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Rarely does one hear an English major say, "I like English, but 
I don't like to write," yet math students often say, "I like math, 
but I don't like to write proofs." Some students even tremble at 
the sound of an approaching proof assignment. The purpose of 
this book is to demystify the proof process by giving you the 
necessary reasoning techniques and language tools for 
constructing well-written arguments. This skill is as essential 
in mathematics and computer science as in English or any other 
discipline. 

Learning to Reason is designed for a freshman/sophomore 
level course with no prerequisites except a desire to improve 
one's reasoning skills and one's ability to read and write mathe-
matics and symbolic languages. The book covers the process 
of writing proofs, a process similar to writing in other disci-
plines, but the topics for our themes (theorems) will come from 
three unifying concepts that run through all areas of mathemat-
ics: logic, sets, and relations. 

We sometimes require prerequisites for math courses in 
order to ensure a certain level of mathematical maturity - a 
maturity where one becomes an independent thinker who can 
figure things out without being told what to do. One of the 
main goals of this book is to speed up this maturation process 
by focusing on how we reason with mathematical language, 
emphasizing those elements of the language that tend to 
confuse students in advanced courses. Simple-sounding 
concepts such as substitution are not as simple as they sound. 
Simple words, such as "and," "or," "not," and "implies," lose 
their simplicity when we combine them in a sentence. If you 
are not fluent in how to manipulate these basic terms from 
which we build our language, you will be severely handicapped 
when you try to do any type of mathematical reasoning. 

Another goal of this book is to help you see the common 
thread that runs throughout the vast universe of mathematics. 
Without this connection, you can easily get lost in an endless 
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maze of mathematical concepts and not be able to see the forest 
for the trees. Many people have the misconception that mathe-
matics is primarily a subject in which you do computations. I 
must confess that I have never been a fan of doing computa-
tions. In my college days, my fellow bridge players always 
wanted me to keep score because I was a math major. I felt 
like a chef being asked to wash the dishes. A chef creates dirty 
dishes in the process of cooking, but the goal is not to create 
dirty dishes. Similarly, mathematicians often generate compu-
tations in the process of doing mathematics, but the goal is not 
to generate computations. The goal is to create interesting 
structures and relations that can be supported with logical 
reasoning. This is the common thread that connects all of 
mathematics. 

Contents In Chapter 1, we cover the basic elements of mathematical 
language. Mathematical language is quite simple, which may 
surprise those who consider mathematics to be difficult and 
complex. Consider the myriad ways that we can form complex 
sentences in everyday language. In contrast, mathematical 
language is constructed from only five connectives and two 
quantifiers. If you understand how to manipulate these seven 
terms and how to use substitution, then you have acquired the 
basic technique on which logical reasoning is based. 

In Chapter 2, we examine the reasoning process and how 
we organize our reasoning into a well-written form that can be 
classified as a proof. As in any good essay, a written proof 
contains an introduction, a body, and a conclusion. We will 
study various templates for writing proofs; however, the ability 
to construct a proof requires a deeper level of intellectual 
maturity than merely following an established procedure. To 
construct a proof, one must explore and question, find the inner 
structure of the situation, analyze the various parts, and then 
use logical reasoning to put the different pieces together to 
create the proof. The sparks that leap across our synapses 
during this creative process strengthen our powers of reason-
ing, one of the major benefits of studying mathematics. 

In Chapter 3, we look at how we work with sets, the build-
ing blocks of mathematical language. Since prehistoric times, 
when people counted with a set of sticks or stones, sets have 
been at the foundation of mathematics. When we count, we are 
counting the number of elements in a set; when we analyze the 
form of a figure, we are analyzing a set of points; when we 
look at a function, we see a relation between two sets. Sets 
provide the basic framework for mathematical discourse. 
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In Chapter 4, we examine relations, a reasoning concept 
common to all disciplines. There are relations among pieces of 
music from the same period, works of art of the same style, and 
books of the same genre. In no discipline, including mathemat-
ics, can we analyze an object by itself; we must compare it to 
other objects. Relations provide a simple way to describe 
mathematics: Mathematics is the study of abstract relations. 

WWW.learningtOreaSOn.com Additional learning tools are available at the web site, 
www.learningtoreason.com. Please visit the site and check out 
the resources, which will be continually enhanced. You are 
invited to submit questions, comments, and suggestions. 

Learning a Language As you begin your study of the language of reason, please 
remember that people do not learn a language through 
memorizing a list of words but through hearing the words used 
many times in various ways. The compactness of the language 
of mathematics with its attendant density of meaning requires 
that we read mathematics at a slow but contemplative pace. 
More than likely, we will not grasp its full import from one 
reading, and even if we do grasp it, we probably will not 
remember it all, for human memory needs a great deal of 
repetition to build enough bridges for the easy retrieval of 
stored information. So, it is important not only to read the 
sections, but also to reread them and ask questions about the 
content until you have a deep understanding of the material in 
both a verbal and a visual form. Anyone who is a lover of 
poetry knows that each rereading of a poem can bring new 
insights. The same is true in mathematics. 

Working Out Anyone can develop their reasoning skills if they are willing to 
invest the necessary time to work out with the exercises and the 
concepts. To become a good athlete or a good musician 
requires long hours of practice, so it is not surprising that 
learning how to reason also requires a similar investment of 
time. The exercises at the end of each section are an essential 
component of the learning process. To develop your reasoning 
skills, you should work out with the exercises on a daily basis. 
As you work through the discussions in the text, you should 
also write your own questions and observations. Through this 
process, you will build your understanding and personally 
internalize the meaning of the various concepts. 

http://WWW.learningtOreaSOn.com
http://www.learningtoreason.com
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Throughout this text you will find activities that introduce 
you to concepts in the sections following them. If you work on 
the activities before you read the section, you will have the 
opportunity to discover relationships on your own. What you 
discover for yourself burns an indelible image in your memory 
and helps you to become a creative thinker, which is one of the 
most important skills needed in a changing society. Problems 
are easy when we have examples to guide us, but the creative 
thinkers are those who can blaze a path and create examples for 
others to follow. To be a logical thinker, we must develop our 
ability beyond merely copying procedures from examples 
provided by others. 

When you take the extra time to figure out a problem on 
your own, you are building mental bridges that you can use in 
the future. The long hours of work that you do in building 
these bridges makes a deep impression that is firmly secured in 
your memory bank. On the other hand, when someone shows 
you how to do a problem, you are learning how to run across a 
bridge that someone else has built, which is not the same as 
learning how to build a bridge on your own. Computers are 
very adept at running across bridges that others have built, but 
they lack the human creativity to build new bridges for thought 
processes. To develop our reasoning powers beyond the 
mechanistic circuits of a computer, we must learn how to be 
creative thinkers. 

To enliven your journey into the abstract world of reason-
ing, you may want to get into the gamesmanship of it by 
considering the exercises as a highly sophisticated game of 
mental prowess, or, for the more physically inclined, you may 
want to view them as aerobic exercises for the mind. The time 
that you spend will be a wise investment, for whatever path you 
take in life, the study of the topics in this book will help you to 
become an independent thinker who can reason in a logical 
manner. 

%mccf TC/tdceM. 



Mathematics is simpler than other disciplines - physics or 
history, for example - because mathematics is concerned with 
such a very limited aspect of reality. Why, then, does such a 
simple subject seem so hard to so many people? I have come 
to believe that it is primarily a language problem. I became 
painfully aware of this problem in my first abstract algebra 
course when I ran head-on into a brick wall of mathematical 
language. I remember long hours of mental labor interrupted 
by a recurring question: why on earth did I major in math? 

The next year I had a topology teacher, Professor John 
Seldon, who gave us a collection of theorems to prove from 
Elements de mathématique by Bourbaki. As I worked though 
Bourbaki's organization of the foundations of mathematics, I 
began, for the first time, to understand the beautiful simplicity 
of mathematical language. After that experience, my studies 
became much easier because I now knew how to use 
mathematical language to structure my thinking. 

Years later, while contemplating pedagogical methods that I 
might use to help my students over the same hurdle, I decided 
to write this text. The first version was used in an Algebraic 
Structures class. Because of student inquiries as to why they 
did not have this class earlier - since it would have helped them 
with the proofs they struggled with in other classes - the course 
was moved to the freshman/sophomore level. Through their 
many questions over the years, I began to understand the 
source of the great difficulty students have in writing proofs in 
upper division courses. The rules of syntax that seem so 
obvious after we subconsciously master them through long 
years of study are a huge language barrier to those on the other 
side of the fence. Some students have a great ear for the 
subtleties and nuances of languages and can easily learn a 
foreign language; a very small percentage of students have a 
similar gift for learning the language of mathematics. Granted, 
young children learn their native tongue by listening to those 
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around them, but as we get older, most of us can benefit greatly 
by understanding the basic structure and syntax of a new 
language we are learning. 

Organization The initial goal in developing this text was to make Bourbaki's 
organization of the foundations of mathematics understandable 
and relevant at the freshman level. In addition, the book 
presents a lively discussion of the reasoning process, with a 
primary focus on deductive reasoning, but also including 
inductive reasoning, visual reasoning, and translations from 
everyday language to pictures and symbolic representations. 

Starting with the foundations of logic in Chapter 1, the text 
explains how to analyze and logically manipulate individual 
sentences. In Chapter 2, the focus is on how to structure our 
thinking so that we can put sentences together to form a 
well-reasoned proof. The text illustrates the concepts with an 
elementary chain of ideas concerning integers, rational 
numbers, and real numbers. This connected series of examples 
and exercises helps students learn how to structure their 
thinking while also developing their understanding of numbers. 
The techniques learned here are reinforced as we examine sets, 
the basic building blocks of mathematics, in Chapter 3, and 
relations, where the action is in mathematics, in Chapter 4. 
This organizational structure gives students a meaningful 
overview of the vast subject of mathematics, while building 
their reasoning skills and their understanding of the basic 
concepts used throughout mathematics. 

Special Features The study of logical skeletons is fleshed out in mathematical 
settings with overviews of the structures they support and 
exercises that get students actively involved in and intrigued by 
the intellectual game of logical reasoning. Each section is 
preceded with a set of activities that give students the 
opportunity to discover for themselves important concepts from 
the next section. The activities encourage independent thinking 
and initiative, as well as help to raise the student's curiosity and 
interest in the upcoming material. After each section is a finely 
crafted set of exercises designed to help students develop their 
reasoning skills as they build a personal understanding of the 
language and notation. The exercises focus on those areas of 
mathematical language that tend to confuse students in upper 
division courses. They have been class-tested for several years 
and revised to maximize their benefit. Each chapter has a 
review section with related definitions grouped together. The 
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definitions are alphabetized in a comprehensive glossary at the 
end of the book, followed by a symbol list. 

The easy-going style of the book makes it accessible to a 
wide range of students. The concepts are carefully developed 
in a conversational writing style that speaks with a gentle 
authority, offering students motivation and encouragement 
along the way. It moves along at a brisk pace with careful 
analyses at points most likely to cause problems. The examples 
are cogent and thoughtfully presented, set off by lines that 
clearly separate them from the discussion. There is an energy 
in the conciseness of the writing and layout that makes it easy 
for students to read and remember what they have read. 

Layout In response to the first question in the book, one of my 
students, Becky Cantonwine, gave the following description of 
the difference between mathematical language and everyday 
language: "Mathematical language differs from everyday lan-
guage in me same way that poetry differs from prose; every 
word or symbol is important and necessary, and their position is 
important to their meanings." Albert Einstein saw the same 
connection in his eloquent description of pure mathematics as 
"the poetry of logical ideas." Like written poetry, mathematical 
language is enhanced through the use of poetic lineation. 
Gestalt holistic patterns are easier to retain in the mind's eye, so 
poetic lineation is used in the text to highlight featured ideas 
and to assist the reader in working through dense notation and 
the thought processes involved in the reading of a proof. Great 
attention has been paid to the visual tone set by the geometric 
form of text layout, with white space generously used to 
minimize the denseness of the subject matter and to feature key 
thoughts and signposts in the reading. The overriding issue in 
all layout decisions was the presentation that would make it 
easiest to remember. Block text with its dense wrap-around 
lines is not as easy to assimilate and retain as text that 
incorporates active white space. I have tried to make the text as 
simple as possible, using a minimal but sufficient amount of 
words in explaining the concepts. 

Audience The text is designed as a bridge course for mathematics and 
computer science majors at the lower or upper division level. 
Any student who wants to learn how to structure their thinking 
and develop their reasoning skills will find it easy to use as a 
self-study text. Teachers of upper division math courses may 
want to use it as a supplementary text. 
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Ф Chapter 1 

Logical 

Reasoning 

L
ogical reasoning is a form of discourse that is distin-
guished from other forms by its complete objectivity. 
In order to attain a pure state of objectivity with no 

room for ambiguities, the language of logic had to be devel-
oped with great precision and clearly defined rules. Personal 
interpretations of a story, a painting, or an historical event may 
vary considerably, but any two people who understand the 
language of logic will interpret a logical argument in essentially 
the same way. Unlike the tangled web of rules that we use 
subconsciously in our everyday discourse, the rules for logical 
reasoning are very exact with no exceptions to the rule. 

When we reason within a logical framework, words must be 
manipulated according to the rules of the game. Fortunately, 
the rules are fairly simple because the language of logic is built 
from only seven basic terms: two quantifiers, for all and for 
some, and five operators for building compound sentences, not, 
and, or, implies, and is equivalent to. The first stage in master-
ing the art of logical reasoning is to learn how to manipulate 
these seven terms. Each of these terms is simple by itself, but 
the meaning can easily be misconstrued when two or more are 
used in the same sentence, especially since we do not always 
use them in a consistent way in our everyday language. Once 
you master the basic rules, called the laws of logic, for using 
these seven terms, this stage of the reasoning process will be as 
easy as driving a car. 

1.1 Symbolic Language 

1.2 Two Quantifiers 

1.3 Five Operators 

1.4 Laws of Logic 

1.5 Logic Circuits 

1.6 Translations 

1 
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The next stage is a bit more challenging, for we must learn how 
to 1) translate sentences phrased within the complex structure 
of everyday language into the simplified language of logic, 2) 
use the powerful tool of substitution to convert abstract knowl-
edge into various forms, and 3) translate visual reasoning to a 
verbal form and vice-versa. In this chapter, we will cover the 
basic elements of logical reasoning, including quantifiers, 
logical operators, substitutions, and translations. 

Activity 1.1 

1. Reasoning is mentally performed within the context of a language, 
which provides the medium through which we organize and 
present our thoughts. To speak or think in any language, we must 
be aware of the basic structure of the language. 
a. How does mathematical language differ from everyday 

language? 
b. Compare the way that you learn mathematical language with 

the way that you learned to communicate with others in your 
preschool days. 

c. Compare the use of pronouns in everyday language with the 
use of variables in abstract languages. Do they serve the same 
role in the following two sentences? 

He is taller than 5 feet. JC> 5 
d. What does "complete thought" mean to you? What elements 

of language are needed to express a complete thought? 
e. Make a list of nouns and a list of verb phrases that you have 

used in mathematics. Which have you used the most? 
f. What is a sentence? Do any of the following expressions form 

sentences? 1<2 1+2 1+2 = 3 

2. Let p and q represent sentences. 
Let ~p represent the negation of p. 
a. Does ~(p and q) mean the same as (~p and ~q)l 

This question is very abstract. 
How should you start thinking about it? 

b. What is an abstraction? Is a number an abstraction? Is the 
color blue an abstraction? 
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= 1.1 Symbolic Language = 

The importance of an easily 
manipulated symbolism is that 
it enables those who are not 
great mathematicians in their 
generation to do without 
effort mathematics which 
would have baffled the 
greatest of their predecessors. 

E. T. Bell, 1945 

The function / assigns to 
each number in the 
domain the value that is 
the square of the number 
obtained by multiplying the 
original number by three 
and then adding one. 

All written languages are based on symbols. The English 
language is written in terms of phonetic symbols that give 
pronunciation information. We can symbolically represent the 
addition concept with the phonetic symbol "plus" or with the 
ideographic symbol "+" which does not give pronunciation 
information. They both represent the same concept. However, 
in the process of logical reasoning, phonetic words can bog 
down our thought processes. For example, consider the follow-
ing question from an algebra textbook by Al-Khowarizmi in 
the 9th century. 

What must be the amount of a square, which, when 
twenty-one units are added to it, becomes equal to 
the equivalent of ten roots of that square? 

Al-Khowarizmi's question, which would have challenged the 
great thinkers of the Middle Ages, can be answered by most 
high school students today who understand symbolic manipula-
tions. Of course, the question would have to be posed in a 
symbolic form or they, too, might become entangled in the 
phonetic words: 

Find a solution to the equation д̂  + 21 = 10*. 

Take a moment and contemplate the adjacent sentence. How 
long did it take you to decipher its meaning? If you know 
function notation, you can comprehend the same sentence in 
symbolic form almost instantly: fix) = (3*+1)2 

The great power of mathematical symbols is the ease with 
which the brain can process the information. Without the pro-
nunciation baggage, the brain manipulates the symbols with 
great speed, thereby enabling us to focus on deeper questions. 
At the other extreme, though, too many ideographic symbols 
tend to shorten our attention span. A page full of nothing but 
symbols is not as inviting as a page where symbols are inter-
woven with words, so we try to find a delicate balance between 
the two, as illustrated in the above translation. 

Unfortunately, mathematical symbols pose a language 
barrier to those who have not taken the time to learn their 
meaning, leaving many people with the impression that they 
are viewing a foreign language. However, it is not as difficult 
as it appears. All it requires is that we take the time to build a 
personal meaning for the various symbols. 
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Using Symbols 

Learning a Language 

In order to use symbols in the reasoning process, we must know 
how the symbols can be manipulated. Even more importantly, 
though, we need to have a personal understanding of what the 
symbols represent. For example, we may be able to compute 
145 -r 3 with an algorithm, but we will not be able to use the 
answer in a meaningful way if we do not understand the 
meaning of dividing a set into subsets of equal size. If we do 
not build a personal meaning for symbols, we lose the base for 
our reasoning powers and become nothing more than a 
computer performing mechanical processes. 

When learning a foreign language, we may know the meaning 
of a word one week but forget it the next week. The same thing 
happens when we learn a symbolic language. Each symbol 
represents a concept, and to understand the concept, we need to 
think about what it represents and what it does not represent. 
We should work through examples for which the concept 
applies as well as examples for which the concept does not 
apply. As we use a new symbol in different examples and 
exercises, we will slowly build our personal understanding of it 
until we are comfortable using it. The more we use a concept, 
the deeper we implant it in our memory. 

Some students pick up the symbolic language of mathe-
matics or computer science faster than others do. Similarly, 
some people can sit down and play the piano by ear, while 
others have to struggle with years of practice. Those who 
learned how to play through hard work, though, often end up 
playing far superior to those blessed with an ear for music. It is 
not how fast you learn a language but how hard you work to 
develop a deep understanding of it. 

Variables 

A variable is a letter used 
to represent an arbitrary 
element of a given set; 
that set is called the 
domain of the variable. 

Variables are an essential component of a symbolic language. 
As its name implies, a variable can vary and represent a variety 
of elements. Instead of talking about specific numbers, we 
usually talk about a generic number that is symbolized by a 
variable, such as x. Like pronouns in everyday language, 
variables serve as a place holder for substituting specific 
elements. 

The set of elements that may be substituted for a variable is 
called its domain. In the following example, the domain for x 
is the set of integers: 

For every integer x, x < x + 1. 



1.1 Symbolic Language 5 

Theorem: The sum of two 
even numbers is even. 

Proof: 
Let m and n be even numbers. 
Then m — 2k for some integer k. 
Also, n = 2/ for some integer j , 
So,n + m = 2k + 2j = 2(k+f). 
Since k +j is an integer, by the 
definition of even, n + m is even. 

In computer science, a variable represents a storage space in 
the computer's memory where a number or a string of charac-
ters can be stored. Each variable is assigned a type that repre-
sents its domain. If a variable is assigned an integer type, then 
only integers can be stored in that variable. 

We can use any letter as a variable, but we cannot use a 
letter to represent two different things within the same dis-
cussion. For example, an even number is any number that can 
be represented in the form Ik where k is an integer. However, 
if we apply this definition to two different even numbers within 
the same discussion, we cannot use "Jt" both times, for that 
would imply the two numbers are equal. Instead, we use 
another letter: 

Let m and n be even numbers. 

Then m = 2k for some integer k. 

Also, n = 2/ for some integer j . 

In the adjacent proof, notice how the use of variables gives us a 
tangible way to work with even numbers, enabling us to make 
logical deductions about the abstract concept of even. 

Sentences 

Sentences require 
complete thoughts. 

Most communications in everyday language are phrased in 
terms of sentences, so it is not surprising that the same is true in 
mathematics. To express a complete thought, we use a 
sentence. Conversely, sentences require complete thoughts. If 
we are working with incomplete thoughts, either in our head or 
on paper, we cannot hope to make much progress in the reason-
ing process. 

Our work in this chapter will focus on how we logically 
manipulate sentences. When we reason, the steps in our 
reasoning process are built from sentences, so it is essential that 
we know how to recognize sentences, especially those that are 
written in symbolic form. 

Ф Example Which of the following are sentences? 5<8 5 + 8 5 + 8=13 

1. "5 < 8" is a sentence. 5 is the subject and < is the verb. 

2. "5 + 8" is not a sentence because it does not have a verb. 

3. "5 + 8 = 13" is a sentence. The subject is "5 + 8" and the 
verb is "=." 
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Relations 

= * 
« = 

< < 
C £ 

Operations 

+ -
X 4-

u n 
V Л 

Relations & Operations When we place the < symbol between two numbers, we get a 
sentence. These types of symbols represent relations. 
However, when we place the + symbol between two numbers, 
we get a number, not a sentence. The + symbol operates on 
two numbers and produces a new number, such as 5 + 8. 

A relation gives a connection between two objects, whereas 
a binary operation operates on two objects and produces a third 
object. Relations produce sentences, but operations produce 
objects, such as a number or a set. In order to write well-
formed mathematical sentences, we must be able to distinguish 
between relations and operations. Since they are different 
components of mathematical language, most word processors 
organize their equation editor with all relations grouped under 
one menu and all operations grouped under another menu, as 
illustrated on the left. 

Fragments We may sometimes jot down fragments of sentences, such as 
the adjacent fragment from the famous quadratic formula, but 

-b±Jb2-4ac w e c a n n o t u s e fragments in a proof. To complete the thought, 
jjS we must add a subject and a verb. Students who do not carry 

along the beginning of the sentence, "x =," often do not know 
what the answer represents when they finish the computation. 

x - -fetyft ~4đC When we do not write in complete sentences, it is easy to get 
20 confused and lose track of what we are doing. 

Subjects A well-formed sentence must have both a subject and a verb. 
The most frequently used subjects in mathematical sentences 
are sets and numbers. We will now briefly review the different 
types of real numbers and examine sets later on in Chapter 3. 

• Questions about "how many" elements in a finite set can 
be answered in terms of the natural numbers: 

1,2,3,4,5,6,... 

• To answer questions about "how much," such as how 
much length or how much area, we need a more exten-

The Real Numbers sive set of numbers, called the real numbers. We 
^ visualize the real numbers as coordinates of points on a 

-3-2-1 0 1 2 3 number line, as illustrated on the left. In symbolic form, 
a real number is any number that can be represented as 
a decimal with a finite or infinite number of places. 

• The integers consist of the natural numbers, their 
negatives, and 0: 

. . . - 3 , -2 , -1 ,0 ,1 ,2 ,3 , . . . 
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Real Numbers 

Rationals Irrationals 
I 

Integers 

Natural Numbers 

Verbs 

Verbs 

=> 
<=> 

e 

< 
< 
<z 

The positive integers are the natural numbers. 
0 is neither positive nor negative. 

• The rational numbers are numbers that can be repre-
sented as the quotient of two integers, such as Щ-. The 
number .35 is a rational number because we can write it 
in fraction form: -щ. Using variables, we can define a 
rational number as follows: x is a rational number if and 
only if x = j for some integers a and b with b Ф 0. 

• Real numbers that are not rational, such as J2 or n, are 
called irrational numbers. Every real number is either 
rational or irrational. 

The hierarchy of real numbers is given in the adjacent sketch. 
Each set is a subset of those sets that are chained above it. 

The action in everyday language comes from verbs. The same 
is true in mathematical language. However, most verbs in 
mathematics require objects, such as x<y or x=y or ЛГСК In 
everyday language, we could have "x sings," but in mathemati-
cal language, x would have to sing to somebody, such as v. If* 
is a loner, we could have "x sings to x," but not just "x sings." 
Most mathematical verbs, such as those listed on the left, give 
relations between two objects. 

One of the most important verbs is the implication verb, 
which we will examine in great detail in this chapter. This 
verb, which lies at the very foundation of logical reasoning, 
sets the structure for what we mean by a logical deduction. W e 
use the implication to define a valid argument, which gives us 
the basic method for reasoning in a logical manner. We also 
use the implication verb to define other important verb phrases, 
such as "is equal to" and "is a subset of." 

The most frequently used verb in mathematics is "equals." 
In arithmetic and elementary algebra, this little verb provides 
the main action, with occasional help from the inequality verbs, 
<, <, >, ^. The equals verb is used with both numbers and 
sets, whereas й is used only with numbers. 

The analogue of < in set language is the subset verb, which 
gives a relation between two sets. A is a subset ofB, notated as 
A £ S , means that every element in A is also an element in B. 
This definition depends on another important verb phrase, is an 
element of, notated as € . 

3 e A means that 3 is an element of the set A . 
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Statements 

A statement is a sentence 

that is either true or false, 

but not both. 

Verbs that have properties similar to the equals relation, such 
as «, and =, are called equivalence relations. Verbs that impart 
some type of order on objects, such as <, <, c , and £ are 
called order relations. We will examine both equivalence 
relations and order relations in Chapter 4. 

Some sentences, such as "7 is a lucky number," may be con-
sidered true by some people and false by others. We do not 
deal with this type of sentence in mathematics; instead, we 
restrict our discourse to sentences whose truth values are not 
debatable. We will use the term statement to denote a sentence 
that is either true or false, but not both. If a statement is true, 
then it cannot be false. 

-Ф- Example Which of the following sentences are statements? 

3 + 2 = 5 3 + 2 = 6 * + 2 = 6 

1. "3 +2 = 5" is a true sentence, so it is a statement. 

2. "3 + 2 = 6" is a false sentence, so it is a statement. 

3. "x+2 = 6" is a sentence; however, it is neither true nor 
false, so it is not a statement. 

True 

T 

1 

On 

False 

F 

0 

Off 

Open Statements 

The truth value of a statement is either true or false, which we 
will represent with T and F. In computer science, we use 1 for 
true and 0 for false. A computer transmits information along 
an electronic highway in terms of electric circuits which are 
either on or off. We identify the ON-state, defined as 1, with 
"true" and the OFF-state, defined as 0, with "false." 

Statements severely limit the scope of our discourse 
because the truth value of many sentences is somewhere 
between 0 and 1. For example, the weatherman's assertion that 
it will be "partly cloudy" may be true only 80% of the day. 
These types of sentences can be analyzed with a more general 
type of logic known as fuzzy logic (page 60), which was devel-
oped to program artificial intelligence into computers. 

The sentence * + 2 = 6 is not a statement, but it does become a 
statement when we substitute an element for x. 

Substitute 4 for x: 4 + 2 = 6 (True) 

Substitute 3 for x: 3 + 2 = 6 (False) 
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An open statement is a sentence with 

variables that is not a statement but 

becomes a statement when substi-

tutions are made for the variables. 

A sentence of this type is called an open statement. We might 
be tempted to say that an open statement is any statement that 
has a variable. However, this is not true for we can quantify 
the variables by prefixing the sentence with a quantifier, as 
illustrated in the following example. 

■Ф- Example 

Zc + 3 = 5 

For all x, Zx + 3 = 5. 

There exists an x such that 2x + 3 = 5. 

The domain for x is the set of real numbers. Are any of the 
adjacent sentences open statements? 

"2x + 3 = 5" is an open statement. It is neither true nor false, 
but each time we substitute a number for x, the sentence is 
either true or false. 

The second sentence is false, so it is not open. 

The last sentence is true, so it is not open. 

Solution Set 

Even though the last two sentences in the above example have 
variables, they are not open statements because the variable is 
fixed (or bound) by the quantifier. Quantifiers are extremely 
important components of the reasoning process. We will 
examine them in detail in Section 1.2. 

The solution set of an open statement in x is the set of elements 
from the domain of x that convert it to a true statement. To find 
the solution set of an equation, we solve the equation and then 
place the answers in a set. The solution set depends on the 
domain, as illustrated in the following examples. 

-Ф- Example 1. What is the solution set of the open statement, x + 2 = 0? 

Before we can answer this question, we must know the 
domain for x. If the domain is the set of integers, the 
solution set is the set whose only element is -2 , which we 
represent with set braces as {-2}. 

If the domain is the set of natural numbers, though, the 
solution set is empty, which we represent with either the 
symbol { } or ф. 

2. What is the solution set of the open statement, x2 = -1 ? 

Before we can answer this question, we must know the 
domain for x. Both / and -/ are solutions to the above 
equation: i2 = -1 and (-J)2 = - 1 . So, if the domain is the 
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set of complex numbers (page 14), the solution set consists 
of i and-i: {i,-i}. 

However, if the domain is the set of real numbers, the 
solution set is the empty set. 

When it is not possible to list all the elements in the solution set 
of an open statement p(x), we can represent the solution set 
with the following set notation: 

ix\pQc)} 

We will examine set notation in more detail in Chapter 3. 

-Ф- Example 

{x\x>2} 

{Cx ,y ) | * + 3y = 7} 

1. The domain for x is the set of real numbers. What is the 
solution set of the open statement, x> 2? 

Since we cannot list the elements in the solution set nor 
give a pattern that indicates all the members of the set, we 
use the adjacent set notation to express the solution set. 
This notation is read as "the set of all x such that x > 2." If 
the reader does not know that the domain is the set of real 
numbers, then we should include it in the set description: 

{jc | JC>2 and x is a real number} 

If the reader does know the domain of x, the shorter form 
gives a simpler image for focusing our thinking. 

2. The domain for x is the set of real numbers and the domain 
for y is the set of real numbers. What is the solution set of 
the open statement, x+Ъу = 7? 

We cannot list all the elements in this set, so we use the 
adjacent set notation. Since we have two variables, the 
elements of the solution set are ordered pairs. 

(1,2) is a member of this set since 1 + 3(2) = 7. 
(2,1) is a not a member of this set since 2+3( 1) * 7. 

Compound Sentences When we link two sentences with a connective like and, we 
create a compound sentence. For example, we can use and to 
connect the sentence 2+3 = 5 with the sentence 4+5 = 9: 

2 + 3 = 5 and 4+5 = 9 
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Addition operates on 2 numbers 
and produces a new number. 

And operates on 2 sentences 
and produces a new sentence. 

2 + 3 = 5 and 4 + 5 = 9. 

x<2 or *>5. 

x < 2 implies that x<3. 

x < 2 is equivalent to —x > —2. 

It is not true that 2 + 3 = 6. 

Symbolic Sentences 

"2 + 3 = 5" is called a component sentence of the compound 
sentence. In logic, we use only four connectives for building 
compound sentences: and, or, implies, is equivalent to. These 
terms are called logical operators. 

In the adjacent box, notice the similarity between the 
addition operation on numbers and the and operation on 
sentences. Adding two numbers and combining two sentences 
are very different types of activities, but at the base level, the 
structure of what they do is the same. They are both binary 
operations, which is why we call and a logical operator. 

Another important logical operator is the negation. Given a 
sentence, like 2 + 3 = 6, we can make a new sentence by taking 
its negation: 

It is not true that 2 + 3 = 6. 

Negation is a unary logical operator, whereas the other four 
connectives are binary logical operators. As you probably 
know, "unary" means "one" and "binary" means "two." 
Negation forms a new sentence from a given sentence; the 
other four connectives form a new sentence from two given 
sentences, as illustrated on the left. It is rather surprising how 
much of our reasoning depends on these five logical operators. 
When we examine them in detail in Section 1.3, we will work 
with them in an abstract form, similar to abstract algebra. 

In elementary algebra, we use letters to represent numbers and 
ideographic symbols to represent operations on numbers. 

a+b=b+a 

ax(b+c) = axb + axc 

5 Logical Operators 

~P 
pAq 

pVq 
p=>q 

p<=>q 

notp 
p and q 
potq 
p implies q 
p is equivalent to q 

Like an x-ray machine, this symbolic representation reveals the 
inner structure of arithmetic, making it easy to recognize and 
remember general rules for working with operations on 
numbers. 

To find general rules for reasoning with compound sen-
tences, we do a similar type of abstraction. Instead of working 
with specific sentences, we will use the variables p and q to 
represent arbitrary sentences and the adjacent symbols to repre-
sent the five operations on sentences. 

Using this abstract representation of compound sentences, 
we can formulate basic rules for manipulating the five logical 
operators. These rules enable us to automate our reasoning 
about the logical operators so that we have more time to ponder 
deeper questions. However, to apply the rules to specific 
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sentences, we must be able to see the abstract structure of a 
compound sentence. 

Ф Example What is the structure of the following compound sentence? 
(2 + 3 = 5) and (4 + 5 * 7) 

1. Let p and q represent the following sentences. 
p: 2 + 3 = 5 q: 4 + 5 = 7 
Then pA~q: (2+3 = 5) and (4 + 5) * 7 

2. We could also let p: 2 + 3 = 5 and q: 4 + 5*7 
Then pAq: (2 + 3 = 5) and (4 + 5) Ф1 

We can view the above compound sentence as having either 
the structure pl\ q or the structure pA~q, depending on whether 
we want to focus on the outside structure of the sentence or 
look deeper into its internal structure. The different views of 
the structure of a sentence are similar to viewing the outside 
structure of the human body or taking an x-ray view of its 
skeletal structure. 

p(x) notation We will use the function notation p(x), read as "p of x," to 
represent an open statement in the variable x. For example, we 
could let p(x) represent "x2 + 4JC-1 = 5." The notation p(x) has 
two layers of variables: p is a variable that represents a sentence 
and x is a variable that represents a number. Whenever a new 
notation seems a little strange, we should work with examples 
and before long it will seem like a perfectly natural way to 
communicate. Function notation is based on the substitution 
principle. To translate p(3), we substitute 3 for each occurrence 
of*. 

p{x): JC2+4X-1 =5 

p(3): 32 + 4(3) -1=5 

Formal Logic In formal logic, a statement is called a proposition. Since the 
logical operators operate on propositions, the study of the rules 
for manipulating logical operators is called propositional logic. 
Open statements are called predicates, and the study of 
predicates is called predicate logic. Symbolic sentences are 
called well-formed formulas, sometimes abbreviated as wffs. 
Like the rules for grammar in everyday language, formal logic 
systems have syntax rules that govern how symbols can be 
strung together. For example, we cannot juxtapose two logical 
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operators, such as pV t \q . Neither can we juxtapose two 
sentences pq without a logical operator. 

Since this text is an informal introduction to logic, we will 
not use these formal terms. However, we will look informally, 
from a common sense viewpoint, at predicate logic in Section 
1.2, prepositional logic in Section 1.3, and both in Section 1.4. 
The latter section covers the laws of logic, which are called 
tautologies in formal logic. A law of logic is a compound 
statement that is always true, such as p or ~p. 

Visual Reasoning 

To the thinking soul 
images serve as if they 

were contents of 
perception. That is why 

the soul never thinks 
without an image. 

Aristotle 

АПВ 

Since the earliest cave drawings, pictures have served an 
important role in communication. Aristotle, one of the deepest 
thinkers in the history of western thought, believed that images 
were essential for thoughts. His use of the word "soul" in the 
adjacent quote is perhaps more akin to our concept of intellect 
than the modern interpretation of soul. His observation has 
been supported by recent scientific evidence which indicates 
that a large portion of the human brain is dedicated solely to 
processing visual information. We seriously handicap our-
selves if we do not use these enormous resources when we try 
to reason in a logical manner. Visualizations - whether formed 
internally in the mind or externally with a pencil or computer -
provide one of the most powerful tools for the reasoning 
process. 

In the symbiotic relationship between words and pictures, 
words help us understand our pictures, and pictures help us 
understand our words. After we intuitively understand a 
picture, we then reason with words to provide a verbal founda-
tion for our visual insight. Pictures can be misleading and 
measurements may not be exact, so we should back up our 
visual understanding with verbal reasoning. On the other hand, 
it is usually difficult to do verbal reasoning without a visual 
understanding of what we are thinking about. The first step in 
solving most problems (other than a computational algorithm) 
is to visualize the various components of the problem and their 
relation to each other. 

Visual reasoning thrives on not only what we see with our 
eyes, but also what we see in our mind, independent of our 
senses. When we see a mental image, we should draw it on 
paper so that we can carefully explore it. The sketches that we 
draw do not have to be detailed graphical representations. It is 
rather amazing how simple drawings, like the above sketch of 
the intersection of two sets or the adjacent sketch of the domain 
and range of a function, can help us focus our thinking. 
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x units 

0 1 2 3 

Negative Numbers 

- 3 - 2 - 1 0 1 2 3 

Complex Numbers 

To understand a mathematical concept, we need a visual 
picture of what it represents, for most mathematical concepts 
have their roots in some type of visualization. The visual 
concept of a ruler is essential for understanding the full 
meaning of a positive real number. In the adjacent ruler 
picture, we visualize a positive real number as the distance 
from the origin to the point it represents. 

Negative numbers were not originally considered to be 
numbers because they could not be visualized as a length. 
However, these ghosts of a number frequently appeared as 
missing solutions to simple equations, such as JC+5 = 0. After 
Fibonacci observed in the 13th century that a negative sum of 
money could be interpreted as a loss, various symbols were 
introduced to handle numerical losses. In the following 
centuries, these symbols were used as symbolic solutions to 
equations, but they were not considered numbers. It was not 
until the 19th century that the negative numbers were finally 
accepted as full-fledged numbers. Their acceptance was forced 
by the creation of a logical foundation which gave them a log-
ical existence. 

After the verbal conception of the negative numbers, the 
visual picture of the real numbers was expanded to a full 
number line, with the negative numbers visualized as the mirror 
image of the positive numbers. A real number could now be 
visualized as representing the directed distance from the origin 
to the point it represents. The number 3 is 3 units from the 
origin in the positive direction, whereas -3 is 3 units from the 
origin in the negative direction. 

Like the negative numbers, the complex numbers also went 
through centuries of rejection until a simple visual picture made 
the existence of these ghostly numbers materialize. Like the 
negative numbers, complex numbers were needed for solving 
equations. Since there is no real number to solve the equation, 
x2 - - 1 , the symbol J-\ was used as a symbolic solution, 
which was later labeled as i by Euler. The symbol J-Ï was 
called an imaginary number because it was a complete product 
of the imagination. A similar type of number frequently 
surfaced in the quadratic formula: 

If x2-x+ 1 =0, thenx = 
i±№ 

If we extend the standard rules of algebra to the imaginary 
numbers, we can factor T^J as follows: 
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ph = узнУ = Д • У̂ Г 

We discard the symbolic sign 
■J-Ï, which we repudiate 
completely, and which we 
may abandon without regret, 
because one does not know 
what this alleged sign 
signifies, nor what meaning 
one should attribute to it. 

A. L Cauchy, 1847 

Complex Numbers 
x + iy 
(x,y) 

<r 

We have now isolated the problem to / - Г . Substituting i for 
.— . i±J-T 

y - 1 , we can write x = — ъ — as follows: 

x = j± 
Д . 

In a similar manner, all nonreal solutions produced by the 
quadratic formula can be represented in the form x+iy, where x 
and y are real numbers. These numbers are called complex 
numbers. Unlike the real numbers which provide lengths for 
real objects, no real models were apparent for complex 
numbers. Consequently, the complex numbers were not 
considered legitimate numbers, but they were needed to fill a 
technical void. 

Even though the imaginary numbers were not considered 
real numbers, they were used in blind manipulations because 
they often produced real results if one followed the basic rules 
of algebra. When one had the good fortune to multiply two 
imaginary numbers together, the ghosts would vanish and the 
computation would end up back in the land of real numbers: 

(2«)(3i) = - 6 

(^-30(^+30 = ^ + 9 

A major paradigm shift was started in 1673 when J. Wallis had 
the visual intuition to imagine the complex numbers as points 
in a plane. Other thinkers started to make the same visual 
connection, supplying more detail to the picture. 

In the complex number JC+iy, the imaginary i keeps y segre-
gated from x, which is the same role that the ordered pair (*, y) 
serves. Thus, we can visualize the complex numbers as points 
in a plane in the same way that we visualize the real numbers as 
points on a line. The assignment of x + iy as the number repre-
sentative of the point (JC, y) provides a simple visual representa-
tion of the complex numbers that not only deepens our 
understanding of these numbers, but also gives us powerful 
visual tools for working with them. 

The visualization of numbers as points on a line or points in 
a plane gives our mind an intuitive picture which makes the 
concept more tangible. However, we must make a technical 
distinction between points and numbers. A real number is not a 
point on a number line. It is a coordinate of a point, or perhaps 
we should say that it is a name that we assign to a point. The 
same point can have different symbolic names, such as .5 or y. 
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With the new visibility of the complex numbers, mathe-
maticians began to search for a verbal way to legitimatize them 
by building a logical foundation that supported their existence. 
This goal was finally accomplished towards the end of the 19th 
century. With their new certification as legitimate numbers, a 
rich new area of mathematics was created. 

Complex numbers were soon put to good use by physicists, 
who gave them real applications in electricity and magnetism. 
Today, complex numbers are a standard mathematical reason-
ing tool, widely used by physicists, engineers, and mathemati-
cians. The imaginary numbers are a brilliant example of the 
creative power that comes from the marriage of the visual 
imagination with logical reasoning in an abstract cathedral. 

Less than The operations of addition and multiplication were extended to 
the complex numbers in a way that preserved the basic 
properties these operations have on the set of real numbers. 
However, the < relation does not extend to the complex 
numbers because the complex numbers are not lined up in a 
row like the real numbers. 

The < relation was extended to the negative numbers in 
accord with Fibonacci's financial debt interpretation. If your 
debt is $2, you have less money than if your debt is $1: - 2 < - l 

1<2 
- 2 - 1 0 1 2 ^ - 1 > - 2 

a<b 
< r 

This reversing of order between positive numbers and negative 
numbers gives us a mirror image picture of the negative real 
numbers. We can visualize the < relation on the number line in 
terms of the relative positions of the numbers: 

a<b 

if and only if 

a is to the left of b. 

We will now use this picture to visually examine the effect of 
combining inequality sentences with and and not. Everyone 
knows what and means and what not means, but we sometimes 
use these words incorrectly, especially when we jump to 
conclusions without thinking about what we are saying. 
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Ф Example The domain for x is the set of real numbers. Write the solution 
set for the given open statement in interval notation. 

1. Open statement: x < 2 

The solution set is illustrated on the left. In interval 
< л { $ \ > notation, we represent the solution set as (-oo, 2), which is 

read as "the open interval from negative infinity to 2." The 
open end parenthesis means 2 is not included in the set. 
We always use an open parentheses with the co symbol 
because it does not represent a real number. Hence, -oo is 
not included in the interval (-co, 2). 

2. Open statement: It is not true that x < 2. 

The solution set is the numbers not in the solution set of the 

< -

0 1 2 3 
^ \ ^ previous example. We use the notation [2, co) to represent 

this set, which is read as "the closed interval from 2 to 
infinity." The square bracket means that 2 is in the set. 

3. Open statement: *<2and;t<3. 

First, we visualize the solution set of each component 
sentence, as illustrated on the left. Because of the and 

^ , operator, a number must be in both of these solutions sets in 
"*? 0 1 2 3 ^ order to be in the requested solution set. Hence, the 

solution set for "x < 2 and x < 3" is the open interval from 
negative infinity to 2: (-co, 2). To say that "x < 2 and x < 3" 
is equivalent to saying that "x < 2." The latter form is pre-
ferable since it is simpler. 

4. Open statement: It is not true that (x < 2 and x < 3). 

We must reason in the order indicated by the parentheses. 
[ ^ First, we determine when (JC < 2 and x < 3) is true, which is 

< > 
0 1 2 3 the interval (-co, 2). Thus, the requested solution set is all 

numbers not in (-co, 2), which is the closed interval from 2 
to infinity: [2, co). 

5. Open statement: ~(x<2) and ~(;t<3). 

Again, we must reason in the order indicated by the 
parentheses. First, we find the solution set for the negation 
of each component sentence: 

t 
0 1 2 3 

Solution set of -(•*<2): [2,oo) 

Solution set of ~(*<3): [3,co) 
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The solution set for this problem is all numbers in both of 
the above sets. So the solution set to the open statement is 
the interval f_3,oo). 

Reasonable Bites 

Reasoning Order 

As young children, we learned to cut up our food into digestible 
bites. Logical reasoning requires the same type of process. 
Given a problem, we try to cut it into simpler pieces, figure out 
the solution at the simpler level, and then put the pieces 
together, as we did in the previous example. To find the 
solution of ~p(x) and ~q(x), we first found the solution set of 
~p(x) and the solution set for ~q(x). We then put these two 
pieces together to get the requested solution. 

When we reason, we not only have to understand the meaning 
of the words used, but we also have to apply the meanings in 
the correct order. In (4) of the previous example, we first 
applied the meaning of "and" and then the meaning of "not," 
but in (5), we applied the definitions in the reverse order, which 
gave us a different answer. This happens frequently in the 
reasoning process; two definitions are involved, and we have to 
know which one to apply first. The order is usually indicated 
by the position of parentheses or by a comma. 

Abstract Reasoning 

Does ~(p andq) 
mean the same as 

~p and ~q ? 

In an abstraction, we merge various concrete examples under 
the rubric of a concept that expresses a property the examples 
have in common. For example, the number 3 is an abstraction 
of a quantitative property that various sets have in common. A 
variable is an abstraction of an arbitrary element in its domain. 

When we prove a theorem, we try to be as abstract as possi-
ble so that our deductions have a wide range of applications. If 
we can prove that an abstract statement is true, we can then 
deduce that the statement is true for each example that satisfies 
the abstraction, which is why abstract reasoning is such a 
powerful method. With each abstract theorem that we prove, 
we have essentially proved a multitude of theorems, one for 
each example that satisfies the abstraction. 

When we contemplate an abstract question, we should think 
about various examples in order to understand what the 
abstraction represents. If we are confused by the abstract 
nature of the question, we should translate it in terms of 
examples. To contemplate the abstract question on the left, we 
could let p and q represent the following sentences: 
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p: x<2 q: x<3 
The abstract question can now be translated as follows: 

Does ~(p and q) mean the same as (~p and ~q)1 

Does ~(x<2 and x<3) mean the same as ~(x<2) and ~(;c<3)? 

In the examples on page 17, we saw that these two compound 
sentences have different solution sets. Therefore, they cannot 
have the same meaning. This example shows that a compound 
sentence of the abstract form ~(p and q) does not have the same 
meaning as ~p and ~q. 

Sometimes we can find the answer to an abstract question 
with a well-chosen example, but we cannot use examples to 
prove that two compound statements have the same meaning. 
Later in this chapter, we will learn how to determine if two 
compound statements have the same meaning. In Chapter 2, we 
will study techniques for proving abstract statements. 

Questions? We conclude this section with the most important symbol in 
any area of logical reasoning, the question mark: ? 

Why is this true? 
What does this mean? 

What else does it apply to? 
Is there a way to generalize this result? 

How do I describe what's going on here? 
Is there a relation between these two things? 

What is the underlying structure that makes this work? 

In mathematics 
the art of asking questions 

is more valuable than 
solving problems. 

Georg Cantor, 1867 

In 1867, Georg Cantor, one of the greatest mathematicians of 
the 19th century, published his doctoral thesis entitled, In 
mathematics the art of asking questions is more valuable than 
solving problems. This outlook undoubtedly contributed to his 
phenomenal success in creating new mathematics. By asking 
very simple and basic questions, Cantor developed a Theory of 
Sets which revolutionized the language of mathematics, 
providing a unifying concept for organizing the rapidly 
growing knowledge in mathematics. His creativity in 
developing a mathematical structure for working with infinite 
sets provided deep insights into mysterious properties of 
infinity (Section 3.6). 
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Students usually spend more time answering questions 
posed by others. However, we should be aware that asking 
good questions is an important part of the creative process of 
reasoning. The ultimate goal of logical reasoning is to extend 
our knowledge, and we cannot seek answers unless we have 
good questions to guide us. 

We learn, discover, and create by asking questions. A good 
question can trigger a burst of energy in the mind that may 
open up slumbering portions of our brain with the imbued 
excitement of a possible discovery. Whenever a question pops 
in our mind, we should write it down, or else we may forget it 
and lose forever the valuable insight we might have acquired in 
our pursuit of its answer. 

Writing as a Tool 

In addition to writing homework, 
we should use writing to: 

• Build our understanding. 

• Explore our imagination. 

• Illustrate our mental images. 

• Record our questions. 

• Search for answers. 

One of the best tools to develop our reasoning skills is the 
process of writing. A pencil is an essential tool in a tool kit for 
reasoning. In addition to writing our questions, we should use 
this marvelous little instrument to help us find the answers. 
The process of writing gives us concrete visuals on which we 
can focus our thinking, reveals logical gaps that we need to 
bridge, and leaves a record where we can check and 
double-check our thinking. Things that seem obviously true at 
first glance may not hold up under a second reading. 

Another advantage of writing is that it helps us remember 
concepts better. When we read a text, it may seem redundant 
to copy a definition. However, scientific evidence indicates 
that what we write is stored in the brain in a memory bank 
different from the storage area for information we have read or 
heard, thereby giving us double access to it. What we have 
written is easier to remember. 

Writing also helps us deepen our understanding of a 
concept. Anyone can look at a definition and memorize it, but 
memorization has nothing to do with understanding. By 
writing a definition in our own words and then checking to 
make sure that it has the same meaning, we build a personal 
meaning of the concept. If our writing reveals that we have 
overlooked a key component of the definition, then we know 
on which parts we should work to build our understanding. 

Writing about areas that confuse us helps to isolate the 
general confusion into specific questions on which we can 
focus. Copying examples from a text may help us see missing 
links that we didn't see when we read the example. When we 
finally see the missing links, making up similar examples and 
writing them on paper will help reinforce what we learned. 
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Although writing normally refers to the writing of words, 
we will expand the meaning here to include the drawing of 
pictures. Drawing a sketch often gives us ideas and thoughts 
which we can then form into words. In addition to expressing 
our thinking, we use writing to help us form our thoughts. 

When you reach a satisfactory conclusion in the writing 
process (or run head-on into a brick wall), share your writing 
(or frustrations) with others in order to get feedback and 
further develop your reasoning skills. The more time you 
spend writing, the more progress you will make in developing 
your reasoning skills. 

Exercise Set 1.1 

1. Translate the following sentence into math symbols. Which do 
you prefer, the word form or the symbolic form? 

"The product of a number with the sum of two other numbers is 
equal to the sum of the following: the product of the first number 
times the second number and the product of the first number times 
the third number." 

2. Identify the nouns, verbs, and logical operators in each sentence. 
a. A = {1,2,3} and A C S c. x e A implies that xi B. 
b. x<2 or 5<x. d. x + 5 = 12 

3. How do you translate 3 <jr<5 in a grammatically correct form? 
Identify any nouns, verbs, or logical operators in the sentence. 

4. Let x, y, a, b, and c represent real numbers. Determine if the given 
expression is a sentence. 

a. x = y b. x + y c. x<y d. x+y e. -b± -J b2 - Aac 

5. Let A, B, and C represent sets. Determine if the given expression 
is a sentence. Check Appendix D for any unfamiliar symbols. 

a. A = B b. AQB c. A{JB d. A\JBQC 

6. For the given domain, make a list of symbols that form a sentence 
when you place them between x and y. 

a. x and y represent numbers b. x and y represent sets 

7. Is the expression a statement, an open statement, or neither? 

a. 2<1 d. For all*, 2<х. 

b. 2<x e. For some J:, 2<X. 

c. 2 x (3 + 7) f. Ten is the most important number. 
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8. The domain of x is the set N of natural numbers. 
Make up an open statement p(x) that has the given solution set. 
a. Its solution set is empty. 
b. Its solution set is the whole domain. 
c. Its solution set is neither empty nor the whole domain. 

9. Let p: 2 + 4 = 7, q: 3 + 5 = 8. Translate each compound sentence 
and determine if it is true or false. 
a. ~p/\~q b. ~{pf\q) c. ~pM~q d. ~(pWq) 

10. Do you think the following sentences have the same meaning? 
Test your answer by making up examples for p and q using 
sentences from everyday life. Then make up examples using 
sentences from mathematics. 
a. Does ~(pAq) have the same meaning as ~pf\~ql 
b. Does ~(p Vq) have the same meaning as ~p V ~q1 

11. Translate each sentence and determine its truth value. The domain 
for x is the set of real numbers. p{x): JC> 3 q{x): x>9. 
a. p{l) or <?(7) 
b. p(7) and q(J) 
c. For every *, p(x) and q(x). 
d. There exists an x such that p(x) and q(x). 

12. Let p(x): x > 3 and q(x):x>9. Illustrate the solution set for p(x) 
and the solution set for q(x) on a number line. Use your sketch to 
express the solution set of the given open statement in interval 
notation. Make sure that you reason in the order indicated by the 
parentheses, simplifying the task in a step by step manner. 
a. x>3 ог*>9 
b. x>3and;c>9 
c. ~(х>Зогл;>9) 
d. ~(*>3and;c>9) 
e. ~(*>3)or~(*>9) 
f. ~(;t>3)and~(*>9) 

13. Discuss the following questions. 
a. What is an abstraction? 
b. What is an abstraction of a sentence? 
c. What should you do when you get stuck on an abstract 

problem and have no idea of what to do? 
d. What is the advantage of figuring out something on your own 

instead of having someone else explain it to you? 
e. How do you develop your reasoning skills? 

14. Why are problems in math textbooks called exercises? 
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Activity 1.2 

Before readying the next section, see what you can figure out for your-
self. The domain for x and y is the set of real numbers. 

1. Letp(x): x+ 1 = 4. Translate each statement and determine its 
truth value. Do any of the statements have the same meaning? 
a. -(For all *,/>(*)). 
b. For all x, ~p(x). 
c. There exists an x such that ~p(x). 
d. -(There exists an x such that p(x)). 

2. Letp(x):x<3. Repeat the previous exercise. 

3. Discuss what it means for the given sentence to be true. 
Then discuss what it means for the sentence to be false. 
a. For all x, p(x). 
b. There exists an x such that p(x). 

4. Do any of the following statements have the same meaning? 
a. ~(For all x, p(x)). c. There exists an x such that ~p(x). 
b. For all x, ~p(x). d. -(There exists an x such that p(x)). 

5. Is the given sentence true or false? 
a. For every x, there exists a y such that x+y = 0. 
b. There exists a y such that for every x, x+y = 0. 
c. For every positive x, there exists a positive y such that y < x. 
d. There exists a positive y such that for every positive x, y < x. 

s 1.2 Two Quantifiers = 

Two of the basic terms from which we build the language of 
logic are the universal and existential quantifiers. They are 
called quantifiers because they give information on the quantity 
of elements in the solution set of an open statement. In every-
day language, we reference the quantifiers as "every" and 
"some." The quantifiers are easy to work with if you master a 
few basic rules and learn how to recognize them when they are 
phrased in everyday language. 
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Universal Quantifier 

Vx, p{x) is true 

if and only if 

every element in die 

domain of x converts 

p(x) into a true statement. 

The universal quantifier is a prefix which indicates that the 
solution set of an open statement is the whole domain. 

For all x,x+ 2 = 2+x. 

Symbolically, we represent the universal quantifier with an 
upside down A (V). 

Vx,x+2 = 2+x 

The universal quantifier can be phrased as for all x,for every x, 
for each x, and in the forms given in the following example. 

-Ф- Example The domain of x is the set of real numbers. 

The following statements have the same meaning. 

1. Vx,x+2 = 2+x 

2. Forallx,x+2 = 2+x. 

3. Let x be a real number. Then x+2 = 2+x. 

4. If x is a real number, then x+2 = 2+x. 

5. Let x be an arbitrary real number, ж+2 = 2+я. 

6. x + 2 = 2+x for every x. 

In symbolic notation, we always write quantifiers as a prefix. 
However, in everyday language, we often write a quantifier at 
the end of a sentence, as illustrated in the last line of the above 
example. 

Existential Quantifier 

3JC, p(x) is true 

if and only if 

there exists at least one 

x in the domain of x 

such that p(x) is true. 

The existential quantifier is a prefix which indicates that the 
solution set of an open statement has at least one element in it. 

There exists an x such that x + 3 =15. 

We represent the existential quantifier with a backwards E: 3 

3*, x+3 = 15 

The existential quantifier can be phrased as there exists an x 
such that, for some x, and in the wordings given in the follow-
ing example. 
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Ф Example The domain of* is the set of real numbers. 

The following statements have the same meaning. 

1. Зх,х + Ъ = 2 

2. There exists an x such that x+ 3 = 2. 

3. There is an x such that x + 3 = 2. 

4. Г/iere M a/ /eaj/ one x such that x + 3 = 2. 

5. For .some *, x + 3 = 2. 

6. дг+3 = 2 for some x. 

When we see "some" or "there is" in a sentence, it indicates the 
presence of the existential quantifier. 

-$- Example 

Some triangles are 
isosceles. 

Translate each statement in terms of variables and quantifiers. 

1. Some triangles are isosceles. 

"Some" represents the existential quantifier, so we 
introduce a variable for it. 

Let X represent an arbitrary triangle. 
3X, X is isosceles. 

2. For every real number, there is a larger real number. 

"For every" represents the universal quantifier, and "there 
is" represents the existential quantifier. Having identified 
the quantifiers, we introduce a variable for each quantifier. 

Let x and y be real numbers. Vx 3y, x<y. 

The truth value of a quantified statement depends on the 
domain for the variable. For example, consider the following 
statement: 

For some x, x + 5 < l . 

This statement is true if the domain of x is the set of integers, 
but it is false if the domain is the set of natural numbers. 

The existential quantifier guarantees the existence of at 
least one element from the domain that makes the statement 
true; however, it does not say that there is only one or just a 
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few. If an open statement is true for all elements in the domain, 
it is automatically true for at least one element in the domain, 
provided, of course, that the domain is not empty. 

■Ф- Example Let p(x): x+0 = x, where x is a real number. 

Vx, p[x) is true. Also, 3x, p(x) is true. 

Multiple Quantifiers When we have more than one variable in a sentence, we need 
multiple quantifiers to convert it to a statement. To write the 
basic rules for working with multiple quantifiers, we will use 
the notation p{x,y) to represent an open statement in the 
variables x and v. Unless stated otherwise, the domain for x 
and y is the set of real numbers. 

-Ф- Example Let p(x,y) represent the following sentence. Find the truth 
value of p(2,6) andp(l,3). 

p(x,y): x+y = 8. 
p(2,6): 2+6 = 8 
p(l,3): 1+3 = 8 

p(2,6) is true, butp(l,3) is false. 

Order of the Quantifiers We will now investigate whether or not the order of the 
quantifiers affects the meaning of the sentence. In a sentence 
with multiple quantifiers, the meaning of each quantifier is 
deciphered by applying the definitions one at a time, working 
from left to right. The first quantifier applies to the rest of the 
sentence, including any quantifiers that come after it. In the 
following statement, we first translate it formally, and then we 
interpret its meaning. 

Statement A 3x 3v, x+y = 8 
There exists an x such that the following is true: By, x+y = 8. 
There exists an x and there exists a y such that x+y = 8. 
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Statement B 3y 3x, x+y = 8 
There exists ay such that the following is true: 3x, x+y = 8 
There exists a y and there exists an x such that x+y = 8. 

3x 3y, p(x,y) 

means the same as 

3y 3x, p(x,y). 

In the previous two statements, reversing the order of the two 
existential quantifiers does not change the meaning of the state-
ment. If we let p(x,y) represent an open statement, we can 
reason in a similar manner and conclude that, in general, 
reversing the order of two existential quantifiers does not affect 
the meaning of the statement. This rule is summarized in the 
adjacent box. 

Now consider what happens when we reverse the order of 
two universal quantifiers. 

Statement A V* Vy, x+y = y+x 
For every x, the following is true: Vy, x+y = y+x. 
For every x and for every y, x+y = y+x. 

Statement B VyVx,x+y = y+x 
For every y, the following is true: Yx, x+y = y+x. 
For every y and for every x, x+y = y+x. 

Vx Vy, p(x,y) 

means the same as 

Vy Vx, p(x,y). 

In the above two statements, reversing the order of the two 
universal quantifiers does not change the meaning. This result 
can be generalized to an arbitrary open statement p{x,y). When 
we reverse the order of two universal quantifiers, the meaning 
does not change. This rule is summarized in the adjacent box. 

Now let's examine what happens when we have mixed 
quantifiers. When a statement has both a universal and an 
existential quantifier, we cannot translate the statement by 
inserting "and" between the two quantifiers as we did in the 
previous examples. 

Statement A V* 3y, x+y = 8 
For every x, the following is true: 3y, x+y = 8 

Statement B 3y Vx, x+y = 8 
There exists a y such that the following is true: Vx, x+y = 8 
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Do the previous two statements have the same meaning? If 
they do, they must have the same truth value, so let's decon-
struct each statement and determine its truth value. 

Statement A 

We use a subscript with y0 

to remind us that we are 
looking for a specific y 
that works for the given x. 

Statement B 

We reason with quantifiers 
from left to right. 

Vx3y,x+y = 8 

We start with the quantifier on the left: 

1. Let x be an arbitrary real number. 

Does there exist a real number y0 such that x+y0 = 8? One 
way to prove its existence is to construct it. Working 
backwards from what we want to derive, x+y0 = 8, we can 
figure out how to construct y0. Since x has already been 
introduced, we can use x in our construction of y0. 

2. Set y0 = 8 -x. Since x is a real number, 8 -x is a real 
number. So y0 is a real number. 

3. x+y0 = x + (8-x) = 8 (Substitute 8-xfory„.) 

We have demonstrated that for every real number x, there is a 
real number y such that JC+^=8, so the above statement is true. 

3y \/x, x+y = % 

Is there a fixed number y0 such that for every x, x + y0 = 8? If 
so, what is it? As in the previous example, we start our analy-
sis with the first quantifier on the left; however, this time we 
cannot use x in our construction of ya. 

1. Sety„ = . 

2. Let x be a real number. 

The difference in the order of the quantifiers affects what 
we can use when we construct y0. We cannot define y0 in 
terms of x because x is not introduced until Step 2. There is 
no way that we can find a fixed y0 that will work for every 
x. For example: 

Set y0 = 0 Is V*, x+0 = 8 true? No 

Set y0 = 5 Is Vx, x+5 = 8 true? No 

Whatever number we select for y0, we can always find an x 
such that x + y0 Ф 8. In particular, we could let x = 1 -y0. 
Тпепл+уо = 1, so *+>>,>* 8. Therefore, the above statement 
is false. 
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Vx 3y, p(x,y) 

does not have the same meaning as 

By Vx, p(x,y). 

The two statements in the previous example have different truth 
values: 

Vx 3y, x + y = 8 is true. 

By Vx, x + y = 8 is false. 

Therefore, these two statements do not have the same meaning. 
This example shows that the structures of these statements do 
not impart the same meaning: 

VxBy,p(x,y) 
By \fx, p(x,y) 

Since students sometimes make the mistake of assuming these 
statements do have the same meaning, let's look at a geometric 
example where we can use visual reasoning to see why they 
have different meanings. 

-Ф- Example The domain for x is all the points in a fixed plane and the 
domain for I is all the lines in the same plane. Is the following 
statement true? 

For every line (, there exists a point x such that x is not on I. 
x 

The above statement is true. Note that this statement has the 

following structure: 

W 3x, x is not on t. 

What happens if we reverse the order of the quantifiers? 

Bx V<, x is not on l. 

There exists a point x such that for every line I, x is not on I. 

This statement is not true because no matter which point we 
select for JC, there will be some lines in the plane that go 
through JC. Since these two statements have different truth 
values, they do not have the same meaning. 

When using the existential quantifier, we often say for some x 
instead of there exists an x such that. However, when a sen-
tence has mixed quantifiers, as in the above example, the 
meaning is easier to interpret if we use there exists instead of 
some. 
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Vx3y,p(x,y) 

does not have the same meaning as 

3yVx, p(x,y). 

As demonstrated in the previous examples, reversing the 
order of the two different quantifiers changes the meaning of a 
sentence. When reasoning with a statement that has mixed 
quantifiers, we must carefully read the statement from left to 
right, for the order of the quantifiers makes a significant dif-
ference in the meaning of the statement. This difference is 
summarized below. 

Vx 3y, p(x,y) The adjacent statement guarantees that for every x, we can find 
a y0 that works for the given x. To prove a statement of this 
form, we can use x to construct y0: 

1. Let x be an element in the domain of x. 

2. Sety0 = . 

3y Vx, p(x,y) This statement guarantees that we can find a y0 such that the 
remaining statement is true for all x in the domain. Since y0 

cannot depend on x, we cannot use x to construct y0. To prove 
a statement of this form, we should structure our reasoning as 
follows: 

1. Sety„ = . 

2. Let x be an element in the domain of x. 

Negating Quantifiers On the surface, negations seem very simple. The negation of a 
true statement is false and the negation of a false statement is 
true. However, negations can be confusing when combined 
with quantifiers or connectives such as and, or, and implies. 

To negate a sentence, we can prefix it with "it is not true 
that." With symbols, though, we usually indicate the negation 
by drawing a slash through the verb symbol: 

It is not true that x+1 is equal to 3. 
Х+1ФЗ. 

When a sentence is quantified, it makes a difference if a 
negation is before the quantifier or after the quantifier: 

~(Vx, x+1 = 3) does not mean that Vx, x+1 * 3. 

~p(x) denotes the negation of the open statement p{x). 

~Vx, p(x) denotes the negation of the statement Vx, p(x). 
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■Ф- Example 

Some triangles are 
not isosceles. 

Some triangles are 
isosceles. 

Do the following statements have the same meaning? 

1. It is not true that for every triangle X, X is isosceles. 

2. For every triangle X, it is not true that X is isosceles. 

If we place our finger over the negation in the first sentence, 
we have a false sentence, so its negation is true. This sentence 
has the same meaning as "some triangles are not isosceles." 

If we move the negation across the quantifier, though, we 
produce a false statement. Some triangles are isosceles, so the 
second statement is false. 

Since these two statements have different truth values, mey do 
not have the same meaning. 

~VJC, p(x) 

has the same meaning as 

3x, ~p(x). 

~3x,p(x) 

has the same meaning as 

Vx, ~p(x). 

The above example demonstrates that ~YK, p(x), which is the 
form of the first statement, does not have the same meaning as 
Vx, ~p(x), which is the form of the second statement. 

How then do we negate a universally quantified sentence? 
If it is not true that every JC makes p(x) true, then there must 
exist an x that makes p(.x) false. Thus, the proper way to 
negate a universally quantified statement is given by the 
adjacent rule. When we bring a negation across a universal 
quantifier, it must change to the existential quantifier. 

-Vx, x+1 = 3 has the same meaning as 3x, x+1 =£ 3 

How do we negate an existentially quantified sentence? If it is 
not true that there exists an x that makes p(x) true, then every x 
must make p(x) false. When we bring a negation across the 
existential quantifier, it must change to the universal quantifier. 

~3x, x+2 = x has the same meaning as Vx, x+2±x. 

Notice the similarity in the above two rules for negating a 
quantified statement. If we move a negation across either 
quantifier, we must change the quantifier. 

When negating more than one quantifier, we apply the 
appropriate rules one step at a time, as illustrated in the next 
example. 
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Ф Example Negate the given sentence. 

1. There is an x such that/(x) = y. 

~3x,f(x) = y has the same meaning as Vx, ~\f(x) = y]. 

So the negation can be worded as: For all x, f(x) Ф y. 

2. There exists a y such that for every x, x+y = 0. 

~3y Vx, x+y = 0 

Vy ~Vx, x+y = 0 

VyHx,~(;c+;y = 0) 

Vy Зх, х+у Ф0 

For every y, there exists an x such that x+y Ф 0. 

3. There exists a real number x such that for every integer y, 
x>y. 

~3xVy,x>y 
УхЗу, ~(х>у) 
VJC 3y, x <, y 

The variables x and y have different domains. However, 
when we move the negation across a quantifier, it does not 
affect the domain of the variable. So we translate the above 
symbolic form as follows: 

For every real number x, there exists an integer y 
such thatjc<y. 

Students sometimes leave "such that" dangling in a place that is 
not grammatically correct. The wording of the existential 
quantifier is the complete phrase "there exists an x such that." 
When we negate an existential quantifier, we must replace the 
complete phrase with the universal quantifier. 

In everyday language, we often use inflection to convey our 
meaning when we negate a quantified sentence. For example, 
suppose that a few students got an A on a test. In response to 
the question, "Did everyone get an A?" the teacher might 
respond with the appropriate inflection: "No, everyone did not 
get an A." With a different inflection, the same words would 
convey a different meaning. The appropriate logical response 
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Different Letters 

would be: 'Wo, some people did not get an A." Since we do not 
use inflection to convey meaning in logical reasoning, we must 
be very careful not to fall into the loose habits of everyday 
speech when negating a quantified statement. 

When using multiple variables, we must be aware that different 
letters do not always represent different elements. For 
example, the following statement is false: 

For all real numbers x and y, x<y or y<x. 

This statement is false because x could be equal to y. When we 
want letters to represent different elements, we must inform the 
reader. For example, we could say: 

For all distinct real numbers x and y, x<y or y <x. 

For all real numbers x and y where x*y , x<y оту<х. 

For all real numbers x and y, if x * y, then x < y or y < x 

Exercise Set 1.2 

1. The domain for x and y is the set of real numbers. Determine if 
each sentence is true or false. If both sentences are true, determine 
if one is "stronger" than the other. 
a. There exists a y such that for every x, y<x. 

For every x, there exists a y such that y<x. 
b. There exists a y such that for every x,x+y = 4. 

For every x, there exists a y such that x+y = 4. 

c. There exists a y such that for every positive x,y<x. 
For every positive x, there exists a y such that y <x. 

d. There exists a y such that for every x, x+y = x. 
For every x, there exists a y such that x+y = x. 

2. Consider the meaning of the following two statements: 

I. 3y Vx, p{x,y) 

II. Vx 3y, p(x,y) 

a. If (I) is true, does (II) have to be true? 

b. If (II) is true, does (I) have to be true? 
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3. Make up simple examples of sets A, B and C so that (I) is true and 
(II) is false. 

I. For every y in A, there exists an x in B such that xy is in C. 
II. There exists an * in B such that for every y in A, xy is in C. 

4. Let p(x,y): y was the mother of x. Translate each sentence in terms 
of everyday language. Do they have the same meaning? 
a. Vx3y,p(x,y) b. 3yVx,p(x,y) 

5. Make up a sentence p{x,y) where x and y are real numbers. 
Then determine the truth value of the following: 

a. p(l,2) b.p(2,l) c. Vx3y,p(x,y) d. 3yVx,p(x,y) 

6. Let p(x,y) represent an open statement with variables x and y. 
True or false? 
a. 3x 3y, p(x,y) has the same meaning as 3y 3x, p(x,y). 
b. Vx Vy, p{x,y) has the same meaning as Vy Vx, p(x,y). 
c. Vx 3y, p(x,y) has the same meaning as 3y Vx, p(x,y). 

7. Determine if the sentence is true or false. Then write its negation 
in a form where the negation is not a prefix for a quantifier. 
a. For every real number x, 3x = 4. 

b. For every real number x, Зх Ф 4. 
c. There exists a real number x such that x2 = - 1 . 
d. For every complex number x, x2 Ф - 1 . 
e. There exists a real number y such that for every x, x+y = 4. 
f. There exists an integer y such that for every real number x, y <x. 

8. The domain for all variables is the set of real numbers. 
Is the statement true or false? If false, write its negation 
so that the negation is not a prefix for a quantifier. 
a. There exists a c such that for every x, x+c = 2. 
b. For every x, there exists a c such that x+c = 2. 
c. There exists an m such that for every x, x <> m. 
d. For every x, there exists an m such that in S, x < m. 

9. Write the negation of each statement. Move the negation 
across the quantifiers in a logically correct manner. 
a. For every integer y, there is a real number x such that g(x) = y. 
b. For every y in B, there exists an x in A such that/(x) = y. 
c. For all sets A and B, there is a function/that maps A onto B. 

10. The domain for x has 100 elements. If the given statement is true, 
how many elements are in the solution set forp(x)? 
a. Vx,p(x) b. ~Vx, p(x) c. 3x, p(x) d. ~3x, p(x) 
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p 

T 

T 

F 

F 

q 

T 

F 

T 

F 

phq pvq p=>q 

Activity 1.3 

1. Given statements p and q, the four 
possible cases for their truth values 
are listed in the adjacent table. For 
each case, enter the truth value of the 
compound sentence according to 
how you use the connective in 
everyday language. Translate p => q 
as "if p, then q." 

2. Your friend gives you half the money for a lottery ticket. You 
promise her, "If this ticket wins, then I will give you a million 
dollars." One of the following four cases must occur. 

Case 1: Your ticket wins and you give her a million dollars. 

Case 2: Your ticket wins, but you do not give her a million. 

Case 3: Your ticket does not win, but you give her a million. 

Case 4: Your ticket does not win, so you don't give her a million. 

a. In which cases would she be justified in calling you a liar? 
b. Let/? and q represent the following sentences. 

p: Your ticket wins the lottery. 

q: You give her a million dollars. 
In the adjacent table, record your answers from 
part (a). Do your answers agree with your 
implication table in the previous exercise? 

3. Letx be a real number and letp(x): If x<3, then x<l. 
Determine the truth value (true or false) of each sentence. 
a. p(l) b. p(4) c. p(ll) d. Forall;c,ifjc<3, then*<7. 

4. Does the first sentence have the same meaning as either of the 
other two sentences? 

p 

T 
T 
F 
F 

Я 

T 
F 
T 
F 

p=>q 

a. 
b. 

c. 

d. 
e. 

porq 
p=>q 

~(p and q) 

~(p or q) 

~(p=><7) 

~p=>q 
~p^>~q 

~p and ~q 

~p or -q 
~p=>~q 

~q=>p 
~q^~p 

~p or ~q 

~p and ~q 

p and ~q 
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= 1.3 Five Logical Operators = 

Negation ~ it is not true that 

Conjunction Л and 

Disjunction V or 

Implication => implies 

Equivalence <=> is equivalent to 

Syntax 

Many people feel tíiat grammar 

should be judged insofar as it 

follows die principles of logic. 

Mathematics, from this view-

point, is the ideal use of 

language. 

David Crystal 

Cambridge Encyclopedia 

of Language 

Let A be a set. 

Incorrect Syntax: ~A 

Correct Syntax: ~(xeA) 

Logical operators are used to build compound sentences from 
given sentences. The basic language used in logical reasoning 
can be built from five logical operators. Their formal names 
and symbolic representations are given on the left. 

• The negation symbol is a short squiggle: ~ 

• The and symbol is an A without the middle bar: л 

• The or symbol is the л symbol flipped upside down: v 

• The implies symbol is an arrow: => 

• The equivalence symbol is a double-headed arrow: <=> 

The outside structure of most valid arguments depends on the 
manipulation of these five little words. They are the key to 
how we structure our thinking. Within this structure, we then 
work with the meaning of individual sentences. In order to 
reason in a logical manner, we must understand both the syntax 
and semantics of the five logical operators. 

Syntax rules tell us how we can juxtapose words or symbols to 
form sentences or well-formed formulas in a particular 
language. In a computer language, syntax rules tell us how we 
can string symbols together. In everyday language, we string 
together words and punctuation symbols according to the rules 
of syntax, which is an important part of grammar. 

The syntax rules for the logical operators are fairly simple. 
First of all, the logical operators can only be used with 
sentences. These terms are called operators because they 
operate on sentences and produce a new compound sentence. 
They are sometimes called logical connectives because they 
connect sentences. However, the negation operator does not 
connect sentences; it only operates on one sentence. 

The negation operator serves as a prefix for a sentence. 

~(xeA) is read as "it is not true that x is an element of A." 

We sometimes read ~p as "not p" but we do not write it that 
way since it does not have correct syntax in everyday language. 
If p represents a sentence, we can write ~p\ however, if A 
represents a set, we cannot write ~A. On the other hand, since 
xeA is a sentence, we can write ~(xeA). 
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Let A and B be sets. 

Incorrect Syntax: xeAAB 

Correct Syntax: xeA /\xeB 

Incorrect Syntax: xeAWB 

Correct Syntax: x e A V x e B 

Incorrect Syntax: A=>B 

Correct Syntax, x s A => x e B 

IncorređSyntax. xsA — xeA 

Correct Syntax. xsAc^xeA 

The other four logical operators must be placed between 
two sentences. For this reason, they are called binary operators. 
If p and' q represent sentences, we can write p/\q; however, we 
cannot write p~q. 

In everyday language, we can place and between two 
nouns, but we cannot do this when we use and as a logical 
operator. If A and B represent sets, we cannot write A л В, but 
we can write x e A л x e B. When we apply logical rules for 
manipulating the word and, we must use and as a logical opera-
tor. For example, suppose that we need to negate the following 
sentence: 

x is in both A and B. 

We can translate this sentence so that and is a logical operator: 

x is in A and x is in B. 

In the above form, we can apply the rule for negating an 
and-sentence (see Section 1.4). 

We have a similar problem with or since we sometimes use 
or between two nouns in everyday language. So when we use 
or as a logical operator, we must carefully check our syntax. 
We cannot write xeA V B, but we can write xeA V xeB. 

The implies operator can only be used between two sen-
tences. The sentence p => q can be read as either "p implies q" 
or as "if p, then q." We normally use the latter form when we 
formulate conjectures or state theorems. If A and B represent 
sets, then A is not a sentence, so we cannot write "if A, then B." 
However, we can write "if xeA, then дсеВ." 

The equivalence operator also goes between two sentences. 
If p and q represent sentences, we can write pe=>q, which is 
read as "p is equivalent to q." Students sometimes confuse the 
equivalence operator with the equals relation because they are 
intimately related; the equals relation is defined in terms of the 
equivalence operator. However, there is an important syntactic 
difference between them. We only use the equals relation 
between two sets or between two numbers. We do not use it 
between two sentences. For example, if A represents a set, we 
can write A = A, but we do not write хвА = jte A. Instead, we 
write xeA <=>jceA. 

When more than one logical operator is used in a sentence, 
we use parentheses to indicate the order in which the operators 
are performed. For example, ~(pAq) means to first form the 
compound sentence p Л q and then takes its negation. Without 
parentheses, we will interpret ~phqto mean (~p)Aq. 
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Semantics 

Let p and q represent statements. 

~p is true means p is false. 

p A q is true means both p and 
q are true. 

p V q is true means at least one 
part is true. 

p=> g is true Awe/w if p is true, 
then q must be true. 

/7c* q is true даадлг either 
both parts are true or 
both parts are false. 

Semantics is the study of meaning. To engage in logical 
reasoning, we have to know the exact meaning of the logical 
operators for they set the structure for most types of valid 
arguments. The meaning of a logical operator is determined by 
the truth value it produces when used in a compound statement. 
The conditions under which an operator produces a true 
statement are summarized in the adjacent table. 

As you can see, the logical operators are simple concepts by 
themselves. However, when more than one operator is used, 
especially with a negation, we can be easily mislead into a 
fallacious deduction. 

The negation operator reverses the truth value. 

If p is true, ~p is false. 
If p is false, ~p is true. 

We usually indicate the negation with a slash through the 
symbol for the verb: <£ 

AÈB means ~(ACB) 

Even though we normally use the slashed symbol, it can get us 
into trouble when we start making logical deductions. If we 
need to translate the meaning of A <LB, we should first write it 
as ~(A £ B) and then substitute the definition of A Q B. In this 
form, we can see the proper way to negate the sentence. 

Conjunction To form the conjunction of two sentences, we place and 
between them: A£B and 5 C C In order for an and-sentence 
to be true, both parts must be true. 

pAq is true means both p and q are true. 

When applied to two sentences, the meaning of and is the same 
as in everyday language. 

Disjunction To form the disjunction of two sentences, we place or between 
them: (A £B) or (A £ Q. An or-sentence is false only if both 
parts are false. 

pWq is true means at least one of the two is true. 

Whenp and q are both true, pMqis true. However, in everyday 
language, we sometimes label this interpretation as false. For 
example, if a restaurant menu states that "salad or vegetable is 
included," we interpret it to mean that we cannot have both for 
the advertised price. This usage of or is called the exclusive or. 



1.3 Five Logical Operators 39 

potq 

means the same as 

if ~p, then q. 

On the other hand, we sometimes use or in everyday language 
in an inclusive sense. When a club advertises a discount for 
member's or senior citizens, a member who is also a senior 
citizen would no doubt also qualify. In logic, or always means 
the inclusive sense. To indicate an exclusive or, we say "p or q 
but not both." Some programming languages represent the 
exclusive-or with the symbol XOR. 

We can always interpret an or-sentence as an implication. 
To say that "p or q is true," means that "if p is false, then q is 
true." We will now investigate the meaning of an implication. 

Implication The implication is perhaps the most important word in logic 
because it sets the structure for the meaning of a valid 
argument. In the implication p=> q, we call p the hypothesis and 
q the conclusion. 

The definition of => sounds simple on the surface, but stu-
dents sometimes try to read more into it, which causes logical 
errors. 

p=>q is true means if p is true, then q must be true. 

When we say mat an implication is true, we are stating that if 
the hypothesis is true, then the conclusion must be true. 

We are not saying that if the hypothesis is false, then the 
conclusion must be false. 

Furthermore, we are not saying the conclusion has to be true 
nor are we saying the hypothesis has to be true. In fact, if the 
hypothesis p is false, the sentence p => q is automatically true. 
This may sound strange, but it is consistent with the way we 
use implications in everyday language. For example, consider 
the following lottery example. 

■Ф- Example Suppose that you buy a lottery ticket with a friend and you keep 
it in your possession with the following promise: 

If this ticket wins, then I will give you a million dollars. 

Either your ticket wins or it does not win, and either you give 
your friend a million dollars or you do not give her a million 
dollars. Under which cases did you lie to your friend? 

Case 1: If your ticket wins and you give your friend a million 
dollars, then your original statement was obviously true. 
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Case 2: If your ticket wins and you do not give your friend a 
million dollars, your friend will have cause for concern 
because your original statement was indeed a lie. 

Case 3: Now suppose that your ticket does not win, but you 
give your friend a million dollars. Perhaps you won on 
another lottery ticket. Does that make your original state-
ment a lie? Certainly not, because you did not make any 
claim as to what you would do if that particular ticket did 
not win. In this case, your original statement is true. 

Case 4: Now suppose that your ticket does not win and you do 
not give your friend a million dollars, which is the most 
likely scenario. Will your friend say that you lied? 
Absolutely not. In this case, your original statement is true. 

In your original statement you only said what would happen if 
you won the lottery. You made no commitment about what you 
would do if you did not win the lottery. So if you don't win the 
lottery, your statement puts no restrictions on you. You may 
give your friend a million dollars [Case 3] or not give her a 
million dollars [Case 4]. Either way your original statement is 
true. The only case that makes it false is Case 2. 

Hopefully, this discussion has convinced you of the rationale 
for the truth values of an implication, which are summarized in 
the adjacent truth table. The first time around, most students 
write false for Case 3 and Case 4 when they fill in the truth 
table on page 35. It does sound strange unless we stop and 
think about it. If you stop someone on the street and ask them 
if a false statement implies a false statement, more than likely 
they will say no; however, as the previous example demon-
strates, the logically correct answer is yes. 

The implication is used so frequently in the reasoning 
process that we have to understand its exact meaning; we have 
to understand why Case 3 and Case 4 are true. If we under-
stand the meaning of or, we can reason that ~p or q means the 
same as if p, then q. Most people would not question that ~p 
or q is true in both Case 3 and Case 4; consequently p=>q must 
be true in these two cases. 

When we assert that p implies q is true, we are telling the 
listener that Case 2 cannot occur. Any of the other three cases 
could happen. When the hypothesis of an implication is false, 
the implication is automatically true. The following implication 
is true because its hypothesis is false: 

P Ч Р=>Я 

T T T 

T F F 

F T T 

F F T 
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4'fP 

qifp 

means the same as 

p only if q 

p only if q 

means the same as 

p=>q. 

If2>3,then4>9. 

This sentence seems a bit absurd for it imparts no useful infor-
mation to the reader; however, it occurs naturally in the context 
of the following sentence, which does sound very reasonable: 

For every real number x, if x > 3, then x2 > 9. 

Since the above sentence is true for every x, it must be true 
when we substitute 2 for JC: 

If 2 > 3, then 4 > 9. 

In everyday language, implications are often expressed in other 
forms such as "q if p." For example, a client may tell the 
programmer: 

"The customer gets a discount i/the customer is over 60." 

The "if in the above sentence is flagging the if-part, so this 
sentence has the same meaning as the following implication. 

"If the customer is over 60, then the customer gets a discount." 

In general, "q, if p" has the same meaning as "if p, then q." 
The if-part of "q, if p" is the if-part of the implication. 

"Only if is sometimes confused with "if," but they have 
different meanings. Suppose that a client tells the programmer: 

"A customer gets a discount only if the customer is over 60." 

"Only i f means that we cannot have a case where the customer 
gets a discount and the customer is not over 60. In other 
words: 

If a customer gets a discount, 
then the customer must be over 60. 

In general, a sentence of the form "p only if q" can be trans-
lated as the implication, "if p, then q." 

Ф Example Rewrite each sentence as an implication. 

1. x>3 only if.*> 1. 

Translation: If x>3, then x> 1. 

2. *>lif;c>3. 

Translation: Ifx>3, thenx> 1. 
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3. x is in A only if x is in B. 

Translation: lix is in A, men x is in B. 

4. д: is in A if jc is in 5. 

Translation: If x is in B, then x is in A. 

If and only if The sentence "p if and only if q" is an abbreviated way of 
saying: 

p if q and p only if #. 

We can translate the two component sentences as follows: 

q=>p and p=>(?. 

So, the meaning of "p if and only q" is a two-way implication. 

■Ф- Example Translate the given sentence in terms of implications. 

1. xeAif and only ifjcefi. 

Translation: xeA=>xeBandxeB=>xeA. 

2. a<b if and only i f -đ> -b. 

Translation: If a<b, then -a > -b, and 

if -a > -b, then a < b. 

pif and only if q 

means the same as 

p=>qiXíàq^p. 

Necessary and Sufficient 

p is sufficient for q 

means the same as 

p=>q. 

The words "necessary" and "sufficient" have been associated 
with implications since Aristotle laid the foundations for logic 
in the 4th century B.C.E. Since they are often used in everyday 
language, we need to know how to translate them in terms of an 
implication. Suppose that a teacher says the following: 

Getting an A on the final is sufficient 
to get an A in the course. 

This statement can be translated as follows: 

If you get an A on the final, 
then you get an A in the course. 

In general, "p is sufficient for q" means "if p, then q." 
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On the other hand, suppose that a teacher says the following: 

Getting an A on the final is necessary 
to get an A in the course. 

This statement can be translated as follows: 

If you get an A in the course, 
then you must get an A on the final. 

In general, "q is necessary for/?" means "if p, then q." 

-Ф- Example Translate the implication in terms of "necessary" and 
"sufficient." 

1. Ifx>3, thenx>l. 

x > 3 is sufficient for x > 1. 
x > 1 is necessary for x > 3. 

2. If x is in Л, then x is in B. 

x being in A is sufficient for x to be in B. 
x being in B is necessary for x to be in A. 

The first part of an implication is the sufficient part and the 
second part is the necessary part: 

p is sufficient for q 

q is necessary for p 

In the adjacent box, we have a summary of the various ways to 
translate an implication. In the reasoning process, we usually 
think in terms of implications, so when we run across one of 
the other forms, we usually translate it in terms of an implica-
tion. When we combine "necessary" and "sufficient" in the 
same sentence, we get a two-way implication which has the 
same meaning as "if and only if." 

p is necessary and sufficient for q. 

p is necessary for q and p is sufficient for q. 

q^>p and p=> q 

p if and only if q 

q is necessary for p 

means the same as 

p=>q. 

sufficient 
1 I 

necessary 

p=>q 

means the same as 

If p, then q. 

q, if p. 

p only if q. 

p is sufficient for q. 

q is necessary for p. 
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Equivalent Sentences 

p 

T 

T 

F 

F 

q 

T 

F 

T 

F 

phq 

T 

F 

F 

F 

pvq 

T 

T 

T 

F 

p=>q 

T 

F 

T 

T 

p<=*q 

T 

F 

F 

T 

Meaning & Cases 

r is equivalent to s 
if and only if 

they have the same truth values. 

r has the same meaning as * 
if and only if 

r is equivalent to s. 

p 

T 

T 

F 

F 

4 

T 

F 

T 

F 

phq 

T 

F 

F 

F 

qhp 

T 

F 

F 

F 

(p/\q)<=>{qw) 

T 

T 

T 

T 

For the sentence p is equivalent to q to be true, both component 
sentences must have the same truth value; they must both be 
true or both false. Let's compare the meaning of the four binary 
operators in the adjacent truth table. 

p <=> q is true means Case 1 or 4 must occur. 

p and q is true means Case 1 must occur. 

p or q is true means Case 4 cannot occur. 

p ̂ > q is true means Case 2 cannot occur. 

The meaning of a compound sentence is determined by the 
cases that can occur. If we say that p => q is true, we are telling 
the listener that Case 1, 3, or 4 must occur. 

When we reason in a logical manner, we often need to 
translate sentences from one form to another form that has the 
same meaning. Truth tables give us a systematic way to deter-
mine whether or not compound sentences that are composed of 
the same component sentences have the same meaning. 

Let r and s represent abstract compound sentences that are 
composed of the same component sentences. For example, we 
could let r: p and q and s: q and p. The abstract sentences r 
and s have the same meaning if and only if they have the same 
truth value in each possible case. So, if they do have the same 
meaning and we connect them with the equivalence operator, 
we will have a statement that is always true. Thus, the equiva-
lence operator tells us when two sentences have the same 
meaning: 

r and s have the same meaning 

if and only if 

r <=> s is always true. 

To determine if p and q has the same meaning as q and p, we 
can construct a truth table for (phq) <=> {qhp). In the adjacent 
truth table, we label a column for each of the component 
sentences, then record the truth values for each of the four 
cases. In each case, pf\q has the same truth value as qt\p. So, 
we have only trues in the last column. Thus, p and q is 
equivalent to q and p. 

Since the meaning of a compound sentence is determined 
by its truth values, equivalent sentences have the same 
meaning. Consequently, they can be used interchangeably. On 
the following pages, we list the most frequently used forms of 
equivalent sentences. 
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Commutative Property 

p and q is equivalent to q and p. 

p or q is equivalent to q or p. 

p <=> q is equivalent to q <=> p. 

Converse 

If an operation has the commutative property, the order in 
which the operation is performed does not matter. For all real 
numbers x and y, x + y = y + x, so addition is commutative. 
Since 5 - 3 * 3 - 5 , subtraction is not commutative. 

And is commutative: p and q <=> q and p. When we write 
an and-sentence, the order of the component sentences does not 
matter. Neither does the order matter for an or-sentence. To 
determine if two sentences have the same truth values, it does 
not matter which one we list first, so the equivalence operator 
is also commutative. 

The logical operators, and, or, and is equivalent to, are each 
commutative because the order in which we list the component 
sentences does not affect the meaning of the compound 
sentence. However, the order does affect the meaning in an 
implication. 

When we reverse the order in an implication, the new sentence 
is called the converse of the original implication: 

q => p is the con verse of p => q. 

Implication: If xeA, then xefi. 

Converse: IfjceB, thence A. 

p 

T 

T 

F 

F 

4 

T 

F 

T 

F 

9=>P 

T 

T 

F 

T 

/>=><? 

T 

F 

T 

T 

P=>9 

is not equivalent to 

q=>p 

Compare the truth values of p => q with the truth values of its 
converse q=>p in the adjacent truth table. To compute the truth 
values for q^p, we must figure out when the ^-column implies 
thep-column: 

Case 1: T=>T, which is true. 

Case 2: F=>T, which is true. 

Case3: T=>F, which is false. 

Case 4: F=>F, which is true. 

Since q^p does not have the same truth values asp =* q, these 
two implications are not equivalent. When we say p =* q, we 
are saying that Case 2 cannot occur, but when we say q=>p, we 
are saying that Case 3 cannot occur. These implications have 
different meanings. We cannot use them interchangeably. 

q =>p is not equivalent to p => q. 

The implication is not a commutative operation. We must 
carefully note the order of the sentences in an implication. 
When we reverse their order, the meaning is changed. 
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Rephrasing an Implication 

p q ~p -q ~p =>-•<? 

T T F F T 

T F F T T 

F T T F F 

F F T T T 

p=>q 
is not equivalent to 

~p=>~q 

Suppose that you make the following statement to a friend: 

If I finish my homework, then I am going to the movie. 

Do you mean that if you do not finish your homework, then 
you are not going to the movie? Let's compare the structure of 
these two sentences: 

Does ~p => ~q have the same meaning asp=>q1 

Now that we have a systematic method, we can quickly answer 
this question without the excessive thinking that was needed 
when we first contemplated the meaning of p => q. All we have 
to do is construct a truth table and compare the truth values. In 
the adjacent truth table, we insert a column for ~p and a column 
for ~q to help us calculate the truth values in the last column. 
If we do these steps in our head, we might possibly make a 
mistake and we would have no written record to check our 
thinking. To compute the truth values in the last column, we 
ask the following question: 

In which cases does the ~p column imply the ~q column? 

Case 1: F=>F, which is true. 
Case 2: F=»T, which is true. 
Case3: T^F, which is false. 
Case 4: T=>T, which is true. 

The truth values in Case 3 and Case 4 are not the same as the 
truth values for p=> q. So, these two implications do not have 
the same meaning. 

p^>q does not have the same meaning as ~p=>~q. 

■Ф- Example Do the following sentences have the same meaning? 

If xeA, then*e B. 
lfx€A,thenxtB. 

To answer this question, we do not contemplate the sets A and 
B, nor do we contemplate the meaning of "is an element of." 
The structure of the first sentence is p => q and the structure of 
the second sentence is ~p => ~q. Since these abstract sentences 
are not equivalent, the above sentences do not have the same 
meaning. 



1.3 Five Logical Operators 47 

Contrapositive 

p q ~q~p ~q=>~p 

T T F F T 

T F T F F 

F T F T T 

is equivalent to 

~q=>~p 

The more logical operators in a sentence, the more complex the 
structure and the more likely we are to misread the sentence, 
unless \ve carefully consider the logical interplay. The 
meaning of a compound sentence is determined by its structure. 
If we replace the component sentences with p's and q's as in the 
last example, we can see the structure and not be sidetracked by 
the meaning of the component sentences. 

As we saw in the previous discussion, we cannot rephrase an 
implication by reversing the order of the sentences, nor by 
negating the first and second parts of the implication. 
Consider, though, what happens when we do both, reverse the 
order and also negate the component sentences. This form is 
called the contrapositive of the original implication. 

~q=>~p is the contrapositive of p=>q. 

In the adjacent truth table, when we compute the truth values 
for ~q^>~p, we ask the following question: 

In which cases does the ~q column imply the ~p column? 

Case 1: F ^ F, which is true. 

Case 2: T=> F, which is false. 

Case3: F=>T, which is true. 

Case 4: T=>T, which is true. 

In each of the four cases, the implication ~q => ~p has the same 
truth value as the implication p^> q. Therefore, these two sen-
tences are equivalent. 

p=> q has the same meaning as ~q => ~p. 

At last, we have found a proper way to rephrase an implication. 
We often use this translation when we are making logical 
deductions. If we are trying to derive p => q, it may be easier to 
derive in its contrapositive form. 

Ф Example Rephrase each implication in terms of its contrapositive. 

1. IfxeA, thenjteB. 

Contrapositive: IfxiB, \henx$A. 

2. 1 ^ * 4 , then jc* 2. 

Contrapositive: lfx>2, thenx2>4. 



1 Logical Reasoning 

3. If a quadrilateral is a rectangle, its diagonals are congruent. 

Contrapositive: If the diagonals of a quadrilateral are not 
congruent, then the figure is not a rectangle. 

Common Errors The two most common errors in rephrasing an implication are 
replacing it with its converse or with ~p => ~q: 

p=>q is not equivalent to q =>p. 

p=>q is not equivalent to ~p => ~q. 

If we say: If * is in A, then* is in B. 
It does not mean: If* is not in A, then * is not in B. 
Nor does it mean: \ix is in B, then x is in A. 

any of the following sentences have the same meaning? 

a. If x is even, then x2 is even. 
b. If*2 is even, then* is even. 
c. If* is not even, then*2 is not even. 
d. If*2 is not even, then * is not even. 

(d) is the contrapositive of (a), so they have the meaning. 
(c) is the contrapositive of (b), so they have the meaning. 

2. a. If* is in A, then * is not in B. 
b. If * is in B, then * is not in A. 
c. If * is not in B, then* is in A. 
d. If* is not in A, then * is in B. 

(a) and (b) have the same meaning. 
(c) and (d) have the same meaning. 

An or-sentence is closely related to an implication. If we think 
about the meaning of or, it is not too difficult to see that p or q 
has the same meaning as ~p^>q. If p is false, then q has to be 
true. Let's verify this with a truth table. In which cases does 
the ~p column imply the q column? 

Case 1: F=>T, which is true. 

Case 2: F=>F, which is true. 

Case 3: T=>T, which is true. 

Case 4: T=> F, which is false. 

■$■ Example Do 

1. 

Rephrasing Or 

p q ~p -p=>g 

T T F T 

T F F T 

F T T T 

F F T F 
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p or q is equivalent to ~p=> q 

p or q is equivalent to ~q =>p 

Since the truth values for ~p=>q are identical to the truth values 
for pVq, they are equivalent sentences. Even though these two 
sentences look different, they impart the same information to 
the reader. 

p or q has the same meaning as ~p => q. 

The contrapositive of ~p => q is ~q =>p. Since ~q=>p has the 
same meaning as ~p => q, we have another way to translate an 
or-sentence. 

p or q has the same meaning as ~q =>p. 

Using either of the above equivalences, we can rephrase an 
or-sentence as an implication. 

■Ф- Example Translate each sentence in terms of an implication 

1. л<2огд:>5. 

Equivalent Forms: If x it 2, then x > 5. 

If лг>5, thenx<2. 

2. xeAorxeB, 

Equivalent Forms: líxéA, thcnxeB. 

HxéB, thenxeA. 

3. xéAorxeB. 

Equivalent Form: If xeA, then xeB. 

The last example shows the technique for writing an implica-
tion as an or-statement. For all sentences p and q, the follow-
ing is true: 

p or q <=> ~/> => q 

So, the above equivalence is true if we substitute ~p for p: 

-porq <=> -(-/>)=> <7 

-porq <=> p=>q 

We can use the above equivalence to translate an implication as 
an or-sentence. 
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Rephrasing an Equivalence 

p 

T 

T 

F 

F 

Я 

T 

F 

T 

F 

p=>q 

T 

F 

T 

T 

q=>p 

T 

T 

F 

T 

(Р=»9)л(д=>р) 

T 

F 

F 

T 

When both an implication and its converse are true, their 
conjunction is true: (p=^q)A(q =>p). Let's compare this sen-
tence with the equivalence p<=>q. 

In the adjacent truth table, we insert columns for p =* q and 
q^=>p to help us compute the truth values for (p => #)Л(д =>p): 

Case 1: T=>T, which is true. 

Case 2: F=>T, which is false. 

Case 3: T=> F, which is false. 

Case 4: T=>T, which is true. 

The truth values for (p=>q)/\(q=>p) are the same as the truth 
values for p <=> q, so these two sentences have the same 
meaning. An equivalence can always be rephrased as a double 
implication, which is why we use a double-headed arrow for its 
symbol. 

4- Example 

means the same as 

p=>q and q=>p. 

Rephrase each equivalence in terms of implications. 

1. x<4 <=> -x>-4 

Equivalent Form: (x<4 => -x> -4) and (-*> - 4 =>x<4). 

2. xeA<^>xeB 

Equivalent Form: (xeA =>хвВ) and (xeB =>дсеЛ). 

3. A triangle is isosceles <=> two of its angles are congruent. 

Equivalent Form: If a triangle is isosceles, then two of its 
angles are congruent, and if two of its angles 
are congruent, then the triangle is isosceles. 

p<*q 

means the same as 

p is equivalent to q 

p if and only if q 

p implies q and q implies p 

p is necessary and sufficient for q 

As we saw earlier (page 42), p => q and q=> p can be reworded 
as p if and only if q and as p is necessary and sufficient for q. 
So both of these forms can be used to translate an equivalence. 
The various ways for rephrasing p <=> q are summarized in the 
adjacent box. 

Definitions in mathematics are always worded in terms of 
an equivalence. The term being defined is equivalent to its 
definition, which means that they can be used interchangeably. 
For example, a triangle is isosceles if and only if two of its 
sides are congruent. 
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■Ф- Example 

Negating an And-Sentence 

~(P and q) 

is equivalent to 

-p or ~q 

p 

T 

T 

F 

F 

4 

T 

F 

T 

F 

phq 

T 

F 

F 

F 

~{pt\q) 

F 

T 

T 

T 

~p\l~q 

F 

T 

T 

T 

Rephrase the following equivalence in various forms: 

xeA <=> xeB 

1. xe A is equivalent to xsB. 

2. xeA'ii and only if xeB. 

3. If xeA, ihenxeB, and if xeB, th&nxeA. 

4. x being in A is necessary and sufficient for x to be in B. 

We can also rephrase the above equivalence in terms of contra-
positives: 

IfxíB, thenxíSA, and if x€ A, then*íífí. 

Is ~(pA q) equi it to ~ph~ql Instead of constructing a truth 
table, let's see if we can find a case in which they have different 
truth values. Suppose that p is false and q is true: 

~(pAq) -pA~q 

-(FandT) ~Fand-T 

-F 

T 

Tand F 

F 

Since these two sentences have different truth values for this 
particular case, they are not equivalent. Thus, we cannot negate 
an and-sentence by distributing the negation across the paren-
theses. Let's analyze how to properly negate it. 

If ~(pAq) is true, then рл q must be false, which means that 
either p is false or q is false, so ~p v ~q must be true. Let's 
compare the truth values of these two sentences in the adjacent 
truth table. We compute ~(pAq) from the column on its left. 
To compute the last column, we must first mentally compute 
the value of ~p and the value of ~q. The truth values in the last 
two columns are identical, so ~(рл q) is equivalent to ~pW ~q. 

~(.pA q) has the same meaning as ~p v ~q. 

This equivalence gives us a rule for negating an and-sentence. 
When we take a negation inside the parentheses of an 
and-sentence, we must change and to or. 
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■Ф- Example Negate each sentence. 

1. xsAandxeB. 

Negation: It is not true that xeA and xe B. 
x€A or x$B. 

2. 1<д:<4 

Negation: It is not true that 1 <x<4. 
~(l<;cand.x<4) 

H.x or xi.4. 
x<l or 4<x. 

It is easy to visualize the negation of the above sentence, 
which is illustrated in the adjacent sketch. However, 
students sometimes describe this set incorrectly. An 
element x of the indicated set in the illustration does not 
have the property that "x й 1 and 4<x." The property must 
be described in terms of or. 

Negating an Or-Sentence 

~(P or q) 

is equivalent to 

{~p and ~q) 

What does the negation of an or-sentence mean? If ~(p V q) is 
true, then pV q must be false, which means that both p and q 
must be false. In other words, ~p A~q must be true. You are 
asked to demonstrate that ~(pVq) is equivalent to ~pt\~q in the 
next exercise set. 

~(pWq) has the same meaning as ~pA~q. 

When we take a negation inside the parentheses of an 
or-sentence, we must change or to and. 

■Ф Example Negate each sentence. 

1. xeA or xeB 

Negation: It is not true that xeA or *eB. 
x$A and xiB. 

2. X<2OT5<X 

Negation: It is not true that x< 2 or 5 <x. 
jcit2and5ifc^ 
jr>2and5>jc 
2 £ x < 5 
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Negating an Implication 

~(p=> q) 

is equivalent to 

p and ~q 

The rules for negating and and or are known as DeMorgan's 
Laws in honor of the English mathematician Augustus DeMor-
gan, who formalized these rules in the 19th century. When we 
take a negation inside the parentheses of an and-sentence, we 
must change and to or. Similarly, when we take a negation 
inside the parentheses of an or-sentence, we must change or to 
and. A common error is to hurriedly distribute the negation 
and not change the connective: 

~{p and q) is not equivalent to ~p and ~q. 

~{p or q) is not equivalent to ~p or ~q. 

Most statements that we try to prove in mathematics are 
phrased in terms of implications. To prove that an implication 
is not true, we must prove its negation is true. Consequently, 
we often have to negate implications. 

What does it mean to say that p => q is false? The only case 
in which p =̂  q is false is when p is true and q is false. Conse-
quently, pA~q must be true. When we negate an implication, it 
becomes an and-sentence: 

~(P=> <7) has the same meaning aspA ~q. 

You are asked to justify the above equivalence with a truth 
table in (1) of the next exercise set. Some students have diffi-
culty remembering how to negate an implication. If you under-
stand that the only time an implication is false is when the first 
statement is true and the second statement is false, then you 
know the rule for negating an implication. 

•Ф- Example Negate each sentence. 

1. For every x, if x<3, then л-<1. 

Negation: For somex,x<3 andx<\. 

2. For every*, ifxeA, thenxeB. 

Negation: There exists an x such that x<z A and x$ B. 

3. For every quadrilateral F, if its opposite sides are 
congruent, then F is a rectangle. 

Negation: There exists a quadrilateral F such that its 
opposite sides are congruent and F is 
not a rectangle. 
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4. Let/be a function. If/is continuous, then/is 
differentiable. 

Negation: There exists a function/such that 
/ is continuous and/is not differentiable. 

5. For every real numberx, if \x-a\<S, then \f(x)-f(a)\<e. 

Negation: There exists a real number x such that 
|x-a|«5and \f(x)-f(a)\<e. 

Negating an Equivalence 

~(p<=>q) 

is equivalent to 

-(p=>q)ot~(q=>p) 

To negate an equivalence, we can use the rule for negating and 
and the rule for negating implies. First, we rephrase the 
equivalence as a double implication. 

~(P<=>9) 
~(p=>q and q=>p) 

The outside structure of the above sentence is the negation of 
an and-sentence, ~(r and s), so we first apply the rule for negat-
ing and: 

~(p=>q) or ~(q=>p) 

When an equivalence is false, one of the implications must be 
false, which gives us the adjacent rule for negating an equiva-
lence. If we want to negate it further, we can now apply the 
rule for negating an implication: 

(p and ~q) or (q and ~p) 

Instead of memorizing the two forms for negating an implica-
tion, we should be able to reason as follows: 

• If a double implication is not true, at least one of the 
implications is not true: ~(p=>q) or ~(q=>p) 

• If two sentences are not equivalent, one must be true 
and the other one false: (p and ~q) or (q and ~p) 

-Ф- Example Negate each sentence. 

1. (xeA<=>JC€fi) 

Negation: ~(xeA=>xeB) or ~(xeB=>xeA) 

(xeAandxtB) or (xeBaadxtA) 
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2. (x<2 <=> JC2<4) 

Negation: ~(x<2 => л^<4) or - (^<4 => д:<2) 

(A:<2and^>4) or (j^<4and x>2) 

3 Component Sentences The following examples have 3 component sentences, which 
we represent with p, q, and r. 

^Example 

(p or q) and r 
w not equivalent to 
p or (q and r) 

w not equivalent to 
p=>(9=>r) 

Are the following sentences equivalent? 

1. Is (p or q) and r equivalent to p or (q and f)? 

If p, q and r are each true, both compound sentences will be 
true, but consider the case when p is true, q is true, and r is 
false: 

{p or q) and r 
(TorT)andF 

TandF 
F 

p or (q and r) 
Tor (TandF) 

TorF 
T 

Since the two compound sentences have different truth 
values in this case, they are not equivalent. They do not 
have the same meaning. When we use both and and or in a 
sentence, we must carefully consider where we place the 
parentheses for it makes a difference. 

2. Is {p^>q)=> r equivalent to p=>(q=> r)? 

Consider the case when p is false, q is true, and r is false: 

[p=>q)=>r 
(F=>T)=>F 

T=>F 
F 

p=>(q=>r) 
F=>(T=>F) 

F=>F 
T 

These two compound sentences have different truth values 
in the above case, so they are not equivalent. If we use two 
implications in a sentence, we must carefully consider 
where to place the parentheses because it makes a 
difference in the meaning. 
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p 

T 

T 

F 

F 

T 

T 

F 

F 

Я 

T 

F 

T 

F 

T 

F 

T 

F 

r 

T 

T 

T 

T 

F 

F 

F 

F 

pvq 

T 

T 

T 

F 

T 

T 

T 

F 

(pvg)vr 
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T 

T 

T 

T 

T 

T 

F 

qwr 

T 

T 

T 

T 

T 

F 

T 

F 

py(qyr) 

T 

T 

T 

T 

T 

T 

T 

F 

(p or q) or r 

is equivalent to 

p or (q or r) 

3. Is (p or q) or r equivalent to p or (q or r)? 

To show that two compound sentences are not equivalent, 
we need to produce only one case in which they have 
different truth values, as in the previous two examples. 
However, to show that two abstract sentences are 
equivalent, we must check all possible cases of the truth 
values. For a single statement p, there are 2 possibilities for 
its truth value; p must be either true or false. With two 
statements p and q, there are 4 possible cases for their truth 
values. With three statements p, q and r, the cases double 
again: 

r could be true with each of the 4 cases for p and q. 

r could be false with each of the 4 cases for p and q. 

The most efficient way to check the 8 possible cases is to 
construct a truth table. In the adjacent truth table, we first 
list the four possible cases for p and q and then we list them 
again. In the third column we make r true for the first 4 
cases and false for the last 4 cases. 

We insert a column for p V q and a column for q V r to help 
us in our computations. 

As we work our way through the four computations for 
each of the 8 cases, we find that p\J(q\/r) always has the 
same truth value as (p\/q)v r. So these two compound sen-
tences are equivalent. When we use or twice in a sentence, 
it does not matter where we place the parentheses. Both 
ways have the same meaning. 

Associative Property 

(p and q) and r 

is equivalent to 

p and (q and r) 

An operation has the associative property if the grouping does 
not matter when the operation is applied twice. For all real 
numbers x, y and z, (x+y) + z = x+(y+z), so addition is associa-
tive. On the other hand, (8 - 3) - 1 * 8 - (3 -1 ) , so subtraction is 
not associative. As we saw in the last example, or is an 
associative operation: 

(p or q) or r <=> p or (q or r) 

Is the and operation associative? If (p and q) and r is true, 
then each of the three component sentences must be true. The 
same is true for p and (q and r). So, and is also associative. 

(p and q) and r <=> p and (q and r) 
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We can omit the parentheses when we have two and's or two 
or's in a sentence since the parentheses do not affect the 
meaning of the sentence. 

xeA and xe B and xe C. 

xeA orxeBorxeC. 

However, we cannot omit the parentheses in the following 
sentence because the implication is not associative. 

xeA => (xeB^>xeQ 

Distributive Property In elementary school, we learned that multiplication distributes 
over addition: 

px(q + r) = (p x q) + {p x r) 

If we substitute and for x and ox for +, we can ask if 
and distributes over or. In other words, is the 
following sentence true? 

p and (q or r) <=> (p and q) or (p and r) 

If we work our way through the five computations 
for each of the 8 cases, we find that pt\(qMr) always 
has the same truth value as (phq)4{p/\r). So these 
two compound sentences are equivalent. 

Thus, and does distribute over or. 

In a similar manner, we can use a truth table to demonstrate 
that or distributes over and. 

p or (q and r) <=> (p or q) and (p or r) 

We can also reason as follows. If p is true, then both of the 
above compound sentences are true. On the other hand, if p is 
false, both sides are true only if q and r are both true. So they 
have the same truth values. 

These two distributive properties give us an important tool 
for rephrasing sentences. If you have trouble remembering 
them, write the distributive property for multiplication over 
addition and make the appropriate substitutions. 

px(q + r) = (p x q) + (p x r) 

p and (q or r) <=> (p and q) or (p and r) 

p or (q and r) <=> (p or q) and (p or r) 

p 

T 

T 

F 

F 

T 

T 

F 

F 
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pAq 
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F 
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F 

РАГ 
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F 
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F 

F 
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F 
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qyr 

T 
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F 

pA(qvr) 

T 
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T 

T 

T 

T 

T 

F 

p and (<j or r) 

is equivalent to 

(p and q) or (p and r) 

p or {q and r) 

is equivalent to 

(p or q) and (p or r) 
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■Ф- Example Use the distributive property to rephrase each sentence. 

1. j c eAand(*e£o rxeQ 

Equivalent Form: (дсе A and xeB) or (xe A and xe Q 

2. AreAorOceBandjceC) 

Equivalent Form: (xeA or xe B) and (xe A or xe Q 

Exercise Set 1.3 

1. Do any of the sentences have the same meaning as the first 
sentence? Justify your answer with a truth table. 

a. p=>q 
b. -(/>=> <?) 
c. p or q 
d. ~(porq) 

q=>p 
~p=>~q 
~p=>q 
-potq 

~p^>~q 
~q=>~p 

~p or ~q 

~q=>~p 
pand~q 

~p and ~q 

e. If ~p, then q. 
f. Ifjc<2, thenx<3. 

2. State the contrapositive of each implication. 
a. If ~p, men ~g. c. If xeA, then дсе В. 
b. If 9, then p. d. I fx íB. thenxíA 

3. Do any of the sentences have the same meaning as the first 
sentence? 
a. IfxeA, thenxeB. b. lfx€A, thenxeB. 

Ifx$A,ihtnx<$B. IfxeA, thenxíB. 
ИхфВ, thenxíA. If xíB. thenxeA. 
хфАотхеВ. хеАотхеВ. 

4. Translate each sentence as an implication. 

a. x<2 only if x<l. c. r only if 5. e. xeD only if xeC. 

b. x<5 if JC<3. d. r if s. f. xe£> if xeC. 

5. LetA = {1,2,3} andB= {1,2,3,4}. Is the given sentence true for 
every natural number xl 
a. If x is in A, then x is in B. d. x is in A only if x is in B. 

b. JC is in A if jc is in B. e. x is in B only if x is in A. 
c. x is in B if x is in A. f. x is in A and x is in B. 
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6. Translate each sentence as an implication. 
a. x < 4 is necessary for x < 3. 
b. x< 1 is sufficient for x<2. 
c. x is in A is a sufficient condition for x to be in B. 
d. x is in A is a necessary condition for x to be in B. 

7. Rephrase each or-sentence as an implication. 
a. r or s 
b. ~r or s 
c. x is in C or x is in D. 
d. x is not in C or л; is in D. 

8. Rephrase each equivalence in terms of implications. 
a. x&C<=> x€D (G means "is an element of.") 
b. xe A CIS if and only if xe A and xe fi. (n means "intersection.") 
c. xe B is a necessary and sufficient condition for x to be in C. 

9. Negate each sentence. Do not leave a negation as a prefix for a 
compound sentence. 
a. 3<xandx<7 
b. x<3orx>7 
c. IfxeA, thenxei?. 
d. For every x, ifx<7, thenx<3. 
e. For every x, if xe C, then xe B. 
f. For every x, if \x-11 <4, then |/(*)-/(l) | < 3. 

10. Given two compound sentences that are formed from the same 
component sentences, what does it mean to say that the two 
sentences have the same meaning? 

11. Without using truth tables, explain in your own words why: 
a. ~{p => q) has the same meaning as p and ~q. 
b. p or q has the same meaning as ~p => q. 

12. Do the compound statements have the same meaning? 
If not, give a case in which they have different truth values. 
a. (p=>q)=>r p=>(q=>r) 
b. poriqoTr) (porq)orr 
c. p and (q or r) (p and q) or r 

13. If a compound statement has n component statements, how many 
cases are there for possible truth values? Hint: Answer the 
question for n = 2, n = 3, n = 4, n - 5. Look for a pattern. 
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14. 

15. 

In a computer, a bit can assume 
the value of 0 or 1. Using 1 and 
0 for T and F, complete the 
adjacent truth table for AND, 
OR, and XOR. 

XOR represents the exclusive 
use of the word "or." 

A bit string is a sequence of bits, such 
as 100011. Given two bit strings of the 
same length, define "bitwise AND" by 
applying AND to the bits that are in the 
same position. As illustrated in the 
adjacent box: 

100011 AND 111010= 100010. 

16. 

p q pbHDq pORq pXOPlq 

Bitwise AND 
100011 
111010 
100010 

Bitwise OR and bitwise XOR are defined in an analogous manner. 
Compute the following: 

a. 11011 AND 10010 c. 11011 XOR 10010 

b. 11011 OR 10010 d. (1011 AND 1010) OR 0011 

In Fuzzy Logic, we consider varying degrees of truth that are 
represented by numbers from 0 to 1. A statement with a truth 
value of 1 is 100% true, while a statement with a truth value of .8 
is 80% true and a truth value of 0 means that the statement is 
completely false. For example, let p and q represent the following 
sentences: p: It is cloudy today, q: It is raining today. 

a. Suppose that the truth values of p and q are .8 and .4. What 
would you use for the truth value of ~p? p AND ql p OR ql 

b. Let p and q be sentences in fuzzy logic. Generalize your above 
answers and make up definitions for the truth values of the 
following: ~p pANDq pORq 

c. Use your definitions in part (b) to 
complete the adjacent table. Do 
your values agree with your values 
from exercise 14? If not, try to 
find new definitions that will 
generalize the standard meaning. 
Hint: You may want to consider 
minimums and maximums. 

d. Suppose that the truth value of p is .8 and the truth value of q 
is .4. Using your definitions from part (c), compute the truth 
values of the following: ~(p AND q) ~p OR ~q 

For all sentences p and q in fuzzy logic, will the above two 
compound sentences have the same truth value? 

p 

1 

1 

0 

0 

q 

1 

0 

1 

0 

p№Qq pORq 
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Activity 1.4 

1. A function / is continuous at x = a if there is no jump or break in 
the graph at x = a. The conversion of this simple visual image into 
a verbal form challenged mathematical thinkers for quite a long 
time. You see, a break in a graph could be "infinitely small" -
perhaps only one point is missing. So the challenge in verbalizing 
this concept is to grab hold of the very elusive concept of 
"infinitely small" with words that we can logically manipulate. The 
following epsilon-delta definition of continuity is one of the most 
famous definitions in mathematics. This definition was introduced 
in the 1870s by Karl Weierstrass as a hands-on translation of an 
earlier definition by Augustin Cauchy in 1821. It is rather amazing 
to see how easily we can capture the essence of the "infinitely 
small" using only one implication and three quantifiers. 

/ i s continuous г\х=а if and only if the following is true: 

For every positive e, there exists a positive 3 such that 
for every x, if \x-a | < d, then \f(x)-f(a) \ < e. 

a. State what it means for/ to not be continuous at x = a. Bring 
the negation completely inside so that you have a good 
working form for demonstrating that a function is not continu-
ous at a particular point a. If you have mastered the rules we 
covered earlier, this task should be quite simple. 

b. Draw a picture of a function that is not continuous at x = a. 
Now pick a positive number £ that is less than j[ of the vertical 
height of the jump in the graph at (a, f(a)). On the y-axis, 
sketch all the points y such that \y-f(a) | < e. 

c. Now pick a positive 5. On the дг-axis, sketch all the points x 
such that | x - a \ < S. Is the following statement true for the 5 
that you picked? 

For every x, if |лг—a |<<5, then \f(x)-f(a)\<e. 

If not, can you find a <5 so that it is true? 

d. Explain why your statement in part (a) is true for the example 
that you drew in part (b). 

2. In the following questions, first give your initial impression as to 
whether or not any of the pairs of statements have the same 
meaning. Then make up various examples for p{x) and q{x) and 
test your answers. For example, you could let p(x) be x> 3. Then 
try to find a q(x) so that one of the statements is true and the other 
one is false. Do the following statements have the same meaning? 
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a. VJC, p(x) and q(x) 

b. 3*, p(x) and q(x) 

c. 1x,p(x)otq(x) 

d. Здс, />(*) or q(x) 

Vx, p(x) and Vx, (?(л) 

Зх, р(дг) and 3x, q(x) 

Vx,p(x) or Vx, q(x) 

3x, p(x) or 3JC, q(x) 

si.4 Laws of Logics 

A &»' of logic is an abstract 

compound statement 

that is always true. 

The laws of logic give us the basic rules for manipulating the 
seven basic terms, which are essential verbal skills for doing 
logical reasoning. A law of logic is an abstract compound 
statement that is always true, regardless of the truth values of 
its component statements. For example, p or ~p is always true, 
so it is a law of logic. On the other hand, p or ~q is not always 
true, so it is not a law of logic. 

We can verify that an abstract statement is a law of logic by 
constructing its truth table. For example, the following truth 
table shows that (p => q) <=> (~q => ~p) is always true, so it is a 
law of logic. 

p 

T 

T 

F 

F 

Я 

T 

F 

T 

F 

p=>q 

T 

F 

T 

T 

~q=>~p 

T 

F 

T 

T 

(P=»9) <=»(-<? =>~P) 

T 

T 

T 

T 

We can also verify that an abstract statement is a law of logic 
by reasoning with the definitions of the logical operators, as 
illustrated in the following example. 

-Ф- Example Verify that p => (p or a) is a law of logic. 

If p is true, then by the definition of or, porq must be true. 
So, by the definition of an implication, we can conclude 
that p => (p or q) is always true. 
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We will now review the most frequently used laws of logic, 
summarized in the following categories: 

• Laws for Logical Operators 

• Laws for Quantifiers 

• Laws for Valid Arguments 

Laws for Logical Operators The following list is a summary of the basic equivalences for 
manipulating the five logical operators. When an equivalence 
is a law of logic, we can use the statements on each side of the 
equivalence interchangeably. 

Laws of Logic - ior Logical Operators 

Commutative: p and q <=> q and p 

p or q <=> q or p 

(P <=><?) <=> ($<=>p) 

Associative: (p and q) and r <=> p and (q and r) 
(p or q) or r <=> p or (q or r) 

Distributive: p and (q or r) <=> (p and q) or {p and r) 

p or (<7 and r) <=> (p or <?) and (p or r) 

Rephrasing ^>: p =*<?<=> ~<? => ~p 
Rephrasing Or: p or q <=> ~p => q 
Rephrasing <=>: (p <=> 9) <=> (p => <?) and (q =>p) 

~(-p) <=> P 
~(p and 9) <=> ~p or ~q 
~(p or g) <=> ~p and ~<j 
~(P =* Ф <=> P and ~q 

~(p <=><?) <=> ~(P=>g)or~(9=>p) 

Negations: 

Commutative Laws A commutative law states that the order does not matter for a 
particular operation. And, or, and is equivalent to are 
commutative. Implies is not commutative. 

p => q is no? equivalent to q =>p. 
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Associative Laws An associative law states that the grouping does not matter 
when the same operation is applied twice. And and or are 
associative, but implies is not: 

p => (q => r) is not equivalent to (p=>q)=> r. 

By associativity, we can omit the parentheses in the following 
sentences: phqhr p\iqVr 

Distributive Laws And distributes over or (and or distributes over and) in the 
same way that multiplication distributes over addition. 

xeA and (x€B o r x e Q 

(xeA andxeB) or (xeA&ndxeQ 

Rephrasing Implies We often rephrase an implication in terms of its contrapositive. 
For example, the following sentences are equivalent: 

IfxeA, thenxefi. 

Ifxefi, then x« A. 

Rephrasing Or An or-statement can be rephrased as an implication. 

xeA or xeB 

If xíA, thenxeff. 

Rephrasing an Equivalence An equivalence can be rephrased in terms of two implications. 

xeA is equivalent to xeB 

(xeA=>xeB) and (xeB=*xeA). 

The more negations in a sentence, the longer it takes for the 
brain to process. We should always eliminate double negations: 

It is not true that x ■*■ 3. 
x = 3 

When we negate an and-sentence, and must change to or. 

It is not true that xe A andxeB. 

So,x€AorxiB. 

Negating Or When we negate an or-sentence, or must change to and. 

It is not true that xe A orxeB. 

So, x$.A andxei?. 

Double Negation 

Negating And 
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Negating Implies Students often make mistakes when negating implications. To 
remember this frequently used rule, recall the truth values for 
implies.' If p=>q is false, Case 2 must occur, which means that 
p is true and q is false. 

It is not true that xe A =>*e B. 

So, xeA ?uidx$B. 

The above negation is not equivalent to xt A =>JCČ B. 

Negating an Equivalence An equivalence can be rephrased as a double implication, so if 
an equivalence is false, one of the implications must be false. 

It is not true that xeA <=>xeB. 

~(xeA=>xeB) or ~(д:еВ=>д:еА). 

LaWS for Quantifiers Each of the preceding equivalences is also valid if we replace 
the abstract statements p and q by open statements p(x) and 
q{x). For example, we negate an implication that has variables 
in the same way as we negate a statement without variables. 

~(p(x) => q(x)) <=> p(x) and ~q(x) 

In addition to the previous laws, we also have the following 
laws for quantified statements. 

Laws of Logic - for Quantifiers 

Negations: ~( VJC, p(x)) <=> 3*, ~p(x) 

Distributive: VJC, p(x) and q(x) <=> VJC, p(x) and VJC, q(x) 

3x, p(x) or q(x) <=> 3x, p(x) or 3x, q(x) 

Unlike the previous laws, the above laws cannot be verified 
with a truth table since p{x) changes as x changes. We can, 
though, reason with the meaning of the quantifiers to verify 
that they are always true. 
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Negating Quantifiers 

Distributing the Quantifiers 

In Section 1.2, we discussed how to properly negate a 
quantified statement. When we bring a negation across a quan-
tifier, we must change the quantifier. 

It is not true that for every x, xeA. 
There exists an x such that x€ A. 

It is not true that there exists an x such that xeA. 
For every x.xeA. 

The rules for interfacing the quantifiers with the logical 
operators are not used as frequently as the negations, but they 
are often used incorrectly. The universal quantifier can be dis-
tributed across and, but not across or, whereas the existential 
quantifier can be distributed across or, but not across and. Let's 
examine why this happens. 

The universal quantifier enjoys a special relationship with 
the and-connective; it gives us a way to express and in a more 
concise form when the component sentences have a pattern, as 
illustrated in the following example. 

■Ф- Example Consider the statement: Forall n, n<n+l. 

1. If the domain for n is {1,2,3}, this statement means: 

I<2and2<3and3<4. 

2. If the domain for n is {1,2,3,...}, this statement means: 

I<2and2<3and3<4and4<5and . . . 

3. If the domain for n is the set of real numbers, the statement 
can only be represented with the universal quantifier. 

As illustrated in the previous example, the universal quantifier 
is a generalization of and. Consequently, we can distribute a 
universal quantifier across an and-statement. 

■Ф- Example The following sentences have the same meaning: 

Vx, x is in A and x is in B. 

(Vx, x is in A) and (Vx, x is in B). 
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Vx, p(x) and q{x) 

is equivalent to 

Vx,p(x) and Mx,q(x). 

To verify that the adjacent rule is always true, we will first 
show that the left side of the equivalence implies the right side, 
and then show that the right side implies the left side. 

=> Suppose that Vx, p(x) and q(x) is true. 
Then for every x, both p(x) and q(x) are true. 
So, VJC, p(x) is true. Also, VJC, q(x) is true. 
Thus, Vx, p(x) and VJC, q(x) is true. 

<= Conversely, suppose that VJC, p(x) and Vx, q(x) 
is true. Since p(x) is true for all JC and q(x) is true 
for all x, p(x) and q(x) is true for all x. 
Thus, Vc, p(x) and q(x) is true. 

Both implications are true, so the two sides are equivalent. 
Since we can distribute the universal quantifier across an 
and-statement, we might be tempted to say that we can also 
distribute it across an or-statement. However, consider the 
following example. 

Ф Example Let x be a natural number. The following statement is true: 

VJC, JC is even or * is odd. 

However, if we distribute the universal quantifier across the or, 
we produce a false statement: 

(Vx, x is even) or (VJC, X is odd). 

VJC, p(x) or q(x) 

is not equivalent to 

Vx,p(x) or Vx,q{x). 

The above example shows that VJC, p(x) or q(x) does not have 
the same meaning as VJC, p(x) or VJC, q(x). The assumption 
that they are equivalent is a serious reasoning error. 

The existential quantifier has the same relation to or as the 
universal quantifier does to and. 

■Ф- Example Consider the statement: There exists an JC such that JceA„. 

1. If the domain for n is {1,2,3}, this statement means: 

xeAi orjceA2orxeA3 

2. If the domain for n is {1,2,3,...}, this statement means: 

jceAi orjreA2orjceA3orjc6i44or . . . 
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3. If the domain for n is the set of real numbers, the above 
statement can only be represented with the existential 
quantifier. 

As demonstrated in the above example, the existential quanti-
fier is a generalization of or. Consequently, we can always 
distribute an existential quantifier across an or-statement. 

■$■ Example 

3x,p(x)otq(x) 

is equivalent to 

3x,p(x) or Ebc, q(x). 

The following sentences have the same meaning: 

3x, x is in A or x is in B. 

(Ebc, x is in A) or (Ebc, x is in J5). 

To verify the adjacent rule, we can argue as follows: 

=> Assume Ebc, p(x) or q(x). 

Then there exists an x0 such that p(x0) is true 

or q(xo) is true. 

So, either 3x, p{x) is true or Ebc, q{x) is true. 

Thus, (Ebc, p{x) or Ebc, q{x) is true. 

<= Conversely, assume Ebc, p(x) or Ek, q(x). 

Case 1: Suppose that Ebc, p(x) is true. 

Then there is an x0 such that p(x0) is true. 

Since p(xo) is true, p(x0) or q(x0) is true. 

So, Ebc, p(x) or q(x) is true. 

Case 2: Suppose that Ebc, q(x) is true. 

Then there is an jc„ such that q(x0) is true. 

Since q(xa) is true, p(x0) or q(x0) is true. 

So, Ebc, p(x) or q(x) is true. 

Since one of the above two cases must occur, 

3x, p(x) or q(x) is true. 

Since both implications are true, the two sides are equivalent. 
Because of this equivalence, we might be tempted to say that 
the existential quantifier distributes across the and-connective. 
However, consider the following example. 
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-Ф- Example Let * be. a natural number. The following statement is false: 

3x, x+1 = 5 and x+2 = 5. 

However, if we distribute the existential quantifier across the 
and, we produce a true statement: 

(3JC, A:+ 1=5) and (3x, x+2 = 5). 

3*, p(x) and q(x) 

is not equivalent to 

3x,p{x) and 3x, q(x). 

The previous example shows that 3x, p(x) and q(x) does not 
have the same meaning as 3x, p{x) and 3JC, q(x). Students 
sometimes make the mistake of assuming that these two state-
ments are equivalent. Using subscripts with an existential 
quantifier helps us avoid this type of reasoning error. 

In the following example, note how we translate the two 
existential quantifiers in terms of subscripts, being careful to 
change the subscript for the second existential quantifier. 

-Ф- Example Suppose that the following statement is true: 

3JC, jteA and Здс, х&В 

Then there exists an xo such that xo^A. 

Also, there exists an x\ such that JCI 6 B. 

We cannot drop the subscripts and say xeA andxe B for that 
would imply that the same x is in both A and B. 

We should carefully consider the meaning whenever we 
contemplate whether or not to distribute a quantifier: 

The existential quantifier does not distribute 
across the and-connective. 

The universal quantifier does not distributes 
across the or-connective. 

When we apply more than one law of logic, we work from left 
to right and apply the laws one step at a time, as illustrated in 
the following example. These examples illustrate the step-by-
step approach that we use when we reason in a logical manner. 
We may not write all these steps on paper, but we mentally 
execute them. 
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■Ф- Example Translate the following negations: 

1. ~(Vx, хеАотхеВ) 

3x,~(xeAorxeB) 

3x,xéAandxéB 

2. ~(Ve 3 S Vx, | x - 51 «5 => \f(x) -/(5) | < e) 

3e~(3dVx,\x-5\<S => | /W-/(5) |<e) 

3eVS~(Vx,\x-5\<d => | /W-/(5) |<6) 

3eVS3x,\x-5\<Sand |/(x)-/(5)|<€ 

Laws for Valid Arguments The following laws of logic form the basis for the standard 
types of valid arguments. They can be verified with truth tables 
or by reasoning from the definitions of the logical operators. 

Laws of Logic - for Valid Arguments 

Law of the Excluded Middle: 
Law of Noncontradiction: 

Rule of Detachment: 
Transitive Law: 
Expanding Or: 

Contracting And: 

Simplifications: 

pot~p 
~(pznd~p) 
(pznd(p=>q)) =>q 
((p=>q) and (4=>r)) => (p=>r) 
p => (p or q) 
(p and q)=>p 
(p and T) <=> p 
(porT)<=>T 
(p or F) <=> p 

T represents a statement that is always true. 
F represents a statement that is always false. 

p or ~p The Law of the Excluded Middle states that there is no middle 
ground for truth; a statement is either true or false, which 
corresponds to our definition of a statement. We sometimes use 
this law when we do cases in a proof. For example, to prove a 
statement about a real number x, either x £ 0 or ~(д: 2:0). We can 
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then split our proof into the case where x > 0 and the case where 
xiO. 

~(p and ~p) A statement cannot be both true and false, which is stated in 
this rule. The Law of Noncontradiction forms the basis for a 
proof by contradiction, which we will examine in Section 2.6. 
Using the rule for negating an and-statement, note how this law 
turns into the previous law: 

~(p and ~p) <=> (~p or p) 

(p and (p =><?)) => q The Rule of Detachment, also called modus ponens, comes 
from the definition of the implication, lip is true and p => q is 
true, then q must be true. Thus, the outside implication is 
always true. 

((P ^ Ф and (? => r)) =* (P =* r) The Transitive Law may be easier to remember if we rephrase it 
as follows: if the first implies the second and the second implies 
the third, then the first implies the third. 

If (xeA=>xeB) and (xeB=>xeQ, then (xeA=>xeQ. 

We can verify that this law is always true using either a Truth 
Table or by reasoning from the definition of an implication 
(page 124). 

p => (p or q) Given any true statement, we can expand it into an 
or-statement, attaching whatever we wish to it. If p is true, then 
p or q must be true, so the adjacent implication is always true. 

(xeA) =>(хеАотхеВ) 

(p and q)^>p Given any true and-statement, we can always contract it to 
either of its component statements. If p and q is true, then p 
must be true, so the adjacent implication is always true. 

(xeA andxsB)=>(xeA) 

(p and T) <=> p The simplification laws allow us to simplify compound 
, x\ <=> T statements when we know one of the component statements is 

always true or always false. Let T represent a compound state-
(p or F) <=> p m e n t that is always true and F represent a compound statement 

that is always false. 

The truth value of p and T is the same as the truth value of p. 
The truth value of p or T is always true. 
The truth value of p or F is the same as the truth value of p. 
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For example: p and (q or ~q) <=> p 

p or {q or ~q) <=> T 

p or (q and ~q) <=> p 

Abstract Structure In order to apply the laws of logic to a specific compound 
sentence, we must be able to recognize its abstract structure. 
Students often make errors in translating xéAUB because they 
forget that the slash is a negation prefix and do not see the 
outside structure of the sentence. If we rewrite this sentence in 
an equivalent form without the slash, as illustrated in the 
following example, we can easily see which law of logic we 
need to apply. 

-Ф- Example Does xéA UB have the same meaning as xéAor xèBI 

We translate the original statement, one step at a time. 

xéAUB 

~(xeA(JB) 

~(xeAorx&B) Definition of union 

~(xe A) and ~(xe B) Law of logic 

xéA andxèB 

So, xéA\JB dots not have the same meaning asjcéA orxéB. 

When we need to apply two laws of logic, the outside structure 
of the sentence determines which rule to apply first, as illus-
trated in the following examples. 

■Ф- Example Translate the given sentence. 

1. ~(Forall;c,x<=AorxeB.) 

Since the outside structure is the negation of a quantified 
sentence, we first apply the rule for negating a quantifier: 

There exists an x such that ~(xeA orxeB). 

Next, we apply the rule for negating an or-sentence: 

There exists an x such that x$A and x$ B. 
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2. -(For all x, xeA or for all л, xeB.) 

Since the outside structure is the negation of an 
or-statement, we first apply the rule for negating or. 

-(For all x,xeA) and -(for all*, xeB). 

Next, we apply the rule for negating "for all." 

There exists an x such that x$ A and 
there exists an x such that x€ B. 

4- Example Are the following sentences equivalent? 

If x is not in A, then x is in B. 

\ix is not in B, then x is in A. 

We can view the first sentence as having a structure of p =>q. 

p: x is not in A q: x is in B 

Then the second sentence has the form ~q => ~p. Since the 
second sentence is the contrapositive of the first, these two 
sentences are equivalent. 

To see the outside structure of a sentence, we may sometimes 
want to hide a negation, as illustrated in the above example. 

Exercise Set 1.4 

1. Demonstrate that the following statements are laws of logic. 

a. (p=>q)o(~q=>~p) 

b. ~(p=>q) o p and ~q 

c. ((p=>q) and (q^r)) => (p=>r) 

2. Do any of the following sentences have the same meaning? 
(Use p and q to compare their structures.) 

a. If x is in C, then x is in B. 

b. If x is in B, then x is in C. 

c. If x is not in C, then x is not in B. 
d. If x is not in B, then x is not in C. 
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3. Rephrase each implication in terms of its contrapositive. 
a. If x is in C, then x is in A. 
b. If x is not in B, then x is in C. 

4. Rephrase each or-sentence as an implication. 
a. x is in A or x is in B. 
b. jc>0or;c<0. 
c. y is not in /(A) or y is in /(B). 

5. Take the negation inside the parentheses and simplify. 
a. ~(jceA=>JceB) 
b. ~(jceC=>JC*A) 

c. ~(zéA and ziB) 
d. ~(**CorjceD) 
e. -(If \x-2\<S,then|/(x)-/(2)|<£.) 
f. ~(x 6 D if and only if * e B) 

6. Negate each sentence. Do not leave a negation as a prefix. 
a. There exists an x such that for every y, x+y = 1. 
b. For every y, there exists an x such that f(x) = y. 
c. For every x, if * is in B, then * is in C. 
d. For every x, if x is not in B, then * is not in C. 
e. For every e, there exists a (5 such that for every x, 

if\x-2\<6,lhen\f(x)-f(2)\<e. 
f. There exists a c such that for every x, if д: is in S, then x < c. 
g. For every x, if * is in C, then дг is in A or * is in B. 

7. Write the negation of each sentence. 
a. zeX, and, zeYorzeZ 
b. Foralljc,jceCor;ceD. 
c. For all jc, xe C or for all x, x€D. 
d. There exists an x such that x is in A and x is in Д. 
e. There exists an x such that x is in A and there exists an x such 

that* is in B. 

8. Translate each implication in terms of its contrapositive. 
Do not leave a negation as a prefix. 
a. If JC is rational and y is irrational, then x+y is irrational. 
b. If JC is an integer, then x is even or JC is odd. 
c. If c>0, then a<b=>ca<cb. 
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9. Is the given implication a law of logic? If not, give a case in 
which the statement is false. 
a. (p and q) =>p d. p^(p and q) 
b. (p or <?) => p e. {p and q) ■=> (p or q) 
c. p=>(p or <j) f. (p or 9) => (p and <?) 

10. Use the distributive laws to rewrite each sentence in an 
equivalent form. 
a. xeC and (xeA oixeB). 
b. xeB or (xe Candle A). 

11. Letp(x):.x+3 = 5, and q(x): Ix = 28, where * is a real number. 
Do the following statements have the same truth value? 

3x, p(x) and q(x) 3x, p(x) and 3x, q(x) 

12. Letp(x):x>0, q(x):x<,0, where x is a real number. 
Do the given statements have the same truth value? 
a. 3x, p(x) and q(x) 3x, p(x) and 3x. q(x) 
b. Vx, p(x) or q(x) Vx, p(x) or Vx, q(x) 

13. The domain for x is the set of real numbers. Do the given 
statements have the same meaning? If not, give examples of sets A 
and B so that the two statements have different truth values. 
a. There exists an x such that x is in A and x is in B. 

There exists an x such that x is in A and there 
exists an x such that x is in B. 

b. There exists an x such that x is in A or x is in B. 
There exists an x such that x is in A or there 
exists an x such that x is in B. 

c. For all x, x is in Л and x is in B. 
For all x, x is in A and for all x, x is in fi. 

d. For all x, x is in A or x is in B. 
For all x, x is in Л or for all x, x is in B. 

14. Do you think the given implication is a law of logic? 
If so, explain your reasoning. If not, explain why not. 
a. 3x, p(x) and 3x, q(x) => 3x, p(x) and q(x) 

3x, p(x) and q(x) => 3x, p(x) and 3x, q(x) 
d. V*, p(Jt) or Vx, g(x) =* VJC, p(x) or q(x) 

Vx, p(jc) or q(x) => Vx,p(*) or Vx, q(x) 

15. Which of the equivalences in this section are the hardest for you to 
remember? Explain why they are true. 
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Activity 1.5 

Given a logical expression built from p, q, and r, we can construct its 
truth table. Let's do the reverse process now. For each of the 
following truth tables, construct a logical expression that has the truth 
values in the last column. 

1. p 

1 

T 

F 

F 

P 

T 

T 

F 

F 

P 

1 

T 

F 

F 

q 

1 

F 

T 

F 

4 

1 

F 

T 

F 

Я 

T 

F 

T 

F 

? 

F 

T 

T 

T 

? 

T 

T 

F 

T 

? 

T 

T 

F 

F 

2. LJL==L 
T T F 

T F F 

F T F 

F F T 

LJL==L 
1 1 F 

T F F 

F T T 

F F F 

P q_J_ ■ 
T T T T 

T F T T 

F T T F 

F F T F 

T T F T 

T F F F 

F T F F 

F F F F 
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= 1.5 Logic Circuits = 

AND-Gates 

P ' q 

The rapid processing that goes on in a computer is handled 
through a complex network of electronic circuits where the 
flow and manipulation of information is controlled by 
electronic devices. In 1938, while working on a problem of 
designing electronic circuits to meet given specifications, 
Claude Shannon, a student at M.I.T., noticed an underlying 
relation between certain types of electrical circuits and the 
logical operators. By merging the two, he created a powerful 
tool for designing electronic circuits. 

In the adjacent sketch of an electric circuit, we have two 
switches labeled p and q arranged in series on the top, a battery 
on the left side of the circuit and a light bulb on the right side. 
The four possible cases for the positions of the two switches are 
summarized in the following table. C represents closed and 0 
represents open. When both switches are closed, the current 
flows, so the light will be on. In the other three cases, the 
current will not flow through the circuit, so the light will be off. 
Notice the similarity of the structure of this table with the truth 
table for and. For this reason, this type of series switch was 
named an AND-gate. 

p 
c 
c 
0 
0 

q 
c 
0 
c 
0 

Light 

On 
Off 
Off 
Off 

P 
1 
1 
0 
0 

q 
1 
0 
1 
0 

pandg 

1 
0 
0 
0 

PO phq 

In the AND-table, the first two columns represent the input 
values for p and q, and the last column represents the output 
values of the circuit. 1 represents closed (or true) and 0 repre-
sents open (or false). If 1 and 0 are input, the AND-gate 
outputs 0. 

The symbol for an AND-gate is given on the left. The 
letters on the left side of the gate represent the input. We view 
the current as flowing from left to right with an output oipAq. 
In circuit theory, pлq is written aspq\ pVqis written asp+ q. 
However, to help reinforce the laws of logic studied in this 
section, we will continue to use V and л. In modern 
technology, series switches have been replaced by electronic 
devices which have the same net result for input and output. 
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OR-Gates 

P D ~ pv? 

NOT-Gates 

In the adjacent circuit, we have two switches in parallel. With 
this type of circuit, we need only one of the switches closed in 
order for current to flow through the light. Because of the 
similarity between the following table for a parallel circuit and 
the truth table for or, this type of circuit is called an OR-gate. 

p 

c 
c 
0 
0 

Я 
c 
0 
c 
0 

Light 

On 
On 
On 
Off 

P 

1 
1 
0 
0 

4 

1 
0 
1 
0 

porq 

1 
1 
1 
0 

The symbol for an OR-gate is given on the left. The input 
values are output aspVq. 

Unlike the previous two gates, a NOT-gate has only one input 
value; it changes an input of 1 to 0 and an input of 0 to 1, 
which is analogous to the impact of negation on a statement. 
We represent a NOT-gate symbolically as illustrated on the left. 
A NOT-gate is also called an inverter. 

Combinatorial Circuits 

PD-
■£>-

}o-

Г^>-

A combinatorial circuit consists of gates combined in various 
ways, such as the circuit illustrated on the left. When we input 
values for p, q, and r, the circuit outputs a value on the far right. 
To compute the output value of the total circuit, we trace 
through the circuit from left to right, computing the output that 
each gate has from its input. 

For example, suppose that we input 1 for p, 0 for q, and 0 
for r. The OR-gate turns "1 or 0" into 1; the NOT-gate turns 0 
into 1. When we reach the AND-gate, the input is "1 and 1", 
which is output as 1. Thus, for the given values of p, q, and r, 
the circuit outputs 1. 

We can automate our work in computing the output of a 
circuit by representing it with a logical expression. First, we 
start with the original input and write the logical expression 
determined by each gate, as illustrated below. The OR-gate 
outputs p or q, the NOT-gate outputs -r, and, the AND-gate 
takes its input and outputs (p or q) and ~r. 
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p 

1 
1 
0 
0 
1 
1 
0 
0 

4 

1 
0 
1 
0 
1 
0 
1 
0 

r 

1 
1 
1 
1 
0 
0 
0 
0 

pyq 

1 
1 
1 
0 
1 
1 
1 
0 

(pvq) A~r 

0 
0 
0 
0 
1 
1 
1 
0 

A truth table provides a systematic way to record the complete 
information on the behavior of a combinatorial circuit. The 
adjacent truth table for (p or q) and ~r lists the circuit's output 
for each possible input for p, q, and r. Our previous compu-
tation where we traced an input of 1, 0 and 0 through the circuit 
corresponds to Case 6 in the table. To get the output for an 
input of 1 for p, 1 for q and 1 for r, we look at Case 1 in the 
table, which gives an output of 0. 

In a combinatorial circuit, we sometimes split a line to feed 
into more than one gate. In the adjacent sketch, the input for p 
feeds into two AND-gates. The dot on the p-line indicates that 
the branch line is connected to the p-line; this line crosses over 
the ç-line, but the absence of a dot means that it is not 
connected to the g-line. In our drawings, we can branch a line 
into two gates. However, we cannot combine two different 
lines unless it passes through a gate, for we must indicate how 
we are combining the two lines. The output for the adjacent 
circuit is (pAq)V(pA r). 

Now let's reverse the process and construct a circuit for a 
given logical expression. When we construct a circuit, we 
work from the inside out, constructing the gates in the order 
that the computations are performed. 

Ф Example 1. Construct a circuit for ~p v ~q. 

CK> 

To evaluate ~p V ~q, we first compute ~p and then compute 
~q. We duplicate this process with the gates. First, we 
send the input for p through a NOT-gate and the input for q 
through a NOT-gate. Next we take their output and send it 
through an OR-gate, as illustrated on the left. 

2. Construct a circuit for ~(p/\q). 

To evaluate ~(pA q), we first compute pl\q. So in our cir-
cuit, we first send the input from p and the input from q 
through an AND-gate. The output of the AND-gate is then 
sent through a NOT-gate, as illustrated on the left. 

Simplifying Circuits The sentences in the above two examples are logically equiva-
lent. For any input, the output of the circuit ~p V ~q will be 
identical to the output of the circuit ~(pAq). However, in terms 
of the cost and efficiency, we have a major difference. The 
first expression, ~p\l~q, requires a total of three gates, whereas 
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рлТ<=>р 

pVT<=>T 

pV F<=>p 

~(pAq) requires only two gates. Thus, the second circuit is a 
simpler way to get the same output. 

In ahy business, cost and efficiency are a major concern, 
but in computer electronics, efficiency is of special concern. 
The difference of one little nanosecond, which is one billionth 
of a second, makes a huge difference when large batches of 
data are being processed. A programmer may use a clever 
algorithm in writing a program, but there may not be enough 
time in the universe to compute it because of the efficiency of 
the circuits. The inclusion of one extra gate in a circuit can 
make a significant different in the processing time. 

The laws of logic give us a powerful tool for simplifying 
circuits and making them more efficient. We will now examine 
how we can use the negation laws, the distributive laws and the 
three adjacent equivalences to reduce the number of gates. The 
strategy for using these equivalences is to try to manipulate the 
expression into a form where a statement that is always true or 
always false appears. For example, pA~p is always false and 
p V ~p is always true. So, we look for ways to produce these 
terms, as illustrated in the following examples. 

■Ф- Example 

ph~p <=> F 

/7 V ~p <=> T 

1. In the rush of the day at a high-tech plant, you are asked to 
construct a circuit for (рл <?)V(pA ~q). Can you simplify it? 

First, we use the distributive law to factor out p. 

{p/\q)\l (pA~q) 

p A (q V ~q) . . . . Distributive Law for A over V 

Since qw~q is always true, we can simplify further. 

p A T Simplification 
p Simplification 

It would be foolish to implement the circuit (pA q) V (pA ~q) 
because its output is identical to p. 

2. Is it possible to simplify the adjacent circuit? 

We can represent this circuit as (pAq)V(pA r). Using the 
distributive law, we can rewrite it as р л (q V r). Since the 
latter expression uses only two gates, it is simpler. 

3. Simplify the following expression so that its circuit has 
fewer gates: 

~{pA~q)A rA{~p\l~q) 
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Since r is in only one term, we use the commutative and 
associative properties of and to move r over to the side. 

[~(pA~q)A(~pV~q)]A r 

Bring the first negation inside the parentheses: 

K~pVq)/\(~pV~q)]A r 
[~pV (q A ~q)] A r . . Distributive Law 

(~p V F) Л r Simplification 

~p A r . . Simplification 

We have reduced the number of gates from 8 to 2. 

From specifications for a circuit where given input values must 
be transformed to specified output values, how does one design 
the circuit? For example, how could we design a circuit to 
satisfy the specifications in the adjacent truth table? Of course, 
efficiency will be a concern, but let's initially focus on doing it 
however we can. Once we have a base model that does the job, 
we can then focus on streamlining it to maximize the efficiency. 

Finding a logical expression that fits a given truth table can 
be quite challenging, unless we know a few tricks. With the 
following algorithm, we can always find an logical expression 
that will give the desired output. 

1. List each case (or row) where the output is 1. For each 
of these cases, write an and-statement that produces 1 
for that case and 0 everywhere else. In Case 5, r is 
false, so we use ~r in the and-statement: pAqA~r 

2. Connect each and-statement from the previous step 
with or. This logical expression will have the desired 
output values, producing 1 in only the listed cases. 

This technique is illustrated in the following example. 

-Ф- Example Find a logical expression for the above truth table. 

1. We have an output of 1 in Case 1, Case 5, and Case 7. 

Case 1: pAqA r outputs 1 in Case 1 and 0 everywhere else. 

Case 5: pAqA~r outputs 1 in Case 5 and 0 elsewhere. 

Case 7: ~pA qA~r outputs 1 in Case 7 and 0 elsewhere. 

Designing a Circuit 

p 

1 
1 
0 
0 
1 
1 
0 
0 

4 

1 
0 
1 
0 
1 
0 
1 
0 

r 

1 
1 
1 
1 
0 
0 
0 
0 

Output 

1 
0 
0 
0 
1 
0 
1 
0 
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2. Connect these 3 expressions with or. 

(pA qh r) V (pAqA~r) V (~рЛ ql\~r) 

The output of this logical expression is the given truth table. 

Karnaugh Maps 

ql\r 

phqhr 

~pAq Лг 

qA~r 

phq Л-г 

-phq \~r 

~qA~r 

pA~qA~r 

■pA~qA~r 

~qAr 

pA~qAr 

~pA~qAr 

We can use the above technique to find a logical expression for 
any given truth table. However, the expression will usually 
require many more gates than are necessary. The next step is to 
simplify the expression. To streamline this procedure, we can 
use a visual device called a Karnaugh map. 

When we apply the previous algorithm to 3 variables, there 
are 8 possible and-statements that we might have in Step 1, one 
for each case. A Karnaugh map for 3 variables is a rectangular 
array with a cell for each of these 8 possible and-statements, as 
illustrated on the left. 

The cells are positioned so that adjacent cells 
differ by only one factor. 

The terms in the same row of the first and last 
columns differ by only one factor, so we will 
also consider these cells as adjacent. 

To simplify an expression, we shade the cells in the Karnaugh 
map that correspond to the AND-terms in our expression. 
Adjacent shaded blocks indicate terms that have a common 
factor. We then take adjacent cells and start factoring. The 
beauty of the Karnaugh map is that when we factor adjacent 
terms, we are always left with a factor of the form r v ~r, which 
we can then simplify as T. This technique is illustrated in the 
following examples: 

-Ф- Example 

qf\r qf\~r ~qA~r ~qt\r 

Simplify the logical expression from the last example: 

(pAqA r) V (pA qA~r) V (~pA qA-r) 

First we shade the 3 cells that correspond to the AND-terms: 

pAqAr pAqA~r ~pAqA~r 

We can start with either the adjacent cells in the first row or the 
adjacent cells in the second column. 

The adjacent terms in the first row can be reduced to pA q: 
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(pAqAr)V(pAqA-r) 

(p/\ q)A (r V ~r) Distributive 

(pA q)AJ Simplification 

(pA q) Simplification 

Substitute this simplification in the original expression: 

(pAqAr) V (pA qA~r) V (~pA q/\~r) 

(pAq)y(~pA qA~r) .... Substitution 

(qAp)W (qA~pA~r) . . . . Commutative 

qA(pV (~pA~r)) Distributive 

Now we use the Distributive Law to expand the latter term: 

qA [(py-p)A(pW-r)] ... Distributive 

q A [ТЛ (pV ~r)] Simplification 

qA(pV~r) Simplification 

We have reduced the number of gates from 11 to only 3. 

If we use the Karnaugh maps a lot, we will learn to recognize 
time-saving shortcuts. For example, a 2 x 2 block in a Kar-
naugh map can always be reduced to a single variable. Watch 
how the terms reduce in the next two examples. 

Ф Example 

p 

•p 

qAr 

Ш 
< & 1 | 

qA~r 

ЩШ: 
^lllliPfv^' 

~q/\~r ~qAr 

Simplify the given logical expression. 

1. Simplify: (pAqAr)V(pAqA~r)V(~pAqAr)V(~pAqA~r) 

First we shade the four cells that correspond to the above 
AND-terms: pAqAr, pAqA~r, -pAqAr, ~pAqA~r. 
The shaded cells form a 2x 2 block. As demonstrated in the 
last example, the first two terms in the first row of the block 
reduce to pA q. In a similar manner, the first two terms in 
the second row, reduce to ~pA q. We can then apply the 
distributive law to these two terms: 

(pAqAr)V (pAqA~r)V (~pAqAr)\/ (~pAqA~r) 

(PA^)V (,-pAq) 

(pV~p)A q Distributive 

T Aq Simplification 

q Simplification 



Thus, the original expression, which was a square block in 
the Karnaugh map, reduces to the single variable q. Note 
that q is the only variable whose negation was not used in 
any of the original four terms. 

Simplify: (pAqAr)v(pA~qAr)V(~pAqAr)V(~pA~qAr) 

When we shade the four cells that correspond to the 
AND-terms, we obtain the adjacent map. The outside 
vertical edges are adjacent since their cells differ by only 
one factor. We may want to visualize the outside edges as 
glued together in order to see their adjacent relation. With 
the gluing, we see a 2 x 2 block. Let's work through the 
details and see if the original expression reduces to a single 
term as it did in the last example. First, we factor the 
common terms from each row and then simplify. 

(pAqAr)V(pA-qAr) V (-pAqAr) V (~pA~qAr) 

(pAr)A(qV~q) V (~рЛ г) Л (q V ~q) 

(pAr)AT V (~рЛг)ЛТ 

(рлг) V (~pAr) 

(pV~p)A r 

Т л г 

r 

Note the similarity with the last example. The original 
expression, which was a square block in the Karnaugh map, 
reduces to the single variable r. Furthermore, r is the only 
variable whose negation was not used in any of the original 
four terms. 

Simplify: (pAqAr)\/(pAqA~r)V(pA~qA~r)\/(pA~qAr) 

When we shade the four cells that correspond to the above 
AND-terms, we obtain a 4 x 1 block. The first two terms in 
the first row, can be reduced to рл q. Similarly, the last two 
terms in the first row can be reduced to pA ~q. We can then 
apply the distributive law to these two terms: 

(pAqAr)V(pAqA~r)V(pA~qA~r)V(pA~qAr) 

(pAq)V {pA~q) 

p A (qV~q) Distributive 

p Л T Simplification 

p Simplification 
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The original expression, which was a 4 x 1 block, reduces to the 
single variable p. Note that p is the only variable whose 
negation was not used in any of the original four terms. 

Anytime we have a 2 x 2 block or a 4 x 1 block shaded in a 
Karnaugh map, we can reduce those four terms to a single 
variable, namely the variable whose negation was not used in 
any of the original four terms. 

4 Inputs A circuit with 3 inputs has 8 possible cases for input values. If 
we add a fourth input, it can have a value of 1 with each of the 
8 previous inputs or a value of 0. Thus, the new circuit has 16 
possible cases. So, the design specificiations for a circuit with 
4 inputs can be entered in a truth table that has 16 cases (rows). 
We can then use the algorithm on page 81 to design a circuit 
that has the desired outputs: 

First we construct an and-statement to produce each output 
of 1. Then we take the disjunction (connect with or) of 
these statements. 

To simplify the resulting logical expression with a Karnaugh 
map, we need 16 cells since there are 16 cases which give 16 
possibilities for the and-statements. As before, we arrange the 
terms so that terms in adjacent cells differ by only one factor. 

Pt\q 

-pAq 

~pA~q 

pA~q 

rAs 

pAqAr AS 

-pAqArAS 

~p A~qArAs 

pA~qArAs 

r A~s 

pAq ArA~s 

-pAqArAS 

~p A~q Ar AS 

pA~qArA~s 

~r A~s 

pAqA~r AS 

-pAq A~rAs 

•p A~q A~r As 

p A~q A~r Л- i 

~r As 

pAqA~rAs 

-pAq A~rAs 

~p A~q A~r As 

p A~q A~r As 

Civilization advances by extending 
the number of important 

operations which we can perform 
without thinking about them. 

Alfred North Whitebead 

We consider the first column to be adjacent to the last column 
since those terms differ by only one factor. Similarly, we 
consider the top row to be adjacent to the last row. 

Pick any two adjacent cells in the above map and you will 
see a variable that you can eliminate. Pick any 2 x 2 or 4 x 1 
block in the above map and you will see two variables that you 
can eliminate. If we always start with the largest blocks, we 
will find an efficient method for reducing the number of gates. 
Instead of wasting our time trying to figure out which terms to 
factor first, we can go on autopilot and start with the biggest 
block using the visuals from a Karnaugh map. 
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Exercise Set 1.5 

1. Draw a logic circuit for each expression. 
a. ~p/\q b. ~(pAq) c. ~pV~q d. (pVq) A~(/>Vr) 

2. Write a logical expression that represents the following circuits. 
Compute the output if the input signal is p = 1, q = 1 and r = 0. 

a. „ b. 

D 
o—o- }o 

Simplify each expression so that its circuit requires fewer gates. 
a. (pAq)V(pA-q) 
b. (pA~q)\/(~pA-q) 
c. (pAqAr)V(~pAqAr) 

d. (M~9)V(~pA<?)V(~M~?) 
Construct a logical expression that has the given output table. 
Then use a Karnaugh map to simplify the expression. 

p 

1 
1 
0 
0 
1 
1 
0 
0 

9 

1 
0 
1 
0 
1 
0 
1 
0 

r 

1 
1 
1 
1 
0 
0 
0 
0 

Output 

n 
1 
0 
0 
1 
1 
1 
1 

p 

1 
1 
0 
0 
1 
1 
0 
0 

q 

1 
0 
1 
0 
1 
0 
1 

o 

r 

1 
1 
1 
1 
0 
0 
0 
0 

Output 

1 
0 
1 
0 
0 
1 
0 
0 

p 

1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 

q 

1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 

r 

1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 

s 

0 
0 
0 
0 
0 
0 
0 
0 

Output 

0 
1 
1 
0 
1 
1 
0 
0 
0 
0 
0 
1 
1 
1 
1 
0 

d. The table in (6) on page 76. 
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Activity 1.6 

The set [1,4] has a greatest element, whereas the set [1,4) does not 
have a greatest element. Let S be a set of real numbers. 

1. Make up definitions for the following. Rag any quantifiers that 
you use in your definition. 
a. c is the greatest element in S. 
b. 5 has a greatest element. 
c. 5 has a least element. 

2. Use your definitions to translate the following: 
a. c is not the greatest element in S. 
b. S does not have a greatest element. 

c. S does not have a least element. 

3. Multiplication is distributive over addition: 

For all real numbers a, b, and c, ax (b+c) = aXb + aXc. 

Use substitution to generalize the above property. 

* is distributive over # if and only if for all a, b, and c, 

4. Use your generalization in (3) to answer the following: 
a. Is x distributive over -? 
b. Is + distributive over x? 
c. Is and distributive over or! 

= 1.6 Translations = 

Mathematical reasoning involves a continual translation, back 
and forth, from everyday language to pictures and symbolic 
representations. To comprehend a symbolic representation, we 
must be able to translate it in terms of visual pictures and the 
richer vocabulary of everyday language, using examples to 
build our personal understanding of it. 

The reverse task is often more difficult, for we need to be 
able to translate concepts from everyday language into a 
precise format using variables, quantifiers, and logical opera-
tors. For example, how do we translate the concept of the 
"smallest" element in a set of real numbers? First, let's translate 
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the superlative ending. A set S of real numbers has a smallest 
element if the following is true: 

There is an element in S that is smaller 
than every other element in the set. 

The italicized words are flagging the quantifiers imbedded in 
our description. For each quantifier, we introduce a variable. 
Let's use the variable "y" to go with "there is" and the variable 
V to go with "every." We can now give a precise definition of 
"smallest" using variables and quantifiers. 

Let 5 be a set of real numbers. 
S has a smallest element if and only if 
there exists a v in S such that for all x in 5, y < x. 

Definitions The ability to recognize a concept and create a definition for it 
is an important reasoning skill. When we define a word such as 
"smallest," the word is a shorthand notation for its definition. 
Consequently, we always use the "if and only if connective in 
a definition. Definitions provide a quick bypass through a 
dense jungle of words, allowing us to speed up our reasoning 
process by focusing on a single word instead of its equivalent 
definition. 

To prove that an object does not satisfy a definition, we 
negate its definition, as illustrated in the following example: 

■Ф- Example What do we have to demonstrate to prove that a set S does not 
have a smallest element,? 

~(S has a smallest element) 
if and only if 

-(there exists a y in 5 such that for every x in S, y <x). 

We apply the rules for negating quantifiers: 

~(3y in S,V* in S, y <x) 
Vy in 5, HxinS, y{.x 
Vy in 5, Bxin S, x<y 

For every y in S, there exists an x in S such that x<y. 

To prove that there is no smallest positive real number, we 
must demonstrate the above statement. 
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Symbols vs. Words In the previous example, the symbolic notation is more concise. 
However, the version fleshed out with phonetic words emanates 
a more comfortable feeling. Perhaps we hear the words more 
when we see the phonetic spelling. Whatever the cause, when 
we read or write mathematics, it is helpful to balance the 
symbols with words. For this reason, in math textbooks we 
normally write out the quantifiers in words rather than represent 
them with the symbols V and 3. When writing by hand, the 
symbolic form may be more convenient. 

Whenever "Whenever" is often used in mathematical discourse in 
sentences such as the following: 

|/(дс)-/(1)|<е whenever [JC — 11<S. 

Negating the above sentence can be a little tricky unless we 
first translate the sentence in terms of the logical operators and 
quantifiers. After that, we can go on autopilot and apply the 
laws of logic. 

We can translate "whenever" as "if," but "ever" contains an 
implicit notion of the universal quantifier, so we must also 
include the universal quantifier: 

For every д:, | / ( x ) - / ( l ) | < e if \x-11 < S. 

Next we write the sentence in standard implication form: 

For every x, if \x-11< S, then | / ( J C ) - / ( 1 ) |< e. 

In the above form, we can apply the rule for negating an impli-
cation (page 65). 

There exists an x such that |JC- 11 < S and | / (* ) - / ( ! ) | £ £. 

Ф Example Translate each sentence. 

1. xsA whenever x&B. 

Translation: For every x, x e A if x e B. 

For every x, if xeB, then x€A. 

2. ~(xeA whenever xeB). 

Translation: -(For every x, if JteB, then xeA). 
There exists an x such that xeB and x ч A. 
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Eliminating an Implication We can sometimes eliminate an implication by changing the 
domain in the quantifiers. For example, in the following impli-
cation We move the information in the hypothesis over to the 
domain for x. 

For every x, if xeB, then xeA. 
For every x in B, x is also in A. 

To negate the above two statements, we use different rules, but 
the end results have the same meaning. 

-(For every x, ifxsB, then xeA). 
There exists an x such that xeB and x «É A. 

-(For every x in B, x is also in A.) 
There exists an x in B such that x <t A. 

Negating Quantifiers 

Translating with Variables 

When we negate the universal quantifier in the last statement, 
we might be tempted to say "there exists an x not in B." 
However, we do not negate the domain when we negate a 
sentence. To guard against this type of error, we can translate 
the domain for x in a separate sentence: 

For every x in B, x is also in A. 
Translate: Let x be in B. Vx, x e A 

Negation: Let x be in B. Зх, х € A 
So, there exists an x in B such that x<£A. 

When a definition is not phrased in terms of variables, we may 
need to translate it in order to have something tangible to 
manipulate. For example, to form the union of two sets, we 
combine their elements. On the other hand, the intersection of 
two sets is where they overlap. How do we translate "combine" 
and "overlap" in terms of variables? 

At the first stage, we introduce variables A and B to repre-
sent the sets and symbols to represent union and intersection: 

Let A and B be sets. 
A U B represents the union of the sets A and B. 
АГ\В represents the intersection of the sets A and B. 

At the next stage, we state a property an element must have to 
be a member of set A \JB, so we need to introduce a variable x 
to represent an arbitrary element in the new set When we 
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Let A and B be sets. 

xeAUB 

if and only if 

xeA or jceS. 

Let A and B be sets. 

хеАПВ 

if and only if 

xeA andjceB. 

combine the elements in two sets, the property that an element 
x must have to be a member of the new set can be phrased as 
follows: 

xeA OTXGB 

Using the language tool of variables, we can translate the 
notion of "combining elements" into a very simple definition 
based on the word or. Given an element, we can determine 
whether or not it is a member of the set A u B by applying the 
adjacent definition. 

In a similar manner, we can translate the "overlap of two 
sets" in terms of and. To be in the overlap of two sets, an 
element x must have the following property: 

xeA and*efl 

The definitions of the set operations of union and intersection 
are based completely on the meaning of or and and. 

Even though the definitions of union and intersection are 
simple, students sometimes get confused on how to substitute 
in these definitions, especially when the order of the substitu-
tion is involved. Now we will examine one of the most power-
ful tools in the reasoning process, the substitution principle. 

The Substitution Principle 

A legitimate expression 
may be substituted for a 
variable as long as all 
occurrences of the vari-
able are replaced by the 
same substitution. 

Variables endow the language of mathematics with a sleek 
form, but the real power comes from the substitution principle, 
which, like a magician's wand, enables us to magically 
transform a single sentence into myriad forms. For example, 
we can transform the following statement of the distributive 
property by substituting x+1 for a, x for b, and 3 for c: 

ax(b + c) = ax b + axc 

(x+l)x(x+3) = (JC+1)X;C + (x+ l )x3 

Substitution is a simple concept, but its simplicity can be 
deceiving. Most of the difficulties that students have with 
abstract mathematics stem from a lack of understanding of how 
to use the substitution principle to apply definitions and 
theorems to specific examples. Problems are easy when we 
have examples to guide us, but the creative thinkers are those 
who can blaze a path and create examples for others to follow. 
To be a logical thinker, we must develop our ability beyond 
merely copying procedures from examples provided by others. 
This requires that we learn how to use the substitution principle 
and freely apply it to definitions and theorems. 



92 Chapter 1 Logical Reasoning 

When we need to apply several definitions to translate a 
sentence, we must analyze the outside structure of the sentence 
to determine which definition to use first. We usually construct 
a sentence from the inside out, deciding how we want to 
connect the interior components. However, when we decon-
struct a compound sentence, we must work from the outside in, 
as illustrated in the following example: 

■Ф- Example Translate the following sentence: x e (E П F) U C 

To construct the set (£ П F) U C, the parentheses tell us to first 
form the intersection of the sets E and F, and then take this set 
and union it with C. However, when we apply the definitions, 
we must unravel it in the reverse direction. The outside struc-
ture of the set (EDF) U C is the union of two sets, so to decon-
struct the above sentence, we first apply the definition of union: 

Suppose that x e (E П F) U C. 

Then xeEDFoTxeC. Definition of union 

Next we replace xeEOF with its definition: 

(xeE and xe F) or xe C. .. Definition of intersection 

When we substitute another letter or expression for a variable, 
we must be careful not to conflict with other variables. If a 
variable is universally quantified, we have a free hand in our 
choice of letters to substitute. We can even substitute a letter 
used in another variable. In the following example, the 
variables a and b are universally quantified, so we can substi-
tute a + b for a by replacing each occurrence of a with a + b. 
This does not mean that a + b = a. 

■Ф- Example 1. For all real numbers a and b,a + b = b + a. 

Substitute a + b for a: (a + b) + b = b + (a + b) 

2. For all*, y, andz, x(y+z) = xy+xz. 

Substitute yfor x: For all y and z, y(y+z) = yy+yz-
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If a sentence has an existential quantifier, we do not have a free 
hand in our choice of letters to substitute. We cannot substi-
tute y for x in the following example: 

For every y, there exists an x such that f(x) = y. 

However, we can substitute y for x if we first replace the origi-
nal y with another letter, such as г: 

For every y, there exists a z such that f(z) = y. 

For every x, there exists a г such that /(г) = x. 

Existential Quantifiers Students generally have more difficulty with definitions that 
involve the existential quantifier. Perhaps it is the subtleties of 
substituting in the presence of an existential quantifier, or 
perhaps it is the existence issue, which also provides difficulties 
for philosophers and theologians. For whatever the reason, the 
ability to use the existential quantifier with ease and confidence 
seems to require a longer incubation period than does the 
universal quantifier. To build your skill in this area, let's look 
at an important definition that contains an existential quantifier. 

Image of a Set Let /be a function from X into Y and let x be an element of X. 
The notation f(x) denotes the image of x under/. For example, 
let f{x) = 2x, where x is a real number. Since /(3) = 2 x 3 , the 

, image of 3 is 6. To find the image of 3 in the adjacent graph, 
. . . . . . . . J we move vertically until we hit the graph and then move 

/ horizontally until we hit the y-axis. 
/ Let A = [1,3]. The image of the set A under/is denoted as 

f(x) = 2x / f(A). f(A) is the set that consists of the images of all elements 
/ in A. In the graph, we can see that /(A) = [2,6]. 

/ If jreA, then f(x)ef (A). To express what it means for an 
/ arbitrary element y to be in ДА), we need to use the existential 

/ quantifier: 

/ y*№ 
/ ■ ■ if a nd only if 

/ there exists an x in A such that f(x) = y. 

e>. in — . i o 

1 3 We will cover this definition in more detail when we examine 
functions in Chapter 4 (page 364). For the time being, we will 
use it to practice substitutions. 
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■Ф Example 

if and only if 

there exists an x in A 
such that f(x) = y. 

1. Translate: zegCB). 

In the definition, substitute: zfoiy, gforf, 5 for A. 

z£g(B) if and only if 

there exists an x in B such that g(x) = z. 

We can also substitute b for x: 

z£g(B) if and only if 
there exists a b in B such that g(b) = z. 

2. Translate: xef(A) 

Before we substitute x for y in the definition, 
we substitute another letter for the original x: 

yef(A) if and only if 

there exists an a in A such that f(a) = y. 

Now we substitute x for y in the above sentence: 

*e/(A) if and only if 
there exists an a in A such that/(a) = x. 

To translate an expression that involves more than one defini-
tion, we work from the outside to the inside as we deconstruct 
the sentence. In the following example, we must carefully read 
the parentheses for they give us the outside structure, which, in 
turn, tells us which definition to use first. 

■Ф- Example Do the following sentences have the same meaning? 

уе/(А)ПДВ) уеДАПВ) 

To compare their meaning, we need to translate each sentence 
in terms of the definitions. The outside structure of the first 
sentence has the form: yeZHW. So, we first substitute in the 
definition of intersection: 

1. ve/(A)n/(fi) 
y€/(A) and y€f(B) Definition of intersection 

There exists an xo in A such that f(xò) = y, and 
there exists an xi in B such that/(;ci) = y. 

Definition of image of a set 
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The outside structure of the second sentence has the form: 
ye f(Z). So, we first substitute in the definition of /(Z). 

2. yef(Af]B) 

There exists an x in A П B such that f(x) = y. 

Definition of image of a set 

There exists an x such that x e A and x e B and /(*) = y. 

Definition of intersection 

The above two translations are not equivalent because we can 
not factor 3x across an and-statement (page 69). So, the two 
sentences have different meanings. This example is discussed 
further on page 365. 

Generalizations 

Commutative Property of Addition 

For all numbers a and b, 

a+ b = b + a. 

Commutative Property of Multiplication 

For all numbers a and b, 

aXb = bXa. 

One of the goals of the reasoning process is to generalize as 
much as possible. If we see that something is true, we try to 
generalize and find the broadest range of objects for which it is 
true. For example, if we note that 2 + 3 = 3 + 2, 5 + 7 = 7 + 5, 
etc., we may observe the similarity in the structure of these 
examples and wonder if we can generalize it. To generalize 
these examples, we substitute variables for the specific 
numbers: 

For all numbers a and b, a + b = b + a. 

The above statement is true for both real numbers and complex 
numbers, so we have generalized the examples. We have also 
identified an important property of the addition operation, 
which is called the commutative property of addition. 

As we examine the commutative property of addition, we 
may wonder if we can generalize further. What is there left to 
generalize? We have pushed the numbers as far as we can, but 
what about the operations? Addition is only one of many types 
of operations. Does multiplication have a similar property? As 
we learned in elementary school, multiplication does indeed 
have a similar property. 

Now compare the adjacent two properties and notice their 
similarity. How do we generalize these two statements? The 
only difference is the operation, so let's generalize the operation 
by representing it with the symbol*: 

For all numbers a and b,a*b = b*a. 
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* is a binary operation on a set 5 
if and only if 

for all a and b in 5, 
a*b is defined and a*beS. 

Let * be a binary operation on S. 
* is commutative 
if and only if 

for all a and b in S, a *b = b *a. 

In order to generalize addition and multiplication with a symbol 
such as *, we need to recognize the common features that they 
share. They both operate on two numbers and produce a new 
number: 

When addition operates on 4 and 7, it produces 11. 

When multiplication operates on 4 and 7, it produces 28. 

The union operation has a similar property; it operates on two 
sets and produces a new set. Similarly, the intersection opera-
tion operates on two sets and produces a new set. Now, we 
will do a broad generalization that includes not only addition 
and multiplication, but also union and intersection. This general 
concept is called a binary operation on a set S. A binary 
operation operates on each pair of elements in S and produces a 
new element that is also in 5. Addition, multiplication, and 
subtraction on the set of real numbers each satisfy the adjacent 
definition of a binary operation. However, division does not 
satisfy the definition because division by 0 is not defined. 
Division does, though, satisfy the definition on the set of 
positive rational numbers. 

We can now build on the definition of a binary operaiton 
and define the generalized commutative property as stated on 
the left. To determine if a particular operation is commutative, 
we reverse the generalization process and substitute in the 
definition, as illustrated in the following examples. 

■Ф- Example 1. Is multiplication commutative on the set of real numbers? 

In the previous definition, substitute X for *: 

x is commutative if and only if 

for all real numbers a and b,axb = bxa. 

Since the above statement is true, 
multiplication is commutative. 

2. Is subtraction commutative on the real numbers? 

3 - 4 Ф 4 - 3, so subtraction is not commutative. 

The number 0 has a special property with respect to the 
addition operation. 

For every real number a, a + 0 = a and 0+a = a. 



1.6 Translations 97 

We use the word identity to describe this property: 0 is the 
identity for addition. To generalize the identity property to an 
arbitrary binary operation, we introduce the letter i to represent 
the identity. In the identity property for 0, we substitute i for 0 
and * for +, which gives the following definition: 

,et * be a binary operation on 5. T . L U- »■ » c J i . • u • r. 1 . r Let * be a binary operation on a set S and let / be in S. 
* has an identity 

i is the identity for * 
if and only if 

if and only if 
there exists an i in S such that 

for every a in S, a * i = a and i* a = a 
for every a in S, 

a * i - a and i * a - a. A binary operation on S has an identity if there exists an / in S 
that satisfies the above definition. In the adjacent translation, 
note the order of the mixed quantifiers. As we saw in Section 
1.2, the order of mixed quantifiers changes the meaning of the 
sentence. If we reverse the order of the quantifiers, we do not 
have the definition of an identity. 

-Ф- Example Let S be the set of real numbers. 

1. Does multiplication have an identity on 5? 

Substitute x for * in the definition: 

Does there exist a real number i such that for 
every real number a, ax i = a and ix a - al 

Set i = 1. For every real number a, a x 1 -a and 1 x a = a. 
So 1 is the identity for addition. 

2. Does subtraction have an identity on SI 

Substitute - for » in the definition: 

Does there exist a real number i such that for 
every real numbera,a- i = a and i-a = al 

Set i = 0. a - 0 = a, but 0 - a Ф a. So 0 is not the identity 
for subtraction. If a - i = a, then i must be 0, but 0 does not 
satisfy the second equation. Therefore, subtraction does not 
have an identity. 

In high school algebra, we study specific binary operations, 
such as addition and multiplication. In higher mathematics, we 
generalize to abstract binary operations and investigate the type 
of structures that they induce on a set. 
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One of the goals of logical reasoning is to find patterns and 
relationships between concepts that may seem very different on 
the surface. For example, our generalization of addition to the 
concept of a binary operation shows a relation between the 
structure of the addition operation and the structure of the 
union operation. Even though addition and union operate on 
very different types of objects, the abstract concept of a binary 
operation brings them under the same umbrella. They even 
share some of the same properties since they are both commu-
tative and associative. 

We use translations to both generalize definitions and to 
apply definitions to specific examples. If we know how to use 
the substitution principle, translating a mathematical definition 
for specific examples is fairly straightforward. On the other 
hand, translating everyday language into a more precise logical 
form can be very challenging for everyday language is quite 
complex. The more you work on developing your reasoning 
skills, though, the easier it becomes. 

Exercise Set 1.6 

1. Translate in terms of variables, quantifiers and logical operators. 
a. Some elements in the set A are in the set B. 
b. Every element in the set A is in the set B. 
c. Some x are not in both A and B. 
d. x is in A but not in B. 
e. x is in A whenever x is in B. 
f. x is in A only if x is in B. 

2. Translate in terms of variables, quantifiers and logical operators. 
a. These two sets have some elements in common. 
b. These two sets have no elements in common. 
c. There is one and only one x that is in both A and B. 
d. There is a unique x that is in both A and B. 

3. Definition: x is even if and only if there exists an integer k 
such that x = 2k. 

Use the above definition to translate each sentence. 
a. mn is even. 
b. m+n is even. 
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4. Is the following definition correct? If not, why not? 
Definition: x is even if and only if x = 2k for every integer k. 

5. Definition: /maps X onto Y if and only if for every y in Y, 
there exists an x in X such that f(x) = y. 

Use the above definition to translate each sentence. 
a. g maps X onto Z. 

b. /maps YontoX. 

6. Definition: ye/(A) if and only if there exists an x in A 
such that f{x) = y. 

Definition: zeCUD if and only if zeCorzeZ). 
Definition: zeCDD if and only if г еС and ze£>. 
Translate each sentence by substituting in the above definitions 
one step at a time. Do the two sentences have the same meaning? 

a. ye/(AU£) ye/(A)U/(B) 
b. уеДАПВ) уе/(Л)Л/(В) 

7. Make up definitions for the following using variables and 
quantifiers. The domain of all variables is the set of integers. 
a. x is an odd number. 

b. a is a factor of b. Hint: Why is 3 a factor of 12? 
c. b is a multiple of a. Hint: Why is 12 a multiple of 3? 
d. a divides b. Hint: Why does 3 divide 12? 

8. Translate each sentence by substituting in your definitions in (7). 
a. mn is an odd number. 
b. m + n is an odd number. 
c. a is a factor of b + c. 
d. a is a multiple of b + c. 
e. 4 divides Ъ-Ь. 
f. «dividesa-b. 

9. Translate in terms of variables, quantifiers and logical operators. 

a. Between every two real numbers there is another real number. 

b. The sum of every two even numbers is even. 

c | / M - / ( 3 ) | < 6 whenever | x - 3 | « 5 . 

d. The function/ is an increasing function. 

{The domain and range off is the set of real numbers.) 

e. The set 5 has a greatest element. (5 is a set of real numbers.) 

f. The set 5 has a least element. (S is a set of real numbers.) 
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10. Let 5 be a set of real numbers, u is an upper bound for S if and 
only if u is greater than or equal to every element in S. 

a. Is 6 an upper bound of the set [ 1,5)? 
b Is 5 an upper bound of the set [ 1,5)? 

c. How many upper bounds does [1,5) have? 
d. Does [1,5) have a least upper bound? If so, what is it? 

e. Does the set of integers have any upper bounds? 

11. Let 5 be a set of real numbers. Translate the following in terms of 
variables, writing all quantifiers at the beginning of the sentence. 
a. The set S has an upper bound. 

b. The set S does not have an upper bound. 
c. m is the least upper bound of the set S. 

12. The definition of the absolute value of a real 
number is given on the right. Use substitution 1*1 = -*, i f * > 0 . 
to write the definition of the following: |* | = -;t, if;t<0. 
a. \a\ b. | * + 1 | c. |jc—>»| 

13. Generalize each example to a statement that gives a basic property 
of addition on the set of integers. Use variables to represent the 
numbers. Use the appropriate quantifier for each variable. 

a. (-2) + [8 + (-3)] = [(-2) + 8] + (-3) 
b. (-3)+0 = -3 and 0 + (-3) = -3 
c. There is an integer b such that (-7) + b = 0 and b + (-7) = 0. 

14. Let * be an arbitrary binary operation on a set S. 
Generalize each of your generalizations in (13) for *. 

15. Let R represent an arbitrary relation on a set S. 
The notation xRy means x is related to y under the relation R. 
"Equals" gives a relation between two numbers. Generalize 
the following 3 properties of equality for the relation R. 
Let x, y, and z be real numbers. 

a. x = x (Reflexive Property) 

b. If x - y, then y = x. {Symmetric Property) 

c. If x = y and y = z, then x = z. (Transitive Property) 

16. Let S be a set of people. Determine if the given relation R has any 
of the 3 properties that you generalized in (15). 

a. a R b if and only if a has the same birthday as b. 

b. a R b if and only if a lives within 1 mile of b. 

c. a R b if and only if a is shorter than b. 
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Review 

Compound statement 

Abstract compound statement 

Abstraction 

Symbol A letter or figure used to represent something. Phonetic 
symbols, such as "plus," give pronunciation information. 
Ideographic symbols like + give a more concise representation 
that is easier to manipulate. 

Sentence A string or sequence of words that satisfy the language rules for 
being a sentence. A well-formed sentence must have both a 
subject and a verb. 

Statement A sentence that is either true or false, but not both. In formal 
logic, a statement is called a proposition. 

A sentence composed of statements connected with logical 
operators. 

A compound statement where the component statements are 
represented by variables such as p and q. 

The merging of concrete examples under the rubric of a 
concept that expresses a property the examples have in 
common. An abstraction exists as an idea with no material 
existence. For example, the abstract number 3 describes a 
property that various physical sets have in common, but the 
number 3 has no physical existence. 

Truth value Either true or false. Truth value is only used with sentences. 

Variable A letter used to represent an arbitrary element of a given set, 
which is called the domain of the variable. 

Domain The set of elements that can be substituted for a variable. 

Open statement 

Universal quantifier 

Existential quantifier 

A sentence with variables that is not a statement but becomes a 
statement whenever substitutions are made for the variables. 
An open statement can be converted to a statement by substitut-
ing for each variable or by binding each variable with a quanti-
fier, such as VJC 3y, p{x,y). 

Asserts that each substitution of an element from the domain of 
the variable converts an open statement into a true statement. 
Vx, p(x) is true if and only if every element in the domain of x 
converts p(x) into a true statement. 

Asserts that at least one substitution of an element from the 
domain of the variable converts an open statement into a true 
statement. 3JC, p(x) is true if and only if there exists at least one 
x in the domain of x such that p{x) is true. 
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Logical operators 

Negation 

Conjunction 

Disjunction 

Exclusive or 

Implication 

Contrapositive 

Converse 

Equivalence 

Translation 

Substitution principle 

Connectives used to form a compound sentence from given 
component sentences: and, or, implies, is equivalent to, and 
negation. 

A logical operator that reverses the truth value of a statement. 
The negation of p is true if and only if p is false. 

A compound statement of the form: p and q. For an 
and-statement to be true, both parts must be true. 

A compound statement of the form: p or q. For an or-statement 
to be true, at least one part must be true, but both could be true. 

A logical operator that joins two statements with the exclusive 
or. p XOR q. This compound statement is true only when one 
statement is true and the other one false. 

A compound statement of the form: p implies q. p is called the 
hypothesis or premise and q is called the conclusion. The only 
case in which an implication is false is when the hypothesis is 
true and the conclusion is false. To say that p =* q is true means 
that if p is true, then q must be true. 

The contrapositive of p => q is ~q=> ~p. The contrapositive 
has the same meaning as the original implication. 

The converse of p=> q is q=>p. 

A compound statement of the form: p is equivalent to q. For an 
equivalence to be true, either both parts are true or both parts 
are false. If two abstract compound statements composed of 
the same component statements are equivalent, they have the 
same meaning and can be used interchangeably. 

The process of converting words, thoughts or ideas from one 
form, language, or medium to another. Mathematical reasoning 
involves a continual translation, back and forth, from everyday 
language to pictures and symbolic representations. 

In a sentence with a variable, another letter or legitimate ex-
pression may be substituted for a universally quantified 
variable as long as all occurrences of the variable are replaced 
by the same substitution. Similar substitutions can be made for 
an existentially quantified variable if none of the substituted 
letters are used with other variables. 

Binary Refers to two. A binary operation, such as + or U, operates on 
two elements in a set and produces a new element in the set. A 
binary relation, such as й or C gives a relation between two 
elements. A binary decimal system has a base of two. 
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Binary operation 

Natural numbers 

Integers 

Rational number 

Real number 

Irrational number 

Complex number 

Logic 

Law of logic 

Frequently used equivalences 

* is a binary operation on a set S if and only if for all a and b 
in S, a* b is defined and a* be S. 

1 ,2 ,3 ,4 ,5 ,6 , . . . 

. . . - 3 , - 2 , - 1 , 0 , 1 , 2 , 3 , . . . 
p 

A number that can be represented in the form -q, where p and q 
are integers with q Ф 0. 

A number that can be represented as a decimal with a finite or 
infinite number of places. The visual picture of the real 
numbers is the points on a number line. 

A real number that is not rational. 

A number that can be represented in the form x+yi where x and 
y are real numbers and i = Уч". The visual picture of the 
complex numbers is the points in a plane, where x+yi is identi-
fied with the point (x, y). 

A formal study of the art of reasoning and the principles for 
making valid deductions. 

An abstract compound statement that is always true, regardless 
of the truth values of its component statements. A law of logic 
is also called a tautology. 

p and q <=> q and p Commutative 
poiq <=> qorp 

(p<=>q) <=> (q <=>p) 
(p and q) and r <=> p and (q and r) Associative 

(p orq)orr <=> p or (q or r) 
p and (q or r) <=> (p and q) or (p and r) . Distributive 
p or («7 and r) <=> (p or q) and (p or r) 

p =̂  g <=> ~q=>~p Contrapositive 
povq <=> ~p=> q Rephrasing Or 

(p<=>q) <=> (p=*<7)and i.q^>p) ■ Rephrasing<=> 
~(p and #) <=> ~por~q Negations 

~(p or #) <=> ~p and ~# 
~(.Р^Ф *=> pand-í? 

~(VJC, p(jt)) «=> 3JC, ~p(*) Quantifiers 
~(3x,p(x)) <=> V*,~p(*) 

V*, p(x) and gOO » VJC, p(jt) and VJC, <?(*) 
Здг, р(х) or q{x) <=> 3x, p(x) or 3x, <?(*) 
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Chapter Review 

1. Why is symbolic notation often used in logical reasoning? 
Why use "+" instead of "plus?" What is a symbol? 

2. What is a compound sentence? 
What is an abstract compound sentence? 

3. What is the difference between a statement and an open statement? 
Is every sentence that has a variable an open statement? 
If not, why not? 

4. You should be able to do the following: 
a. Determine if two compound sentences composed of the same 

component sentences are logically equivalent. 
b. Write the negation of a given sentence, simplifying as much as 

possible. 
c. Identify different forms in which implications and equiva-

lences are written in everyday language. 
d. Use substitution to translate a definition. 

5. Explain the following so that your friends would understand it: 
a. How to negate a quantified sentence. 
b. How to negate a compound sentence. 
c. Why the truth values for an implication are defined that way. 

6. Given two different compound sentences that are formed from the 
same component sentences, what does it mean to say that they 
have the same meaning? What do cases have to do with the 
meaning? Why do equivalent statements have the same meaning? 

7. Why does the contrapositive of an implication have the same 
meaning as the implication, but the converse does not? 

8. What is a law of logic? Give examples of laws of logic that 
are equivalences and examples that are not equivalences. 

9. You should know how to rewrite an or-sentence as an implication. 
a. For every integer x, x is even or x is odd. 
b. x is in D or x is in E. 

10. You should be able to write the contrapositive of an implication. 
a. IfjceA, thenjcefi. 

QO 0 0 

b. If X a„ converges and £&„ converges, 
i= i i= i 

00 

then E (fl„ + bn) converges. 



11. If p is equivalent to q, is ~p equivalent to ~ql 

12. Negate each sentence. Do not leave a negation as a prefix for a 
compound sentence. 

a. If xeA, thenxeB. 

b. lfxéB,Ü\enxéA. 

c. xéA отхеВ. 

d. There exists an x such that xeA and xeB. 

e. For all real numbers c and d, if c<d, then/(c)<f{d). 
f. For every e, there exists a 5 such that for every JC, \x-11 <S 

implies that | / ( x ) - / ( l ) | < e. 
g. For every function/defined on the interval [0,1] and for every 

number c between/(0) and/(I), there exists an x in the inter-
val (0,1) such that f(x) = c. 

h. For every function/and all real numbers a and b, there exists 

a real number c between a and b such that/'(c) = —-g^~a—. 

13. For each definition, write what it means to not have the given 
property. For example, in part (a), translate the following: 

x is not even if and only if . 

a. Definition: x is even if and only if there exists an integer n 
such that x = 2n. 

b. Definition: x is rational if and only if there exist integers p 

and q with q±0 such that x = ~q . 

c. Definition: Let a and b be integers, a divides b if and only if 

there exists an integer k such that b = &a. 

d. Definition: xeADB if and only if xe A orjcefi. 

e. Definition: xeADB if and only if дгеЛ and*efí. 

f. Definition: ACS if and only for every x, if x€A, thence B. 

g. Definition: A = B if and only for every x, if x€A, then xeB, 
and if xeB, thenjceA. 

h. Definition: AcB if and only AQB and A *B. 

i. Definition: The set 5 has a largest element if and only if there 
exists an m in S such that for every x in S, x < m. 

j . Definition: / i s a Junction if and only if for every a and b in the 
domain of/, if a - b, then f{a) = f(b). 

k. Definition: / i s a one-to-one function if and only if for all a 
and b in the domain of/, if a * fc, then /(a) * /(b). 
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1. Definition: /maps X into Y if and only if for every x in X, 
f(x) is in Y. 

m. Definition: Let/map X into Y. /maps X onto Y if and only if 
for every y in Y, there exists an x in X such that 

n. Definition: ye/(A) if and only if there exists an x in A 
such that f(x) = y. 

o. Definition: The function/is increasing on [a,fc] if and only if 
for every c and d in [a, è], if c < d, then /(c) < f(d). 

p. Definition: The function/is continuous at a if and only if 
for every positive e, there exists a positive 5 such 
that for every x, if | JC -a \ < 3, then \f(x) -f(a) \ < e. 

14. Translate each sentence by substituting in definitions from the 
previous exercise, one step at a time. 
a. xeAUiBOQ 
b. xs(AUB)C\C 
c. ye/ (CnD) 
d. ye/(C)DAD) 
e. ye/(CUD) 
f- ye/(OU/(D) 

15. Translate each sentence using definitions from (13). 
a. JC2 is even. 
b. a+biseven. 
c. h maps Y onto X. 
d. g°/mapsXontoZ. 
e. xe g(Q 

16. Do the given pair of sentences have the same meaning? 
If not, give an example of sets A and B where they have 
different truth values. 
a. For every x, xe A and xsB. 

For every x, xeA and for every x, xe B. 
b. There exists an x such that xeA and xeB. 

There exists an x such that x&A and there exists an x 
such that дсбВ. 

c. For every JC, хеАотхеВ. 
Foreveryjc.xeA or for every x,xeB. 

d. There exists an x such that *e A or xe B. 
There exists an x such that jce A or there exist an x 
such that xeB. 
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17. You should be able to do the following: 
a. Draw a logic circuit of a given logical expression. 
b. Find a logical expression for a given logic circuit. 
c. Given the output values of a combinatorial circuit (or truth 

table), find a logical expression that has the same output 
values. 

d. Use laws of logic to simplify a given circuit (or logical expres-
sion) so that fewer gates are needed. 

18. You should be able to translate sentences, such as the following, in 
terms of variables, quantifiers and logical operators. 
a. Every element in A is an element in B. 
b. These two sets have some elements in common. 
c. These two sets have no elements in common. 
d. *eA whenever xeB. 
e. There is a unique x such that x€ A f]B. 
f. There is a unique x such thatpOc) is true. 

19. Using variables and quantifiers, verbalize a precise definition for 
familiar concepts such as the following. 
a. n is even. d. m is a multiple of n. 
b. n is odd. e. n divides m. 
c. n is a factor of m. f. S has a largest element. 

20. Why do we try to generalize statements? 

Activity 1.7 

List 3 questions of a mathematical nature that interest or intrigue you. 
The questions could be about something that you've never understood, 
something that you've always wondered about, or something that you 
would like to know more about. 
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Writing 

Our 

Reasoning 

A proof is the culminating stage of the reasoning process in 
which we logically organize our reasoning into a written form 
that can be followed by others. As in any writing process, the 
first stage is to find something interesting to write about. A 
good essay depends on having a good thesis statement; 
similarly, a good proof depends on having a good theorem. 
Finding an interesting theorem to prove that no one else has 
thought of is a challenging and exhilarating part of the reason-
ing process that requires a lot of thoughtful prospecting. Since 
intellectuals have been pursuing this creative quest for over 
2500 years, one might be tempted to think that everything there 
is to prove has already been proven. However, in any human 
endeavor that involves the creative spirit, the topics are never 
exhausted. In fact, more new theorems have been discovered 
in the past thirty years than in all previous history. 

As with prospectors for gold, the theorem-seekers usually 
try to find a fertile vein of contemplation that has not yet been 
heavily mined. A new vein may be discovered by making up 
definitions to generalize properties of specific examples. By 
analyzing and comparing various examples, one may see clues 
for a possible theorem. When we find a possible theorem, we 
may intuitively know that it is true, but at this stage we can 
only call it a conjecture. Before we can label it a theorem, we 
must prove it using deductive reasoning. 

2.1 Proofs & Arguments 

2.2 Proving Implications 

2.3 Writing a Proof 

2.4 Working with Quantifiers 

2.5 Using Cases 

2.6 Proof by Contradiction 

2.7 Mathematical Induction 

2.8 Axiomatic Systems 

109 
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Techniques for writing proofs can be learned by using 
templates and studying proofs that others have written, but the 
ability to construct a proof requires a deeper level of intellec-
tual maturity than merely following an established procedure. 
To construct a proof, one must explore and question, find the 
inner structure of the situation, analyze the various parts, and 
then use logical reasoning to put the different pieces together 
and create a proof. The sparks that flash during this creative 
process strengthen our powers of reasoning. Building a bridge 
is not the same as walking across a bridge that someone else 
has built; similarly, reading proofs that others have constructed 
does not have the same developmental effect as creating a 
proof yourself. This chapter covers the basic techniques for 
constructing a proof and provides exercises to help you develop 
your skill in using deductive reasoning and writing your 
reasoning in a well-formed argument. 

Activity 2.1 

Is the given argument valid? If so, explain why. If not, draw a sketch 
of circular sets A and B that shows the argument is not valid. 

1. * is in A. 
Therefore, * is in A or * is in B. 

2. If x is in A, then* is in B. 
x is in A. 
Therefore, x is in B. 

3. If x is in A, then x is in B. 
x is in B. 
Therefore, x is in A. 

4. If* is in A, then*is in B. 
If* is in B, then * is in C. 
So, if * is in A, then * is in C. 

5. * is in A or * is in B. 
Therefore, * is in A. 

6. If * is in A, then* is in B. 
x is not in A. 
Therefore, * is not in B. 

7. If* is in A, then* is in B. 
* is not in B. 
Therefore, * is not in A. 

8. * is in A or* is in B. 
x is in not in A. 
Therefore, * is in B. 
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3 2.1 Proofs & Arguments = 

Thus, logic and intuition have 
each there necessary role . . . 
Logic, which alone can give us 
certainty, is the instrument of 
demonstration; intuition is the 
instrument of invention. 

H. Poincarí 
1854-1912 

Since the early Greeks, to 
speak of mathematics has 
been to speak of 'proof.' 

Bourbaki 

Most sentences that we accept as true come from one of the 
following sources: 

• We are told by someone that we believe. 

• We are convinced by our own feelings. 

• We are convinced by a valid argument. 

Experience and intuition, the primary sources for building 
individual beliefs, give us guidance for what we choose to 
believe from the first and second sources. The first source is 
being used when we accept a mathematical formula as true 
because a teacher told us or perhaps we saw it printed in a 
textbook. Most students believe the formulas given them and 
are happy to substitute in them without ever questioning where 
they came from because they have a naive faith in the source. 
Mathematical discoveries are often made from the second 
source; after long hours of contemplation, a mathematician may 
suddenly get a "flash" that something is true. However, it is 
not labeled true until it can be verified from the third source 
with a valid argument. 

In the opening statement of their highly acclaimed series on 
mathematics, the famous group of French mathematicians 
known as Bourbaki state the great importance of proofs. 
Mathematics is based on proofs. Unfortunately, though, proofs 
often have a bad reputation with students. Some students even 
go so far as to express the sentiment that they like mathematics 
but they don't like to do proofs. This type of attitude indicates 
that the student may not yet have had the opportunity to experi-
ence the challenge and excitement inherent in the intellectual 
process of constructing proofs. Indeed, this intellectual pursuit 
is more intriguing to some people than the most riveting court-
room drama on the big silver screen. 

Let's compare a lawyer's proof with a mathematical proof. 
Both are arguments that convince the target audience, explain-
ing why the claim is true. A lawyer has proved his case if he 
convinces the jury; however, in legal proofs, subjectivity is 
often involved. Upon appeal, the next jury may have a different 
opinion. 

In contrast, the rules for a mathematical proof are 
constructed so that any jury of rational thinkers will always 
give the same verdict when asked to pass judgment on a 
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Pythagorean Theorem 
500 B.C.E. 

If a, b and c represent the 
lengths of the sides of a right 
triangle with c representing 
the hypotenuse, then 

c2 = a2+b2. 

Sentences 

Proof 

Proof: 
Sentence 
Sentence 

Sentence 

proposed mathematical proof. Two rational thinkers may not 
agree on a theory in psychology, art, history, sociology, or 
physics, but they always agree on a theorem in mathematics 
because it has a proof to back it up. The great power of mathe-
matics is that theorems have a 100% guarantee within the 
framework of the system in which they were proved. We still 
use mathematical theorems proved by the ancient Greeks over 
two thousand years ago, whereas their theories of science have 
long since been discarded. As you can well imagine, this type 
of staying power requires very careful attention to the discourse 
used in a proof. 

When addressing a jury, a lawyer speaks in complete sentences 
because complete sentences are necessary to communicate 
complete thoughts. For the same reason, we only use complete 
sentences in a mathematical proof. Since proofs often contain a 
multitude of symbols, we must keep in mind that the symbols 
represent words which must form sentences. For example, the 
expression A £ B is a sentence, but A US is not. 

A proof is a list of sentences where each sentence comes from 
one of the following three categories: 

• Sentences that we assume are true. 

• Sentences that we already know are true. 

• Sentences that we derive from previous lines. 

Usually we write a proof in an informal style, including reasons 
to help the reader see how we derive a statement from previous 
lines in the proof. Sometimes we supply extra discourse when 
we remind the reader of what we already know. Since the goal 
of a proof is to convince other people that a certain statement is 
true, we should write our proofs in a style that is easy for others 
to follow. 

Theorems A theorem is a statement that has been proved. The formal 
definition of a theorem is the last line of a proof, which means 
that it follows from the previous lines. Sometimes, though, 
authors do not restate the complete theorem at the end since it is 
usually stated at the beginning as the heading of the proof. 

A statement is never labeled as a theorem unless someone 
has constructed a legitimate proof for it. If we think that a 
statement is true, but no one has yet proved it, we call the state-
ment a conjecture. 
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Playing the Game The first person to construct a proof for an important theorem 
achieves a lasting fame by forever having their name associated 
with it, unlike the fleeting fame of an athlete who recedes into 
the background when his world record is surpassed. Even 
though Michael Jordan enjoys world recognition today, it is 
fairly safe to predict that his fame will not have the longevity of 
Pythagoras who lived over two thousand years ago in a small 
Greek village and whose name is still known to most every 
student of high school age. In the next exercise, when we try to 
prove the Pythagorean Theorem, we may wonder if we too 
might not have been able to be the originator of such a clever 
proof. When that happens, we will understand the excitement 
of doing mathematics and why some consider it as the most 
sophisticated game in town. 

As we examine strategies and rules for being a player in this 
game, please keep in mind that knowing the rules is essential, 
but as in basketball, knowing the rules is not enough to make 
one a good player. We must practice with as much interest and 
intensity as athletes do in their attempt to become excellent 
athletes. Most mathematicians, as do most athletes, play for the 
love of the game. A few become superstars who ask questions 
and find answers which have a major impact on the course of 
future knowledge, and their names will be remembered for 
centuries. 

The challenge in playing the game of mathematics involves 
both of the following. 

• Finding possible theorems. 

• Constructing proofs for theorems. 

Finding Theorems to Prove 

The mathematician at work 
makes vague guesses, visualizes 
broad generalizations, and jumps 
to unwarranted conclusions. He 
arranges and rearranges his ideas, 
and he becomes convinced of 
their truth long before he can 
write down a logical proof. 

PaulHalmos 

Before we can write a proof, we must have something to prove. 
Finding interesting statements to prove requires a great deal of 
detective work. The most fertile grounds are in areas that 
interest us, areas that we are curious about, and especially areas 
that we have a burning desire to know about. That desire will 
motivate us to investigate, analyze and sift through a wide 
range of examples looking for clues to patterns that may be 
hidden beneath the surface. When we find a pattern that works 
for our examples, the next task is to try to prove that the pattern 
holds for a more general class of examples. 

Through experimentation, the ancient Babylonians discov-
ered an amazing pattern in the relation between the sides of a 
right triangle: c2 = a2+b2. Pythagoras may have spent countless 
hours contemplating how to prove this result that the Babyloni-
ans had discovered 15 centuries before; he may finally have 
seen the solution in a brilliant flash of insight as he watched the 



pillars in a magnificent temple cast its shadow across a square 
tiled floor {see adjacent illustration). But regardless of how 
the proof was actually discovered, we can be assured that the 
discoverer had an epiphany of great magnitude, for it is rather 
spectacular to see how the human mind can explain why we 
have this beautiful relationship between quantitative numbers 
and geometric triangles. 

We find possible theorems to prove through either our own 
creative observations and experimentation, or we latch onto a 
discovery that someone else has made, as did Pythagoras, and 
we then try to prove it. 

We frequently draw conclusions based on our experiences. 
Seeing mat the sun rises every morning, we infer that it will 
always rise in the morning. This type of reasoning, when we 
discover a general relation from specific examples or 
experiences, is called inductive reasoning. Through inductive 
reasoning, the Babylonians discovered the Pythagorean 
Theorem. Inductive reasoning is the basis for the scientific 
method. The scientist looks at experimental data and tries to 
make a generalization which will fit the evidence supplied by 
the data. The validity of the generalization is then based solely 
on its accuracy in making predictions. 

Inductive reasoning is an extremely important part of the 
reasoning process, but we must be aware of its limitations. 
First of all, most experimental data depends on some type of 
measurement, and any measurement such as length, weight, or 
speed must by necessity be an approximation. We cannot 
distinguish between 5 and 5.00001 on a yardstick, and even 
with hi-tech measuring devices that capture microscopic detail, 
some error is always present. If we measure the sides of a right 
triangle to be 3, 4, and 5 centimeters, the observed evidence 
shows that c2 = a2+b2. But if the hypotenuse measured 5.00001 
instead of 5, then our formula changes to c2« a2 + b2. Granted, 
we may think these two numbers are very close, but closeness 
is relative to how much we have zoomed in on the situation. 
From a human perspective, there is quite a bit of difference 
between 5 light years and 5.00001 light years. 

The second cause for concern is that the inductive method 
carries no guarantees. Just because Santa Claus has visited us 
every year for 18 years is no guarantee that he will visit us next 
year. Similarly, just because we measure 18 million right trian-
gles and obtain a certain relation between the measurements is 
no guarantee that the same relation will appear with the next 
triangle that we measure. 
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Perhaps the greatest shortcoming of the inductive process, 
is that it does not shed any light on why something is true. The 

/ ^ . human heed to understand why things happen has fueled the 
/ / quest for knowledge. Anyone can see that the sun rises every 

,—/ c I morning, but why does the sun rise? Is there something else 
LfpHhhk/ happening that makes the sun rise? Similarly, we can measure 

* j the sides of a right triangle and see that c2 = a2 + b2, but why 
does this happen? In the adjacent illustration, why is it that we 
can cut up the two squares along sides a and by which repre-
sent a2 and b2, and fill up the square along the c-side? Induc-
tive reasoning cannot produce answers to this type of question. 

Deductive Reasoning The search for answers to why-questions is an exciting mind 
sport that, unlike athletic sports, gives us deep insights that help 
us understand the universe in which we live. The tool that we 
use in this quest is called deductive reasoning. Deductive 
reasoning is the type of reasoning we use when we derive a 
conclusion from other sentences that we accept as true. With 
deductive reasoning, we show why one thing follows from 
another through the use of valid arguments. When the ancient 
Greeks developed the method of deductive reasoning in the 6th 
century B.C.E., they forever changed the course of human 
knowledge, elevating it to a higher plane where we can use the 
power of our mind to figure out why things happen. 

We use inductive reasoning to find patterns, and then we 
use deductive reasoning to explain why those patterns happen. 
Using inductive reasoning, we look at examples with an x-ray 
vision, searching for patterns in the structure, patterns that may 
not be apparent on the surface. When we finally see a potential 
theorem, we then use deductive reasoning to prove that the 
theorem is true, or at least that it follows from sentences that 
we consider to be true. 

The persuasiveness of a lawyer's argument may depend on 
its oral delivery, whereas the validity of a proof depends solely 
on its written form, which does not tarnish with age. Two 
thousand years in the future there may be people still admiring 
some of the proofs written in this century, as we still admire 
those of Pythagoras, Euclid, and other great thinkers in ancient 
Greece. When one is working in a pure art form like mathe-
matics, the thought products do not get as easily dated as in 
other disciplines. 

Structure of a Proof The structure of a proof is similar to that of a good essay; it 
must have an introduction, a body, and a conclusion, which is 
the theorem that we want to prove. To begin the process of 
constructing a proof, we can structure our work by starting at 
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Proof 

Introduction 

Body 

Conclusion 

The Introduction 

Theorem: For every real 
number*, if x> 1, úienx2> 1. 

Proof: Let x be a real number. 
Assume diat x> 1. 

Hence, x2>\. 
Therefore, if x > 1, then x2 > 1. 

the bottom, leaving a large blank area in the middle for the 
steps that we will fill in later: 

1. First, we write the conclusion, which is the theorem that we 
want to prove, at the bottom of the page. By writing the 
conclusion first, we are setting our goal, which has a 
distinct psychological advantage. By placing our goal at 
the bottom of the page, we have structured our writing 
space in the proper direction; we must work down to that 
conclusion. Furthermore, since the introduction depends 
on what we have in our conclusion, we must be focused on 
the conclusion when we write the introduction. 

2. Next we write the introduction at the top of our work space. 

3. Finally, we start work on constructing the body of our 
proof. 

This writing format keeps us focused on what we need to do in 
the body of our proof to build logical steps from the introduc-
tion down to the conclusion. 

In the introduction of a proof, we introduce the reader to the 
variables that we will use and state any assumptions that we 
need to make. We must always introduce variables before we 
use them. If the theorem contains a universal quantifier for x, 
we usually start by saying, "let x be a ," as illustrated in 
the adjacent example. The first line can be phrased in other 
ways, such as "let x be an arbitrary real number" or "assume 
that x is a real number." 

The assumptions that we make in the beginning of a proof 
set up the outside structure for the type of proof that we will 
present. If we decide later to try a different method of proof, 
we will need to change our assumptions. The assumption in 
the second line of the adjacent proof sets up the structure for a 
direct proof of the implication. Sometimes, though, we make a 
different assumption and construct an indirect proof, which we 
will discuss on page 135. Since there are different assumptions 
we can make to prove an implication, we must always clearly 
state our assumptions so that the reader will know which 
method we are using. Instead of the word "assume," we can 
use other words like "suppose" to indicate an assumption, but 
we must indicate that it is an assumption. We cannot just write 
"x> 1" in the adjacent proof. 
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Whenever we make an assumption in a proof, we should 
check our grammar to make sure that we have a legitimate 
sentence. For example, students sometimes write the following 
incorrect assumption, which has no meaning. 

Assume A \JB. 

When we make an assumption, we assume that a sentence is 
true. We cannot assume that the set A U B is true for A U B is 
not a sentence. We could, though, make either of the following 
assumptions: 

Assume x € A US. 

Assume A[JB = C. 

The Body The body of a proof forms a bridge that connects the beginning 
with the end. Even though we are building a one-way bridge 
from the beginning to the end, we usually work backwards 
from the end as far as possible so that we can see how to 
structure the beginning of the proof. We will discuss this 
process in more detail in Section 2.3. As we construct the body 
of the proof, we can build on what we already know, using 
previously proved theorems and definitions. Since a proof 
involves the meaning of words, we usually need to invoke 
definitions. To prove a statement about A U B, we will have to 
either use the definition of the union of two sets or cite a 
previous theorem about the union of two sets. 

The Conclusion The conclusion is analogous to a thesis sentence, which is 
usually introduced in the beginning of a good essay and then 
stated again at the end. Similarly, we state the theorem that we 
are going to prove, make the preliminary introductions, give the 
evidence that supports our claim, and then state the conclusion 
again at the end. 

We usually preface a conclusion with a transition word, 
such as "therefore," "hence," "thus," or "so," as a signpost to let 
the reader know that it follows from previous sentences. "So" 
may sound a littler weaker than the others, but it does suggest 
the metaphor of sewing thoughts together. Some textbooks 
signal the end of a proof with Q.E.D., an abbreviation for quod 
erat demonstrandum, a Latin phrase that means "which was to 
be demonstrated." 

The introduction and conclusion set up the outer structure 
of a proof. The body of a proof sets up an inner structure 
where we derive the conclusion through valid arguments. We 
will now examine how to argue in a genteel, logical manner. 
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Valid Arguments 

An argument is valid if 
the conclusion follows 
from the hypotheses. 

In personal relationships, arguments have a rather negative 
connotation, but in mathematics a good argument is something 
to be desired. For the creator of the argument, it is a sign of 
great mental prowess. For the reader of the argument, it 
provides a stimulating exercise for the mind which the reader 
may be able to use in some other type of situation. 

An argument is a list of sentences called hypotheses 
followed by a sentence called the conclusion, which we usually 
flag with a transition word such as "therefore," "thus," "hence," 
or "so." These transition words indicate that the appended 
sentence follows from the previous sentences, which is the 
definition of a valid argument. In a valid argument, we 
logically deduce the conclusion from the sentences that precede 
it. If each hypothesis were true, then the conclusion would 
have to be true. 

Valid arguments are sometimes called deductive arguments, 
for deductive reasoning is based on drawing conclusions from 
valid arguments (page 115). When we use inductive reasoning, 
we base our conclusion on experiments or experiences, in 
which case we are betting on the odds that similar things will 
continue to happen. With deductive reasoning, we isolate 
where the probability lies - with our hypotheses, not with our 
conclusion. If our hypotheses are true in a valid argument, we 
can be 100% assured that our conclusion is true, at least within 
the framework of the system in which we are making our 
deductions. 

4- Example Is the adjacent argument valid? 

ARGUMENT 

potq 
~p 

Therefore, q. 

To see if an argument is valid, we first assume that both 
hypotheses are true. 

Assume that porq is true. 
Assume that -p is true. 

Do these assumptions force the conclusion to be true? 

Since ~p is true, p is false. 

Since porq is true and p is false, q must be true. 

If the hypotheses are true, the conclusion must also be true. 
So this argument is valid. 
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ARGUMENT 

hi 

Therefore, c. 

Leth hh 2 , . . . ,h„ represent 
the hypotheses of an argu-
ment and c represent the 
conclusion. The argument 
is valid if and only if the 
following implication is a 
law of logic: 
( А 1 Л Л 2 Л А 3 Л . . . Ah„)=>c 

Structure vs. Content 

To show that the previous argument is valid, we demonstrated 
that the following implication is true: 

[(p or q) and ~p] => q 

If we let hi and hi represent the hypotheses and c the conclu-
sion, we can represent this argument as illustrated in the 
adjacent template. The above implication can be translated as: 

(fti and hi) => c 

An argument of the adjacent form is valid if and only if the 
above implication is true. 

If we have more than two hypotheses from which we wish 
to draw a conclusion, we can generalize further by representing 
the hypotheses with a sequence of letters: 

Ai, h2, / 1 3 , . . . , hn. 

This new argument, which has n different hypotheses, will be 
valid if and only if the following implication is true: 

(hi and A2 and A3 and . . . and h„) => c 

When we say a conclusion "follows from" the hypotheses, we 
mean that the above implication is true. In other words, if each 
hypothesis is true, the conclusion must also be true. The 
formal definition of a valid argument is given on the left. 

The validity of an argument is determined completely by the 
structure of the argument rather than the content of the com-
ponent sentences. To determine if the following argument is 
valid, we do not consider whether "x is in A" or "x is in B;" we 
only consider the structure of the argument. 

-Ф- Example 

ARGUMENT 

potq 
~P 

Therefore, q. 

Is the following argument valid? 

Argument: x is in A or x is in B. 

x is not in A. 

Therefore, x is in B. 

To see the structure of the argument, letp represent "x is in A" 
and q represent "x is in B," as illustrated on the left. Since its 
structure is the same as in the previous example on the facing 
page, this argument is valid. 
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Truth vs. Validity The validity of an argument does not guarantee that the 
conclusion is true; it only guarantees that the conclusion follows 
from the hypotheses. To deduce that the conclusion is true, we 
must also know that the hypotheses are true. 

Ф Example 

ARGUMENT 

potq 
~P 

Therefore, q. 

ARGUMENT 

potq 
P 

Therefore, q. 

Determine whether or not the given argument is valid. 

1. Argument: 1 + 1 = 3 or 2 + 2 =5 . 

1 + 1*3 

Therefore, 2 + 2 = 5. 

Since the argument has the adjacent structure, it is a valid 
argument. 

This argument is an example of a valid argument with a 
false conclusion. Note, however, that the first hypothesis 
of the argument is false. If both hypotheses were true, the 
conclusion would have to be true. 

2. Argument: 1 +1 = 2 or 2 + 2 = 4. 

1 + 1 = 2 

Therefore, 2 + 2 = 4. 

The structure of this argument is given on the left. If we 
assume that both hypotheses are true, it does not force the 
conclusion to be true. So this argument is not valid. 

This argument is an example of an invalid argument with a 
true conclusion. If an argument is not valid, it does not 
mean that the conclusion is false; it only means that the 
conclusion does not follow from the hypotheses. 

Using Logical Operators When we make deductions, the outside structure of our 
reasoning process is based on the logical operators and 
quantifiers. We must be very comfortable with the meaning of 
these terms in order to have the fluency of language that is 
necessary to work through the steps of a proof. In addition to 
having a personal understanding of their definitions, we also 
need to have their equivalent formulations in the top drawer of 
our memory file. If we're still bothered by the fact that ~q => ~p 
has the same meaning as p=> q, we should go back to Chapter 1 
and work on understanding why this is true. As in any sport, 
we need to master the rules before we can play the game. 
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If you are present at a game of 
chess, it will not suffice, for the 
understanding of the game, to 
know the rules for moving the 
pieces. . . . To understand the 
game is a wholly different 
matter; it is to know why the 
player moves this piece rather 
than the other. 

H. Poincari 
1854-1912 

Chapter 1 contains all the rules that we need to know to play 
the ultimate mind-sport. Of course, as Poincaré reminds us in 
the adjacent quote, the game involves far more than the rules. 

In football, you have to know how to throw the ball, how to 
catch the ball, and how to run with it. Fortunately, we will not 
have a field of moving obstacles trying to tackle us, but we will 
have to find a path to get us where we want to go. In the 
remainder of this section, we will work on throwing the ball 
and catching the ball. In the succeeding sections, we will 
practice running with the ball. Like throwing and catching, we 
need basic techniques for two types of deductions: 

• How to derive a compound sentence 

• How to make a deduction from a compound sentence. 

We will first look at deductions that involve implications. 

Deductions from an Implication 

EQUIVALENCES 

p=>q 

Therefore, ~q => ~p. 

Therefore, ~p or q. 

LAW OF DETACHMENT 

P 
Therefore, q. 

A Negative Perspective 

CONTRAPOSITION 

Therefore, ~p. 

When we have an implication in a proof, either in the beginning 
or in the middle, what can we deduce? From a single 
implication, we can deduce its equivalent formulations. If we 
know p => q is true, we can deduce that ~q => ~p is true and we 
can also deduce that ~p or q is true. When we have other 
information, we may be able to make further deductions. 

If we know that p => q is true and we also know that p is 
true, we can deduce that q is true. This deduction comes 
straight from the definition of implies. If an implication is true 
and its hypothesis is true, then its conclusion must be true. 
Logicians call this form of argument modus ponens, a Latin 
term for "method of assertion." It is also called the Law of 
Detachment because we detach the hypothesis from the impli-
cation. 

The Law of Detachment is very straightforward and easy to 
remember. Most students use this rule correctly; it's the next 
rule that may cause some confusion. 

Negations always add a layer of complexity to a reasoning task. 
The brain needs more processing time to interpret the same 
sentence phrased in a negative perspective, so we may need to 
spend a little more time in thinking through the validity of the 
following argument. 

The only case in which p =>q is false is when p is true and q 
is false. If we know that p =>q is true and we also know that q 
is false, then p has to be false. Logicians call this form of 
argument modus tollens, which is Latin for "method of denial." 
Being in a state of denial is not very fashionable in our 
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CONTRAPOSITION 

~q=>~p 
~q 

Therefore, ~p. 

positive-thinking society, so we will call it the Law of 
Contraposition. We can view the structure of this argument as 
the Law of Detachment applied to the contrapositive. If we 
replace the implication p => q with its contrapositive ~q => ~p, as 
illustrated in the adjacent box, the argument has the form of the 
Law of Detachment. If an implication is true and its hypothesis 
is true, then its conclusion must be true. 

^Example 

p=>q 
P 

Therefore, q. 

p=>q 
~q 

Therefore, -p. 

Determine if the given argument is valid. 

1. Argument: If x is not in B, then x is not in Л. 
x is not in B. 

Therefore, x is not in A. 

When we analyze the structure of an argument, we may 
sometimes want to hide a negation inside a component 
sentence, as we do in the following substitutions: 

p: x is not in B. q: x is not in A. 

These substitutions reveal the adjacent structure, which is 
the Law of Detachment. So, the argument is valid. 

2. Argument: If x is in A, then* is in B. 
x is not in B. 

Therefore, x is not in A. 

Letp and q represent the following sentence: 

p: x is in A. q: x is in B. 

With these substitutions, the argument has the same 
structure as the Law of Contraposition, so it is a valid 
argument. If we want to avoid the Law of Contraposition, 
we can replace the implication with its contrapositive. We 
then have the same argument as in the first example. 

Deriving an Implication In the previous discussion, we examined how we can proceed 
when we have an implication in the beginning or in the middle 
of an argument, which is analogous to throwing the ball. Now 
we will learn techniques for catching the ball. How do we 
structure an argument that ends with an implication? From this 
perspective, we know what we want to derive, but how do we 
set it up? 
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DIRECT PROOF 

Assume p. 

So, q. 

Therefore, p=>q. 

Argument 1 

Assume that *eA. 

So,xeB. 
Hence, if*еД, then x 6 B. 

Argument 2 

ДЕ6Л 

SO,JC6B. 

Hence, x € A and x 6 B. 

One way to set up the proof of an implication is to assume 
that the hypothesis is true and then derive that the conclusion 
must be true. We can then assert that the implication is true. 
This type of proof is called a direct proof because it is a very 
direct method. However, we must be careful to track the 
assumptions and derivations, distinguishing between those that 
are stand-alone derivations and those that depend on the 
assumption. 

The assumption in a direct proof must be clearly marked 
with a word like "assume" or "let." When we write a sentence 
without the "assume" preface, we mean that it stands on its own 
as a true sentence. If we know that p is true and we use p to 
derive that q is true, we would summarize our results by saying 
the much stronger statement, p and q. Notice the difference in 
the conclusions of the adjacent two arguments. Whether we 
say "assume xeA" or just "xeA" has no effect on how we 
would derive that x e B in either Argument 1 or Argument 2, 
but it does affect our final conclusion. The conclusion in 
Argument 2 is an and-statement, not an implication. All 
assumptions in a proof must be clearly flagged as assumptions 
because they affect our final deduction. 

In Argument 1, xeB is not a stand-alone conclusion. After 
we make an assumption, we may want to adjust our writing 
style to help the reader navigate these subtleties. We may want 
to indent the dependent lines to indicate that the indented 
deduction is hanging on the coattail of that assumption, or we 
may want to reserve the bombastic "therefore" for our big 
stand-alone conclusion and use the milder "so" or "hence" to 
flag deductions that are dependent on an assumption. We 
should at least start a new paragraph after we have made our 
final deduction from an assumption. 

Another Method 

PROOF BY CONTRAPOSITION 

Assume ~q. 

Hence, ~p. 

So, ~q =* -p. 

Therefore, p => q. 

When we use the method of a direct proof to derive an 
implication, we sometimes run into a brick wall as we try to 
connect the beginning with the end. As we will see in the 
following sections, some implications are much easier to prove 
when they are stated in terms of the contrapositive, which gives 
us another method for proving an implication. This method can 
be considered as either a proof by contraposition or an indirect 
proof. They both have the same structure. 

In a proof by contraposition, we do a direct proof of the 
contrapositive, as illustrated in the adjacent template. We do 
the same thing in an indirect proof, except that we do not state 
the contrapositive at the end. We may find, though, that focus-
ing on the contrapositive helps us keep this method straight. 
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From the definition of an implication, we know that the 
only case where p => q is false is when p is true and q is false. 
Both the direct proof and the indirect proof show that this case 
cannot occur. 

• In a direct proof, we assume p is true 
and derive that q must be true. 

• In an indirect proof, we assume q is false 
and derive that p is false. 

Ф Example Set up the outside structure of a valid argument whose 
conclusion is "If x is in A, then x is in B." 

We can set up the outside structure of the argument with either 
a direct proof or an indirect proof. 

Direct Proof. Assume that x is in A. 

So, x is in B. 
Therefore, if x is in A, then x is in B 

Indirect Proof. Assume that x is not in B. 

So, * is not in A. 
Therefore, if x is in A, then x is in B 

The Transitive Law The Transitive Law gives us a way to leave out the middle term 
when we have two implications of the following form. 

The first implies the second. 

The second implies the third. 

Using the Transitive Law, we can then deduce the following. 

The first implies the third. 

The validity of the Transitive Law follows from the definition 
of an implication. In the adjacent template, assume that both of 
the hypotheses are true. Now focus on the conclusion. If p is 
false, the conclusion is automatically true. If p is true, from the 
first implication, we can deduce that q is true. Since we now 
have that q is true, we can deduce from the second implication 
that r is true. Thus, p => r is true. Consequently, the Transitive 
Law is a valid argument. 

INDIRECT PROOF 

Assume ~q. 

So, ~p. 

Therefore, p~^> q. 

TRANSITIVE LAW 

Therefore, p => r. 
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Ф Example Determine if the given argument is valid. 

1. Argument: If x is in A, then x is in B. 

If x is in fi, then x is in C. 

Therefore, if x is in Л, then x is in C. 

This argument has the structure of the Transitive Law. 
So, it is a valid argument. 

2. Argument: If x is not in A, then д: is not in B. 

Hx is not in B, then x is in C. 

Therefore, if JC is not in A, then x is in C. 

Because of the negations, this argument may seem more 
complex than the previous argument. However, with the 
following substitutions, this argument has the same 
structure as the Transitive Law. 

p: x is not in A. q: x is not in B r.x is in C. 

By the Transitive Law, this argument is valid. 

3. Argument: If x is not in A, then x is not in B. 

If JC is not in B, then x is not in C. 

Therefore, if x is in C, then x is in A. 

We can view the first two sentences as p => q and q => r. 
Using the Transitive Law, we can deduce p=> r: 

If JC is not in A, then x is not in C. 

Translating this statement in terms of its contrapositive 
gives us the above conclusion. So, this argument is valid. 

What can we deduce from an or-sentence? If we know that one 
of the parts of the or-sentence is false, we can then deduce that 
the other part is true. The structure of this type of derivation is 
illustrated in the adjacent template. If we translate p or q in its 
equivalent form as ~p => q, this argument has the same structure 
as the Law of Detachment. 

In a similar manner, if we know that p or q is true and we 
also know that q is false, we can deduce that p is true, as illus-
trated in the following example: 

Deductions from Or-Sentences 

DERIVING FROM OR 

potq 
~P 

Therefore, q. 
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-$■ Example Valid Argument: x is in A or x is in B. 
x is not in B. 
Therefore, x is in A. 

Cases 

CASES 

potq. 
CaseX. Assume p. 

Therefore r. 
Case 2. Assume q. 

Therefore s. 
Therefore, r or s. 

When we ran into an or-sentence in a proof and have no 
information on the truth values of the component sentences, we 
usually set up the structure for a case by case argument. With 
cases, we take each component of the or-sentence and try to 
find something that it implies. Suppose that we know p or q is 
true. If we can derive p => r and also derive q =» s, then since 
one of the two hypotheses must be true, we can deduce that 
either r or s must be true. So the adjacent argument is valid. 

A case argument has several layers, so we must be careful 
to maintain the appropriate structure when we write this type of 
argument. We will need a separate subproof to derive p => r 
and also a separate subproof to derive q => s. The adjacent 
template illustrates the structure of a proof by cases. Each part 
of the or-sentence determines a case which we delineate with 
"Case 1" and "Case 2." If we know that p or q is true, then for 
Case 1, we assume that p is true and try to see what we can 
derive. Note that Case 1 in the adjacent box is simply the 
format for proving p=> r. For Case 2, we assume that q is true 
and try to see what we can derive. Since one of the two cases 
must occur, one of the conclusions must be true. Thus, we can 
make a general stand-alone conclusion that either the conclu-
sion from Case 1 or the conclusion from Case 2 is true. We 
will discuss cases in more detail in Section 2.5. 

-Ф- Example The following argument is valid. 

Argument: x is in A or x is in B. 

Case 1. Assume that x is in A. 

So,x<7. 

Case 2. Assume that x is in B. 

So*>9. 

Therefore, x < 7 or x > 9. 
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Deriving an Or-Sentence 

DERIVING OR 

Assume ~p. 

So,q. 

Therefore, p or q. 

EXPANDING OR 

p is true. 

Therefore, p or q is true. 

In the preceding discussion, we examined how to make a 
deduction from an or-sentence. Now we will go in the reverse 
procedure and figure out how to derive an or-sentence at the 
end of our proof (or sub-proof). 

Or-sentences seem to cause more confusion than implica-
tions, possibly because of the vagueness of or. However, the 
structure of how we derive an or-sentence is quite simple. To 
derive p or q, we first note that p is either true or false. 

If p is true, then p or q is true. 

Hence, to derive p or q, we only need to consider the case 
when p is false, as illustrated in the adjacent template. With 
this structure, we have also derived ~p => q, which is equivalent 
to p or q. The basic technique for deriving an or-sentence is to 
assume that one of the parts is false and then derive that the 
other part is true. 

Another method for deriving an or-sentence is to prove that 
one of the components is true, although in most instances this 
will not be possible. On the other hand, if we know a sentence 
is true, we can expand it into a true or-sentence, regardless of 
the truth value of the second sentence. This seems fairly 
obvious; however, we may sometimes be a little timid about 
adding on a sentence whose truth value we do not know. The 
function of the word or, though, is to allow this type of expan-
sion. If p is true, then p or q is true regardless of the truth 
value of q. So the adjacent argument is valid. Note that the 
first sentence is a stand-alone true sentence; it is not an 
assumption. 

You may wonder why on earth we would ever want to take 
a sentence p that we know is true and write it as an or-sentence 
where we cannot be sure which part is true. Sometimes, 
though, we do have a real need for this type of argument. For 
example, to prove that for all sets A and B, A C A \JB, we can 
argue as follows: 

-Ф- Example The following argument is valid. 

Argument: Assume that x is in A. 

Then A: is in A or x is in B. 

So,xisinAUfi. 

. . Expanding Or 
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Deductions with And-Sentences 

CONTRACTING AND 

p and<j 

Therefore, p. 

DERIVING AND 

So p is true. 

So q is true. 
Therefore, p and q is true. 

If we have an and-sentence in a proof, we can break it down 
and work with the sentences individually. If p and q is true, 
then p must be true. Thus, the adjacent argument is valid. We 
can always contract an and-sentence into either of its 
component sentences. We cannot go in the other direction, 
though, and expand a true sentence into a true and-sentence. If 
we know that p is true, we cannot conclude that p and q is true. 

And is the strongest of the logical operators. To say that "p 
and q is true" is stronger than saying "p or q is true;" it is also 
stronger than "p => q is true." By a stronger sentence, we mean 
one that gives us more information. When we say "p and q" is 
true, we know that each component sentence is true. None of 
the other logical operators give us such specific information. 
Since and is stronger than the other operators, we have more 
work to do when we derive an and-sentence. We must prove 
that each part stands on its own without making any assump-
tions in the outside structure. In the adjacent template, please 
note that there are no assumptions. We must derive that p is 
true as a stand-alone deduction. If we assume p is true and 
derive q, we cannot deduce p and q as a stand-alone statement. 

Ф Example Determine if the given argument is valid. 

1. Argument: x is not in Л. 

Therefore, x is not in A or x is in B. 

This argument is an Expanding Or argument, so it is valid. 

2. Argument: x is in in A and x is not in B. 
Therefore, x is not in B. 

This argument is valid. 

3. Argument: x is in A or x is in B. 

Therefore, x is in A. 

If we assume the hypothesis is true, it does not guarantee 
that the conclusion is true. So, this argument is not valid. 

4. Argument: x is in A. 

Therefore, x is in A and x is in B. 

If we assume the hypothesis is true, it does not guarantee 
that the conclusion is true. So, this argument is not valid. 
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Analyzing Structure 

Outside to Inside 

Assume that p is true. 

£ So r is true. 

► So j is true. 

*-> Hence r and s is true. 

Therefore, if p, then r and s. 

In the reasoning process, we often have to analyze the structure 
of a situation or the structure of an argument. When we 
analyze an argument, we can see different structures, depending 
on the substitution filter that we use. We may want to hide a 
negation inside an abstract component sentence, or we may 
want to feature the negation as a key part of the structure. We 
may want to introduce more negations via the contrapositive in 
order to see the structure in a different light. 

When we set up the structure to prove a given statement, we 
work from the outside to the inside. For example, let's examine 
how to write the outside structure of a proof of the following 
statement: 

Ifp, then rands. 

The outside structure of this sentence is an implication, so we 
first set up the framework for proving an implication. 

Assume that p is true. 

Hence r and s is true. 

Therefore, if p, then r and s. 

At the next level, we set up the structure to derive r and s, 
which is given on the left. Inside this layer, we have two 
subproofs to complete. We must derive r so that it stands on its 
own within this layer. When we work on this subproof, we can 
use the prior assumption that p is true. 

When we structure the outside argument, we leave a space 
in the middle to complete our work. Within the outside struc-
ture, we usually need other arguments. Frequently, we have 
layers of valid arguments in a proof with one valid argument a 
subproof of another valid argument. As we interweave the 
arguments, we must keep track of the results that we derive 
from an assumption so that each derivation can be summarized 
in a stand-alone conclusion. It is not as complicated as it 
sounds. Actually, it is what makes the process interesting, 
giving it both texture and depth. As long as we keep track of 
the structure of our layers, it will seem simple. In this section, 
we worked with the outside structure of basic types of 
arguments. In the following sections, we will work on how to 
bridge the gap, creating layers of arguments and weaving them 
together to create proofs. 
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What Is a Proof? 

I mean the word proof not in 
the sense of the lawyers, who 
set two half proofs equal to a 
whole one, but in the sense 
of the mathematician, where 

Y proof = 0 

and it is demanded for proof 
that every doubt becomes 
impossible. 

Carl Friedrich Gauss 
1777-1855 

Different Proofs 

Start 

A straight path is not 
always the shortest. 

Now that we have an understanding of valid arguments, we can 
add more detail to our earlier description of a proof (page 112). 
We build a proof by constructing valid arguments that we sew 
together with logical reasoning: 

A proof is a linearly ordered structure of interwoven valid 
arguments where each sentence is one of the following: 

• An assumption used in a valid argument 

• An axiom, previous theorem, or definition 

• A sentence that can be derived from previous 
sentences by a valid argument 

The final stand-alone conclusion is the theorem that has 
been proved. 

A proof must adhere to the high standards described by Carl 
Gauss in the adjacent quote. If we have 999 steps in a proof 
that are logically correct and one little step that is not backed 
up with a valid argument, the whole proof collapses. 

A proof of a theorem is not unique. Starting at a given point, 
there may be many different routes that we can travel to reach 
the same conclusion. Most students have a tendency to seek a 
straight path from the beginning to the end, but sometimes the 
straight path is not the shortest. When we connect the be-
ginning of a proof with the end, a straight path may lead us up 
over the top of a rugged mountain and down the other side, 
when there at the bottom of the mountain may have been a 
simple path around the base that led to the same conclusion. 

The Pythagorean Theorem, one of the cornerstones of 
mathematics, has fascinated logical thinkers for centuries, and 
they have come up with over 300 different ways to prove it. Of 
course, only one proof is needed to classify a statement as a 
theorem. However, even though we may have a proof for a 
theorem, a different type of proof may deepen our understand-
ing of why the theorem is true. A different proof may also 
suggest other possible theorems or provide us with new ideas 
on how to construct proofs for other theorems. As you search 
for a proof, do keep in mind that there may be more than one 
way to do it, and even after you find a proof, you may want to 
continue to search for a simpler path or a path with a different 
view of why the sentence is true. 
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Inductive vs. Deductive Reasoning According to legend, a wise man used deductive reasoning to 
prove to an ancient Chinese Emperor that the volume of a 
sphere varies as the cube of its radius. The Emperor, not 
understanding the deductive argument, ordered his servants to 
bring in spheres of various sizes. He had the spheres filled with 
water and compared the volume of each sphere with its radius. 
At last, he was convinced of the wise man's assertion. Like the 
Chinese Emperor, most people are easily convinced by the 
inductive method. Deductive reasoning, on the other hand, is 
not an innate faculty, but a learned skill whose rules must be 
mastered in order to appreciate and understand its power. Both 
types of reasoning are essential in mathematics. 

Inductive reasoning depends on the ability to recognize and 
describe patterns so that one can make a prediction as to what 
will continue to happen. The pattern might be the relationship 
between the numerical values of the volume of a sphere and its 
radius, or the relationship between the lengths of the sides of a 
right triangle. There are an amazing number of numerical and 
geometric patterns that seem to govern nature and the mechan-
ics of the universe, so there are plenty of patterns to be discov-
ered. Having discovered a pattern, we then use our powers of 
deductive reasoning to try to explain why such a pattern occurs. 

The exercises in this chapter will have some inductive 
challenges, but most will focus on developing your skill in 
deductive reasoning. Please feel free, though, to inductively 
search for patterns and relationships and then try to certify 
them with the 100% guarantee that is provided by the deductive 
process of reasoning. 

Exercise Set 2.1 

1. Determine if the given argument is valid. 
a. 5 Therefore, r and s. 
b. s Therefore, r or s. 
c. r or s Therefore, s. 
d. If s, then t. t Therefore, s. 
e. If j , then t. ~s Therefore, ~t. 
f. If s, then t. ~t Therefore, ~ j . 
g. sorf. ~t Therefore, s. 
h. Assume c. Hence, b. Therefore, if c, then b. 
i. c Hence, b. Therefore, c and b. 
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2. Determine if the given argument is valid. 

a. p and q. Therefore, p or q. 

b. p and q. Therefore, p => q. 

c. p or q. Therefore, p => q. 

d. p=>q. Therefore, ~p or q. 
e. For every real number x, p(x) is true. Therefore, p(5) is true. 

f. For some real number x, p(x) is true. Therefore, p(5) is true. 

3. Determine if the given argument is valid. 

a. x is in A or x is in B. Therefore, x is in A 

b. x is in A and x is in Z?. Therefore, x is in A. 

c. x is in A. So, * is in A or x is in 5. 

d. x is in A. So, * is in A and x is in B. 

4. Let x be a real number. Determine if the given argument is valid. 
If the argument is not valid, give a counterexample. 
a. I f ^ < l , t h e n x < l . x2 <1. Therefore, JC<1. 

b. If^2<l, then JC<1. * < 1 . Therefore, д^<1. 

c. If x2<x, then;c<l. x2 <x. Therefore, x < 1. 

à. lix2<x,thenx<l. x<l. Therefore,x2 <x. 

5. Let x be a point in a plane. Determine if the given argument is 
valid. If it is not valid, draw a sketch of circular sets and a point x 
for which the hypotheses are true and the conclusion is false. 
a. If x is in B, then x is in A. x is not in B. 

Therefore, x is not in A. 
b. If x is in B, then x is in A. If* is in A, then x is in D. 

x is not in D. Therefore, д: is not in A. 
c. If x is in C, then x is in D. x is not in D. 

Therefore, x is not in C. 

d. If x is in B, then x is in C. If Jt is in C, then x is in Đ. 
x is not in B. Therefore, x is not in D. 

6. Determine if the argument is valid. Don't get nervous about any 
words that you do not understand. For validity, it is only the 
structure that matters. 
a. If/is a differentiable function, then/is continuous. 

/ i s not continuous. Therefore,/is not differentiable. 

b. If/is a differentiable function, then/is continuous. 
/ i s not differentiable. Therefore,/is not continuous. 

c. For all x, if \x-1| «5, then | / ( * ) - / ( l ) | <e. 

\flxo)-Д1)| > e. Therefore, |дсь- 11 >S. 

file:///flxo
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7. If possible, make a valid deduction from the given information. 
You may want to write some of the sentences in an equivalent 
form. 

IfxeA, thenxeB. 
lfx£C, \henx£B. 
Therefore, 
If xe C and xeD, then xsF. 
x£F. 
Therefore, 

If xeB, fhen;c€A. 
If xeA, thence C. 
x£C. 
Therefore, 

xisinD or A: is in E, 
x is not in E. 
Therefore, 

e. If xeA, thenxëfi. 
xeB. 
Therefore, 

f. If xeA, thenxefiandxeC. 
x £ B or x € C. 
Therefore, 

g. If xeD отх€Е, thenxeZ. 
xtZ. 
Therefore, 

h. If x is in A, then x is in B. 
If x is in B, then * is in A. 
Therefore, 

8. Make the strongest deduction possible. 

Assume x is in C. 
So, x is in D. 
Therefore, 

d. x is in C. 
So, x is in D. 
Therefore, _ 

b. Assume that x is not in C. 
So, x is not in R. 
Therefore, 

c. Assume that x is not in C. 
So, x is in R. 
Therefore, 

x is in A or* is in C. 
Assume that x is in Д. 
So, x is in D. 
Assume that x is in C. 
So, x is in E. 
Therefore, 

9. a. What is an argument? 
b. What is a valid argument? 

c. What is a proof? 
d. What is a theorem? 
e. What is a conjecture? 

10. a. How is the structure of a proof similar to a good essay? 
b. What are the 3 types of sentences that we use in a proof? 

11. Is the given expression a sentence? 

a. x+y d. AUB g. A^B 

b. Assume x + y. e. Assume AUB. h. Assume A c B . 

c. Assumex + y = 1. f. AssumcxeA{JB. i. A(~)B 

12. If an argument is valid, does the conclusion have to be true? 
If not, give a counterexample. 
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13. Let n be an integer greater than 1. 
n is prime if and only if its only positive factors are n and 1. 

a. Suppose that n is not a prime number. What can you deduce? 
Write your deduction in terms of variables and quantifiers. 

b. Suppose that n is a prime number and n~ab where a and b are 
positive integers. What can you deduce about a? 

c. Suppose that n is a prime number and n = ab where a and b are 
integers. What can you deduce about a? 

14. In this exercise, you are asked to prove one of the most important 
theorems in all mathematics, the Pythagorean Theorem. 
a. Draw 4 copies of the same right triangle. Label the legs as a 

and b, and the hypotenuse as c. Cut out the 4 triangles and try 
to arrange them so that somewhere you see c2. (There are 
different ways to do this.) 

b. Using your picture, try to derive the Pythagorean Theorem. 
Expressing the same area in different ways may produce the 
desired result. You may use the formulas for the area of a 
square and the area of a triangle. 

c. Explain why any "squares" that you used in your proof are 
really squares. Comment on whether your proof is dependent 
on the size and shape of the right triangle that you use. 

15. See if you can find a pattern in the given data that will enable you 
to predict the number of eggs on the 90th day and the number of 
eggs on the nth day. 
a. On the 1st day there were 2 eggs, on the 2nd day there were 4 

eggs, on the 3rd day there were 6 eggs, and on the 4th day 
there were 8 eggs. 

b. On the 1st day there were 3 eggs, on the 2nd day there were 5 
eggs, on the 3rd day there were 7 eggs, and on the 4th day 
there were 9 eggs. 

c. On the 1st day there were 2 eggs, on the 2nd day there were 4 
eggs, on the 3rd day there were 8 eggs, and on the 4th day 
there were 16 eggs. 

d. On the 1st day there was 1 egg, on the 2nd day there were 3 
eggs, on the 3rd day there were 7 eggs, and on the 4th day 
there were 15 eggs. 

16. What type of reasoning did you use in the previous exercise, 
inductive reasoning or deductive reasoning? 
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Activity 2.2 

Let x and v be integers. Do you think the given statement is true? 
(Test it with a lot of examples before you jump to any conclusions.) 
If so, try to prove it. If not, give a counterexample. 

1. If x is even and y is even, then x+y is even. 

2. If x is odd and y is odd, then x+y is odd. 

3. If x is odd, then x2 is odd. 

4. If x1 is even, then x is even. 

= 2.2 Proving Implications = 

Derive: lip, then q. 

Direct Proof 
Assume that p is true. 

Therefore, q is true. 
So, if p, then q. 

Derive: If p, then q. 

Indirect Proof 
Assume that q is false. 

Therefore, p is false. 
So, if ~q, then ~p. 
So, if p, then q. 

Most sentences that we try to prove are phrased in terms of an 
implication. There are two methods for deriving an implication, 
a direct proof ъпА an indirect proof (page 123). The method 
that we select gives us the beginning and end of the proof, as 
illustrated in the adjacent templates. 

With a direct proof, we assume the hypothesis is true. 

With an indirect proof, we assume the conclusion is false. 

An indirect proof is a direct proof of the contrapositive. If we 
assume q is false, we are assuming ~q is true. When we derive 
that p is false, we have derived mat ~p is true, which means 
that we have proved the contrapositive: ~q^>~p. We can prove 
an implication by either doing a direct proof of the implication 
or a direct proof of its contrapositive. 

Some implications are easier to prove in their contrapositive 
form, but usually we first try to do a direct proof. Let's work 
through the process of constructing a direct proof of the follow-
ing theorem: 

For every integer x, if* is even, then x2 is even. 

First, we set up the outside structure of the proof, writing our 
assumptions at the beginning and stating what we want to 
derive at the end, as illustrated on the next page. 
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With the outside structure in place, we then work on connect-
ing the beginning with the end, with our focus always on what 
we are trying to derive. We may need to rephrase it in a form 
that helps us see how to structure the proof. Usually we work 
backwards from the end until we have a firm grasp of what we 
have to demonstrate. In the adjacent template, what do we 
need in Step 4 in order to derive Step 5? To answer this 
question, we substitute in the definition of even: 

x2 is even if and only if 
there exists an integer k such that x2 = 2k. 

The above substitution gives us Step 4, which is written in bold 
in the adjacent box to remind us that it is our focus. Our job 
now is to find an integer k such that jt2 = 2k. It is not yet appar-
ent as to where we will find k, so let's start working down from 
the top and translate Step 2. 

When we translate "x is even," we cannot use k again 
because we used it with x2. So, we must use another letter, 
such as j : x = 2/. Since we're focused on our goal of finding a 
k so that x2 = 2k, we know that we need to bring x2 into the 
picture. One way to do this is to square both sides of the above 
equation. Then all we have to do is factor 2 from the right side 
and we have found the k that we were looking for. The 
complete proof of this theorem is given below in an outline 
style. 

Theorem A For every integer д:, if x is even, then x2 is even. 

Direct Proof- Outline Style 1. Let x be an integer. 
2. Assume that x is even. 
3. There exists an integer./' such that x = 2/. 

So, x2 = 4;2 = 2(2y2). 
Define k as follows: k = 2j2. 
Since j is an integer, k is an integer. 
Furthermore, x2 = 2k 

4. So, there exists an integer k such that x2 = 2k. 
5. Thus x2 is even. 
6. So, if x is even, then x2 is even. 

Theorem A: For every integer x, 
iïx is even, then x2 is even. 

Direct Proof 
1. Let x be an integer. 
2. Assume that x is even. 
3. 
4. There exists an integer k 

such that x2 = 2k. 
5. Then x2 is even. 
6. So, if x is even, then x2 is even. 

Using the above outline, we can convert the proof to the 
following paragraph style. 
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Theorem A For every integer x, if x is even, then x2 is even. 

Direct Proof- Paragraph Style Let x be an even integer. Since x is even, there exists an integer 
j such that x = 2y. Squaring both sides, we get x2 = 4j2. Define 
k as follows: k = 2/2. Since y is an integer, k is an integer. 
Furthermore, x2 = 2k. Thus, x2 is even. Therefore, if x is even, 
then x2 is even. 

The converse of the above theorem is also a theorem, but look 
what happens when we try to prove it with a direct proof. 

Theorem B For every integer x, if x2 is even, then x is even. 

Attempted Direct Proof 1. Let x be an integer. 
2. Assume that x2 is even. 
3. There exists an integer j such that x2 = 2j. 

So, л: = 

4. Thus, there exists an integer k such that x = 2k. 
Hence, x is even. 

5. Therefore, if x2 is even, then д; is even. 

Theorem B: For every integer x, 
if x2 is even, then x is even. 

Indirect Proof 
1. Let x be an integer. 
2. Assume that x is not even. 
3. 
4. 
5. So, jc2 is not even. 

In Step 3, we run into a brick wall. From the equation x2 = 2j, 
we can deduce that x =j2j; however, this equation does not 
help us find an integer k such that x = 2k. The strategy we used 
to prove Theorem A does not work here. So, let's try another 
strategy and see if we can prove the contrapositive. 

If JC is not even, then x2 is not even. 

First, we set up the outside structure, as illustrated on the left. 
If an integer is not even, it has to be odd, so we can work 
backwards and translate Step 5 as follows: 

4. There exists an integer k such that x2 = 2k +1. 

Our goal now is to find an integer k such that x2 = 2k + 1. 
Keeping this new goal in mind, we're ready to jump back to the 
beginning and work our way down. On the next page is a 
proof in outline style, followed by a proof in paragraph style. 
The paragraph style is longer because we have more explana-
tion in it. 
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Theorem B For every integer *, if x2 is even, then x is even. 

Indirect Proof- Outline Style Let x be an integer. 
Assume that x is not even. Then x must be odd. 

So, there exists an integer j such that x = 2/ + 1. 
дс2 = (2/+1)г = 4/2 + 4/+1 

= 2(2/2 + 2/) + l 
Define k as follows: k = 2j2 + 2j. 
Since; is an integer, k is an integer. 
Furthermore,*2 = 2&+l. Sox2 is odd. 
Thus, x2 is not even. 

We have shown that if* is not even, then x2 is not even. 
So, if*2 is even, then x is even. 

Theorem B For every integer *, if x2 is even, then * is even. 

Indirect Proof- Paragraph Style Let * be an integer. Assume that * is not even. Since every 
integer is either even or odd, * must be odd. So, there exists an 
integer j such that * = 2/+1. Squaring both sides, we get 

jc2 = (2/41)2=4;2 + 4/41 = 2(2y2 + 2 / )+ l . 

Define k as follows: к = 2j2 + 2/. Since products and sums of 
integers are also integers, & is an integer. So there exists an 
integer к such that x2 = 2Jt + 1, which means that x2 is odd. An 
odd integer cannot be even, so x2 is not even. Hence, if* is not 
even, then x2 is not even. Therefore, if x2 is even, then * is 
even. 

Proving Equivalences 

Derive, p if and only if q 

p=>q: . . . 
So, if p, then q. 

q=>p: Converse^, ... 
So, if q, then p. 

Therefore, p if and only if q. 

The standard technique for proving an equivalence of the form 
p if and only ifq is to prove the following two implications: 

p^>q and q^>p 

The structure of this type of proof is actually that of two 
separate proofs, as illustrated in the adjacent template. What 
we assume in each part depends on whether we use the direct 
or indirect method to prove the implication. The beginning of 
the second part of the proof is usually flagged by saying 
"conversely." Otherwise, the reader might be confused by the 
two assumptions. Since the two parts of the proof are separate, 
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derivations from the first assumption cannot be used in the 
second part of the proof. 

The following proof illustrates the structure for proving an 
equivalence. Note how each part is a separate proof. In fact, 
the two proofs are merely copies of the previous proofs for 
Theorem A and Theorem B. 

Theorem For every integer д:, д: is even if and only if x2 is even. 

Proof Let x be an integer. 

p => q Assume that x is even. So, there exists an integer y such that 
x = 2j. Squaring both sides, we get x2 = 4/2 . Define k as 
follows: k = 2f. Since j is an integer, к is an integer. Further-
more, x2 = 2k. Thus, x2 is even. Therefore, if x is even, then x2 

is even. 

q => p Assume that x is not even. Since every integer is either even 
or odd, x must be odd. So, there exists an integer,/ such that 
x = 2/+1. Squaring both sides, we get 

x2 = (2/ + l)2 = 4y2 + 4 / 4 1 = 2 (2/2 + 2/) + 1. 

Define k as follows: k = 2j2 + 2j. Since products and sums of 
integers are also integers, k is an integer. So there exists an 
integer k such that x2 = 2k + 1, which means that x2 is odd. An 
odd integer cannot be even, so x2 is not even. Hence, if x is not 
even, then x2 is not even. So, if x2 is even, then x is even. 

Thus, x is even if and only if x2 is even. 

Proving an Or-Sentence 

Derive, p orq 

Assume p is false. 

So, q is true. 
Therefore, p or q. 

To prove an or-sentence, we can assume that one of the parts is 
false and then derive the other part (page 127). In the adjacent 
template, we assume that p is false and then derive that q is 
true. 

When we studied the logical operators in Chapter 1, we 
examined why p or q has the same meaning as ~p => q. Note 
that the adjacent structure is the same as the form for proving 
~p=>q. 

On the other hand, we could assume that q is false and then 
derive that p is true. With this format, we are proving ~q => p, 
which also has the same meaning as p or q. The structure of 
this type of proof is illustrated in the following example. 



140 Chapter 2 Writing Our Reasoning 

Theorem For every real number x, x > 4 or x<5. 

Proof Assume that x < 5. 
Then x ž 5. 
Since x ž 5 and 5 > 4, x > 4. 

So,x<5 orx>4. 

Exercise Set 2.2 

1. Set up the outside structure for a direct proof of the given 
implication. Then set up the outside structure for an indirect proof 
of the implication. Which do you think would be easier to prove? 
a. If m and n are odd integers, then mn is odd. 
b. If mn is odd, then m and n are odd integers. 
c. If a is not a factor of b + c, then a is not a factor of b or a is not 

a factor of c. 
d. If x is rational and y is rational, then x + y is rational. 

2. Set up the outside structure for proving the given equivalence: 
a. For all x, xeA if and only if xeB 
b. m and n are odd integers if and only if mn is odd. 

3. Set up the outside structure for proving the given or-sentence. 
a. For all x in U, xe A or xeB. 
b. For every integer x, x is even or x2 is odd. 

4. Set up the outside structure for an indirect proof of the following 
statement. Then set up the inside structure for deriving the 
conclusion. 

If x is rational and y is irrational, then x+y is irrational. 

5. Let x and y be arbitrary integers. Prove the following. 
You may use previous results in a proof. 
a. If x is even and y is even, then x+y is even. 
b. If x is even, then xy is even. 
c. If x+y is odd, then x is odd or y is odd. 
d. If xy is odd, then x is odd. 
e. If xy is even, then x is even or y is even. 
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Activity 2.3 

Do you think the given statement is true? Justify your answer. 

1. 3 is a factor of x if and only if 3 is a factor of x2. 

2. 4 is a factor of x if and only if 4 is a factor of x2. 

3. 5 is a factor of x if and only if 5 is a factor of x2. 

= 2.3 Writing a Proof = 

4 Stages in Writing a Proof 

1. Analyze the structure. 

2. Write the end and 

beginning of the proof. 

3. Connect the beginning 

with the end. 

4. Polish the proof. 

Writing a proof is very different from reading a proof. 
Normally we read a proof from the beginning to the end in 
order to make sure that each step follows from the steps before 
it. However, when we write a proof, we usually start at the end 
and then work from both the end and beginning as we try to 
connect the two pieces in a logical framework. 

Writing a proof is a four-stage process. First, we analyze 
the structure of the sentence that we want to prove in order to 
see how to structure the proof. Then we write the end and 
beginning of the proof. The challenging part is the third stage 
when we try to connect the beginning with the end. Last, but 
not least, we polish our proof until it emerges as a well-written 
argument. Let's examine each of these four stages. 

i. Analyze the structure Before we can write a proof, we need to understand what we 
are attempting to prove. We should look up the definitions of 
any words or terms that we cannot verbalize. There is no way 
that we can hope to prove a theorem if we cannot write the 
meaning of the terms that are involved. 

After we have all relevant definitions at our fingertips, we 
should interpret the theorem for specific examples, which may 
give us some ideas on how to attack the proof. The examples 
will certainly give us a firmer footing for working with the 
abstractions in a meaningful way. 

We should take advantage of our powers of visual reason-
ing and try to visualize the theorem by drawing general pictures 



142 Chapter 2 Writing Our Reasoning 

or pictures of specific examples. The pictures need not be 
descriptive in a detailed way. As long as they give some hint 
of the flavor of the theorem, they can be an invaluable 
resource. 

When we have a good understanding of the verbal and 
visual meaning of the sentence that we want to prove, we 
should then analyze its outside structure. For example, to 
prove A £ A U B, we must see the outside structure of this sen-
tence as A £ Y. We would then use the definition of subset to 
set up the outside structure of our proof. 

Introduce Variables If the sentence that we want to prove has no variables in it, we 
usually translate the sentence in terms of variables so that we 
have something tangible to manipulate. For example, to prove 
that the sum of every two even numbers is even, we would 
introduce variables x and y to represent the even numbers. 

We should scan the proposed theorem for hidden quantifi-
ers, such as "there is" or "any." For each quantifier that we 
find, we introduce a variable, as illustrated in the following 
example. 

There is no largest real number. 

First, notice the phrase "there is," which is flagging the existen-
tial quantifier. We will use x to go with this quantifier. Now, 
we must sort out where the negation goes. A little contempla-
tion should convince us that it goes before the quantifier: 

~ (Hx, x is the largest real number.) 

Next, we translate "x is the largest real number": 

Vy.jrzy 

Then we apply the rules for negating quantifiers: 

~(3xVy,xzy) 

Vx3y,x<y 

Now we translate back to word form: 

For every real number x, there is a real number y such that x<y. 

Now we have the theorem in a form that is easy to prove. 

Theorem C 

Stage 1 
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Translate with Logical Operators In addition to translating in terms of quantifiers, we should 
further translate the proposed theorem in terms of the logical 
operators so that we have a clear understanding of how to 
structure the proof. If the sentence contains words such as 
"only if," "whenever," or "necessary," we should translate it in 
terms of an implication. When we translate to an implication, 
we should then compare the implication with its contrapositive 
and pick the one that seems the easiest to prove. 

2. Write the end and beginning 

What could we put on 
Line 4 to derive Line 5? 

What could we put on 
Line 3 to derive Line 4? 

When planning a car trip across the country, we have to focus 
on where we're going in order to figure out how to get there. 
The same strategy is needed for constructing a proof. If a proof 
is not obvious, we should first write the end of the proof, which 
is the sentence that we want to prove, and then work backwards 
from the end as far as we can. If Line 5 is the last line of the 
proof, we should contemplate what is needed on Line 4 to 
derive Line 5. On the next-to-last line of a proof, we usually 
translate the theorem in terms of a definition, as illustrated in 
the following proof. 

Theorem: For all sets A and B, A £ A \JB. 
Proof: Let A and B be sets. 

Definition 
> For every x, if jce A, then jce A\JB. 

So,AQAUB. 

The above definition of a subset shows us how to structure the 
next layer of the proof. We jump back to the beginning of the 
proof where we introduce the necessary variables and write any 
assumptions needed for whatever we've written on the next-to-
last line. Next, we jump down across the gap and list the 
sentence that we hope to derive, as illustrated below. We now 
have a simplified goal to work towards. 

Theorem: For all sets A and B, AC A\JB. 
Proof: Let A and B be sets. 

" Let x be an element in A. 

^ ThenjcGAUB. 
For every x, if x e A, then xe A \JB. 

So,A£AUB. 
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Using a similar technique, we can set up the outside structure 
of Theorem C, which we analyzed on page 142. 

Theorem C: There is no largest real number. 

1. Let x be a real number. 
2. 
3. There exists a real number y such that x<y. 
4. For every real number x, there is a real number y 

such that x<y. 
5. So, there is no largest real number. 

3. Connect the beginning with the end 

In this stage of the construction process, we work our way from 
the bottom up and from the top down so that we can bridge the 
gap. We usually back up as far as we can from the bottom in 
order to see the direction needed for the beginning of the proof. 
We then jump back to the beginning and try to work our way 
down, focusing always on the line we are trying to derive. 

If we don't see how to connect the beginning with the end, 
we should again review definitions of all the involved terms 
and look for previous theorems that might be useful. We 
should write this information off to the side. When we see 
where we can use any of the information, we can then move it 
into the proof in whatever translated form is needed. 

If we're still stumped, now might be the time to switch to 
another type of proof. Perhaps the theorem can be rephrased in 
a different way, such as the contrapositive, that is easier to 
prove. Or perhaps we may want to try a proof by contradiction 
or use cases or try mathematical induction. We will discuss 
techniques for structuring these types of proofs in the following 
sections. 

Constructing a proof may take a while. The serious think-
ers do not give up. For Carl Gauss, one of the greatest mathe-
maticians of all time, a year was not an unreasonable amount of 
time to spend on an interesting problem. Of course, you must 
have a great passion for what you are doing in order to invest 
that amount of time in a proof. 

When the proof process drags on and on, there are 
techniques to help us get over the humps. If it looks hopeless, 
take a break, and come back to the proof in a couple of hours or 

For a whole year, this theorem 
tormented me and absorbed my 
greatest efforts. . . . Finally, two 
days ago, I succeeded, not on 
account of my painful efforts, but 
by the grace of God. Like a sudden 
flash of lightning, the riddle 
happened to be solved. I myself 
cannot say what was the conducting 
thread which connected what I 
previously knew with what made my 
success possible. 

CarlFriedrich Gauss 
1777-1855 
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even the next day. Meanwhile, we may find that our subcon-
scious has continued to work on it. We may get a sudden flash 
of insight as we wait in the cafeteria line. The more times we 
go back and think about the problem, the more likely we are to 
find a solution. A common attribute of all logical thinkers and 
all good athletes and, in general, all successful people, is perse-
verance. In an extreme sport like mathematics, perseverance is 
essential. Without perseverance, we will not spend the neces-
sary time to even get in the game. 

Sometimes we find ourselves frustrated at having spent so 
much time on a proof, especially if we have no happy ending to 
proudly display. When this happens, it is important to realize 
that we have not wasted our time. Like lifting weights at the 
health club, the time that we spend thinking about a proof 
develops our mental muscles. 

The proofs assigned in the exercises are designed to help 
you develop your own technique for constructing proofs. 
Templates and tips will be given and writing styles will be 
suggested, but the whole goal is for you to figure out the way 
that works best for you. As long as you come up with a proof, 
it doesn't matter how you got there. If you can't get there, 
though, use the techniques presented here. More then likely, 
they will save you a lot of time and frustration. 

With Theorem C, the gap that we left on the previous page 
is very easy to bridge. We have to demonstrate that there exists 
a y such that x < y. One way to show something exists is to 
construct it. In the adjacent proof, x is introduced on Line 1, so 
we can use it in our construction of y0 on Line 2. We then 
show that y0 satisfies the conditions and we have a proof. It's 
that simple. 

4. Polish the Proof After we logically connect the beginning of our proof with the 
end, we are ready for the final stage of the proof process, which 
is to polish and refine it. We should remove any information 
that is not essential to the line of reasoning that connects the 
beginning with the end. A proof should be as simple as 
possible and easy for other people to follow. The reader should 
know that everything we have previously written still holds, so 
we do not need to keep repeating it, unless we are using it to 
explain our reasons. We sometimes leave it to the reader to fill 
in reasons that we consider obvious, but as you probably know 
from your own experience, what an author considers obvious is 
not always obvious to the reader. The amount of justification 

Theorem C: There is no largest 
real number. 

Proof 

1. Let x be a real number. 

2. Define y0 as follows: y0 =x+ 1 
Since x is a real number, 

y0 is a real number. 
Since x < x + 1 , 

x<y0-

3. So, for every x, there is a real 
number y such that x < y. 

4. So, there is no largest real number. 
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we insert for the steps in our proof depends on the audience for 
whom we are writing. 

The proof for Theorem C on the previous page is written in 
an outline style, similar to an outline for an essay. The outline 
style of proof is often used in teaching high school geometry, 
but the paragraph style is always used in mathematics journals 
and in most textbooks. The outline style simplifies the appear-
ance of the line of reasoning so that we can quickly scan it and 
spot any logical errors or missing steps. The visual organiza-
tion of having each new thought start on the left side seems to 
make it easier for the brain to see the connections. The reason-
ing goes straight down, from top to bottom, with no 
wraparounds. The extra white space gives breathing room so 
that we are not overwhelmed by the denseness of the text. The 
numbering of lines in the outline style lends an organizational 
structure to the proof, grouping related sentences together. If 
we number each line in a long proof, though, the organizational 
impact of the numbering is lost. Leaving space on the right 
side for reasons reminds us that we do need a reason to support 
each line, regardless of whether or not we feel it necessary to 
write it down. 

The same proof is written below in a more conversational 
paragraph style. 

Theorem C There is no largest real number. 

Proof- Paragraph Style Let x be a real number. Define ya as follows: y0 = x+1. Since y0 

is the sum of 2 real numbers, y0 is a real number. Furthermore, 
x + 1 > x, so y0 > x. So, for every real number x, there exists a 
real number y such that y > x. Therefore, there is no largest real 
number. 

Writing Style The style that we use when writing a proof should be the best 
format for presenting it to the intended audience. In math 
textbooks, authors usually write proofs in paragraph form, but 
students often find it difficult to follow the reasoning. If this 
happens to you, rewrite the author's proof in outline style and 
you may be surprised at how much easier it is for you to see the 
connecting steps and fill in the missing reasons that were 
obvious to the author. 

The proof styles used in this book were selected for an 
audience who wants to develop their ability to reason logically. 
Most proofs are written in a relaxed outline format, with new 
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thoughts starting on a new line. By seeing the relevant steps 
lined up on the left side, we are programming our brain with 
the essential details needed for logical reasoning. When we 
have our technique down, we will let our brain do more of the 
work in the background and switch over to a more conversa-
tional wrap-around paragraph format. 

Whether writing in outline or paragraph style, formatting 
equations and inequalities so that equal and inequality signs 
line up is an immense help to the reader, as illustrated in the 
adjacent homework. The format for writing the solution to a 
calculus problem is essentially the same as the format for 
writing a proof. When we solve a problem, we use deductive 
reasoning. If we get confused in our homework, more than 
likely it is because of the way we are writing our reasoning. 

If we write sentence fragments, such as 2x- 4 
instead of the complete sentence, f'(x) = 2x-A, 

we are setting ourselves up for major confusion. When we jot 
down the derivative, we know at that moment that we are 
computing the derivative, but if we have no written record of it, 
we cannot check our reasoning to see if we did it correctly, and 
we may end up substituting in the wrong equation. 

In addition to using "equals" to form complete sentences, 
we should supplement our equations with leading words such 
as "set" and "so" and write sentences to explain what is going 
on, as illustrated in the adjacent homework. Review your 
current writing style by looking at homework from last week or 
last semester. Can you figure out what you did? If not, 
perhaps you need to work on how you write for yourself. 
Writing is one of the most important learning tools you have. 
By improving your writing, you are improving your 
understanding. 

Exercise Set 2.3 

1. The domain for x,y,a, b, and c is the set of integers. 
Translate the following sentences. 

a. x is odd. 

b. xy is odd. 

c. a is a factor of b. 

d. a is a factor of b + c. 

e. 7 is a factor of x2. 

Well-written homework: 

Find the absolute minimum value 
of f(x) =x2-4x. 

f'(x) = 2x-4 
Set f\x) = 0. 

2x-4 = 0 
So, x = 2. 

Take die derivative of/'(x): 

/"(*) = 2 
Since f"(x) > 0, the graph is 
always concave up. So/ has 
an absolute minimum at x=2. 

/(2) = (2) 2-4(2)=-4 

So, the minimum value of/is -4 . 

A man who is always able to 
present his subject in such a way 
that it is readily understood, is a 
man who understands it himself. 

A. G. Drachmann 
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2. Do you think the given sentence is true? 
(Test it with examples before jumping to a conclusion.) 
If so, try to construct a proof using the method described in this 
section. First write the end and beginning of the proof, leaving a 
space between the two. Then work backwards as far as you can, 
using your definitions in the previous exercise. Next, jump to the 
beginning and use the definitions to fill in the missing steps. If the 
direct method seems difficult, set it up for the indirect method. 
a. For all integers a, b and c, if a is a factor of b 

and a is a factor of c, then a is a factor of b + c. 
b. Let x be an integer. 

If x has 7 as a factor, then x2 has 7 as a factor. 
c. For every integer x, x is even or x2 is odd. 
d. For every integer x, x2 is odd if and only if x is odd. 
e. For all integers x and y, x is odd and y is odd 

if and only if xy is odd. 

3. Prove the following statement. First set up the outside structure, 
then set up the inner structure. Work backwards as far as you can. 
Complete the steps by focusing on what you want to derive. 

For all real numbers a and b, if a < b, then a < —^— < b. 

Activity 2.4 

1. When you disprove a statement p, what statement do you prove? 

2. Let a and b be integers. The notation a | b is read as "a divides b." 
a divides b if and only if there exists an integer k such that b = ak. 
Prove or disprove the given statement. 
a. 3 | 0 
b. 0 |3 
c. a\a 
d. Ifa|b,thenfc|a. 
e. If a | b and b | a, then a = b. 
f. If a | b and b \ c, then a | c. 
g. If a | b and a \ c, then a | b+c. 
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= 2.4 Working with Quantifiers = 

To prove that a sentence is true for all x, we must demonstrate 
that it is true for each element in the domain of x. We cannot 
prove it by examples unless we give an example for each 
element in the domain. This method of proof is called the 
method of exhaustion. If we have 1000 elements in the 
domain, this technique will certainly be exhausting, that is, 
unless we're using a computer. If the domain is an infinite set 
and an infinite list of examples must be individually checked, 
not even a computer can handle the task. So we must find a 
general way to prove the result. 

Universal Quantifier When we construct a proof, for each variable x that is univer-
sally quantified, we should have a sentence of the following 
form: 

Let x be an element in the domain. 

After this type of introduction, x represent a generic member of 
the domain. Later in the proof we cannot assign x a specific 
value, such as "set x = 2," because x would no longer represent 
an arbitrary element. However, based on the assumptions in 
our proof, we may be able to derive that x-2. We could also 
assume that x = 2, but we would have to use that assumption in 
any stand-alone deductions that we make. 

We can change the domain or meaning of* when we have a 
subproof in which the reader is fully aware that we are no 
longer using any threads from our previous usage of x. As a 
good writer, we must plant the necessary signposts so that the 
reader knows when a separate part of the proof starts and stops. 

Existential Quantifier To prove that a sentence is true for some x, one single example 
will suffice. The existence of such an x can be proved by 
constructing or defining an x0 that satisfies the condition. We 
use the subscript in x0 to remind us that x0 is a specific element 
and not an arbitrary element, as is the case when x is 
universally quantified. 

Constructing Xo In a proof, we indicate that we are constructing x0 by writing a 
sentence of the following form: 

Define x0 as follows: x0 = 

When we construct an x0, we should point out that it satisfies 
the required conditions, as illustrated in the following proofs. 
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Theorem: There exists an integer x such that for every integer y, x + v = y. 

Proof: Let x„ = 0. Note that 0 is an integer. 
Let v be an integer. Then xo+y = 0+y=y. 
Therefore, there exists an integer x such that 
for every integer y, x + y = y. 

For every integer y, there exists an integer x such that, x+y = 0. 

Let y be an integer. 
Definex0 as follows: x0 = -y. 
Since y is an integer, -y is an integer. 
*»+У = (-у)+у = 0. 
Therefore, for every integer y, there exists an integer x 
such that, x+y = 0. 

Order of the Quantifiers Note how the order of the first two lines in the above proofs 
follows the order of the quantifiers in the theorem. The order 
of mixed quantifiers makes a difference in the meaning (page 
30), so we must always introduce mixed quantifiers in the order 
in which they appear in the theorem. If y has already been 
introduced, we may use y in the construction of x0. However, if 
y has not been introduced, we cannot use y in the construction 
of x„, as illustrated in the following two templates: 

Theorem: Vy 3x, p(x,y) 
Proof. Let y be an element in the domain. 

Let jto = (We can use y to construct x„.) 

So, p(xo,y) is true. 

Theorem: 3x Vy, p(x,y) 
Proof: Let x0= (We cannot use y to construct x*) 

Let y be an element in the domain. 

So, p(xo,y) is true. 

Theorem: 

Proof. 
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Onto Functions 

*J \ fa) J 
X y 

/ m a p s X onto Y 
if and only if 

for every y in Y, 

there exists an x in X 

such that/(*) = y, 

To practice the technique of working with mixed quantifiers, 
we will work with the definition of an onto function. If a 
function/maps the set X into the set Y, then each element x in 
the set X is mapped to an element f(x) in the set Y, as illustrated 
on the left. However, an element in Kdoes not necessarily have 
an x that maps to it. If each element in Y does have an x that 
maps to it, we say that/maps X onto Y. 

/maps X onto Y 

if and only if 

for every y in Y, there exists an x in X such that/(x) = y. 

Because of the mixed quantifiers, many students find it difficult 
to write proofs that use the definition of onto. However, if we 
condition ourselves to structure our thinking in the correct 
order, the proofs will seem fairly simple. 

-Ф- Example 

/maps R onto R 
if and only if 

for every y in R, 
there exists an x in II 
such that/(x) = y. 

Let/(x) = 2x + 1 where x is a real number. Let R represent the 
set of real numbers. Prove that/maps Ш onto R. 

First we translate the previous definition of an onto function for 
the set R, which gives us the adjacent definition. Next we set 
up the outside structure of our proof by working through the 
quantifiers from left to right. The first quantifier gives us the 
first sentence in our proof; the second quantifier gives us the 
second sentence. The remaining part of the definition gives us 
the third part of our proof. 

1. Let y be an element in IR. 

2. Let x0 = 

3. So, f(xD) = y. 

Our job now is to find x„. Since y is introduced in the first step 
of our proof, we can use v to define *0. The only clue we have 
is that f(Xo) = y. Working backwards from this equation, we 
can figure out how to express x0 in terms of y. 

f(Xo) = y 
/ ( JC) = 2*0+1 . 

y = 2x0+l .. 
2x0 = y-l 

_ LLL 

... Definition off 
.. Substitution 

... Algebra 

We have found x0. However, we will not insert the above steps 
in our polished proof. Instead, we will first define x0. Then, 



152 Chapter 2 Writing Our Reasoning 

we will arrange the previous steps in the reverse order to 
demonstrate that/(Ar0) = y. We must also check to see if x0 is a 
real number as required in the definition of onto. In the follow-
ing proof, the steps are numbered to correspond to the 3 steps 
we used to structure the proof. 

Theorem Let/(x) = 2x + 1 and let IR represents the set of real numbers. 
Then/maps IR onto IR. 

Proof 1. Let y be a real number. 
y-\ 

2. Define xa as follows: x0 = - y . 
x0 is a real number Since y is real, y -1 is real. 

y-l 
So ~2~ is a real number. 

3- f(Xo) = 2x0 + 1 Definition off 
y-\ 

= 2 (~2~) + 1 Substitute for Xo 
= 0-l)+1 
= y 

So, for every real number y, there exists a real number 
x such that/Ox) =y. Therefore,/maps IR onto IR. 

Example Let/(x) = 2x where x is in N. N={1,2,3,.. .} 
Prove that/does not map N onto N. 

First, we negate the definition of onto: 

~(Vy in N, 3* in N, f{x) = y) 
ByinN, VxinN, f(x)*y 

Using the above translation, we set up the outside structure of 
our proof by working with the quantifiers from left to right: 

1. Lety0 = 
2. Let x be an element in 141. 
3. So,/(x)*y„. 

Our job now is to find a specific natural number y0 so that for 
every natural number x, f(x) Ф y0. Because of the order of the 
quantifiers, we cannot use д: in our construction of y0. 

To find a y„ that will do the described task, let's think about 
the range of the function/. Since f(x) = 2x, f(x) is even for 
every natural number x. Thus, we can pick y0 to be any natural 
number that is not even. In the following proof, we let y0be 3. 



2.4 Working with Quantifiers 153 

Theorem Let N = \ 1, 2, 3 , . . . }. Let/(x) = 2x where x is in N. 
The function/does not map N onto N. 

Proof 1. Let>>o = 3. 3eN. 
2. Let x be an element in N. Then/U) = 2x. 
3. Since x is an integer, 2x is an even number. 

But 3 is not even. So,/(;t)*3. 

Thus, by the definition of onto,/does not map N onto I 

Disproving a Statement To disprove a statement, we prove its negation. First, we 
negate the sentence, bringing the negation across any 
quantifiers or logical operators so that we can see how to 
structure the proof. We then use the standard techniques for 
constructing a proof of the negated statement. 

•Ф- Example Disprove the following: For all real numbers, a, b, and c, 
if a < b, then ca < cb. 

First, we negate the above sentence so that we can see how to 
structure the proof: 

~(\/д Vb Vc, a<b=>ca<cb) 

3a 3b 3c, a<b and ca <cb 

Our job now is to find real numbers a, b, and c so that: 

a < b and ca < cb. 

We can write our proof as follows: 

Proof Setfl = 2,è = 3,andc = - 1 . 2<3, but (-1)- 2> (-1)- 3. 
So, there exists real numbers a, b, and c such that a<b 
and ca<cb. 

We can disprove a universally quantified sentence by finding a 
counterexample. However, we cannot disprove an existentially 
quantified sentence with a counterexample because its negation 
will be universally quantified. 
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■Ф- Example Disprove the following: There exists an integer x such that 
x is odd and x2 is even. 

First we translate the negation. 

~(3x, x is odd and x2 is even.) 

VJC, x is not odd or x2 is not even. 

Next we translate the or-sentence as an implication: 

Vx, x is odd => x2 is not even. 

For every integer x, if x is odd, then x2 is odd. 

We set up the outside structure of our proof in Steps 1 and 5 of 
the following proof. Then we move to Step 4 and use the 
definition of odd to translate Step 5. 

Step 4 is our focus as we figure out how to bridge the gap. 
Our job is to find j . If we stay focused on this task, 
the connecting steps become fairly obvious. 

From Step 2, we square both sides of the equation to get x2 into 
the picture. Then guided by our goal, which is to find./, we do 
algebraic manipulations and juggle the expression into the 
desired form: 

Proof I. Let x be an integer. 

Assume that x is odd. 

2. There exists an integer k such that x = 2k+\. 

3. jt2 = (2*+l)2 = 4*2+4*+l=2(2ifc2 + 2*)+l . 

Define./ as follows: j = 2k2 + 2k. 

Since £ is an integer, j is an integer. 

Next we substitute j in the above expression for x2. 

x*=2j+l. 
•-> 4. So, there exists an integer./ such that x2 = 2j +1. 

5. Therefore, x2 is odd. 

6. So, there exists does not exist an integer x such that 
x is odd and x2 is even. 
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To Prove or Disprove? 

Layers of Quantifiers 

Before we get to the stage of writing a proof, a considerable 
amount of detective work may be needed to decide whether to 
prove or disprove the statement. With some statements, our 
choice may be fairly obvious, but if we're not sure, we should 
contemplate both the sentence and its translated negation. If we 
think a universally quantified sentence is true, we should test a 
wide range of examples. If we do not come across a 
counterexample, we may be ready to try to write a general 
proof of the statement. However, we should keep in mind that 
our examples do not guarantee that the sentence is always true. 
If we are unable to construct a proof for the general case, we 
should look further for counterexamples. 

For an existentially quantified sentence, we should 
diligently search for a particular example that makes the 
sentence true. Sometimes, we may be able to derive the 
existence of an element without actually constructing it, as 
illustrated in the proof on page 157. 

When a proof has layers of quantifiers, we can easily become 
confused unless we structure our thinking. To work through 
several layers of quantifiers, we need to carefully peel away the 
layers with our focus always on what we're trying to derive. 

For example, let's try to prove the following theorem, which 
has three layers of mixed quantifiers embedded in the defini-
tions of the three onto functions. 

Theorem If/maps X onto Y and g maps Y onto Z, then g o/maps X onto Z. 

/maps X onto Y 
if and only if 

for every y in Y, there exists 
an x in X such that/(x) = y. 

Before we start structuring the proof, we should review the 
definitions of the involved terms and try to visual what the 
theorem says. First, we draw the adjacent sketch to help us 
keep in mind the relation between these three functions. The 
function/maps a point in X to a point in Y, whereas g maps a 
point in Y to a point in Z. Since/(x) is an element in Y and g 
maps Y into Z, g(f(x)) is located in Z. The function g»/, which 
maps X into Z, is defined as follows: 

g°№ = g{f{x)) 

We will examine g o/in more detail on page 358. The defini-
tion of an onto function is given on the left. Now that we have 
the definitions in front of us, we are ready to write the outside 
structure of the proof: 
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Assume that/maps X onto Y and g maps Y onto Z. 

1. Assume that / maps X onto Y 
and g maps Y onto Z. 

2. Let z be an element in Z. 

So,(s°/)(x0) = z. 
6. There exists an лг0 in X 

such that g°f(x0) - z. 
7. For all z in Z, there exists an 

x0 in X such that g ° / (xa) = z. 
8. So g °/maps X onto Z. 

So g o/maps X onto Z. 

Most students want to start at the top and translate Step 1, but 
we are not going to do that because we are logical thinkers and 
we are going to focus on what we want to derive. An assump-
tion in a proof is similar to money in a savings account where 
the owner does not draw on the money until there is a real need 
for it. We have no idea yet as to where we will need to use the 
two assumptions in our first step, so we will leave them in the 
bank for future use. Now, let's focus on what we want to 
derive and translate the last step, "g o/maps X onto Z." 

For every z in Z, there exists an x0 in X such that g°f(x0) = z. 

The above translation tells us how to set up the inner 
structure of the proof. As always, we start with the 
first quantifier at the beginning of the sentence, which 
gives us Step 2 in our proof. 

We put the remainder of the sentence in Step 6, as 
illustrated on the left. Step 6 is highlighted in bold to 
remind us that it is our goal. 

When we find *<,, we must compute g °f(x0) and show 
that gof(x0) = z, which gives us Step 5 in our proof. 

Now we focus on Step 6. Our job is to find x0. Unlike 
our previous proofs, though, we will not construct it; 
instead, we will deduce its existence from the fact that 
both/and g are onto functions. 

Let's visualize what's going on. At this stage, we have z over in 
the set Z, as illustrated in the adjacent sketch. We are looking 
for an x0 over in X. In the sketch, we can see that g gives us a 
way to back up closer to the set X. Since g maps Y onto Z: 

3. There exists a yo in Y such that g(y0) = z. 

Now, we focus on y0. Since/maps X onto Y: 

4. There exists an xo in X such that f(xo) = yo. 

At last, we have found x0. All we have left to do is justify Step 
5 by using substitution. In the following polished version of 
this proof, we leave out Step 7 since the reader should be able 
to see that we have satisfied the definition of onto. 
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Theorem Iff maps X onto Y and g maps Y onto Z, then g ° / 
maps X onto Z. 

Proo/ Assume that/maps X onto Y and g maps Y onto Z. 

- Let z be an element in Z. 

Since g is onto, there exists a y„ in Y such that g(y0) = z. 

Since/is onto, there exists an *0 in X such that/(x0) = y0. 

By the definition of composition: g °f(x0) = g(f{x0)) 

Substitute y0 for/(;co): = g(y0) 

Substitute z for g(y0): = z 
L~^ So, there exists an x0 in X such that g °f(x0) = z. 

Therefore, g o / maps X onto Z. 

If you understand the reasoning process for structuring the 
above proof, congratulations, for you have reached a new level 
in the development of your reasoning skills. We must resist the 
temptation to start working from the top down. Instead, we 
should focus on what we want to achieve and then structure our 
thinking so that we can reach our goal. 

Exercise Set 2.4 

1. Define the following using variables and quantifiers. 

a. x is a rational number. 
b. x + vis rational. 

c. y is rational. 

d. x is irrational. 

2. Let x and y be arbitrary real numbers. 
Prove or disprove each statement. 

a. If x is rational, then -x is rational. 

b. If x is irrational, then - * is irrational. 

c. If x is rational and y is rational, then x+y is rational. 

d. If x is irrational and y is irrational, then JC + y is irrational. 

e. If JC and y are rational numbers, then y is rational. 

f. If x and y are rational numbers and y Ф 0, then j is rational. 
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g. If x is rational and y is irrational, then x+y is irrational. 
Hint: If you are clever, you can set up your structure so that 
you don't have to deal with irrationals. See (4) on page 140. 

3. Prove or disprove each statement. 
a. For every real number y, there exists a real number x such that 

x + 2y = 7. 
b. There exists a real number x such that for every real number y, 

x + 2y = l. 
c. There exists a real number x such that for every real number y, 

x<y. 
d There exists a real number x such that for every natural number 

y,x<y. 
4. Let fix) = 5x + 2. Prove or disprove each statement. 

U is the set of real numbers. N is the set of natural numbers. 
a. /maps IR onto U. b. /maps № onto N. 

5. Let/(x) = Jt2. Prove or disprove that / maps U onto IR. 

6. Theorem: If g maps A onto B and h maps B onto C, 
then hog maps A onto C. 
a. Draw a sketch that illustrates the above theorem. 
b. Set up the outside structure for a proof of the above theorem. 
c. Complete your proof in part (b). 

7. Prove or disprove each statement. 
a. For every real number x, 2x< 3*. 
b. There is no smallest positive real number. 
c. The interval (3,5) does not have a smallest element. 

8. Between any two distinct rational numbers, regardless of how 
close together they are, can you always find another rational 
number between them? If so, how would you do it? 
a. Consider the question for specific examples. 

Can you find a rational number between "ЙЙО and Toòo ? 
b. Consider the question visually. 

In the adjacent sketch, let a and b —Q 5—g— 
be rational numbers. Can you find a 
rational number between a and bl If so, what is it? 
Hint: Let Xo be halfway between a and b. Does дс0 have to be a 
rational number? Find a formula for Xo in terms of a and b. 
Use visual reasoning to justify your formula. 
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9. Complete the proof of the following theorem. You may cite 
previous theorems that you have proved about rational numbers. 
The word "claim" is used as a signpost to tell the reader that you 
are now going to do a subproof and prove this claim. It serves the 
same function as the "theorem" heading. You cannot make 
derivations from the claim. 

Theorem: Between every two distinct rational numbers, there is 
another rational number. 

Proof: Let a and b be rational numbers with a < b. 
Set x0 = . 
x0 is a rational number because 
Claim: a<x0. 

Therefore, a<x0. 
Claim: x0<b. 

Therefore, x0<b. 
So, Xo is between a and b. 

10. Prove or disprove each statement. 
a. Between every two real numbers, there is another real number. 
b. If a < b + x for every positive number x, then a < b. 

11. The theorem in exercise 9 tells us that the rational numbers are 
very densely distributed along the number line. Between every 
two rational numbers there is another rational number. 
a. Between every two distinct rational numbers, are there an 

infinite number of rational numbers? If so, explain your 
reasoning. 

b. Do you think the rational numbers fill up the number line? Is 
the coordinate of each point on a number line a rational 
number? Justify your answer. 

12. An algorithm is a procedure for accomplishing a specified task. 
An algorithm for finding a number y larger than a given number x 
could be stated as y=x+\. This algorithm is not unique. 
a. Give an algorithm that could be programmed into a computer 

so that for every two different rational numbers that we input, 
the computer will output a rational number that is between the 
two input numbers. 

b. Find another algorithm that outputs a rational number between 
two given rational numbers, but this time make the output 
different than the output for the algorithm in part (a). 
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Activity 2.5 

1. Let x and y be real numbers. 
a. If xy > 0, what do you know about x and y? 

b. If (X-2)(JC+ 1)>0, what do you know about x- 2 and x+ 1? 
c. Use part (b) to solve the following inequality: (x - 2)(x + 1) > 0 

2. Let x and y be real numbers. 
a. If xy < 0, what do you know about x and y? 

b. If (x-l)(x+ 1)<0, what do you know about * - 1 and*+ 1? 
c. Use part (b) to solve the following inequality: (д:— 1)(х+ 1)<0. 

When trying to construct a proof, we may sometimes feel as 
though our hands are tied because we don't have enough infor-
mation. When this happens, we may want to introduce cases so 
that we have additional information to use within each case. 
For example, a proof about real numbers could be subdivided 
into the following cases: 

Case 1: Assume that x > 0. 

Case 2: Assume that x < 0. 

Since "x ̂  0 or x < 0" is true, either Case 1 or Case 2 must be 
true. When we do our reasoning in Case 1, we have the addi-
tional information that x t 0, which may help us derive the 
desired result. Within Case 2, we can use that x < 0. If we are 
able to derive the desired result in both cases, we then know 
that the result is always true. 

A proof can be subdivided into cases by using a true 
or-sentence, such as "JC>0 or x<0." In the adjacent template, 
the or-sentence is represented asp or q. The letter r represents 
the sentence that we want to prove. Each part of the or-
sentence determines a case. In Case 1, we assume thatp is true 
and then derive r. In Case 2, we assume that q is true and then 
derive r. Since one of the two cases is true, we can conclude 
that r must always be true. The following proof illustrates the 
technique for using cases in a proof. 

= 2.5 Using Cases = 

Derive, r 

Proof with Cases: 
pot q 
Case 1: Assume p is true. 

Therefore, r. 
Case 2: Assume q is true. 

Therefore, r. 

Since one of the 2 cases 
must occur and r is true in 
both cases, r is always true. 
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Theorem Let x and y be integers. If x is even or y is even, 
then xy is even. 

Proof Assume that x is even or y is even. 

Case 1: Suppose that x is even. 
Then x = 2k for some integer k. 
So,xy = (.2k)y = 2(ky) 
Since к and y are both integers, ky is an integer. 
Therefore, xy is even. 

Case 2: Suppose that y is even. 
Then y = 2/ for some integer j . 
So,xy =x{2j) = 2(jx) 
Since j and JC are both integers,/x is an integer. 
So xy is even. 

Since one of the two cases must occur, xy is even. 
So, if x is even ory is even, then xy is even. 

If we have an or-sentence in the middle of a proof, we can 
branch into cases. Since "p or ~p" is always true, any sentence 
p can be used to set up cases in a proof: 

Case 1: Assume/? is true. 

Case 2: Assume p is false. 

The trick is to find cases that will help us derive the desired 
conclusion. We can use as many cases as we like, as long as 
we know that at least one of the cases must be true. If we are 
able to derive the desired conclusion for each case, we can then 
conclude that the conclusion must always be true. Sometimes 
when we use cases, though, we derive different conclusions. 
When this happens, we can conclude that either the conclusion 
in Case 1 or the conclusion in Case 2 must be true, as illus-
trated in the adjacent template. 

When we use cases to solve an inequality, we often get 
different conclusions as illustrated in the next example. Cases 
are introduced by using the following property of real numbers: 

If a product of two numbers is positive, 

both factors are positive or both are negative. 

Derive: r or s 

Proof with Cases: 

poi q 
Case 1: 

Case 2: 

Assume p 

Therefore, 
Assume q 

Therefore, 

Therefore, r or s. 

is true. 

r. 
is true. 

s. 
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4- Example Solve the inequality: (x- l)(x + 3) > 0. 

Assume that (x — 1)(JC + 3) > 0. 

Both factors must be positive or both must be negative. 
So (x-l>0and;c + 3>0) or 0c-l<0and* + 3<0). 

Case I: Assume that x-1 > 0 andx + 3 >0. 
Then;c>l andx>-3. 
In order for both of these inequalities to hold, 
x must be greater than 1. 
So the solution for this case is: x> 1. 

Case!: Assume that x-1<0 and * + 3<0. 
Thenx<l andx<-3. 
In order for both of these inequalities to hold, 
x must be less than -3 . 
So the solution for this case is: JC<-3. 

Since either Case 1 or Case 2 must occur, the solution to the 
original inequality is: x> 1 or x<-3. 

Inequalities 

- 3 - 2 - 1 0 1 2 3 

Unlike a proof, when we solve an equation or inequality, our 
derivations have to go both ways. In a proof, we could 
conclude in Case 1 that x > -3. However, that condition does 
not reverse and give a solution to the inequality. 

We often use cases when we work with inequalities, so let's 
briefly review the basic rules for inequalities. The set of all real 
numbers can be divided into three nonoverlapping sets, the 
positive numbers, the negative numbers and 0. We do not 
classify 0 as either positive or negative; 0 serves as the boun-
dary, separating the positive numbers from the real numbers. 

The negative numbers are a mirror image of the positive 
numbers. When we look in a mirror, left becomes right and 
right becomes left. Consequently, when we work with positive 
and negative numbers, these mirror images cause a lot of 
switching, which can be confusing if we do not keep the rules 
straight. 

The set of real numbers is ordered from left to right with no 
regard for the mirror images. On a number line, a < b if and 
only if a is to the left of b. Since "left" is a relative term that 
depends on the point of view, we need a more objective defini-
tion for "less than." 
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Using the subtraction operation and the concept of a positive 
number, we can define "less than" as follows: 

a<b if and only if b -a is positive. 

a<b We can now define "greater than" in terms of "less than." 

if and only if a > b if and only if b < a. 
b— ah positive 

Since the > symbol is a mirror image of the < symbol, our eyes 
may sometimes play tricks on us when both symbols are 
present. If we translate to only one of the inequality symbols 
the sentence may seem simpler. For example, we may want to 
rewrite "a <b and c > b" as "a <b and b < c." 

Multiplication was extended to the negative numbers in a 
way that would preserve the existing properties of multiplica-
tion on the positive numbers. Consequently the product of two 
negative numbers is defined to be a positive number, whereas 
the product of a positive number and a negative number is 
defined to be a negative number. Translating in terms of 
variables gives the following sentences: 

ab>0 if and only if 
(a>0 and 6>0) or (a<0and£<0). 

ab<0 if and only if 
(a>0andfc<0) or (a<0andfc>0) 

Using the above two properties, we can derive the following 
rules for multiplying an inequality by a real number: 

Theorem Let a, b, and c be real numbers and let a < b. 
If 0<c, then ac< be. 
If c<0, then ac>be. 

Proof Let a < b. By the < definition, 0 < b - a. 
Assume that 0<c. 

Since the product of two positive numbers is positive, 
0<(b-a)c. Thus, 0<bc-ac. 

So, by the < definition, ac < be. 
Assume that c<0. 

Since the product of a positive and a negative 
number is negative, (b - a) c < 0. 
Thus, be - ac < 0. By the < definition, be < ac. 
So, by the > definition, ac > cb. 
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If we multiply an inequality by a positive number, the inequal-
ity does not change, but if we multiply by a negative number, 
the inequality is reversed. Students sometimes forget to use the 
latter rule because we do not have to make this type of distinc-
tion when working with equations: 

If a = b and c is a real number, then ac = be. 

With inequalities, though, we have 3 cases: 

Case 1: If a <b and c> 0, then ac<bc. 

Case 2: If a < b and c < 0, then ac > be. 

Case 3: If a<b and c = 0, then ac = be. 

We will use Case 2 to prove the following two theorems. 

Let x be a real number. If -1 <x, then 1 > - x. 

Assume that -\<x. 
Multiplying the inequality by -1 reverses the inequality: 

(_1)(_1)> -x 

Therefore, 1 > - x. 

Theorem E Let x be a real number. I f - l< ; t<0 , then - х > л?. 

Proof Assume that -1<JC and JC<0. 

Since x<0, multiplying the first inequality by x reverses it: 

- 1 < * 

X-(~l)>X'X 

Thus, -x>x2. 

We will use the above two theorems in Case 2 of the following 
proof. In the construction of this proof, we first set up the 
outside structure, and then we will work from the top down: 

Assume that —1 <JC< 1. 

Theorem D 

Proof 

Then JC2<1. 
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We will multiply an inequality by x, so we must split the 
following proof into three cases. Since we assume —1 <JC< 1 in 
the beginning of the proof, we can use it in each case. 

Theorem Let x be a real number. If -1 <x< 1, then x2 < 1. 

Proof Assume that -1 <x < 1. 
Then -\<x and x<l. 
Since x is a real number, x > 0 or x < 0 or x = 0. 

Case 1: Assume that*>0. 
In our original assumption, x < 1. 

Since *>0, x-x<x-l 
Thus, x?-<x. 

We now have that x2 <x and x < 1. 
Since < is transitive, x2 < 1. 

Case 2: Assume that x<0. 
In our original assumption, -1 <x. 
From Theorem E on the previous page, 
From Theorem D on the previous page, 
We now have that 1 > -JC and -x > x2. 
Since > is transitive, 1 >x2. 
Thus ,^< l . 

Case 3: Suppose that x = 0. 
Then^ = 0. SOJC2<1. 

In each of the 3 cases, x2 < 1. 
Furthermore, one of these cases must occur. 
Therefore, if -1 <x< 1, then x2 < 1. 

In Case 2, note the clever way that transitivity is used to 
produce the desired result. This proof is a little tedious, but it 
does show why the statement is true. 

The method used to construct the above proof was to first 
set up the outside shell, then go to the top and work straight 
down, plowing through all the detail until we finally saw the 
light at the end of the tunnel. However, we could have walked 
around the mountain if we had focused more on working 
backwards from the end, as illustrated on the next page. 

-x>x2. 
\>-x. 
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Assume that —1 <дг< 1. 

^> So,0<(l+x)(l-*) 
0 < 1 - ^ 

Then дс2<1. 

This more thoughtful analysis gives us a simpler goal to work 
towards, namely, show that the product of 1+JC and l-x is 
positive. 

Let x be a real number. If—1 <JC< 1, thenjc2<l. 

Assume that -1 <*< 1. 
Then —1 <дг and *<1. 
So, 0<1+д: and 0< 1 — JC. 

Since the product of two positive numbers is positive: 
0<(1+*)(1-*). 
(K l -* 2 

Therefore, х2<1. 

After working through the detail of the former proof, the 
beauty in the simplicity of the above proof shines like polished 
crystal. 

Sometimes when we use cases, we discover that one of the 
cases cannot occur. If a case cannot occur and we derive the 
desired result in each of the other cases, then our theorem is 
true. This happens in the following proof of the converse of the 
previous theorem. 

Theorem For every real number JC, if JC2< 1, then —1 <JC< 1. 

Proof Assume that J ^ < 1 . Then д ^ - ^ О . 
So (x - l)(x +1) < 0. Since the product is negative, 
one factor must be positive and the other negative. 

Case 1: Assume that*-1 >0 and x+1 <0. 
Then *>1 and x<-l. 

There is no x that satisfies both inequalities, 
so this case cannot occur. 

Theorem 

Proof 

Impossible Cases 
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Case 2: Assume that x- 1 <0 and x + 1 > 0 
Then JC< 1 and x>-l. 

So, —1 <JC< 1. 

Since only Case 2 can occur, -1 <x< 1. 

Therefore, for every real number*, if x*< 1, then —1 <JC< 1. 

Exercise Set 2.5 

1. Use cases to solve each inequality. 
a. (* + 2)(*-4)>0 c. ^ - 9 > 0 
b. (*-3)(*-4)<0 d. ^ - 4 < 0 

2. Prove each statement. Let x and a be real numbers. 
| x\ denotes the absolute value of*. 

Definition: \x\ = x, if*žO. 
|* | = -*, if*<0. 

Definition: x <. a if and only if * < a or * = a. 
XZ a if and only if x<,a. 

a. f ž O 
b. хй\х\ 
c. | * | = | - * | 

d. If *> 1 or*<-l , then*2> 1. 
e. If*£l o r*s - l , then*2^. 
f. Leta>0. хг<аг if and only if -a<x<a. 

3. Let n be an integer. Then n is even or n is odd. 
Use this statement to set up cases and prove the following: 
a. n2 - n is even. b. ^-\— is an integer. 

Activity 2.6 

1. Using only a straightedge and a compass, describe how to locate 
Jl on a number line. 

2. Assume that JJ is a rational number. Then try to derive a 
contradiction. 
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= 2.6 Proof by Contradiction = 

Do I contradict myself? 

Very well then I contradict myself. 

I am large I contain multitudes. 

Walt Whitman 

Leaves of Grass 

Derive:, 

Proof by Contradiction 

Assume that r is false. 

Therefore, c is true. 

Therefore, c is false. 

Contradiction! 

So, r must be true. 

Validity of Contradiction Proofs 

Contradictions have a place in other systems of thought, such 
as Walt Whitman's poetic view of the world, or in a Buddhist's 
meditation on a contradiction to reach a higher level of spiritual 
experience. However, in the house of mathematics, we do not 
allow contradictions. As we will see on page 205, one little 
contradiction wipes out our whole logical system. If we make 
an assumption that produces one of these lethal contradictions, 
we deduce that the assumption had to be false, which is the 
basis for a proof by contradiction. 

The structure of a proof by contradiction is illustrated in the 
adjacent template; r represents the sentence we want to prove 
and c represents the contradiction that we find. First, we 
assume the negation of what we want to prove. Then we 
search until we find a sentence c that we can derive as true and 
also derive as false, which makes it a contradiction. Since a 
contradiction cannot exist, our original assumption that 
produced the contradiction must be false. Therefore, r is true. 

A proof by contradiction is rather negative in spirit. It 
shows us why a sentence can't be false, but it doesn't really 
show us why it is true. We deduce that the sentence is true 
because it can't be false. Nevertheless, this method of proof is 
a powerful tool that enables us to prove some theorms that we 
might not be able to prove with a more positive outlook. 

When we prove the contrapositive of a sentence, we also 
switch into negative mode, assuming that the conclusion is 
false. Our goal then is to show that the hypothesis is false. 
However, when we do a proof by contradiction, we have no 
idea as to what our goal is, other than to find a contradiction. 
We have no clue as to where to look for it. Like Sherlock 
Holmes, we must be very clever as we search for a deadly 
contradiction lurking somewhere. 

To justify the validity of a proof by contradiction, we can argue 
as follows. When we assume ~r is true and derive c and ~c, we 
have proved the following implication: 

~r => (c and ~c) 

Next we translate the above implication as an or-sentence. 

r or (c and ~c) 
Since (c and ~c) is false, r must be true. 
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A Very Famous Proof One of the most famous proofs by contradiction is the proof 
that /2 is an irrational number. If you tried to prove this 
theorem in Activity 2.6, you understand the challenge in 
finding a contradiction with no clear goal to guide us. If you 
were not successful, you may be surprised to learn that 
someone did prove it way back in the 4th century B.C.E. 
Before we prove that JÏ is irrational, let's take a historical look 
at why there was a great interest in this question 2400 years 
ago. 

Deep thinkers have always sought out other thinkers, for 
ideas get a nurturing cross-fertilization in a community of 
thinkers. In the 5th century B.C.E., Pythagoras founded one of 
the earliest known schools of thinkers, known as the Pythago-
rean brotherhood. The ideas developed by the Pythagoreans 
had a lasting impact on the developing cultures of the western 
world. Consumed with a desire to explain why things happen, 
the Pythagoreans were among the first thinkers to use deduc-
tive reasoning. They developed it into a fine art, proving the 
Pythagorean theorem and many others as well. Using the 
deductive process to analyze the sounds of music, they asked 
the question as to why some combinations of sounds are more 
pleasing to the ear than other combinations. When they discov-
ered that harmonic tones of music came from plucking strings 
whose lengths were simple ratios of natural numbers, they then 
created the musical scale from which western music evolved. 
The beautiful simplicity of this mathematical relation between 
ratios of natural numbers and musical harmony led the 
Pythagoreans to a spiritual belief that all nature originated from 
the natural numbers, causing them to endow these numbers 
with mystical properties. 

After the counting numbers were developed to measure 
sizes of sets, the next giant step was to develop numbers for 
measuring lengths and distances. For this purpose, the ruler 
was created by evenly spacing the counting numbers on a ruler. 
The unit interval was then subdivided into n equal subintervals 

1 9 "\ n 

whose right endpoints were labeled as тг, ■«, ir. • • • . "n. and 
thus were the rational numbers created. Like the harmonic 
tones of music, the Pythagoreans believed that all lengths could 
be represented as a ratio of natural numbers, which certainly 
seems visually plausible. The Pythagoreans knew that between 
any two rational numbers, no matter how close together they 
are, there is always another rational number (page 159), and so 
it does appear as if the rational numbers should fill up the 
number line. So, it appeared as though any length could be 
represented as a ratio of natural numbers. 
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New knowledge sometimes brings disturbing revelations 
for it forces us to reexamine our previous beliefs in terms of the 
new insight. Such was the case with the Pythagorean Theorem. 
Through this theorem, the Pythagoreans could easily construct 
a length that represents / 2 , as illustrated on the left. However, 
try as they might, the Pythagoreans could not find two natural 
numbers whose quotient was 72". According to legend, while 
sailing on the sunny Mediterranean, a Pythagorean brother 
came up with a proof by contradiction that Д could not be 
expressed as a ratio of natural numbers. His companions, 
greatly distressed by the fatal impact his proof had on their 
religious beliefs, ungratefully threw the author overboard and 
drowned him. Of course, this story may not be true, but it is 
certainly true that whoever came up with the following proof 
was a very deep thinker. 

Theorem Jl is not a rational number. 

Proof by Contradiction Suppose that -Jl is a rational number. 

So there exist integers a and b such that J2 = ■£■• 
If a and b have any common factors, cancel them so that 
we are left with integers c and d such that that J2 = ■§■, 
and c and d have no common factors. 

We will now contradict that c and d have no common factors. 

First, we will do some simple algebra: Jl = -j 

2-sL 

2d2 = c2 

Since c2 has 2 as a factor, c2 is even. By a previous theorem 
(page 138), if c2 is even, then c is even. So, c is even, and 
hence, 2 is a factor of c. Thus, c - 2k for some integer k. 

Now we will do some more algebra: c2 = 4k2 

Since 2d2 = c2, 2d2 = 4** 
So, d2 = 2C 

Since d2 is even, d is even. So 2 is a factor of d. 
Thus, 2 is a factor of both c and d. 
But c and d have no common factors. Contradiction! 

•л 
1 

c2=l2 + l2 

c* = 2 
So, с=Д 

So our original assumption is false. 
Thus, Jl is not a rational number. 
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As you admire the ingenuity in the previous chain of reasoning, 
please observe how unrelated the contradictory sentence is to 
the original assumption. The great challenge in constructing a 
proof by contradiction is to actually find a contradiction, for 
there are no pointers as to where to look for it like we have in a 
proof by contraposition. 

A contrapositive proof can be construed as a contradiction, 
as illustrated in the adjacent template. After we assume p is 
true, we want to derive that q is true, so we switch into contra-
diction mode and assume q is false. We then derive that p is 
false, which contradicts our original assumption. However, if 
we did not use the fact that p was true, we could remove the 
first line and the other two italicized lines, which leaves us with 
a proof of the contrapositive, ~q => ~p. Using the word 'contra-
diction' for a proof of the contrapositive makes the proof longer 
and the reasoning more complex. 

Exercise Set 2.6 

1. Prove or disprove the following. Since we have already proved 
/2~ is irrational, you may cite this result. 
a. 1 +JÏ is an irrational number. 
b. For every rational number x,x+j2 is an irrational number. 
c. Let x be a rational number and y an irrational number. 

Then x + y is irrational. 
d. Let x and v be irrational numbers. Then x + y is irrational. 

2. A prime number is a natural number n, greater than 1, whose only 
positive factors are 1 and n. The Fundamental Theorem of 
Arithmetic gives a very important property of natural numbers. 

Fundamental Theorem of Arithmetic 

Every natural number, other than 1, can be represented 
in a unique manner as a product of prime numbers, 
with smaller factors written to the left of larger factors. 

Derive. If p, then q. 

[Assume thatp is true.] 

Assume q is false. 

Therefore, p is false. 
[Contradiction! 
Therefore, q is true.] 
So, if p, then q. 

a. Let x be a natural number greater than 1. In the prime factori-
zation of x, can a factor appear only once? 2 times? 3 times? 
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b. In the prime factorization of x2, can a factor appear only once? 
2 times? 3 times? 4 times? 5 times? 

3. Let n be,a natural number. Consider the following sentence: 

For every natural number x, if n is a factor of x2, 
then n is a factor of x. 

a. Is the above sentence true for n = 2? For n = 3? For n = 4? 
b. For what values of и is the above sentence true? 

Hint: Reflect on your work in the previous exercise. 

4. Prove that /Tis an irrational number. 
Hint: You can write a proof similar to the one for JÏ and cite 
your results from (3). Or be creative and use your answers from 
(2) to construct a different type of proof. 

5. Generalize your proof in (4) and prove the following. 
Theorem: If p is a prime number, then Jp is irrational. 

6. Prove that there are an infinite number of prime numbers. 
Hint: Suppose that there are only a finite number of prime 
numbers. Label them as pu p2,..., pn. Set x = p\ рг... p„ + 1. 
Now demonstrate that none of the prime numbers in the list can 
divide x. Then explain why this gives a contradiction. 

7. In Euclidean geometry, the sum of the angles in a triangle is 180°. 
Using this result, prove the given statement with a proof by 
contradiction. All points and lines are in the same plane. 
a. Through a point P not on a line t, there is only one line through 

P that is perpendicular to t. 
b. If line t is perpendicular to two distinct lines s and r, 

then s and r cannot intersect. 
c. If line / intersects two distinct lines s and r — -y^ 

and the corresponding angles formed are s /^ 
congruent, then s and r cannot intersect. У 

Activity 2.7 

1. Let n be a positive integer. Write the sum of the following in the 
style given in part (a), but also list the last term. 
a. The first n positive integers: 1 + 2 + 3 + . . . + 
b. The first n even positive integers: 2 + 4 + 6 + . . . + 
c. The first n + 1 even positive integers. 
d. The first n odd positive integers. 



2.7 Mathematical Induction 173 

n 

2 
3 
4 
5 
6 
7 
8 
n 

Sum 

? 

n 

2 
3 
4 
5 
6 
7 
8 
n 

Sum 

? 

2. For each n in the adjacent table, list the sum of the first n even 
positive integers in the sum-column. 
a. What is the pattern in the numbers as you read down the 

sum-column? 

b. What is the pattern that goes across the list? How is n related 
to the adjacent number in the sum-column? Try writing the 
numbers in the sum-column in different forms until you see a 
pattern emerge across the row. 

c. What is the sum of the first 1000 even positive integers? 
Did you use your pattern from part (a) or from part (b)? 

d. Use your work from (lb) and (2b) to write an equation that 
gives a formula for the sum of the first n even positive 
integers. 

3. Find a formula for the sum of the first n positive integers. 

a. You may want to do some detective work similar to your work 
in (2). Fill in the adjacent table and look for a pattern that 
goes across the list. Write the numbers in the sum-column in 
different forms until you see a pattern emerge. You may want 
to factor the numbers in the sum-column, or multiply by •§. 

b. You may want to consider the relation of this formula to the 
formula that you found in (2d). 

c. You may want to use visual reasoning. Imagine 
the numbers as increasing columns of black dots, 1+2 + 3 + 4 
then fill in with white dots, as illustrated on • • • • 
the right. In a similar representation for O • • • 
1 + 2 + 3 +. . . + n, how many columns and O O • • 
rows will there be? What will the total number O O O • 
of dots be? How will the number of black dots O O O O 
compare with the number of white dots? Use this 
data to determine the total number of black dots. 

4. Demonstrate the Domino Theory. Stand a bunch of dominoes 
vertically, positioning them so that if you push over a domino, it 
knocks over the next domino. 

a. If you push over the 1st domino, what happens? 
What happens if you push over the 3rd domino? 

b. Suppose that you have an infinite sequence of dominoes, 
Pu Рг, Pi, • • •. positioned so that the following is true: 

For every natural number n, if p„ falls, then pn*\ falls. 

If you push over the 1st domino, what happens? 
What happens if you push over the 3rd domino? 
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= 2.7 Mathematical Induction = 

Is p(n) true for every n? 

P(l) 

P(2) 

P(3) 
P(4) 

Mathematical induction is a technique for proving an infinite 
sequence of sentences, analogous to the Domino Theory. Sup-
pose that the sentences are labeled as illustrated on the left. If 
we can demonstrate that each sentence implies the one after it, 
then we know that: 

p(l)=>p(2) 
P(2)=>p(3) 
p(3)=>p(4) 

p(n)=>p(n+l) 

P(n) 

Principle of 
Mathematical Induction 

Let p(n) be an open statement. 
Suppose the following are true: 

1. For all integers nžl, 
p(n)=>p(n + \). 

2. p(\) is true. 

Then p(ri) is true for all 
integers n where я ž 1. 

The above implications tell us absolutely nothing about the 
truth values of the individual sentences. After all, p(l) could 
be false and then p(l) => p(2) is automatically true. However, 
this chain of implications does position the sentences like a row 
of dominoes, so that if we are able to verify one of them, then 
all the others after that one will have to be true. For example, 
if we establish that p{\) is true, we can work down the list, 
using the Law of Detachment to deduce that each successive 
sentence is true: 

p(l) is true. 
Since p(l) =>p(2), we can deduce thatp(2) is true. 
Since p(2) =>p(3), we can deduce thatp(3) is true. 
And so on, down the list. 

The Principal of Mathematical Induction guarantees that the 
Law of Detachment can be applied an infinite number of times. 
In the adjacent description of mathematical induction, Part (1) 
is equivalent to arranging the dominoes so that if any particular 
domino falls, the next one must also fall. Part 1 is called the 
inductive step. Part (2) is equivalent to pushing over the first 
domino. The conclusion is that all the dominoes will fall. The 
induction game is for master players because we're playing 
with an infinite set of dominoes. Most anyone can do Part 1 for 
a finite set of dominoes. Doing the same task for an infinite set 
is far more challenging for we must rely on our powers of 
deductive reasoning rather than eye and hand coordination. 
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General Form 

Principle of 
Mathematical Induction 

Let p(n) be an open statement. 
Let c be a fixed integer. 
Suppose the following are true: 

1. For all integers nžc, 
p(ri)=>p(n + \). 

2. p{c) is true. 

Then p(n) is true for all 
integers n where n^c. 

Before we look at some examples, let's state the principle of 
mathematical induction in a more general form. When a row of 
dominoes are positioned according to the inductive step, they 
do not all fall when we push over the third domino. The first 
and second dominoes will be left standing, but all the others 
will come tumbling down. In a similar manner, suppose that a 
sequence of sentences satisfies the inductive step. In other 
words, we have been able to prove the following: 

For every integer n, pin) =>p(n+l). 

However, when we check p(l), we find that it is not true. We 
then check p(2), but, alas, it is also not true. Do we give up? 
Not yet, because our infinite sequence of sentences are 
positioned just like those dominoes. All we have to do is find 
one that is true, and from that point on, each one will be true. 
Suppose that we check p(3) and find that, yes, it is true. We 
can then proclaim that p(ri) is true for all n S 3: 

p(3) is true. 

Since p(3) =>p(4), we can deduce that p(4) is true. 

Since p(4) =>p(5), we can deduce thatp(5) is true. 

And so on, down the list. 

Actually, we did not need to know that p(n) =>p(n+1) for every 
positive integer n. It does not matter whether or not p(l) =>p(2) 
is true nor does it matter for p(2) => p(3). If we can establish 
that p(n) => p(n + 1) for every integer n > 3 and we can also 
verify that p(3) is true, we can then deduce that p(n) is true for 
all и >3, which is the following list: 

P(3), p(4), p(5), p ( 6 ) , . . . . p(n),... 

Hence, we can generalize the previous statement of mathemati-
cal induction as stated on the left, using c to represent the point 
in our sequence beyond which we're going to demonstrate that 
every sentence is true. This version is identical to the previous 
version except that we replace 1 with c. The conclusion 
guarantees that the following sentences are each true: 

p(c), p(c+l), p(c+2), ..., p(n),... 

In the above example, c was positive, but it could also be 
negative. Let's interpret the theorem for c = - 2. Suppose that 
we have a sequence of open statements about an integer n and 
we can prove the inductive step in Part 1: 
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For every integer n > - 2 , p(n) =>p{n + 1). 

Suppose also that/?(-2) is true. Using mathematical induction, 
we can deduce that p(n) is true for every n > - 2, which is the 
following list of sentences: 

K - 2 ) , p ( - l ) , p(0), p( l ) , . . . . />(«) , . . . 

Grammatical Structure Mathematical induction is a simple concept, but its grammatical 
structure is quite complex, as you can see in the following 
symbolic translation, where c= 1: 

[(Vn, p{n) =>p(n +1)) andp(l)] => Vn, p{n) 

The outside structure of the above sentence is an implication, 
but its hypothesis is a conjunction that has a quantified implica-
tion within it. It is no wonder that students sometimes get 
confused by the structure of an induction proof, especially 
when they assume that p(n) is true in Part 1. They feel that 
they are assuming what they want to prove, which is never 
allowed. We sometimes assume the negation of what we want 
to prove, hoping to find a contradiction, but we never ever 
assume what we want to prove. 

To eliminate any confusion, let's examine the adjacent 
template for a proof by mathematical induction. At the begin-
ning of an induction proof, we identify the open sentence on 
which we will do the induction and express it in terms of the 
variable n. After we identify p(h), the proof has two separate 
parts. We can prove them in whichever order we choose. 

In the inductive step, we must prove p(n) => p(n + 1) for 
every positive integer n. First, we let n be a positive integer. 
Then we assume p(n) is true and derive p(n +1). It may look 
like we are assuming what we want to prove; however, p(n) is 
not a stand-alone statement and neither is p(n+ 1). Our stand-
alone conclusion is that Vn, p{ri)=>p(n+1). In essence, we have 
proved the adjacent list of implications. As observed earlier, 
these implications tell us nothing about the truth value of the 
individual sentences. They do position the sentences like a row 
of dominoes, though, so that all we have to do is verify one of 
them and all the others after that one will have to be true. 

In the verification step, we demonstrate that p(l) is true. 
This step is usually very easy. We finish the proof by applying 
the Principle of Mathematical Induction. Having proved Part 1 
and Part 2, we can then deduce by mathematical induction that 
p(n) is true for all positive integers n. 

Theorem: For all positive integers 
n, p(n) is true. 

Induction Proof 
Let p(n): where n is a 
positive integer. 

Part 1 — Inductive Step 
Let n be a positive integer. 

Assume p(ri) is true. 

So, p{n +1) is true. 
Thus, p(ri) implies p(n +1). 

Part 2 — Verification Step 

So p{\) is true. 

Therefore, p(n) is true for all 

positive integers n, 

Parti: p(l)=>p(2) 

p(2)=>p(3) 

pQ)^p(4) 

p{n)=>p{n + \) 
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An Induction Example Let's put our theory into action and look at an induction 
example. If you did the detective work in (3) on page 173, you 
probably discovered the adjacent pattern based on a few 

i + 2 + 3 + + = "("+1) examples. Examples do not guarantee that this formula always 
2 holds, but we can get a guarantee using mathematical induction. 

First, we let p(ri) represent the following open sentence: 

p(n): 1+2 + 3 + . . . +n= 2 

The above colon means "represents." 

p(n) represents the sentence: 1 + 2 + 3 +. . . + n =—5—• 

Students sometimes erroneously set p(n) =—5—• 

If we do not write the correct representation for p(n) as a 
sentence, we cannot set up the proper structure for an induction 
proof. Another error is to use an equals sign instead of a colon 
in the above representation: 

p ( n ) = l + 2 + 3 + . . . +n = ^ r i I 

From the above form, we would surmise that p{n) is equal to 
the left side of the equation and also equal to the right side of 
the equation. With this misconception, our thinking process is 
completely derailed. The equals verb is reserved for sets and 
numbers, so when we specify p(n), we cannot replace the colon 
with an equals sign. 

In this example, p(n) represents a sentence whose predicate 
is "equals" and whose subject is "the sum of all the positive 
integers from 1 to n." In the symbolic representation, 

1 + 2 + 3 + . . . + n 

the three dots indicate that we are to continue in the same 
pattern until we reach n. However, when n = 1 or n = 2, we do 

civ - ii?i n o t include +3 in the translation. To interpret the meaning of 
2 p(l), we read the left side of the equation as the sum of all 

p(2): 1 + 2 = —2— positive integers from 1 to 1 and we writep(l) as follows: 

p(3): \+2 + 3 = ^p- 1 = ü2i 

Í4V 1 + 2 4- 4 + 4 = 4 ( 4 + 1 ) 

2 We usually check several examples, such as those given on the 
left, to make sure that the formula works before we attempt the 
induction step. 
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The Inductive Step To set up the induction part of the proof, we translate p(n +1) 
by substituting n + 1 for n. 

Part 1 - Inductive Step: 

Let n be a positive integer. 

Assume thatp(/») is true. 

1+2+3+. , я(п+1) 
+ И = — 2 — 

. , , , , , , , . , . . («+l)(n+2) 
1+2 + 3 + . . . + (n + l) = 2 

Hence, p(n +1) is true. 

Therefore, p(n) =>p(n +1). 

p(n): 1+2 + 3 + . . . + n = " "2
+ 

p(«+l ) : 1+2 + 3 + . . . + (n+l) = (л+1)(я+2) 

We usually list the next-to-last term on the left side of p(n + 1) 
because it may give us a connection with p(n): 

p(n+l ) : 1+2 + 3 + . . . +n + (n + l )= ( n + 1 )
2

( " + 2 ) 

Next we set up the structure to prove p(n) => p(n +1), as illus-
trated on the left. This structure gives us a clear focus on what 
we need to do. How can we derive the second equation from 
the first equation? Let's simplify this task by focusing on how 
we can derive either the left side or the right side of the second 
equation. We can easily derive the left side by adding (n + 1) 
to both sides of the first equation. Then we will try to manipu-
late the right side of the new equation to obtain the desired 
result, as illustrated in the following proof. 

и(и+1) 
Theorem For every positive integer n, 1+2 + 3 + . . . +n = — j 

Induction Proof Let p(n): 1+2 + 3+ . . . +n = —^—• 

Part 1 Let n be a positive integer. 
Assume that p(n) is true. 

1+2 + 3+ . . . + n = 

Add n +1 to both sides: 

n(n+l) 

1+2 + 3+ . . . +п + (п + 1) = -^у^-+(л+1) 

1 . <■» . o . . . / . n n2 + n+2n+2 1 + 2 + 3+ . . . +n + (n + l) = 2 

l + 2 + 3 + . . . + „ + („ + l) = ^ ± £ 

Sop(n+l)istrue. 

Therefore, p(n) ^>p(n +1) is true. 

Part 2 p{\): l = Щ*- Note thatp(l) is true. 

Conclusion Therefore, by mathematical induction, p(ri) is true for every 
positive integer n. 
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Summation Notation 

Factorial Notation 

The sum in the previous theorem can be written in a more 
concise form using the Greek letter E, which corresponds to our 
letter S. 

£ í = 1 + 2 + 3 + . . . + n 
/= i 

We read the above notation as "the summation of i as í goes 
from 1 to n." When we see the sigma notation, we should 
mentally view it as the sum on the right side of the above 
equation. Using sigma notation, we can state the previous 
theorem as follows: 

For every positive integer n, X i = — j — • 

In the next example, we have a sequence of sentences where 
p(l) is not true, but at some point, it kicks into gear and from 
then on out, all the sentences are true. This example involves n 
factorial, which is notated as n!. If n is a natural number, n! is 
the product of all natural numbers from 1 to n: 

n\ = n-(n-l)-(n-2)' 

5 ! = 5 - 4 - 3 - 2 - l 

3 - 2 - 1 

Ф Example 

Part 1 - Inductive Step: 

Let n be an integer where n>4. 

Assume that p(n) is true. 

2"</i! 

So, 2"+ ,<(n + l)! 

Hence, p(n+1) is true. 

Thus, p(n) => p(n +1) for n ž 4. 

Let p{n) represent the following sentence: 2" < n! 
For which positive integers is p(ri) true? Prove your answer. 

p(l): 2 ' < 1 

p(2): 2 2 <2! 

p(3): 2 3 < 3 ! 

p(4): 2 4 <4! 

p(5): 2 5 < 5 ! 

p(l) is not true. 

p(2) is not true. 

p(3) is not true. 

p(4)istrue. (16<24) 

p(5) is true. (32<120) 

Since the right side of the inequality grows more rapidly than 
the left side, we suspect that p(n) is true for n>4. Let's try to 
prove it by mathematical induction. 

First, we set up the structure for the inductive step, as illus-
trated on the left. Then we work on bridging the gap. We can 
derive the left side of the second inequality by multiplying both 
sides of the first inequality by 2: 

2" < n! 

2-2" < 2-n! 

2"+1 < 2- n\ 
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We now have the left side the way we want it, so let's work on 
the right side. One way to bridge the gap is to show that: 

2(л!)<(и+1)! 

We could then use transitivity to get the desired conclusion: 

2"+1<2(л!) and 2(л!)<(л + 1)! Therefore, 2"+1 <(и + 1)! 

We will now work backwards to try to see if 2(л!) < (л+1)! 

2(и!)<(и + 1)! 

Divide both sides by n!: 2 < —^j—^ 

„ , . , „ . , (n+ l ) -n - (n - l ) - . . . - 3 -2 - l 
Write out the factorials: 2 < n-(n-i)-—.3.2-1— 

Most factors cancel: 2 < n +1 

If we can establish this last sentence, we have a proof. But 
wait, 4 < n, so 2 must be less than n + 1. Yes, we do have a 
proof. We will now polish it and write it in the correct order. 

Theorem For every integer n, if n > 4, then 2" < n!. 

Induction Proof Let p(n) represent the following sentence: 2" < n! 

Part 1 Let n be an integer such that n > 4. 
Assume that p(n) is true: 2" < л! 

Multiply both sides by 2: 2 • 2" < 2 • n! 

2"+1<2л! 

Since л > 4, 2< л + 1 

Multiply by л!: 2(л!)< (л + 1)л! 

Thus, 2(л!)<(л+1)! 

Since 2"+|<2(л!) and 2(л!)<(л+1)!, 

by transitivity, 2"+1 < (л+1)! 

This last sentence is p(n+l). So, p(n+1) is true. 

Thus, р(л) =*р(л+1) when л > 4. 

Part 2 p(4) is the following sentence: 2 4 <4! 
24 = 16 and 4! = 24. So,p(4) is true. 

Conclusion Therefore, by mathematical induction, 2" < n! 
for every integer л where л > 4. 
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The Natural Numbers 

Principle of 
Mathematical Induction 

Let S be a subset of I4I that has 
the following properties: 

1. For every positive integer n, 
ifneS.thenn + l e S . 

2. l eS . 

Then S = N. 

The Principle of Mathematical Induction is intimately con-
nected with the set N of natural numbers. Suppose that 5 C N 
and 1 e S. Suppose also that the following is true: 

For every integer n, if n e S, then n +16 S. 

From this data, we can deduce that S = N. This fundamental 
property of the set of natural numbers is the Principle of 
Mathematical Induction. We will now prove that this version is 
equivalent to the first version given on page 174. This proof 
will test our ability to structure our thinking, for the grammati-
cal structures of what we assume and what we derive are quite 
complex. When we assume that the first version is true, we are 
not assuming individual parts of it are true; we are assuming 
that the complete statement is true: 

1st Version: [(Vn, p(n) =>p(n + 1)) and /7(1)] => Ул, р(п) 

We then must derive that the complete statement of the second 
version is true: 

2nd Version: [(Vn, n€S => n+1 eS) and 1 e S] =* S = N 

1st Version => 2nd Version Assume that the first version of the Principle of Mathematical 
Induction is true. 

We will now prove that the second version must be true. Since 
its outside structure is an implication, we assume that its two 
hypotheses are true. Let 5 be a subset of N that has the follow-
ing properties: 

1. For every positive integer n, if n e S, then n + 1 e S. 

2. l e S . 

Letp(n): neS. Now translate the above two statements: 

1. For every positive integer n, p(n) =>p(n +1). 
2. p(l) is true. 

Since p(n) satisfies the hypotheses of the first version, we can 
deduce that p{n) is true for all positive integers n. Thus, for 
every positive integer n, n eS. So, Nç^S. 

Since 5 is also a subset of N, 5 = N. 
Thus, the second version is true. 
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2nd Version => 1st Version Conversely, assume that the second version of the Principle of 
Mathematical Induction is true. 

We will now show that the first version has to be true. We start 
by assuming the hypotheses in the first version. Let p(n) be an 
open sentence. Assume the following: 

1. For every positive integer n, p(ri) =>p(n +1). 
2. p(l) is true. 

Define S as follows: 5 = { n \p(n) is true} 
Translate the above two statements in terms of S: 

1. For every positive integer n, if n eS, then n +1 € 5. 
2. leS. 

Since the second version is true, we can deduce that S = N. 
So, for every positive integer n, p(n) is true. 
Thus, the first version is true. 

Some textbooks use the second version for the Principle of 
Mathematical Induction and some use the first version. As the 
above proof shows, the two versions are equivalent. 

Inductive Definitions We sometimes define a sequence in an inductive manner. A 
sequence is a function whose domain is the set of natural 
numbers. Using the notation s„ to indicate s(n), we can repre-
sent a sequence in the following manner: 

S i , Si, S3 , • . • , Sn, ■ ■ ■ 

In an inductive (or recursive) definition, we define the first 
term of a sequence, then we define each successive term using 
previous terms, as illustrated in the following example. 

4- Example Inductively define the sequence s„ as follows: 

Í I = 5 sn = s„-i + 2 

We compute the terms in the sequence as follows: 

Si = si + 2 = 5 + 2 = 7 
Si = s2 + 2 = 7 + 2 =9 
s4 = s3 + 2 = 9 + 2 =11 
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Using the method in this example, it would take a while to 
compute the 1000th term in the sequence. To find a faster 
method, let's redo the previous computations, but not do any 
simplifications: 

J2 = 5i + 2 = 5 + 2 
s3 = 52 + 2 = (5 + 2) + 2 
54 = 53 + 2 = (5 + 2 + 2) + 2 

Since multiplication is repeated addition, we can write these 
terms as follows: 

52 = 5 + 2 
53 = 5 + (2- 2) 
j 4 = 5+ (3-2) 

The above pattern indicates that we can compute 5„as follows: 

5„ = 5 + ( n - l ) . 2 

Now we have a closed formula for sn that enables us to quickly 
compute any term of the sequence: s„ = 2n + 3 

To prove that our closed formula is correct, we can use mathe-
matical induction. First, we set up the outside structure, as 
indicated by the brackets. With our focus on what we want to 
derive, we use the definition of s„+i and work our way down. 

Theorem 

Induction Proof 

Parti 

Part 2 

Conclusion 

If 5i = 5and5„ = 5„-i + 2, then5„ = 2/i + 3. 

Let p(n): s„ = 2n + 3 

Let n be a positive integer. 
Assume thatp(n) is true: 5„ = 2n + 3 

Definition of 5n+i.
- 5„+i = 5„ + 2 

Substitute for 5„: 5„+) = (2n + 3) + 2 
So/?(n + l)istrue: 5„+i = 2(л+1) + 3 

Therefore, p(n) =*p(n +1) is true. 

p(l): 5i = 2-1 + 3 Since Si = 5, p(l) is true. 

By mathematical induction, p(n) is true for every positive 
integer n. So our closed formula is correct. 
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Stronger Form 

Stronger Principle of 
Mathematical Induction 

Let p(n) be an open statement. 
Suppose the following are true: 

1. For every integer n £ 1, 
ifp(l)Ap(2)A ...hpin), 
thenp(n+l). 

2. p(l) is true. 

Then p(n) is true for all 
integers n where n ž 1. 

The Principle of Mathematical Induction can be stated in a 
stronger form by adding more hypotheses in Part 1. Instead of 
assuming only that p(n) is true, we assume that p(n) and all the 
sentences that precede it are true: 

Assume thatp(l), /7(2), /?(3), . . . , andp{n) are each true. 

The conclusion p(n + 1) is sometimes easier to derive with the 
extra assumptions. 

The Stronger Principle of Mathematical Induction is stated 
on the left. Note that it is identical to the version on page 174 
except for the extra hypotheses in Part (1). If we prove Part 1, 
we have proved the following infinite list of implications: 

n = l 

n = 2 

n = 3 

/7(1) => /7(2) 

[p(l) and /7(2)] => /7(3) 

[/7(1) and p(2) andp(3)] ^ p(4) 

If we verify that /?(1) is true, we can then work our way down 
the above list, making deductions on each line: 

/?(1) is true. 
Since/7(1) =>/J(2), we can deduce p(2). 

Now we know thatp(l) andp(2) is true. 
Since p( 1) and p(2) => p(3), we can deduce p(3). 

Now we know that /7(1) andp(2) andpQ) is true. 
Since p( 1) and p(2) and />(3) => /?(4), we can deduce /7(4). 

And so on, down the list. The Stronger Principal of Mathe-
matical Induction guarantees that the Law of Detachment can 
be applied an infinite number of times. 

The stronger version can be generalized by starting at an 
integer other than 1. We will use this form in the following 
example. A prime number is a positive integer greater than 1 
whose only positive factors are 1 and itself. For example, 2, 3, 
5, 7, and 11 are prime numbers. 12 is not a prime number, but 
12 can be factored as a product of primes: 12 = 2 x 2 x 3 . It 
seems fairly obvious that every integer greater than 1 is a prime 
number or a product of prime numbers. However, to prove 
this statement, we need the stronger assumption from the 
stronger induction version. 
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Theorem Every integer greater than 1 is a prime number or a product of 
prime numbers. 

Induction Proof Let p(n): n is a prime or n is a product of primes. 

Part 1 Let n be a integer where n > 2. 

— Assume that p(2) and p(3) and p(4) and . . . and p(n) are true. 
We can translate this assumption as follows: 

For every integer j where 2<j<n, 
j is a prime or j is a product of primes. 

We want to derive p(n +1), which we can translate as: 

n +1 is a prime or n + 1 is a product of primes. 

Assume that n + 1 is not prime. 
Then there exists positive integers a and b such that: 

n+\ = ab, where \<a<n+ 1 and 1 <b<n + l. 

So, 2<a<n and2</b<n. 
By the induction hypothesis, a is prime or a product of 
primes. Similarly, b is a prime or a product of primes. 
So n +1 can be expressed as a product of primes, 
using the prime factors from a and b. 

> Thus, p(n+1) is true. 

Therefore, p(n) =>p(n + 1). 

Part 2 p(2): 2 is a prime or 2 is a product of primes. 
Since 2 has no positive factors other than 1 and itself, 
2 is a prime number. So p(2) is true. 

Conclusion Therefore, by mathematical induction, p(n) is true for all 
positive integers n where n>2. 

Deductive Reasoning Mathematical induction is a type of deductive reasoning, even 
though its name sounds more like inductive reasoning. 
Inductive reasoning is when we suspect that something is true 
based on examples, experiments, or experiences. Before we 
prove a statement by mathematical induction, we normally 
verify it for various values of n, which may be the reason that 
Augustus De Morgan gave it the name of mathematical 
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induction back in 1838. However, inductive reasoning pro-
vides no guarantee that our conjecture is true. On the other 
hand, a proof by mathematical induction does provide a 100% 
guarantee that the sentence is true for the specified integers. 
Deductive and inductive reasoning each have an important 
function in the reasoning process, but the proof method of 
mathematical induction is in the camp of deductive reasoning, 
not inductive reasoning. 

Exercise Set 2.7 

1. Consider the following formula. 

2 + 4 + 6 + . . . + 2n = n(n+l) 
a. Check to see if the formula works for various values of n. 
b. If your examples indicate that the formula is correct, try to use 

mathematical induction to prove that the formula is true for 
every positive integer n. State what p(ri) represents in your 
proof, state the conclusion for the first part of the proof, and 
also state the final conclusion. 

c. Let Si denote the ith term in the sum: 2 + 4 + 6 + . . . + 2и 
Give a formula for st 

n 

d. Rewrite the sum in part (c) in summation notation: E s\ 

2. In the adjacent square, we have a picture of 1+3+5+7. o o o o 
a. Expand this sketch to get a picture of 1+3+5+7+9. o o o | o 
b. Use visual reasoning to conjecture a formula 

for the sum of the first n odd positive integers. 
c. Translate "the sum of the first n odd positive integers" 

into the following form: 1 + 3+5+ . . . _? 
To see the pattern, write the sum of the first 2 odd positive 
integers, the sum of the first 3 odd positive integers, etc., until 
you see how to express a formula for the last term. 

d. Use mathematical induction to prove that your formula 
from part (b) is true for every positive integer n. State what 
p(n) represents in your proof, state the conclusion for the first 
part of the proof, and also state the final conclusion. 

O O P 

O O P 

0 0 0 

"olo o 
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e. Give a formula for the ith term in the sum: 1 + 3 + 5 + . . . 
n 

f. Rewrite the sum in part (e) in summation notation: X,s, 

3. Inductively define a sequence as follows: s\ = 3, s„ = sn-\ + 8 
a. Compute the first 5 terms of this sequence. 

b. Find a closed formula for sn so that we can compute Jioo 
without computing s». Hint: Redo part (a) but do not simplify 
your computations and a closed formula will be easy to spot. 

c. Use mathematical induction to prove that your formula in part 
(b) always works. 

4. Let a and d be fixed real numbers. 
Inductively define a sequence as follows: si = a, sn = s„-i + d 
This type of sequence is called an arithmetic sequence. 

a. Find a closed formula for sn. 
b. Use mathematical induction to prove that your formula is 

correct. 

5. Inductively define a sequence as follows: S] = 3, s„ = i„_i • 8 

a. Compute the first 5 terms of this sequence. 

b. Find a closed formula for s„ so that sioo can be computed 
without computing 599. 

c. Use mathematical induction to prove that your formula in part 
(b) always works 

6. Let a and d be fixed real numbers. 
Inductively define a sequence as follows: s\ =a, s„ = s„~i • d 
This type of sequence is called a geometric sequence. 
a. Find a closed formula for s„. 
b. Use mathematical induction to prove your formula is correct. 
n 

7. Z Ji = ii + Í2 + S3 + . . . s„. Rewrite each with summation notation. 
1=1 

a. 2 + 22 + 23 + . . . + 2" 
K J - J . 1 J . J - J . J . - L 

c - 1-2 + 2-3 + - + n(n+l) 

8. Rewrite each sum in expanded notation. 
n n n n 

a. I 5' b. £ 5'-1 b. 1 5 ' c. E r' 
i= l /=1 /=0 i=0 

9. LetS„ = 2 + 22 + 23 + . . . + 2". 

a. Find a closed formula for S„. Hint: Multiply both sides of the 
above equation by 2, then subtract the two equations and 
simplify. 

http://J-j.1j.J-j
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b. Use mathematical induction to prove the closed formula for S„ 
in part (a). 

c. Let S,„ = 3 + 32 + 33 + ..'. + 3". Find a closed formula for S„. 
Use mathematical induction to verify your formula. 

d. Generalize your formula in part (c). Then use mathematical 
induction to verify your formula. 

10. Compute the given sum for n = 1, 2, 3, and 4. 
Try to find a possible formula for the sum. 
Make sure that your formula works for n = 1, 2, 3, and 4. 
Then try to verify your formula using mathematical induction. 

K _J__i__L . , 1 
°- 1-2 + 2.3 + ■•• + „(n+1) 

11. Use Mathematical Induction to prove the following: 
, 2 <-»2 1 2 Л-1 2 и ( я + 1 ) ( 2 л + 1 ) 

a. I2 + 22 + y + 42 + . . . + n2 = —*—f -
b. For every positive integer n, 2"~l < n!. 
c. For every positive integer n, n < 2". 

12. Conjecture: n 2 <2" 
Is the above conjecture true for every positive integer n? 
If not, can you find an integer c so that it is true for every integer 
n~è.cl If so, prove your result by mathematical induction. 

13. Prove Part 1 of the following theorem in a manner different from 
the proof given on page 180. Instead of multiplying the inequality 
by 2, multiply both sides by n + 1, which will give you the desired 
right side. Then you must figure out how to derive the left side. 

Theorem For every integer n > 4, 2" < n!. 

Induction Proof Let p(ri) represent the following sentence: 2" < n! 

Part 1 Let n be an integer such that n > 4. 
Assume that/?(n) is true: 2"<n! 

Multiply both sides by n+1: 

So, 2"+1<(n + l ) ! 

Therefore, p{n+l) is true. So, p(n) =>p(n + 1) for n 
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15. Use mathematical induction and cases to prove that every integer 
is even or odd. 

Tfieorem 

Induction Proof 

Part 1 

16. 

17. 

18. 

£Very integer is even or odd. 

Let p(n): n is even or n is odd. 

Let n be an integer. Assume that p(ri) is true. 
Then n is even or n is odd. 

Case 1: Assume 
Therefore, 

Case 2: Assume 
Therefore, 

Therefore, p(n+l) is true. 
So, p(n) => p(n+l). 

The complex number a + bi can be identified with the point (a,b) 
(page 15). The complex number cos 9 + i sin 9 can be 
identified with the point (cos 9, sin 9). 
a. Us the Pythagorean Theorem and the definitions 

of cos 9 and sin в to explain why the point 
in the adjacent sketch is (cos 9, sin 9). 

b. Use mathematical induction to prove the following: 

DeMoivre's Theorem: Let n be a positive integer and let 9 be a 
real number. Then (cos 9 + i sin 9)" = cos пв + / sin n9. 

Hint: cos (a + Д) = cos a cos /? - sin a sin /? 
sin (a + Д) = sin a cos /? + cos a sin /? 

The rules for multiplying complex numbers are the same as for 
real numbers, with the additional rule that i2 = - 1 . 

c. How far is the point, cos 9 + i sin 9, from the origin? 
Describe the location of the point, cos 45° + /' sin 45°. 

d. Use DeMoivre's Theorem to describe the location of the point, 
(cos 45° +/sin 45°)3. 

Let n be an integer greater than 1. Use mathematical induction to 
prove the following: The product of n odd integers is odd. 

Derive a formula for the sum of the first n counting numbers as 
follows. Let S = 1 + 2 + 3 + . . . + n. Write the sum in reverse 
order: S = л + (n - 1) + (n - 2) + . . . +3 + 2 + 1 

Add the two equations. On the right side, compute the sum by 
adding the first 2 terms together, the second 2 terms together, etc. 
Solve for S. Compare your derivation with the proof on page 178. 

(cos в, sin ff) 
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Activity 2.8 

In a monastery, 64 disks, with each a different size, were placed on 
one of three posts, with the largest disk on the bottom, the next largest 
on top of it, and continuing in this manner with the smallest disk on 
top, as illustrated below. 

The monks were ordered to move the disks, one at a time, to one of 
the other 2 posts, subject to the condition that a disk must always be 
set on top of a larger disk. The task must be continued until all 64 of 
the disks are transferred to one of the other two posts. When the 
monks complete the task, the people were told that the world would 
end. Naturally, many people were concerned as to how long it would 
take the monks to finish. 

The monks move one disk each second, and they always make the 
least number of moves to accomplish the goal. How long will it take 
them to move all 64 disks to another post? 

1. Before you start on this fascinating problem, make a wild 
guess as to what you think the answer might be in years. 

2. Make a model and practice the movements. 
3. This counting task will be beyond our grasp unless we analyze 

the process in small steps and look for a pattern. How long 
does it take the monks to move the two disks on top to another 
single post? 

4. How long does it take the monks to move the three disks on 
top to another single post? (Use your previous answer) 
To move the four disks on top? (Use your previous answer.) 
To move the five disks on top? To move n disk? 

5. Verify your last answer using mathematical induction. 
6. So, how many years will it take the monks to move the 64 

disks? Is it longer than you initially imagined? 
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= 2.8 Axiomatic Systems = 

Reason 

Reason 
Reason 
Reason 

I Reiton I 

Axiomatic systems provide a structure in which we logically 
order our reasoning about some area of interest, such as geome-
try or set theory or number theory. To construct an axiomatic 
system, we first work backwards through what we personally 
understand about the subject and identify what we want to use 
as the foundation for the system. For example, what is the 
foundation for what we accept as true? 

To be a creative thinker, we must ask good questions which 
will lead us on a path of inquiry. Along this path, suppose that 
we discover an interesting relation. To authenticate our discov-
ery, we must validate it with a proof. As we write our proof, 
we justify each step with a reason that is either simpler or refers 
to previous results. 

Having finished our proof, suppose that we now go through 
the same process for each reason that we used in our proof. 
We prove each reason, justifying it with simpler reasons. If we 
continue this process with each new reason that we use, we will 
back up, step by step, until we cannot find any simpler reasons 
to use in our explanation. At this point, we will have reached 
an impasse. We cannot explain or prove these simplest of 
sentences because there is nothing simpler to use to explain 
them. 

Axioms 

An axiom for a system is a 

statement assumed true in that 

system, requiring no proof. 

Axioms 
Theorem 1 
Theorem 2 
Theorem 3 

An axiomatic system has a few sentences, called axioms, which 
we consider trae but cannot prove. It is not possible to prove 
everything because we would have no previous knowledge to 
use when we try to construct our first proof. Consequently, we 
must accept some sentences as trae so that we have something 
to use in our first proof. 

In the first proof that we write in a system, the only tools 
we can use are the axioms and definitions. In the second proof, 
we can also use the first theorem if we so choose. The more 
theorems that we prove, the more tools that we have to use in 
future proofs. To get started with the first proof, though, we 
must have axioms. The axioms form the foundation for truth in 
an axiomatic system. They provide us with simple truths from 
which we construct more sophisticated truths. 

Someone else going through the same process of explaining 
each reason with simpler reasons may back up in a different 
way, ending up with different axioms, so the axioms selected 
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This wonderful book [Euclid's 
Elements], with all its imperfec-
tions, which are indeed slight 
enough when account is taken 
of the date it appeared, is and 
will doubtless remain the 
greatest mathematical textbook 
of all time. 

Thomas L Heath 

1861-1940 

are not necessarily unique. Different sets of axioms can 
produce the same system. 

If Statement A is equivalent to Statement B, we may choose 
to call Statement A an axiom and then prove Statement B, in 
which case Statement B would be a theorem. On the other 
hand, we could call Statement B an axiom and then prove 
Statement A. As a matter of form, though, we always choose 
the axioms to be as simple as possible. If Statement A sounds 
simpler than Statement B, we would use it as an axiom. The 
ultimate goal in logical reasoning is to make things as simple as 
possible. When we have a complex situation, we look for a 
simple explanation as to why things happen the way that they 
do. Perhaps we are guided by the same laws that drive the 
universe, which make objects traveling through space always 
seek the simplest path. 

Let's go back in time 2300 years and imagine Euclid pacing 
through the magnificent rooms of the great library of Alexan-
dria, rooms filled with the greatest collection of knowledge 
known to mankind. Having just started his own school in 
Alexandria, Euclid is thinking about the best way to teach his 
students how to reason in a logical manner, for he knows that 
only through reasoning can humanity continue to expand the 
knowledge housed in the greatest library of antiquity. He also 
know that nowhere can the pure structure of reasoning be 
demonstrated in a brighter light than in the field of geometry, 
for there students can use their visual reasoning to develop 
their skills in deductive reasoning. As he ponders the vast 
body of geometric knowledge, possibly thinking of how he will 
teach his students the ingenious proofs of Pythagoras or 
Eudoxus, Euclid realizes that the whole body of geometric 
knowledge needs to be organized in a simpler format with the 
theorems arranged in a linear order. This arrangement would 
make it easier to prove the more complex theorems with a 
sequence of simple steps, referencing previous theorems. 
Furthermore, by making the tools used to prove the more 
complex theorems stand alone on their own right as theorems, 
these tools would become available for general use thereafter. 

Euclid then organized the work of the brilliant thinkers 
before him into a series of textbooks whose influence on 
western civilization has been ranked as second only to the 
Bible. Of course, Euclid had to work backwards to find out 
where to start. As he tried to explain each reason with a 
simpler reason, he arrived at a surprisingly small core of only 
five simple truths from which he could derive all the other 
results. His five axioms, or postulates as they were called at 
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'Postulates of "Euclidean Geometry 

1. Through any two points, 
there exists a unique straight line. 

2. For any two points on a line, 
there exists another point on the 
line beyond the other two. 

3. For every point C and length r, 
there exists a circle of radius r 
with C as the center. 

4. All right angles are congruent. 

5. In the plane determined by a 
line iand a point P not on I, 
there exists a unique line through 
P that is parallel to I. 

that time, can be translated into the equivalent forms in the 
adjacent list. Notice the beautiful simplicity of these 
postulates. Notice also that four of these five postulates have 
an existence clause. 

Most axioms focus on existence questions, as do the axioms 
of faith in religious systems. A basic axiom in most religions is 
whether or not god exists, and, if so, how many gods are there? 
The atheists postulate 0 gods, the Christians and Moslems 
postulate 1 god, and the Hindus postulate more than 1 god. 
True believers in these religious groups have spiritual experi-
ences that sustain their belief, spiritual experiences that cannot 
be backed up with deductive reasoning. Many religious people 
believe that their axioms of faith are the only true axioms of 
faith, which often generates conflict and wars with those who 
do not see the world from their religious perspective. 

Until the 19th century, a similar view was shared by intel-
lectuals concerning the truth of Euclid's postulates (page 198). 
It was believed that Euclid's postulates were absolute truths, 
truths that were not to be questioned for they described inher-
ent truths of reality. From this unquestioning faith in the five 
axioms of Euclid, a geometric picture of our universe emerged 
with straight lines traveling across cosmic distances, straight 
lines that behaved as they were perceived to behave here on 
Planet Earth. Current scientific evidence, though, suggests that 
our view of the universe as Euclidean may be as outdated as 
our earlier view that the earth was flat. However, regardless of 
the future scientific verdict on the geometry of our universe, 
the axioms of Euclidean geometry will still be true in Euclidean 
geometry. We cannot disprove an axiom for there is nothing to 
disprove. The axioms serve as the truth foundation of that 
particular system. If that system does not suit our needs for a 
particular purpose, such as creating a mathematical model of 
our cosmic universe, then we can use another slate of axioms 
and build another axiomatic system. Thus, the axioms are 
relative truths. An axiom in one system is not necessarily true 
in another system. 

After the tremendous paradigm shift caused by the great 
debate over the absolute truth of axioms, mathematicians found 
it necessary to impose more rigorous standards on axiomatic 
systems. By the new standards, Euclidean geometry needed a 
few more axioms to make it completely rigorous. The new 
standards also required a closer inspection of how we work 
with sets. Sets seem so simple that they had always been 
worked with in an intuitive manner. The intuitive bubble burst, 
though, when Bertrand Russell developed a contradiction from 
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Axiom of Set Theory 

There exists 
an empty set. 

an "intuitively obvious" construction of a set (page 206), and so 
it became necessary to construct an axiomatic foundation for 
sets that would eliminate Russell's paradox. The first axiom, 
"there exists an empty set," is the Big Bang of Set Theory, 
giving us the existence of an initial set from which we 
construct all other sets (page 276). The other set theory axioms 
(page 277-285) give us ways to construct other sets from this 
one set, until we build a rather miraculous universe of sets 
reaching into the mysterious realms of infinity. 

Undefined Terms 

Set— a collection of objects. 

Collection - a group of objects. 

Group — a set of objects. 

Definition 1. 

Definition 2. 

Definition 3. 

Definition 4. 

The process of proving a theorem and then proving each reason 
that we use leads us back to the problem of how we write the 
first proof in a linearly ordered system where we can only use 
previous theorems. To solve this dilemma, axioms were 
introduced. We run into a similar problem when we start 
analyzing our definitions. To understand a definition, we must 
understand the definition of each word in it. If we look up the 
definition of a word in the dictionary, along with the definition 
of each word used in that definition, and continue this process, 
sooner or later we will find definitions that are circular. For 
example, in the adjacent definitions, a set is defined in terms of 
a collection, which is defined in terms of a group, which is 
defined in terms of a set. If we do not know the meaning of 
either set or collection or group, these definitions will have no 
meaning for us. 

Definitions in a dictionary are by necessity circular for it is 
impossible to define every word in a linear manner. Otherwise, 
we could arrange the definitions in an ordered list with our first 
definition at the top. If we wish to make our definitions 
non-circular, each time we define a new word, we must use 
only previously defined words. The dilemma is the construc-
tion of the first definition since there are no previously defined 
words that we can use in it. The only way out of this dilemma 
is to admit that it is not possible to define every word, and 
select certain words as undefined. 

Undefined terms are the basic words from which we 
construct the vocabulary for an axiomatic system. The terms 
selected to be undefined represent the simplest concepts, 
concepts that cannot be explained by simpler concepts. 
However, the notion of what is simplest is a matter of personal 
preference. Different starting points can lead to the same 
results. Using different undefined terms and different axioms, 
mathematicians have produced different axiomatic systems that 
generate the theorems of Euclidean geometry. 
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Undefined Terms 
of Set Theory 

set 
is an element of 

Undefined Terms of 
Euclidean Geometry 

point 
line 
is on 

is between 
is congruent to 

Axiom. Through every two points, 

there exists a unique straight line. 

Transktion: For every two points A and 

B, there exists a unique tine I 

such that A is on t and B is on I. 

When we select the undefined terms for a system, we need 
both subjects and verbs so that we have the necessary 
ingredients to specify our axioms, which are sentences. In the 
axiomatic system of set theory, the undefined terms are set, 
which is a noun, and is an element of, a verb that gives a 
relation between two nouns. Using only these two undefined 
terms, along with the five logical operators and two quantifiers, 
we can build definitions for all the concepts of set theory. 
Logical reasoning is a linear process and it is rather amazing 
how little we need to get us started. Like the Big Bang Theory 
that our whole universe miraculously originated from one little 
point, it is no less spectacular that the vast universe which the 
theory of sets encompasses originates from one little noun and 
one little verb. 

We all know what a straight line is, but can we put it into 
words - using no visuals - so that an intelligent being from 
another galaxy could understand what we meant? If we do 
come up with a definition, we will then be faced with the task 
of defining each word in the definition for these intergalactic 
friends do not yet understand our language. Even though we 
personally know what a straight line is and what a point is, it is 
extremely difficult to define them. Euclid defined a straight 
line as "a line which lies evenly with the points on itself," but 
he did not define what it meant to "lie evenly." He defined a 
point as "that which has no part," but he did not define what 
"part" meant. By today's standards, Euclid's definitions are not 
considered axiomatic definitions. Since there are no simpler 
concepts with which to explain mem, we classify "point" and 
"line" as undefined. In this context, "line" means "straight 
line." Using these two undefined nouns and the three 
undefined verbs listed in the adjacent box, we can build the 
vocabulary for Euclidean geometry. Notice how the undefined 
verbs give a relation between two nouns: 

The point A is on the line /. 

The point A is between the points B and C. 

Like the axioms selected for a system, the undefined terms that 
are selected are not unique. Other axiomatic systems have been 
constructed for Euclidean geometry that use different 
undefined terms. 

If a term is undefined, though, how can we work with it? 
How do we know what it represents? We work around this 
dilemma by using the axioms to state the properties that an 
undefined term must have. In the translation of the adjacent 
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axiom, note how the axiom gives a property of the undefined 
terms, point, line, and is on. 

The axioms give the basic properties of the undefined 
terms; they are the basic assumptions that we make about the 
undefined terms. On the other hand, the undefined terms are the 
basic building blocks, similar to atoms, from which we build 
the vocabulary in the system. The undefined terms form the 
foundation for the vocabulary of an axiomatic system, whereas 
the axioms form the foundation for what is true in the system. 
Axioms are sentences, but undefined terms are not sentences; 
they are terms. 

Definitions When we define a term, we phrase it in a sentence and then 
establish the meaning of that sentence with a string of words 
that also form a sentence. For example, to define the term, £, 
we define the meaning of the sentence A £ 5 with the following 
sentence: for every JC, if *eA, thenjc€fi. Since we can use the 
sentence being defined and its definition interchangeably, we 
always use the "if and only if connective in a definition. 

Using the undefined terms, we make our first definition, 
then our second definition, and so on. At each stage, we can 
only use the undefined terms and previously defined terms in 
our new definition, which then gives us another term that we 
can use in future definitions. Slowly and carefully we build the 
language of the system. 

Grammar Since a definition must be stated as a sentence, we must have a 
clear understanding of the grammar of the system before we 
make our first definition or state our first axiom. The grammar 
for an axiomatic system is a clearly defined set of rules for 
forming sentences, specifying the required syntactical structure 
that an expression must have in order to be classified as a 
sentence. For example, the expression A \JB does not have the 
proper syntax to be classified as a sentence. The rules for 
grammar in our everyday language are very complex, which 
makes it rather difficult to program computers to translate from 
one natural language to another without some distortions. 
However, the limited vocabulary of mathematics makes it 
possible to have a clearly defined set of grammar rules, which 
are a subset of the grammar rules for everyday language. If an 
expression that we write does not form a sentence in our 
everyday language, it is not a sentence in the standard 
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mathematical systems. A U B is not a sentence in our everyday 
language, so we cannot use it as a sentence in a proof. 

Using the undefined terms and defined terms in conjunction 
with the proper grammar, we build the sentences that can be 
formed within our system. Now, we look out over our vast 
universe of sentences and we wonder - which of those 
sentences are true and which are false? This question brings us 
to the most important component of an axiomatic system, the 
component that sets the rules for making logical deductions -
the proof procedure. 

Proofs 

A proof is a linearly ordered struc-
ture of interwoven valid arguments 
where each sentence is one of the 
following: 

• An assumption used in 
a valid argument 

• An axiom, previous theorem, 
or definition 

• A sentence that can be derived 
from previous sentences by 
a valid argument 

The final stand-alone conclusion is 
the theorem that has been proved. 

Proofs provide a deductive procedure for deciding what is true 
in a system and what is false. If we prove a sentence, we 
classify it as true and label it as a theorem; if we disprove a 
sentence, we classify it as false. Using the proof procedure, we 
build on the foundation of axioms, finding other statements that 
we can prove are true. A sentence in a proof must be either: 

• a sentence that we assume is true 

• a sentence that we already know is true 

• a sentence that we can derive from previous 
sentences by a valid argument 

To form a proof, the sentences must be connected as described 
in the adjacent box. A proof is a linearly ordered structure of 
interwoven valid arguments. As we saw in Section 2.1, the 
rules for the outside construction of a valid argument are essen-
tially the rules for how we use the logical operators and quanti-
fiers. The definition of implies gives different ways to set up 
the structure to derive an implication; the definition also gives 
the structure for making derivations from an implication. 
These are two different proof techniques: 

• how we derive an implication 

• what we can derive from an implication 

Similarly, the definition of or gives the rules for setting up the 
structure to derive an or-sentence; it also gives the structure for 
making derivations from an or-sentence. In a proof, it is essen-
tial to remember that deductions made from an assumption are 
not stand-alone conclusions. An assumption used in a valid 
argument must always be included in the final conclusion. For 
example, if we assume p is true and then derive q, our final 
conclusion isp=><y. 
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An Axiomatic System In summary, an axiomatic system is composed of the following: 

Proof Procedure 
DefMtions 

Undefined Ttrmi 

Absolute Truths 

Independent Axioms 

• Undefined terms from which we construct 
the vocabulary of the system. 

• A grammar which gives the rules for forming 
sentences. 

• Definitions built from the undefined terms. 

• A proof procedure which give a deductive method for 
deciding what is true in the system and what is false. 

• Axioms, sentences assumed to be true. 

• Theorems, sentences that we can derive 
from the axioms. 

The early Greeks devised the axiomatic method for deductive 
reasoning. It is rather surprising that since the time of Euclid, 
the deductive method of reasoning and constructing proofs has 
remained essentially the same. However, our view of the 
axioms has drastically changed, causing one of the most 
profound paradigm shifts in all of human history. 

For over 2000 years, axioms for mathematical systems were 
considered to be self-evident truths. They were considered as 
absolute truths, statements whose truth could not be questioned 
because it was thought that they described basic properties of 
physical space. This view was held until the 19th century when 
the quest for establishing the independence of Euclid's axioms 
forced a radical change in our perception of truth, a change so 
radical that its reverberations affected all areas of intellectual 
thought. 

A set of axioms is independent if none of the axioms can be 
derived from the others. If we can derive a statement from the 
axioms, it is not necessary to list it as an axiom for we can list it 
as a theorem instead of an axiom. We prefer not to make more 
assumptions than are necessary. When the a set of axioms are 
independent of each other, we have a minimal list of 
assumptions about that system. 

Many mathematicians regarded Euclid's Fifth Postulate 
with suspicion, not because its truth was in question, but 
because it was more complex than his other four axioms. They 
thought that it should be a theorem instead of an axiom. Euclid 
stated his Fifth Postulate in the following form: 



2.8 Axiomatic Systems 199 

Euclid's Fifth Postulate: If two lines in a plane are cut 
by a transversal so that the sum of the interior angles on 
one side of the transversal are less than a straight angle, 
then the 2 lines must intersect on that side. 

Euclid could have phrased his Fifth Postulate in one of the 
following equivalent forms: 

Triangle Sum Postulate: The sum of the angles in a 
triangle is 180°. 

Parallel Postulate: In the plane determined by a line I 
and a point P not on (, there exists a unique line 
through P that is parallel to I. 

Equidistant Postulate: Parallel lines are everywhere 
equidistant. 

If one structures their thinking in the way described in this 
chapter, it is not too difficult to prove that Euclid's Fifth Postu-
late is equivalent to each of the above statements, which 
certainly seem like obvious "truths." A proof of any one of 
these statements would also prove Euclid's Fifth Postulate since 
they are equivalent. 

Through the centuries, the challenge of proving Euclid's 
Fifth Postulate attracted many great intellects, but with no 
success. In 1733, Girolamo Saccheri, a Jesuit mathematician, 
tried to prove the triangle sum version with a proof by contra-
diction. He assumed that the sum of the angles in a triangle is 
not 180° and tried to find a contradiction. We can imagine his 
great excitement when he thought that he had found one. He 
published his work, but after his death, a logical error was 
found in his reasoning. Although Saccheri did not demonstrate 
a contradiction, he did derive several interesting theorems that 
were logically correct. 

Continuing the quest that had spanned two millennium, in 
the early 19th century, Carl Gauss, Janos Bolyai, and Nikolai 
Lobachevsky noticed independently that replacing Euclid's 
Fifth Postulate with its negation yielded a strange, but interest-
ing, new set of theorems, including those that Saccheri had first 
proved. They began to suspect that a contradiction would not 
be found - that they were seeing a new axiomatic system that 
was logically valid. This new system, known today as 
non-Euclidean geometry, was extremely controversial in the 
19th century because it defies our intuitive perception of 
reality. From our visual perception of the world around us, 
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a point P, neither of which intersect a given line, with all three 
lines contained in the same plane? 

Gauss, one of the greatest mathematicians of all time, did 
not publish his results, perhaps because he did not want to 
waste his time defending something that he knew was true, 
especially against people like Emanuel Kant and other philoso-
phers who adamantly believed that space had to be Euclidean. 
Bold enough to risk the ridicule of academia, Bolyai (1833) 
and Lobachevsky (1829) each published the theorems they had 
derived in this strange new system. However, neither proved 
that their system had no contradictions. Thus, the naysayers 
continued to believe that someday a contradiction would 
surface in their bizarre system. On the other hand, though, no 
one had ever proved that Euclid's system has no contradictions. 

It was not until 1868 that the question was finally settled. 
By constructing a model of non-Euclidean geometry within the 
framework of Euclidean geometry, Eugenio Beltrami proved 
that if Euclidean geometry has no contradictions, then 
non-Euclidean geometry also has no contradictions. In other 
words, non-Euclidean geometry is as logically sound as Euclid-
ean geometry. This result proved that Euclid's Fifth Postulate 
could not be derived from the other four axioms. 

Models To understand Beltrami's method of proof, we need to under-
stand what is meant by a model of an axiomatic system. To 
construct a model of an axiomatic system, we construct a model 
of each undefined term in the system. A model of an undefined 
term is some type of example that has those properties specified 
by the axioms. Consider the axiomatic system built from the 
following three undefined terms and three axioms. 

Undefined Terms: point, line, and is on: 

Al: For every two points, there is a line on them. 

A2: Every line is on at least two points. 

A3: Every point is on at least two lines. 

Suppose that we use houses to model points and paths to model 
lines. For "is on," we will use the same interpretation. Doing a 
direct substitution in the above axioms gives the following 
translation of the axioms within the context of our model. 

Ml: For each two houses, there is a path on the two houses. 

M2: Every path is on at least two houses. 

M3: Every house is on at least two paths. 
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If we have a set of houses and paths that satisfy the previous 
three sentences, then we have a physical model of our 
axiomatic system. For example, in the adjacent illustration, we 
have six houses and various bicycle trails between them. By a 
path between two houses, we will mean a bicycle path where 
the paper boy can ride from one house to the next. If we check 
carefully, we will see that this interpretation of point and line 
satisfies the three axioms. So, we have a model of our 
axiomatic system. 

Since a model of a system has all properties specified by the 
axioms, any theorem that can be derived from the axioms must 
also be true in the model. Consequently, the theorems of an 
axiomatic system are true in all models of the system. By 
proving a theorem in an abstract setting, we can then apply it to 
a host of different models with no further derivations required, 
which is the main reason that abstract thinking is such a power-
ful tool. 

Beltrami settled the famous controversy over Euclid's Fifth 
Postulate by building a model of non-Euclidean geometry in a 
Euclidean plane. His interpretation of the meaning of the 
undefined term, "straight line," was not what we would tradi-
tionally call straight, but it did satisfy the first four axioms of 
Euclidean geometry. However, it did not satisfy Euclid's Fifth 
Postulate. If there were a contradiction that could be derived 
by negating Euclid's Fifth Postulate, then Beltrami's model 
would have to contain the contradiction, and, in turn, the 
Euclidean space in which his model was embedded would also 
contain the contradiction. Beltrami's model proves that if non-
Euclidean space has a contradiction, so does Euclidean space. 

This startling new result - that non-Euclidean geometry is as 
valid as Euclidean geometry - forced scholars in all disciplines 
to change their view of truth. The announcement of this result 
had a momentous impact on the mindscape of 19th century 
intellectuals. It made scholars question their concept of truth 
and their faith in mathematics as the bastion of objective truth. 
The previously sacrosanct view of mathematical truths as 
absolute would no longer hold water. "Obviously true" sen-
tences, such as the parallel postulate, were false in this new 
system. Mathematical truths could no longer be considered ab-
solute; they now had to be viewed as true relative to a system. 

The shock waves spread throughout the intellectual world. 
If truth cannot be absolute in mathematics, the most objective 
of all disciplines, how can it be absolute anywhere? Truth is 
relative, relative to the system that we construct for it. The 
concept of relativity then invaded the worlds of philosophy, 



theology, science, and the humanities. It is rather amazing that 
the seemingly isolated abstract reasoning of mathematicians -
in their quest to establish the independence of Euclid's axioms 
- paved the way for Einstein's Theory of Relativity, new 
radical theories of literary criticism, and new directions in art, 
forcing the western dependence on absolute realism to fade into 
the background. Today, after all the dust has settled, we 
consider an axiom to be nothing more than a sentence that is 
assumed true for a particular system. The same sentence could 
possibly be false in another system. 

As we discussed on page 200, a model of an axiomatic 
system is an example where each undefined term is assigned a 
specific meaning so that the corresponding interpretation of 
each axiom is true in the example. Since axiomatic systems, 
like Euclidean geometry, were originally constructed to model 
some aspect of reality, we also call an axiomatic system a 
mathematical model of its physical counterpart. 

The axioms for Euclidean geometry were based on the 
human visual perception of straight lines, but our visual 
perception is limited to very small distances. Furthermore, we 
can only see very narrow bands of visibility in the radiation 
spectrum. Since light rays are the medium through which we 
see the physical world, their shape is how we see "straight." 
Fence posts appear to be lined up straight because of the way 
the light rays carry their image to our eyes. If light rays were 
sufficiently curved, we could look straight ahead and see the 
back of our head. Our intuitive notion of straightness is based 
completely on light rays. 

At the turn of the century, Albert Einstein startled the scien-
tific community with his prediction that a ray of light would be 
curved over large distances. Several years later his prediction 
was verified. If we try to explain this phenomenon by saying 
that the light ray was distorted by a gravitational field, then we 
have to ask where the gravitational field came from. If we say 
that it comes from all the mass hanging out in that vicinity, then 
we have to ask why is it that all the mass is huddled together in 
that particular location. If we say that it may be that space is 
curved and the mass is hanging out there because of the curva-
ture of space, then we have stripped away the physical accou-
terments down to the abstract realm of mathematics. An 
axiomatic system that models space as curved is different from 
Euclidean geometry. Even though we have curves in Euclidean 
geometry, space itself is not curved. 

The Euclidean truths that we were taught in high school, 
such as the sum of the angles in a triangle is 180°, do not 
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necessarily transfer to cosmic space. Euclidean geometry is a 
good model of physical space when we are only concerned 
with small distances, such as those on planet Earth, but when 
cosmic distances are involved, non-Euclidean geometry may 
provide a better model. 

Complete Systems 

- Undecidable • 

Given any well-formed sentence that can be built from the 
terms of an axiomatic system, we would like to be able to either 
prove it or disprove it. An axiomatic system that has this 
capability is called complete. 

A sentence is called decidable if it is possible to decide its 
truth value with our proof procedure. If a sentence can be 
proved from the axioms, then the sentence is true; if the 
sentence can be disproved from the axioms, then the sentence 
is false. If it is not possible to either prove a sentence nor 
disprove it, then the sentence is undecidable. The axioms are 
decidable since they are true by virtue of being an axiom. 

The sentences of an axiomatic system fall into four catego-
ries. The first category is the axioms, represented in the 
adjacent illustration at the foundation of the system, for they 
are the seeds from which all the other truths emerge. On the 
left side of our axiomatic Tree of Knowledge, we have the true 
sentences which can be proved. On the right side we have the 
false sentences which form a mirror image of the left side: the 
sentence p is on the TRUE side if and only if ~p is on the 
FALSE side. The fourth category, high above the provable and 
disprovable sentences, way beyond the reach of our axiomatic 
branches, are the undecidable sentences which can neither be 
proved nor disproved. 

Since the ultimate goal of logical reasoning is to sort out 
what is true and what is false, we prefer to have a complete 
system, a system that has no undecidables floating beyond our 
grasp - a system whose axioms are rich enough to enable us to 
classify every sentence as either true or false. As an example 
of system that has an undecidable sentence, consider a system, 
called neutral geometry, whose axioms are Euclid's first four 
postulates. Now consider the following sentence: 

For every triangle, the sum of its angles is 180°. 

As we saw in our earlier discussion, this sentence can neither 
be proved nor disproved in neutral geometry, so it is 
undecidable. Thus, neutral geometry is not a complete system. 

If we take this undecidable statement and add it as an axiom 
to our system, we produce a new axiomatic system which is 
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Godel's Theorem 

In an axiomatic system that 
contains an infinite set, there 
will always exist sentences that 
cannot be proved or disproved 
from the axioms of that system. 
Furthermore, even if that state-
ment is added as an axiom to 
the system, there will still be 
other sentences that cannot be 
proved or disproved. 

Euclidean geometry. The problem child has now been taken 
care of for we made it an axiom. Furthermore, by making it an 
axiom, We pulled a whole cadre of undecidables down into the 
axiomatic Tree of Knowledge. We can prove all the equivalent 
formulations of our new axiom, including the parallel postulate, 
and derive a host of our theorems as well. The question now is 
- did the addition of this new axiom eliminate all the 
undecidables, or are there still more floating around beyond the 
grasp of our tools of deductive reasoning? 

Until 1931, scholars believed that it should be possible to 
construct a strong enough set of axioms so that every sentence 
would be decidable. This belief was shattered, though, when 
Kurt Gbdel (1906-1978), a German mathematician working at 
Princeton, proved one of the most remarkable theorems of the 
20th century, or perhaps of any century. Godel proved that in 
an axiomatic system that contains an infinite set, such as the set 
of natural numbers, there will always be some well-formed 
sentences that can be neither proved nor disproved. 

Consider the simple operations of arithmetic on the set of 
natural numbers. Since there are an infinite number of natural 
numbers, there will always be some sentences about natural 
numbers that we will not be able to prove or disprove. Perhaps 
the following famous conjecture, proposed by Christian 
Goldbach in the 18th century, is one of those sentences that can 
neither be proved or disproved: 

Goldbach's Conjecture: Every even integer greater 
than 2 is the sum of two prime numbers. 

4 = 2+2 

6 = 3+3 

8 = 3+5 

10 = 3+7 

Mathematicians have worked on Goldbach's Conjecture for 
over 200 years, but have not yet proved or disproved it. A 
proof may be found some day. After all, it did take over 2000 
years to settle the independence question of Euclid's Fifth 
Postulate. More recently, a 300 year quest was laid to rest in 
1995 when Andrew Wiles presented a proof of Fermat's last 
theorem. Even if a proof is never found for a conjecture like 
Goldbach's, the continued effort of trying to find a proof often 
leads to new, fertile areas for mathematical inquiry. 



2.8 Axiomatic Systems 205 

Contradictions if we tell a lie and get caught, the outraged party may say, "You 
contradict yourself." We have a similar meaning in mathe-
matics. When we lie, we represent a false sentence as true, so 
we are making the claim: p and ~p. This sentence form is a 
contradiction in mathematics. A contradiction is an abstract 
compound sentence that is always false. Since a law of logic is 
always true, its negation will be a contradiction. The contra-
diction form that we use most often is: p and ~p. If we can 
deductively derive a sentence and also derive its negation, we 
have a full-blown contradiction, which has a fatal impact on the 
system that contains it. One little contradiction makes every 
sentence a contradiction! Below is a simple proof of this 
amazing statement, which uses nothing more than the definition 
of implies. 

Theorem If an axiomatic system has a contradiction, then every sentence 
in the system is a contradiction. 

Proof Suppose p is a contradiction. Then p is true and p is false. 

Let q be an arbitrary sentence in the system. 
By the definition of implies, since p is false, p => q is true. 
But p is also true and since we now have that p => q is true, 
we can deduce that q is true. 

Since q represents an arbitrary sentence, every sentence is true. 
~q is a sentence, so ~q is also true. 

Thus, every sentence is both true and false. 
Therefore, every sentence is a contradiction. 

A contradiction can never be ignored because it turns every 
sentence in the system into a contradiction! We no longer have 
to look for theorems, for every sentence is a theorem, and the 
negation of every sentence is a theorem. The system is 
completely trivial. 

Logically speaking, if we tell one little lie, every statement 
that we make automatically becomes a lie. Even in personal 
matters where we are not bound by the strict rules for logical 
reasoning, we still find it difficult to believe someone who has 
been caught in a lie. Since the discovery of a contradiction is 
logically catastrophic, it may surprise you to learn that contra-
dictions have been found in mathematical systems. 
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Russell's Paradox In the 19th century, mathematicians thought that sets could be 
formed from any mathematical property. If one had an open 
statement p(x), one should be able to form the set of all x such 
that p(x) is true: {x \ p(x)}. However, this belief was dramati-
cally shattered in 1902 when Bertrand Russell conceived the 
following paradoxical set: 

V= { x | x is a set and x (x) 

Is V an element of V? 

Before we attempt to answer the above question, let's try to find 
some sets that are elements of V. For example, consider the 
following set: 

A = {4,5,7} 

A has 3 elements and A is not one of the elements. So, A£A. 
Thus, A is an element of V. 

Continuing in a similar manner, we can find a lot of sets 
that are elements of V. Let's try to find an element that is not in 
V. What if we take the set A and throw A into it? 

B = {4, 5, 7, {4,5,7}} 

B has 4 elements and A is one of the elements, so A € B. 
However, B í B. So B is also an element of V. 

Let's try an infinite set: 

N={1 ,2 ,3 , . . . } 

l€l42el43eN,etc. However,NtN. 
Thus, N is an element of V. 

We have found several elements of V, but we have not yet 
produced an element that is not in V. We are now ready to 
contemplate Russell's question: Is Ve V? 

V= { x\ Jtis asetandjcžjc}. 

Either VeV or VÚV. 

Casel: Suppose that VeV. 
Then by the definition of V, Vè V. 
Contradiction! 

Case 2: Suppose that Vé V. 
Then by the definition of V, VeV. 
Contradiction! 
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The set V produces a contradiction. The impact of Russell's 
Paradox was devastating to Gottlob Frege, the founder of 
modern' mathematical logic. After developing a theory for 
symbolic logic and quantifiers, Frege spent many years 
constructing a logical foundation for arithmetic. In 1893 he 
published Volume 1 of his Foundations of Arithmetic. After 
nine more years of work, he completed the second volume, but 
while it was being printed, Frege received a letter from 
Bertrand Russell which described his paradox. This news was, 
of course, logically catastrophic, but it was also personally 
catastrophic to Frege. He tried to revise his axioms to elimi-
nate the contradiction, but became very bitter and despondent, 
making no more significant contributions to mathematics. 

Because of Russell's Paradox, a new axiomatic structure for 
sets had to be constructed. With the new axioms (page 279), 
the rules for constructing sets were restricted so that Russell's 
description of V cannot be classified as a set, which eliminates 
his paradox. 

Consistent Systems A axiomatic system is consistent if it has no contradictions. We 
would like to be able to prove that the axiomatic systems used 
in mathematics are consistent. However, Kurt Gòdel again 
surprised the mathematical community by proving that it is 
impossible to prove that a system that contains an infinite set 
has no contradictions. Since the set N of natural numbers is 
infinite, we cannot prove that arithmetic on N has no contra-
dictions; however, we operate under the belief that it is 
consistent. If someone does ever derive a contradiction in the 
system of arithmetic, the axioms will have to be revised in 
order to eliminate the contradiction, as was done with the 
axioms of set theory. A contradiction cannot be swept under 
the rug and ignored. 

Exercise Set 2.8 

1. What is an axiom? Why are they necessary? 

2. Why do we need Axiomatic Systems? 

3. Why are undefined terms necessary? 

4. If a term is undefined, how can we work with it? 

5. What is a proof? 
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6. What is a theorem? 
7. Given a well-formed sentence in a mathematical system, is it 

always possible to prove that it is true or prove that it is false? 

8. What is a contradiction? 

9. What happens to a mathematical system if a contradiction is found. 
Explain why. 

10. What is a consistent system? 

11. Is the system of arithmetic consistent? 
Is the system of Euclidean geometry consistent? 

12. What does it mean to say that a set of axioms are independent? 

13. Suppose that you want to build an axiomatic system for the laws of 
logic. In the first stage of your construction, you must decide 
which terms to take as undefined. Select two of the five logical 
operators as undefined terms. Then use the undefined terms to 
build definitions for the other three operators. In each successive 
definition, you may use previous words that you have defined. 
Hint: If you use not and or for the undefined terms, how would 
you define p and q, using only not and or. 

13. Discuss Euclid's Fifth Postulate and the impact that it had on our 
concept of truth. Is Euclid's Fifth Postulate always true? 

14. What is a model of an Axiomatic System? 
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Proof 

Theorem 

Conjecture 

Inductive reasoning 

Deductive reasoning 

Review 

A linearly ordered structure of interwoven valid arguments 
where each sentence is one of the following: 

• An assumption used in a valid argument 

• An axiom, previous theorem, or definition 
• A sentence that can be derived from previous 

sentences by a valid argument 
The final stand-alone conclusion is the theorem that has been 
proved. 

A statement that has been proved. 

A statement someone thinks is true, but no one has proved it. 

Type of reasoning used when we discover a general relation 
from specific examples or experiences. 

Type of reasoning used when we derive a conclusion through 
valid arguments from other sentences that we accept as true. 

Argument A list of sentences called hypotheses followed by a sentence 
called the conclusion. 

Valid argument An argument in which the conclusion follows from the 
hypotheses. Let hu h2, . . . , h„ represent the hypotheses of an 
argument and c represent the conclusion. The argument is 
valid if and only if the following implication is a law of logic: 

(hi and h2 and /i3 and . . . and h„) => c. 

A valid argument whose hypothesis has the form, p => q and p, 
and whose conclusion is q. Also known as modus ponens. 

A valid argument whose hypothesis has the form, p=> q and ~q, 
and whose conclusion is ~p. 

A valid argument whose hypothesis has the form, 
p => q and q => r, and whose conclusion is p => r. 

Law of detachment 

Law of contraposition 

Transitive law 

Direct proof Proving an implication by assuming the hypothesis is true and 
then deriving that the conclusion must be true. 

Indirect proof Proving an implication by assuming the conclusion is false and 
then deriving that the hypothesis must be false. An indirect 
proof of an implication is a direct proof of its contrapositive. 



210 Chapter 2 Writing Our Reasoning 

Proof by cases 

Proof by contradiction 

Principle of mathematical induction 

Disprove a statement 

Axiom 

Undefined terms 

Axiomatic system 

Independent axioms 

Contradiction 

Consistent system 

Decidable 

Undecidable 

Complete system 

Model 

Subdividing a proof into special cases, one of which must be 
true. The conclusion in a proof by cases is the disjunction of 
the subconclusions within each case. 

A method of proof in which we assume the negation of what 
we want to derive and then derive a contradiction. 

Let p(n) be an open statement. Let c be a fixed integer. If for 
every integer n ž c p(n) => p(n + 1), and p(c) is also true, then p(n) 
is true for all n ž c. Stronger Version: If for every positive integer 
n, [p(l)Лр(2)лр(3)Л . . . Лр(п)]=>р(п+ 1), andp(l) is also 
true, then p(n) is true for all positive integers n. 

Prove its negation. 

A statement that is assumed true in an axiomatic system, 
requiring no proof. 

The basic words from which we construct the vocabulary for an 
axiomatic system. It is impossible to define every word without 
being circular. The terms selected to be undefined are chosen 
to represent the simplest concepts possible, concepts that 
cannot be explained by simpler concepts. 

A list of undefined terms, a list of axioms, and a proof 
procedure for deriving theorems in the system. Definitions are 
built from the undefined terms and previously defined terms. 
Theorems are derived from the axioms, previous theorems, and 
definitions using the proof procedure. The axioms, definitions, 
and theorems must be sentences in accord with the grammar for 
the system. 

A set of axioms in which none of the axioms can be derived 
from the others. 

An abstract compound statement that is always false, like 
p and ~p. A negation of a law of logic is a contradiction. 

An axiomatic system that contains no contradictions. 

A sentence that can be either proved or disproved. 

A sentence that is not decidable. It is not possible to derive the 
sentence or its negation from the axioms. 

An axiomatic system in which every well-formed statement can 
be either proved or disproved. Every sentence is decidable. 

An example of an undefined term that has the properties 
specified by the axioms. A model of an axiomatic system 
contains a model of each undefined term in the system. 
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Sequence 

Even 

Odd 

Prime 

Divides 

Fundamental theorem of arithmetic 

A function whose domain is the set of natural numbers. The 
notation sn indicate s(n), the nth term in the sequence. 

a is even if and only if a = 2n for some integer n. 

a is odd if and only if a = In + 1 for some integer n. 

a is prime if and only if a is an integer greater than 1 whose 
only positive factors of a are a and 1. 

Let a and b be integers. 
a divides b if and only if b=ak for some integer k. 
a divides b if and only if a is a factor of b. 

Every natural number, other than 1, can be represented in a 
unique manner as a product of prime numbers, with smaller 
factors written to the left of larger factors. 

Chapter Review 

1. a. What is a mathematical proof? What is a theorem? 

b. What does it mean to say that an argument is valid? 
c. If an argument is valid, does its conclusion have to be true? 
d. What are the 4 stages involved in writing a proof? 
e. How do you disprove a statement? 
f. What is the difference between inductive reasoning and deduc-

tive reasoning? 

2. Describe the basic structure of the following types of proof. 

a. A direct proof of an implication 

b. An indirect proof of an implication. 

c. A proof of an or-sentence. 

d. A proof of an equivalence. 

e. A proof of an existentially quantified sentence. 

f. A proof of a universally quantified sentence. 

g. A proof by cases. 

h. A proof by contradiction. 

i. A proof by mathematical induction. 

3. You should be able to construct proofs involving the structures 
listed in exercise 2 in either outline form or paragraph form. On 
the next page are some examples from this chapter. 
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a. The sum (or difference or product) of two even numbers 
is an even number. 

b. The sum (or difference or product) of two odd numbers 
is an number. 

c. The sum (or difference or product) of two rational numbers 
is a rational number. 

d. For every real number x, if x is rational and y is irrational, 
then x + y is irrational. 

e. It is not true that the sum of every two irrational numbers 
is irrational. 

f. Let x be a real number. - 3 < x < 3 if and only if x2 < 9. 

g. JJ is an irrational number. 

h. For every positive integer n, 
1+2 + 4 + 8 + 16 + . . .+2"-' = 2" - l 
1 + 3 + 32 + 33 + . . . + 3"-1 = -^f1 

n!>2"- ' . 
i. For every positive integer n, n is even or n is odd. 
j . The sum of the first n even positive integers is n (n + 1). 
k. The sum of the first n odd positive integers is n2. 
I. пг й 2" for every integer n Ž 4. 

4. Use cases and the meaning of "and" and "or" to derive the 
solution of an inequality of the form ab > 0 or ab < 0. 
For example, (x - 2)(x + 27) < 0. 

5. Discuss the following. 
a. Why are axioms necessary? 
b. Why are undefined terms necessary? 
c. If a term is undefined, how can we work with it? 

d. What is a contradiction? 

e. What happens to an axiomatic system if a contradiction is 
found in it? 

f. What is a consistent system? 
g. How has the concept of truth changed since the time of the 

ancient Greeks? Why did it change? 

h. What did Kurt Godel prove and why was it important? 

i. What does it mean to say that a set of axioms is independent? 

6. Comment on what is accepted as a proof in another discipline that 
you have studied. Compare and contrast their notion of a proof 
with the mathematical notion of a proof. 
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Sets play a fundamental role in the development of our reason-
ing faculties. To learn the meaning of a word such as triangle, 
a young child must learn how to identify those objects to which 
the word applies. To identify an object as a triangle, the child 
must be able to classify it as a member of a set of objects that 
share a certain property. If a child is asked how many triangles 
are on a tray of assorted objects, the child must mentally sort 
the objects into two sets: the set of objects mat have the 
property of being a triangle and the set of objects that do not 
have that property. Psychologists use tests such as these to 
measure intelligence in very young children, as well as in birds, 
monkeys, and other animals. The ability to recognize sets lies 
at the very foundation of what we mean by intelligence. So it 
is no surprise that the concept of a set lies at the very founda-
tion of mathematics. 

All of the basic concepts in mathematics can be phrased in 
terms of sets. When we count, we are counting the number of 
elements in a set; when we analyze the form of a figure, we are 
analyzing a set of points; when we look at a function, we see a 
relation between two sets. Sets provide the framework for 
mathematical discourse; they are the building blocks for all 
quantitative and spatial concepts. 

213 
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The set of all natural numbers 
has the same size as the set of 
all even natural numbers. 

The basic operations for working with sets are so simple that 
we might think no formal training is needed. After all, a first 
grader knows how to combine sets, find elements that are 
common to several sets, and remove elements from a set. 
However, like the logical operators, the meaning can be easily 
misconstrued by the untrained mind when more than one set 
operation is used in the same sentence. It could be that the 
confusion comes from the logical operators, for they are used 
to define the set operations. Which came first, though, is a 
chicken/egg question. Our innate ability to combine, overlap 
and remove may be where the logical operators originated. At 
any rate, they are intimately related. Most young children can 
do the basic operations with sets, but to manipulate them and 
cross breed them in an abstract manner requires a higher level 
of intelligence. 

As in any living organism, sets need a reproductive system. 
The four basic operations for making new sets from old sets are 
called union, intersection, set subtraction, and cross product. 
The first three operations are simple concepts that occur 
naturally in everyday life, but the cross product is a complete 
product of the imagination. Introduced by Renè Descartes in 
the 17th century as a coordinate plane for plotting ordered 
pairs, the cross product provides a powerful tool for combining 
the visual reasoning of geometry with the algebraic reasoning 
of numbers. 

The set concept was used in mathematics in an intuitive 
manner until the turn of the 20th century when Russell's 
paradox (page 206) sent the intellectual community into a 
philosophical tailspin. Russell's paradox was produced from an 
intuitively obvious assumption on how sets could be formed, 
but his example involved an infinite set, which is where our 
intuition falls apart. In our physical experiences with sets, from 
early childhood on, we never encounter sets of an infinite 
magnitude. 

Since ancient Greece, infinity had greatly troubled the deep 
thinkers, producing such disturbing results as the adjacent 
deduction about the size of the set of natural numbers. How 
could the set of all natural numbers have the same size as the 
set of all even natural numbers? From this paradoxical sound-
ing statement, G. W. Leibniz (1646-1716), the great 
philosopher/mathematician, deduced that the number of all 
natural numbers implies a contradiction. What may seem like a 
contradiction, though, is inherited from a finite perspective of 
infinite sets. If we take the viewpoint that infinite sets do not 
behave in the same manner as finite sets, then it may sound 
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I protest above all against the use 
of an infinite quantity as a com-
pleted one, which in mathematics 
is never allowed. The Infinite is 
only a manner of speaking. 

Carl Gauss 
1777-1855 

Nowadays it is known to be 
possible, logically speaking, 
to derive practically the 
whole of known mathe-
matics from a single source, 
The Theory of Sets. 

Bourbaki 

perfectly natural that the set of all natural numbers could have 
the same size as the set of all even natural numbers. 

Oneway to deal with the apparent paradoxes of infinity was 
the stance taken by the great mathematician, Carl Gauss, in the 
adjacent quote. The natural numbers go on and on and on; we 
can never get to the end, there's always one more. So, how can 
we round them all up and neatly encage them in a set? This is 
precisely what we do when we write the following notation: 

N = { 1 , 2 , 3 , . . . } 

For the human mind to encompass infinity in this manner is a 
very audacious move. Georg Cantor (1845-1918) took on the 
challenge and developed a logical theory which captured the 
wild horses of infinity, making it possible to work with infinity 
in a perfectly logical manner. His courage in tackling such an 
enormous concept as that of infinity was no doubt supported by 
his belief that "In mathematics the art of asking questions is 
more valuable than solving problems" (page 19). 

Because of Cantor's work, we can logically talk about not 
only infinite sets, but also infinite numbers. We can also talk 
about different sizes of infinity in a completely logical voice, 
and without batting an eyelash, we can logically agree that, yes, 
the set of all natural numbers does have the same size as the set 
of all even natural numbers (page 289). 

After an axiomatic foundation was constructed for set 
theory, sets became a major unifying concept in 20th century 
mathematics. Its importance is eloquently described by the 
secret society of French mathematicians known as Bourbaki: 
"Nowadays it is known to be possible, logically speaking, to 
derive practically the whole of known mathematics from a 
single source, The Theory of Sets." 

This chapter covers the basic concepts of set theory, takes a 
brief excursion into the mysterious realm of infinite sets, and 
provides exercises to help you develop your reasoning ability, 
your ability to write proofs, and your understanding of the 
language used with sets. 
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Activity 3.1 

1. Let A = [1,2,3], B = {3,1,2}, andC= {1,2,3,5,6}. 
a. lsA = B7 b. lsA = Cl c. IsACC? 

2. Let A and B be arbitrary sets. Analyze the thought processes you 
went through to answer the questions in the previous exercise, 
then make up informal definitions for A = B and A £ B. Translate 
each definition in terms of quantifiers and logical operators. 

3. a. Make a wild guess as to the number of different subcommittees 
that could be formed from a set of 27 students. 

b. Let S be a set with n elements. Make an educated guess as to 
how many subsets S has. Look at examples for n = 1, n = 2, 
n = 3, n = 4, etc., until you see a pattern. 

c. Make an educated guess as to the number of different subcom-
mittees that could be formed from a set of 27 students. 

d. Make an educated guess as to the number of different subcom-
mittees that could be formed from a set of 270 students. Is the 
number of subcommittees that can be formed from a group of 
270 students greater than the number of atoms in our universe? 

= 3.1 Sets & Elements = 

The vocabulary for working with sets is built from one noun 
and one verb phrase: set, is an element of. Intuitively, a set is a 
collection of objects, and each object in a set is an element of 
the set. However, since there are no simpler concepts with 
which to define them, these two terms are undefined in the 
axiomatic construction of set theory (page 195). In the sen-
tence, "x exists," the verb gives no connection with other 
objects. In the sentence, "x exists in A," we now have a connec-
tion. Connections are essential for the reasoning process. 

Set Notation The € symbol represents "is an element of." 

x€S: x is an element of S. 

A slash through the e symbol represents its negation. 
xiS: ~ (x is an element of S) 
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Listing Method 

Property Method 

E = { x | д: is an even number } 

E — { У I У is a n even number } 

E = {x | x = 2k for some integer k } 

£ = {2k | fc is an integer } 

Le tS- {x \p(x)}. 

л-е5<=> p(x) is true. 

xéS «» />(дг) is not true. 

We sometimes notate a set by listing the elements and 
enclosing them in set braces. 

5 ={2, 4, 6, 8 200} 

The ellipsis ( . . . ) indicates that the listing continues in the 
given pattern. We must list enough elements so that the reader 
can see the pattern. A listing of the set E of all even integers 
requires two ellipses: 

E={ . . . , - 6 , - 4 , - 2 , 0 , 2 , 4 , 6 , . . . ) 

Unlike the previous example, each of the above ellipses repre-
sents an infinite number of elements. 

When we use the property method to define a set, we specify a 
property that determines membership in the set. The property 
is stated in terms of an open statement p(x) which we enclose in 
set braces: 

{x\p(x)} 

For example, let/?(*): x is a real number. 

R = { x | x is a real number } 

The vertical bar in the above notation is read as "such that": 

R is the set of all x such that x is a real number. 

When we describe a set with the property method, it must be 
well-defined, which means that the property must clearly distin-
guish who is in the set and who is not. The set of all even 
numbers is a well-defined set, whereas the set of all lucky 
numbers is not well-defined. 

The set E of even numbers can be notated with the property 
method in different ways, as illustrated on the left. In the 
second form, we use y instead of x. In the third form, we use 
the definition of even, prominently displaying the existential 
quantifier. In the last form, the existential quantifier is hidden 
but we must use it when we translate x€E: 

x e E if and only if there exists an integer k such that x=2k. 

When we make deductions about sets, we usually reason with 
the sentence xeS. From a property description of a set, we 
translate x e S and x č S &s illustrated on the left and in the 
following examples. 
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-Ф- Example Translate x e S and x é S for the given set. 

1. LetS={x\xeAandxeB], 
xeS if and only if xeA and xsB. 
xé S if and only if x UA or x € B). 

2. Let S = {5" | n is an integer}. 
jce 5 if and only if there exists an integer n such that * = 5". 
xè S if and only if for every integer n, x Ф 5". 

3. Let5= {3,8,29}. 
xsS if and only if x = 3 or * = 8 or* = 29. 
xéS if and only if x*3 andjc*8 and**29. 

Universal Sets A universal set U is the universe for a particular discussion, 
setting the boundary for our considerations. In elementary 
algebra, we often use the set R of real numbers as our universal 
set, but sometimes we use the set C of complex numbers. In 
plane Euclidean geometry, the universal set is the set of all 
points in a plane, whereas in spherical geometry, the universal 
set is the set of points on a sphere. 

If the reader understands what the universal set is, we do 
not have to mention it each time we describe a set. For 
example, if the reader knows that the universal set is the set of 
real numbers, we may define the closed interval [1,3] as 
follows: 

[l,3] = {x\l<x^3} 

If the context is not clear, though, we should let the reader 
know that the domain for x is the real numbers. 

[1,3] = { x\ 1£JC^3 and x is a real number } 

In a set description by the property method, the elements are 
always limited to the members of a universal set. When we 
write the property without mentioning the universal set, it is 
implicitly understood that each x must be in the current univer-
sal set. The restriction of sets that we define to a universal set 
that we already know exists eliminates the contradiction 
produced by Russell's Paradox (page 206,279). 

S={x\p(x)} 

S= {x | p(x)andxei/} 
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The Empty Set 

0 = П 

0€{0} 

0 * { 0 } 

Shapes as Sets 

A geometric figure. 

<d2 
A geometric figure. 

In the following definition of a set, it is implicitly understood 
thatxei/: 

LetS={x\x£A]. 

In the adjacent illustration, the universal set U is represented as 
a rectangular region and the set A as a circular region. When 
we say x € A, we do not go outside of U. 

At the opposite extreme from the universal set, we have the 
empty set. The empty set is such a simple concept that we 
often gloss over its meaning. The empty set is a set that has no 
elements. We do not think of the empty set as nothing. The 
empty set is a container with nothing in it, similar to an empty 
box, which still exists even though it has nothing in it. 

We use the symbol 0 to represent the empty set. 

The empty set has no elements, so it is not an element of itself. 

If we put an empty box inside another box, the outside box is 
not empty. Likewise, the set { 0 } is not empty. It has one 
element, the empty set. 

The adjacent sets are not equal because the set on the left has 
no elements, whereas the set on the right has one element. 

The empty set can be an element of a set, but it must be 
included in the list of elements or satisfy the property that 
determines the set. For example: 

LetA={l ,5}andB={l ,5 ,0} . 

A has two elements, 1 and 5. The empty set is not one of these 
two elements, so 0 é A. On the other hand, B has three ele-
ments and 0 BB. 

How do we describe what we mean by a shape? In 
mathematical language, we call a shape a geometric figure. 
Since a figure is composed of points, we can use the language 
of sets to define this visual concept: 

A geometric figure is a set of points. 

A set of points is a geometric figure. 

With this definition, a figure does not have to be connected; it 
may be in more than one piece, as illustrated in the adjacent 
sketch. Note that the above definition uses the undefined 
concept of a point (page 195). Except for undefined terms, we 
can define almost all mathematical concepts in terms of sets. 
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One of the exceptions is when we deal with very large collec-
tions, such as the collection of all sets. Forming the set of all 
sets produces a contradiction (page 301), similar to Russell's 
Paradox. For this reason, the axioms of set theory do not allow 
a set to be a member of itself. So, we cannot call the collection 
of all sets a "set." Instead, we call it a "class," and there is an 
analogous theory for working with classes. 

Equal Sets 

C F 

A A 
D 

MBC Ф àDEF 

Two sets are equal 

if and only if 

they have the same elements. 

Let A and B be sets. 
A = B 

if and only if 

for every x, 

(xeA =>xeB) and (xeB =>jceA). 

Equality is one of the most important relations in mathematics. 
We use this relation in a stronger sense than is often used in 
everyday language. In the Declaration of Independence, the 
founders of the American democracy introduce their axioms 
with the sentence, "We hold these truths to be self-evident, that 
all men are created equal . . . " In a mathematical framework, 
however, two different objects cannot be equal to each other, 
not even identical twins. 

For example, in the adjacent illustration, we have triangles 
that are identical twins; corresponding sides and corresponding 
angles have the same measurements. These two triangles are 
congruent, but they are not equal because ĆABC is a different 
set of points than ADEF: AABC Ф ADEF. Congruence is called 
an equivalence relation (page 326) because it has the same 
basic properties as equality, but it is important to note the 
distinction between the two. 

When we say two sets are equal, we mean that they have 
identical elements. To say that sets A and B have the same 
elements can be translated as follows: 

Every element in A is in B, and every element in B is in A. 

For every x, xeA =>xeB, and for every x, я е б =>хеА. 

Since we can distribute the universal quantifier across an 
and-statement, we can translate the above statement as stated in 
the adjacent box. Notice how we are building the language of 
sets from the language of logic and the two undefined terms. 

If A = B, then A and B are different names for the same set. 
We sometimes have different names for the same person, such 
as Jack and John, or Elizabeth and Beth. Parents do not 
normally give different children the same name because it 
destroys the function of a name, which is to identify the person. 
Similarly, when we name a set, such as A or B, we do not give 
the same name to another set that is included in the same 
discussion. 
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© 
(1,3} = {3,1} 

{1,з,з} = u,3] 

A set is completely determined by its elements; it does not 
matter how we arrange them. If we shake a box of dominoes, 
we still have the same set of dominoes. 

Is {1,3} = {3,1}? 

Is every element in the left set an element of the right set? 

Is every element in the right set an element of the left set? 

The answer to both questions is yes, so {1,3 } = {3,1 }. 

Duplicate listings do not change a set. If we make a list of 
people to invite to a party and we list the same person twice, 
we have not changed the set of people being invited. Similarly, 
redundant listings in a set do not affect the set. 

Is {1,3,3} = {1,3}? 

Every element in the left set is an element of the right set 

and vice-versa. So, {1,3,3} = {1,3 }. 

When we count the number of elements in a set, we do not 
count duplicates. The set {1,3,3 } has only two elements. 

Subsets 

Let A and B be sets. 

if and only if 

for every x, x£A =>i6fi. 

AQB 

Another fundamental relation between sets is the subset 
relation. If every element in set A is also in set B, we say that A 
is a subset ofB, which is notated as A £ B . 

The formal definition of subset is given in the adjacent box. 
Note that it is half of the condition used to define equal sets. 
We now have another verb phrase - is a subset of- that we can 
use to construct sentences. We are rapidly expanding our 
vocabulary. You may think that we are going at a rather slow 
pace; however, we have now covered the three fundamental 
verbs of set theory: is an element of, is equal to, and is a subset 
of. If we have a personal understanding of these concepts, all 
other definitions will be easy to interpret because all other 
definitions are built from these three verbs and the logical 
operators. 

We can visualize the subset relation as illustrated on the 
left. This type of diagram, called a Venn diagram, was first 
used by John Venn to illustrate the laws of logic in a paper 
published in 1876. Note how the adjacent picture of the subset 
relation gives a picture of the implication operator: 

For every x, xsA =>л:еВ. 
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In the adjacent sketch, pick an x that is not in A. The implica-
tion, xe A =>xeB, is true because the hypothesis is false. Thus, 
the implication is true for all x in the universal set. Students 
sometimes erroneously describe the subset relation in terms of 
and: for every x, xe A and xe B. Note that this statement is not 
true in the adjacent picture. 

In the hierarchy of number sets, the set M of all natural 
numbers is a subset of the set Z of all integers; the set Z of all 
integers is a subset of the set Q of all rational numbers. 

Nczse 
A verbatim reading of the above the symbols is grammatically 
incorrect. We use this notation as an abbreviation for: 

N ç Z andZs Q 

In a similar style, we use 3 <*<5 as an abbreviation for 3 <* 
andx<5. When we negate an expression like A ç B ç C , w e 
must be aware of the hidden and. 

Subset Proofs To prove that A £ B, we must prove the following: 

For every *, if xe A, then *e B. 

We can prove this implication with either a direct or indirect 
proof. The outside structure for a direct proof is given in the 
adjacent template. At the end of the template, the implication 
is not explicitly stated in order to make the proof more concise. 
The amount of detail that we include in a proof is a delicate 
balance between putting in enough detail so that the reader can 
follow our reasoning, but not putting in too much detail and 
wasting the reader's time. 

To prove that 0 £A, we must prove the following: 

For every x, if xe 0, then xeA. 

For every set A, 0 £ A. 

Let A be a set. Let x be an element in the universal set. 
Since the empty set has no elements, x í 0. 
Consider the implication: If xe 0, then xe A. 

Since the hypothesis is false, the implication is true. 
Therefore, 0 £ A. 

Derive: ACB 

Direct Proof 

Let x be any element. 
Assume thatjeeA. 

So.^efl. 
Therefore, ACS. 

Theorem 

Proof 
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Theorem For every set A, A £A. 

Proof Let A be a set. Let x be an element in the universal set. 
If *eA, then jceA p =>p 
Therefore, AC A. 

Transitivity 

The above theorem states that any set is a subset of itself. 
When we count all the subsets of a given set, we include the 
empty set and the whole set. The set {1,2} has four different 
subsets: 0, {1,2}, {1}, {2} 

If we draw sets A and B such that A<ZB and then we draw a set 
C such that flÇC, we can clearly see that A<ZC. As demon-
strated in the following proof, this property of sets is inherited 
from the transitivity property of implies. 

Theorem 

Proof 

For all sets A, B, and C, if A £ B and B £ C, then A^C. 

Let A, B and C be sets. Assume that A £ B and B C C. 
Let * be an element in the universal set. 

If xeA, thenxeB Definition ofA^B 
If xeB, thenx€C Definition ofBQC 

So, if xeA, thenxeC Transitivity of implies 

So,A^C DefinitionofAÇC 

Thus, for all sets A, B, and C, if A £B and fl£C, then A £ C. 

Sei Equality Proofs 

Derive. A=B 

Parti. AÇLB 

Parti. BCA 

Therefore, A — B. 

The definition of equal sets can be phrased in terms of subsets. 

A = B 

if and only if 

ASBandBcA. 

To prove two sets are equal, we usually construct two different 
subset proofs, as illustrated in the adjacent template. We 
demonstrate that the left side is a subset of the right side and 
we demonstrate that the right side is a subset of the left side. 
From this, we conclude that the two sets are equal. We will 
have several examples of this type of proof in the next section. 
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Equivalence 

Properties of the Equals Relation 

The definition of equal sets can also be phrased in terms of an 
equivalence: 

A = B 

if and only if 

for every x,xeA <=>x€fi. 

The equals relation between two sets is the analogue of the 
equivalence relation between two sentences. However, we do 
not use them interchangeably. We do not say that two sen-
tences are equal; we say that they are equivalent. We only use 
the equals relation between sets and numbers. 

The equals relation has three fundamental properties. Each of 
these properties is inherited from the corresponding property of 
equivalence. 

Theorem For all sets A, B and C, the following are true: 

Reflexive Property: A=A 

Transitive Property: If A = B and B = C, then A = C. 

Symmetric Property: If A = B, then B=A. 

Properties of the Subset Relation 

The reflexive property states that each set is equal to itself. 

The transitive property gives us a way to deduce set equality 
when we have a middle set as a stepping stone. If the first set 
is equal to the second set and the second set is equal to the third 
set, we can then deduce that the first set is equal to the third set. 

The symmetric property allows us to reflect sets about the 
equals sign; it doesn't matter which one we write first. 

The subset relation also has the reflexive and transitive 
properties. However, it has the opposite extreme of the sym-
metric property, which is called antisymmetric. The only time 
that we can switch two sets around a subset sign is when the 
two sets are equal: 

If A £ S and B£A, then A = B. 

The subset relation is antisymmetric - the order makes a differ-
ence. We will demonstrate later (page 381) that the subset 
relation provides a model for any order relation. 
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Theorem For all sets A, B and C, the following are true: 

Reflexive Property: A £A. 

Transitive Property: If A e B and B £ C, then ASC. 

Antisymmetric Property: If A £ B and B £ A, then A = B. 

Proper Subsets 

Let A and B be sets. 

AC.B 

if and only if 

ACBandA=ifcB. 

A 2 B 

A£B 

Let A and B be sets. 

A£B 

if and only if 

there exists an x such that 

x€A andxCB. 

Every set is a subset of itself. We use the term proper subset to 
distinguish those subsets that are not the whole set. "A is a 
proper subset of B" is notated asAcJ?. 

A c B if and only if AQB and A*B. 

{1,2} c { 1,2,3} since {1,2} £ { 1,2,3} and {1,2}*{1,2,3} 

We have the same relation between <z and £ as between the 
symbols < and <. 

{1,2,3}£{1,2,3} but {1,2,3}<£{1,2,3}. 

The reversal of the subset sign has the same meaning as 
reversing an inequality: A 2 B if and only if BEA 
A 2 B is read as "A contains B." Mirror images like £ and 2 
can play tricks on the eye, so it may be less confusing to the 
reader to use the £ symbol whenever possible. 

To translate the meaning of "is not a subset of," we write the 
negation as a prefix and then substitute the definition of subset: 

~(AQB) 

~ (For every x, xeA=>xsB.) 

There exists an x such that JteA and x € B. 

To prove that A<£B, we must prove the above statement. Since 
this statement starts with an existential quantifier, we need only 
find one counterexample. 

Theorem The set !R of real numbers is not a subset of the set Q of rational 
numbers. 

Proof JÏ. represents a length, so -Jl is a real number. 
However, Jl is not rational (page 170). So, U&Q. 
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Variables and Constants When more than one variable is used in the property 
description of a set, we must carefully observe which variables 
are changing and which are fixed. In the following definition 
of the closed interval [a, b], both a and b are fixed. 

[a,b] = {x\a<x<,b) 

When a set is defined in the above form, {x \ p{x)}, we can see 
the changing variable x in the first field. However, if more than 
one variable is in the first field, we have to look in the second 
field to see what is changing. 

■fy Example List the elements in the given set. Then translate xe S. 

1. Let 5= {y + n | n is a natural number}. 

S is the set of elements of the form y+n where n is a natural 
number. The variable n changes, but v does not. 

S={y+l,y+2,y+3,y+4,.. .,y+n,...) 

xeS if and only if 
there exists a natural number n such that x = y+n. 

2. Let Sa = {-f-1 m is a natural number}. 

As indicated in the second field, m changes but n is fixed. 

c _ f JL 2. JL i. ж i 
« I - I Л l Л > Л» Л | • ' ■ ) « l ' " l 

To list the elements in S3, we substitute 3 for n: 
n , i 2 1 4 m_ , 
03 ~ 1 3 ' 3 ' 3 ' 3 » • • •» 3 » • • ■ / 

xeS3 if and only if 
a natural number m su 

xsS„ if and only if 

there exists a natural number m such that x = y . 

there exists a natural number m such that x = тг. 

{а)Фа A set is a container for mathematical objects in the same way 
that a box is a container for physical objects. A box containing 
a butterfly is not the same entity as a butterfly that is not in a 
box. Similarly, set braces around an element change the 
meaning: [а}Фа. The set whose only element is 1 is not equal 
to l :{ l}* l . 
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Sets as Elements We sometimes use sets as elements in another set. To work 
with these types of sets, we must read the notation carefully to 
identify the elements of the big set. For example, the following 
set 5 has a set as an element. At first glance we might think 
that 3 e S, but it is not: 

Let5= {1,{1,3}}. 

S has 2 elements: 1 and {1,3}. 

l eSand{ l ,3}eS . However, 3 £ S. 

We normally use uppercase letters for sets and lowercase letters 
for elements. However, when the elements of a set are also 
sets, we often use uppercase letters for the elements. 

LstS={X\ АГС[0,1]}. 

LetA = [0,- j] . Then AeS. 

We sometimes use index notation to define elements of a set. 

LetA, = [/, i+1]. 

Let S = { A,- | i is an integer}. 

[ 5 , 6 ] e 5 , b u t [ 5 , 7 ] é 5 . 

The £ concept and the € concept are intimately related, but 
they have different meanings. When a set has sets as elements, 
we must carefully check to make sure that we are not confusing 
elements with subsets. 

^Example 1. LetA = {1,2,3}. 

1 € A, but 1S A. On the other hand, {1} £ A, but {1} £ A. 

2. LetC={{l},{2},{5,9}}. 

{l}eC,but I É C . Since 1 é C, {1} <£C. 

3. LetA = {1,2} andS= { {1,2}, {2,3,4} }. 

A e S. Since the elements in A are not elements of S, A s 5. 

4. Let N be the set of natural numbers and R the set of real 
numbers. Let S = {N, R}. 

MeS and Re S. However, N st 5 and R£ S. 
N and R each have an infinite number of elements, 
but S has only two elements. 
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Power SetS The set of all subsets of a set S is called the power set of S, 
which is notated as P(S). To be an element of P(S), X must be 
a subset of S. 

Xe P(S) if and only if ЛГС S. 

Let S = {1,2}. 5 has four subsets, so P(S) has four elements: 

P(5)={0, {1}, {2}, {1,2}} 

In the above example, (1}еР(5), but HP(S). When working 
with a power set, we must carefully consider whether to use € 
or £ as the verb phrase. Let 5 be a set: 

S£S , so SeP(S). 

0 Ç 5 , so 0eP(S). 

Number of Elements in P(S) If S has n elements, how many elements does P(S) have? To 
answer this question, let's start at the bottom with n = 0. The 
empty set has only 1 subset: 0 £ 0. 

P(0) = {0} 

If S has 1 element, say S= {at}, then S has two subsets: 

P(S)={0, {a,}} 

Suppose that S has 2 elements, say 5 = {alt a2]. 

P(S)={0, {a,}, {a2},{a.,a2}} 

Note that the number of subsets doubled from the previous case 
when S had only 1 element. Let's see why it doubles at the next 
stage. As S gets larger, it becomes more difficult to find all the 
subsets. To make the task simpler, we will inductively build 
each successive stage on the previous work. 

Suppose that S = [at, ai, аз\. If we remove аз, we are back to 
the previous case. Let's divide the subsets of S into two catego-
ries: those that do not contain аъ and those that do. First, we 
list all subsets of S that do not contain ay, which we computed 
in the last stage: 

0 {ai} {a2} {aua2} 

To get the remaining subsets, we simply insert аз into each of 
these subsets. 

{a3} {ai, аъ) [аг,аг\ [au a2, a3] 

Let S be a set. 

P(S) = { X | X£S} 
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Now we can see why the number of subsets doubled: 

If 5 has 2 elements, P(S) has 4 elements. 

If S has 3 elements, P(S) has 8 elements. 

Using the same technique, we can show that a set with 4 
elements has twice as many subsets as a set with 3 elements. 

If 5 has 4 element, P(S) has 16 elements. 

Using the same technique in a more general setting, we can 
prove by mathematical induction that this pattern always holds. 

Theorem Let 5 be a set. If 5 has n elements, then S has 2" subsets. 

Induction Proof Let p{n): For all sets 5, if 5 has n elements, S has 2" subsets. 

Part I Let n be a natural number. Assume that p(n) is true. 
Let S be an arbitrary set that has n + 1 elements: 

S- { а\,аг, аъ a„, a„+i }. 

Divide the subsets of 5 into the following two sets: 

Let V={ X | XQS and a„+, £S]. 

LetW={ X | X C S and a„+leS}. 

Let S„ - {at, Ü2, ci),.. . ,an]. Since S„ has и elements, 
by the induction hypothesis, S„ has 2" subsets. 
V is the set of all subsets of S„. So, V has 2" elements. 

For each subset A of 5„, consider the following mapping: 

A ^ A U k i ) /(Л)=Ли{а„+ 1) 

This mapping is a one-to-one function from V onto W. 
So W has the same number of elements as V. 
Thus, the total number of subsets of S is 2" + 2". 
But 2" + 2" = 2 (2") = 2"+;. 

So S has 2"+' subsets. Thusp(n) =>/?(«+ 1). 

Part 2 If S has 0 elements, 5 = 0. The empty set has only 1 subset. 
So, if S has 0 elements, 5 has 2° subsets. Thus, p(0) is true. 

Conclusion Thus, by mathematical induction, pin) is true for all 
nonnegative integers n. 
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As n gets larger, 2" grows at an enormous rate. A set with 5 
elements has 32 subsets; however, a set with 30 elements has 
230 subsets, which is 1,073,741,824. In a set S that contains 
270 students, the number of different committees that we could 
form from these 270 students is the same as the number of 
subsets of S, which is 2m. This number may not seem very 
large, but according to standard astronomy texts, it is more than 
18 times larger than the number of atoms in our entire universe 
- which is less than 1080. If S has only 270 elements, its power 
set P(S) has more elements than our universe has atoms! In 
terms of quantity, the power set is indeed an extremely power-
ful set. 

Partitions 

Let P be a collection of 
nonempty subsets of S. 

P is a partition of S 
if and only if 

each element in 5 is in one 
and only one element in P. 

A partition is a subdivision of a set into nonoverlapping 
subsets, similar to the way that we might partition a big room 
into smaller rooms. A partition P of a set 5 is a collection of 
nonempty subsets of S where each element in S is in one and 
only one of the subsets. 

A set can be partitioned in many different ways. For 
example, consider the set, 5 = {1,2,3,4,5,6}. We can group 1 
and 2 together in a subset, group 3 and 4 together, and leave 5 
and 6 in their own private sets, as illustrated in the adjacent 
sketch. This subdivision determines 4 sets which form a parti-
tion of 5: 

P={{1,2},{3,4},{5},{6}} 

We could also partition S into 2 nonoverlapping subsets by 
segregating 1 and 3, with the other elements in a separate set, 
as illustrated in the adjacent sketch. This subdivision deter-
mines 2 sets which form a partition of S: 

Q={ {1,3}, {2,4,5,6}} 

Now consider the following collection of subsets of S: 

R={ {1,3}, {2,3,4}, {5,6}} 

Since two of the elements overlap, R is not a partition of S. 
Each element in S can be in only one of the elements in a parti-
tion. In the following collection of subsets of S, there is no 
overlap. However, 6 is not in any of the elements in Г, so T is 
not a partition of S: 

Г={{1,3},{2,4},{5}} 
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Exercise Set 3.1 

1. List the elements in each set. Translate xe S. 
Also, translate x <& S. 
a. S = {x | x = 2n +1 for some natural number n } 
b. S = { * | x = 2" for some natural number л } 

c. S = { 3n | n is a natural number } 

d. S= {na\ n is a natural number } 

e. S = { y | ;y is a natural number } 

2. Write the following sets in the form [x \ p(x)}. 

a. {5 ,7 ,9 ,11 ,13 , . . . } c. { 2 , 4 , 8 , 1 6 , . . . } 

b. { 20, 25, 30, 35 100} d. { 3, 5, 9, 17 , . . . } 

3. LetS={l,3}and7-={{l},{3}}. 
a. I s l e S ? c. I s{ l}eS? e. I sSC7? 
b. I s l e r ? d. I s { l } e r ? f. IsS = T? 

4. LetS= {5,1,3} andA = {1,3,1,5,3}. 

a. How many elements does A have? b. Is S = A? 

5. Let A- {3x+5y | x and y are integers }. 

a. List 3 different elements in A. b. I s l e A ? 

6. Le t£= {. . . ,-6,-4,-2,0,2,4,6, . . .} and£„= [n+x\xeE]. 
a. Write the definition of Ei and Ei by substituting for n. 
b. List the elements in Ex, Ег, Ej, and E4. 
c. Let P = {E„ | n is a natural number }. List the elements in P. 

How many elements does P have? 

7. Use definitions and the negation rules to translate the following. 

a. СФВ b. D£C 

8. Let A, B, and C be arbitrary sets. Try to draw a Venn diagram 
where the hypothesis is true and the conclusion is false. If you 
cannot do it, try to prove the statement. 

a. I f A í f í a n d B í C . t h e n A ï C . 

b. If ACS and fi£ C, then A£C. 

c. I f A ç B a n d A í C , thenfi íC. 

9. Let A, B, and C be arbitrary sets. Prove or disprove each statement. 
Hint: Look at examples where you list the elements. 

a. AeA. 
b. A^A. 

c. I fAçf iandxéB, then*eA. 
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d. 0eA. 
e. IfAçfi, then A 6 B. 

f. If Aç B, then A C B. Hint: Construct A and B so that A e B. 
g. I fAeSandBeC. thenAeC. 

10. Let S = [S],S2,S3, s4, ss,...}, where s„ is the remainder of n divided 
by 3. List the elements in S. How many elements does 5 have? 

11. LetA = {1,2,3}. IsA£P(A)? IsAeP(A)7 

12. How many different subcommittees can be formed from a class of 
30 students? If you had a penny for each of these subcommittees, 
how much money would you have? 

13. Let S = {1,2,3,4,5}. Is P a partition of 5? If not, why not? 
a.P={{l,2},{3,4},{2,5}} b. P= {{1,3}, {2,4}} 

14. Let S = {1,2,3,4,5,6,7,8}. Form a partition of S. 

15. A bit string is a finite sequence of O's and l's. 101 is a bit string 
of length 3. 11010 is a bit string of length 5. Let S„ denote the set 
of all bit strings of length n. 

a. How many elements are in &? S3? S4? How many elements 
are in S„? Prove your answer using mathematical induction. 

b. Let A = {a, b, c}. Illustrate a one-to-one mapping from P(A) 
onto S3 that can be generalized for n elements. Hint: 
Let /({a}) = 100, f({a,c}) = 101, etc. How do you define it? 

c. Use part (a) to prove that if A has n elements, then P(A) has 2" 
elements. Hint: Generalize part (b). 

Activity 3.2 

1. Shade each set on a Venn diagram. 

a. {Jc|;ceA orxeB} 

b. { л:|л:еА andxeB) 

c. { x\x(A and*eB} 

d. { * |л :гАогл:еб} 

2. Shade each set on a Venn diagram. 
Are any of the 3 sets equal? 

a. { x\(x<sAorx€B)màxeC} 
b. [х\хеАот (xeBandxeQ) 
c. { x\(xeA andxeQorfreBandjceC)} 

GD 
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= 3.2 Operations on Sets = 

One of the milestones in a child's education is mastering the 
operations of union, intersection, and set subtraction. A child 
must understand these simple operations before he or she can 
learn how to add and subtract. When we add, we form the 
union of two sets that do not intersect and then count the 
number of elements in the new set. When we subtract, we 
remove elements from a set and then count the number of 
elements left. Each set operation produces a new set from sets 
that we already have. Their definitions are based on the mean-
ing of the logical operators. Consequently, they provide a way 
to visualize or, and, and not, as illustrated in the following 
sketches. 

Union 

A\JB 

To form the union of two sets, we combine their elements. The 
union of A and B, notated as A \JB, is the set of elements that 
are in A or in B or in both sets. 

A\JB={ x | xeA or xeB} 

XBAUB <=> xeA or xsB 

Intersection 

АПВ 

LetA = {1,3} andB= {2,3,7}. ThenAUB = {1,2,3,7}. 

To form the intersection of two sets, we select those elements 
that are in both sets. The intersection of sets A and B, notated 
as A Г\В, is the set of elements that are in both A and B. 

АГ\В= { x | x&A and xeB) 

xeAC\B <=> x&A and X<EB 

LetA = {1,3} andB= {2,3,7}. ТпепДПВ = {3}. 

Visually, the intersection of two sets is where they overlap. If 
they do not overlap, we say that the sets are disjoint. 

A and B are disjoint if and only if Af)B = 0. 

Set Subtraction With set subtraction, we remove elements in one set from 
another set. A minus B, denoted as A - B, is the set of all 
elements that are in A but not in B. 

-4ПВ = 0 

A-B 
A-B={x\ xeA and xéB) 

xeA-B c=> x&A and xtB 

LetA = {1,3} andB= {2,3,7}. A-B= {1} andfi-A = {2,7}. 
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Complement 

Size of a Set 

Let A and B be finite sets. 

|AUB| = |A| + |B|- |AnS| 

Let A and B be finite 
sets with B£ A. 

\A-B\ = \A\-\B\ 

Multiple Operations 

A': = 

The complement of A, denoted as A', is the set of elements that 
are not in A. 

A'={*|;ceA} 
xeA' <=> xtA 

In the above definition, it is implicitly understood that x is in 
the universal set U. We can also express the complement in 
terms of set subtraction: 

A' = U-A 

Even though the set operations are simple concepts, mistakes 
are often made when more than one operation is used, which is 
not surprising, for these operations are manifestations in set 
form of or, and, and not. If we use the logical operators 
correctly, we will use the set operations correctly. 

The counting numbers were created to measure the different 
sizes of finite sets. We use the following notation for the size 
of a set: 

| A | represents the number of elements in A. 

Let A and B be finite sets. If A and B have elements in com-
mon, those elements are counted twice in the sum | A | + | B \. 
So, the general formula for the number of elements in A UB is: 

|AUfi| = |A| + | f l | - | A n S | 

For example, if A has 10 elements, B has 8 elements, and A D B 
has 3 elements, then A\JB has 15 elements. If A and B have no 
elements in common, the number of elements in A U B is the 
sum of the elements in the individual sets: 

IfAnB = 0,then|AUfi| = |A| + |B|. 

The number of elements in A - B is determined by the number 
of elements in their intersection: |А-В| = |А | - |АПВ| 
If B Q A, then B = A П B, which gives the adjacent formula. 

To illustrate multiple set operations on a Venn diagram, 
shading with horizontal and vertical lines helps us locate the 
final set. For example, in the adjacent diagram, A' is marked 
with horizontal lines and B' with vertical lines. 

4£ A' OB' is the grid region where both 
horizontal and vertical lines are present. 

= 11 4£ A' Ufí' is the region that has either a 
horizontal or a vertical line or both. 
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(A US)' 

(A US)' 

In the previous diagram, A' OB', the grid region, is all elements 
not in A U B, which is the same region as (A U B)'. This sketch 
suggests that (A U B)' = A' ПB' for all sets A and B. However, 
the way that A and B intersect in this example is only one of 
several possible cases. A could be a subset of B, or B could be 
a subset of A, or perhaps the sets do not intersect, or, at the 
other extreme, perhaps they are equal. However, if a statement 
about A and B is not always true, we will probably find a 
counterexample with the top sketch. 

When checking examples of set operations that involve 
three sets, the number of cases increases dramatically. With 
each of the above cases for A and B, C could not intersect either 
A or B, C could intersect B and not intersect A or vice versa, or 
C could intersect both A and B. It is usually more fun to reason 
with pictures, but when the picture cases pile up, reasoning 
with words has a distinct advantage. A proof with words is 
simpler than checking all the picture cases. 

When testing possible relations between operations on three 
sets, the best case to check is the adjacent case which has a 
region for each of the possible intersections. If a statement 
about operations on sets A, B and C is not always true, we will 
probably find a counterexample with this case, as illustrated in 
the next example. 

АП(виС):# 

(AnB)UC:=||# 

■Ф- Example Is A П (B U Q = (A Л B) U C for all sets A, B, and C? 

Let's compare these sets with Venn diagrams. In the first 
diagram, BU C is shaded with horizontal lines and A is shaded 
with vertical lines. A П (B U Q is the region shaded with both 
horizontal and vertical lines, the region with the grid. 

In the second diagram, A Г\В is shaded with horizontal lines 
and C is shaded with vertical lines. The union of these two 
sets, (A C\B) U C, is the region that has horizontal lines or verti-
cal lines or both horizontal and vertical lines. 

Note that the region shaded for (A П B) U C is not the same 
as the region shaded for A П (B U Q. In this example: 

An(BUO*(Anfí)UC 

Thus, the answer to the above question is no. We have a 
counterexample using the sets of points in the adjacent sketch. 
This example shows that the parentheses are essential in the 
expression A П (B U Q. 
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The distributive property gives a relation between two 
operations. Multiplication distributes over addition, and 
distributes over or, and or distributes over and (page 57). 
Since intersection and union are defined in terms of these 
logical operators, we would suspect that intersection distributes 
over union and vice-versa. 

pr\(qVr) o (pAg)V(pAr) 

IsAn(BUC) = (ЛПЯ)и(АПО? 

Before we attempt a proof, let's compare these two sets with 
Venn diagrams. 

-Ф- Example Is AП (BU Q = (A П B) U (A П Q for all sets A, B, and C? 

The set (A f]B) (J (A П C) is illustrated in the adjacent diagram. 
A П # is shaded with vertical lines and Af]C with horizontal 
lines. The union of these two sets is the region where we have 
vertical lines or horizontal lines or both: 

= || # (АПб)и(АПО 

In the second diagram, A П (B U Q is the grid region, which 
was explained in the previous example: 

# An(SUC) 

The grid in the second diagram is the same as the region shaded 
for (A Г) B) U (A f| Q in the first diagram. Hence, for the sets 
illustrated in the Venn diagram: 

АГ\(ВиС) = (АПВ)и(АПС) 

However, this one example does not prove that the above 
equation is true for all sets. A generalization that includes all 
possible sets requires a well-reasoned argument. 

To prove the above statement for all sets A, B and C, we 
carefully substitute in the various definitions in the correct 
order. To translate the sentence, x e A П (B U Q, we first view 
it as A Г) Z and apply the definition of intersection. Whenever 
we deconstruct a set, we work from the outside to the inside, 
one step at a time. 

The following outline proof is composed of two subproofs, 
so we have inserted claim statements to help the reader (and 
writer) keep focused on the immediate task at hand. 

Distributive Property 
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В)и(АПС) 

Theorem For all sets A, B, and C, A П (B U C) = (A ПB) U (A П C). 

Proo/ Let A, B, and C be arbitrary sets. 

Claim: АП (BUC) ç(ADB)U (АПС) 
Assume that jreAD(BUC). 
xe A and J T G B U C Definition of intersection 
xe A and (*€ B or лге С) Definition of union 
(x& A and д:е B) or (*€ A and x& C) 

Distributive property of "and" over "or" 
p Л (q V r) «=• 0? Л 9) V (p Л r) 

л е А П В о г JCGAHC Definition of intersection 
So, x£ (A П B) U (A П C) Definition of union 

Thus, АП (BUC) С(АПВ)и (АПС) De/ o/sufoei 

С/ш>я: (АПВ)и(АПС)сАП(ВиС) 
Assume that xe (A П B) U (A П C). 
л:еАПВогд:еАПС Definition of union 
(xeA and *е В) or (x€ A and xeC) . . . Oe/ of intersection 
xeA and(xeBorxeC) 

Distributive property of "and" over "or" 
p Л (<? V r) <=> (p л 9) V (p Л r) 

ле A and Jte BU C Definition of union 
So, л:еА П (BUC) Definition of intersection 

Thus (A П B) U (A П C) ç A П (B U C). . . Definition of subset 

Therefore, A П (B U C) = (A П B) U (A П C) . . . . Def. of equality 

Note how the above proof is composed primarily of transla-
tions of definitions. Union also distributes over intersection: 

Theorem For all sets A, B, and C, A U (BП C) = (A U B) Г) (A U Q . 

n(AUC): # 

In the adjacent diagram, A U B is shaded with vertical lines and 
A U C is shaded with horizontal lines. The grid regions is the 
intersection of these two sets: (A U B) П (A U C). 

On the other hand, if we first focus on B П C, and then 
union this set with A, we see the same region. So, in this 
example, A U (B П C) = (A U B) П (A U C). You are asked to 
prove that this relationship holds for all sets A, B, and C in (15) 
of the next exercise set. 
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Properties of Union 
and intersection 

Let A, B and C be sets. 

Ççrrmmtivf Prçpçny 
AUB=BUA 

АПВ=ВПА 

Associative Property 

AU(BUC) = (AUB)UC 

АП(ВПС) = (АПВ)ПС 

Distributive Property 

АП(ВиС) = (АПВ)и(АПС) 

А11(ВПС) = (AUB)n(AUC) 

The various properties of union and intersection are inherited 
from the corresponding properties of or and and. For example, 
or is commutative, which makes union commutative: 

Claim: AUBCBUA 
Assume that д:е A U B. 

хеАотхеВ Definition of union 
x^BorxeA Or is commutative 

So, *e BU A Definition of union 
Therefore,/!UBS BUA. 

With an analogous argument, we can show that BU A £ A\JB. 
Thus, AUB = BUA. 

Using similar arguments, we can prove the adjacent proper-
ties of union and intersection. Union and intersection are both 
commutative and associative, and they each distribute over the 
other in the same way that and distributes over or. Because of 
associativity, we may omit the parentheses when we form two 
unions or two intersections: Л U B U C, АГ\ВГ\С. However, 
we must use parentheses when we have both a union and an 
intersection because the position of the parentheses affects the 
meaning: 

АП(В1)С)*(АПВ)иС 

I 
H 

Complement Laws 

(AUB)' 

A W 
# *z 

The complement laws give us another way to view comple-
ments of unions and intersections. For example, (A U B)' is the 
shaded region in the adjacent diagram. In the second diagram, 
A' is shaded with horizontal lines and B' is shaded with vertical 
lines, so A' П B' is the grid region, which is identical to the 
shaded region in the first diagram. Even though the process of 
constructing these two sets is very different, surprisingly, they 
end up as the same set. This property is inherited directly from 
the rule for negating an or-statement: 

~(porq) <=> ~pand~q 
(AUB)' = A'ClF 

To prove that the above two sets are always equal, we decon-
struct their meaning in the correct order. For example, to inter-
pret the meaning of xe (A U B)', we first apply the definition of 
complement: 

JCÍÈAUB 



3.2 Operations on Sets 239 

We must be careful not to slip into the casual way that we use 
negations in everyday language. We may be tempted to say the 
following: 

So, x€ A or xiB Fatal Error! 

To avoid the above error, we should get in the habit of first 
translating the slash: 

x(AUB 
So, -(xeAUB) Translating £ 

In the above form, we can substitute in the definition of union, 
as illustrated in the following proof. 

Theorem For all sets A and B, (A U B)' = A' ПВ'. 

Proof Let A and B be arbitrary sets. 

Claim: (AUBJ'cA'nB' 
Assume that xe (AUS)'. 

~(JC€ AUB) Definition of complement 
- (jce A or x^B) Definition of union 
x£A and xČB ~(pVq) <=> ~ph~q 
xeA' and xeB' . . . Definition of complement 

So, xeA'HB' Definition of intersection 
Therefore, (A U B)' Q A' ПВ' Definition of subset 

Claim: A'DB'SCAUB)' 
Assume that x e A' П B'. 

jceA' and x&B .... Definition of intersection 
x£A and x£B . . . . Definition of complement 
~(xeA or xeB) ~(pVq) <=> ~ph~q 
~ (xe A \JB) Definition of union 

So, xe (A UB)' Definition of complement 
Therefore, A' D B' £ (A U Й)' Definition of subset 

So, (A U B)' = A' П B' Definition of equality 

We have an analogous theorem for the complement of an inter-
section, which comes directly from the rule for negating an 
and-statement. You are asked to prove the following theorem 
in (13) of the next exercise set. 
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Theorem For all sets A, B, and C, (Af)B)'= A'\JB'. 

To develop our reasoning powers beyond the mechanistic 
circuits of a computer, we must understand the meaning of 
symbolic equations like those in the previous two theorems. If 
we understand the meaning, we will be able to translate the 
symbols into verbal form: 

The complement of a union of two sets is the 
intersection of the individual complements. 

The complement of an intersection of two sets 
is the union of the individual complements. 

Generalized Complement Laws An obvious way to expand our knowledge is to try to 
generalize what we already know. When we generalize, we try 
to find a broader statement that includes the original statement 
and other statements as well. For example, can we generalize 
the following complement law? 

(Аиву = А'ПВ' 

In the above form, we may see only a blank screen as we try to 
think of possible generalizations. However, if we rephrase the 
equation in terms of set subtraction, some ideas may surface: 

U-(AUB) = (U-A)r\(U-B) 

What if we replace the universal set U with an arbitrary set C? 
Will the new equation be true? 

Is C-(AUB) = (C-A) П(C-B)? 

Consider this question for the sets in the adjacent sketch. 

C-A is shaded with horizontal lines. 
C-B is shaded with vertical lines. 
(C-A) П (C-B) is the region shaded with a grid. 

If we visualize C - (A U B) by removing A U B from C, we are 
left with the grid region. So, C - (A U B) = (C-A) П (C-B) in 
this example. This statement is also true for all sets A, B, and 
C, as stated in the following theorem which you are asked to 
prove in (15) of the next exercise set. 
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Theorem For all sets A, B, and C, C - (A UB) = (С-Л) П (C-B). 

We have an analogous theorem for removing the intersection of 
two sets from a third set, C: 

Theorem For all sets A, B, and C, C - (A П B) = (C-A) U (C-B). 

Operations & Subsets Using visual reasoning, it is easy to see various subset relations 
that occur when we form unions and intersections of sets. For 
example, when we form the union of two sets, each of the 
original sets must be a subset of the union: 

1. AÇAUB 

On the other hand, when we form the intersection of two sets, 
the new set must be a subset of each of the original sets: 

2. АПВСА 

With more information, we can make further deductions about 
the union and intersection. For example, the adjacent illustra-
tion of A Cfl indicates that the following are true. 

3. If ACB, then AUB = B. 

4. I fA£B,thenAnB = A. 

5. IfACB, thenB'CA'. 

If A and B are both subsets of C, the union of A and B will have 
to stay inside of C. 

6. I fACCandBCC, thenAUBSC. 

On the other hand, if C is contained in both A and B, C must be 
contained in their intersection. 

7. IfCGA and C £ B , then С е А П В . 

W 
B® 
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Even though the previous theorems are visually obvious, 
students sometimes have trouble writing proofs for them 
because' they do not focus on what they want to derive. The 
structure of a proof is determined by the sentence that we want 
to derive, not by the assumptions we make in the beginning. 
When there are layers of assumptions, we must understand how 
each assumption fits into the overall structure of the proof. 

For example, the adjacent theorem has four implications 
imbedded in it. Its outside structure is a implication. Imbedded 
in its hypothesis is the implication used in the definition of 
subset. Imbedded in the conclusion of the outside implication 
are two more implications that are used in the definition of 
equal sets. If we do not properly organize our thoughts and our 
writing, we can easily get confused by the layers of assump-
tions. However, if we carefully build the structure of our 
proof, as illustrated on the left, the confusion will evaporate 
and we will be able to see the inherent simplicity in it all. 

In the following outline proof, we assume A £ B and then 
we immediately focus on what we want to derive. We keep the 
definition of A £ B on the back burner until we see a place to 
use it. We invoke it in Case 1, but we do not write out its 
definition. We expect the reader to know what it means. 

Theorem Let A and B be arbitrary sets. If A £ 5 , then A U B = B. 

Proof Assume that A £B. 

Claim: AUB£B 
Assume that xeA\JB. 
хеАотхеВ Definition of union 

Case 1: Assume that xe A. ThenxsB AQB 
Case 2: Assume that xeB. ThenxeB. 

In both cases, xe B. So, A U B £ B Def. of subset 

Claim: B£AUB 
Assume that xzB. 
xeAotxeB Valid argument 
So, JC6 A U B Definition of union 
Therefore, B£AUB Definition of subset 

So, A UB = B Definition of equality 

Therefore, if A £ B, then A U B = B. 

Theorem: For all sets A and B, 
ifAcfl,thenAUB = S. 

Proof: Assume that A £ B. 

Claim: AUBCB 

Claim: B^AUB 

So,ADB = B. 
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Focused Thinking To be a logical thinker, we have to train our mind to focus on 
what we're trying to do. When we structure a proof, we must 
focus on what we want to derive and not get sidetracked by 
what we have assumed. 

In the following exercises, you are asked to write various 
proofs. If you first set up the outside structure by focusing on 
what you want to derive and then set up the inside structure by 
focusing on your simpler goals, these proofs will be quite easy, 
requiring only substitutions in definitions and the basic laws of 
logic. However, if you do not focus your thinking by setting 
up the appropriate structure, you will probably moan and groan 
and curse your fate for being assigned such a difficult task. 
Before you get to this state, though, please think about the 
visual picture of the statement, see how visually obvious it is, 
and then tell yourself how easy it will be to verbally validate 
the picture if you only focus your thinking and apply your 
knowledge of the little words not, and, or, and implies. We 
should be able to verbalize what we see, at least in terms of 
logical matters. 

Exercise Set 3.2 

1. [/={1,2,3,4,5,6},A = {1,2,4},J5= {2,4,6}. 
Write each element of U in the appropriate 
region on the adjacent diagram. Then list 
the elements in the following sets: 
a. ADB b. АПВ c. A-B d. (AfW e. A'UÏÏ 

2. Illustrate each set on a Venn diagram. Are any of the sets equal? 
a. (AUB)" b. (АПВ)' c. A'UF d. А'ПВ' 

3. Write the following sets in interval notation. 
a. [1,3] U [2,5] d. [6,00)U(7,00) g. (-oo,2)U [1.») 
b. [1,3] П [2,5] e. [6,oo)П(7,oo) h. (-oo,2)D [1,») 
c. [ 1 ,3 ] - [2 ,5 ] f. [6,00) -(7,00) i. ( -00 ,00) - [1 ,2 ) 

4. Let A be a set. Write the following sets in a simplified form. 
a. AUA b. ADA c. AU0 d. АП0 e. (A')' 

5. Illustrate each set on a Venn diagram, then write it in a simplified 
form. 
a. {Af]B)\J(Af)B^) c. AU(BHA) e. Afl(BUA) 
b. (AUfi)n(AUB') d. AU(BnA') f. An(BUB') 

'<2D 



244 Chapter 3 Sets - The Building Blocks 

g-
h. 

U 
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A'UB' 
A'DB' 

*vfë\i /л i/ > 
4£*Cl_ ví; 

в\ 

6. Let A SB. Illustrate the given set on a Venn diagram, then write it 
in a simplified form. 

a. AUB c. АПВ' e. (AUB)' 

b. АПВ d. A-fi f. (АПВУ 

7. In the adjacent diagram, A, B, and C divide 
Í/ into 8 nonoverlapping regions. Write 
each region in terms of operations on 
A, B, C and U. For example: 

Region 7: A-(BUC) 
Region4: ( A D Q - B 

8. In the previous exercise, shade in Region 3 and Region 5. 
Then express the shaded area in terms of set operations. 

9. Determine if the statement is true for all sets A, B, and C. 
If false, draw a counterexample using a Venn diagram. 
a. АПА' = 0 e. If АЯВ, then АПВ' = 0 . 

b.A-B=Af\B' f. АП(ЯПС) = (АПД)ПС 

c. A-B = B-A g. A n ( B U Q = (AnB)UC 

d. A - ( B - Q = (A-B)-C h. AU(BUQ = (AUB)UC 

10. With the given operations, are parentheses needed? 

a. AUBUC b. A-B-C c. AilBUC d. A-f iUC 

11. Is the given expression a sentence? 

a. ACB c. xeAUB e. AssumeAUfi. 
b. AUB d. A C A U B f. AssumejceAUB. 

12. Translate the following. 
a. *е(АПВ)' b. xe(AUB(JQ' c. jceA-(BUC) 

13. Prove the following for all sets A and B. Illustrate with a picture. 

a. (АПВ)'=А'иВ' c. АЯВ if and only if A DB = A. 

b. IfACB.thenB'CA'. d. Aç f i if and only if A UB = B. 

14. Use the theorems in (13) to make deductions about the following: 

a. If B'çA', then 

b. IfACB, thenA'UB'= and A'f]B'= . 

15. Let A, B, and C be arbitrary sets. Prove the following. 
Illustrate each statement with a picture. 

a. A U ( B n Q = (AUB)D(AUQ 
b. C-(AUB) = (C-A)n(C-B) 

c. I f A S C a n d B ç C , thenAUBCC. 

d. If CCA and CÇB, then ССАПВ. 

16. Explain why the syntax is wrong in the expression: (A£B)UC 
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17. U has 30 elements, A has 12, B has 9, and 4 elements are in both A 
and B. How many elements are in the given set? 
a. AUB c. A-B e. (A-B)U(B-A) 
b. (AUB)1 d. 5-A f. (А-В)П(В-А) 

18. For security reasons, a spy operation is organized into 3 groups. 
The president is the only one who belongs to all 3 groups. There 
are a total of 6 people in the plumber group, 10 in the mole group, 
and 18 in the beaver group. A total of 2 people are both plumbers 
and moles, 3 people are both moles and beavers, and 4 are both 
plumbers and beavers. What is the total number of people 
involved in this operation? Hint: Use a Venn diagram to organize 
the information. 

19. The symmetric difference of two sets, notated as A VB, is defined 
as follows: AvB = (A-fi)U(B-A) 
a. Represent A VB on a Venn diagram. Is A vfi = fivA? 

b. Translate the following: xiAVB. 
Does your answer agree with your sketch in part (a)? 

c. Use your sketch in part (a) to draw a Venn diagram of 
(A v B) v C. Then draw a picture of B V C and use it to 
draw AV (BVC). Do you think that V is associative? 

d. IfAeP(£/)andfieP(t/) , isAvBeP(t/)? 

20. Let A; = ((,«>). Write the following sets in interval notation. 
Hint: Visualize the sets on a number line. 

a. A16 d. A 1 UA 2 UA 3 U. . .UA,6 

b. A,UA2 e. A , U A 2 U A 3 U . . . U A „ 

c. А,ПА2ПА3 f. А , П А 2 П А 3 П . . . П А „ 

21. Let A, = (- , oo). Repeat the previous exercise. 

Activity 3.3 

U= { x \ xeAi for some /' in /} V = { JC | *e A, for all í in /} 

1. Let /= {1,2},A,= {4,6,7} andA2= {6,8}. 
List the elements in U. List the elements in V. 

2. Let A, = ( - - , - ) and / be the given set. 
Write U and V in interval notation. 
a. /={1,2} c. / = { 1 , 2 , 3 , . . . , « } 
b. /={1,2,3} d. /={1 ,2 ,3 , . . . } 

3. Let A,-= ( 4 - - , 4 + - ) . Repeat the previous exercise. 
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= 3.3 Multiple Unions and Intersections = 

Multiple Unions 

xeUA, 
/ 6 / 

if and only if 

for some i in I, x€Ai. 

The union of the three sets in the adjacent sketch is the shaded 
area. Its formal description comes from the union definition, 
which we apply twice: 

Assume that *e (Ai U A2) U A3. 
Thenx€(AiUA2) or лгеАз Definition of union 
So, (xeAi or хеАг) or x€ A3. . . . Definition of union 

Since or is associative, we can omit the above parentheses. 
The sets Ai, A2, and A3 are indexed by the set / = {1, 2, 3}. 
Using the index set /, we can translate the above or-statement 
in terms of the existential quantifier: 

xeAi or хеАг or лгеАз 
if and only if 

for some / in /, xe Ai. 

We can use the above property to define the union of the three 
sets. Let/= {1,2,3}: 

Ai U Ai U A3 = { x I for some i in /, JCS A,} 

Using the above model, we will extend the definition of the 
union of two sets to include the union of any collection of sets. 
Let A( be a set for each / in an index set /. The union of all A, 
where í is in / is notated as U A,. 

iel 

If/= {1,2,3}, then УA, =A!UA2UA3. 

If /={1,2,3, .},then UA,=AiUA2UA3U.. 
iel 

To form the set U A/, we combine the elements from each of 
iel 

the individual sets. As illustrated in the above example, the 
effect of combining elements from multiple sets can be verbal-
ized with the existential quantifier. In fact, we use the same 
definition as the above set description for the union of three 
sets. Let A, be a set for each i in an index set /: 

U At - { x I for some í in /, x e A\,} 

xe U A, <=> for some i in /, x 6 A,. 
16/ 
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To be a logical thinker, we should read everything very 
carefully. However, with multiple unions we must take special 
care for the notation is a bit complex. Writing it out in 
expanded form helps us understand what it represents. 

Example Let A, = [i, i +1]. Compute the multiple union. 

1. Let/= {1,2,3}. 

U A, = A, UA2 U A3 = [1,2] U [2,3] U [3,4] = [1,4] 
i s / 

2. Let (̂ 1 be the set of natural numbers. 

U A,= A , U A 2 U A 3 U . . . 

/eN 

= [1,2] U 12,3] U [3,4] U . . . = [l,oo). 

3. Let Z be the set of integers 
U, A,= . . . LM-2 lM- iUAoLMiUA2U. . . 

= . . . U [-2,-1] U [-1,0] U [0,1] U [1,2] U [2,3] U . 

= (-00,00) 

In the above examples and the following example, we need to 
visualize the progression of the individual sets on a number line 
in order to see which elements will be in the multiple union. 

■ Example Let M be the natural numbers and A, = [—, 1]. 
Compute U A,. 

First, list the sets and observe the pattern: 

UA, = AtUAj\JAiU...AnU... 
ieN 

= [ l , l ] U [ j , l ] U [ ± , l ] U . . . [ £ , l ] U . . . 

= (0,1] 

Since 0 is not in any of the A,, 0 is not in the multiple union. If 
r is between 0 and 1, there exists a natural number n such that 
-n<r. Therefore, reA„. So, r is in the multiple union. Thus, 
the multiple union is the half-open interval (0,1]. 
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The Existential Quantifier The existential quantifier seems to cause more confusion than 
the universal quantifier, especially when we write a proof that 
has several layers. If we say "for some i," several lines later -
amid everything else that is going on - we may forget that i was 
existentially quantified. If we say "for some i0," the subscript 
will remind us that í is existentially quantified: 

xeU Ai <=> there exists an i0 in / such that xeA ,„. 

Negation We use the rule for negating an existential quantifier to 
translate the negation of xe U Ac. 

iel 

xe U A, 
iel 

for all i in/, x€Ai. 

Index Sets Index sets give us a systematic procedure for naming sets. 
Usually the indices are involved in the definition of the 
individual sets, as in the previous examples. However, we can 
use any set that we wish as an index set. 

Union over a Set 

xe U A 
AeF 

if and only if 

for some A in F, xe A. 

Instead of indexing sets with subscripts, we sometimes notate a 
union by using a letter to denote the collection of sets that we 
want to union. Let F be a collection of sets. The union of all 
the sets A that are in F is notated as U A. 

AeF 

U A = { x I for some A in F, xe A } 

j e U A « for some A in F, xe A 
AeF 

If F is a collection of indexed sets, the above definition agrees 
with the definition for a collection of indexed sets: 

Let F= {At, A2, A},... }. Then U A = U A,. 
AeF ieN 

* Example 1. Let F = {{1,2}, (2,3,4), {5}} 

U A = {1,2)U{2,3,4}U{5} = {1,2,3,4,5} 
AeF 

2. Let F = {[x,x + 1] | x is a positive real number}. 

U A = (0,oo) 
AeF 

3. Let S = {[x,;c + l] | x is a real number}. 

U A = (-00,00) 
AeS 
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Multiple Intersections In a similar manner, we can generalize the definition of the 
intersection of two sets to a multiple intersection. 

;сеА,ПА2ПАз 

if and only if 

XGAI and х€Аг and jceA3. 

If we let / = { 1,2,3), we can translate the above and-statement 
in terms of the universal quantifier: 

xeAt and xeA2 and хеАг 

if and only if 

for every i in /, xe A,. 

Thus, the intersection of three sets can be described as follows. 
Let /= {1,2,3}. 

A\ П А2 П A3 = {jc | for every / in /, xe A,} 

To generalize the above definition, we let A, be a set for each i 
in an index set /. We notate the intersection of all the sets 
indexed by/as 0 A,. 

/ e / 

If/ = (1 ,2 ,3 , . . . ) , then П А,=А,П А2ПА3П... 
iel 

To extend the definition of the intersection of two sets to the 
intersection of any collection of sets, we use the universal 
quantifier, which is a generalization of and. 

П A/ = {д: I for every i in /, дг€ A,} 
iel 

xe. П A, <=> for every / in /, xe A,. 

4- Example Compute the multiple intersection for the given index set. 

1. LetA, = [/,00] and/= (1,2,3). 

П A,= А,ПА2ПА3 

= [l,oo] П [2,oo] П [3,oo] = [3,oo] 

2. Let A, = [i, 00] and N = { 1 , 2 , 3 , . . . ). 

П A,= А , П А 2 П А 3 П . . . 
= [1,оо]П[2,оо]П[3,оо]П.. . = 0 
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3. LetA„ = [0,i]and7= {1,2,3,4}. 

П A, = А1ПА2ПА3ПЛ4 nej 

= [0,1]П[0(^]П[0,|]П[0,|] = [0,|] 

4. Let A„= [0,4-]andN={1,2,3,... }. 

Д , А . = А.ПДгПАзП... 

= [0,1]П[0,±]П[0,| ]П.. . = {0} 

5. Let Bn = (0,i]. 

Í U = (0,1] П (0,^]n(0,f ] П . . . = 0 
neN ' J 

Intersection over a Set 

xe П A 
AeF 

if and only if 

for every A in F, xe A. 

Instead of indexing sets with subscripts, we sometimes notate 
an intersection by using a letter to denote the collection of sets 
that we want to intersect. Let F be a collection of sets. The 
intersection of all the sets in F is notated as П A. 

AeF 

П A = {x I for every A in F, xeA] 

x€ П A <=> for every A in F, xe A. 
AeF } 

If F is a collection of indexed sets, the above definition agrees 
with the definition for indexed sets: 

LetF={A,,A2,A3,...}. 

Then П A = П At. 
AeF ieN 

■Ф- Example Compute the multiple intersection and the multiple union over 
the given set. 

1. LetF= {{1,2,3}, {2,3,5}, {2,4,6}}. 

П А = {1,2,3}П{2,3,5}П{2,4,6} = {2} 
AeF 

UA = {1,2,3}U{2,3,5}U{2,4,6} = {1,2,3,4,5,6} 
AeF 

2. Let S = [(0,x) I x is a real number and x>l}. 

AQSA = (0'1]> Ms*-®-*» 
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Generalized Distributive Laws Is it possible to generalize the following distributive law? 

A U (Bi П B2) = (A U BO П (A U B2) 

What happens when we intersect 3 sets instead of 2 sets? 

A U (Bi П Вг Л Въ) = A U (fii П (B2 П &)) Asíocí'afi've /aw 

= (A U fii) П (A U № П fi3) Distributive law 

= (A \JBi) П (A U Bi) П (A U Яз) . . . . Distributive law 

Thus, the distributive law can be generalized for the intersec-
tion of three sets. Let's translate this property in terms of multi-
ple intersection notation. Let / = {1,2,3}. 

nc, = c,nc2nc3 
ie/ 

Let C, = A U Bi. If we substitute for G, C2, and Сз, we get the 
following equation: 

n(AUfi,) = (AUfii)n(AUB2)n(AUB3) 
i e / 

Thus, we can notate our original equation as follows: 

AU(B.n52nS3) = (AUB,)n(AUfi2)n(AUfi3) 

AU(AA)=n(AUf t ) 
i e / i e / 

The notation for multiple intersection enables us to express the 
generalized distributive law in a more concise form. The nota-
tion does look more complex; however, if we take the time to 
visualize or write it in expanded form, we can decipher its 
meaning. To see the real power of this notation, look how easy 
it is to generalize the above distributive law. We change only 
the index set. If / = {1,2, 3,4}, the above equation represents 
the following: 

Аи(В1ПВ2ПВзПВ4) = (АиЯ1)П(АиВ2)П(АиВз)П(АиЯ4) 

For the ultimate generalization, let A be a set and let B, be a set 
for each i in an index set /. Then the following is true: 

AU(0,ft) = n,(AUB/) 
ie/ ' leiч ' 

Аи(ПД) = nCAUfi,-) 
ie/ ie/ 

To prove this theorem, we work with the definitions of union 
and multiple intersection. For example, to prove that the left 
side is a subset of the right side, we set up the outside structure 
as follows: 
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Claim: A U (П B,) C П (A U ft) 
ie/ ie/ 

1. Assume thatJceALKfl ft). 
ie/ 

4. Therefore,*еП (AUS,). 
ie/ 

The outside structure of Step 4 is *e П Z,, where Z, = A U Si. 
ie/ 

In the following translation, we apply the definition of multiple 
intersection, treating A U ft as a single entity: 

3. xeAU ft for every / in / . 

We then use Step 3 to structure the next layer of our proof: 

Let / be an element in /. 

Thus,.xeAor;ceft. 
Hence,;teAUft. 

Now that we understand what we need to derive, let's jump 
back to the beginning of the proof and work our way down. 

1. Assume that xe A U (П ft). 
<e/ 

Since the outside structure of the above sentence is the union of 
two sets, we first apply the definition of union, treating the 
multiple intersection set as a single entity: 

2. ThenxeA or * е П ft. 
i e / 

From the above or-sentence, we branch into the following 
cases: 

Case 1: Assume that xe A. 

Case 2: Assume thatjce П Bt. 
ie/ 

Within each case, we must stay focused on the goal, which is to 
end up with the sentence in Step 4. Having analyzed the 
various components of our proof, we are now ready to piece 
them together into a linearly ordered structure of interwoven 
valid arguments. 
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Theorem Let A be a set and let B, be a set for each i in an index set /. 
ThenAlKD Д,-)= D(AUB,)-

i e / / 6 / 

Claim A U (П B,) £ П (A U B,) 
i e / i e / 

Assume that xe A U (П Д). 
i e / 

xe A or xeflBi Definition of union 

Case 1: Assume that xeA. 

Let i be an element in /. 

xe A or x€ Bi Valid argument 

xe A U Bj Definition of union 

So, xe П (A U fi,) De/ of multiple intersection 
i e / 

Ccwe 2: Assume that л е П S,. 
i e / 

Let / be an element in /. 

xe Bj Def of multiple intersection 

xe A or xe Bi Valid argument 

xe A U Bi Definition of union 

So, xe П (A U Bi) Def. of multiple intersection 
i e / 

Since one of the two cases must happen, xe П (A U #;)• 

Therefore, A U (П S,) £ П (A U B,). 
i e / ie / 

С/шт П (A U Bi) £ A U (П B,) 
i e / i e / 
See (9) in the next exercise set. 

We have a similar generalization of the distributive law for 
intersection over union: 

A П (Bi UB2UB3) = (АПВ,) U (A f]B2) U (АПВз) 

If / = {1,2,3), the above equation can be written in terms of 
multiple unions as illustrated on the left. To prove that this 
equation holds for all sets B„ we go through the same process, 
working from the outside to the inside, one step at a time, 
applying the definitions in the correct order. When we invoke 
the existential quantifier in the following proof, we use a 
subscript to remind us that г0 is existentially quantified. Notice 
how we work our way through the language by deconstructing 
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the sentences and then putting them back together in a slightly 
altered fashion. 

Theorem Let A be a set and let Bt be a set for each / in an index set /. 
ThenAn( .UA)= U M n f i / ) . 

i e / <e/ 

Claim AfKUft) C U (AOS,) 
ie/ ie/ 

Assume that дге A П (U BI). 
Thence A and xe U Í,- Definition of intersection 

ie/ J J 

So, xe Bj0 for some /0 in /. Definition of multiple union 

Hence, xsA and x€ fi,0 Valid argument 

Thus, xeAC\Bi0 Definition of intersection 

So, xe U (A nBi) Definition of multiple union 
ie/ 

Therefore, AП(U Bf) G U (AПВ«) £>e/ o/j«foe/ 
Claim U (A П BO £ A П (U Д) 

ie / i e / 

See (9) in the next exercise set. 

Generalized Complement LaWS Using a similar reasoning process, we can generalize the rules 
for complements of intersections and unions. For a given 
universal set, the complement of the intersection of two sets is 
the union of the complements of the two sets (page 240): 

Applying the above rule twice, we can show that the comple-
ment of the intersection of three sets is the union of the comple-
ments of the three sets: 

(Ai ПA2 ПA3)' = ((A, ПАг) П A3)' Associativity 

= (Ai П Ai)' U Аъ Complement rule 

= (Ai \JAi) U Aš Complement rule 

Since union is associative, we can omit the union parentheses: 

(АтАгГШ^АГиАз-иАз 1 

Let / = {1,2,3}. The above equation can be translated in terms 
of a multiple intersection and a multiple union: 
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(ПА|У= ША-) 
i e / i e / 

We can generalize further by letting / be any index set. The 
proof of the following theorem is straightforward if we work 
with the definitions in a step-by-step manner. When negations 
are involved, though, we must be careful for it is easy to make 
logical errors, especially when translating £. If we first trans-
late the slash symbol as a negation at the beginning of the 
sentence, we can then make direct substitutions from the appro-
priate definitions, as illustrated in the following proof. 

Theorem Let A, be a set for each i in an index set /. Let U be a universal 
set that contains each A,. Then (П A,)' = U A/'. 

ie/ ie/ 

Claim ( П А . у с и А / 
ie/ ie/ 
Assume that jce (П A,)'. 

ie/ 
Then дсй f) Ai Definition of complement 

i e / 

~ (For every i, xe A,-.) . . . . Definition of multiple intersection 

There exists an /o such that x € A ,0 Negation law 

Hence, JC6 A,0' Definition of complement 

So, x€ U Ai Definition of multiple union 

Therefore, (П A/)' Ç U A,-' Definition of subset 
ie/ ie/ 

Claim иА, '£(ПА,) ' 
ie/ ie/ 

See (9) in the next exercise set. 

The analogous statement is true for the complement of a mul-
tiple union. You are asked to prove the following theorem in 
(9) of the next exercise set. 

Theorem Let A, be a set for each i in an index set /. Let U be a universal 
set that contains each A,. Then (U A,)' = П (A/) . 

ie/ ie/ 

Hopefully, the concepts of multiple intersections and unions 
seem simple to you now. If not, you may need to deepen your 
understanding of the two quantifiers by reviewing the material 
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in Chapter 1. Or the difficulty may lie in the careful way in 
which one has to read subscript notation; take your time and 
write the compacted notation in an expanded form that will 
help you build an intuitive understanding of its meaning. 
Without this understanding, you are blinding yourself to the 
true meaning of these concepts, making them needlessly 
complex. If you understand the reasoning in the proofs in these 
last two sections, the index notation and subtle nuances of the 
parentheses, the order in which one applies the definitions, and 
how to structure the proofs, you can be assured that you have 
mastered the basic techniques of logical reasoning. 

Exercise Set 3.3 

1. LetA, = [-2,i], / = {1,2,3,4} and N = { 1 , 2 , 3 , . . . } . Compute 
the following sets. Write your answer in interval notation. 

2. 

3. 

4. 

5. 

a. U A, b. U A, c. П A, 
iel ieN iel 

LetA, = (-oo, - / ) . Repeat (1). 

LetA, = [5 + - ,6 ] . Repeat (1). 

Let A, = (5-4-, 5 + - ) . Repeat (1). 

LetF= {{1,3,5}, {2,3,5,7}, {1,2,9}}. 
a. U A = b. П A = 

AeF AeF 

d. П A, 
ieN 

6. Let F be an arbitrary collection of sets. Is the statement always 
true? If not, give a counterexample. 

a. If there are sets A and B in F such that A П B = 0, 
then П A = 0. 

AeF 
b. If П A = 0, then there are sets A and B in F 

AeF 

such that A П B = 0. 
7. Let A,-be a set for each i in the given index set. 

Let / = {1,2,3}, J= {1,2,3,4} andN= {1,2 ,3 , . . . }. 
Is the statement always true? If not, give a counterexample. 

a. A3 £ U A, c. U A, £ U A, 
ieN iel iej 

b. A3 C П A,- d. П A,- e П A, 
ieN iel iej 

8. To translate each statement, which definition do you use first?. 

a. *e ЩАПВ,) c. xe U (A,)' 
iel iel 

b. xeAfHUS,) d. xe (UA,)' 
iel iel 
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9. Let A be a set and let B, be a set for each / in an index set /. Let U 
be a universal set that contains all the sets. Write easy-to-follow 
proofs of the following statements. 

Generalized Distributive Laws 

a. A n ( U f t ) = ЩАПВд 
i 6 / i 6 / 

b. Ли(П£| ) = П (ДиД) 
iel ie / 

Generalized DeMorgan's Laws 
c. (ПА,)' = U(A,') 

/ 6 / / 6 / 

d. (UA,)' = П(А,') 
iel i'6/ 

Activity 3.4 

A community of 2-dimensional beings, known as the Flatlanders, live 
in a plane. These poor creatures can see nothing outside of their plane. 
As you might suspect, they believe that their plane is the whole 
universe and that nothing could possibly exist outside of it. To the 
Flatlanders, the concept of a 3-dimensional universe is science fiction. 

1. Can a Flatlander hide something from another Flatlander by 
putting it in a closet? 

2. As a higher dimensional being with a 3-dimensional, visual 
perception, can a Flatlander hide anything from you by putting it 
in a closet? 

3. Could you hide any of your physical belongings from a higher 
being who has a 4-dimensional visual perception? 

4. Do you think that perhaps we may be as limited in our visual 
perceptions as the 2-dimensional Flatlanders? Do you think that 
we could possibly extend our physical limitations through the 
power of reasoning? If so, do you have any ideas on how to tackle 
the dimension concept? What is a 4-dimensional space? 
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= 3.4 Cross Product = 

The cross product is not as intuitively obvious as the other 
operations on sets. Given two circular regions in a plane, we 
can see their union, their intersection and their set difference, 
but we cannot see their cross product. Unlike the other set 
operations, the members of the new set formed under a cross 
product are a different kind of object. If we let the universal 
set U be the set of all subsets of a plane, for every A and B in 
£/, the sets A \JB, АГ\В, and A - B are each in 11. However, the 
cross product, A x B, is not. It exists in a higher dimension, a 
4-dimensional space that we cannot physically see. With the 
help of the mental construct of a cross product, though, we 
have the power to conceptualize beyond the limitations of our 
3-dimensional vision. The cross product also provides us with 
a structure in which we can apply our knowledge of the real 
number line to figures in 2- and 3-dimensional space. The 
creation of this new set operation by René Descartes in the 17th 
century, like the invention of the wheel, opened the door to vast 
new universes for mental exploration. 

When we form the intersection of two sets, we do not change 
the individual elements. Instead, we select only those elements 
that are in both sets and put them in a new set. With a cross 
product, we make multiple copies of the elements in each set, 
then bond each element in the first set with each of the elements 
in the second set, thereby creating a new type of object - a 
bonded pair. 

LetA={l,2} andB={2,3}. The elements of AxBarethe 
following bonded pairs: 

1 — 2 1 — 3 2 — 2 2 — 3 

The bonding mechanism gives an ordered pair, which we 
represent with the notation (a,b). Using ordered pairs, we can 
represent A xB as follows: 

AXB={ (1,2), (1,3), (2,2), (2,3)} 

In formal set theory, an ordered pair is defined as the following 
set: (a,b) = {{a], {a,b}}. From this definition, it can be 
proved that two ordered pairs are equal if and only if their first 
terms are equal and their second terms are equal. With this 
characterization, which is stated on the left, we will not have to 
use the rather awkward formal definition. 

Ordered Pairs 

,x, 

(a,b) = (c,d) 

if and only if 

a — c and b — d. 
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The order in which elements are listed in a set has no effect on 
the set, but it does effect an ordered pair: 

{3,5} = {5,3}, but (3,5)* (5,3). 

Unfortunately, the ordered pair notation has another meaning. 
We also use (a,b) to represent an open interval on a number 
line. Since (a,b) can represent a point in a plane or an open 
interval on a number line, we should make sure the context is 
clear when we use open parentheses in our writing. 

A X B The cross product of sets A and B, denoted as A x B, is the set 
of all ordered pairs whose first term is in A and whose second 
term is in B. 

AxB={(a,b)\aeA and beB} 

The cross product is also called the Cartesian product in honor 
or René Descartes. Given two sets Л and B, the cross product 
operation produces a third set, which is a set of ordered pairs. 

Let Л = {1,2} and Д = {2,3,4}. List the elements in A x B. 
How many elements are in A x Bl 

We first list the ordered pairs that have 1 as the first term and 
then list the ordered pairs that have 2 as the second term: 

AxB = {(1,2), (1,3), (1,4), (2,2), (2,3), (2,4)} 

AxBhas6elements: \AxB\ = 6 

Note that A has 2 elements, B has 3 elements and AxB has 2- 3 
elements. Is this an interesting coincidence or the hint of an 
important relationship between the size of the individual sets 
and the size of their cross product? 

If A has n elements and B has m elements, how many elements 
are in AxB? 

Let A = {ft, a2, a3,. .., an] and B = [b\, b2, b3y. .., b„). 

As illustrated on the left, for each a, in A, there are m different 
ordered pairs in AxB that have a, as the first term: 

(a,,Z>i), (fliM), (ai,b3),..., (ai,bm) 

-Ф- Example 

A B 

Size of AxB 
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Let A be a set with n elements 

and B a set with m elements. 

Then|AxB| -n- m. 

Multiplication 

Thus, the total number of elements in A x B is the following 
sum: 

a\ a2 аъ . . . a„ 
4 - 4 - 4 - i 

|АхЯ| = m + m + m + . . . + m 

П terms 

Recall that multiplication of natural numbers is repeated 
addition: 5 + 5 + 5 = 3*5. The elementary school definition of 
n • m is to add m to itself n times. Hence, the above sum can 

be written as the product n • m. 

| A x 5 | = n- m 

The above equation gives a simple formula for the number of 
elements in the cross product of two finite sets: 

\AXB\=\A\-\B\ 

In the above formula, the product sign on the left side of the 
equation represents the product of two sets, whereas the 
product sign on the right side of the equation represents the 
product of two numbers. These two product operations are by 
no means equal, for they operate on very different types of 
objects; one operates on sets and the other operates on num-
bers. They do, though, have the intimate connection given by 
the above equation. 

The cross product operation on sets gives a visualization of 
the multiplication operation on numbers. To illustrate the 
product 3- 4, we could let A = {1,2,3} andB = [a,b,c,d], then 
arrange the elements in A x B in the following 3 rows and 4 
columns: 

If event A has n possible outcomes 

and event B has m possible outcomes, 

then event A followed by event B has 

n • m possible outcomes. 

( l .e) 
(2, a) 
(3,a) 

(l.b) 
(2,b) 
0,b) 

(he) 
(2,c) 
(3,c) 

(1,4) 
(2,d) 
(3,d) 

Many counting problems can be modeled with a cross product. 
If we need to count the number of possible outcomes for a 
sequence of two events that are independent of each other, we 
can list the possibilities in a cross product structure, which 
gives the adjacent counting principle. For example, suppose 
that one box contains the numbers 1, 2 and 3, and a second box 
contains the letters a, b, c, and d. The total number of possible 
outcomes for drawing one item from each box is the number of 
elements in the above listing of A xfi, which is 3 • 4. 
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■Ф- Example A die is'thrown twice. How many possibilities are there for the 

outcome? What is the probability of throwing a 4 both times? 

A die has 6 faces that contain the following numbers: 

A ={1 ,2 ,3 ,4 ,5 ,6} 
To model two tosses of the die, we use Ax A. In the ordered 
pair (a, b), we let a represent the number on the first throw and 
b represent the number on the second throw. For example, 
(2,4) means that we threw a 2 on the first throw and a 4 on the 
second throw. So the total number of possibilities for throwing 
the die twice is the number of elements in Ax A. Since A has 6 
elements, Ax A has 36 elements. 

Now that we know the total number of outcomes, we can 
compute the probability that two 4s will be thrown. The 
ordered pair (4, 4) is 1 out of 36 possibilities, so the probability 
that two 4s will be tossed is -4r. 

The set U of real numbers can be visualized as a number line. 
The set RxU. can be visualized as a plane with two number 
lines perpendicular to each other. We usually denote the 
horizontal axis as the x-axis and the vertical axis as the y-axis. 

UxU = { (JC, v) | x and y are real numbers } 

The ordered pair (x, y) is the coordinate of the point P in the 
plane whose projection on the x-axis is x and whose projection 
on the y-axis is y. 

This ingenious method of assigning numbers to points in a 
plane was first published in 1637 in the famous text, Discourse 
on Method, by the French mathematician and philosopher, 
René Descartes. Descartes' new system, named in his honor as 
the Cartesian Coordinate System, revolutionized both mathe-
matics and science. Since antiquity, number coordinates had 
been assigned to points on a ruler for measurement purposes. 
However, it was not until Descartes that the ruler concept was 
generalized to points in a plane. By providing a numerical 
notation for points in a plane, this new system made it possible 
to apply the methods of algebra to geometry and vice-versa. 
The new area of mathematics that emerged, called analytic 
geometry, provided the necessary tools on which calculus and 
modern science could be built. Descartes' revolutionary concept 

P(.x, y) 
- - T 

I x 
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seems simple to us today, as does the invention of the wheel. 
We may even wonder whether or not we might have the ability 
to originate these concepts if we were placed back in time with 
no hindsight to guide us. There are, no doubt, many other 
mental constructs waiting to be discovered that no one has yet 
thought of that may, like Descartes' discovery, have a signifi-
cant impact on the human race. 

Pictures of AxB When A and B are sets of real numbers, we can visualize AxB 
as a subset of the plane. For example, let / represent the unit 
interval: /=[0,1] . 

/X / = {(jc,y)|0^jcí£land0<y£l } 

The set of points in / X / form a square region in the plane with 
vertices at (0,0), (1,0), (1,1) and (0,1), as illustrated on the left. 
Each point in the shaded square has coordinates that fit the 
above description. Any point outside of the shaded square will 
have at least one of its coordinates greater than 1 or less than 0. 

The cross product of two intervals will always form a 
rectangle in the plane. If A = [2,4] and B = [1,3], then Ax Bis 
the adjacent rectangle with vertices at the points (2,1), (2,3), 
(4,1), and (4,3). 

AxB={(x,y)\2<x<4 a n d l < v £ 3 } 

Let's visualize A x (B U Q where A, B, and C are intervals. We 
imagine A on the horizontal axis and the other two sets on the 
vertical axis, for they will be the source for the second coordi-
nates in the ordered pairs. We first union B and C on the verti-
cal axis and then form the cross product, as illustrated on the 
left. On the other hand, if we individually construct AxB and 
AxC and then union these two sets, we end up with the same 
set. In this example, A x (B U Q = (A x B) U (A x Q. 

We will now prove that these two sets are always equal, 
using a standard subset argument. First, we prove that the left 
side is a subset of the right side and vice-versa. When we pick 
an arbitrary element z in the left side, we must translate what it 
means. In general, if z is an element in AxB, then г must be an 
ordered pair whose first term comes from A and whose second 
term comes from B: 

zeAxB 
if and only if 

z=(a, b) for some a in A and b in B. 

U (U) 

(CO) (1,0) 
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Theorem For all sets A, B, and C, A X (B U Q = (A x B) U (A X Q . 

C/aim Ax(BUQ C (AxB)U(AxQ 
Assume that z e A x (BU Q. 
Then z=(x, y) for some A: in A and y in B U C. 

Def. of cross product 
So ye B or y€ C Definition of union 

Case 1: Assume that y e B. 
Sincere A, ( x j ) e A x B Def. of cross product 
So (*, y) e A X B or (x, y) € A X C. . . . Va/id argument 
Thus, (JC, y) e (A X B) U (A X Q. . . Definition of union 

Case 2: Assume that y 6 C 
Since дге A, (л, y) € A X C Def. of cross product 
So(x,y)zAxB or (x,y)eAxC. ... Valid argument 
Thus, (*, y) e (A X B) U (A X C). . . Definition of union 

In both cases, (*, y) e (A x B) U (A X Q . 
Since z=(x,}0, ze (AxB) U (AxQ. 

Therefore, A X (BU C) £ (A X B) U (A X Q. Definition of subset 

Claim (AXB)U(AXQCAX(BUC) 
Letze(AxB)U(AxC). 
Then z6 A XB or zeAx. C Definition of union 

Case 1. Suppose that z^AxB. 
z = (x,y) for some x in A and y in B 

Def. of cross product 
Since yeB, ye B or ye C Valid argument 
So ye BU C Definition of union 
So (JC, y) eA X (B U C) Def. of cross product 

Case2. SupposezeAxC. 
z- (x,y) for some x in A and y in C. 

Def. of cross product 
Since y e C, y € B or y 6 C Va/i'rf argument 
So y€ BU C Definition of union 
Thus (*, y) € A X (B U C) Def. of cross product 

In both cases, (x, y) e A x (B U Q. 
Sincez = (*,y),zeAx(BUC). 

So(AxB)U(AxQCAx(BUC). 

Therefore, A x (B U Q = (A x B) U (A x Q . 



264 Chapter 3 Sets - The Building Blocks 

AxBxC Unlike union and intersection, the cross product is not 
associative. For example, consider the following cross product: 

LetA={l},5={2},andC={3}. 

(AxB)xC={(d,2),3)} 
Ax(BxC) = { (1,(2,3))} 

Each of the above sets has only one element, which is an 
ordered pair. (1,2) is the first term in the ordered pair ((1,2),3), 
whereas 1 is the first term in the ordered pair (1,(2,3)). So the 
above two sets are not equal. 

(AxB)xC*Ax(BxQ 

When we form the cross product of three sets, we visualize the 
(ah a2, as) = (bh b2, by) elements as ordered triples instead of either of the above group-

if and only if mgs. The notation (a, b, c) represents an ordered triple. Like 
- u -u j - u ordered pairs, ordered triples are equal if and only if each of 

a\ -bh a2-b2, and a3-by \. . 

the corresponding terms are equal. 

(1,1,2) * (1,2,1) since their second terms are different. 

We define the cross product of sets A and B and C as follows: 
AxBxC= {(a,b,c) | aeAand òefíand ceC) 

For example, letA= {1,2,6,8}, B= {2,3,4}, and C= {4,5}. 
The ordered triples in A x B x C that have 1 as the first term are 
illustrated in the adjacent tree branches. We model this system-
atic branching procedure in the following listing of all elements 
inAxiSxC: 

(1.2.4) (2,2,4) (6,2,4) (8,2,4) 
(1.2.5) (2,2,5) (6,2,5) (8,2,5) 

(1.3.4) (2,3,4) (6,3,4) (8,3,4) 
(1.3.5) (2,3,5) (6,3,5) (8,3,5) 

(1.4.4) (2,4,4) (6,4,4) (8,4,4) 
(1.4.5) (2,4,5) (6,4,5) (8,4,5) 

The above array has 4 columns and each column has 3 • 2 
Let A and B and C be finite sets. elements. So, the number of elements in A x B x C is 4 • 3 • 2. 

i - i i i i i i Using the definition of multiplication as repeated addition, it 
e n ' I - I I I I I I- c a n be demonstrated that the number of elements in the cross 

product of three finite sets is the product of the number of 
elements in the individual sets. 
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The set Rx Rx R can be visualized as 3-dimensional space with 
3 number lines intersecting at right angles, as illustrated on the 
left. Wè usually notate this cross product as R 3 : 

R3 = { (x,y,z) \ x,y and z are real numbers ) 

To locate the point in 3-space represented by (A:, V, Z), we first 
find the point x on the x-axis, then we move in the y-direction, 
parallel to the y-axis, to the point (x, y, 0). Next, we move z 
units in the z-direction to the point (x, y, z). As in 2-dimen-
sional space, if we drop a perpendicular line from the point P to 
each of the 3 axes, the corresponding coordinates will be x on 
the x-axis, y on the y-axis, and z on the z-axis. 

As we saw earlier, / x / is a unit square where / represents the 
unit interval: / = [ 0,1 ]. Let's add another dimension to / x / 
and considerIxlx I: 

Ixlxl= { (x,y,z) | 0<x< 1 a n d 0 < y < 1 a n d 0 < z < 1 } 

In 3-space, all of the points whose coordinates fit the above 
parameters must lie in a unit cube. The lower left back vertex 
is at the origin, as illustrated in the adjacent sketch. The 
coordinates of the 8 vertices of this cube are: 

Lower level: (0,0,0), (1,0,0), (0,1,0), (1,1,0) 

Upper level: (0,0,1), (1,0,1), (0,1,1), (1,1,1) 

It seems perfectly natural to continue generalizing and consider 
a 4-dimensional cube, Ixlxlx I. Before we do this, though, 
let's talk about R x R x R x R. 

In the 19th century, Arthur Cayley, Hermann Grassmann and 
Bernhard Riemann investigated generalizations of R2 and R3. 
To generalize to R4, all we have to do is add another coordi-
nate. Since z is at the end of the alphabet, let's use subscripts to 
indicate the coordinates: x\ for the first coordinate, x2 for the 
second coordinate, etc. By indexing the coordinates, we have 
unlimited room for further generalizations: 

R4 = {(xi,хг,хз,XA) I JCI, хг, Xi and x»are real numbers } 

Even though we cannot visualize figures in R4, mathematicians 
soon found that they could talk about distances in R4 as easily 
as in spaces that we can see. Notice the striking similarity in 
the following distance formulas for R2 and R3, which both 
come from the Pythagorean Theorem (page 270, (1 lc)). 
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Distance on a line 

Distance in a plane 

Distance in 3-space 

Distance in 4-space? 

Hyperspheres 

Let d be the distance between P(xi) and Q(y\) in R. 

d=\xi-yi\=J(xi-yl)
2 

Let d be the distance between P{x\,xi) and 0.(уиУг) in R2. 

d=J(xl-yl)
2 + (x2-y2)2 

Let dbe the distance from Р(хих2,хз) to 0(у\,уг,уз) in R3. 

d= J(xi-yi)2 + (x2-y2)2 + (x3-y3)2 

An obvious way to define distance in R4 is as follows. 
Let đbe the distance from P(XUXI,XI,XÀ) to 0,(уиуг,уъ, y*)-

d=il(xi-yi)2 + (X2-y2)2 + (x3-y3)
2 + (X4-y4)2 

It can be shown that the above equation gives a notion of 
distance that has the same fundamental properties that the dis-
tance concept has in R, R2 and R3. 

With a distance concept for R4, we can generalize familiar 
figures from 3-dimensional space. For example, we can 
generalize the notion of a circle and a sphere without even 
changing the definition: 

A circle is the set of points in a plane at a fixed 
distance from a fixed point. 

A sphere is the set of points in 3-dimensional 
space at a fixed distance from a fixed point. 

A hypersphere is the set of points in 4-dimensional 
space at a fixed distance from a fixed point. 

Let (ci, сг, сг, с*) represent the fixed point at the center of the 
hypersphere. Then the points (jci, хг, хг, XÀ) on the hypersphere 
will be determined by the following equation. 

d=J(xi-Cl)2 + (X2-C2)2 + (X3-C3)
2 + (X4-C4)2 

If we square both sides, we can eliminate the radical: 

d2 = (JCI - d)2 + (x2 - cif + (x3 - съ)г + (x, - C4)2 

So, a hypersphere of radius 1 is the set of all points whose 
coordinates (JCI, X2, хг, дс4) satisfy the following equation: 

(JCI - Ci)2 + (x2 - c2y + (хъ - сг)2 + (x*- c4)2 = 1 
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If the center of the sphere is (0,0,0,0), the equation becomes: 

xi2 + хг+ хъ+ x*1 = 1 

With our algebraic skills, we can now work with a 4-dimen-
sional sphere that we cannot fully visualize. Like the Braille 
system for the blind, the distance concept gives us a way to 
mentally visualize what we cannot physically see. However, if 
we stop and think about it, we cannot fully visualize 
3-dimensional figures either. When we look at a box, we can-
not see the complete box in one view. We must turn it around 
and look at it from various perspectives. We then imagine the 
complete totality of the box, even though we cannot see the 
front and back at the same time. In fact, we imagine a lot of 
things - "imagine" means to build an image in our mind. 

When we look at the adjacent sketch, we imagine it as a 
3-dimensional cube, but it is really a 2-dimensional sketch. In 
a similar manner, all real objects that we see are constructed in 
our mind from 2-dimensional images sent by light rays through 
the portal of each eye, from which our mind miraculously 
builds a 3-dimensional understanding of the object. In the 
same way, we can learn to build our visual understanding of 
4-dimensional space. The easiest way to enter into 4-dimen-
sional viewing mode is through the dimension of time. 

Suppose that the adjacent 3-dimensional solid cube is moving 
through time along a straight line. The trace of all points over a 
1 unit time interval creates a 4-dimensional cube, which is 
called a hypercube. To build a mental construct of a hypercube, 
we first draw a picture of the cube when r = 0; then we draw 
another snapshot of the cube when í = 1 hour. To capture a 
fleeting essence of all the snapshots between t = 0 and t - 1, we 
connect the corresponding vertices with line segments, as 
illustrated on the left. A slice of this figure at any point along 
one of these line segments will be a cube, but let's clarify what 
we mean by a slice. 

We can slice the 3-dimensional loaf of bread illustrated on 
the left by fixing the y-coordinate, say at y = 2. We then let the 
knife slice through all the other points where y = 2. This slice 
exists in a different plane, though, than the slice we get at y=3. 
Similarly, when we slice our hypercube at / = j , we visualize 
all the points where t = y , which will be a cube, an identical 
twin of the cube pictured at t=0. However, this slice exists in a 
different 3-dimensional universe than the 3-dimensional uni-
verse at t = 0. So, when we look at the above illustration of a 
hypercube, we must remind ourselves that the 3-dimensional 
universe that contains each slice is different. 
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Reasoning by analogy is perhaps the best way to get a 
deeper understanding of what is happening here. Consider how 
a O-dimensional point generates a 1-dimensional line; but first, 
suppose that you live on that point and cannot see nor move 
beyond it. The point is moving through space, which you 
experience as time, but you cannot see the extraterrestrial view 
of the 1-dimensional line in the adjacent illustration. 

After eons of time, you evolve into a creature with 
1-dimensional vision, having free reign now to move wherever 
you wish on a 1-dimensional line segment. Again, you can 
neither see nor move beyond your terrestrial line. But your line 
segment is moving through space, along a straight line segment 
of the same length, thereby spanning a 2-dimensional square 
region. Your vision is limited to only 1-dimension, so you 
cannot see the extraterrestrial view given on the left. 

After another great span of time, you evolve into a creature 
with 2-dimensional vision, having free reign now to move 
wherever you wish in a 2-dimensional square region. As you 
move through time, your square region spans a cube, but to you 
the concept of a cube is pure science fiction. In fact, contem-
plation of such matters makes your head throb, for you think 
that your species is the most advanced in the universe. Perhaps 
it is your ego that prevents you from even considering that 
there may be higher-dimensional beings who can perceive 
things that you cannot. 

Finally, you advance to your present place in the universe. 
You can move around in your 3-dimensional box and your 
brain has learned how to interpret visual information about this 
new space, but the next step up to a 4-dimensional cube still 
seems like science fiction, that is, until you use the power of 
the cross product to analyze the time space that you live in and 
conceptualize the mysterious hypercube. 

It is rather surprising what a simple definition we can give 
for a hypercube H. H is the cross product of four unit intervals: 

Я = / х / х / х 7 

= {(x,y,z,w)\0<x<l and0<;y<l andO<z<l andO<w<l} 

If we interpret the 4th coordinate as representing time, (0,0,0,0) 
represents the position of the point (0,0,0) in the original cube 
when the time t is 0, whereas (0,0,0,1) represents the position 
of the same point when f is 1. The hypercube has twice as 
many vertices as the 3-dimensional cube. For each of the 8 
vertices in the original cube, the 4th coordinate could be 0 or 1, 
so the hypercube has 16 vertices: 

• > 

Point Universe + Time 

Д * 

Line Universe + Time 

2-Dimensional Universe + Time 

3-Dimensional Universe + Time 
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t = 0: (0,0,0,0), (1,0,0,0), (0,1,0,0), (1,1,0,0) 

(0,0,1,0), (1,0,1,0), (0,1,1,0), (1,1,1,0) 

t= 1: (0,0,0,1), (1,0,0,1), (0,1,0,1), (1,1,0,1) 

(0,0,1,1), (1,0,1,1), (0,1,1,1), (1,1,1,1) 

In a similar manner, we can mathematically generalize to 1R5, 
R 6, IR", and even to R°°. Even though we are visually impaired 
in these higher dimensions, the analytical tools of algebra retain 
their full power. 

The ideas spawned by the mathematical generalization of 
IR3 opened a new world for writers, scientists and artists, who 
no longer felt it necessary to depict the world from a 
3-dimensional perspective. Cubist artists became preoccupied 
with developing an artistic language for depicting the spatial 
nature of 4 dimensions. Based on his reading of the new 
mathematics, H. G. Wells provided an interpretation of the 4th 
dimension as time in his novel, The Time Machine. Albert 
Einstein gave Wells' fantasy a scientific basis with his Theory 
of Relativity. The impact of the cross product on our percep-
tion of the universe has indeed been phenomenal. 

Exercise Set 3.4 

1. LetA = [l,2], B=[0,3], C=[2,4]. Sketch the following sets in U2. 
a. {3}xA c. AxB e. (АхВ)П(АхС) 
b. Ax(3] d. AxC f. Ах(ВПС) 

2. Prove or disprove: 
a. For all sets A and B, A xB = BxA. 
b. There exists sets A and B such that AxB = BxA. 

c. For all sets A, B, C, and Д if A £ C and B ç Д then 
AxB^CxD. 

d. For all sets A, £, and C, Ax(BUC) = (A XB)U (A x Q. 
e. For all sets A, B, and C, Ax(Bf)C) = (АхВ)П(AxC). 

3. Let /=[0,1] and J=[3,5]. Let F= IxJxIxJ. 
List two different points in F. 

4. Let A be a set with 6 elements and B be a set with 8 elements. 
How many elements does AxB have? Explain why. 

5. At the race track, there are 6 horses in the first race, 8 horses in the 
second race, and 5 horses in the third race. Suppose that in each of 
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these three races you bet on one horse to win. 
a. Model the possible ways that you can place these three bets in 

terms of a cross product. How many possibilities are there? 
b. If you know nothing about the horses, what is the probability 

that you will win in all 3 races? 

6. A square whose sides each measure 2 units is positioned so that 
each of its sides is parallel to one of the coordinate axes and its 
lower left vertex is located at the given point. Express the square 
as a cross product. 
a. (0,0) b. (1,2) c. (-2,3) 

7. A cube whose sides each measure 2 units is positioned with each 
face parallel to one of the coordinate planes. Express the cube as a 
cross product. Its lower left back vertex is at the given point. 
a. (0,0,0) b. (1,2,0) c. (1,2,5) 

8. Expand each cube in the previous exercise to a hypercube by 
adding a 4th coordinate that has a span of 2 units. 

9. Suppose that you live in a 4-story dormitory. 
a. Devise a coordinate system for representing all points within 

the dormitory. How many coordinates does it take? 
b. Suppose that someone is using coordinates to track your 

location in the dorm throughout the evening. How many 
coordinates will it take? 

c. Do you live in a 3-dimensional space? 

10. A unit cube is placed on a table, but it suddenly disappears after 2 
hours. Use a cross product to represent the life span of the cube 
on the table. Decide how you want to set up the coordinate axes. 

11. Let a and b be real numbers with a<b. 
a. Derive a formula for the distance from a to b. 

Hint: Use 3 cases and a visual argument on the number line. 
b. Use your work in part (a) to derive a 

formula for the distance between (a,c) 
and (b,c) in a plane. 

c. Use the Pythagorean theorem to derive a 
formula for the distance between the points 
(a,c) and (b,d) in the adjacent sketch. 

d. Generalize the distance formula to №. 

12. Let S„ denote the set of all bit strings of length n, as defined in (15) 
on page 232. Model Sn with a cross product. 
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Activity 3.5 

1. Imagine1 that you live in a cave and have a flock of sheep. During 
the day the sheep wander off in search for food, and each evening 
before sunset, you must make sure that you get them all back in 
the cave. You have never heard of a number, most of your com-
munications are visual rather than spoken, and, of course, you 
don't have paper or pencils. Using available supplies, devise 
several plans for making sure that you have gathered all your 
sheep in the evening. 

2. Compare your cave system with the way we count today. 
a. How are they similar? 
b. What is the basic principle that is essential to any counting 

technique? 

3. What does it mean to say that "two sets have the same size?" 

4. Is the size of the set of natural numbers bigger than the size of the 
set of even natural numbers? 

= 3.5 Finite Sets = 

The term "infinite" is often used in the media to indicate a very 
large set, but this is not what it means in mathematics. The set 
of atoms in our universe is one of the largest physical sets that 
one could imagine; however, this set has less than 1080 

elements, so it is a finite set. To understand the meaning of 
infinite, we must first understand the meaning of finite. 

The concept of finite is based on the counting process. If a 
1 2 3 set 5 is finite, it would be possible - given enough time - to 
I I \ count all the elements in the set. Counting, in turn, is based on 

the concept of a one-to-one correspondence. When we count 
the elements in a set S, we construct a one-to-one correspon-
dence with the first n natural numbers, as illustrated on the left. 
We will now investigate the conditions that are essential for a 
one-to-one correspondence. After that, we will construct the 
natural numbers and then use the concept of a natural number 
and the concept of a one-to-one correspondence to give a 
simple definition of finite. 

S = {a, d, e} 
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One-to-One Correspondences 

/ i s a one-to-one correspondence 

from X to Y if and only if 

/ i s a one-to-one function 

that maps X onto Y. 

A one-to-one correspondence between the sets X and Y is a 
mapping in which each element in X is mapped to exactly one 
element "in Y, and each element in Y has exactly one element in 
X mapped to it. 

The adjacent mapping is a one-to-one correspondence 
between X and Y. Using function notation, we can describe this 
mapping as follows: 

/ ( l )=c f(2) = d f(3)=e 

A one-to-one correspondence can be defined as a function that 
is one-to-one and onto. These three concepts, function, one-to-
one, and onto, are involved in any counting process. We will 
briefly examine the meaning of these concepts. In Chapter 4, 
we will investigate them in more detail. 

Functions 

/ i s a function from X into Y 

if and only if 

/maps each element in X 

to a unique element in Y. 

Functions, one of the most powerful concepts in mathematics, 
give a special kind of relation between two sets. A function is a 
one-way mapping between two sets where each element in the 
first set is mapped to a unique element in the second set. 

The unique element to which x is mapped under a function/ 
is notated as /(JC). The notation, f(x) = y, means that л: is 
mapped to y under the function /. The great power of the 
function concept comes from thef(x) notation, which allows us 
to manipulate our thoughts about functions in a very efficient 
manner. 

To be a function, a mapping must send each element in the 
first set to only one location. The adjacent mapping is not a 
function because it maps 1 to two different places. We cannot 
use function notation with this mapping for we would have 
/(1)= c and/(1) = d, but c*d. 

In the adjacent mapping 1 is mapped to c and 2 is also 
mapped to c. Since each element in X is mapped to a unique 
element in Y, this mapping is a function from X into Y. 

One-to-0ne Function The previous function is not one-to-one because it maps 
different elements to the same location. The adjacent mapping, 
though, is a one-to-one function because it maps different 
elements to different places. A function is one-to-one if 
different elements in the domain always map to different 
elements in the range. Using function notation, this condition 
can be phrased as follows. Let a and b be elements in the 
domain of/: 
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/ is one-to-one 
if and only if 

for all a and b in the domain, 
\{аФЬ, then/(a)* /(6). 

If a * b , then/(a) */(&). 

We can state the property of being one-to-one in a more 
positive perspective by rephrasing the above implication in 
terms of its contrapositive: 

If/(e) =/(b) , then a =b. 

Onto Functions 

/maps X onto Y 
if and only if 

for every y in Y, there exists 
an x in X such that f(x) — y. 

To be a function from X into K,/must map each element in X to 
some element in Y, but each element in Y does not have to have 
someone map to it. In the last example on the previous page, 
the function / maps X into Y, but it does not map X onto Y 
because e is left out in the cold. 

A function maps X onto Y if each element in Y has someone 
mapped to it. In other words, for every y in Y, there must exist 
an x in X such that f(x) = y. 

The concept of onto is completely independent of the 
one-to-one concept. A function can be one-to-one, but not onto 
as was the case with the last example. Conversely, a function 
can be onto but not one-to-one, as illustrated by the following 
function: 

X= {1,2,3}, Y= {4,8}, / ( l ) = 4,/(2) = 8,and/(3) = 8. 

This function maps X onto Y, but it is not one-to-one since 2 
and 3 both map to the same element. Some functions, though, 
are both one-to-one and onto. When this happens, the two sets 
have the same size. 

Size of a Set 

Let A and B be sets. 
A has the same si^e as B 

if and only if 
there exists a one-to-one 

function that maps A onto B. 

Two sets that have the same size are said to have the same 
cardinality. We usually determine whether or not two sets have 
the same size by counting their elements; however, numbers are 
not necessary for this type of comparison. If we can find a 
one-to-one function that maps A onto B, then A and B have the 
same size. For example, let X= {a, b, c) and Y= {r, s, t}. 
Define/as follows: 

f(a) = r f(b) = s f(c) = t. 

f is a one-to-one function that maps X onto Y, so X and Y have 
the same size. 

The concept of "having the same size" is at the foundation 
of quantitative reasoning, laying the groundwork for the 
number concept. We do not need numbers to determine if two 
sets have the same size. If everyone is sitting in a chair at a 
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meeting and all the chairs are taken, we know that there are the 
same number of chairs as people. However, if we need a 
written record of how many people were at the meeting, we 
must advance to a higher level of abstract thinking. 

Natural Numbers As early as 8500 B.C.E., around the same time as the first 
evidence of farming and herding, people in the Near East had 
developed ingenious ways to track sizes of different objects. 
Before numbers were conceived, long before writing was 
developed, prehistoncal people tracked their supplies using 
physical objects, such as fingers, sticks, notches on sticks, 
strokes on a wall, knots on a string, and pebbles. Our word 
"calculate," comes from the Latin word "calculus," which was a 
small pebble used for counting. In the cradle of civilization, the 
calculi used by merchants in ancient Sumeria were clay pebbles 
stored in clay containers. The sale of a herd of sheep would be 
accompanied by a clay pot whose pebbles represented the size 
of the herd. 

Pebble arithmetic is quite simple, even for the shepherd far 
removed from the bustling commerce of the emerging cities. 
To track his flock, a shepherd could place a pebble in a sack for 
each one of his sheep. When his flock returned in the evening, 
he would remove a pebble for each sheep. Leftover pebbles 
meant missing sheep, while a shortage of pebbles meant that he 
had picked up some extras. 

To add the number of sheep in two different flocks, the 
shepherd could combine (union) the pebbles from the sacks 
that represent each flock. To subtract, he would remove 
pebbles (set subtraction). This simple, but effective, system 
has the tremendous advantage of being purely physical with 
nothing to memorize and no special schooling needed. 

Our system of counting works essentially the same way, 
except that we carry the pebbles in our head, identifying them 
with number names, then we send our children to school to 
learn algorithms for adding and subtracting our abstract 
pebbles. In terms of the learning curve, the pebble method is 
far more efficient than our number system. However, as 
society became more complex with larger and larger quantities 
to be tracked, the pebbles, unlike our weightless numbers, were 
far too heavy and cumbersome to carry. 

The clever merchants in ancient Sumeria cut down on the 
weight by drawing marks on empty clay pots. Later on they 
flattened the pots to clay tablets that could be stacked more 
efficiently. This simple act, like the invention of the wheel, 
changed the course of human history, for it was the birth of 
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0 = {} 

1 = {*} 

2 = {* * } 

3 = {* * * } 

4 = / * * * * i 

5 = 1 * * * * * 1 

(, = { * * * * * * } 

7 = | * * * * * * * \ 

My theory stands as firm as a 

rock; every arrow directed against 

it will return quickly to its archer. 

How do I know this? Because I 

have studied it from all sides for 

many years; because I have 

examined all objections which 

have ever been made against the 

infinite numbers; and above all 

because I have followed its roots, 

so to speak, to the first infallible 

cause of all created things. 

Georg Cantor 

1845-1918 

writing, centuries before words were written. Mathematics was 
not the product of an advanced civilization; mathematics was 
the stimuli, the intellectual catalyst that helped civilizations 
become advanced. 

Numbers are not needed to determine if two sets have the 
same size; however, it is more convenient for commerce to 
have a standardized reference set for naming the various sizes. 
Like sacks of pebbles, the natural numbers serve as a collection 
of reference sets for all possible sizes of finite sets, as illus-
trated on the left. 

Since those early days when commerce was transacted with 
pebble arithmetic, business deals can now be transacted on a 
Palm Pilot via satellite connection with someone in outer 
Mongolia. The amazing technological feats of the 20th century 
had their humble origins in the intellectual quest of the ancient 
Greeks to provide a logical foundation for geometry. Over two 
thousand years later, mathematicians at the turn of the 20th 
century focused their attention on developing a similar logical 
foundation for the natural numbers. Since the natural numbers 
are the foundation of quantitative reasoning, it may seem 
strange that the task was not tackled earlier. Perhaps the more 
physical aspect of the natural numbers with their pebble twins 
made them more concrete and less suspicious than the invisible 
points of geometry. Or perhaps the deep thinkers saw the diffi-
culty in building a logical foundation for natural numbers 
because it would require that they take on the great challenge 
of infinity. 

Since antiquity, the great nemesis of logic was the vast 
concept of infinity, which produced disturbing paradoxes. Like 
the Sumerian clay pots which could never contain an infinite 
number of pebbles, it was widely believed that a set could not 
contain an infinite number of elements. 

Georg Cantor, though, considered a set as "a collection of 
definite, distinguishable objects of perception or thought 
conceived as a whole," and he saw no reason not to conceive of 
the collection of all natural numbers as a single entity labeled 
as a set. As he probed and explored the logical ramifications of 
his idea, he developed an intriguing theory of sets that included 
both infinite sets and infinite numbers. His ideas met with 
great resistance for many years. However, his theory provided 
answers to very deep questions in analysis, which led to its 
general acceptance. Today, we speak of infinite sets and 
infinite numbers with the same logical confidence as with their 
more worldly finite counterparts. 
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We will briefly examine the basic axioms that support 
Cantor's Theory of the Infinite. These axioms are designed to 
produce' a sufficiently rich collection of sets without granting 
set status to the super large collections, like the one that 
produced Russell's paradox (page 206). Naturally, the axioms 
must be rich enough so that we can construct the natural 
numbers from sets instead of pebbles. 

The wording in the following four axioms may seem a little 
awkward, but keep in mind that we are constructing representa-
tive sets for counting. What we build the sets from is not 
important; it doesn't matter if we use a sack of pebbles, strokes 
on a tablet, or abstract sets. The only thing that matters is that: 

• We construct a representative set for each 
possible size that a finite set may have. 

• We establish a pattern in our construction 
that enables us to continue forever... . 

The latter requirement is where the great challenge lies, for it is 
where infinity is conceived. Using pebbles, we could never 
construct an infinite set of numbers, which is the advantage of 
using abstract sets. Some primitive cultures have a conception 
of only three numbers - one, two, and "many." Those with 
more developed systems of trading have more numbers, but 
most primitive cultures have a cutoff, an upper bound, beyond 
which they have no desire to distinguish between the sizes; and 
so they classify sets beyond the range of their numbers with a 
generic name such as "many," giving a one-size-fits-all solution 
to the naming problem. In our culture, most people use "infin-
ity" in the same sense, as the size of a set whose size is beyond 
comprehension; however, as we will see in the next section, the 
well-reasoned mind can distinguish between different sizes of 
infinity. 

The following method for creating the natural numbers may 
seem excessively laborious, but great precision is needed to 
logically escape the finiteness of mortal existence. After all, no 
human can count all the natural numbers. Even the days of 
existence for the sun that fuels our solar system is a finite 
number. The belief in an infinite set of natural numbers 
requires logical articles of faith, which can be boiled down to 
the following axioms. These axioms were the intellectual 
product of Georg Cantor's journey in following to its roots "the 
first infallible cause of all created things." 
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1. Axiom of Existence 

There exists a set that 

has no elements. 

3sVx, xCS 

2. Axiom of Equality 

Let A and B be sets. 

A-B 

if and only if 

VJC, XEA <=> X€B 

3. Pair Axiom 

Let A and В be sets. 

There exists a set S such 

that S= {A,B}. 

4. Union Axiom 

Let F be a set 

whose elements are sets. 

There exists a set 5 such that 

5 = { x | x€A for some A in F) 

The first axiom of set theory postulates the existence of the 
empty set. Like the Big Bang, this axiom gives us all the 
material" that we need to start building our universe. In the 
beginning was the empty set, and from this set we will build all 
our sets and numbers. In the sack and pebble method, we 
would represent the number 0 with an empty sack, which is 
analogous to an empty set. In a similar manner, we define the 
number 0 to be the empty set: 

0 = 0 

The second axiom gives the rule for determining when two sets 
are equal: two sets are equal if and only if they have the same 
elements. This axiom gives information on how we can 
manipulate the undefined terms, "set" and "is an element of." 

As in any living organism, we need a reproductive system 
for producing new sets. The next two axioms allow us to build 
new sets from sets that we already have. Given two sets A and 
B, we can use Axiom 3 to build a new set: {A,B). We can also 
use this axiom to build singleton sets by letting B = A: 

There exists a set S such that S= {A,A]. 

By the Axiom of Equality, {A, A] = [A]. Thus, from a set A, 
we can build a new set, {A}. This building technique will be 
used at each step in our construction of the natural numbers. 
Since we defined 0 as a set, we can form the set {0}, which is 
analogous to a sack with one pebble. Consequently, we define 
the number 1 to be this set: 

1 = {0) 

Since we defined both 0 and 1 as sets, we can use Axiom 3 to 
form the set {0, 1}, which is analogous to a sack with two 
pebbles. We define the number 2 to be this set: 

2 ={0,1} 

Alas, Axiom 3 will not get us to the number 3. We need 
another article of faith that allows us to produce larger sets, 
which is provided by the adjacent axiom. In Axiom 4, the set S 
is the multiple union of all sets in F (page 246): 

S= UA 
AeF 

The casual eye might miss the powerful control exerted at the 
beginning of Axiom 4 - the requirement that F be a set -
which restricts the sets that we construct from getting too large. 
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In the beginning was the empty 
set. Let us name this set 0. 

0 = { } 

On the first day, we put 0 in a set. 
Let us name this new set 1. 

1 = {0} 

On the next day, we take the two 
sets that we have created and put 
them in a new set. Let us name 
this set 2. 

2 = { 0 , 1 } 

On the next day, we form a set 
whose members are the previous 
sets. Let us name this set 3. 

3 = {0,1,2} 

Continuing in the same pattern, 
on the next day after the nth day, 
we form a set whose members are 
the previous sets. Let us name 
this setn + 1. 

я + 1={0,1,2,. . . ,и} 

Given a collection F of sets, we cannot arbitrarily form their 
union and call it a set. However, if we also know that F is a 
set, the Union Axiom allows us to do this. With this axiom, we 
can continue our construction of the natural numbers. 

To construct a set with 3 elements, we first form the set 
{2}. Then we define the number 3 to be the union of the set 2 
with the set {2}: 

3 = 2U{2} = {0,1}U{2} = {0,1,2} 

Continuing in a recursive pattern, we define each new number 
in terms of the previous number: 

4 = 3U{3} = {0,1,2}U{3} = {0,1,2,3} 

5 = 4U{4} = {0,1,2,3}1){4} = {0,1,2,3,4} 

At each step, the new natural number n is the following set: 

n= {0,1,2,3, . . . , и - 1 ) 

We notate its successor as n+1 and define it as follows: 

n + l=n(J{n] 

By Axiom 3, {n} is a set and { n, [n]} is a set. Using Axiom 
4, we take the union over the latter set, which gives the desired 
result - a set with one more element: 

n + l = {0, 1,2,3 n-l}U{«} 
= {0,1,2,3, . . . , n - l , n} 

Since the above set has n + 1 elements, it serves the same 
function as a sack with n +1 pebbles. 

Let's run through the creation of the natural numbers in the 
style of Genesis, as portrayed on the left. If we believe that for 
any day, there is a next day, then this process can be continued 
forever. Through these verbal acrobatics, we now have a 
collection of sets with each a different size and with all possi-
ble sizes of finite sets represented. This step-by-step construc-
tion of the natural numbers gives them an inherent order which 
can be described by the subset relation: 

n <, m if and only if n £ m. 

Having justified the logical creation of the natural numbers, we 
can now forget about the rather complicated birthing process 
and view them as separate mature entities ordered by <. 
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Defining Sets 

5. The Property Axiom 

Let p(x) be an open statement 

and let C be a set. 

There exists a set S such that 

S= {x \xeC and p(x) } 

Axiom 5 empowers us to construct sets via the property 
method. For example, from the previous axioms we can form 
the sets,-A = {0,1,2, 3} and C = {0,1, 2, 3 100}. Using 
Axiom 5, we can form the following subset of C. 

B=[x\xeCandx£A} 

The Property Axiom contains the restrictive clause "x e C" in 
order to keep logical control of the sets that can be constructed 
via the property method. When we define a set S in terms of a 
property, each element in S must be a member of a set C that 
we already know exists. Otherwise, the property method 
cannot be used to grant the status of "set" to a collection. This 
subtle technicality eliminates Russell's Paradox (page 206), 
which was based on the following "set:" 

V= { x\ x is a set and x£x } 

Under the new rules for set theory, V cannot be classified as a 
set, which defuses the paradox. 

The axioms of set theory give a hierarchical technique for 
constructing sets. From sets that we already have, we can build 
more sets. Any property can be used to define a set, but it can 
only be applied to a set that we already have, which is why we 
have the notion of a universal set implicit in each property 
definition of a set. Given a set A, we cannot form the set of all 
x such that xf£A, but given a universal set U, we can form the 
set of all x such that x€ U and д; éA. 

Using these five axioms, we can construct a rich collection 
of finite sets. However, to construct infinite sets, we need 
another axiom, which we will discuss in the next section. 

Cardinal Numbers 

\S\=n 
if and only if 

mere exists a one-to-one 

function that maps 
{1,2,3,... , n} ontoS. 

The natural numbers were constructed as standardized 
reference sets for all possible sizes of finite sets. The size of a 
set is called its cardinal number. If a set 5 has the same size as 
{1,2,3 n], then n is the cardinal number of S, which we 
notate as | S |. The empty set has 0 elements: 101 = 0. 

To determine if S has n elements, we try to find a one-to-
one function that maps {1 ,2 ,3 , . . . , n) onto S. This definition 
uses the same counting technique we learned in first grade. 
When we count the elements in a set S, we are constructing a 
one-to-one function that maps {1,2,3,..., n] onto S. Actually, 
there will be quite a few functions that fit the one-to-one and 
onto requirement, for it doesn't matter where we start counting 
as long as we count all the elements in S. 
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Finite Sets 

S is finite 
if and only if 

| S | = n for some 
whole number n. 

One-to-One Functions 

Let A and B be finite sets. 

\A\<\B\ 

if and only if 

there exists a one-to-one 

function that maps A into B. 

We can now give a simple definition of a finite set. Since 0 is 
not a natural number, we introduce the term whole number to 
indicated number that is either a natural number or 0. 

To say that a set is finite means that 

151 = n for some whole number n. 

A nonempty set is finite if and only if we can find a natural 
number n and a one-to-one function/that maps {1,2,3, . . ., n] 
onto S. We have traced the notion of finite back to the follow-
ing four sources: natural numbers, the function concept, the 
one-to-one concept, and the onto concept. 

From a mathematical perspective, an extremely large set, 
such as a set that has 1080 elements, is a finite set. When we 
say finite, we do not necessarily mean "small." 

A one-to-one function between two sets gives us information 
on the relative sizes of the sets. In the adjacent sketch, / is a 
one-to-one function that maps A into B. Note that | A | < | B \. 

Suppose that / is a one-to-one function that maps A into B 
and A has n elements. When we count the elements in A, we 
can use the one-to-one mapping to simultaneously count the 
corresponding elements in B. So, B must have at least n 
elements. In general, whenever we have a one-to-one function 
that maps A into B, we can deduce that the size of A is less than 
or equal to the size of B. 

On the other hand, if we are given sets with | A | < | B |, we 
can construct a one-to-one function that maps A into B. For 
example, suppose that A has n elements and B has m elements. 
Since A has n elements, there exists a one-to-one function g 
that maps {1,2,3, . . . , n } onto A. We can use g to index the 
elements in A. Label the elements in A as follows: 

a\ = g(l), a2 = g(2), . . . , and a„ = g(n). 

A = [ au a2,..., a„ } 

We can index the elements in B in an analogous manner: 

B = [ bu Ьг, ■. ■, bn,..., bm) 

Define the function/on A as follows: 

/(a,) = hi 

/ i s a one-to-one mapping from A into B. Thus, to say that the 
size of A is less than or equal to the size of B guarantees the 
existence of a one-to-one function that maps A into B. 
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Onto Functions 

Let A be a finite set 

and B a nonempty set. 

И | > | В | 
if and only if 

there exists a function 

that maps A onto B. 

Onto functions also give us information on the relative sizes of 
two sets. In the adjacent sketch, g is a function that maps A 
onto B. Note also that \A | > | B |. 

In an onto function, each element in the second set must 
have at least one element mapped to it. If we reverse the 
arrows, we may not have a function, but we can throw away 
extra arrows that emanate from the same source and construct a 
one-to-one mapping from B into A. Using our results for 
one-to-one mappings, we can deduce that | B \ < \ A |, which can 
be written as | A \ > \ B |. In general, whenever we have a 
function that maps A onto B, we can deduce that the size of A is 
greater than or equal to the size of B. 

The converse is also true. Suppose that | A | = n and \B\ = m 
and n>m. Using counting functions, we can index these sets 
as follows: 

A = ( Oi, a2 

V 

am,... ,a„ 

B = { bu b2,. . . ,bm] 

We can construct a function from A onto B using the above 
arrows. We map each element in A to the corresponding 
element in B until we get to am and run out of corresponding 
elements. After that point, we map each element in A to bm. 
We can formally define this function as follows: 

/(a,-) = bi, if i < m 

/(a,-) = bm, if i > m 

One-to-One and Onto 

| A | = | B | 

if and only if 

there exists a 

one-to-one function 

that maps A onto B. 

The function/maps A onto B. Thus, to say that the size of a set 
A is greater than or equal to the size of a set B guarantees the 
existence of a function that maps A onto B. 

If/ is a function from A into B is both one-to-one and onto, we 
can make the following deductions: 

|A |< | f i | and |A |> | f i | 

Thus, | A | = | B |. The condition under which | A | = | B \ is given 
in the adjacent box (page 273). The one-to-one property makes 
IA | < | B |. The onto property makes | A | > | B \. 

Knowing that a function between two sets is one-to-one 
does not guarantee that the function is onto. However, if we 
know in addition that the sets are finite and have the same size, 
we can deduce that a one-to-one function must also be onto. 
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Let A and B be finite sets 
with |A| = |B|andi 

/be a function from A into B. 

/is one-to-one 
if and only if 

/is onto. 

Sizes of Subsets 

Let A and B be finite sets. 
IfACS.then |A|<|f i | . 

Conversely, knowing that a function is onto does not 
guarantee that the function is one-to-one unless we also know 
that both sets are finite and have the same size. For functions 
between finite sets of the same size, the property of being 
one-to-one is equivalent to the property of being onto. 

The adjacent statement is not true for infinite sets. For 
example, let/(n) = n +1. / i s one-to-one and maps the set N of 
natural numbers into N. However,/ does not map onto 14 for 
there is no n in N such that/(n) = 1. 

If A is a subset of B, the number of elements in A must be less 
than or equal to B: \A\u\B\. For finite sets, we have an 
analogous statement for "strictly less than." If we remove an 
element from a finite set, we have made its size smaller: 

IfAc5,then|A|<|5 | . 

The above property is not true for infinite sets. A proper subset 
of an infinite set can have the same size (page 287). 

Exercise Set 3.5 

1. LetX= {1,2,3,4} and Y= {a,b,c,d,e,f}. 
a. Does there exist a one-to-one function that maps X into У? 
b. Does there exist a function that maps X onto Yl 

2. LetX= {1,2,3,4} and Y = {a,b,c). 
a. Does there exist a one-to-one function that maps X into Yl 
b. Does there exist a function that maps X onto Yl 

3. LetXand Kbe finite sets with \X\ < \ Y\. 
a. Does there exist a one-to-one function that maps X into Yl 
b. Does there exist a function that maps X onto Yl 

4. Let X and Ybe finite sets with |X| > | Y\. 
a. Does there exist a one-to-one function that maps X into Yl 
b. Does there exist a function that maps X onto Yl 

5. Let X and Ybe finite sets with \X\ = | У|. 
a. Does there exist a one-to-one function that maps X into Yl 
b. Does there exist a function that maps X onto Yl 

file:///A/u/B/
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6. Let X = {1,2,3,4} and Y = {a,b,c,d}. Does there exist a function 
/that maps X into Y with the following properties? 
a. / is one-to-one, but not onto. 
b. / is onto, but not one-to-one. 

7. Let X and Y be finite sets. Let/be a function that maps X into Y. 
a. If/is one-to-one, does/have to be onto? 

If not, give a counterexample. 
b. If/maps X onto Y, does/have to be one-to-one? 

If not, give a counterexample. 
c. What if X and Y have the same number of elements? 

Will this change your answers in (a) and (fc)? 

8. Let X and Y be finite sets. What does the given information tell 
you about the relation between |X| and | У|? 
a. There exists a function that maps X onto Y. 
b. There exists a one-to-one function that maps X into Y. 
c. There exists a one-to-one function that maps X onto Y. 
d. X is a proper subset of Y. 

9. Pigeonhole Principle: Suppose that p pigeons fly into h pigeon-
holes. Let/map each pigeon to the pigeonhole where it lands. 
a. Is/a function? 
b. \fp>h, what information does this give you about/? 
c If p < ft, what information does this give you about/ ? 

10. Let/be a function that maps {l,2,3,...,n} into 5. 
What statement must you verify in order to prove the following? 
a. /maps {1,2,3,...,«} ontoS. 
b. /does not map {1,2,3,...,n} ontoS. 

11. Let S be a set and n a natural number. 
What statement must you verify in order to prove the following? 
a. 5 has n elements. 
b. S does not have n elements. 

12. Let N = {1,2,3, }. Do you think that the given set has the same 
size as W, a smaller size, or a larger size? Explain your rationale. 
a. W= {0,1,2,3,...} 
b. A= {2,3,4,5,...} 
c. 0 = {2,4,6,...} 
d. Z={.. . ,-3,-2,-1,0,1,2,3,. . .} 

13. Using the definition of "same size" on page 273, rethink your 
answers in the previous exercise. 
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Activity 3.6 - Hubert's Infinite Hotel 

1. Hubert constructed a grand hotel with an infinite number of rooms 
on a beautiful mountain overlooking the Mediterranean sea. 
Feeling confident that there would always be a spare room, Hubert 
advertised his hotel with the slogan, "Always Room for One 
More." The hotel became quite popular with tourists, and one day 
the manager was elated to find that all the rooms were full. When 
another tourist walked in and asked for a room, the manager was 
about to turn the tourist away, but Hubert interrupted and said, 
"There is always room for one more." Is this true? If so, explain 
how the current residents can be reassigned to accommodate the 
new arrival. The rooms are numbered with the natural numbers. 
A guest may be moved to a different room, but the guests are not 
allowed to double up. 

2. The next day 100 new guests arrive. Can the manager accommo-
date them? If so, explain how to do it. 

3. Several months later, the hotel is still full, but the manager now 
knows how to accommodate any new finite group of tourists that 
arrive. On a particularly beautiful spring day, the manager glances 
at the infinite dispenser roll on the counter and gasps. All the 
waiting numbers, N1, N2, N 3 , . . . , have been taken, which means 
there are an infinite number of new people waiting to get a room. 
Can the manager accommodate them? If so, explain how to do it. 

3 3.6 Infinite Sets = 

From antiquity until the latter part of the 19th century, mathe-
maticians, philosophers, and theologians struggled with the 
concept of infinity with little success, for paradoxical state-
ments seemed to surface from every corner. It seemed as 
though the infinite were beyond the grasp of logical inquiry. 
What was missing was the language that would give a precise 
description of this very massive concept. Thanks to Georg 
Cantor and the other mathematical pioneers who developed 
axiomatic foundations for set theory, we can now work with 
infinite sets in a logical manner and even construct infinite 
numbers that make as much sense as finite numbers. 
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6. Axiom of Infinity 

Define n + 1 as follows: 

и + 1 = n\J {n} 

There exists a set W that has 

the following properties: 

• 0 e W 

• I fne W, then n + \eW. 

Let S be a set. 

5 is infinite 

if and only if 

5 is not finite. 

In the previous section, we created an infinite list of natural 
numbers, but we have not yet created an infinite set. We need 
more than a giant step to get from the finite to the infinite; we 
need another axiom - similar to the existence axiom for the 
empty set - that guarantees the existence of an infinite set. 
After we have one infinite set, we can then construct many 
others. 

The infinite set chosen to be the mother of all infinite sets 
was the simplest set possible, the set {0,1,2,3, . . . }. We can 
construct as many natural numbers as we like, but we cannot 
construct the set of all natural numbers without the Axiom of 
Infinity, which is stated on the left. The wording of this axiom 
parallels the construction method of the natural numbers on 
page 278: 

л + l =nU{n) = {0,1,2,3 n] 

The set W whose existence is postulated in the Axiom of Infin-
ity is the following set: 

W= {0,1,2,3,. . . . л . л + l , . . . } 

Using the property method, we can define the set N as follows: 

N = U | xeWand;c*0} 

Now we have captured infinity within the confines of a set. In 
1850, the prevalent feeling amongst the deep thinkers was that 
this should not be allowed. Today, it is perfectly acceptable 
because we have a logical foundation to support it. The axioms 
of set theory provide us with tools to logically construct all of 
the standard infinite sets that we work with in mathematics: the 
set Z of integers, the set Q of rational numbers, the set U of real 
numbers, and the set C of complex numbers, as well as higher 
dimensional spaces. 

In the previous section, we logically constructed the natural 
numbers and then used these numbers to define a finite set. 
Using the definition of finite, we can easily define "infinite:" 

An infinite set is a set that is not finite. 

Let's work backwards through the definition of finite to see 
exactly what this definition means: 

A set 5 is infinite 

if and only if 

- (| S | = n for some natural number.) 
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Thus, for a set S to be infinite means the following: 

For every natural number n, \S\ Ф n. 

We can translate this latter statement as follows: 

For every natural number n, -(there exists a one-to-one 
function that maps {1,2,3 n ) onto S.) 

For every natural number n and for every one-to-one 
function/, /does not map {1,2,3, . . . , n } onto S. 

To prove that a set is infinite, we would need to verify that the 
latter statement is true. Like the counting process, notice how 
our logical understanding of infinite sets comes from the three 
basic concepts of function, one-to-one, and onto. 

Now that we've opened the door to a strange, new universe 
where infinite sets exist, let's investigate some of the inhabi-
tants. Since mathematics originated from the analysis of the 
various sizes of finite sets, let's do the same for infinite sets. 

Like primitive tribes who use the general size of "many" for 
sets whose sizes are beyond two, most people use a generic 
label for the size of any infinite set. As with clothing, the 
one-size-fits-all label tends to hide rather than reveal the 
structure of the object to which it is applied. When we apply a 
critical eye to the various sizes of infinite sets, we will see some 
rather shocking demographics on the inhabitants of the familiar 
number line. 

For example, we only see rational numbers as we divide the 
unit intervals into tenths and then divide each subinterval into 
tenths. We are mentally comfortable with the exact location of 
the rational number 3.47569 even though we may not be able 
to distinguish it with a pencil point. It is easy to understand 
how one might believe that the rational numbers are the most 
populous group on a number line, for they are indeed the most 
visible. The theory of infinite sets, though, tells us otherwise. 
The rational numbers are a very small minority. 

To pursue this fascinating topic, we must first decide how 
to compare sizes of infinite sets. As we saw earlier, we do not 
need natural numbers to determine if two finite sets have the 
same size; we only need to find a one-to-one function that 
maps one set onto the other (page 273). We will use the use 
definition for infinite sets. To say that two infinite sets have 
the same size means that there exists a one-to-one function that 
maps one set onto the other set. 

Sizes of Infinite Sets 

Let A and B be sets. 
Л has the same size as B 

if and only if 
there exists a one-to-one 

function mat maps A onto B. 
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Cardinality of a Set 

Let A and B be sets. 

| A | = | B | 

if and only if 

there exists a one-to-one 

function that maps A onto B. 

The size of a set A is called its cardinality. As with finite sets, 
we use the notation | A | to denote the size of A, or the cardinal 
number of A. The natural numbers were constructed to provide 
reference sets for the various sizes of finite sets. We will do the 
same for infinite sets, which is way we call \A | a "number." 

Using the | Л | notation, we can translate the sentence "A has 
the same size as B" as | A | = | B |. So, we can phrase the defini-
tion of "having the same size" as stated on the left. Does the 
use of the equals relation between infinite numbers corrupt the 
basic properties of equality? If it does, we cannot hope to form 
reference sets that will serve as infinite numbers. For finite 
numbers, equality has the following 3 basic properties, which 
we first state in terms of the | A | notation, and then translate in 
terms of the adjacent equivalence: 

Reflexive Property 

Transitive Property 

Symmetric Property 

Let A, B and C be sets. 

| A | = | A | 
There exists a one-to-one function that maps A onto A. 

If |A| = | S | and |Й| = |С| , then |A| = |C| . 
If there exists a one-to-one function that maps A onto B 
and there exists a one-to-one function that maps B onto C, 
then there exists a one-to-one function that maps A onto C. 

If |A| = |fi|,then|J?| = |A|. 
If there exists a one-to-one function that maps A onto B, 
then there exists a one-to-one function that maps B onto A. 

It is not difficult to prove the function version of each of the 
above properties for infinite as well as finite sets: 

For the reflexive property, we use the identity function. 

For the transitive property, i f / is a one-to-one function that 
maps A onto B and g is a one-to-one function that maps B 
onto C, we can prove that the composition of these two 
functions is a one-to-one function that maps A onto C. 

For the symmetric property, we can prove that if / is a 
one-to-one function that maps A onto B, then we can 
reverse the arrows and obtain a one-to-one function that 
maps B onto A. 

You are asked to prove each of these properties in Section 4.3. 
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Sizes of Subsets 

N={1, 2, 3 , . . . « , . . . } 
I I i i 

A = {2, 3, 4 , . . . n + l , . . .} 

A set is infinite 

if and only.if 

it has a proper subset 

of the same size. 

Before we create our first infinite number, we must comment 
on a paradoxical sounding aspect of infinite sets: 

A proper subset of an infinite set can 
have the same size as the original set. 

For example, let's remove one element from the set N of natural 
numbers: A = {2,3,4,. . . }. A appears to have a smaller size 
than № since it has one less element. However, we can set up a 
one-to-one mapping from N onto A: f(n) = n +1. So, A has the 
same size as 14 even though it is a proper subset of N. 

A c N a n d | A | = |N|. 

B. Bolzano (1781-1848) noticed that this strange behavior 
happens with all infinite sets. In fact, it gives a property that 
distinguishes infinite sets from finite sets. By removing one 
element from an infinite set, we will always produce a proper 
subset that has the same size as the original set. If we take the 
viewpoint that infinite sets do not have to behave the same way 
as finite sets, the paradoxical nature of the following property 
disappears. 

S is an infinite set 

if and only if 

there exists a set A such that AaS and | A | = | S \. 

The Size of N 

Ko repesents the number 

of elements in N. 

The ancient Sumerians represented the property shared by sets 
having the same size as {1,2,3} with 3 pebbles in a clay pot. 
Later, a name was created for this size. We will do an 
analogous representation for the property shared by sets who 
have the same size as the set N. In fact, we will use N as the 
reference set, but we will use another name to indicate when we 
are using it as a cardinal number. Georg Cantor selected X0 

(aleph-null) to represent the size of the set N of natural 
numbers. Its name may appear strange, but "3" would also 
appear strange if we were not already familiar with it. Since X 
is the first letter of the Hebrew alphabet, X0 is an appropriate 
name for the beginning of a sequence of infinite numbers. 
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A set S has K0 elements 

if and only if 

there exists a one-to-one function that maps N onto S. 

N={1,2,3 , . . . «,...} 
I i I I 

B={5,6 ,7 , . . . ,»+4 , . . . } 

N={\, 2, 3 , . . . « , . . . } 

i l l I 
E={2, 4, 6,...2n,...} 

W= {1, 2, 3, . . . , * , . . . } 
I I i 1 

5 = {a\, 02, аз,. • ., a„, ... } 

Countable Sets 

S is countable if and only if 

5 is finite or 

has the same size as ^1. 

If we remove a finite number of elements from N, we still have 
X0 elements. For example, if we remove the first 4 elements 
from N, we get the following set: 

B= {5 ,6 ,7 , . . .} 

As illustrated on the left, we can construct a one-to-one func-
tion from N onto B: f(n) = n + 4. So, B has the same size as 141, 
which means that \B\ = K0. 

We can even remove an infinite number of elements from N 
and still have N0 elements. For example, if we remove the odd 
numbers from N, we get the following set: 

£ = { 2 , 4 , 6 , 8 , . . . } 

As illustrated on the left, the function, f(n) = 2л, is a one-to-
one mapping from N onto E. So, | £ | = K0. 

An infinite set 5 whose elements can be listed in sequence 
form has K0 elements. Suppose that we can list the elements 
of S as follows where no term is repeated: 

5= [ai, a2, аъ,... } 

To construct a one-to-one function that maps N onto 5, we map 
1 to ai, 2 to a2, 3 to a3, and in general, n to a„: f(n) = a„. 

/ i s a one-to-one function from N onto S, so | 5 | = X0. 
Conversely, any set S with X0 elements can be listed in 

sequence form by using a one-to-one function/from that maps 
N onto S: 

5 = i / ( l ) . / ( 2 ) , / ( 3 ) , . . . } 

A set S that has has the same size as the set N of natural 
numbers is called countably infinite. We use the term countable 
to cover both finite sets and countably infinite sets. 

The set {5,8,7} is a countable set that is finite, whereas the 
set {3, 6, 9 , . . . } is a countable set that is infinite. A set that is 
not countable is called uncountable. The term "uncountable" 
represents a higher level of infinity, a level beyond the size of 
the natural numbers. 
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DO Uncountable Sets Exist? Do there exist sets whose size is larger than N? Or is there only 
one level of infinity? Consider the set Z of integers, which 
appears to be "twice" as large as M. 

Z = { . . . , - 3 , - 2 , - 1 , 0,1, 2 ,3 , . . .} 

Is Z uncountable, or does there exist a one-to-one mapping of 
N onto Z? We cannot use the technique from the previous page 
of mapping 1 to the first element on the left because Z does not 
have a first element. However, we can cross-stitch the count-
ing process by starting at 0, then count 1, next - 1 , then 2, then 

} to -2, alternating from side to side, as illustrated on the left. To 
give a formula for this mapping, note that the even numbers 
map to the positive integers with a simple pattern. The even 
number In is mapped to n: 

/(2n) = II. 

The next odd number on the right side of In is mapped to the 
negative of f(2n): 

/(2л+1) = -и. 

/ i s a one-to-one function that maps N onto Z, so Z is countably 
A = {a,, a2, «3,...} infinite. Even though Z may appear to have twice as many 
B = {bt, bi, fa,...} elements as N, they have the same size. Z is a countable set. 

Using a similar technique, we can prove that the union of 
AUB = {au bi, e2, b2, a3, b3,... } any two countable sets is countable by interweaving the 

elements as illustrated on the left. 

Theorem If A and B are countable sets, then A U B is a countable set. 

Using mathematical induction, we can generalize the above 
theorem to any finite union of countable sets: 

Theorem Let n be a natural number. If A\, M, Аъ, . . . . A„ are countable 
sets, then A\ U Аг U Аъ U . . . U A„ is a countable set. 

Proof Letp(n): If A\, Аг, Аг, ..., A„ are countable sets, then 
Ai U Ai U As, U . . . U An is a countable set. 

Let n be a natural number. Assume that p{n) is true. 

Let Ai, Аг,..., An+i be countable sets. 
Since p(n) is true, Ai U Аг U A3 U . . . U A„ is a countable set. 
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Since the union of two countable sets is countable, 
the following set is countable: 

(A,UA2UA3U ...UA„)UA„+1 

Thus, p(n +1) is true. 

Therefore, for every natural number n, p(ri) =>p(n +1). 

p(\): If Ai is countable, then A\ is countable. 
/?(1) is obviously true. 

So, by math induction, p(n) is true for all natural numbers n. 

Countable Unions of Countable Sets 

A\= {y | k is an integer} 

Аг = { 2 | k is an integer} 

Ay = { y | k is an integer} 

An — { H | k is an integer} 

Let's push a little further and see what happens when we union 
a countably infinite collection of countable sets. If the sets, A\, 
Аг, Аз, . . . , A„, . . ., are each countable, is the following set 
countable? 

A,UA2UA3U . . .UA„U . . . 

For example, consider the set Q of all rational numbers. Since 
each rational number can be expressed in fraction form, we can 
divide the rational numbers into the adjacent sets, according to 
the denominator of the fraction. Аг contains all the rational 
numbers that can be represented as a fraction that has 2 in the 
denominator. 

A2={ ^1 ^3. 
2» 2> 

± Q. 
2 ' 2 ' 

2 
2 

The function, f(n) = y, is a one-to-one mapping from Z onto 
A2. Since Z is countable, A2 is countable. Similarly, each set in 
the adjacent list is countable. Furthermore, 

neN 

So, Q is a countable union of countable sets. Does Q have the 
same size as N? Think of how the rational numbers are 
situated on a number line. Between any two rational numbers, 
no matter how close together they are, there is another rational 
number. In fact, between any two rational numbers, there are 
an infinite number of rational numbers. We have much more 
to deal with here than the two infinite tails in the set of integers. 
How on earth can we start counting them so that we count each 
and every one of them in a step-by-step manner? The cross-
stitch technique that we used with the integers will not suffice 
here. One might suspect that the task is impossible. However, 
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using a diagonal stitch, Georg Cantor found a clever way to 
construct a one-to-one counting procedure that covers all the 
elements in a countable union of countable sets. 

A, = B, 

A2 = B2-B1 

Aj = flj-(S, U52) 

A„ = B„-(B,UB2U...UBn) 

Theorem A countable union of countable sets is countable. 

Proof Suppose that Bn is a countable set for each natural number n. 
First, we remove any overlap in these sets as indicated on the 
left. In Вг, we remove any overlap with Bu then label the new 
set as Аг. In B}, we remove any overlap with B\ U B2, then 
label the new set as A3. Continuing in this pattern, we produce 
a collection of mutually disjoint sets A\, Ai, . . . , A„, . . . , 
whose union is equal to the original union: U A„ = U f i , . 

neN neN 
Some of the A„s may be finite or empty. Let's suppose that they 
are each infinite, which is the worst case scenario. If we can 
show that the union is countable for this case, then we can 
deduce that it is also true if some of the sets are finite or empty. 
Label the elements in each An as follows: 

011 « 1 2 a 1 3 . a 14 a 15 «16 

«21 «22 «23 «24 e 25 °26 

«31 «32 «33 «34 Я35 «36 

041 «42 «43 «44 «45 «46 

«51 «52 «53 «54 «55 «56 

«61 «62 «63 «64 «65 «66 

An — [an\, аП2, Опз, fti4, ci„s, . . . } 

In the adjacent infinite array, the elements in A i are listed in the 
first row, the elements in Л2 are listed in the second row, etc. 
Now, we are ready to count all of the elements in the adjacent 
array using the following diagonal stitch. 

Start in the upper left corner: ct\\ 

Move to the next element in the top row and 
count down its diagonal towards the left side: an, 021 

Move to the next element in the top row and 
count down its diagonal towards the left side: 013,022,031 

Continuing in the same diagonal pattern, we can specify a 
countable listing of all the elements in the union: 

U A„ = {ац, an, 02i. «13. «22. an, ai4, «23, азг, «41, ••• ) 
neN 

Note the pattern in each diagonal - the sum of the two 
subscripts is constant. Using the above listing, we map n to 
the nth element. This mapping is a one-to-one function from N 
onto U An. So, U A„ is a countable set. 

Hence, U Bn is countable. 
neM 
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The set of rational 

numbers is countable. 

Since the set Q of rational numbers can be expressed as the 
countable union of a collection of countable sets, we can 
deduce from the previous theorem that Q is countable. The set 
of rational numbers has the same size as the set of natural 
numbers: \Q\ = K0. 

Size of I 

a 
3 
2 
9 
4 
3 

5 

a 
4 
8 
5 
0 

7 
6 

Ш 
3 
4 
2 

2 
6 
8 

0 
3 
1 

8 
2 
6 
4 

0 
7 

7 
3 
2 
3 
8 

SI 

6 ... 
7 .. 
1 ... 
6 .. 
2 .. 
7 .. 

After the last theorem, we may be inclined to think that there is 
only one size of infinity - that every infinite set can be put into 
a one-to-one correspondence with the set of natural numbers. 
However, before we jump to an unsupported conclusion, let's 
look a little closer at the set U of real numbers. 

The set of real numbers can be visualized as all the points 
on a number line. Like the rational numbers, they are densely 
distributed. Between any two real numbers, there are an 
infinite number of real numbers. This dense distribution did 
not keep us from finding a one-to-one function that maps N 
onto Q, but can we do the same for W 

Suppose that/is a one-to-one function that maps 141 onto IR. 
This function gives a sequence of real numbers: 

/ ( l ) , / ( 2 ) , / ( 3 ) , . . . , / ( n ) , . . . 

Is it possible that every real number is contained in the above 
list? Consider the decimal form of the above real numbers. 
Let's make up an example and suppose that/has the following 
values: 

/d) 
/(2) 
/(3) 
/(4) 
/(5) 
/(6) 

= 32.4572876. 
= 5.3766237. 
= 7.2418621 . 
= 102.9837436 
= 45.4543582. 
= 331.3021737. 

In the adjacent array, the digits to the right of each decimal 
point are entered, with the digits for / ( l ) on the first row, the 
digits for/(2) on the second row, etc. By contemplating this 
array, in particular, the digits on the diagonal, Georg Cantor 
saw a way to construct a real number that could not be in the 
list. His technique was to construct a real number y by making 
each digit in y different from the corresponding digit in the 
diagonal. For example, we could define each digit in y to be 1 
except in those positions where 1 appears in the diagonal. In 
those positions, we could use 2. In the adjacent example, the 
first 6 digits of y would be the following: y = 1 1 2 1 1 1 . . . 
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Using this technique, we can prove that IR is so large that it is 
not possible for a function to map N onto U. 

Theprem There does not exist a function that maps the set N of natural 
numbers onto the set IR of real numbers. 

Proof Suppose that/is a function that maps 141 into the set R. 
Then /(1) is a real number, /(2) is a real number, etc. 
Consider the list of all these real numbers: 

/( l) , /(2), /(3), . . . / (n ) , . . . 

We will now construct a real number y that is not in this list. 
Let y„ denote the digit in the wth decimal place of y: 

Set y„ = 1 if the digit in the nth decimal place of /(n) is not 1. 
Set yn = 2 if the digit in the nth decimal place of /(n) is 1. 

1л1у-.у\у2угул. .. 

Since y is a decimal, y is a real number. Furthermore, for every 
natural number n, y *f(ri) since they have different digits in the 
nth decimal place. We can make this deduction because the 
decimal representation of/(n) is unique, except for 9s and Os: 

1.00000... = .99999.... 

If the nth digit in/(n) is either 9 or 0, the corresponding digit in 
/(n)isl . So y*/(n). 

Thus, the function/does not map N onto R. 

Since it is not possible to have a function that maps N onto IR, 
N and IR are not the same size. Therefore, the number of real 
numbers is not Xo; it is a larger infinite number. At last, we 
have an uncountable set, a set whose size is greater than the 
size of the set of natural numbers. The set of real number is 
uncountable. 

The Irrational Numbers Which is bigger, the set of rational numbers or the set of 
irrational numbers? Since we do not ran into the irrational 
numbers as often as the rational numbers, we might suspect that 
there are more rational numbers than irrational numbers, but, 
surprisingly, this is not the case. 

The set of real numbers 

is uncountable. 
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Theorem The set of irrational numbers is uncountable. 

Proof Let Q be the set of rational numbers 
and S the set of irrational numbers. 

U=Q(JS 

Suppose that the set of irrational numbers is countable. 

The set of rational numbers is countable. 
The union of two countable sets is countable. 
Therefore, IRis countable. Contradiction! 

So, the set of irrational numbers is uncountable. 

The larger magnitude of the set of real numbers comes from the 
set of irrational numbers. Thus, in the demographics of the 
number line, the rational numbers, like stars in the night sky, 
may be more visible, but they are nonetheless a minuscule 
minority. The visibility of the rational numbers comes from the 
accessibility of their decimal form, which must eventually have 
a cycle that repeats. By working through the long division of 
dividing 1 by 7, we can see why this has to happen. After we 
start bringing down Os, sooner or later one of the remainders 
has to repeat, which sets up the cycle. Thus, an irrational 
number is a number whose decimal form does not have a 
repeating cycle. As the above theorem demonstrates, all the 
decimals that do not have a repeating cycle form an uncount-
able set. 

Extending < For finite sets, | A | < | B | if and only if there exists a one-to-one 
function that maps A into B (page 281). We use this same 
property to extend the meaning of the < relation to infinite 
numbers. 

LetAandfibesets. 

\A\*\B\ 
if and only if 

there exists a one-to-one function that maps A into B. 
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Does this generalization of < to infinite numbers preserve the 
following basic properties that < has between finite numbers? 

Reflexive Property 

Transitive Property 

Antisymmetric Property 

Let A, B and C be sets. 

|A |< jA | 
There exists a one-to-one function that maps A into A. 

I f |A |< |B |and | f i |< |C | , then |A |< |C | . 
If there exists a one-to-one function that maps A into B 
and there exists a one-to-one function that maps B into C, 
then there exists a one-to-one function that maps A into C. 

I f |A|< |B| and |6 |<|A| , then \A\ = \B\. 
If there exists a one-to-one function that maps A into B 
and there exists a one-to-one function that maps B into A, 
then there exists a one-to-one function that maps A onto B. 

Schroder-Bernstein Theorem 

Let A and B be sets. 

If | A | < | B | and | B | < | A | , 
then | A | = | B |. 

Extending < 

To prove that < has the reflexive property, we can use the 
identity function: f(x) - x. 

To prove that < is transitive, we can use the composition of the 
two functions (page 361). 

Unlike the other two properties, the proof of the antisymmetric 
property is very challenging, eluding even the illustrious Georg 
Cantor, who conceived the proposition. The theorem was 
proved by Ernst Schroder in 1896 and independently proved by 
Felix Bernstein two years later. Theorems whose proofs are of 
an Olympian stature are often named in honor of the creator, 
and so this theorem is called the Schroder-Bernstein Theorem. 
Even though its statement is outwardly simple, the Schrüder-
Bernstein Theorem provides a very powerful tool for working 
with infinite quantities. 

We extend the notion of < to infinite numbers using the same 
definition as for finite sets: 

\A\<\B\ 

if and only if 

| A | < | B | a n d | A | * | f i | 
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The < relation on infinite sets does not have the same proper-
ties as on finite sets. If A and B are finite and A <=B, we can 
deduce that | A \ < \ B |. We cannot make a similar deduction for 
infinite sets: N cr Z, but | N | = | Z |. The analogous property is 
preserved, though, for the < relation: 

Theorem For all sets A and B, if A £ B, then | A \ < \ B |. 

Proof Let A and B be sets with A CB. Consider the identity function 
on A: f(x) = x. Since АЯ^В, f maps A into B. Since f is a 
one-to-one function that maps A into B, \A \ < \ B \. 

Higher Levels of Infinity 

7. Power Set Axiom 

Let 5 be a set. 

There exists a set P(S) such that 

P(S) = {A | A £ 5 } . 

At this stage, we know of only two different sizes of infinite 
sets: one represented by the set f*>J of natural numbers and the 
other represented by the set U of real numbers. However, there 
are many more sizes of infinity, in fact there are an infinite 
number of sizes. 

To make such a bold assertion, though, we need another 
axiom, the Power Set Axiom. This axiom allows us to form the 
set of all subsets of a set 5, which we notate as P(S). The 
Axiom of Infinity (page 285) allowed us to progress from finite 
sets to sets of a countably infinite magnitude. The Power Set 
Axiom takes us to even higher realms of infinity. 

If 5 is a finite set with n elements, P(S) has 2" elements 
(page 229). So, for every finite set S, | S | < | P(S) |. We will now 
demonstrate that this statement is also true for infinite sets. 
First, we will prove that | S \ <, \ P(S) |, which is considerably 
easier than showing the strict inequality. 

Theorem For every set 5, |5 |< |P(5) | . 

Proof Let a be an element in 5. Then{a}ef*(5). 
Define the function/as follows: f(a) = {a}. 
Note that/maps S into P(S). 
lfa*b, then {a} * (b}. So, / is one-to-one. 

Since/is a one-to-one function that maps S into P(S), 
\S\<\P(S)\. 
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Now we will tackle the more difficult task of showing that S 
cannot have the same size as P(S). 

Theorem 

Proof 

Pure mathematics is, in its way, 

the poetry of logical ideas. 

Albert Einstein 

For every set S,|S|<|P(S)|. 

Suppose that/is a function that maps S into P(S). 
Let x be an element in S. 
Since/maps into P(5), f(x) e P{S). 
Thus, f{x) is a subset of S. 
So, xef(x) or xéf(x). 

LetC={xmS\xéf(x)} 
Since C is a subset of S, Ce P(S). 

Assume that/maps S onto P(S). 
Then there exists an x in S such that f(x) = C. 
Either л; eC or лгеС. 

Case 1. Suppose that xeC. 
By the definition of C, x <t f(x). 
So x fs C. Contradiction! 

Case 2. Suppose that x t C. 
By the definition of C, xe f(x). 
SoJteC. Contradiction! 

Either way, we get a contradiction. 
Therefore, /does not map 5 onto P(S). 

Hence, there does not exist a function that maps S onto P(S). 
So, P(S) does not have the same size as S: \S\*\ P(S)|. 

By the previous theorem, | S \ £ | P(S) \. 
Since | S | * | P(S) |, it follows that 151 < | P(S) |. 

Einstein described pure mathematics as "the poetry of logical 
ideas." His comment is eloquently illustrated by the above 
proof, whose conception required a great deal of creativity. 
This proof - an ingenious analogue of the diagonalization 
proof that U is uncountable - tells us that the set of all subsets 
of N is also an uncountable set. Using this theorem, we can 
now produce an infinite string of infinite numbers. 
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First, we start with the set of natural numbers. The size of its 
power set is a larger infinite number: 

|IM|< И М 
Next we take the power set of P(N), and then we take its power 
set, and so on: 

|N|<|P(N)|<|P(/>(N)|<... 

Let's name the size of P(№) as Xi, and then label the sizes of 
successive power sets as K2, Кз, and so on. Now we have an 
infinite chain of infinite numbers which continue on and on like 
the natural numbers: 

N o < N i < N 2 < N 3 < . . . 

Thus, based on the axioms of set theory, we can deduce that 
there are an infinite number of different sizes of infinite sets. 

Exercise Set 3.6 

1. Does the given set have the same size as M? If so, give a formula 
for a one-to-one function that maps N onto the set. Hint: Some of 
the patterns are closely related. 
a. A = {3, 6, 9, 12, . . . } d. D = {6, 9, 12, 1 5 , . . . } 
b. B={2 ,5 ,8 , 11, . . . } e. £ = { 2 , 4 , 8 , 1 6 , 3 2 , 6 4 , . . . } 
c. C= {1,4, 7,10, . . . } f. F= {1,3,7, 15,31,63,... } 

2. Define the following. 
a. A finite set d. A countable set 
b. An infinite set e. A countably infinite set 
c. Ko f. An uncountable set 

3. True of false? If false, give a counterexample. 

a. Every finite set has a largest element. 

b. An infinite set cannot have a largest element. 

c. If A is a proper subset of B, then the size of A is 
smaller than the size of B. 

4. Use a diagonalization method to explain why № x M is countable. 
Hint: Arrange the ordered pairs in an infinite row/column array. 

5. Let Rn={$\ keN } . 
a. List the elements in the following sets: Rt, R2, R3 
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b. Let Q* denote the set of positive rational numbers. Use a 
diagonalization method to construct a function/that maps N 
onto Q*. Hint: Arrange the R„ sets in an infinite row/column 
array. Then describe a step-by-step process for defining f(n). 

c. For your function/ from part (b), is/one-to-one? 
What is/(1)?/(2)? /(3)?/(8)? 

6. a. Explain how to use a diagonalization method to prove that the 
set of real numbers is not countable. Make up an example to 
illustrate your method. 

b. Apply your argument in part (a) to the set of rational numbers. 
Where does it fall apart? 

7. Let X and Y be sets with |X| = |K|. L e t / b e a function that maps X 
into Y. True or false? If false, give a counterexample. 
a. If/ is one-to-one, then/is onto. 
b. If / is onto, then/is one-to-one. 

8. True of false? If false, give a counterexample. 

a. Every finite set is countable. 

b. Every countable set is finite. 

c. Every subset of a countable set is countable. 

d. The union of two countable sets is countable. 
e. If A, is countable for each i in N, then U A, is a countable set. 

f. If A, is countable for each i in an index set /, 
then U A, is a countable set. 

iel 

g. The set of rational numbers is countable. 
h. Every set is countable. 

9. Let 5 = {1,2,3,4}. The function/ maps S into P(S). Determine if 
/ is one-to-one. Draw an arrow mapping for each element in S. 
For example, in part (a), 1—*• {1,3 }. 
a. / (1)= {1,3},/(2)= {1,3,4}, /(3)={2},/(4)= {1,2,4} 

b. /(1) = {1,3}, /(2) ={ 1,2,4 }, /(3) = {2,3 }, /(4) = { 4} 

c. / (1)= {2,3,4}, /(2)= {1}, /(3) = {1}, / (4)= {1,3} 

10. Let C = {x in S | xif(x) } . For each function in the previous 
exercise, list the elements in C. Then determine if C is in the 
range of/. Compare your results with the proof on page 298. 

11. Let S be an arbitrary set. 
a. Define a one-to-one function/that maps S into P(S). 

b. Let/be an arbitrary function that maps S into P(S). 
Define a subset of S to which /does not map any element. 
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12. a. Let Sn denote the set of all bit strings of length n. 
How many elements are in S„? (See (15), page 232.) 

b. Let S be the set of all bit strings of finite length. 
How many elements are in 5? Is S countable? 

c. Let T be the set of all bit strings of infinite length. Suppose 
that you have a countable listing of the elements in T. Can you 
construct a bit string that is not in the list? Is T countable? 

13. Any language has a finite number of symbols in its alphabet. 
Define a "word" to be a finite sequence of alphabet symbols. 
Let S„ denote the set of all words of length n. 
Let S denote the set of all words of finite length. 
If the alphabet has the following number of symbols, 
how many elements are in S„? In 5? 
a. 2 symbols b. 3 symbols c. x symbols 

14. Let S denote the set of all possible computer programs in a given 
language. Is 5 countable? Hint: Counting spaces and punctuation 
marks as part of the alphabet, each computer program is composed 
of a finite sequence of symbols, so we could consider it a "word." 

15. Cantor's Paradox: In 1899, George Cantor created a paradox 
from the "set" of all sets. Define the set Vas follows: 

V= { S | 5 is a set ) 
a. From the definition of V, can we deduce that P(V)SV? 

Explain your reasoning. 

b. Is |P(V) |<| V\1 Justify your answer. 
c. Is | V\ < |P(V)|? Justify your answer. (Cite previous theorems.) 
d. Use the Schroder-Bernstein Theorem to derive a contradiction. 
e. Has Cantor's Paradox been defused? If so, explain how. 

16. Explain why the decimal form of a rational number must have a 
repeating cycle. 

17. Explain why 1 = .9999... Hint: Set n = .9999... Consider 10n. 

Activity 3.7 - Hubert's Infinite Hotel 

A Forever Continuing Saga ... 

Hubert's Infinite Hotel again has a swarm of people clamoring for 
rooms, but this time the numbers are overwhelming. K0 buses just 
arrived, with each containing K0 people. Can the manager accom-
modate all of the new guests? If so, explain how to do it. 
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Review 

Set 

Is an element of 

A collection of objects. In formal set theory, a set is undefined 
since there are no simpler concepts with which to define it. 

A relation between the members of a set and the collective unit 
to which the members belong. In formal set theory, "is an 
element of is an undefined term since there are no simpler 
concepts with which to define it. 

Universal set 

Empty set 

Power set 

Partition 

Equals relation 

Subset relation 

Proper subset relation 

Size relation 

A set that serves as the universe for a particular discussion. 
When defining a set, all members of the set must come from a 
universal set. Otherwise, contradictions arise in set theory. 

A set that has no elements. The empty set is analogous to an 
empty box, which exists even though it has nothing in it. 

The set of all subsets of a given set. P(5) = {X \ Xç.S]. If S has 
n elements, P(S) has 2" elements. For every set S, 151 < | P(S) \. 

A subdivision of a set into nonoverlapping subsets. A partition 
P of a set 5 is a collection of nonempty subsets of 5 where each 
element in S is in one and only one of the subsets. 

Two sets are equal if they contain the same elements. A = B if 
and only if for every JC, (xe A => xe B) and (дсе В => xe A). The 
equals relation is reflexive, transitive and symmetric. 

A is a subset of B if and only if every element in A is also in B. 
ACS if and only if for every x, x e A => x e B. The subset 
relation is reflexive, transitive and antisymmetric. 

A is a proper subset of B if and only if A £B and A Ф B. 

A has the same size as B if and only if there exists a one-to-one 
function that maps A onto B. Two sets that have the same size 
are said to have the same cardinality. 

Union 

Intersection 

A binary operation on two sets that produces a new set by 
combining their elements: A\JB= [x\xeA or xeB]. 
IfA and Bare finite sets, |AUB| = |A| + |B| - |АПВ|. 

A binary operation on two sets that produces a new set from 
their common elements: Af~lB= { x\xeAandxeB]. 
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Set subtraction 

Complement 

Multiple unions 

Multiple intersections 

Ordered pair 

Cross product 

A binary operation on two sets that produces a new set by 
removing the elements in one set from another set: 

A-B = {x\xeA and xéB] 
IfAandBare finite sets andBçA, then |A-B| = |A| - \B\. 
A unary operation on a set which produces a new set composed 
of all the elements in the universal set that are not in the origi-
nal set: A'= { x\xéA]. A'=U-A. 

A set formed by combining the elements in a collection of sets. 
U Aj = { x I for some i in /, xeAt} 
ie/ 

A set formed from the elements that are in each member of a 
collection of sets. П A,■,= { x | for every i in /, jce A,} 

A pairing of elements where the order affects the meaning. 
(a,b) = (c,d) if and only if a = c and b = d. 

A xB is the set of all ordered pairs whose first term is in A and 
whose second term is in B: 

AxB={(a,b) | azA and bsB) 
AxBxC= {(a,b,c) | a€A and beB and c&C) 

The number of elements in a cross product is the product of the 
number of elements in the individual sets. 

Commutative property 

Associative property 

Distributive property for sets 

Complement laws 

Let * be a binary operation on a set S. * is commutative if and 
only if for every a and b in 5, a * b = b * a. Union and intersec-
tion are commutative. 

Let * be a binary operation on a set S. * is associative if and 
only if for every a, b, and c in S, a * (b * c) = (a * b) * c. Union 
and intersection are associative. 

Intersection distributes over union, and union distributes over 
intersection. Let A be a set and Д be a set for each i in /: 

A П (Bi UB2) = (A П Bx) U (A П Вг) An(Ufi,)=U(AnB,) 
16/ IS/ 

AU(B.nB2) = (AUfi.)n(AUB2) . . . А1)(.ПВ,)= fHAUfi,) 
i e / i e / 

The complement of a union is the intersection of the comple-
ments. The complement of an intersection is the union of the 
complements. Let A( be a set for each i in /: 

( A . U A ^ A , ' ^ ' 
(AinA2)' = ArUA2' 

(UA,y= ПШ) 
i e / i e / 

(ПАУ= U(A,') 
i e / i e / 
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One-to-one correspondence 

Function 

One-to-one function 

Onto function 

A one-to-one and onto function between two sets. 

/ i s a function from X into Y if and only if /maps each element 
in X to a unique element in Y. 

A function that maps different elements in the domain to differ-
ent elements in the range. For all a and b in the domain of/, if 
a ФЬ, then/(a) *f{b). If/is a one-to-one function that maps X 
into K, then |Х|<|У| . 

/maps X onto Y if and only if for every y in Y, there exists an x 
in X such tha t /W = y. I f / i s a function that maps X onto Y, 
then | X | > | Y |. If | X | = | Y | and both sets are finite, / being 
onto is equivalent to/being one-to-one. 

Finite set 

Infinite set 

N0 

Countable 

Countably infinite 

Uncountable 

Cardinal number of a set 

A set S is finite if and only if S is the empty set or | S | = n for 
some natural number n. 

A set that is not finite. 

The number of elements in the set N of natural numbers. 
| S | = No if and only if there exists a one-to-one function 
that maps N onto 5. 

A set that is either finite or can be placed in a one-to-one corre-
spondence with the set N of natural numbers. The union of 
every countable collection of countable sets is countable. 

An infinite set that is countable. 5 is countably infinite if and 
only if \S\ = N0. The set of natural numbers, the set of integers, 
and the set of rational numbers are countably infinite sets. 

A set that is not countable. An uncountable set is a larger size 
of infinity than a countably infinite set. The set of irrational 
numbers is uncountable, which makes the set of real numbers 
uncountable. 

The number of elements in a set A, notated as | A |. Let n be a 
natural number. | A | = n if and only if there exists a one-to-one 
function/ that maps {1, 2, 3, . . . . n} onto A. Two sets that 
have the same size have the same cardinality. 

\A | = | B | if and only if there exists a one-to-one function 
that maps A onto B. 

| A | < | B | if and only if there exists a one-to-one function 
that maps A into B. 

| A | > | B | if and only if there exists a function that maps 
A onto B. 

Let A and B be finite sets. If A c B, then | A | < | B \. 
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1. Define the following operations on sets and give examples of 
each: union, intersection, set subtraction, complement, multiple 
union, multiple intersection, cross product. 

2. Define the following relations between sets and give examples of 
each: A is equal to B, A is a subset of B, A is a proper subset of B, 
A has the same size as B. 

3. Use definitions and negation rules to translate each sentence. 

a. A*B c. A<tB e. х€АПВ g. лгйПА, 
i'e/ 

b. A Í B d. x€AUB f. ^ U A , 

4. Is the given expression a grammatically correct sentence? 

a. AUB c. AssumeAUB. e. (AçB)UC 

b. A£B d. Assume*eAUB. f. A E ( B U Q 

5. Use Venn diagrams to illustrate sets and properties of sets, such as 
the following. 

a. A D ( S U Q c. (A\J B)'= A'f) B' 

b. (A-B)-C d. AU(£í~lC) = (AUfi)n(AUC) 

6. Write sets, such as the following, in a simplified form. 

a. (Cntf)U(Cnfi ' ) c. CU(BflC) e. EH(BUE) 
b. (Dnfi)DD' d. FD(B\JB') f. AU(B-A) 

7. Suppose that CSB. Simplify the following sets. 
a. CUB c. COS e. C-B 
b. COB' d. C U B ' f. СПВ' 

8. Given the description of a set 5, list the elements in the set and 
translate the expression, ye S. 

a. Cx= [x"\ n is a natural number} 
b. 5 = [a" | a is a natural number) 

c. Bn = {тг | * is a natural number} 
d. F, = {x+k | £ is a natural number} 

9. Is the given statement true for every set A? 
If not, give a counterexample. 

a. 0 C A c. AQA e. AeP(A) 

b. 0 e A d. AeA f. 0eP(A) 

10. Is the given statement true for all sets A and B? 
If not, give a counterexample. 
a. A-B = B-A 

b. AxB = BxA 



306 Chapter 3 Sets - The Building Blocks 

c. IfAcB, thenAeB. 
d. IfAeB, thenACB. 
e. If | A,| = | B | and/is a function from A onto B, 

then /must be one-to-one. 
11. Is the given statement true for all finite sets A and B? 

If not, give a counterexample. 
a. |AUS| = |A| + |fi| 
b. \A-B\ = \A\-\B\ 
c. If | A | = | B | and/is a function from A onto B, 

then/must be one-to-one. 

12. Is the given statement true for all sets A, B and C? 
If not, give a counterexample. 
a. IfACBandBcC.thenACC. 
b. IfAs£BandB<£C, thenAiC. 
c. IfAeBandBeC, thenAeC. 
d. IfACB andB£C, then A<LC. 
e. IfACBandAs£C,thenBiC. 

13. Is the given statement true for all sets A, B and C? 
If not, give a counterexample. 
a. AU(BUQ = (AUB)UC c. АГ|(ВПС) = (АПВ)ПС 
b. A-(B-Q = (A-B)-C d. An(BUQ = (AnB)UC 

14. Let A( be a set for each i in N. Is the given statement true? 
If not, give a counterexample. 
a. Ai£ UAi b. A,C QA, 

15. Write easy-to-follow proofs of the following theorems. State the 
reason each time you use a definition, valid argument, or previous 
theorem, having only one reason for each step in your proof. 
Let A, B, C, and D be sets. 
a. (AnB)' = A,UB' (П A,)' = U (A,') 

i e / 16/ 

b. (AUB)' = A'nB' (UA,)'= П(А,') 
is/ ie/ 

c. АП(ВиО = (АПВ)и(АПС) . . . АП(ЦВ,) = .Ц(АПВ,) 
I E / I E / 

d. IfA£B,thenAnB = A and AUB = B. 
e. If A £B, then B'QA\ 
f. IfACCandB£C,thenAUBCC. 
g. If CCA and C£B, then CCA ПВ. 
h. AU(BnQ = (AUB)n(AUC) 
i. А11(ПВ,)= П(АиВ.) 

iel iel 

j . IfACC and BCD, then AxBCCxD. 



k. Ax(BUQ = (AxB)U(AxC) 
1. Лх(ЯПС) = (ЛхЯ)П(АхО 

16. There are 3 students at Level A, 6 students at Level B, and 10 
students at Level C. The coach must select one student from each 
level. 
a. What is the total number of possibilities for the selection? 
b. What general property of sets did you use in your 

computation? 
17. What is the power set of a set? If a set 5 has n elements, how 

many subsets does 5 have? 

18. Let X and Y be finite sets. What does the given information tell 
you about the relation between |X| and | У|? 
a. There exists a function that maps X onto Y. 
b. There exists a one-to-one function that maps X into Y. 
c. There exists a one-to-one function that maps X onto Y. 
d. X is a proper subset of Y. 

19. What do you have to demonstrate in order to prove the following? 
a. A set is not finite, b. A set does not have n elements. 

20. True or false? If false, give a counterexample. 
a. There are an infinite number of infinite numbers. 
b. For all sets A and B, if A is a proper subset of B, then the size 

of A is smaller than the size of B. 
c. For all sets A and S, if AcB, then |A|<|fi|. 
d. For all finite sets A and B, if A c B, then | A | < | B |. 
e. For every set A, | A | < | P(A) \. 
f. If | A | < | B |, there exists a one-to-one function from A into B. 
g. Every finite set has a largest element. 
h. If a set is infinite, it does not have a largest element. 

21. Explain why the following are true: 
a. The set of integers has the same size as the set of natural 

numbers. 
b. If A and B have N0 elements, then A U B has K0 elements. 
c. The set of rational numbers has the same size as the set of 

natural numbers. 
d. The set of real numbers does not have the same size as the set 

of natural numbers. 

22. Are there more rational numbers than irrational numbers? Or 
vice-versa? Justify your answer. 
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Ф Chapter 4 

Relations 

- The Action 

The fundamental through-line that runs through all of mathe-
matics is the concept of a relation. Playwrights use a through-
line as a dramatic device to hold a play together. The 
through-line used by Anton Chekhov in his famous play, The 
Three Sisters, was the great desire of the sisters to go to 
Moscow. There is obviously much more to a play than the 
through-line, but Chekhov knew that if he didn't have one, he 
would soon lose the audience. The same is true in mathematics. 
We need a through-line to help us work our way through the 
varied and sometimes dense areas of mathematics. 

Mathematical activity has always focused on relations. In 
the reasoning process, we are usually trying to figure out how 
various objects may be related to each other. When we work 
with sets, we do not individually analyze the elements in a set; 
instead, we compare the set with other sets by looking for 
relations between them. Within the grand house of mathemat-
ics, there are many diverse areas of study, but within each area, 
the focus is on relations. Relations are where the action is in 
mathematics, which is why they are the verbs of mathematical 
language. In fact, relations provide a simple through-line for 
describing mathematics: 

Mathematics is the study of relations. 

The three sisters wanted to go to Moscow. What mathemati-
cians want is to find interesting relations, as did the three 
sisters, and we will go wherever we have to, within the 
unbounded confines of our mind, to find them. We will create 

309 

4.1 Relations 

4.2 Equivalence Relations 

4.3 Functions 

4.4 Order Relations 
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Mathematicians do not 
study objects, but 
relations among objects; 
they are indifferent to the 
replacement of objects by 
others as long as relations 
do not change. 
Matter is not important, 
only form interests them. 

Henri Poincaré 
1854-1912 

Mathematics, rightly viewed, 
possesses not only truth, but 
supreme beauty — a beauty cold 
and austere, like that of 
sculpture, without appeal to 
any part of our weaker nature, 
without the gorgeous trappings 
of paintings or music, yet 
sublimely pure and capable of a 
stern perfection such as only 
the greatest art can show. 

Bertrand Russell 
1872-1970 

the most bizarre spaces imaginable, or unimaginable, and, 
before long, people in other disciplines are using them, which 
is not too surprising since their research has the same 
underlying structure as ours. They cannot analyze a physical 
element by itself, be it a rock, a chemical compound, or a 
person, so they, too, are looking for relations, which is the 
reason mathematics has so many applications in so many disci-
plines. Mathematicians do abstractions of relations, and schol-
ars in other disciplines flesh it out. 

A relation embeds a structure between sets which we can 
visualize in various ways. Some relations, such as f(x) = 2x, 
have a simple pattern. Binary operations, like addition, 
produce a more complex structure whose abstract form may be 
shared by different types of operations. One of the distinguish-
ing features of modern mathematics is the focus on structures. 
This new direction started in 1801 when Carl Gauss, at the 
young age of 24, introduced the notion of a congruence in his 
famous text, Disquisitiones arithmeticae. With the seed 
planted by Gauss, the concept has blossomed until it now 
occupies a central focus in all areas of mathematics. The 
fundamental question is: 

When are two different types of objects 

essentially the same with respect to the 

structure embedded by a relation? 

Similar questions are asked in all disciplines. In biology, plants 
and animals are classified into groups that have a similar struc-
ture. Even in music, art, and literature, pieces are classified 
through the lens of a structure style. So it is not surprising that 
we have a similar focus in mathematics. 

The centuries-long quest to find the relation between 
Euclid's Fifth Postulate and his other four postulates might 
have seemed frivolous to a scientific mind focused on under-
standing tangible aspects of reality. In the end, though, it 
produced a completely new kind of structure that scientists are 
now using to build a mental picture of our universe. The 
obsession that drives the mind to explore such abstract relations 
is the same obsession that drives a true artist in any field. Even 
though scientific disciplines make the heaviest use of mathe-
matics, the spirit that drives mathematicians is more closely 
aligned with art. 

This chapter covers the basic terminology associated with 
relations and provides an opportunity for you to compare struc-
tures created by various types of relations. We will focus on 
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the three most frequently used types of relations: functions, 
equivalence relations, and order relations. These special types 
of relations help us organize and classify information in 
meaningful structures. Even more important, they give us ideas 
for how to use creative reasoning to extend our knowledge by 
building other structures. 

Activity 4.1 

1. The equals relation has the following 3 properties on a set S. 
Let x, v and z be elements in S. 

Reflexive: x = x 

Transitive: If x = y and y = z, then x = z. 

Symmetric: Ifx = y, then y = x. 

Generalize these 3 properties for an arbitrary relation R on a set S. 

2. Determine if the given relation is reflexive, transitive, or 
symmetric. Let S be the set of students at your school. 

a. x R y if and only if x is shorter than y. 
b. x R y if and only if x is not taller than y. 

c. x R y if and only if x and y were born in the same year. 
d. x Ry if and only if x and y are taking the same course. 

3. The <, relation is not symmetric. In fact, it has the opposite 
property, which is called antisymmetry. The only time we can 
reverse the order for < is when the two elements are equal. Let x 
and y be real numbers. 

Antisymmetric: If x < y and y < x, then y = x. 

Generalize antisymmetry for an arbitrary relation R on a set S. 

4. Determine if each relation in (2) is antisymmetric. 

5. Let a and b be integers. Define the divides relation on the set Z of 
integers as follows: 

a | b if and only if there exists an integer k such that b = ak. 

Determine if the divides relation has the given property on Z: 

a. Reflexive c. Symmetric 

b. Transitive d. Antisymmetric 
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s4.i Relations = 

{3,4} = {4,3} 

{1}C{1,2} 

x<y 

A relation embeds a structure between two sets by giving a 
connection between various elements. There are many differ-
ent ways to view the connection. In terms of language, 
relations serve as verbs, providing connections between objects 
on either side of the relation, as illustrated in the adjacent 
sentences. To generalize these sentences, let R represent a 
relation. The notation x R y means that x is related to y under 
the relation R. For example, let R represent the < relation. 
Then xRy means that x<y. 

We sometimes represent the connection between related 
elements with an arrow: 

Let X and Y be sets. 

A relation R from X into Y is a 

mapping where some of the 

elements in X are mapped to 

some of the elements in Y. 

X-* y represents xRy. 

1 -► 4 represents 1 < 4. 

From this perspective, a relation can be viewed as a mapping 
where the arrows tell us which elements are related. For 
example, we can represent the й relation from the set {1,2,8 } 
to the set {1,4} as the adjacent mapping. The one-way arrow 
conveys the message that the order of the elements matters. 

Using a mapping picture, we can describe a relation R from 
a set X into a set Y as a mapping where some of the elements in 
X are mapped to some of the elements in Y. An element in the 
first set can be mapped to more than one element in the second 
set, as illustrated in the adjacent example. Furthermore, not 
everyone in the first set has to be mapped somewhere. 

Since order is essential to the concept of a relation, ordered 
pairs provide a good language tool for describing a relation. 
Instead of the arrow picture, we use ordered pair notation: 

(x,y) represents *Ry. 

(1,4) represents 1<4. 

A relation R from X into Y is a 

set of ordered pairs whose first 

terms come from X and whose 

second terms come from Y. 

Using ordered pairs, we can formally define a relation as stated 
on the left. For example, the above mapping picture of <, can 
be translated as follows: 

:£ = {(1,1), (1,4), (2,4)} 

Ordered pairs provide a concise way to define a relation, which 
is the main advantage of this type of representation. In the 
ordered pair representation of a relation, we interpret each 
ordered pair to mean that the first term is related to the second 
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term. The ordered pairs are merely a technical device to show 
who is related to whom: 

x is related to y if and only if (x,y) e R. 

-Ф- Example Let X = { 1,2,3 } and Y = { 4,5,7,8 }. Let R be the following 
relation between X and Y: 

R={(2 ,5 ) , (2 ,7 ) . (3 ,4 ) } 

The ordered pairs tell us that 2 is related to 5, 2 is related to 7, 
and 3 is related to 4. 

Domain & Range 

Let R be a relation from X into Y. 

Domain (R) = { x | (x,y) € R } 

Range(R)={y | ( y ) 6 R } 

In the above example, note that R £ X x Y. Using the ordered 
pair definition of a relation, a relation R from X into Y is a 
subset of X x Y. Conversely, if R is a subset of X x Y, then R is 
a set of ordered pairs, which means that R can be viewed as a 
relation from X into Y. Thus, we can rephrase the definition of 
a relation in terms of a cross product: 

R is a relation from X into Y if and only if R ç X x Y. 

When using the ordered pair interpretation of a relation, we 
should keep in mind that the- motivating idea is the relation 
between the first and second terms of each ordered pair. 

The domain of a relation R is the set of all first terms of the 
ordered pairs in R. The range of R is the set of all second terms 
of the ordered pairs in R. 

If (x,y) e R, then x€ Domain (R) and y e Range (R). 

For example, let R = {(2,1), (3,1), (3,2), (4,2)}. 

Domain (R) ={ 2,3,4 } Range (R) ={ 1,2 ) 

The translation of xe Domain (R) and ye Range (R) requires an 
existential quantifier: 

x e Domain (R) if and only if 

there exists an y in Y such that (x,y) e R. 

ye Range (R) if and only if 

there exists an x in X such that (x,y) e R. 
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Graphs of Relations 

Domain 

Graphs provide a powerful visual tool for analyzing relations 
between sets of real numbers. A graph is a visual picture of a 
relation where we use points in a coordinate plane to represent 
the ordered pairs in a function. Unlike arrow pictures, graphs 
provide visual information on magnitudes. As x gets larger, we 
can see whether or not v is getting larger. 

Each point on a graph indicates that the first coordinate is 
related to the second coordinate under the given relation. To 
see the arrow relation represented by a point (a,b) on the graph, 
draw an arrow from a to ft with a right angle bend on the graph, 
as illustrated in the adjacent graph. 

If (a, b) is on the graph of a relation, its perpendicular pro-
jection onto the horizontal axis is a, which is an element of the 
domain, and its projection onto the vertical axis is b, which is 
an element of the range. When a relation is represented on a 
graph, we can find its domain by projecting the graph onto the 
horizontal axis. Similarly, we can find its range by projecting 
the graph onto the vertical axis, as illustrated on the left. 

When R is a relation from a set S into S, we call R a relation 
on S. Any picture that can be drawn in a coordinate plane, such 
as the figure on the left, represents a relation on the set of real 
numbers. Each point in the region R indicates a relation 
between its first coordinate and its second coordinate. 

-Ф- Example 1. Let R be the > relation on 5, where S = {1,2,3,4}. 

R= {(x,y)\x>y,xeS andyeS) 
R = {(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)} 

Domain (R) = {2, 3, 4} 
Range (R) = {1,2,3 } 

2. Let R be the £ relation on S, where S = { x | 0 <x<,4}. 
The graph of R is the adjacent shaded region, which is 
bounded by the line y = x. 

If (x,y) is on the line, then x = y. 
If (jt,y) is below the line, then x ^ y. 
If (x,y) is above the line, then x< y. 
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> 3 

Directed Graphs A directed graph is similar to an arrow mapping, but we chain 
the arrows without segregating the domain from the range. If 
an element is in both the domain and range, we only list it once. 
For example, in the adjacent directed graph of the < relation on 
the set {1,2,3}, 2 is in both the domain and range, but we only 
list it once. In a directed graph, the domain is the set of starting 
points for the arrows, while the range is the set of terminal 
points for the arrows. A regular graph gives information on 

< on {1,2,3} magnitudes, whereas a directed graph gives information on a 
different type of structure, as illustrated in the following 
example. 

Ф Example Let R be the following relation on 5, where S = {1,2,3,4,5 }: 

a R b if and only if 2 divides a - b. 

To determine if one element is related to another, we substitute 
in the above sentence. Is 1 R 3? 

1 R 3 if and only if 2 divides 1-3. 

2 divides 1 - 3 , so 1 is related to 3. Since 2 also divides 3-1,3 
is related to 1. In the adjacent directed graph of R, the arrow 
from 1 to 3 represents 1 R 3, and the arrow from 3 to 1 repre-
sents 3Rl. 

Is 3 R 3? Does 2 divide 3-3? f is an integer, so 3 R 3. In 
this relation, each element is related to itself, which is repre-
sented in the directed graph with loop arrows. 

As illustrated in the directed graph, this relation partitions the 
elements into two nonoverlapping subsets: {1,3,5 } and {2,4 }. 
Within each of these subsets, everyone is related to everyone 
else. This relation is an example of an equivalence relation, 
which we will study in the next section. 

Tables One of the earliest structures for recording relations were tables 
where the row/column position indicated some type of relation. 
Tables, like multiplication tables, often indicate a relation 
between the pair of elements formed by the entry at the head of 
the row and the head of the column with the entry in the 
intersection of the row and column. Some tables have no 
column heads and the row arrangement indicates that each 
element in a row is related to the first element in the row. 
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Matrix Representation Another way to represent a relation between two sets is with a 
matrix, which is a row/column table structure. Instead of using 
position to indicate who is related to whom, we use Is and Os. 
In a matrix for a relation between two sets, we list each element 
in the first set down the first column and each element in the 
second set across the top row. In the intersection of the a-row 
and the b-column, we write 1 if a is related to b, and 0 if a is 
not related to b, as illustrated in the following example. 

■Ф- Example 

< 

1 

2 

8 

1 

0 

0 

0 

4 

1 

1 

0 

7 

1 

1 

0 

Let R be the < relation from X to Y, where X = {1, 2, 8 } and 
Y = {1,4,7 }. Represent R in a matrix. 

We list the elements of X in the first column and the elements 
of Y in the top row. Then we make the appropriate entry in 
each cell, as illustrated on the left. 

1 < 1 is false, so we enter 0 in the intersection 
of the 1-row and 1-column. 

1 <4 is true, so we enter 1 in the intersection 
of the 1-row with the 4-column. 

We can visually represent a relation with an arrow mapping, a 
graph, a directed graph, a table, or a matrix. An arrow mapping 
helps our intuition when we are thinking in general terms about 
relations. Graphs are more popular in algebra and calculus 
because of the visual information they provide on relative sizes 
of related numbers. A directed graph provides an excellent 
visual tool for analyzing relations when we are interested in 
traveling from one related element to another. A matrix 
provides a convenient form for storing a relation in a computer. 

Since we cannot draw an infinite set of arrows, complete 
pictures of arrow mappings and directed graphs are restricted to 
relations on finite sets. Matrix representations are also limited 
to relations between finite sets. A graph in a Cartesian plane is 
the best visual picture of a relation on the uncountable set of 
real numbers. However, we must be aware that no one, not 
even a computer, can plot an infinite number of points 
accurately. So, we must always do some extra analysis on a 
graph to make sure that the shape we see is preserved under a 
more microscopic or macroscopic view. 
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Functions 

/ is a.function from X into Y 
if and only if 

/maps each element in X 
to a unique element in Y. 

A function is a special type of relation. In a relation, an 
element in the domain can be mapped to more than one 
element, but under a function, an element can be mapped to 
only one element (page 272). Also, a relation from X into Y 
does not have to map each element in X to an element in Y, but 
a function does. When we say that/is a function from X into 
Y, X must be the domain for/. 

If / is a function from X into У, then / must map each 
element in X to a unique element in Y. The unique element to 
which x is mapped is notated as f(x). This notation cannot be 
used with an arbitrary relation because x could be mapped to 
more than one element. 

In the mapping representation of a function, two arrows can 
end up at the same place, but they cannot emanate from the 
same source, as illustrated in the following example. 

-Ф- Example Let X = {1, 2 ) and Y= {4, 8, 9 }. Define/and g as follows: 

/ = {(1,4), (2,4)) 

g ={(1,4), (1,8), (2,9)) 

X Y 

X Y 

Both/and g are relations from X into Y. In the adjacent arrow 
mapping, note that / maps each element in X to exactly one 
element in Y. So / is a function. Since / maps each x to only 
one element, we can use/(x) notation to represent the mapping: 

/(1) = 4, /(2) = 4 

The relation g is not a function because it maps 1 to different 
elements. If we tried to use function notation with g, we would 
have g(l) = 4 and g(l) = 8, which implies that 4 = 8. For this 
reason, we cannot use function notation with g. 

Because of the uniqueness requirement, we must check the 
definition carefully when we define a function. For example, 
suppose that we define a "function" as follows on the set N of 
natural numbers: 

/(n) = a if and only if a is a factor of n. 

/(6) = 2 and/(6) = 3. With this definition,/is not a function, 
so we cannot use function notation with it. The definition does 
give a relation: n R a if and only if a is a factor of n. 
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Properties of Relations 

Reflexive Property 

R is reflexive 

if and only if 

for every a in S, a Ha. 

Transitive Property 

R is transitive 

if and only if 

for every a, b, and c in S, 

if a R b and b R c, then a R c. 

In addition to the function property, we have other properties 
that a relation may or may not have. The most important of 
these are generalizations of the properties of the equals and 
subset relations. The equals relation has the following three 
properties (page 224): 

• Reflexive Property 

• Transitive Property 

• Symmetric Property 

Instead of the symmetric property, the subset relation has the 
following property (page 225): 

• Antisymmetric Property 

We will now generalize these properties for an arbitrary 
relation R on an arbitrary set 5. 

In a reflexive relation, each element is related to itself: 

aHa 

= and :S are reflexive relations on every set of real numbers. 
= and £ are reflexive relations on every set of sets. 

a = a 

a<,a 

AÇ.A 

The c and < relations are not reflexive. Neither is the follow-
ing relation: 

R= {(1,3), (3,5), (1,1), (3,3)} 

Since (5,5) Č R, 5 is not related to 5. 

In a transitive relation, we can make inferences analogous to 
the transitivity rule for implications: 

If a R b and b R c, then a Re. 

=, й, and < are transitive relations on every set of real numbers. 
=, S , and c are transitive relations on every set of sets. 

If a = b and b - c, then a = c. 

If aub and b<> c, then a< c. 

If ЛСВ and B £ C, then A £ C . 
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The following relation is not transitive: 

. C ^ c 
Transitive 

Not Transitive 

R= {(1,3), (3,5), (1,1), (3,3)} 

lR3and3R5,but~( lR5) . 

Consider the set S of students at Hanover College. Define a 
relation on S as follows: a R b if and only if a and fc are in the 
same class. This relation is not transitive, for A could be in a 
class with B, and B could be in another class with C, but A is 
not in any class with C. 

In the directed graph of a transitive relation, arrows that are 
lined up head-to-tail must have the triangle completed, as illus-
trated on the left. In the second graph, the triangle formed by 
the arrow from a to b, and the arrow from b to c is not 
completed. So, a R b and b R c, but ~(a R c). Thus, this relation 
does not have the transitive property. 

The transitive property is a powerful tool for making deduc-
tions. If we're trying to prove that a is related to c, we can look 
for an intermediate stepping stone b to get us there. Conse-
quently, transitive relations are frequently used in mathematics. 

Symmetric Property 

R is symmetric 
if and only if 

for every a and b in S, 
ifaRb, thenfcRa. 

Symmetric 

In a symmetric relation, the order of the elements does not 
affect the relation: 

If a R b, then b R a. 

If a is related to b, then b must also be related to a. It does not 
matter which element comes first. The subset relation does not 
have this property; neither does the < relation. In fact, this 
particular property helps to distinguish those relations that 
order elements from those relations that arrange elements into 
nonoverlapping groups. For example, let a R b mean that a and 
b were born in the same month. This relation has the symmet-
ric property: 

If a and b were born in the same month, 
then b and a were born in the same month. 

In a room full of people, this particular relation would divide 
the people into nonoverlapping subgroups - the subgroups 
formed by people born in the same month. 

In the directed graph of a symmetric relation, any two 
related elements must be connected with two-way arrows. If 
there is an arrow in one direction, there must be an arrow in the 
opposite direction. The adjacent directed graph is symmetric. 
However, it is neither reflexive nor transitive. 
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Antisymmetric Property Some relations instill a sense of order on a set. For example, 
the < relation orders the set of real numbers. In an order 
relation; it makes a difference as to which number we write 
first: 3 < 5, but ~(5 < 3). The only time we can reverse the 
order with the й relation is when the two elements are equal. 
This property is called antisymmetric because it is the opposite 

R is antisymmetric extreme of symmetric. 

if and only if IfaRfcandbRa,thena = b. 
for every a and b in S, 

if a R b and b R a, then a - b. For example, £, <,, and < are antisymmetric relations: 

If A Cfl and B^A, then A = B. 
If a<b and b<a, then a = b. 
If a<b and b<a, then a = b. 

For the < relation, the hypothesis of the above implication is 
always false, so the implication is true. Similarly, the proper 
subset relation is antisymmetric by default. With < and c , we 
can never reverse the order: 

If a<b, thenb<a. 
IfAcB,then~(Bo4). 

The directed graph of an antisymmetric relation will not have 
any two-way arrows between different elements. Conversely, 
if there are no two-way arrows between different elements, the 
relation is antisymmetric. 

The first graph on the left is reflexive, transitive, and anti-
symmetric. A relation that has these three properties is called a 
partial order. We will examine order relations in the last 
section of this chapter. 

The second graph is reflexive, transitive, and symmetric. A 
relation that has these three properties is called an equivalence 
relation. We will examine equivalence relations in the next 
section. 

Inverse Relations Each relation has an associated relation, called its inverse, 
which we obtain by reversing the order. The inverse of R is 
notated as R~'. 

aR-'i) 
if and only if a R"'b i f a n d o n l v i f b R a-

bfía- a is related to b under the inverse relation R~' means that 
b is related to a under the relation R. 
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Domain (FT1) = Range (R) 

Range (FT1) = Domain (R) 

Using ordered pairs, the definition of R"' can be phrased as 
follows: 

R-l = {(a ,b) | (b ,a )eR } 

(fl,i>)6R"' if and only if (b,fl)6R. 

The inverse relation is obtained by switching the first and 
second terms in each ordered pair. Since the mapping is 
reversed in the inverse relation, the domains and ranges are 
switched. The domain of R~' is the range of R, while the range 
of R"1 is the domain of R. 

■Ф- Example 

X Y X Y 

For every relation R, 

(R-')-1 = R. 

1. Let R = {(1,6), (1,8), (2,8), (3,10)}. 

R-' = { (6,1), (8,1), (8,2), (10,3)} 

Since the ordered pairs in R are reversed in R_l, 
their domains and ranges are switched: 

Domain (R) = {1, 2, 3 } Domain (R"1) = {6, 8, 10 } 

Range (R) = {6, 8, 10 } Range of (R"1) = {1, 2, 3 } 

In the arrow picture of R"1, we reverse the direction of each 
arrow in R, as illustrated on the left. 

2. Let R = {(x,y) | x2 + Ъуг = 1 }. Write R"1 in set notation. 

R"1 = {СУ, ЛГ) I (x,y)en] Definition of R_1 

R~' = { (y,x) | x2 + 3y2 = 1 } . . Substitute for R 

R"1 = {(x,y) | y2 + 3x2= 1 } . . Substitute xfory,y forx. 

Switching the x and y in the ordered pair is equivalent to 
switching the x and y in the equation, but we cannot switch 
in both places at the same time. 

3. Let R = {(1,2), (2,4), (2,5)}. Find (R"1)"1. 

(R~')-' represents the inverse of R"1. 

R-' ={(2,1), (4,2), (5,2)} 
(R- 1 ) - 1^ (1-2), (2,4), (2,5)} 

When we switch the order twice in the above example, we are 
back to the original position of the ordered pairs. Thus, the 
inverse of R"'is the relation R: (R"1)"1 = R 
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The FT1 notation may cause some confusion because the 
exponent does not have the same meaning as it does with a 
number." If x is a number, x~l = т . However, when -1 is used 
as an exponent with a relation, it does not mean the reciprocal: 

F T ' * * 

n-ary Relations 

A 3-ary relation R between 
the sets X, Y and Z is a set 
of ordered triples whose 
first terms come from X, 
second terms from Y, and 
third terms from Z. 

An n-ary relation R between 
the sets Xu X2, X3,. . . , X„ 
is a set of ordered n-tuples 
where the ith term comes 
from X/. 

The relations we have examined so far are called binary 
relations because they provide a relation between two elements. 
Sometimes, though, we need relations between three or more 
elements. For example, a business may want a connection 
between a person's name, address, and account number, which 
is called a 3-ary relation. To define a 3-ary relation, we use 
ordered triples instead of ordered pairs. With 3 sets involved in 
a relation, we no longer use the term range. Instead, we call X 
the first domain, Y the second domain, and Z the third domain. 
For example, let R be the following 3-ary relation: 

R = {(1,2,5), (2,3,1), (3,3,4)} 

The first domain of R is {1,2,3}, its second domain is {2,3}, 
and its third domain is {1,4,5}. 

We can generalize the definition of a relation further to an 
n-ary relation. An n-ary relation is a set whose elements are 
ordered n-tuples. Each n-tuple is interpreted as giving a 
relation between each of the terms. An n-ary relation can also 
be described as a subset of a cross product of n sets. 

Relational database theory is based on n-ary relations. For 
example, an airline may use a 5-ary relational database in 
which ticket information is stored in terms of (N, F, S, A, D) 
where N represents the name of the ticket-holder, F the flight 
number, S the departure site, A the destination site, and D the 
date. Each ordered 5-tuple in the database is called a record. 

Exercise Set 4.1 

1. Let x and y be real numbers. Sketch the graph of the relation R. 
Find the domain and range of R. 
a. R = {(x,y)\x2+y1 = l} d. R = {(a:,y)|0^;c^land0^y^l} 
b. R^{(x,y)\x2+y2ul} e. R={(.x,y)\0<,x^2andy = 2x} 
c. R={(JC,y)|x = y2} f. R={(jt,y)| l£jc£3andy = 3.x-5} 
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2. Using arrow mappings, draw an example of the following: 
a. A relation that is not a function. 
b. A function whose inverse relation is not a function. 
c. A function whose inverse relation is a function. 

3. Let/be a function. If/"1 is a function, what special property must 
/possess? 

4. For the given R, represent R and R"1 as a set of ordered pairs, an 
arrow mapping, a graph, a directed graph, and a matrix. 
Find the domain and range of both R and R"1. 
Determine if either R or R"1 is a function.. 
a. R={ (0,2), (0,3), (0,4), (1,2)}. 
b. R = {(1,2),(2,2),(3,2),(4,3)}. 
c. R is the < relation on the set S = {3,7, 8,9}. 
d. e. 

5. For each relation in the previous exercise, describe the visual 
relation between: 
a. The graphs for R and R"1. b. The matrices for R and R"1. 

6. Compute R"1 in the indicated stages. 
a. Let R = {(x,y) \ y - 2x+1, where x and y are real numbers } 

R-1 = { ( У , * ) | } 
R-1 ={(*.У)| } 

b. Let R = {(x,y) | y = x*+1, where x and y are real numbers } 

R-" = {(y,x)\ } 
R-' =l(x,y)\ } 

7. What is the inverse relation for the £ relation? The <, relation? 

8. Explain why the following statements are true. 
a. Every relation has an inverse relation. 
b. The domain of the inverse relation is 

the range of the original relation. 
c. The range of the inverse relation is 

the domain of the original relation. 
d. For every relation R, (R-1)"1 = R. 
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9. Determine if the given relation is reflexive, transitive, symmetric, 
or antisymmetric. 

a. R= {(1,1), (1,3), (3,4), (1,4), (2,2), (3,3)} 

b. R = {(1,1), (1,3), (3,1), (3,4), (4,3), (2,2), (3,3), (4,4)} 

c. The <; relation on the set of real numbers. 

d. The < relation on the set of real numbers. 

e. The subset relation on a collection of sets. 

f. The proper subset relation on a collection of sets. 

10. Let R be the divides relation on the set № of natural numbers. 
a R b if and only if a divides b. 

a. Prove that R is reflexive, transitive, and antisymmetric on N. 
b. Is R antisymmetric on the set Z of integers? 

11. On a graph, plot the points A(2,7), fi(7,2) and C(7,7). 
Draw hABC and the line y = x. 

a. Examine AABC. What kind of triangle is it? 

b. Find the coordinates of the midpoint of ACand BC. Use these 
coordinates to find the midpoint of AB. Label this point as D. 
Is D on the line y = x? 

c. Draw DC. Closely examine AACD and ABCD. Do you notice 
any relationship between them? 

d. Prove that the line y = x is the perpendicular bisector of AB. 
e. Generalize your proof in part (d) and prove the following: 

For every point (a,b), the line y = x is the perpendicular 
bisector of the line through (a,b) and (b,a). 

12. Let R be a relation on the set IR of real numbers. 
a. Given the location of a point (a, b), describe how you could 

locate (b,a) using the line y = x instead of the coordinate axes. 

b. Given the graph of R in a coordinate plane, describe how to 
graph the relation R"1 using only the line y = x. Draw a graph 
and illustrate your technique. 

13. Make up a random example of a relation R where R is a set of 
ordered pairs. Is R = R~'? Is R symmetric? 
Are these two questions related? 

14. Let R be a relation on a set of real numbers. How can you 
determine if R = R"1 from the following visual information? 
a. Graph of R b. Matrix for R c. Directed graph of R 

15. Given the graph of a relation R on a set of real numbers, how can 
you visually determine if R has the given property? 
a. Reflexive b. Symmetric c. Antisymmetric 
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Activity 4.2 

Let R be a relation on a set S. If a 6 S, [ a] is called the equivalence 
class of a. [a] denotes all the elements in S that are related to a: 

[a] = [ x | aRx } 

1. Let S be the set of students in your school. 
a R b if and only if a and b were born in the same month. 
a. What is your equivalence class for this relation? 

b. How many different equivalence classes are there? 
Do they form a partition of 5? 

2. Let S be the set of students in your school. 
a R b if and only if a and b have the same birthday. 

a. What is your equivalence class for this relation? 
b. How many different equivalence classes are there? 

Do they form a partition of 5? 

3. LetS= {0,1,2,3,4,5,6}. a Hb if and only if 2 divides a- b. 

a. For each a in S, list the elements in [a]. 

b. Are there any elements in 5 for which [a] = [b]l 
c. Let P = {[a] | a e S.} List the elements in P. 

d. How many elements are in P? Is P a partition of 5? 

4. Repeat the previous exercise for the given relation. 

a. aRb if and only if 3 divides a- b. 
b. a R b if and only if a < b. 

= 4.2 Equivalence Relations = 

An equivalence relation identifies a property that makes 
elements essentially the same with respect to that property. For 
example, different dollar bills are different entities, but most 
people only care about the face value. Two different bills are 
essentially the same if they have the same face value. The 
relation of "having the same face value" is an equivalence 
relation on a set of money. To be an equivalence relation, a 
relation must possess the three basic properties of equality. 
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Let R be a relation on the set S. 

R is an equivalence relation 
if and only if 

R has the following 3 properties: 

• Reflexive 

• Transitive 

• Symmetric 

Let R be a relation on a set 5. R is an equivalence relation if 
and only if the following three statements are true for every a, 
b, and c'in S. 

Reflexive Property: aHa 

Transitive Property: If a R b and b R c, then a R c. 

Symmetric Property: If a R b, then b R a. 

The reflexive property guarantees that every element is related 
to itself. The transitive property states that any middle term in 
a relation lineup can be eliminated. The symmetric property 
states that the order in which the elements are listed does not 
affect the relation. 

■Ф- Example On any set of money, the relation of "having the same face 
value" satisfies the definition of an equivalence relation: 

Reflexive: a has the same face value as a. 

Transitive: If a has the same face value as b and b has the 
same face value as c, then a has the same face value as c. 

Symmetric: If a has the same face value as b, then b has 
the same face value as a. 

Congruent Figures 

We use symbols similar to the = sign to represent equivalence 
relations: 

a = b, asb, aab 

In Euclidean geometry, we focus on the size and shape of 
figures instead of their location. The relation of having the 
same shape and size, which is called congruence, is notated as 
F=G. We treat two different congruent triangles as essentially 
the same; however, they are not equal as sets since triangles in 
different locations represent different sets of points. The con-
gruence relation has the three basic properties of equality, so it 
is an equivalence relation on every set of figures: 

Reflexive: F=F 

Transitive: If FsGandGstf , thenFsH. 
Symmetric: If F s G, then G = F. 
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Congruent Numbers 

Congruence mod 3 

Another important relation on figures is the relation of being 
similar. F is similar to G means that F and G have the same 
shape, but not necessarily the same size. Similarity has the 
reflexive, transitive and symmetric properties, so it is an 
equivalence relation on every set of figures. 

One of the most important equivalence relations on the set of 
integers is congruence mod n. Even though its name is similar, 
it is not related to congruence on figures. Let n be a natural 
number and let a and b be integers. 

a s » b if and only if n divides a-b. 

The notation a =n b is read as "a is congruent to b mod n." It 
is sometimes notated as (a s b)mod »■ When the context is clear, 
we may omit the subscript and write a = b. We will prove that 
congruence mod n is an equivalence relation on page 338. 

Congruence mod 2 Let's first look at congruence mod 2: 

as2b if and only if 2 divides a-b. 

The difference of two even integers is always even, so each two 
even integers will be congruent. Likewise, the difference of 
two odd integers is always even, so each two odd integers will 
be congruent: 

2 = 2 4 
14 s 2 536 
96= 2 -8 

1= 2 3 
413=275 
- 1 5 s 2 6 3 

Moreover, the difference of an odd integer and an even integer 
is always odd, so an odd integer will never be congruent to an 
even integer under this relation. Congruence mod 2 divides the 
set of integers into two nonoverlapping subsets: the even 
integers and the odd integers. 

Let's take a brief look at congruence mod 3: 

a =ъ b if and only if 3 divides a-b. 

If b is one of the following integers, 3 divides 0 -b. 

... ,-6, -3 ,0 , 3,6, 9, 12, 15 . . . 

So, 0 is related to each of the above integers. 
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Equivalence Classes 

[ e ] = { * | e R x } 

If b is one of the following integers, 3 divides 1 -b. 

. . . , -8 , -5, -2, 1,4, 7, 10, 1 3 , . . . 

So, 1 is related to each of the above integers. 

2 is related to each of the following integers: 

. . . , - 7 , - 4 , - 1 , 2 , 5 , 8 , 1 1 , 1 4 , . . . 

3 is related to the same integers that are related to 0. 

4 is related to the same integers that are related to 1. 

5 is related to the same integers that are related to 2. 

And so o n . . . . 

Notice how congruence mod 3 divides the set of integers into 3 
nonoverlapping subsets, which are called equivalence classes. 

An equivalence relation R on a set S partitions S into 
nonoverlapping subsets called equivalence classes. Let a be an 
element in the set S. The equivalence class of a is the set of all 
elements in S that are related to a; it is notated as [a]. 

[a] = [x | aRjcJ 

The equivalence class of a is a subset of the original set S. In 
the above definition, x must be in S, otherwise a R x would not 
be true. To be more explicit, we could write the equivalence 
class of a in either of the following forms: 

[a] = [x | aRxundxeS } 

[a] = {xinS | aR* } 

■Ф- Example Find the equivalence classes of the given equivalence relation. 

1. Let R be the relation of congruence mod 2 on S, where 
5= {1,2, 3,4, 5} 

To compute [1], we make the appropriate substitutions: 

[a] = [x | aRx) 
[l]={x | I - , * ) . 1= 2 1 , 1-2З, l - 2 5 

So, [1] = {1,3,5 }. 

[3] = {* | 3 - 2 * } = {1,3,5} 
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CD H 
CD H 

CD 
CD 
^Ь 

H 
Ш 
Ш 

Even though the notation is different for [ 1 ] and [3], they 
represent the same set: [ 1 ] = [ 3 ]. Congruence mod 2 has 
only two different equivalence classes on S: 

[1 ] = [3] = [5]= {1, 3, 5 } 

[2] = [4 ]={2 ,4} 

Let P denote the set of equivalence classes for this relation. 
Then P has two elements: 

P = { { 1 , 3 , 5 } , { 2 , 4 ) } 

P partitions the set 5 into 2 nonoveriapping subsets, as 
illustrated on the left. 

Consider the congruence relation on the adjacent set S of 
figures. [A] denotes the set of all figures congruent to A. 

[A]={X \A=X} = {A,C,E} 

[C]={X \C = X} = [A,C,E} 

[E] = {X \E = X} = {A,C,E} 

[B] = {X | B = X } = {B,D) 

[D]={X \DzX} = {B,D) 

[F] = {X\GsX} = {F] 

Let P denote the set of equivalence classes for this relation. 
P has 3 elements: 

P={{A,C,E},{B,D},{F}} 

P partitions 5 into 3 nonoveriapping subsets, as illustrated 
on the left. 

P3l1itionS The set of equivalence classes of an equivalence relation 
partitions the original set 5 into nonoveriapping subsets. Since 
the elements in a partition are sets, students sometimes get 
confused by a proof of this statement. However, if we first set 
up the outside structure and then pay close attention to the 
meaning of each term, the proof is fairly straightforward. Let's 
analyze how to structure the proof. Let P denote the set of all 
equivalence classes of an equivalence relation R on a set 5: 

P={[a]\aeS) 
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Let P be a collection of 
nonempty subsets of S. 

Pis a. partition of S 

if and only if 
each element in 5 is in one 
and only one element in P. 

To prove that P is a partition of S, we must demonstrate that the 
adjacent definition of a partition is satisfied (page 230). Thus, 
we must prove the following three statements: 

1. P is a collection of nonempty subsets of S. 
2. Each element in S is in at least one element of P. 
3. Each element in S is in only one element of P. 

These three statements give us the outside structure for the 
proof. Next we translate each statement in terms of variables 
so that we can see how to structure each subproof. 

1. P is a collection of nonempty subsets of S. 

If [a]eP, then [a] G5and [a] * 0. 

By the definition of [a], [a] £ S. In order to show that 
[a] is not empty, we will use the fact that R is reflexive. 
Since a R a, ae[a]. Thus, [а]ф0. 

2. Each element a in S is in at least one element of P. 

There exists an X in P such that a e X. 

Since we know that a e [a], we have the set that we 
need, namely, X- [a]. 

3. Each element a in 5 is in only one equivalence class. 

If ae[b] andae[c], then [b] = [c]. 

Since we already know that a6 [a], we can simplify the 
above translation by eliminating c: 

Ifae[Hthen[a] = [ H 

To prove that [a] = [b], we use the standard strategy for 
proving two sets are equal: 

[a]Q[b] and [b]Z[a] 

In this argument, which will be a little longer than the 
other two parts, we need to stay focused on our goal. 

All of the above tasks can be accomplished using the three 
properties of an equivalence relation. In the first two parts, we 
need the reflexive property. In the third part, we need to use 
the both the symmetric and transitive properties. Before 
reading the following proof, try to construct it yourself using 
the above analysis to set up your structure. 
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Theorem Let R be an equivalence relation on a set S. The set of all 
equivalence classes of R is a partition of S. 

Proof Let a and b be in S. Since R is an equivalence relation, R is 
reflexive, symmetric and transitive. Let P be the set of all 
equivalence classes of R: 

P={[a]\aeS) 

Claim 1: P is a collection of nonempty subsets of S. 
Let [a] be an element in P. 
[a] = {xinS\aRx]. So,[a]£S. 
Since R is reflexive, a R a. Soae[a]. Thus, [ a ]* 0. 
So P is a collection of nonempty subsets of S. 

Claim 2: Each element in S is in at least one element of P. 
In Claim 1, we demonstrated that ae [a]. 
Since [a] e P, a is in at least one element of P. 

Claim 3: Each element in S is in only one element of P. 
Assume that a6 [b]. 
[b] = {x\bRx}. Since a€ [b], bRa. 
Since R is symmetric, a R b. 

Subclaim: [a] = [b] 
Assume that xe [a]. 
By the definition of [a], a Rx. 
In the beginning of Claim 3, we established that bRa. 
So, bRa and aRx. Since R is transitive, bRx. 
So, by the definition of [b], xe [b]. 
Therefore, [a] £ [b]. 

Conversely, assume that xe [b]. 
By the definition of [b], b Rx. 
In the beginning of Claim 3, we established that a R b. 
So, aRb and bRx. Since R is transitive, a Rx. 
So, by the definition of [a], xe [a]. 
Therefore, [b]£[a]. 

The above argument shows that [a] = [b]. Since any 
equivalence class that contains a must be equal to [a], 
a is in only one element of P. 

Therefore, the set P of equivalence classes of the relation R is a 
partition of the original set S. 
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If you fully understand all the nuances, notation, and detail in 
the above proof, congratulations, for you have reached a new 
level of reasoning ability. If you can sit down and write a 
proof of this theorem, without having just looked at it and 
without trying to memorize it, using only the definitions to 
structure your proof and focus your thoughts, then you have 
elevated your logical reasoning skills to the major leagues. 

On the other hand, if you do not yet fully understand this 
proof, don't be discouraged - keep working on it. You proba-
bly need to deepen your understanding of all the terms and 
notations. Definitions and symbolic notation are empty words 
if we do not have a personal understanding of what they repre-
sent. Each time we work through an example or a problem, we 
are building our personal understanding of the concepts. After 
you work through the exercises for this section, you may find 
the reasoning in this proof easier to follow. 

Using the previous theorem, we can prove that if two 
elements are related to each other under an equivalence 
relation, their equivalence classes must be equal: 

Theorem Let R be an equivalence relation on S and let a and ft be 
elements in S. If a Rft, then [a] = [b]. 

Proof Assume that a R b. 
By the definition of [b], ae [ft]. 
ae [ft] andae [a]. 
Since the equivalence classes form a partition, 
a is in only one equivalence class. Therefore, [a] = [ft]. 

Let R be an equivalence relation. 

IfaRft,then[a] = [ft]. 

If~(aRft),then[a]n[ft] = 0. 

This theorem can significantly reduce our work in computing 
all the equivalence classes of a particular equivalence relation, 
For example, with congruence mod 2 on S = {1, 2, 3, 4, 5 }: 

[1] = {1,3,5 } 

Since 3 R 1, we do not have to compute [3]: [3 ] = [1 ]. 
You are asked to prove the following properties of equiva-

lence classes in (13) of the next exercise set. 

If ~(aRb), then [a] C\[b} = &. 

If [a]n[ft]*0,then[a] = [ft]. 
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Partition to Equivalence Relation 

Associated Relation 

aHb 

if and only if 

a and b are in the same 

element of the partition. 

Given an equivalence relation on a set S, its equivalence classes 
form a partition of S (page 331). So each equivalence relation 
on a set has an associated partition. The converse is also true. 
Each partition on a set has an associated equivalence relation, 
which we define as follows. All elements in S that are in the 
same subset of the partition are related to each other. In other 
words, two elements in S are related means that there exists an 
X in the partition P that contains both elements. Since the 
elements of the partition P are subsets of S, we have to keep 
our verbs straight. If X € P, then X £ S. 

Let P be a partition of a set S. Let a and b be in S. The 
associated relation of P is defined as follows. 

afíb 

if and only if 

there exists an X in P such that a eX and beX. 

Before we prove that the above relation is an equivalence 
relation, let's think about its meaning for the following 
example. 

Ф Example LetS= {1,2,3,4,5,6}. Le tP={{l ,2} 
The partition P is illustated on the left. 

{3,4}, {5}, {6}}. 

1. Find the associated relation of the partition P. 
List all of the elements that are related to each other. 

LetX={l ,2}. 1 R2because l€Xand2eX. 
2 R 1 because 2eXand 1 eX. 
1 R 1 because 1 eX and 1 eX. 
2 R 2 because 2eX and 2eX. 

LetX={3,4}. 3R4because3eXand4eX. 
4R3 because 4eXand 3eX. 
3 R 3 because 3€X and 3 eX. 
4 R4 because 4eXand 4eX. 

LetX={5}. 5 R5 because 5eXand5eX. 

LetX={6}. 6 R6 because 6eXand 6€X. 

2. Is R an equivalence relation? 

Since each a in the set S is also a member of some element 
in the partition, a R a. So R is reflexive. 
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Suppose that a R b. 
Then a and b are in the same member of the partition. 
So, b and a are in the same member of the partition. 

Hence, bHa. Therefore, R is symmetric. 

Suppose that a R b and b R c. 
Then there exists an X in P that contains a and b. 
Likewise, there exists a Y in P that contains b and c. 

Since è can be in only one member of the partition, X = Y. 
Thus, a and c are in the same member of the partition. 
So, a R c. Hence, R is transitive. 

So, R is is an equivalence relation on S. 

3. Find the equivalence classes of R. 

[a] = {x\ 

U] = {x\ 
[2] = {*| 

[3] = {*| 
[4] = {*| 

[5] = {x\ 

[6] = {x | 

| afíx] 

1RX} = {1,2} 
2RX} = {1,2} 

3R*} = {3,4} 
4R*} = {3,4} 

5R*} = {5) 

6R*} = {6} 

Note that the equivalence classes are the members of the 
original partition. Even though there are 6 elements in S, 
there are only 4 different equivalence classes. 

{[a] | aeS}= {[1],[2], [3], [4], [5], [6]} 
= {{1,2}, {3,4}, {5}, {6}} 

The symmetric property of R is inherited from the wording of 
the relation: "a and b are in the same set" has the same meaning 
as "b and a are in the same set." However, the reflexive and 
transitive properties of R are inherited from the properties of a 
partition: 

Each element in S is in at least one of the members 
of the partition, which gives R the reflexive property. 

Each element in S is in only one of the members of 
the partition, which gives R the transitive property. 

Note how these properties are used in the following proof. 
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Theorem Let P be a partition of a set S, and let a and b be in S. Define 
the relation R on S as follows: 

afíb 
if and only if 

there exists an X in P such that aeX and beX. 

Then R is an equivalence relation on S. 

Furthermore, the set of equivalence classes of R is equal to P: 

P=[[a]\azS} 

Proof Let a, b, and c be elements in 5. 

Claim I: R is reflexive. 
Since P is a partition, a is in at least one member of P. 
So, there exists an X in P such that aeX. 
Since aeX and aeX, aRa. 
Therefore, R is reflexive. 

Claim!: R is symmetric. 
Assume that a R b. 
Then there exists an X in P such that aeX and b&X. 
So, èeXandaeX. Hence, £>R a. 
Therefore, R is symmetric. 

Claim 3: R is transitive. 
Assume that a R b and bHc. 

Since aRb, for some X in P, a e X and i e l 
Since bHc, for some Уin P, beYand c€ Y. 

Note that ЬеХПК 
Since P is a partition, b can be in only one element of P. 
Hence,X = K. So.aeXandceX. Thus, aRc. 
Therefore, R is transitive. 

Hence, R is an equivalence relation on S. 

Let a € S. Then there exists an X in P such that a e X. 

[a] = {JC | a R j c } = X 

So, the set of all equivalence classes of the relation R is the 
original partition: 

P={[a]\aeS] 
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Let S = {1,2, 3 ,4 ,5 ,6} . Let P={A,B,C], where 
Д = {1, 2 }, fi = {3,4, 5 }, and C= {6 }. 

P is collection of nonempty, pairwise disjoint sets whose union 
is S, so P is a partition of S. The equivalence relation induced 
by this partition is defined as follows. Let a and b be in S. 

aRb 

if and only if 

there exists an X in P such that aeX and beX. 

1R1 

1R2 

[1] = 

[1] = 

[3] = 

[3] = 

[6] = 

since 

since 

■■{x\ 

■■[2]--

■[X, 

:[4] = 

= {*! 

1 and 1 are both in A. 

1 and 2 are both in A. 

| * R l } = 

--A 

| * R 3 } = 

= [5 ]=B 

| J C R 6 } = 

{1,2} 

{3,4,5} 

{ 6 } = C 

Note how each equivalence class of R is a set in the original 
partition. Using the notation for equivalence classes, we can list 
the elements in P as follows: 

/ > ={[1] , [2] , [3] , [4] , [5] , [6]} 

In the above listing, P appears to have 6 elements. 
However, some of these equivalence classes are equal. 
P has only 3 elements: 

P=[A,B,C] 

As illustrated in the following examples, if P is not a partition 
of S, the above definition of R does not produce an equivalence 
relation: 

If P contains subsets of S that overlap, 
the relation will not have the transitive property. 

If the subsets from P do not cover all of 5, 
the relation will not have the reflexive property. 

■Ф- Example 
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-Ф- Example Let S = {1,2,3,4,5,6}. Let P be the given collection of subsets 
of 5. Let a and b be in S. Define the relation R as follows: 

aRb 

if and only if 

there exists an X in P such that aeX and beX. 

Is R an equivalence relation? 

1. Let P = {A,B,C}, where A = {1,2,3}, B = {3,4,5}, C= {6}. 

Since both 1 and 3 are in A, 1 R 3. 
Since both 3 and 4 are in B, 3 R 4. 
There is no element in P that contains both 1 and 4. 
So ~(1 R4). Thus, R is not transitive. 

Hence, R is not an equivalence relation. 
Note that P is not a partition of 5 since Af]B*0. 

2. LetP={A,£,C},whereA={l,2},B = {3,4},C={6}. 

There is no element of P that contains 5. 
So 5 is not related to itself. 
Therefore, R is not reflexive. 

Hence, R is not an equivalence relation. Note that P is not a 
partition of S since 5 is not in any of its members. 

Equivalence Relation vs. Partition We have an intimate relation between equivalence relations and 
partitions. 

An equivalence relation on 5 determines a partition of 5. 

A partition of S determines an equivalence relation on S. 

Like heads and tails, equivalence relations and partitions are 
different sides of the same coin. In some applications, it may 
be more comfortable to work with a partition; in other cases, 
the relation format may be more convenient. Either way, we 
are working with essentially the same concept. 

A relation on a set embeds a structure between elements in 
the set. The structure embedded by an equivalence relation can 
be described as a partition. An equivalence relation structures 
a set by dividing it into nonoverlapping subsets. 
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Congruence mod n we win now examine the relation, congruence mod n, in more 
detail (page 327). For the rest of this section, n will denote a 
positive integer. To prove that congruence mod n is an 

a=„b equivalence relation, we must work with the definition of 

ifandonhif divides: 
tj a onytj a=„b if and only if n divides a-b. 

n divides a-b. 
n divides a-b if and only if ^г = k for some integer k. 

Theorem Congruence mod n is an equivalence relation 
on the set Z of integers. 

Proof Let a, b and c be integers. 

Claim 1: Congruence mod n is reflexive. 

^jjr = 0. So n divides a -a. Therefore a =„ a. 
So congruence mod n is reflexive. 

Claim 2: Congruence mod n is symmetric. 

Assume that a i , b. Then n divides a-b. 

So ~n~ - k for some integer k. 
b-a -(a-b) 
n = n — ~k. 

Since -k is an integer, n divides b-a. Sobs„a. 
Therefore, congruence mod n is symmetric. 

Claim 3: Congruence mod n is transitive. 

Assume that a =„ b and b=nc. 

Then n divides a-b and n divides b-c. 

-JT~ = k for some integer k. ~n~ =j for some integer j . 

(a-b)Hb-c) fl-c , . 
n = k+j . So, - й - = *:+;. 

Since k andj are integers, k+j is an integer. 

The above equation shows that n divides a-c. Soa=nc. 

Therefore, congruence mod n is transitive. 

Therefore, congruence mod n is an equivalence relation on Z. 
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if and only ii 
a = b + nk 

for some integer k. 

To get a different view of congruence mod n, let's rephrase it in 
terms of multiplication: 

Congruence mod 2 

a =nb if and only if —тг~ = k for some integer it. 

a=„bif and only if a = b + nk for some integer k. 

Using the latter form, we can quickly compute everyone that is 
related to b: 

[b] = {b + nk | к is an integer} 

For congruence mod 2, [b] = {b + 2k \ k is an integer}. 

[0] = {0 + 2k | k is an integer} 
[0] = { . . . , - 4 , - 2 , 0 , 2 , 4 , . . . } 

[ 1 ] = {1 + 2k | k is an integer} 
[1] = { . . . , - 3 , - 1 , 1 , 3 , 5 , . . . } 

Congruence mod 2 partitions the set Z of integers into two 
equivalence classes: the even integers and the odd integers. 

Congruence mod 3 For congruence mod 3, [b] = {b + 3k \ k is an integer}. 

[0] = {0 + 3k | k is an integer} 
[0] = { . . . , - 6 , - 3 , 0 ,3,6,9, . . . } 

[ 1 ] = {1 + 3k | it is an integer} 
[1] = { . . . - 5 , - 2 , 1 , 4 , 7 , 1 0 , . . . } 

[2] = {2 + 3* | k is an integer} 
[2] = { . . . - 4 , - 1 ,2 ,5 ,8 ,11 , . . . } 

In [0], we list 0, then count by 3's in both directions. 
In [ 1 ], we list 1, then count by 3's in both directions. 
In [2], we list 2, then count by 3's in both directions. 

Since we count by 3's in each equivalence class, the successive 
listing of equivalence classes keeps cycling around the above 3 
equivalence classes: 

[3] = [0] 

[4] = [1] 

[5] = [2] 

[6] = [0] 

[7] = [1] 

[8] = [2] 

[9] = [0] 

[10] = [1] 

[11] = [2] 

So, congruence mod 3 partitions the set of integers into three 
equivalence classes: [0], [ 1 ], [2] 
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Congruence mod n has 

n equivalence classes: 

[0],[1],[2], . . . , [ n - l ] 

Division Algorithm 

Let x be an integer. 

Let r be the remainder 

when we divide x by n. 

Then x=n r. 

Congruence mod 4 partitions the set of integers into four 
equivalence classes: [0], [1], [2], [3] 

[0]={ . . . , - 1 2 , - 8 , - 4 , 0, 4 ,8 , 12, . . . } 

[1] = { . . . , - 1 1 , - 7 , - 3 , 1, 5, 9, 13, . . . } 

[2] = { . . . , - 1 0 , - 6 , - 2 , 2, 6,10,14, . . . } 

[3] = { . . . , - 9 , - 5 , - 1 , 3, 7,11,15, . . . } 

In a similar manner, congruence mod n partitions the set Z of 
integers into n equivalence classes, which we notate as Z„: 

Z„={[0] , [1] , [2] , [3] , . . . , [и -1 ] 

We always list the equivalence classes in Z„ using one of the 
above representatives. Instead of writing [n], we write [0]. 

When we use the division algorithm to divide an integer x by n, 
we obtain a unique integer q (quotient) and a unique integer r 
(remainder) such that the following is true: 

x = qn + r and 0 <r<n 

Sincejc-ris a multiple of n,x=„ r. So, xe[r]. 

Thus, each integer is in an equivalence class determined by one 
of the possible remainders when we divide by n. When we 
divide by n, there are n possible remainders: 

Remainders: 0, 1, 2, 3, . . . . n - 1 

Each of these remainders represents a different equivalence 
class for congruence mod n. Furthermore, they represent all 
the equivalence classes. 

When we divide an integer by 4, there are 4 different possi-
ble remainders: 

Remainders: 0, 1, 2, 3 

Each of these remainders represents a different equivalence 
class for congruence mod 4. Congruence mod 4 has 4 equiva-
lence classes, which we notate as Z4: 

Z 4 = { [ 0 ] , [ 1 ] , [ 2 ] , [ 3 ] } 

Congruence mod 5 has 5 equivalence classes, which we notate 
asZ5: 

Z 5 ={[0 ] , [1 ] , [ 2 ] , [ 3 ] , [ 4 ]} 
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To determine which equivalence class in Z„ contains a given 
integer, we divide by n and use the remainder, as illustrated in 
the following examples: 

Example 1. In Z4, which equivalence class contains 34? 
34 

— = 8 with a remainder of 2 

34 = 2 + 4(8) 

So, 34 s 4 2. 

Thus, 34 € [2]. 

2. In Z4, which equivalence class contains 4387? 

4 = 1096 with a remainder of 3. 
4387 = 3+4(1096) 

So, 4387 =4 3. 

Thus, 4387 e [3]. 

3. In Z5, which equivalence class contains 47? 

47 

— = 9 with a remainder of 2. 

47 = 2 + 5(9) 

So, 47 =5 2. 

Thus, 47 6 [2]. 

4. In Z5, which equivalence class contains -47? 

47 = 2 + 5(9) 

- 4 7 = -2 + 5(-9) 

To get the remainder r in the required form, 0 < r<5, 
we rewrite -2 in terms of 5: -2 = 3 -5 

- 4 7 = (3-5) + 5(-9) 

- 4 7 = 3 + 5(-l)+5(-9) 

- 47 = 3 + 5(-10) 

So,-47 =5 3. 

Thus,-47 € [3]. 



342 Chapter 4 Relations - The Action 

Exercise Set 4.2 

1. Let 5 be.the set of students at your college and let a and b be in S. 
Determine if the given relation is an equivalence relation on S. 
If so, what are its equivalence classes? 
a. a is related to b iff a and b were born in the same country. 
b. a is related to b iff a has the same birthday as b. 
c. a is related iob iff a and b are taking the same course. 
d. a is related to b iff a and b are in the same club. 
e. a is related to b iff a and b have the same major. 

2. Let a and b be natural numbers. Determine if the relation R is an 
equivalence relation on N. If so, find its equivalence classes. 
a. a R b iff a is a factor of b. 
b. afíb iff a<,b. 
c. a R b iff a and b are both multiples of 3, 

or neither is a multiple of 3. 
3. Let a and b be in the set S of all geometric figures in a plane. 

Determine if the relation R is an equivalence relation on S. 
a. a R b iff the area of a is equal to the area of b. 
b. aRb iff аПЬ*0. 

4. Let S= {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. 
Let a and b be in S. aRb if and only if 4 divides a-b. 
a. Is R an equivalence relation on SI 
b. List the elements in [a] for each a in S. 
c. Let P = {[a] | aeS.} How many elements are in P? 

Is Pa partition of 5? 
5. Let S = {1,2,3,4,5,6,7}. Let a and b be in S. 

Define the relation R as follows: 

a Rb iff there exists an Xin P such that aeX and beX. 

For the given set P, determine if R is reflexive, symmetric, or 
transitive. 
a. P={A,B},whereA = { 1,3,4,6}andB= {2,5,7}. 
b. P={A,B},whereA = { 1,3,4,6} andB= {2,3,5,7}. 
c. P={A,B], where A = {1,3,4}, and B= {2,5,7}. 
d. P= {A,B,C}, where A = {7},B = {2,5 }andC= {1,4,6}. 
e. P={A,B,C},where A = {3,5.7},B= {2,5}andC={ 1,4,6}. 
f. P={A,B,C},where A = {6},B= {2,5 }andC= {1,3,4,7}. 
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6. List the equivalence classes of each equivalence relation in the 
previous exercise. 

7. Let P be a partition of a set S. Define an equivalence relation on S 
whose equivalence classes are the elements in P. 

Let a and b be in S. aRb if and only if 

8. True or false? 

a. 3 E , 8 b. 3 s 5 -8 c. 3 s 5 -7 d. 3 s4123 
9. a. Let a and b be integers. Define congruence mod 6: a=6b 

b. Is 11 =6 5? Is 1024 s 6 2? 
c. List the elements in the equivalence class of 5. 
d. Ze is the set of equivalence classes of congruence mod 6. 

How many elements are in Z{1 List them. 
e. Which element in Z6 contains 2345? -38? 

10. a. Let a and b be integers. Define congruence mod 7: as7b 
b. List the elements in the equivalence class of 5. 
c. List the elements in Z7. 
d. Which element in Z7 contains 2345? -38? 

11. Prove or disprove: If x s 5 2, then i + l s j 3 . 

12. Let R be an equivalence relation on a set S. Let a and b be 
elements in S. Prove each statement. 
a. IfüRb, then[a] = [ò]. 
b. If ~(aRb),then[a]n [b] = 0. 
c. If [a] П [b] * 0, then [a] = [b]. 
d. I f [a]*[Hthen[a]D[e] = 0. 

13. Let R be an equivalence relation on a set S. Without looking at the 
proof given in the text, prove that the set of all equivalence classes 
of R is a partition of S. 

Activity 4.3 

Let/be a function whose domain is X and let A be a subset of X. 
The image of A under/is defined as follows: f(A) = { f(x) \ xe A } 

1. Let /0t) = 2*+l. Compute/(A). On the graph of/, use bent 
arrows from the x-axis to the y-axis to illustrate /(A). 
a. A = {-1,1,2} b. A = [l,3] c. A = [-2,-1] U [1,3] 

2. Letf(x)=x2+1. Repeat the previous exercise. 
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= 4.3 Functions = 

(2Г© 
X 

Domain 

Y 
Codomain 

/ i s & function from X into Y 

if and only if 

/ maps each element in X 

to a unique element in Y. 

Functions are one of the most important tools in modern 
mathematics. They serve as a transportation vehicle that takes 
us from one set to another, or perhaps to another location in the 
same set. In calculus, we usually visualize a function in terms 
of its graph. In this section, though, we will focus on mapping 
pictures in order to build a more general understanding of a 
function. In a mapping representation, a function consists of 
two sets and a mapping that assigns each element in the first set 
to a unique element in the second set. The first set is called the 
domain of the function and the second set is called the 
codomain. If X is the domain and Y is the codomain, we say 

that/maps X into Y, which is notated as / : X—► Y or X 
This notation conveys three pieces of information: 

1) / i s a function. 

2) Domain (f) = X. 

3) If xeX, then f(x)eY. 

Л Y. 

A Function? Yes 

The adjacent mappings illustrate the difference between a 
function and a relation that is not a function. A function can 
map an element x to only one location, which is designated as 
f(x). We use the visual terms "image" and "pre-image" to 
denote the relationship between x and f(x). The image of x 
under the function/is/(jc). In the reverse direction, д: is called 
a pre-image of /(*). 

For example, in the adjacent function,/(1) = 3 and/(2) = 3. 
The image of 1 under the function/is 3. The image of 2 is also 
3. On the other hand, both 1 and 2 are pre-images of 3. Under 
a function, an element can have only one image, but it can have 
more than one pre-image. We sometimes view x as being trans-
formed to fix), which is why functions are also called 
transformations. 

When Leonhard Euler created the/(x) notation in 1734, he 
revolutionized the way we think about functions. This simple 
notional device gives a concise way to represent the values of a 
function without using arrows or ordered pairs: 

/ W = y xly (x ,y)e/ 

The advantage of the "/(*) = y" notation is the equals sign 
which we can easily manipulate. 
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f versus f(x) The notation / has a different meaning than the notation fix). 
The letter / represents the complete function, whereas fix) is 
only a part of the total function. This difference is apparent 
when we represent / as a set of ordered pairs. For example, 
consider the function / that maps R into R under the mapping, 
f{x) = 2x. fix) represents a real number, whereas/ represents 
the following set of ordered pairs: 

/ = {(■*. /(■*)) I x is a r e a l number ) 
/ = { (JC, 2x) | x is a real number } 

When we have a set whose elements are functions, we must use 
/instead of fix). For example, let S be the following set: 

S = { / | / i s a function from R into R } 

Consider the function, gix) = 3, where A: is a real number. The 
function g maps R into R. So, geS. However, gix) £ S. 

Domain and Range 

x is in the domain of/ 
if and only if 

flx) is defined. 

y is in the range of/ 
if and only if 

there exists an x in the 

domain such that y =f(x). 

The definition of the domain and range of a function is the 
same as the definition for a relation (page 313). When a 
function is represented as a set of ordered pairs, the domain is 
the set of all the first terms and the range is the set of all the 
second terms. In terms of function notation, the domain of a 
function/is the set of all д: for which fix) is defined: 

Domain if) - [ x | fix) is defined } 

The range of / is the set of of images of elements from the 
domain: 

Range if) = { f{x) \ xe Domain if) } 

If y is an element of the range, there must exist an x in the 
domain such that y =fix). If X represents the domain of/, we 
use the notation flX) to represent the range of/ 

/ W = ( / M I xeX] 

The image of a set X under a function is the set of all the 
individual images of elements in X. 

If/maps X into Y, f: X—*Y, then X is the domain, but Y is 
not necessarily the range, as indicated in the adjacent sketch. If 
xeX,fix) is an element of Y, so the range must be a subset of 
Y. However, the range is not always equal to Y. 
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4 Example Let/ be a function where the mapping rule is /(*) = 2x. 

1. Let A be the domain of/where A = {1,2,3 }. 
The range of/is the following set: 

/(A) = {2,4,6} 

Let B = {2,4,6}. For the codomain of/, we can use any set 
that contains B. For example, we can consider / as a 
mapping from A into B, or from A into the set N of natural 
numbers, or from A into the set U of real numbers. 

/:A —B /:A->N /:A-*IR 

However,/does not map A into A. 

2. Let X be the domain of/where X= [1,3]. 
The range of/is the following set: 

/ W = [2,6]. 

For the codomain of/, we can use any set that contains [2,6]: 

/:X-+[2,6] /:X-^[1,100] /:X— R 

£gua/ Functions 

Let X be the domain for 

the functions/and g. 

f=8 
if and only if 

/(*)=*(*) for all* in X. 

Two functions are equal if they represent the same mapping on 
the same domain. Functions defined by the same mapping rule 
are not equal if they have different domains. For example, let/ 
be defined by the rule/(;c) = 2x where the domain is {1,2}, and 
let g(x) = 2x where the domain is {1,2,3}: 

/={(1,2), (2,4)} 
*={ (1,2), (2,4), (3,6)} 

/ * g because they are different sets of ordered pairs. For two 
functions to be equal, they must have the same domain. 
Secondly, their function values must agree for each x in the 
domain. 

if and only if 
/and g have the same domain and 
/00 = g(x) for all x in the domain. 

In the above definition,/represents the function, whereas/(JC) 
represents the value of the function at x. 
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■Ф- Example Let fix) - x and g(x) = \x|, where дсеХ. Is/= gl 

1. Let X = R, the set of real numbers. 

/(-1)= - l ,buts(- l ) = | - l | = l . So/*g. 

2. Let X = U+, the set of positive real numbers. 

If x e R+, | x | = x. So, g(x) = f(x) for all positive real num-
bers. Therefore, f=g. Even though the mapping rules look 
different, on the given domain, they produce the same 
function values. 

Restricting a Function If we restrict the domain of a function, we produce a new 
function. Let / be a function that maps X into Y and suppose 
that A £X. The restriction of / to A, notated asfU, is defined 
as follows: 

/U(x)=/(*) for each x in A. 

Since/\A and/have different domains,/^ * / They represent 
different sets of ordered pairs: 

/ U = {(*,/(*)) | *еД} 
/ = {(*,/(*)) | *eX} 

In the other direction, we sometimes want to extend a function 
to a larger domain, preserving the values on the original 
domain. Let / be a function that maps X into Y and suppose 
that X £X. The function g is called an extension of/to X if g 
maps X into Y and the following is true: 

g(x) - f(x) for each .xin X. 

If g is an extension of/, then/is the restriction of g to X. 

Identity Function The identity function on a particular set is the function that 
maps each element to itself: fix) = x. We often notate the iden-
tity function as e: eix) = x for all x in X. The identity function 
on X is different from the identity function on Y because they 
have different domains. When working with two different 
identity functions, we use subscripts to distinguish between 
them: 

ex denotes the identity function on X. 
ey denotes the identity function on Y. 
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Defining Functions In calculus, we usually define a function in terms of a formula, 
such as f(x) = Sx2. However, not all functions have a simple 
formulaic expression. We can also define a function by giving 
a verbal description of the mapping, or by using cases, or by 
listing individual values for finite domains. Regardless of how 
we define a function, we must make sure that we assign each 
element in the domain to only one element. If our definition 
achieves this goal, we say that our function is well defined. To 
say that a function is well defined means that its definition 
produces a function. With a formula definition like/(;c) = 5r \ 
it is easy to see that the function is well defined: for each x, we 
have only one y. However, with other types of definitions, we 
must check to make sure that the function is well defined. 

4- Example For the given domain X, determine if the definition produces a 
well-defined function. 

1. LetX={ 1,2,5). 
Define/(1) = 23, /(2) = 23, and/(5) = 4. 

For each x in X, there is only one value for f(x). 
So/is a function. Thus,/is well defined. 

2. LetX={ 1,2,5}. 
Define /(1) = 2, /(2) = 4, /(5) = 6, and /(1) = 8. 

There are two values for/(l), so/ is not a function. 
Thus,/is not well defined. 

3. Let X = {1,2,5 }. Define /(1) = 2, /(2) = 4. 

/(5) is not defined, so/is not well defined on X. 

4. Let X be the set of real numbers. Define/as follows: 

Ifjt<l,/(jC)=JC+l. 

\ix>\,f(x) = 2x. 

To evaluate/(.99), we use the first rule: /(.99) = 1.99. 
To evaluate /(1), we use the second rule: /(1) = 3. 
For each x in X, there is a unique value for/(;c). 
So,/is a well-defined function. 

5. Let X be the set of integers. Let f(ab) = a. 

/(2-3) = 2 and/(3-2) = 3. Since 6 is mapped to both 
2 and 3, / i s not a function. So, / i s not well defined. 
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/ i s & function 

if and only if 

for every a and b in the domain, 

ife = fc, then/(e) =/(&)■ 

If/ is a function and a = b, then / (a) must equal/(e), for other-
wise the same element is mapped to two different values. For / 
to be a function, the following must be true for each a and b in 
the domain: 

lfa = b, then/(a) =/(e). 

The above implication ensures that the definition of/(a) is a 
unique element. We use this implication to determine whether 
or not/is welldefined so that we can then use function notation 
with it. If we can use function notation, the above implication 
is obviously true by the substitution principle. 

When the definition of/ is based on a representation of x, 
we must carefully check to make sure that the function is well 
defined. In the example, f(ab) = a, the definition of/ is based 
on how we factor a number. This definition does not produce a 
function. Sometimes, though, the definition of f(x) can be 
based on a representation of x that is not unique and still 
produce a function. For example, we often define a function on 
a set of equivalence classes in terms of a representative of the 
equivalence class - we define/([a]) in terms of a. This type of 
definition must be carefully checked to make sure that it is well 
defined, as illustrated in the following example. 

-Ф- Example 1. Let Z be the set of integers. 
If a eZ, define/as follows: f(a)=2a 
Each element a in Z is assigned to a unique element. 
So,/is well defined. 

2. Let Z4 be the set of equivalence classes for 
Z under congruence mod 4 (page 341). 
If [a]eZ4, define/as follows: /([a]) = [2a] 

Is/well defined? This question is more involved than in 
the previous example. Under congruence mod 4, [3] = [7]. 
Is / ( [3])=/([7])? I s [2 -3 ] = [2-7]? 
Since 14-6 is divisible by 4, the answer is yes. 
Let's prove that/is well defined: 

Assume that [ a ] = [ b ]. 

Then, a-b = Ak for some integer k. 

So, 2a-2b = 4(2*) 

Hence, [2a] = [2b]. 

So, / ( [a ] ) = /([&]). 
Therefore,/is a well-defined function. 



350 Chapter 4 Relations - The Action 

The following functions, which are often used in mathematics 
and computer science, have definitions based on cases or verbal 
descriptions. 

■Ф- Example For the given domain X, is f(x) well defined? 

1. LetX=R. Define/as follows: 

f(x) is the greatest integer less than or equal to x. 

For each real number x, there is exactly one integer that fits 
the above description. S o / is a well-defined function. The 
range of / i s the set Z of integers: f(№) = Z 

This function provides the "floor" when we round a real 
number x down to the next integer, so it is called the floor 
function. Its notation, be J, also suggests the floor: 

L2.999999J=2 L3 J = 3 LrcJ = 3 

2. LetX=R. Define/as follows: 

f(x) is the smallest integer greater than or equal to x. 

For each real number x, there is exactly one integer that fits 
the above description. S o / is a well-defined function. The 
range of / i s the set Z of integers: f(K) - Z 

This function provides the "ceiling" when we round a real 
number x up to the next integer, so it is called the ceiling 
function. It is notated as ГдЛ: 

Г2.9999991 = 3 Г31 = 3 Гя1 = 4 

3. Let X be a set and A a subset of X. Define/as follows: 

f{x) = 1, if xeA. 

f(x) = 0, ifxuA. 

For each x in X, x is assigned a unique value, so / is a 
well-defined function. This function, called the character-
istic function of A, gives a way to characterize membership 
in a set A using the numbers 1 and 0. It is notated as xA-

LetXbethe set of real numbers and A = [3,7]. 
Thcn^(4) = land^(8) = 0. 
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4. Let X be a set of statements, where each statement is either 
true or false, but not both. Define/as follows: 

f(x)= 1, if x is true. 

f(x) = 0, if x is false. 

For each statement x in X, x is assigned a unique value, s o / 
is a well-defined function. This function has a rather 
descriptive name; it is called the truth value Junction. 

If the domain of a function is a cross product, technically we 
need two sets of parentheses to denote the element to which 
(x,y) is mapped: /((x,y)). However, too many parentheses are 
visually confusing, so we omit the second pair and write f(x,y). 

■Ф- Example For the given domain X, determine if / is a well-defined 
function. If so, find its range. 

1. Let X = U2. Define/as follows: f(x,y) = x. 

Each ordered pair in R2 is mapped to a unique element, s o / 
is a well-defined function. This function projects each 
ordered pair onto its first coordinate. 

The range of/is IR: / ( R ) = R 

2. Let X = R. Define g as follows: g(x) = 3. 

g is a well-defined function. 
The range of g has only one element: g (R) = {3} 

3. Let X = R Define/as follows: /(*) = (x, 3). 

Each real number is mapped to a unique ordered pair, so/ is 
a well-defined function. The function / maps R into R2. 
However, R2 is not the range of /because no one maps to 
(1,4). We can describe the range as follows: 

/ (R) = {(x, 3) | x is a real number} 

Even though / is similar to the function g in the previous 
example, the two functions are not equal: f(x) * g(x). 

4. Let X = R2. Define/as follows: f(x,y) = (y,x) 

Each ordered pair in R2 is mapped to a unique ordered pair, 
so/ is a well-defined function. The range of/is R2. 
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Binary Operations 

/ is a binary operation on a set S 

if and only if 

f:SxS-> S. 

A binary operation on a set S is a function that maps 5 x 5 into 
S. Each two elements in S must be assigned a unique value and 
that value must also be in 5. This definition is a translation in 
function language of the definition given in Chapter 1, page 96. 

One of the first binary operations that we learn is addition 
on the set N of natural numbers. Given two natural numbers x 
and y, the addition operation assigns a unique value, which can 
be represented as the following function: 

f(x,y) = x+y 

I into I so For example,/(2,3) = 5. The function/maps Г̂  
/ is a binary operation on N. 

We can represent subtraction in a similar manner as a 
function on NxN: 

g(x,y)=x-y 

For example, g(2,3) = - 1 . This function, though, does not map 
N x № into f4 so subtraction is not a binary operation on the set 
N. However, g does map ZXZ into Z, so g is a binary opera-
tion on the set Z of integers. 

Using Function Notation To use function notation, we must read the notation carefully 
and substitute verbatim, as illustrated in the following 
examples. 

■ф- Example Lclf(x)=x2 + 3. 

1. Compute f(a), f(a + b), and /(a) +f(b). 

f(a) = a2+3 Substitute aforx. 

f(a + b) = (a + b)2 + 3 . . . Substitute a + bfor x. 

/(а)+/(Ь) = (аЧЗ) + (Ь2 + 3) 

Substitute for /(a) andfib). 

Note that f(a + b)* f(a) +f(b). 

2. Is/(3^) = 3 / W ? 

/(3x) = (3*)2 + 3 Substitute 3xfor x. 

3f(x) = 3(x2 + 3) Substitute x2 + 3for f(x). 

So,f(3x)*3f(x). 



4.3 Functions 353 

OntO Functions If/maps X into Y, the range of/must be a subset of Y: 

f(X) c У 

If the range of/ is equal to Y, we strengthen the preposition and 
say that/maps X onto Y: 

/maps X onto Y if and only if /(X) = Y. 

An onto function is also called a surjection. Letf(x)=x2, where 
x is a real number. If the codomain is the set of nonnegative 
real numbers, then/is a surjection. However, if the codomain 
is the set of real numbers, then/is not a surjection. 

Let/map X into Y. To prove that/maps X onto Y, we must 
demonstrate the following: 

For every y in Y, there exists an x in X such that/(;c) = y. 

Earlier we examined the technique for proving that a function 
is onto (page 151-153). Starting with the quantifier on the left, 
we assume that y is an element in Y. Our job then is to find an 
x that maps to y, as illustrated in the following proof. 

Ф Example Let fix) = x2 +1, where x is a real number. 
Prove that/maps R onto [1, °o). 

First, note that/maps U. into [l,oo). 
If x is a real number, x2 > 0, so f(x) > 1. 

Lety be an element in [1,co). Theny>l . 

So y - 1 > 0. Thus Jy- 1 is a real number. 

Set*= Jy^T. 
Then/W=/(y^T) 

= (У7гТ)2 + 1 
= ( y - l ) + l 

So, for every y in [ 1, co), there exists a real number x such 

that f(x) = y. Therefore,/maps Uonto [l,oo). 

To prove that / does not map X onto Y, we must demonstrate 
the negation of the definition: 

There exists a y in Y such that for each x in X, f(x) Ф y. 

/maps X onto Y. 

/maps X onto Y 

if and only if 

for every y in Y, there exists 

an x in X such that f(x) — y. 
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■Ф- Example Let f(x) = x* +1, where x is a real number. 
Prove that/does not map R onto U. 

Set y0 = 0. Let x be any real number. 
Since f(x) = x2 +1, /(*) £ 1. Thus, f(x) * 0. 
So,/does not map U onto IR. 

One-to-One Functions 

fis one-to-one 

/ i s one-to-one 

if and only if 

for every a and ft in the domain, 

iia*b, then f(a)* f(b). 

A function is one-to-one if different elements in the domain 
map to different elements in the range: 

Let a and b be elements in the domain. 

Ifa*£>, then / ( a )* /(£). 

A one-to-one function is also called an injection. A function 
that is both one-to-one and onto is called a bijection. A bijec-
tion is another name for a one-to-one correspondence. If a 
function is a bijection, then the domain and co-domain must 
have the same size. 

The above implication can be phrased in terms of its 
contrapositive: 

If/(a)=/(b),thena = fc. 

This implication is simpler since it has no negations, so we 
normally use this form in proofs. However, the original form is 
easier to remember, so it is featured in the adjacent definition. 

•Ф- Example Let f(x) = 2x +1 where JC is a real number. 
Prove that/is a one-to-one function. 

Let a and bbe real numbers. 
Assume that/(a) = f(b). 

2a+l=2b+l 
la = lb 

So, a = b. 
Therefore, if/(a) =/(b), then a = b. 
So,/is a one-to-one function. 
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To prove that a function is not one-to-one, we must produce 
two different x's that map to the same value: 

~[Vxi Vx2. if Х1ФХ2, then/(*i) *f(x2)]. 

3bci 3x2, JCI Фхг and f(xt) = /(хг). 

■ф- Example 

fis not one-to-one. 

Let/(*) = x2, where x is a real number. 
Prove that/is not a one-to-one function. 

2 * - 2 

/(2) = /(-2) 

S o / is not a one-to-one function. 

/ is not a function. 

/ is not one-to-one. 

Note the similarity between the definition of one-to-one and the 
definition of a function given on page 349. Let a and b be 
elements in the domain of/. 

Function: If a = b, then /(a) = f(b). 

One-to-One: Iff (a) = f(b), then a = b. 

The definition of one-to-one is the converse of the definition of 
a function. Consequently, we get a reverse arrow effect in the 
mapping pictures: 

To be a function, each x can be mapped to only one y. 

To be one-to-one, each y can have only one x mapped to it. 

As illustrated in the adjacent mappings, if two different arrows 
have the same origin, the mapping is not a function. On the 
other hand, if two different arrows end up at the same place, the 
mapping is not one-to-one. 

The second mapping is a function, but it is not one-to-one. 
If we reverse the arrows, we do not get a function. 

The third mapping is a one-to-one function. 
If we reverse the arrows, we get a function. 

The one-to-one property determines whether or not a function 
has an inverse function. 
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Inverse Functions 

a \ J r>c 

a C (' c 

/" ' is a function 

if and only if 

/ is one-to-one. 

/ is a function 

if and only if 

/ " ' is one-to-one. 

Every function has an inverse relation. In the mapping picture 
of a function/, the inverse relation is obtained by reversing the 
direction of the arrows. However, the inverse relation,/"1, may 
not be a function, which means that we cannot use function 
notation with it. For example, consider the following function: 

/ = {(a,c),(fc,c)} 

/ " ' =[{c,a),{c,b)) 

Under/"1, c is mapped to two different elements, 
so/"1 is not a function. Hence, we cannot write/"'(c). 

If a function/is not one-to-one, its inverse relation/"1 will not 
be a function. If / is one-to-one and we reverse the arrows, 
each element will be mapped to only one element, so/"1 will be 
a function. Thus, we have the following equivalence: 

/ _ 1 is a function if and only if / i s one-to-one. 

In the above statement, we substitute /"■ for / and then we 
substitute/ for (/"-')-' (page 323): 

/"■ is a function if and only if / i s one-to-one. 

(Z-"1)"1 is a function if and only if / " ' is one-to-one. 

/ is a function if and only if / " ' is one-to-one. 

From the above equivalence, we can deduce that the inverse of 
a function is always one-to-one. The one-to-one property of/ 
makes/"1 a function, while the function property of/makes/"1 

one-to-one. The notions of "function" and "one-to-one" are 
just different directions on the same highway. 

-Ф- Example Let/={(1,4),(2,8),(3,9)}. 
Is/"1 a function? Is / " ' one-to-one? 

Note that/is one-to-one. Since each y has only one x mapped 
to it, when we reverse the mapping, we get a function. The 
one-to-one property of/makes/"1 a function. 

Since/is a function, an x in X cannot map to different elements 
in Y. So, when we reverse the arrows, different elements in Y 
cannot map to the same x. The function property of/makes/"1 

one-to-one. 
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Domain (/"') = Range (/) 

Range (/"') = Domain (/) 

As with inverse relations (page 322), the domain and range are 
switched for the inverse function. The range of/becomes the 
domain of/"1, and the domain of/becomes the range of/"1. 

Let / :X —* Y. The domain of the function/is X, which is 
the range of/"1. The range o f / i s not necessarily Y, so we 
cannot deduce that Yis the domain of/"1. However, if/maps X 
onto Y, the range of / i s Y, which makes Y the domain of/"1. 

If/:X-> Y, then/"1: У— X. 
onto onto 

Theorem If/is a one-to-one function that maps X onto У, 
then/"1 is a one-to-one function that maps Konto X. 

№ = ь 
if and only if 

f-\b) = a. 

If/sends a to b,f ' sends b back to a, as illustrated on the left. 

f /"' 

a-^b if and only if b—*a. 

f(a) = b if and only if f'\b) = a. 

The above equivalence is the main tool for working with 
inverse functions. We use it to convert back and forth from a 
function to its inverse function: 

If / (3) = 5, then/"'(5) = 3. 

If/"1(2) = l l , t h e n / ( l l ) = 2. 

Substitute /(a) for b in the above equivalence: 

/ ( a ) =f(a) if and only if /" '(/(a)) = a. 

Since the right side of the equivalence is true: f~'(f(a)) = a. 
Now substitute/~'(fc) for a in the original equivalence: 

f(f-\b)) = b if and only if f-\b) =f-\b). 

Since the right side of the equivalence is true: f{f~\b)) = b 
These two results are summarized in the following theorem. 

Theorem Let/ be a one-to-one function that maps X onto Y. 

For every a in X, f~l(f(a)) = a. 

For every b in Y, f(f-\b)) = b. 
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We can translate the previous theorem in terms of ex, the 
identity function on X (page 347) and function composition. 
Let a be' any element in X: 

fx(f(a)) = a = ex(a) 

/ - ' of (a) = ex(a) 

So, / - ' o/ = ex 

In a similar manner, we can show that/o/-1 = ey. 

Composition of Functions 

Let f:X-+Y and g:Y-*Z. 
Let x be in X. 

Then * . / ( * ) =*(/■(•*))• 

We can interpret the mapping picture of a function as a 
transportation system. When an element leaves the first set, it 
can be transported to only one location in the second set. After 
an element lands in the second set, we may choose to transport 
it somewhere else, which gives us the composition of two 
functions. 

In the adjacent sketch,/ maps X into Y and g maps Y into Z. 

/maps x to f(x). 

Since f(x) is in the domain of g, g can transport it further: 

£ maps/(*) to £(/(*)). 

The composition function, denoted as g°f, has the same end 
result as executing the above two mappings, one after the other. 

g° f mapsx to g(f(x)). 

g°f(x) = g(f(x)) 

The notation g ° / is read as g composition f, but we should 
visualize it as / followed by g, as illustrated in the adjacent 
sketch. To evaluate g°f {x), we first evaluate f{x) and then 
evaluate g(f(x)). 

For example, in the adjacent sketch, /(1) = 4 and g(4) = 5. 

í « / ( l ) = *(fll)) = í(4) = S 

g°f(2) = g(f(2)) = g(8) = 3 

If/(1) had been 7, we could not have formed the composition 
since g(7) is not defined. In order to form the function g»f, the 
range of/must be a subset of the domain of g. 
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•Ф- Example 

X Y Z 

Let /(*) *= 2x and g(x) = x -1, where x is a real number. 
Compute g of(x) and/» g (x). Is g ° /= / ° g? 

g°f(x) = g(f(x)) Definition of g° f 

= g(2x) Definition off(x) 

= 2x-1 Definition ofg 

f° g(x) = f(g(x)) Definition of f° g 

= /(*-1) Definition ofg(x) 

= 2(x-1) Definition off 

Since2x-l*2(jt-l), / . g * g o / 

The domain of g ° / is the domain of/. The range of g ° / must 
be a subset of the range of g. However, they may not be equal, 
as illustrated in the following example. 

■Ф- Example Let f(x) = x1, where x is a real number. 
Let g(x) = x-1, where x is a real number. 
Find the range of g and the range of go fi 

Range (g) = (-QO.OO). 

g o / W = g( /W) = g(^ 2 )=x 2 - l . 

Range (go/) = [-1,00). 

The range of g <> / is not the same as the range of g because / 
does not map R onto R. 

Composition of Onto Functions 

X Y 

When we form the composition of two onto functions, we 
produce an onto function. Le t / map X into Y and g map У into 
Z, as illustrated in the adjacent sketch. 

If/ maps X onto Y, then the range of/is Y. 

If g maps У onto Z, then the range of g is Z. 

Consequently, the range of g o / will be Z, which means that the 
function g o / maps X onto Z. To give a verbal proof of this 
visual reasoning, we must demonstrate the following: 
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For every z in Z, there exists an x in X such that g of(x) - z. 

Given a.z in the third set, we must find an x in the first set that 
maps to z under the function g o / To find such an x, we work 
backwards along the horizontal arrows in the sketch. 

First, we use g to find a y in the second set that maps to z. 

Then, we use/ to find an x in the first set that maps to y. 

The composition function will then send this x to the desired 
location. To test the development of your reasoning skills, try 
to write a proof of this theorem. If you have difficulty, review 
the construction of this proof on pages 155-157. Hopefully, it 
will seem simpler now. 

Theorem Let / be a function that maps X onto Y and g be a function that 

maps Y onto Z. Then g <>/maps X onto Z. 

■Ф- Example Let f(x) = x3 and g(x) = sin x, where x is a real number. 
Find g o/and its range. 

g°f(x) = g(f(x)) = g(x3) = sin(x3) 

/maps IR onto U and g maps R onto [ -1,1 ]. 

R^IR-4-1,1] 

Hence, g o/maps IR onto [ -1,1 ]. 

So its range is [-1,1]. 

Composition of Injections A one-to-one function maps different elements in the domain to 
different elements in the range: 

If/is one-to-one and a Ф b, then /(a) ±f(b). 

If g is also one-to-one, then g must map /(a) 
and f(b) to different elements in Z. 

When both /and g are one-to-one, their composition must also 
be one-to-one, as demonstrated in the following proof. 
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Theorem Let/map X into Y and g map Y into Z. If/and g are one-to-one 
functions, then g °/ is a one-to-one function. 

Proof Let a and & be in X. Assume that a Ф b. 

Since/is one-to-one, f(a)±f(b). 

Since g is one-to-one, g(f(a)) Ф g(f(b)) 

So, g°f(a)*gof(b). 
Therefore, g°f is one-to-one. 

Composition of Bijections The previous theorem states that the composition of two 
injections (one-to-one functions) is an injection. We proved 
that the composition of two surjections (onto functions) is a 
surjection (page 157). Since a bijection is a function that is 
both one-to-one and onto, we can deduce that the composition 
of two bijections is a bijection. 

Theorem Let/be a bijection from X onto Y and g a bijection from Y onto 

Z. Then g o/is a bijection from X onto Z. 

Inverse of a Composition 

X Y z 

One of the fundamental relations between sets is the property 
of "having the same size" (page 273). Two sets have the same 
size if and only if there exists a bijection between them. From 
the above theorem, we can deduce that the relation of "having 
the same size" is transitive. You are asked to prove this in (19) 
of the next exercise set. 

Let/be a bijection from X onto Y and g a bijection from Y onto 
Z. Then g o/is a bijection from X onto Z and all three functions 
will have inverse functions. The inverse of g o / can be 
computed from the individual inverses as illustrated in the 
adjacent example. Note that (g o/)_1 maps Z onto X. g~] also 
acts on elements in Z. So, we must start with g"1 to find the 
value of (go/)-'(5): 

(g° / r ' (5 )= / - ' og - 1 (5 ) 

=/-'0r'(5) 
=/-'(4) 
= 1 



362 Chapter 4 Relations - The Action 

In the adjacent two diagrams, we can see why the order of/and 
g get reversed when we take the inverse of g°f. We are accus-
tomed to reading from left to right. However, with composi-
tion notation, we must remember that the actual execution 
starts on the right. To compute a value for g of, we start with/, 
not g. In the first diagram, the net result of the g °f arrow is 
the same as the side path, starting with the / arrow and then 
followed by the g arrow. 

To get the inverse of each of these 3 functions, we simply 
reverse each arrow, as illustrated in the second diagram. Note 
that the net result of the (g of)'1 arrow is the same as the side 
path, starting with the g"1 arrow and then followed by the/"1 

arrow. So, {g°f)~l=f~l o g~l. 
The verbal justification of this visual picture is fairly 

simple, but because of all the switching going on, it can be 
confusing if we do not structure our reasoning and focus our 
thinking. We first focus on what we want to prove. 

The statement of the following theorem involves the defini-
tions of composition, inverse function, and equal functions. 
Working from the outside to the inside, we first focus on the 
definition of equal functions. Since the domain of both 
functions is Z, we must show that for every z in Z: 

(r / )" ' (z) = / - ' » « - ' « ■ 

This sentence sets up the outside structure of our proof. To 
prove this equality, we start with the left side. We set the left 
side equal to x so in order to apply the definition of (g of)'1. 
This little trick gives us the necessary notation so that we can 
substitute in the definition of inverse function: 

f-\a) = b if and only if/(b) = a. 

So (g of)-\z) = Jcif and only if (g of){x) = z. 

Theorem Let/be a bijection from X onto Y and g a bijection from Y onto 
Z T h e n ^ o / r ^ Z - ' o ^ - 1 . 

Proof Since/and g are bijections, g o/is a bijection that maps X onto 
Z. So, / g, and g of each have inverse functions, ( j » / ) " ' 
maps Z onto X. Let z be an element in Z. 

Set(gof)-\z) = x. 

Z = (g °f)(x) Definition of inverse ofg of 
z = g(f(x)) Definition of composition 
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8~[(z) = f(x) Definition of inverse of g 

f'l(g'1(z)) -x Definition of inverse off 

(f'1 °g'i)(z) =x Definition of composition 

So, for every z in Z, (g °/)_ |(г) = / " ' °g'\z). 

Therefore, (g°f)~l =f~[ °g~l Def. of equal functions 

Composition of3 Functions Suppose we have 3 functions whose composition can be 
formed. Does it matter how we group the functions when we 
compute the composition? Is h o (g of) = (h ° g) ° / ? 

* For example, le t / : X—» Y, g: Y—*Z and h: Z —* W. We can 
X >Z — > W form the composition of these three functions in two different 
/ i^ /1 ways, as illustrated in the two adjacent sketches: 

If we first form go/and then compose this function 
with h, we obtain the function ho(gof). 

f^ hog If we first form hog and then compose this function 
X . / 7 with/, we obtain the function (hog)of 

The computations for ho(gof)(x) are different from the compu-
tations for (Л o g) of(x). However, the final outcome is the 
same. The proof of this theorem involves a close reading of the 
position of the parentheses, which indicate the two functions to 
which the definition of composition is applied. 

Theorem Let/:X-»y, g:F-*Z and/i:Z—W. Thenho(gof) = (hog)of 

Proof Let x be an element in X. 

(ho(gof))(x) = h((gof)(x)) ...Def. of composition ofh andgof 

= h(g(f(x))) Def. of composition of g andf 

((hog) of)(x) = (ho g)(f(x)) .. Def. of composition ofh o g andf 

= h(g(f(x))) Def. of composition ofh and g 

So, ((hog) of)(x) = (ho(g of) )(x) Transitivity of Equality 

So, ho(gof) = (hog)of Def. of Equal Functions 

The above theorem proves that the composition of functions is 
associative. So, we can omit the parentheses when we write 
the composition of three functions since their position does not 
affect the outcome: hogof 
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Images of Sets 

if and only if 

y = f(x) for some x in A. 

Let/be a function that maps X into Y and let A be a subset of X. 
We can view the function / as embedding the set X inside the 
set Y. Under this embedding, /(A) represents the transfor-
mation of the set A. The set A could be squished to a single 
point, distorted in weird ways, or remain essentially the same. 
The set /(A) is the set of all images of individual elements in A: 

№ = [f(x)\xzA) 

ye /(A) if and only if y = /(*) for some x in A. 

Note that/(A) £ Y, whereas /(*) е У. The definition off (A) is 
the same as the definition of/(X): 

f(X) = {f(.x)\xeX] 

If X is the domain off then / (X) is the range. If A £X, then 
/(A) is a subset of the range. To compute the image of a set, 
we compute the image of each element in the set and enclose 
them in a set. 

Example 1. Let f(x) = 2x, where * is a real number. 

Let A = {1,2,3}. /(A) = {/(1), /(2), /(3)} = {2,4,6} 

Letfi ={2}. /(B) ={4} 

Let C = [1,3]. /(C) = [2,6], as illustrated on the left. 

2. Let f(x) = x2, where x is a real number. 

LetA={2,3}. /(A) ={4,9} 

LetB ={-3,-2,3}. /(B) ={4,9} 

Let C = [-2,1]. /(C) = [0,4] 

IfxeA, then/(jc)e/(A). However, the converse is not true. In 
the above example where/(x) = x2 and A = {2,3}, / ( -2) e/(A), 
but -2 0A. The converse is true, though, when/is one-to-one. 
You are asked to prove the following theorem in (22) of the 
next exercise set. 

Theorem Let/be a one-to-one function that maps X into Y 
and let A QX. lff(x) € /(A), then xe A. 
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Let / map X into Y. If A £ X and B £ X, what is the relation 
between the following two sets? 

18/(АПВ)=/(А)П/(В)? 

The above two sets look very similar, but the parentheses make 
a difference in the order in which we take the intersection and 
the image. To compute /(A П B), we first intersect A and B 
over in X, as illustrated in the first sketch. Then we take the 
image of the intersection. On the other hand, to compute/(A)n 
/(B), we first take the image of A and the image of B. We then 
intersect these two images over in Y, as illustrated in the second 
sketch-

It is fairly easy to prove that/(A ПВ) £/(A) ПДВ), that is, 
if we structure our thinking and calmly apply the definitions 
(see page 94). To set up the outside structure of the proof, we 
use the subset definition - assume y is in the left set and then 
demonstrate that y has to be in the right set. 

Let/ be a function that maps X into Y. 
IfACXand BCX, then/(АПВ)£/(А)П/(В). 

Let A and B be subsets of X. 
Assume that y e /(A C\B). 

So, there exists an x0 in A C\B such that /(JC0) = y. 
By the definition of intersection, x0eA and x0e B. 
Since x0e A, f(x0) e /(A) Def. of image of a set 

Since Jt„e5, /(*„) e /(B) Def. of image of a set 

But f(Xo) = y. So ye /(A) and ye f(B). 

By the definition of intersection, ye f(A)f)f(B). 

So,/(AnB)£/(A)n/(B). 

Let's try to reverse the above steps and prove the following: 

Claim: /(A) П f(B) S/(A ПB) 
Assume that ye /(A) D /(B). Then ye /(A) and ye /(B). 
Since y £ /(A), there exists an x0 in A such that Дх0) = У-
Since ye /(B), there exists an xi in B such that/(xi) = y. 
So/0co) =/(*,). 

. . . ? ? ? . . . 
Soye/(AnB). 



366 Chapter 4 Relations - The Action 

Theorem 

There does not appear to be anyway to build a logical bridge to 
the desired conclusion. In fact, this statement is not true. 
Before we give a counterexample, let's look at how we can 
finish the proof if the function/is one-to-one. 

Let/be a one-to-one function that maps X into Y. 
If A £X and B ЯХ, then /(A) П /(B) £ /(A П B). 

Proof Assume that ye f(A) П /(B). Then ye /(A) and ye /(B). 

Since ye /(A), there exists an x0 in A such that Ддс) = y. 
* Since y 6 /(B), there exists an x\ in B such that /(jci) = y. 

De/ of image of a set 

So/(*„) =/(*)• 
Since/is one-to-one, *0 = x\. 

Thus,Xo€AandxoeB. Hence,x0eAf]B. 

So, f(x„) e /(A ПВ) De/. of image of a set 
Since /(*„) = >-,>>€ /(A ПВ). 

Thus,/(A)n/(B)£/(AnB). 

3*, /?(*) and 3*, i(x) 
is not equivalent to 
3x,p(x) zndq(x). 

* It is easy to make a logical error in the above line marked 
by the asterisk. Suppose that we translate this line as 
follows: There exists an x0 in B such that /(*<,) = y-
One might be tempted to deduce that jc0e A П B. However, 
as we saw in Chapter 1 (page 69), the existential quantifier 
does not distribute across an and-statement. 

If different points map to the same element under /, we can 
always find sets A and B such that/(A П B) Ф /(A) D/(B), as 
illustrated in the following example. 

-Ф- Example Let/(x) = x2, where * is a real number. 
LetA = {1,2} andB= {-1,-2}. Is ДАПВ) = ДА)П/(В)? 

АПВ= 0, so ДАПВ) = 0 
ДА)={/(1),/(2)} = {1,4} 
ДВ) = {/(-1),/(-2)} = {1,4} 
So, ДА)ПДВ)= {1,4}. 
Thus, ДАПВ)*ДА)П /(B). 
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Intersections are not always preserved under the image of a 
function unless the function is one-to-one. However, unions 
are always preserved, even if the function is not one-to-one, as 
demonstrated in the following proof. 

Theorem Let/ be a function that maps X into Y. 
If AGXandfiçX, then f(A(JB) = /(A)U /(B). 

Proof Let A and B be subsets of X. 

Claim: /(AUB) £/(A)U/(B). 

Assume that y e /(A U B). 

So, there exists an x0 in A U B such that y = f(x0). 

By the definition of union, ;c0e A or x0eB. 

So, /(*„)e/(A) or/(*„)e/(B). 

By the definition of union, /(*„) £ /(A) U /(5). 

Since y = /(*„), ye/(A) U/(B). 

Thus,/(AUB)£/(A)U/(B). 

Claim: /(A) U /(5) C /(A U £). 

Assume that ye /(A) U /(B). 

So ye/(A) or ye / (B) 

Case 1. Suppose that y e /(A). 

There exists an xo such that ;coe A and y = f(xo). 

Since JCO e A, xo e A U B. 

So,/(*o)e/(AUB). 

Since y = /(jc0), ye/(AUB). 

Caie 2. Suppose that ye /(Д). 

So, there exists an xo such that x0e B and y = /(x0). 

Since;toeB,jcoeAUB. 

So,/(*,)€/(A UB). 

Sincey = f(xo), ye/(AUB). 

In both cases, ye /(A UB). 

So,/(A)U/(B)C/(AUB). 

Therefore, /(A U B) = /(A) U /(B). 
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Exercise Set 4.3 

1. Draw an arrow mapping to illustrate a relation that is not a 
function. Use your mapping to explain why we cannot use 
function notation with an arbitrary relation. 

2. Explain the difference between the notation/and fix). 

3. Let fix) = x+2, where x is a real number, and let g(x) = x+2, 
where x is a natural number. I s /=g? If not, why not? 

4. Let a and b be natural numbers. Determine if the function is 
well-defined. Justify your answer. 

a. Define f(a + b) = b. b. Define f(a + b) = 2{a + b). 

5. Translate what it means for the given function to be one-to-one: 
a. g:Y~+ X. b. g°f.X-*W. 

6. Translate what it means for the given function to be onto: 
a. g:Y->X. b.gof.X-*W. 

7. Ш is the set of real numbers and Z is the set of integers. 
Make up a function/that satisfies the following. 

a. /maps IR onto {2}. d. /maps U onto Z. 
b. /maps [0,1] onto [3,4]. e. /maps UxRinto R. 
c. /maps Uonto{0,1}. f. /maps Rinto RxR. 

8. Find the domain and range of the function/. 

a- fix) = x2, where x is in [-3,2]. 
b. fix) = 5, where x is a real number. 
c. fix,y) = x+y, where д: and v are real numbers. 
d. fix,y) = x+y, where x is in [0,2] andy is in [0,3]. 
e. /(x, 3O = (v +1, x), where x and y are real numbers. 

9. Explain how each operation can be interpreted as a function. What 
would the domain and range be? 
a. Addition of natural numbers. 

b. Subtraction of natural numbers. 

c. Division of real numbers. 

10. Letfix) = 3x+4. 

a. Is /(5x) = 5/W? b. Is fix+3) = fix)+/(3)? 

11. Prove or disprove that/maps R onto IR. 
a. fix) = 2x+7 b.fix) = x2 + 7 

12. Let/:R—»R. Prove or disprove that/is one-to-one. 

a. fix) = 2x+l b. f0c)=x*+l 
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13. Let/be a one-to-one function that maps R onto U and f(3) = 5. 
Compute the following: 

a. /-'(5) b. /- '(/(7)) c. /( /" ' (2)) 

14. Is the given statement true? If not, give a counterexample. 

a. If/is a one-to-one function from X into Y, 
then/"1 is a one-to-one function from Yinto X. 

b. If/ is a one-to-one function from X onto Y, 
then/"1 is a one-to-one function from Уопю X. 

c. For all functions/and g that map R into R , / ° g = g ° / 

15. If possible, give an example of the following: 

a. A function that does not have an inverse function. 

b. A relation that does not have an inverse relation. 

16. Letf(x) = 2x, and g{x) = x2. Compute the following: 

a. (f°gKx) b. ( g ° / ) W 

17. Le t / :X-»randg : r— Z. Prove the following: 

a. If/and g are injections, then g °/is an injection. 

b. If/and g are surjections, then go/is a surjection. 

c. If/and g are bijections, then g of is a bijection. 
d. If/is not an injection, there exist sets A and B 

such that/(ADB) * /(A) Л/(B). 
e. If/and g are bijections, then (g o/)-' = / - ' ag -'. 

18. Rewrite the given equation in terms of the original function: 

a. /-'00=* b.fe°/)-'(z)=* 
19. Let 5 be a collection of sets. Let X and Y be in 5. 

Define the relation « as follows: 
Х«У if and only if 

there exists a one-to-one function /that maps X onto Y. 
Prove that«is an equivalence relation on S. 

20. Let / : X -* Y and g:Y—>Z. Is the statement true? If not, give a 
counterexample using a simple mapping picture where X, Y and Z 
have at most 3 points. 

a. If g ° / is a surjection, then/and g are surjections. 

b. If g o/is an injection, then/and g are injections. 

c. Letft:X-»y. I f g ° / = g ° A, then/= A. 
(Can we cancel on the left?) 

21. Let/ be a one-to-one function that maps X into Y and let A CX. 
Prove the following: If f(x)ef(A), then *eЛ, 
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22. Translate the given sentence by substituting in the appropriate 
definitions in the proper order. 
a. yef{A)U№ 

b. yef(A\jB) 

c. уе/(А)П/(В) 

d. yefiAHB) 

e. ye(U /(A,) 
l € / 

f. уе/ШАд 

g. ye .ПДА,) 

h. уеДПА.) 

23. Let/ be a function that maps X into Y. Let A and B be subsets of 
X. Prove or disprove the following. 
a. If A£B, then/(A) £/(B). c. /(АПВ) £/(А)П/(В) 
b. /(A) U /(B) = /(A U B) d. /(A) П /(B) £ /(A П B) 

24. Let/:X—*Y. LetA,£Xforeachiin/. Prove the following. 
a. /(U A,) = U/(A() b. Д.ПA,) £ A /(A,) 

i s / lEi i 6 / i € / 

25. Let/: X—► Y and let A and B be subsets of X. What is wrong with 
the following/a/Zac/oKi argument? 

1. Letye/(A)p/(B). yef(A) and ye/(B). 
2. So, there exists an д̂  in A such that /(JC0) = y and 

there exists an ;c0 in B such that f(x0) = y. 
3. дсеА and JCOSB. So,*„eAnB. 
4. So,A*„)e/(AnB). Since/(д:0) = у, уеДАПВ). 
5. So,/(A)n/(B)£/(AnB). 

26. Let P be a partition of X. If xe X, define/as follows: f[x) = A if 
and only if A € P and x e A. Is / well-defined? 

27. Let/map X onto Y. Let Ay = { x in X | /(JC) = y }. 
Let P= { A, | yeK}. Is Pa partition of X? Justify your answer. 

28. Let F be the following set of functions. F = {f | / : N -♦ {0,1} } 
A member of F is a function on N whose only values are 0 and 1. 
For example, let /(1) = 0 and /(n) = 1 if n * 1. Then/ e F. 
a. Give 3 examples of different elements in F. 
b. Is F countable or uncountable? 

Hint: Suppose that F is countable. Arrange the functions in a 
sequence of rows with their values displayed. Can you 
construct a member of F that is not in any of the rows? 

c. Find a bijection from the power set of N onto F. 

29. The set of all possible computer programs in a given language is 
countable (page 301). In a given computer language, a function is 
said to be computable if there is a computer program that will give 
any requested values of the function. Explain why there will be 
noncomputable functions in every computer language. 
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Activity 4.4 

Determine if the relation is reflexive, transitive, or antisymmetric. 
Draw a directed graph and try to arrange the arrows so that each 
arrow points upward. If it is not possible to do so, explain why. 

1. R = {(1,1), (1,3), (3,4), (4,3), (3,4), (4,4), (2,5)} 

2. R = {(6,5), (5,7), (6,7), (5,5), (6,6), (7,7), (3,8), (3,7), (3,3), (8,8)} 

s4.4 Order Relations = 

Without order, there is chaos. As we try to make sense of the 
world around us, we seek ways to instill a notion of order, for 
our reasoning faculties need some sort of order to keep things 
in a proper perspective. In the final section of our journey 
through this book, we will investigate the abstract structure of 
order relations. 

The seminal concept from which the notion of order is 
created is the concept of a subset. When we add a pebble to a 
sack with 3 pebbles, the original set is a subset of the new set. 
For this reason, we say that 3 ^ 4 . Using the subset principle as 

The Subset Reiation a guide, the counting numbers were created in an orderly 
manner, one after the other: 

1 2 3 4 5 6 7 8 9 . . . 

The power of the counting numbers as a quantifying tool comes 
from their order. 

From the act of counting, we advance to the stage of 
measuring lengths. As we construct real numbers to measure 
all possible lengths, the order on the counting numbers is 
forever present, guiding us in our ordering of the real numbers: 
y < y because 3 < 4. As we tackle the more difficult task of 
logically explaining the set of irrational numbers, the order on 
the counting numbers guides us safely through the delicate task 
of setting up limits to represent an uncountable infinitude of 
irrational numbers. In the creation of the real numbers, we lose 
the step-by-step process of the counting numbers, but we still 
retain an order. The ordered set of real numbers provide us 
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with one of the most important reasoning tools in mathematics 
and science. As with the counting numbers, the power of this 
universe of real numbers comes from their order. We will now 
go back to the original source of this power, the ordering 
properties of the subset relation. 

Partial Orders 

{1,2} 

HI {2} 

The Subset Relation 

Let R be a relation on the set S. 
R is & partial order 

if and only if 
R has die following 3 properties: 

• Reflexive 

• Transitive 

• Antisymmetric 

President 

VP1 VP 2 VP3 

The subset relation has the following three fundamental 
properties. Let A, B and C be sets. 

Reflexive Property: A £A. 

Transitive Property: If A Efl and B C C, then ACC. 

Antisymmetric Property: If A £ B and fi£A, then A = B. 

These three properties partially order any collection of sets. 
For example, let S be the power set of {1,2}, which is all the 
subsets of {1, 2}. The adjacent diagram indicates the partial 
ordering of S by the subset relation. The set 5 is not totally 
ordered because we cannot compare {1} and {2} with the 
subset relation; neither is a subset of the other. 

A partial order is a generalization of the subset relation. To 
be a partial order, a relation must possess the three basic 
properties of the subset relation: the reflexive, transitive, and 
antisymmetric properties. Let R be a relation on a set S. R is a 
partial order if and only if the following three statements are 
true for every a, b, and c in 5: 

Reflexive Property: afía 

Transitive Property: If a R b and b R c, then a R c. 

Antisymmetric Property: IfaRb and bRa, then a = b. 

The antisymmetric property gives the distinguishing feature of 
a partial order; the only time we can reverse the order of two 
elements is when the elements are equal. Unlike an equiva-
lence relation, it makes a difference in a partial order as to who 
comes first. 

Instead of arranging elements in egalitarian equivalence 
classes where everyone is essentially the same, a partial order 
embeds a pecking order. The pecking order is not necessarily 
linear, but it does have a hierarchical structure like the pecking 
order in a corporation. Each vice-president reports to the presi-
dent, but there is usually no direct authority connection 
between two vice-presidents. In the adjacent diagrams, notice 
how we can model the corporate diagram with the subset 
relation. We will see later on that even though we can conjure 



4.4 Order Relations 373 

up a wide range of examples of partial orders, each and every 
one of them can be modeled with the subset relation on a 
particular collection of sets. 

We use notation similar to the subset notation to represent a 
partial order: 

a<b aub a<^b 

The notation (5,^) represents a partially ordered set where ^ is 
a partial order on the set S. We often abbreviate "partially 
ordered set" as poset. A poset is a set that has a structure em-
bedded via a partial order. The language developed for order 
relations describes the form of this structure and special 
features that it may have. 

If a < b or b < a, we say that a and b are comparable. For 
example, consider the poset (S, £ ) where S is the power set of 
{1,2,3}. Since {1,2}£ {1,2,3}, {1,2} and {1,2,3} are com-
parable, but {1,2} and {1,3} are not comparable. 

Strict Order The subset relation has a sidekick companion, the proper subset 
relation: 

AczB ifandonlyifACfiandA^fi. 

The <, relation has a similar companion, the < relation. 
Similarly, each partial order has an associated strict order. If < 

, is a partial order, we define the strict order < as follows: 
a <b r 

if and only if a < b if and only if a < b and a Ф b. 

alb and a * b. If a ч &, we say that b is a successor of a. To say that b is an 
immediate successor of a means that a<b and there does not 
exist an x such that a<x <b. For example, in the set N of 
natural numbers, 4 is a successor of 2, but 3 is the immediate 
successor of 2. 

The -< relation is transitive and antisymmetric, but it is not 
, reflexive. In fact, it has the opposite property: 

if and only if For every a, ~{a < a). 

o r a ~ A transitive and antisymmetric relation that has the above 
property is called a strict order. Each partial order has an 
associated strict order. Conversely, given a strict order -<, we 
can construct a partial order from it as follows: 

a < b if and only if a < b or a = b. 

The concepts of partial order and strict order are essentially the 
same, except that we insist on the reflexive property for partial 
orders and completely prohibit it for strict orders. 
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Total Order On the set IR of real numbers, ̂  is a partial order. However, the 
<, relation does more than partially order the real numbers; it 
totally orders them. 

For all real numbers a and b, either a <, b or b<a. 

A partial order that has this property is called a total order. 
Let ̂  be a partial order on the set S. 

d is a total order if and only if 
for any a and b in S,alb or bla. 

The <, relation is a total order on any set of real numbers. For 
example, the <, relation totally orders {3,11,8,2} as follows: 

2 - 3 - 8 - + 1 1 

A totally ordered set is also called a chain because the order 
chains the elements together in a linear manner. 

In a totally ordered set, every two elements are comparable. 
If 1 is a total order and ~(a 1 b), we can deduce that b<a. We 
cannot make this type of deduction for the subset relation on 
the set {{1}, {2}, {1,2}}. However the subset relation is a total 
order on the following set: 

Г={{1}, {1,2}, {1,2,4}, {1,2,4,8}} 

For every A and B in T, A£B or B£A. 

■Ф- Example Let S = Z - {0}. Is the divides relation a partial order on 5? 

What about on N? Is it a total order on either set? 

Let a and b be nonzero integers. a\b represents "a divides b." 

a\b if and only if there exists an integer k such that b - ak. 
Reflexive: a\a 

a = a-l. So, a|a. 
Hence, the divides relation is reflexive on S and on N. 

Transitive: lia\b and b\c, then a|c. 

Assume that a\b and b\c. 

There exist integers k andy such that b = ak and c = bj. 

So c = bj = (ak)j = a(kj). Since kj is an integer, a\c. 

Therefore, the divides relation is transitive. 

Let (S,i) beaposet. 

i is a total order 

if and only if 

every two elements 

in S are comparable. 
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Antisymmetric: \fa\b and b\a, then a = b. 

31 -3 and -313, but 3 * - 3 . So the divides relation is not 
antisymmetric on S. However, it is antisymmetric on N: 

Let a and b be positive integers. 
Assume that a\b and b\a. 
There exist integers k and,/ such that 

b = akaada = bj. 
a = bj = (ak)j = a(kj) 

Since a * 0, we can divide by a. So 1 = kj. 
The only solutions to this equation are: 

(k = 1 and./ = 1) or (k = -1 and; = -1). 
But b = ak. Furthermore, b and a are both positive. 
So k is positive. Thus, k = 1 and,/ = 1. Hence b = a. 

Therefore, the divides relation is antisymmetric on the set N of 
natural numbers. Hence, it is a partial order on N. It is not a 
total order on N because 2 and 3 are not comparable. However, 
the divides relation is a total order on the set {1,3,6,30}. 

The structure embedded by an order relation on a set can be 
illustrated with a directed graph. For example, let S= {1,2,3,4}. 
Consider the structure on the poset (S, <), which is illustrated in 
the adjacent directed graph. We have an arrow from 1 to 2 
since 1 < 2. We also have an arrow from 2 to 3 and another 
arrow from 1 to 3. In a directed graph, we have an arrow for 
each pair of related elements. However, too many arrows can 
obscure the view. Since the relation is transitive, we could 
deduce that 1 is related to 3 and not draw the arrow. 

A clearer picture of the underlying structure of this relation 
is revealed when we remove the arrows that can be deduced by 
transitivity and the loop arrows that can be deduced by the 
reflexive property. Because of the antisymmetric property, we 
can always arrange the elements in a poset so that the relation 
arrows point upwards. If we agree to position the elements so 
that the relation points in an upward direction, we can remove 
the arrowheads. The remaining minimalist structure is called a 
Hasse graph. This reduced graph, which is illustrated on the 
left, reveals a simple structure that gives all the necessary infor-
mation. Transitivity tells us that 1 is related to any element that 
we can get to in an upwards direction. 

file:///fa/b
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9 f 

b d e 

The Hasse graph of a partially ordered set is a subgraph of the 
directed graph in which we first position the elements so that 
all arrows point upwards and then we omit the following: 

• the loops that can be deduced by reflexivity 

• the arrows that can be deduced by transitivity 

• the arrowheads 

We can construct examples of partial orders by first drawing a 
Hasse graph. For example, the adjacent Hasse graph represents 
the following partial order on S = { a, b, c, d, e,f}: 

aúa 

cúb 

b<b 

da 

cue 

b<a 
did 
dla 

ele 

elf 

f<f 

■Ф- Example Draw the Hasse graph of the partially ordered set. 

1. (S.C) 
S={0,{1},{2},{3},{1,2},{2,3},{1,3},{1,2,3}} 

To make the arrows point upwards, we put the empty set in 
the basement, the singleton sets on the first floor, the sets 
with 2 elements on the second floor, and the biggest set in 
the penthouse. We then draw the segments, keeping in 
mind that two elements are related if we can find an upward 
path that starts at the first element and ends at the second 
element. We do not draw a segment from { 3 } to { 1,2,3 } 
because we can get there by another path. 

2. (Г, | ) where T= {1,2,3,5,6,10,15,30 } and | is divides.. 

5110, so we draw an arrow from 5 to 10. 

10|30, so we draw an arrow from 10 to 30. 

Since 1 divides all the other numbers, we put it in the 
basement. At each level, we list elements that are not 
comparable. 

Note the similarity of the above two graphs. Even though the 
definitions of the two relations are very different, they have 
identical structures. As far as structure goes, these two posets 
are essentially the same. They are isomorphic. 
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Isomorphisms 

(5, <) is isomorphic to (T, <) 

if and only if 

there exists a bijection/ 

from 5 onto T such that 

for every a and b in S, 

if a < b, then f (a) < f(b). 

(S,<) (T,<) 

Now we come to one of the most important concepts in modern 
mathematics, that of an isomorphism. Through an isomorphic 
lens, different objects can look the same. The meaning of an 
isomorphism is built from the Greek words, isos, which means 
"same," and morphe, which means "form." Two isomorphic 
objects have the same form or structure. 

Relations embed structures on sets. For example, order 
relations embed structures like those illustrated in the previous 
two examples. In abstract algebra, binary operations, like 
addition and multiplication, embed different types of structures 
on a set. In geometry, various distance functions embed differ-
ent structures on a set. In analysis and topology, spatial 
relations which provide a notion of closeness embed different 
structures on a set. In each of these very diverse branches of 
mathematics, we try to simplify the playing field by identifying 
and classifying isomorphic structures. 

One of the simplest visual illustrations of isomorphic struc-
tures are the two examples on the previous page. The divides 
relation embeds the same structure on the set of factors of 30 as 
does the subset relation on the set of all subsets of (1, 2, 3). 
Even though the elements in the Hasse graph are labeled differ-
ently, the structure is the same. In terms of the structure, the 
labels applied to the elements are not significant. If we rename 
the elements or the relation, they will still have the same struc-
ture. 

The concept of "having the same structure" was formalized 
in 1910 by Alfred North Whitehead (1861-1947) and Bertrand 
Russell (1872-1970) in their classic text, Principia mathe-
matica. To have the same structure, two structured sets must 
first of all have the same size (page 273), which means that 
there exists a bijection/from S onto T. However, there will be 
many different one-to-one functions that map S onto T. What 
we need is a bijection that also preserves the order structure. In 
other words, if a is related to b in the set S, then f(a) must be 
related to f(b) over in the set Г, as illustrated in the adjacent 
sketch. 

If a < b, then f(a) < f(b). 

This implication signifies that/preserves the order relation as it 
transports elements from S to T. If two elements are related in 
S, their images will be related in T. If/ is also one-to-one and 
onto, then / is called an isomorphism and we say that (S, <) is 
isomorphic to (T, <). The relation of being isomorphic is an 
equivalence relation on posets (page 396), so we often repre-
sent it with an equivalence sign: S=^T. 
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-$■ Example 

a c 

№i) (T,Š) 

When we construct an isomorphism between two structures, we 
look for a way to relabel the first structure so that we get the 
second structure, as illustrated in the following example. 

Let (S,*) and (T,$) be the posets whose order is given in the 
adjacent Hasse graphs. Construct an isomorphism from 5 onto T. 

Define/as follows: /(1) = b, /(2) = a, /(3) = c, f(4) = d 

/ i s a bijection from S to Г. To show that/preserves the order, 
we need to verify the following: 

For every a and b in S, if a * b, then /(a) 3 f{b). 

1*2 Is /d)<3/(2)? 
1*3 Is /(l)<)/(3)? 
2*4 Is/(2)</(4)? 

Yes, b 3 a. 
Yes,è3 c. 
Yes, a 3 d. 

By transitivity, we can deduce that the order is preserved for 
the remaining possibilities. Therefore, / is an isomorphism 
from (5,*) to (T,š). The poset (5,*) is isomorphic to (Г,3), 
which means that they have the same order structure. 

-Ф- Example Is (R, £) isomorphic to (R, £)? 

Let a and b be real numbers. Define/as follows: /(a) = -a 

Claim: / is one-to-one. 
Assume that/(a) =/(b). 

Then -a = -b. 
So, _(-fl) = -(-&). 

Thus, a = b. 
So, / is one-to-one. 

Claim: / is onto. 
Let y be a real number. Then -y is a real number. 
f(-y) = -(-У) = У- So, / i s onto. 

Claim: / preserves the order. 
Assume that a £ b. Then -až-b. 
So, /(a) t f(b). So,/ preserves the order. 

Thus, f is an isomorphism. So, (R, <,) is isomorphic to (R, £). 
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•ф- Example 

(2,3) (2,5) (2) 

\ / / \ 
(2) {2,3) (2,5) 

(5,C) (5,2) 

(2,3,5) 

/ \ 

(2) 

(Г.С) 

(2) 

/ \ 
(2,3) (2,5) (2,3) (2,5) 

\ / \ / 
(2,3,5) 

(7 ,3) 

1. Let S = { {2}, {2,3}, {2,5}}. As illustrated in the adj acent 
pair of sketches, (S, £) is not isomorphic to (S, 2). 

2. Let Г= { {2}, {2,3}, {2,5}, {2,3,5}}. As illustrated in the 
lower pair of sketches, (T, £) is isomorphic to( T, 2). 

3. Let U be the power set of R. 
Is (t/, Q) isomorphic to (U, 2)? 

Let A and B be in U. Let A' denote the complement 
of A in R. Define/as follows: /(A) = A' 

Claim: / i s one-to-one. 
Assume that/(A) = /(B). 
Then A' = B\ So, (A')' = (B')'. Thus, A = B. 
So, / is one-to-one. 

C/aim: / is onto. 
Let B be an element in U. Then B' e [/. 
/(B') = (B')' = B. So, / is onto. 

Claim: / preserves the order. 
Assume that A £ B. Then B' C A'. 
So, A' 2B'. Thus, /(A) 2/(B). 
So,/ preserves the order. 

So,/is an isomorphism. (í/, Q is isomorphic to (£/, 2). 

Characterization of Partial Orders 

A good stock of examples, as 
large as possible, is indispen-
sable for a thorough under-
standing of any concept, and 
when I want to learn some-
thing new, I make it my first 
job to build one. 

Paul R. Halmos 

When we learn a new concept, we need to work with a wide 
range of examples in order to deepen our understanding of the 
meaning of the concept. As we explore various examples, we 
may wonder if we have overlooked any interesting examples 
that might suggest possible theorems or, in the other direction, 
shed light on the limitations of the system. The desired situation 
is to have an archetypal class of examples so that any other 
example is isomorphic to one of the archetypes. Then we can 
focus our attention on the archetypal class, for all possible 
structures are represented within that class. 

The study of posets is fairly simple, for we do have an 
archetypal class of examples, namely those that are ordered by 
the subset relation. Given any example of a partial order on a 
set S, such as "divides" or й, we can produce an isomorphic 
copy of it using the subset relation. The technique for produc-
ing the isomorphic image is illustrated in the next example. 
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-Ф- Example Let S = {a, b, c, d, e,f}. The order on S is given by the 
adjacent Hasse graph. Construct a collection T of sets 
so that (Г,Е) is isomorphic to (S,^). 

To construct a set that models a, note that 4 elements are 
related to a from its left side: a 1 a, b<a, c^a, d<a. 
Let L„ denote this set: 

//I 

Lb L„ 

La = { v | y1 a) = {a, b, c, d\ 

We construct similar sets to model each element in S: 

(S,l) Lb = { y | ylb} = {b,c) 

Lc={y\ylc} = {c] 

Ld={y\y<d) = {d} 

Lt ={y\yle} = {e) 

Lf = {y\ylf} = {f,e] 

To produce an isomorphic copy of (S,^), we place each of the 
above sets in another set, which we label as T: 

T= { Lx\xe S ) = [La, Lb, Lc, La, Lt, Lf\ 

\ The subset relation between sets in T clones the < relation on S: 

Lc ( Г ' С ) bla cla elf 

Lj, £ La Lc^La LrÇL·Lf 

The Hasse graph of (T, <Z), which is given on the left, has the 
same structure as the graph of (5,^). 

So, (Г,£) is isomorphic to (S,d>). 

We will prove this statement in the following theorem. 

Using the technique from the above example, we can prove that 
every poset is isomorphic to a poset whose order is the subset 
relation. Given an element x in the poset (5 ,^ ) , we construct a 
set that models x by forming the subset of S that contains all 
elements related to x from its left side: Lx= [ y \ yl x}. If 
you get lost in the following proof, pause and interpret the 
meaning for the above example. 
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Theorem Let (5, <) be a partially ordered set. There exists a collection T 
of sets such that the poset (Г, £ ) is isomorphic to (5, ̂ ) . 

Proof For each element x in S, define Lx = { y | ^ ^ x }. 

Set T = { Lx\ xeS }. (Г, £ ) is a partially ordered set. 

Define/: S-*Tas follows: IfxeS, f(x)= Lx. 
For each x in 5, /(x) is unique, so/ is a function. 

Claim: / i s one-to-one. 
Let x and г be elements in S. 
Assume that f(x) =f(z). So,Lx=Lt. 

Since x^x,xeLx. But Lx=Lt. So, xeL z . 
By the definition of Lj, xd>z-

Similarly, zeLj, so z&Lx. Hence, zlx. 
Since < is antisymmetric, x = z-
Thus,/is one-to-one. 

Claim: /maps S onto Г. 
Let Lx be an element in T. 
f(x)=Lx. So/maps S onto T. 

Claim: /preserves the order. 
Let x and z be elements in 5. 
Assume that x ^ z. 

Assume that vceL,. By the definition of L,, VVÍJ:. 

wr^Jtandx^z. By transitivity, vv^z. So, w€Lz. 
So, L C L , 
So,/(x)C/(z). 

Hence,/ preserves the order. 

Since/is a one-to-one function from S onto Tthat preserves 
the order, (S,^) is isomorphic to (Г,С). 

Isomorphic posets are identical twins with different names. If a 
poset has a particular property, then all isomorphic posets must 
have the same property, as translated through the isomorphism. 
The above theorem tells us that the subset relation provides 
isomorphic copies of all partial orders. Consequently, when 
contemplating a conjecture about partial orders, we can restrict 
our focus to the subset relation. If we can prove a result for the 
subset relation on an arbitrary collection of sets, then the result 
will be true for any partial order. On the other hand, if a 
conjecture about partial orders is not true, there must be a 
counterexample for some set ordered by the subset relation. 
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Least Element 

Let c be in a poset 5. 

c is the least element of 5 

if and only if 

for every xin 5, ax. 

Some posets contain a least element. A least element of a poset 
(5, ^ ) is the smallest element in 5. Let c be in S. 

c is the least element of S if and only if for every x in S, c ;£ x. 

For example, let S = [2,5] and T = (2,5]. Under the ^ relation, 
2 is the least element of S, but T does not have a least element. 
In a totally ordered set, we can linearly arrange the elements in 
a manner similar to a real number line where a-±b means that a 
is to the left of b. In this type of visual, the least element is the 
one furthest to the left. Some sets, such as the interval (0,1], do 
not have an element that is furthest to the left. Unlike the real 
numbers, every subset of the set N of natural numbers must 
have a least element. 

In a Hasse graph of a partially ordered set, we can visually 
find the least element - if it exists - at the bottom of the graph. 

4- Example 

(2,3) (2,5) 

\ / 
12} 

(2,3,5) 

/ \ 
{2,3} {2,5} 

Does the poset (5 ,£) have a least element? 

1. 5 = {{2}, {2,3}, {2,5}} 

For every set A in 5, {2}£ A. 
So, {2} is the least element of (5 ,C) . {2} is at the bottom 
of the adjacent Hasse graph, connected to everyone else. 

2. 5 = {{2,3}, {2,5}, {2,3,5}} 

S does not have a least element. 
Instead, S has two minimal elements. 

Minimal Elements 

Let d be in a poset S. 

d is a minimalelement of S 

ifandonlyif 

for every x in 5, 

ifx^d, xhenx = d. 

An element of an ordered set S is a minimal element if there are 
no other elements before it. Let d be in S. 

d is a minimal element of S if and only if 

for every x in S, if x Ф d, then ~(x ̂  d). 

For a more positive tone, let's rephrase the above implication in 
terms of the contrapositive. 

For every x in S, if x ^ d, then x = d. 

The definition of a least element sounds similar, but they are 
not equivalent, as illustrated in the following example. 
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LetS={{l},{2},{3},{l,2}, {2,3}, {1,3}, {1,2,3}}. 

Under the subset relation, does S have a least element? 
Does S have any minimal elements? 

In the adjacent Hasse graph of (S,C), note that there is no other 
element that is a subset of {1}. So {1} is a minimal element. 

{1} is not a least element because {1} is not a subset of {2}. 

Likewise, {2} and {3} are minimal elements of S, but neither is 
a least element. 

S has 3 minimal elements, but it does not have a least element. 

If a poset has a least element, the least element will be the only 
minimal element in the set, as demonstrated in the following 
theorem. 

Theorem Let S be a partially ordered set. If b is the least element of S, 
then b is a minimal element of S. Furthermore, b is the only 
minimal element of S. 

Proof Let b be the least element of S. 

Claim: bis a minimal element of S. 

Let x be an element in S. Assume that x i b. 

Since b is the least element of S, b ̂  JC. 

By the antisymmetric property, x = b. 

So, for every x in S, if x ^ b, then x = b. 

Thus, b is a minimal element in S. 

Claim: b is the only minimal element in S. 

Suppose that c is also a minimal element in S. 

Since b is the least element in S, b ̂  c. 

Since c is a minimal element, b = c. 

So, b is the only minimal element in S. 

Ф Example 

(1,2,3} 

(1,2) (1.3} 

(2} 

(2.3} 

(3} 

№=) 
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The converse of the previous theorem is true for totally ordered 
sets. 

Theorem Let S be a totally ordered set. If b is a minimal element of S, 
then b is the least element of S. 

Proof Let b be a minimal element of the totally ordered set (5,^). 

Let x be an element in S. 

Case 1: Suppose that x = b. 
Since ̂  is reflexive, b 1 x. 

Case 2: Suppose that x*b. 
Since S is totally ordered, b :£ x or x < b. 
Since fc is a minimal element and x Ф b, ~(x 1 b). 
So,b<x. 

Thus, fc is the least element in S. 

If a poset has a least element, it can have only one, as demon-
strated in the following proof. To prove that a least element is 
unique, we assume that there are two least elements and then 
demonstrate that they must be equal. 

Theorem A partially ordered set can have at most one least element. 

Proof Let (S, 3) be a partially ordered set. 

Suppose that a and b are both least elements of S. 

Since a is a least element, for every x in S, a 1 x. 
In particular, let x = b. So a lb. 

Since b is a least element, for every x in S,blx. 
In particular, let x = a. Sob la. 

Since 1 is antisymmetric, a = b. 

Some posets do not have a minimal element. For example, the 
interval (1,2] with the < relation does not have a minimal 
element. If a poset is finite, though, it must have a minimal 
element. This statement is visually obvious in a Hasse graph of 
a finite set. There must be an element at the bottom that has no 
elements below it. 
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To logically verify this visual observation, we could set up a 
step-by-step procedure analogous to starting at an arbitrary 
point on the Hasse graph and working our way down to the 
bottom. We first pick an arbitrary element a\ in the Hasse 
graph and then we look at all the elements that are before it: 

Si = { x in 51 x < a\} 

Since a\ <£S\, S\ must have less elements than S. If a.\ is not a 
minimal element, then S, Ф 0. We then pick an element in Si 
and repeat the same procedure, at each stage creating a subset 
S* that has less elements than the previous set. Since S is finite, 
we must eventually run out of elements. The last element left 
standing will be a minimal element. This process can be used 
in a computer program to locate minimal elements. We could 
use a similar argument to prove the following theorem, but a 
proof by induction is not nearly as tedious. This theorem can 
also be proved using a proof by contradiction, which you are 
asked to do in (13) of the next exercise set. 

Theorem A finite, nonempty poset must have a minimal element. 

Induction Proof Let (S, ■<,) be a poset. 
Letp(n): If S has n elements, then S has a minimal element. 

p(l) is true. 

Let n be a natural number. Assume that p(n) is true. 
Assume that S has n +1 elements. S can be represented as 
follows: S= (ai, Ü2, Дз, • . . , an + i}. Let T= { 
Since p(n) is true, T has a minimal element. Call it c. 

Case 1: Assume that clan+t. 
Then c is a minimal element of 5. 

Case 2: Assume that a„ +1 ^ c. 
Let * be in T. Assume that x < a„ +1. 

By transitivity, x ^ c. 
Since c is a minimal element of 7", x = c. 
Since a„+i ^ c , an*\ 3x. 
By antisymmetry, x = a„ +1. 

Therefore, a„ +1 is a minimal element of S. 

Case 3: Assume that c and a„ +1 are not comparable. 
Then c is a minimal element of 5. 

Thus, S has a minimal element. So, p(n) => p(n +1). 

By mathematical induction, p{n) is true for all natural numbers n. 
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Topological Sorting 

E D 

B C F 

\ / №=Q 
A 

Let ^ be a partial order on S. 
Let 3 be a total order on 5. 

< is a topological sorting for <, 

ifandonlyif 

for every x and y in S, 

ifxly, then*<!y. 

Using the previous theorem, we can extend a partial order on a 
finite set to a total order. For example, suppose that we have a 
list of 6 tasks to do and some tasks must be performed before 
others, as indicated in the adjacent graph. Task A must be per-
formed before B and C, B and C must each be performed before 
E, and F must be performed before D. Let S represent the set 
of 6 tasks and 1 the partial order on S. We could schedule the 
tasks as follows: 

A B C E F D 

This listing of the elements in 5 gives a total order of S, which 
we will notate as 3 . This new order has the following property: 

For every x and v in 5, if x Ú y, then x Š y. 

A total order of a poset that preserves the above implication is 
called a topological sorting. A topological sorting embeds a 
partially ordered set in a totally ordered set so that the original 
order is preserved. However, the converse of the above impli-
cation is not true: E3 F, but E £ F . 

To construct a topological sort of a finite poset, we select a 
minimal element at each stage and then remove it from the list. 

• Select the first element to be a minimal element in S. 
Then remove it from S and call the new set St. 

• Select the 2nd element to be a minimal element in Si. 
Then remove it from 5i and call the new set S2. 

Continuing this process produces a topological sorting of the 
original poset, as illustrated in the following example 

{1A3I 

* Example L e t S = {{1,2,3}, {1}, {1,2}, {1,3}, {2}, {3}, {2,3}}. 
Find a topological sorting for £ on S. 

■2) H.3) (2,3) 

'XX1 
1 Г ^ ( 2 Г (3) 

{1,2.3) 

IU1 (1.3) 

1. In the adjacent Hasse graph for 5, we have 3 minimal 
elements. We may select either {1}, {2}, or {3} for 
the first element in our sort. Let's choose {3}. 

2. Remove {3} from the graph. We now have 2 
minimal elements: {1}, {2}. Let's choose {2}. 

3. Remove {2} from the graph. As illustrated in the adjacent 
graph, we now have 2 minimal elements: {1}, and {2,3}. 

(2,3) Let's choose {2,3}. 

4. Remove {2, 3} from the graph. We only have 1 minimal 
element, so we must choose {1}. 
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5. Remove {1} from the graph. As illustrated in the adjacent 
graph, we now have 2 minimal elements: {1,2} and {1,3}. 
Let's choose {1,2}. 

6. When we remove {1, 2} from the graph, we must first 
choose {1,3} and then {1,2,3}. 

We now have a topological sorting for £ on S: 

{3} {2} {2,3} {1} {1,2} {1,3} {1,2,3} 

The above listing gives a total order that has the required 
property: If A £fi, then A is before B in the above list. 

The following arrangement is not a topological sorting 
because {2,3} is before {2}: 

{3} {2,3} {2} {1} {1,2} {1,3} {1,2,3} 

We can also do a topological sorting by listing the sets 
according to their size: 

{1} {2} {3} {1,2} {1,3} {2,3} {1,2,3} 

Greatest & Maximal 

Let c be in a poset S. 

c is the greatest element in S 
if and only if 

for every x in S, x ̂  c. 

c is a maximalelement'in S 
if and only if 

for every x in 5, 
if c ̂  x, then x = c. 

We have analogous terms for least and minimal at the other end 
of the spectrum. The opposite of least is greatest. Let c be in a 
partially ordered set 5. 

c is the greatest element in S 
if and only if 

for every x in S, x i c. 

The opposite of a minimal element is a maximal element. An 
element is a maximal element if there are no other elements that 
come after it. 

c is a maximal element in S 
if and only if 

for every x in S, if c 1 x, then x-c 

For example, let S = [1,4] and T= [1,4). Under the <, relation, 
4 is the greatest element in S, but T does not have a greatest 
element or a maximal element. 
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-Ф- Example 

(1,2.3) 

Under the subset relation, does the given set have a greatest 
element, a least element, any maximal elements, or any minimal 
elements? 

1. 5 = {{1}, {2}, {3}, {1,2}, {2,3}, {1,3}, {1,2,3} }. 

{1,2,3} is the greatest element of S. 
S does not have a least element. 

{1,2,3} is a maximal element. 
S has 3 minimal elements: {1}, {2}, {3} 

2. Г={{1},{1,2},{1,3},{1,4},{1,2,3},{1,2,5}}. 

Tdoes not have a greatest element. 
{1} is the least element. 

Shas 3 maximal elements: {1,2,3}, {1,2,5}, {1,4} 
{1} is a minimal element. 

As you probably suspect, for each theorem on minimal and 
least elements, we have a dual theorem for maximal and great-
est elements. You are asked to prove the following theorems in 
the next exercise set. 

Theorem Let S be a partially ordered set. 

1. S can have at most one greatest element. 

2. If b is the greatest element of S, then b is the only maximal 
element of 5. 

3. If 5 is totally ordered, a maximal element of S must be the 
greatest element of S. 

4. A finite, nonempty poset must have a maximal element. 

Lower & Upper Bounds The concepts of least element and lower bound are very similar. 
However, the least element of a set S must be in 5, whereas a 
lower bound of 5 does not have to be in S. Since we are going 
outside of S, we need to specify a universal set U. Let ( U, 1) 
be a partially ordered set. Let S £ U and b e U. 

bis a lower bound for S if and only if for every x in S, b < x. 

b is an upper bound for S if and only if for every x in S, x^ b. 
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Let U be a poset. 
S£U and beU. 

b is a lower bound for 5 
if and only if 

for every x in S, b<,x. 

b is an upper bound for S 
if and only if 

for every x in S, x<, b. 

Let U be the set of real numbers ordered by <. Set S = (5,7]. 
On the real number line, 3 is a lower bound of 5. 5 is also a 
lower bound of S. S has an infinite set of lower bounds. 5 is 
the greatest of all the lower bounds, so it is called the greatest 
lower bound. The opposite terms - greatest and lower - make 
this concept a little confusing. However, if we focus on the set 
of all lower bounds, we can easily visualize the greatest 
element in that set. The greatest lower bound of (5,7] is not a 
member of the set. The greatest low'er bound of [5,7] is also 5 
and it is a member of the set. 

At the other end of the spectrum, we can look at the set of 
all upper bounds of a set 5. The least element in this set is 
called the least upper bound of S. Let S - (5,7]. 21 is an upper 
bound for S. 100 is an upper bound for S. The least upper 
bound is 7. In some posets, the least upper bound or greatest 
lower bound may not exist. For example, let U be the set of 
rational numbers. Let S = { x | x is rational and x2 > 2]. Since 
J2 is not in our universal set, we cannot use it for the greatest 
lower bound for 5. On a calculator, we can get decimal 
approximations to Д , such as 1.414213. 1.414213 is a 
rational number, so it is in U. This number is a lower bound 
for S, but it is not the greatest lower bound. S does not have a 
greatest lower bound in the set of rational numbers. 

A subset of a finite poset may not have a greatest lower 
bound, as illustrated in the next example. 

-Ф- Example U= { {1}, {1,2}, {1,3), {1,2,3,4}, {1,2,3,5}, {1,2,3,4,5} } 

In the universal poset ((/, S) , find the greatest lower bound and 
least upper bound for the given set. 

(1,2,3,4,5) 

(1,2,3,4) (1,2,3,5) 

1. A= { {1.2}, {1.3}} 

{1} is the only lower bound for A, 
so it is the greatest lower bound. 

A has 3 upper bounds: {1,2,3,4}, {1,2,3,5}, {1,2,3,4,5] 
However, A does not have a least upper bound. 

2. B={ {1,2,3,4}, {1,2,3,5}} 

B has 3 lower bounds: {1,2}, {1,3} and {1}. 
However, B does not have a greatest lower bound. 

{1,2,3,4,5} is the only upper bound forB, 
so it is the least upper bound. 
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A well-ordered set S is a partially ordered set that has the 
following additional property: 

Every nonempty subset of S has a least element. 

The positive rational numbers do not have a least element, so 
the set of rational numbers is not well-ordered. Neither is the 
set Z of integers nor the set U of real numbers. Each of these 
examples is a totally ordered set. Hence, a totally ordered set 
does not have to be well-ordered. 

On the other hand, a totally ordered set S that is finite must 
be well-ordered. Let A be a nonempty subset of S. Since A is a 
finite poset, A must have a minimal element (page 385). In a 
totally ordered set, a minimal element must be the least element 
(page 384). Therefore, A has a least element. So, every finite 
totally ordered set is well-ordered. We will now prove that 
every well-ordered set must be totally ordered. 

Theorem Let (5, ̂ ) be a partially ordered set. 
If S is well-ordered, then S is totally ordered. 

Proof Let S be a well-ordered poset. 
Let a and b be elements in S. 

Let C={a,b). 
Since S is well-ordered, C must have a least element. 

If the least element is a, then a ^ b. 
If the least element is b, then b 1 a. 

Hence, a 1 b or b ■<, a. 
Therefore, S is totally ordered. 

The archetypal example of an infinite well-ordered set is the set 
N of natural numbers. Every nonempty subset of N has a least 
element. This property of N is inherited from the step-by-step 
manner in which the natural numbers are constructed: 

0,1,2, 3 

Each natural number has an immediate successor. For b to be 
an immediate successor to a, b must be greater than a and there 
cannot exist an element x between a and b. 

In M, the immediate successor of 1 is 2. 

In R, 1 does not have an immediate successor. 

Well-Ordered Set 

Let 5 be a poset. 

S is well-ordered 

if and only if 

every nonempty subset of S 

has a least element. 

Let S be a poset. 

bison immediate successor to a 

if and only if 

a < b and there does not 

exist an x such that a<x< b. 
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Since 1 does not have an immediate successor in R, the follow-
ing set does not have a least element: 

A = { x in R | 1 < x } 

Suppose that c is the least element in A. 
Since ceA, 1 < c. Since 1 does not have an immediate 
successor, there exists a real number b such that 1 < b< c. 
Since 1 < b, Ь<вА. Since b < c, c is not the least elements 
in A. Contradiction! 

Using a similar argument, we can prove that if an element, 
other than the greatest element, does not have an immediate 
successor, the set cannot be well-ordered. This result is stated 
in contrapositive form in the following proof: if a set is well-
ordered, each element, other than the greatest element, will 
have an immediate successor. To find the immediate successor 
of a, we look at the set of all elements that are greater than a 
and take its least element. 

Theorem Let (S, ú ) be a well-ordered set. If a e S and a is not the 
greatest element in S, then a must have an immediate successor. 

Proof Assume that a is not the greatest element in S. 
Then there exists a d such that ~(d ̂  a). 
Since Sis totally ordered, a<d. 

Setr„={jc | a<x }. deTa,soTa* Q. 
Since S is well-ordered and T„ Ф 0, Ta has a least element. 
Let b denote the least element in T„. Since beTa, a<b. 

Claim: b is the immediate successor of a. 
Suppose that Jte S and a ■< x < b. 
Sincea<x,xeTa. 
Since b is the least element in Ta, b^x. 
By antisymmetry, c = b. Contradiction! 
Thus, it is not true that there exists a x in S such that 
a < x < b. So b is the immediate successor of a. 

Well-ordering implies immediate successors, but the converse 
is not true. For example, in the following totally ordered set, 
each element has an immediate successor, but S is not 
well-ordered: 

S={ -H «6N} = { . . . , } , i i , i , | } 



392 Chapter 4 Relations - The Action 

In a well-ordered set, we cannot have an infinite accumulation 
of elements in the downwards direction, but we can have an 
infinite accumulation of elements in the upwards direction. For 
example, the following set is well-ordered: 

T={l-i\ n e N } = { 0 , f | , - l , f ...J 

Well-Ordering Principle 

Well-Ordering Principle 
Every nonempty subset 
of N has a least element. 

Every nonempty subset of the set N of natural numbers has a 
least element. This property of the set of natural numbers is 
called the Well-Ordering Principle. There are an uncountable 
number of different subsets of N (page 298). Thus, the Well-
Ordering Principle applies to a vast universe of sets, which is 
the reason for its great power. In advanced math courses, you 
will develop an appreciation for the powerful reasoning tool 
provided by this deceptively simple sounding principle: every 
nonempty subset of N has a least element. The opposite ex-
treme, though, is not true. A nonempty subset of N does not 
have to possess a greatest element. 

In the construction of numbers, the set of natural numbers is 
our first contact with the mysterious realm of the infinite. Even 
though the natural numbers are unbounded at the top, the Well-
Ordering Principle gives us a firm grip on its lower side, which 
is the power of the Well-Ordering Principle. We may not have 
a largest element in a set of natural numbers, but we will 
always have a smallest element. It is surprising how useful that 
can be. 

Using the Well-Ordering Principle, we can derive the 
Principle of Mathematical Induction, and other powerful tools, 
such as the Division Algorithm and the Fundamental Theorem 
of Arithmetic. Actually, the Well-Ordering Principle is equiva-
lent to the Principle of Mathematical Induction. In a book 
devoted to the art of logical reasoning, it is appropriate that we 
close with a proof that two of the most powerful reasoning 
tools are logically equivalent. 

Theorem The Well-Ordering Principle is equivalent to the Principle of 
Mathematical Induction. 

Proof Assume that the Well-Ordering Principle is true. 

Let p(n) be an open statement about n. 
Assumep(l)istrue. 
Assume that for every positive integer n, p(n)=>p(n + 1). 
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Claim: For every positive integer n, p(n) is true. 

Let 7"= [jinN | p(j) is false} 

* Assume that T is not empty. 

By the Well-Ordering Principle, T has a least element. 

Let c denote the least element in T. 
Since c e Г, p(c) is false. 

Since p(l) is true, 1 £ T. So 1Ф c. 
Thus, c-\ is a natural number. 

Since c is the least element in T, c-\ £ T. 
So, p (c - l ) is true. 

By the second assumption, p(c-l) =>p(c). 
Thus p(c) is true. Contradiction! 

Thus, the * assumption is false: Tis empty. 
Thus, for every integer n, p(n) is true. 

Hence, the Principle of Mathematical Induction is true. 

Converse Assume that the Principle of Mathematical Induction is true. 

Let A be a subset of N. 
Assume that A does not have a least element. 
We will now demonstrate that A must be empty. 

Letp(n): For every positive integer j , if j < n, thenj£A. 

Since A does not have a least element, 1 £ A. So p( 1) is true. 

Let n be a positive integer. 
Assume that p(n) is true. 
Then li.A, 2«A, . . . , andnëA. 
If n +1 e A, then n + 1 is the least element in A. 
But we assumed that A does not have a least element. 
Thus, n + \£A. Sop(n + l)is true. 

So for every positive integer n, p(n) =>p(n +1). 

By mathematical induction, p(n) is true for every integer n. 
Thus, for every integer n,n£A. So A = 0. 

We have proved the following implication: 

If A does not have a least element, then A = 0. 

So, if A is not empty, then A must have a least element. 
Hence, the Well-Ordering Principle is true. 

Conclusion Therefore, the Well-Ordering Principle is equivalent to the 
Principle of Mathematical Induction. 
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Exercise 4.4 

1. Let R denote a relation on the set S. Define the following terms. 
a. R is a partial order on S. 
b. R is a total order on S. 
c. (S, R) is well-ordered. 

2. On the set 5, determine if ^ is a partial order, a total order, or a 
well-ordering. 
a. S = {it, -fr, 1.2, 3.4,2.0000004 } 
b. S = N 
c. S= {-1,-2,-3,-4,...} 
d. S = U+ 

e. S={2-i\ neN] 
f. S={2 + -k\ nsN) 

3. On the set S, determine if the subset relation is a partial order, a 
total order, or a well-ordering. 
a. S={{5), {3,4}, {3,4,5}, {3,4,5,6}} 
b. S ={[-1,1], [-2,1], [-3,1], [-4,1],... } 
c. 5= {{0}, {0,1}, {0,1,2}, {0,1,2,3},... } 
d. 5 = P(N), the power set of N. 

4. On the given set, determine if the divides relation is a partial order, 
a total order, or a well-ordering. 
&. N b. Z c. {2,4,6,8,12, 16} d. {2,4,8, 16,32} 

5. Let S = [a, b, c,d,e) If possible, give examples of the following: 
a. A partial order on S that is not a total order. 
b. A total order on 5. 
c. A total order on S that is not well-ordered. 

6. Is the given statement true? If not, give a counterexample. 
a. Every finite, partially ordered set is totally ordered. 
b. Every finite, nonempty, partially ordered set has a greatest 

element. 
c. Every nonempty, partially ordered set has a maximal element. 
d. Every finite, nonempty, partially ordered set has a maximal 

element. 
e. Every totally ordered set is well-ordered. 
f. Every well-ordered set is totally ordered. 
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7. A partial order on the indicated set is given by the Hasse graph. 

a d a d 

\ / \ / 
c c 

2 3 / \ / c A 

\ / b 
1 

(A,l) (B,<) (C,«:) 
a. List the ordered pairs in each relation. 
b. Find the least, greatest, minimal, and maximal elements. 
c. If possible, do two different topological sortings of each poset. 
d. For each poset, find a collection T of sets so that the poset is 

isomorphic to (T, £ ) . 

8. Order the set 5 with the subset relation. Then determine if (5, £ ) 
is isomorphic to any of the posets in the previous exercise. 
a. S={{7}, {7,11}, {7,11,8}, {7,8}} 
b. S= {{1,2}, {1,3}, {1,2,5}, {1,2,5,9}, {1,3,4,7,8} } 

c. S= {{1,2}, {1,3}, {1,2,5}, {1,2,5,9}, (1,3,4}, {1,3,4,7,8} } 

9. Draw a Hasse graph of a poset S with the given property. 

a. S has a greatest element, but no least element. 

b. 5 has a minimal element, but no least element. 
c. S has a maximal element, but no greatest element. 
d. S has 3 minimal elements and 4 maximal elements. 

10. Order the following sets with the subset relation. 
S={{2], {2,3}, {2,3,5}, {2,3,5,9} } 
T= {{2}, {2,3}, {2,3,6}, {4,5,6}, {2,3,5,6} } 
V = P({ 1,2,3,4}) (Vis the power set.) 

a. Draw a Hasse graph of each poset. 

b. Find all least, greatest, minimal, and maximal elements. 
c. If possible, do two different topological sortings of each poset. 

d. Determine if the relation is a total order or a well-ordering. 

11. Order the following sets with the divides relation. 
S= { ninI4J| ndivides 18 } 
T={ niaN\ «divides 32 } 

W = { n in N ] n divides 48 } 
a. Draw a Hasse graph of each poset. 

b. Find all least, greatest, minimal, and maximal elements. 

c. If possible, do two different topological sortings of each poset. 
d. For each poset, find a collection T of sets so that the poset is 

isomorphic to (Г, Q . 
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12. Prove the following. 
a. A poset can have at most one least element and at most one 

greatest element. 

b. If a poset has a greatest element, it is the only maximal element 
in the set. 

c. In a totally ordered set, a minimal element must be the least 
element in the set and a maximal element must be the greatest 
element in the set. 

13. Prove the following theorem using a proof by contradiction. 

Theorem: A finite nonempty poset must have a minimal element. 

14. Find all lower and upper bounds for the set 5 in U. Then 
determine if S has a greatest lower bound or a least upper bound.. 

a. 5 = (2,3) b. 5 = [1,5) c. 5 = { x \ x is rational and x2 > 2 } 

15. Let S= {{1,3,4), (1,2,3) ). Find all lower and upperbounds for 
S in the given set U with the subset relation. Then determine if 5 
has a greatest lower bound or a least upper bound. 

a. Í /={0,{1), {2}, {3), {1,2}, {1,3}, {1,2,3}, (1,3,4)} 
b. U= {0,{1}, (2), {3}, {1,2}, {1,2,3}, {1,3,4}. {1,2,3,4,7}) 

16. Let < be a partial order on S. Consider ways to define a partial 
order 3 on S x S that is related to 3. Let a, b, c, and d be in S. 
a. Define: (a, b) < (c, d) if and only if a-^coxb-^d. 

Is < a partial order on S x S ? Justify your answer. 
b. Using 1, define a partial order < on 5 x 5 by modeling the 

lexicographic ordering used in a dictionary. 
(a,b) đ (c,d) if and only if . Justify your answer. 

c. Define another partial order on S X S. Justify your answer. 

17. (U, 1) is a partially ordered set, S £ U, and TQ U. 
Check your language skills by translating the following. 

a. S has a least element. Tdoes not have a least element. 

b. 5 has a maximal element. T does not have a maximal element. 

c. S has a lower bound in U. T does not have a lower bound in U. 

d. S has a greatest lower bound in U. T does not have a greatest 
lower bound in U. 

e. S has an upper bound in U. 

f. S has a least upper bound in U. 

18. Let U be a set of posets, and let (S, < ) and( T, < ) be partially 
ordered sets that are in U. Prove that the isomorphic relation is an 
equivalence relation on U. 

S=íT if and only if (S,^) is isomorphic to (Г,<). 
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Relation 

Domain 

Range 

Inverse relations 

n-ary relation 

Embeds a structure between two sets by giving a connection be-
tween various elements. A relation R from X into Y can be 
described as a mapping where some of the elements in X are 
mapped to some of the elements in Y. It can also be viewed as a 
set of ordered pairs whose first terms come from X and whose 
second terms come from Y. Mathematical activity has always 
focused on relations. In the reasoning process, we are usually 
trying to figure out how various objects may be related to each 
other. When we work with a set, we do not individually 
analyze its elements; instead, we compare the set with other 
sets by looking for relations between them. Within the grand 
house of mathematics, there are many diverse areas of study, 
but within each area, the focus is on relations. Mathematics can 
be described as the study of relations. 

The set of all first terms of the ordered pairs in a relation R. 

The set of all second terms of the ordered pairs in a relation R. 

A relation obtained by reversing the order of a given relation. 
aR'lb if and only if bfía. 

Every relation has an inverse relation. 

A set of ordered n-tuples. A subset of a cross product of n sets. 

Graph A visual representation of a relation where we use points in a 
coordinate plane to represent the ordered pairs in a function. 

Directed graph A visual representation of a relation where the mapping is 
represented by arrows, with each member of the domain and 
range listed only once. Consequently, some of the arrows may 
be chained together. 

Matrix A rectangular array used to represent a finite relation. Matrices 
have a wide range of applications. 

Reflexive relation 

Transitive relation 

Symmetric relation 

A relation R on a set 5 that has the following property: for 
every a in S, a Ha. Each element is related to itself. 

A relation R on a set S that has the following property: for 
every a, b, and c in S, if a R b and b R c, then a Re. 

A relation R on a set S that has the following property: for 
every a and b in S, if a R b, then b R a. The order of the 
elements does not affect the relation. 
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Equivalence relation 

Equivalence class - [a] 

Partition 

Congruence mod n 

A relation on a set S that is reflexive, transitive, and symmetric. 
The set of equivalence classes of an equivalence relation parti-
tions the set S into nonoverlapping subsets. An equivalence 
relation identifies a property that makes elements essentially 
the same with respect to that property, such as the property of 
"having the same size and shape." "Is congruent to" and "is 
similar to" are important equivalence relations between figures. 
Congruence mod n is an important equivalence relation 
between integers. "Has the same size" is a very important 
equivalence relation between sets. "Is isomorphic to" is an 
extremely important equivalence relation between structured 
sets, such as partially ordered sets. 

The set of elements related to a by an equivalence relation R on 
a set S. Let a be in S. [a] = {x in S \ a R * } . Related elements 
have the same equivalence class: if a R b, then [a] = [b]. Ele-
ments in the same equivalence class are considered as essen-
tially the same with respect to the relation. 

A subdivision of a set into nonoverlapping subsets. A partition 
P of a set S is a collection of nonempty subsets of S where each 
element in S is in one and only one of the subsets. Each parti-
tion of a set has an associated equivalence relation. 

An equivalence relation on the set Z of integers, a ■ „ b if and 
only if n divides a - b. If r is the remainder when we divide x 
by n, then x =„ r. Congruence mod n partitions the set Z of 
integers into n equivalence classes, which we notate as Z„: 

Z„={[0] , [1] , [2] , [3] [ „ _ ! ] } 

Function 

Function notation 

Domain 

Range 

Equal functions 

Into function 

/ i s & function from X into Y if and only if/maps each element 
in X to a unique element in Y. If a = b, then f{a) = f(b). 

f{x) denotes the value assigned to x by the function / . The 

following have the same meaning: f(x) = y, x-*y, (x,y) e / . 

The set of elements for which a function/is defined. 
x is in the domain of /means that f(x) is defined. 

The set of images of elements in the domain, y is in the range 
of a function / if and only if there exists an x in the domain 
such that y = f(x). 

Two functions that have the same domain and the same 
function values for each element in the domain. f=gif and 
only if f{x) = g(x) for all x in the domain. 

/maps X into Y if and only if for each x in X, f(x) is in Y. 
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Ontofunction 

One-to-one function 

Injection 

Surjection 

Bijection 

Image of a set 

Inverse function 

Composition of functions 

Restriction of a function 

Extension of a function 

Identity function 

Binary operation on S 

Well-defined 

/maps X onto Y if and only if the range of/is Y. For each y in 
Y, there must exist an x in X such that/(x) = y. 

A function that maps different elements to different images, / i s 
a one-to-one function if and only if for every a and b in the 
domain of/, if аФЬ, then/(a)*/(è). A one-to-one function has 
an inverse function. 

A one-to-one function. 

An onto function. 

A one-to-one and onto function. 

The set of images of individual elements in a set under a 
function. f(A) = {f(x) | xeA ) . ye / (A) if and only if there 
exists an x in A such that/(x) = y. 

The inverse relation of a one-to-one function. 
Let/ be a one-to-one function that maps X onto Y. 
Then/"1 is a one-to-one function that maps Y onto X. 

/ - ' (a) = b if and only if f(b) = a. 
For every a in X, f~[(f(a)) = a. 
For every b in Y, f(f-\b)) = b. 

A function formed from two functions / and g where/maps X 
into Y and g maps Y into Z. If x is in X, g °f(x) = g(f(x)). 

The composition of two injections is an injection. 
The composition of two surjections is a surjection. 
The composition of two bijections is a bijection. 

If/and g have inverse functions, (g of)'1 = / " ' o g~l. 
Composition of functions is associative: (hog)of=ho(g of). 

A function whose domain is restricted to a subset of the original 
domain, but using the same mapping. 

A function whose domain is extended beyond the domain of the 
original function, while preserving the original mapping. 

A function that maps each element to itself: e(x) = x. 
The identity function is dependent on its domain. 
eA denotes the identity function on the set A. 

A function that maps SxS into S. A binary operation maps 
each pair of elements in S to an element in 5. 

A definition that is logically acceptable. A "well-defined 
function" means that the definition produces a function. A 
"well-defined set" means that the definition produces a legiti-
mate set, one whose members can be determined. 
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Antisymmetric relation 

Partial order 

Poset 

Strict order 

Total order 

Hasse graph 

Isomorphic structures 

Least element 

Greatest element 

A relation R on a set S that has the following property: 
For every a and b in S, if a R b and bfía, then a = b. The only 
time we'can reverse the order is when the elements are equal. 

A relation that is reflexive, transitive, and antisymmetric. 
Instead of arranging elements in egalitarian equivalence classes 
where everyone is essentially the same, a partial order embeds 
a hierarchical structure on a set. Given any example of a 
partial order on a set S, such as "divides" or <, we can produce 
an isomorphic copy of it using the subset relation. 

A partially ordered set. A set that has a partial order relation 
defined on its elements. 

A transitive and antisymmetric relation that has no element 
related to itself. Every partial order (<) has an associated strict 
order: a < b if and only if a < b and a Ф b. 

A partial order in which each pair of elements are comparable. 
For every a and b in the set S, a < b or b < a. 

A minimalist graph of a partially ordered set in which its 
directed graph is positioned so that all arrows point upwards, 
then we omit the arrowheads, the loops that can be deduced by 
reflexivity, and the arrows that can be deduced by transitivity. 

Two structures that have the same form, which means that one 
structure can be relabeled to produce the other structure. For 
posets, (S, <) is isomorphic to (T, <) if and only if there exists 
a bijection/ from S onto T that preserves the order on 5: 

For every a and b in S, if a ̂  b, then f(a) < f(b). 
The function / is called an isomorphism. An isomorphism 
preserves the order relation. If two elements are related in S, 
their images must be related in T. 

The smallest element in a poset (S, <,). b is the least element of 
S if and only if be S and for every x in S, b < x. A partially 
ordered set can have at most one least element. If b is the least 
element in S, b is the only minimal element of S. In a totally 
ordered set S, a minimal element is also the least element in S. 

The largest element in a partially ordered set (S, <). b is the 
greatest element of S if and only if b € S and x<b for all x in S. 
A partially ordered set can have at most one greatest element. 
If b is the greatest element in S, b is the only maximal element 
of S. In a totally ordered set S, a maximal element is also the 
greatest element in S. 
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Minimal element An element in a poset S that has no other elements before it. 
b is a minimal element of S if and only if b e S and for every x 
in S, if x ^ £, then x = b. A nonempty poset that is finite must 
have at least one minimal element. 

Maximal element An element in a partially ordered set S that has no other ele-
ments after it. b is a maximal element of S if and only if b e S 
and, for every x in S, if b < x, then x = b. A nonempty poset 
that is finite must have at least one maximal element. 

Lower bound b is a lower bound for S if and only if for every x in 5, b < x. 
Unlike a minimal element, a lower bound does not have to be 
in S. The greatest lower bound of S is the greatest of all the 
lower bounds of S. 

Upper bound b is an upper bound for S if and only if for every x in S, xl b. 
Unlike a maximal element, an upper bound does not have to be 
in S. The least upper bound of S is the least of all the upper 
bounds of S. 

Topological sorting The embedding of a poset in a totally ordered set. We start 
with a partial order and construct a total order from it, preserv-
ing all the relations of the partial order. Let < be a partial order 
on S and < be a total order on 5. < is a topological sorting for 
:< if and only if for every x and y in S, if x < y, then x < y. 

Immediate successor An element that comes after another element with no other 
elements between them. In a poset, b is an immediate successor 
to a if and only if a < b and there does not exist an x such that 
a<x<b. 

Well-ordered set A partially ordered set in which every nonempty subset has a 
least element. A well-ordered set must be totally ordered. In a 
well-ordered set, every element, except for the greatest 
element, has an immediate successor. The set of natural 
numbers is well-ordered, but the set of real numbers is not. 

Well-ordering principle Every nonempty subset of the set N of natural numbers has a 
least element. 
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The ability to reason depends on the ability to both visualize 
and verbalize. The human thought processes seem to thrive on 
visuals which give us ideas that we can then verbalize and 
develop in a careful and logically correct manner. We 
conclude this book with a brief visual/verbal summary of the 
three special types of relations that are used throughout all of 
mathematics. 

• A relation can be viewed as a mapping between two sets 
where a R b indicates that a is mapped to b. 

• Functions allow us to compare sizes and structures of 
sets, and move from one set to another via the f(x) 
notation. 

• Equivalence relations enable us to divide a set into 
nonoverlapping subsets. 

• Order relations enable us to arrange the elements in a set 
in a hierarchical structure. 

Mathematics is the study of relations. 
an b 

Ф Л \ 
a R b can be interpreted as 

"a is essentially the same as b 
with respect to R." 

a R b is interpreted a R b can be interpreted as 
isf(a) = b. "a is before b." 
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1. Define the following terms, give examples of each, and determine 
if a given example satisfies the definition. 
a. relation, domain, range, inverse relation 
b. reflexive, transitive, symmetric, and antisymmetric properties 
c. equivalence relation, equivalence classes, partition 
d. function, domain, range, equal functions, image of a set 
e. onto function, one-to-one function, injection, surjection, 

bijection, inverse function, composition of two functions 
f. partial order, total order, well-ordered set, isomorphic posets 
g. least & greatest elements, minimal & maximal elements, upper 

& lower bounds, greatest lower bound, least upper bound 

2. Given a specific relation, illustrate it as a mapping, a set of ordered 
pairs, a graph, a directed graph, and a matrix. 

3. Explain why the following are true: 
a. Every relation has an inverse relation, but some functions do 

not have an inverse function. 
b. For every relation R, domain (FT1) = range (R) 
c. For every relation R, (R~')~' = R. 

4. Let R be an equivalence relation on a set S. Let a and b be 
elements in S. Prove the following: 
a. liaHb,then[a] = [b]. 
b. If ~(a R b), then [a] f| [b] = 0. 
c. [a] = [b] or [a]f\[b] = 0 
d. The set of all equivalence classes of R is a partition of S. 

5. Given a partition of a set, define an equivalence relation on S 
whose equivalence classes are the members of the partition. 

6. Define the relation R on the set N of natural numbers as follows: 
a R b if and only if 7 divides a-b. 

a. Prove that R is an equivalence relation on S. 
b. What are the equivalence classes of R? 

7. Give an example of a relation that is not a function. 
Explain why function notation cannot be used with your example. 

8. Discuss the following: 
a. The difference between the notation/and the notation f(x). 
b. What does it mean to say that a function is well-defined? 
c. Under what conditions does a function have an inverse 

function? Explain why. 
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9. Explain how addition, multiplication, and division can each be 
interpreted as a function. Give the domain and range of each. 

10. Use a mapping picture to illustrate the following: 
a. A function that is not one-to-one. 
b. A function that is not onto. 
c. The composition of two functions. 
d. Two functions whose compositions cannot be formed. 
e. If/and g have inverse functions, then (g °/)~' = /" ' ° g "'. 

11. Given a specific function / that maps X into Y, prove or disprove 
that/is one-to-one or that/maps X onto Y. 

12. Let / : X->Y and g:Y->Z. Prove the following: 
a. If/and g are surjections, then g of is a surjection. 
b. If/and g are injections, then g «/is an injection. 
c. If /and g are bijections, then g °/is a bijection. 

13. Let S = {/ | / : R—+ R }. Is the composition of functions 
commutative on S? Justify your answer. 

14. Given/: X—► Y, compute/(A) where A £X. 

15. Let/: X—* Yand let A and B be subsets of X. Prove or disprove: 
a. IfA£fl,then/(A)C/(fi). c. /(A Л B) £ /(A) П f(B) 
b. /(A UB) = /(A) U ДЯ) d. /(A) П /(B) £ /(A П Я) 
c./(.иА,)=и/(А,) 

16. Given a partially ordered set (S,<): 
a. Draw a Hasse graph of the given relation on S. 
b. Find all least, greatest, minimal, and maximal elements, and 

lower and upper bounds. 
c. Construct a topological sorting of S. 
d. Find a collection T of sets so that (T, £ ) is isomorphic to S. 

17. Prove the following. 
a. Every partially ordered set is isomorphic to a set of sets that 

are ordered by the subset relation. 
b. A partially ordered set can have at most one greatest element. 
c. A greatest element in a poset is its only maximal element. 
d. In a totally ordered set, a maximal element is the greatest 

element in the set. 



Beneath the effort directed toward the accumulation of 

worldly goods lies all too frequendy the illusion that 

this is the most substantial and desirable end to be 

achieved; but there is fortunately, a minority composed 

of those who recognize early in their lives that the most 

beautiful and satisfying experiences open to human 

kind are not derived from the outside, but are bound 

up within the development of the individual's own 

feeling, thinking and acting. The genuine artists, 

investigators and thinkers have always been persons of 

this kind. However inconspicuously the life of these 

individuals runs its course, none the less the fruits of 

their endeavors are the most valuable contributions 

which one generation can make to its successors. 

Albert Einstein 

In Memory of Emmy Noether, 1935 



Ф Appendix A 

Selected 

Answers 

Exercise Set 1.1 

1. x(a + b)=xa+xb 
3. 3 is less than x and x is less than 5. nouns: x, 3,5; 

verb: is less than; logical operator: and 
5. a. Yes b. Yes c. No d. Yes 
7. a. Statement b. Open statement c. Neither 

d. Statement e. Statement f. Neither 
9. a. False b. True c. True d. False 

11. a. True b. False c. False d. True 

Exercise Set 1.2 

1. a. False, true b. False, true 
c. True-stronger, true d. True-stronger, true 

3. a. A={l,2},B={3,4},C={4,6) 
5. pixy): x+y = 3 

a. True b. True c. True d. False 
7. a. False. There exists a real number* such that 

3**4. 
b. False. There is a real number x such that 

3* = 4. 
c. False. For every real number*, x**-l. 
d. False. There exists a complex number* such 

that*2=-l. 
e. False. For every real number y, there exists 

an * such that *+y * 4. 
f. False. For every integer >>, there exists a real 

number * such that yzx. 

9. a. There exists an integer,y such that for every real 
number*, g(*)*y. 

b. There exists a y in B such that for every * in A, 
Дх)*у. 

c. There exist sets A and B such that for every 
function/i/does not map A onto B. 

Exercise Set 1.3 

1. a. ~q => ~p b. p and ~q 
c. ~p => q, ~q =>p. d. ~p and ~q 

3. a. If*«5, then*<M. xiAatxsB. 
b. If*iS,теп*еЛ. хеАотхеВ. 

5. a. True b. False c. True d. True 
e. False f. False. 

7. a. If not r, then s. b. If r, then s. 
c. If*iC,then*eD. d. If*e C,then*eD. 

9. a. 3 ž * or*^7. b. * ž 3 and*^7 
c. *e^and* i5 . 
d. There exists an* such that * < 7 and*^3. 
e. There exists an * such that xe C and *£ B. 
f. There exists an * such that | * -11 < 4 and 

|Д*)-Д1) |еЗ . 
11. a. p => q is false only when/) is true and q is false. 

b. Suppose that/? or ç is true. 
Then if p is not true, q has to be true. 

13. components-cases: 2- 4, 3-8,4-16, 5-32, и-2" 
15. a. 10010 b. 11011 c. 01001 d. 1011 
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Exercise Set 1.4 

1. a. * (p=>q)<=>(~q=>~p) 

p 

T 

T 

F 

F 

q 

T 

F 

T 

F 

-я 
F 

T 

F 

T 

~P 

F 

F 

T 

T 

~q=>~p 

T 

F 

T 

T 

p=>q 

T 

F 

T 

T 

* 

T 

T 

T 

T 

3. a. If x is not in A, then x is not in C. 
b. If x is not in C, then x is in B. 

5. a. xeA andxi 5 b. xeCand хеЛ 
c. Z6/Í or zeB d. xeCandxiZ) 
e. | лг-2 | < <5 and |/(лг)-/(2) I Š e 
f. (xiDandxeB) or (xeDandxifi) 

7. a. ziX, or z«y and z«Z 
b. There exists an x such that x í C and xeD. 
c. There exists an x such that xc С and there 

exists an x such that xs£). 
d. For all x, x is not in A or x is not in fi. 
e. For all x, x is not in A or for all x, x is not in B. 

9. a. Yes b. No. p-?,q-T c. Yes 
d. No. p-T,q-F e. Yes f. No. p-¥,q-T 

11. No. The 1st sentence is false and the 2nd is true. 
13. a. No. Л={1},5={2} b. Yes c. Yes 

d. No. Let A = {1} and B be all real numbers 
except for 1. 

Exercise Set 1.5 

1. a. f. c. See page 79 

3. a. p b. ~q c. q Л r d. ~(p Л ?) 

Exercise Set 1.6 

1. a. There exists an x such that * is in A and 
x is in B. 

b. For every x, if x is in A, then x is in B. 
c. There exists an x such that x is not in A 

or x is not in 5. 
d. x is in Л and x is not in C. 
e. For every x, ifxisinS, then* is in Л. 
f. If x is in A, then x is in B. 

3. a. mn is even if and only if there exists an 
integer k such that mn = 2k. 

b. m + n is even if and only if there exists 
an integer k such that m + n = 2k. 

c. m2 is even if and only if there exists 
an integer k such that m2 = 2k. 

5. a. g maps X onto Z if and only if for each z in 
Z, there exists an x in ЛГ such that g(x) = z. 

b. /maps У onto A" if and only if for each x in 
X, there exists a y in У such that/(y) = x. 

7. a. x is an odd number if and only if there 
exists an integer k such that x = 2k + 1. 

b. a is a factor of 6 if and only if there 
exists an integer k such that Ь = ak. 

c. Same as part (b). d. Same as part (b). 
9. a. For all distinct real numbers a and b, 

there exists a real number c such that 
a<c<b or b<c<a. 

b. For all integers a and ò, if a is even 
and b is even, then a + b is even. 

c. Forallx, if |дг-3 |<J, then |/(x)-/(3)|<e. 
d. For all real numbers a and b, if a < b, 

then /(a) </(*). 
e. There exists а с in 5 such that 

for every xinS,x<,c. 
f. There exists a c in 5 such that 

for every x in S,c£x. 
11. a. There exists an element u such that 

for every x in S, x й и. 
b. For every element u, there exists an x in S 

such that jc > u. 
c. For every upper bound u of 5, m < u. 

13. a. For all integers x, y and z, 
x + 0+z) = (x+.y)+z. 

b. There exists an integer c such that for every 
integer x, x + c=x and c+x = x. 

c. For every integer x, there is an integer b such 
that jc + b = candò+;c = c. 

15. a. xRx (ReflexiveProperty) 
b. IfxRy, then^Rx. (SymmetricProperty) 
c. If xRy and>>Rz, thenxRz. (Trans. Property) 

Chapter Review 

3. A statement is either true or false. An open 
statement has variables and is neither true nor false, 
but it does become either true or false when 
a substitution is made for each variable. 
Not all sentences with variables are open 
statements. If each variable is bound with a 
quantifier, the sentence is a statement. 
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7. The truth values for the contrapositive are identical 
to the truth values of for the implication; however, 
the truth values for the converse are different. To 
say thatp=><7 is true means that ifp is true, then q 
has to be true. So, if q is false, thenp has to be 
false. Thus, ~q=>~p is true. 

9. a. For all integers x, if x is not even, then x is odd. 
b. If x is not in D, then x is in E. 

11. Yes. 
13. a. x is not even <=> for every integer n, x Ф 2n. 

b. x is not rational <=> for all integers/? and q, 
x*j. 

d. xf£A\jB <=> xíA anàxíB 
e. х£АГ\В <=> xiAoTxtB 
f. A S£ B «r> there exists an x 

such that xeA and x «■ B. 
i. S does not have a largest element <=> for every 

m in S, there exists anx in Ssuch that x~z.ni. 
j . / i s not a Junction <=> there exists a and b in the 

domain of/such that a = 6 and/(a) *f(b). 
k. / i s not a one-to-one function <=> 

there exist a and b in the domain of/ 
such that a Ф b and/(a) =f(b). 

1. /does not map A" into Y <=> there exists 
an x in A" such that/(x) is not in Y. 

m./does not map X onto Y <=> there exists 
ayinY such that for all x in X,f(x) *y. 

n. y еДА) <=> for all x in Л,/(х) Фу. 
o. The function/is not increasing on [a, b] <=> 

there exists c and </ in [a,b] such that 
c < d and/(c) ž/(d). 

p. The function/is not continuous at x = a <=> 
there exists a positive £ such that 

for every positive S, there exists an x such that 
|x-e|<<5 and |/(x)-A«)l **• 

15. a. x2 is even <=> there exists an integer n 
such that x2 = 2w. 

c. A maps Y onto A' <=> for each x in A", 
there exists a y in Y such that A (y) = x. 

d. go/maps A" onto Z c» for each z in Z, 
there exists an x in Xsuch that g °/(x) = z. 

e. x€g(Q <=> there exists a c in C 
such that g(c) = x. 

19. a. There exists an integer k such that n = 2k. 
b. There exists an integer k such that n = 2k+\. 
c. There exists an integer k such that m = nfc. 
d Same as part (c). f. There exists a b in S 

such that for every x in S,x£b. 

Exercise Set 2.1 

1. a. Not valid b. Valid c. Not valid 
d. Not valid e. Not valid f. Valid 
g. Valid h. Valid i. Valid 

c. Valid d. Not valid 3. a. Not valid b. Valid 
5. a. Not valid. > 

b. Valid 
c. Valid 
d. Not valid 

7. a. Therefore, ifxeA,thenxeC. 
b. Therefore, x й C or x e. D. 
c. Therefore,xiA andxiB. 
d. Therefore, дг is in D. 
e. Therefore,xeA. 
f. Therefore, x £ A. 
g. Therefore, x e D and x £ £. 
h. Therefore, x is in A if and only if x is in B. 

11. a. No b. No c. Yes d. No e. No. 
f. Yes g. Yes h. Yes i. No 

13. a. There exists positive integers a and b such 
\haXn=ab, a*\,a*n. Also, b* 1 г.\лАЬ*п. 

b. a = 1 or a -= n. 
15. /(n) represent the number of eggs on the «th day. 

a. f(n) = 2n /(90)= 180 
b. /(я) = 2/1+1 /(90)= 181 
c. /(«) = 2" /(90) = 250 

d. /(л) = 2"-1 /(90) = 290-1 

Exercise Set 2.2 

1. a. Let m and n be integers. 
Direct: Assume m and л are odd. . . . 

Then, mn is odd. 
Indirect: Assume mn is not odd. 

. . . Then, m is not odd or n is not odd. 
b. Let m and n be integers. 

Direct: Assume mn is odd. . . . 
So, in is odd and n is odd. 

Indirect: Assume m is not odd or n is not odd. 
. . . Then, mn is not odd. 

c. Direct: Assume that a is not a factor of b + c ... 
So, a is not a factor of b or a is not a factor of c. 

Indirect: Assume a is a factor of b and a is a 
factor of c. . . . So, a is a factor of b + c. 

d. Direct:Assume that x and y are rational.... 
So.x+y is rational. 

Indirect: Assume thatx+y is irrational. 

http://x~z.ni
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. . . Then x is irrational ory is irrational. 
3. Let x and y be numbers. 

a. Assume that xi A. ... 
Then.xeS. So,xeA orxeB. 

b. Let x be an integer. Assume that x is not even. 
. . . Then, x2 is odd. So, x is even or x2 is odd. 

5. a. Assume that x and y are even. Then there exist 
integers j and k such that x= 2/ andy = 2k. 
So,x+y = 2(j + k). Setm=j+k. 
Sincey and k are integers, m is an integer. 
x+y = 2m. Sox+y is even. 

c. If an integer is not even, it must be odd. We can 
use the contrapositive of 5a, phrasing it as 
follows: If x+y is odd, then x is odd oty is odd. 

Exercise Set 2.3 

1. a. There exists an integer k such that x= 2k + 1. 
b. There exists an integer k such that xy = 2k + 1. 
c. There exists an integer k such that b = ka. 
d. There exists an integer k such that b + c = ka. 

3. Structure: Let a and b be real numbers. 
Assume that a < b. 
So, a < *¥- and £$L<b. Thus, a < *f- < b. 

Middle Part: Add a to both sides of the inequality 
Since a<b, a + a<a + b. 

So, 2a<a + b. Thus a < ■ 
Since a < b, a + b<b + b. 

a + b 
2 • 

So, a + b < 2b. Thus • <b. 

Exercise Set 2.4 

1. a. There exist integers a and b such that jr= -g-. 
b. There exist integers a and b such that x+y = f. 
c. There exist integers a and 6 such that f = f. 
d. For all integers a and b, x Ф j . 

3. a. True: Lety be a real number. Set *0 = 7-2y. 
Then*„ + 2y = ( 7 - 2y) + 2y = 1. 

b. False: Let x be a real number. Set>'o=^f;£-. 
Then x + 2y0 = x + 2- *Y~ = x+8 ~x= 8-
So, x + 2vo * 7. Thus, for every real number x, 
there exists a real number y such that * + 2y * 1. 

c. False: Let x be a real number. 
Set_y0=;t-1. T h e n j O x - l . SO,A:>>'(,. 
Thus, for every real number x, there exists a 
real number y such that jcs.y. 

d. True: SetJc0=-2. Lety be a natural number. 
Then Xo < y. 

5. False: Setj/ = —1. Let x be a real number. 
Thenx^O. So/(x)* - 1 . 

7. a. False: Setx = - 1 . 2 ( - l ) > 3 ( - l ) . 
b. True: Let;t>0. Set.y=f. 

Since x is positive, y is positive, j <x. 
So, there is no smallest positive real number. 

c. True: Let x be a number in the interval (3,5). 
Set>> = ^j-. y is the average of 3 and*, 
which is halfway between x and 3 (see 8b). 
So, 3 <y < x. Thus, the interval (3,5) 
does not have a smallest element. 

9. Let a and b be rational numbers with a < b. 
Set xa = ^j-. Since a and b are rational, 
a + b is rational. The quotient of two rational 
numbers is rational, so - ^ is rational. 
Claim: a <x0. 

Since a < b, a + a<a + b. So 2a < a + b. 
Thus a<sf-. 

Claim: x0 < b. 
Since a <b, a + b<b + b. So a + b <2b. 
Thus MYL<b. 

So, x0 is between a and b. 
11. a. Yes. Let a and 6 be distinct rational numbers. 

There exists a rational number xo between a and 
b. There exists a rational number Xi between a 
and xo. There exists a rational number xi 
between a andxi. 

b. No. JI is not a rational number (page 170). 

Exercise Set 2.5 

1. a. Suppose that(x + 2)(x- 4) > 0. 
Both factors are positive or both are negative. 
Case 1: Assumex+ 2 > 0 a n d x - 4 > 0. 

So ,x>-2andx>4 . 
This is equivalent to x> 4. 

Case 2: Assumex+2 < 0 andx - 4 < 0. 
So ,x<-2andx<4 . 
This is equivalent to x<-2. 

Since either Case 1 or Case 2 must occur, the 
solution to the original inequality is: 

x > 4 o r x < - 2 . 
b. Assume (x - 3)(x - 4) < 0. One factor must be 

positive and the other one negative. 
Case 1: Assume that x - 3 < 0 a n d x - 4 > 0 . 

So, x< 3 and x> 4. This is impossible, so 
this case will not occur. 

Case 2: Assume that x - 3 > 0 and x - 4 < 0. 
So, x> 3 and x< 4. Hence the solution for 
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thiscaseis3<x<4. 
Since Case 1 or Case 2 must occur, the solution 
to the original inequality is: 3 < x< 4. 

c. Assume that x2 - 9 > 0. So (x - 3)(x+3) > 0. 
Both factors are positive or both are negative. 
Case 1: Assume;c-3>0and;c+3 >0. 

Thenx>3 and x>-3. 
This is equivalent to x> 3. 

Case 2: Assumex-3 < 0 and JC+3 < 0. 
Thenx<3 and x<-3. 
This is equivalent tojc<-3. 

Since Case 1 or Case 2 must occur, the solution 
to the original inequality is: x< - 3 or x> 3. 

3. a. Let л be an integer. 
Then л is even or л is odd. 
Case 1: Assume л is even. Then there exists 

an integer k such that n = 2k. So, 
n2-n = (2k?-2k = 2(2k2-k). 
Set./ = 2A2 - k. Then л2 - л = 2/. 
Since A: is an integer, j is an integer. 
Therefore, пг-п is even. 

Case 2: Assume that л is odd. Then there 
exists an integer k such that n= 2k +1. 
So,n2-n = (2A+l)2-(2*+l) 

= 4*44*+1 -2k-1 = 2(2k*+k) 
Set; = 2Л2 + *. Then л2 - л = 2/. 
Since * is an integer, j is an integer. 
Therefore, n2-n is even. 

Since either Case 1 or Case 2 must occur, 
л2-л is always an even number. 

Exercise Set 2.6 

1. a. Assume that 1 + JI is rational. 
Since the sum of two rational numbers is rational 
(page 157), (1 + Д ) + (-1) is rational. 
So JJ is rational. Contradiction! 
Thus, 1 + JT is not rational. 

c. Hint: Prove the contrapositive. 
Assume that x+v is rational. 
. . . (How do you prove an or-statement?) 

So, x is irrational oty is rational. 
d. Hint: Is - Д irrational? 

3. a. Yes. Yes. No. 
7. a. Let r be a line through the point P that is per-

pendicular to the line /. 
Suppose that s is a line 
through P perpendicular 
to t. Let A denote the 

intersection of/ with r and B denote the 
intersection of/ with s. Suppose that A * B. 
Then AABP has more than 180 degrees. 
Contradiction! Therefore, A = B, 
and hence, r = s. 

Exercise Set 2.7 

1. b. Letp(n): 2+4 + 6 + . . .+ 2л = /»(и+1). 
The proof is similar to the proof on page 178. 

d. Z2i = 2 + 4 + 6 + . . . + 2n 

3. a. 3,11,19,27,35 b. i„ = 3 + (n-1)8 = 8/1-5 
c. Similar to the proof on page 183. 

7. a. Z2' b. IT7 c. S ттгЬт 

9. a. Let5„ = 2 + 22 + 23 + . . . + 2". 
25„= 22 + 23 + . . . + 2" + 2n+1 

So, 2S,-S, = 2"+l-2. Hence,5»= 2"+I-2. 
11. b. Similar to the proof on page 180, 

or the proof in (13). 
13. Let p(/i) represent the following sentence: 2" < n! 

Let и be an integer such that n ž 4. 
Assume p(n) is true: 2" < n! 

(n + l)2" < (л+1)л! 
Sinceл>1, 2<л+1. So,2(2")<fa+l)2". 

By transitivity, 2 (2") < (л +1) л!. 
So, 2"+l < (« +1)! Therefore, р(л + 1) is true. 

So, р(л) => р(л +1) for n ž 4. 
15. Letp(n): n is even or л is odd. 

Let л be an integer. Assume p(ri) is true. 
Then л is even or л is odd 
Case 1: Assume л is even. Then n = 2k for some 

integer *. So, л +1 = 2k +1. Thus, л +1 is odd. 
So, л +1 is even or n +1 is odd. 
Hence, p(n +1) is true. 

Case 2: Assume л is odd. Then n = 2k+1 for 
some integer *. So, л +1 = 2k+ 2 = 2(*+l). 
Thus, л +1 is even. So, л +1 is even or л +1 is 
odd. Thuspfa+l)istrue. 

In either case.pfa +1) is true. 8о,р(л) =>р(л +1). 

Exercise Set 2.8 

13. Undefined terms: not, or 
Definition: pandq means not (not p or notq). 
Definition: p implies q means (notp) or q. 
Definition: p is equivalent to q means 

p implies q and q implies p. 



Selected Answers 411 

Exercise Set 3.1 

1. a. 5= {3,5,7,9,. . . }. 
xe S <=> x = 2n + 1 for some natural number n. 
x £ S <=> x * 2« +1 for every natural number n. 

b. 5 = {2,4,8,16,. . . }. 
xeS <=> x = 2" for some natural number и. 
x e S <=> x * 2" for every natural number n. 

c. S = {3,6,9,12,. . . }. 
xe S <=> x = Зл for some natural number n. 
xiS <=> x * Зя for every natural number n. 

d. 5={e,2o,3a,4a, . . . }. 
xeS <=> x = «a for some natural number n. 
xi.S <=> x * яа for every natural number n. 

e. 5 = {1,2" ,3" ,4",. . . }. 
xeS <=> i f x = y for some natural number .y. 
x i S c=> x * y for every natural number n. 

3. a. Yes b. No c. No d. Yes e. No f. No. 
5. a. 2,5,8 b. Yes, let* = - 8 and.y = 5. 
7. a. Forsomex, (xeCandxÉ.D)or(xe£>andxÉ Ç). 

For some x,xeD and x e C. 
9. a. False: LetA = {1,2}. ТпепЛгЛ. 

b. True: Let A be a set. Let x be any element. 
IfxeA,thenxeA. So, A&A. 

c. True: Let A and 5 be sets. 
Assume A C.B and x i f i . 
SinceЛсЯ, i fxe^ , thenx65. 
So, i fx í í5 , ЛепхеЛ. ButxGB. SoxeA. 
Thus, if A £ 5 and x e 5 , then x й Л. 

d. False: Let/<={1}. Then 0<ЕЛ. 
e. False: Let/4 = {1,2} and5= {1,2,3}. 

^ S S , b u t y í í S . 
f. False: Let/1 = {1,2} and5= {{1,2}{3}}. 

A e B, but A is not a subset of B. 
g. False: LeU = {1,2}, B= {A,3}, and 

C= {5,4}. / 4€ f i and56C, b u t ^ i C . 
11. No. Yes. 
13. a. No. P has overlapping sets. 

b. No. P does not cover all of S. 
15. a. & = {00,01,10,11},so | S j | = 4 . 

Si= {000,001,010,100,011,110,101,111} 
| Si I = 8. To list all elements in &, we can 
append each bit string in & with a 1 and then 
with a 0. So St has 16 elements. 
Theorem: For every positive integer n, 

S„ has 2" elements. 
Proof: Let p(n): S„ has 2" elements. Let n be 

a positive integer. Assume p(n) is true: 

S„ has 2" elements. Let a be an element of S„. 
Let al denote the bit string obtained by 

appending 1 at the end of a. 
Let aO denote the bit string obtained by 

appending 0 at the end of a. 
Since a\ and e0 are bit strings of length n +1, 
they are both elements of S„+1. Each element 
in ISUI can be expressed in this form. 
Thus, 5n+1 has twice as many elements as S„. 
So the number of elements in S„+ \ is 2 • 2", 
which is 2"*\ Thus, p(n +1) is true. 
So, for all positive integers n,p(n) =>p(n+l). 
Since St = {0,1}, p(l)istrue. 

Therefore, by mathematical induction, for every 
positive integer n, S„ has 2" elements. 

b. P(A): {a} {ab} {ac} {b} {c} {be} {abc} {0} 
I I I I I i 1 1 

Sy. 100 110 101010 001 011 111 000 
c. Suppose A has n elements: A = {а\,аг,аг,...а„}. 

Let XQ.A. Form a bit string in S. as follows: 
In the 1 st position: write 1, if a \ e X 

write 0, if a&X 
In the ith position: write 1, if a.eX 

write 0, ifa&X 
In the nth position: write 1, if a„eX 

write 0, if аЛХ 
The mapping of each subset of A to the above 
bit string is a one-to-one correspondence bet-
ween the subsets of A and the bit strings in S„. 
So, P{A) has the same size as S„. Since we 
proved in part (a) that S„ has 2" elements, 
P(A) has 2" elements. 

Exercise Set 3.2 

9. 

a. A\JB={ 1,2,4,6} 
b. АПВ={2,4} 
c. A-B={\) 
d. (ЛЛЯ)'= {1,3,5,6} 
e. A'UB'= {1,3,5,6} 
a. [1,5] b.[2,3] c. [1,2) d. [6,co) 
e. (7,oo) f [6,7] g. (-a,, co) h. [1,2) 
i. (-co, l)U[2,oo) 
a. A b. A c. A d 
Region 1=ЛПЯПС 
Region 3 = (ЛП 5) - C 
Region 6 = B-(A\JQ 

A(JB e. A {.A 
Region 2 = ( B n Q - A 
Region 5 = С-(Л11Я) 
Region8=t7-(^UBUC) 

a. True b. True c. False d. False 
e. True f. True g. False h. True 
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11. a. Yes b. No c. Yes d. Yes 
e. No f. Yes 

13. a. Similar to the proof on page 239. 
b. Assume Л с В . By the definition of subset, 

ifxeA, thenxeB. So, if x «S B, then x <t A. 
Using the definition of complement, we can 
translate this implication as follows: 
IfxeB'yüienxeA'. So, B'ÇA'. 

d. From the proof on page 242, we know that 
iiAzB, thenЛ 1)5 = 5. 

Conversely, assume that A U B = B. 
Assume thatx€A. ThenxBA orx€B. 
So, x £A U B. Since A U B = B, we can deduce 
thatxeB. Thus A c B. 

Hence, A Я.В if and only if A \JB = 5. 
15. c. Assume that Л c C and B e C . 

С/а/>и:ЛиЯ£;С 
Assume that xeA{jB. 
ТЬепхеЛ orxeB. 

Case 1: Assume that x 6 A. 
Since A<zC,x must be in C. 

Case!: Assume that x e 5. 
Since BQC,X must be in C. 

In both cases, x e C. So, /4 U B £ C. 
17. a. 17 b. 13 c. 8 d. 5 e. 13 f. 0 
19. a. Yts,AVB = BVA c. (AV B)4 C = AV (BV Q 

"Ш 
It looks like V is associative. If you're willing to 
work through the algebra, you can prove it. 

e. Yes 
21. a. (-£,«) b. ( i ,co)c . ( l ,oo)d. (-fe,*) 

e. (i.oo) f. (l,oo) 

Exercise Set 3.3 

1. a. L U = [-2,4] b. ^ , = [-2,00) 

c. ГМ,= [-2,1] d. Д А = [ - 2 , 1 ] 

3. IM, = [5J,6] b. и^ , = (5,6] 

a n ^ = { 6 > d. ПЛ,= {6} 
16/ / 6Л 5. a. \JA- {1,2,3,5,7,9} b. П A = 0 

1 i " 7. a. True. b. False. Let A,= ( - 7 , 7 ) c. True. 
d. False. Counterexample: /4i= ( - 7 . 7 ) 

9. a. C/o/m: / l i X U B O G U (ЛПВ<). Page 254. 

Claim: U ( Л П B , ) £ Л П ( U 50 
iel iel 

Assume thatx e U (Л Г) B,). x e Л П B/0 for 
some /0 in /. (Multiple union def.) 
xe/4 and xeB,0 . (Intersection def.) 
Since хеВц, x€ U 5,. (Multiple union def.) 

iel 

Sox6Л and x e U B,-. (ValidArgument) 

Thus, x 6 /4 П (U B,). (Intersection def.) 
iel 

Therefore, У(/4ПВ,)СЛ n(UBi) 

c. C/awi: ( . f l ^ ' c U /4/. Page256. 

Claim: U Л / £ ( Г и - ) ' 
/ 6 / iel 

Assume that x e U /4,'. 
IE / 

For some i0 in /, x&A i0'. (Multiple union def.) 
xiAi,. (Complement def.) 
So, -(Foreach/,хеЛ,.). 
~(xe П /4() (Multiple intersection def.) 

iel 
Hence, x€ (П /4i)'. (Complement def.) 

is I 
Exercise Set 3.4 

1. a. {3}ХЛ b. A X {3} 

1 2 3 

3. (0,3,0,3), (0,4,1,3). 
5. Let A be the set of horses in the 1st race, 

B the set of horses in the 2nd race, and 
C the set of horses in the 3rd race. 

A X B X C is a model of the ways that you can place 
the three bets. | Л Х В Х С | = 6-8-5 = 240, so there 
are 240 possibilities. The probability that you will 
win in all 3 races is -jió-

7. a. [0,2] X [0,2] X [0,2] b. [1,3] X [2,4] X [0,2] 
11. Let a and b be real numbers with a < b. 

a. Case 1. Assume that 0 < a < b. 
Since a > 0, the 
distance from a to 0 is a. 
Since b > 0, the distance from b to 0 is b. 
The distance from a to b is the distance from 
b to 0 minus the distance from a to 0. 
which is b-a. 

a b 
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Case 2. Assume that a<0<b. 
Since a< 0, the 
distance from a to 0 i s -a . 
Since i>>0, the distance from b to 0 is b. 
The distance from a to b is the distance from 
a to 0 plus the distance from b to 0, 
which is b + (-a). 

Case3. Assume that a<b<0. 
Since a < 0, the distance ~~~ i ~0 

from a to 0 i s - a . 
Since b< 0, the distance from b to 0 is - b. 
The distance from a to b is the distance from 
a to 0 minus the distance from b to 0, 
which is (-a)- (-b). 
In each case, the distance from a to b is b - a. 

c. Use part (a) and the Pythagorean Theorem. 

Exercise Set 3.5 

1. a. Yes. Let/(l) = a,/(2) = 6,/(3) = C,/(4) = a\ 
b. No. 

3. a. Yes b. No 
5. a. Yes b. Yes 
7. a. No. See (la). 

b. No. See (2b). 
c. Both answers will be "yes." 

9. a. Yes. b. / i s not one-to-one. c. / i s not onto. 
11. Let 5 be a set and n a natural number. 

a. There exists a one-to-one function 
that maps {1,2,3 «} onto S. 

b. If/maps {1,2,3, ...,n} intoSand/is 
one-to-one, then/does not map onto S. 

7. a. False. Le t*= y=Nand/(*) = 2*. 
/ i s one-to-one, but/does not map N onto N. 

b. False. LetA'=y=N. L e t / ( l ) = l a n d 
fin) = n-1 ifn> 1. Since/(1) =/(2) = 1,/isnot 
one-to-one. However,/does map N onto N. 

9. a. 1 -* {1,3 } a. / i s one-to-one. 
2 -► {1,3 ,4} b. / i s one-to-one. 
3 -► {2} c. / i s not one-to-one. 
4 - { 1 , 2 , 4 } 

Not in the range of f. 
Not in the range off. 
Not in the range off. 

11. a. fix) = {*} b. {x in S | xéfix)} (page 298) 
13. a. \S,\ = 2". |S| = No 

b. I&l = 3". |5| = No 
c. |5,|=дс". |S| = N0 

15. a. IfAePiV), A isaset, soAeV. 
Hence, A GP(F) . 

b. Yes. Part (a), 1 st theorem on page 297. 
c. Yes. Theorem on page 298. 
d. Since\PiV)\<\V\ and|K|<|P(H)| ,bythe 

Schroder-Bernstein Theorem (page 296), 
\V\ = \PiV)\. Bv\\V\<\PiV). Contradiction! 

e. Yes. F does not satisfy the Property Axiom for 
defining a set (page 279). So, we cannot apply 
the above cited theorems. 

17. Set n = .9999.... 
10n = 9.999... 
-n= ,999,-, 

So, 9/1 = 9.000... Hence, n = 1. 

Chapter Review 

10. a. C = {2,3}. 
b. C = 0 . 
c. C= {2,3,4} 

Exercise Set 3.6 

1. a. Yes: Дп) = in b. Yes: Дл) = in -1 
c. Yes: fin) = in-2 d. Yes:/\n) = in + 3 
e. Yes: fin) = 2" f. Yes: fin) = 2"-1 

3. a. True. b. False. Let S= { - 1 , - 2 , - 3 , - 4 , . . . } . 
c. False. Let A = {2,3,4, . . .} and B = N. 

5. a. Л, = { | , | , | , . . . } 

Кг \ 2 • 2 • 2 • • • • ) 
n - , 1 11 

K} - \ 3 • 3 • 3 • ■ } 
b. List the elements of R\ on the first row, /?2 on 

the second row, etc. Use the same diagonal 
counting technique as in the proof on page 292. 

c. / i s not one-to-one. 

/(1) = | , / ( 2 ) = T . / ( 3 ) = 7 . Л8) = Т-

3. a. There exists an д: such that ix€A and x £ B) 
or(xe5and*&4) . 

b. There exists an x such that x eA and x€B. 
c. AÍ.B or A =B. d. х£А&пЛх£В 
e. x €A or л: Й 5 f. For every n'mI,x€An. 
g. For some í in /, * £Л,. 

5. b. iA-B)-C 

7. a. B b. 5 ' c. C d. C" e. 0 f. 0 
9. a. True b. False: A = {1} c. True 

d. False: A = {1} e. True f. True 
11. a. No. Let/4 = {1,2} a n d B = {2,3} 
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b. No. Let^ = {1,2} andj»= {2,3} c. Yes. 
13. a. True b. False: Let^ = {1,3}, 5 = {2}, 

C={2,3}. A-(B-C)={1,3}, (Л-Я)-С={1} 
c. True d. False. Draw a'Venn diagram. 

17. The power set of a set S is the collection of all 
subsets of S. If S has n elements, S has 2" subsets. 

19. a. For every natural number n and every one-to-one 
function/ if/maps {1,2,3 л} into S, 
then/does not map {1,2,3,...,«} onto S. 

Exercise Set 4.1 

1. a. A circle - radius of 1 unit - center at origin. 
Domain: {x\-lš.xul} 

Range: {y\-l£y£l } 
b. The circle described in part (a) and its interior. 

It has the same domain and range. 
c. Domain: {х\0йх<<ю} A parabola. 

Range: {y\-<*>< y<<*>} 
(o,i; 

d. Domain: {x\ 
Range: {v| 

e. Domain: 
Range: 

(x 
{y 

0<U<;1} 
Ouyil} 

0:£jc;S2} 
0uyz4} 

1 
i,D 

^ 
(2,4) 

таг 
Line segment from 

(1,-2) to (3,4). 
f. Domain: {x\ lux^S) 

Range: {y\-2 Z y £4 } 
3. /must be one-to-one. 
5. The graph of R"' is the reflection of the graph of R 

about the line, y = x, that bisects the first quadrant. 
The matrix of R~' is the matrix of R with the rows 
and columns swapped-the first row of R"1 is the 
first column of R. 

7. 2 is the inverse relation for the £ relation. 
£ is the inverse relation for the <. relation. 

9. a. Transitive, antisymmetric. 
b. Reflexive, symmetric. 
c. Reflexive, transitive, antisymmetric. 
d. Transitive, antisymmetric. 
e. Reflexive, transitive, antisymmetric. 
f. Transitive, antisymmetric. 

3. R symmetric if and only if R = R"1. 
S. a. It must contain all points on the liney=x where 

x is in the domain of the relation. From a 
point on the graph, move vertically to the line 
y = x and that point must be on the graph. 

b. If (e,i>) is on the graph, its reflection about 
the liney = x must also be on the graph. 

c. If (a,b) is on the graph and a Ф b, then the 
reflection of (a,b) about the line y = x 
cannot be on the graph. 

Exercise Set 4.2 

1. a. Yes. [a] is the set of people born in 
the same country as a. 

b. Yes. [a] is the set of people that have 
the same birthday as a. 

c. No. The relation is not transitive. 
d. No. The relation is not transitive. 
e. The relation is not transitive if someone 

has a double major. 
3. a. Yes. b. No. The relation is not transitive. 
5. a. Reflexive, symmetric, and transitive. 

b. Reflexive and symmetric. 
c. Symmetric and transitive. 
d. Symmetric and transitive. 
e. Reflexive and symmetric 
f. Reflexive, symmetric, and transitive. 

7. a R b iff there exists an X in P such that 
a and b are both in X. 

9. a. a ш 6 b if and only if 6 divides a - b. 
b. Yes. No. c. [5] = {. ..-7,-1,5,11,17,...} 
d. Z.= {[0], [1], [2], [3], [4], [5]} 
e. 2345 6 [5], -38 e [4] 

11. Assume that* =, 2. Then 5 divides x-2. 
So x - 2 = 5 k for some integer k. 
x + l - 3 = 5k. 
Since 5 divides(*+l)-3, i + U s 3 . 

Therefore, if x =5 2, thenx+1 ■ s 3. 

Exercise Set 4.3 

3. a. No. They have different domains. 
5. a. Let a and b be elements in Y. 

If a *b, then g{a) *f(b). 
b. Let a and b be elements in X. 

lia*b, then g of (a) * g o/(6). 
7. a./(x) = 2 b. f(x)=x+3. 

c- /(0)=0 d. f(x) = 3, if x is not an integer. 
f(x) = 1, if x Ф 0. f(x) = x, if x is an integer. 

e.f(w)-2x+y í.f(x) = (x,x*) 
9. Function Pomajn Range 

b.f(xy) = x-y NxN Z 
c-f(x,y) = j Rx(R-{0}) R 
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11. a. Let y be a real number. Set xo = ^у-. 
Since y is a real number, x<> is a real number. 

13. 
15. 

17. 

19. 

21. 

23. 

25. 

27. 

/(*>) = 2*0 + 7 - 2 ( V ) + 7 -У. 
So, for every real number^, there exists a 
real number x such that/(x) = y. 
Therefore, /maps R onto R. 

b. Set>> = 0. 0 is a real number. Let x be 
a real number. Since x2 ̂  0,/(;t) > 0. 
So,/(jt) * 0. Thus,/does not map R onto R. 

a. 3 b. 7 c. 2 
a- /(•*) = x2. where x is a real number. 
b. Not possible. Every relation has an inverse 

relation. 
a. See page 361. b. Seepage 153. 
c. Use part (a) and part (b). 
d. See example on page 366. 
Let A, B and C be sets that are members of S. 
a. Letf(x) = x, where x is in A. Then/is a 

one-to-one function that maps A onto A. 
So, Л=Л. Thus, 2 is reflexive. 

b. Assume that Л = 5. So there exists a 
one-to-one function/that maps A onto B. 
By a previous theorem, / " ' is one-to-one 
function that maps B onto A. So,B = A. 
Thus, = is symmetric on S. 

c. Assume that A=B andB s C. 
Since A=B, there exists a one-to-one function/ 
that maps A onto B. Since B = C, there exists a 
one-to-one function g that maps B onto C. 
By a previous theorem, g o / is a one-to-one 
function/that maps A onto C. So, A = C. 
Thus = is transitive. 

Since = is reflexive, symmetric and transitive, it is 
an equivalence relation. 
Assume that/( j :)e/(^). By the definition of the 
image of a set, there exists a cm A such that 
/ ( C ) = / ( J C ) . Since/is one-to-one, c = x. SoxeA . 
a. Assume that A C B. Let ye j(A). 

Then^=/(x)forsomexin/4. S i n c e r e B , 
x is also in B. So y =f(x) for some x in B. Thus 
yef(B). Sof(A)^f(B). 

b. See page 367. c. See page 365. 
d. See page 366. 
Step #3. You cannot factor the existential 
quantifier across and. 
a) Suppose that yeY. There exists an x in X 

such thatf(x)=y. SoxeA,. Thus, Ay *Q- So, 
the elements in P are nonempty subsets of X. 

b) Now, let x be an element in X. Then/(x)e Y. So 
xeA/f,,). Thus, each element in X is in one of the 
sets in P. 

c) Assume that xeAy П Az. ТпепД*) = y and 
f(x) = z. So, y = z. Thus, Ay = A„ So, each 
element in A'is in only one of the sets in P. 

29. The set of all functions from N to {0,1} is uncoun-
table (see exercise 28). However, the set of all 
possible computer programs in a given language is 
countable (see (14), page 301). There are far more 
functions than possible computer programs, so 
some functions must be noncomputable. 

Exercise Set 4.4 

3. a. partial order b. total order and a well-ordering 
c. total order and a well-ordering d. partial order 

5. a. e b b. a-*b-*c-*d-*e 

I / \ 
d a c 

c. Not possible. Every finite totally ordered set is 
well-ordered. 

7. a. * = { (1,1), (2,2), (3,3), (4,4), (1,2), 
(1,4), (1,3), (2,4), (3,4)} 

b. 
Poset 
A 
B 
C 

Greatest 

4 
Least 

1 
Maximal 

4 
a,d 
a,d 

Minimal 
1 

b,e 
b,e 

c. A: 1 2 3 4 B.becad O.bca efd 
1 3 2 4 ebeda becfda 

d. A: T= {{1,2,3,4}, {2,1}, {1}, {3,1}} 
B: Г= {{a,c,b,e}, {d,c,b,e}, {c,6,e}, {b}, {e}} 
C: T= {{a,cM, W,e], {c,b}, W, {f,e}, {e}} 

9. a & b . 
3 

/ \ 
1 2 

П. a. (5,|) 
18 

A 
6 9 

N 
2 3 

V 
1 

c. d. 
3 2 

\ / 

■5, 7 

'\y 
4 6 

\/\A/ 
(Г, |) 

32 
I 

16 

48 

/ \ 
16 24 

I/I 
8 12 
/I 

6 

A 
V 
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c. S: 1 2 3 6 9 18 
1 3 2 9 6 18 

T: 1 2 4 8 16 32 (only possible sort) 
W: 1 2 3 4 6 8 12 16 24 48 

1 3 2 4 6 8 12 16 24 48 
d. 5= {{18,9,6,3,2,1}, {9,3,1}, {6,3,2,1}, 

{3,1}, {2,1}, {1}} 
Г» {{32,16,8,4,2,1}, {16,8,4,2,1}, 

{8,4,2,1}, {4,2,1}, {2,1}, {1} } 
W= { {1,2,3,4,6,8,12,16,24,48}, 

{1,2,3,4,6,8,12,24}, {1,2,4,8,16}, 
{1,2,3,4,6,8,12}, {1,2,4,8}, 
{1,2,3,6},{1,2,4}, {1,2}, {2}, {1} } 

13. Proof: Let (5, i ) be a finite nonempty poset with n 
elements. Suppose that 5 does not have a minimal 
element. Pick an element a\ in S. 

Since fli is not a minimal element, 
there exists an a% in S such that: ai<a\ 
Since Ü2 is not a minimal element, 
there exists an a} in 5 such that: ai<ai . . . 
Since a„ is not a minimal element, 
there exists an e„+i in S such that: a„+i ч а„ 

Suppose that /</. By transitivity of x: щ -< a, 
So Oj * a,. Hence, we have a list of n +1 
different elements in S. Contradiction! 
So, S must have a minimal element. 

15. a. Lower bounds: 0, {1}, {3}, {1,3} 
Greatest lower bound: {1,3} 
S has no upper bounds. 

b. Lower bounds: 0, {1}, {3} 
S has no greatest lower bound. 
{1,2,3,4,7} is the only upper bound of S, 
so it is the least upper bound. 

17. a. There exists a b in S such that for every x in S, 
blx. For every b in T, there exists an x in T 
such that ~(blx). 

b. There exists a b in 5 such that for every x in S, 
ifblx, then b = x. For every è in T, there exists 
an x in Tsuch that 6 ̂  x and 6 * x. 

c. There exists a b in t/ such that for every x in 5, 
bi x. For every 6 in U, there exists an x in Г 
such that ~(6 3 Jt). 

d. There exists a 6 in (У such that 6 is a lower 
bound of 5 and for every lower bound x of S, 
xib. For every lower bound b of 5, there exists 
a lower bound * of S such that ~ (JC ̂  6). 

e. There exists a b in {/ such that for every JC 
in r .x i* . 

f. There exists a è in U such that 6 is an upper 
bound of T and for every upper bound x 
ofT,blx. 
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Abstract compound statement 

Abstraction 

Antisymmetric relation 

Argument 

Associative property 

Axiom 

Axiomatic system 

The number of elements in the set N of natural numbers. | S | = K0 

if and only if there exists a one-to-one function that maps f*d onto S. 

A compound statement where the component statements are 
represented by variables such as p and q. 

The merging of concrete examples under the rubric of a concept 
that expresses a property the examples have in common. An 
abstraction exists as an idea with no material existence. For 
example, the abstract number 3 describes a property that various 
physical sets have in common, but the number 3 has no physical 
existence. 

A relation R on a set 5 that has the following property: for every a 
and b in S, if a R b and bfta, then a = b. The only time we can 
reverse the order is when the elements are equal. 

A list of sentences called hypotheses followed by a sentence called 
the conclusion. See Valid argument. 

Let * be a binary operation on a set S. * is associative if and only 
if for every a, b, and c in S, a * (b * c) = (a * b) * c. The logical 
operators, and and or, are associative. Likewise, the set operations, 
union and intersection are associative. The number operations, 
addition and multiplication, are associative. The operation of 
function composition is also associative. 

A statement that is assumed true in an axiomatic system, requiring 
no proof. 

A list of undefined terms, a list of axioms, and a proof procedure 
for deriving theorems in the system. Definitions are built from the 
undefined terms and previously defined terms. Theorems are 
derived from the axioms, previous theorems, and definitions using 
the proof procedure. The axioms, definitions, and theorems must 
each be sentences according to the grammar for the system. 

417 

Glossary
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Bijection 
Binary 

Binary operation on S 

Cardinal number of a set 

Commutative property 

Complement laws 

Complement 

Complete system 

Complex number 

Composition of functions 

Compound statement 

Conclusion 

A one-to-one and onto function. 
Refers to two. A binary operation, such as + or \J, operates on two 
elements in a set and produces a new element in the set. A binary 
relation, such as ž or G , gives a relation between two elements. A 
binary decimal system has a base of two. 

A function that maps SxS into S. * is a binary operation on set S 
if and only if for every a and b in S, a *b is defined and a*beS. 

The number of elements in a set A, notated as | A |. Let n be a 
natural number. | A | = n if and only if mere exists a one-to-one 
function/ that maps {1,2,3, . . . , n] onto A. Two sets that have 
the same size have the same cardinality. \A\ = \B\ if and only if 
there exists a one-to-one function that maps A onto B. \A\z\B\ if 
and only if there exists a one-to-one function that maps A into B. 
| A | ž | B | if and only if there exists a function that maps A onto B. 
Let A and B be finite sets. If A c B, then |A|< |fi|. 

Let * be a binary operation on a set S. * is commutative if and 
only if for every a and b in S, a * b = b * a. The logical operators, 
and and or, are commutative. Likewise, the set operations, union 
and intersection are commutative. The number operations, addition 
and multiplication, are commutative. The operation of function 
composition is not commutative. 

The complement of a union is the intersection of the complements. 
The complement of an intersection is the union of the 
complements. Let At be a set for each i in I: 

( A . u A ^ A i ' r W 

( A . n A ^ A . ' u A a ' 

(UA,y= П(А/) 

(ПА0'=и(А/) 

A unary operation on a set which produces a new set composed of 
all the elements in the universal set that are not in the original set: 
A={x\xeA}. A'=U-A. 

An axiomatic system in which every well-formed statement can be 
either proved or disproved. Every sentence is decidable. 

A number that can be represented in the form x+yi where x and y 
are real numbers and i = J-T. The visual picture of the complex 
numbers is the points in a plane, where x+yi is identified with the 
point (x,y). 

A function formed from two functions/and g where/maps X into 
Y and g maps Y into Z. If x is in X, g <>/(*) = g(f(x)). 

The composition of two injections is an injection. 
The composition of two surjections is a surjection. 
The composition of two bijections is a bijection. 

If/and g have inverse functions, (g o/)_l = /" ' o g-'. 
Composition of functions is associative: (Л ° g) ° / = ft ° (g °/). 

A sentence composed of statements connected with logical 
operators. 

See Implication and see Valid Argument. 

file:///A/z/B/
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Congruence mod n 

Conjecture 

Conjunction 

Consistent system 
Contradiction 

Contrapositive 

Converse 

Countable 

Countably infinite 

Cross product 

Decidable 
Deductive reasoning 

Direct proof 

Directed graph 

Disjunction 

Disprove a statement 
Distributive property 

An equivalence relation on the set Z of integers, a s„ b if and only 
if n divides a-b. If r is the remainder when we divide x by n, then 
x m „ r. Congruence mod n partitions the set Z of integers into n 
equivalence classes, which we notate as Z„: 

Z.= {[0],[1],[2],[3], . . . . [n-1]} 

A statement someone thinks is true, but no one has proved it. 

A compound statement of the form: p and q. For an and-statement 
to be true, both parts must be true. 

An axiomatic system that contains no contradictions. 
An abstract compound statement that is always false, like p and ~p. 
A negation of a law of logic is a contradiction. See also Proof by 
contradiction. 

The contrapositive of p => q is ~q => ~p. The contrapositive has 
the same meaning as the original implication. 

The converse of p => q is q =s>p. The converse does not have the 
same meaning as the original implication. 

A set that is either finite or can be placed in a one-to-one 
correspondence with the set N of natural numbers. The union of a 
countable collection of countable sets is countable. 

An infinite set that is countable. 5 is countably infinite if and only 
if | S | = K0. The set of natural numbers, the set of integers, and the 
set of rational numbers are countably infinite sets. 

A x B is the set of all ordered pairs whose first term is in A and 
whose second term is in B. AxB = {(a,b) | aeA and beB ) 
AxBxC= [(a,b,c) | aeA andbeB andceC). Thenumberof 
elements in a cross product is the product of the number of 
elements in the individual sets. 

A sentence that can be either proved or disproved. 
Type of reasoning used when we derive a conclusion through valid 
arguments from other sentences that we accept as true. 

A proof of an implication by assuming the hypothesis is true and 
then deriving that the conclusion must be true. 

A visual representation of a relation where the mapping is repre-
sented by arrows, with each member of the domain and range listed 
only once. So, some of the arrows may be chained together. 

A compound statement of the form: p or q. For an or-statement to 
be true, at least one part must be true, but both could be true. 

Prove its negation. 
Gives a relation between two operations. Multiplication distributes 
over addition, and distributes over or, or distributes over and, 
intersection distributes over union, and union distributes over 
intersection: px(q + r) = (p x q) + (p x r) 

p and (q or r) <=> (p and q) or (p and r) 
p or (q and r) <=> (p or q) and (p or r) 
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Distributive property (cont.) 

Divides 

Domain 

Empty set 

Equal functions 

Equals relation 

Equivalence 

Equivalence relation 

Equivalence class - [a] 

Even 

Exclusive or 

Let A be a set and ft be a set for each i in /: 
An(ftUft>) = (Anft)U(Anft>) .. . . An (U ft) = U (A nft) 

i'e/ i'e/ 

AU(fiiriS2) = (AUft)n(AUft,) . . . . AU( f l f t )= П (All ft) 

Let a and b be integers, a divides b if and only 'úb-ak for some 
integer <:, which means that a is a factor of b. 

The set of elements that can be substituted for a variable. The set of 
all first terms of the ordered pairs in a relation R. The set of 
elements for which a function/is defined, x is in the domain of/ 
means that/(*) is defined. 

A set that has no elements. The empty set is analogous to an empty 
box, which exists even though it has nothing in it. 

Two functions with the same domain and the same function values 
for each element in the domain. / = g if and only if/(jc) = g(x) for 
all x in the domain. 

Two sets are equal if they contain the same elements. A = B if and 
only if for every x, (x e A => x e B) and (x e B => x e A). The equals 
relation is reflexive, transitive and symmetric. 

A compound statement of the form: p is equivalent to q. For an 
equivalence to be true, either both parts are true or both parts are 
false. If two abstract compound statements composed of the 
same component statements are equivalent, they have the same 
meaning and can be used interchangeably. For frequently used 
equivalences, see page 103. 

A relation on a set S that is reflexive, transitive, and symmetric. 
The set of equivalence classes of an equivalence relation partitions 
the set S into nonoverlapping subsets. An equivalence relation 
identifies a property that makes elements essentially the same with 
respect to that property, such as the property of "having the same 
size and shape." "Is congruent to" and "is similar to" are important 
equivalence relations between figures. Congruence mod n is an 
important equivalence relation between integers. "Has the same 
size" is a very important equivalence relation between sets. "Is 
isomorphic to" is an extremely important equivalence relation 
between structured sets, such as partially ordered sets. 

The set of elements related to a by an equivalence relation R on a 
set S. Let a be in 5. [a] = {x in S \ a R x}. Two related elements 
have the same equivalence class: if a R ft, then [a] = [b]. Elements 
in the same equivalence class are considered as essentially the 
same with respect to the relation. 
a is even if and only if a = 2n for some integer n. 

A logical operator that joins two statements with the exclusive or: 
p XOR q. This compound statement is true only when one 
statement is true and the other one false. 
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Existential quantifier 

Extension of a function 

Finite set 

Function 

Function notation 

Fundamental theorem of arithmetic 

Graph 

Greatest element 

Hasse graph 

Hypothesis 

Identity function 

Image of a set 

Immediate successor 

Implication 

Asserts that at least one substitution of an element from the domain 
of the variable converts an open statement into a true statement. 
3x, p(x)is true if and only if there exists at least one x in the 
domain of x such thatp(x) is true. 

A function whose domain is extended beyond the domain of the 
original function, while preserving the original mapping. 

A set 5 is finite if and only if S is the empty set or | S | = n for some 
natural number n. 

/ i s a function from X into Y if and only if/maps each element in X 
to a unique element in Y. This uniqueness property allows us to 
use the function notation, / (*). To demonstrate that the same 
element has not been assigned two different values, we prove the 
following implication: if a = b, then f(a) = f(b). 

f(x) denotes the value assigned to x by the function / The 
following have the same meaning: f(x) = y, x++y, (x,y) e f. 

Every natural number, other than 1, can be represented in a unique 
manner as a product of prime numbers, with smaller factors written 
to the left of larger factors. 

A visual representation of a relation where we use points in a 
coordinate plane to represent the ordered pairs in a function. 

The largest element in a partially ordered set ( S, <.). b is the 
greatest element of S if and only if b e S and xl b for all x in S. A 
partially ordered set can have at most one greatest element. The 
greatest element in S will be the only maximal element of S. In a 
totally ordered set 5, a maximal element is the greatest element. 

A minimalist graph of a partially ordered set in which its directed 
graph is positioned so that all arrows point upwards, then we omit 
the arrowheads, the loops that can be deduced by reflexivity, and 
the arrows that can be deduced by transitivity. 

See Implication and see Valid Argument. 

A function that maps each element to itself: e(x) = x. ел denotes the 
identity function on the set A. 

The set of images of individual elements in a set under a function. 
/(A) = { f{x) | xeA ) . yef(A) if and only if there exists an x in A 
such that/(;c) = y. 

An element that comes after another element with no elements 
between them. In a poset, b is an immediate successor to a if and 
only if a < b and there does not exist an x such that a<x<b. 

A compound statement of the form: p implies q. p is called the 
hypothesis or premise and q is called the conclusion. The only 
case in which an implication is false is when the hypothesis is true 
and the conclusion is false. To say that p => q is true means that if p 
is true, then q must be true. The implication p => q has the same 
meaning as its contrapositive: ~q => ~p. 



Independent axioms 

Indirect proof 

Inductive reasoning 

Infinite set 
Injection 
Integers 

Intersection 

Intofunction 

Inverse function 

Inverse relations 

Irrational number 

Is an element of 

Isomorphic structures 

Law of contraposition 

Law of detachment 

Law of logic 

A set of axioms in which none of the axioms can be derived from 
the others. 

A proof of an implication by assuming the conclusion is false and 
then deriving that the hypothesis must be false. An indirect proof 
of an implication is a direct proof of its contrapositive. 

Type of reasoning used when we discover a general relation from 
specific examples or experiences. 

A set that is not finite. 
A one-to-one function. 
. . . - 3 , - 2 , - 1 , 0 , 1 , 2 , 3 , . . . 

A binary operation on two sets that produces a new set from their 
common elements: АГ\В= { x\xeA andxeB}. 

/maps X into Y if and only if for each x in X, f(x) is in Y. 

The inverse relation of a one-to-one function. Let/ be a one-to-one 
function that maps X onto Y. Then/ ~' is a one-to-one function that 
maps Konto X. f'\a) = b if and only if f(Jb) = a. 
For every a in X, f " l(f(a)) = a. For every b in Y, f(f" l(b)) = b. 

A relation obtained by reversing the order of a given relation. 
Every relation has an inverse relation, a R"' b if and only if b R a. 

A real number that is not rational. Unlike the rational numbers, the 
decimal form of an irrational number does not have a repeating 
cycle. The number of irrational numbers is a higher level of 
infinity than the number of rational numbers. 

A relation between the members of a set and the collective unit to 
which the members belong. In formal set theory, "is an element of" 
is an undefined term since there are no simpler concepts with 
which to define it. 

Two structures that have the same form, which means that one 
structure can be relabeled to produce the other structure. For 
posets, (S, 3 ) is isomorphic to (T, đ ) if and only if there exists a 
bijection/ from S onto T that preserves the order on S: for every a 
and b in S, if a 1 b, then/(a) sf(b). The function/is called an 
isomorphism. An isomorphism preserves the order relation. If two 
elements are related in S, their images must be related in T. Iso-
morphic posets are identical twins with different names. If a poset 
has a particular property, then all isomorphic posets must have the 
same property, as translated through the isomorphism. 

A valid argument whose hypothesis has the form, p=> q and ~q, 
and whose conclusion is ~p. 

A valid argument whose hypothesis has the form, p=> q and p, and 
whose conclusion is q. Also known as modus ponens. 
An abstract compound statement that is always true, regardless of 
the truth values of its component statements. A law of logic is also 
called a tautology. See page 103 for frequently used laws of logic. 
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Least element 

Logic 

Logical operators 

Lower bound 

Matrix 

Maximal element 

Minimal element 

Model 

Multiple intersections 

Multiple unions 

n-ary relation 
Natural numbers 

Negation 

Odd 

One-to-one correspondence 

One-to-one function 

The smallest element in a poset (5,3). b is the least element of S 
if and only if b € S and for every x in S, b 3 x. A partially ordered 
set can have at most one least element. The least element in S is 
the only minimal element of S. In a totally ordered set S, a minimal 
element is also the least element in S. 

A formal study of the art of reasoning and the principles for 
making valid deductions. 

Connectives used to form a compound sentence from given 
component sentences: and, or, implies, is equivalent to, and 
negation. 

b is a lower bound for S if and only if for every x in S, b i x. 
Unlike a minimal element, a lower bound does not have to be in S. 
The greatest lower bound of S is the greatest of all lower bounds of S. 

A rectangular array used to represent a finite relation. Matrices 
have a wide range of applications. 

An element in a partially ordered set S that has no other elements 
after it. b is a maximal element of S if and only if be S and, for 
every x in S, if b i x, then x = b. A finite, nonempty poset must 
have at least one maximal element. 

An element in a poset S that has no other elements before it. 
b is a minimal element of S if and only if be S and for every x in S, 
ifxlb, then x = b. A finite, nonempty poset must have at least one 
minimal element. 

An example of an undefined term that has the properties specified 
by the axioms. A model of an axiomatic system contains a model 
of each undefined term in the system. 

A set fonned from the elements that are in each member of a 
collection of sets. П A = { x | for every i in /, xeA,) 

A set formed by combining the elements in a collection of sets. 
U Ai as { x I for some i in /, дсеЛ,} 
ye/ 

A set of ordered n-tuples. A subset of a cross product of n sets. 
1, 2, 3, 4, 5, 6, . . . The natural numbers were created as a 
standardized reference set for comparing sizes of finite sets. 
A logical operator that reverses the truth value of a statement. The 
negation of p is true if and only if p is false. The rules for 
negating quantifiers and logical operators are summarized on page 
103. These rules are often used in the process of logical reasoning. 

a is odd if and only if a = In + 1 for some integer n. 

A one-to-one and onto function between two sets. 

A function that maps different elements in the domain to different 
elements in the range. For every element a and b in the domain of 
/, if a Ф b, then/(a) *f(b). If/is a one-to-one function that maps 
X into Y, then | X | £ | Y |. A one-to-one function has an inverse 
function. 
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Onto function 

Open statement 

Ordered pair 

Partial order 

Partition 

Poset 

Power set 

Prime Number 

Principle of mathematical induction 

Proof 

Proof by cases 

Proof by contradiction 

/maps X onto Y if and only if the range of/is Y. For each y in Y, 
there must exist an x in X such that/U) = y. If/maps X onto Y, 
then | X \ z | Y |. If | X | = | У | and both sets are finite, / is onto is 
equivalent to/being one-to-one. 

A sentence with variables that is not a statement but becomes a 
statement whenever substitutions are made for the variables. An 
open statement can be converted to a statement by substituting for 
each variable or by binding each variable with a quantifier, such as 
V*3y,p(*,y). 

A pairing of elements where the order affects the meaning. 
(a, b) = (c,d) if and only if a = c and b = d. 
A relation that is reflexive, transitive, and antisymmetric. Instead 
of arranging elements in egalitarian equivalence classes where 
everyone is essentially the same, a partial order embeds a 
hierarchical structure on a set. Given any example of a partial 
order on a set S, such as "divides" or < , we can produce an 
isomorphic copy of it using the subset relation. 

A subdivision of a set into nonoverlapping subsets. A partition P 
of a set S is a collection of nonempty subsets of S where each 
element in 5 is in one and only one of the subsets. Each partition 
of a set has an associated equivalence relation. 

A partially ordered set. A set that has a partial order relation 
defined on its elements. 

The set of all subsets of a given set. P(S) = {X | XcS}. If 5 has и 
elements, P(S) has 2" elements. For every set S, be it finite or 
infinite, | S|< | P(S)\. 

an integer greater than 1 whose only positive factors are 1 and 
itself. 

Let p{n) be an open statement. Let c be a fixed integer. If for every 
integer n ž c, p(n) => p(n +1), and p(c) is also true, then p(n) is true 
for all integers nžc. Stronger Version: If for every positive integer 
". [р(1)Лр(2)Л/?(3)Л... Л/>(и) ]=»/>(«+1), and/?(1) is also true, 
then p(n) is true for all positive integers n. 

A linearly ordered structure of interwoven valid arguments where 
each sentence is one of the following: 1) an assumption used in a 
valid argument. 2) an axiom, previous theorem, or definition. 3) a 
sentence that can be derived from previous sentences by a valid 
argument. The final stand-alone conclusion is the theorem that has 
been proved. 

Subdividing a proof into special cases, one of which must be true. 
The conclusion in a proof by cases is the disjunction of the 
subconclusions within each case. 

A method of proof in which we assume the negation of what we 
want to derive and then derive a contradiction. 

Proper subset relation A is a proper subset of B if and only if A s B and A * B. 
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Range 

Rational number 

Real number 

Reflexive relation 

Relation 

Restriction of a function 

Sentence 

Sequence 

Set 

Set subtraction 

The set of all second terms of the ordered pairs in a relation R. y is 
in the range of a function / if and only if there exists an x in the 
domain such that y = f(x). 

A number that can be represented in the form -q, where p and q are 
integers with q *0. The decimal form of a rational number must 
have a repeating cycle. 

A number that can be represented as a decimal with a finite or 
infinite number of places. The visual picture of the real numbers is 
the points on a number line. The real numbers were created in 
order to provide numerical measurements for all possible lengths 
of line segments. The set of real numbers is composed of rational 
numbers and irrational numbers. 

A relation R on a set S that has the following property: for every a 
in S, a R a. Each element is related to itself. 

Embeds a structure between two sets by giving a connection be-
tween various elements. A relation R from X into Y can be 
described as a mapping where some of the elements in X are 
mapped to some of the elements in Y. It can also be viewed as a 
set of ordered pairs whose first terms come from X and whose 
second terms come from Y. Mathematical activity has always 
focused on relations. In the reasoning process, we are usually 
trying to figure out how various objects may be related to each 
other. When we work with a set, we do not individually 
analyze its elements; instead, we compare the set with other 
sets by looking for relations between them. Within the grand 
house of mathematics, there are many diverse areas of study, 
but within each area, the focus is on relations. Mathematics can 
be described as the study of relations. 

A function whose domain is restricted to a subset of the original 
domain, but using the same mapping. 

A string or sequence of words that satisfy the language rules for 
being a sentence. A well-formed sentence must have both a subject 
and a verb. Theorems, definitions, and axioms are sentences. A 
proof is a list of sentences. 

A function whose domain is the set of natural numbers. The 
notation sn indicate s(n), the nth term in the sequence. 

A collection of objects. In formal set theory, a set is undefined 
since there are no simpler concepts with which to define it. After 
an axiomatic foundation was constructed for set theory, sets 
became a major unifying concept in 20th century mathematics. 
Sets provide the framework for mathematical discourse; they are 
the building blocks for all quantitative and spatial concepts. 

A binary operation on two sets that produces a new set by 
removing the elements in one set from another set: 

A-B= { x\xeA and xéB) 
If A and 5 are finite sets and fic .A, then |Л-Я | = |Л | - \B\. 



Size relation 

Statement 

Strict order 

Subset relation 

Substitution principle 

Surjection 
Symbol 

Symmetric relation 

Theorem 
Topological sorting 

Total order 

Transitive law 

Transitive relation 

Translation 

Truth value 
Uncountable 

A has the same size as B if and only if there exists a one-to-one 
function that maps A onto B. Two sets that have the same size are 
said to have the same cardinality. The natural numbers were 
created because of the need for a standardized reference set for 
comparing sizes of finite sets. 
A sentence that is either true or false, but not both. In formal logic, 
a statement is called a proposition. 

A transitive and antisymmetric relation that has no element related 
to itself. Every partial order ( i ) has an associated strict order: 

a < b if and only if a <, b and a Ф b. 

A is a subset of B if and only if every element in A is also in B. 
ASLB if and only if forevery*, xeA =>xeB. The subset relation 
is reflexive, transitive and antisymmetric. 

In a sentence with a variable, another letter or legitimate expression 
may be substituted for a universally quantified variable as long as 
all occurrences of the variable are replaced by the same substi-
tution. Substitutions can be made for existentially quantified 
variables if the substituted letters are not used with other variables. 

An onto function. 

A letter or figure used to represent something. Phonetic symbols, 
such as "plus," give pronunciation information. Ideographic 
symbols like + give a more concise representation that is easier to 
manipulate. 

A relation R on a set S that has the following property: for every a 
and b in S, if a R b, then b R a. The order of the elements does not 
affect the relation. 

A statement that has been proved. 
The embedding of a poset in a totally ordered set. Let 3 be a partial 
order on 5 and 3 be a total order on S. a is a topological sorting 
for 3 if and only if for every x and y in S, if x 3 y, then x đ y. 

A partial order in which each pair of elements are comparable. For 
every a and b in the set S, a i b or b 3 a. 

A valid argument whose hypothesis has the form, p => q and q => r, 
and whose conclusion is p ^ r. 

A relation R on a set S that has the following property: for every a, 
b, and c in S, if a R b and b R c, then a Re. 

The process of converting words, thoughts or ideas from one form, 
language, or medium to another. Mathematical reasoning involves 
a continual translation, back and forth, from everyday language to 
pictures and symbolic representations. 
Either true or false. Truth value is only used with sentences. 

A set that is not countable. An uncountable set is a larger size of 
infinity than a countably infinite set. The set of irrational numbers 
is uncountable, which makes the set of real numbers uncountable. 
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Undecidable 

Undefined terms 

Union 

Universal quantifier 

Universal set 

Upper bound 

Valid argument 

Variable 

Well-defined 

Well-ordering principle 

Well-ordered set 

A sentence that is not decidable. It is not possible to derive the 
sentence or its negation from the axioms. 

The basic words from which we construct the vocabulary for an 
axiomatic system. It is impossible to define every word without 
being circular. The terms selected to be undefined are chosen to 
represent the simplest concepts possible, concepts that cannot be 
explained by simpler concepts. 

A binary operation on two sets that produces a new set by 
combining their elements: A\JB= {x\xeA or xeB]. 
IfA and flare finite sets, |AUB| = |A| + | B | - |АПВ|. 

Asserts that each substitution of an element from the domain of the 
variable converts an open statement into a true statement. Vx, p(x) 
is true if and only if every element in the domain of x converts p(x) 
into a true statement. 

A set that serves as the universe for a particular discussion. When 
defining a set, all members of the set must come from a universal 
set. Otherwise, contradictions arise in set theory. 

b is an upper bound for S if and only if for every x in S, x 3 b. 
Unlike a maximal element, an upper bound does not have to be in 
S. The least upper bound of S is the least of all the upper bounds 
of S. 

An argument in which the conclusion follows from the hypotheses. 
Let Ai, Л2, . . . , h„ represent the hypotheses and c the conclusion. 
The argument is valid if and only if the following implication is a 
law of logic: (hi and hi and A3and . . . and h„) => c. 

A letter used to represent an arbitrary element of a given set, which 
is called the domain of the variable. 
A definition that is logically acceptable. A "well-defined function" 
means that the definition produces a function. A "well-defined set" 
means that the definition produces a legitimate set, one whose 
members can be determined. 

Every nonempty subset of the set N of natural numbers has a least 
element. The well-ordering principle is equivalent to the principle 
of mathematical induction. Even though the natural numbers are 
unbounded at the top, the well-ordering principle gives us a firm 
grip on its lower side. We may not have a largest element in a set 
of natural numbers, but we will always have a smallest element. It 
is surprising how useful that can be. 

A partially ordered set in which every nonempty subset has a least 
element. A well-ordered set must be totally ordered. In a 
well-ordered set, every element, except for the greatest element, 
has an immediate successor. The set of natural numbers is 
well-ordered, but the set of real numbers is not. 
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Symbols 

5 Logical Operators ~p negation of/? 36 
p Л q p and q 36 
p V q porq 36 
p => q p implies q 36 

p<=>q p is equivalent to q 36 

2 Quantifiers V* for alb 24 
3x there exists an x such that 24 

Set Notation e is an element of 216 
S5 is not an element of 216 
U universal set 218 
0 empty set 219 

{a,b} a set whose elements are a and b 217 
{x | p(x)} the set of all x such that p{x) is true 217 

| A | number of elements in the set A 279 
P(A) power set of A 228 
(x,y) ordered pair 258 

Set Relations A = B A is equal to S 220 
AQB A is a subset of B 221 
AciB A is a proper set of B 225 
A » B A has the same size as B 369 

Set Operations A \JB union oL4 andfi 233 
A C\B intersection of A and B 233 
A - B A minus B 233 

A' complement of A 234 
A XB A cross B 258 
U Ai multiple union 246 

i s / 

U A multiple union of all sets in F 248 
AeF e 
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П Ai multiple intersection 249 

A v B symmetric difference of A and B 245 

Numbers N set of natural numbers 6 
Z set of integers 6 
Q set of rational numbers 7 
R set of real numbers 7 
C set of complex numbers 14 
R set of real numbers 6 

R2 RxR 261 
R3 RxRxR 265 
Ko 11411 288 

[a,b] closed interval from a to b 17 
(a,b) open interval from a to b 17 

(-00, oo) the set of real numbers 17 
n! n factorial 170 

a | b a divides b 148 
n 

E i summation notation 179 

Relations x Ry x is related to y under the relation R 312 
x-*y xRy 312 
(x,y) xRy 312 

xR~ly yRx 320 

Functions f(x) image of the element x 344 
f:X-+ Y /mapsA'into Y 344 

/\A restriction of/to A 347 
fa g composition of/and g 358 

/" ' inverse function 356 
f(A) image of the set A 364 

Equivalence Relations a = b a is related to b under = 326 
a=„b a is congruent to b mod n 327 

[a] equivalence class of a 328 

Order Relations a ̂  b a is related to b under a partial order . . . . 373 
a < b a is related to b under a partial order . . . . 373 
a < b alb and a±b 373 
(5,^) a partially ordered set 373 
S^T (S,<) is isomorphic to (T,<) 396 
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Algorithm, 159 
And-sentence, 36,38,102 

conjunction, 36 
negations, 51,64 

Antisymmetric property, 224,320,372,399 
Argument, valid, 118-129,209 

conclusion, 39,118 
definition, 118,119 
hypotheses, 39,118 
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proof, 130,197 
rule of detachment, 71 
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Arithmetic sequence, 187 
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components, 198 
consistent system, 207,211 
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undecidable sentence, 203,210 
undefined terms, 194,210 
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axiom of existence, 277 
axiom of infinity, 285 
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power set axiom, 297 
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operations, 96,102, 352, 399 
operations on sets, 233,246,258, 352,399 
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Cantor, Georg, 19, 215, 275 
Cantor's paradox, 301 

Cardinality of a set, 273,287,295 -299,302, 304 
cardinal number, 279, 287, 304 

Cartesian product, 259 
Cartesian coodinate system, 261 

Cases, proof by, 126,160 
Cauchy, Augustin, 15,61 
Ceiling function, 350 
Chain, 374 

total order, 374-375,399 
Characteristic function, 350 
Claim, 159 
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Class 
congruence, 339 
equivalence, 315, 320, 328, 398 
sets, 220 

Codomain, 344 
Commutative property, 45 

for binary opertion, 95-96 
for logical operators, 63 
for set operations, 238,303 

Comparable elements, 373 
Complement, 234, 238,254, 303 

laws, 238, 303 
Complete system, 210, 203 
Complex numbers, 14,15,103,189 
Composition of functions, 155-157, 358-363, 399 
Conclusion, 30,118 
Congruence mod n, 327-328, 338-341, 398 

congruent numbers, 327 
Congruent figures, 326 
Conjecture, 109,112,209 

Goldbach, Christian, 204 
Conjunction, 36, 38, 102 

negations, 51,64 
Consistent system, 207,211 
Continuous function, 60 
Contradiction, 168-171, 205, 210 

Cantor's paradox, 301 
proof by contradiction, 168 
Russell's paradox, 206,214, 218, 279 

Contrapositive, 47 
proof by contraposition, 123,135 

Converse, 45 
Countable sets, 289,304 

countably infinite, 289, 304 
uncountable, 288, 290, 293-295, 304 

Cross product, 258-270, 303 

Decidable sentence, 203,210 
Deductive reasoning, 115, 131, 185, 209 
Definitions, 50, 88 

inductive definition, 182 
recursive definition, 182 

DeMoivre's theorem, 189 
Descartes, René, 214, 258,261 
Designing a circuit, 81 
Directed graph, 315,397 
Disjoint, 233 
Disjunction, 36, 38, 102 
Distance, 266, 270 

Distributive property, 57 
for logical operators, 57, 64 
for sets, 236, 237, 302, 251 

Divides relation, 148, 211 
Division algorithm, 340 
Domain, 4, 101 

for a function, 344, 345, 398 
for a relation, 313, 397 

Einstein, Albert, 202,269, 406 
Elements, 7, 216, 302 
Empty set, 219, 302 
Equals relation, 7 

equal functions, 346, 398 
equal sets, 220, 224, 302 

Equivalence relation, 8, 315, 320, 325-343 
congruence mod n, 327-328, 338-341,398 
equivalence classes, 328, 398 
partitions, 230, 302, 329-337 

Equivalent sentences, 36,44-58,102, 224 
frequently used equivalences, 103 
negations, 54, 65 

Euclidean geometry, 192, 193, 198-201 
Euclid, 192 

Euler, Leonhard, 14, 344 
Existential quantifier, 24-33,93,101, 

in proofs, 149-157 
negations, 31,66,90 

Finite sets, 271-282, 304 
Floor function, 350 
Functions, 3,272-273, 304, 317, 344-370, 398 

characteristic function, 350 
codomain, 344 
composition of functions, 155-157, 358-363, 399 
continuous, 60 
domain, 4,101, 344, 345, 398 
floor/ceiling functions, 350 
identity function, 347, 399 
image of a set, 93, 364-367, 398 
into functions, 344, 398 
inverse functions, 356-358, 399 
inverse of a composition, 361-362 
notation, 12, 317,344, 352,398 
one-to-one function, 272-273, 304, 354-355, 398 
onto function, 151-153,155-157, 273, 304, 353, 398 
restrictions and extensions, 347, 399 
sequence, 182,211 
surjection, 353, 398 
well-defined function, 348-351 
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Fundamental theorem of arithmetic, 171,211 

Gauss, Carl Friedrich, 130,144,199,200,215 
Generalizations, 95-98 
Geometric sequence, 187 
GOdel, Kurt, 204,207 
Gbldbach, Christian, 204 
Graphs, 314,397 

directed graph, 315, 397 
Greatest element, 387-388,400 

greatest lower bound, 389 
Halmos, Paul, 113 
Hasse graph, 375-376,400 
Heath, Thomas L., 192 
Hypercube, 267 
Hypersphere, 266 
Hypothesis, 39,118 

Identity 
for a binary operation, 97 
function, 347,399 

If-and-only-if sentence, 42,50 
If-then sentence, see Implication 
If-sentence, 41 
Image of a set, 93,364-367,398 
Immediate successor, 373,391,401 
Implication, 7,36,39-43,102 

contrapositive, 47 
converse, 45 
deductions from implications, 121-122 
deriving implications, 122,135-138 
direct proof, 123,135,209 
indirect proof, 123,135,209 
necessary and sufficient, 42 
negations, 53,65 
p if q, 41 
p if and only iiq, 42 
ponly iiq, 41 
proof by contraposition, 123,135 

Independent axioms, 198,210 
Index set, 246,248 
Indirect proof, 123,135,209 
Induction, mathematical, 174-189,210 
Inductive definition, 182 
Inductive reasoning, 114,131,186,209 
Inequalities, 16-17,162-167 
Infinite sets, 284-299,304 

countably infinite, 289, 304 
uncountable, 288,290,293-295,304 

Injection, 354,398 
one-to-one, 272-273, 304 

Integers, 6,103 
Intersection, 90-91,233,302 
Inverse function, 356-358,399 

inverse of a composition, 361-362 
Inverse relation, 320,397 
Isomorphism, 377-379 
Isomorphic structures, 400 

Karnaugh map, 82-85 

Laws of logic, 13,62-73 
contraposition, 121,209 
law of detachment, 121,209 
excluded middle, 70 
frequently used equivalences, 103 
noncontradiction, 70 
tautology, 13.103 
transitive law, 70-71 

Least element, 382,400 
Least upper bound, 100,389,400 
Lexicographic ordering, 396 
Lobachevsky, Nikolai, 199 
Logic, 423 
Logic circuit, 77-87 

and-gate, 77 
combinatorial circuits, 78 
inverter, 78 
Karnaugh map, 82 
not-gate, 78 
or-gate, 78 

Logical operators, 11, 36-61,102,120 
and-sentence, 36,38,102 
conjunction, 36 
distributive property, 57,64 
equivalence, 36,102,224 
if and only if, 42 
implication, 7,36,39-43,102 
in proofs, 120-128 
negations, 30,36,38,51-54,64 -66,90,102 
or-sentence, 36,38,102 
rephrasing an equivalence, 50,64 
rephrasing an implication, 46,64 
rephrasing or, 48,64 

Logical reasoning, 1-100, see also Proofs 
deductive reasoning, 115,131,185,209 
inductive reasoning, 114,131,209 
laws of logic, 62-73 



logical operators, 36-61 
logic circuits, 77-87 
quantifiers, 23-33 
symbolic language, 3-21 
translations, 87-98 

Lower bound, 388-389 

Mathematical induction, 174-189,210 
Matrix, 316,397 
Maximal elements, 387,400 
Minimal elements, 382,400 
Models, 200-201,210 
Modus ponens, 71,121 
Modus tollens, 121 
Multiple intersections, 249-256, 303 
Multiple unions, 246-256,303 
Multiplication, 260,264 

Natural numbers, 6,103,181,274 
Xo, 288,304 
countable set, 289 
mathematical induction, 181 
size of, 288 
well-ordering principle, 392,401 

Necessary and sufficient, 42 
Negations, 30,36,38,51-54,64 -66,90,102 

negating and, 51,64 
negating equivalences, 54,65 
negating implications, 53, 65 
negating or, 52,64 
negating quantifiers, 30,66,90 

Non-Euclidean geometry, 199 
Numbers 

cardinal number, 279,287,304 
complex numbers, 14,15,103,189 
even & odd, 211 
imaginary number, 14 
integers, 6,103 
irrational numbers, 7,103,294 
natural numbers, 6,181,103,275 
negative numbers, 14 
rational numbers, 7,103,157-159,170,293 
real numbers, 6,103 

One-to-one correspondence, 272,304 
One-to-one function, 272-273,304, 354-355,398 

composition, 360 
injection, 354,398 

Only-if sentence, 41 

Onto function, 273,304,353, 398 
composition, 359 
proofs for onto, 151-153,155-157 
surjection, 353, 398 

Operations, 6,96, 102,352, 
binary operations, 96,102, 352,399 
cross product, 258-270, 303 
intersection, 90-91,233,302 
logical operators, 1,11,37 
multiple intersections, 249-256, 303 
multiple unions, 246-256,303 
set operations, 233-270,399 
set subtraction, 233, 303 
union, 90-91,233, 302 

Or-sentence, 36,38,102 
disjunction, 36,38,102 
exclusive or, 39,102 
negations, 52,64 

Order relations, 8,371-393 
antisymmetric property, 224, 320, 372, 399 
comparable elements, 373 
greatest element, 387-388,400 
greatest lower bound, 389 
Hasse graph, 375-376,400 
immediate successor, 373, 391,401 
isomorphisms, 377-379 
isomorphic structures, 377,400 
least element, 382,400 
less than, 16-17,162-167 
lexicographic ordering, 396 
lower bound, 388-389 
maximal elements, 387,400 
minimal elements, 382,400 
partial order, 320,372,399 
poset, 373,399 
strict order, 373 
successor, 373 
symmetric property, 224,319,397 
topological sorting, 386-387,401 
total order, 374-375,399 
upper bound, 100, 388-389,400 

Ordered pair, 258,303 

Paradox 
Cantor's paradox, 301 
Russell's paradox, 206,214,218,279 

Parallel postulate, 199 
Partial order, 373,399 

see Order relations 
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Partition, 230,302 
equivalence relation, 329-337 

Pigeonhole principle, 283 
Poincaré, Henri, 111, 121,310 
Poset, 373,399 
Power set, 228-230,302 

axiom, 297 
Predicate logic, 12 
Prime number, 134,171,184, 211 
Proofs, 109,111-131,117,130,209 

arguments, 118-131 
axiomatic systems, 198 
by cases, 126,160-167,210 
by contradiction, 168-171,210 
by contraposition, 123,135 
deductions from and-sentences, 128 
deductions from implications, 121 
deductions from or-sentences, 125 
definition, 112,197,209 
deriving and-sentences, 128 
deriving equivalences, 138 
deriving implications, 122,135 
deriving or-sentences, 127,139 
direct proof, 123,135,209 
disproving a statement, 153,210 
indirect proof, 123,135,209 
mathematical induction, 174-189,210 
method of exhaustion, 149 
proving implications, 135-140 
quantifiers in proofs, 149-157 
structure of a proof, 115-117 
theorem, 112,197-198,209 
writing a proof, 141-147 

Proper subset, 225,302,373 
Propositional logic, 12 
Pythagoras, 113,169 
Pythagorean theorem, 112,113,114,134, 

170,189,265,270 

Q.E.D., 117 
Quantifiers, 1,9,23-33,155 

existential quantifier, 24-33,93,101,149 
in proofs, 149-157 
multiple quantifiers, 26 
negations, 30,66,90 
universal quantifier, 24-33,101,149 

Range, 313, 345, 398 

Rational numbers, 7,103,157-159,170 
countable set, 293 

Real numbers, 6,103 
uncountable set, 294 

Recursive definition, 182 
inductive definition, 182 

Relations, 6, 309-402 
antisymmetric property, 224,320, 398 
congruence mod n, 327-328, 338-342, 398 
definition, 312-313, 397 
equals relation, 7, 220, 224, 302 
equivalence relations, 8,315,320,325-343 
functions, 344-370 
inverse relations, 320, 397 
isomorphic structures, 377-379,400 
n-ary relations, 322, 398 
order relations, 371-393 
partial order, 320,372,399 
reflexive property, 224, 318, 397 
subset relation, 7, 221-223, 302, 371-372, 381 
symmetric property, 224, 319, 397 
total order, 374-375, 399 
transitive property, 223,224, 397, 318 

Riemann, Bernhard, 265 
Russell, Bertrand, 310,377 

Russell's paradox, 206,214,218,279 

SchrOder-Bemstein theorem, 296 
Semantics, 38 

syntax, 36 
Sentences, 5,101,112 

component sentence, 10,55 
compound sentence, 10, 101 
open statement, 8,24,101 
relation, 312 
statement, 8,101 
verbs, 7, 309, 312 
well-formed sentence, 6 

Sequence, 182,211 
arithmetic sequence, 187 
bit string, 232,270,300 
geometric sequence, 187 

Sets, 213-301,302 
cardinality of a set, 273,279,287, 302, 304 
Cartesian product, 259 
cross product, 258-270,303 
elements, 7, 216-231, 302 
empty set, 219, 302 
equal sets, 220 



finite sets, 271-282, 304 
image of a set, 93, 364-367, 398 
infinite sets, 284-299, 304 
intersection, 90-91, 233, 302 
multiple intersections, 249-256, 303 
multiple unions, 246-256, 303 
operations on sets, 233-270 
partition, 230, 302, 329-337 
power set, 228-230, 297, 302 
proper subset, 225, 302,373 
set subtraction, 233, 303 
size of a set, 273, 282, 288, 299 
solution set, 9 
subset relation, 7,221, 302, 371, 372 
union, 90-91, 233, 302 
well-defined set, 217, 399 

Size, 273, 282, 299 
of N,288 

Strict order, 373 
Structure, 117,129,141 

structure of a proof, 115 
Subsets, 7,221 

proper subset, 225, 302 
sizes, 282, 288 
subset relation, 302, 371, 372 

Substitution principle, 91-95, 102 
Successor, 373 
Surjection, 353, 398 
Symbolic language, 3-21 

symbols, 3,101,428 
Symmetric property, 224, 319, 397 
Syntax, 36 

semantics, 38 

Tautology, 13, 103 
Theorem, 112,197-198,209 

conjecture, 109, 112,209 
writing a proof, 141-148 

Topological sorting, 386-387,401 
Total order, 374-375, 399 

chain, 374 
Transformation, 344 
Transitive property, 223,224,397, 318 

transitive law, 70-71,124, 209 
Translations, 87-98,102 

whenever, 89 
Truth value, 8,101 

false-true, 197 

Truth value function, 351 

Unary, 11 
Uncountable set, 288, 290, 293-295, 304 
Undecidable sentence, 203,210 
Undefined terms, 194, 210 
Union, 90-91, 233, 302 
Universal quantifier, 24-33,101, 149 

negations, 30, 66, 90 

Universal set, 301 
Upper bound, 100, 388-389,400 

Valid argument, 118-129,209 
conclusion, 39, 118 
definition, 118, 119 
hypotheses, 39, 118 
modus ponens, 71, 121 
modus tollens, 121 
rule of detachment, 71 
transitive law, 124 

Variables, 4,90-91, 101 
Venn diagram, 221 
Visual reasoning, 13 

Weierstrass, Karl, 61 
Well-defined set, 217, 399 

function, 348-351 
Well-formed formula, 12 
Well-formed sentence, 6 
Well-ordered set, 390,401 
Well-ordering principle, 392,401 
Whitehead, Alfred North, 85, 377 

Russell, Bertrand, 377 
Whole number, 280 
Writing our reasoning, 109-207 

axiomatic systems, 191-206 
mathematical induction, 174-189, 210 
proof by contradiction, 168-171, 210 
proofs & arguments, 111-134 
proving implications, 135-140 
using cases, 160-167,210 
working with quantifiers, 149-157 
writing a proof, 141-148 

XOR, exclusive or, 39 

Z„, 340-341 
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