the case that particles behave in a contradictory
fashion, going through two distinct slits simultaneously. The micro-realm is so differ-
ent from the macro-realm that there is no reason to suppose that what holds of the
second will hold of the first. A fortiori when we move away from empirical realms alto-
gether, the realm of sets appears to be inconsistent. Why should the way that observ-
able things behave tell us anything about this?

GRAHAM PRIEST

658



Giving arguments to the effect that A and ÿA are never true together is clearly a 
difficult matter. Some have concluded that it is impossible: this fact is so basic that there
is no way that one can argue for it at all – at least, without begging the question. Despite
the fact that Aristotle did give arguments, this was, in fact, his view of the matter. Only
the ‘uneducated’ would ask for a proof (Metaphysics, 1006a5–7). Whether his own
views were consistent on this matter we will leave Aristotle scholars to argue about!
The two arguments we have just looked at show at least the possibility of mounting sen-
sible arguments for the claim. And though the arguments do not work, they do not fail
simply because they beg the question.

5 Boolean Negation

At this point, let us look at a more subtle objection to dialetheism. This starts by 
conceding that the truth-in-a-world conditions of negation may well be what they 
are claimed to be by a paraconsistent logician. But, it continues, we can characterize a
connective, call it —, by giving it the classical truth conditions. For every world, w:

BN —A is true at w iff A is not true at w

(And maybe giving it appropriate falsity conditions too.) I have boldfaced the negation
in the conditions so that we can keep track of it in what follows. Since — has the truth
conditions of classical negation, it satisfies all the inferential principles we associate
with that connective. In this context, — is usually called Boolean negation, and con-
trasted with some relevant/paraconsistent negation (RP negation). Whether or not it is
ÿ or — that expresses vernacular negation is now largely irrelevant. For what the clas-
sical logician wished to express by negation can be expressed by —.

Now it would certainly appear to be the case that we can characterize a connective
with the truth conditions BN. The problem is in establishing that this connective 
really does have all the properties of classical negation. To establish, for example, that
A, —A � B we have to reason: (1) for any w, it is not the case that both A and —A hold
at w; hence (2) for any world, w, if A and —A hold at w, so does B. But what is this not?
If it is ÿ, the last inference is clearly invalid. (ÿC � C Æ D is not valid in any paracon-
sistent logic.) Suppose, then, that it is —. If — satisfies all the properties of classical nega-
tion, then (2) is acceptable. But recall that we were precisely in the process of mounting
an argument that it does have these properties. Such a claim therefore simply begs the
question.

It is sometimes suggested that metatheoretic truth-conditions of the kind BN are
always given employing classical logic – in which case the inference in question is valid.
But metatheory is not necessarily classical. For example, intuitionistic metatheory of
intuitionistic logic is well-known. (See, e.g. Dummett 1977: chapter 5.) And why, in 
the last instance, if you think that one particular logic is correct, should there be any
significance to a metatheory for it couched in a different, and incorrect, logic?

For a paraconsistent logician, the connective whose truth conditions are given by
BN is a perfectly sensible connective. It just doesn’t satisfy the classical advertising hype
that goes with it. Could we not, though, simply stipulate that — is a connective whose
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meaning is determined by the proof-theoretic rules of classical negation? In a gem of
an article, Prior (1960) pointed out that one cannot simply lay down a set of rules and
expect it to characterize a meaningful connective. Suppose that we try to extend our
set of logical operators by adding a new binary connective, * (tonk), satisfying the rules
A � A * B and A * B � B. Then all hell breaks loose: we can infer everything. If * were a
meaningful connective, its addition would not interfere with the pre-existing machin-
ery. In particular, then, its addition would not allow us to infer any sentence not con-
taining * that was not inferable before. In technical jargon, the extension by tonk would
be conservative. The fact that the extension is not conservative shows, therefore, that
tonk is not meaningful.

Now, in a similar way, suppose that — were stipulated to satisfy all the inferential
principles of classical logic. Then given machinery which includes the T-schema and
self-reference, we could construct a sentence, L, of the form —T·LÒ, and all hell would
break loose in the same way: everything could be inferred. Hence, its addition is not
conservative; so no meaningful connective can satisfy all the principles of classical
negation. (It does not follow that there are not operators that behave as classical nega-
tion does in limited contexts. In situations that are consistent ÿ behaves in exactly that
way.)

Of course, the question of conservative extension is relative to what one is extend-
ing. In the argument concerning —, one is extending machinery that is broader than
propositional or first-order logic. But to restrict one’s logical machinery to just this is
somewhat arbitrary. The truth predicate, governed by the T-schema, would seem to be
just as much a logical constant as the identity predicate, governed by its usual axioms.

It may be something of a shock that Boolean negation is meaningless. But what is,
and what is not, a meaningful specification is not a matter of self-evidence. Such ques-
tions are highly theory-laden. And a dialetheist about the paradoxes of self-reference
lines up with an intuitionist on this front. For the intuitionist, too, Boolean negation is
meaningless, though for quite different reasons. (For an intuitionist, it must be pos-
sible, in principle, to recognize the truth of any sentence. Sentences starting with a
Boolean negation do not have this property.)

There is an illuminating argument to the effect that Boolean negation is indeed
meaningful, which goes as follows. (A version of this can be found in Batens 1990.) It
must be possible to deny something, that is, to indicate that one does not accept it. Even
dialetheists, after all, need to show that they don’t accept that 1 = 0. Now, if ÿA is com-
patible with A, then asserting ÿA cannot constitute a denial. To deny A one must assert
something that is incompatible with it; so Boolean negation must make sense. We need
to assert something with this force in denying.

Now, denial is a certain kind of illocutory act, an act with a certain linguistic force.
It conveys the information that the utterer does not accept the thing denied. Other kinds
of linguistic force include: asserting, questioning, commanding. Since Frege, it has been
common to hold that denying is not an act sui generis. To deny A is simply to assert its
negation. But this cannot be right. For example, we all, from time to time, discover that
our views are, unwittingly, inconsistent. A series of questions prompts us to assert both
A and ÿA for some A. Is the second assertion a denial of A? Not at all; it is conveying
the information that one accepts that ÿA, not that one does not accept A. One does this
as well.
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Denial, then is a linguistic act sui generis. Moreover, from the fact that one can deny
A, it does not follow that there is some operator on content, —, such that to deny A is
to assert —A, any more than from the fact that one can command that A it follows that
there is some operator on content, !, such that to command A is to assert !A. Linguistic
force is an element of communication over and above content. Suppose I utter ‘The door
is open’; then depending on the context, this could be an assertion, a question, a
command. Similarly, if I utter ‘It is not the case that A’, this could be an assertion of
ÿA, a denial of A – or even a command, or an act with some other linguistic force. 
The question is simply one of whether the act is intended to convey the information
that the speaker does not accept A, or something else. Denial, then, is a linguistic act,
performed by dialetheist and non-dialetheist alike, which in no way presupposes the
meaningfulness of Boolean negation. (For further discussion of the material in this
section, and negation in general, see Priest 1999.)

6 The Logical Choice

The issues that we have been dealing with concern, either implicitly or explicitly, the
question of what the correct logic is. And this raises the question: how do you decide
this matter? How, for example, does one determine the correct truth-at-a-world-
conditions for negation?

Some have thought that such questions are silly. Logical principles are a priori
obvious. Those who deny them are uneducated or insane. Such a view could be held,
however, only by someone largely ignorant of the history of logic. In the history of logic
there are dozens of different accounts of how negation functions, of when a conditional
is true, of what inferences are valid – and corresponding disputes. (For a good discus-
sion, see Sylvan 2000.) Moreover, views that have been well-entrenched for centuries
have been overturned. For hundreds of years, ‘All As are Bs’ was held to entail ‘Some
A’s are B’s,’ though it is not now. It may well have been the case that some of these
principles were thought to be obvious. What was obviously true to one person, may be
obviously false to another.

Such questions must, then, be taken seriously. But how do you resolve disputes about
the correctness of logical principles themselves? Such disputes are liable to invoke argu-
ments of a form whose very validity is itself disputed.

In disputes that involve high-level and very abstract principles, such as disputes
about logic, it is not to be expected that any individual and simple argument, even if its
validity is agreed upon by both parties, will be decisive. Arguments of any complexity
invoke sundry ‘auxiliary assumptions,’ which may always be questioned. One is always,
therefore, looking at package deals – theoretical complexes that have to be evaluated
as a whole. In the case of logic, the package is liable to spread beyond principles simply
about validity. There is such an intimate connection between truth and validity, for
example, that questions about the nature of truth are likely to be embroiled in the
debate as well.

How does one assess such a complex, then? First of all, theories are always proposed
to account for some phenomenon, to explain some data; and the first consideration 
is always how adequate an explanation is provided. In the case of logic, we have 
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intuitions about which inferences are valid and which aren’t; which conditionals are
true and which aren’t; and so on. We must look to see how well the theory accounts
for the data. If a theory gives a result that is at variance with them, this is not fatal, but
at least we must be able to explain the incongruity. For example, in virtually all rele-
vant and paraconsistent logics, the disjunctive syllogism (A, ÿA ⁄ B � B) is invalid. If
we have an intuition that the Syllogism is valid, or at least that it is correct to use it on
certain occasions, we must explain why this is so. We may say, as many have said, that
the Syllogism is acceptable provided that we are reasoning about a consistent domain
– just as an intuitionist may apply the law of excluded middle provided that they are
reasoning about finite domains.

Adequacy to the data is not, therefore, likely to be a definitive factor. We have to
invoke other criteria. The question of what these criteria are leads to well-known
debates in the philosophy of science. Possible candidates include the following: the less
a theory invokes ad hoc hypotheses the better it is; the more it gives a unified account
of its subject matter, the better it is; the more a theory leads to new conceptual devel-
opments (fruitfulness), the better it is. There may be many other criteria too. For
example, the first two criteria I just mentioned fall under the banner of simplicity; there
may be other criteria that fall under this banner too.

Is inconsistency a negative criterion? If the logic of the theoretical complex is explo-
sive, then everything will follow, and this is going to play havoc with the adequacy of
the theory to handle the data. So inconsistency is highly relevant. If a paraconsistent
logic is used, though, this is not necessarily going to be the case. Is consistency, in this
case, a sui generis criterion? Is it the case that a theory that is more consistent than
another is ipso facto a better theory? This is a question that cannot be divorced from the
rationale for epistemic criteria; and this is a notoriously difficult question. Why, for
example should simplicity of any given kind be a positive criterion? If there is some
reason for supposing that reality is, quite generally, very consistent – say some sort of
transcendental argument – then inconsistency is clearly a negative criterion. If not,
then perhaps not.

Let me illustrate some of the preceding points concerning theory-choice. Suppose,
for example, that one is comparing classical logic and a paraconsistent logic, as pro-
viding accounts of validity for sentences concerning truth-functional operators. As I
noted, one cannot simply close ones eyes to other things. The T-schema and the infer-
ences that this permits also strike us as valid. If classical logic is correct (and self-
reference is legitimate), then this cannot be so: triviality is only a few steps away. Hence,
some account of truth must be given which explains away the T-schema. If one accepts
an appropriate paraconsistent logic, however, one can endorse a natural and simple
account of truth: truth just is that notion characterized by the T-schema. We must
compare, therefore, a package deal concerning (at least) Logic + Truth. Now, most para-
consistent logics are more complex than classical logic – though perhaps not much
more so in the simplest cases. But all consistent accounts of truth are enormously more
complex than the natural account, involving infinite hierarchies, epicycles to avoid
strengthened paradoxes, and so on. What, then, is the simplest overall package? I leave
you to judge.

The preceding discussion of theory-choice is, of course, quite general. Though I have
couched it in terms of choice of logic, it applies just as much to a choice of any other
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kind of theory. In particular, it shows how it may be rational to accept an inconsistent
theory. (Paraconsistent logic plus the T-schema and self-reference is, indeed, inconsis-
tent.) Even if inconsistency is a negative criterion, simplicity and consistency may 
well pull in opposite directions; a high degree of simplicity may outweigh a low 
degree of inconsistency. The discussion also shows something else. It is often claimed
that if it could be rational to accept a contradiction, a person could never be forced,
rationally, to give up any view. For there is nothing to stop the person accepting both
their original view and the objection put to it, which is inconsistent with it. It is clear
now that this objection fails. It is rational to give up a theory if there is a better one.
And even if one can rationally accept an inconsistent theory (or theory plus objection)
this may be trumped by a position that is simpler or has greater epistemic virtue of some
other kind.

7 Conclusion

God, according to Cranmer in the quote with which we started, cannot set two con-
tradictories together. Cranmer, Archbishop though he was, sold God short (though it
was not this for which he was burned at the stake): contradictories can be set together
by much lesser creatures. In the last 60 years, logicians have been setting them together
in many ways. They may set them together in impossible worlds, to give relevant logics,
logics which provide accounts of the conditional which make other accounts look crude
and undiscriminating. They may set them together in possible worlds, to provide para-
consistent logics, logics which allow for the sensible handling of inconsistent informa-
tion and theories. Or if they are daring, they may set contradictories together in the
actual world, to allow for things such as a simple and natural theory of truth. These
developments in logic, like all interesting new developments, are contentious. And no
doubt the issues flagged in this essay will continue to be debated in the foreseeable
future. So will many related questions: for the logical views that we have been dis-
cussing have implications that spread through metaphysics, epistemology, and many
other areas of philosophy. One may presently only speculate as to what lands there are
on the far side of the terrain I have been mapping.
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The Logical and the Physical

A N D R E W H O D G E S

This chapter on logic, machine theory and cognitive science will focus on the work of
A. M. Turing (1912–54), who first related these topics, and whose ideas still dominate
the interconnections after 50 years. In particular Turing pioneered the links between
abstract logic and physical mechanisms. I shall here deal largely with a misconception
which has recently found a wide circulation, but in the process I hope to shed light on
Turing’s foundations and also suggest a more positive point of new interest.

I will start with the scene in Bletchley Park, Buckinghamshire, England, in 1941.
There Alan Turing is in charge of breaking the U-boat messages, as enciphered by the
now-famous Enigma in its most fiendish variation. One of the many riddles wrapped
inside the Enigma was that nine different code books were used to encipher what would
now be called the session key. As revealed by his colleague I. J. Good (2000), Turing had
devised a sophisticated statistical method for guessing which book had been used. The
results of this work were then fed into the “Banburismus” method (Good, in Hinsley
and Stripp 1993), based on giving numerical scores to the weight of evidence from
various coincidences of letters, giving a scientific replacement to intuitive guessing. The
actual counting of letter coincidences was done by WRNS servicewomen holding up
punched paper tapes.

This scene, reminiscent of Searle’s Chinese Room where people act out algorithms,
is where Alan Turing was at a time when (as described in Hodges 1983: 214), he was
first pondering questions of artificial intelligence through chess-playing algorithms. In
1941 he was also reading a book (Sayers 1941) by the detective novelist and religious
writer Dorothy L. Sayers with reflections on determinism and creativity which, it seems,
struck a peculiar chord in him. The question he apparently asked, judging by the com-
ments on this book in Turing (1948), was whether these concepts were in fact exclu-
sive as Dorothy L. Sayers supposed. Could not something purely mechanical nevertheless
exhibit the features of originality? Perhaps there was a special meaning for Turing,
whose mathematical methods were replacing the inspired guesswork of pre-scientific
codebreaking. But to see the full point of this question, we must return to an earlier
year. Alan Turing had made his name in 1936 with the concept of ‘a machine’, and
we must see what he meant by it.

Turing’s great paper “On Computable Numbers, with an application to the
Entscheidungsproblem” (Turing 1936–7) was, as its awkward title said, intended to 



give a definite meaning to, and hence derive a definite conclusion to, Hilbert’s
Entscheidungsproblem. To do this, Turing had to characterize the most general process
that a human mathematician might carry out as a definite method. This the Turing
machine definition supplied. Church (1937a) characterized it thus: “a computing
machine, occupying a finite space and with working parts of finite size.” More techni-
cally, a Turing machine is limited to finitely many configurations (or states) and finitely
many types of symbols, with only finitely many symbols written on a tape at any time.
The extent of the tape used however, is unlimited. Thus the Turing machine embodies
finite means, but unlimited time and space to work out their consequences.

This finiteness deserves attention, and an interesting aspect of Turing (1936–7) is
his claim that we may assume only finitely many states of mind. Indeed it is a striking
claim that unobservable ‘states of mind’ should be countable, let alone finite. The
philosopher B. J. Copeland has contested the signficance of this finiteness restriction
(Copeland 1992: 280), suggesting that Turing said a Turing machine could simulate a
device with infinitely many states. But a ‘machine’ with infinitely many states could
encode the answers to every mathematical question, thus rendering trivial the very
problem that the ‘machine’ concept was intended to settle. Thus the finite-state restric-
tion is crucial, as is the restriction to a finite alphabet of symbols. (The same goes for
allowing infinitely many symbols to be printed on the tape, or roll of toilet paper as
Copeland (1992) vividly describes it, at a finite time.)

Did Turing ever consider infinite-state machines? ‘Calculable by finite means’ is how
Turing characterizes the mechanical, and this rules out an infinite-state machine, with
infinite means. The very significance of algorithms is that they encode potentially infi-
nite outputs by finite specifications. Extending them to allow drawing on an infinite store
of data would miss the point of what ‘calculation’ involves.

In mathematics, Turing’s non-trivial discovery was that defining a real number in a
finite number of words is not the same as being able to calculate it effectively. Turing’s
work has great significance outside mathematics. In computer science, the vital thing
is that Turing’s universal machine and its mode of operation can be implemented in
electronics. In cognitive science, Turing’s interpretation of states of mind developed
into a thesis of the computability of mental operations. But in 1936–9, Turing
expressed his work mainly in terms of how it affected Church’s thesis, which as a result
is now often described as the Church–Turing thesis: that anything effectively calcula-
ble is computable by Turing machines.

Turing gave this statement a definitive form in his Ph.D. thesis, submitted at
Princeton in 1938, his supervisor being Church. This was later published as Turing
(1939). Turing’s formulation was:

A function is said to be ‘effectively calculable’ if its values can be found by some purely
mechanical process. Although it is fairly easy to get an intuitive grasp of this idea, it is 
nevertheless desirable to have some more definite, mathematically expressible definition.
Such a definition was first given by Gödel at Princeton in 1934. . . . These functions were
described as ‘general recursive’ by Gödel. . . . Another definition of effective calculability
has been given by Church . . . who identifies it with l-definability. The author [i.e. Turing]
has recently suggested a definition corresponding more closely to the intuitive idea. . . . It
was stated above that ‘a function is effectively calculable if its values can be found by 
a purely mechanical process.’ We may take this statement literally, understanding by a
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purely mechanical process one which could be carried out by a machine. It is possible 
to give a mathematical description, in a certain normal form, of the structures of
these machines. The development of these ideas leads to the author’s definition of a 
computable function, and to an identification of computability with effective calculability.
It is not difficult, though somewhat laborious, to prove that these three definitions are
equivalent. (166)

Thus, as Church and Gödel endorsed, the Turing machine definition, while equivalent
in mathematical scope to lambda-calculus and recursive function theory, offers a con-
vincing argument for why Church’s thesis should be accepted. Turing’s paper-tape 
definition also suggests, in a manner hard to define precisely, operations that can phys-
ically be done. The very word ‘effect’ means to do as opposed to postulate. Hence people
sometimes distinguish Turing’s thesis from Church’s, though Turing himself never did
this, and I shall continue to refer to this 1938 statement as the Church–Turing thesis.

But what did Turing mean by ‘mechanical’ or ‘machine’? It is noteworthy that
Turing does not make any qualifications; he does not say “carried out by a machine of
a certain type”; he says “carried out by a machine.” Nor did he ever devote any paper
to the subject of “what is a machine.” Newman (1955) said Turing came to his defin-
ition by analyzing the notion of a computing machine. Clearly Turing did indeed seize
upon the concept of ‘acting mechanically’ implicit in the axiomatic program, turning
it into the more definite ‘machine,’ and finding fascination in the mechanical thereafter
– indeed developing it into our dominant technology. But as (Gandy 1988) put it,
Newman was “misleading”; Turing’s 1936–7 analysis was of a human being com-
puting in a mechanical way.

At this point I turn to the widely published and vividly expressed view of B. J.
Copeland on just this question of what Turing meant by ‘a machine.’ It is my duty to
point out a difficulty in Copeland’s position. First, it is surprising that in his exposition
(Copeland 1997) of the Thesis, Copeland omits the definitive 1938–9 statement,
instead citing an informal version from Turing (1948). However that is not the most
serious point, which is that Copeland (1997) holds that Turing’s use of ‘machine’ was
always made in a carefully restricted manner, and judiciously so because of the possi-
bility of machines with greater power than Turing machines. Copeland explains that
“For among a machine’s repertoire of atomic operations there may be those that no
human being unaided by machinery can perform.” Copeland does not actually assert
this was Turing’s reasoning, in 1936 or subsequently, but his reader might well assume
that this is why Turing made the definition he did. In fact Turing never suggested 
anything of the sort. Turing’s thought stands within the natural and classical position,
which is the other way round: it is to investigate whether and how a machine could
possibly encompass the apparently greater faculties of human minds.

Copeland’s suggestion of Turing having superhuman machines in mind clearly
derives from his reading of Turing (1939), which is not mentioned in Copeland (1997),
but is much discussed elsewhere (Copeland 1998, 1999; Copeland and Proudfoot
1999). In this paper Turing, after stating the Church–Turing thesis as quoted earlier,
defined “a new type of machine.” Copeland and Proudfoot (1999) quote this phrase as
one of “Turing’s Forgotten Ideas in Computer Science,” and make it their mission to
rescue it from the ‘obscurity’ of mathematical logic. Before succumbing to their excite-
ment, however, we must analyze what Turing meant.
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To understand Turing’s “new type of machine” one must see what Turing had
already defined. A vital point is that in (Turing 1936–7) the word ‘machine’ appeared
in the definition of choice-machine. Such ‘machines’ are by definition not purely mechan-
ical, being defined so as to require the decisions of ‘an external operator.’ Machines
working without human choices, ‘purely mechanically,’ Turing called automatic or a-
machines. Automatic machines are what (following Church’s lead) we call Turing
machines, and which Turing himself later (1948) called Logical Computing Machines.
Such a-machines define the scope of computability and are the subject of the
Church–Turing thesis, for that is concerned with whether a calculation can be carried
out ‘purely mechanically.’ (Likewise, in Artificial Intelligence, attention is focused on a-
machines. We should not be impressed by an AI program that relied upon human
input!) Thus Turing used the word ‘machine’ for entities which are only partially
mechanical. Perhaps this was courting confusion, but he was, of course, in accord with
common usage.

An oracle-machine is likewise a machine only in the sense of being partially mechani-
cal. Its specification, as a mathematical definition, is given as something merely postu-
lated, not as an effective procedure. It differs from an a-machine in that it has one state
in which it does not behave mechanically. Instead, the o-machine’s next step then
depends on an imaginary ‘oracle’ which has the power of giving the answer to any
number-theoretic problem; as Turing shows this is equivalent to being able to answer
the halting question for any Turing machine. Of the oracle Turing says, crucially, “We
shall not go any further into the nature of this oracle apart from saying that it cannot be a
machine.” Turing describes the oracle as performing ‘non-mechanical’ steps. Thus an o-
machine has a non-mechanical element, just as a choice-machine does.

Unfortunately Copeland, on the strength of the phrase “new type of machine,” gives
the vivid impression that the o-machine should be conceived as a purely mechanical
device. Copeland and Proudfoot (1999) have written of how “the impact on the field of
computer science could be enormous” if there were found “some practicable way of
implementing an oracle.” But the oracle is not a machine, so the question of ‘imple-
menting’ it arises no more in Turing’s exposition than does the question of ‘imple-
menting’ the external operator’s choices called for by a choice-machine.

The reader may suspect that further discussion is needed of what Turing meant by
“cannot be a machine.” Did he not merely mean, that it cannot be a Turing machine.
Indeed he surely did: for in its context, the word ‘machine’ should mean the same as in
the preceding statement of the Church–Turing Thesis, quoted above. There, it means
what we call a ‘Turing machine.’ But this is no restriction on the force of Turing’s
remark, since he gave no indication that there could be any other types of purely
mechanical machine.

If Turing had in mind the possibility of more general types of pure machine, he
would have written that the oracle “cannot be an a-machine” or “cannot be a machine
of any kind so far considered,” or some such. Far from it: making himself even more
categorical, he wrote that the nature of the oracle is that it cannot be a machine. Had
Turing written that the oracle was a new kind of machine, Copeland would have his
case. But by saying that the o-machine is a new kind of machine, Turing meant merely
that it is a new type of ‘not purely mechanical’ machine.
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As corroboration, note that if Turing had in mind the possibility of purely-
mechanical machines other than a-machines, his 1938–9 statement would have
required words like: ‘understanding by a purely mechanical process one which could be
carried out by an automatic machine of the type defined’. In contrast, his actual statements,
like Church’s, identify the a-machine with the most general process that could be called
‘purely mechanical.’ Thus if he was saying the oracle was not an a-machine, he was
saying it was not mechanical in any sense.

As already noted, Copeland (1997) chooses not to cite the Church–Turing thesis from
Turing (1939), and so omits to analyze the use of ‘machine’ in this definitive version of
it. Unfortunately an error in a later paper has denied Copeland the opportunity to show
how he reconciles his concept of the ‘new type of machine’ with Turing’s statement
about the oracle. For Copeland (1999) quotes Turing as saying: “We shall not go any
further into the nature of [an] oracle.” This truncation omits the essential substance.
Further, Copeland uses the expression ‘black box’ to introduce the oracle, and says it
could be conceptualized as having a tape with an infinite amount of information on it,
giving the misleading impression that such physical images are Turing’s.

Copeland also notes a difficulty in reconciling his standpoint with the endorsement
in Church (1937b) of Turing’s definition: “To define effectiveness as computability by
an arbitrary machine, subject to restrictions of finiteness, would seem to be an ade-
quate representation of the ordinary notion.” Copeland (1997) states that ‘arbitrary’
refers to the arbitrary technical aspects of the way Turing machines or equivalent 
definitions are made. But no one could have read Church’s sentence in so contrived a
sense. Copeland asserts also that Church meant ‘machine’ to refer only to a machine
mimicking the human calculator. In fact, Church (1937a) characterized the Turing
machine in notably more general terms than this, and his words were that “in par-
ticular” a human calculator working to explicit instructions “can be regarded as a kind
of Turing machine.”

A more convincing claim would be that ‘finiteness’ restrictions ipso facto assert the
logical possibility of machines with infinitely many states or symbols. But as indicated
above, Turing never thought of such entities as ‘machines,’ and indeed the question 
of ‘oracles’ gives further evidence for this. For if Turing had wished to contemplate 
the oracle as a new kind of ‘machine,’ he could readily have done so by allowing 
a ‘machine’ to have infinitely many states. But Turing gave no such interpretation or
definition, then or later.

Summarizing, Copeland misleads through his description of the o-machine as a new
kind of machine. The oracle is not a machine. So o-machines are not purely mechani-
cal. In fact they are not machines, if by ‘machine’ we mean something that works inde-
pendently. Indeed the whole point of an oracle-machine is that it models non-mechanical
steps. Unfortunately Copeland’s exposition of the o-machine all rests upon this ele-
mentary confusion.

The reader may now wonder what possible reason Turing had to introduce a non-
mechanical ‘oracle.’ One answer lies in some very interesting pure mathematics. I owe
Feferman (1988) for an authoritative review. First, it is important to note that Turing
(1939) is not focused on the o-machine definition. The paper is about a deep mathe-
matical question, the fact that knowledge of one uncomputable number only provides
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one step in an infinite journey. The countable set of uncomputable numbers derived
(computably) from this given one does not even scratch the surface of the (uncount-
able) totality of uncomputable numbers. This journey into the transfinite, subsequently
formalized as ‘relative computability,’ is the subject of Turing’s paper and its difficulty
is what needed his genius; the oracle itself is trivial. Turing used the oracle concept to
give a simple proof relating to the first step in this journey, but as Feferman points out,
he could have proved it using even simpler cardinality arguments.

The very fact that the oracle is not necessary to his mathematics suggests that Turing
may have had some extra-mathematical idea in mind when introducing it. There is
indeed an interpretation which can be made from the context. The 1936–7 definition
of computability arises from a human mind carrying out a rule; so one may well ask
what Turing thought the mind was doing when not following a rule. The section in
Turing (1939) headed “Interpretation of Ordinal Logics,” tends to confirm this line of
thought. It is about ‘intuition’ which as Turing explains, is how he considers the step
of seeing the truth of a formally unprovable Gödel sentence; the whole point is that as
Gödel showed, this step cannot be made ‘mechanical.’ Newman (1955) gives an inter-
pretation of the oracle as the mathematician “having an idea” as distinct from “making
mechanical use of a method.” 

This carries weight in view of Newman’s unique cooperation with Turing in math-
ematical logic, and their wartime discussion of ‘intuition,’ but the interpretation needs
care. The interpretative section of Turing’s paper does not mention the ‘oracle,’ let alone
identify the oracle with intuition, and this is probably for a good reason. The oracle does
far more than any human being could: it knows the answer to all number-theoretic
questions. And yet, as Turing must have known and Penrose (1994: 380) has empha-
sized, intuition, using a diagonal argument, can outdo an oracle-machine. Thus in
another sense, when set against the mind, the oracle is too weak. We can only safely say
that Turing’s general setting for the introduction of uncomputable elements has to do
with the role of the mind in apparently outdoing the mechanical.

Turing’s one actual mention of an oracle in the substance of his paper refers to
seeing “whether a given formula is a ordinal formula”: the essential non-mechanical
step that explains why repeated addition of new axioms cannot overcome the limita-
tions of formal proof. I suspect that Turing’s use of the lambda-calculus formalism,
developed in his collaboration with and respect for Church, obscured what Turing
worked out for himself more in the language of mechanical and non-mechanical steps,
the latter corresponding to a mental act of ‘seeing’ intuitively.

Although Copeland (1999) correctly offers a mental context for the oracle, Copeland
and Proudfoot (1999) suggest a very different technological picture to their popular
readership. In a graphic illustration of a ‘black box,’ they suggest that “what Turing
imagined” could be implemented as something like an electrical capacitor measured to
infinite precision, and that one could solve a halting problem by reading off (say) the
8735439th binary place. Oracles, if discovered, might revolutionize computer science;
and modern theorists of uncomputable physical effects are chided for not recognizing
Turing’s anticipation of their ideas. The words ‘notional’ and ‘abstract,’ are used to
describe ‘what Turing imagined,’ but it is said that the oracle is abstract only in the
same sense as is the Turing machine operation of scanning symbols, which clearly can
be implemented.
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Turing’s oracle only amounts to a few lines of mathematical definition, so those
expecting blueprints will be disappointed. It could be suggested, however, that physical
black boxes with oracular properties might exist, even if Turing never aroused such a
prospect himself. We must indeed distinguish between the historical question of what
Turing entertained, and the scientific question of what actually is the case, and on the
latter question research has certainly turned to more complex issues than Turing con-
sidered. The oracle, something ‘fictional’ in Turing’s thought, as Penrose has described
it, would be factual if in some way infinite data could be stored in a finite system. This
question has stimulated investigations into the relationship between computability,
continuous systems, and physical properties of universes real and imaginary. However,
there is nothing in modern physics to suggest the crude ‘black box’ in Copeland and
Proudfoot’s illustration of ‘what Turing imagined,’ requiring measurements of un-
limited precision! And nothing could be further from Turing’s logical calculus, in which
the whole point of the oracle is to investigate the structure of what can not be done
mechanically. (One should note also that even if a ‘black box’ were found to emit an
uncomputable sequence, in fact rather than in fiction, there is no reason to expect it to
solve any identifiable logical problem.)

There is one physical context for discussing ‘oracles,’ which has both some histori-
cal pertinence and modern interest. This is not mentioned by Copeland and Proudfoot
(1999) amidst their technological imagery, but it is alluded to by Copeland (1998,
1999): it is the physics of the brain. This is at least consistent with Turing’s setting, that
of the human mind appearing to outdo machines. This is also the context in which
Penrose (1994: 379) introduces a discussion of oracles, in his discussion of how
uncomputability might feature in an as yet unknown physical law. (See also Penrose
(1996) for an introduction to Penrose’s arguments about computability and Mind.)

Penrose might well ask how in 1938 Turing would have answered the question of
how the brain performed these acts of intuition. This is not an ahistorical speculation
because, although Turing never used the word ‘brain’ in his 1936–39 writing, in
1930–32 he had thought seriously of its physics, stimulated by A. S. Eddington’s view
that quantum mechanical physics removed the classic conflict of free-will with physi-
cal determinism (Hodges 1983: 63).

But lacking any trace of such a discussion in 1936–39, it appears that Turing then
simply left open the question of how it can be that a physically embodied mind appears
to do the non-mechanical ‘intuition’ involved in seeing the truth of Gödel statements.
He would not have been alone; Gödel himself seems to have taken a view of mind as
non-mechanical without trying to reconcile this with its embodiment in brains.

But now let us return to the Turing of 1941, who unlike Gödel has linked logic with
the physical to astonishing effect. Turing’s Enigma-breaking machines are demon-
strating the power of algorithms, by following through logical implications. Machines
have become practical, and aspects of guessing have become mechanical. And while
defending human freedom with the machines his mind had made, Turing is reading
The Mind of the Maker by Dorothy L. Sayers.

In Hodges (1997) I suggested that it was at this 1941 period that Turing concluded
that the scope of the computable was not limited to processes where the mind follows
a definite rule. Machines which modified their own rules of behavior would show fea-
tures which had not been foreseen by anyone designing them. Such machines might
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be said to learn, and perhaps to act with the appearance of intelligence. From 1941
onwards Turing began to speak of such ideas to his Bletchley Park colleagues, and also
to use the word brain. Again, my guess is that having confronted the problem of how
the physical brain could support the appearances of non-mechanical ‘intuition,’ Turing
concluded that the function of the brain was that of a machine, but one so complex
that it could have the appearance of not following any rule. From this point Turing
apparently became gripped by the potential of computability, and of his own discovery
that all computable operations can be implemented on a single, universal, machine.

Thus, in this view it was during the war that Turing formulated both his central con-
tribution to cognitive science and the practical universal machine. In his 1945 vision,
algorithms are enough to account for all mental activity, including the kind previously
thought of as non-mechanical intuition; the universal machine is enough for all algo-
rithms, and electronics make practical a universal machine. In 1945 Turing embarked
on his own independent design of what he called a “practical universal computing
machine.” (For a new account of the origin of the modern electronic stored-program
computer, which credits Turing with giving von Neumann the central idea, see Davis
2000.)

Although Turing promoted the practical benefits of a computer, it was more the
prospect of using it to simulate the brain that engaged him from the start. Thus even
in Turing (1946), his technical report, a statement about the prospect of a machine
showing intelligence in chess-playing appears. It makes a reference to mistakes in chess-
playing, which, as expanded in later papers, betrays Turing’s concern for answering the
problem of how minds can see the truth of Gödel sentences. His postwar argument is
that humans make mistakes, machines make mistakes, they are on a par, and that once
infallibility is off the agenda, the Gödel argument does not apply. (This is the same argu-
ment that 50 years later Davis (2000: 197) upholds, as against Penrose’s argument
that a non-mechanical ‘intuition’ of truth is inescapable.) These remarks are to my
mind evidence of how the postwar Turing had to respond to the implications of Gödel’s
work and his own 1938 discussion of ‘intuition.’

It as not long before Turing (1948) described the problem of ‘intelligent machinery’
as that of how to create machines with ‘initiative.’ This is not the same word as the
‘intuition’ of 1938 but has the same role as describing that what the mind does when
not apparently following a rule. But in Turing’s postwar thought, initiative does not
need uncomputable steps; it is as computable as the ‘mechanical processes’ even
though this is against one’s expectations of ‘machines’ (it is in this paper that he quotes
from Dorothy L. Sayers). However it is necessary to depart from computations that
follow the programmer’s explicit plan. To this purpose Turing sketched nets of logical
elements which, as Ince (1993) put it, can be said to predict the neural network
approach. The paper of Copeland and Proudfoot (1996) on this subject is perhaps their
greatest achievement since it has stimulated new scientific work (Teuscher 2001;
Webster 1999). The modern climate is more favorable than were the 1970s and 1980s
to Turing’s viewpoint, in which advanced programming and evolutionary networks 
were not perceived as distinct alternatives, both being avenues for research in machine
intelligence.

We have now reached the question of Turing’s postwar writing on the concept of
‘machine,’ for Turing gave a classification of machines in that same paper (Turing
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1948). Reflecting his greater acquaintance with physical machinery, Turing widened
the scope of ‘machine’ and distinguished Logical Computing Machines from continuous
and from active machines (e.g. ‘a bulldozer’). Naturally, oracles do not feature in this
discussion, since oracles are not machines. And Turing suggests nothing about the 
possibility of superhuman machine operations.

Copeland (1997) does not refer to this 1948 discussion, surprisingly as it is the
closest Turing came to an essay on ‘what is a machine.’ But Copeland has usefully cited
a later discussion by Turing’s student Robin Gandy, who undertook the kind of formal
analysis of computing machines that Newman (1955) attributed to Turing. Gandy
(1980) introduced Thesis M: “What can be calculated by a machine is computable.” Gandy
showed that computability followed under very general assumptions about a mechan-
ical system; and that if these conditions were weakened, anything could be calculable.
‘Thesis M’ allows Copeland to formulate what he claims of Turing: the essence of
Copeland (1997) is that there is no evidence that Turing subscribed to Thesis M. 
It is true, as Copeland points out, that many writers have given versions of the
Church–Turing thesis varying from what Church or Turing actually said, particularly
in making sweeping statements about physical systems. Nor can we say quite how
Turing would have responded to Gandy’s formulation. But Copeland (1999) errs in
claiming that Turing’s definition of oracles precluded him from believing Thesis M. The
reason is simple: Thesis M concerns machines, and Turing’s oracle is not a machine.

The discussion by Copeland (1997) also neglects to engage with the fact that the
general force of Turing’s postwar arguments is that computable operations always
suffice. How could he have made this thrust if, all the time, he had secretly in mind the
potential of ‘machines’ to perform uncomputable operations? Copeland cites the careful
definition of computability from Turing (1950) but ignores the central claim in that
paper that Mind, including its appreciation of sonnets and the rest, can be imitated by
a computer, that is computable. Copeland’s position would be consistent with Turing’s
assertion of the computability of Mind only if Turing had believed that whereas minds
were limited to the computable, there was a possibility of machines not so limited. But
there is no such component detectable in Turing’s thought. Despite this, Turing’s later
papers are searched for clues that he was leaving room for o-machines. For example,
Copeland (1997) warns that in Turing (1947), a statement about ‘machine process’
should be read carefully to refer only to a-machines. It should indeed, but this is simply
because Turing was here distinguishing Turing machines from the differential analyser,
a continuous machine. (Morever he was in this passage advocating the the digital com-
puter as superior in performance to the analog machine.)

In Copeland (1999) another claim is made relating ‘oracles’ to randomness. This is
done through a paper of Church (1940), which gives a careful definition of an infinite
random sequence, entailing that it must be an uncomputable sequence. Copeland goes
on to describe a random sequence as an oracle-machine output, then to claim that
Turing himself made this identification. But Turing did not allude to any connection
between randomness and the infinite data stores implicit in an ‘oracle.’ On the contrary,
Turing (1948, 1950) asserted that pseudo-random (i.e. computable) sequences would
suffice for random effects, a statement he could never have made if he thought the
uncomputable played a role. These were hardly idle comments; he as well as anyone on
the planet in 1950 knew the significance of pseudo-random sequences, having in
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wartime extracted machine patterns from apparently random ciphertext; he had also
addressed himself to the engineering of randomness in the Manchester computer.
Besides, oracles were introduced by Turing to model not randomness, but a kind of infi-
nite knowledge.

Turing gave scant analysis of ‘randomness’, but this very brevity and the rather 
cavalier treatment of underlying physics in Turing (1948, 1950) is telling. Had he ever
had uncomputable effects in mind, he could not have been so terse. He treated the rela-
tionship of discrete to continuous systems in a similar way: in Turing (1948) merely
asserting that the brain though continuous is effectively discrete, returning to this 
point again briefly in Turing (1950) to counter “the Argument from Continuity of the
Nervous System.”

After scouring Turing’s later works in the hope of glimpsing an allusion to oracle-
machines, Copeland (1999) concedes, “if Turing did think that o-machines other than
partially random machines are physically possible, then perhaps he would have said as
much, and he does not appear to have done so.” Quite so. Copeland has not shown how
he reconciles this conclusion with the statement in Copeland and Proudfoot (1998)
that:

Taking their cue from Turing’s 1939 paper, a small but growing international group of
researchers is interested in the possibility of constructing machines capable of computing
more than the universal Turing machine . . . research in this direction could lead to the
biggest change computing has seen since 1948. Hodges’s Turing would regard their work
as a search for the impossible. We suspect that the real Turing would think differently.
(Copeland and Proudfoot 1998: 6)

In this account, Turing’s imagined disposition towards ‘constructing’ oracle-machines
is pronounced to be so definite that it is required to inform the general public that the
standard view, as conveyed in Hodges (1997), is not “the real Turing.”

Yet if Turing’s use of ‘machine’ for the only partially mechanical has confused these
writers, it surely must have perplexed others less eminent, and so perhaps it is as well
that this confusion has emerged so publicly through Copeland’s work. Copeland (1999)
has also recently done the service of editing the radio broadcast made by Turing (1951),
and in a preface, amidst a fruitless hunt for oracles, he correctly draws attention to a
comment of Turing about the question of whether brains can be seen as machines. It
is a remarkable comment which suggests that he had given more thought to physics
since writing the 1948 and 1950 papers. Turing here describes the universal machine
property, applying it to the brain, but says its applicability requires that the machine
whose behavior is to be imitated “should be of the sort whose behaviour is in principle
predictable by calculation. We certainly do not know how any such calculation should
be done, and it was even argued by Sir Arthur Eddington that on account of the inde-
terminacy principle in quantum mechanics no such prediction is even theoretically 
possible.”

I described in Hodges (1983: 441) how Turing in this passage harked back to his
1930–2 wonder about the physics of the brain. Now I would consider fuller analysis
needed. It was Penrose’s question about how Turing saw computability after 1936 that
encouraged me to take Turing’s 1938–9 reference to ‘intuition’ more seriously and
suggest (Hodges 1997) that his thesis of computable mind probably came later, in about
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1941. Now, again, prompted by Penrose’s arguments, I take Turing’s reference to
quantum mechanics more seriously than in 1983, and see it as a link between his work
on computability and the burst of work in physics just before his death.

There is nothing about oracles in Turing’s 1951 sentences. (Note also that even
though now expanding the concept of ‘machine,’ Turing still addresses the question of
whether a machine can do as much as the mind, not Copeland’s question of super-
human machines.) The point is that Turing here characterized the nature of quantum
physics as possibly unpredictable in principle. Now, much is (rightly) made of Turing’s
contact with von Neumann in connection with the origin of the digital computer, but
it is less well-known that Turing’s first contact with von Neumann’s work came in 1933
from studying the mathematical foundations of quantum mechanics (Hodges 1983:
79). So, as Turing knew so early, it is the reduction or measurement process for which there
is no prediction even in principle; the evolution of the wave-function by Schrödinger’s
equation is predictable.

It is unlikely that Turing here was suggesting Penrose’s view of quantum mechanics.
More probably, he was seeking to reformulate quantum mechanics as a predictable
theory when in 1953–4 he pursued this interest in physics. He wrote to Gandy, partly
perhaps in jest, “I’m trying to invent a new Quantum Mechanics but it won’t really
work. How about coming here next week and making it work for me?” (Turing
1953–4). He was apparently focusing on the problem of the ‘watched pot paradox’ of
wave function reduction (Gandy 1954; Hodges 1983: 495). Nevertheless Turing did
acknowledge that here lay a fundamental problem for anyone assuming the com-
putability of brain function.

Turing’s interest in state-reduction, and the lack of a rule for it, should not be con-
fused with prospect of quantum computation as developed since the 1980s. Quantum
computation does not cross the boundary of computability, and moreover depends on
the predictability of unitary evolution. Yet the elementary applications of quantum com-
putation, as applied in quantum cryptography, have already led to procedures depend-
ing on non-local effects which cannot usefully be formulated as classical algorithms.
This is enough to show that logic and physics can no longer be kept apart. The inter-
pretation of the Church–Turing Thesis must necessarily be influenced by this develop-
ment. In 1983 I used the logical and the physical as an organizing principle for the life
and work of Alan Turing. But perhaps I did not follow this principle far enough. If we
look to Turing for a prophecy of developments beyond the Turing machine, our best bet
lies in his hint that the full discussion of computability requires the as yet incompletely
known laws of quantum mechanics.

It is notable that in his 1951 talk Turing also raised the question of interpreting
Gödel’s theorem, and with less assertiveness than in 1950 that the problem went away
through ‘mistakes.’ Thus although the philosophical detective, B. J. Copeland, has
handcuffed the wrong suspect, through mistaking the identity of the oracle, I agree
with him that the case as regards Turing’s thought in his last period is not entirely
closed. Turing did not draw a connection between Gödel’s theorem and quantum
mechanics, as Penrose does, but he did point to just these areas as leaving open and
awkward questions.

Turing probably took the name ‘oracle’ from Shaw’s Back to Methuselah which he
enjoyed seeing performed at Princeton. Shaw doubted that our current human span is
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long enough to gain sufficient wisdom. Turing said, perhaps echoing this pessimism,
that no individual can do very much in a life. But the collective mind allows us greater
optimism. In 1900, Planck’s quantum, and Hilbert’s problem of the consistency of
arithmetic, soon joined by Russell’s paradox, were unrelated. A century of investiga-
tions into the logical and physical have led to quantum computing, a connection
unimaginable in 1900. The next century may see more unexpected developments,
though perhaps no individual (or machine) more surprising than Alan Turing.
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42 

Modern Logic and its Role in the 
Study of Knowledge

P E T E R A .  F L AC H

Knowledge is at the heart of intelligent behavior. The ability to obtain, manipulate, and
communicate knowledge, in explicit form, is what distinguishes humans from other
animals. This suggests that any study of intelligent behavior, theoretical or experi-
mental, would have the same starting point, namely a Science of Knowledge, which
studies the basic forms of knowledge, its acquisition, and its processing.

Yet there does not seem to exist such a unified and mutually agreed science of knowl-
edge. In ancient times philosophy, the ‘love of knowledge,’ would aim to fulfill this role
of the Mother of all Sciences, but philosophy has since long lost its central place and
has mostly fragmented into specialized sciences such as physics, biology, and mathe-
matics. Computer science, a relatively young branch on the tree of knowledge, has some
aspirations to be the science of knowledge, but is currently at best a loosely connected
collection of engineering technologies and abstract mathematical theory. (In fact,
scholars of more established disciplines such as physics or chemistry often hesitate to
call computer science a science at all, because its design-oriented approach does not fit
in well with the doctrines of experimental sciences.) Artificial intelligence – the disci-
pline studying fruitful connections between intelligent behavior and computers – would
be another contender, but has been accused of overstating its claims, having unclear
goals, and applying sloppy methodology. 

In this chapter I argue that logic, in its widest sense, is – or at least, should be per-
ceived as – the science of knowledge. This would be an unsurprising statement for a
nineteenth-century logician, who would study the kind of inductive reasoning involved
in experimental sciences as eagerly as he would investigate the kind of reasoning that
is employed in mathematical proofs. However, in the last century logic seems to have
developed into a relatively specialized and not seldomly obscure branch of mathe-
matics. This is all the more paradoxical since the first half of the twentieth century has
often been called ‘the Golden Age of logic.’ Following the pioneering work of Gottlob
Frege, who developed a forerunner of predicate logic called Begriffsschrift (‘concept 
language’) in 1893, Russell and Whitehead published their three-volume Principia
Mathematica between 1910 and 1913, in which they re-established the foundations of
pure mathematics in logical terms. Whereas Kurt Gödel dealt a severe blow to the ambi-
tions of logicians when he demonstrated that any logical system powerful enough to
include natural numbers is also necessarily incomplete (i.e. the logical system allows



the formulation of true statements which are demonstrably unprovable within the
system), this didn’t stop logicians like Alonzo Church to develop ever more powerful
logical systems (e.g. combinator logic and higher-order logic). Furthermore, Alfred
Tarski invented what I consider one of the most important contributions of modern
logic, namely the notion of an independent semantics. 

1 The Key Ingredients of Logic

The duality between syntax and semantics is not only central in logic, it is also ubiqui-
tous in linguistics and computer science. Syntax deals with the structure of a logical
or linguistic expression in terms of its constituent symbols; semantics deals with 
mappings to objects capturing the meaning of expressions. Both are essentially about
relationships between expressions, rather than about individual expressions. For
instance, certain syntactic logical transformations produce new expressions from 
given ones by, for example, renaming or unifying variables. Semantics tells us under 
which conditions the syntactically modified expressions are equivalent to the original 
ones. Syntactic transformations can be chained together to form derivations, chains of
expressions each of which is obtained from the previous one by one of the possible
transformations. Semantics, on the other hand, is mostly concerned with the relation
between the initial and final expressions. Syntax is more concerned with how to
compute the final expression from the initial one, while semantics is more concerned
with what the relation between them is. This what–how duality permeates all of com-
puter science: from specification-design, via grammar-parser, to declarative-imperative
programming. 

A semantic relation with particular significance in mathematics and computer pro-
gramming is the relation of logical equivalence, requiring that under no circumstance
should a syntactic operation remove or add meaning. For instance, logically equivalent
statements of a theorem (such as ‘there exists no largest prime number’ and ‘there are
infinitely many primes’) are essentially seen as one and the same theorem. A related
notion, and in fact far more useful, is the notion of entailment or logical implication. Two
expressions are logically equivalent if, and only if, each entails the other. Many syntac-
tic transformations produce weaker expressions that are entailed by, but not logically
equivalent with, the original expression. For instance, we can specialize the expression
‘there exists no largest prime number’ to ‘4,220,851 is not the largest prime number.’
Syntactic transformations which specialize expressions into weaker entailed expres-
sions are called sound transformations. It may seem wasteful to throw away knowledge
in this way, but logicians are often interested in complete sets of syntactic trans-
formations which, when applied in every possible way, generate all possible implied
expressions. 

Soundness and completeness constitute the canon of mathematical logic. They
allow us to reformulate mathematical knowledge into more manageable specializations
about the particular topic we are interested in. They also allow us to combine several
pieces of knowledge: for instance, from ‘4,220,851 is not the largest prime number’
and ‘4,220,851 is a prime number’ we can infer ‘4,220,851 is not the largest natural
number.’ Sound and complete transformations, or inference rules as they are often called,
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are also central in many areas of computer science, for instance when we want to prove
that a particular computer program meets its specification. In all these cases the 
starting point (the mathematical axioms, the grammar, or the program specification) 
is already, in an abstract sense, complete. If a mathematical theorem embodies 
knowledge that was not already present in the axioms we started from, the theorem is
simply wrong. In mathematics the only allowed form of reasoning is sound reasoning
or deduction. 

2 Non-Deductive Reasoning Forms

In experimental sciences, and indeed in everyday life, the overwhelming majority of
inferences is not deductive. Any physical theory that is to be of any use is expected to
generalize the observations, in the sense that it makes predictions about as yet unob-
served phenomena. If inference of such a theory from observations were required to
be sound, no such predictions would be possible. Similarly, if our observations are insuf-
ficient to warrant a certain conclusion, we are usually happy to make educated guesses
about the missing knowledge, even if this renders our inference, strictly speaking,
unsound. The good news about giving up soundness is that our inferences may become
much more useful; the bad news is that they may turn out to be wrong. 

The fact that in science and everyday life non-deductive reasoning is ubiquitous 
suggests that we humans are relatively successful in avoiding most of the pitfalls of
unsound reasoning, and that our non-deductive inferences are none the less correct
most of the time. It follows that unsound reasoning comes in kinds – for instance, there
is a trivial distinction between incorrect reasoning (such as inferring that all swans are
black after observing 10 white swans) from unsound but potentially correct reasoning
(such as inferring that all swans are white from the same observations). More inter-
estingly, we would expect there to be different forms of unsound reasoning: one to deal
with missing premises, one to propose a theory generalizing given observations, one for
performing what-if analysis, one to explain observed behavior of a particular object,
and so on. We would also expect to have some way to assess the reliability of an
unsound inference, expressed in terms of, for example, the predictions it makes, the
explanations it provides, the assumptions it requires, and the observations on which it
was based. 

There is a plethora of interesting research questions to explore. Which different
kinds of unsound reasoning can be meaningfully distinguished? How different is each
of them from deduction? Can we draw up a list of necessary and sufficient conditions
for any kind of reasoning to be called deductive? Can we remove conditions from this
list, and still obtain sensible but unsound forms of reasoning? Are soundness and com-
pleteness relative notions, for example does it make sense to talk about inductive sound-
ness as distinct from deductive soundness? All these are issues one would expect to be
central on most logicians’ agendas. Yet, they seem to have fallen off during the ‘Golden
Age’: 

The central process of reasoning studied by modern logicians is the accumulative deduc-
tion, usually explained semantically, as taking us from truths to further truths. But 



actually, this emphasis is the result of a historical contraction of the agenda for the field.
Up to the 1930s, many logic textbooks still treated deduction, induction, confirmation, and
various further forms of reasoning in a broader sense as part of the logical core curricu-
lum. And moving back to the 19th century, authors like Mill or Peirce included various
non-deductive modes of reasoning (induction, abduction) on a par with material that 
we would recognize at once as ‘modern’ concerns. Since these non-deductive styles of
reasoning seemed irrelevant to foundational research in mathematics, they moved out
quietly in the Golden Age of mathematical logic. But they do remain central to a logical
understanding of ordinary human cognition. These days, this older broader agenda 
is coming back to life, mostly under the influence of Artificial Intelligence, but now
pursued by more sophisticated techniques – made available, incidentally, by advances in
mathematical logic. (van Benthem 2000) 

To be sure: I am not arguing that logicians stopped investigating the research issues 
I indicated above – on the contrary, there have been many exciting developments
regarding these questions, some of which will be covered in this chapter. However, they
do seem to have disappeared from the main logical agenda. I believe it is important to
revive the broader logical agenda, on which mathematical logic is an important
subtopic but not the only one. If anything, such a broader agenda would stimulate
cross-fertilization among subtopics, something which happens too seldom nowadays: 

Some members of the traditional logic community are still very conservative in the sense
that they have not even accepted non-monotonic reasoning systems as logics yet. They
believe that all this excitement is transient, temporarily generated by computer science 
and that it will fizzle out sooner or later. They believe that we will soon be back to the 
old research problems, such as how many non-isomorphic models does a theory have in
some inaccessible cardinal or what is the ordinal of yet another subsystem of analysis. I
think this is fine for mathematical logic but not for the logic of human reasoning. There is
no conflict here between the new and the old, just further evolution of the subject.
(Gabbay 1994: 368, note 7)

In the remainder of this chapter I will be considering the following fundamental ques-
tion: which are the main forms of reasoning that make up the logical agenda, and what
are their key characteristics? Informally, reasoning is the process of forming arguments,
that is drawing conclusions from premises. By fixing the relation between premises and
acceptable conclusions we can obtain various reasoning forms. For instance, an argu-
ment is deductive if the conclusion cannot be contradicted (or defeated) by new knowl-
edge without contradicting the premises also; a form of reasoning is deductive if it only
allows deductive arguments. We also say that deductive reasoning is non-defeasible. A
logical system, or logic for short, is a particular formalization of a reasoning form. There
may exist several logics formalizing a particular reasoning form; for instance, there is
a range of deductive logics, such as modal, temporal, relevance, and intuitionistic
logics, each formalizing certain aspects of deductive reasoning. These deductive logics
do not necessarily agree on which arguments are deductively valid and which are not.
For example, the argument ‘two plus two equals four; therefore, if the moon is made of
green cheese, then two plus two equals four’ will be rejected by those who favor a causal
or relevance interpretation of if–then rather than a truth-functional interpretation.
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However, as soon as such an argument is accepted as deductively valid, the only way
to defeat the conclusion is by denying that two plus two equals four, and this defeats
the premises also. 

Non-deductive reasoning forms, on the other hand, are defeasible: a conclusion may
be defeated by new knowledge, even if the premises on which the conclusion was based
are not defeated. For instance, the argument ‘birds typically fly; Tweety is a bird; there-
fore, Tweety flies’ is non-deductive, since Tweety might be an ostrich, hence non-
typical. The argument ‘every day during my life the sun rose; I don’t know of any
trustworthy report of the sun not rising one day in the past; therefore, the sun will rise
every future day’ is non-deductive, since if the sun would not rise tomorrow, this would
invalidate the conclusion but not the premises. The Tweety-argument is a well-known
example of what I call plausible reasoning: reasoning with general cases and exceptions.
An important observation is that plausible reasoning encompasses deductive reason-
ing: if we know that Tweety is a typical bird, the argument will be deductively valid. In
this sense plausible reasoning is ‘supra-deductive’ or, as I will call it, quasi-deductive.
Another example of quasi-deductive reasoning is so-called counterfactual reasoning, or
‘what-if ’ analysis, starting from premises known to be false. For instance, the argument
‘if you hadn’t called me this morning, I would surely have missed my train’ is a coun-
terfactual argument, as both premise and conclusion are false in the intended inter-
pretation. The point of such an argument is to investigate what would change if certain
circumstances in the world had been different. 

Other reasoning forms do not aim at approximating deduction, hence do not include
deduction as a special case. I will call such reasoning forms a-deductive. The sunrise
argument is an example of induction, an a-deductive reasoning form aimed at general-
izing specific observations (also called evidence) into general rules or hypotheses. Note
that I do not yet claim to have defined plausible or inductive reasoning in any way. Like
with all forms of reasoning, this requires a formal definition of the consequence rela-
tion between premises and acceptable conclusions, analogous to deductive entailment.
(The general term I will use for such a relation is consequence: thus, we will speak about
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‘inductive consequence’ or ‘plausible consequence,’ and avoid potentially confusing
terms like ‘inductive validity’ or ‘plausible soundness’). 

Another form of a-deductive reasoning is abduction, a term originally introduced 
by C. S. Peirce to denote the process of forming an explanatory hypothesis given some
observations (a hypothesis from which the observations can be deduced). For instance,
the argument ‘All the beans from this bag are white; these beans are white; therefore,
these beans are from this bag’ is an abductive argument. In recent years, abduction 
has become popular in the logic programming field, where it denotes a form of
reasoning where the general explanation is known, but one of its premises is not 
known to be true; abduction is then seen as hypothesizing this missing premise. As 
a consequence, abduction and induction are viewed as complementary: induction
infers the general rule, given that its premises and its conclusion hold in specific cases;
abduction infers specific premises, given the general rule, and specific instances of
its conclusion and some of its premises. Also, there are strong links between abduction
and plausible reasoning: abduction can answer the question ‘what do I need to assume
about the bird Tweety if I want to infer that it flies’ (answer: that it is a typical bird). 
I will expand on some of these issues below – the reader interested in finding out 
more about the relation between abduction and induction is referred to (Flach and
Kakas 2000a). 

The classification of reasoning forms I am advocating is depicted in Figure 42.1.
While the justification for some of the distinctions made here have been admittedly
sketchy, they will be elaborated in the rest of the chapter. The reader should also be
aware that this classification should be taken as a starting point and is not intended to
be set in stone. The main point is that on the map of logic, deduction occupies but a
small part. I will now proceed to discuss some of these reasoning forms in more detail. 

3 Plausible Reasoning

I should start by stressing that the term ‘plausible reasoning’ is not generally accepted
– reasoning with exceptions is normally referred to as non-monotonic reasoning.
Monotonicity is a technical term denoting that the set of conclusions grows (monoton-
ically) with the set of premises. In other words, addition of a premise to a given 
argument never invalidates the conclusion – the same property as what I called non-
defeasibility above. Since any non-deductive reasoning form is defeasible, it follows that
any non-deductive reasoning form is non-monotonic. Thus, the property of non-
monotonicity is of limited use in singling out a particular non-deductive reasoning
form; for this reason I prefer a different (and more meaningful) term for reasoning with
general rules and exceptions. (Default reasoning would be a good term, but this seems
too strongly connected to a particular logic, i.e. default logic.)

Plausible reasoning is the process of ‘tentatively inferring from given information
rather more than is deductively implied’ (Makinson 1994). It can thus be said to be
more liberal or more credulous than deductive reasoning. Correspondingly, the set of
arguments accepted by a plausible reasoning agent (also called a consequence relation,
and defined as a subset of L ¥ L, where L is the language) can be divided into a deduc-
tive part and a plausible part. The deductive part corresponds to arguments not 
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involving any rules which have exceptions. (Alternatively, one can deductively extend
a set of plausible arguments by treating all exceptions to rules as inconsistencies from
which everything could be inferred, although this would be rather less interesting.) 

The non-monotonicy of plausible reasoning can be demonstrated as follows: from
bird one would infer flies, but from bird and penguin one wouldn’t infer flies. That is, the
rule if bird then flies is a default rule which tolerates exceptions, and the formula bird and
not flies is not treated as an unsatisfiable formula from which anything can be inferred.
The question then arises as to what other properties of deductive reasoning, besides
monotonicity, are affected by allowing exceptions to rules. This is the main question
addressed in a seminal paper by Kraus et al. (1990). In general, propositional deduc-
tive reasoning can be characterized by the following rules: 

Reflexivity: a |~ a for all a;
Monotonicity: if a |~ b and g |= a, then g |~ b;
Right Weakening: if a |~ b and b |= g, then a |~ g;
Cut: if a |~ b and aŸb |~ g, then a |~ g;
Left Or: if a |~ g and b |~ g, then a⁄b |~ g.

In these rules, a |~ b indicates that the reasoner in question accepts the inference from
a to b, possibly with respect to an implicit body of background knowledge. |=, on the
other hand, stands for classical deductive consequence (with respect to the same back-
ground knowledge). These rules can be combined: for instance, Reflexivity and Right
Weakening together imply that a |~ g whenever a |= g, that is the consequence relation
|~ is supra-classical. 

Kraus et al. prove that the above five rules characterize deductive reasoning. Notice
that equivalent rule sets exist: for instance, Cut could be replaced by Right And, and
Left Or could be replaced by Right Implication: 

Right And: if a |~ b and a |~ g, then a |~ bŸg;
Right Implication: if aŸb |~ g, then a |~ bÆg.

Furthermore, they study the kinds of reasoning that result from weakening some of
these rules. One variant they consider is obtained by replacing Monotonicity with the
following two rules: 

Left Logical Equivalence: if a |~ b and |=a´g, then g |~ b;
Cautious Monotonicity: if a |~ b and a |~ g, then aŸb |~ g.

Both rules are clearly entailed by Monotonicity – Cautious Monotonicity, in particular,
states that premises can be strengthened with their plausible consequences. This kind
of plausible reasoning is called preferential reasoning, because it can be semantically
modeled by assuming a (partial) preference order between states, where a state is a set
of models, and stipulating that a |~ b if and only if every most preferred state satisfying
a also satisfies b (a state satisfies a formula iff all its models satisfy the formula).
Preferential reasoning can be further weakened by dropping the condition that the 
preference relation between states be a partial order; this invalidates Left Or but none
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of the other rules. This kind of reasoning is called cumulative reasoning because Cut
and Cautious Monotonicity together imply that if a |~ b, then a |~ g if and only if aŸb
|~ g, that is plausible consequences can be accumulated in the premises. 

From the foregoing it follows that deductive reasoners are preferential (with empty
preference relation), and preferential reasoners are cumulative. However, a more mean-
ingful comparison between reasoning forms X and Y would be obtained if we could
establish, for each X-reasoner, a unique maximal subset of arguments that satisfy the
rules of Y. Such a reduction from preferential to deductive reasoning was given in (Flach
1998). Basically, it involves using Monotonicity in the opposite direction (if g |= a and
g �/ b, then a �/ b) to remove arguments that are not deductively justified. Semantically,
this amounts to ignoring the preference relation. (As stated before, we can also use
Monotonicity in the forward direction to turn all plausible arguments into deductive
ones, amounting to removing all states that satisfy exceptions to rules; however, this
would rather endorse the less natural view that plausible reasoning is the process of
inferring less than deductively implied.) 

There is an interesting analogy between non-monotonic reasoning and non-
Euclidean geometry. For many centuries it was assumed that Euclid’s fifth axiom 
(parallel lines don’t intersect) was self-evident, and that denying it would lead to incon-
sistencies. However, non-Euclidean geometry was proved to be consistent in the early
nineteenth century. Similarly, many logicians argued that logic was necessarily mono-
tonic, and that the concept of a non-monotonic logic was a contradiction in terms.
However, there is a difference between monotonicity as a property of mathematical rea-
soning, and monotonicity of the logic under study. Kraus et al. used the deductive meta-
logic of consequence relations to formalize various forms of non-deductive reasoning.
Rules such as Cautious Monotonicity are in fact rationality postulates that need to be
satisfied by any rational reasoning agent of the class under study. This is a crucial
insight, and their approach establishes a methodology that can be applied to analyze
other forms of reasoning as well. This will be explored in the next section. 

4 Induction and Abduction

Induction is the process of generalizing specific evidence into general rules. A simple
form of induction is the following sample-to-population inference: 

X percent of observed Fs are Gs;
therefore, (approximately) X percent of all Fs are Gs. 

This argument schema has a categorical counterpart: 

All of observed Fs are Gs;
therefore, all Fs are Gs. 

or – since the induced rule need not be a material implication –

All objects in the sample satisfy P(x);
therefore, all objects in the population satisfy P(x). 
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These formulations of inductive generalization, however, obscure a crucial issue: nor-
mally, the predicate P to be used in the general rule is not explicitly given in the obser-
vations. Rather, the key step in induction is to distill, out of all the available information
about the sample, the property that is common to all objects in the sample and that will
generalize reliably to the population. I will refer to this step as hypothesis generation. 

Hypothesis generation is an often ignored step in philosophy of science. For instance,
in Conjectures and Refutations Popper describes at length how to test a conjecture, but
remains silent about how to come up with a conjecture in the first place. To refer to ill-
understood phenomena such as creativity in this context is to define the problem away.
Moreover, if we want to automate scientific discovery or learning (object of study in the
subfield of artificial intelligence called machine learning), we have to approach hypoth-
esis generation in a principled way. Hypothesis generation is not a wholly irrational
process, and the question thus becomes: what are the rationality postulates governing
inductive hypothesis generation? 

In fact, this question was already considered by the American philosopher Charles
Sanders Peirce, who wrote in 1903: 

Long before I first classed abduction as an inference it was recognized by logicians that the
operation of adopting an explanatory hypothesis – which is just what abduction is – was
subject to certain conditions. Namely, the hypothesis cannot be admitted, even as a hypoth-
esis, unless it be supposed that it would account for the facts or some of them. The form of
inference, therefore, is this:

The surprising fact, C, is observed;
But if A were true, C would be a matter of course,
Hence, there is reason to suspect that A is true.

Thus, A cannot be abductively inferred, or if you prefer the expression, cannot be abduc-
tively conjectured until its entire content is already present in the premiss, “If A were true,
C would be a matter of course.” (Peirce 1958: 5.188–9)

Here, Peirce calls the process of explanatory hypothesis generation abduction (while he
uses the less tentative phrase “adopting an explanatory hypothesis” above, elsewhere
(5.171) he defines abduction as “the process of forming an explanatory hypothesis,”
i.e. “abduction merely suggests that something may be”). 

Nowadays people use the term ‘abduction’ in various senses (even Peirce had ini-
tially a different, syllogistic view of abduction), so a brief digression on these issues may
be in order – the interested reader is referred to (Flach and Kakas 2000b) for a more
extensive discussion. In philosophy, it is customary to view abduction as ‘reasoning to
the best explanation’ (Lipton 1991). This, however, combines hypothesis generation
with hypothesis selection, only the former being a purely logical process amenable to
logical analysis. In artificial intelligence, abduction is usually perceived as reasoning
from effects to causes, or from observations to explanations: here, an abductive hypoth-
esis is not a general rule or theory, as in induction, but rather a specific explanation or
cause relating to the observed individual. Thus, abductive hypotheses explain but do
not generalize. Induction, on the other hand, aims at generalizing beyond the observed
individuals. While in inductive argument schemas such as the above the induced
hypotheses entails the observations, this is not an explanation in the same sense as a
cause explains an effect. 
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In general, we cannot distinguish between abductive explanations and inductive
generalisations by methods based on entailment alone, including the method I am
about to describe. However, the view of induction as generalization does suggest an
alternative formalization which is closer to both confirmation theory (in the qualitative
sense of Hempel) and Kraus et al.’s (1990) account of plausible reasoning. In the
remainder of this section I will discuss rationality postulates for explanatory reason-
ing, including abduction and explanatory induction, and then present alternative pos-
tulates for confirmatory induction in the next section. 

Returning to Peirce, the logical form of abductive hypothesis generation he sug-
gested can be simplified to ‘from C, and A |= C, abduce A’ or, introducing the symbol |<
for abductive inference, ‘if A |= C, then C |< A’. We can now use Kraus et al.’s (1990)
consequence relation methodology to formulate rationality postulates for hypothesis
generation. We start with some general principles:

Verification: if a |< b and aŸb |= g, then aŸg |< b;
Falsification: if a |< b and aŸb |= g, then aŸÿg |</ b.

Verification and Falsification state that if b is a possible hypothesis given observations
a, and g is a prediction on the basis of b (and a), then b is not ruled out by observing
that g is true, but falsified by observing that g is false. (While the names of these rules
have been inspired by the debate between the logical positivists and Popper, it should
be stressed that – under my interpretation of a |< b as ‘b is a possible hypothesis given
evidence a’ – Verification is a fairly weak rule to which one can hardly object.) 

Falsification is different from the rules we have seen until now, because it draws 
negative conclusions about the consequence relation |<. This means that some of Kraus
et al.’s (1990) rules need to be adapted when formulated in our framework. For
instance, the following set of ‘explanatory’ rules is obtained by rewriting the rules given
in Section 3 for deduction, substituting b |< a for a |~ b (we use the variant with Right
And and Right Implication): 

Reflexivity: a |< a for all a;
Right Strengthening: if b |< g and a |= g, then b k a;
Left Weakening: if b |< a and b |= g, then g |< a;
Left And: if b |< a and g |< a, then bŸg |< a;
Left Implication: if g |< aŸb, then bÆg |< a.

The last three rules make immediate sense for explanatory hypothesis generation. In
particular, Left Weakening states that the set of explanations decreases monotonically
when the observations increase; it is a convergence property for induction (it can be
combined with Verification into a single rule). Left And states that if a is a possible
hypothesis explaining b and g observed separately, it also explains b and g observed
together; this enables incremental induction. Left Implication deals with background
knowledge: if b is a necessary part of the explanation of g, then it can also be added as
a condition to the observation. 

On the other hand, the first two rules contradict Falsification and need to be weak-
ened by adding an admissibility requirement on a (for instance, that a explains some-
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thing – e.g. itself). Without going into details, we mention that the following set of rules
has been demonstrated to characterize consistent explanatory reasoning: 

Explanatory Reflexivity: if b |< b and ÿa |</ b, then a |< a;
Admissible Right Strengthening: if b |< g, a |< a and a |= g, then b |< a;
Predictive Left Weakening: if b |< a and aŸb |= g, then g |< a;
Left And: if b |< a and g |< a, then bŸg |< a;
Left Implication: if g k aŸb, then bÆg |< a;
Left Consistency: if a |< b then ÿa |</ b.

While some of these postulates may be debatable (for instance, one may argue that
explanatory reasoning is inherently irreflexive), they do provide a starting point for
studying various forms of explanatory reasoning. Instead of a single ‘logic of induc-
tion’, I have proposed a modular system of meta-level rationality postulates that can be
adapted to model various forms of reasoning. In addition, one can study semantic char-
acterizations of these postulates. The interested reader is referred to (Flach 2000a,
2000b). 

5 Confirmatory Induction

The preceding set of postulates concentrated on induction and abduction as explana-
tory reasoning. There is an alternative view of induction as inferring hypotheses that
are confirmed by the observations. This view was pioneered by Carl G. Hempel, who pro-
posed both a set of rationality postulates (or, as he called them, adequacy conditions)
and a material definition of confirmation. The following is a list of Hempel’s adequacy
conditions (Hempel, 1945: 103–6, 110), reformulated in our meta-language: 

Entailment: if a |= b, then a |< b;
Right Weakening: if a |< b and b |= g, then a |< g;
Right And: if a |< b and a |< g, then a |< bŸg;
Consistency: if a |< b and a |=/ ÿa, then a |=/ ÿb;
Left Logical Equivalence: if a |< b and |=a´g, then g |< b;

For instance, the first condition states that entailment ‘might be referred to as the
special case of conclusive confirmation’ (Hempel 1945: 107). Each of these postulates
is reasonable, except perhaps Right And which seems unjustified if the evidence is too
weak to rule out incompatible hypotheses – in other words, it expresses a completeness
assumption regarding the observations. 

The main reason for Hempel to formulate his adequacy conditions was to verify his
material definition of confirmation against them – consequently, there is no guarantee
that they are complete in any sense. The following set of rationality postulates for con-
firmatory induction can be shown to be complete with respect to a suitably devised
semantics:

Confirmatory Reflexivity: if b |< b and b |</ ÿa, then a k a;
Predictive Right Weakening: if a |< b and aŸb |= g, then a |< g;
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Right And: if a |< b and a |< g, then a |< bŸg;
Right Consistency: if a |< b then a |</ ÿb;
Left Logical Equivalence: if a |< b and |=a´g, then g |< b;
Strong Verification: if a |< b and a |< g, then aŸg |< b;
Left Or: if a |< g and b |< g, then a⁄b |< g.

As before, I disallow contradictory observations (unlike Hempel) – a weaker form of
Entailment follows from Predictive Right Weakening, and a weak form of Reflexivity
has been added as a separate rule (notice that Reflexivity was implied by Hempel’s rules
as an instance of Entailment). Two new rules have been added. Whereas Verification
states that predictions g can be added to confirming observations a for hypothesis b,
Strong Verification states that this can also be done whenever g is confirmed by a. As
with Right And, the underlying assumption is that the observations are complete
enough to have all confirmations ‘point in the same direction.’ Left Or can be seen as a
variant of Left Weakening, discussed in the context of explanatory reasoning. While
Left Weakening is clearly invalid in the confirmatory case (if we weaken the observa-
tions, there will presumably come a point where they cease to confirm the hypothesis),
Left Or states that separate observations confirming a hypothesis can be weakened by
taking their disjunction. 

The semantics against which these postulates are provably complete is a variant of
Kraus et al.’s (1990) preferential semantics for plausible reasoning. In fact, the postu-
lates for confirmatory induction are closely related to postulates considered in Section
3: for instance, Strong Verification is identical with Cautious Monotonicity. This is
perhaps surprising at first sight, but can be explained by noting that plausible and con-
firmatory reasoning make similar assumptions in order to go beyond deduction: while
in plausible reasoning one commonly assumes that anything which is not known to be
an exception conforms to the rule, in induction one assumes that unknown objects
behave similarly to known objects. 

We end this section on a philosophical note. Hempel’s name is associated with a
number of paradoxes, one of which is the confirmation paradox. This paradox arises
when one considers to add a variant of Right Strengthening to the postulates for con-
firmatory induction. To borrow Hempel’s example: 

Is it not true, for example, that those experimental findings which confirm Galileo’s law, or
Kepler’s laws, are considered also as confirmation Newton’s law of gravitation?’ (Hempel
1945: 104)

The problem is that the combination of Right Weakening and Right Strengthening
immediately leads to a collapse of the system, since arbitrary observations now confirm
arbitrary hypotheses. However, Hempel confuses confirmation with explanation here.
Explanatory hypotheses can be arbitrarily strengthened (as long as they remain con-
sistent with the observations), but not necessarily weakened; confirmed hypo-
theses can be arbitrarly weakened, but only strengthened under certain conditions. It 
might be possible to formalize a form of hypothesis generation where hypotheses 
both explain and are confirmed by the observations (this is an open problem), but 
then there would be strong conditions on both strengthening and weakening of the
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hypothesis. Distinguishing between explanatory and confirmatory induction solves the
confirmation paradox. 

6 Concluding Remarks

This short chapter has been written as a re-appraisal of logic as the science of knowl-
edge. The goal of logic is to provide a catalogue of reasoning forms. Deduction is but
one of the possible forms of reasoning, easiest to formalize but with limited importance
for intelligence. It is possible to characterize non-deductive or defeasible reasoning
forms mathematically, by concentrating on their purely logical part, viz. hypothesis gen-
eration. I have suggested that such characterization is best performed on the meta-level,
stating postulates that circumscribe rational behavior of reasoning agents. Possible
rationality postulates for plausible, explanatory, and confirmatory reasoning have been
discussed at some length. 

A final word on the issue of hypothesis selection, which is the equally crucial but
complementary step in intelligent reasoning. In my view, the process of evaluating pos-
sible hypotheses to determine which one(s) will be actually adopted is an extra-logical
one. By this I mean that it does not give rise to a proof theory in any interesting sense.
Furthermore, any hypothesis evaluation procedure will be construed from measures of
probability, interestingness, or information content. Logic deals with possible conclu-
sions, not actual ones. This is even true for deduction, which only characterizes tau-
tologies, not interesting mathematical theorems. My conjecture is that successful
evaluation procedures (e.g. based on Bayesian or subjective probabilities) will be applic-
able across a range of different reasoning forms. Thus, while hypothesis generation dis-
tinguishes reasoning forms, hypothesis evaluation unifies them. 
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Actions and Normative Positions: 
A Modal-Logical Approach

RO B E RT D E M O L O M B E A N D A N D R E W J.  I .  J O N E S

1 An Approach to the Logic of Action

Influenced by the earlier work of, in particular, Alan Ross Anderson (1967), Stig Kanger
(1957; Kanger and Kanger 1966), and Georg Henrik von Wright (1963), Ingmar Pörn
produced in 1970 a work entitled The Logic of Power.

The aim of the book was to develop some modal-logical tools and to apply them to
the characterization of such concepts as influence, control, right, and norm – concepts
which figure centrally in our understanding of social systems. Not surprisingly, a logic
of action was one of the core components of Pörn’s formal-logical framework.

Action sentences of the kind

(1) John opens the door

were assigned the logical form

(2) Di A

to be read as ‘i brings it about that A,’ where Di is a relativized modal operator and A
describes the state of affairs brought about. Pörn (1970: 4–5) recognized that the
logical form he adopted for (1) was a simplification. Although (1) entails

(3) John brings it about that the door is open.

(3) certainly does not entail (1). If, for example, it is the case that

(4) John keeps the door open

then (3) is true whilst (1) may well be false. As Pörn pointed out, the difference in sense
between (1) and (4) may be explained by reference to pairs of successive occasions. The
truth of (1) requires that, on the earlier of two occasions, the door in question is not
open, and then John does what he does and – as a result – the door is open on the later
occasion. Whereas the truth of (4) requires the door to be open on the earlier occasion



and – as a result of John’s action – still open on the later occasion. The ‘brings it about
that . . .’ representation of action sentences is a simplification in (at least) the sense that
(2) does not discriminate between (1) and (4). Marking an important point of contrast
with the approach of von Wright (1963), Pörn noted that “. . . the notion of a pair of
successive occasions is not fundamental to our logic of action” (1970: 4). We might
say that Pörn’s logic of action sentences is an abstraction, which ignores the change-
of-state-over-time aspect of actions, and focuses instead on just two factors: who the
agent is, and what state of affairs it is that results from the agent’s action. For certain
purposes – and in particular for the applications of the logic of action that interested
Pörn – an abstraction of this kind is entirely appropriate. We may also note, in passing,
that Pörn’s approach ignored too the question of the means by which an agent secured,
through his action, a particular result. (But in his later work, Pörn (1977: chapter 3)
gave an analysis of sentences of the kind ‘i brings it about that A by bringing it about
that B’ which drew on automata theory.)

The logic Pörn assigned to sentences of the form DiA was that of a (relativized)
normal modality of type KT in the Chellas (1980) classification. (We ignore here Pörn’s
treatment of quantification and modality, and restrict attention to the propositional
modal logic). In barest outline, a semantical characterization of the Di-logic may be
given as follows: a standard model M is a triple ·W,RD

i,VÒ, where W is a set of possible
worlds, RD

i is a binary relation on W (defined for each agent i), and V assigns to each
atomic sentence a subset of W (the set of worlds at which that atomic sentence is true).
RD

i is required to be reflexive: that is, for each world uŒW, and for each agent i,
·u,uÒŒRD

i. Truth conditions for non-modal sentences are specified in the usual way for
classical propositional logic, and for modal sentences as follows:

(C.D) M,u |= DiA iff M,v |= A for all v Œ W such that ·u,vÒ Œ RD
i

(C.C) M,u |= CiA iff M,v |= A for at least one v Œ W such that ·u,vÒ Œ RD
i

As usual, a sentence is said to be valid iff it is true at all worlds in all models, and where
A is valid we write |= A.

Pörn read sentences of the form CiA as “it is possible for all that i does that A.” Given
the structure of the truth condition (C.C), it is apparent that the intuitive understand-
ing of the accessibility relation RD

i is as follows: ·u,vÒ Œ RD
i iff v is possible relative to u

with respect to all that i does at u. It is readily shown that sentences of the following
forms are valid:

DDC. DiA ´ ÿ Ci ÿ A
DM. Di(A Ÿ B) Æ (DiA Ÿ DiB)
DC. (DiA Ÿ DiB) Æ Di(A Ÿ B)
DK. (DiA Ÿ Di(A Æ B)) Æ DiB
DT. DiA Æ A

Furthermore, the following rule holds:

DRK. If |= (A1 Ÿ A2 Ÿ . . . Ÿ An) Æ A then
|= (DiA1 Ÿ DiA2 Ÿ . . . Ÿ DiAn) Æ DiA for n ≥ 0.
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DT. expresses what is sometimes referred to as the ‘success’ condition, and captures the
obvious truth that if an agent brings it about that A, then A is indeed the case. The
validity of DT. turns essentially on the reflexivity of the accessibility relation.

For the cases n = 0 and n = 1, we have the following instances, respectively, of DRK.:

DRN. If |= A then |= DiA
DRM. If |= (A1 Æ A) then |= (DiA1 Æ DiA)

As logical properties of the action operator, both of these two rules are intuitively prob-
lematic. The first says that each agent brings about all logical truths – but, surely, that
which is logically true is unavoidably the case, and thus falls outside the scope of
anyone’s agency? The second says that any agent brings about all of the logical conse-
quences of that which he brings about. So, for instance, if i brings it about that j brings
it about that A, then – in virtue of DRM. and DT. – i brings it about that A. But there
are certainly interpretations of ‘bringing it about’ for which we would not want a prop-
erty of this kind to hold, as when we say that although i brought it about that j brought
it about that A, i did not himself bring it about that A. A second problematic instance
of DRM. arises if we consider expressions of the kind ‘i brings it about that j knows that
A.’ Since j’s knowing that A logically implies the truth of A, it will now follow from
DRM. that i brings it about that A if he brings it about that j knows that A.

It is fair to say that problems of the kind raised by DRN. and DRM. led Pörn (and
Kanger) to move away from using a normal modality (in the sense of Chellas (1980))
for the characterization of ‘brings it about that . . .’ (all normal modalities are closed
under logical consequence in the sense expressed by the rule DRK.).

Pörn (1977) abandoned the idea that the logic of expressions of the kind ‘i brings it
about that A’ could be articulated in terms of DiA alone. Following Kanger (1972), he
adopted the hypothesis that sentences of the form DiA should be read “it is necessary
for something which i does that A,” and that “i brings it about that A” entails DiA. The
question then, of course, is to decide what else, in addition to ‘necessity for something
which i does’ is involved in ‘i brings it about that . . .’. The answer Pörn and Kanger pro-
vided can best be introduced by the following remark:

The ascription of causality to an agent normally suggests either that but for his action it
would not be the case that A or that but for his action it might not be the case that A. The
notions of counteraction conditionality are not present in the concept of that which is 
necessary for something that an agent does. As evidence of this one may cite the fact . . .
that if it is logically necessary and hence unavoidable that A, then A is also necessary for
something that an agent does. (Pörn 1977: 5)

To capture the notion of counteraction conditionality, Pörn introduced modal 
expressions of the form D¢i A, read as ‘but for i’s action it would not be the case that 
A.’ In the semantics, a new accessibility relation Ri

D¢ (relativized to each agent i) was
incorporated; where ·u,vÒ Œ Ri

D¢, v is said to represent a situation in which i does not do
any of the things that he does in u.1 D¢-expressions were assigned the following truth
condition:
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(C.D¢) M,u |= D¢i A iff M,v |= ÿ A for all v Œ W such that ·u,vÒ Œ Ri
D¢.

The new relation, Ri
D¢, was required to be irreflexive and serial. (We note in passing,

without entering into details, that Pörn also adopted conditions linking the two acces-
sibility relations Ri

D and Ri
D¢, and that in Pörn (1977) Ri

D was required to be both reflex-
ive and transitive).

Expressions of the form C¢iA were read ‘but for i’s action it might not be the case that
A’ and assigned the following truth conditions:

(C.C¢) M,u |= C¢iA iff M,v |= ÿ A for at least one v Œ W such that ·u,vÒ Œ Ri
D¢.

It is now readily shown that sentences of the following forms are valid:

D¢D¢C¢. D¢iA ´ ÿ C¢iÿA
D¢D. D¢iA Æ C¢iA

Furthermore, D¢ is a normal modality, and thus the counterparts to the schemas
DM., DC., and DK., and to the rule DRK., also hold for the D¢ modality.

So the action logic now contains two normal modalities and their respective duals,
in terms of which a new analysis of sentences of the type ‘i brings it about that A,’ now
represented by EiA, can be formulated. Pörn opted for the following definition:

EiA = dfDiA Ÿ C¢iA

So i brings it about that A iff A is necessary for something that i does and but for i’s
action it might not be the case that A. The two conjuncts represent, respectively, a 
positive and a negative condition on agent causation. (Here there is a clear point of
similarity with the STIT-analysis of agency later put forward by Nuel Belnap and his
associates (e.g. 1990)). A comparative overview is way beyond the scope of the present
paper, but valuable accounts of these and related approaches to the logic of action are
to be found in Elgesem (1997) and Hilpinen (1997).

The E-modality is defined as a conjunction of two normal modalities, but it is not
itself normal. For instance, the counterpart to DRN.:

ERN. If |= A then |= EiA

does not hold. On the contrary, the following rule is valid:

ERÿN. If |= A then |= ÿ EiA

and this captures in an obvious way the claim that logical truths fall outside the scope
of anyone’s agency. Furthermore, neither the counterpart to DRM. nor the counterpart
to DM. is valid for the E-modality. Since the E-modality is classical in the sense of being
closed under logical equivalence (see Chellas 1980), the validity of the E-counterpart
to DM. – call it EM. – would carry the disastrous consequence that there are no true
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sentences of the form EiA. The explanation is this: suppose EiA; then, since A is logi-
cally equivalent to (A Ÿ T), where T is any tautology, it follows that Ei (A Ÿ T). But then
if EM. were to be valid it would follow that EiT, a result which is of course inconsistent
with the valid rule ERÿN.

The E-counterparts to DC., DK. and DT. are each valid.
An alternative definition of the ‘brings it about’ operator was offered by Kanger

(1972: 108):

E*i A = dfDiA Ÿ D¢i A

according to which an agent i brings it about that A iff A is necessary for something
that i does and but for i’s action it would not be the case that A. Intuitively, this version
of the negative condition on agency appears to demand too much; for it may be that i
brings it about that A, but that in some of the situations which could have arisen if he
had not acted in the way he did, A is still the case – perhaps as a result of some other
agent’s action. Considerations of this sort favor Pörn’s weaker formulation of the 
negative condition. There is also a technical difficulty with Kanger’s definition, as has
been pointed out by Jones (reported in Pörn 1977: 5). Suppose that i brings it about
that A and that he brings it about that if A then B. That is, on Kanger’s definition:

(5) DiA Ÿ D¢iA Ÿ Di (A Æ B) Ÿ D¢i(A Æ B)

The second and fourth conjuncts require that, in all of the counteraction conditional
alternatives to the given world, both ÿA and ÿ(AÆB) are true. But since the 
conditional here is the truth-functional conditional, a contradiction is implied. (In
virtue of the seriality of Ri

D¢ there will be at least one counteraction conditional 
alternative to each world.) Thus there can be no true act descriptions of the form
E*iAŸE*i (A Æ B).2

It has often been observed that the Pörn–Kanger approach fails to provide an ade-
quate analysis of the concept of action, since the accessibility relations used in the
semantics are themselves articulated in terms of what is necessary for what an agent
does and in terms of what might or would happen if the agent did not act as he does
(see Hilpinen 1997: 5). Similar accusations of circularity have been leveled against the
possible-worlds semantics of alethic, deontic, and epistemic modalities. If the aim of
these semantical treatments of modality had been to reduce the concepts concerned to
other concepts, then of course the criticism would be justified. But in the case of Pörn
– and of many of those who have worked in applied modal logic over the last four
decades – the criticism is misplaced. Pörn himself doubted whether a reduction of
‘brings it about’ to other notions was even possible:

the principal construction employed, viz. “i brings it about that A”, pertains to agent causal-
ity. It is not certain that this construction can be analysed in terms of anything simpler or
more fundamental than itself. But it can be elaborated by means of concepts that make it
possible to set out the principles of our reasoning with it. (Pörn 1977: 5)

Just the same point may be made in regard, for instance, to Hintikka’s (1962) work in
epistemic and doxastic logic, and in regard to much of what has been done in deontic
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logic. The task has been to provide a formal framework within which our reasoning
with the concepts concerned can be systematically investigated, not to effect a reduc-
tion of these concepts. Furthermore, a point which applies particularly to Pörn and
Kanger, the aim has been to use action modalities and deontic modalities as basic build-
ing blocks in the construction of formal characterizations of norm-governed systems.
An example of work of that kind will be described in Section 2.

However, other criticisms of Pörn’s approach have addressed its adequacy as a basis
for analyzing our reasoning about actions. For instance, Dag Elgesem has made some
interesting observations about the negative condition in Pörn’s definition of ‘bringing
it about,’ suggesting that it collapses two distinct ideas into one:

The first is that of avoidability in the sense that what is brought about is not logically 
true . . . The second idea, quite distinct, is that a necessary condition for agency is that the
agent’s activity is instrumental in the production of the result. (Elgesem 1997: 10)

Elgesem develops a new logic of action in which an attempt is made to characterize this
distinction. He also notes that his criticism of Pörn’s negative condition applies equally
well to the version of the negative condition which appears in Belnap’s STIT-theory
(Elgesem 1997: 18).

2 Normative Act Positions

We now pose the following question: in regard to a particular state of affairs, and a 
particular agent, what is the class of possible relations between that state of affairs and
the successful actions of the agent? We answer the question by generating the class of
possible act-positions for a given agent i vis-à-vis a state of affairs A.

The state of affairs A either obtains or does not obtain; that is either A or ÿA holds.
Now prefix each of A and ÿA with, first, the operator Ei and, second, its internal nega-
tion Eiÿ. Four formulas result:

EiA, EiÿA, EiÿA, EiÿÿA

Of these, the second and third are syntactically identical, and the first and fourth are
logically equivalent, given that – as was observed in the previous section – the action
operator is closed under logical equivalence. Now form the external negations of these
two remaining act expressions (EiA, EiÿA), and arrange the four resulting expressions
in the form of two truth-functional tautologies:

(i) EiA ⁄ ÿEiA
(ii) EiÿA ⁄ ÿEiÿA

There are of course four distinct ways of choosing just one disjunct from each of (i)
and (ii):

(E0) EiA Ÿ EiÿA
(E1) EiA Ÿ ÿEiÿA
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(E2) ÿEiA Ÿ EiÿA
(E3) ÿEiA Ÿ ÿEiÿA

We now recall that the success condition (the counterpart to DT.) is valid for the 
E-operator:

ET. EiA Æ A

Thus (E0) is a logical contradiction, and does not represent a possible act-position.
Furthermore, EiA logically implies ÿEiÿA and EiÿA logically implies ÿEiA. So the class
of possible act-positions (for one agent and one state of affairs) may be re-written as:

(E1) EiA
(E2) EiÿA
(E3) ÿEiA Ÿ ÿEiÿA

The members of the set {(E1),(E2),(E3)} are mutually exclusive, and their disjunction
is a tautology. That is to say, for any given agent i, and for any state of affairs A, pre-
cisely one of (E1), (E2), (E3) holds: either i brings it about that A, or i brings it about
that ÿA, or i is passive (he does not bring it about that A and he does not bring it about
that ÿA). We have now answered our first question by giving an exhaustive charac-
terization of the class of one-agent act-positions vis-à-vis a given state of affairs.

Let us now introduce the normative/deontic modality O, and read expressions of the
form OA as ‘it is obligatory that A.’ We define expressions of the form PA, ‘it is permitted
that A’ as follows:

(Def.P) PA = df ÿOÿA

We may now use the set {(E1),(E2),(E3)} of one-agent act-positions as a basis on which
to construct, or generate, the class of one-agent normative act-positions. First, prefix
each of (E1)–(E3) with the operator O, and then prefix each of them with Oÿ. From
these six expressions generate six more, by negating each one of them. Display the
resulting twelve expressions as a set of six tautologous disjunctions:

(iii) OEiA ⁄ ÿOEiA
(iv) OEiÿA ⁄ ÿOEiÿA
(v) OÿEiA ⁄ ÿOÿEiA

(vi) OÿEiÿA ⁄ ÿOÿEiÿA
(vii) O(ÿEiA ⁄ ÿEiÿA) ⁄ ÿO(ÿEiA ⁄ ÿEiÿA)

(viii) Oÿ(ÿEiA Ÿ ÿEiÿA) ⁄ ÿOÿ(ÿEiA Ÿ ÿEiÿA)

There are 64 ways of choosing just one disjunct from each of (iii)–(viii). That is, from
(iii)–(viii) we may generate 64 distinct conjunctions, each of which contains 6 con-
juncts. Suppose now that the logic of the O-modality is that of Standard Deontic Logic
(SDL), which is a normal modal system of type KD. This means that SDL is based on
classical propositional logic, and contains (Def.P), the axiom schema:
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OD. OA Æ PA

and the rule

Given these logical properties, and those already assigned to the E-modality, it may be
shown that 57 of the 64 conjunctions are logically inconsistent. In virtue of relations
of logical implication between their conjuncts, each of the seven remaining conjunc-
tions may be simplified by removing redundant conjuncts. The result is the following
set of one-agent normative act-positions:

(N1) PEiA Ÿ PEiÿA Ÿ P(ÿEiA Ÿ ÿEiÿA)
(N2) PEiA Ÿ OÿEiÿA Ÿ P(ÿEiA Ÿ ÿEiÿA)
(N3) PEiA Ÿ PEiÿA Ÿ O(EiA ⁄ EiÿA)
(N4) OÿEiA Ÿ PEiÿA Ÿ P(ÿEiA Ÿ ÿEiÿA)
(N5) OEiA
(N6) O(ÿEiA Ÿ ÿEiÿA)
(N7) OEiÿA

The members of this set of positions are mutually exclusive, and their disjunction is a
tautology. Thus, for any given agent i, and for any state of affairs A, precisely one of
these normative act-positions holds. The seven positions correspond to Lars Lindahl’s
(1977: 92) basic types of one-agent legal positions. Lindahl’s book develops in some
detail the pioneering work of Kanger, who combined action and deontic modalities in
an attempt to systematise further W. N. Hohfeld’s (1923) theory of rights-relations.
(The account of how to generate normative positions, given above, differs from that of
Lindahl. It is taken from Jones and Sergot (1993), to which the reader is also referred
for some comparisons of this approach with those of Kanger and Lindahl. Note, in par-
ticular, that the basic structure of the generation procedure itself does not turn on any
particular choice of logics for the E- and O-modalities, although of course the content
and size of the generated class of possibilities does depend on that choice.)

It is clear that once an exhaustive characterization of a class of positions has been
specified, one can use it as a definitive guide in attempting to determine the appropriate
logical form to be assigned to a particular norm. In Jones and Sergot (1993), the main
example provided to illustrate this procedure was taken from a set of norms regulating
access (by various categories of agents) to sensitive, confidential information. (The 
scenario was a psychiatric hospital, and the norms assigned/denied rights to patients,
doctors, nurses, administrative staff, etc., with respect to accessing patients’ medical
files.) The example norm said that a patient did not have the right to access his/her own
file. One interpretation of this norm would take it to be expressing a denial that a patient
is empowered to insist on access to his/her file. A different interpretation views the norm
as (in part) denying permission to a patient to access his/her own file.3 Now consider
this second mode of interpretation in relation to the set of seven one-agent normative
act-positions, supposing i to be an agent in the category of patient, and letting A be the
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sentence ‘i has access to i’s own file.’ Which of (N1)–(N7) captures the appropriate
logical form? Clearly (N1), (N2), (N3), and (N5) can all be ruled out immediately, since
each requires that it is permitted that i brings it about that i has access to i’s own file.
Each of the remaining three cases implies that EiA is not permitted. Given the fact that
i is in the category of psychiatric patient, it is perhaps unlikely that the authorities who
formulated the norm intended to place i under an obligation to bring it about that i does
not access i’s file: in which case (N7) is eliminated from the set of plausible candidates.
(N6) makes it obligatory that i’s act-position (in regard to the state of affairs concerned)
is one of passivity, which seems bizarre in the circumstances. Thus, from such consid-
erations as these, (N4) emerges as the appropriate choice of logical form, making it
obligatory that it is not the case that i accesses i’s own file, permitting i to bring it about
that i does not access i’s own file, but also permitting i to remain passive.

The point behind the discussion of this example is this: the set of seven positions
maps out, exhaustively, at a particular level of analytical detail (one agent, one state of
affairs, one pair of interdefinable deontic operators) the class of available interpreta-
tions. Consideration of the meaning of the particular norm, and of the probable inten-
tions of the norm-giver, then point to the most appropriate choice.

However, for an example of this kind, it would be unsatisfactory to end the search
for the correct logical form at this stage. One of the fundamental insights from Hohfeld
was that rights are relational, and cannot be completely specified in terms of an indi-
vidual’s permissions considered in isolation. Another example might help illustrate the
point: in the eyes of the Norwegian state, a child of 12 years is permitted to place bets
on sporting events at a state-owned betting shop. But the state does not thereby grant
the child the right to place such bets, since it does not forbid some other agent (the
child’s parents, say) from preventing his betting activities. Returning to the access-
control example, the relational aspect emerges when we address the issue of who it is
that is likely to be assigned the responsibility for ensuring that i does not have access to
i’s own file. Presumably not i himself, which is why it seemed implausible to suppose
that the norm-giving authority intended (N7). Thus we see the need to bring into con-
sideration the role of other agents: what will their normative position be vis-à-vis the
state of affairs ‘i (the patient) has access to i’s own file’?

The generation procedure can readily be extended to facilitate a systematic investi-
gation of this question. First rewrite (N1)–(N7), replacing each occurrence of Ei by one
of Ej, but keeping the same interpretation as before of the scope-formula A (‘i has access
to i’s own file’). (We may consider, for example, that j is an agent in the category of
doctor in the institution concerned.) There are of course 49 conjunctions obtainable
by selecting one member of the set

{(N1i), (N2i), . . . (N7i)}

and conjoining it with one member of the set:

{(N1j), (N2j), . . . (N7j)}

Of these 49, 35 are internally consistent (see Lindahl 1977: 128). We may call these
35 conjunctions the set of two-agent normative act-positions. Just six of the 35 con-
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junctions contain (N4i) – the interpretation suggested above for the one-agent level of
analysis. In these six cases, (N4i) is conjoined with, respectively, (N1j), (N2j), (N3j), (N4j),
(N6j), and (N7j). (The (N5j) case is ruled out because the conjunction OEjA Ÿ PEiÿA is
inconsistent.) What then is the most likely intended interpretation at this two-agent
level? Well, each of (N1j), (N2j), and (N3j) contains PEjA, which is clearly incompatible
with the intended interpretation. (N4j) allows doctor j to remain passive with respect
to i’s having access to i’s own file, whilst (N6j) makes passivity obligatory; so con-
siderations of probable assignment of responsibility eliminate these two cases. In which
case the appropriate choice appears to be (N7j), giving, finally, the following two-agent
normative act-position:

OÿEiA Ÿ PEiÿA Ÿ P(ÿEiA Ÿ ÿEiÿA) ⁄ OEjÿA

The first conjunct here can be eliminated as redundant, since it is logically implied by
the fourth.

And then it would be possible to complicate matters further, by introducing more
categories of agents. Or perhaps (for the analysis of some other types of norms) one
might be interested in starting the generation of normative positions not from one-
agent act-positions, but from two-or-more-agent act-control/influence positions,
expressed in terms of sequences of two or more action operators relativized to different
agents. Or perhaps one might add further operators, to express not only successful
action, but attempted action.

These are just some of the dimensions along which the complexity of the analysis
might be increased, and with it the number of conjunctions to be considered. Clearly,
the task of manually formulating the class of consistent conjunctions will soon 
become unmanageable: there is a need for automation of the generation procedure.
Considerable progress has been made in this direction in recent work by Marek Sergot
(1999). The prospect is emerging of a rather sophisticated automated support tool,
which can assist in the process of drafting clear specifications of norms pertaining to
the rights of agents.

Despite the expressive power of a language combining deontic and action modali-
ties, with respect to the characterization of rights-relations, there are also some rather
significant shortcomings, as has been indicated by David Makinson (1986). For
instance, Kanger’s framework appears to be incapable of capturing the Hohfeldian
notion of power, and of properly representing the directionality which is often charac-
teristic of rights-relations, as when one agent (the bearer) has an obligation vis-à-vis
another agent (the counterparty).

As regards the first of these shortcomings, it should be noted that there is good
reason to believe that an agent’s being assigned certain legal or institutional powers is
not to be confused with his being permitted to perform certain acts. Nor should it be
identified with his having the physical ability to act – see Makinson (1986) and Jones 
and Sergot (1996) for examples and discussion. The latter paper combines the E-
operator with a modal conditional connective, in an attempt to capture the idea that,
within a given institution, the actions of a designated agent may count as a means of
establishing particular kinds of normative positions, as when a priest is empowered to
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create a state of marriage, or a Head of Department is empowered to assign teaching
duties.

As regards the question of how to represent the directionality of rights-relations, the
reader is referred to the works of Henning Herrestad (1996) and Christen Krogh
(1997).

Hopefully these remarks suffice to indicate the potential role of the modal logic of
action, in combination with deontic and other modalities, in the characterization of
norm-governed systems of agents.

Notes

1 See Segerberg (1985) for a discussion of some difficulties involved in Pörn’s interpretation of
this accessibility relation.

2 The underlying problem here concerns the use of the truth-functional conditional to repre-
sent counterfactual situations – a task for which it is well-known to be ill-suited.

3 We return below to the distinction between empowered and permitted. 
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The Automation of Sound Reasoning and
Successful Proof Finding

L A R RY WO S A N D B R A N D E N F I T E L S O N

1 The Cutting Edge

The consideration of careful reasoning can be traced to Aristotle and earlier authors.
The possibility of rigorous rules for drawing conclusions can certainly be traced to the
Middle Ages when types of syllogism were studied. Shortly after the introduction of
computers, the audacious scientist naturally envisioned the automation of sound rea-
soning – reasoning in which conclusions that are drawn follow logically and inevitably
from the given hypotheses. Did the idea spring from the intent to emulate Sherlock
Holmes and Mr. Spock (of Star Trek) in fiction and Hilbert and Tarski and other great
minds in nonfiction? Each of them applied logical reasoning to answer questions, solve
problems, and find proofs. But can such logical reasoning be fully automated? Can a
single computer program be designed to offer sufficient power in the cited contexts?

Indeed, while the use of computers was quickly accepted for numerical calculations
and data processing, intense skepticism persisted – even in the early 1960s – regarding
the ability of computers to apply effective reasoning. The following simple (but perhaps
deceptive) example provides a taste of the type of argument that might have been used
to support this skepticism.

If one is given a puzzle concerning who holds which jobs, is told that the job of nurse
is held by a male, and is asked about the possible jobs for Roberta, one quickly concludes
that she is not the nurse. How could a computer program rapidly draw this correct con-
clusion? After all, the computer would not know that Roberta is (implicitly) female, and,
of greater usefulness, it would not know that being a female implies that one is not a
male. In fact, even a person often does not realize that the latter fact is used in drawing
the correct conclusion for this puzzle. Since the answering of deep questions and the
solving of hard problems require far more lengthy paths of reasoning, where do things
stand today regarding the automation of drawing conclusions that are sound and 
relevant, and what is the contemporary view concerning this effort?

In answer to the latter question, still debated with vigor and fascination is the value
of automation both in the context of inference rule application for drawing conclu-
sions and in the context of useful proof finding, whether the area be mathematics, logic,
circuit design, program verification, or puzzle solving. This essay may settle the issue



for many. Indeed, proofs that for decades have eluded some of the greatest logicians 
and mathematicians have recently been obtained with a single program, William
McCune’s OTTER (McCune 1994). (Various other reasoning programs exist; some offer
far less power, while others are special-purpose programs, for example, designed mainly
for program verification. A special-purpose program is in the majority of cases not
nearly as useful as a general-purpose program is in the context of attacking a wide
variety of deep questions, such as offered by logic and mathematics.) In Section 3, we
shall list some of the theorems that had remained elusive for many, many years, theo-
rems that were recently proved by an automated reasoning program and, moreover,
proved in but a few CPU-hours. For the eager reader, we note that the material that 
is offered in Section 2 is not required for an appreciation of the significance of the 
successes.

The material presented here is at the cutting edge, featuring proofs not found in the
literature of the masters that include Hilbert and Ackermann, Tarski and Bernays, Rose
and Rosser, Ĺukasiewicz, and Meredith. The proofs concern results that fall mainly into
three classes: those proved in a nonaxiomatic manner, where an axiomatic proof is pre-
ferred; those announced without proof; and those whose proof eluded all attempts. To
be current, we focus mainly on successes from mid-1998 to the present. Our presenta-
tion – emphasizing examples rather than formalism – makes the content of this essay
equally accessible to student and researcher alike, and we assume no background.
Nevertheless, what we discuss offers depth, scope, and challenge. Among the treasure,
one finds that – through automation – various theorems have been proved whose proof
waited for many, many years. One also finds open questions to consider, questions that
might be attacked using the program OTTER offered in the first of two intriguing new
books on automated reasoning (Wos and Pieper 1999, 2000).

Immediately one might ask how a computer program was able to extend the work
of great scholars in such an impressive manner. Indeed, not much more than 50 years
ago, what did the eminent logician Ĺukasiewicz fail to see when he asserted that a for-
malized proof cannot in a practical manner be ‘discovered mechanically’ but can only
be ‘checked mechanically’ (Ĺukasiewicz 1948)? (His remark would still have held essen-
tially even in the late 1970s.) Surely the execution speed of today’s machine cannot be
the answer: logic and mathematics are far too deep to admit such a simple solution in
the context of proof finding. Nor can the answer rest with overcoming the obstacle of
the implementation of sound reasoning (inference rules); this obstacle was not severe.
Can it be (as some prophesied in the 1960s) that a means has been found to effectively
emulate the problem-solving skills of the gifted? That explanation also misses the mark,
misses it widely, for no such means has yet been devised.

Instead, (for us) the key to the discovery of so many long-sought proofs rests with
the reliance on diverse strategies, some to restrict a program’s reasoning and some to
direct it. (Some authors, including M. Fitting, use the word heuristic in a manner similar
to our use of the word strategy; other authors sometimes use strategy in the context of
a specific problem rather than to problems in general.) The occasional ease of discovery
is startling even to us who have used OTTER for years. We shall illustrate a powerful
strategy that restricts reasoning and an effective strategy that directs it. The nature of
both strategies, as well as that of numerous others that are offered by OTTER, permits
their embedding in many unrelated reasoning programs.
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We shall shed much light on the texture of the strategies that are employed, and thus
show why the automation of proof finding is often so successful. To address the con-
cerns of many, and to complete much of the picture, among the pressing questions, this
essay answers the following. What, if any, are the important differences between a
program’s reasoning and that of a person? What are the advantages and disadvantages
of reliance on a program that applies logical reasoning? What (if any) means are
employed to enable a program to reason effectively, in contrast to merely accruing new
conclusions until by accident the goal is reached? How does such a program ‘know’
when an assignment has been completed, in particular, that a proof has been found?
To what practical uses can such a program be put? Which significant open questions
have been answered by such a program, and how much guidance was provided by the
researcher?

2 Automated Reasoning, Principles and Elements

The breakthrough leading to the more successful mechanization (automation) of infer-
ence rule application and proof finding can perhaps be traced to the formulation of and
adherence to a few principles. The first of these principles asserts that more general
statements are preferred over less general. The second (which overlaps the first) con-
cerns the avoidance of what might be termed ‘person-oriented reasoning.’ To illustrate
the two principles, a single example taken from everyday language suffices; it also pro-
vides a taste of the language typically used by the more powerful reasoning programs
and a glimpse of the typical test (discovery of a proof by contradiction) used to deter-
mine assignment completion.

Consider the following two statements, innocently uttered by someone in casual con-
versation. “Plato likes everybody” and “Nobody likes Plato.” A casual interpretation of
the given two utterances perhaps leads to mere acceptance and to no conclusion.
However, closer inspection shows that the two statements contradict each other.
Indeed, formally, the first can be written, for all x, LIKES(Plato,x). Where ‘-’ denotes
logical not, the second can be formally written, for all y, -LIKES(y,Plato). The contra-
diction is quickly made transparent by substituting Plato for both x and y in the respec-
tive two statements. In other words, overlooked in the casual interpretation is the fact
that the first statement includes the case that Plato likes himself, where the second says
that he does not. Indeed, where everyday language typically would have permitted the
two statements to be accepted simultaneously without blanching, logically the two
form a contradictory pair.

If the explicit use of ‘for all’ (universal quantification) is removed with the corre-
sponding variables treated as implicitly meaning ‘for all,’ then one has two examples of
a clause and a small taste of the basic linguistic unit used to present information to an
automated reasoning program. (For OTTER, a variable is denoted by an expression
beginning with a letter between lower-case u and z inclusive.) The example also 
provides a glimpse of the typical test for assignment completion that an automated 
reasoning program relies upon.

Regarding both the principle of generality preference and that of person-oriented
reasoning avoidance, the detection of contradiction (inconsistency) by the program
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does not require the application of the cited substitution to explicitly produce, respec-
tively, the two variable-free statements LIKES(Plato,Plato) and -LIKES(Plato,Plato).
Indeed, the program prefers the two (original) statements as uttered, in their given gen-
erality, without making the substitution that would emulate what a person would most
likely do. To further clarify the picture focusing on both the preference for generality
and the avoidance of person-oriented reasoning, two additional examples are in order,
examples offering more depth.

When a researcher, such as an algebraist, is producing a proof, the conclusions that
are presented are often influenced by their intended use. Therefore, although the 
conclusion (in the middle of the proof) that the square of x is the identity e
may be justified, instead one might find the conclusion (yz) (yz) = e. Because of the basic
mechanisms relied upon (which will be illustrated), the type of reasoning program
under discussion would prefer the conclusion EQUAL(prod(x,x),e) and would avoid
EQUAL(prod(prod(y,z), prod(y,z)),e). (Each equality is a clause, more examples of the
language used in automated reasoning.) The first equality offers more generality; the
second emulates the kind of reasoning more typical of the researcher not relying on a
reasoning program.

Although most likely far from obvious, the preference for generality contributes
markedly to effectiveness. (For a pertinent example of the type of general reasoning, in
the context of equality, applied by a reasoning program but not ordinarily by a person,
see the discussion of paramodulation in the section entitled “Inference Rules” below.)
Also far from obvious, no effective automated technique is known for wisely choosing
which of the myriad of less general conclusions to draw, indeed, how to effectively
emulate that aspect of person-oriented reasoning. In other words, automated reason-
ing programs do not offer the type of reasoning called instantiation, which can be used
to yield the second equality from the first by replacing (instantiating) x by yz. Although
instantiation serves logicians and mathematicians well, unless an effective strategy is
discovered to control its use, instantiation is unneeded and even unwanted in the
context of mechanizing inference rule application and proof finding. Indeed, its use 
(in effect) conflicts with a reasoning program’s preference for generality that in turn
contributes to effectiveness.

For the promised second example, an aspect of logic suffices. If one browses with
some care in the literature focusing on implication (denoted here by i), one finds within
proofs the deduction of formulas such as i(i(x,y),i(x,y)), where the deduction of the
formula i(z,z) would have been justified and sound. Generality was not the choice;
rather, the choice was based on what was deemed more convenient for subsequent
steps. Similar to the preceding discussion of the two equalities, the automated reason-
ing program would have deduced the latter formula, because of its generality, and
would have avoided the former even though its use emulates the mind of an expert.
Because of this practice, with reliance on the program, occasionally more general
proofs are found and more general theorems are proved (which we shall cite).

The basic elements of automated reasoning

The paradigm (for the automation of logical reasoning) featured in this essay rests on
six elements: a language for presenting the question or problem under study; types of
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reasoning (inference rules) for drawing conclusions some of which are adjoined to the
supplied information; strategies for controlling the reasoning; a means for simplifying
and canonicalizing information; a means for purging types of redundant information;
and a means for determining assignment completion (most often, proof by contradic-
tion). Regarding other paradigms, some differ by addition, some by subtraction.
Specifically (in the spirit of addition), some offer induction, where such is not the case
for the paradigm in focus here. As for subtraction, some paradigms do not retain new
conclusions, which (to us) accounts in part for their lack of power compared with that
which (for example) OTTER offers by accruing sometimes a vast number of new con-
clusions. Equally serious, but of a different nature, many paradigms do not emphasize
the use of types of strategy, indispensable for attacking deep questions and hard prob-
lems in our view. Regarding another crucial omission, some paradigms do not offer a
built-in treatment of equality.

Language
For presenting a question or problem for study by an automated reasoning program,
the clause language (a dialect of first-order predicate calculus) serves nicely. Its lack of
richness is an asset, not a liability. Indeed, rich languages offer more obstacles for 
formulating effective strategies for reasoning within them. However, the nature of the
clause language does present at least an annoyance for one who wishes to enlist the
aid of a reasoning program.

In the clause language, only two logical connectives are explicitly permitted, not
(denoted by ‘-’) and or (denoted by ‘|’). Between each pair of clauses logical and is
present implicitly. In place of logical if-then (logical implies), not and or suffice; one
simply replaces if P then Q with not P or Q. This replacement rule dictates what must
be done for the logical operator equivalent.

Regarding variables, every variable within a clause is implicitly treated as meaning
‘for all,’ universally quantified. Existentially quantified variables are replaced with
appropriate functions, Skolem functions and constants. Explicit quantification is not
permitted. The scope of a variable is limited to the clause in which it occurs. Therefore,
if a variable, say x, appears in two different clauses, it is treated as merely a coincidence,
as if the two names are distinct. A few examples illustrate how it works.

For the assertion that Nan and Larry like cats, one writes two clauses, (1)
LIKES(Nan,cats) and (2) LIKES(Larry,cats). The clause language implicitly assumes
(logical) and between every pair of clauses. If one prefers to be more formal and be
more precise, one writes -IS(x,cat)|LIKES(Nan,x) and its counterpart.

Since programs such as OTTER offer a built-in treatment of equality, one can write
for the equality of x and minus(minus(x)) the clause EQUAL(x,minus(minus(x))). 
For the statement that for all x there exists a y with y greater than x, one writes
GREATER(x,f(x)), where the function f is a Skolem function introduced for the existen-
tially quantified variable y. The clause exhibits the dependence of y, in the form of f(x),
on x.

Inference rules
At the heart of all of the inference rules that are used by the type of program fea-
tured here (of which OTTER is but one example) is a procedure called unification, a 
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procedure that looks for substitutions that modify variables as little as need be to find
a common expression. For example, from the clause IS(Snowflake,cat) and the clause
-IS(x,cat)|LIKES(Nan,x), a program can deduce LIKES(Nan,Snowflake) by replacing x
by the constant Snowflake and applying modus ponens, the rule that asserts the
deducibility of Q from the pair P and P implies Q. (Recall that logical if-then, implies,
can be replaced by using logical not and logical or.) Similarly, for the two clauses cited
earlier focusing on Plato, (as noted) a substitution into each was possible that yielded
a contradiction.

In contrast, if one considers the clause Q(x,x) and the clause -Q(y,f(y)), no contra-
diction can be found because no appropriate substitution exists. The general rule when
applying unification (in the context of the preceding example) asserts that one is not
allowed to substitute a term containing as a subterm a variable for that variable. As the
following illustrates, most-general substitutions are always what the program seeks 
to find, which is not always the case in the literature of logic and mathematics (as 
discussed somewhat differently earlier). In the spirit of syllogism, from the clause 
-P(x)|Q(x,a,u) and the clause -Q(b,y,v)|R(y,v), the program can deduce the clause 
-P(b)|R(a,u). Although the reasoning would be sound, the program would not, for
example, deduce -P(b)|R(a,a).

To determine whether two expressions are unifiable, one seeks a table of substitu-
tions of terms for variables. An effective approach is to, first, rename all the variables
so that no variable name appears in common in the two expressions and, second,
proceed left to right, continually updating the table. Unification can fail for a variety of
reasons, such as when one finds a term containing a variable opposite that same 
variable.

The arsenal of inference rules that is offered is not restricted to those that con-
sider hypotheses taken two at a time. Indeed, one of those rules (hyperresolution) 
serves perfectly for the study of many areas of logic, as the following shows. First, 
consider a mundane example concerning relations among people. From the clause 
-PARENT(x,y)|-FEMALE(x)|MOTHER(x,y) and the clause PARENT(G,K) and the clause
FEMALE(G), an application of hyperresolution yields the clause MOTHER(G,K). This
inference rule, which by definition is required to yield clauses free of logical not, con-
siders the three clauses simultaneously.

Not far removed from this mundane example is the following incarnation of the
inference rule condensed detachment, frequently used in logic. Indeed, consider the clause
-P(i(x,y))|-P(x)|P(y), which is quite reminiscent of modus ponens, asserting that the
presence of x implies y and x justifies the conclusion of y. In the given three-literal
clause, the expression unified with the first literal is called the major premise, and that
unified with the second literal the minor premise. If P(i(i(x,y),i(i(y,z),i(x,z)))) is the major
premise and P(i(i(u,v),i(v,u))) is the minor premise, the use of condensed detachment
yields P(i(i(v,u),z),i(i(u,v),z)) as the conclusion. For the conclusion, no substitution is
required for the variables in the minor premise.

Far more complicated (and clearly not easily seen) is the case (taken from equiv-
alential calculus, with the function i replaced by the function e) in which both the major
and minor premises are P(e(e(e(e(x,e(y,z)),e(y,x)),e(z,u)),u)) and condensed detachment
is applied. The conclusion that is yielded is P(e(x,x)), requiring a nontrivial substitution
for the variables in both the major and the minor premise. Such complicated unifica-

LARRY WOS AND BRANDEN FITELSON

714



tions are in no way difficult for an automated reasoning program, but they can be tire-
some (or worse) for an unaided researcher.

Of the various inference rules, one of the more complicated is paramodulation, which
enables an automated reasoning program to treat equality as if it is ‘understood.’
Paramodulation – which is the best example of a computer-oriented inference rule, and
one that a person probably should not apply by hand – generalizes the usual notion of
equality substitution. The following example illustrates the cited generalization and
demonstrates that paramodulation is indeed computer oriented. Paramodulating from
the equation x + (-x) = 0 into the equation y + (-y + z) = z yields in a single step the
conclusion y + 0 = -(-y).

Strategy
Because the space of deducible conclusions is so huge (many, many millions), without
the use of strategy to restrict and strategy to direct the reasoning, an attempt to find
significant proofs would be doomed. In contrast to reasoning programs, researchers
succeed because of much knowledge, intuition, and experience. But often proofs that
are desired escape even the masters. In Section 3, we give examples of such proofs –
proofs that were missing for decades, but that were found through automation.

Two strategies provide a fair taste of what is needed and of what has made the 
difference. The first strategy, the set of support strategy, was formulated to restrict a
program’s reasoning. For this strategy, the term ‘special hypothesis’ was introduced,
referring to that part of the problem presentation that is outside of the set of axioms
and conclusion to be proved. In one of the two strongly recommended uses, the strat-
egy allows a program to draw a conclusion only if it can be recursively traceable to
either the special hypothesis or the denial of the conclusion to be proved. For example,
if one is asked to prove that rings in which the cube of x equals x (for all x) are com-
mutative, the special hypothesis consists of the property that xxx = x. The denial of the
conclusion, in the preceding, consists of the assumption that such rings are not com-
mutative, that there exist two elements a and b with ab not equal to ba.

In general, when one asks a reasoning program to attempt to find a proof, one sup-
plies a set of statements that include those that correspond to assuming that the con-
clusion of the theorem under study is false. As indicated earlier, the test that is used for
assignment completion, especially for the determination that a proof has been com-
pleted, is the detection of a contradiction. For the set of support strategy in its purest
form, (put another way) the program is restricted from applying the chosen inference
rules to sets of hypotheses all of which are members of the axioms. By imposing such
a restriction, the program is prevented from exploring the underlying theory and,
instead, is forced to key recursively on the special hypothesis and the denial of the con-
clusion. Often, our preference is to instruct the program to recursively key on the special
hypothesis alone, using the denial of the conclusion solely to detect that the assign-
ment has been completed. The following simple syntactic example illustrates the use of
the set of support strategy.

Let the axioms consist of three clauses: P|Q; -Q|R; -R|S. Let the special hypothesis
consist of the single clause -P, and let the conclusion to be proved consist of the single
clause S. The denial of the conclusion is, therefore, -S. The search for a proof can begin
by focusing mainly on the axioms until the clause P|S is deduced, and then hyperreso-
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lution can be used to consider that clause with the special hypothesis and the denial of
the conclusion to show that a contradiction has been found. However, if one imagines
the case in which the set of axioms is far, far richer, one can easily conjecture that the
program might get lost (among a huge set of deduced-and-retained conclusions) and
never find a proof. Instead, with the set of support strategy, keying on the special
hypothesis, in succession, Q is deduced, then R, then S, which with -S provides the
sought-after contradiction.

In contrast to the preceding strategy (which restricts the reasoning of a program),
the resonance strategy directs the reasoning. With this strategy, the researcher supplies
formulas or equations (resonators) that are deemed attractive in the sense that any
formula or equation that is similar to a resonator is given preference for driving the
program’s reasoning, where ‘similar’ means that there is an exact match if all variables
are treated as indistinguishable. To illustrate the use of the resonance strategy, let us
consider the following clauses that axiomatize two-valued sentential (or propositional)
calculus, where the function i denotes implication, the function n denotes negation,
and the predicate P denotes ‘provable.’

% Ĺukasiewicz 1 2 3.
P (i(i(x,y),i(i(y,z),i(x,z)))).
P(i(i(n(x),x),x)).
P(i(x,i(n(x),y))).

If the researcher conjectures that any formula that is similar (in the sense just given)
to one of the axioms merits immediate attention, then the three axioms are placed in
an appropriate list. Because of being similar to the first of the three axioms – with the
use of the resonance strategy – the formula P(i(i(x,x),i(i(y,u),i(x,v)))) will be given
prompt consideration for initiating applications of, say, condensed detachment when
and if it is deduced and retained.

With either of the two given strategies, the researcher can provide substantial aid to
a reasoning program by a judicious choice of, respectively, which clauses to recursively
key upon and which to consider heavily and immediately.

Canonicalization and redundancy
Another aspect of automated reasoning that contributes to effectiveness is its ability,
when given the appropriate equalities, to automatically canonicalize and simplify infor-
mation. For example, in the presence of the equality EQUAL(sum(0,x),x), if the program
is instructed to do so, new conclusions are automatically rewritten, with subterms of
the form sum(0,t) for terms t replaced by t. The procedure is called demodulation. With
its use as described, a class of redundant information is purged. In particular, quite
similar items are not kept in the many forms that might otherwise be kept. Such is the
case for laws that include associativity, where, if so instructed, the program will not
retain the many associated forms of a given expression.

Another mechanism, called subsumption, is relied upon to purge different identical
copies of the same conclusion and, perhaps more important, to purge proper instances
of retained conclusions. For example, if a program has retained EQUAL(prod(x,x),e) (for
the identity e, as in the study of group theory), it will immediately purge through the
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use of subsumption items such as EQUAL(prod(prod(y,z),prod(y,z)),e). By taking such
an action and others of a more complicated nature, a reasoning program focuses again
on generality and avoids emulation (in the sense that a person might retain less general
information in the presence of more general).

An intriguing proof

We close this section with an impressively short proof that nicely illustrates: (1) that
which an automated reasoning program does well and (2) that which might have
eluded fine minds for a long time. The proof is also of value to logic because of focus-
ing on two three-axiom systems for two-valued sentential (or propositional) calculus.
The first system (consisting of what Ĺukasiewicz denotes as theses 19, 37, and 60) was
found through automation; the second (consisting of theses 19, 37, and 59) is due to
Ĺukasiewicz himself. Because the two axiom systems share in common two members
(theses 19 and 37), what is required (to prove that the set of formulas consisting of 19,
37, and 60 is an axiom system) is a deduction of thesis 59 (whose negation is found as
the input clause numbered 6) from theses 19, 37, and 60 (respectively, the input clauses
numbered 7 through 9).

When the eminent logician Dana Scott was notified of the following four-step proof,
his reaction, by e-mail, was that it might indeed be “a very neat proof that would not
be obvious to a human investigator.” Scott explained that it is not particularly easy to
do unification in one’s head – and is he ever right!

A neat proof focusing on the Wos axiom system for two-valued sentential calculus

5 [ ] -P(i(x,y))|-P(x)|P(y).
6 [ ] -P(i(i(n(p),r),i(i(q,r),i(i(p,q),r))))|$ANS(negation_thesis_59).
7 [ ] P(i(i(i(x,y),z),i(y,z))) # label(thesis_19).
8 [ ] P(i(i(i(x,y),z),i(n(x),z))) # label(thesis_37).
9 [ ] P(i(i(u,i(n(x),z)),i(u,i(i(y,z),i(i(x,y),z))))) # label(thesis_60).

16 [hyper,5,9,8] P(i(i(i(x,y),z),i(i(u,z),i(i(x,u),z)))).
23 [hyper,5,16,7] P(i(i(x,i(y,z)),i(i(i(u,y),x),i(y,z)))).
30 [hyper,5,23,7] P(i(i(i(x,y),i(i(z,y),u)),i(y,u))).
34 [hyper,5,30,9] P(i(i(n(x),y),i(i(z,y),i(i(x,z),y)))) # label(thesis_59).

Clause (34) contradicts clause (6), and the proof is complete.

3 Significant Successes

We begin the discussion of successes obtained via automation with a success that is of
especial satisfaction and significance. The reasons for assigning such importance to it
will become clear almost immediately. Where the function i denotes implication, the
function n denotes negation, and the predicate P denotes ‘provable,’ the success to be
discussed first concerns a 23-letter single axiom (the following, found in 1936 by
Ĺukasiewicz) for two-valued sentential (or propositional) calculus.
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P(i(i(i(x,y),i(i(i(n(z),n(u)),v),z)),i(w,i(i(z,x)i(u,x))))).

In his 1936 paper (footnote 10), Ĺukasiewicz suggests how difficult finding proofs of
single axioms is. He laments: “Such research is ... so laborious that it cannot be said
when, if ever, it will be completed.”

What made finding a proof that the given single axiom suffices for two-valued 
sentential calculus unusually satisfying was the fact that no proof was given by
Ĺukasiewicz, and, from what we can ascertain, no proof was ever published – until the
automated reasoning program OTTER was brought into play in mid-1999. In fact, as
far as we know, not even a hint was provided in the literature concerning a method for
finding such a proof, nor was a hint provided concerning the target for such a proof –
although one might surmise that Ĺukasiewicz had in mind his three-axiom system
rather than, say, the axiom system of Hilbert or some other system.

The finding of the desired proof through mechanization can justly be viewed as a
reward for adhering to one of the key principles regarding experimentation. In partic-
ular, the formulation of a promising methodology demands its testing on difficult prob-
lems that are not required to be related to its wellspring. The genesis of the methodology
(whose key aspects will be given shortly) was the study of an even shorter single axiom
for two-valued sentential calculus, the following.

P(i(i(i(i(i(x,y),i(n(z),n(u))),z),v),i(i(v,x),i(u,x)))).

That axiom was provided by Meredith (1953) 16 years after Ĺukasiewicz presented his
23-letter axiom and (most likely) in response to an implied Ĺukasiewicz challenge about
finding a single axiom with strictly fewer than 23 letters.

Although Meredith supplied what amounts to a 41-step proof (relying, in effect, on
condensed detachment), our goal was to find a means for a reasoning program to
produce a proof without guidance from the researcher. We had sought such an
approach for at least five years, and, in mid-1999, we formulated one that indeed pro-
duced a proof, a proof substantially different from Meredith’s. When we applied the new
methodology to the study of the Ĺukasiewicz 23-letter axiom, in but four runs, in one
afternoon, OTTER produced the first proof we had ever seen, one of length 200 (appli-
cations of condensed detachment).

Regarding the methodology and its key aspects, first, it is iterative. It relies on the use
of the set of support strategy, adjoining to the appropriate list from run n (to be used in
run n + 1) results obtained in run n. Although various known axiom systems were
admitted as targets to determine that a desired proof had been completed, for our attack
on the 23-letter formula, the main target was the Ĺukasiewicz three-axiom system for
this area of logic. The resonance strategy also plays a key role. As for resonators –
keeping in mind that we had no clue about the nature of the sought-after proof – we
chose to use 68 theses proved by LĹukasiewicz, theorems that hold in two-valued sen-
tential calculus. Finally, based on numerous earlier successes, we chose to take an
action that one might indeed find counterintuitive, for the action on the surface made
the task harder to complete. Specifically, we chose to instruct OTTER to avoid the use
of double negation, avoid retaining any new conclusion that contained a term of the
form n(n(t)) for any term t.

LARRY WOS AND BRANDEN FITELSON

718



As for properties of the 200-step proof that was found, only eight of its steps are
among the 68 theses used as resonators, and only 22 of the 200 steps match one of
the 68 resonators (treating all variables as indistinguishable). We include this data in
part to address the understandable concern that the researcher may have played an
unintentional but key role, in other words, provided much guidance. Such was not the
case; we were merely testing the methodology, with, of course, the hope that great
fortune would occur; we knew nothing relevant to a possible proof. Double-negation
terms are indeed absent. Thus we offer the following open question. Where P and Q may
each be collections of formulas, if T is a theorem asserting the deducibility of Q from
P such that Q is free of double negation, what conditions guarantee that there exists a
proof relying solely on condensed detachment all of whose deduced steps are free of
double negation? This question is addressed in detail for three areas of logic (Beeson 
et al. 2002).

Among the other successes we obtained through mechanization – some of which
were missing for decades – are the following. In infinite-valued sentential calculus,
where logical or of x and y can be represented with i(i(x,y),y), one can prove that or
is associative. This area of logic can be axiomatized with the following five formulas
(represented as clauses), where the fifth is dependent on the first four.

P(i(x,i(y,x))).
P(i(i(x,y),i(i(y,z),i(x,z)))).
P(i(i(i(x,y),(y),i(i(y,x),x))).
P(i(i(n(x),n(y)),i(y,x))).
% Following is MV5, which is a dependent axiom.
P(i(i(i(x,y),i(y,x)),i(y,x))).

As far as we know, until mid-1999, no condensed detachment proof (of associativity)
had been reported in the literature. Not only did automation find such a proof – where,
before, the only published proofs were not purely axiomatic because they relied partially
on reasoning in the metatheory – a more general theorem was proved by OTTER. The
generality of the basic mechanisms relied upon by automated reasoning, for example,
unification, may have been the primary key to finding the more general result.

Next meriting mention are various distributive laws that hold in infinite-valued sen-
tential calculus. Some forms of distributivity have been proved using a combination of
axiomatic and metatheoretic reasoning. But some valid forms have eluded proof of any
kind. For example, if we define x or y as i(i(x,y),y) and x and y as n(i(i(n(x),n(y)),n(y))),
then or and and distribute over each other in infinite-valued logic. This can easily be
established semantically, but proving these distributivity laws from the complete set of
axioms given earlier for infinite-valued logic (together with the rule of condensed
detachment) is something that eluded even Rose and Rosser (1959: 12), who wrote the
definitive treatise on infinite-valued logic.

Again, mechanization of proof finding met the test, producing the missing proofs
based solely on condensed detachment. For the curious who wonder about the appeal
of axiomatic proofs and, even more, of proofs relying on a single inference rule, note
that they are often more enlightening and often easier to understand.

Of a different nature are questions focusing on possible axiom dependence. Indeed,
a book by Epstein (1994) poses several such questions. Automation has quickly settled
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some of Epstein’s open questions. In one case (Epstein 1994: 85, problem 12), an
appropriate dependence proof was found, when OTTER showed how one of the axioms,
the axiom i(x,i(y,x)) in Epstein’s axiomatization of two-valued sentential calculus,
could be proven from the others. Then, appropriate models establishing the indepen-
dence of the remaining set of axioms were found using William McCune’s program
MACE, which searches for finite models of sets of clauses.

We close this section by turning to questions concerning proof elegance. More than
occasionally a theorem has been proved, but the proof is far, far from elegant. It may
be much longer than need be, according to experience and intuition. It may rely on 
formulas that are extremely complex, and, again, educated opinion suggests such is not
required. Among the other inelegant features that may be present is that of requiring
the use of some unwanted terms. A program such as OTTER has proved useful in all
cited areas, often finding a proof offering far more elegance than can be found in the
literature. We are content to cite but one example in this essay.

Meredith (1959) proved (in approximately 38 condensed detachment steps, making
extensive use of double negation) axiom MV5 of Ĺukasiewicz’s axioms for infinite-
valued sentential calculus from the remaining four axioms. Thus he established a
dependence within LĹukasiewicz’s axiomatization. Because of our emphasis on the
avoidance of double negation and the conjecture that its avoidance might enable a 
reasoning program to find shorter proofs, we embarked on an automated search for 
a shorter, double-negation-free proof of the dependence of axiom MV5. Success was
ours: OTTER produced a 30-step proof, and one in which double negation is absent,
thus addressing two elements of increased elegance.

For the student or researcher who might enjoy a question focusing on finding a possi-
bly shorter proof, we suggest the Meredith single axiom. Can one find a proof better than
ours (Was and Pieper 2003) relying on 37 or fewer applications of condensed detachment
showing that the Meredith axiom suffices for all of two-valued sentential calculus? To
make the open question more precise, the sought-after proof must complete with the
deduction of one of the known axiom systems for that area of logic. If one wishes an open
question focusing on the need for double negation, the following might be of interest. In
infinite-valued sentential calculus, can one find a proof free of double negation that estab-
lishes the deducibility from either the four independent or five dependent axioms for that
area of logic of the distributive law P(i(i(n(x),n(i(i(n(y),n(z)),n(z)))),n(i(i(n(i(n(x),y)),
n(i(n(x),(n(x),z))),n(i(n(x),z))))))? This question can be rephrased, asking that one prove
without the use of double negation that x or (y and z) implies (x or y) and (x or z), where
and is defined as earlier but or is defined as i(n(x),y).

4 Myths, Mechanization, and Mystique

The myths that surround the mechanization of inference rule application and proof
finding are many. Utter pessimism: effective mechanization is not possible, especially in
the context of answering deep, open questions. Self-worship: if effective mechanization
is possible, emulation of the minds of masters is required. Uselessness: one cannot learn
from proofs produced from a computer program. The 0/1 myth: either the program
completes the given assignment, or absolutely nothing is produced of value. Fear:
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reasoning programs will eventually obviate the role of logicians, mathematicians, and
the like.

Other than the last given myth (which we shall dispatch shortly), this chapter pro-
vides some evidence and some clues that unmask each of the given myths and others
unnamed. Indeed, regarding the Utter pessimism myth, the list of open questions (some
of which remained open for many decades) that have been answered through heavy
reliance on automation is lengthy and continues to grow. As for the Self-worship myth,
the more successful and powerful reasoning programs clearly do not emulate person-
oriented reasoning. For but two examples, paramodulation (applied so effectively by a
computer for equality-oriented reasoning) is the type of inference rule that under-
standably is not used by unaided researchers, and instantiation, which is heavily used,
is not offered by the type of reasoning program in focus because it appears not to admit
effective control.

The Uselessness myth is quickly dispatched. Indeed, although we are far from expert
in the areas of logic that we have attacked with OTTER, we do continually learn from
the proofs it supplies and, sometimes, from its failures. Even more can, and sometimes
is, learned by a master examining the efforts of a reasoning program. Regarding the
0/1 myth, the output file that can be produced may offer a new key lemma and, even
better, may contain a proof that the skilled researcher was unable to find unaided. Even
if a proof of the desired type is not found, one can study the set of retained conclusions
resulting from an unsuccessful attempt and discover precisely what is needed to reach
the objective in the next automated attack.

As for the last myth, Fear, it is utter nonsense. The mind of the logician, mathe-
matician, or other scientist will never be replaced, only supplemented! The explanation
for the significant contributions to logic and mathematics resulting from the joint effort
of program and researcher rests to a great extent with the fact that the general
approach (as discussed in this chapter) taken by the more effective reasoning programs
differs sharply from that taken by the successful researcher. The two approaches com-
plement each other, and that is the key.

A mystique regarding the automation of reasoning still exists. For but one example,
the literature strongly suggests that the proof of numerous deep theorems requires the
use of double negation, which in fact is not the case, as shown with the use of OTTER.
Is it certain that such success (with the dispensing of double negation) rests with the
sharp increase in useful information when compared with total information that is 
considered? For a second example, who would have thought possible that automated
reasoning would yield the answer to a deep question that had remained open since the
mid-1930s and that had defied fine minds (that included Tarski)? Specifically, McCune’s
program EQP – in approximately 10 CPU-days – found a proof showing that every
Robbins algebra is a Boolean algebra (McCune 1997).

Part of the mystique, as espoused throughout this chapter, rests with the intense 
and explicit use of various types of strategy. We strongly conjecture that the successes
reported here, as well as numerous others not touched upon, would have been out of
reach without the program’s reliance on strategy. The formulation of some of the
strategies resulted directly from an attempt to answer, through automation, an 
open question. Because we intend to continue to augment reasoning programs by 
formulating new strategies and new methodologies, we ask assistance in accruing 
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new open questions to study. An effective way to convey questions to us is by e-mail:
wos@mcs.anl.gov.

Regarding source books and a program that might prove useful and intriguing, three
books provide much of what is needed. The first book (Wos and Pieper 1999) serves
well as a text, assumes no background, discusses various applications of automated
reasoning, offers numerous open questions for consideration, and includes a CD-ROM
on which one finds the program OTTER as well as various other useful files. In addi-
tion to logic and mathematics, the discussed practical applications include circuit
design and validation; the important use of automated reasoning for program verifi-
cation is not discussed. The second (two-volume) book (Wos and Pieper 2000) consists
of reprints of published papers that enable one to follow the development of the field
from the early 1960s to the late 1990s. The two books connect in a rather unusual
manner: The first contains a long chapter whose subsections each correspond to 
one of the reprinted papers, giving an overview and appropriate problems. For 
further information on automated reasoning at Argonne National Laboratory, see
http://www.mcs.anl.gov/AR/, which gives all of the needed pointers for new results,
for various neat proofs, and for puzzles.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing Research,
US Department of Energy, under Contract W-31-109-Eng-38.

References

Beeson, M., Veroff, R., and Wos, L. (2002) Double-negation elimination in some propositional
logics, Preprint ANL/MCS-P1003-1002, Mathematics and Computer Science Division,
Argonne National Laboratory, October 2002.

Epstein, R. (1994) The Semantic Foundations of Logic: Propositional Logics, 2nd edn. New York:
Oxford University Press.

Ĺukasiewicz, J. (1948) The shortest axiom of the implicational propositional calculus. Proceedings
of the Royal Irish Academy, 52A, 3, 25–33.
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A Computational Logic for Applicative
Common LISP

M AT T K AU F M A N N A N D J. S T RO T H E R M O O R E

1 Introduction

Perhaps one of the most ambitious goals for mathematical logic was put forth by one
of its earliest advocates.

If we had some exact language . . . or at least a kind of truly philosophic writing, in 
which the ideas were reduced to a kind of alphabet of human thought, then all that follows
rationally from what is given could be found by a kind of calculus, just as arithmetical or
geometrical problems are solved. (Leibniz, 1646–1716)

Mathematical logic casts too harsh a light to be appropriate for the ‘rationalization’ of
many human endeavors. Can one axiomatize good and evil, or even the aerodynamics
of the African sparrow, so that all that follows by mathematical proof is truly 
believable?

But Leibniz’ dream was aided immeasurably by the invention of the digital computer
because the computer not only provided a platform on which to build a reasoning
engine but provided a source of problems to tackle with it.

Instead of debugging a program, one should prove that it meets its specifications, and 
this proof should be checked by a computer program. (John McCarthy, “A Basis for a
Mathematical Theory of Computation,” 1961)

Computing systems, such as microprocessors, switches, file servers, compilers, encryp-
tion devices, control programs, financial software, etc., are naturally described in the
precise language of mathematical logic. If the logical ‘model’ of the system accurately
describes what is built, then the logical properties of the model accurately predict the
behavior of the artifact.

But is proving theorems about computing systems practical? Is it cost effective? Here
are two more quotations that shed some light on those questions.

An elusive circuitry error is causing a chip used in millions of computers to generate 
inaccurate results. (NY Times, “Circuit Flaw Causes Pentium Chip to Miscalculate, Intel
Admits,” November 11, 1994)



Intel Corp. last week took a $475 million write-off to cover costs associated with the divide
bug in the Pentium microprocessor’s floating-point unit. (EE Times, January 23, 1995)

It is possible to prove a lot of theorems for $475 million.
‘ACL2’ stands for ‘A Computational Logic for Applicative Common Lisp.’ It is the name

of a programming language, a first-order mathematical logic based on recursive func-
tions, and a mechanical theorem prover for that logic. ACL2 is designed for use in rea-
soning about computing systems, both those implemented in hardware and those
implemented in software.

The human user of ACL2 can formalize or model a computing system by defining
functions that simulate the operation of the system. Since ACL2 is a programming lan-
guage, such an operational model is just a computer program that can be run on con-
crete data to produce concrete results. With this program the user might test the
behavior of the system on some finite number of example inputs. Since ACL2 is also a
mathematical logic, the user might prove theorems about the model, possibly estab-
lishing properties that hold for an infinite number of inputs. Finally, using ACL2’s inter-
active theorem proving program, the user might check these proofs mechanically,
thereby eliminating the all-too-frequent errors that crop up in ‘hand proofs.’

This is not just a mathematical fantasy. For example, ACL2 was used to prove the
correctness of the circuitry implementing the elementary floating point operations on
the AMD AthlonTM processor1 with ACL2. Most major chip manufacturers have per-
sonnel devoted to proving theorems or otherwise formally checking properties of their
designs.

In this article we describe ACL2 briefly, present a simple modeling problem and its
solution in ACL2, and describe some of ACL2’s recent applications.

We assume the reader has had a little experience with computing and programming.
Also helpful would be an introductory course in first order predicate calculus.

2 The ACL2 System

Here we briefly discuss ACL2 as a programming language, a logic, and a mechanical
theorem prover or proof checker. The ACL2 system is available under the GNU General
Public License and without fee from its home page, http://www.-cs.
utexas.edu/users/moore/ac12. Installation instructions and documentation
are included. We discuss how to learn to use ACL2 in Section 5.

ACL2 is just one of several mechanical theorem proving programs used for hard-
ware and software verification. Among the others are HOL (Gordon and Melham
1993), Otter (McCune 1994), and PVS (Owre et al. 1992). See the Related Web Sites link
under the Books and Papers link of the ACL2 home page for lists of dozens of other
theorem provers. Theorem provers are still research vehicles, even though some, like
the ones mentioned above, are being used by researchers in industry. Each is designed
to explore a different part of the theorem proving problem. ACL2 is first order with con-
siderable automation, with heuristics tailored to recursive definitions and induction.
Otter supports first-order predicate calculus, with full support for quantification. HOL
and PVS both support higher-order logics. Of major concern to the developers of HOL
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was how to build a theorem prover that was both user-extensible and sound. The PVS
and ACL2 developers were primarily concerned with building tools that people with-
out research backgrounds in automated reasoning could use off the shelf to prove 
theorems about computing systems. The Otter team focused on finding automatic proof
techniques so that Otter, rather than its human users, gets full credit for its proofs. We
should emphasize, however, that all of these tools address all of these issues to varying
degrees. For example, ACL2 addresses user extensibility, and Otter requires the user to
interact by setting parameters.

The programming language

As a programming language, ACL2 is a variant of Common Lisp (Steele 1990). ‘Lisp,’
which stands for ‘list processing,’ is commonly used for artificial intelligence applica-
tions because it facilitates symbol manipulation. Lisp was invented by John McCarthy
in the late 1950s as part of his visionary project towards a mechanized theory of com-
putation (McCarthy 1960, 1962, 1963).

ACL2 is a functional or applicative version of Lisp, meaning that ACL2 programs are
mathematical functions of their arguments. They do not have side-effects and are not
sensitive to implicit ‘global variables’ or implicit ‘state.’

ACL2 terms are written in prefix notation. A term is a variable, a constant, or the
application of a function symbol, f, of k arguments to k terms, a1, . . . , ak, written (f a1

. . . ak). Here is how one might write a2 + ab in ACL2: (+ (expt a 2) (* a b)).
The ACL2 runtime system provides facilities for calculating the values of terms under
assignments of values to their free variables. For example, if a has the value 3 and b
has the value 5, then the term above is calculated to have the value 24.

In addition to the numbers (integers, rationals, and complex numbers with rational
coefficients) ACL2 supports several other data types. These include strings (such as
‘Hello World’), symbols (such as LOAD and X), and ordered pairs. Primitive functions
are provided for manipulating each type of data. For example, the function cons takes
two arguments and returns an ordered pair containing them. The functions car and
cdr take one argument, which is normally an ordered pair, and return the first and
second components, respectively. The function consp takes one argument and returns
the constant T (‘true’) if the argument is an ordered pair and NIL (‘false’) otherwise.

Ordered pairs are written in parenthesized ‘dot notation.’ For example, the pair tra-
ditionally written as ·3,NILÒ is written in ACL2 as (3 . NIL).

Ordered pairs can be used to encode a wide variety of abstractions. One such abstrac-
tion is linear lists, which are so common that the notation for printing ordered pairs 
in ACL2 (and Lisp) is oriented towards it. The constant NIL may be written simply as
(), and thus plays double duty; it is used both as the false truth-value and as the 
empty list. The ordered pair (3 . NIL) may be written simply as (3). The ordered
pair (2 . (3 . NIL)) may be written (2 3), the ordered pair (1 . (2 . 
(3 . NIL))) may be written (1 2 3), etc.

It is convenient to be able to write list constants inside terms. What is a term 
that evaluates to (i.e. whose meaning is) the list (1 2 3)? One such term is (cons
1 (cons 2 (cons 3 NIL))). But another one is ’(1 2 3). The ‘quote mark’
can be used to write a term that evaluates to a given constant.
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Lists are frequently used to represent still other abstractions. For example, the list 
(1 2 3) may be thought of as the stack obtained by pushing 1 onto the stack (2 3).
The following function definitions make these conventions easier to remember. (Actually,
the symbols push and pop are defined in ACL2 and may not be redefined; to make
these definitions we must actually operate in a symbol package other than the default
one, but we do not discuss that here.)

(defun push (item stack) cons item stack))
(defun top (stack) (car stack))
(defun pop (stack) (cdr stack))

The first defun above, for example, defines push to be a function symbol of two argu-
ments, item and stack, whose value is obtained by evaluating the term (cons
item stack). Thus, (push 1, ’(2 3)) is the stack (1 2 3). The top of that
stack is 1 and the pop is (2 3).

Here is another common use of lists. Consider the list of two ordered pairs ((A . 7)
(B . 4)). Call this constant a. The car of a is (A . 7). The cdr of a is 
((B . 4)). The car of the cdr of a is (B . 4). Lists such as a are thought of as
tables that map keys (A and B, in this case) to values (7 and 4, respectively). Such lists are
called association lists or alists or assignments. The car of the car of a nonempty alist is
the first key assigned in the alist; the cdr of the car is the value assigned to that key.
The cdr of a nonempty alist is another alist that assigns the rest of the symbols.

Here is a function that looks up the value of a symbol in an alist. This function is
recursive.

(defun lookup (sym alist)
(if (consp alist)
(if (equal sym (car (car alist)))

(cdr (car alist))
(lookup sym (cdr alist)))

0))

The definition above may be paraphrased as: If alist is a cons pair, then if sym is
the first key assigned, return its value; otherwise lookup sym in the rest of alist.
If alist is not a cons pair, return 0.

After this definition, (lookup ’B ’a) evaluates to 4. But (lookup ’C ’a)
evaluates to 0.

ACL2 supports a variety of syntactic extensions. Another way to define lookup is
shown below.

(defun lookup (sym alist)
(cond
((endp alist) 0)
((equal sym (car (car alist)))
(cdr (car alist)))
(t (lookup sym (cdr alist)))))
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The cond special form is just a nest of ifs. (Endp alist) is equivalent to (not
(consp alist)).

For a more thorough introduction to ACL2 as a programming language see
Kaufman et al. (2000b). The link labeled Hyper-Card on the ACL2 home page contains
a quick introduction to Lisp and a reference card to the programming language. The
User’s Manual link contains several megabytes of hypertext documentation.

The Logic

ACL2 is formalized as a first-order mathematical logic. Any standard formulation of
first-order logic will serve our purposes. See also Kaufmann and Moore (to appear).
Axioms describe the primitive functions. For example, here are several of the axioms.
(Actually, (consp NIL) = NIL is not an axiom but an easily proved theorem.)

Axioms
x = NIL Æ (if x y z) = z.
x π NIL Æ (if x y z) = y.
(consp NIL) = NIL
(consp (cons x y)) = t
(car (cons x y)) = x
(cdr (cons x y)) = y

Using the natural numbers and ordered pairs, a representation of the ordinals up to e0

is introduced. For example, the ordinal w2 + w ¥ 4 + 3 is represented in ACL2 by the list
(2 1 1 1 1 . 3). An axiom defines a relation (a function returning T or NIL),
named e0-ord-<, corresponding to the well-founded ordering relation on these 
ordinals. Another axiom introduces the predicate, e0-ordinalp, which recognizes
the ACL2 ordinals.

The principle of mathematical induction, in ACL2, is then stated as a rule of infer-
ence that allows induction up to e0. To prove a conjecture by induction one must iden-
tify some ordinal-valued measure function. The induction principle permits one to
assume inductive instances of the conjecture being proved, provided the instance has
a smaller measure according to the chosen measure function.

Finally, a principle of definition is provided, by which the user can extend the axioms
by the addition of equations defining new function symbols. To admit a new recursive
definition, the principle requires the identification of an ordinal measure function and
a proof that the arguments to every recursive call decrease according to this measure.
Only terminating recursive definitions can be so admitted under the definitional prin-
ciple. (‘Partial functions’ can be axiomatized; see Maniolos and Moore (2000).)

The successful admission of a definition adds a new axiom. For example, the de-
finition of push above adds

Axiom
(push item stack) = (cons item stack).

The two variables are (implicitly) universally quantified.
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The measure used to justify the recursive function lookup is ac12-count. The
ac12-count of a natural number is that number. The ac12-count of an ordered
pair is one more than sum of the counts of the car and the cdr. Ac12-count always
returns a natural number.

As is customary in formal treatments of mathematical logic, from such basics a
variety of other rules of inference are derived to make proofs more practical. A more
thorough treatment of the logic is presented in Kaufmann et al. (2000b: Chapter 6).
The solutions to the exercises for that chapter (see the Books and Papers on the home
page and follow the obvious links) contain formal proofs of many elementary theorems
and a sketch of how more elaborate rules of inference are justified. See also Kaufmann
and Moore (1997).

The theorem prover

The ACL2 theorem prover is a symbolic manipulation engine driven from a collection
of rules in a database. The user determines the available rules, but in an indirect 
way. The rules are derived from theorems posed as challenges by the user and 
proved by the system. Thus, the logical soundness of the theorem prover cannot be
imperiled by the user. But the strategy employed by the theorem prover can be 
largely determined by the experienced user who understands how rules are derived
from theorems and what the effects of those rules are. The user may also direct the
system to read in all the rules in previously certified ‘books,’ thereby enabling the
sharing of results in the ACL2 community. In addition, the user may supply hints to
affect the system’s decisions and may specify low-level proof steps via an interactive
loop.

The system has many heuristics for determining its behavior. For example, heuris-
tics determine when it expands recursive function definitions, when it inducts, and
what induction hypotheses it assumes.

The system also contains many decision procedures and other high-level derived
rules of inference. For example, it can use a BDD procedure (Bryant 1992) to recognize
propositional tautologies, it has built in knowledge about linear arithmetic inequalities
(Boyer and Moore 1997), and it can use calculation to compute the values of functions
on constants.

The system prints a description of its evolving ‘proof ’ as it proceeds. It does not
produce a formal proof, but when it says ‘Q.E.D.’ we, the authors of ACL2, believe that
the computation it did is sufficient to guarantee the existence of a formal proof in the
logic described. The system often fails, either by abandoning the proof attempt or
running until the user aborts the attempt. In either case, it is up to the human user to
‘fix’ the situation, by reformulating the conjecture to prove or the hints provided, or by
further developing a database of rules.

The ACL2 theorem prover is an improved version of the Boyer–Moore theorem
prover, Nqthm (Boyer and Moore 1979, 1997; Boyer et al. 1995), adapted to applica-
tive Common Lisp. For more details of how it works, see Kaufmann et al. (2000b). We
illustrate it in the section entitled “Sample Output” below.

How good is ACL2’s theorem prover? That is, how automatic is it? At one level that
depends on how good a database of rules it has and whether the conjecture at hand
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falls in the class of formulas handled by that set of rules. But perhaps the intent of the
question is deeper. How far away from its rules can it operate successfully? How deep
are its proofs? The answer depends on whether you view the question from the per-
spective of the logician or the more traditional mathematician, who have very differ-
ent ideas of what the word ‘proof ’ means. Logicians think of proofs as sequences or
trees of formulas, expressed in a precisely defined syntax and related to one another by
a precisely defined set of inference rules. Most mathematicians think of proofs as 
informal but convincing arguments. The logician might very well consider ACL2 an
automatic theorem prover because it is not always obvious how to construct formal
proofs of some of the theorems it proves automatically. But the mathematician would
probably think of ACL2 as a proof checker, at best. The mathematician would find 
virtually everything ACL2 proves automatically to be ‘self-evident’ or ‘obvious’ from 
the theorems and definitions ACL2 had previously been led to accept. To the mathe-
matician, ACL2 is not so much finding a proof as it is checking one presented to it by the
human. This will become more obvious in Section 3.

3 A Modeling Problem

In this section we will deal with a simple variant of a classic example in the verification
literature, first done ‘by hand’ in McCarthy and Painter (1967) and by machine with
the Boyer–Moore prover in Boyer and Moore (1979). We will model an assembly lan-
guage for a push-down stack machine, formalize a simple arithmetic expression lan-
guage, implement a compiler that translates from arithmetic expressions to assembly
code, and prove the compiler is correct. In addition to illustrating the formalization of
some central ideas in computing – state machines, language semantics, compilation –
this example is appropriate because it deals with a few of the same issues that arise 
in model theory, for example the assignment of meaning to the sentences of a formal
language.

The assembly language

An instruction is a nonempty list. The opcode is the first element of the list. Some instruc-
tions have an operand, which is the second element.

(defun opcode (inst) (car inst))
(defun operand (inst) (car (cdr inst)))

The opcodes on our machine and their informal semantics are: (LOAD var) pushes 
the value of var onto the stack, (PUSH c) pushes the constant c onto the stack, 
(DUP) duplicates the top of the stack, (ADD) pops two items off the stack and pushes
their sum, and (MUL) pops two items off the stack and pushes their product. We 
formalize this with the function step, which takes an instruction to execute, an alist
giving the variable values, and a stack; the function returns the new value of the 
stack.
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(defun step (inst alist stk)
(let ((op (opcode inst)))
(cond

((equal op ’LOAD)
(push (lookup (operand inst) alist) stk))

((equal op ’PUSH)
(push (operand inst) stk))

((equal op ’DUP)
(push (top stk) stk))

((equal op ’ADD)
(push (+ (top (pop stk)) (top stk))

(pop (pop stk))))
((equal op ’MUL)
(push (* (top (pop stk)) (top stk))

(pop (pop stk))))
(t stk))))

A program is a sequence of instructions. They are executed sequentially with a given
alist and some initial stack. The final stack is returned.

(defun m (program alist stk)
(cond ((endp program) stk)

(t (m (cdr program)
alist
(step (car program) alist stk)))))

The function m formalizes the semantics of this simple programming language. For
example,

(m ’((LOAD A) (DUP) (ADD))
’((A . 7) (B . 4))
’(1 2 3))

‘simulates’ the execution of a program that pushes the value of A, duplicates it, and
adds the two values together. It does so in an environment in which the value of A is 7
and the value of B is 4. The initial stack is (1 2 3), a stack with 1 on top. The result
of this execution is the stack (14 1 2 3).

An expression language

An expression (and its value under an assignment) is a variable symbol (whose 
value is specified by the assignment), a numeric constant (which is its own value), or 
a list of one of the following forms (where the expri are expressions): (INC expr1)
(whose value is one more than that of expr1), (SQ expr1), (whose value is the square
of that of expr1), (expr1 + expr2) (whose value is the sum of those of the two 
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subexpressions), or (expr1 * expr2) (whose value is the product of those of the two
subexpressions).

We can formalize this as follows.

(defun eval (x alist)
(cond
((atom x)
(cond ((symbolp x) (lookup x alist))

(t x)))
((equal (fn x) ’INC)
(+ 1 (eval (argl x) alist)))
((equal (fn x) ’SQ)
(* (eval (argl x) alist)

(eval (argl x) alist)))
((equal (fn x) ’+)
(+ (eval (argl x) alist)

(eval (arg2 x) alist)))
((equal (fn x) ’*)
(* (eval (arg1 x) alist)

(eval (arg2 x) alist)))
(t 0)))

where

(defun fn (expr)
(if (equal (len expr) 2) (car expr) (car (cdr expr))))

(defun arg1 (expr)
(if (equal (len expr) 2) (car (cdr expr)) (car expr)))

(defun arg2 (expr)
(car (cdr (cdr expr)))).

Eval formalizes the semantics of this expression language. We can test it. For 
example, here is a transcript showing that the eval of a certain expression is equal 
to 400.

COMP ! > (eval ’(SQ (INC (A + (3 * B)))) ’((A. 7) (B. 4)))
400
COMP ! >

A compiler

A compiler is a translator from one language to another. We will compile arithmetic
expressions, as above, into our assembly language. The goal is to produce a program
that, when executed under a given assignment, will push the value of the expression
on the stack. The method is straightforward. To compile a product, say, we concatenate
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the compiled code for the two subexpressions and then generate an (MUL) instruction
to pop the two intermediate values off the stack and push their product. To compile (SQ
expr1), we will compile the subexpression and then generate a (DUP) followed by 
an (MUL). The others are similar. Here is the compiler.

(defun compile (x)
(cond
((atom x)
(cond
((symbolp x) (list (list ’LOAD x)))
(t (list (list ’PUSH x)))))

((equal (fn x) ’INC)
(append (compile (arg1 x))

’((PUSH 1) (ADD))))
((equal (fn x) ’SQ)
(append (compile (arg1 x))

’((DUP) (MUL))))
((equal (fn x) ’+)
(append (compile (arg1 x))

(compile (arg2 x))
’((ADD))))

((equal (fn x) ’*)
(append (compile (arg1 x))

(compile (arg2 x))
’((MUL))))

(t (list (list ’PUSH 0)))))

Append concatenates its arguments. We illustrate the compiler below.

Specification

The output of compile on the expression (SQ (INC (A + (3 * B)))) is the
program shown below.

COMP ! > (compile ’(SQ (INC (A + (3 * B)))))
((LOAD A)
(PUSH 3)
(LOAD B)
(MUL)
(ADD)
(PUSH 1)
(ADD)
(DUP)
(MUL))
COMP ! >
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This program is ‘correct’ in the sense that executing it leaves the value of the given
expression on top of the stack.

The specification of compile is that it produces correct programs for every expression.
A formalization of this claim is (equal top (m (compile x) a s)) (eval
x a)). We will name this conjecture main.

Mechanical proof

All of the definitions involved in the formalization above are automatically admitted by
the mechanical theorem prover. Ac12-count is the only measure needed and the
system ‘guesses’ that.

If we then submit main as a challenge conjecture, the ACL2 theorem prover runs
for 11 seconds (on a 731 MHz Pentium III) and gives up. Inspection of the proof attempt
using ‘The Method,’ described in Kaufmann et al. (2000b) and in the on-line ACL2
manual, produces the following insights. First, the proof will clearly involve induction
on the form of the expression x. Second, main is not strong enough to prove by induc-
tion. We must prove the conjecture that says ‘execution of the compiled code pushes the
value of the expression onto the pre-existing stack (leaving the other items there
intact).’ Our main does not insure that other intermediate values are not removed and
hence cannot be used to explain how the compiler works. Note that it is a common
mathematical trick to generalize a conjecture before doing proof by induction, and
although ACL2 provides a little support for making such generalizations automatically,
it is generally up to the user to do so.

The stronger conjecture is (equal (m (compile x) a s) (push (eval x
a) s)), which, if proved, clearly implies main. We name this conjecture lemma. The
attempt to prove lemma fails in about 6 seconds. Inspection of the failed proof reveals
that ACL2 chose an inadequate induction scheme. Consider the case for compiling a
sum expression. The theorem prover inductively assumes lemma for both subexpres-
sions. But it is obvious to the human user that the second induction hypothesis (that for
the second argument of the sum) must use the instance in which the stack s is the pre-
existing with one more thing pushed onto it: the value of the first subexpression.

Induction schemes are described to ACL2 by defining recursive functions that instan-
tiate their arguments appropriately. Here is the necessary definition, which is admitted
automatically.

(defun hintfn (x a s)
(cond
((atom x) (list x a s))
((equal (fn x) ’INC)
(hintfn (arg1 x) a s))
((equal (fn x) ’SQ)
(hintfn (arg1 x) a s))
((equal (fn x) ’+)
(cons (hintfn (arg1 x) a s)

(hintfn (arg2 x) a (push (eval (arg1 x) a) s))))
((equal (fn x) ’*)
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(cons (hintfn (arg1 x) a s)
(hintfn (arg2 x) a (push (eval (arg1 x) a) s))))

(t (list x a s))))

The value of this function is irrelevant. What matters is the case analysis it does and
the way it instantiates its arguments in recursion.

If we then tell ACL2 to prove lemma, advising it to induct the way hintfn recurs,
the proof attempt again fails. Inspection reveals that the system must be able to 
simplify (m (append x y) a s). This is obvious in retrospect: the compiler con-
catenates two recursively obtained code sequences and we must know how the machine 
deals with concatenated programs. The obvious relationship is given in the theorem
below.

(defthm composition
(equal (m (append x y) a s)

(m y a (m x a s))))

This is how the user actually submits a challenge to the theorem prover. The formula
above alleges that the execution of the concatenation of program x followed by program
y is equal to the execution of program y starting with the stack produced by the exe-
cution of program x. If ACL2 can prove this, it will build it in as a rewrite rule (by
default) and name the theorem composition. In fact, the system successfully proves
composition, by induction on x and simplification. We show the output under
“Sample output” below.

The system can now prove lemma, and can then use it to prove main. The two com-
mands, in full, are shown below.

(defthm lemma)
(equal (m (compile x) a s)

(push (eval x a) s))
:hints ((“Goal” :induct (hintfn x a s))))

(defthm main
(equal (top (m (compile x) a s))

(eval x a)))

The total amount of time to replay the entire successful proof sequence (including the
admission of all of the definitions) is approximately 2 seconds. All the necessary user
input has been exhibited here. An experienced ACL2 user might well have recognized
the importance of composition and lemma from the outset and would thus have
stated them as part of the initial proof plan. We mention the discovery process because
it is important in more complicated proofs where all the necessary lemmas are rarely
recognized in advance.

Sample output

Here is the output of the theorem prover on the composition theorem.
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COMP ! > (defthm composition
(equal (m (append x y) a s)

(m y a (m x a s))))

Name the formula above *1.
Perhaps we can prove *1 by induction. Three induction schemes are suggested by this
conjecture. These merge into two derived induction schemes. However, one of these is
flawed and so we are left with one viable candidate.

We will induct according to a scheme suggested by (M X A S), but modified to accom-
modate (APPEND X Y). If we let (:P A S X Y) denote *1 above then the induction scheme
we’ll use is

(AND (IMPLIES (AND (NOT (ENDP X))
(:P A (STEP (CAR X) A S) (CDR X) Y))

(:P A S X Y))
(IMPLIES (ENDP X) (:P A S X Y))).

This induction is justified by the same argument used to admit M, namely, the measure
(ACL2-COUNT X) is decreasing according to the relation EO-ORD-< (which is known
to be well-founded on the domain recognized by EO-ORDINALP). Note, however, that
the unmeasured variable S is being instantiated. When applied to the goal at hand the
above induction scheme produces the following two nontautological subgoals.
Subgoal *1/2

(IMPLIES (AND (NOT (ENDP X))
(EQUAL (M (APPEND (CDR X) Y)

A (STEP (CAR X) A S))
(M Y A (M (CDR X) A (STEP (CAR X) A S)))))

(EQUAL (M (APPEND X Y) A S)
(M Y A (M X A S)))).

By the simple :definition ENDP we reduce the conjecture to 
Subgoal *1/2’

(IMPLIES (AND (CONSP X)
(EQUAL (M (APPEND (CDR X) Y)

A (STEP (CAR X) A S))
(M Y A (M (CDR X) A (STEP (CAR X) A S)))))

(EQUAL (M (APPEND X Y) A S)
(M Y A (M X A S )))).

But simplification reduces this to T, using the :definitions BINARY-APPEND, M,
OPCODE, OPERAND, POP, PUSH, STEP and TOP, the :executable-counterpart of
EQUAL, primitive type reasoning and the :rewrite rules CAR-CONS, COR-CONS, 
COMMUTATIVITY-OF-* and COMMUTATIVITY-OF-+.
Subgoal *1/1
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(IMPLIES (ENDP X)
(EQUAL (M (APPEND X Y) A S)

(M Y A (M X A S )))).

By the simple :definition ENDP we reduce the conjecture to
Subgoal *1/1’

(IMPLIES (NOT (CONSP X))
(EQUAL (M (APPEND X Y) A S)

(M Y A (M X A S )))).

But simplification reduces this to T, using the :definitions BINARY-APPEND and M and
primitive type reasoning.
That completes the proof of *1.
Q. E. D.
Summary
Form: ( DEFTHM COMPOSITION . . .)
Rules: ((:DEFINITION BINARY-APPEND)

(:DEFINITION ENDP)
(:DEFINITION M)
. . . material deleted . . .
(:REWRITE CDR-CONS)
(:REWRITE COMMUTATIVITY-OF-*)
(:REWRITE COMMUTATIVITY-OF-+))

Warnings: None
Time: 0.09 seconds (prove: 0.06, print: 0.02, other: 0.01)
COMPOSITION

4 Case Studies

The compiler example illustrates two different models, a theorem relating them, 
and the role of the user in structuring ACL2’s proofs by the discovery of appropriate
lemmas. At http://www.cs.utexas.edu/users/moore/publications/
flying-demo/scipt.html you will find this example and many others, including
the correctness of an insertion sort function, the correctness of a binary adder and of
a multiplier, the formal semantics of a simple netlist description language – a language
like that used to describe circuits – and the correctness of a function that generates a
description of an adder, and some theorems abut Java byte code programs. The web
pages show the definitions, many example computations, and most of the proofs,
including all of the proofs for the compiler example discussed here.

These models are suggestive of how ACL2 is used. But they are trivial by the stan-
dards of industrial machine designs and realistic programming languages. The stack
machine above is fully specified in about two dozen lines of code; the proof required two
lemmas. Industrial applications of ACL2 have involved hundreds of pages of code to
formalize a single model and thousands of lemmas to relate two such models.
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We now briefly describe a few such applications. For more details, see Kaufmann 
et al. (2000a) and Kaufmann and Moore (2000), collections of case studies written 
by ACL2 users.

ACL2 has been used to model several industrial microprocessors. The models are
similar to that for m: a ‘state’ is formalized as an n-tuple of various components like
stacks, registers, etc., and a state-transition function, step, is defined. The Motorola
CAP digital signal processor (DSP) (Brock et al. 1996; Brock and Hunt 1997; Gilfeather
et al. 1994) was modeled at two levels: the pipeline level, where several instructions 
are simultaneously being decoded and carried out; and the user level, where instruc-
tions are executed sequentially. Both models were bit- and cycle-accurate in the sense
that they specified all the state components completely on every step. The two models
were shown equivalent under certain conditions on the program being executed.
Another commercial microprocessor modeled with ACL2 is the Rockwell JEM1 (Greve
and Wilding 1998; Wilding et al. to appear) – the world’s first silicon Java Virtual
Machine. ACL2 has been used to verity commercial DSP (Brock and Moore 1999)
microcode. It has been used to prove the IEEE compliance of the FDIV microcode for
the AMD-K5TM processor2 (Moore et al. 1998) and of the circuit descriptions imple-
menting each of the elementary floating-point operations on the AMD Athlon
(Russinoff 1998; Russinoff and Flatau 2000). It has been used to verify a pipelined
machine providing interrupts and exceptions in the face of speculative out-of-order exe-
cution (Sawada and Hunt 1998) and a security model for the boot code of the IBM
4758 (Smith and Austel 1998).

Not all of ACL2’s applications are at the hardware level. ACl2 is being used to prove
properties of Java byte code (Moore 1999; Moore and Porter 2000a, 2000b), includ-
ing multi-threaded programs.

ACL2 has been used to provide a trusted (verified) proof-checker for the Otter
theorem proving system (McCune and Shumsky 2000). Otter is perhaps the preemi-
nent resolution-style theorem prover and has been under development at Argonne
National Labs for decades. When Otter claims success, it can give its proof to a much
simpler theorem prover for checking, and one such checker was verified to be sound for
finite models by ACL2. In a similar kind of work, ACL2 was used to verify a checker for
an off-line compiler for safety-critical train-borne real-time control software (Bertoli
and Traverso 2000).

ACL2 has been used to prove the correctness of a model checker (Manolios 2000),
the alternating-bit protocol (Manolios et al. 1999), a BDD package (Sumners 2000),
and many other algorithms.

An extension of the system by Ruben Gamboa (1999) adds the real numbers via
nonstandard analysis and many interesting theorems in real analysis have been proved
including trigonometric identities, Euler’s identity, the fundamental theorem of calcu-
lus (Kaufmann 2000) and theorems about continuity and differentiability (Gamboa
2000). See also Gamboa and Kaufmann (1999).

The ACL2 home page contains links to many other papers reporting ACL2 
applications.
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Notes

1 AMD, the AMD logo, and combinations thereof, and AMD Athlon are trademarks of
Advanced Micro Devices, Inc.

2 AMD, the AMD logo, and combinations thereof, and AMD-K5 are trademarks of Advanced
Micro Devices, Inc.
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Further Reading

If you are interested in reading more about ACL2, the definitive book is Kaufmann et al. (2000b),
which explains the programming language, the logic, the theorem prover, and how to use them.
The book contains exercises, and the solutions to the exercises are available on the Web through
the ACL2 home page http:/www.cs.utexas.edu/users/moore/acl2. A wealth of additional reading
material is available from the home page.

In addition, ACL2 is available at no fee under the GNU General Public License. You may install
it and then define functions, execute them, and learn to prove theorems with the ACL2 theorem
prover. Installation instructions and several megabytes of hypertext documentation are available
on the ACL2 home page. Also of value are the two short tours link on the home page and 
the previously mentioned flying demo, http://www.cs.utexas.edu/users/moore/publications/
flying-demo/script.html.
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Sampling Labeled Deductive Systems

D. M . G A B BAY

1 Labeled Deductive Systems in Context

In the past 30 years logic has undergone a serious evolutionary development. The 
meteoric rise of the applied areas of computer science and artificial intelligence put
pressure on traditional logic to evolve. There was the urgent need to develop new logics
in order to provide better models of human behavior and actions. Such models are used
to help design products which aid/replace the human in his daily activity. As a result,
a rich variety of new logics have been developed and there was the need for a new 
unifying methodology for the chaotic landscape of the new logics.

Such a methodology is Labeled Deductive Systems (LDS).
The purpose of this chapter is to introduce Labeled Deductive Systems and show that

many logical systems, new and old, monotonic and non-monotonic all fall within this
new framework. This chapter is based on Gabbay (1996).

We begin with the traditional view of what is a logical system.
Traditionally, to present a logic L, we need to first present the set of well-formed 

formulas of that logic. This is the language of the logic. We specify the sets of atomic 
formulas, connectives, quantifiers, and the set of well-formed formulas. Secondly, we
mathematically define the notion of consequence, that is, for sets of formulas D and
formulas Q, we define the consequence relation D �L Q, which is read ‘Q follows from 
D in the logic L.’

The consequence relation is required to satisfy the following intuitive properties: 
(D, D¢ abbreviates D » D¢).

Reflexivity

D � Q if Q Œ D

Monotonicity

    

D
D D

�

�

Q
Q, ¢
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Transitivity

If you think of D as a database and Q as a query, then reflexivity means that the
answer ‘yes’ is given for any Q which is already listed in the database D. Monotonicity
reflects the accumulation of data, and transitivity is nothing but lemma generation,
namely, if D � A, then A can be used as a lemma to derive B from D.

These three properties have appeared to constitute the minimal and most natural 
for a logical system, given that the main applications of logic were in mathematics and
philosophy.

The above notions were essentially put forward by Tarski (1956) in 1936 and is 
referenced as Tarski consequence. Scott (1974), inspired by constructions in Gabbay
(1991), generalized the notion to allow Q to be a set of formulas G. The basic relation
is then of the form D � G, satisfying:1

Reflexivity

D � G if D « G π ∆

Monotonicity

Cut

Scott further showed that for any Tarski consequence relation � there exist two Scott
consequence relations (a maximal one and a minimal one) that agree with it, namely,
that D � A (Tarski) iff D � {A} (Scott) (see Gabbay 1981).

The above notions are monotonic. However, the increasing use of logic in computer
science and artificial intelligence has given rise to logical systems which are not mono-
tonic, that is to systems in which the axiom of monotonicity is not satisfied. There are
many such systems, satisfying a variety of conditions and presented in a variety of
ways. Furthermore, some are characterized in a proof theoretical and some in a model
theoretical manner. All these different presentations give rise to some notion of conse-
quence D � Q, but they only seem to all agree on reflexivity.2 The essential difference
between these logics (commonly called non-monotonic logics) and the more traditional
logics (now referred to as monotonic logics) is the fact that D � A holds in the mono-
tonic case because of some DA Õ D, while in the non-monotonic case the entire set D is

D G D G
D D G G

, ; ,
, ,

A A� �

�

¢ ¢
¢ ¢

D G
D D G

�

�, ¢

D D
D

� �

�

A A Q
Q

; ,



somehow used to derive A. Thus if D is increased to D¢, there is no change in the mono-
tonic case, while there may be a change in the non-monotonic case.

The above describes the situation current in the early 1980s. We have had a multi-
tude of systems generally accepted as ‘logics’ without a unifying underlying theory and
many had semantics without proof theory or vice versa, though almost all of them
were based on some sound intuitions of one form or another. Clearly there was the need
for a general unifying framework. An early attempt at classifying non-monotonic
systems was Gabbay (1985). It was put forward that basic axioms for a Tarski type con-
sequence relation should be reflexivity, transitivity, and restricted monotonicity, namely:

Restricted monotonicity (cumulativity)

A variety of systems seem to satisfy this axiom. See a survey in Makinson (1994) and
Gabbay (1996).

Although some sort of classification was obtained and semantical results were
proved, the approach does not seem to be strong enough. Many systems do not satisfy
restricted monotonicity. Other systems such as relevance logic, do not even satisfy
reflexivity. Others have a richness of their own which is lost in a simple presentation as
an axiomatic consequence relation. Obviously a different approach is needed, one
which would be more sensitive to the variety of features of the systems in the field.
Fortunately, developments in a neighboring area, that of automated deduction, seem
to be of help. New automated deduction methods were developed for nonclassical logics,
and resolution was generalized and modified to be applicable to these logics. In general,
because of the value of these logics in theoretical computer science and artificial 
intelligence, a greater awareness of the computational aspects of logical systems was
developing and more attention was being devoted to proof-theoretical presentations. It
became apparent to us that a key feature in the proof-theoretic study of these logics is
that a slight natural variation in an automated or proof-theoretic system of one logic
(say L1), can yield another logic (say L2).

Although L1 and L2 may be conceptually far apart (in their philosophical motiva-
tion, and mathematical definitions) when it comes to automated techniques and proof
theoretical presentation, they turn out to be brother and sister. This kind of relation-
ship is not isolated and seems to be widespread. Furthermore, non-monotonic sys-
tems seem to be obtainable from monotonic ones through variations on some of their
monotonic proof-theoretical formulation, thus giving us a handle on classifying non-
monotonic systems.

This phenomena has prompted Gabbay (1992) to put forward the view that a 
logical system L is not just the traditional consequence relation � (monotonic or non-
monotonic) but a pair (�, S�) where � is a mathematically defined consequence relation
(i.e. the set of pairs (D, Q) such that D � Q) satisfying whatever minimal conditions on
a consequence relation one happens to agree on, and S� is an algorithmic system for

D D
D
� �

�

A B
A B
;

,
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generating all those pairs. Thus according to this definition classical logic � perceived
as a set of tautologies together with a Gentzen system S� is not the same as classical
logic together with the two-valued truth table decision procedure T� for it. In our con-
ceptual framework, (�, S�) is not the same logic as (�, T�).

To illustrate and motivate our way of thinking, observe that it is very easy to move
from T� for classical logic to a truth table system Tn

� for Ĺukasiewicz n-valued logic. It 
is not so easy to move to an algorithmic system for intuitionistic logic. In comparison,
for a Gentzen system presentation, exactly the opposite is true. Intuitionistic and 
classical logics are neighbors, while Ĺukasiewicz logics seem completely different. In
fact, some of the examples of this chapter show proof theoretic similarities between
Ĺukasiewicz’s infinite valued logic and Girard’s Linear Logic, which in turn is proof
theoretically similar to intuitionistic logic.

There are many more such examples among temporal logics, modal logics, defeasi-
ble logics and others. Obviously, there is a need for a more unifying framework. The
question is then whether we can adopt a concept of a logic where the passage from 
one system to another is natural, and along predefined accceptable modes of variation?
Can we put forward a framework where the computational aspects of a logic also play
a role? Is it possible to find a common home for a variety of seemingly different 
techniques introduced for different purposes in seemingly different intellectual logical
traditions?

To find an answer, let us ask ourselves what makes one logic different from another?
How is a new logic presented and described and compared to another? The answer is
obvious. These considerations are usually dealt with on the meta-level. Most logics are
based on modus ponens and the quantifier rules are formally the same anyway and the
differences between them are meta-level considerations on the proof theory or seman-
tics. If we can find a mode of presentation of logical systems where meta-level features
can reside side by side with object level features then we can hope for a general frame-
work. We must be careful here. In the logical community the notions of object-level 
vs. meta-level are not so clear. Most people think of naming and proof predicates in this
connection. This is not what we mean by meta-level here. We need a more refined
understanding of the concept. There is a similar need in computer science. In Gabbay
(1996) we devote a chapter to these considerations. See also Gabbay (1992).

We found that the best framework to put forward is that of a Labeled Deductive 
System, LDS. Our notion of what constitutes a logic will be that of a pair (�, S�) where
� is a set-theoretic (possibly non-monotonic) consequence relation on a language L and
S� is an LDS, and where � is essentially required to satisfy no more than Identity (i.e.
{A} � A) and Surgical Cut (see below and Gabbay (1991; forthcoming)). This is a refine-
ment of our concept of a logical system mentioned above and first presented in Gabbay
(1992). We now not only say that a logical system is a pair (�, S�), but we are adding
that S� itself has a special presentation, that of an LDS.

An LDS system is a triple (L, G, M), where L is a logical language (connectives and
wffs) and G is an algebra (with some operations) of labels and M is a discipline of label-
ing formulas of the logic (from the algebra of labels G), together with deduction rules
and with agreed ways of propagating the labels via the application of the deduction
rules. The way the rules are used is more or less uniform to all systems. In the general
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case we allow G, the algebra of labels, to be an LDS system itself ! Furthermore, if our
view of a logical system is that the declarative unit is a pair, a formula and a label, then
we can also label the pair itself and get multiple labeling.

The perceptive reader may feel resistence to this idea at this stage. First be assured
that you are not asked to give up your favourite logic or proof theory nor is there any
hint of a claim that your activity is now obsolete. In mathematics a good concept can
rarely be seen or studied from one point of view only and it is a sign of strength to have
several views connecting different concepts. So the traditional logical views are as valid
as ever and add strength to the new point of view. In fact, a closer examination of the
material in my book would reveal that manifestations of our LDS approach already exist
in the literature in various forms (see Anderson and Belnap (1975), Fitting (1983) and
Gabbay (1996) and the references there), however, they were locally regarded as con-
venient tools and there was not the realization that there is a general framework to be
studied and developed. None of us is working in a vacuum and we build on each others’
work. Further, the existence of a general framework in which any particular case can
be represented does not necessarily mean that the best way to treat that particular case
is within the general framework. Thus if some modal logics can be formulated in LDS,
this does not mean that in practice we should replace existing ways of treating the logics
by their LDS formulation. The latter may not be the most efficient for those particular
logics. It is sufficient to show how the LDS principles specialize and manifest themselves
in the given known practical formulation of the logic.

The reader may further have doubts about the use of labels from the computational
point of view. What do we mean by a unifying framework? Surely a Turing machine
can simulate any logic, is that a unifying framework? The use of labels is powerful, as
we know from computer science, are we using labels to play the role of a Turing
machine? The answer to the question is twofold. First that we are not operating at the
meta-level, but at the object level. Second, there are severe restrictions on the way we
use LDS. Here is a preview:

1. The only rules of inference allowed are the traditional ones, modus ponens, and
some form of deduction theorem for implication, for example.

2. Allowable modes of label propagation are fixed for all logics. They can be adjusted
in agreed ways to obtain variations but in general the format is the same. For
example, it has the following form for implications: (A Æ B) gets label t iff "x Œ G1

[If A is labeled x then B can be proved with labels t + x], where G1 is a set of labels
characterizing the implication in that particular logic. For example G1 may be all
atomic labels or related labels to t, or variations. The freedom that different logics
have is in the choice of G1 and the properties of ‘+’. For example we can restrict the
use of modus ponens by a wise propagation of labels.

3. The quantifier rules are the same for all logics.
4. Meta-level features are implemented via the labeling mechanism, which is object

language.

The reader who prefers to remain within the traditional point of view of: assump-
tions (data) proving a conclusion can view the labeled formulas as another form of
data.



SAMPLING LABELED DEDUCTIVE SYSTEMS

747

There are many occasions when it is most intuitive to present an item of data in the
form t : A, where t is a label and A is a formula. The common underlying reason for 
the use of the label t is that t represents information which is needed to modify A or to
supplement (the information in) A which is not of the same type or nature as (the 
information represented by) A itself. A is a logical formula representing information
declaratively, and the additional information of t can certainly be added declaratively
to A to form A¢, however, we may find it convenient to put forward the additional infor-
mation through the label t as part of a pair t : A.

Take for example a source of information which is not reliable. A natural way of rep-
resenting an item of information from that source is t : A, where A is a declarative pre-
sentation of the information itself and t is a number representing its reliability. Such
expert systems exist (e.g. Mycin) with rules which manipulate both t and A as one unit,
propagating the reliability values ti through applications of modus ponens. We may also
use a label naming the source of information and this would give us a qualitative idea
of its reliability.

Another area where it is natural to use labels is in reasoning from data and rules. If
we want to keep track, for reasons of maintaining consistency and/or integrity con-
straints, where and how a formula was deduced, we use a label t. In this case, the label
t in t : A can be the part of the data which was used to get A. Formally in this case t is
a formula, the conjunction of the data used. We thus get pairs of the form Di : Ai, where
Ai are formulas and Di are the parts of the database from which Ai was derived.

A third example where it is natural to use labels is time stamping of data. Where
data are constantly revised and updated, it is important to time stamp the data items.
Thus the data items would look like ti : Ai, where ti are time stamps. Ai itself may be a
temporal formula. Thus there are two times involved, the logical time si in Ai(si) and the
time stamping ti of Ai. For reasons of clarity, we may wish to regard ti as a label rather
than incorporate it into the logic (by writing for example A*(ti, si)).

To summarize then, we replace the traditional notion of consequence between for-
mulas of the form A1, . . . ,An � B by the notion of consequence between labeled formulas

t1 : A1, t2 : A2, . . . tn : An � s : B

Depending on the logical system involved, the intuitive meaning of the labels varies. In
querying databases, we may be interested in labeling the assumptions so that when we
get an answer to a query, we can record, via the label of the answer, from which part
of the database the answer was obtained. Another area where labeling is used is tem-
poral logic. We can time stamp assumptions as to when they are true and query, given
those assumptions, whether a certain conclusion will be true at a certain time. Thus
the consequence notion for labeled deduction is essentially the same as that of any logic:
given assumptions does a conclusion follow.

Whereas in the traditional logical system the consequence is defined using proof
rules on the formulas, in the LDS methodology the consequence is defined by using
rules on both formulas and their labels. Formally we have formal rules for manipulat-
ing labels and this allows for more scope in decomposing the various features of the
consequence relation. The meta features can be reflected in the algebra or logic of the
labels and the object features can be reflected in the rules of the formulas.
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The notion of a database or of a ‘set of assumptions’ also has to be changed. A data-
base is a configuration of labeled formulas. The configuration depends on the labeling
discipline. For example, it can be a linearly ordered set {a1 : A1, . . . , an : An}, a1 < a2 <
. . . < an. The proof discipline for the logic will specify how the assumptions are to be
used. We need to develop the notions of the Cut Rule and the Deduction Theorem in
such an environment. This we do in a later section.

The next two sections will give many examples of LDS disciplines featuring many
known monotonic and non-monotonic logics. It is of value to summarize our view
listing the key points involved:

• The unit of declarative data is a labeled formula of the form t : A, where A is a wff
of a language L and t is a label. The labels come from an algebra (set) of labels.

• A database is a set of labeled formulas.
• An LDS discipline is a system (algorithmic) for manipulating both formulas and their

labels. Using this discipline the statement D � G is well defined for the two databases
D and G. Especially D � t : A is well defined.

• � must satisfy the minimal conditions, namely

Identity

{t : A} � t : A

Surgical cut

where G[t : A] means that t : A is contained/occurs somewhere in the structure G and
G[D] means that D replaces A in the structure.

• A logical system is a pair (�, S�), where � is a consequence relation and S� is an LDS
for it.

2 Examples from Monotonic Logics

To motivate our approach we study several known examples in this section.
Example 2.1 below shows a standard deduction from Relevance Logic. The purpose

of the example is to illustrate our point of view. There are many such examples in
Anderson and Belnap (1975). Example 2.3 below considers a derivation in modal logic.
There we use labels to denote essentially possible worlds. The objective of the example
is to show the formal similarities to the relevance logic case in Example 2.1. Example
2.4 can reap the benefits of the formal similarities of the first two examples and 
introduce, in the most natural way, a system of relevant modal logic. The objective of
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Example 2.4 is to show that the labels in Example 2.1 and Example 2.3 can be read as
determining the metalanguage features of the logic and can therefore be combined
‘declaratively’ to form the new system of 2.4. Example 2.5 considers strict implication.
This example shows that for strict S4 implication one can read the labels either as 
relevance labels or as possible world labels. Example 2.6 shows how labels can interact
with quantifiers in modal logic. We continue with examples of relevance reasoning,
many-valued logics, formulas as types, realizability and conclude with a formal defini-
tion of an algebraic LDS for Æ and ÿ.

EXAMPLE 2.1 (RELEVANCE AND LINEAR LOGIC) Consider a propositional language with
implication ‘Æ’ only. The forward elimination rule is modus ponens. From the theorem
proving view, modus ponens is an object language consideration. Thus a proof of
� (B Æ A) Æ ((A Æ B) Æ (A Æ B)) can proceed as follows:

Assume a1 : B Æ A and show (A Æ B) Æ (A Æ B). Further assume a2 : A Æ B and
show A Æ B. Further assume a3 : A and show B. We thus end up with the following
problem:

Assumptions

1. a1 : B Æ A

2. a2 : A Æ B

3. a3 : A

Derivation

4. a2a3 : B by modus ponens from lines (2) and (3).

5. a1a2a3 : A from (4) and (1).

6. a2a1a2a3 : B from (5) and (2).

7. a2a1a2 : A Æ B from (3) and (6).

8. a2a1 : (A Æ B) Æ (A Æ B) from (2) and (7).

9. a2 : (B Æ A) Æ ((A Æ B) Æ (A Æ B)) from (1) and (8).

The meta aspect of this proof is the annotation of the assumptions and the keeping
track of what was used in the deduction. A meta-leval condition would determine the
logic involved.

A formal definition of the labeling discipline for this class of logics is given in Gabbay
(1996). For this example it is sufficient to note the following three conventions:

1. Each assumption is labeled by a new atomic label.
An ordering on the labels can be imposed, namely a1 < a2 < a3. This is to reflect the
fact that the assumptions arose from our attempt to prove (B Æ A) Æ ((A Æ B) Æ
(A Æ B)) and not for example from (A Æ B) Æ ((B Æ A) Æ (A Æ B)) in which case
the ordering would be a2 < a1 < a3. The ordering can affect the proofs in certain
logics.
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2. If in the proof, A is labeled by the multiset a and A Æ B is labeled by b then B can
be derived with a label a » b where ‘»’ denotes multiset union.

3. If B was derived using A as evidenced by the fact that the label a of A is a sub-
multiset of the label b of B (a Õ b) then we can derive A Æ B with the label b – a
(‘-’ is multiset subtraction).

The derivation can be represented in a more graphical way.
To show (B Æ A) Æ ((A Æ B) Æ (A Æ B)). See figure 46.1.
The above is the metabox way of representing the deduction. Note that in line 8, 

multiset subtraction was used and only one copy of the label a2 was taken out. The 
other copy of a2 remains and cannot be cancelled. Thus this formula is not a theorem
of linear logic, because the outer box does not exit with label ∆. In relevance logic, the
discipline uses sets and not multisets. Thus the label of line 8 in this case would be a1

and that of line 9 would be ∆. The above deduction can be made even more explicit as
follows:

Figure 46.1
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(B Æ A) Æ ((A Æ B) Æ (A Æ B)) follows with a label from Box a1.

Box a1

a1 : B Æ A assumption
a2a1 : (A Æ B) Æ (A Æ B) from Box a2

Box a2

a2 : A Æ B assumption
a2a1a2 : A Æ B from Box a3

Box a3

a3 : A assumption
a2 : A Æ B reiteration from box a2

a2a3 : B by modus ponens
a1 : B Æ A reiteration from box a1

a1a2a3 : A modus ponens from the two preceding lines
a2 : A Æ B repetition of an earlier line
a2a1a2a3 : B modus ponens from the two preceding lines

The following meta-rule was used:
We have a system of partially ordered metaboxes a1 < a2 < a3. Any assumption in a

box a can be reiterated in any box b provided a < b.

REMARK 2.2 a. The above presentation of the boxes makes them look more like possible
worlds. The labels are the worlds and formulas can be exported from one world to another
according to some rules. The next example 2.3 describes modal logic in just this way.

b. Note that different meta-conditions on labels and metaboxes correspond to 
different logics.

The following table gives intuitively some correspondence between meta-conditions
and logics.

Meta-condition Logic

ignore the labels intuitionistic logic

accept only the derivations relevance logic
which use all the assumptions

accept derivations which linear logic
use all assumptions exactly once
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The meta-conditions can be translated into object conditions in terms of axioms and
rules. If we consider a Hilbert system with modus ponens and substitution then the
additional axioms involved are given below:

Linear Logic

A Æ A
(A Æ (B Æ C)) Æ (B Æ (A Æ C))
(C Æ A) Æ ((B Æ C) Æ (B Æ A))
(C Æ A) Æ ((A Æ B) Æ (C Æ B))

Relevance Logic
Add the schema below to linear logic

(A Æ (B Æ C)) Æ ((A Æ B) Æ (A Æ C))

Intuitionistic Logic
Add the schema below to relevance logic:

A Æ (B Æ A)

The reader can note that the following axiom (Peirce Rule) yields classical logic. Further
note that for example, we can define ‘Linear Classical Logic’ by adding Peirce Rule to
linear logic. A new logic is obtained.

Classical Logic
Add the schema below to intuitionistic logic:

((A Æ B) Æ A) Æ A.

EXAMPLE 2.3 This example shows the meta-level–object level division in the case of
modal logic. Modal logic has to do with possible worlds. We thus think of our basic data-
base (or assumptions) as a finite set of information about possible worlds. This consists
of two parts. The configuration part, the finite configuration of possible worlds for the
database, and the assumptions part which tells us what formulas hold in each world.
The following is an example of a database:

The conclusion to show (or query) is:

t : ‡‡C.

The derivation is as follows:

Assumptions Configuration

(1) t : ��B t < s
(2) s : ‡(B Æ C)
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3. From (2) create a new point r with s < r and get r : B Æ C.

We thus have

Assumptions Configuration

(1), (2), (3) t < s < r

4. From (1), since t < s we get s : �B.
5. From (4), since s < r we get r : B.
6. From (5) and (3) we get r : C.
7. From (6) since s < r we get s : ‡C.
8. From (7) using t < s we get t : ‡‡C.

Discussion:
The object rules involved are:

�E Rule:

‡I Rule:

‡E Rule:

Note that the above rules are not complete. We do not have rules for deriving, for
example, �A. Also, the rules are all for intuitionistic modal logic.

The meta level consideration may be properties of <,

e.g. transitivity t < s Ÿ s < r Æ t < r or
e.g. linearity: t < s ⁄ t = s ⁄ s < t etc.

EXAMPLE 2.4 The reader can already see the benefit of separating the meta-level 
(the handling of possible worlds i.e. labels) and the object-level (i.e. formulas) features.
We can combine both the meta-level features of Examples 2.1 and 2.3 to create for
example a modal relevance logic in a natural way. Each assumption has a relevance
label as well as a world label. Thus the proof of the previous example becomes the 
following:

t A
s t s s A

:‡
create a new point  with  and deduce :<

t s s B
t B

< , :
:‡

t s t A
s A

< ; :
:

�
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We proceed to create a new label r using ‡E rule. The relevance label is carried over. We
have t < s < r.

3. (a2, r) : B Æ C

Using �E rule with relevance label carried over, we have:

4. (a1, s) : �B
5. (a1, r) : B

Using modus ponens with relevance label updated

6. (a1, a2, r) : C

Using ‡I rule:

7. (a1, a2, s) : ‡C
8. (a1, a2, t) : ‡‡C

(8) means that we got t: ‡‡C using both assumptions a1 and a2.
There are two serious problems in modal and temporal theorem proving. One is 

that of Skolem functions for $x‡A(x) and ‡$xA(x) are not logically the same. If we
skolemize we get ‡A(c). Unfortunately it is not clear where c exists, in the current 
world (($x = c)‡A(x)) or the possible world (‡($x = c)A(x)).

If we use labeled assumptions then, t : $x‡A(x) becomes t : ‡A(c) and it is clear that
c is introduced at t. In fact we shall write it as ct.

On the other hand, the assumption t : ‡$xA(x) will be used by the ‡E rule to intro-
duce a new point s, t < s and conclude s : $xA(x). We can further skolemize at s and get
s : A(c), with c introduced at s and write it as cs. We thus need the mechanism of remem-
bering or labeling constants as well, to indicate where they were first introduced, and
we need rules to govern them. This is illustrated in Example 2.6 below.

Labeling systems for modal and temporal logics is studied in Gabbay (1991).

EXAMPLE 2.5 The following example describes the logic of modal S4 strict implica-
tion. In this logic the labels can be read either as relevance labels or as possible 
worlds. S4 strict implication A Æ B can be understood as a temporal connective, as
follows:

‘A Æ B is true at world t iff for all future worlds s to t and for t itself we have that if
A is true at s then B is true at s.’ Thus A Æ B reads ‘From now on, if A then B.’

Suppose we want to prove that A Æ B and A Æ (B Æ C) imply A Æ C. To show this
we reason semantically and assume that at time t, the two assumptions are true. We

Assumptions Configuration

(1) (a1, t) : ��B t < s
(2) (a2, s) : ‡(B Æ C)
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want to show that A Æ C is also true at t. To prove that we take any future time s, assume
that A is true at s and show that C is also true at s. We thus have the following 
situation:

1. t : A Æ B
2. t : A Æ (B Æ C)
3. show t : A Æ C

from box

3.1 Assume s : A Show s : C
Since s is in the future of t, we get that at s,
(1) and (2) are also true.

3.2 s : A Æ B from (1)
3.3 s : A Æ (B Æ C) from (2)

We now use modus ponens, because X Æ Y means
‘from now on, if X then Y’

3.4 s : B from (3.1) and (3.2)
3.5 s : B Æ C from (3.2) and (3.3)
3.6 s : C modus ponens from (3.4) and (3.5)

exit t : A Æ C

Notice that any t : D can be brought into (reiterated) the box as s: D, provided it has
an implicational form, D = D1 Æ D2. We can thus regard the labels above as simply
naming assumptions (not as possible worlds) and the logic has the reiteration rule
which says that only implications can be reiterated.

Let us add a further note to sharpen our understanding. Suppose Æ is read as a K4
implication (i.e. transitivity without reflexivity). Then the above proof should fail.
Indeed the corresponding restriction on modus ponens is that we do perform X, X Æ
Y � Y in a box, provided X Æ Y is a reiteration into the box and was not itself derived
in that same box. This will block line (3.6).

EXAMPLE 2.6 Another example has to do with the Barcan formula.
This is a case of quantified modal logic. We need to organize how to deal with quan-

tifiers in LDS. The idea is that whenever we introduce a variable or a constant under a
label we must label the variable/constant as well. Thus we have the rule:

we also have t : xt and t : ct holding, where t : y means that y resides at t. A rule of the
form

t y
s y

:
:

   

t xA x

t A c

t xA x

t A xt t

:

:

:

:

$ ( )
( )

" ( )
( )
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is called a visa rule, allowing for a term y residing at t also to reside at s. Thus we have
the $ introduction rule as

and the universal generalization rule:

To get the Barcan formula we need a visa rule

We can now prove this formula.

t y t s
s y

: ;
:

<

t A x t x x
t xA x

: ; : ,
:

( )
" ( )

 universal variable

t A y t y
t yA y
: ; :
:

.
( )

$ ( )

Assumption Configuration

(1) t : "x�A(x) t < s

We show

s: "xA(x)

We proceed intuitively

1. t : �A(x) (stripping "x, remembering x is arbitrary), and t : x.
2. Since the configuration contains s, t < s we get

s : A(x)

3. Since x is arbitrary we get by visa rule and � rule:

s : "xA(x); s : x

The rule

is allowed because of the visa rule.
To have the above rule for arbitrary x is equivalent to adopting the Barcan formula

axiom:

t A x t s
s A x

: ,
:

� ( ) <
( )
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"x�A(x) Æ �"xA(x)

To show �"xA(x) Æ "x�A(x), we need the visa rule:

The above are just a few examples for the scope we get using labels. The exact details
and correspondences are worked out in our monograph Gabbay (1996).

EXAMPLE 2.7 (RELEVANCE REASONING) The indices are a, b, and g = (b - a). The 
reasoning structure is:

Assume a : A
Show b : B
If b � a then exit with (b - a) : A Æ B.

To show A Æ (B Æ C) � B Æ (A Æ C)
Assume

a1 : A Æ (B Æ C)

we use the metabox to show B Æ (A Æ C). See figure 46.2.

   

t y s t
s y

: ;
:

<

Figure 46.2



D. M. GABBAY

758

EXAMPLE 2.8 (ĹUKASIEWICZ MANY-VALUED LOGICS) Consider Ĺukasiewicz infinite-valued
logic, where the values are all real numbers or rationals in [0,1]. We designate 0 as
truth and the truth table for implication is

x Æ y = max(0, y - x)

Here the language contains atoms and implication only, assignments h give values to
atoms in [0,1], h(q) Œ [0,1] and h is extended to arbitrary formulas via the table for Æ
above. Define the relation

A1, . . . , An � B

to mean that for all h, h(A1) + . . . + h(An) � h(B), where + is numerical addition.
This logic can be regarded as a labeled deductive system, where the labels are values t

Œ [0,1]. t : A means that h(A) = t, for a given background assignment h. The interesting
part is that to show t : A Æ B (i.e. that A Æ B has value t) we assume x : A (i.e. that A has
value x) and then have to show that B has value t + x, i.e. show t + x : B.

This is according to the table of Æ.
Thus figure 46.3 shows the deduction in box form:

Figure 46.3

This has the same structure as the case of relevance logic, where + was understood
as concatenation.

A full study of many valued logics from the LDS point of view is given in Gabbay
(1996).

EXAMPLE 2.9 (FORMULAS AS TYPES) Another instance of the natural use of labels is the
Curry–Howard interpretation of formulas as types. This interpretation conforms
exactly to our framework. In fact, our framework gives the incentive to extend the for-
mulas as types interpretation in a natural way to other logics, such as linear and rele-
vance logics and surprisingly, also many valued logics, modal logics, and intermediate
logics. A formula is considered as a type and its label is a definable l-term of the same
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type. Given a system for defining l-terms, the theorems of the logic are all those types
which can be shown to be nonempty.

The basic propagation mechanism corresponding to modus ponens is:

It is satisfied by application.
Thus if we read the + in tAÆB + tA as application, we get the exact parallel to the

general schema of propagation. Compare with relevance logic where + was concate-
nation, and with many valued logics where + was numerical addition!

To show t : A Æ B we assume x : A, with x arbitrary, that is start with a term x of
type A, use the proof rules to get B. As we saw, applications of modus ponens generate
more terms which contain x in them via application. If we accept that proofs generate
functionals, then we get B with a label y = t(x). Thus t = lxt(x). This again conforms
with our general schema for Æ.

In Gabbay and Queiroz (1992) on the Curry–Howard interpretation we exploit this
idea systematically. There are two mechanisms which allow us to restrict or expand our
ability to define terms of any type. We can restrict l-abstraction (e.g. allow lxt(x) only
if x actually occurs in t), this will give us logics weaker than intuitionistic logic, or we
can increase our world of terms by requiring diagrams to be closed, for example, for
any j of classical logic such that

� (A Æ B) Æ [j(A) Æ j(B)]

in classical logic, we want figure 46.4 to be complete, that is for any term t there must
exist a term t¢ (see figure 46.4).

Take for example the formula A Æ (B Æ A) as type. We want to show a definable
term of this type, we can try and use the standard proof (see figure 46.5), however,
with the restriction on l-abstraction which requires the abstracted variable to actually
occur in the formula, we cannot exit the inner box. For details see Gabbay and Queiroz
(1992).

   

t A

t A B
t t B

A

A B

A B A

:

:
:

Æ

Æ

Æ
( )

Figure 46.4
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EXAMPLE 2.10 (REALIZABILITY INTERPRETATION) The well-known realizability interpre-
tation for intuitionistic implication is another example of a functional interpreta-
tion for Æ which has the same universal LDS form. A notation for a recursive function
{e} realises an implication A Æ B iff for any n which realizes A, {e} (n) realizes B. 
Thus

e : A Æ B iff "n[n : A fi {e}(n) : B]

It is an open problem to find an axiomatic description of the set of all wffs which are
realisable.

DEFINITION 2.11 (AN ALGEBRAIC LDS FOR IMPLICATION AND NEGATION) Let L be a
propositional language with Æ, ÿ and atoms. Let A be an algebra of labels with
relations x < y for priority among labels, F(x, y) of compatibility among labels and
functions, f(x, y) for propagating labels and »+ for aggregating labels.

Given two labeled formulas t : A and s : A Æ B, F(s, t) must hold in order to licence
the modus ponens. If it does not hold, we cannot get B. If it does hold, we can get B but
we must know what is the label of B. This is the job of the function f(s, t). The aggre-
gation function tells us how different proofs of the same B with different labels can rein-
force one another. Thus if we have t : B and s : B we can aggregate and get t »+ s : B.
See Example 3.4 below for a very famous aggregation rule.

1. A declarative unit is a pair t : A, where A is a formula and t a term on the algebra of
labels (built up from atomic labels and the functions f and »+).

2. A database is a set containing declarative units and formulae of the form ti < si and
F(ti, si) for some labels t1, . . . , si, . . .

Figure 46.5
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3. The Æ elimination rule, modus ponens, has the form

4. The fi introduction rule has the form
• To introduce t : A Æ B

Assume x : A, for x arbitrary in the set {y Ô F(t, y)}, and show f(t, x) : B.
5. Negation rules have the form

We are not writing any specific rules because there are so many options for negation.
6. A family of flattening rules Flat of the form

where g is either 0 or 1 and is the result of applying the function Flat on the set
containing ti, sj and where yj, yi range over {t1, . . . , tk, s1, . . . , sm}.3 The meaning
of g is as follows. Since obviously we can prove both A and ÿA with different labels,
we need a flat decision on whether we take A, (g = 1) or ÿA, (g = 0).

7. Aggregation rule

8. »+ is associative, commutative and f is distributive over »+.
9. A proof is a sequence of expressions which are of the form t < s, F(t, s) or t : A such

that each element of the sequence is either an assumption or is obtained from pre-
vious elements in the sequence by an elimination rule or is introduced by a subcom-
putation via the Æ introduction rule. Flattening rules are to be used last.

3 Examples from Non-monotonic Logics

The examples in the previous section are from the area of monotonic reasoning. This
section will give examples from non-monotonic reasoning. As we have already men-
tioned, we hope that the idea of LDS will unify these two areas.

EXAMPLE 3.1 (ORDERED LOGIC) An ordered logic database is a partially ordered set of
local databases, each local database being a set of clauses. Figure 46.6 describes an
ordered logic database.

t A s A
t s A
: ; :

:�+

    

t A t A s A s A y y i j
t t s s

k m i j

k m

1 1
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The local databases are labeled t1, t2, t3, s1, s2 and f and are partially ordered as in
the figure.

To motivate such databases, consider an ordinary logic program C1 = {p ¨ ÿq}. The
computation of a logic program assumes that, since q is not a head of any clause, ÿq
is part of the data (this is the closed world assumption). Suppose we relinquish this prin-
ciple and adopt the principle of asking an advisor what to do with ÿq. The advisor might
say that ÿq succeeds or might say that ÿq fails. The advisor might have his own
program to consult. If his program is C2, he might run the goal q (or ÿq), look at what
he gets and then advise. To make the situation symmetrical and general we must 
allow for Horn programs to have rules with both q and ÿq (i.e. literals) in heads and
bodies and have any number of negotiating advisors. Thus we can have C2 = {ÿq}, 
C1 = {q ¨ ÿq} and C1 depends on C2. Ordered logic develops and studies various aspects
of such an advisor system which is modeled as a partially ordered set of theories. Such
a logic is useful, for example for multi-expert systems where we want to represent the
knowledge of several experts in a single system. Experts may then be ordered accord-
ing to an ‘advisory’ or a relative preference relation.

A problem to consider is what happens when we have several advisors that are in
conflict. For example, C1 depends on C2 and C1 depends on C3. The two advisers, C2 and
C3, may be in conflict. One may advise ÿq, the other q. How to decide? There are several
options:

1. We can accept q if all advisors say ‘yes’ to q.
2. We can accept q if at least one advisor says ‘yes’ to q.
3. We can apply some non-monotonic or probabilistic mechanism to decide.

If we choose options (1) or (2) we are essentially in modal logic. To have a node t and
to have ?q refer to advisors t1, . . . , tn with t < ti, i = 1, . . . , n is like considering ?�q at
t in modal logic with t1, . . . , tn possible worlds in option 1 and like considering ‡q at t
in option (2). Option (3) is more general, and here an LDS approach is most useful. We

Figure 46.6



see from this advisor’s example an application area where the labels arise naturally and
usefully. The area of ordered logic is surveyed in Vermeir and Laenens (1990).

EXAMPLE 3.2 (DEFEASIBLE LOGIC) This important approach to non-monotonic reasoning
was introduced by Nute (1994). The idea is that rules can prove either an atom q or its
negation ÿq. If two rules are in conflict, one proving q and one proving ÿq, the deduc-
tion that is stronger is from a rule whose antecedent is logically more specific. Thus the
database:

t1: Bird (x) Æ Fly (x)

t2: Big (x) Ÿ Bird (x) Æ ÿ Fly (x)

t3: Big (a)

t4: Bird (a)

t1 < t2

t3

t4

can prove:

t2t3t4: ÿFly(a)

t1t4 : Fly(a)

The database will entail ÿ Fly (a) because the second rule is more specific.
As an LDS system the labeling of rules in a database D is very simple. We label a rule

by its antecedent. The ordering of the labels is done by logical strength relative to some
background theory Q (which can be a subtheory of D of some form). Deduction pays
attention to the strength of labels.

EXAMPLE 3.3 (FALLACIES) The reader should note that our point of view and the use of
labels is genuinely more general and is capable of yielding more. We describe an unex-
pected application of our view. There is a serious, well-motivated and well-organized
community, the informal logic and argumentation community, studying the nature of
human reasoning and argumentation in general and attempting to foundationally
explain the role of the fallacies in human arguments. Fallacies are argument structures
which appear to be correct and convincing, but are actually wrong. Many of them can
be effectively used in some situations, but not in others. Any account of real life human
practical reasoning must give account of the fallacies. In Hamblin (1970), a fallacy is
an argument that “seems to be valid but is not so.”

The handling of the fallacies in the traditional literature is divergent between two
extremes.

There are those who reject the fallacies as not having any logical value (see Lambert
and Ulrich 1980) and there are those who try to see some logic in them. Among the
latter are John Woods and Douglas Walton. They believe that the traditional fallacies
can be explained within the framework of other logics, such as inductive logics, 

SAMPLING LABELED DEDUCTIVE SYSTEMS

763



D. M. GABBAY

764

non-classical logics, logics of plausible reasoning, relevance logics and more. The
Woods–Walton approach, see Walton (1990); Woods (1988); Woods and Walton
(1989), is successful in many cases in showing and explaining how some fallacies are
really not fallacies. However the Woods–Walton approach was in principle criticized by
F. H. Van Emeron and R. Grootendorst (1992), who point out that this approach,
although successful in many cases, creates new and serious problems. Van Emeron and
Grootendorst, justly point out that every fallacy, in this approach needs, so to speak, its
own logic. Van Emeron and Grootendorst say:

For practical purposes this approach is not very realistic. In order to be able to carry out
the analyses, a considerable amount of logical knowledge is required. There are also some
theoretical disadvantages inherent in this approach. By relying on so many logical systems,
one only gets fragmentary description of the various fallacies, and no overall picture of the
domain of the fallacies as a whole. Ideally, one unified theory that is capable of dealing
with all the different phenomena, is to be preferred. (van Emeron and Grootendorst
1992: 103)

We agree with both Van Emeron–Grootendorst and with Woods–Walton. There is
indeed a possible candidate for a unifying logic in which suitable theories for practical
reasoning and the fallacies can be formulated. It is the framework of Labeled Deductive
Systems.

This example is a preliminary study at classifying and explaining some of the 
fallacies in LDS.

Here we quote Douglas Walton’s words

until we have a clearer definition of theoretical reasoning, it is not possible to refute the
argument that there is one underlying kind of reasoning that has two uses – practical
problem solving and theoretical problem solving. (Walton 1990: 353)

Well-known among the fallacies is the fallacy ad hominem, the fallacy of attacking 
not the argument but the person presenting it. This kind of reasoning is some-
times acceptable and sometimes not. It is generally considered nonlogical, although
admittedly extensively used by the human practical reasoner. In our framework, this
fallacy has a natural place.

Consider the notion of a database D. This is a structure of declarative units of the form
t : A, where t is the label and A the formula. The label t annotates A. Suppose the annota-
tion indicates the priority of the formula A and that in an external ordering < gives the
relative strength of the priorities. Thus a priority database can be for example

{t : A, s : B, t < s}

t and s can be numbers of algebraic terms and t < s indicates that B has a higher 
priority than A. This priority can be used in derivation. For example, in the presence 
of A Æ ÿC, B Æ C of equal priority, C will be derived.

The data items A and B are formulas of the logic L1, which is applied to some appli-
cation area. In many areas it is quite reasonable to have the labels themselves be 



formulas a, b of another language and logic L2, describing the origin and nature of the
data items, A, B. Some reasoning in L2 may be available to determine the priority (if
any) of a and b. A formula Y(a, b) and a base theory Q (possibly dependent on D) of
L2 may be used for this purpose, that is we have:

a £ b iff Q �2 Y(a, b).

The simplest condition (in case L2 has some form of implication) is

a £ b iff Q �2 b Æ a.

Note that our labels are wffs a of L2 labelling wffs A of L1 and the base theory Q deter-
mines the priorities of labels. We now explain the logical force of the fallacy by an
example. Suppose we are faced with the following deduction.

a : A Æ ÿC

b : B Æ C

g : A
g : B
Q �2 b Æ a

We must conclude C, because b has higher priority than a. To counter this argument,
we may either prove ÿC from additional data or we may attack the source of infor-
mation, that is add Q0 to Q or try and show that Q » Q0 �/2 b Æ a?, (Note that L2

reasoning is also non-monotonic!). This move appears to us as attacking, not the 
argument, but its source. However, in the correct context (priority logic) it is a correct
move. Other fallacies which are explainable in this framework are ad verecundiam,
appeal to unsuitable authority, where the labeling is incorrect and fallacies of irrele-
vance. A systematic study of the fallacies in our context will (hopefully) be done 
elsewhere.

To make the above database more concrete consider the following scenario. A man
is imprisoned for fraud for a long period of time. During that period, medical evidence
emerges that the prisoner has terminal cancer. The question is whether to release him
from jail. One legal argument supports an early release. The problem seems to be that
the prisoner made some threats during the trial and a social and psychological report
cannot exclude the possibility that the prisoner might use his remaining free days for
revenge. Our database now reads

m : B medical file m supporting the statement that the prisoner
has cancer

p : A social workers report supporting the statement that the
prisoner is seeking revenge

a : A Æ ÿC legal precedents a supporting the rule
that in case of possible revenge the prisoner should
not be released
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b : B Æ C legal reasoning b supporting that in
case of cancer the prisoner should be released

p < m medical files are stronger than ‘psychological’ files’

From the above data we can conclude

b * m : C

and

a * p : ÿC

Since both b and m have higher priority, C will follow by the flattening process.
If we want to change the conclusion (to get ÿC), we must either attack the medical

file m, discrediting the medical evidence or boost up the credibility of the psychological
report.

EXAMPLE 3.4 (DEMPSTER–SHAFER RULE) The present example presents a very well-known
rule of aggregation, the Dempster–Shafer rule. Our exposition relies on Ng and
Subrahmanian (1994).

The algebra A we are dealing with is the set of all subintervals of the unit interval
[0,1]. The Dempster–Shafer addition on these intervals is defined by

where k = a ◊ (1 - d) + c ◊ (1 - b), where ‘◊’, ‘+’, ‘-’ are the usual arithmetical operations.
The compatibility condition required on a, b, c, d is

F([a, b], [c, d ]) ∫ kπ 1.

The operation is commutative and associative. Let e = [0,1].
The following also holds:

• [a, b] e = [a, b]
• For [a, b] π [1,1] we have [a, b] [0,0] = [0,0]
• For [a, b] π [0,0] we have [a, b] [1,1] = [1,1]
• [a, b] [c, d ] = f iff either [a, b] = [0,0] and [c, d ] = [1,1] or [a, b] = [1,1] and [c, d ]

= [0,0].

In this algebra, we understand the declarative unit [a, b] : A as saying that the proba-
bility of the event represented by A lies in the interval [a, b]. We have, of course

a b A B c d A
a b c d B

, : ; , :
, , :

,
[ ] Æ [ ]

[ ]≈ [ ]

≈
≈
≈

≈

≈

   
a b c d

a d b c a c
k

b d
k

, , ,[ ]≈ [ ] =
◊ + ◊ - ◊

-
◊
-

È
ÎÍ

˘
˚̇1 1
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provided F([a, b], [c, d ]) holds.
It is also possible to move to a higher language and write clauses of the form

t : (t1 : A1) Æ ((t2 : A2) Æ (t3 : A3))

which is more like the way clauses are used in traditional Dempster–Shafer 
applications.

4 Conclusion and Further Reading

Logic is widely applied in computer science and artificial intelligence. The needs of the
application areas in computing are different from those in mathematics and philoso-
phy. In response to computer science needs, intensive research has been directed in the
area of nonclassical and non-monotonic logic. New logics have been developed and
studied. Certain logical features, which have not received extensive attention in the pure
logic community, are repeatedly being called upon in computational applications. Two
features in logic seem to be of crucial importance to the needs of computer science and
stand in need of further study. These are:

1. The meta-level features of logical systems
2. The ‘logic’ of Skolem functions and unification

The meta-language properties of logical systems are usually hidden in the object lan-
guage. Either in the proof theory or via some higher-order or many-sorted devices. The
logic of Skolem functions is nonexistent. Furthermore, the traditional presentation of
classical and nonclassical logics is not conducive to bringing out and developing the
features needed for computer science applications. The very concept of what is a logical
system seems to be in need of revision and clarification. A closer examination of clas-
sical and nonclassical logics reveals the possibility of introducing a new approach to
logic; the discipline of Labeled Deductive Systems (LDS) which, I believe, will not only be
ideal for computer science applications but will also serve, I hope, as a new unifying
logical framework of value to logic itself. What seem to be isolated local features of some
known logics turn out to be, in my view, manifestations of more general logical phe-
nomena of interest to the future development of logic itself.

Semantics for LDS logics is presented in my book on Fibring Logics (Gabbay 1998).
LDS is part of a more general view of logic. This view is discussed elsewhere (Gabbay

1991, 1996, forthcoming), however in brief, we claim the following. The new concept
of a logical system is that of a network of LDS systems which has mechanisms for com-
munication (through the labels, which code meta-information) and evolution or change.

Evaluation is a general concept which can embrace updating, abduction, consis-
tency maintenance, action, and planning. The above statement of position is vague 
but it does imply that we believe that notions like abduction and updating are 
logical notions of equal standing to those of provability. See Gabbay and Woods (to
appear).



D. M. GABBAY

768

Notes

1 The similarity with Gentzen sequents is obvious. A sequent D � G is a relation between D and
G. Such a relation can either be defined axiomatically (as a consequence relation) or be gen-
erated via closure conditions like A � A (initial) and other generating rules. The generating
rules correspond to Gentzen rules. In many logics we have D � G iff 0/ � ŸD Æ ⁄G, which gives
an intuitive meaning to �.

2 Recently logical systems were put forward by Makinson–Torre (2001) which do not satisfy
reflexivity.

3 Flat is a function defined on any set of labels and giving as value a new label. To understand
this, recall another function on numbers which we may call Sum. It adds any set of numbers
to give a new number: their sum!
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Resources for Further Study 

A number of valuable resources are available for further study of philosophical logic. In addition
to the books and articles cited in the references at the end of each chapter included in this volume,
there are four general categories of resources that can be consulted for information about the
history and current research developments in philosophical logic. Additional materials can be
found by soliciting advice from logicians, philosophers, and mathematicians at local colleges and
universities.

Logic Handbooks

Many university and independent presses publish books on or related to mathematical and philo-
sophical logic. There are also several special series of original monographs in logic that are worth
investigating. The literature is too vast to justify a selection of the individual books that have con-
tributed to the development of logic. We can nevertheless identify special categories of texts of
special interest, beginning with handbooks and book series dedicated to logic and philosophical
logic. Here are some recent relevant publications:

Boyer, Robert S. (1988) A Computational Logic Handbook. Boston, MA: Academic Press.
Sherwood, John C. (1960) Discourse of Reason: A Brief Handbook of Semantics and Logic. New York:

Harper & Row.
Handbook of Fuzzy Computation, ed. Enrique H. Ruspini, Piero P. Bonissone and Witold Pedrycz.

Philadelphia, PA: Institute of Physics Publications, 1998.
Handbook of Logic and Language, ed. Johan van Benthem and Alice ter Meulen. Cambridge, MA:

MIT Press, 1997.
Handbook of Logic in Artificial Intelligence and Logic Programming, ed. Dov Gabbay, C. J. Hogger, and

J. A. Robinson. Oxford: Clarendon Press, 1993–8.
Emmet, E. R. (1984) Handbook of Logic. Totowa, NJ: Rowman & Allanheld.
Cowan, Sam (1985) Handbook of Mathematical Logic. Englewood Cliffs, NJ: Prentice-Hall.
Handbook of Mathematical Logic, ed. Jon Barwise et al. Amsterdam: North-Holland, 1977.
Handbook of Philosophical Logic, ed. Dov Gabbay and F. Guenthner. Dordrecht: Kluwer, 

1983–9.
Handbook of Tableau Methods, ed. Marcello D’Agostino, Dov Gabbay, Reiner Hähnle, and Joachim

Posegga. Dordrecht: Kluwer, 1999.
Logic Designer’s Handbook: Circuits and Systems, ed. E. A. Parr. Oxford: Newnes, 1993.



Non-Classical Logics and Their Applications to Fuzzy Subsets: A Handbook of the Mathematical
Foundations of Fuzzy Set Theory, ed. Ulrich Höhle and Erich Peter Klement. Dordrecht: Kluwer,
1999.

Programmable Logic Handbook, ed. Geoff Bostock. Oxford: Newnes, 1993.
Programmable Logic Handbook: PLDs, CPLDs, and FPGAs, ed. Ashok K. Sharma. New York: 

McGraw-Hill, 1998.

Logic Books Series

Addison-Wesley Series in Logic. Reading: Addison-Wesley Publishing Co.
Algebra, Logic and Applications. Amsterdam: Gordon and Breach Science Publishers.
Applied Logic Series. Dordrecht: Kluwer Academic.
Clarendon Library of Logic and Philosophy. Oxford: Clarendon Press.
De Gruyter Series in Logic and its Applications. Berlin: Walter de Gruyter.
History of Logic. Napoli: Bibliopolis.
International Series in Logic Programming. Reading: Addison-Wesley.
Lecture Notes in Logic. New York: Springer-Verlag.
Library of Philosophy and Logic. Oxford: Basil Blackwell.
Logic and Computation in Philosophy. Oxford: Oxford University Press.
Logic Programming. Cambridge: The MIT Press.
Oxford Logic Guides. Oxford: The Clarendon Press.
Perspectives in Mathematical Logic. New York: Springer-Verlag.
Progress in Computer Science and Applied Logic. Boston: Birkhäuser.
Studies in Logic and Computation. Oxford: Clarendon Press.
Studies in Logic and the Foundations of Mathematics. Amsterdam: North-Holland Publishing.
Studies in Logic, Language, and Information. Stanford: CSLI Publications.
SUNY Series in Logic and Language. Albany: State University of New York Press.
Trends in Logic. Dordrecht: Kluwer Academic.

Journals

Numerous journals are devoted specifically to topics in symbolic logic. Some of these feature arti-
cles that are highly technical contributions to mathematical logic, while others specialize in
research papers concerning historical and philosophical aspects of logic. Many philosophy jour-
nals that are not designated logic journals also frequently include essays about logic or make use
of logic in presenting philosophical arguments. The following are the principal journals in the
field that can be considered as primary sources for contemporary work in mathematical and
philosophical logic. Details can be found by consulting publishers’ websites indicated below 
and publications and computer databases that index journal articles in the field, including but
not limited to The Philosophers’ Index, Web of Science, Humanities Index, Social Science Index, and
Mathematical Reviews. The most important journals in logic or in philosophy that often publish
work in logic include: Analysis; Annals of Pure and Applied Logic; Archive for Mathematical Logic;
Bulletin of Symbolic Logic; Bulletin of the Section of Logic, Fundamenta Mathematicae; Historia
Mathematica; History and Philosophy of Logic; Informal Logic; Israel Journal of Mathematics; Journal
of Applied Non-Classical Logics; Journal of Formalized Mathematics; Journal of Logic and Computation;
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Journal of Logic, Language and Information; Journal of Mathematical Logic; Journal of Philosophical
Logic; Journal of Philosophy; Journal of Symbolic Logic; Logic Journal of the IGPL; Logical Analysis
and History of Philosophy; Logique et Analyse; Mathematical Logic Quarterly; Mind; Modern Logic;
Nordic Journal of Philosophical Logic; Notre Dame Journal of Formal Logic; Noûs; Philosophia
Mathematica; Studia Logica; Synthese; Zentralblatt MATH.

Internet

The internet is another increasingly useful source of information for following new developments
in philosophical logic. Some logicians post results or discussions of philosophical topics related
to symbolic logic on the web. Publishers and journals also announce new publications of inter-
est to logicians, including journal contents, which can be used to gather information about 
new findings. Conferences in symbolic logic are also frequently listed, with lists of speakers and
presentation titles or abstracts. There are also logic chat rooms, and special interest networks in
which logicians present problems and exchange ideas about logic. The best general advice about
using the internet is to be persistent in pursuing interesting leads, but also to be highly selective
and to treat whatever is found there with a grain of salt and a healthy skepticism. There is no
refereeing of information on the web, and people are free to post whatever ideas they like, without
editorial scrutiny. Some of the most important and interesting websites for philosophical logic
include:

http://www.nd.edu/~ndjfl/index.html
Notre Dame Journal of Formal Logic

http://www.aslonline.org/
Association for Symbolic Logic

http://www.earlham.edu/~peters/philinks.htm
Guide to Philosophy on the Internet
(Peter Suber, Philosophy Department, Earlham College)

http://www-personal.monash.edu.au/~dey/phil/
Philosophy in Cyberspace

http://web.phil.ufl.edu/SEP/index.html
Society for Exact Philosophy

http://www.math.uu.se/logik/logic-server/
Research groups in Logic and Theoretical Computer Science

http://www.math.uu.se/logik/logic-server/collection.html
List of Research Groups in Logic and Theoretical Computer Science Worldwide

http://www.math.fu-berlin.de/~dvmlg/
Deutsche Vereinigung für Mathematische Logik und für Grundlagen der Exakten Wissenschaften
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http://www.wkap.nl/jrnlsubject.htm/5+0+0+0
Listing of Journal Homepages by Subject, including Logic

http://www.logic.at/kgs/www_logicien.html
Resources in Computer Science, Logic, Mathematics and Philosophy
(Kurt Gödel Society)

www.jneedle.demon.co.uk/vague/articles.htm
Online Articles on Concept and Logic of Vagueness

http://www.uni-bonn.de/logic/world.html
Mathematical Logic around the world
(service provided by the Mathematical Logic Group, University of Bonn, and the Institute for
Logic, University of Vienna)

http://www.rbjones.com/rbjpub/logic/index.htm
Factasia

http://www2.galaxy.com/galaxy/Humanities/Philosophy/Logic.html
Galaxy

http://logic.stanford.edu:80/
Logic Group at Stanford University

http://www.sjsu.edu:80/depts/itl/
Mission: Critical
(San Jose State University’s Critical Thinking Web Page)

Organizations

There are special philosophical organizations that promote the study of symbolic and philo-
sophical logic. Many of them publish newsletters or maintain websites to which you can sub-
scribe or to which a local library might offer access. A few of the most important philosophical
societies related to logic include: Association for Automated Reasoning; Association for Logic
Programming; Association for Symbolic Logic; Associazione Italiana di Logica e sue Applicazioni
(University of Genoa); Austrian Ludwig Wittgenstein Society; Belgian National Center of
Research in Logic; Berkeley Group in Logic and the Methodology of Science (University of
California at Berkeley); Bertrand Russell Society; British Logic Colloquium; Center for Critical
Thinking; Center for Fuzzy Logic, Robotics, and Intelligent Systems (Texas A&M University);
Centre de Logique et de Philosophie des Sciences; COMPULOG Americas; Deutsche Vereinigung
für Mathematische Logik und für Grundlagen der Exakten Wissenschaften; European
Association for Computer Science Logic (University of Udine, Italy); European Association for
Logic, Language, and Information (Amsterdam); Fuzzy Logic Research (University of Missouri at
Columbia); Helsinki Logic Group; Indiana University Logic Group; Institut für mathematische
Logik und Grundlagen der Mathematik (Freiburg); Institut für mathematische Logik und
Grundlagenforschung (Münster); Institute for Logic, Language, and Computation (Amsterdam);
Interest Group in Pure and Applied Logics (IGPL) (Imperial College, London); Italian Society of
Logic and Philosophy of Science; Kurt Gödel Society; Laboratory for Applied Logic (Brigham
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Young University); Logic Group at Stanford University; Mathematical Logic Group (University of
Bonn); Mind Association; Swiss Society for Logic and Philosophy of Sciences (Zurich); Society for
Exact Philosophy; Society for Symbolic Logic. There are also regular sessions and special sym-
posia on topics in philosophical logic sponsored by the three annual meetings (Eastern, Central,
and Pacific Divisions) of the American Philosophical Association.
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