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To

Students

Rarely does one hear an English major say, "I like English, but
I don't like to write," yet math students often say, "I like math,
but I don't like to write proofs.” Some students even tremble at
the sound of an approaching proof assignment. The purpose of
this book is to demystify the proof process by giving you the
necessary reasoning techniques and language tools for
constructing well-written arguments. This skill is as essential
in mathematics and computer science as in English or any other
discipline.

Learning to Reason is designed for a freshman/sophomore
level course with no prerequisites except a desire to improve
one’s reasoning skills and one's ability to read and write mathe-
matics and symbolic languages. The book covers the process
of writing proofs, a process similar to writing in other disci-
plines, but the topics for our themes (theorems) will come from
three unifying concepts that run through all areas of mathemat-
ics: logic, sets, and relations.

We sometimes require prerequisites for math courses in
order to ensure a certain level of mathematical maturity - a
maturity where one becomes an independent thinker who can
figure things out without being told what to do. One of the
main goals of this book is to speed up this maturation process
by focusing on how we reason with mathematical language,
emphasizing those elements of the language that tend to
confuse students in advanced courses. Simple-sounding
concepts such as substitution are not as simple as they sound.
Simple words, such as "and,” "or," "not," and "implies," lose
their simplicity when we combine them in a sentence. If you
are not fluent in how to manipulate these basic terms from
which we build our language, you will be severely handicapped
when you try to do any type of mathematical reasoning.

Another goal of this book is to help you see the common
thread that runs throughout the vast universe of mathematics.
Without this connection, you can easily get lost in an endless
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maze of mathematical concepts and not be able to see the forest
for the trees. Many people have the misconception that mathe-
matics i$ primarily a subject in which you do computations. I
must confess that I have never been a fan of doing computa-
tions. In my college days, my fellow bridge players always
wanted me to keep score because I was a math major. I felt
like a chef being asked to wash the dishes. A chef creates dirty
dishes in the process of cooking, but the goal is not to create
dirty dishes. Similarly, mathematicians often generate compu-
tations in the process of doing mathematics, but the goal is not
to generate computations. The goal is to create interesting
structures and relations that can be supported with logical
reasoning. This is the common thread that connects all of
mathematics.

In Chapter 1, we cover the basic elements of mathematical
language. Mathematical language is quite simple, which may
surprise those who consider mathematics to be difficult and
complex. Consider the myriad ways that we can form complex
sentences in everyday language. In contrast, mathematical
language is constructed from only five connectives and two
quantifiers. If you understand how to manipulate these seven
terms and how to use substitution, then you have acquired the
basic technique on which logical reasoning is based.

In Chapter 2, we examine the reasoning process and how
we organize our reasoning into a well-written form that can be
classified as a proof. As in any good essay, a written proof
contains an introduction, a body, and a conclusion. We will
study various templates for writing proofs; however, the ability
to construct a proof requires a deeper level of intellectual
maturity than merely following an established procedure. To
construct a proof, one must explore and question, find the inner
structure of the situation, analyze the various parts, and then
use logical reasoning to put the different pieces together to
create the proof. The sparks that leap across our synapses
during this creative process strengthen our powers of reason-
ing, one of the major benefits of studying mathematics.

In Chapter 3, we look at how we work with sets, the build-
ing blocks of mathematical language. Since prehistoric times,
when people counted with a set of sticks or stones, sets have
been at the foundation of mathematics. When we count, we are
counting the number of elements in a set; when we analyze the
form of a figure, we are analyzing a set of points; when we
look at a function, we see a relation between two sets. Sets
provide the basic framework for mathematical discourse.
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In Chapter 4, we examine relations, a reasoning concept
common to all disciplines. There are relations among pieces of
music from the same period, works of art of the same style, and
books of the same genre. In no discipline, including mathemat-
ics, can we analyze an object by itself; we must compare it to
other objects. Relations provide a simple way to describe
mathematics: Mathematics is the study of abstract relations.

Additional learning tools are available at the web site,
www.learningtoreason.com. Please visit the site and check out
the resources, which will be continually enhanced. You are
invited to submit questions, comments, and suggestions.

As you begin your study of the language of reason, please
remember that people do not learn a language through
memorizing a list of words but through hearing the words used
many times in various ways. The compactness of the language
of mathematics with its attendant density of meaning requires
that we read mathematics at a slow but contemplative pace.
More than likely, we will not grasp its full import from one
reading, and even if we do grasp it, we probably will not
remember it all, for human memory needs a great deal of
repetition to build enough bridges for the easy retrieval of
stored information. So, it is important not only to read the
sections, but also to reread them and ask questions about the
content until you have a deep understanding of the material in
both a verbal and a visual form. Anyone who is a lover of
poetry knows that each rereading of a poem can bring new
insights. The same is true in mathematics.

Anyone can develop their reasoning skills if they are willing to
invest the necessary time to work out with the exercises and the
concepts. To become a good athlete or a good musician
requires long hours of practice, so it is not surprising that
learning how to reason also requires a similar investment of
time. The exercises at the end of each section are an essential
component of the learning process. To develop your reasoning
skills, you should work out with the exercises on a daily basis.
As you work through the discussions in the text, you should
also write your own questions and observations. Through this
process, you will build your understanding and personally
internalize the meaning of the various concepts.
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Throughout this text you will find activities that introduce
you to concepts in the sections following them. If you work on
the activities before you read the section, you will have the
opportunity to discover relationships on your own. What you
discover for yourself burns an indelible image in your memory
and helps you to become a creative thinker, which is one of the
most important skills needed in a changing society. Problems
are easy when we have examples to guide us, but the creative
thinkers are those who can blaze a path and create examples for
others to follow. To be a logical thinker, we must develop our
ability beyond merely copying procedures from examples
provided by others.

When you take the extra time to figure out a problem on
your own, you are building mental bridges that you can use in
the future, The long hours of work that you do in building
these bridges makes a deep impression that is firmly secured in
your memory bank. On the other hand, when someone shows
you how to do a problem, you are learning how to run across a
bridge that someone else has built, which is not the same as
learning how to build a bridge on your own. Computers are
very adept at running across bridges that others have built, but
they lack the human creativity to build new bridges for thought
processes. To develop our reasoning powers beyond the
mechanistic circuits of a computer, we must learn how to be
creative thinkers.

To enliven your journey into the abstract world of reason-
ing, you may want to get into the gamesmanship of it by
considering the exercises as a highly sophisticated game of
mental prowess, or, for the more physically inclined, you may
want to view them as aerobic exercises for the mind. The time
that you spend will be a wise investment, for whatever path you
take in life, the study of the topics in this book will help you to
become an independent thinker who can reason in a logical
manner.

Nancy Rodgers
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To
Teachetrs

Mathematics is simpler than other disciplines — physics or
history, for example — because mathematics is concerned with
such a very limited aspect of reality. Why, then, does such a
simple subject seem so hard to so many people? I have come
to believe that it is primarily a language problem. [ became
painfully aware of this problem in my first abstract algebra
course when I ran head-on into a brick wall of mathematical
language. I remember long hours of mental labor interrupted
by a recurring question: why on earth did I major in math?

The next year I had a topology teacher, Professor John
Seldon, who gave us a collection of theorems to prove from
Eléments de mathématique by Bourbaki. As I worked though
Bourbaki's organization of the foundations of mathematics, I
began, for the first time, to understand the beautiful simplicity
of mathematical language. After that experience, my studies
became much easier because I now knew how to use
mathematical language to structure my thinking.

Years later, while contemplating pedagogical methods that I
might use to help my students over the same hurdle, I decided
to write this text. The first version was used in an Algebraic
Structures class. Because of student inquiries as to why they
did not have this class earlier - since it would have helped them
with the proofs they struggled with in other classes — the course
was moved to the freshman/sophomore level. Through their
many questions over the years, I began to understand the
source of the great difficulty students have in writing proofs in
upper division courses. The rules of syntax that seem so
obvious after we subconsciously master them through long
years of study are a huge language barrier to those on the other
side of the fence. Some students have a great ear for the
subtleties and nuances of languages and can easily learn a
foreign language; a very small percentage of students have a
similar gift for learning the language of mathematics. Granted,
young children learn their native tongue by listening to those
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around them, but as we get older, most of us can benefit greatly
by understanding the basic structure and syntax of a new
language we are learning.

The initial goal in developing this text was to make Bourbaki's
organization of the foundations of mathematics understandable
and relevant at the freshman level. In addition, the book
presents a lively discussion of the reasoning process, with a
primary focus on deductive reasoning, but also including
inductive reasoning, visual reasoning, and translations from
everyday language to pictures and symbolic representations.

Starting with the foundations of logic in Chapter 1, the text
explains how to analyze and logically manipulate individual
sentences. In Chapter 2, the focus is on how to structure our
thinking so that we can put sentences together to form a
well-reasoned proof. The text illustrates the concepts with an
elementary chain of ideas conceming integers, rational
numbers, and real numbers. This connected series of examples
and exercises helps students learn how to structure their
thinking while also developing their understanding of numbers.
The techniques learned here are reinforced as we examine sets,
the basic building blocks of mathematics, in Chapter 3, and
relations, where the action is in mathematics, in Chapter 4.
This organizational structure gives students a meaningful
overview of the vast subject of mathematics, while building
their reasoning skills and their understanding of the basic
concepts used throughout mathematics.

The study of logical skeletons is fleshed out in mathematical
settings with overviews of the structures they support and
exercises that get students actively involved in and intrigued by
the intellectual game of logical reasoning. Each section is
preceded with a set of activities that give students the
opportunity to discover for themselves important concepts from
the next section. The activities encourage independent thinking
and initiative, as well as help to raise the student's curiosity and
interest in the upcoming material. After each section is a finely
crafted set of exercises designed to help students develop their
reasoning skills as they build a personal understanding of the
language and notation. The exercises focus on those areas of
mathematical language that tend to confuse students in upper
division courses. They have been class-tested for several years
and revised to maximize their benefit. Each chapter has a
review section with related definitions grouped together. The
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definitions are alphabetized in a comprehensive glossary at the
end of the book, followed by a symbol list.

The easy-going style of the book makes it accessible to a
wide range of students. The concepts are carefully developed
in a conversational writing style that speaks with a gentle
authority, offering students motivation and encouragement
along the way. It moves along at a brisk pace with careful
analyses at points most likely to cause problems. The examples
are cogent and thoughtfully presented, set off by lines that
clearly separate them from the discussion. There is an energy
in the conciseness of the writing and layout that makes it easy
for students to read and remember what they have read.

In response to the first question in the book, one of my
students, Becky Cantonwine, gave the following description of
the difference between mathematical language and everyday
language: "Mathematical language differs from everyday lan-
guage in the same way that poetry differs from prose; every
word or symbol is important and necessary, and their position is
important to their meanings." Albert Einstein saw the same
connection in his eloquent description of pure mathematics as
"the poetry of logical ideas." Like written poetry, mathematical
language is enhanced through the use of poetic lineation.
Gestalt holistic patterns are easier to retain in the mind's eye, so
poetic lineation is used in the text to highlight featured ideas
and to assist the reader in working through dense notation and
the thought processes involved in the reading of a proof. Great
attention has been paid to the visual tone set by the geometric
form of text layout, with white space generously used to
minimize the denseness of the subject matter and to feature key
thoughts and signposts in the reading. The overriding issue in
all layout decisions was the presentation that would make it
easiest to remember. Block text with its dense wrap-around
lines is not as easy to assimilate and retain as text that
incorporates active white space. I'have tried to make the text as
simple as possible, using a minimal but sufficient amount of
words in explaining the concepts.

The text is designed as a bridge course for mathematics and
computer science majors at the lower or upper division level.
Any student who wants to learn how to structure their thinking
and develop their reasoning skills will find it easy to use as a
self-study text. Teachers of upper division math courses may
want to use it as a supplementary text.
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@ Chapter 1

Logical

Reasoning

guished from other forms by its complete objectivity.

In order to attain a pure state of objectivity with no

room for ambiguities, the language of logic had to be devel-

oped with great precision and clearly defined rules. Personal

interpretations of a story, a painting, or an historical event may

1.1 Symbolic Language vary considerably, but any two people who understand the

12 Two Quantifiers language of logic wil} interpret a logical argument in essentially

the same way. Unlike the tangled web of rules that we use

1.3 Five Operators subconsciously in our everyday discourse, the rules for logical
reasoning are very exact with no exceptions to the rule.

When we reason within a logical framework, words must be

1.5 Logic Circuits manipulated according to the rules of the game. Fortunately,

the rules are fairly simple because the language of logic is built

from only seven basic terms: two quantifiers, for all and for

some, and five operators for building compound sentences, not,

and, or, implies, and is equivalent to. The first stage in master-

ing the art of logical reasoning is to learmn how to manipulate

these seven terms. Each of these terms is simple by itself, but

the meaning can easily be misconstrued when two or more are

used in the same sentence, especially since we do not always

use them in a consistent way in our everyday language. Once

you master the basic rules, called the laws of logic, for using

these seven terms, this stage of the reasoning process will be as

easy as driving a car.

L ogical reasoning is a form of discourse that is distin-

1.4 Laws of Logic

1.6 Translations
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Chapter 1 Logical Reasoning

The next stage is a bit more challenging, for we must learn how
to 1) translate sentences phrased within the complex structure
of everyday language into the simplified language of logic, 2)
use the powerful tool of substitution to convert abstract knowl-
edge into various forms, and 3) translate visual reasoning to a
verbal form and vice-versa. In this chapter, we will cover the
basic elements of logical reasoning, including quantifiers,
logical operators, substitutions, and translations.

Activity 1.1

1. Reasoning is mentally performed within the context of a language,
which provides the medium through which we organize and
present our thoughts. To speak or think in any language, we must
be aware of the basic structure of the language.

a.

b.

How does mathematical language differ from everyday
language?
Compare the way that you learn mathematical language with
the way that you learned to communicate with others in your
preschool days.
Compare the use of pronouns in everyday language with the
use of variables in abstract languages. Do they serve the same
role in the following two sentences?

He is taller than 5 feet. x>5

. What does "complete thought” mean to you? What elements

of language are needed to express a complete thought?

. Make a list of nouns and a list of verb phrases that you have

used in mathematics. Which have you used the most?

What is a sentence? Do any of the following expressions form
sentences? 1<2 1+2 142=3

2. Let p and q represent sentences.
Let ~p represent the negation of p.

a.

Does ~(p and q) mean the same as (~p and ~q)?
This question is very abstract.
How should you start thinking about it?

b. What is an abstraction? Is a number an abstraction? Is the

color blue an abstraction?




The importance of an easily
manipulated symbolism is that
it enables those who are not
great mathematicians in their

generation to do without
effort mathematics which
would have baffled the

greatest of their predecessors.

E. T. Bell, 1945

The function f assigns to
each number in the
domain the value that is
the square of the number
obtained by multiplying the
original number by three
and then adding one.

1.1 Symbolic Language

= 1.1 Symbolic Language =

All written languages are based on symbols. The English
language is written in terms of phonetic symbols that give
pronunciation information. We can symbolically represent the
addition concept with the phonetic symbol "plus" or with the
ideographic symbol "+" which does not give pronunciation
information. They both represent the same concept. However,
in the process of logical reasoning, phonetic words can bog
down our thought processes. For example, consider the follow-
ing question from an algebra textbook by Al-Khowarizmi in
the 9th century.

What must be the amount of a square, which, when
twenty-one units are added to it, becomes equal to
the equivalent of ten roots of that square?

Al-Khowarizmi's question, which would have challenged the
great thinkers of the Middle Ages, can be answered by most
high school students today who understand symbolic manipula-
tions. Of course, the question would have to be posed in a
symbolic form or they, too, might become entangled in the
phonetic words:

Find a solution to the equation x*+21 = 10x.

Take a moment and contemplate the adjacent sentence. How
long did it take you to decipher its meaning? If you know
function notation, you can comprehend the same sentence in
symbolic form almost instantly: f(x) = 3x+1)?

The great power of mathematical symbols is the ease with
which the brain can process the information. Without the pro-
nunciation baggage, the brain manipulates the symbols with
great speed, thereby enabling us to focus on deeper questions.
At the other extreme, though, too many ideographic symbols
tend to shorten our attention span. A page full of nothing but
symbols is not as inviting as a page where symbols are inter-
woven with words, so we try to find a delicate balance between
the two, as illustrated in the above translation.

Unfortunately, mathematical symbols pose a language
barrier to those who have not taken the time to learn their
meaning, leaving many people with the impression that they
are viewing a foreign language. However, it is not as difficult
as it appears. All it requires is that we take the time to build a
personal meaning for the various symbols.

3



Chapter 1 Logical Reasoning

Using Symbols

Learning a Language

Variables

A variable is a letter used
to represent an arbitrary
element of a given set;
that set is called the
domain of the variable.

In order to use symbols in the reasoning process, we must know
how the symbols can be manipulated. Even more importantly,
though, we need to have a personal understanding of what the
symbols represent. For example, we may be able to compute
145 + 3 with an algorithm, but we will not be able to use the
answer in a meaningful way if we do not understand the
meaning of dividing a set into subsets of equal size. If we do
not build a personal meaning for symbols, we lose the base for
our reasoning powers and become nothing more than a
computer performing mechanical processes.

When learning a foreign language, we may know the meaning
of a word one week but forget it the next week. The same thing
happens when we learn a symbolic language. Each symbol
represents a concept, and to understand the concept, we need to
think about what it represents and what it does not represent.
We should work through examples for which the concept
applies as well as examples for which the concept does not
apply. As we use a new symbol in different examples and
exercises, we will slowly build our personal understanding of it
until we are comfortable using it. The more we use a concept,
the deeper we implant it in our memory.

Some students pick up the symbolic language of mathe-
matics or computer science faster than others do. Similarly,
some people can sit down and play the piano by ear, while
others have to struggle with years of practice. Those who
learned how to play through hard work, though, often end up
playing far superior to those blessed with an ear for music. Itis
not how fast you learn a language but how hard you work to
develop a deep understanding of it.

Variables are an essential component of a symbolic language.
As its name implies, a variable can vary and represent a variety
of elements. Instead of talking about specific numbers, we
usually talk about a generic number that is symbolized by a
variable, such as x. Like pronouns in everyday language,
variables serve as a place holder for substituting specific
elements.

The set of elements that may be substituted for a variable is
called its domain. In the following example, the domain for x
is the set of integers:

For every integer x, x < x+ 1.



Theorem: The sum of two
even numbers is even.

Proof:

Let m and n be even numbets,

Then m = 2k for some integer k.

Also, n = 2j for some integer j.

So,n+m=2k+2j=2(k+)).

Since k+j is an integer, by the

definition of even, n+ m is even.

Sentences

Sentences require
complete thoughts.

% Example

1.1 Symbolic Language

In computer science, a variable represents a storage space in
the computer's memory where a number or a string of charac-
ters can'be stored. Each variable is assigned a type that repre-
sents its domain. If a variable is assigned an integer type, then
only integers can be stored in that variable.

We can use any letter as a variable, but we cannot use a
letter to represent two different things within the same dis-
cussion. For example, an even number is any number that can
be represented in the form 2k where k is an integer. However,
if we apply this definition to two different even numbers within
the same discussion, we cannot use "k" both times, for that
would imply the two numbers are equal. Instead, we use
another letter:

Let m and n be even numbers.
Then m = 2k for some integer k.
Also, n = 2j for some integer j.

In the adjacent proof, notice how the use of variables gives us a
tangible way to work with even numbers, enabling us to make

logical deductions about the abstract concept of even.

Most communications in everyday language are phrased in
terms of sentences, so it is not surprising that the same is true in
mathematics. To express a complete thought, we use a
sentence. Conversely, sentences require complete thoughts. If
we are working with incomplete thoughts, either in our head or
on paper, we cannot hope to make much progress in the reason-
ing process.

Our work in this chapter will focus on how we logically
manipulate sentences. When we reason, the steps in our
reasoning process are built from sentences, so it is essential that
we know how to recognize sentences, especially those that are
written in symbolic form.

Which of the following are sentences? 5<8 5+8 S5+8=13
1. “5<8”is a sentence. 5 is the subject and < is the verb.
2. “5+8"is not a sentence because it does not have a verb.

3. “5+8=13"is asentence. The subjectis “5+8” and the
verb is “=."

5
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Relations & Operations

Relations Operations

nAQt
N A R+
< C X+
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Fragments

Subjects

The Real Numbers

A

A
3210123 7

When we place the < symbol between two numbers, we get a
sentence. These types of symbols represent relations.
However, when we place the + symbol between two numbers,
we get a number, not a sentence. The + symbol operates on
two numbers and produces a new number, such as 5 +8.

A relation gives a connection between two objects, whereas
a binary operation operates on two objects and produces a third
object. Relations produce sentences, but operations produce
objects, such as a number or a set. In order to write well-
formed mathematical sentences, we must be able to distinguish
between relations and operations.  Since they are different
components of mathematical language, most word processors
organize their equation editor with all relations grouped under
one menu and all operations grouped under another menu, as
illustrated on the left.

We may sometimes jot down fragments of sentences, such as
the adjacent fragment from the famous quadratic formula, but
we cannot use fragments in a proof. To complete the thought,
we must add a subject and a verb. Students who do not carry
along the beginning of the sentence, "x =," often do not know
what the answer represents when they finish the computation.
When we do not write in complete sentences, it is easy to get
confused and lose track of what we are doing.

A well-formed sentence must have both a subject and a verb.
The most frequently used subjects in mathematical sentences
are sets and numbers, We will now briefly review the different
types of real numbers and examine sets later on in Chapter 3.

*  Questions about “how many" elements in a finite set can
be answered in terms of the natural numbers:

1,2,3,4,5,6,...

» To answer questions about “how much,” such as how
much length or how much area, we need a more exten-
sive set of numbers, called the real numbers. We
visualize the real numbers as coordinates of points on a
number line, as illustrated on the left. In symbolic form,
a real number is any number that can be represented as
a decimal with a finite or infinite number of places.

e The integers consist of the natural numbers, their
negatives, and 0:

. -3,-2,-1,0,1,2,3,...
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The positive integers are the natural numbers.
0 is neither positive nor negative.

* The rational numbers are numbers that can be repre-
sented as the quotient of two integers, such as -251 The
number .35 is a rational number because we can write it
in fraction form: %0%. Using variables, we can define a
rational number as follows: x is a rational number if and
only if x =  for some integers a and b with b #0.

¢ Real numbers that are not rational, such as /2 or 7, are
called irrational numbers. Every real number is either
rational or irrational,

The hierarchy of real numbers is given in the adjacent sketch.
Each set is a subset of those sets that are chained above it.

The action in everyday language comes from verbs. The same
is true in mathematical language. However, most verbs in
mathematics require objects, such as x<y orx=y or XCY. In
everyday language, we could have "x sings,” but in mathemati-
cal language, x would have to sing to somebody, such as y. If x
is a loner, we could have “x sings to x,” but not just "x sings."
Most mathematical verbs, such as those listed on the left, give
relations between two objects.

One of the most important verbs is the implication verb,
which we will examine in great detail in this chapter. This
verb, which lies at the very foundation of logical reasoning,
sets the structure for what we mean by a logical deduction. We
use the implication to define a valid argument, which gives us
the basic method for reasoning in a logical manner. We also
use the implication verb to define other important verb phrases,
such as "is equal to" and "is a subset of."

The most frequently used verb in mathematics is "equals."
In arithmetic and elementary algebra, this little verb provides
the main action, with occasional help from the inequality verbs,
g &, >, 2  The equals verb is used with both numbers and
sets, whereas < is used only with numbers.

The analogue of < in set language is the subset verb, which
gives a relation between two sets. A is a subset of B, notated as
A S B, means that every element in A is also an element in B.
This definition depends on another important verb phrase, is an
element of, notated as €.

3 € A means that 3 is an element of the set A.

7
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Statements

A statement is a sentence
that is either true or false,
but not both.

4 Example

True

False

On

Off

Open Statements

Verbs that have properties similar to the equals relation, such
as =, and =, are called equivalence relations. Verbs that impart
some type of order on objects, such as <, <, <, and € are
called order relations. We will examine both equivalence
relations and order relations in Chapter 4.

Some sentences, such as "7 is a lucky number," may be con-
sidered true by some people and false by others. We do not
deal with this type of sentence in mathematics; instead, we
restrict our discourse to sentences whose truth values are not
debatable. We will use the term statement to denote a sentence
that is either true or false, but not both. If a statement is true,
then it cannot be false.

Which of the following sentences are statements?
3+42=5 3+42=6 x+2=6
1. "3+2 =5"is a true sentence, so it is a statement.
2. "3+2 =6"1s a false sentence, so it is a statement.

3. "x+2 =6"is a sentence; however, it is neither true nor
false, so it is not a statement.

The truth value of a statement is either true or false, which we
will represent with T and F. In computer science, we use 1 for
true and O for false. A computer transmits information along
an electronic highway in terms of electric circuits which are
either on or off. We identify the ON-state, defined as 1, with
"true” and the OFF-state, defined as 0, with "false."

Statements severely limit the scope of our discourse
because the truth value of many sentences is somewhere
between 0 and 1. For example, the weatherman's assertion that
it will be "partly cloudy” may be true only 80% of the day.
These types of sentences can be analyzed with a more general
type of logic known as fuzzy logic (page 60), which was devel-
oped to program artificial intelligence into computers.

The sentence x + 2 = 6 is not a statement, but it does become a
statement when we substitute an element for x.

Substitute 4 forx: 4+2=6 (True)
Substitute 3 forx: 3+2=6 (False)



An gpen statement is a sentence with
vatiables that is not a statement but
becomes a statement when substi-
tutions are made for the variables.

4 Example

2x+3=5

Forallx, 2x+3 =5,

There exists an x such that 2x+3 = 5.

Solution Set

4 Example

1.1 Symbolic Language

A sentence of this type is called an open statement. We might
be tempted to say that an open statement is any statement that
has a variable. However, this is not true for we can quantify
the variables by prefixing the sentence with a quantifier, as
illustrated in the following example.

The domain for x is the set of real numbers. Are any of the
adjacent sentences open statements?

“2x+ 3 = 5" is an open statement. It is neither true nor false,
but each time we substitute a number for x, the sentence is
either true or false.

The second sentence is false, so it is not open.

The last sentence is true, so it is not open.

Even though the last two sentences in the above example have
variables, they are not open statements because the variable is
fixed (or bound) by the quantifier. Quantifiers are extremely
important components of the reasoning process. We will
examine them in detail in Section 1.2.

The solution set of an open statement in x is the set of elements
from the domain of x that convert it to a true statement. To find
the solution set of an equation, we solve the equation and then
place the answers in a set. The solution set depends on the
domain, as illustrated in the following examples.

1. What is the solution set of the open statement, x+2 = 0?

Before we can answer this question, we must know the
domain for x. If the domain is the set of integers, the
solution set is the set whose only element is ~2, which we
represent with set braces as {-2}.

If the domain is the set of natural numbers, though, the
solution set is empty, which we represent with either the
symbol { } or ¢.

2. What is the solution set of the open statement, x* = —1?

Before we can answer this question, we must know the
domain for x. Both { and —i are solutions to the above
equation: i = =1 and (-i)* =-1. So, if the domain is the

9
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4 Example

{x|x>2}

{((6y) | x+3y=7)

Compound Sentences

set of complex numbers (page 14), the solution set consists
of i and —i: {i, -i}.

However, if the domain is the set of real numbers, the
solution set is the empty set.

When it is not possible to list all the elements in the solution set
of an open statement p(x), we can represent the solution set
with the following set notation:

{x]| p(x)}

We will examine set notation in more detail in Chapter 3.

1. The domain for x is the set of real numbers. What is the

solution set of the open statement, x>2?

Since we cannot list the elements in the solution set nor
give a pattern that indicates all the members of the set, we
use the adjacent set notation to express the solution set.
This notation is read as “the set of all x such that x>2." If
the reader does not know that the domain is the set of real
numbers, then we should include it in the set description:

{ x| x>2 and x is a real number}

If the reader does know the domain of x, the shorter form
gives a simpler image for focusing our thinking.

The domain for x is the set of real numbers and the domain
for y is the set of real numbers. What is the solution set of
the open statement, x+ 3y =77

We cannot list all the elements in this set, so we use the
adjacent set notation. Since we have two variables, the
elements of the solution set are ordered pairs.

(1,2) is a member of this set since 1+3(2) = 7.

(2,1) is a not a member of this set since 2+3(1) #7.

When we link two sentences with a connective like and, we
create a compound sentence. For example, we can use and to
connect the sentence 2+ 3 = 5 with the sentence 4+5 =09:

2+3=5 and 4+5=9



Addition operates on 2 numbers
and produces a new number.

And operates on 2 sentences
and produces a new sentence.

2+3=5and 4+5=9.
x<2 or x>5.
x<2 implies that x<3.
x <2 is equivalent to —x > 2.
It is not true that 2+ 3 = 6.

Symbolic Sentences

5 Logical Operators
~p: notp
PAgq pandgq
pVgq porg
p=gq: pimpliesg
p<>q: pisequivalent to g
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“2+3 = 5" is called a component sentence of the compound
sentence. In logic, we use only four connectives for building
compound sentences: and, or, implies, is equivalent to. These
terms are called logical operators.

In the adjacent box, notice the similarity between the
addition operation on numbers and the and operation on
sentences. Adding two numbers and combining two sentences
are very different types of activities, but at the base level, the
structure of what they do is the same. They are both binary
operations, which is why we call and a logical operator.

Another important logical operator is the negation. Given a
sentence, like 2 +3 = 6, we can make a new sentence by taking
its negation:

It is not true that 2+ 3 = 6.

Negation is a unary logical operator, whereas the other four
connectives are binary logical operators. As you probably
know, “unary” means “one” and “binary” means “two.”
Negation forms a new sentence from a given sentence; the
other four connectives form a new sentence from two given
sentences, as illustrated on the left. It is rather surprising how
much of our reasoning depends on these five logical operators.
When we examine them in detail in Section 1.3, we will work
with them in an abstract form, similar to abstract algebra.

In elementary algebra, we use letters to represent numbers and
ideographic symbols to represent operations on numbers.

a+b=b+a
axX{(b+c)=axb+axc

Like an x-ray machine, this symbolic representation reveals the
inner structure of arithmetic, making it easy to recognize and
remember general rules for working with operations on
numbers.

To find general rules for reasoning with compound sen-
tences, we do a similar type of abstraction. Instead of working
with specific sentences, we will use the variables p and g to
represent arbitrary sentences and the adjacent symbols to repre-
sent the five operations on sentences.

Using this abstract representation of compound sentences,
we can formulate basic rules for manipulating the five logical
operators. These rules enable us to automate our reasoning
about the logical operators so that we have more time to ponder
deeper questions. However, to apply the rules to specific
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4 Example

p(x) notation

Formal Logic

sentences, we must be able to see the abstract structure of a
compound sentence.

What is the structure of the following compound sentence?
2+3=5and (4+5+7)

1. Letp and q represent the following sentences.
p: 2+43=5 g 4+5=7
Then pA~q: Q+3=5)and (4+5)+7

2. Wecouldalsolet p: 243 =5 and q: 4+5+7
Then pAg: 2+3=S)and(4+5)=7

We can view the above compound sentence as having either
the structure p A g or the structure p A~q, depending on whether
we want to focus on the outside structure of the sentence or
look deeper into its internal structure. The different views of
the structure of a sentence are similar to viewing the outside
structure of the human body or taking an x-ray view of its
skeletal structure.

We will use the function notation p(x), read as "p of x," to
represent an open statement in the variable x. For example, we
could let p(x) represent "x* + 4x —1 = 5." The notation p(x) has
two layers of variables: p is a variable that represents a sentence
and x is a variable that represents a number. Whenever a new
notation seems a little strange, we should work with examples
and before long it will seem like a perfectly natural way to
communicate. Function notation is based on the substitution
principle. To translate p(3), we substitute 3 for each occurrence
of x.
p(x): ¥+4x-1=5

p(3): 3¥+43)-1=5

In formal logic, a statement is called a proposition. Since the
logical operators operate on propositions, the study of the rules
for manipulating logical operators is called propositional logic.
Open statements are called predicates, and the study of
predicates is called predicate logic. Symbolic sentences are
called well-formed formulas, sometimes abbreviated as wffs.
Like the rules for grammar in everyday language, formal logic
systems have syntax rules that govern how symbols can be
strung together. For example, we cannot juxtapose two logical



Visual Reasoning

To the thinking soul
images serve as if they
were contents of
perception. That is why
the soul never thinks
without an image.

Aristotle
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operators, such as pV Ag. Neither can we juxtapose two
sentences pq without a logical operator.

Since this text is an informal introduction to logic, we will
not use these formal terms. However, we will look informally,
from a common sense viewpoint, at predicate logic in Section
1.2, propositional logic in Section 1.3, and both in Section 1.4.
The latter section covers the laws of logic, which are called
tautologies in formal logic. A law of logic is a compound
statement that is always true, such as p or ~p.

Since the earliest cave drawings, pictures have served an
important role in communication. Aristotle, one of the deepest
thinkers in the history of western thought, believed that images
were essential for thoughts, His use of the word "soul” in the
adjacent quote is perhaps more akin to our concept of intellect
than the modern interpretation of soul. His observation has
been supported by recent scientific evidence which indicates
that a large portion of the human brain is dedicated solely to
processing visual information. We seriously handicap our-
selves if we do not use these enormous resources when we try
to reason in a logical manner. Visualizations — whether formed
internally in the mind or externally with a pencil or computer —
provide one of the most powerful tools for the reasoning
process.

In the symbiotic relationship between words and pictures,
words help us understand our pictures, and pictures help us
understand our words. After we intuitively understand a
picture, we then reason with words to provide a verbal founda-
tion for our visual insight. Pictures can be misleading and
measurements may not be exact, so we should back up our
visual understanding with verbal reasoning. On the other hand,
it is usually difficult to do verbal reasoning without a visual
understanding of what we are thinking about. The first step in
solving most problems (other than a computational algorithm)
is to visualize the various components of the problem and their
relation to each other.

Visual reasoning thrives on not only what we see with our
eyes, but also what we see in our mind, independent of our
senses. When we see a mental image, we should draw it on
paper so that we can carefully explore it. The sketches that we
draw do not have to be detailed graphical representations. It is
rather amazing how simple drawings, like the above sketch of
the intersection of two sets or the adjacent sketch of the domain
and range of a function, can help us focus our thinking.
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X units
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Negative Numbers
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Complex Numbers

To understand a mathematical concept, we need a visual
picture of what it represents, for most mathematical concepts
have their roots in some type of visualization. The visual
concept of a ruler is essential for understanding the full
meaning of a positive real number. In the adjacent ruler
picture, we visualize a positive real number as the distance
from the origin to the point it represents.

Negative numbers were not originally considered to be
numbers because they could not be visualized as a length.
However, these ghosts of a number frequently appeared as
missing solutions to simple equations, such as x+5 = 0. After
Fibonacci observed in the 13th century that a negative sum of
money could be interpreted as a loss, various symbols were
introduced to handle numerical losses. In the following
centuries, these symbols were used as symbolic solutions to
equations, but they were not considered numbers. It was not
until the 19th century that the negative numbers were finally
accepted as full-fledged numbers. Their acceptance was forced
by the creation of a logical foundation which gave them a log-
ical existence.

After the verbal conception of the negative numbers, the
visual picture of the real numbers was expanded to a full
number line, with the negative numbers visualized as the mirror
image of the positive numbers. A real number could now be
visualized as representing the directed distance from the origin
to the point it represents. The number 3 is 3 units from the
origin in the positive direction, whereas -3 is 3 units from the
origin in the negative direction.

Like the negative numbers, the complex numbers also went
through centuries of rejection until a simple visual picture made
the existence of these ghostly numbers materialize. Like the
negative numbers, complex numbers were needed for solving
equations. Since there is no real number to solve the equation,
x = -1, the symbol /=1 was used as a symbolic solution,
which was later labeled as i by Euler. The symbol /-1 was
called an imaginary number because it was a complete product
of the imagination. A similar type of number frequently
surfaced in the quadratic formula:

1+/-3
If *»-x+1=0,thenx= ‘2/_

If we extend the standard rules of algebra to the imaginary
numbers, we can factor /=3 as follows:



We discard the symbolic sign
J=T, which we repudiate
completely, and which we
may abandon without regret,
because one does not know
what  this  alleged sign
signifies, nor what meaning
one should attribute to it.

A. L. Canchy, 1847

Complex Numbers
X+ iy
- (xy)

b
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/3= =3 -/

We have now isolated the problem to /=T . Substituting i for

. 1£ /-3
J-1, we can write x = =5 as follows:
3
x=% -J—_—i

In a similar manner, all nonreal solutions produced by the
quadratic formula can be represented in the form x + iy, where x
and y are real numbers. These numbers are called complex
numbers. Unlike the real numbers which provide lengths for
real objects, no real models were apparent for complex
numbers. Consequently, the complex numbers were not
considered legitimate numbers, but they were needed to fill a
technical void.

Even though the imaginary numbers were not considered
real numbers, they were used in blind manipulations because
they often produced real results if one followed the basic rules
of algebra. When one had the good fortune to multiply two
imaginary numbers together, the ghosts would vanish and the
computation would end up back in the land of real numbers:

20)(3i) =-6
(x=3D)x+3i) =x*+9

A major paradigm shift was started in 1673 when J. Wallis had
the visual intuition to imagine the complex numbers as points
in a plane. Other thinkers started to make the same visual
connection, supplying more detail to the picture.

In the complex number x + iy, the imaginary i keeps y segre-
gated from x, which is the same role that the ordered pair (x, y)
serves. Thus, we can visualize the complex numbers as points
in a plane in the same way that we visualize the real numbers as
points on a line. The assignment of x + iy as the number repre-
sentative of the point (x, y) provides a simple visual representa-
tion of the complex numbers that not only deepens our
understanding of these numbers, but also gives us powerful
visual tools for working with them.

The visualization of numbers as points on a line or points in
a plane gives our mind an intuitive picture which makes the
concept more tangible. However, we must make a technical
distinction between points and numbers. A real number is not a
point on a number line. It is a coordinate of a point, or perhaps
we should say that it is a name that we assign to a point. The
same point can have different symbolic names, such as .5 or -;-
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Less than
—
-~ 2-101 2
a<b
< ..
a b

With the new visibility of the complex numbers, mathe-
maticians began to search for a verbal way to legitimatize them
by building a logical foundation that supported their existence.
This goal was finally accomplished towards the end of the 19th
century. With their new certification as legitimate numbers, a
rich new area of mathematics was created.

Complex numbers were soon put to good use by physicists,
who gave them real applications in electricity and magnetism.
Today, complex numbers are a standard mathematical reason-
ing tool, widely used by physicists, engineers, and mathemati-
cians. The imaginary numbers are a brilliant example of the
creative power that comes from the marriage of the visual
imagination with logical reasoning in an abstract cathedral.

The operations of addition and multiplication were extended to
the complex numbers in a way that preserved the basic
properties these operations have on the set of real numbers.
However, the < relation does not extend to the complex
numbers because the complex numbers are not lined up in a
row like the real numbers.

The < relation was extended to the negative numbers in
accord with Fibonacci's financial debt interpretation. If your
debt is $2, you have less money than if your debt is $1: -2 <1

1<2
~-1>=2

This reversing of order between positive numbers and negative
numbers gives us a mirror image picture of the negative real
numbers. We can visualize the < relation on the number line in
terms of the relative positions of the numbers:

a<b
if and only if
a is to the left of b.

We will now use this picture to visually examine the effect of
combining inequality sentences with and and not. Everyone
knows what and means and what not means, but we sometimes
use these words incorrectly, especially when we jump to
conclusions without thinking about what we are saying.
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The domain for x is the set of real numbers. Write the solution
set for the given open statement in interval notation.

1.

Open statement: x<2

The solution set is illustrated on the left. In interval
notation, we represent the solution set as (—o0, 2), which is
read as "the open interval from negative infinity to 2." The
open end parenthesis means 2 is not included in the set.
We always use an open parentheses with the o symbol
because it does not represent a real number. Hence, —o0 is
not included in the interval (o0, 2).

Open statement: It is not true that x<2.

The solution set is the numbers not in the solution set of the
previous example. We use the notation [2, o) to represent
this set, which is read as "the closed interval from 2 to
infinity." The square bracket means that 2 is in the set.

Open statement: x<2 and x<3.

First, we visualize the solution set of each component
sentence, as illustrated on the left. Because of the and
operator, a number must be in both of these solutions sets in
order to be in the requested solution set. Hence, the
solution set for "x <2 and x < 3" is the open interval from
negative infinity to 2: (—0,2). To say that "x<2 and x<3"
is equivalent to saying that "x < 2." The latter form is pre-
ferable since it is simpler.

Open statement: It is not true that (x<2 and x<3).

We must reason in the order indicated by the parentheses.
First, we determine when (x <2 and x < 3) is true, which is
the interval (—o0, 2). Thus, the requested solution set is all
numbers not in (—oo, 2), which is the closed interval from 2
to infinity: [2,00).

Open statement: ~(x<2) and ~(x<3).

Again, we must reason in the order indicated by the
parentheses. First, we find the solution set for the negation
of each component sentence:

Solution set of ~(x<2): [2,0)
Solution set of ~(x<3): [3,00)
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Reasonable Bites

Reasoning Order

Abstract Reasoning

Does ~(p and q)
mean the same as

~p and ~q?

The solution set for this problem is all numbers in both of
the above sets. So the solution set to the open statement is
the interval {3, c0).

As young children, we learned to cut up our food into digestible
bites. Logical reasoning requires the same type of process.
Given a problem, we try to cut it into simpler pieces, figure out
the solution at the simpler level, and then put the pieces
together, as we did in the previous example. To find the
solution of ~p(x) and ~g(x), we first found the solution set of
~p(x) and the solution set for ~g(x). We then put these two
pieces together to get the requested solution.

When we reason, we not only have to understand the meaning
of the words used, but we also have to apply the meanings in
the correct order. In (4) of the previous example, we first
applied the meaning of “and" and then the meaning of "not,"
but in (5), we applied the definitions in the reverse order, which
gave us a different answer. This happens frequently in the
reasoning process; two definitions are involved, and we have to
know which one to apply first. The order is usually indicated
by the position of parentheses or by a comma.

In an abstraction, we merge various concrete examples under
the rubric of a concept that expresses a property the examples
have in common. For example, the number 3 is an abstraction
of a quantitative property that various sets have in common. A
variable is an abstraction of an arbitrary element in its domain.

When we prove a theorem, we try to be as abstract as possi-
ble so that our deductions have a wide range of applications. If
we can prove that an abstract statement is true, we can then
deduce that the statement is true for each example that satisfies
the abstraction, which is why abstract reasoning is such a
powerful method. With each abstract theorem that we prove,
we have essentially proved a multitude of theorems, one for
each example that satisfies the abstraction.

When we contemplate an abstract question, we should think
about various examples in order to understand what the
abstraction represents. If we are confused by the abstract
nature of the question, we should translate it in terms of
examples. To contemplate the abstract question on the left, we
could let p and g represent the following sentences:



Questions?

In mathematics
the art of asking questions
is more valuable than

solving problems.

Georg Cantor, 1867
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P x<2 g x<3
The abstract question can now be translated as follows:

Does ~(p and q) mean the same as (~p and ~q)?
Does ~(x <2 and x<3) mean the same as ~(x<2) and ~(x<3)?

In the examples on page 17, we saw that these two compound
sentences have different solution sets. Therefore, they cannot
have the same meaning. This example shows that a compound
sentence of the abstract form ~(p and g) does not have the same
meaning as ~p and ~q.

Sometimes we can find the answer to an abstract question
with a well-chosen example, but we cannot use examples to
prove that two compound statements have the same meaning.
Later in this chapter, we will learn how to determine if two
compound statements have the same meaning. In Chapter 2, we
will study techniques for proving abstract statements.

We conclude this section with the most important symbol in
any area of logical reasoning, the question mark: ?

Why is this true?
What does this mean?
What else does it apply to?
Is there a way to generalize this result?
How do I describe what's going on here?
Is there a relation between these two things?
What is the underlying structure that makes this work?

In 1867, Georg Cantor, one of the greatest mathematicians of
the 19th century, published his doctoral thesis entitled, In
mathematics the art of asking questions is more valuable than
solving problems. This outlook undoubtedly contributed to his
phenomenal success in creating new mathematics. By asking
very simple and basic questions, Cantor developed a Theory of
Sets which revolutionized the language of mathematics,
providing a unifying concept for organizing the rapidly
growing knowledge in mathematics. His creativity in
developing a mathematical structure for working with infinite
sets provided deep insights into mysterious properties of
infinity (Section 3.6).
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Writing as a Tool

In addition to writing homework,
we should use writing to:

Build our understanding.
Explore our imagination.
Tllustrate our mental images.
Record our questions.

Search for answers.

Students usually spend more time answering questions
posed by others. However, we should be aware that asking
good questions is an important part of the creative process of
reasoning. The ultimate goal of logical reasoning is to extend
our knowledge, and we cannot seek answers unless we have
good questions to guide us.

We learn, discover, and create by asking questions. A good
question can trigger a burst of energy in the mind that may
open up slumbering portions of our brain with the imbued
excitement of a possible discovery. Whenever a question pops
in our mind, we should write it down, or else we may forget it
and lose forever the valuable insight we might have acquired in
our pursuit of its answer.

One of the best tools to develop our reasoning skills is the
process of writing. A pencil is an essential tool in a tool kit for
reasoning. In addition to writing our questions, we should use
this marvelous little instrument to help us find the answers.
The process of writing gives us concrete visuals on which we
can focus our thinking, reveals logical gaps that we need to
bridge, and leaves a record where we can check and
double-check our thinking. Things that seem obviously true at
first glance may not hold up under a second reading.

Another advantage of writing is that it helps us remember
concepts better. When we read a text, it may seem redundant
to copy a definition. However, scientific evidence indicates
that what we write is stored in the brain in a memory bank
different from the storage area for information we have read or
heard, thereby giving us double access to it. What we have
written is easier to remember.

Writing also helps us deepen our understanding of a
concept. Anyone can look at a definition and memorize it, but
memorization has nothing to do with understanding. By
writing a definition in our own words and then checking to
make sure that it has the same meaning, we build a personal
meaning of the concept. If our writing reveals that we have
overlooked a key component of the definition, then we know
on which parts we should work to build our understanding.

Writing about areas that confuse us helps to isolate the
general confusion into specific questions on which we can
focus. Copying examples from a text may help us see missing
links that we didn't see when we read the example. When we
finally see the missing links, making up similar examples and
writing them on paper will help reinforce what we learned.
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Although writing normally refers to the writing of words,
we will expand the meaning here to include the drawing of
pictures. Drawing a sketch often gives us ideas and thoughts
which we can then form into words. In addition to expressing
our thinking, we use writing to help us form our thoughts.

When you reach a satisfactory conclusion in the writing
process (or run head-on into a brick wall), share your writing
(or frustrations) with others in order to get feedback and
further develop your reasoning skills. The more time you
spend writing, the more progress you will make in developing
your reasoning skills.

Exercise Set 1.1

1.

Translate the following sentence into math symbols. Which do
you prefer, the word form or the symbolic form?

"The product of a number with the sum of two other numbers is
equal to the sum of the following: the product of the first number
times the second number and the product of the first number times
the third number."

Identify the nouns, verbs, and logical operators in each sentence.

a. A={123}andACB c. x€A implies that x€ B.

b. x<2 or 5<x. d. x+5=12

How do you translate 3<x <5 in a grammatically correct form?
Identify any nouns, verbs, or logical operators in the sentence.

Let x, y, a, b, and ¢ represent real numbers. Determine if the given
expression is a sentence.

a x=y b.x+y c x<y d x+y e -bt b -dac
Let A, B, and C represent sets. Determine if the given expression
is a sentence. Check Appendix D for any unfamiliar symbols.

a. A=B b.ACB ¢ AUB d AUBCC
For the given domain, make a list of symbols that form a sentence
when you place them between x and y.

a. xand y represent numbers b. x and y represent sets

Is the expression a statement, an open statement, or neither?
a. 2«1 d. For all x, 2 <x.

b. 2<x e. For some x, 2<x.

¢. 2x(3+7) f. Tenis the most important number.
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8.

10.

1.

12,

13.

14.

The domain of x is the set N of natural numbers.
Make up an open statement p(x) that has the given solution set.

a. Its splution set is empty.
b. Its solution set is the whole domain.
c. Its solution set is neither empty nor the whole domain.

Letp: 244 =17, ¢q: 3+5 = 8. Translate each compound sentence
and determine if it is true or false.

a. ~pA~q b. ~(pAg) c. pV~q d ~@eVyg)
Do you think the following sentences have the same meaning?
Test your answer by making up examples for p and g using

sentences from everyday life. Then make up examples using
sentences from mathematics.

a. Does ~(p Ag) have the same meaning as ~p A~q?

b. Does ~(pV q) have the same meaning as ~pV ~g?

Translate each sentence and determine its truth value. The domain
for x is the set of real numbers. p(x): x>3  g(x): x>9.

a. p(7)org(7)

b. p(7) and g(7)

c. Forevery x, p(x) and g(x).

d. There exists an x such that p(x) and g(x).

Let p(x): x>3 and g(x): x>9. Illustrate the solution set for p(x)
and the solution set for q(x) on a number line. Use your sketch to
express the solution set of the given open statement in interval

notation. Make sure that you reason in the order indicated by the
parentheses, simplifying the task in a step by step manner.

. x>30rx>9
. x>3and x>9
. ~(x>3o0rx>9)
. ~(x>3 and x>9)
. ~(x>3)or ~(x>9)
~(x>3) and ~(x>9)
Discuss the following questions.
a. What is an abstraction?
b. What is an abstraction of a sentence?

¢. What should you do when you get stuck on an abstract
problem and have no idea of what to do?

d. What is the advantage of figuring out something on your own
instead of having someone else explain it to you?

e. How do you develop your reasoning skills?

o o0 o P

lad

Why are problems in math textbooks called exercises?
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Activity 1.2

Before reading the next section, see what you can figure out for your-
self. The domain for x and y is the set of real numbers.

1. Let p(x): x+ 1 = 4. Translate each statement and determine its
truth value. Do any of the statements have the same meaning?

a. ~(For all x, p(x)).
b. For all x, ~p(x).
c. There exists an x such that ~p(x).
d. ~(There exists an x such that p(x)).
2. Let p(x): x<3. Repeat the previous exercise.
3. Discuss what it means for the given sentence to be true.
Then discuss what it means for the sentence to be false.
a. For all x, p(x).
b. There exists an x such that p(x).
4. Do any of the following statements have the same meaning?
a. ~(Forall x, p(x)). c¢. There exists an x such that ~p(x).
b. Forall x, ~p(x). d. ~(There exists an x such that p(x)).

5. Is the given sentence true or false?
a. For every x, there exists a y such that x+y = 0.
b. There exists a y such that for every x, x+y = 0.
c. For every positive x, there exists a positive y such that y <x.
d. There exists a positive y such that for every positive x, y <x.

= 1.2 Two Quantifiers =

Two of the basic terms from which we build the language of
logic are the universal and existential quantifiers. They are
called quantifiers because they give information on the quantity
of elements in the solution set of an open statement. In every-
day language, we reference the quantifiers as "every" and
"some." The quantifiers are easy to work with if you master a
few basic rules and learn how to recognize them when they are
phrased in everyday language.
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Universal Quantifier

Vx, p(x) is true

if and only if
every element in the
domain of x converts

p(x) into a true statement.

4 Example

Existential Quantifier

3x, p(x) is true
if and only if
there exists at least one
x in the domain of x

such that p(x) is true.

The universal quantifier is a prefix which indicates that the
solution set of an open statement is the whole domain.

Forall x, x+2=2+x.

Symbolically, we represent the universal quantifier with an
upside down A (V).

Vx,x+2=2+x

The universal quantifier can be phrased as for all x, for every x,
for each x, and in the forms given in the following example.

The domain of x is the set of real numbers.
The following statements have the same meaning.

1. Vx,x+2=2+x
. Forallx,x+2=2+x.
. Letx be areal number. Thenx+2=2+x.

2

3

4, If x is a real number, then x+2 =2 +x.

5. Letx be an arbitrary real number. x+2 =2 +x.
6

. X+2=2+x foreveryx.

In symbolic notation, we always write quantifiers as a prefix.
However, in everyday language, we often write a quantifier at
the end of a sentence, as illustrated in the last line of the above
example.

The existential quantifier is a prefix which indicates that the
solution set of an open statement has at least one element in it.

There exists an x such that x+3 = 15.
We represent the existential quantifier with a backwards E: 3
3x,x+3=15

The existential quantifier can be phrased as there exists an x
such that, for some x, and in the wordings given in the follow-
ing example.



4 Example

4 Example

Some triangles are
isosceles.
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The domain of x is the set of real numbers.
The following statements have the same meaning.

1. 3, x+3=2
. There exists an x such that x+3 = 2.
. There is an x such that x+3 = 2.

2
3
4. There is at least one x such that x+3 = 2.
5. For some x,x+3=2.

6

. x+3 =2 for some x.

When we see “some” or “there is” in a sentence, it indicates the
presence of the existential quantifier.

Translate each statement in terms of variables and quantifiers.
1. Some triangles are isosceles.

“Some” represents the existential quantifier, so we
introduce a variable for it.

Let X represent an arbitrary triangle.
3X, X is isosceles.

2. For every real number, there is a larger real number.

“For every” represents the universal quantifier, and “there
is” represents the existential quantifier. Having identified
the quantifiers, we introduce a variable for each quantifier.

Let x and y be real numbers. Vx 3y, x<y.

The truth value of a quantified statement depends on the
domain for the variable. For example, consider the following
statement:

For some x, x+5<1,

This statement is true if the domain of x is the set of integers,
but it is false if the domain is the set of natural numbers.

The existential quantifier guarantees the existence of at
least one element from the domain that makes the statement
true; however, it does not say that there is only one or just a
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¢ Example

Multiple Quantifiers

4 Example

Order of the Quantifiers

Statement A

few. If an open statement is true for all elements in the domain,
it is automatically true for at least one element in the domain,
provided, of course, that the domain is not empty.

Let p(x): x+0 = x, where x is a real number.

Vx, p(x) is true. Also, 3x, p(x) is true.

When we have more than one variable in a sentence, we need
multiple quantifiers to convert it to a statement. To write the
basic rules for working with multiple quantifiers, we will use
the notation p(x,y) to represent an open statement in the
variables x and y. Unless stated otherwise, the domain for x
and y is the set of real numbers.

Let p(x)y) represent the following sentence. Find the truth
value of p(2,6) and p(1,3).

pxy): x+y=8.
p(2,6): 2+6=8
p(1,3): 1+3=8

p(2,6) is true, but p(1,3) is false.

We will now investigate whether or not the order of the
quantifiers affects the meaning of the sentence. In a sentence
with multiple quantifiers, the meaning of each quantifier is
deciphered by applying the definitions one at a time, working
from left to right. The first quantifier applies to the rest of the
sentence, including any quantifiers that come after it. In the
following statement, we first translate it formally, and then we
interpret its meaning.

Ix 3y, x+y=8
There exists an x such that the following is true: 3y, x +y = 8.
There exists an x and there exists a y such that x+y = 8.



Statement B

3x 3y, p(x,y)
means the same as

Jy 3x, p(x,y).

Statement A

Statement B

Vx Yy, p(x,)
means the same as

Vy Vx, p(x,y).

Statement A

Statement B
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Jy3x, x+y=8
There exists a y such that the following is true: Jx, x+y =8
There exists a y and there exists an x such that x+y = 8.

In the previous two statements, reversing the order of the two
existential quantifiers does not change the meaning of the state-
ment. If we let p(x,y) represent an open statement, we can
reason in a similar manner and conclude that, in general,
reversing the order of two existential quantifiers does not affect
the meaning of the statement. This rule is summarized in the
adjacent box.

Now consider what happens when we reverse the order of
two universal quantifiers.

VxVy,x+y=y+x
For every x, the following is true: Vy, x+y=y+x.
For every x and forevery y, x+y =y+x.

Vy Vx, x+y=y+x
For every y, the following is true: Vx, x+y=y+x.
For every y and for every x, x+y =y+x.

In the above two statements, reversing the order of the two
universal quantifiers does not change the meaning. This resuit
can be generalized to an arbitrary open statement p(x,y). When
we reverse the order of two universal quantifiers, the meaning
does not change. This rule is summarized in the adjacent box.

Now let’s examine what happens when we have mixed
quantifiers. When a statement has both a universal and an
existential quantifier, we cannot translate the statement by
inserting "and" between the two quantifiers as we did in the
previous examples.

Vx3y, x+y=8
For every x, the following is true: 3y, x+y=8

Jy Vx,x+y=8
There exists a y such that the following is true: Vx, x+y=8
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Statement A

We use a subscript with y,
to remind us that we are
looking for a specific y
that works for the given x.

Statement B

We reason with quantifiers
from left to right.

Do the previous two statements have the same meaning? If
they do, they must have the same truth value, so let's decon-
struct each statement and determine its truth value.

Vx3y,x+y=38

We start with the quantifier on the left:

L.

3.

Let x be an arbitrary real number.

Does there exist a real number y, such that x+ y, = 87 One
way to prove its existence is to construct it. Working
backwards from what we want to derive, x + y, = 8, we can
figure out how to construct y,. Since x has already been
introduced, we can use x in our construction of y,.

Set yo = 8 ~x. Since x is a real number, 8 — x is a real
number. So y, is a real number.

x+Yo=x+(8-x)=8 (Substitute 8—x for y,.)

We have demonstrated that for every real number x, there is a
real number y such that x+y=38, so the above statement is true.

JyVx,x+y=8

Is there a fixed number y, such that for every x, x +y, = 87 If
so, what is it? As in the previous example, we start our analy-
sis with the first quantifier on the left; however, this time we
cannot use x in our construction of y,.

1.

Sety, =

2. Let x be a real number.

The difference in the order of the quantifiers affects what
we can use when we construct y,. We cannot define y, in
terms of x because x is not introduced until Step 2. There is
no way that we can find a fixed y, that will work for every
x. For example:

Sety,=0 IsVx, x+0=8true? No
Sety,=5 IsVx, x+5=8true? No

Whatever number we select for y,, we can always find an x
such that x + y, # 8. In particular, we could let x = 1 -y..
Then x+y, = 1, so x+y,#8. Therefore, the above statement
is false.




Vx 3y, p(x,y)

does not have the same meaning as

3y Vx, p(x,y).

4 Example
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The two statements in the previous example have different truth
values:
Vx Jy, x+y =8 is true.

3y Vx, x+y = 8 is false.

Therefore, these two statements do not have the same meaning.
This example shows that the structures of these statements do
not impart the same meaning:

Vx 3y, p(x,y)
3y Vx, p(x,y)

Since students sometimes make the mistake of assuming these
statements do have the same meaning, let's look at a geometric
example where we can use visual reasoning to see why they
have different meanings.

The domain for x is all the points in a fixed plane and the
domain for ¢ is all the lines in the same plane. Is the following
statement true?

For every line ¢, there exists a point x such that x is not on ¢.

The above statement is true, Note that this statement has the
following structure:

V¢ 3x, x is not on ¢
What happens if we reverse the order of the quantifiers?
dx V¢, x is noton ¢.
There exists a point x such that for every line ¢, x is not on ¢.

This statement is not true because no matter which point we
select for x, there will be some lines in the plane that go
through x. Since these two statements have different truth
values, they do not have the same meaning.

When using the existential quantifier, we often say for some x
instead of there exists an x such that. However, when a sen-
tence has mixed quantifiers, as in the above example, the
meaning is easier to interpret if we use there exists instead of
some.
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Vx 3y, px,y)
does not bave the same meaning as

3y Vx, p(x,y).

Vx 3y, p(x,y)

3y Vx, p(x.y)

Negating Quantifiers

As demonstrated in the previous examples, reversing the
order of the two different quantifiers changes the meaning of a
sentencé. When reasoning with a statement that has mixed
quantifiers, we must carefully read the statement from left to
right, for the order of the quantifiers makes a significant dif-
ference in the meaning of the statement. This difference is
summarized below.

The adjacent statement guarantees that for every x, we can find
a y, that works for the given x. To prove a statement of this
form, we can use x to construct y.:

1. Let x be an element in the domain of x.

2. Sety.=___.

This statement guarantees that we can find a y, such that the
remaining statement is true for all x in the domain. Since y,
cannot depend on x, we cannot use x to construct y,. To prove
a statement of this form, we should structure our reasoning as
follows:

1. Sety,=____.

2. Let x be an element in the domain of x.

On the surface, negations seem very simple. The negation of a
true statement is false and the negation of a false statement is
true. However, negations can be confusing when combined
with quantifiers or connectives such as and, or, and implies.

To negate a sentence, we can prefix it with "it is not true
that.” With symbols, though, we usually indicate the negation
by drawing a slash through the verb symbol:

It is not true that x + 1 is equal to 3.
x+1#3.

When a sentence is quantified, it makes a difference if a
negation is before the quantifier or after the quantifier:

~(Vx, x+1 = 3) does not mean that Vx, x+1#3.

~p(x) denotes the negation of the open statement p(x).
~Vx, p(x) denotes the negation of the statement Vx, p(x).



4 Example

A\

Some triangles are
not isosceles.

Some triangles are
isosceles.

~Vx, p(x)
has the same meaning as
Bx) ~pP (x)'

~3x, p(x)
has the same meaning as

an ~P (x)
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Do the following statements have the same meaning?

1. Itis not true that for every triangle X, X is isosceles.
2. For every triangle X, it is not true that X is isosceles.

If we place our finger over the negation in the first sentence,
we have a false sentence, 50 its negation is true. This sentence
has the same meaning as “some triangles are not isosceles.”

If we move the negation across the quantifier, though, we
produce a false statement. Some triangles are isosceles, so the
second statement is false.

Since these two statements have different truth values, they do
not have the same meaning.

The above example demonstrates that ~Vx, p(x), which is the
form of the first statement, does not have the same meaning as
Vx, ~p(x), which is the form of the second statement,

How then do we negate a universally quantified sentence?
If it is not true that every x makes p(x) true, then there must
exist an x that makes p(x) false. Thus, the proper way to
negate a universally quantified statement is given by the
adjacent rule. When we bring a negation across a universal
quantifier, it must change to the existential quantifier.

~Vx, x+1 =3 has the same meaning as Jx, x+1#3

How do we negate an existentially quantified sentence? If it is
not true that there exists an x that makes p(x) true, then every x
must make p(x) false. When we bring a negation across the
existential quantifier, it must change to the universal quantifier.

~3x, x+2 = x has the same meaning as Vx, x+2 #x.

Notice the similarity in the above two rules for negating a
quantified statement. If we move a negation across either
quantifier, we must change the quantifier.

When negating more than one quantifier, we apply the
appropriate rules one step at a time, as illustrated in the next
example.
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4 Example Negate the given sentence.
1. There is an x such that f(x) = y.
~dx, f(x) = y has the same meaning as Vx, ~[f(x) = y].
So the negation can be worded as: For all x, f(x) + .
2. There exists a y such that for every x, x+y=0.
~Jy Vx,x+y=0
Vy~Vx,x+y=0
Yy 3x, ~(x+y = 0)
Yy dx, x+y+0
For every y, there exists an x such that x+y # 0.
3. There exists a real number x such that for every integer y,
x>y,

~dx Vy, x>y
Vx ayv ~(X>y)
Vx 3y, x<y

The variables x and y have different domains. However,
when we move the negation across a quantifier, it does not
affect the domain of the variable. So we translate the above
symbolic form as follows:

For every real number x, there exists an integer y
such that x<y.

Students sometimes leave “such that” dangling in a place that is
not grammatically correct. The wording of the existential
quantifier is the complete phrase “there exists an x such that.”
When we negate an existential quantifier, we must replace the
complete phrase with the universal quantifier.

In everyday language, we often use inflection to convey our
meaning when we negate a quantified sentence. For example,
suppose that a few students got an A on a test. In response to
the question, "Did everyone get an A?" the teacher might
respond with the appropriate inflection: "No, everyone did not
getan A." With a different inflection, the same words would
convey a different meaning. The appropriate logical response
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would be: "No, some people did not get an A.” Since we do not
use inflection to convey meaning in logical reasoning, we must
be very careful not to fall into the loose habits of everyday
speech when negating a quantified statement.

Different Letters When using multiple variables, we must be aware that different
letters do not always represent different elements. For
example, the following statement is false:

For all real numbers x and y, x<y or y<x.

This statement is false because x could be equal to y. When we
want letters to represent different elements, we must inform the
reader. For example, we could say:

For all distinct real numbers x and y, x<y or y<x.
For all real numbers x and y where x # y, x<y or y<x.
For all real numbers x and y, if x# y, then x<y or y<x

Exercise Set 1.2

1. The domain for x and y is the set of real numbers. Determine if
each sentence is true or false. If both sentences are true, determine
if one is "stronger" than the other.

a. There exists a y such that for every x, y<x.
For every x, there exists a y such that y<ux.

b. There exists a y such that for every x, x+y = 4.
For every x, there exists a y such thatx+y = 4.

c. There exists a y such that for every positive x, y <x.
For every positive x, there exists a y such that y <x.

d. There exists a y such that for every x, x+y = x.
For every x, there exists a y such that x+y = x.

2. Consider the meaning of the following two statements:
1. 3y Vx, p(x.y)
1. Vx 3y, p(x,y)

a. If (I) is true, does (I1I) have to be true?
b. If (II) is true, does (I) have to be true?
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3

10.

Make up simple examples of sets A, B and C so that () is true and
(I0) is false.

I. ForeveryyinA, there exists an x in B such that xyisin C.
II. There exists an x in B such that for every y in A, xy is in C.

. Let p(x,y): y was the mother of x. Translate each sentence in terms

of everyday language. Do they have the same meaning?
a. Vx 3y, p(x,y) b. 3y Vx, p(x,y)

. Make up a sentence p(x,y) where x and y are real numbers.

Then determine the truth value of the following:
a. p(1,2) b.p2,1) c. Vx3y,plx,y) d. Iy Vx, p(x,y)

. Let p(x,y) represent an open statement with variables x and y.

True or false?
a. 3x Jy, p(x,y) has the same meaning as Iy Ix, p(x,y).
b. Vx Vy, p(x,y) has the same meaning as Vy Vx, p(x,y).
c. Vx 3y, p(x,y) has the same meaning as 3y Vx, p(x,y).

. Determine if the sentence is true or false. Then write its negation

in a form where the negation is not a prefix for a quantifier.
a. For every real number x, 3x = 4,
. For every real number x, 3x #4.
There exists a real number x such that x* = -1,
. For every complex number x, x* +-1.
. There exists a real number y such that for every x, x+y = 4.
There exists an integer y such that for every real number x, y<x.

"o oo o

. The domain for all variables is the set of real numbers.

Is the statement true or false? If false, write its negation
so that the negation is not a prefix for a quantifier.

a. There exists a ¢ such that for every x, x+c =2,

b. For every x, there exists a ¢ such that x+¢ = 2.

c. There exists an m such that for every x, x <m.

d. For every x, there exists an m such thatin §, x <m.

. Write the negation of each statement. Move the negation

across the quantifiers in a logically correct manner.

a. For every integer y, there is a real number x such that g(x) = y.
b. For every y in B, there exists an x in A such that f(x) = y.

¢. For all sets A and B, there is a function f that maps A onto B.
The domain for x has 100 elements. If the given statement is true,
how many elements are in the solution set for p(x)?

a. Vx,p(x) b. ~Vxpx) c Ixplx) d ~Ix pix)
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Activity 1.3

PAG|PVqiP=q

1. Given statements p and g, the four
possible cases for their truth values
are listed in the adjacent table. For
each case, enter the truth value of the
compound sentence according to
how you use the connective in
everyday language. Translate p= ¢
as "if p, then g."

2. Your friend gives you half the money for a lottery ticket. You
promise her, “If this ticket wins, then I will give you a million
dollars.” One of the following four cases must occur.

m M~ -
M S M Ao

Case 1. Your ticket wins and you give her a million dollars.

Case 2: Your ticket wins, but you do not give her a million.

Case 3: Your ticket does not win, but you give her a million.

Case 4: Your ticket does not win, so you don't give her a million.

a. In which cases would she be justified in calling you a liar?

b. Let p and g represent the following sentences. plaiip=q
p: Your ticket wins the lottery.

q: You give her a million dollars.

In the adjacent table, record your answers from
part (a). Do your answers agree with your
implication table in the previous exercise?

3. Letx be a real number and let p(x): If x<3, then x<7.
Determine the truth value (true or false) of each sentence.
a. p(1) b. p(4) c. p(11) d. Forallx,if x<3, thenx<7.

4. Does the first sentence have the same meaning as either of the
other two sentences?

nm o
M- Tn-

a. porg ~P=q ~q=>p

b. p=gq ~p=~q ~q=~p
c. ~(pand q) ~p and ~q ~p Or ~q
d. ~(porg) ~p or ~q ~p and ~g
e. ~(p=q) ~p=~q pand~q
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Negation ~ itis not true that
Conjunction A and
Disjunction Vot
Implication = implies
=

Equivalence is equivalent to

Syntax

Many people feel that grammar
should be judged insofar as it
follows the principles of logic.
Mathematics, from this view-
point, is the ideal use of
language.
David Crystal
Cambridge Encyclopedia
of Language

Let A be a set.

Incorrect Syntax: ~A

Correct Syntax: ~(xe A)

Logical operators are used to build compound sentences from
given sentences. The basic language used in logical reasoning
can be built from five logical operators. Their formal names
and symbolic representations are given on the left.

* The negation symbol is a short squiggle: ~

* The and symbol is an A without the middle bar; A

* The or symbol is the A symbol flipped upside down: v
* The implies symbol is an arrow: =

* The equivalence symbol is a double-headed arrow: <

The outside structure of most valid arguments depends on the
manipulation of these five little words. They are the key to
how we structure our thinking. Within this structure, we then
work with the meaning of individual sentences. In order to
reason in a logical manner, we must understand both the syntax
and semantics of the five logical operators.

Syntax rules tell us how we can juxtapose words or symbols to
form sentences or well-formed formulas in a particular
language. In a computer language, syntax rules tell us how we
can string symbols together. In everyday language, we string
together words and punctuation symbols according to the rules
of syntax, which is an important part of grammar.

The syntax rules for the logical operators are fairly simple.
First of all, the logical operators can only be used with
sentences. These terms are called operators because they
operate on sentences and produce a new compound sentence.
They are sometimes called logical connectives because they
connect sentences. However, the negation operator does not
connect sentences; it only operates on one sentence.

The negation operator serves as a prefix for a sentence.

~(x€A) isread as "it is not true that x is an element of A."

We sometimes read ~p as "not p,” but we do not write it that
way since it does not have correct syntax in everyday language.
If p represents a sentence, we can write ~p; however, if A
represents a set, we cannot write ~A. On the other hand, since
x€A is a sentence, we can write ~(x€A).



Let A and B be sets.
Incorrect Syntax. xe AAB
Correct Syntax: x€A AxeB

Incorrect Syntax. x€ AV B
Correct Syntax: x€ AV x€ B

Incorrect Syntax: A= B

Correct Syntax. x€e A= xeB

Incorrect Syntax: xe A = xe A

Correct Syntax: x€A < x€A
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The other four logical operators must be placed between
two sentences. For this reason, they are called binary operators.
If p and g represent sentences, we can write p Ag, however, we
cannot write p~q.

In everyday language, we can place and between two
nouns, but we cannot do this when we use and as a logical
operator. If A and B represent sets, we cannot write A A B, but
we can write x€ A A x € B. When we apply logical rules for
manipulating the word and, we must use and as a logical opera-
tor. For example, suppose that we need to negate the following
sentence:

x is in both A and B.

We can translate this sentence so that and is a logical operator:
xisin A and xisin B.

In the above form, we can apply the rule for negating an
and-sentence (see Section 1.4).

We have a similar problem with or since we sometimes use
or between two nouns in everyday language. So when we use
or as a logical operator, we must carefully check our syntax.
We cannot write x€A Vv B, but we can write x€A V x€B.

The implies operator can only be used between two sen-
tences. The sentence p=> g can be read as either "p implies q"
or as "if p, then ¢." We normally use the latter form when we
formulate conjectures or state theorems. If A and B represent
sets, then A is not a sentence, so we cannot write "if A, then B."
However, we can write "if x€A, then x€B."

The equivalence operator also goes between two sentences.
If p and g represent sentences, we can write p < g, which is
read as "p is equivalent to q.” Students sometimes confuse the
equivalence operator with the equals relation because they are
intimately related; the equals relation is defined in terms of the
equivalence operator. However, there is an important syntactic
difference between them. We only use the equals relation
between two sets or between two numbers. We do not use it
between two sentences. For example, if A represents a set, we
can write A = A, but we do not write x€A = x€A. Instead, we
write x€A <> x€A.

When more than one logical operator is used in a sentence,
we use parentheses to indicate the order in which the operators
are performed. For example, ~(p A q) means to first form the
compound sentence p A g and then takes its negation. Without
parentheses, we will interpret ~p A g to mean (~p)Agq.
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Semantics

Let p and g represent statements.

~p s true means p is false.
pAq is true means both p and
q are true,
pVq is true means at least one
part is true.
p= q is true means if p is true,
then g must be true,
P> q Is true means either
both parts are true or
both parts are false.
Conjunction
Disjunction

Semantics is the study of meaning. To engage in logical
reasoning, we have to know the exact meaning of the logical
operators for they set the structure for most types of valid
arguments. The meaning of a logical operator is determined by
the truth value it produces when used in a compound statement.
The conditions under which an operator produces a true
statement are summarized in the adjacent table.

As you can see, the logical operators are simple concepts by
themselves. However, when more than one operator is used,
especially with a negation, we can be easily mislead into a
fallacious deduction.

The negation operator reverses the truth value.

If p is true, ~p is false.
If p is false, ~p is true.

We usually indicate the negation with a slash through the
symbol for the verb: &

AZLB means ~(ASB)

Even though we normally use the slashed symbol, it can get us
into trouble when we start making logical deductions. If we
need to translate the meaning of A & B, we should first write it
as ~(A S B) and then substitute the definition of A € B. In this
form, we can see the proper way to negate the sentence.

To form the conjunction of two sentences, we place and
between them: ACB and B <C. In order for an and-sentence
to be true, both parts must be true.

pAq istrue means both p and g are true.

When applied to two sentences, the meaning of and is the same
as in everyday language.

To form the disjunction of two sentences, we place or between
them: (ASB) or (A< C). An or-sentence is false only if both
parts are false.

pVq istrue means atleast one of the two is true.

When p and g are both true, pVq is true. However, in everyday
language, we sometimes label this interpretation as false. For
example, if a restaurant menu states that "salad or vegetable is
included,” we interpret it to mean that we cannot have both for
the advertised price. This usage of or is called the exclusive or.



porqg
means the same as

if ~p, then q.

Implication

% Example
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On the other hand, we sometimes use or in everyday language
in an inclusive sense. When a club advertises a discount for
members or senjor citizens, a member who is also a senior
citizen would no doubt also qualify. In logic, or always means
the inclusive sense. To indicate an exclusive or, we say "p or g
but not both." Some programming languages represent the
exclusive-or with the symbol XOR.

We can always interpret an or-sentence as an implication.
To say that "p or g is true,” means that "if p is false, then q is
true.” We will now investigate the meaning of an implication.

The implication is perhaps the most important word in logic
because it sets the structure for the meaning of a valid
argument. In the implication p= q, we call p the hypothesis and
q the conclusion.

The definition of = sounds simple on the surface, but stu-
dents sometimes try to read more into it, which causes logical
errors.

p=>q is true means if p is true, then ¢ must be true.

When we say that an implication is true, we are stating that if
the hypothesis is true, then the conclusion must be true.

We are not saying that if the hypothesis is false, then the
conclusion must be false.

Furthermore, we are not saying the conclusion has to be true
nor are we saying the hypothesis has to be true. In fact, if the
hypothesis p is false, the sentence p => ¢ is automatically true.
This may sound strange, but it is consistent with the way we
use implications in everyday language. For example, consider
the following lottery example.

Suppose that you buy a lottery ticket with a friend and you keep
it in your possession with the following promise:

If this ticket wins, then I will give you a million dollars.

Either your ticket wins or it does not win, and either you give
your friend a million dollars or you do not give her a million
dollars. Under which cases did you lie to your friend?

Case I: If your ticket wins and you give your friend a million
dollars, then your original statement was obviously true.
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Case 2: If your ticket wins and you do not give your friend a
million dollars, your friend will have cause for concern
because your original statement was indeed a lie.

Case 3: Now suppose that your ticket does not win, but you
give your friend a million dollars. Perhaps you won on
another lottery ticket. Does that make your original state-
ment a lie? Certainly not, because you did not make any
claim as to what you would do if that particular ticket did
not win. In this case, your original statement is true.

Case 4: Now suppose that your ticket does not win and you do
not give your friend a million dollars, which is the most
likely scenario. Will your friend say that you lied?
Absolutely not. In this case, your original statement is true.

In your original statement you only said what would happen if
you won the lottery. You made no commitment about what you
would do if you did not win the lottery. So if you don't win the
lottery, your statement puts no restrictions on you. You may
give your friend a million dollars [Case 3] or not give her a
million dollars [Case 4). Either way your original statement is
true. The only case that makes it false is Case 2.

Hopefully, this discussion has convinced you of the rationale

plallp=4¢ for the truth values of an implication, which are summarized in

the adjacent truth table. The first time around, most students
T|ITY| T write false for Case 3 and Case 4 when they fill in the truth
TIF F table on page 35. It does sound strange unless we stop and
ElT T think about it. If you stop someone on the street and ask them

if a false statement implies a false statement, more than likely
FIF T they will say no; however, as the previous example demon-

strates, the logically correct answer is yes.

The implication is used so frequently in the reasoning
process that we have to understand its exact meaning; we have
to understand why Case 3 and Case 4 are true. If we under-
stand the meaning of or, we can reason that ~p or g means the
same as if p, then q. Most people would not question that ~p
or q is true in both Case 3 and Case 4; consequently p=>g must
be true in these two cases.

When we assert that p implies q is true, we are telling the
listener that Case 2 cannot occur. Any of the other three cases
could happen. When the hypothesis of an implication is false,
the implication is automatically true. The following implication
is true because its hypothesis is false:



qifp

qifp
means the same as

p=q.

ponlyifq

ponlyifg
means the same as

P=q.

4 Example
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If2>3,then4>9.

This sentence seems a bit absurd for it imparts no useful infor-
mation to the reader; however, it occurs naturally in the context
of the following sentence, which does sound very reasonable:

For every real number x, if x> 3, then x?*>9.

Since the above sentence is true for every x, it must be true
when we substitute 2 for x:
If2>3,then4>09.

In everyday language, implications are often expressed in other
forms such as "q if p." For example, a client may tell the
programmer:

“The customer gets a discount if the customer is over 60.”

The "if" in the above sentence is flagging the if-part, so this
sentence has the same meaning as the following implication.

"If the customer is over 60, then the customer gets a discount.”

In general, "g, if p" has the same meaning as "if p, then g¢."
The if-part of “g, if p” is the if-part of the implication.

"Only if" is sometimes confused with "if," but they have
different meanings. Suppose that a client tells the programmer:

“A customer gets a discount only if the customer is over 60.”

"Only if" means that we cannot have a case where the customer
gets a discount and the customer is not over 60. In other
words:

If a customer gets a discount,

then the customer must be over 60.

In general, a sentence of the form "p only if 4" can be trans-
lated as the implication, "if p, then g."

Rewrite each sentence as an implication.
l. x>3onlyifx>1.

Translation: 1f x>3, then x> 1.
2. x>1ifx>3.

Translation: If x>3, then x> 1.
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If and only if

pifand onlyif ¢
means the same as

p=qand g=>p.

4 Example

Necessary and Sufficient

p is sufficient for ¢

means the same as

p=4q

3. xisinA onlyifxisinB.
Translation: If xis in A, then x is in B.
4. xisinAifxisinB.

Translation: If x is in B, then x is in A.

The sentence “p if and only if ¢” is an abbreviated way of
saying:
pifq and ponlyif q.

We can translate the two component sentences as follows:
g=>p and p=>gq.

So, the meaning of “p if and only ¢” is a two-way implication.

Translate the given sentence in terms of implications.
1. xeAifand only if xe B,

Translation: x€A =>x€B and xe B=>x€A.

2. a<b if and only if -a > —b.
Translation: If a<b, then —a > -b, and
if -a> ~b, then a<b.

The words "necessary" and “sufficient” have been associated
with implications since Aristotle laid the foundations for logic
in the 4th century B.C.E. Since they are often used in everyday
language, we need to know how to translate them in terms of an
implication. Suppose that a teacher says the following:

Getting an A on the final is sufficient
to get an A in the course,

This statement can be translated as follows:

If you get an A on the final,
then you get an A in the course.

In general, “p is sufficient for 4” means “if p, then q.”



q is necessary for p

means the same as

p=q.

% Example

| sufficient | l necessary l
) I

p=4q

P4
means the same as
If p, then q.
q, if p.
ponlyif g.
p is sufficient for q.
q is necessary for p.
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On the other hand, suppose that a teacher says the following:

Getting an A on the final is necessary
to get an A in the course.

This statement can be translated as follows:

If you get an A in the course,
then you must get an A on the final.

In general, “q is necessary for p” means “if p, then ¢."

Translate the implication in terms of "necessary" and
"sufficient.”

1. Ifx>3,thenx>1.

x>3 is sufficient for x> 1.
x> 1 is necessary for x> 3.

2. IfxisinA, thenx isin B.

x being in A is sufficient for x to be in B.
x being in B is necessary for x to be in A.

The first part of an implication is the sufficient part and the
second part is the necessary part:

rP=4q
p is sufficient for ¢
q is necessary for p

In the adjacent box, we have a summary of the various ways to
translate an implication. In the reasoning process, we usually
think in terms of implications, so when we run across one of
the other forms, we usually translate it in terms of an implica-
tion. When we combine “necessary” and “sufficient” in the
same sentence, we get a two-way implication which has the
same meaning as "if and only if."

p is necessary and sufficient for g.
p is necessary for ¢ and p is sufficient for q.
g=p and p=gq
pifand only if ¢
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Equivalent Sentences
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Meaning & Cases

r is equivalent to s
if and only if
they have the same truth values.

r has the same meaning as s
if and only if

r is equivalent to s.

p| qllprglaap| pAq)y={qAp)
TITNT)T T
TIFY FIF T
FITHFLF T
FIF| F | F T

For the sentence p is equivalent to g to be true, both component
sentences must have the same truth value; they must both be
true or both false. Let's compare the meaning of the four binary
operators in the adjacent truth table.

p& q istrue means Case 1 or 4 must occur.
pandq istrue means Case 1 must occur.
porq istrue means Case 4 cannot occur.
p=gq istrue  means Case 2 cannot occur.

The meaning of a compound sentence is determined by the
cases that can occur. If we say that p=> ¢ is true, we are telling
the listener that Case 1, 3, or 4 must occur.

When we reason in a logical manner, we often need to
translate sentences from one form to another form that has the
same meaning. Truth tables give us a systematic way to deter-
mine whether or not compound sentences that are composed of
the same component sentences have the same meaning.

Let r and s represent abstract compound sentences that are
composed of the same component sentences. For example, we
could let r: p and g and s: q and p. The abstract sentences r
and s have the same meaning if and only if they have the same
truth value in each possible case. So, if they do have the same
meaning and we connect them with the equivalence operator,
we will have a statement that is always true. Thus, the equiva-
lence operator tells us when two sentences have the same
meaning:

r and s have the same meaning
if and only if

r < sis always true.

To determine if p and g has the same meaning as g and p, we
can construct a truth table for (pAg) < (@A p). In the adjacent
truth table, we label a column for each of the component
sentences, then record the truth values for each of the four
cases. In each case, pAg has the same truth value as gAp. So,
we have only trues in the last column. Thus, p and q is
equivalent to q and p.

Since the meaning of a compound sentence is determined
by its truth values, equivalent sentences have the same
meaning. Consequently, they can be used interchangeably. On
the following pages, we list the most frequently used forms of
equivalent sentences.



Commutative Property

pand g

porgq
p=gq

is equivalent to q and p.
Is equivalent to q or p.
is equivalent to q < p.

Converse

q=p|p=9

Mmool

m 4 M A O
-~ mn 4 A
4 4 m -

p=q
is not equivalent to

q=r
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If an operation has the commutative property, the order in
which the operation is performed does not matter. For all real
numbers x and y, x + y = y + x, so addition is commutative.
Since 5~3 # 3 -5, subtraction is not commutative.

And is commutative: p and g < g and p. When we write
an and-sentence, the order of the component sentences does not
matter. Neither does the order matter for an or-sentence. To
determine if two sentences have the same truth values, it does
not matter which one we list first, so the equivalence operator
is also commutative.

The logical operators, and, or, and is equivalent to, are each
commutative because the order in which we list the component
sentences does not affect the meaning of the compound
sentence. However, the order does affect the meaning in an
implication.

When we reverse the order in an implication, the new sentence
is called the converse of the original implication:

q=>pis the converse of p=gq.

Implication: 1If x€A, then xe B.
Converse: If xe B, thenx€A.

Compare the truth values of p = ¢ with the truth values of its
converse g= p in the adjacent truth table. To compute the truth
values for g= p, we must figure out when the g-column implies
the p-column:

Case 1: T=T, which is true.
Case 2: F=T, which is true.
Case 3: T=F, which is false.
Case 4: F=F, which is true.

Since g= p does not have the same truth values as p = g, these
two implications are not equivalent. When we say p = ¢, we
are saying that Case 2 cannot occur, but when we say g =>p, we
are saying that Case 3 cannot occur. These implications have
different meanings. We cannot use them interchangeably.

q=>p is not equivalent to p=>q.

The implication is not a commutative operation. We must
carefully note the order of the sentences in an implication.
When we reverse their order, the meaning is changed.
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Rephrasing an Implication

Piay-pP|~q9|~p=~4
TITHNF|F T
TIFNFIT T
FITHTIF F
FIFRTIT T
p=q
is not equivalent to
~P=~q
% Example

Suppose that you make the following statement to a friend:
If I finish my homework, then I am going to the movie.

Do you mean that if you do not finish your homework, then
you are not going to the movie? Let's compare the structure of
these two sentences:

Does ~p = ~gq have the same meaning as p=> ¢?

Now that we have a systematic method, we can quickly answer
this question without the excessive thinking that was needed
when we first contemplated the meaning of p=> g. All we have
to do is construct a truth table and compare the truth values. In
the adjacent truth table, we insert a column for ~p and a column
for ~g to help us calculate the truth values in the last column.
If we do these steps in our head, we might possibly make a
mistake and we would have no written record to check our
thinking. To compute the truth values in the last column, we
ask the following question:

In which cases does the ~p column imply the ~g column?

Case 1: F=F, which is true.
Case 2: F=>T, which is true.
Case 3: T=F, which is false.
Case 4: T=T, which is true.

The truth values in Case 3 and Case 4 are not the same as the
truth values for p=> ¢. So, these two implications do not have
the same meaning.

p= g does not have the same meaning as ~p=>~g.

Do the following sentences have the same meaning?

If xeA, then xeB.
If x¢A, then x¢ B.

To answer this question, we do not contemplate the sets A and
B, nor do we contemplate the meaning of "is an element of."
The structure of the first sentence is p = g and the structure of
the second sentence is ~p =>~q. Since these abstract sentences
are not equivalent, the above sentences do not have the same
meaning.




Contrapositive

-q[p|~4=-p

m -

— M ||
-
-
—t

p=q
is equivalent to

~g=~p

4 Example
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The more logical operators in a sentence, the more complex the
structure and the more likely we are to misread the sentence,
unless we carefully consider the logical interplay. The
meaning of a compound sentence is determined by its structure.
If we replace the component sentences with p's and ¢'s as in the
last example, we can see the structure and not be sidetracked by
the meaning of the component sentences.

As we saw in the previous discussion, we cannot rephrase an
implication by reversing the order of the sentences, nor by
negating the first and second parts of the implication.
Consider, though, what happens when we do both, reverse the
order and also negate the component sentences. This form is
called the contrapositive of the original implication.

~g=~p is the contrapositive of p=g.

In the adjacent truth table, when we compute the truth values
for ~g = ~p, we ask the following question:

In which cases does the ~g column imply the ~p column?

Case 1: F=F, which is true.
Case 2: T=F, which is false.
Case 3: F=T, which is true.
Case 4: T=T, which is true.

In each of the four cases, the implication ~g = ~p has the same
truth value as the implication p = q. Therefore, these two sen-
tences are equivalent.

p= q has the same meaning as ~¢= ~p.

At last, we have found a proper way to rephrase an implication.
We often use this translation when we are making logical
deductions. If we are trying to derive p = g, it may be easier to
derive in its contrapositive form.

Rephrase each implication in terms of its contrapositive.
1. IfxeA, thenxeB.

Contrapositive: If x¢ B, then xg A.
2. IfxX*#4,thenx¥2.

Contrapositive: If x>2, then X*> 4.



48 Chapter 1 Logical Reasoning

3. If a quadrilateral is a rectangle, its diagonals are congruent.

Contrapositive: If the diagonals of a quadrilateral are not
congruent, then the figure is not a rectangle.

Common Errors The two most common errors in rephrasing an implication are
replacing it with its converse or with ~p= ~q:
p=gq isnotequivalentto g=p.
p=gq isnotequivalentto ~p=>~gq.
Ifwe say: Ifxisin A, then xis in B.

It does not mean: 1If x is not in A, then x is not in B.
Nor does it mean: If xisin B, then x is in A.

4 Example Do any of the following sentences have the same meaning?

1. a. If xiseven, then 2 is even.
b. If X% is even, then x is even.
c. If x is not even, then x? is not even.
d. If X% is not even, then x is not even.

(d) is the contrapositive of (a), so they have the meaning.
(c) is the contrapositive of (b), so they have the meaning.

2. a, IfxisinA, then xis not in B.
b. If xis in B, then x is not in A.
c. If xis notin B, then x is in A.
d. If xis not in A, then x is in B.

(a) and (b) have the same meaning.
(c) and (d) have the same meaning.

Rephrasing Or An or-sentence is closely related to an implication. If we think
about the meaning of or, it is not too difficult to see that p or g
has the same meaning as ~p =q. If p is false, then ¢ has to be

~p{~p=q true. Let's verify this with a truth table. In which cases does

the ~p column imply the ¢ column?

T Case 1: F=T, which is true.
T Case 2: F=F, which is true.
F Case 3: T=T, which is true.
Case 4. T=F, which is false.

m M A -
m =4 m -
A -4 M ™M




potq is equiua/ent o ~p=q

p Or q is equivalent to ~q=>p

4 Example
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Since the truth values for ~p=> g are identical to the truth values
for pv g, they are equivalent sentences. Even though these two
sentences look different, they impart the same information to
the reader.

p or g has the same meaning as ~p = gq.

The contrapositive of ~p = g is ~g = p. Since ~g = p has the
same meaning as ~p = g, we have another way to translate an
or-sentence.

p or g has the same meaning as ~q =p.

Using either of the above equivalences, we can rephrase an
or-sentence as an implication.

Translate each sentence in terms of an implication
1. x<2orx>35.
Equivalent Forms: If x£2, then x> 5.
If x»5, then x<2.
2. x€Aorx€B.
Equivalent Forms: If x¢A, then x€B.
If xéB, then x€A.
3. x¢AorxeB.

Equivalent Form: If xe A, then x€B.

The last example shows the technique for writing an implica-
tion as an or-statement. For all sentences p and g, the follow-
ing is true:

porq < ~p=gq
So, the above equivalence is true if we substitute ~p for p:
~porg < ~(~p)=4
~porg < p=4g

We can use the above equivalence to translate an implication as
an or-sentence.
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Rephrasing an Equivalence

Pl 9| P=>49|9=p|P=9)Ng=D)
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% Example
pPeq
means the same as
p=gand g=p.
pe=q

means the same as
p is equivalent to ¢
pifand onlyif ¢
p implies g and g implies p

p is necessary and sufficient for ¢

When both an implication and its converse are true, their
conjunction is true: (p=>g)A(¢=p). Let's compare this sen-
tence with the equivalence p<>gq.

In the adjacent truth table, we insert columns for p = ¢ and
g=>p 1o help us compute the truth values for (p = g)A(g=p):

Case 1: T=T, which is true.

Case 2: F=T, which is false.

Case 3: T= F, which is false,

Case 4: T=T, which is true,.
The truth values for (p= g) A (g=>p) are the same as the truth
values for p < g, so these two sentences have the same
meaning. An equivalence can always be rephrased as a double

implication, which is why we use a double-headed arrow for its
symbol.

Rephrase each equivalence in terms of implications.
1. x<4 & —x>-4
Equivalent Form: (x<4= x> -4) and (-x> -4 >x<4).
2. x€eA <> x€B
Equivalent Form: (x€A = x€B) and (xe B = x€A).
3. A triangle is isosceles <> two of its angles are congruent.

Equivalent Form: If a triangle is isosceles, then two of its
angles are congruent, and if two of its angles
are congruent, then the triangle is isosceles.

As we saw earlier (page 42), p=q and g= p can be reworded
as p if and only if q and as p is necessary and sufficient for q.
So both of these forms can be used to translate an equivalence.
The various ways for rephrasing p <= ¢ are summarized in the
adjacent box.

Definitions in mathematics are always worded in terms of
an equivalence. The term being defined is equivalent to its
definition, which means that they can be used interchangeably.
For example, a triangle is isosceles if and only if two of its
sides are congruent.



4 Example

Negating an And-Sentence

~(pand g)

1s equivalent to

~p ot ~q
P | 4 PN |~PAg)| ~pV~q |
TITH T | F F
T{F|fF | T T
FIT F | T T
FIF| F | T T
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Rephrase the following equivalence in various forms:
x€A & xe€B

x€A is equivalent to xe B.

. x€A if and only if xe B.

. If xeA, then xe B, and if xe B, then x€ A.

H W N -

. x being in A is necessary and sufficient for x to be in B.

We can also rephrase the above equivalence in terms of contra-
positives:

Ifx¢B,thenx€A, andif x€A, then x & B.

Is ~(pA g) equi. __.it to ~pA~g? Instead of constructing a truth
table, let's see if we can find a case in which they have different
truth values. Suppose that p is false and q is true:

~(pA 9) ~PA~q
~(Fand T) ~F and ~T
~F Tand F
T F

Since these two sentences have different truth values for this
particular case, they are not equivalent. Thus, we cannot negate
an and-sentence by distributing the negation across the paren-
theses. Let's analyze how to properly negate it.

If ~(pAg) is true, then p A ¢ must be false, which means that
either p is false or g is false, so ~p V~g must be true. Let's
compare the truth values of these two sentences in the adjacent
truth table. We compute ~(p A ¢) from the column on its left.
To compute the last column, we must first mentally compute
the value of ~p and the value of ~g. The truth values in the last
two columns are identical, so ~(pA q) is equivalent to ~pV ~gq.

~(pA q) has the same meaning as ~p V ~q.

This equivalence gives us a rule for negating an and-sentence.
When we take a negation inside the parentheses of an
and-sentence, we must change and to or.
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% Example

Negating an Or-Sentence

~(p ot g)
is equivalent 1o

(~p and ~q)

4 Example

Negate each sentence.

1. x€A and x€B.

Negation: It is not true that x€ A and x€ B.

x¢A or x¢B.
2. 1<x<4
Negation: Itis not true that 1 <x<4.
~(1<xand x<4)
1£x or x£4.

x<lor 4<x.

It is easy to visualize the negation of the above sentence,
which is illustrated in the adjacent sketch. However,
students sometimes describe this set incorrectly. An
element x of the indicated set in the illustration does not

have the property that "x <1 and 4<x." The property must
be described in terms of or.

What does the negation of an or-sentence mean? If ~(pVvg) is
true, then pV ¢ must be false, which means that both p and ¢
must be false. In other words, ~p A~g must be true. You are

asked to demonstrate that ~(pV g) is equivalent to ~pA~q in the
next exercise set.

~(pVq) has the same meaning as ~pA~q.

When we take a negation inside the parentheses of an
or-sentence, we must change or to and.

Negate each sentence.
1. x€A or xeB

Negation: 1t is not true that x€e A or x€B.
x¢A and x¢B.

2. x<2orS5<x

Negation: 1t is not true that x<2 or S<x.
x£2and S£x
x>2and 5>x
2<x<5




Negating an Implication

~(p=19)
Is equivalent to

p and ~q

4 Example
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The rules for negating and and or are known as DeMorgan's
Laws in honor of the English mathematician Augustus DeMor-
gan, who formalized these rules in the 19th century. When we
take a negation inside the parentheses of an and-sentence, we
must change and to or. Similarly, when we take a negation
inside the parentheses of an or-sentence, we must change or to
and. A common error is to hurriedly distribute the negation
and not change the connective:

~(p and g) is not equivalent to ~p and ~q.

~(porq) isnotequivalentto ~p or ~q.

Most statements that we try to prove in mathematics are
phrased in terms of implications. To prove that an implication
is not true, we must prove its negation is true. Consequently,
we often have to negate implications.

What does it mean to say that p = q is false? The only case
in which p= ¢ is false is when p is true and ¢ is false. Conse-
quently, pA~g must be true. When we negate an implication, it
becomes an and-sentence:

~(p = q) has the same meaning as pA ~q.

You are asked to justify the above equivalence with a truth
table in (1) of the next exercise set. Some students have diffi-
culty remembering how to negate an implication. If you under-
stand that the only time an implication is false is when the first
statement is true and the second statement is false, then you
know the rule for negating an implication.

Negate each sentence.
1. Forevery x, if x<3, thenx< 1.
Negation: For some x, x<3 and x«1.
2. Forevery x, if xe A, then xeB.
Negation: There exists an x such that x€ A and x¢ B.

3. For every quadrilateral F, if its opposite sides are
congruent, then F is a rectangle.

Negation: There exists a quadrilateral F such that its
opposite sides are congruent and F is
not a rectangle.
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Negating an Equivalence

~(p=q)

is equivalent to

~(p=>q) or ~(g=>p)

4 Example

4. Letfbe a function. If fis continuous, then fis
differentiable.

Negation: There exists a function f such that
fis continuous and fis not differentiable.

5. For every real number x, if |x—a|<d, then | f(x)- f(a)|<e.

Negation: There exists a real number x such that

|x-a|<dand |f(x)-f(a)| ke

To negate an equivalence, we can use the rule for negating and
and the rule for negating implies. First, we rephrase the
equivalence as a double implication.

~(p=9
~(p=q and g=p)

The outside structure of the above sentence is the negation of
an and-sentence, ~(r and s), so we first apply the rule for negat-
ing and:

~(p=9q) or ~(g=p)
When an equivalence is false, one of the implications must be
false, which gives us the adjacent rule for negating an equiva-

lence. If we want to negate it further, we can now apply the
rule for negating an implication:

(pand~g) or (qand~p)
Instead of memorizing the two forms for negating an implica-
tion, we should be able to reason as follows:

e If a double implication is not true, at least one of the
implications is not true: ~(p=>gq) or ~(g=p)

* If two sentences are not equivalent, one must be true
and the other one false: (p and ~q) or (g and ~p)

Negate each sentence.
1. (xeA < xeB)
Negation: ~(xcA=xeB) or ~(xe B=>x€A)

(xeA and x¢B) or (xeB and x¢ A)



3 Component Sentences

4 Example

(porg)andr
is not equivalent to

por(gandr)

(p=q)=r
is not equivalent 1o

p=@=r

1.3 Five Logical Operators 55

2. (x<2 = x*<4)

Negation: ~(x<2 = x*<4) or ~(x’<4 = x<2)
(x<2andx*24) or (®*<4and x>2)

The following examples have 3 component sentences, which
we represent with p, ¢, and r.

Are the following sentences equivalent?

1.

Is(porq)andr equivalentto p or(qandr)?

If p, q and r are each true, both compound sentences will be
true, but consider the case when p is true, g is true, and r is
false:

(porg)and r por(gandr)
(TorMandF Tor(TandF)
TandF TorF
F T

Since the two compound sentences have different truth
values in this case, they are not equivalent. They do not
have the same meaning. When we use both and and or in a
sentence, we must carefully consider where we place the
parentheses for it makes a difference.

Is (p=>q)=r equivalentto p= (q=>r)?

Consider the case when p is false, g is true, and r is false:

(p=2q)=>r p=>(g=r)
F=>T>F F=>T=>F
T=>F F=F
F T

These two compound sentences have different truth values
in the above case, so they are not equivalent. If we use two
implications in a sentence, we must carefully consider
where to place the parentheses because it makes a
difference in the meaning.
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Associative Property

(pand g) and r
is equivalent 1o

pand (gandr)

plq|r|pvallevavrgvripvigvr)
TITITY T T T T
TIF|ITH T T T T
FITIT| T T T T
FIF|T| F T T T
TITIF| T T T T
TI{FIFR T T F T
FITIF| T T T T
FIF|F} F F F F

(potgyorr

is equivalent to

por(gorr)

3. Is(porgq)orr equivalent to p or(qorr)?

To show that two compound sentences are not equivalent,
we need to produce only one case in which they have
different truth values, as in the previous two examples.
However, to show that two abstract sentences are
equivalent, we must check all possible cases of the truth
values. For a single statement p, there are 2 possibilities for
its truth value; p must be either true or false. With two
statements p and g, there are 4 possible cases for their truth
values. With three statements p, g and r, the cases double
again:

r could be true with each of the 4 cases for p and q.
r could be false with each of the 4 cases for p and gq.

The most efficient way to check the 8 possible cases is to
construct a truth table. In the adjacent truth table, we first
list the four possible cases for p and g and then we list them
again.  In the third column we make r true for the first 4
cases and false for the last 4 cases.

We insert a column for pV ¢ and a column for gV r to help
us in our computations.

As we work our way through the four computations for
each of the 8 cases, we find that p v (¢ Vv r) always has the
same truth value as (pv¢q)V r. So these two compound sen-
tences are equivalent. When we use or twice in a sentence,
it does not matter where we place the parentheses. Both
ways have the same meaning.

An operation has the associative property if the grouping does
not matter when the operation is applied twice. For all real
numbers x, y and z, (x+y)+z = x+(y+2), so addition is associa-
tive. On the other hand, (8§ -3)-1 #8—-(3-1), so subtraction is
not associative. As we saw in the last example, or is an
associative operation:

(porg)orr < por(qorr)

Is the and operation associative? If (p and q) and r is true,
then each of the three component sentences must be true. The
same is true for p and (q and r). So, and is also associative.

(pandg)andr < pand(gandr)
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We can omit the parentheses when we have two and's or two
or's in a sentence since the parentheses do not affect the
meaning of the sentence.

x€A and xe B and xeC.

x€AorxeBorxeC.

However, we cannot omit the parentheses in the following
sentence because the implication is not associative.

x€A = (xe B=>xe()

Distributive Property In elementary school, we learned that multiplication distributes
over addition:
p| a| r [lprdlpar]iongiviean]gvrlpaigvr) pxlgrn = (pxa)+(pxn
NI ERE: T T T If we s.ub§titute and for x and or for +, we can.ask if
and distributes over or. In other words, is the
TIEITIFT T T T following sentence true?
FIT|ITY F|F T T T
elelTll el F T T I pand(gorr) < (pandg)or(pandr)
T|TIF||T|F T T T If we work our way through the five computations
TiFIF E I F T Fl T for each of the 8 cases, we find that p A(qVr) always
has the same truth value as (p Aq)V(pAr). So these
FIT|FI{F|F T T T ;
two compound sentences are equivalent.
FIF|F||F|F F F| F

pand (gorr)
Is equivalent to

(pand q) ot (pand r)

por(gandr)
Is equivalent to

(porg)and (porr)

Thus, and does distribute over or.

In a similar manner, we can use a truth table to demonstrate
that or distributes over and.

por{gandr) < (porg)and(porr)

We can also reason as follows. If p is true, then both of the
above compound sentences are true. On the other hand, if p is
false, both sides are true only if g and r are both true. So they
have the same truth values.

These two distributive properties give us an important tool
for rephrasing sentences. If you have trouble remembering
them, write the distributive property for multiplication over
addition and make the appropriate substitutions.

px(@+n =(pxg+(pxr)
pand(gorr) < (pandg)or(pandr)
por(gandr) < (porg)and(porr)
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4 Example Use the distributive property to rephrase each sentence.
1. xeAand (xeBorxe()
Equivalent Form: (x€A and xe B) or (xe€A and xe 0)
2. xeAor(xeBandxe()

Equivalent Form: (x€A or xeB) and (x€A or xe C)

Exercise Set 1.3

1.

Do any of the sentences have the same meaning as the first
sentence? Justify your answer with a truth table.

a p=q q=p ~P=~q ~q=~p
b. ~(p=¢q) ~p=>~q ~q=>~p pand ~q
¢. porg ~p=q ~q=p pP=4q

d. ~(porgq) ~porq ~p Or ~q ~p and ~q

. State the contrapositive of each implication.

a. If~p,then~q. c. Ifx€A,thenxeB. e. If ~p,theng.
b. If g, then p. d. Ifx¢B,thenx¢A f Ifx<2,thenx<3.

. Do any of the sentences have the same meaning as the first
sentence?
a. If xeA, then xeB. b. Ifx¢A, then xeB.
If x¢ A, then x¢ B. If xeA, then x¢ B.
If x¢ B, then x¢ A. If x¢ B, then x€A.
Xx¢AorxeB. xeA orxeB.

Translate each sentence as an implication.
a. x<2 onlyif x<7. c. r onlyif s. e xeD onlyif xeC.
b. x<§ if x<3. d. rif s. f. xeD if xeC.

. LetA={1,2,3} and B= {1,2,3,4}. Is the given sentence true for

every natural number x?

a. If xisin A, then xis in B. d. xisinA only if xis in B.
b. xisinA if xisin B, e. xisin Bonly if xis in A.
c. xisin Bif xis in A. f. xisinA and xisin B.



10.

11.

12.

13.
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. Translate each sentence as an implication.

a. x<4 is necessary for x < 3.

b. x<1 js sufficient for x<2.

c. xisin A is a sufficient condition for x to be in B.
d. xisin A is a necessary condition for x to be in B.
Rephrase each or-sentence as an implication.
a.rors

b. ~r or s

c. xisinC or xisinD.

d. xisnotin C or xisin D.

. Rephrase each equivalence in terms of implications.

a, xeC xeD (€ means "is an element of.")
b. xeANBifand only if xe A and xe B. (N means "intersection.")
c. x€ B is a necessary and sufficient condition for x to be in C.

. Negate each sentence. Do not leave a negation as a prefix for a

compound sentence.
a. 3<xand x<7
. x<3orx>7
If x€ A, then xeB.
. For every x, if x<7, then x<3.
For every x, if x€ C, then xe B.
For every x, if |x—1]<4, then | f(x)- f(1)|<3.
Given two compound sentences that are formed from the same

component sentences, what does it mean to say that the two
sentences have the same meaning?

™o Ao o

Without using truth tables, explain in your own words why:
a. ~(p= q) has the same meaning as p and ~q.
b. por g has the same meaning as ~p=gq.

Do the compound statements have the same meaning?
If not, give a case in which they have different truth values.

a. (p=q)=r p=>(g=r
b. por(gorr) (porg)orr
c. pand(gorr) (pandg)orr

If a compound statement has n component statements, how many
cases are there for possible truth values? Hint: Answer the
question forn=2,n=3,n=4,n=5. Look for a pattern,

59
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14,

15.

16.

In a computer, a bit can assume

the value of O or 1. Using 1 and | 2| 9P ANDgq/pORgq| pXORg

0 for T and F, complete the
adjacent truth table for AND,
OR, and XOR.

XOR represents the exclusive
use of the word "or."

A bit string is a sequence of bits, such
as 100011. Given two bit strings of the Bitwise AND
same length, define "bitwise AND" by

. ) - 100011
applying AND to the bits that are in the 111010
same position. As illustrated in the 100010

adjacent box:
100011 AND 111010 = 100010.

Bitwise OR and bitwise XOR are defined in an analogous manner.
Compute the following:

a. 11011 AND 10010 ¢. 11011 XOR 10010
b. 11011 OR 10010 d. (1011 AND 1010) OR 0011

In Fuzzy Logic, we consider varying degrees of truth that are
represented by numbers from 0 to 1. A statement with a truth
value of 1 is 100% true, while a statement with a truth value of .8
is 80% true and a truth value of 0 means that the statement is
completely false. For example, let p and ¢ represent the following
sentences: p: It is cloudy today. g: It is raining today.
a. Suppose that the truth values of p and ¢ are .8 and 4. What
would you use for the truth value of ~p? p AND g? p OR g?
b. Let p and g be sentences in fuzzy logic. Generalize your above
answers and make up definitions for the truth values of the
following: ~p pANDg pORg
¢. Use your definitions in part (b) to
complete the adjacent table. Do
your values agree with your values | 4
from exercise 14? If not, try to 1
find new definitions that will
generalize the standard meaning. 0
Hint: You may want to consider 0
minimums and maximums.
d. Suppose that the truth value of p is .8 and the truth value of g
is .4. Using your definitions from part (c), compute the truth
values of the following: ~(p ANDg) ~pOR ~gq
For all sentences p and g in fuzzy logic, will the above two
compound sentences have the same truth value?

pANDg| pORg

A~
)

O - O -
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Activity 1.4

1. A function fis continuous at x = q if there is no jump or break in
the graph at x=a. The conversion of this simple visual image into
a verbal form challenged mathematical thinkers for quite a long
time. You see, a break in a graph could be "infinitely small"
perhaps only one point is missing. So the challenge in verbalizing
this concept is to grab hold of the very elusive concept of
"infinitely small” with words that we can logically manipulate. The
following epsilon-delta definition of continuity is one of the most
famous definitions in mathematics. This definition was introduced
in the 1870s by Karl Weierstrass as a hands-on translation of an
earlier definition by Augustin Cauchy in 1821. It is rather amazing
to see how easily we can capture the essence of the "infinitely
small” using only one implication and three quantifiers.

fis continuous at x=a if and only if the following is true:

For every positive ¢, there exists a positive d such that
for every x, if |x—a| < J, then | f(x)-f(a)| < &.

a. State what it means for f to not be continuous at x = a. Bring
the negation completely inside so that you have a good
working form for demonstrating that a function is not continu-
ous at a particular point a. If you have mastered the rules we
covered earlier, this task should be quite simple.

b. Draw a picture of a function that is not continuous at x = a.
Now pick a positive number & that is less than -% of the vertical
height of the jump in the graph at (a,f(a)). On the y-axis,
sketch all the points y such that |y—f(a)|< e.

c. Now pick a positive 6. On the x-axis, sketch all the points x
such that | x—a|<d. Is the following statement true for the 0
that you picked?

For every x, if |x—a| <4, then | f(x) - f(a) | <e.

If not, can you find a & so that it is true?

d. Explain why your statement in part (a) is true for the example
that you drew in part (b).

2. In the following questions, first give your initial impression as to
whether or not any of the pairs of statements have the same
meaning. Then make up various examples for p(x) and g(x) and
test your answers. For example, you could let p(x) be x>3. Then
try to find a g(x) so that one of the statements is true and the other
one is false. Do the following statements have the same meaning?
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a. Vx, p(x) and g(x) Vx, p(x) and Vx, g(x)

b. 3x, p(x) and g(x) 3x, p(x) and 3x, g(x)

c. Vx, p(x) or g(x)
d. 3x, p(x) or g(x)

Vx, p(x) or Vx, g(x)
3x, p(x) or 3x, g(x)

=14 Laws of Logic =

A law of logic is an abstract
compound statement
that is always true.

4 Example

The laws of logic give us the basic rules for manipulating the
seven basic terms, which are essential verbal skills for doing
logical reasoning. A law of logic is an abstract compound
statement that is always true, regardless of the truth values of
its component statements. For example, p or ~p is always true,
so it is a law of logic. On the other hand, p or ~¢ is not always
true, so it is not a law of logic.

We can verify that an abstract statement is a law of logic by
constructing its truth table. For example, the following truth
table shows that (p = q) <> (~q = ~p) is always true, so itis a
law of logic.

p=>q|~q=~p|(p=>q) = (~g=>~p)

m m A A~
L B B 1 I B | IO
4 4 n
-+ =4 T
- 4 =4

We can also verify that an abstract statement is a law of logic
by reasoning with the definitions of the logical operators, as
illustrated in the following example.

Verify that p= (p or g) is a law of logic.

If p is true, then by the definition of or, p or g must be true.
So, by the definition of an implication, we can conclude
that p= (p or g) is always true.
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We will now review the most frequently used laws of logic,
summarized in the following categories:

¢ Laws for Logical Operators
e Laws for Quantifiers

* Laws for Valid Arguments

Laws for Logical Operators The following list is a summary of the basic equivalences for
manipulating the five logical operators. When an equivalence
is a law of logic, we can use the statements on each side of the
equivalence interchangeably.

Laws of Logic — for Logical Operators

Commutative: pandg < gandp
porq < qgorp
(p=q) = (@=p)
Associative: (pandg)and r < pand (g and r)
(porq)orr <> por(gorr)

Distributive: pand(qorr) <> (pandg)or(pandr)
por{(gandr) < (por g)and (porr)

Rephrasing = p=q & ~q=>~p

Rephrasing Or: porg < ~p=g

Rephrasing < (p=qg) & (p=>q)and (g=p)

Negations: ~(~p) & p
~(p and g) < ~por~q
~(porg) < ~pand~q
~(p=q) < pand~q
~p=q) & ~(p=qor~(g=p)

Commutative Laws A commutative law states that the order does not matter for a
particular operation. And, or, and is equivalent to are
commutative. Implies is not commutative.

p=q is not equivalentto g=>p.
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Associative Laws

Distributive Laws

Rephrasing Implies

Rephrasing Or

Rephrasing an Equivalence

Double Negation

Negating And

Negating Or

An associative law states that the grouping does not matter
when the same operation is applied twice. And and or are
associative, but implies is not:

p=1(g=r) isnotequivalentto (p=g)=r.

By associativity, we can omit the parentheses in the following
sentences:. pAgAr  pvgvr

And distributes over or (and or distributes over and) in the
same way that multiplication distributes over addition.

x€A and (x€Borxe(C)

(x€A and x€B) or (x€A and xe()

We often rephrase an implication in terms of its contrapositive.
For example, the following sentences are equivalent:

If xe A, then x€B.
If x¢ B, then x¢ A.
An or-statement can be rephrased as an implication.
x€A or xeB
If x¢ A, then xeB.
An equivalence can be rephrased in terms of two implications.
x€A is equivalent to xe B

(xeA=>xeB) and (xe B=>x€A).

The more negations in a sentence, the longer it takes for the
brain to process. We should always eliminate double negations:

It is not true that x # 3.
x=3

When we negate an and-sentence, and must change to or.
It is not true that xe A and x€ B.
So,x¢A or x¢ B,

When we negate an or-sentence, or must change to and.

It is not true that x€ A or xe B.
So, x¢ A and x¢ B.



Negating Implies

Negating an Equivalence

Laws for Quantifiers
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Students often make mistakes when negating implications. To
remember this frequently used rule, recall the truth values for
implies.” If p=> q is false, Case 2 must occur, which means that
p is true and q is false.

It is not true that xe A=>xeB.

So, x€A and x¢ B.

The above negation is not equivalent to x¢ A =>x¢ B.

An equivalence can be rephrased as a double implication, so if
an equivalence is false, one of the implications must be false.
It is not true that x€A <> x€B.
~(xeA=>xeB) or ~(xe B=>xeA).

Each of the preceding equivalences is also valid if we replace

the abstract statements p and g by open statements p(x) and
g(x). For example, we negate an implication that has variables
in the same way as we negate a statement without variables.

~(p(x)=q(x)) < p(x) and ~gq(x)

In addition to the previous laws, we also have the following
laws for quantified statements.

Laws of Logic ~ for Quantifiers
Negations: ~(Vx, p(x)) < 3x, ~p(x)
~( axs P(x)) = Vx) ~p(x)

Distributive: Vx, p(x) and g(x) & Vx, p(x) and Vx, g(x)
Ax, p(x) or g(x) & Ix, p(x) or Ix, g(x)

Unlike the previous laws, the above laws cannot be verified
with a truth table since p(x) changes as x changes. We can,
though, reason with the meaning of the quantifiers to verify
that they are always true.
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Negating Quantifiers

Distributing the Quantifiers

4 Example

% Example

In Section 1.2, we discussed how to properly negate a
quantified statement. When we bring a negation across a quan-
tifier, we must change the quantifier.

It is not true that for every x, xeA.
There exists an x such that x¢ A.

It is not true that there exists an x such that xe A.
For every x, x¢ A.

The rules for interfacing the quantifiers with the logical
operators are not used as frequently as the negations, but they
are often used incorrectly. The universal quantifier can be dis-
tributed across and, but not across or, whereas the existential
quantifier can be distributed across or, but not across and. Let's
examine why this happens.

The universal quantifier enjoys a special relationship with
the and-connective; it gives us a way to express and in a more
concise form when the component sentences have a pattern, as
illustrated in the following example,

Consider the statement: For all n,n<n+1.
1. If the domain for nis {1,2,3}, this statement means:
1<2and 2<3 and 3<4.
2. If the domain for nis {1,2,3, ...}, this statement means:
I<2and2<3and3<4and4<5and ...

3. If the domain for n is the set of real numbers, the statement
can only be represented with the universal quantifier.

As illustrated in the previous example, the universal quantifier
is a generalization of and. Consequently, we can distribute a
universal quantifier across an and-statement.

The following sentences have the same meaning:
Vx,xisin A and x is in B.

(Vx,xisin A) and (Vx, xis in B).




Vx, p(x) and g(x)
Is equivalent to

Vx, p(x) and Vx, g(x).

¢ Example

Vx, p(3) ot 4(¥)
is not equivalent to
Vx, p(x) or Vx, g(x).

4 Example
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To verify that the adjacent rule is always true, we will first
show that the left side of the equivalence implies the right side,
and then show that the right side implies the left side.

=> Suppose that Vx, p(x) and q(x) is true.
Then for every x, both p(x) and g(x) are true.
So, Vx, p(x) is true. Also, Vx, g(x) is true.
Thus, Vx, p(x) and ¥x, q(x) is true.

« Conversely, suppose that Vx, p(x) and Vx, g(x)
is true. Since p(x) is true for all x and g(x) is true
for all x, p(x) and g(x) is true for all x.
Thus, Vx, p(x) and q(x) is true.

Both implications are true, so the two sides are equivalent.
Since we can distribute the universal quantifier across an
and-statement, we might be tempted to say that we can also
distribute it across an or-statement. However, consider the
following example.

Let x be a natural number. The following statement is true:
Vx, xis even or x is odd.

However, if we distribute the universal quantifier across the or,
we produce a false statement:

(Vx, xis even) or (Vx, xis odd).

The above example shows that Vx, p(x) or g(x) does not have
the same meaning as Vx, p(x) or Vx, g(x). The assumption
that they are equivalent is a serious reasoning error.

The existential quantifier has the same relation to or as the
universal quantifier does to and.

Consider the statement: There exists an x such that x€ A,.
1. If the domain for nis {1,2,3}, this statement means:
XEA Orxe€A, or xe€ A,
2. If the domain for n is {1,2,3, .. .}, this statement means:

X€EA orxeA,orx€AsorxeAsor. ..
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3x, p(x) ot q(x)
is equivalent to

3x, p(x) or 3x, g(x).

3. If the domain for n is the set of real numbers, the above
statement can only be represented with the existential
quantifier.

As demonstrated in the above example, the existential quanti-
fier is a generalization of or. Consequently, we can always
distribute an existential quantifier across an or-statement.

The following sentences have the same meaning:
Ax, xisin A orxisin B.

(dx, xis in A) or (3x, x is in B).

To verify the adjacent rule, we can argue as follows:

= Assume Ix, p(x) or g(x).
Then there exists an x, such that p(x,) is true
or q(x,) is true.
So, either Ax, p(x) is true or x, g(x) is true.
Thus, (Ix, p(x) or Ix, g(x) is true.

< Conversely, assume 3x, p(x) or Ix, q(x).

Case 1: Suppose that x, p(x) is true.
Then there is an x, such that p(x,) is true.
Since p(x,) is true, p(x,) or g(x,) is true.
So, Ax, p(x) or g(x) is true.

Case 2: Suppose that 3x, g(x) is true.
Then there is an x, such that g(x,) is true.
Since g(x.) is true, p(x,) or g(x,) is true.
So, dx, p(x) or gq(x) is true.

Since one of the above two cases must occur,

Ax, p(x) or g(x) is true.

Since both implications are true, the two sides are equivalent.
Because of this equivalence, we might be tempted to say that
the existential quantifier distributes across the and-connective.
However, consider the following example.
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3x, p(x) and g(x)
is not equivalent to

3x, p(x) and 3x, q(x).
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Let x be.a natural number. The following statement is false:
dx,x+1=5 and x+2=35.

However, if we distribute the existential quantifier across the
and, we produce a true statement:

(3x,x+1=5) and (3x, x+2=175).

The previous example shows that 3x, p(x) and g(x) does not
have the same meaning as 3x, p(x) and 3x, g(x). Students
sometimes make the mistake of assuming that these two state-
ments are equivalent. Using subscripts with an existential
quantifier helps us avoid this type of reasoning error.

In the following example, note how we translate the two
existential quantifiers in terms of subscripts, being careful to
change the subscript for the second existential quantifier.

Suppose that the following statement is true:
dx, x€ A and dx, xeB

Then there exists an xp such that xo € A.
Also, there exists an x; such that x,€ B.

We cannot drop the subscripts and say x € A and x € B for that
would imply that the same x is in both A and B.

We should carefully consider the meaning whenever we
contemplate whether or not to distribute a quantifier:

The existential quantifier does not distribute
across the and-connective.

The universal quantifier does not distributes
across the or-connective.

When we apply more than one law of logic, we work from left
to right and apply the laws one step at a time, as illustrated in
the following example. These examples illustrate the step-by-
step approach that we use when we reason in a logical manner.
We may not write all these steps on paper, but we mentally
execute them.
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4 Example Translate the following negations:

1. ~(Vx, x€AorxeB)
3x, ~(x€A or x€B)
dx, x¢A and x¢B

2. (Ve Vx, |x=-5|<d = [f)-f(5)|<€)
Je ~(A0 Vx, |x-5]|<d = |fx)-f(5)|<e)
Je V6 ~(Vx, |x-5|<d = |fx)-f(5)]|<€)
Je V0 3x, |[x-5|<d and |f(x)-f(5)] e

Laws for Valid Arguments The following laws of logic form the basis for the standard

types of valid arguments. They can be verified with truth tables
or by reasoning from the definitions of the logical operators.

Laws of Logic — for Valid Arguments

Law of the Excluded Middle:
Law of Noncontradiction:
Rule of Detachment:
Transitive Law:

Expanding Or:

Contracting And.
Simplifications:

pot~p

~(p and ~p)

(pand (p=¢9)) =¢
((p=q)and (g=1)) = (p=7)
p=(porq)

(pandg) =p

(pand T) <= p

(porT) =T

(portF)<=p

T represents a statement that is always true.
F represents a statement that is always false.

por~p The Law of the Excluded Middle states that there is no middle
ground for truth; a statement is either true or false, which
corresponds to our definition of a statement. We sometimes use
this law when we do cases in a proof. For example, to prove a
statement about a real number x, either x>0 or ~(x 2 0). We can



~(p and ~p)

(pand (p=q)) = ¢q

((p=q)and(g=7)) = (p=7)

p=(porgq)

(pandg)=p

(pandT) = p
(por =T
(portF)y=p
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then split our proof into the case where x>0 and the case where
x20.

A statement cannot be both true and false, which is stated in
this rule. The Law of Noncontradiction forms the basis for a
proof by contradiction, which we will examine in Section 2.6.
Using the rule for negating an and-statement, note how this law
turns into the previous law:

~(p and ~p) <= (~p orp)

The Rule of Detachment, also called modus ponens, comes
from the definition of the implication. If p is true and p= q is
true, then ¢ must be true. Thus, the outside implication is
always true.

The Transitive Law may be easier to remember if we rephrase it
as follows: if the first implies the second and the second implies
the third, then the first implies the third.

If (xeA=>xeB)and (xe B> xe (), then (xeA=>xe ().

We can verify that this law is always true using either a Truth
Table or by reasoning from the definition of an implication
(page 124).

Given any true statement, we can expand it into an
or-statement, attaching whatever we wish to it. If p is true, then
p or g must be true, so the adjacent implication is always true.

(x€A) > (x€A or xeB)

Given any true and-statement, we can always contract it to
either of its component statements. If p and q is true, then p
must be true, so the adjacent implication is always true.

(xeA and xe B) = (xc A)

The simplification laws allow us to simplify compound
statements when we know one of the component statements is
always true or always false. Let T represent a compound state-
ment that is always true and F represent a compound statement
that is always false.

The truth value of p and T is the same as the truth value of p.
The truth value of p or T is always true.
The truth value of p or F is the same as the truth value of p.
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Abstract Structure

4 Example
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For example: pand(qor~q) < p
por(qor~q) < T
por(gand~q) < p

In order to apply the laws of logic to a specific compound
sentence, we must be able to recognize its abstract structure.
Students often make errors in translating x €A U B because they
forget that the slash is a negation prefix and do not see the
outside structure of the sentence. If we rewrite this sentence in
an equivalent form without the slash, as illustrated in the
following example, we can easily see which law of logic we
need to apply.

Does x¢ A U B have the same meaning as xéA or xéB ?

We translate the original statement, one step at a time.

x¢AUB
~(x€AUB)
~(x€A or x€B) .... Definition of union
~(x€A)and ~(x€B) ...... Law of logic
x¢tA and xéB

So, xé AU B does not have the same meaning as xéA or x¢B.

When we need to apply two laws of logic, the outside structure
of the sentence determines which rule to apply first, as illus-
trated in the following examples.

Translate the given sentence.
1. ~(Forallx,xc€A orxeB.)

Since the outside structure is the negation of a quantified
sentence, we first apply the rule for negating a quantifier:

There exists an x such that ~(x€ A or xe B).

Next, we apply the rule for negating an or-sentence:

There exists an x such that x¢ A and x¢ B.
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2. ~(Forall x,xeA or forallx, xeB.)

Since the outside structure is the negation of an
or-statement, we first apply the rule for negating or:

~(For all x, xe A) and ~(for all x, x€ B).
Next, we apply the rule for negating "for all."

There exists an x such that x¢ A and
there exists an x such that x¢ B.

Are the following sentences equivalent?
If xis not in A, then x is in B.
If x is not in B, then x is in A.

We can view the first sentence as having a structure of p =gq.
p:xisnotinA g xisinB

Then the second sentence has the form ~g = ~p. Since the
second sentence is the contrapositive of the first, these two
sentences are equivalent.

To see the outside structure of a sentence, we may sometimes
want to hide a negation, as illustrated in the above example.

Exercise Set 1.4

1. Demonstrate that the following statements are laws of logic.
a. (p=9) & (~q=-~p)
b. ~(p=¢q) @ pand~q
c. ((p=¢g)and(g=r))=(p=7)

2. Do any of the following sentences have the same meaning?
(Use p and q 1o compare their structures.)

a

b
c
d

. If xisin C, then x is in B.
. If xisin B, then x is in C.
. If xis not in C, then x is not in B.
. If xis not in B, then x is not in C.
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3. Rephrase each implication in terms of its contrapositive,

a.
b.

If xisin C, then x is in A
If x is not in B, then x is in C.

4. Rephrase each or-sentence as an implication.

a.
b.
c.

xisinAorxisinB.
x2>0o0rx<0.
yis not in f(A) or y is in f(B).

5. Take the negation inside the parentheses and simplify.

a.
b.

c.
d
e
f.
6. N

a.
b
c.
d
e

7.

o a0 o =g ™

~(xeA=>x€eB)
~(xeC=>x¢A)
~(z¢A and z¢B)

. ~(x¢CorxeD)
. ~(If |[x~2| <4, then | f(x)-f(2)|<€.)

~(xeD if and only if xe B)

egate each sentence. Do not leave a negation as a prefix.

There exists an x such that for every y, x+y = 1.

. For every y, there exists an x such that f(x) = y.

For every x, if x is in B, then x is in C.

. For every x, if x is not in B, then x is not in C.
. For every €, there exists a d such that for every x,

if [x-2]|<d, then | f(x)- f(2)|<&.
There exists a ¢ such that for every x, if xis in S, then x<c.

. For every x,if xis in C, then xis in A or x is in B.

rite the negation of each sentence.
z€X, and, zeYorzeZ

. Forallx,xeCorx¢D.

. Forall x,xeC or forallx, x¢D.

. There exists an x such that x is in A and x is in B.

. There exists an x such that x is in A and there exists an x such

that x is in B.

8. Translate each implication in terms of its contrapositive.
Do not leave a negation as a prefix.

a. If x is rational and y is irrational, then x +y is irrational.
b. If x is an integer, then x is even or x is odd.
c. Ifc>0,thena<b= ca<cbh.
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11.

12.

13.

14,

15.
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Is the given implication a law of logic? If not, give a case in
which the statement is false.

a. (pandgq)=>p d. p=>(pandq)
b. (porg)=>p e. (pandq)=>(porg)
c. p=>(porgq) f. (porg)=(pandg)

Use the distributive laws to rewrite each sentence in an
equivalent form.

a. xeC and (x€A or xeB).

b. xeB or (xeC and xeA).

Let p(x): x+3 =5, and g(x): 7x = 28, where x is a real number.
Do the following statements have the same truth value?

3x, p(x) and g(x) dx, p(x) and 3Ix, g(x)

Let p(x): x>0, q(x): x<0, where x is a real number.
Do the given statements have the same truth value?
a. 3x, p(x) and g(x) 3x, p(x) and 3x. g(x)

b. Vx, p(x) or g(x) Vx, p(x) or Vx, q(x)

The domain for x is the set of real numbers. Do the given
statements have the same meaning? If not, give examples of sets A
and B so that the two statements have different truth values.
a, There exists an x such that xis in A and x is in B.
There exists an x such that x is in A and there
exists an x such that x is in B.
b. There exists an x such that x is in A or x is in B,
There exists an x such that x is in A or there
exists an x such that x is in B.
c. Forall x,xisin A and xis in B.
For all x, x is in A and for all x, xis in B.
d. Forall x, xisin A or xis in B.
For all x, xis in A or for all x, x is in B.

Do you think the given implication is a law of logic?
If so, explain your reasoning. If not, explain why not.
a. Ix, p(x) and 3x, g(x) = 3Ix, p(x) and q(x)

3x, p(x) and g(x) = Ix, p(x) and Ix, q(x)
d. Vx, p(x) or Vx, g(x) = Vx, p(x) or g(x)

Vx, p(x) or g(x) = Vx, p(x) or Vx, g(x)

Which of the equivalences in this section are the hardest for you to
remember? Explain why they are true.

75



76 Chapter 1 Logical Reasoning

Activity 1.5

Given a logical expression built from p, g, and r, we can construct its
truth table. Let's do the reverse process now. For each of the
following truth tables, construct a logical expression that has the truth
values in the last column.

L olplg] ? 2 |pigl ?
T|T| F T F
T{E|l T T|r|l f
FITH T FATq F
FIF) T FIFl T

f’

3. plq 4. EE
Ty T T[T F
TIRE T TIF|| F
FITH F FIT] 7
FIFL T FIF| F

5. plall ? 6.pq,. ?
TI{TYH T T|T|Ty T
el 1 Tle|T) T

FlTiT| *
FITF FlelT] *
FIF F TIT{F| T
TIF|F) F
FITIF| F
FIFIF] F
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The rapid processing that goes on in a computer is handled
through a complex network of electronic circuits where the
flow and manipulation of information is controlled by
electronic devices. In 1938, while working on a problem of
designing electronic circuits to meet given specifications,
Claude Shannon, a student at M.LT., noticed an underlying
relation between certain types of electrical circuits and the
logical operators. By merging the two, he created a powerful
tool for designing electronic circuits.

In the adjacent sketch of an electric circuit, we have two
switches labeled p and g arranged in series on the top, a battery
on the left side of the circuit and a light bulb on the right side.
The four possible cases for the positions of the two switches are
summarized in the following table. C represents closed and O
represents open. When both switches are closed, the current
flows, so the light will be on. In the other three cases, the
current will not flow through the circuit, so the light will be off.
Notice the similarity of the structure of this table with the truth
table for and. For this reason, this type of series switch was
named an AND-gate.

p| gl Light p|l gllpandg
cic| On 111 1
cloi of 110 0
0| C| of 01 0
ojo]l o 0|0 0

In the AND-table, the first two columns represent the input
values for p and g, and the last column represents the output
values of the circuit. 1 represents closed (or true) and O repre-
sents open (or false). If I and O are input, the AND-gate
outputs 0.

The symbol for an AND-gate is given on the left. The
letters on the left side of the gate represent the input. We view
the current as flowing from left to right with an output of pA g.
In circuit theory, p A g is written as pg; pV g is written as p+ g.
However, to help reinforce the laws of logic studied in this
section, we will continue to use v and A. In modemn
technology, series switches have been replaced by electronic
devices which have the same net result for input and output.
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OR-Gates

NOT-Gates

Combinatorial Circuits

In the adjacent circuit, we have two switches in parallel. With
this type of circuit, we need only one of the switches closed in
order for current to flow through the light. Because of the
similarity between the following table for a parallel circuit and
the truth table for or, this type of circuit is called an OR-gate.

p| gl Light p|ajlporg
clcil on THERIBE
cloj On 1{ofl 1
O|C]| On 01 1
0|0} oOff 010 0

The symbol for an OR-gate is given on the left. The input
values are output as pVgq.

Unlike the previous two gates, a NOT-gate has only one input
value; it changes an input of 1 to O and an input of O to 1,
which is analogous to the impact of negation on a statement.
We represent a NOT-gate symbolically as illustrated on the left.
A NOT-gate is also called an inverter.

A combinatorial circuit consists of gates combined in various
ways, such as the circuit illustrated on the left. When we input
values for p, g, and r, the circuit outputs a value on the far right.
To compute the output value of the total circuit, we trace
through the circuit from left to right, computing the output that
each gate has from its input.

For example, suppose that we input 1 for p, 0 for g, and 0
for r. The OR-gate turns “1 or 0" into 1; the NOT-gate turns 0
into 1. When we reach the AND-gate, the input is "1 and 1",
which is output as 1. Thus, for the given values of p, ¢, and r,
the circuit outputs 1.

We can automate our work in computing the output of a
circuit by representing it with a logical expression. First, we
start with the original input and write the logical expression
determined by each gate, as illustrated below. The OR-gate
outputs p or g, the NOT-gate outputs ~r, and, the AND-gate
takes its input and outputs (p or g) and ~r.

porq

r >c”'




piq|r||pva|love) a-r
KRNI 0
1{oft1lf 1 0
ottt 1 0
ojolt1fl o 0
1{1]of 1 1
1{of{oy t 1
oj1fofl 1 1
olo{o}f o 0

:
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A truth table provides a systematic way to record the complete
information on the behavior of a combinatorial circuit. The
adjacent truth table for (p or q) and ~r lists the circuit's output
for each possible input for p, ¢, and r. Our previous compu-
tation where we traced an input of 1, 0 and O through the circuit
corresponds to Case 6 in the table. To get the output for an
input of 1 for p, 1 for q and 1 for r, we look at Case 1 in the
table, which gives an output of 0.

In a combinatorial circuit, we sometimes split a line to feed
into more than one gate. In the adjacent sketch, the input for p
feeds into two AND-gates. The dot on the p-line indicates that
the branch line is connected to the p-line; this line crosses over
the g-line, but the absence of a dot means that it is not
connected to the g-line. In our drawings, we can branch a line
into two gates. However, we cannot combine two different
lines unless it passes through a gate, for we must indicate how
we are combining the two lines. The output for the adjacent
circuitis (pAqQ)V(pA ).

Now let's reverse the process and construct a circuit for a
given logical expression. When we construct a circuit, we
work from the inside out, constructing the gates in the order
that the computations are performed.

1. Construct a circuit for ~pV ~g.

To evaluate ~p v ~q, we first compute ~p and then compute
~g. We duplicate this process with the gates. First, we
send the input for p through a NOT-gate and the input for ¢
through a NOT-gate. Next we take their output and send it
through an OR-gate, as illustrated on the left.

2. Construct a circuit for ~(pAq).

To evaluate ~(pA q), we first compute pA g. So in our cir-
cuit, we first send the input from p and the input from g
through an AND-gate. The output of the AND-gate is then
sent through a NOT-gate, as illustrated on the left.

The sentences in the above two examples are logically equiva-
lent. For any input, the output of the circuit ~p v ~¢q will be
identical to the output of the circuit ~(p A g¢). However, in terms
of the cost and efficiency, we have a major difference. The
first expression, ~pV ~q, requires a total of three gates, whereas
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pATeop
pVT T
PVFep

4 Example

pPA~p=F
pVv~p=T

~{p A gq) requires only two gates. Thus, the second circuit is a
simpler way to get the same output.

In ahy business, cost and efficiency are a major concern,
but in computer electronics, efficiency is of special concern.
The difference of one little nanosecond, which is one billionth
of a second, makes a huge difference when large batches of
data are being processed. A programmer may use a clever
algorithm in writing a program, but there may not be enough
time in the universe to compute it because of the efficiency of
the circuits. The inclusion of one extra gate in a circuit can
make a significant different in the processing time.

The laws of logic give us a powerful tool for simplifying
circuits and making them more efficient. We will now examine
how we can use the negation laws, the distributive laws and the
three adjacent equivalences to reduce the number of gates. The
strategy for using these equivalences is to try to manipulate the
expression into a form where a statement that is always true or
always false appears. For example, p A~p is always false and
PV ~p is always true. So, we look for ways to produce these
terms, as illustrated in the following examples.

1. In the rush of the day at a high-tech plant, you are asked to
construct a circuit for (pA g}V (pA ~g). Can you simplify it?

First, we use the distributive law to factor out p.

(PA@)V (PA~q)
pA{qV~q) ....Distributive Law for A over V

Since gV ~q is always true, we can simplify further.

PAT ... ..., Simplification
Do Simplification

It would be foolish to implement the circuit (pAq) vV (PA~q)
because its output is identical to p.

2. Is it possible to simplify the adjacent circuit?

We can represent this circuit as (pA q) vV (pAr). Using the
distributive law, we can rewrite it as pA (g Vv r). Since the
latter expression uses only two gates, it is simpler.

3. Simplify the following expression so that its circuit has
fewer gates:
~(PA~g@) A r A (~pV ~q)
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pl| gl r| Output
11111 1
1101 0
0j1]1 0
001 0
11110 1
1710}0 0
01110 1
0|0]0 0
4 Example
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Since r is in only one term, we use the commutative and
associative properties of and to move r over to the side.

[~(PA~@ A (~pV~QIA 1
Bring the first negation inside the parentheses:
(~pV O A(~pV~IA 1
[~pV(@A~@)IA r .. Distributive Law
(~pVF)A r.... Simplification

~p A r .. Simplification
We have reduced the number of gates from 8 to 2.

From specifications for a circuit where given input values must
be transformed to specified output values, how does one design
the circuit? For example, how could we design a circuit to
satisfy the specifications in the adjacent truth table? Of course,
efficiency will be a concern, but let's initially focus on doing it
however we can. Once we have a base model that does the job,
we can then focus on streamlining it to maximize the efficiency.

Finding a logical expression that fits a given truth table can
be quite challenging, unless we know a few tricks. With the
following algorithm, we can always find an logical expression
that will give the desired output.

1. List each case (or row) where the output is 1. For each
of these cases, write an and-statement that produces 1
for that case and 0 everywhere else. In Case 5, r is
false, so we use ~r in the and-statement: pAgA~r

2. Connect each and-statement from the previous step
with or. This logical expression will have the desired
output values, producing 1 in only the listed cases.

This technique is illustrated in the following example.

Find a logical expression for the above truth table.
1. We have an output of 1 in Case 1, Case 5, and Case 7.
Case 1: pAgA routputs 1 in Case 1 and O everywhere else.
Case 5: pAgA~routputs 1 in Case 5 and 0 elsewhere.

Case 7: ~pA gA~r outputs 1 in Case 7 and O elsewhere.
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qAr

Karnaugh Maps

qh~r

~qA~-T

~qAr

2. Connect these 3 expressions with or:

(PAGATIV(PAGA~T)V (~PA gA~T)
The output of this logical expression is the given truth table.

We can use the above technique to find a logical expression for
any given truth table. However, the expression will usually
require many more gates than are necessary. The next step is to
simplify the expression. To streamline this procedure, we can
use a visual device called a Karnaugh map.

When we apply the previous algorithm to 3 variables, there
are 8 possible and-statements that we might have in Step 1, one
for each case. A Karnaugh map for 3 variables is a rectangular
array with a cell for each of these 8 possible and-statements, as
illustrated on the left.

The cells are positioned so that adjacent cells

differ by only one factor.

PAGAT

PAG A~r

PA~g A~TI DA~GAT

~PAg AT

~PAG A~rFPA~GA~TPA~GAT

The terms in the same row of the first and last
columns differ by only one factor, so we will

also consider these cells as adjacent.

To simplify an expression, we shade the cells in the Karnaugh
map that correspond to the AND-terms in our expression.
Adjacent shaded blocks indicate terms that have a common
factor. We then take adjacent cells and start factoring. The
beauty of the Karnaugh map is that when we factor adjacent
terms, we are always left with a factor of the form r v ~r, which
we can then simplify as T. This technique is illustrated in the
following examples:

Simplify the logical expression from the last example:
(PAGA IV (PAQA~r)V (~pA qA~T)
First we shade the 3 cells that correspond to the AND-terms:
DPAgAT PAGA~r ~pAgA-~r

We can start with either the adjacent cells in the first row or the
adjacent cells in the second column.

The adjacent terms in the first row can be reduced to pA ¢:
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gAT _qA~T ~qA~Tr ~qAr
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(PAGATIV(PAGA~T)
(PAQA(rV~r) ..o Distributive
(PAQDAT ... Simplification
(PAQ) v Simplification

Substitute this simplification in the original expression:

(PAGATIV (PAQA~r)V (~pA gA~T)

(PA @V (~=pA gA~r) .... Substitution
GAP)V(gA~pA~r) .... Commutative
gA(pV (~pA~D)) ......... Distributive

Now we use the Distributive Law to expand the latter term:

gA[(pvV~p)A(pV~P)] ... Distributive
gA[TA(pV~N] ...t Simplification
GA(PV~T) ool Simplification

We have reduced the number of gates from 11 to only 3.

If we use the Karnaugh maps a lot, we will learn to recognize
time-saving shortcuts. For example, a 2 x 2 block in a Kar-
naugh map can always be reduced to a single variable. Watch
how the terms reduce in the next two examples.

Simplify the given logical expression.
1. Simplify: (pAGAFIV(PAGA~F)V(~PAGATIV(~PAGA~T)

First we shade the four celis that correspond to the above
AND-terms: pAqAr, pAgQA~T, ~PAGAT, ~DAGQA-~T.
The shaded cells form a 2x 2 block. As demonstrated in the
last example, the first two terms in the first row of the block
reduce to pA q. In a similar manner, the first two terms in
the second row, reduce to ~pA g. We can then apply the
distributive law to these two terms:

(PAGATIV (PAGA~F)NV (~pPAGAT)V (~PA qA~T)
(pADV (~pAg)
(pv~plAgq ..... Distributive
TAG oveniel. Simplification
g i Simplification
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gAT  gA~r ~gA~T ~gAr

GAT _GA-T ~qA~T ~qAT

Thus, the original expression, which was a square block in
the Karnaugh map, reduces to the single variable q. Note
thatq is the only variable whose negation was not used in
any of the original four terms.

. Simplify: (PAGATIV(PA~gATIV(~PAGATIV(~pA~gAT)

When we shade the four cells that correspond to the
AND-terms, we obtain the adjacent map. The outside
vertical edges are adjacent since their cells differ by only
one factor. We may want to visualize the outside edges as
glued together in order to see their adjacent relation. With
the gluing, we see a 2 x 2 block. Let's work through the
details and see if the original expression reduces to a single
term as it did in the last example. First, we factor the
common terms from each row and then simplify,

(PAGATIV (PA~GAT) V (~pAgQAT)V (~pA~gAT)
(pAIA(@V~9) V (~pAT)A(qV~q)
(PADAT V (~pANDAT
(pAT) V (~pAT)

(pV~p)A T
TATr

r

Note the similarity with the last example. The original
expression, which was a square block in the Karnaugh map,
reduces to the single variable r. Furthermore, r is the only
variable whose negation was not used in any of the original
four terms.

. Simplify: (PAGQAPIV(PAGQA~r)N(PA~gA~r )V (PA~gAT)

When we shade the four cells that correspond to the above
AND-terms, we obtain a 4 x 1 block. The first two terms in
the first row, can be reduced to pAg. Similarly, the last two
terms in the first row can be reduced to pA ~¢9. We can then
apply the distributive law to these two terms:

(PAGAT)V(PAGA~T)V (PA~gA~T)V (PA~GAT)
(PADV (pA~q)
pA(gv~q) ..... Distributive
PAT ... Simplification
)/ 2N Simplification
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The original expression, which was a 4 x 1 block, reduces to the
single variable p. Note that p is the only variable whose
negation was not used in any of the original four terms.

Anytime we have a 2 x2 block or a 4 x 1 block shaded in a
Karnaugh map, we can reduce those four terms to a single
variable, namely the variable whose negation was not used in
any of the original four terms.

A circuit with 3 inputs has 8 possible cases for input values. If
we add a fourth input, it can have a value of 1 with each of the
8 previous inputs or a value of 0. Thus, the new circuit has 16
possible cases. So, the design specificiations for a circuit with
4 inputs can be entered in a truth table that has 16 cases (rows).
We can then use the algorithm on page 81 to design a circuit
that has the desired outputs:

First we construct an and-statement to produce each output
of 1. Then we take the disjunction (connect with or) of
these statements.

To simplify the resulting logical expression with a Karnaugh
map, we need 16 cells since there are 16 cases which give 16
possibilities for the and-statements. As before, we arrange the
terms so that terms in adjacent cells differ by only one factor.

Civilization advances by extending
the number of important
operations which we can perform
without thinking about them.

Alfred North Whitebead

ras r A~S ~r A~§ ~rAS
PN PAGArAs | PAGQAFrA~s | DPAGA~rA~S | PAGA~TAS
~PAG |} ~PAGQATAS | ~pPAGATr A~S|~DAG A~F A~S | ~DAG A~T AS
~P A~q [{~P A~ Ar AS{~p A~q Ar /\-srp A~q A~F A~S| ~p A~q A\~ AS
DPA~q | PA~GArAS | P A~g AT A~S D A~ A~Y A~S | P A~@ A~T AS

We consider the first column to be adjacent to the last column
since those terms differ by only one factor.

Similarly, we

consider the top row to be adjacent to the last row.

Pick any two adjacent cells in the above map and you will
see a variable that you can eliminate. Pick any 2x2 or 4x1
block in the above map and you will see two variables that you
can eliminate. If we always start with the largest blocks, we
will find an efficient method for reducing the number of gates.
Instead of wasting our time trying to figure out which terms to
factor first, we can go on autopilot and start with the biggest
block using the visuals from a Karnaugh map.
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Exercise Set 1.5

1. Draw a logic circuit for each expression.
a. ~pAg  b. ~(pAqQ) ¢ ~pV~¢ d. (pv@) A~(pVD)

2. Write a logical expression that represents the following circuits.
Compute the output if the input signalisp=1,g=1and r=0.

a.l:E}_ b. gﬁ:)—

3. Simplify each expression so that its circuit requires fewer gates.
a. (PA @)V (pA~q)
b. (pA~@)V (~pA~q)
c. (pAGAD)V (~pAgAT)
d. (PA~@V (~PAQV (~PA~q)

4. Construct a logical expression that has the given output table.
Then use a Karnaugh map to simplify the expression.

o

i@%

a. pl q| r | Output c Pl q| r| s | Output
11111 0 1111111 0
11011 1 1101111 1
oj111 0 o) 17111 1
001 0 ojoft]1 0
11110 1 11110101 1
110]0 1 110]0]1 1
o110 1 cl110141 0
0joj]o0 1 ojo(o|1 0

11110 0
110{1}0 0

b. pl gl r{l Output ol1li1lo 0
11111 1 oj011f{0 1
11011 0 11110]0 1
o0l111 1 1101010 1
olo}1 0 0j1j010 1
11110 0 0jojofo 0
1{0}]0 1
0|10 0 d. The table in (6) on page 76.
01010 0
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Activity 1.6

The set [1,4] has a greatest element, whereas the set [1,4) does not
have a greatest element. Let S be a set of real numbers.

1. Make up definitions for the following. Flag any quantifiers that
you use in your definition.

a. cis the greatest element in S.
b. § has a greatest element.
c. S has a least element.
2. Use your definitions to translate the following:
a. cis not the greatest element in §.
b. § does not have a greatest element.
c¢. S does not have a least element.
3. Multiplication is distributive over addition:
For all real numbers a, b, and c, a X (b+c) =aXb+aXc.
Use substitution to generalize the above property.
* is distributive over # if and only if foralla, b,andc, ___
4. Use your generalization in (3) to answer the following:
a. Is x distributive over -?
b. Is + distributive over x?
c. Is and distributive over or?

=1.6 Translations =

Mathematical reasoning involves a continual translation, back
and forth, from everyday language to pictures and symbolic
representations. To comprehend a symbolic representation, we
must be able to translate it in terms of visual pictures and the
richer vocabulary of everyday language, using examples to
build our personal understanding of it.

The reverse task is often more difficult, for we need to be
able to translate concepts from everyday language into a
precise format using variables, quantifiers, and logical opera-
tors. For example, how do we translate the concept of the
"smallest” element in a set of real numbers? First, let's translate
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Definitions

4 Example

the superlative ending. A set S of real numbers has a smallest
element if the following is true:

There is an element in S that is smaller
than every other element in the set.

The italicized words are flagging the quantifiers imbedded in
our description. For each quantifier, we introduce a variable.
Let's use the variable "y" to go with “there is” and the variable
"x" to go with "every." We can now give a precise definition of

"smallest” using variables and quantifiers.

Let § be a set of real numbers.
S has a smallest element if and only if
there exists a y in § such that forall xin S, y < x.

The ability to recognize a concept and create a definition for it
is an important reasoning skill. When we define a word such as
"smallest,” the word is a shorthand notation for its definition.
Consequently, we always use the "if and only if" connective in
a definition. Definitions provide a quick bypass through a
dense jungle of words, allowing us to speed up our reasoning
process by focusing on a single word instead of its equivalent
definition.

To prove that an object does not satisfy a definition, we
negate its definition, as illustrated in the following example:

What do we have to demonstrate to prove that a set S does not
have a smallest element,?

~(S has a smallest element)
if and only if
~(there exists a y in § such that for every x in S, y <x).

We apply the rules for negating quantifiers:

~(Ayin S ¥Vxin §, y<x)
Vyin S, Ixin S, y £ x
Vyin §, Ixin §, x<y
For every y in S, there exists an x in § such that x<y.

To prove that there is no smallest positive real number, we
must demonstrate the above statement.
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Whenever

4 Example
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In the previous example, the symbolic notation is more concise.
However, the version fleshed out with phonetic words emanates
a more comfortable feeling. Perhaps we hear the words more
when we see the phonetic spelling. Whatever the cause, when
we read or write mathematics, it is helpful to balance the
symbols with words. For this reason, in math textbooks we
normally write out the quantifiers in words rather than represent
them with the symbols V and 3. When writing by hand, the
symbolic form may be more convenient.

"Whenever" is often used in mathematical discourse in
sentences such as the following:

[f(x)- f(1)|<€ whenever |x-1]<d.

Negating the above sentence can be a little tricky unless we
first translate the sentence in terms of the logical operators and
quantifiers. After that, we can go on autopilot and apply the
laws of logic.

We can translate "whenever" as "if," but "ever" contains an
implicit notion of the universal quantifier, so we must also
include the universal quantifier:

For every x, | f(x) - f(1)|< ¢ if jx-1]<0.
Next we write the sentence in standard implication form:
For every x, if |[x - 1] < J, then | f(x)- f(1)|< €.

In the above form, we can apply the rule for negating an impli-
cation (page 65).

There exists an x such that jx— 1|<d and | f(x)- f(1)| z&.

Translate each sentence.

1. x€A whenever x€B.

Translation: For every x, x€A if x€B.
For every x, if x€ B, then x€A.

2. ~(x€A whenever xeB).

Translation: ~(For every x, if x€ B, then x€ A).
There exists an x such that x€ B and x ¢ A.
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Eliminating an Implication

Negating Quantifiers

Translating with Variables

We can sometimes eliminate an implication by changing the
domain in the quantifiers. For example, in the following impli-
cation we move the information in the hypothesis over to the
domain for x.

For every x, if x€B, then x€A.
For every x in B, x is also in A.

To negate the above two statements, we use different rules, but
the end results have the same meaning.

~(For every x, if x€ B, then x€A).
There exists an x such that xe B and x g A.

~(Forevery xin B, x is also in A.)
There exists an x in B such that x € A.

When we negate the universal quantifier in the last statement,
we might be tempted to say "there exists an x not in B."
However, we do not negate the domain when we negate a
sentence. To guard against this type of error, we can translate
the domain for x in a separate sentence:

For every x in B, x is also in A.
Translate: Letxbein B. Vx, x€A

Negation: Letxbein B. 3x, x&A
So, there exists an x in B such that x € A.

When a definition is not phrased in terms of variables, we may
need to translate it in order to have something tangible to
manipulate. For example, to form the union of two sets, we
combine their elements. On the other hand, the intersection of
two sets is where they overlap. How do we translate "combine”
and "overlap” in terms of variables?

At the first stage, we introduce variables A and B to repre-
sent the sets and symbols to represent union and intersection:

Let A and B be sets.

AU B represents the union of the sets A and B.
AN B represents the intersection of the sets A and B.

At the next stage, we state a property an element must have to
be a member of set AU B, so we need to introduce a variable x
to represent an arbitrary element in the new set. When we



Let A and B be sets.
x€AUB
if and only if

X€A or x€B.

Let A and B be sets.
X€EANB
if and only if

x€A and xe B,

The Substitution Principle

A legitimate expression
may be substituted for a
variable as long as all
occurrences of the vari-
able are replaced by the
same substitution.
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combine the elements in two sets, the property that an element
x must have to be a member of the new set can be phrased as
follows:’

x€AorxeB

Using the language tool of variables, we can translate the
notion of "combining elements" into a very simple definition
based on the word or. Given an element, we can determine
whether or not it is a member of the set A U B by applying the
adjacent definition.

In a similar manner, we can translate the "overlap of two
sets” in terms of and. To be in the overlap of two sets, an
element x must have the following property:

xeAand xe B

The definitions of the set operations of union and intersection
are based completely on the meaning of or and and.

Even though the definitions of union and intersection are
simple, students sometimes get confused on how to substitute
in these definitions, especially when the order of the substitu-
tion is involved. Now we will examine one of the most power-
ful tools in the reasoning process, the substitution principle.

Variables endow the language of mathematics with a sleek
form, but the real power comes from the substitution principle,
which, like a magician's wand, enables us to magically
transform a single sentence into myriad forms. For example,
we can transform the following statement of the distributive
property by substituting x+ 1 for a, x for b, and 3 for c:

axb+axc
x+1)xx + (x+1)x3

ax(b+c)
(x+1)x (x+3)

Substitution is a simple concept, but its simplicity can be
deceiving. Most of the difficulties that students have with
abstract mathematics stem from a lack of understanding of how
to use the substitution principle to apply definitions and
theorems to specific examples. Problems are easy when we
have examples to guide us, but the creative thinkers are those
who can blaze a path and create examples for others to follow.
To be a logical thinker, we must develop our ability beyond
merely copying procedures from examples provided by others.
This requires that we learn how to use the substitution principle
and freely apply it to definitions and theorems.
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4 Example

4 Example

When we need to apply several definitions to translate a
sentence, we must analyze the outside structure of the sentence
to determine which definition to use first. We usually construct
a sentence from the inside out, deciding how we want to
connect the interior components. However, when we decon-
struct a compound sentence, we must work from the outside in,
as illustrated in the following example:

Translate the following sentence: x€(ENF)UC

To construct the set (ENF) U C, the parentheses tell us to first
form the intersection of the sets E and F, and then take this set
and union it with C. However, when we apply the definitions,
we must unravel it in the reverse direction. The outside struc-
ture of the set (ENF)U C is the union of two sets, so to decon-
struct the above sentence, we first apply the definition of union:

Suppose that xe (ENF)UC.
Thenx€eENForxeC. Definition of union

Next we replace x€ ENF with its definition:

(xeEand xeF)orxeC. .. Definition of intersection

When we substitute another letter or expression for a variable,
we must be careful not to conflict with other variables. If a
variable is universally quantified, we have a free hand in our
choice of letters to substitute. We can even substitute a letter
used in another variable. In the following example, the
variables a and b are universally quantified, so we can substi-
tute a + b for a by replacing each occurrence of a with a + b.
This does not mean that a+b = a.

1. For all real numbers g and b, a+b=b+a.
Substitute a+ b for a: (a+b)+b=>b+(a+b)

2. Forallx,y,and z, x(y+2) = xy+xz.
Substitute y for x: Forall yand z, y(y+2) = yy+yz.




Existential Quantifiers

Image of a Set

f(x) = 2x
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If a sentence has an existential quantifier, we do not have a free
hand in our choice of letters to substitute. We cannot substi-
tute y for x in the following example:

For every y, there exists an x such that f(x) = y.

However, we can substitute y for x if we first replace the origi-
nal y with another letter, such as z:

For every y, there exists a z such that f(z) = y.
For every x, there exists a z such that f(z) = x.

Students generally have more difficulty with definitions that
involve the existential quantifier. Perhaps it is the subtleties of
substituting in the presence of an existential quantifier, or
perhaps it is the existence issue, which also provides difficulties
for philosophers and theologians. For whatever the reason, the
ability to use the existential quantifier with ease and confidence
seems to require a longer incubation period than does the
universal quantifier. To build your skill in this area, let's look
at an important definition that contains an existential quantifier.

Let f be a function from X into Y and let x be an element of X.
The notation f(x) denotes the image of x under f. For example,
let f(x) = 2x, where x is a real number. Since f(3) = 2x 3, the
image of 3 is 6. To find the image of 3 in the adjacent graph,
we move vertically until we hit the graph and then move
horizontally until we hit the y-axis.

Let A = [1,3]. The image of the set A under fis denoted as
f(A). f(A) is the set that consists of the images of all elements
in A. In the graph, we can see that f(A) = [2,6].

If x€ A, then f(x)e f(A). To express what it means for an
arbitrary element y to be in flA), we need to use the existential
quantifier:

y€f(A)
if and only if

there exists an x in A such that f(x) = y.

We will cover this definition in more detail when we examine
functions in Chapter 4 (page 364). For the time being, we will
use it to practice substitutions.
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4 Example

YEf(A)
if and only if
there exists an x in A
such that f(x) = y.

4 Example

1. Translate: z€ g(B).
In the definition, substitute: zfory, g forf, Bfor A.

zZ€ g(B) if and only if
there exists an x in B such that g(x) = z.

We can also substitute b for x:

z€ g(B) if and only if
there exists a b in B such that g(b) = z.

2. Translate: x€ f(A)

Before we substitute x for y in the definition,
we substitute another letter for the original x:

y€ f(A) if and only if
there exists an a in A such that f(a) = y.

Now we substitute x for y in the above sentence:

x€ f(A) if and only if
there exists an a in A such that f(a) = x.

To translate an expression that involves more than one defini-
tion, we work from the outside to the inside as we deconstruct
the sentence. In the following example, we must carefully read
the parentheses for they give us the outside structure, which, in
turn, tells us which definition to use first.

Do the following sentences have the same meaning?
yefANf(B) YEf(ANB)

To compare their meaning, we need to translate each sentence
in terms of the definitions. The outside structure of the first
sentence has the form: yeZNW. So, we first substitute in the
definition of intersection:

1. yef(A)Nf(B)
yef(A)andyef(B) .......... Definition of intersection
There exists an xo in A such that f(x;) =y, and
there exists an x; in B such that f(x;) = y.

......... Definition of image of a set



Generalizations

Commutative Property of Addition
For all numbers a and b,
a+b=b+a.

Commutative Property of Maltiplication
For all numbers a and b,

aXb=bXa.
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The outside structure of the second sentence has the form:
y€ f(Z). So, we first substitute in the definition of f(Z).

2. ye f(ANB)
There exists an x in AN B such that f(x) = y.
............... Definition of image of a set
There exists an x such that x€A and xe B and f(x) = y.

............. Definition of intersection

The above two translations are not equivalent because we can
not factor 3x across an and-statement (page 69). So, the two
sentences have different meanings. This example is discussed
further on page 365.

One of the goals of the reasoning process is to generalize as
much as possible. If we see that something is true, we try to
generalize and find the broadest range of objects for which it is
true. For example, if we note that 2+3=3+2,5+7=7+35,
etc.,, we may observe the similarity in the structure of these
examples and wonder if we can generalize it. To generalize
these examples, we substitute variables for the specific
numbers:
For all numbersaand b, a+ b =b +a.

The above statement is true for both real numbers and complex
numbers, so we have generalized the examples. We have also
identified an important property of the addition operation,
which is called the commutative property of addition.

As we examine the commutative property of addition, we
may wonder if we can generalize further. What is there left to
generalize? We have pushed the numbers as far as we can, but
what about the operations? Addition is only one of many types
of operations. Does multiplication have a similar property? As
we learned in elementary school, multiplication does indeed
have a similar property.

Now compare the adjacent two properties and notice their
similarity. How do we generalize these two statements? The
only difference is the operation, so let's generalize the operation
by representing it with the symbol*:

For all numbers a and b, a*b=b*a.
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* i3 a binary operation on a set S
if and only if
forallaand bin S,
a*b is defined and a*be S.

Let * be a binary operation on §.
* is commutative
if and only if
foralaand bin S, a%b = b*a,

4 Example

In order to generalize addition and multiplication with a symbol
such as *, we need to recognize the common features that they
share. They both operate on two numbers and produce a new
number:

When addition operates on 4 and 7, it produces 11.
When multiplication operates on 4 and 7, it produces 28.

The union operation has a similar property; it operates on two
sets and produces a new set. Similarly, the intersection opera-
tion operates on two sets and produces a new set. Now, we
will do a broad generalization that includes not only addition
and multiplication, but also union and intersection. This general
concept is called a binary operation on a set S. A binary
operation operates on each pair of elements in S and produces a
new element that is also in §. Addition, multiplication, and
subtraction on the set of real numbers each satisfy the adjacent
definition of a binary operation. However, division does not
satisfy the definition because division by 0 is not defined.
Division does, though, satisfy the definition on the set of
positive rational numbers.

We can now build on the definition of a binary operaiton
and define the generalized commutative property as stated on
the left. To determine if a particular operation is commutative,
we reverse the generalization process and substitute in the
definition, as illustrated in the following examples.

1. Is multiplication commutative on the set of real numbers?
In the previous definition, substitute X for *:

X is commutative if and only if
for all real numbersaand b,aXb=b Xa.

Since the above statement is true,
multiplication is commutative.

2. Is subtraction commutative on the real numbers?

3 -4 +4 -3, so subtraction is not commutative.

The number O has a special property with respect to the
addition operation.

For every real number a,a+0=a and O+a=a.



Let * be a binary operation on S.

* has an identity
if and only if
there exists an i in § such that
for every ain §,

axi=aandi*a=a
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We use the word identity to describe this property: O is the
identity for addition. To generalize the identity property to an
arbitrary binary operation, we introduce the letter i to represent
the identity. In the identity property for 0, we substitute i for 0
and « for +, which gives the following definition:

Let = be a binary operation on a set S and let i be in S.
i is the identity for »
if and only if
foreveryainS,axi=aandixa=a

A binary operation on S has an identity if there exists an { in S
that satisfies the above definition. In the adjacent translation,
note the order of the mixed quantifiers. As we saw in Section
1.2, the order of mixed quantifiers changes the meaning of the
sentence. If we reverse the order of the quantifiers, we do not
have the definition of an identity.

Let S be the set of real numbers.
1. Does multiplication have an identity on S?
Substitute x for » in the definition:

Does there exist a real number i such that for
every real number a, ax i=aand ix a = a?

Seti=1. Forevery real numbera,ax1 =aand 1xa =a.
So 1 is the identity for addition.

2. Does subtraction have an identity on §?7
Substitute — for « in the definition:

Does there exist a real number i such that for
every real numbera,a-i=aandi-a = a?

Seti=0. a-0=a, but0—a*a. So 0 is not the identity
for subtraction. If a — i = q, then i must be 0, but 0 does not
satisfy the second equation. Therefore, subtraction does not
have an identity.

In high school algebra, we study specific binary operations,
such as addition and multiplication. In higher mathematics, we
generalize to abstract binary operations and investigate the type
of structures that they induce on a set.
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One of the goals of logical reasoning is to find patterns and
relationships between concepts that may seem very different on
the surface. For example, our generalization of addition to the
concept of a binary operation shows a relation between the
structure of the addition operation and the structure of the
union operation. Even though addition and union operate on
very different types of objects, the abstract concept of a binary
operation brings them under the same umbrella. They even
share some of the same properties since they are both commu-
tative and associative.

We use translations to both generalize definitions and to
apply definitions to specific examples. If we know how to use
the substitution principle, translating a mathematical definition
for specific examples is fairly straightforward. On the other
hand, translating everyday language into a more precise logical
form can be very challenging for everyday language is quite
complex. The more you work on developing your reasoning
skills, though, the easier it becomes.

Exercise Set 1.6

1. Translate in terms of variables, quantifiers and logical operators.
a. Some elements in the set A are in the set B.

o o0 o

. Every element in the set A is in the set B.
Some x are not in both A and B.

. xisin A but not in B.

. xis in A whenever x is in B.

f. xisin A only if xis in B.

2. Translate in terms of variables, quantifiers and logical operators.
a. These two sets have some elements in common.
b. These two sets have no elements in common.
c. There is one and only one x that is in both A and B.
d. There is a unique x that is in both A and B.

3. Definition: x is even if and only if there exists an integer k
such that x = 2k.
Use the above definition to translate each sentence.

a. mniseven.
b. m+niseven.
c. m*is even.
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. Is the following definition correct? If not, why not?
Definition: x is even if and only if x = 2k for every integer k.

. Definitian: fmaps X onto Y if and only if forevery yinY,
there exists an x in X such that f(x) = y.
Use the above definition to translate each sentence.
a. g maps X onto Z.
b. fmaps Y onto X.

. Definition: ye f(A) if and only if there exists an x in A
such that f(x) = y.
Definition: ze CUD if and only if zeCor zeD.
Definition: ze CND if and only if zeC and zeD.
Translate each sentence by substituting in the above definitions
one step at a time. Do the two sentences have the same meaning?

a. yef(AUB)  yef(A)U f(B)

b. yef(ANB)  yef(A)N f(B)

. Make up definitions for the following using variables and

quantifiers. The domain of all variables is the set of integers.
a. x is an odd number.

b. aisafactor of b. Hint: Why is 3 a factor of 127
¢. bis amultiple of a. Hint: Why is 12 a multiple of 3?
d. adivides b. Hint: Why does 3 divide 12?

. Translate each sentence by substituting in your definitions in (7).
a. mn is an odd number.

b. m+nis an odd number.

c. aisafactorof b+c.

d. aisa multiple of b+c.

e. 4 divides 3-b.

f. ndivides a-b.

. Translate in terms of variables, quantifiers and logical operators.
a. Between every two real numbers there is another real number.
b. The sum of every two even numbers is even.

. |f&x) - f(3)| <€ whenever |x-3|<d.

d. The function f is an increasing function.
(The domain and range of f is the set of real numbers.)

. The set S has a greatest element. (S is a set of real numbers.)
The set S has a least element. (S is a set of real numbers.)

[¢]

- o
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10.

11.

12.

13.

14.

15.

16.

Let S be a set of real numbers. u is an upper bound for S if and
only if u is greater than or equal to every element in S.

. Is 6 an upper bound of the set [1,5)?

b Is 5 an upper bound of the set [1,5)?

¢. How many upper bounds does [1,5) have?

d. Does [1,5) have a least upper bound? If so, what is it?
e. Does the set of integers have any upper bounds?

-

Let S be a set of real numbers. Translate the following in terms of
variables, writing all quantifiers at the beginning of the sentence.

a. The set S has an upper bound.
b. The set S does not have an upper bound.
c. m is the least upper bound of the set S.

The definition of the absolute value of a real
number is given on the right. Use substitution [x|=x, ifx>0.
to write the definition of the following: |x]=—x, ifx<0.

a. jal b. |x+1] c. |x-y|

Generalize each example to a statement that gives a basic property
of addition on the set of integers. Use variables to represent the
numbers. Use the appropriate quantifier for each variable.

a, (-2)+[8+(=3)]=[(-2)+8]+(-3)
b. (-3)+0=-3 and 0+(-3)=-3
c. There is an integer b such that (-<7)+b6=0and b+(-7) = 0.

Let « be an arbitrary binary operation on a set S.
Generalize each of your generalizations in (13) for *.

Let R represent an arbitrary relation on a set S.

The notation xRy means x is related to y under the relation R.
"Equals" gives a relation between two numbers. Generalize
the following 3 properties of equality for the relation R.

Let x, y, and z be real numbers.

a. x=x (Reflexive Property)

b. If x=y,theny=x. (Symmetric Property)

c. fx=yandy=zg, thenx =z (Transitive Property)

Let S be a set of people. Determine if the given relation R has any
of the 3 properties that you generalized in (15).

a. aRb ifand only if a has the same birthday as b.

b. aRb ifandonlyif a lives within 1 mile of b.

c. aRb ifandonlyif a is shorter than b.
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Sentence

Statement
Compound statement
Abstract compound statement

Abstraction

Truth value

Variable

Domain

Open statement

Universal quantifier

Existential quantifier
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A letter or figure used to represent something. Phonetic
symbols, such as "plus,” give pronunciation information.
Ideographic symbols like + give a more concise representation
that is easier to manipulate.

A string or sequence of words that satisfy the language rules for
being a sentence. A well-formed sentence must have both a
subject and a verb.

A sentence that is either true or false, but not both. In formal
logic, a statement is called a proposition.

A sentence composed of statements connected with logical
operators.

A compound statement where the component statements are
represented by variables such as p and q.

The merging of concrete examples under the rubric of a
concept that expresses a property the examples have in
common. An abstraction exists as an idea with no material
existence. For example, the abstract number 3 describes a
property that various physical sets have in common, but the
number 3 has no physical existence.

Either true or false. Truth value is only used with sentences.

A letter used to represent an arbitrary element of a given set,
which is called the domain of the variable.

The set of elements that can be substituted for a variable.

A sentence with variables that is not a statement but becomes a
statement whenever substitutions are made for the variables.
An open statement can be converted to a statement by substitut-
ing for each variable or by binding each variable with a quanti-
fier, such as Vx 3y, p(x,y).

Asserts that each substitution of an element from the domain of
the variable converts an open statement into a true statement.
Vx, p(x) is true if and only if every element in the domain of x
converts p(x) into a true statement.

Asserts that at least one substitution of an element from the
domain of the variable converts an open statement into a true
statement. 3x, p(x) is true if and only if there exists at least one
x in the domain of x such that p(x) is true.
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Logical operators

Negation
Conjunction
Disjunction

Exclusive or

Implication

Contrapositive

Converse

Equivalence

Translation

Substitution principle

Binary

Connectives used to form a compound sentence from given
component sentences: and, or, implies, is equivalent to, and
negation,

A logical operator that reverses the truth value of a statement.
The negation of p is true if and only if p is false.

A compound statement of the form: p and q. For an
and-statement to be true, both parts must be true.

A compound statement of the form: p or g. For an or-statement
to be true, at least one part must be true, but both could be true.

A logical operator that joins two statements with the exclusive
or. p XOR q. This compound statement is true only when one
statement is true and the other one false.

A compound statement of the form: p implies q. p is called the
hypothesis or premise and gq is called the conclusion. The only
case in which an implication is false is when the hypothesis is
true and the conclusion is false. To say that p = g is true means
that if p is true, then g must be true.

The contrapositive of p= g is ~¢= ~p. The contrapositive
has the same meaning as the original implication.

The converse of p=q is g=>p.

A compound statement of the form: p is equivalent to q. For an
equivalence to be true, either both parts are true or both parts
are false. If two abstract compound statements composed of
the same component statements are equivalent, they have the

same meaning and can be used interchangeably.

The process of converting words, thoughts or ideas from one
form, language, or medium to another. Mathematical reasoning
involves a continual translation, back and forth, from everyday
language to pictures and symbolic representations.

In a sentence with a variable, another letter or legitimate ex-
pression may be substituted for a universally quantified
variable as long as all occurrences of the variable are replaced
by the same substitution. Similar substitutions can be made for
an existentially quantified variable if none of the substituted
letters are used with other variables.

Refers to two. A binary operation, such as + or U, operates on
two elements in a set and produces a new element in the set. A
binary relation, such as £ or &, gives a relation between two
elements. A binary decimal system has a base of two.



Binary operation

Natural numbers

Integers

Rational number

Real number

Irrational number

Complex number

Logic

Law of logic

Frequently used equivalences
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* is a binary operation on a set S if and only if for all a and b
in S, a* b is defined and a* be §.

1,2,3,4,5,6,...
...-3,-2,-1,0,1,2,3,...

A number that can be represented in the form %, where p and g
are integers with g # 0.

A number that can be represented as a decimal with a finite or
infinite number of places. The visual picture of the real
numbers is the points on a number line.

A real number that is not rational.

A number that can be represented in the form x + yi where x and
y are real numbers and i = /=1 . The visual picture of the
complex numbers is the points in a plane, where x + yi is identi-
fied with the point (x, y).

A formal study of the art of reasoning and the principles for
making valid deductions.
An abstract compound statement that is always true, regardless

of the truth values of its component statements. A law of logic
is also called a tautology.

pandg < gandp ............ Commutative
porg < qgorp
(p=q) & (g=p)
(pandg)andr < pand(gandr) ...... Associative
(porq)orr < por(gorr)
pand{(gorr) < (pandgq)or(pandr) . Distributive
por(gandr) < (por g)and(porr)
Pq S ~@=>~p ..., Contrapositive
porq < ~p=q .......... Rephrasing Or
(p=q) < (p=q)and(q=p) . Rephrasing<=
~(pandg) & ~por~q ............. Negations

~(porg) < ~pand~gq
~(p=q) < pand~q
~(Vx,p(x)) & Ix,~plx) ........... Quantifiers
~(3x, p(x)) < Vx,~p(x)
Vx, p(x) and g(x) < Vx, p(x) and Vx, g(x)
3x, p(x) or g(x) < 3x, p(x) or 3x, g(x)
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Chapter Review

1.

10.

Why is symbolic notation often used in logical reasoning?
Why use "+" instead of "plus?" What is a symbol?

. What is a compound sentence?

What is an abstract compound sentence?

. What is the difference between a statement and an open statement?

Is every sentence that has a variable an open statement?
If not, why not?

. You should be able to do the following:

a. Determine if two compound sentences composed of the same
component sentences are logically equivalent.

b. Write the negation of a given sentence, simplifying as much as
possible.

c. Identify different forms in which implications and equiva-
lences are written in everyday language.

d. Use substitution to translate a definition.

Explain the following so that your friends would understand it:
a. How to negate a quantified sentence.

b. How to negate a compound sentence.

¢. Why the truth values for an implication are defined that way.

. Given two different compound sentences that are formed from the

same component sentences, what does it mean to say that they
have the same meaning? What do cases have to do with the
meaning? Why do equivalent statements have the same meaning?

Why does the contrapositive of an implication have the same
meaning as the implication, but the converse does not?

What is a law of logic? Give examples of laws of logic that
are equivalences and examples that are not equivalences.

You shouid know how to rewrite an or-sentence as an implication.
a. For every integer x, x is even or x is odd.
b. xisin DorxisinE.

You should be able to write the contrapositive of an implication.
a. If x€A, then x€B.

a0 el
b. If .Zla,. converges and ,Elb,. converges,
= =

=2}
then '21(0" +b,) converges.
i=
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11. If p is equivalent to g, is ~p equivalent to ~g?

12. Negate each sentence. Do not leave a negation as a prefix for a
compound sentence.

a.
. Ifx¢B, then x¢A.

™o oo o

If x€A, then x€B.

x¢A orxeB.

. There exists an x such that x€A and x€B.

For all real numbers ¢ and 4, if c<d, then f(c) < f(d).

For every ¢, there exists a ¢ such that for every x, |x—1|<d
implies that | f(x)- f(1)| < €.

. For every function f defined on the interval [0,1] and for every

number ¢ between f(0) and f(1), there exists an x in the inter-
val (0,1) such that f(x) = c.

. For every function fand all real numbers a and b, there exists

b)—
a real number ¢ between a and b such that f'(c) = O -f@ Z_{z @ .

13. For each definition, write what it means to not have the given
property. For example, in part (a), translate the following:

x is not even if and only if .

Definition: x is even if and only if there exists an integer n
such that x = 2n.

. Definition: x is rational if and only if there exist integers p

and g with ¢#0 such that x = %‘

Definition: Let a and b be integers. a divides b if and only if
there exists an integer & such that b = ka.

. Definition: xeAUB if and only if x€ A or x€ B.

Definition: x€e ANB if and only if x€A and x€B.
Definition: ACB if and only for every x, if x€A, then x€B.

. Definition: A =B if and only for every x, if x€A, then x€B,

and if x€ B, then x€A.

. Definition: ACB if and only ACB and A#B.

Definition: The set S has a largest element if and only if there
exists an m in S such that for every xin S, x <m.

Definition: fis a function if and only if for every a and b in the
domain of f, if a = b, then f(a) = f(b).

. Definition: fis a one-to-one function if and only if for all a

and bin the domain of f, if a #b, then f(a) # f(b).
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1. Definition: fmaps X into Y if and only if for every x in X,
f(x)isin Y.

m. Definition: Let fmap X into Y. fmaps X onto Y if and only if
for every y in Y, there exists an x in X such that
fx)=y.

n. Definition: y€ f(A) if and only if there exists an x in A
such that f(x) = y.

o. Definition: The function fis increasing on [a,b] if and only if
for every c and d in [a, ], if ¢ < d, then f(c) < f(d).

p. Definition: The function fis continuous at a if and only if
for every positive ¢, there exists a positive d such
that for every x, if |x —a|< d, then | f(x) - f(a)|< &.

14. Translate each sentence by substituting in definitions from the
previous exercise, one step at a time.

a. xeAUBNO)

b. xe AUB)NC

c. y€ (CND)

d. ye f(O)N D)

e. ye f(CUD)

f. ye (OU f(D)

15. Translate each sentence using definitions from (13).

a. x*iseven,

b. a+biseven.

c. h maps Y onto X.

d. gofmaps X onto Z.

e. x€g(0)

16. Do the given pair of sentences have the same meaning?
If not, give an example of sets A and B where they have
different truth values.

a. Forevery x, x€A and x€ B.
For every x, x€ A and for every x, x€B.

b. There exists an x such that x€ A and x€ B.
There exists an x such that x€ A and there exists an x
such that x€B.

c. Forevery x,x€A orx€B.
For every x, x€A or for every x, x€B.

d. There exists an x such that x€A orx€B.
There exists an x such that x€ A or there exist an x
such that x€ B.
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17. You should be able to do the following:

a.
b.
c.

Draw a logic circuit of a given logical expression.
Find a logical expression for a given logic circuit.

Given the output values of a combinatorial circuit (or truth
table), find a logical expression that has the same output
values.

. Use laws of logic to simplify a given circuit (or logical expres-

sion) so that fewer gates are needed.

18. You should be able to translate sentences, such as the following, in
terms of variables, quantifiers and logical operators.

a.
. These two sets have some elements in common.

o a6 o

Every element in A is an element in B.

These two sets have no elements in common.

. x€A whenever x€B.
. There is a unique x such that xe ANB.
f.

There is a unique x such that p(x) is true.

19. Using variables and quantifiers, verbalize a precise definition for
familiar concepts such as the following.

a.
b.
c.

n is even. d. mis a multiple of n.
n is odd. e. ndivides m.
nis a factor of m. f. S has a largest element.

20. Why do we try to generalize statements?

Activity 1.7

List 3 questions of a mathematical nature that interest or intrigue you.
The questions could be about something that you've never understood,
something that you've always wondered about, or something that you
would like to know more about.
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2.2
2.3
2.4
25
2.6
2.7
2.8

Proofs & Arguments
Proving Implications
Writing a Proof

Working with Quantifiers
Using Cases

Proof by Contradiction
Mathematical Induction

Axiomatic Systems

A proof is the culminating stage of the reasoning process in
which we logically organize our reasoning into a written form
that can be followed by others. As in any writing process, the
first stage is to find something interesting to write about. A
good essay depends on having a good thesis statement;
similarly, a good proof depends on having a good theorem.
Finding an interesting theorem to prove that no one else has
thought of is a challenging and exhilarating part of the reason-
ing process that requires a lot of thoughtful prospecting. Since
intellectuals have been pursuing this creative quest for over
2500 years, one might be tempted to think that everything there
is to prove has already been proven. However, in any human
endeavor that involves the creative spirit, the topics are never
exhausted. In fact, more new theorems have been discovered
in the past thirty years than in all previous history.

As with prospectors for gold, the theorem-seekers usually
try to find a fertile vein of contemplation that has not yet been
heavily mined. A new vein may be discovered by making up
definitions to generalize properties of specific examples. By
analyzing and comparing various examples, one may see clues
for a possible theorem. When we find a possible theorem, we
may intuitively know that it is true, but at this stage we can
only call it a conjecture. Before we can label it a theorem, we
must prove it using deductive reasoning.
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Techniques for writing proofs can be learned by using
templates and studying proofs that others have written, but the
ability to construct a proof requires a deeper level of intellec-
tual maturity than merely following an established procedure.
To construct a proof, one must explore and question, find the
inner structure of the situation, analyze the various parts, and
then use logical reasoning to put the different pieces together
and create a proof. The sparks that flash during this creative
process strengthen our powers of reasoning. Building a bridge
is not the same as walking across a bridge that someone else
has built; similarly, reading proofs that others have constructed
does not have the same developmental effect as creating a
proof yourself. This chapter covers the basic techniques for
constructing a proof and provides exercises to help you develop
your skill in using deductive reasoning and writing your
reasoning in a well-formed argument.

Activity 2.1

Is the given argument valid? If so, explain why. If not, draw a sketch
of circular sets A and B that shows the argument is not valid.

1.

xisinA.

Therefore, xis in A or xis in B.

5. xisin A or xisin B.
Therefore, x is in A.

. If xisin A, then x is in B.

xisin A.
Therefore, x is in B.

. If xisin A, then x is in B.

xisin B.
Therefore, x is in A.

. Ifxisin A, then xis in B,

If xisin B, then x is in C.

So, if xisin A, then xis in C.

If xisin A, then x is in B.
xisnotinA.
Therefore, x is not in B.

If xis in A, then x is in B.
xisnotin B.
Therefore, x is not in A.

xisin A or x is in B.
xisin notin A.
Therefore, x is in B.
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=2.1 Proofs & Arguments =

Thus, logic and intuition have
each there necessary role . . .
Logic, which alone can give us
certainty, is the instrument of
demonstration; intuition is the
instrument of invention,

H. Poincaré
1854-1912

Since the eatly Greeks, to
speak of mathematics has
been to speak of 'proof.’

Bourbaki

Most sentences that we accept as true come from one of the
following sources:

*  We are told by someone that we believe.
*  We are convinced by our own feelings.

*  We are convinced by a valid argument.

Experience and intuition, the primary sources for building
individual beliefs, give us guidance for what we choose to
believe from the first and second sources. The first source is
being used when we accept a mathematical formula as true
because a teacher told us or perhaps we saw it printed in a
textbook. Most students believe the formulas given them and
are happy to substitute in them without ever questioning where
they came from because they have a naive faith in the source.
Mathematical discoveries are often made from the second
source; after long hours of contemplation, a mathematician may
suddenly get a "flash" that something is true. However, it is
not labeled true until it can be verified from the third source
with a valid argument.

In the opening statement of their highly acclaimed series on
mathematics, the famous group of French mathematicians
known as Bourbaki state the great importance of proofs.
Mathematics is based on proofs. Unfortunately, though, proofs
often have a bad reputation with students. Some students even
go so far as to express the sentiment that they like mathematics
but they don't like to do proofs. This type of attitude indicates
that the student may not yet have had the opportunity to experi-
ence the challenge and excitement inherent in the intellectual
process of constructing proofs. Indeed, this intellectual pursuit
is more intriguing to some people than the most riveting court-
room drama on the big silver screen.

Let's compare a lawyer's proof with a mathematical proof.
Both are arguments that convince the target audience, explain-
ing why the claim is true. A lawyer has proved his case if he
convinces the jury; however, in legal proofs, subjectivity is
often involved. Upon appeal, the next jury may have a different
opinion.

In contrast, the rules for a mathematical proof are
constructed so that any jury of rational thinkers will always
give the same verdict when asked to pass judgment on a
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proposed mathematical proof. Two rational thinkers may not
Pythagorean Theorem agree on a theory in psychology, art, history, sociology, or

500 B.C.E. physics, but they always agree on a theorem in mathematics
because it has a proof to back it up. The great power of mathe-
matics is that theorems have a 100% guarantee within the

If a, b and ¢ represent the

lengths of the sides of a right framework of the system in which they were proved. We still
triangle with ¢ representing use mathematical theorems proved by the ancient Greeks over
the hypotenuse, then two thousand years ago, whereas their theories of science have

E=a?+bt long since been discarded. As you can well imagine, this type

of staying power requires very careful attention to the discourse
used in a proof.

Sentences When addressing a jury, a lawyer speaks in complete sentences
because complete sentences are necessary to communicate
complete thoughts. For the same reason, we only use complete
sentences in a mathematical proof. Since proofs often contain a
multitude of symbols, we must keep in mind that the symbols
represent words which must form sentences. For example, the
expression ACB is a sentence, but AUB is not.

Proof A proof is a list of sentences where each sentence comes from
one of the following three categories:

¢ Sentences that we assume are true.

Proof: * Sentences that we already know are true.

Sentence * Sentences that we derive from previous lines.

Sentence Usually we write a proof in an informal style, including reasons

to help the reader see how we derive a statement from previous
Sentence lines in the proof. Sometimes we supply extra discourse when
we remind the reader of what we already know. Since the goal
of a proof is to convince other people that a certain statement is
true, we should write our proofs in a style that is easy for others
to foliow.

Theorems A theorem is a statement that has been proved. The formal
definition of a theorem is the last line of a proof, which means
that it follows from the previous lines. Sometimes, though,
authors do not restate the complete theorem at the end since it is
usually stated at the beginning as the heading of the proof.

A statement is never labeled as a theorem unless someone
has constructed a legitimate proof for it. If we think that a
statement is true, but no one has yet proved it, we call the state-
ment a conjecture.



Playing the Game

Finding Theorems to Prove

The mathematician at work
makes vague guesses, visualizes
broad generalizations, and jumps
to unwarranted conclusions. He
arranges and rearranges his ideas,
and he becomes convinced of
their truth long before he can
write down a logical proof.

Paul Halmos
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The first person to construct a proof for an important theorem
achieves a lasting fame by forever having their name associated
with it, unlike the fleeting fame of an athlete who recedes into
the background when his world record is surpassed. Even
though Michael Jordan enjoys world recognition today, it is
fairly safe to predict that his fame will not have the longevity of
Pythagoras who lived over two thousand years ago in a small
Greek village and whose name is still known to most every
student of high school age. In the next exercise, when we try to
prove the Pythagorean Theorem, we may wonder if we too
might not have been able to be the originator of such a clever
proof. When that happens, we will understand the excitement
of doing mathematics and why some consider it as the most
sophisticated game in town.

As we examine strategies and rules for being a player in this
game, please keep in mind that knowing the rules is essential,
but as in basketball, knowing the rules is not enough to make
one a good player. We must practice with as much interest and
intensity as athletes do in their attempt to become excellent
athletes. Most mathematicians, as do most athletes, play for the
love of the game. A few become superstars who ask questions
and find answers which have a major impact on the course of
future knowledge, and their names will be remembered for
centuries.

The challenge in playing the game of mathematics involves
both of the following.

* Finding possible theorems.

»  Constructing proofs for theorems.

Before we can write a proof, we must have something to prove.
Finding interesting statements to prove requires a great deal of
detective work. The most fertile grounds are in areas that
interest us, areas that we are curious about, and especially areas
that we have a burning desire to know about. That desire will
motivate us to investigate, analyze and sift through a wide
range of examples looking for clues to patterns that may be
hidden beneath the surface. When we find a pattern that works
for our examples, the next task is to try to prove that the pattern
holds for a more general class of examples.

Through experimentation, the ancient Babylonians discov-
ered an amazing pattern in the relation between the sides of a
right triangle: ¢? = a*+b%. Pythagoras may have spent countless
hours contemplating how to prove this result that the Babyloni-
ans had discovered 15 centuries before; he may finally have
seen the solution in a brilliant flash of insight as he watched the
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Inductive Reasoning

&dqdv

pillars in a magnificent temple cast its shadow across a square
tiled floor (see adjacent illustration). But regardless of how
the proof was actually discovered, we can be assured that the
discoverer had an epiphany of great magnitude, for it is rather
spectacular to see how the human mind can explain why we
have this beautiful relationship between quantitative numbers
and geometric triangles.

We find possible theorems to prove through either our own
creative observations and experimentation, or we latch onto a
discovery that someone else has made, as did Pythagoras, and
we then try to prove it.

We frequently draw conclusions based on our experiences.
Seeing that the sun rises every morning, we infer that it will
always rise in the morning. This type of reasoning, when we
discover a general relation from specific examples or
experiences, is called inductive reasoning. Through inductive
reasoning, the Babylonians discovered the Pythagorean
Theorem. Inductive reasoning is the basis for the scientific
method. The scientist looks at experimental data and tries to
make a generalization which will fit the evidence supplied by
the data. The validity of the generalization is then based solely
on its accuracy in making predictions.

Inductive reasoning is an extremely important part of the
reasoning process, but we must be aware of its limitations.
First of all, most experimental data depends on some type of
measurement, and any measurement such as length, weight, or
speed must by necessity be an approximation. We cannot
distinguish between 5 and 5.00001 on a yardstick, and even
with hi-tech measuring devices that capture microscopic detail,
some error is always present. If we measure the sides of a right
triangle to be 3, 4, and 5 centimeters, the observed evidence
shows that ¢ = a*+b% But if the hypotenuse measured 5.00001
instead of 5, then our formula changes to ¢? = @+ b*. Granted,
we may think these two numbers are very close, but closeness
is relative to how much we have zoomed in on the situation.
From a human perspective, there is quite a bit of difference
between $ light years and 5.00001 light years.

The second cause for concern is that the inductive method
carries no guarantees. Just because Santa Claus has visited us
every year for 18 years is no guarantee that he will visit us next
year. Similarly, just because we measure 18 million right trian-
gles and obtain a certain relation between the measurements is
no guarantee that the same relation will appear with the next
triangle that we measure.
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Deductive Reasoning

Structure of a Proof
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Perhaps the greatest shortcoming of the inductive process,
is that it does not shed any light on why something is true. The
human need to understand why things happen has fueled the
quest for knowledge. Anyone can see that the sun rises every
morning, but why does the sun rise? Is there something else
happening that makes the sun rise? Similarly, we can measure
the sides of a right triangle and see that ¢* = a* + b?, but why
does this happen? In the adjacent illustration, why is it that we
can cut up the two squares along sides a and b, which repre-
sent a* and b?, and fill up the square along the c-side? Induc-
tive reasoning cannot produce answers to this type of question.

The search for answers to why-questions is an exciting mind
sport that, unlike athletic sports, gives us deep insights that help
us understand the universe in which we live. The tool that we
use in this quest is called deductive reasoning. Deductive
reasoning is the type of reasoning we use when we derive a
conclusion from other sentences that we accept as true. With
deductive reasoning, we show why one thing follows from
another through the use of valid arguments. When the ancient
Greeks developed the method of deductive reasoning in the 6th
century B.C.E., they forever changed the course of human
knowledge, elevating it to a higher plane where we can use the
power of our mind to figure out why things happen.

We use inductive reasoning to find patterns, and then we
use deductive reasoning to explain why those patterns happen.
Using inductive reasoning, we look at examples with an x-ray
vision, searching for patterns in the structure, patterns that may
not be apparent on the surface. When we finally see a potential
theorem, we then use deductive reasoning to prove that the
theorem is true, or at least that it follows from sentences that
we consider to be true.

The persuasiveness of a lawyer's argument may depend on
its oral delivery, whereas the validity of a proof depends solely
on its written form, which does not tarnish with age. Two
thousand years in the future there may be people still admiring
some of the proofs written in this century, as we still admire
those of Pythagoras, Euclid, and other great thinkers in ancient
Greece. When one is working in a pure art form like mathe-
matics, the thought products do not get as easily dated as in
other disciplines.

The structure of a proof is similar to that of a good essay; it
must have an introduction, a body, and a conclusion, which is
the theorem that we want to prove. To begin the process of
constructing a proof, we can structure our work by starting at
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Proof

Introduction

Conclusion

The Introduction

Theorem: For every real
number x, if x > 1, then x*> 1.

Proof: Let x be a real number.
Assume that x> 1.

Hence, 2> 1.
Therefore, if x> 1, then 2> 1,

the bottom, leaving a large blank area in the middle for the
steps that we will fill in later:

1. First, we write the conclusion, which is the theorem that we
want to prove, at the bottom of the page. By writing the
conclusion first, we are setting our goal, which has a
distinct psychological advantage. By placing our goal at
the bottom of the page, we have structured our writing
space in the proper direction; we must work down to that
conclusion.  Furthermore, since the introduction depends
on what we have in our conclusion, we must be focused on
the conclusion when we write the introduction.

2. Next we write the introduction at the top of our work space.

3. Finally, we start work on constructing the body of our
proof.

This writing format keeps us focused on what we need to do in
the body of our proof to build logical steps from the introduc-
tion down to the conclusion.

In the introduction of a proof, we introduce the reader to the
variables that we will use and state any assumptions that we
need to make. We must always introduce variables before we
use them. If the theorem contains a universal quantifier for x,
we usually start by saying, "let x be a ," as illustrated in
the adjacent example. The first line can be phrased in other
ways, such as "let x be an arbitrary real number" or “assume
that x is a real number."

The assumptions that we make in the beginning of a proof
set up the outside structure for the type of proof that we will
present. If we decide later to try a different method of proof,
we will need to change our assumptions. The assumption in
the second line of the adjacent proof sets up the structure for a
direct proof of the implication. Sometimes, though, we make a
different assumption and construct an indirect proof, which we
will discuss on page 135. Since there are different assumptions
we can make to prove an implication, we must always clearly
state our assumptions so that the reader will know which
method we are using. Instead of the word "assume,” we can
use other words like "suppose” to indicate an assumption, but
we must indicate that it is an assumption. We cannot just write
“x>1" in the adjacent proof.




The Body

The Conclusion
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Whenever we make an assumption in a proof, we should
check our grammar to make sure that we have a legitimate
sentencé. For example, students sometimes write the following
incorrect assumption, which has no meaning.

Assume AUB.

When we make an assumption, we assume that a sentence is
true. We cannot assume that the set AU B is true for AUB is
not a sentence. We could, though, make either of the following
assumptions:

Assume x € AUB.

Assume AUB = C.

The body of a proof forms a bridge that connects the beginning
with the end. Even though we are building a one-way bridge
from the beginning to the end, we usually work backwards
from the end as far as possible so that we can see how to
structure the beginning of the proof. We will discuss this
process in more detail in Section 2.3. As we construct the body
of the proof, we can build on what we already know, using
previously proved theorems and definitions. Since a proof
involves the meaning of words, we usually need to invoke
definitions. To prove a statement about A U B, we will have to
either use the definition of the union of two sets or cite a
previous theorem about the union of two sets.

The conclusion is analogous to a thesis sentence, which is
usually introduced in the beginning of a good essay and then
stated again at the end. Similarly, we state the theorem that we
are going to prove, make the preliminary introductions, give the
evidence that supports our claim, and then state the conclusion
again at the end.

We usually preface a conclusion with a transition word,
such as "therefore,” "hence," "thus," or "so," as a signpost to let
the reader know that it follows from previous sentences. "So"
may sound a littler weaker than the others, but it does suggest
the metaphor of sewing thoughts together. Some textbooks
signal the end of a proof with Q.E.D., an abbreviation for quod
erat demonstrandum, a Latin phrase that means "which was to
be demonstrated.”

The introduction and conclusion set up the outer structure
of a proof. The body of a proof sets up an inner structure
where we derive the conclusion through valid arguments. We
will now examine how to argue in a genteel, logical manner.
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Valid Arguments

An argument is vakd if
the conclusion follows
from the hypotheses.

4 Example

ARGUMENT

potg
~p
Therefore, q.

In personal relationships, arguments have a rather negative
connotation, but in mathematics a good argument is something
to be desired. For the creator of the argument, it is a sign of
great mental prowess. For the reader of the argument, it
provides a stimulating exercise for the mind which the reader
may be able to use in some other type of situation.

An argument is a list of sentences called hypotheses
followed by a sentence called the conclusion, which we usually
flag with a transition word such as "therefore," "thus," "hence,"
or "so." These transition words indicate that the appended
sentence follows from the previous sentences, which is the
definition of a valid argument. In a valid argument, we
logically deduce the conclusion from the sentences that precede
it. If each hypothesis were true, then the conclusion would
have to be true.

Valid arguments are sometimes called deductive arguments,
for deductive reasoning is based on drawing conclusions from
valid arguments (page 115). When we use inductive reasoning,
we base our conclusion on experiments or experiences, in
which case we are betting on the odds that similar things will
continue to happen. With deductive reasoning, we isolate
where the probability lies ~ with our hypotheses, not with our
conclusion. If our hypotheses are true in a valid argument, we
can be 100% assured that our conclusion is true, at least within
the framework of the system in which we are making our
deductions.

Is the adjacent argument valid?

To see if an argument is valid, we first assume that both
hypotheses are true.

Assume that p or g is true.
Assume that ~p is true.

Do these assumptions force the conclusion to be true?

Since ~p is true, p is false.
Since p or q is true and p is false, g must be true.

If the hypotheses are true, the conclusion must also be true.
So this argument is valid.




ARGUMENT

b
h,
Thetefore, c.

Lethy, by, . . ., ha represent
the hypotheses of an argu-
ment and c represent the
conclusion. The argument
is valid if and only if the
following implication is 2
law of logic:

(h]/\hz/\h_‘)/\ e /\hn) =cC

Structure vs. Content

4 Example

ARGUMENT

porg
~p
Therefore, q.
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To show that the previous argument is valid, we demonstrated
that the following implication is true:

[porg)and ~p] = ¢

If we let h, and h, represent the hypotheses and ¢ the conclu-
sion, we can represent this argument as illustrated in the
adjacent template. The above implication can be translated as:

(hl and hz) =>cC

An argument of the adjacent form is valid if and only if the
above implication is true.

If we have more than two hypotheses from which we wish
to draw a conclusion, we can generalize further by representing
the hypotheses with a sequence of letters:

hy,hy, by, ..., ¢

This new argument, which has n different hypotheses, will be
valid if and only if the following implication is true:

(mand h; and h; and ... and h,) = ¢

When we say a conclusion "follows from" the hypotheses, we
mean that the above implication is true. In other words, if each
hypothesis is true, the conclusion must also be true. The
formal definition of a valid argument is given on the left.

The validity of an argument is determined completely by the
structure of the argument rather than the content of the com-
ponent sentences. To determine if the following argument is
valid, we do not consider whether “x is in A” or “x is in B;” we
only consider the structure of the argument.

Is the following argument valid?

Argument. xisinA orxisin B.
xisnotin A,
Therefore, x is in B.

To see the structure of the argument, let p represent "x is in A"
and q represent "x is in B," as illustrated on the left. Since its
structure is the same as in the previous example on the facing
page, this argument is valid.
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Truth vs. Validity

4 Example

ARGUMENT

porg
~P
Therefore, g.

ARGUMENT

porq
p
Therefore, g.

Using Logical Operators

The validity of an argument does not guarantee that the
conclusion is true; it only guarantees that the conclusion follows
from the hypotheses. To deduce that the conclusion is true, we
must also know that the hypotheses are true.

Determine whether or not the given argument is valid.

1.

2.

Argument: 1+1=3 or 2+2 =5.
1+1%3
Therefore, 242 = 5.

Since the argument has the adjacent structure, it is a valid
argument.

This argument is an example of a valid argument with a
false conclusion. Note, however, that the first hypothesis
of the argument is false. If both hypotheses were true, the
conclusion would have to be true.

Argument: 1+1=2 or 242=4.
1+1=2
Therefore, 2+2 = 4.

The structure of this argument is given on the left. If we
assume that both hypotheses are true, it does not force the
conclusion to be true. So this argument is not valid.

This argument is an example of an invalid argument with a
true conclusion. If an argument is not valid, it does not
mean that the conclusion is false; it only means that the
conclusion does not follow from the hypotheses.

When we make deductions, the outside structure of our
reasoning process is based on the logical operators and
quantifiers. We must be very comfortable with the meaning of
these terms in order to have the fluency of language that is
necessary to work through the steps of a proof. In addition to
having a personal understanding of their definitions, we also
need to have their equivalent formulations in the top drawer of
our memory file. If we're still bothered by the fact that ~q = ~p
has the same meaning as p=> ¢, we should go back to Chapter 1
and work on understanding why this is true. As in any sport,
we need to master the rules before we can play the game.



If you are present at a game of
chess, it will not suffice, for the
understanding of the game, to
know the rules for moving the
pieces. ... To understand the
game is a wholly different
matter; it is to know why the
player moves this piece rather
than the other.

H. Poincaré
1854-1912

Deductions from an Implication

EQUIVALENCES

P=q
Therefore, ~g = ~p.
Therefore, ~p or g.

Law oF DETACHMENT

p=q
P
Therefore, q.

A Negative Perspective

CONTRAPOSITION

P=4q
~q
Therefore, ~p.
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Chapter 1 contains all the rules that we need to know to play
the ultimate mind-sport. Of course, as Poincaré reminds us in
the adjacent quote, the game involves far more than the rules.

In football, you have to know how to throw the ball, how to
catch the ball, and how to run with it. Fortunately, we will not
have a field of moving obstacles trying to tackle us, but we will
have to find a path to get us where we want to go. In the
remainder of this section, we will work on throwing the ball
and catching the ball. In the succeeding sections, we will
practice running with the ball. Like throwing and catching, we
need basic techniques for two types of deductions:

*  How to derive a compound sentence
* How to make a deduction from a compound sentence.

We will first look at deductions that involve implications.

When we have an implication in a proof, either in the beginning
or in the middle, what can we deduce? From a single
implication, we can deduce its equivalent formulations. If we
know p = g is true, we can deduce that ~¢ = ~p is true and we
can also deduce that ~p or ¢q is true. When we have other
information, we may be able to make further deductions.

If we know that p = ¢ is true and we also know that p is
true, we can deduce that ¢ is true. This deduction comes
straight from the definition of implies. If an implication is true
and its hypothesis is true, then its conclusion must be true.
Logicians call this form of argument modus ponens, a Latin
term for "method of assertion." It is also called the Law of
Detachment because we detach the hypothesis from the impli-
cation.

The Law of Detachment is very straightforward and easy to
remember. Most students use this rule correctly; it's the next
rule that may cause some confusion.

Negations always add a layer of complexity to a reasoning task.
The brain needs more processing time to interpret the same
sentence phrased in a negative perspective, so we may need to
spend a little more time in thinking through the validity of the
following argument.

The only case in which p = ¢ is false is when p is true and g
is false. If we know that p = ¢ is true and we also know that ¢
is false, then p has to be false. Logicians call this form of
argument modus tollens, which is Latin for "method of denial.”
Being in a state of denial is not very fashionable in our
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CONTRAPOSITION

~q="~p
~q
Thetefore, ~p.

4 Example

rp=q
P
Therefore, g.

Pp=q
~q
Therefore, ~p.

Deriving an Implication

positive-thinking society, so we will call it the Law of
Contraposition. We can view the structure of this argument as
the Law of Detachment applied to the contrapositive. If we
replace the implication p = ¢ with its contrapositive ~q = ~p, as
illustrated in the adjacent box, the argument has the form of the
Law of Detachment. If an implication is true and its hypothesis
is true, then its conclusion must be true.

Determine if the given argument is valid.

1. Argument. If xis notin B, then x is not in A.
xisnotin B.
Therefore, x is not in A.

When we analyze the structure of an argument, we may
sometimes want to hide a negation inside a component
sentence, as we do in the following substitutions:

p:xisnotin B. gq:xis notinA.

These substitutions reveal the adjacent structure, which is
the Law of Detachment. So, the argument is valid.

2. Argument. If xisin A, then x is in B.
x is not in B.
Therefore, x is not in A.

Let p and g represent the following sentence:
p:xisinA. q:xisinB.

With these substitutions, the argument has the same
structure as the Law of Contraposition, so it is a valid
argument. If we want to avoid the Law of Contraposition,
we can replace the implication with its contrapositive. We
then have the same argument as in the first example.

In the previous discussion, we examined how we can proceed
when we have an implication in the beginning or in the middle
of an argument, which is analogous to throwing the ball. Now
we will learn techniques for catching the ball. How do we
structure an argument that ends with an implication? From this
perspective, we know what we want to derive, but how do we
set it up?



Direct Proor

Assume p. '

So, g.
Therefore, p=gq.

Argument 1
Assume that x€A.

So,x€B.
Hence, if x€A, then x€B.

Argument 2
XEA

So,x€B.
Hence,x€A and x€B.

Another Method

ProoF BY CONTRAPOSITION

Assume ~q.

Hence, ~p.
So, ~g = ~p.
Therefore, p = q.
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One way to set up the proof of an implication is to assume
that the hypothesis is true and then derive that the conclusion
must be true. We can then assert that the implication is true.
This type of proof is called a direct proof because it is a very
direct method. However, we must be careful to track the
assumptions and derivations, distinguishing between those that
are stand-alone derivations and those that depend on the
assumption.

The assumption in a direct proof must be clearly marked
with a word like "assume” or "let."” When we write a sentence
without the "assume" preface, we mean that it stands on its own
as a true sentence. If we know that p is true and we use p to
derive that g is true, we would summarize our results by saying
the much stronger statement, p and q. Notice the difference in
the conclusions of the adjacent two arguments. Whether we
say "assume x € A" or just "x € A" has no effect on how we
would derive that x € B in either Argument 1 or Argument 2,
but it does affect our final conclusion. The conclusion in
Argument 2 is an and-statement, not an implication. All
assumptions in a proof must be clearly flagged as assumptions
because they affect our final deduction.

In Argument 1, x€ B is not a stand-alone conclusion. After
we make an assumption, we may want to adjust our writing
style to help the reader navigate these subtleties. We may want
to indent the dependent lines to indicate that the indented
deduction is hanging on the coattail of that assumption, or we
may want to reserve the bombastic "therefore" for our big
stand-alone conclusion and use the milder "so" or "hence" to
flag deductions that are dependent on an assumption. We
should at least start a new paragraph after we have made our
final deduction from an assumption.

When we use the method of a direct proof to derive an
implication, we sometimes run into a brick wall as we try to
connect the beginning with the end. As we will see in the
following sections, some implications are much easier to prove
when they are stated in terms of the contrapositive, which gives
us another method for proving an implication. This method can
be considered as either a proof by contraposition or an indirect
proof. They both have the same structure.

In a proof by contraposition, we do a direct proof of the
contrapositive, as illustrated in the adjacent template. We do
the same thing in an indirect proof, except that we do not state
the contrapositive at the end. We may find, though, that focus-
ing on the contrapositive helps us keep this method straight.
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INDIRECT PROOF

Assume ~q.

So, ~p.
Therefore, p = q.

4 Example

The Transitive Law

TRANSITIVE LAw

p=q
q=r
Therefore,p = r.

From the definition of an implication, we know that the
only case where p = q is false is when p is true and q is false.
Both the direct proof and the indirect proof show that this case
cannot occur.

¢ In a direct proof, we assume p is true
and derive that ¢ must be true.

* In an indirect proof, we assume q is false
and derive that p is false.

Set up the outside structure of a valid argument whose
conclusion is "If x is in A, then x is in B."

We can set up the outside structure of the argument with either
a direct proof or an indirect proof.

Direct Proof: Assume that x is in A.
So, xisin B.
Therefore, if x is in A, then xis in B
Indirect Proof: Assume that x is not in B.

So, xis not in A.
Therefore, if xis in A, thenxisin B

The Transitive Law gives us a way to leave out the middle term
when we have two implications of the following form.

The first implies the second.
The second implies the third.

Using the Transitive Law, we can then deduce the following.
The first implies the third.

The validity of the Transitive Law follows from the definition
of an implication. In the adjacent template, assume that both of
the hypotheses are true. Now focus on the conclusion. If p is
false, the conclusion is automatically true. If p is true, from the
first implication, we can deduce that ¢ is true. Since we now
have that g is true, we can deduce from the second implication
that r is true. Thus, p= ris true. Consequently, the Transitive
Law is a valid argument.
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4 Example Determihe if the given argument is valid.

1. Argument. If xisin A, then xis in B.
If xis in B, then x is in C.
Therefore, if x is in A, then x is in C.

This argument has the structure of the Transitive Law.
So, it is a valid argument.

2. Argument: If xis notin A, then x is not in B.
If xis not in B, then x is in C.
Therefore, if x is not in A, then x is in C.

Because of the negations, this argument may seem more
complex than the previous argument. However, with the
following substitutions, this argument has the same
structure as the Transitive Law.

p:xisnotinA. ¢:xisnotinB rixisinC.
By the Transitive Law, this argument is valid.

3. Argument: If x is not in A, then x is not in B.
If x is not in B, then x is not in C.
Therefore, if x is in C, then x is in A.

We can view the first two sentences as p=>qgand g=r.
Using the Transitive Law, we can deduce p= r:

If xisnot in A, then x is not in C.

Translating this statement in terms of its contrapositive
gives us the above conclusion. So, this argument is valid.

Deductions from Or-Sentences What can we deduce from an or-sentence? If we know that one
of the parts of the or-sentence is false, we can then deduce that
the other part is true. The structure of this type of derivation is
illustrated in the adjacent template. If we translate p or g in its
equivalent form as ~p=> g, this argument has the same structure
as the Law of Detachment.

In a similar manner, if we know that p or g is true and we
also know that q is false, we can deduce that p is true, as illus-
trated in the following example:

DEeriviNG FRoM OR

porq
~p
Therefore, q.




126  Chapter2 Writing Our Reasoning

<4 Example Valid Argument: xisin A orxisin B.
xis notin B.
Therefore, x is in A.

Cases When we run into an or-sentence in a proof and have no
information on the truth values of the component sentences, we
usually set up the structure for a case by case argument. With

Cases cases, we take each component of the or-sentence and try to

porq find something that it implies. Suppose that we know p or q is

true. If we can derive p= r and also derive g = s, then since

p=r one of the two hypotheses must be true, we can deduce that
q=s either r or s must be true. So the adjacent argument is valid.

Therefore, r or s. A case argument has several layers, so we must be careful

to maintain the appropriate structure when we write this type of

argument. We will need a separate subproof to derive p= r

Cases and also a separate subproof to derive g = s. The adjacent

template illustrates the structure of a proof by cases. Each part

porq. of the or-sentence determines a case which we delineate with

Case 1. Assume p. "Case 1" and "Case 2." If we know that p or g is true, then for

Case 1, we assume that p is true and try to see what we can

Therefore r. derive. Note that Case 1 in the adjacent box is simply the

Case 2. Assume q. format for proving p=> r. For Case 2, we assume that g is true
. and try to see what we can derive. Since one of the two cases
Therefore s. must occur, one of the conclusions must be true. Thus, we can
Therefote, r ot s. make a general stand-alone conclusion that either the conclu-

sion from Case 1 or the conclusion from Case 2 is true. We
will discuss cases in more detail in Section 2.5.

4 Example The following argument is valid.
Argument: xisinA orxisinB.
Case 1. Assume that x is in A.
So,x<17.
Case 2. Assume that x is in B.
Sox>9.

Therefore, x<7 orx>9.




Deriving an Or-Sentence

DEeriving Or

Assume ~p.

So, q.
Therefore, p or g.

ExpANDING Or

p is true,
Therefore, p or g is true.

4 Example
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In the preceding discussion, we examined how to make a
deduction from an or-sentence. Now we will go in the reverse
procedure and figure out how to derive an or-sentence at the
end of our proof (or sub-proof).

Or-sentences seem to cause more confusion than implica-
tions, possibly because of the vagueness of or. However, the
structure of how we derive an or-sentence is quite simple. To
derive p or g, we first note that p is either true or false.

If p is true, then p or q is true.

Hence, to derive p or q, we only need to consider the case
when p is false, as illustrated in the adjacent template. With
this structure, we have also derived ~p = ¢, which is equivalent
to p or q. The basic technique for deriving an or-sentence is to
assume that one of the parts is false and then derive that the
other part is true.

Another method for deriving an or-sentence is to prove that
one of the components is true, although in most instances this
will not be possible. On the other hand, if we know a sentence
is true, we can expand it into a true or-sentence, regardless of
the truth value of the second sentence. This seems fairly
obvious; however, we may sometimes be a little timid about
adding on a sentence whose truth value we do not know. The
function of the word or, though, is to allow this type of expan-
sion. If p is true, then p or g is true regardless of the truth
value of ¢. So the adjacent argument is valid. Note that the
first sentence is a stand-alone true sentence; it is not an
assumption.

You may wonder why on earth we would ever want to take
a sentence p that we know is true and write it as an or-sentence
where we cannot be sure which part is true. Sometimes,
though, we do have a real need for this type of argument. For
example, to prove that for all sets A and B, A< AUB, we can
argue as follows:

The following argument is valid.

Argument: Assume that x is in A,
ThenxisinAorxisinB. ... Expanding Or
So,xisinAUB.
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Deductions with And-Sentences

CONTRACTING AND

pandgq
Therefore, p.

Deriving AND

So p is true.

So g is true.
Therefore, p and ¢ is true.

4 Example

If we have an and-sentence in a proof, we can break it down
and work with the sentences individually. If p and q is true,
then p must be true. Thus, the adjacent argument is valid. We
can always contract an and-sentence into either of its
component sentences. We cannot go in the other direction,
though, and expand a true sentence into a true and-sentence. If
we know that p is true, we cannot conclude that p and q is true.
And is the strongest of the logical operators. To say that "p
and q is true" is stronger than saying "p or q is true;" it is also
stronger than "p = g is true.” By a stronger sentence, we mean
one that gives us more information. When we say "p and q" is
true, we know that each component sentence is true. None of
the other logical operators give us such specific information.
Since and is stronger than the other operators, we have more
work to do when we derive an and-sentence. We must prove
that each part stands on its own without making any assump-
tions in the outside structure. In the adjacent template, please
note that there are no assumptions. We must derive that p is
true as a stand-alone deduction. If we assume p is true and
derive g, we cannot deduce p and g as a stand-alone statement.

Determine if the given argument is valid.

1. Argument. xisnotinA.
Therefore, x is not in A or x is in B.

This argument is an Expanding Or argument, so it is valid.

2. Argument. xisininA and xis not in B.
Therefore, x is not in B.

This argument is valid.

3. Argument. xisinAorxisinB.
Therefore, x is in A.

If we assume the hypothesis is true, it does not guarantee
that the conclusion is true. So, this argument is not valid.

4. Argument. xisinA.

Therefore, x i1s in A and x is in B.

If we assume the hypothesis is true, it does not guarantee
that the conclusion is true. So, this argument is not valid.




Analyzing Structure

QOutside to Inside

— Assume that p is true.

E So r1s true,
l—; So s is true.

> Hence r and s is true.

Therefore, if p, then r and s.
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In the reasoning process, we often have to analyze the structure
of a situation or the structure of an argument. When we
analyze an argument, we can see different structures, depending
on the substitution filter that we use. We may want to hide a
negation inside an abstract component sentence, or we may
want to feature the negation as a key part of the structure. We
may want to introduce more negations via the contrapositive in
order to see the structure in a different light.

When we set up the structure to prove a given statement, we
work from the outside to the inside. For example, let's examine
how to write the outside structure of a proof of the following
statement:

If p, then r and s.

The outside structure of this sentence is an implication, so we
first set up the framework for proving an implication.

Assume that p is true.

Hence r and s is true.
Therefore, if p, then r and s.

At the next level, we set up the structure to derive r and s,
which is given on the left. Inside this layer, we have two
subproofs to complete. We must derive r so that it stands on its
own within this layer. When we work on this subproof, we can
use the prior assumption that p is true.

When we structure the outside argument, we leave a space
in the middle to complete our work. Within the outside struc-
ture, we usually need other arguments. Frequently, we have
layers of valid arguments in a proof with one valid argument a
subproof of another valid argument. As we interweave the
arguments, we must keep track of the results that we derive
from an assumption so that each derivation can be summarized
in a stand-alone conclusion. It is not as complicated as it
sounds. Actually, it is what makes the process interesting,
giving it both texture and depth. As long as we keep track of
the structure of our layers, it will seem simple. In this section,
we worked with the outside structure of basic types of
arguments. In the following sections, we will work on how to
bridge the gap, creating layers of arguments and weaving them
together to create proofs.
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What Is a Proof?

I mean the word proof not in
the sense of the lawyers, who
set two half proofs equal to a
whole one, but in the sense
of the mathematician, where

'11,- proof =0
and it is demanded for proof

that every doubt becomes
impossible.

Carl Friedrich Gauss
1777-1855

Different Proofs

Finish

Start

A straight path is not
always the shortest.

Now that we have an understanding of valid arguments, we can
add more detail to our earlier description of a proof (page 112).
We build a proof by constructing valid arguments that we sew
together with logical reasoning;:

A proofis a linearly ordered structure of interwoven valid
arguments where each sentence is one of the following:

* An assumption used in a valid argument

¢ An axiom, previous theorem, or definition

* A sentence that can be derived from previous
sentences by a valid argument

The final stand-alone conclusion is the theorem that has
been proved.

A proof must adhere to the high standards described by Carl
Gauss in the adjacent quote. If we have 999 steps in a proof
that are logically correct and one little step that is not backed
up with a valid argument, the whole proof collapses.

A proof of a theorem is not unique. Starting at a given point,
there may be many different routes that we can travel to reach
the same conclusion. Most students have a tendency to seek a
straight path from the beginning to the end, but sometimes the
straight path is not the shortest. When we connect the be-
ginning of a proof with the end, a straight path may lead us up
over the top of a rugged mountain and down the other side,
when there at the bottom of the mountain may have been a
simple path around the base that led to the same conclusion.

The Pythagorean Theorem, one of the cornerstones of
mathematics, has fascinated logical thinkers for centuries, and
they have come up with over 300 different ways to prove it. Of
course, only one proof is needed to classify a statement as a
theorem. However, even though we may have a proof for a
theorem, a different type of proof may deepen our understand-
ing of why the theorem is true. A different proof may also
suggest other possible theorems or provide us with new ideas
on how to construct proofs for other theorems. As you search
for a proof, do keep in mind that there may be more than one
way to do it, and even after you find a proof, you may want to
continue to search for a simpler path or a path with a different
view of why the sentence is true.
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According to legend, a wise man used deductive reasoning to
prove to an ancient Chinese Emperor that the volume of a
sphere varies as the cube of its radius. The Emperor, not
understanding the deductive argument, ordered his servants to
bring in spheres of various sizes. He had the spheres filled with
water and compared the volume of each sphere with its radius.
At last, he was convinced of the wise man's assertion. Like the
Chinese Emperor, most people are easily convinced by the
inductive method. Deductive reasoning, on the other hand, is
not an innate faculty, but a learned skill whose rules must be
mastered in order to appreciate and understand its power. Both
types of reasoning are essential in mathematics.

Inductive reasoning depends on the ability to recognize and
describe patterns so that one can make a prediction as to what
will continue to happen. The pattern might be the relationship
between the numerical values of the volume of a sphere and its
radius, or the relationship between the lengths of the sides of a
right triangle. There are an amazing number of numerical and
geometric patterns that seem to govern nature and the mechan-
ics of the universe, so there are plenty of patterns to be discov-
ered. Having discovered a pattern, we then use our powers of
deductive reasoning to try to explain why such a pattern occurs.

The exercises in this chapter will have some inductive
challenges, but most will focus on developing your skill in
deductive reasoning. Please feel free, though, to inductively
search for patterns and relationships and then try to certify
them with the 100% guarantee that is provided by the deductive
process of reasoning.

Exercise Set 2.1

1. Determine if the given argument is valid.

a.

S o oo o

s Therefore, r and s.

s Therefore, r or s.
rors Therefore, s.
If 5, then ¢. t Therefore, s.
Ifs,thent. ~s Therefore, ~t.
Ifs,thent. ~t Therefore, ~s.
sort. ~t Therefore, s.
Assume ¢. Hence, b. Therefore, if ¢, then b.

[

Hence, b. Therefore, ¢ and b.
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2. Determine if the given argument is valid.
a. pandg. Therefore, porgq.
. p and q. Therefore, p = q.
p or q. Therefore, p=gq.
. p=gq. Therefore, ~p or g.
For every real number x, p(x) is true. Therefore, p(5) is true.
For some real number x, p(x) is true. Therefore, p(5) is true.

- o a0 o

3. Determine if the given argument is valid.
a. xisin A orxisin B. Therefore, xisin A
b. xisin A and x is in B. Therefore, x is in A.
c. xisinA. So,xisinAorxisinB.
d. xisinA. So,xisinA and xisin B.
4. Let x be a real number. Determine if the given argument is valid.
If the argument is not valid, give a counterexample.
a. If <1, thenx<1. x* «1. Therefore, x 1.
b. If ¥*<1,thenx<]. x<«1. Therefore, ¥* «1.
c. If ¥*<x, thenx<1. x* «x. Therefore, x «1.
d. If ®<x, thenx<l. x«1. Therefore, x* £ x.
5. Let x be a point in a plane. Determine if the given argument is

valid. If it is not valid, draw a sketch of circular sets and a point x
for which the hypotheses are true and the conclusion is false.

a. If xis in B, then x is in A. xis not in B.
Therefore, x is not in A.

b. If xis in B, then xis in A. If xis in A, then x is in D.
xis notin D. Therefore, x is not in A.

¢c. IfxisinC, thenxisinD. xisnotin D.
Therefore, x is not in C.

d. If xisin B, thenxisin C. If xis in C, then x is in D.
x is not in B. Therefore, x is not in D.

6. Determine if the argument is valid. Don't get nervous about any

words that you do not understand. For validity, it is only the
structure that matters.

a. If fis a differentiable function, then fis continuous.
fis not continuous. Therefore, fis not differentiable.

b. If fis a differentiable function, then fis continuous.
fis not differentiable. Therefore, fis not continuous.

c. Forall x, if | x~ 1| <4, then | f(x) - f(1)| <&.
| Ax0)-R1)| >&. Therefore, |xo—1| 29.


file:///flxo

2.1 Proofs & Arguments

7. If possible, make a valid deduction from the given information.
You may want to write some of the sentences in an equivalent

form.

a. If x€A, then x€B. e. If x€A, then x & B.
If x¢C, then x € B. XEB.

Therefore, Therefore,

b. If xeCand xeD, thenxeF. f. Ifx€A, thenxeB and x€C.
x&F. x¢BorxgC.
Therefore, Therefore,

c. If xeB, then x€A. g. IfxeDor x€E, then xeZ.
If xeA, then xe C. xXgZ.
xgC. Therefore,

Therefore,

d. xisinDorxisinE. h. If x1s in A, then x is in B.
xisnotinE. If x is in B, then x is in A.
Therefore, Therefore,

8. Make the strongest deduction possible.

a. Assume x is in C. d. xisin C.

So, xisin D. So, xisin D.
Therefore, _ Therefore,

b. Assume that x is not in C. e. xisinAorxisinC.
So, xis notin R. Assume that x is in A.
Therefore, So, xisin D.

c. Assume that x is not in C. Assume that x is in C.
So, xisinR. So,xisin E.
Therefore, Therefore,

9. a. What is an argument?

b. What is a valid argument?
c. What is a proof?
d. What is a theorem?
e. What is a conjecture?

10. a. How is the structure of a proof similar to a good essay?
b. What are the 3 types of sentences that we use in a proof?

1. Is the given expression a sentence?
a x+y d. AUB g. AcB
b. Assume x +y. e. Assume AUB. h. Assume AcC B.
c. Assumex+y =1. f. Assumex€e AUB. i. ANB

12. If an argument is valid, does the conclusion have to be true?
If not, give a counterexample.

133
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13. Let n be an integer greater than 1.
n is prime if and only if its only positive factors are » and 1.
a. Suppose that n is not a prime number. What can you deduce?
Write your deduction in terms of variables and quantifiers.
b. Suppose that » is a prime number and n=ab where a and b are
positive integers. What can you deduce about a?

c. Suppose that n is a prime number and n=ab where a and b are
integers. What can you deduce about a?

14. In this exercise, you are asked to prove one of the most important
theorems in all mathematics, the Pythagorean Theorem.

a. Draw 4 copies of the same right triangle. Label the legs as a
and b, and the hypotenuse as c. Cut out the 4 triangles and try
to arrange them so that somewhere you see ¢?. (There are
different ways to do this.)

b. Using your picture, try to derive the Pythagorean Theorem.
Expressing the same area in different ways may produce the
desired result. You may use the formulas for the area of a
square and the area of a triangle.

c. Explain why any "squares" that you used in your proof are
really squares. Comment on whether your proof is dependent
on the size and shape of the right triangle that you use.

15. See if you can find a pattern in the given data that will enable you
to predict the number of eggs on the 90th day and the number of
eggs on the nth day.

a. On the 1st day there were 2 eggs, on the 2nd day there were 4
eggs, on the 3rd day there were 6 eggs, and on the 4th day
there were 8 eggs.

b. On the 1st day there were 3 eggs, on the 2nd day there were 5
eggs, on the 3rd day there were 7 eggs, and on the 4th day
there were 9 eggs.

c. On the 1st day there were 2 eggs, on the 2nd day there were 4
eggs, on the 3rd day there were 8 eggs, and on the 4th day
there were 16 eggs.

d. On the 1st day there was 1 egg, on the 2nd day there were 3

eggs, on the 3rd day there were 7 eggs, and on the 4th day
there were 15 eggs.

16. What type of reasoning did you use in the previous exercise,
inductive reasoning or deductive reasoning?
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Activity 2.2

Let x and y be integers. Do you think the given statement is true?

(Test it with a lot of examples before you jump to any conclusions.)
If so, try to prove it. If not, give a counterexample.

1. If xis even and y is even, then x+y is even.

2. If xis odd and y is odd, then x+y is odd.
3. If x is odd, then x? is odd.
4. If x2 is even, then x is even.

Derive. 1f p, then g.

Direct Proof
Assume that p is true.

Therefore, q is true.
So, if p, then g.

Dertve: 1f p, then q.

Indirect Proof

Assume that g is false,

Therefore, p is false.
So, if ~g, then ~p.
So, if p, then g.

= 2.2 Proving Implications =

Most sentences that we try to prove are phrased in terms of an
implication. There are two methods for deriving an implication,
a direct proof and an indirect proof (page 123). The method
that we select gives us the beginning and end of the proof, as
illustrated in the adjacent templates.

With a direct proof, we assume the hypothesis is true.
With an indirect proof, we assume the conclusion is false.

An indirect proof is a direct proof of the contrapositive. If we
assume g is false, we are assuming ~q is true. When we derive
that p is false, we have derived that ~p is true, which means
that we have proved the contrapositive: ~g=>~p. We can prove
an implication by either doing a direct proof of the implication
or a direct proof of its contrapositive.

Some implications are easier to prove in their contrapositive
form, but usually we first try to do a direct proof. Let's work
through the process of constructing a direct proof of the follow-
ing theorem:

For every integer x, if x is even, then x? is even,

First, we set up the outside structure of the proof, writing our
assumptions at the beginning and stating what we want to
derive at the end, as illustrated on the next page.
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Theorem A: For every integer x,
if x is even, then x? is even.

Direct Proof
1.

w

2. Assume that x is even.
3, -
4. There exists an integer k

. Then &% is even.
. So, if x is even, then x* is even.

Let x be an integer.

such that x? = 2k,

Theorem A

Direct Proof — Outline Style

With the outside structure in place, we then work on connect-
ing the beginning with the end, with our focus always on what
we are trying to derive. We may need to rephrase it in a form
that helps us see how to structure the proof. Usually we work
backwards from the end until we have a firm grasp of what we
have to demonstrate. In the adjacent template, what do we
need in Step 4 in order to derive Step 57 To answer this
question, we substitute in the definition of even:

x?is even if and only if
there exists an integer k such that x? = 2k.

The above substitution gives us Step 4, which is written in bold
in the adjacent box to remind us that it is our focus. Our job
now is to find an integer k such that x*=2k. It is not yet appar-
ent as to where we will find £, so let's start working down from
the top and translate Step 2.

When we translate "x is even," we cannot use k again
because we used it with x%. So, we must use another letter,
such as j: x = 2j. Since we're focused on our goal of finding a
k so that x* = 2k, we know that we need to bring x* into the
picture. One way to do this is to square both sides of the above
equation. Then all we have to do is factor 2 from the right side
and we have found the k that we were looking for., The
complete proof of this theorem is given below in an outline
style.

For every integer x, if x is even, then x? is even.

1. Letx be an integer.
2. Assume that x is even.
3. There exists an integer j such that x = 2j.
So, x2=4j2=2(25.
Define k as follows: k = 2j2.
Since j is an integer, k is an integer.
Furthermore, x> = 2k
4. So, there exists an integer k such that x> = 2k.
Thus x? is even.
6. So, if x is even, then X* is even.

v

Using the above outline, we can convert the proof to the
following paragraph style.



Theorem A

Direct Proof ~ Paragraph Style

Theorem B

Attempted Direct Proof

Theorem B: Fort every integer x,
if x? is even, then x is even.

Indirect Proof

1. Let x be an integer.

2. Assume that x is not even.
3.

4.

5. So, x* is not even.
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For every integer x, if x is even, then x* is even.

Let x be an even integer. Since x is even, there exists an integer
Jj such that x = 2j. Squaring both sides, we get x> = 4. Define
k as follows: k = 2j% Since j is an integer, k is an integer.
Furthermore, ¥* = 2k. Thus, »? is even. Therefore, if x is even,
then X7 is even.

The converse of the above theorem is also a theorem, but look
what happens when we try to prove it with a direct proof.

For every integer x, if x? is even, then x is even.

1. Let x be an integer.

2. Assume that X% is even,

3. There exists an integer j such that x* = 2j.
So, x=___

4. Thus, there exists an integer & such that x = 2&k.
Hence, x is even.
5. Therefore, if &% is even, then x is even.

In Step 3, we run into a brick wall. From the equation x* = 2j,
we can deduce that x = j27 ; however, this equation does not
help us find an integer k such that x = 2k. The strategy we used
to prove Theorem A does not work here. So, let's try another
strategy and see if we can prove the contrapositive.

If x is not even, then x? is not even.

First, we set up the outside structure, as illustrated on the left.
If an integer is not even, it has to be odd, so we can work
backwards and translate Step S as follows:

4. There exists an integer k such that x* = 2k +1.

Our goal now is to find an integer k such that x* = 2k + 1.
Keeping this new goal in mind, we're ready to jump back to the
beginning and work our way down. On the next page is a
proof in outline style, followed by a proof in paragraph style.
The paragraph style is longer because we have more explana-
tion in it.
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Theorem B
Indirect Proof — Outline Style

Theorem B
Indirect Proof — Paragraph Style

Proving Equivalences

Denive: p if and only if g

p=q ...
So, if p, then q.

g=p: Conversely, ...
So, if g, then p.

Therefore, p if and only if ¢.

For every integer x, if x* is even, then x is even.

Let x be an integer.
Assume that x is not even. Then x must be odd.
So, there exists an integer j such that x =2j + 1.
=2+ 1)=4j2+4j+1
=222 +2)H+1
Define k as follows: k= 2j2+2j.
Since j is an integer, k is an integer.
Furthermore, 22 =2k + 1. So x*is odd.
Thus, &2 is not even.
We have shown that if x is not even, then »* is not even.
So, if »® is even, then x is even.

For every integer x, if 2% is even, then x is even.

Let x be an integer. Assume that x is not even. Since every
integer is either even or odd, x must be odd. So, there exists an
integer j such that x = 2j+1. Squaring both sides, we get

=@+ 17 =42 +4j+1 =222 +2j)+ 1.

Define k as follows: k = 2j% + 2j. Since products and sums of
integers are also integers, k is an integer. So there exists an
integer k such that x*> = 2k + 1, which means that »* is odd. An
odd integer cannot be even, so x? is not even. Hence, if x is not
even, then x* is not even. Therefore, if x? is even, then x is
even.

The standard technique for proving an equivalence of the form
p if and only if q is to prove the following two implications:

p=>qand g=p

The structure of this type of proof is actually that of two
separate proofs, as illustrated in the adjacent template. What
we assume in each part depends on whether we use the direct
or indirect method to prove the implication. The beginning of
the second part of the proof is usually flagged by saying
"conversely." Otherwise, the reader might be confused by the
two assumptions. Since the two parts of the proof are separate,



Theorem

Proof

p=q

q=p

Proving an Or-Sentence

Derive: p orq

Assume p is false.

So, q is true.
Therefore, p or q.
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derivations from the first assumption cannot be used in the
second part of the proof.

The following proof illustrates the structure for proving an
equivalence. Note how each part is a separate proof. In fact,
the two proofs are merely copies of the previous proofs for
Theorem A and Theorem B.

For every integer x, x is even if and only if x? is even.
Let x be an integer.

Assume that x is even. So, there exists an integer j such that

x = 2j. Squaring both sides, we get x> = 4j2. Define k as
follows: k= 2;2. Sincejis an integer, k is an integer. Further-
more, x> = 2k. Thus, x* is even. Therefore, if x is even, then x?
is even.

Assume that x is not even. Since every integer is either even
or odd, x must be odd. So, there exists an integer j such that
x =2j+1. Squaring both sides, we get

Bz +1P =42 +4j+1=2(22+2) + 1.

Define k as follows: & = 2j2 + 2j. Since products and sums of
integers are also integers, k is an integer. So there exists an
integer k such that x* = 2k + 1, which means that x*is odd. An
odd integer cannot be even, so x” is not even. Hence, if x is not
even, then »? is not even. So, if 22 is even, then x is even.

Thus, x is even if and only if x? is even.

To prove an or-sentence, we can assume that one of the parts is
false and then derive the other part (page 127). In the adjacent
template, we assume that p is false and then derive that g is
true.

When we studied the logical operators in Chapter 1, we
examined why p or g has the same meaning as ~p = g. Note
that the adjacent structure is the same as the form for proving
~p=q.

On the other hand, we could assume that g is false and then
derive that p is true. With this format, we are proving ~q = p,
which also has the same meaning as p or g. The structure of
this type of proof is illustrated in the following example.
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Theorem  For every real number x, x>4 or x<S5.

Proof  Assume that x 5.
Thenx 2 5.
Sincex>5and 5>4, x>4.
So,x<Sorx>4.

Exercise Set 2.2

1.

Set up the outside structure for a direct proof of the given
implication. Then set up the outside structure for an indirect proof
of the implication. Which do you think would be easier to prove?

a. If m and n are odd integers, then mn is odd.
b. If mn is odd, then m and n are odd integers.

¢. If ais not a factor of b + ¢, then a is not a factor of b or a is not
a factor of c.

d. If x is rational and y is rational, then x + y is rational.

Set up the outside structure for proving the given equivalence:
a. Forall x, x€A if and only if xeB

b. m and n are odd integers if and only if mn is odd.

Set up the outside structure for proving the given or-sentence.
a. Forallxin U,x€AorxeB.

b. For every integer x, x is even or x? is odd.

. Set up the outside structure for an indirect proof of the following

statement. Then set up the inside structure for deriving the
conclusion.

If x is rational and y is irrational, then x +y is irrational.

. Let x and y be arbitrary integers. Prove the following.

You may use previous results in a proof.

a. If x is even and y is even, then x+y is even.
. If x is even, then xy is even.

. If x+y is odd, then x is odd or y is odd.

. If xy is odd, then x is odd.

. If xy is even, then x is even or y is even.

o o

o Qo
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Activity 2.3

Do you think the given statement is true? Justify your answer.

1. 3 is a factor of x if and only if 3 is a factor of x%.

2. 4 is a factor of x if and only if 4 is a factor of X%,

3. 5is a factor of x if and only if 5 is a factor of x7,

= 2.3 Writing a Proof =

4 Stages in Writing a Proof

1. Analyze the structure.

2. Write the end and
beginning of the proof.

3. Connect the beginning
with the end.

4. Polish the proof.

1. Analyze the structure

Writing a proof is very different from reading a proof.
Normally we read a proof from the beginning to the end in
order to make sure that each step follows from the steps before
it. However, when we write a proof, we usually start at the end
and then work from both the end and beginning as we try to
connect the two pieces in a logical framework.

Writing a proof is a four-stage process. First, we analyze
the structure of the sentence that we want to prove in order to
see how to structure the proof. Then we write the end and
beginning of the proof. The challenging part is the third stage
when we try to connect the beginning with the end. Last, but
not least, we polish our proof until it emerges as a well-written
argument. Let's examine each of these four stages.

Before we can write a proof, we need to understand what we
are attempting to prove. We should look up the definitions of
any words or terms that we cannot verbalize. There is no way
that we can hope to prove a theorem if we cannot write the
meaning of the terms that are involved.

After we have all relevant definitions at our fingertips, we
should interpret the theorem for specific examples, which may
give us some ideas on how to attack the proof. The examples
will certainly give us a firmer footing for working with the
abstractions in a meaningful way.

We should take advantage of our powers of visual reason-
ing and try to visualize the theorem by drawing general pictures
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Introduce Variables

Theorem C
Stage 1

or pictures of specific examples. The pictures need not be
descriptive in a detailed way. As long as they give some hint
of the flavor of the theorem, they can be an invaluable
resource.

When we have a good understanding of the verbal and
visual meaning of the sentence that we want to prove, we
should then analyze its outside structure. For example, to
prove AC A U B, we must see the outside structure of this sen-
tence as ACY. We would then use the definition of subset to
set up the outside structure of our proof.

If the sentence that we want to prove has no variables in it, we
usually translate the sentence in terms of variables so that we
have something tangible to manipulate. For example, to prove
that the sum of every two even numbers is even, we would
introduce variables x and y to represent the even numbers.

We should scan the proposed theorem for hidden quantifi-
ers, such as "there is" or "any." For each quantifier that we
find, we introduce a variable, as illustrated in the following
example.

There is no largest real number.

First, notice the phrase "there is,” which is flagging the existen-
tial quantifier. We will use x to go with this quantifier. Now,
we must sort out where the negation goes. A little contempla-
tion should convince us that it goes before the quantifier:

~ (3x, x is the largest real number.)
Next, we translate "x is the largest real number":
Yy, xzy
Then we apply the rules for negating quantifiers:
~(3Ax Yy, x2y)

Vx 3y x<y
Now we translate back to word form:

For every real number x, there is a real number y such that x<y.

Now we have the theorem in a form that is easy to prove.
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2. Write the end and beginning

What could we put on
Line 4 to derive Line 5?

What could we put on
Line 3 to derive Line 4?
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In addition to translating in terms of quantifiers, we should
further translate the proposed theorem in terms of the logical
operators so that we have a clear understanding of how to
structure the proof. If the sentence contains words such as
"only if," "whenever," or "necessary,” we should translate it in
terms of an implication. When we translate to an implication,
we should then compare the implication with its contrapositive
and pick the one that seems the easiest to prove.

When planning a car trip across the country, we have to focus
on where we're going in order to figure out how to get there.
The same strategy is needed for constructing a proof. If a proof
is not obvious, we should first write the end of the proof, which
is the sentence that we want to prove, and then work backwards
from the end as far as we can. If Line 5 is the last line of the
proof, we should contemplate what is needed on Line 4 to
derive Line 5. On the next-to-last line of a proof, we usually
translate the theorem in terms of a definition, as illustrated in
the following proof.

Theorem: For all sets A and B, A S AUB.
Proof. Let A and B be sets.
Definiion 5, gy every x, if x€ A, thenx€e AUB.
So,AGAUB.

The above definition of a subset shows us how to structure the
next layer of the proof. We jump back to the beginning of the
proof where we introduce the necessary variables and write any
assumptions needed for whatever we've written on the next-to-
last line. Next, we jump down across the gap and list the
sentence that we hope to derive, as illustrated below. We now
have a simplified goal to work towards.

Theorem: For all sets A and B, A SAUB.
Proof: Let A and B be sets.
[ Let x be an element in A.

Thenx€ AUB.
For every x, if x€ A, thenxe AUB.
So,ACAUB.
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Using a similar technique, we can set up the outside structure
of Theorem C, which we analyzed on page 142.

Theorem C: There is no largest real number.

Let x be a real number.

There exists a real number y such that x<y.

For every real number x, there is a real number y
such that x<y.

5. So, there is no largest real number.

N S

3. Connect the beginning with the end

For a whole year, this theorem
tormented me and absorbed my
greatest efforts. . . . Finally, two
days ago, 1 succeeded, not on
account of my painful efforts, but
by the grace of God. Like a sudden
flash of lightning, the riddle
happened to be solved.
cannot say what was the conducting
thread which connected what I

I myself

previously knew with what made my
success possible.

Carl Friedrich Gauss
1777-1855

In this stage of the construction process, we work our way from
the bottom up and from the top down so that we can bridge the
gap. We usually back up as far as we can from the bottom in
order to see the direction needed for the beginning of the proof.
We then jump back to the beginning and try to work our way
down, focusing always on the line we are trying to derive.

If we don't see how to connect the beginning with the end,
we should again review definitions of all the involved terms
and look for previous theorems that might be useful. We
should write this information off to the side. When we see
where we can use any of the information, we can then move it
into the proof in whatever translated form is needed.

If we're still stumped, now might be the time to switch to
another type of proof. Perhaps the theorem can be rephrased in
a different way, such as the contrapositive, that is easier to
prove. Or perhaps we may want to try a proof by contradiction
or use cases or try mathematical induction. We will discuss
techniques for structuring these types of proofs in the following
sections.

Constructing a proof may take a while. The serious think-
ers do not give up. For Carl Gauss, one of the greatest mathe-
maticians of all time, a year was not an unreasonable amount of
time to spend on an interesting problem. Of course, you must
have a great passion for what you are doing in order to invest
that amount of time in a proof.

When the proof process drags on and on, there are
techniques to help us get over the humps. If it looks hopeless,
take a break, and come back to the proof in a couple of hours or



Theorem C: There is no largest
real number.

Proof
1. Let x be a real number.

2. Define y, as follows: y, =x+1
Since x is a real number,
Yo is a real number.
Since x<x+1,
x <Y

3. So, for every x, there is a real
number y such that x <y,

4, So, there is no largest real number.

4. Polish the Proof
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even the next day. Meanwhile, we may find that our subcon-
scious has continued to work on it. We may get a sudden flash
of insight as we wait in the cafeteria line. The more times we
go back and think about the problem, the more likely we are to
find a solution. A common attribute of all logical thinkers and
all good athletes and, in general, all successful people, is perse-
verance. In an extreme sport like mathematics, perseverance is
essential. Without perseverance, we will not spend the neces-
sary time to even get in the game.

Sometimes we find ourselves frustrated at having spent so
much time on a proof, especially if we have no happy ending to
proudly display. When this happens, it is important to realize
that we have not wasted our time. Like lifting weights at the
health club, the time that we spend thinking about a proof
develops our mental muscles.

The proofs assigned in the exercises are designed to help
you develop your own technique for constructing proofs.
Templates and tips will be given and writing styles will be
suggested, but the whole goal is for you to figure out the way
that works best for you. As long as you come up with a proof,
it doesn't matter how you got there. If you can't get there,
though, use the techniques presented here. More then likely,
they will save you a lot of time and frustration.

With Theorem C, the gap that we left on the previous page
is very easy to bridge. We have to demonstrate that there exists
a y such that x <y. One way to show something exists is to
construct it. In the adjacent proof, x is introduced on Line 1, so
we can use it in our construction of y, on Line 2. We then
show that y, satisfies the conditions and we have a proof. It's
that simple.

After we logically connect the beginning of our proof with the
end, we are ready for the final stage of the proof process, which
is to polish and refine it. We should remove any information
that is not essential to the line of reasoning that connects the
beginning with the end. A proof should be as simple as
possible and easy for other people to follow. The reader should
know that everything we have previously written still holds, so
we do not need to keep repeating it, unless we are using it to
explain our reasons. We sometimes leave it to the reader to fill
in reasons that we consider obvious, but as you probably know
from your own experience, what an author considers obvious is
not always obvious to the reader. The amount of justification
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Theorem C
Proof — Paragraph Style

Writing Style

we insert for the steps in our proof depends on the audience for
whom we are writing.

The proof for Theorem C on the previous page is written in
an outline style, similar to an outline for an essay. The outline
style of proof is often used in teaching high school geometry,
but the paragraph style is always used in mathematics journals
and in most textbooks. The outline style simplifies the appear-
ance of the line of reasoning so that we can quickly scan it and
spot any logical errors or missing steps. The visual organiza-
tion of having each new thought start on the left side seems to
make it easier for the brain to see the connections. The reason-
ing goes straight down, from top to bottom, with no
wraparounds. The extra white space gives breathing room so
that we are not overwhelmed by the denseness of the text, The
numbering of lines in the outline style lends an organizational
structure to the proof, grouping related sentences together. If
we number each line in a long proof, though, the organizational
impact of the numbering is lost. Leaving space on the right
side for reasons reminds us that we do need a reason to support
each line, regardless of whether or not we feel it necessary to
write it down.

The same proof is written below in a more conversational
paragraph style.

There is no largest real number.

Let x be a real number. Define y, as follows: y,=x+1. Since y,
is the sum of 2 real numbers, y. is a real number. Furthermore,
x+1>x,50y,>x. So, for every real number x, there exists a
real number y such that y> x. Therefore, there is no largest real
number.

The style that we use when writing a proof should be the best
format for presenting it to the intended audience. In math
textbooks, authors usually write proofs in paragraph form, but
students often find it difficult to follow the reasoning. If this
happens to you, rewrite the author's proof in outline style and
you may be surprised at how much easier it is for you to see the
connecting steps and fill in the missing reasons that were
obvious to the author.

The proof styles used in this book were selected for an
audience who wants to develop their ability to reason logically.
Most proofs are written in a relaxed outline format, with new



Well-written homework:

Find the absolute minimum value

of f(x) =x*—4x.
f')=2x-4
Set f'(x) = 0.
2&x-4=0
So, x =2.
Take the derivative of f'(x):
fl'(x) = 2

Since f"(x) > 0, the graph is
always concave up. So f has
an absolute minimum at x=2,

f@=@r-4@=-4

So, the minimum value of fis -4,

A man who is always able to
present his subject in such a way
that it is readily understood, is a
man who understands it himself.

A. G. Drachmann
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thoughts starting on a new line. By seeing the relevant steps
lined up on the left side, we are programming our brain with
the essential details needed for logical reasoning. When we
have our technique down, we will let our brain do more of the
work in the background and switch over to a more conversa-
tional wrap-around paragraph format.

Whether writing in outline or paragraph style, formatting
equations and inequalities so that equal and inequality signs
line up is an immense help to the reader, as illustrated in the
adjacent homework. The format for writing the solution to a
calculus problem is essentially the same as the format for
writing a proof. When we solve a problem, we use deductive
reasoning. If we get confused in our homework, more than
likely it is because of the way we are writing our reasoning.

If we write sentence fragments, such as 2x—4

instead of the complete sentence, f'(x) =2x-4,
we are setting ourselves up for major confusion. When we jot
down the derivative, we know at that moment that we are
computing the derivative, but if we have no written record of it,
we cannot check our reasoning to see if we did it correctly, and
we may end up substituting in the wrong equation.

In addition to using "equals" to form complete sentences,
we should supplement our equations with leading words such
as "set" and "so" and write sentences to explain what is going
on, as illustrated in the adjacent homework. Review your
current writing style by looking at homework from last week or
last semester. Can you figure out what you did? If not,
perhaps you need to work on how you write for yourself.
Writing is one of the most important learning tools you have.
By improving your writing, you are improving your
understanding.

Exercise Set 2.3

1. The domain for x, y, a, b, and c is the set of integers.
Translate the following sentences.

a. xis odd.
. xy is odd.

o oo o

. ais a factor of b.
. ais afactorof b+c.
. 7is a factor of x°.
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2. Do you think the given sentence is true?
(Test it with examples before jumping to a conclusion.)
If so, try to construct a proof using the method described in this
section. ' First write the end and beginning of the proof, leaving a
space between the two. Then work backwards as far as you can,
using your definitions in the previous exercise. Next, jump to the
beginning and use the definitions to fill in the missing steps. If the
direct method seems difficult, set it up for the indirect method.
a. For all integers g, b and ¢, if a is a factor of b
and a is a factor of ¢, then a is a factor of b +¢.
b. Let x be an integer.
If x has 7 as a factor, then x* has 7 as a factor.

c. For every integer x, x is even or x* is odd.
d. For every integer x, x*is odd if and only if x is odd.
e. For all integers x and y, x is odd and y is odd

if and only if xy is odd.

3. Prove the following statement. First set up the outside structure,
then set up the inner structure. Work backwards as far as you can.
Complete the steps by focusing on what you want to derive.

For all real numbers a and b, if a<b, then a< l;'—b- <b.

Activity 2.4

1. When you disprove a statement p, what statement do you prove?

2. Leta and b be integers. The notation a | b is read as "a divides b."
a divides b if and only if there exists an integer k such that b = ak.
Prove or disprove the given statement.

3]0

0]3

ala

. Ifa|b, then b|a.

. Ifajband b|a, thena=0».
Ifa|band b|c, thena]c.

. Ifa|band a|c, thena|b+c.

I
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=2.4 Working with Quantifiers =

Universal Quantifier

Existential Quantifier

Constructing x,

To prove that a sentence is true for all x, we must demonstrate
that it is true for each element in the domain of x. We cannot
prove it by examples unless we give an example for each
element in the domain. This method of proof is called the
method of exhaustion. 1f we have 1000 elements in the
domain, this technique will certainly be exhausting, that is,
unless we're using a computer. If the domain is an infinite set
and an infinite list of examples must be individually checked,
not even a computer can handle the task. So we must find a
general way to prove the result.

When we construct a proof, for each variable x that is univer-
sally quantified, we should have a sentence of the following
form:

Let x be an element in the domain.

After this type of introduction, x represent a generic member of
the domain. Later in the proof we cannot assign x a specific
value, such as "set x = 2," because x would no longer represent
an arbitrary element. However, based on the assumptions in
our proof, we may be able to derive that x =2. We could also
assume that x = 2, but we would have to use that assumption in
any stand-alone deductions that we make.

We can change the domain or meaning of x when we have a
subproof in which the reader is fully aware that we are no
longer using any threads from our previous usage of x. As a
good writer, we must plant the necessary signposts so that the
reader knows when a separate part of the proof starts and stops.

To prove that a sentence is true for some x, one single example
will suffice. The existence of such an x can be proved by
constructing or defining an x, that satisfies the condition. We
use the subscript in x, to remind us that x, is a specific element
and not an arbitrary element, as is the case when x is
universally quantified.

In a proof, we indicate that we are constructing x, by writing a
sentence of the following form:

Define x, as follows: x, =

When we construct an xo, we should point out that it satisfies
the required conditions, as illustrated in the following proofs.
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Theorem: There exists an integer x such that for every integer y, x+y =1y.

Proof. Letx,=0. Note that0 is an integer.
Lety be an integer. Then x, +y=0+y=y.
Therefore, there exists an integer x such that
for every integer y, x+y=y.

Theorem: For every integer y, there exists an integer x such that, x + y=0.

Proof.  Lety be an integer.
Define x, as follows: x, = —y.
Since y is an integer, — y is an integer.
X+y=(-y)+y=0.
Therefore, for every integer y, there exists an integer x
such that, x+y=0.

Order of the Quantifiers Note how the order of the first two lines in the above proofs
follows the order of the quantifiers in the theorem. The order
of mixed quantifiers makes a difference in the meaning (page
30), so we must always introduce mixed quantifiers in the order
in which they appear in the theorem. If y has already been
introduced, we may use y in the construction of x,. However, if
y has not been introduced, we cannot use y in the construction
of x,, as illustrated in the following two templates:

Theorem: Yy 3x, p(x.y)
Proof: Lety be an element in the domain,

Letx, = (We can use y to construct x,.)

So, p(xo,y) is true.

Theorem: Ix Vy, p(x,y)
Proof. Letx,=__ (We cannot usey to construct x,.)
Let y be an element in the domain.

So, p(x,y) is true.




Onto Functions

X Y

fmapsXontoY
if and only if
foreveryyin?,
there exists an x in X
such that f(x) = y.

4 Example

Smaps Ronto R
if and only if
for every y in R,
there exists an xin R
such that f(x) = y.
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To practice the technique of working with mixed quantifiers,
we will work with the definition of an onto function. If a
function f maps the set X into the set Y, then each element x in
the set X is mapped to an element f(x) in the set Y, as illustrated
on the left. However, an element in Y does not necessarily have
an x that maps to it. If each element in Y does have an x that
maps to it, we say that f maps X onto Y.

fmaps XontoY
if and only if
for every y in Y, there exists an x in X such that f(x) = y.

Because of the mixed quantifiers, many students find it difficult
to write proofs that use the definition of onto. However, if we
condition ourselves to structure our thinking in the correct
order, the proofs will seem fairly simple.

Let f(x) =2x + 1 where x is a real number. Let Rrepresent the
set of real numbers. Prove that f maps R onto R.

First we translate the previous definition of an onto function for
the set R, which gives us the adjacent definition. Next we set
up the outside structure of our proof by working through the
quantifiers from left to right. The first quantifier gives us the
first sentence in our proof; the second quantifier gives us the
second sentence. The remaining part of the definition gives us
the third part of our proof.

1. Letybe anelementin R.
2. Letx,=
3. So, f(x)=y.

Our job now is to find x,. Since y is introduced in the first step
of our proof, we can use y to define x.. The only clue we have
is that f(x,) = y. Working backwards from this equation, we
can figure out how to express x, in terms of y.

)=y
f(xo)=2x+1 .... Definition of f
y=2x+1 Substitution
2x.=y-1
Xo= y% ...... Algebra

We have found x,. However, we will not insert the above steps
in our polished proof. Instead, we will first define x,. Then,
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Theorem

Proof

4 Example

we will arrange the previous steps in the reverse order to
demonstrate that f(x,) =y. We must also check to see if x; is a
real number as required in the definition of onto. In the follow-
ing proof, the steps are numbered to correspond to the 3 steps
we used to structure the proof.

Let f(x) = 2x + 1 and let R represents the set of real numbers.
Then f maps R onto R.

1. Lety be areal number.

1
2. Define x, as follows: x, = 'y-;—

X, is areal number. ...... Since y is real, y -1 is real.

y=1
.................. So =5~ is a real number.

3. f)=2x+1 o Definition of f
-1
=2 (15-') +1 Substitute for x,
=(y-1+1
=y

So, for every real number y, there exists a real number
x such that f(x) =y. Therefore, fmaps R onto R.

Letf(x)=2x where xisinN. N={1,2,3,...}
Prove that f does not map N onto N.

First, we negate the definition of onto:

~(Vyin N, 3xin N, f(x) =y)
JyinN, Vxin N, f(x)=y

Using the above translation, we set up the outside structure of
our proof by working with the quantifiers from left to right:

1. Lety,=
2. Let xbe an element in N.
3. So, f(x)*# Y.

Our job now is to find a specific natural number y, so that for
every natural number x, f(x) # y.. Because of the order of the
quantifiers, we cannot use x in our construction of y,.

To find a y, that will do the described task, let's think about
the range of the function f. Since f(x) = 2x, f(x) is even for
every natural number x. Thus, we can pick y, to be any natural
number that is not even. In the following proof, we let y.be 3.



Theorem

Proof

Disproving a Statement

4 Example

Proof
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LetN={1,2,3,...}. Let f(x)=2x where xis in N.
The function f does not map N onto N.

1. Lety,=3. 3eN

2. Let x be an element in N, Then f(x) = 2x.

3. Since xis an integer, 2x is an even number.
But 3 is not even. So, f(x) #3.

Thus, by the definition of onto, f does not map N onto N,

To disprove a statement, we prove its negation. First, we
negate the sentence, bringing the negation across any
quantifiers or logical operators so that we can see how to
structure the proof. We then use the standard techniques for
constructing a proof of the negated statement.

Disprove the following: For all real numbers, a, b, and c,
if a<b, then ca<ch.

First, we negate the above sentence so that we can see how to
structure the proof:

~(VYaVbVc, a<b=ca<ch)
Ja 3db 3¢, a<b and ca £ cb

Our job now is to find real numbers a, b, and c so that:
a<band ca £ cb.

We can write our proof as follows:

Seta=2,b=3,andc=~1. 2<3,but(-1)-2>(-1)-3.
So, there exists real numbers a, b, and ¢ such that a<b
and ca «cbh.

We can disprove a universally quantified sentence by finding a
counterexample. However, we cannot disprove an existentially
quantified sentence with a counterexample because its negation
will be universally quantified.
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¢ Example Disprove the following: There exists an integer x such that
x is odd and »? is even.

First we translate the negation,

~(3x, xis odd and A?is even.)
Vx, xis not odd or x?is not even.

Next we translate the or-sentence as an implication:

Vx, xis odd = x?is not even.
For every integer x, if x is odd, then »? is odd.

We set up the outside structure of our proof in Steps 1 and 5 of
the following proof. Then we move to Step 4 and use the
definition of odd to translate Step 5.

Step 4 is our focus as we figure out how to bridge the gap.
Our jobis to findj. If we stay focused on this task,
the connecting steps become fairly obvious.

From Step 2, we square both sides of the equation to get x* into
the picture. Then guided by our goal, which is to find j, we do
algebraic manipulations and juggle the expression into the
desired form:

Proof 1. Letxbe aninteger.
— Assume that x is odd.
2. There exists an integer k such that x=2k+ 1.
3. B=k+1)=4k*+4k+1=2k*+2k) + 1.
Define j as follows: j=2k?+2k.
Since k is an integer, j is an integer.
Next we substitute j in the above expression for x2.
X=2+1.
> 4. So, there exists an integer j such that x?=2j + 1.
5. Therefore, x? is odd.

6. So, there exists does not exist an integer x such that
x is odd and x? is even.




To Prove or Disprove?

Layers of Quantifiers

Theorem

Sfmaps X onto Y
if and only if
for every y in ¥, there exists
an x in X such that f(x) = y.
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Before we get to the stage of writing a proof, a considerable
amount of detective work may be needed to decide whether to
prove or disprove the statement. With some statements, our
choice may be fairly obvious, but if we're not sure, we should
contemplate both the sentence and its translated negation. If we
think a universally quantified sentence is true, we should test a
wide range of examples. If we do not come across a
counterexample, we may be ready to try to write a general
proof of the statement. However, we should keep in mind that
our examples do not guarantee that the sentence is always true.
If we are unable to construct a proof for the general case, we
should look further for counterexamples.

For an existentially quantified sentence, we should
diligently search for a particular example that makes the
sentence true. Sometimes, we may be able to derive the
existence of an element without actually constructing it, as
illustrated in the proof on page 157.

When a proof has layers of quantifiers, we can easily become
confused unless we structure our thinking. To work through
several layers of quantifiers, we need to carefully peel away the
layers with our focus always on what we're trying to derive.

For example, let's try to prove the following theorem, which
has three layers of mixed quantifiers embedded in the defini-
tions of the three onto functions.

If f maps X onto Y and g maps Y onto Z, then g of maps X onto Z.

Before we start structuring the proof, we should review the
definitions of the involved terms and try to visual what the
theorem says. First, we draw the adjacent sketch to help us
keep in mind the relation between these three functions. The
function f maps a point in X to a point in Y, whereas g maps a
point in Y to a point in Z. Since f(x) is an element in ¥ and g
maps Y into Z, g(f(x)) is located in Z. The function g o f, which
maps X into Z, is defined as follows:

gof(x)=g(f(x))

We will examine g o f in more detail on page 358. The defini-
tion of an onto function is given on the left. Now that we have
the definitions in front of us, we are ready to write the outside
structure of the proof:
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. Assume that fmaps X onto Y

and g maps Y onto Z.

. Let z be an element in Z.

8(f(xa) =2
So, (g°f) (x) = z.

. There exists an x, in X

such that gof(x,) = z.

. Forall zin Z, there exists an

X, in X such that gof (x;) =z

. So gofmaps X onto Z.

onto onlo

Assume that f maps X onto Y and g maps ¥ onto Z.

So gofmaps X onto Z.

Most students want to start at the top and translate Step 1, but
we are not going to do that because we are logical thinkers and
we are going to focus on what we want to derive. An assump-
tion in a proof is similar to money in a savings account where
the owner does not draw on the money until there is a real need
for it. We have no idea yet as to where we will need to use the
two assumptions in our first step, so we will leave them in the
bank for future use. Now, let's focus on what we want to
derive and translate the last step, “g o f maps X onto Z."

For every z in Z, there exists an x, in X such that go f(x,) =z.

The above translation tells us how to set up the inner
structure of the proof. As always, we start with the
first quantifier at the beginning of the sentence, which
gives us Step 2 in our proof.

We put the remainder of the sentence in Step 6, as
illustrated on the left. Step 6 is highlighted in bold to
remind us that it is our goal.

When we find x,, we must compute g o f(x.) and show
that g o f(x,) = z, which gives us Step 5 in our proof.

Now we focus on Step 6. Our job is to find x,. Unlike
our previous proofs, though, we will not construct it;
instead, we will deduce its existence from the fact that
both fand g are onto functions.

Let's visualize what's going on. At this stage, we have z over in
the set Z, as illustrated in the adjacent sketch. We are looking
for an x, over in X. In the sketch, we can see that g gives us a
way to back up closer to the set X. Since g maps Y onto Z:

3. There exists a yo in Y such that g(yo) = z.
Now, we focus on y,. Since fmaps X onto Y:
4. There exists an xo in X such that f(xo) = y.

At last, we have found xo. All we have left to do is justify Step
5 by using substitution. In the following polished version of
this proof, we leave out Step 7 since the reader should be able
to see that we have satisfied the definition of onto.
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Theorem If fmaps X onto Y and g maps Y onto Z, then go f
maps X onto Z.

Proof Assume that f maps X onto Y and g maps Y onto Z.
—— Let z be an element in Z.

Since g is onto, there exists a y, in ¥ such that g(y.) = z.

Since fis onto, there exists an x, in X such that f(x,) = y..

By the definition of composition: gof (x,) = g(f(x.))
Substitute y, for f(xo): = g(yo)
L) Substitute z for g(y,): =z
So, there exists an x, in X such that gof(x,) = z.
Therefore, go f maps X onto Z.

If you understand the reasoning process for structuring the
above proof, congratulations, for you have reached a new level
in the development of your reasoning skills. We must resist the
temptation to start working from the top down. Instead, we
should focus on what we want to achieve and then structure our
thinking so that we can reach our goal.

Exercise Set 2.4

1. Define the following using variables and quantifiers.
a. x is a rational number.
b. x+y is rational.
c. -;- is rational.
d. xis irrational.
2. Let x and y be arbitrary real numbers.
Prove or disprove each statement.
a. If x is rational, then — x is rational.
b. If x is irrational, then -~ x is irrational.
¢. If xis rational and y is rational, then x + y is rational.
d. If x is irrational and y is irrational, then x + y is irrational.
e. If x and y are rational numbers, then ';% is rational.

f. If x and y are rational numbers and y#0, then % is rational.
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g. If x is rational and y is irrational, then x + y is irrational.
Hint: If you are clever, you can set up your structure so that
you don't have to deal with irrationals. See (4) on page 140.
3. Prove or disprove each statement.
a. For every real number y, there exists a real number x such that
x+2y=17.
b. There exists a real number x such that for every real number y,
x+2y=17.
c. There exists a real number x such that for every real number y,
x<y.
d There exists a real number x such that for every natural number
Y, X<y,
4, Let fx)=5x+2. Prove or disprove each statement.
R is the set of real numbers. N is the set of natural numbers.
a. fmaps Ronto R. b. fmaps Nonto N,
5. Let f(x)=x% Prove or disprove that f maps R onto R.
6. Theorem: If g maps A onto B and  maps B onto C,
then ho g maps A onto C.
a. Draw a sketch that illustrates the above theorem.
b. Set up the outside structure for a proof of the above theorem.,
¢. Complete your proof in part (b).
7. Prove or disprove each statement.
a. For every real number x, 2x < 3x.
b. There is no smallest positive real number.
¢. The interval (3,5) does not have a smallest element.
8. Between any two distinct rational numbers, regardless of how

close together they are, can you always find another rational
number between them? If so, how would you do it?
a. Consider the question for specific examples.
Can you find a rational number between 'ﬁﬁ and -,fm ?
b. Consider the question visually.
In the adjacent sketch, let a and b 7 =5
be rational numbers. Can you find a
rational number between a and b? If so, what is it?
Hint: Let x, be halfway between a and b. Does x, have to be a
rational number? Find a formula for x, in terms of a and b.
Use visual reasoning to justify your formula.
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Complete the proof of the following theorem. You may cite
previous theorems that you have proved about rational numbers.
The word "claim" is used as a signpost to tell the reader that you
are now going to do a subproof and prove this claim. It serves the
same function as the "theorem" heading. You cannot make
derivations from the claim.

Theorem: Between every two distinct rational numbers, there is
another rational number.

Proof: Let a and b be rational numbers with a<b.
Set x, =
X, is a rational number because
Claim: a<x,.

Therefore, a<x,.
Claim: x,<b.
Therefore, x,<b.
So, x, is between a and b.
Prove or disprove each statement.
a. Between every two real numbers, there is another real number.
b. If a<b + x for every positive number x, then a < b.

The theorem in exercise 9 tells us that the rational numbers are
very densely distributed along the number line. Between every
two rational numbers there is another rational number.

a. Between every two distinct rational numbers, are there an
infinite number of rational numbers? If so, explain your
reasoning.

b. Do you think the rational numbers fill up the number line? Is
the coordinate of each point on a number line a rational
number? Justify your answer.

An algorithm is a procedure for accomplishing a specified task.
An algorithm for finding a number y larger than a given number x
could be stated as y=x+1. This algorithm is not unique.

a. Give an algorithm that could be programmed into a computer
so that for every two different rational numbers that we input,
the computer will output a rational number that is between the
two input numbers.

b. Find another algorithm that outputs a rational number between
two given rational numbers, but this time make the output
different than the output for the algorithm in part (a).

159
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Activity 2.5

1. Let x and y be real numbers.

a. If xy >0, what do you know about x and y?

b. If (x-2)(x+ 1) >0, what do you know about x—2 and x + 1?

c. Use part (b) to solve the following inequality: (x-2)(x+1)>0
2. Let x and y be real numbers.

a. If xy <0, what do you know about x and y?

b. If (x-1)(x+ 1)<0, what do you know about x~1 and x + 1?

c. Use part (b) to solve the following inequality: (x — 1)(x + 1) <O.

= 2.5 Using Cases =

Derive. r

Proof with Cases:
por g
Case 1: Assume p is true.

Therefore, r.
Case 2: Assume q is true.

Therefore, r.
Since one of the 2 cases
must occur and r is true in
both cases, r is always true.

When trying to construct a proof, we may sometimes feel as
though our hands are tied because we don't have enough infor-
mation. When this happens, we may want to introduce cases so
that we have additional information to use within each case.
For example, a proof about real numbers could be subdivided
into the following cases:

Case 1: Assume that x> 0.
Case 2: Assume that x<0.

Since "x >0 or x <0" is true, either Case 1 or Case 2 must be
true. When we do our reasoning in Case 1, we have the addi-
tional information that x > 0, which may help us derive the
desired result. Within Case 2, we can use that x <0. If we are
able to derive the desired result in both cases, we then know
that the result is always true.

A proof can be subdivided into cases by using a true
or-sentence, such as "x>0 or x<0." In the adjacent template,
the or-sentence is represented as p or g. The letter r represents
the sentence that we want to prove. Each part of the or-
sentence determines a case. In Case 1, we assume that p is true
and then derive r. In Case 2, we assume that g is true and then
derive r. Since one of the two cases is true, we can conclude
that r must always be true. The following proof illustrates the
technique for using cases in a proof.
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Let x and y be integers. If x is even or y is even,
then xy is even.

Proof Assume that x is even or y is even.

Case 1: Suppose that x is even.
Then x = 2k for some integer k.
So, xy = (2k)y = 2(ky)
Since & and y are both integers, ky is an integer.
Therefore, xy is even.

Case 2: Suppose that y is even.
Then y = 2j for some integer j.
So, xy =x(2j)=2(jx)
Since j and x are both integers, jx is an integer.
So xy is even.

Since one of the two cases must occur, xy is even.
So, if x is even or y is even, then xy is even.

Derive: ror s

Proof with Cases:
por q

Case 1: Assume p is true.

Therefore, r.

Case 2: Assume q is true.

Therefore, s.

Therefore, r or s.

If we have an or-sentence in the middle of a proof, we can
branch into cases. Since "p or ~p" is always true, any sentence
p can be used to set up cases in a proof:

Case 1: Assume p is true.
Case 2: Assume p is false.

The trick is to find cases that will help us derive the desired
conclusion. We can use as many cases as we like, as long as
we know that at least one of the cases must be true. If we are
able to derive the desired conclusion for each case, we can then
conclude that the conclusion must always be true. Sometimes
when we use cases, though, we derive different conclusions.
When this happens, we can conclude that either the conclusion
in Case 1 or the conclusion in Case 2 must be true, as illus-
trated in the adjacent template.

When we use cases to solve an inequality, we often get
different conclusions as illustrated in the next example. Cases
are introduced by using the following property of real numbers:

If a product of two numbers is positive,

both factors are positive or both are negative.



162

Chapter2 Writing Qur Reasoning

4 Example

Inequalities

—_—

A

3210123

Solve the inequality: (x—1)(x+3)>0.
Assume that (x— 1)(x+3)>0.

Both factors must be positive or both must be negative.
So (x-1>0andx+3>0) or (x-1<0andx+3<0).

Case 1. Assumethatx—1>0and x+3>0.
Thenx>1 and x>-3.
In order for both of these inequalities to hold,
x must be greater than 1.
So the solution for this case is: x> 1.

Case 2: Assume that x-1<0and x+3<0.
Then x<1 and x<-3.
In order for both of these inequalities to hold,
x must be less than -3.
So the solution for this case is: x<-3.

Since either Case 1 or Case 2 must occur, the solution to the
original inequality is: x>1 orx<-3.

Unlike a proof, when we solve an equation or inequality, our
derivations have to go both ways. In a proof, we could
conclude in Case 1 that x > -3. However, that condition does
not reverse and give a solution to the inequality.

We often use cases when we work with inequalities, so let's
briefly review the basic rules for inequalities. The set of all real
numbers can be divided into three nonoverlapping sets, the
positive numbers, the negative numbers and 0. We do not
classify 0 as either positive or negative; 0 serves as the boun-
dary, separating the positive numbers from the real numbers.

The negative numbers are a mirror image of the positive
numbers. When we look in a mirror, left becomes right and
right becomes left. Consequently, when we work with positive
and negative numbers, these mirror images cause a lot of
switching, which can be confusing if we do not keep the rules
straight.

The set of real numbers is ordered from left to right with no
regard for the mirror images. On a number line, a < b if and
only if g is to the left of b. Since "left" is a relative term that
depends on the point of view, we need a more objective defini-
tion for "less than."



a<b
if and only if

b— ais positive

Theorem

Proof
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Using the subtraction operation and the concept of a positive
number, we can define "less than" as follows:

a<b if and only if b—a is positive.
We can now define "greater than" in terms of "less than."

a>b if and only if b<a.

Since the > symbol is a mirror image of the < symbol, our eyes
may sometimes play tricks on us when both symbols are
present. If we translate to only one of the inequality symbols
the sentence may seem simpler. For example, we may want to
rewrite "a<b and ¢>b" as "a<b and b<c."

Multiplication was extended to the negative numbers in a
way that would preserve the existing properties of multiplica-
tion on the positive numbers. Consequently the product of two
negative numbers is defined to be a positive number, whereas
the product of a positive number and a negative number is
defined to be a negative number. Translating in terms of
variables gives the following sentences:

ab>0 if and only if
(@a>0and b>0) or (a<0and b<0).

ab<0 if and only if
(@a>0and b<0) or (a<0and b>0)

Using the above two properties, we can derive the following
rules for multiplying an inequality by a real number:

Let a, b, and ¢ be real numbers and let a<b.
If 0<c, then ac<bc.
If ¢ <0, then ac > bc.

Let a<b. By the < definition, 0<b-a.
Assume that O<c.
Since the product of two positive numbers is positive,
O0<(b-a). Thus,0<bc-ac.
So, by the < definition, ac< bc.
Assume that ¢<0.
Since the product of a positive and a negative
number is negative, (b-a)c<0.
Thus, bc - ac <0. By the < definition, bc<ac.
So, by the > definition, ac> cb.
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Theorem D
Proof

Theorem E
Proof

If we multiply an inequality by a positive number, the inequal-
ity does not change, but if we multiply by a negative number,
the inequality is reversed. Students sometimes forget to use the
latter rule because we do not have to make this type of distinc-
tion when working with equations:

If a = b and ¢ is a real number, then ac = bc.
With inequalities, though, we have 3 cases:

Case 1: If a<b and ¢ >0, then ac <bc.
Case 2: If a<b and ¢ <0, then ac > bc.
Case 3. Ifa<b and ¢ =0, then ac = bc.

We will use Case 2 to prove the following two theorems.

Let x be a real number., If -1 <x, then1>-x.

Assume that -1 <x.
Multiplying the inequality by -1 reverses the inequality:

D) >-x

Therefore, 1 >~ x.

Let x be a real number. If -1 <x<0, then - x > x%.

Assume that -1 <x and x<O0.
Since x <0, multiplying the first inequality by x reverses it:

-1<x
x-(=1)>x-x
Thus, —x>x%

We will use the above two theorems in Case 2 of the following
proof. In the construction of this proof, we first set up the
outside structure, and then we will work from the top down:

Assume that -1 <x< 1_.

Then X*<1.
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We will multiply an inequality by x, so we must split the
following proof into three cases. Since we assume -1 <x<1 in
the beginning of the proof, we can use it in each case.

Theorem  Let x be areal number. If -1 <x<1, then x°<1.

Proof Assume that -1 <x< 1.
Then -1<x and x<1.
Since x is a real number, x>0 orx<0 orx=0.

Case 1: Assume that x> Q.
In our original assumption, x< 1.
Since x>0, x-x<x-1
Thus, x*<x.
We now have that X’ <x and x< 1.
Since < is transitive, x*<1.

Case 2: Assume that x<0.
In our original assumption, —1 <x.
From Theorem E on the previous page, —x>x’.
From Theorem D on the previous page, 1>-x.
We now have that 1 >—x and —x > x%.
Since > is transitive, 1 >x%
Thus, < 1.

Case 3: Suppose that x=0.,
Thenx*=0. Sox*<1.

In each of the 3 cases, x* < 1.
Furthermore, one of these cases must occur.
Therefore, if ~1 <x<]1, then X*<1.

In Case 2, note the clever way that transitivity is used to
produce the desired result. This proof is a little tedious, but it
does show why the statement is true.

The method used to construct the above proof was to first
set up the outside shell, then go to the top and work straight
down, plowing through all the detail until we finally saw the
light at the end of the tunnel. However, we could have walked
around the mountain if we had focused more on working

Stant backwards from the end, as illustrated on the next page.
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Theorem
Proof

Impossible Cases

Theorem
Proof

l; Assume that -1 <x<1.

So,0<(1+x)(1-x)
0<l-»
Then x*<1.

This more thoughtful analysis gives us a simpler goal to work
towards, namely, show that the product of 1+x and 1-x is
positive.

Let x be a real number. If -1<x<1, then x?<1.

Assume that -1 <x<1.
Then -1<x and x<1.
So, 0<1l+x and O<1-wx.
Since the product of two positive numbers is positive:
0<(1+x)(1-x).
0<1-x
Therefore, x2< 1.

After working through the detail of the former proof, the
beauty in the simplicity of the above proof shines like polished
crystal,

Sometimes when we use cases, we discover that one of the
cases cannot occur. If a case cannot occur and we derive the
desired result in each of the other cases, then our theorem is
true. This happens in the following proof of the converse of the
previous theorem.

For every real number x, if X< 1, then -1 <x<1.

Assume that x’<1. Then *’-1<0.
So (x-1)(x+1)<0. Since the product is negative,
one factor must be positive and the other negative.

Case 1: Assume that x-1>0 and x+1<0,
Then x>1 and x<-l.
There is no x that satisfies both inequalities,
so this case cannot occur.
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Case 2: Assume thatx—-1<0 and x+1>0
Then x<1 and x>-1.
So, ~1<x<1.

Since only Case 2 can occur, -1 <x<1.

Therefore, for every real number x, if x¥*!< 1, then -1 <x<1.

167

Exercise Set 2.5

1. Use cases to solve each inequality.
a. x+2)x-4)>0 c. ¥-9>0
b. (x-3)x-4)<0 d. ¥-4<0
2. Prove each statement. Let x and a be real numbers.
| x| denotes the absolute value of x.
Definition: | x| = x, ifx20.
|x] = =, ifx<0.
Definition: x<a if and only if x<a or x=a.
x2 a ifand only if x<a.
220
. x<| x|
lx] =]
.Ifx>lorx<-1,thenx®>1.
. Ifx2lorxg-1, then 2 21.
f. Leta>0. x*<a? ifand only if ~a<x<a.

o oo o

3. Letn be an integer. Then n is even or n is odd.

Use this statement to set up cases and prove the following:

2 . nn+l) , .
a. n*-niseven. b. —3— is an integer.

Activity 2.6

1. Using only a straightedge and a compass, describe how to locate
J2 on a number line.

2. Assume that /2 is a rational number. Then try to derive a
contradiction.
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=2.6 Proof by Contradiction =

Do I contradict myself?
Very well then .... I contradict myself.

Tam large.... I contain multitudes.

Walt Whitman
Leaves of Grass

Derive: r

Proof by Contradiction
Assume that r is false.

Therefore, ¢ is true.
Therefore, ¢ is false.

Contradiction!
So, r must be true.

Validity of Contradiction Proofs

Contradictions have a place in other systems of thought, such
as Walt Whitman's poetic view of the world, or in a Buddhist's
meditation on a contradiction to reach a higher level of spiritual
experience. However, in the house of mathematics, we do not
allow contradictions. As we will see on page 205, one little
contradiction wipes out our whole logical system. If we make
an assumption that produces one of these lethal contradictions,
we deduce that the assumption had to be false, which is the
basis for a proof by contradiction.

The structure of a proof by contradiction is illustrated in the
adjacent template; r represents the sentence we want to prove
and c represents the contradiction that we find. First, we
assume the negation of what we want to prove. Then we
search until we find a sentence ¢ that we can derive as true and
also derive as false, which makes it a contradiction. Since a
contradiction cannot exist, our original assumption that
produced the contradiction must be false. Therefore, r is true.

A proof by contradiction is rather negative in spirit. It
shows us why a sentence can't be false, but it doesn't really
show us why it is true. We deduce that the sentence is true
because it can't be false. Nevertheless, this method of proof is
a powerful tool that enables us to prove some theorms that we
might not be able to prove with a more positive outlook.

When we prove the contrapositive of a sentence, we also
switch into negative mode, assuming that the conclusion is
false. Our goal then is to show that the hypothesis is false.
However, when we do a proof by contradiction, we have no
idea as to what our goal is, other than to find a contradiction.
We have no clue as to where to look for it. Like Sherlock
Holmes, we must be very clever as we search for a deadly
contradiction lurking somewhere.

To justify the validity of a proof by contradiction, we can argue
as follows. When we assume ~r is true and derive ¢ and ~c, we
have proved the following implication:

~r = (c and ~c)
Next we translate the above implication as an or-sentence.

ror (cand ~c¢)
Since (¢ and ~c) is false, r must be true.
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One of the most famous proofs by contradiction is the proof
that J/2 is an irrational number. If you tried to prove this
theorem in Activity 2.6, you understand the challenge in
finding a contradiction with no clear goal to guide us. If you
were not successful, you may be surprised to learn that
someone did prove it way back in the 4th century B.C.E.
Before we prove that 2 is irrational, let's take a historical look
at why there was a great interest in this question 2400 years
ago.

Deep thinkers have always sought out other thinkers, for
ideas get a nurturing cross-fertilization in a community of
thinkers. In the 5th century B.C.E., Pythagoras founded one of
the earliest known schools of thinkers, known as the Pythago-
rean brotherhood. The ideas developed by the Pythagoreans
had a lasting impact on the developing cultures of the western
world. Consumed with a desire to explain why things happen,
the Pythagoreans were among the first thinkers to use deduc-
tive reasoning. They developed it into a fine art, proving the
Pythagorean theorem and many others as well. Using the
deductive process to analyze the sounds of music, they asked
the question as to why some combinations of sounds are more
pleasing to the ear than other combinations. When they discov-
ered that harmonic tones of music came from plucking strings
whose lengths were simple ratios of natural numbers, they then
created the musical scale from which western music evolved.
The beautiful simplicity of this mathematical relation between
ratios of natural numbers and musical harmony led the
Pythagoreans to a spiritual belief that all nature originated from
the natural numbers, causing them to endow these numbers
with mystical properties.

After the counting numbers were developed to measure
sizes of sets, the next giant step was to develop numbers for
measuring lengths and distances. For this purpose, the ruler
was created by evenly spacing the counting numbers on a ruler.
The unit interval was then subdivided into n equal subintervals
whose right endpoints were labeled as i, -,27, 2 ..., % and
thus were the rational numbers created. Like the harmonic
tones of music, the Pythagoreans believed that all lengths could
be represented as a ratio of natural numbers, which certainly
seems visually plausible. The Pythagoreans knew that between
any two rational numbers, no matter how close together they
are, there is always another rational number (page 159), and so
it does appear as if the rational numbers should fill up the
number line. So, it appeared as though any length could be
represented as a ratio of natural numbers.
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ﬁ1

1

A=1+1
=2
So, c=/2
Theorem
Proof by Contradiction

New knowledge sometimes brings disturbing revelations
for it forces us to reexamine our previous beliefs in terms of the
new insight. Such was the case with the Pythagorean Theorem.
Through this theorem, the Pythagoreans could easily construct
a length that represents /2, as illustrated on the left. However,
try as they might, the Pythagoreans could not find two natural
numbers whose quotient was/2. According to legend, while
sailing on the sunny Mediterranean, a Pythagorean brother
came up with a proof by contradiction that /2 could not be
expressed as a ratio of natural numbers. His companions,
greatly distressed by the fatal impact his proof had on their
religious beliefs, ungratefully threw the author overboard and
drowned him. Of course, this story may not be true, but it is
certainly true that whoever came up with the following proof
was a very deep thinker.

J2 is not a rational number.

Suppose that /2 is a rational number.

So there exist integers g and b such that /2 = %.

If a and b have any common factors, cancel them so that
we are left with integers ¢ and d such that that /2 = <,
and ¢ and 4 have no common factors.

We will now contradict that ¢ and d have no common factors.

First, we will do some simple algebra: J2 = $
2=%

d?

2d*=¢?

Since ¢* has 2 as a factor, ¢? is even. By a previous theorem
(page 138), if ¢?is even, then c is even. So, ¢ is even, and
hence, 2 is a factor of ¢. Thus, ¢ = 2k for some integer k.
Now we will do some more algebra: ¢* = 4k*
Since 2d*=¢?, 2d?=4Kk
So, d*=21
Since d? is even, d is even. So 2 is a factor of 4.

Thus, 2 is a factor of both ¢ and d.
But ¢ and 4 have no common factors. Contradiction!

So our original assumption is false.
Thus, /2 is not a rational number.




Denive: 1f p, then g.

[Assume that p is true.)
Assume q is false.

Therefore, p is false.

[{Contradiction!
Therefore, q is true.]
So, if p, then g.
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As you admire the ingenuity in the previous chain of reasoning,
please observe how unrelated the contradictory sentence is to
the original assumption. The great challenge in constructing a
proof by contradiction is to actually find a contradiction, for
there are no pointers as to where to look for it like we have in a
proof by contraposition.

A contrapositive proof can be construed as a contradiction,
as illustrated in the adjacent template. After we assume p is
true, we want to derive that g is true, so we switch into contra-
diction mode and assume q is false. We then derive that p is
false, which contradicts our original assumption. However, if
we did not use the fact that p was true, we could remove the
first line and the other two italicized lines, which leaves us with
a proof of the contrapositive, ~¢g = ~p. Using the word 'contra-
diction' for a proof of the contrapositive makes the proof longer
and the reasoning more complex.

Exercise Set 2.6

1. Prove or disprove the following. Since we have already proved
J2 is irrational, you may cite this result.

a. 1+/7 is an irrational number.
b. For every rational number x, x +/2 is an irrational number.

c. Let x be a rational number and y an irrational number.
Then x + y is irrational.

d. Let x and y be irrational numbers. Then x + y is irrational.
2. A prime number is a natural number n, greater than 1, whose only

positive factors are 1 and n. The Fundamental Theorem of
Arithmetic gives a very important property of natural numbers.

Fundamental Theorem of Arithmetic

Every natural number, other than 1, can be represented
in a unique manner as a product of prime numbers,
with smaller factors written to the left of larger factots.

a. Let x be a natural number greater than 1. In the prime factori-
zation of x, can a factor appear only once? 2 times? 3 times?
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b. In the prime factorization of x?, can a factor appear only once?
2 times? 3 times? 4 times? 5 times?

. Let n be a natural number. Consider the following sentence:

For every natural number x, if n is a factor of 12,
then n is a factor of x.

a. Is the above sentence true for n =2? Forn=3? Forn=4?

b. For what values of n is the above sentence true?
Hint: Reflect on your work in the previous exercise.

. Prove that /3 is an irrational number.

Hint: You can write a proof similar to the one for /2 and cite
your results from (3). Or be creative and use your answers from
(2) to construct a different type of proof.

. Generalize your proof in (4) and prove the following.

Theorem: If p is a prime number, then /p is irrational.

. Prove that there are an infinite number of prime numbers.

Hint: Suppose that there are only a finite number of prime
numbers. Label themasp), p2,...,pn. Setx=pips...pa+ 1.
Now demonstrate that none of the prime numbers in the list can
divide x. Then explain why this gives a contradiction.

. In Euclidean geometry, the sum of the angles in a triangle is 180°,

Using this result, prove the given statement with a proof by
contradiction. All points and lines are in the same plane.
a. Through a point P not on a line ¢, there is only one line through
P that is perpendicular to .
b. If line ¢ is perpendicular to two distinct lines s and r,
then s and r cannot intersect.
c. If line ¢ intersects two distinct lines s and r
and the corresponding angles formed are
congruent, then s and r cannot intersect.

Activity 2.7

1. Let n be a positive integer. Write the sum of the following in the

style given in part (a), but also list the last term.

a. The first n positive integers: 1 +2+3+... 4+ ___
b. The first n even positive integers: 2+4 +6+...+
c¢. The first n + 1 even positive integers.

d. The first n odd positive integers.
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2. For each n in the adjacent table, list the sum of the first n even
positive integers in the sum-column.
a. What is the pattern in the numbers as you read down the
sum-column?

b. What is the pattern that goes across the list? How is n related
to the adjacent number in the sum-column? Try writing the
numbers in the sum-column in different forms until you see a
pattern emerge across the row.

¢. What is the sum of the first 1000 even positive integers?
Did you use your pattern from part (a) or from part (b)?

d. Use your work from (1b) and (2b) to write an equation that
gives a formula for the sum of the first n even positive
integers.

3. Find a formula for the sum of the first n positive integers.

a. You may want to do some detective work similar to your work
in (2). Fill in the adjacent table and look for a pattern that
goes across the list. Write the numbers in the sum-column in
different forms until you see a pattern emerge. You may want
to factor the numbers in the sum-column, or multiply by %

b. You may want to consider the relation of this formula to the
formula that you found in (2d).

c. You may want to use visual reasoning. Imagine
the numbers as increasing columns of black dots, 1+2+3+4

then fill in with white dots, as illustrated on o006®
the right. In a similar representation for e ee
1+2+3+. .. +n, how many columns and 00 e e

rows will there be? What will the total number o o 0 @
of dots be? How will the number of blackdots o o 0 O
compare with the number of white dots? Use this
data to determine the total number of black dots.

4. Demonstrate the Domino Theory. Stand a bunch of dominoes
vertically, positioning them so that if you push over a domino, it
knocks over the next domino.

a. If you push over the 1st domino, what happens?
What happens if you push over the 3rd domino?

b. Suppose that you have an infinite sequence of dominoes,
P1, P2 D3, - - -, positioned so that the following is true:

For every natural number a, if p, falls, then p,., falls.

If you push over the 1st domino, what happens?
What happens if you push over the 3rd domino?

173
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= 2,7 Mathematical Induction =

Is p(n) true for every n?
p(t)
p2)
pQ)
p@

p(';)

Principle of
Mathematical Induction

Let p(n) be an open statement.
Suppose the following are true:

1. Forall integers n21,
p(n) = p(n +1).
2. p(1) is true.

Then p(n) is true for all
integers n where n21.

Mathematical induction is a technique for proving an infinite
sequence of sentences, analogous to the Domino Theory. Sup-
pose that the sentences are labeled as illustrated on the left. If
we can demonstrate that each sentence implies the one after it,
then we know that:

p(1)=p(2)
p(2)=p@3)
p(3)=p4)

p(n) = p(n+1)

The above implications tell us absolutely nothing about the
truth values of the individual sentences. After all, p(1) could
be false and then p(1) = p(2) is automatically true. However,
this chain of implications does position the sentences like a row
of dominoes, so that if we are able to verify one of them, then
all the others after that one will have to be true. For example,
if we establish that p(1) is true, we can work down the list,
using the Law of Detachment to deduce that each successive
sentence is true:

p(1) is true.

Since p(1) = p(2), we can deduce that p(2) is true.
Since p(2) = p(3), we can deduce that p(3) is true.
And so on, down the list.

The Principal of Mathematical Induction guarantees that the
Law of Detachment can be applied an infinite number of times.
In the adjacent description of mathematical induction, Part (1)
is equivalent to arranging the dominoes so that if any particular
domino falls, the next one must also fall. Part 1 is called the
inductive step. Part (2) is equivalent to pushing over the first
domino, The conclusion is that all the dominoes will fall. The
induction game is for master players because we're playing
with an infinite set of dominoes. Most anyone can do Part 1 for
a finite set of dominoes. Doing the same task for an infinite set
is far more challenging for we must rely on our powers of
deductive reasoning rather than eye and hand coordination.



General Form

Principle of
Mathematical Induction

Let p(n) be an open statement.
Let ¢ be a fixed integer.
Suppose the following are true:
1. For all integers n2c,
p() = p(n +1).
2. p(c) is true.

Then p(n) is true for all
integers n where n2c.
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Before we look at some examples, let's state the principle of
mathematical induction in a more general form. When a row of
dominoes are positioned according to the inductive step, they
do not all fall when we push over the third domino. The first
and second dominoes will be left standing, but all the others
will come tumbling down. In a similar manner, suppose that a
sequence of sentences satisfies the inductive step. In other
words, we have been able to prove the following:

For every integer n, p(n) = p(n+1).

However, when we check p(1), we find that it is not true. We
then check p(2), but, alas, it is also not true. Do we give up?
Not yet, because our infinite sequence of sentences are
positioned just like those dominoes. All we have to do is find
one that is true, and from that point on, each one will be true.
Suppose that we check p(3) and find that, yes, it is true. We
can then proclaim that p(n) is true for all n > 3:

p(3) is true.

Since p(3) => p(4), we can deduce that p(4) is true.
Since p(4) = p(5), we can deduce that p(5) is true.
And so0 on, down the list.

Actually, we did not need to know that p(n) = p(n+1) for every
positive integer n. It does not matter whether or not p(1) = p(2)
is true nor does it matter for p(2) = p(3). If we can establish
that p(n) = p(n + 1) for every integer n >3 and we can aiso
verify that p(3) is true, we can then deduce that p(n) is true for
all n>3, which is the following list:

p(3), p@), p(5), p6),..., p(n),...

Hence, we can generalize the previous statement of mathemati-
cal induction as stated on the left, using c to represent the point
in our sequence beyond which we're going to demonstrate that
every sentence is true. This version is identical to the previous
version except that we replace 1 with ¢. The conclusion
guarantees that the following sentences are each true:

p(c), plc+1), p(c+2), ..., p(n), ...

In the above example, ¢ was positive, but it could also be
negative. Let's interpret the theorem for ¢ =—2. Suppose that
we have a sequence of open statements about an integer n and
we can prove the inductive step in Part 1:
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Grammatical Structure

Theorem: For all positive integers
n, p(n) is true,

Induction Proof
Letp(n): ____ wherenisa
positive integer.

Part 1 - Inductive Step
Let n be a positive integer.
Assume p(n) is true.

So, p(n +1) is true.
Thus, p(n) implies p(n +1).

Part 2 — Vierification Step

So p(1) is true.

Therefore, p(n) is true for all
positive integers n.

Part 1: p(1) = p(2)
p2)=p@)
p(3)=p@4)

p(n)=p(n+1)

For every integer n > -2, p(n) =>p(n+1).

Suppose also that p(-2) is true. Using mathematical induction,
we can deduce that p(n) is true for every n > -2, which is the
following list of sentences:

p(=2), p(=1), p(0), p(1), ..., p(n), ...

Mathematical induction is a simple concept, but its grammatical
structure is quite complex, as you can see in the following
symbolic translation, where c=1:

[(Vn, p(n) = p(n +1)) and p(1)] = Vn, p(n)

The outside structure of the above sentence is an implication,
but its hypothesis is a conjunction that has a quantified implica-
tion within it. It is no wonder that students sometimes get
confused by the structure of an induction proof, especially
when they assume that p(n) is true in Part 1. They feel that
they are assuming what they want to prove, which is never
allowed. We sometimes assume the negation of what we want
to prove, hoping to find a contradiction, but we never ever
assume what we want to prove.

To eliminate any confusion, let's examine the adjacent
template for a proof by mathematical induction. At the begin-
ning of an induction proof, we identify the open sentence on
which we will do the induction and express it in terms of the
variable n. After we identify p(n), the proof has two separate
parts. We can prove them in whichever order we choose.

In the inductive step, we must prove p(n) = p(n + 1) for
every positive integer n. First, we let n be a positive integer.
Then we assume p(n) is true and derive p(n+1). It may look
like we are assuming what we want to prove; however, p(n) is
not a stand-alone statement and neither is p(n + 1). Our stand-
alone conclusion is that Vn, p(n)=> p(n+1). In essence, we have
proved the adjacent list of implications. As observed earlier,
these implications tell us nothing about the truth value of the
individual sentences. They do position the sentences like a row
of dominoes, though, so that all we have to do is verify one of
them and all the others after that one will have to be true.

In the verification step, we demonstrate that p(1) is true.
This step is usually very easy. We finish the proof by applying
the Principle of Mathematical Induction. Having proved Part 1
and Part 2, we can then deduce by mathematical induction that
p(n) is true for all positive integers n.



An Induction Example

14243+, ., +n="020
-1
p(1): 1=
_ 202+
p(2): 1+2=—5—
_ 33+
p3): 1+2+43="—5—
4(4+1)

p@): 1+2+3+4=

2
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Let's put our theory into action and look at an induction
example. If you did the detective work in (3) on page 173, you
probably discovered the adjacent pattern based on a few
examples. Examples do not guarantee that this formula always
holds, but we can get a guarantee using mathematical induction.
First, we let p(n) represent the following open sentence:

a(n+1)

pn): 14243+, . . +n=—>5

The above colon means "represents.”

i
p(n) represents the sentence: 1 +2+3+. . . +n =m§—)-.

. n{n+1)
Students sometimes erroneously set p(n) =—35—
If we do not write the correct representation for p(n) as a
sentence, we cannot set up the proper structure for an induction
proof. Another error is to use an equals sign instead of a colon
in the above representation:

n(n+l)
pn)=1+2+3+. . . +n=—75—

From the above form, we would surmise that p(n) is equal to
the left side of the equation and also equal to the right side of
the equation. With this misconception, our thinking process is
completely derailed. The equals verb is reserved for sets and
numbers, so when we specify p(n), we cannot replace the colon
with an equals sign.

In this example, p(n) represents a sentence whose predicate
is "equals" and whose subject is "the sum of all the positive
integers from 1 to n." In the symbolic representation,

1+2+3+. .. +n

the three dots indicate that we are to continue in the same
pattern until we reach n. However, whenn=1orn=2, we do
not include +3 in the translation. To interpret the meaning of
p(1), we read the left side of the equation as the sum of all
positive integers from 1 to 1 and we write p(1) as follows:

1(2
1 42
We usually check several examples, such as those given on the
left, to make sure that the formula works before we attempt the
induction step.
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The Inductive Step

Part 1 - Inductive Step:
Let n be a positive integer.
Assume that p(n) is true.

14243+, +n =200

14243+, . . +(n+1) =
Hence, p(n + 1) is true.

(n+1)n+2)
2

Therefore, p(n)=>p(n+1).

Theorem

Induction Proof
Part 1

Part 2

Conclusion

To set up the induction part of the proof, we translate p(n + 1)
by substituting n + 1 for n.

piny:1+2+43+. .. +n='”—('12t—l)'
1 2
P+ 14243 +. . . +(n4l) = 220D

We usually list the next-to-last term on the left side of p(n + 1)
because it may give us a connection with p(n):

pn+1): 14243+, ,

D(n+2
. +n+(n+1)=%‘l

Next we set up the structure to prove p(n) = p(n +1), as illus-
trated on the left. This structure gives us a clear focus on what
we need to do. How can we derive the second equation from
the first equation? Let's simplify this task by focusing on how
we can derive either the left side or the right side of the second
equation. We can easily derive the left side by adding (n + 1)
to both sides of the first equation. Then we will try to manipu-
late the right side of the new equation to obtain the desired
result, as illustrated in the following proof.

e . n(n+1)
For every positive integer n, 1 +2+3+. . . +n="5 .
Let p(n): 14243+ . . . +n="200
Let n be a positive integer.
Assume that p(n) is true.
1
14243+ ... +n=£‘.(_"_22
Add n +1 to both sides:
n(n+l)
14243+ .. . +n+(n+D)=—"73"+(n+l)
2
14243+ ... +n+(n+l)="+—";2L+—2-
1 2
1+2+43+ ... +n+(n+l)=-(!1-t—)2("—+-l
So p(n + 1) is true.

Therefore, p(n) = p(n + 1) is true.

1(2)

p(1): 1== Note that p(1) is true.

Therefore, by mathematical induction, p(n) is true for every
positive integer n.




Summation Notation

Factorial Notation

4 Example

Part 1~ Inductive Step:
Let n be an integer where n>4.
Assume that p(n) is true.

2"<nl

So, 2"*!' < (n+1)!
Hence, p(n+1) is true.
Thus, p(n) = p(n+1) for n24.
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The sum in the previous theorem can be written in a more
concise form using the Greek letter X, which corresponds to our
letter S.

,§1i=1+2+3+...+n
I=

We read the above notation as "the summation of { as i goes
from 1 to n." When we see the sigma notation, we should
mentally view it as the sum on the right side of the above
equation. Using sigma notation, we can state the previous
theorem as follows:

e L 1
For every positive integer n, '21 i= E(L;—)
i=

In the next example, we have a sequence of sentences where
p(1) is not true, but at some point, it kicks into gear and from
then on out, all the sentences are true. This example involves n
factorial, which is notated as n!. If n is a natural number, n! is
the product of all natural numbers from 1 to n:

nl=n-(n-1)-(n-2)-...-3-2-1
5!'=5:4-3-2-1

Let p(n) represent the following sentence: 2"<n!
For which positive integers is p(n) true? Prove your answer.

p(l): 2'<1 p(1) is not true.
p(2): 22 <2!  p(2)is not true.
p(3): 22<3!  p(3)is not true.
p(d): 2°<4!  p(4)is true. (16<24)
p(5): 2°<5!  p(5)is true. (32<120)

Since the right side of the inequality grows more rapidly than
the left side, we suspect that p(n) is true for n>4. Let's try to
prove it by mathematical induction.

First, we set up the structure for the inductive step, as illus-
trated on the left. Then we work on bridging the gap. We can
derive the left side of the second inequality by multiplying both
sides of the first inequality by 2:

2" < n!
2:.2" < 2. n!
2" < 2. n!
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We now have the left side the way we want it, so let's work on
the right side. One way to bridge the gap is to show that:

2(n) < (n+1)!
We could then use transitivity to get the desired conclusion:
2 <2(n!) and 2(n!) <(n+1)! Therefore, 2™ < (n+1)!
We will now work backwards to try to see if 2(n!) < (n+1)!

2 < (n+1)!

. . (nt1)!
Divide both sidesby n!: 2 < =7

+1)-n-(n~1)....3-2.1
Write out the factorials: 2 < s 3(':,_(';))321

Most factors cancel: 2<n+l

If we can establish this last sentence, we have a proof. But
wait, 4 < n, so 2 must be less than n+ 1. Yes, we do have a
proof. We will now polish it and write it in the correct order.

Theorem  For every integer n, if n 2 4, then 2" < n!.
Induction Proof  Let p(n) represent the following sentence: 2" < n!

Part 1  Letnbe an integer such that n > 4.
Assume that p(n) is true: 2" < n!
Multiply both sides by 2: 2-2"< 2. n!
2™ < 2n!
Since n >4, 2<n+l
Multiply by n!: 2(n!) < (n+1)n!
Thus, 2(n!) < (n+1)!

Since 2™' <2(n!) and 2(n!) < (n+1)!,
by transitivity, 2™ < (n+1)!
This last sentence is p(n+1). So, p(n+1) is true.
Thus, p(n) = p(n+1) when n 2 4.

Part2  p(4)is the following sentence: 2*< 4!
2*=16 and 4! =24. So, p(4) is true.

Conclusion  Therefore, by mathematical induction, 2" < n!
for every integer n where n 2 4.




The Natural Numbers

Principle of
Mathematical Induction

Let § be a subset of N that has
the following properties:

1. For every positive integer n,
ifn€s, thenn+1€8.

2, 1€8.
Then § =N,

1st Version = 2nd Version
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The Principle of Mathematical Induction is intimately con-
nected with the set N of natural numbers. Suppose that S N
and 1 € S. Suppose also that the following is true:

For every integer n, if n€ S, then n+1€8.

From this data, we can deduce that S = N. This fundamental
property of the set of natural numbers is the Principle of
Mathematical Induction. We will now prove that this version is
equivalent to the first version given on page 174. This proof
will test our ability to structure our thinking, for the grammati-
cal structures of what we assume and what we derive are quite
complex. When we assume that the first version is true, we are
not assuming individual parts of it are true; we are assuming
that the complete statement is true:

1st Version: [(Vn, p(n) = p(n+1)) and p(1)] = Vn, p(n)

We then must derive that the complete statement of the second
version is true:

2nd Version: [(Vn,neS>n+le€S)and1e 8] = §=N

Assume that the first version of the Principle of Mathematical
Induction is true.

We will now prove that the second version must be true. Since
its outside structure is an implication, we assume that its two
hypotheses are true. Let S be a subset of N that has the follow-
ing properties:

1. For every positive integer n, if n€ S, thenn+1€ S.
2. 1€8.

Let p(n): n€S. Now translate the above two statements:

1. For every positive integer n, p(n) = p(n +1).
2. p(1) is true.

Since p(n) satisfies the hypotheses of the first version, we can
deduce that p(n) is true for all positive integers n. Thus, for
every positive integer n, n€S. So,NCS.

Since S is also a subset of N, § = N,
Thus, the second version is true.
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2nd Version = Ist Version

Inductive Definitions

4 Example

Conversely, assume that the second version of the Principle of
Mathematical Induction is true.

We will now show that the first version has to be true. We start
by assuming the hypotheses in the first version. Let p(n) be an
open sentence. Assume the following:

1. For every positive integer n, p(n) = p(n+1).
2. p(1)is true.

Define S as follows: § = { n}p(n) is true}
Translate the above two statements in terms of S:

1. For every positive integer n, if n€S, thenn+1€ §.
2, 1€8.

Since the second version is true, we can deduce that S = N,
So, for every positive integer n, p(n) is true.
Thus, the first version is true.

Some textbooks use the second version for the Principle of
Mathematical Induction and some use the first version. As the
above proof shows, the two versions are equivalent.

We sometimes define a sequence in an inductive manner. A
sequence is a function whose domain is the set of natural
numbers. Using the notation s, to indicate s(n), we can repre-
sent a sequence in the following manner:

S15 82 83y 0 0oy Sy oo o

In an inductive (or recursive) definition, we define the first
term of a sequence, then we define each successive term using
previous terms, as illustrated in the following example.

Inductively define the sequence s, as follows:
51=5 Si=Sa1+2
We compute the terms in the sequence as follows:

52=5+2=5+2=7
s3=57+2=T7+2 =9
Si=5+2=9+2 =11
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Using the method in this example, it would take a while to
compute the 1000th term in the sequence. To find a faster
method, let's redo the previous computations, but not do any
simplifications:

s=5+2=5+2

s3=52+2=(5+2)+2

Sa=5+2=(05+2+2)+2

Since multiplication is repeated addition, we can write these
terms as follows:

$2=5+2

55=5+(2-2)

54=5+(3-2)

The above pattern indicates that we can compute s, as follows:
=5+ (n-1)-2

Now we have a closed formula for s, that enables us to quickly
compute any term of the sequence: s,=2n+3

To prove that our closed formula is correct, we can use mathe-
matical induction. First, we set up the outside structure, as
indicated by the brackets. With our focus on what we want to
derive, we use the definition of s,. and work our way down.

Ifsi=5ands,=s._1+2,thens,=2n+3.
Let p(n): s»=2n+3

Let n be a positive integer.

Assume that p(n) is true: s, = 2n+3
Definition of Su1:  Spe1 = Sn+2
Substitute for 5,0 S0 = 2n+3)+2
Sop(n+1)istrue: sp = 2(+1)+3

Therefore, p(n) = p(n + 1) is true.
p(1): s1=2-1+3 Sinces; =5, p(1) is true.

By mathematical induction, p(n) is true for every positive
integer n. So our closed formula is correct.
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Stronger Form

Stronger Principle of
Mathematical Induction

Let p(n) be an open statement.
Suppose the following are true:

1. For every integer n21,

ifp()AP@A ... A p(n),
then p(n+1).

2. p(1) is true.

Then p(n) is true for all
integers n where n21.

The Principle of Mathematical Induction can be stated in a
stronger form by adding more hypotheses in Part 1. Instead of
assuming only that p(n) is true, we assume that p(n) and all the
sentences that precede it are true:

Assume that p(1), p(2), p(3), ..., and p(n) are each true.

The conclusion p(n + 1) is sometimes easier to derive with the
extra assumptions.

The Stronger Principle of Mathematical Induction is stated
on the left. Note that it is identical to the version on page 174
except for the extra hypotheses in Part (1). If we prove Part 1,
we have proved the following infinite list of implications:

n=1: p(1) = p(2)
n=2: [p(1)and p(2)] = p(3)
n=3: [p(l)and p(2)and p(3)] = p(4)

If we verify that p(1) is true, we can then work our way down
the above list, making deductions on each line:

p(1) is true.
Since p(1) = p(2), we can deduce p(2).

Now we know that p(1) and p(2) is true.
Since p(1) and p(2) = p(3), we can deduce p(3).

Now we know that p(1) and p(2) and p(3) is true.
Since p(1) and p(2) and p(3) = p(4), we can deduce p(4).

And so on, down the list. The Stronger Principal of Mathe-
matical Induction guarantees that the Law of Detachment can
be applied an infinite number of times.

The stronger version can be generalized by starting at an
integer other than 1. We will use this form in the following
example. A prime number is a positive integer greater than 1
whose only positive factors are 1 and itself. For example, 2, 3,
5,7, and 11 are prime numbers. 12 is not a prime number, but
12 can be factored as a product of primes: 12 =2 x2x3, It
seems fairly obvious that every integer greater than 1 is a prime
number or a product of prime numbers. However, to prove
this statement, we need the stronger assumption from the
stronger induction version.
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Every integer greater than 1 is a prime number or a product of
prime numbers.

Let p(n): n is a prime or n is a product of primes.
Let n be a integer where n>2.

Assume that p(2) and p(3) and p(4) and . . . and p(n) are true.
We can translate this assumption as follows:

For every integer j where 2 < j<n,
Jis a prime or j is a product of primes.
We want to derive p(n + 1), which we can translate as:

n+1isaprime or n+1isa product of primes.

Assume that n+ 1 is not prime.
Then there exists positive integers a and b such that:

n+1=ab, where l <a<n+1land 1<b<n+1.

So,2<a<n and2<b<n.

By the induction hypothesis, a is prime or a product of
primes. Similarly, b is a prime or a product of primes.
So n+1 can be expressed as a product of primes,
using the prime factors from a and b.

Thus, p(n+1) is true.
Therefore, p(n) = p(n+1).

p(2): 2is a prime or 2 is a product of primes.
Since 2 has no positive factors other than 1 and itself,
2 is a prime number. So p(2) is true.

Therefore, by mathematical induction, p(n) is true for all
positive integers n where n>2.

Mathematical induction is a type of deductive reasoning, even
though its name sounds more like inductive reasoning.
Inductive reasoning is when we suspect that something is true
based on examples, experiments, or experiences. Before we
prove a statement by mathematical induction, we normally
verify it for various values of n, which may be the reason that
Augustus De Morgan gave it the name of mathematical
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induction back in 1838. However, inductive reasoning pro-
vides no guarantee that our conjecture is true. On the other
hand, a proof by mathematical induction does provide a 100%
guarantee that the sentence is true for the specified integers.
Deductive and inductive reasoning each have an important
function in the reasoning process, but the proof method of
mathematical induction is in the camp of deductive reasoning,
not inductive reasoning.

Exercise Set 2.7

1. Consider the following formula.

24446+...+2n=n(n+1)

a. Check to see if the formula works for various values of n.

b. If your examples indicate that the formula is correct, try to use
mathematical induction to prove that the formula is true for
every positive integer n. State what p(n) represents in your
proof, state the conclusion for the first part of the proof, and
also state the final conclusion.

c. Let si denote the ith term in the sum: 2+4+6+...+2n
Give a formula for si:

n
d. Rewrite the sum in part (c) in summation notation: .lea
i=

2. In the adjacent square, we have a picture of 1+3+5+7.

0
a. Expand this sketch to get a picture of 1+3+5+74+9. ¢ o
b. Use visual reasoning to conjecture a formula _°_|

for the sum of the first n odd positive integers. 0

0 0
0
0
0

[= 20« « B o

o o

c. Translate "the sum of the first » odd positive integers"
into the following form: 14+3+5+... _?

To see the pattern, write the sum of the first 2 odd positive
integers, the sum of the first 3 odd positive integers, etc., until
you see how to express a formula for the last term.

d. Use mathematical induction to prove that your formula
from part (b) is true for every positive integer n. State what
p(n) represents in your proof, state the conclusion for the first
part of the proof, and also state the final conclusion.
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e. Give a formula for the ith term in the sum: 1+3+5+...

n
f. Rewrite the sum in part (¢) in summation notation: .lei
P

. Inductively define a sequence as follows: s1=3, s, =58,-1+8
a. Compute the first 5 terms of this sequence.

b. Find a closed formula for s, so that we can compute s
without computing sw. Hint: Redo part (a) but do not simplify
your computations and a closed formula will be easy to spot.

c. Use mathematical induction to prove that your formula in part
(b) always works.

. Let a and d be fixed real numbers.
Inductively define a sequence as follows: si1=a, sa=s.-1+d
This type of sequence is called an arithmetic sequence.

a. Find a closed formula for s».

b. Use mathematical induction to prove that your formula is
correct.

. Inductively define a sequence as follows: s51=3, s, =5, 8

a. Compute the first 5 terms of this sequence.

b. Find a closed formula for 5. so that s can be computed
without computing ss.

c¢. Use mathematical induction to prove that your formula in part
(b) always works

. Let a and d be fixed real numbers.
Inductively define a sequence as follows: si=a, s, =8n-1-d
This type of sequence is called a geometric sequence.

a. Find a closed formula for s,.
b. Use mathematical induction to prove your formula is correct.

n
. 'ElSi =5 +5+5s3+... S». Rewrite each with summation notation.
=

a 2+22+2+...+2

NI R L
b.2+4+8+...+2n

C. Pr Iyt et

. Rewrite each sum in expanded notation.

a 5 b L5 b Es o
cLetSn=2+22423+. .. 42"

a. Find a closed formula for S,. Hint: Multiply both sides of the
above equation by 2, then subtract the two equations and
simplify.
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10.

1.

12.

13.

b. Use mathematical induction to prove the closed formula for S,
in part (a).

c. LetS,=3+3*+3%+...+3" Findaclosed formula for ..
Use mathematical induction to verify your formula.

d. Generalize your formula in part (c). Then use mathematical
induction to verify your formula.

Compute the given sum forn =1, 2, 3, and 4.

Try to find a possible formula for the sum.

Make sure that your formula works forn =1, 2, 3, and 4.

Then try to verify your formula using mathematical induction.

a Tyt gttt

1 1 1
by +33+ . oy = —

Use Mathematical Induction to prove the following:

n(n+1)(2n+1)
6

b. For every positive integer n,2""' < n! .
c. For every positive integer n, n <2".

a. 12+22+3%+4%+ ...+’ =

Conjecture: n? <2"

Is the above conjecture true for every positive integer n?

If not, can you find an integer ¢ so that it is true for every integer
n2c? If so, prove your result by mathematical induction.

Prove Part 1 of the following theorem in a manner different from
the proof given on page 180. Instead of multiplying the inequality
by 2, multiply both sides by n + 1, which will give you the desired
right side. Then you must figure out how to derive the left side.

Theorem  For every integer n24,2"<n!.
Induction Proof  Let p(n) represent the following sentence: 2"<n!

Part 1  Let n be an integer such that n > 4.
Assume that p(n) is true: 2"<n!

Multiply both sides by n+1:
So, 2" < (n+1)!
Therefore, p(n+1) is true. So, p(n) = p(n+1) for n=>4.
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Use mathematical induction and cases to prove that every integer
is even or odd.

Theorem  Every integer is even or odd.
Induction Proof Let p(n): n is even or n is odd.

Part1 Letnbe aninteger. Assume that p(n) is true.
Then n is even or n is odd.

Case 1: Assume
Therefore,

Case 2: Assume
Therefore,

Therefore, p(n+1) is true.

So, p(n) = p(n+1).

16. The complex number a+ bi can be identified with the point (a,b)

17.

18.

(page 15). The complex number cos @ + i sin § can be

identified with the point (cos 4, sin ). (cos 6, sin 6)

a. Us the Pythagorean Theorem and the definitions
of cos @ and sin @ to explain why the point
in the adjacent sketch is (cos 8, sin 8).

b. Use mathematical induction to prove the following:
DeMoivre's Theorem: Let n be a positive integer and let & be a

real number. Then (cos 8 + i sin 8)" = cos nf + i sin nb.
Hinr: cos (a+ f) =cosacos f-sinasinf
sin (@ + f) =sina cos f + cos asin f

The rules for multiplying complex numbers are the same as for
real numbers, with the additional rule that i = —1.

c. How far is the point, cos § + i sin #, from the origin?
Describe the location of the point, cos 45° + i sin 45°.

d. Use DeMoivre's Theorem to describe the location of the point,
(cos 45° + i sin 45°) 3.

Let n be an integer greater than 1. Use mathematical induction to

prove the following: The product of n odd integers is odd.

Derive a formula for the sum of the first n counting numbers as
follows. LetS=1+2+3+...+n Write the sum in reverse
order: S=zn+(n-D+n-2)+ ... +3+2+1

Add the two equations. On the right side, compute the sum by
adding the first 2 terms together, the second 2 terms together, etc.
Solve for S. Compare your derivation with the proof on page 178.

189
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Activity 2.8

In a monastery, 64 disks, with each a different size, were placed on
one of three posts, with the largest disk on the bottom, the next largest
on top of it, and continuing in this manner with the smallest disk on
top, as illustrated below.

The monks were ordered to move the disks, one at a time, to one of
the other 2 posts, subject to the condition that a disk must always be
set on top of a larger disk. The task must be continued until all 64 of
the disks are transferred to one of the other two posts. When the
monks complete the task, the people were told that the world would
end. Naturally, many people were concerned as to how long it would
take the monks to finish.

The monks move one disk each second, and they always make the
least number of moves to accomplish the goal. How long will it take
them to move all 64 disks to another post?

1. Before you start on this fascinating problem, make a wild
guess as to what you think the answer might be in years.

2. Make a model and practice the movements.

3. This counting task will be beyond our grasp unless we analyze
the process in small steps and look for a pattern. How long
does it take the monks to move the two disks on top to another
single post?

4. How long does it take the monks to move the three disks on
top to another single post? (Use your previous answer)

To move the four disks on top? (Use your previous answer.)
To move the five disks on top? To move » disk?
5. Verify your last answer using mathematical induction.

6. So, how many years will it take the monks to move the 64
disks? Is it longer than you initially imagined?
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=2.8 Axiomatic Systems =

Reason

Reason
Reason

Axioms

An axiom for a system is a
statement assumed true in that

system, requiring no proof.

Abxioms

Theorens 1
Theorem 2
Theorem 3

Axiomatic systems provide a structure in which we logically
order our reasoning about some area of interest, such as geome-
try or set theory or number theory. To construct an axiomatic
system, we first work backwards through what we personally
understand about the subject and identify what we want to use
as the foundation for the system. For example, what is the
foundation for what we accept as true?

To be a creative thinker, we must ask good questions which
will lead us on a path of inquiry. Along this path, suppose that
we discover an interesting relation. To authenticate our discov-
ery, we must validate it with a proof. As we write our proof,
we justify each step with a reason that is either simpler or refers
to previous results.

Having finished our proof, suppose that we now go through
the same process for each reason that we used in our proof.
We prove each reason, justifying it with simpler reasons. If we
continue this process with each new reason that we use, we will
back up, step by step, until we cannot find any simpler reasons
to use in our explanation. At this point, we will have reached
an impasse. We cannot explain or prove these simplest of
sentences because there is nothing simpler to use to explain
them.

An axiomatic system has a few sentences, called axioms, which
we consider true but cannot prove. It is not possible to prove
everything because we would have no previous knowledge to
use when we try to construct our first proof. Consequently, we
must accept some sentences as true so that we have something
to use in our first proof.

In the first proof that we write in a system, the only tools
we can use are the axioms and definitions. In the second proof,
we can also use the first theorem if we so choose. The more
theorems that we prove, the more tools that we have to use in
future proofs. To get started with the first proof, though, we
must have axioms. The axioms form the foundation for truth in
an axiomatic system. They provide us with simple truths from
which we construct more sophisticated truths.

Someone else going through the same process of explaining
each reason with simpler reasons may back up in a different
way, ending up with different axioms, so the axioms selected
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This wonderful book [Euclid's
Elements), with all its imperfec-
tions, which are indeed slight
enough when account is taken
of the date it appeared, is and
will doubtless remain the
greatest mathematical textbook
of all time.

Thomas 1. Heath
1861-1940

are not necessarily unique. Different sets of axioms can
produce the same system.

If Statement A is equivalent to Statement B, we may choose
to call Statement A an axiom and then prove Statement B, in
which case Statement B would be a theorem. On the other
hand, we could call Statement B an axiom and then prove
Statement A. As a matter of form, though, we always choose
the axioms to be as simple as possible. If Statement A sounds
simpler than Statement B, we would use it as an axiom. The
ultimate goal in logical reasoning is to make things as simple as
possible. When we have a complex situation, we look for a
simple explanation as to why things happen the way that they
do. Perhaps we are guided by the same laws that drive the
universe, which make objects traveling through space always
seek the simplest path.

Let's go back in time 2300 years and imagine Euclid pacing
through the magnificent rooms of the great library of Alexan-
dria, rooms filled with the greatest collection of knowledge
known to mankind. Having just started his own school in
Alexandria, Euclid is thinking about the best way to teach his
students how to reason in a logical manner, for he knows that
only through reasoning can humanity continue to expand the
knowledge housed in the greatest library of antiquity. He also
know that nowhere can the pure structure of reasoning be
demonstrated in a brighter light than in the field of geometry,
for there students can use their visual reasoning to develop
their skills in deductive reasoning. As he ponders the vast
body of geometric knowledge, possibly thinking of how he will
teach his students the ingenious proofs of Pythagoras or
Eudoxus, Euclid realizes that the whole body of geometric
knowledge needs to be organized in a simpler format with the
theorems arranged in a linear order. This arrangement would
make it easier to prove the more complex theorems with a
sequence of simple steps, referencing previous theorems.
Furthermore, by making the tools used to prove the more
complex theorems stand alone on their own right as theorems,
these tools would become available for general use thereafter.

Euclid then organized the work of the brilliant thinkers
before him into a series of textbooks whose influence on
western civilization has been ranked as second only to the
Bible. Of course, Euclid had to work backwards to find out
where to start. As he tried to explain each reason with a
simpler reason, he arrived at a surprisingly small core of only
five simple truths from which he could derive all the other
results. His five axioms, or postulates as they were called at



Postulates of Euclidean Geometry

. Through any two points,
there exists a unique straight line.

. For any two points on a line,
there exists another point on the
line beyond the other two.

. For every point C and length r,
there exists a circle of radius r
with C as the center.

. All right angles are congruent.

5. In the plane determined by a
line ¢and a point P noton ¢,
there exists a unique line through
P that is parallel to .
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that time, can be translated into the equivalent forms in the
adjacent list.  Notice the beautiful simplicity of these
postulates. Notice also that four of these five postulates have
an existence clause.

Most axioms focus on existence questions, as do the axioms
of faith in religious systems. A basic axiom in most religions is
whether or not god exists, and, if so, how many gods are there?
The atheists postulate O gods, the Christians and Moslems
postulate 1 god, and the Hindus postulate more than 1 god.
True believers in these religious groups have spiritual experi-
ences that sustain their belief, spiritual experiences that cannot
be backed up with deductive reasoning. Many religious people
believe that their axioms of faith are the only true axioms of
faith, which often generates conflict and wars with those who
do not see the world from their religious perspective.

Until the 19th century, a similar view was shared by intel-
lectuals concerning the truth of Euclid's postulates (page 198).
It was believed that Euclid's postulates were absolute truths,
truths that were not to be questioned for they described inher-
ent truths of reality. From this unquestioning faith in the five
axioms of Euclid, a geometric picture of our universe emerged
with straight lines traveling across cosmic distances, straight
lines that behaved as they were perceived to behave here on
Planet Earth. Current scientific evidence, though, suggests that
our view of the universe as Euclidean may be as outdated as
our earlier view that the earth was flat. However, regardless of
the future scientific verdict on the geometry of our universe,
the axioms of Euclidean geometry will still be true in Euclidean
geometry. We cannot disprove an axiom for there is nothing to
disprove. The axioms serve as the truth foundation of that
particular system. If that system does not suit our needs for a
particular purpose, such as creating a mathematical model of
our cosmic universe, then we can use another slate of axioms
and build another axiomatic system. Thus, the axioms are
relative truths. An axiom in one system is not necessarily true
in another system.

After the tremendous paradigm shift caused by the great
debate over the absolute truth of axioms, mathematicians found
it necessary to impose more rigorous standards on axiomatic
systems. By the new standards, Euclidean geometry needed a
few more axioms to make it completely rigorous. The new
standards also required a closer inspection of how we work
with sets. Sets seem so simple that they had always been
worked with in an intuitive manner. The intuitive bubble burst,
though, when Bertrand Russell developed a contradiction from
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Abdom of Set Theory

There exists
an empty set.

Undefined Terms

Set — a collection of objects.
Collection — a group of objects.
Group — a set of objects.

Defenition 1.
Definition 2.
Definstion 3.
Defenition 4.

an "intuitively obvious" construction of a set (page 206), and so
it became necessary to construct an axiomatic foundation for
sets that would eliminate Russell's paradox. The first axiom,
"there exists an empty set," is the Big Bang of Set Theory,
giving us the existence of an initial set from which we
construct all other sets (page 276). The other set theory axioms
(page 277-285) give us ways to construct other sets from this
one set, until we build a rather miraculous universe of sets
reaching into the mysterious realms of infinity.

The process of proving a theorem and then proving each reason
that we use leads us back to the problem of how we write the
first proof in a linearly ordered system where we can only use
previous theorems. To solve this dilemma, axioms were
introduced. We run into a similar problem when we start
analyzing our definitions. To understand a definition, we must
understand the definition of each word in it. If we look up the
definition of a word in the dictionary, along with the definition
of each word used in that definition, and continue this process,
sooner or later we will find definitions that are circular. For
example, in the adjacent definitions, a set is defined in terms of
a collection, which is defined in terms of a group, which is
defined in terms of a set. If we do not know the meaning of
either set or collection or group, these definitions will have no
meaning for us.

Definitions in a dictionary are by necessity circular for it is
impossible to define every word in a linear manner. Otherwise,
we could arrange the definitions in an ordered list with our first
definition at the top. If we wish to make our definitions
non-circular, each time we define a new word, we must use
only previously defined words. The dilemma is the construc-
tion of the first definition since there are no previously defined
words that we can use in it. The only way out of this dilemmma
is to admit that it is not possible to define every word, and
select certain words as undefined.

Undefined terms are the basic words from which we
construct the vocabulary for an axiomatic system. The terms
selected to be undefined represent the simplest concepts,
concepts that cannot be explained by simpler concepts.
However, the notion of what is simplest is a matter of personal
preference. Different starting points can lead to the same
results. Using different undefined terms and different axioms,
mathematicians have produced different axiomatic systems that
generate the theorems of Euclidean geometry.



Undefined Terms
of Set Theory

set
is an element of

Undefined Terms of
Euclidean Geometry

point
line
ison
is between
is congruent to

Abdxion. Through every two points,
there exists a unique straight line.

Translation: For every two points A and
B, there exists a unique Jine ¢

such that A ssonland B isont.
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When we select the undefined terms for a system, we need
both subjects and verbs so that we have the necessary
ingredients to specify our axioms, which are sentences. In the
axiomatic system of set theory, the undefined terms are ses,
which is a noun, and is an element of, a verb that gives a
relation between two nouns. Using only these two undefined
terms, along with the five logical operators and two quantifiers,
we can build definitions for all the concepts of set theory.
Logical reasoning is a linear process and it is rather amazing
how little we need to get us started. Like the Big Bang Theory
that our whole universe miraculously originated from one little
point, it is no less spectacular that the vast universe which the
theory of sets encompasses originates from one little noun and
one little verb.

We all know what a straight line is, but can we put it into
words — using no visuals — so that an intelligent being from
another galaxy could understand what we meant? If we do
come up with a definition, we will then be faced with the task
of defining each word in the definition for these intergalactic’
friends do not yet understand our language. Even though we
personally know what a straight line is and what a point is, it is
extremely difficult to define them. Euclid defined a straight
line as "a line which lies evenly with the points on itself," but
he did not define what it meant to "lie evenly." He defined a
point as "that which has no part," but he did not define what
"part” meant. By today's standards, Euclid's definitions are not
considered axiomatic definitions. Since there are no simpler
concepts with which to explain them, we classify "point” and
"line" as undefined. In this context, "line" means "straight
line.," Using these two undefined nouns and the three
undefined verbs listed in the adjacent box, we can build the
vocabulary for Euclidean geometry. Notice how the undefined-
verbs give a relation between two nouns:

The point A is on the line £
The point A is between the points B and C.

Like the axioms selected for a system, the undefined terms that
are selected are not unique. Other axiomatic systems have been
constructed for Euclidean geometry that use different
undefined terms,

If a term is undefined, though, how can we work with it?
How do we know what it represents? We work around this
dilemma by using the axioms to state the properties that an
undefined term must have. In the translation of the adjacent
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Definitions

Grammar

axiom, note how the axiom gives a property of the undefined
terms, point, line, and is on.

The "axioms give the basic properties of the undefined
terms; they are the basic assumptions that we make about the
undefined terms. On the other hand, the undefined terms are the
basic building blocks, similar to atoms, from which we build
the vocabulary in the system. The undefined terms form the
foundation for the vocabulary of an axiomatic system, whereas
the axioms form the foundation for what is true in the system.
Axioms are sentences, but undefined terms are not sentences;
they are terms.

When we define a term, we phrase it in a sentence and then
establish the meaning of that sentence with a string of words
that also form a sentence. For example, to define the term, <,
we define the meaning of the sentence A & B with the following
sentence: for every x, if x€ A, then x€B. Since we can use the
sentence being defined and its definition interchangeably, we
always use the "if and only if" connective in a definition.

Using the undefined terms, we make our first definition,
then our second definition, and so on. At each stage, we can
only use the undefined terms and previously defined terms in
our new definition, which then gives us another term that we
can use in future definitions. Slowly and carefully we build the
language of the system.

Since a definition must be stated as a sentence, we must have a
clear understanding of the grammar of the system before we
make our first definition or state our first axiom. The grammar
for an axiomatic system is a clearly defined set of rules for
forming sentences, specifying the required syntactical structure
that an expression must have in order to be classified as a
sentence. For example, the expression A U B does not have the
proper syntax to be classified as a sentence. The rules for
grammar in our everyday language are very complex, which
makes it rather difficuit to program computers to translate from
one natural language to another without some distortions.
However, the limited vocabulary of mathematics makes it
possible to have a clearly defined set of grammar rules, which
are a subset of the grammar rules for everyday language. If an
expression that we write does not form a sentence in our
everyday language, it is not a sentence in the standard
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A progf is a linearly ordered struc-
ture of interwoven valid arguments
where each sentence is one of the
following:

*  An assumption used in
a valid argument

* An axiom, previous theorem,
or definition

* A sentence that can be derived
from previous sentences by
a valid argument

The final stand-alone conclusion is
the theorem that has been proved.
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mathematical systems. AUB is not a sentence in our everyday
language, so we cannot use it as a sentence in a proof.

Using the undefined terms and defined terms in conjunction
with the proper grammar, we build the sentences that can be
formed within our system. Now, we look out over our vast
universe of sentences and we wonder — which of those
sentences are true and which are false? This question brings us
to the most important component of an axiomatic system, the
component that sets the rules for making logical deductions ~
the proof procedure.

Proofs provide a deductive procedure for deciding what is true
in a system and what is false. If we prove a sentence, we
classify it as true and label it as a theorem; if we disprove a
sentence, we classify it as false. Using the proof procedure, we
build on the foundation of axioms, finding other statements that
we can prove are true. A sentence in a proof must be either:

* asentence that we assume is true
* asentence that we already know is true

» asentence that we can derive from previous
sentences by a valid argument

To form a proof, the sentences must be connected as described
in the adjacent box. A proof is a linearly ordered structure of
interwoven valid arguments. As we saw in Section 2.1, the
rules for the outside construction of a valid argument are essen-
tially the rules for how we use the logical operators and quanti-
fiers. The definition of implies gives different ways to set up
the structure to derive an implication; the definition also gives
the structure for making derivations from an implication.
These are two different proof techniques:

* how we derive an implication
* what we can derive from an implication

Similarly, the definition of or gives the rules for setting up the
structure to derive an or-sentence; it also gives the structure for
making derivations from an or-sentence. In a proof, it is essen-
tial to remember that deductions made from an assumption are
not stand-alone conclusions. An assumption used in a valid
argument must always be included in the final conclusion. For
example, if we assume p is true and then derive g, our final
conclusion is p=4.
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An Axiomatic System

Absolute Truths

Independent Axioms

In summary, an axiomatic system is composed of the following:

* Undefined terms from which we construct
the vocabulary of the system.

* A grammar which gives the rules for forming
sentences.

* Definitions built from the undefined terms.

* A proof procedure which give a deductive method for
deciding what is true in the system and what is false.

* Axioms, sentences assumed to be true.

* Theorems, sentences that we can derive
from the axioms.

The early Greeks devised the axiomatic method for deductive
reasoning. It is rather surprising that since the time of Euclid,
the deductive method of reasoning and constructing proofs has
remained essentially the same. However, our view of the
axioms has drastically changed, causing one of the most
profound paradigm shifts in all of human history.

For over 2000 years, axioms for mathematical systems were
considered to be self-evident truths. They were considered as
absolute truths, statements whose truth could not be questioned
because it was thought that they described basic properties of
physical space. This view was held until the 19th century when
the quest for establishing the independence of Euclid's axioms
forced a radical change in our perception of truth, a change so
radical that its reverberations affected all areas of intellectual
thought.

A set of axioms is independent if none of the axioms can be
derived from the others. If we can derive a statement from the
axioms, it is not necessary to list it as an axiom for we can list it
as a theorem instead of an axiom. We prefer not to make more
assumptions than are necessary. When the a set of axioms are
independent of each other, we have a minimal list of
assumptions about that system.

Many mathematicians regarded Euclid's Fifth Postulate
with suspicion, not because its truth was in question, but
because it was more complex than his other four axioms. They
thought that it should be a theorem instead of an axiom. Euclid
stated his Fifth Postulate in the following form:



2.8 Axiomatic Systems 199

Euclid's Fifth Postulate: If two lines in a plane are cut
by a transversal so that the sum of the interior angles on
one side of the transversal are less than a straight angle,
then the 2 lines must intersect on that side.

Euclid could have phrased his Fifth Postulate in one of the
following equivalent forms:

Triangle Sum Postulate: The sum of the angles in a
triangle is 180°.

Parallel Postulate: In the plane determined by a line ¢
and a point P not on ¢, there exists a unique line
through P that is parallel to¢.

Equidistant Postulate: Parallel lines are everywhere
equidistant.

If one structures their thinking in the way described in this
chapter, it is not too difficult to prove that Euclid's Fifth Postu-
late is equivalent to each of the above statements, which
certainly seem like obvious "truths." A proof of any one of
these statements would also prove Euclid's Fifth Postulate since
they are equivalent.

Through the centuries, the challenge of proving Euclid's
Fifth Postulate attracted many great intellects, but with no
success. In 1733, Girolamo Saccheri, a Jesuit mathematician,
tried to prove the triangle sum version with a proof by contra-
diction. He assumed that the sum of the angles in a triangle is
not 180° and tried to find a contradiction. We can imagine his
great excitement when he thought that he had found one. He
published his work, but after his death, a logical error was
found in his reasoning. Although Saccheri did not demonstrate
a contradiction, he did derive several interesting theorems that
were logically correct.

Continuing the quest that had spanned two millennium, in
the early 19th century, Carl Gauss, Janos Bolyai, and Nikolai
Lobachevsky noticed independently that replacing Euclid's
Fifth Postulate with its negation yielded a strange, but interest-
ing, new set of theorems, including those that Saccheri had first
proved. They began to suspect that a contradiction would not

be found - that they were seeing a new axiomatic system that

was logically valid. This new system, known today as
non-Euclidean geometry, was extremely controversial in the
19th century because it defies our intuitive perception of
reality. From our visual perception of the world around us,
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Models

a point P, neither of which intersect a given line, with all three
lines contained in the same plane?

Gauss, one of the greatest mathematicians of all time, did
not publish his results, perhaps because he did not want to
waste his time defending something that he knew was true,
especially against people like Emanuel Kant and other philoso-
phers who adamantly believed that space had to be Euclidean.
Bold enough to risk the ridicule of academia, Bolyai (1833)
and Lobachevsky (1829) each published the theorems they had
derived in this strange new system. However, neither proved
that their system had no contradictions. Thus, the naysayers
continued to believe that someday a contradiction would
surface in their bizarre system. On the other hand, though, no
one had ever proved that Euclid's system has no contradictions.

It was not until 1868 that the question was finally settled.
By constructing a model of non-Euclidean geometry within the
framework of Euclidean geometry, Eugenio Beltrami proved
that if Euclidean geometry has no contradictions, then
non-Euclidean geometry also has no contradictions. In other
words, non-Euclidean geometry is as logically sound as Euclid-
ean geometry. This result proved that Euclid's Fifth Postulate
could not be derived from the other four axioms.

To understand Beltrami's method of proof, we need to under-
stand what is meant by a model of an axiomatic system. To
construct a model of an axiomatic system, we construct a model
of each undefined term in the system. A model of an undefined
term is some type of example that has those properties specified
by the axioms. Consider the axiomatic system built from the
following three undefined terms and three axioms.

Undefined Terms: point, line, and is on:
Al: For every two points, there is a line on them.

A2: Every line is on at least two points.
A3: Every point is on at least two lines.

Suppose that we use houses to model points and paths to model
lines. For "is on," we will use the same interpretation. Doing a
direct substitution in the above axioms gives the following
translation of the axioms within the context of our model.

M1: For each two houses, there is a path on the two houses.
M2: Every path is on at least two houses.
M3: Every house is on at least two paths.
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If we have a set of houses and paths that satisfy the previous
three sentences, then we have a physical model of our
axiomatic system. For example, in the adjacent illustration, we
have six houses and various bicycle trails between them. By a
path between two houses, we will mean a bicycle path where
the paper boy can ride from one house to the next. If we check
carefully, we will see that this interpretation of point and line
satisfies the three axioms. So, we have a model of our
axiomatic system.

Since a model of a system has all properties specified by the
axioms, any theorem that can be derived from the axioms must
also be true in the model. Consequently, the theorems of an
axiomatic system are true in all models of the system. By
proving a theorem in an abstract setting, we can then apply it to
a host of different models with no further derivations required,
which is the main reason that abstract thinking is such a power-
ful tool.

Beltrami settled the famous controversy over Euclid's Fifth
Postulate by building a model of non-Euclidean geometry in a
Euclidean plane. His interpretation of the meaning of the
undefined term, "straight line," was not what we would tradi-
tionally call straight, but it did satisfy the first four axioms of
Euclidean geometry. However, it did not satisfy Euclid's Fifth
Postulate. If there were a contradiction that could be derived
by negating Euclid's Fifth Postulate, then Beltrami's model
would have to contain the contradiction, and, in turn, the
Euclidean space in which his mode! was embedded would also
contain the contradiction. Beltrami's model proves that if non-
Euclidean space has a contradiction, so does Euclidean space.

This startling new result — that non-Euclidean geometry is as
valid as Euclidean geometry — forced scholars in all disciplines
to change their view of truth. The announcement of this result
had a momentous impact on the mindscape of 19th century
intellectuals. It made scholars question their concept of truth
and their faith in mathematics as the bastion of objective truth.
The previously sacrosanct view of mathematical truths as
absolute would no longer hold water. "Obviously true" sen-
tences, such as the parallel postulate, were false in this new
system. Mathematical truths could no longer be considered ab-
solute; they now had to be viewed as true relative to a system.
The shock waves spread throughout the intellectual world.
If truth cannot be absolute in mathematics, the most objective
of all disciplines, how can it be absolute anywhere? Truth is
relative, relative to the system that we construct for it. The
concept of relativity then invaded the worlds of philosophy,
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theology, science, and the humanities. It is rather amazing that
the seemingly isolated abstract reasoning of mathematicians —
in their quest to establish the independence of Euclid's axioms
— paved the way for Einstein's Theory of Relativity, new
radical theories of literary criticism, and new directions in art,
forcing the western dependence on absolute realism to fade into
the background. Today, after all the dust has settled, we
consider an axiom to be nothing more than a sentence that is
assumed true for a particular system. The same sentence could
possibly be false in another system.

As we discussed on page 200, a model of an axiomatic
system is an example where each undefined term is assigned a
specific meaning so that the corresponding interpretation of
each axiom is true in the example. Since axiomatic systems,
like Euclidean geometry, were originally constructed to model
some aspect of reality, we also call an axiomatic system a
mathematical model of its physical counterpart.

The axioms for Euclidean geometry were based on the
human visual perception of straight lines, but our visual
perception is limited to very small distances. Furthermore, we
can only see very narrow bands of visibility in the radiation
spectrum. Since light rays are the medium through which we
see the physical world, their shape is how we see "straight."
Fence posts appear to be lined up straight because of the way
the light rays carry their image to our eyes. If light rays were
sufficiently curved, we could look straight ahead and see the
back of our head. Our intuitive notion of straightness is based
completely on light rays.

At the turn of the century, Albert Einstein startled the scien-
tific community with his prediction that a ray of light would be
curved over large distances. Several years later his prediction
was verified. If we try to explain this phenomenon by saying
that the light ray was distorted by a gravitational field, then we
have to ask where the gravitational field came from. If we say
that it comes from all the mass hanging out in that vicinity, then
we have to ask why is it that all the mass is huddled together in
that particular location. If we say that it may be that space is
curved and the mass is hanging out there because of the curva-
ture of space, then we have stripped away the physical accou-
terments down to the abstract realm of mathematics. An
axiomatic system that models space as curved is different from
Euclidean geometry. Even though we have curves in Euclidean
geometry, space itself is not curved.

The Euclidean truths that we were taught in high school,
such as the sum of the angles in a triangle is 180°, do not
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necessarily transfer to cosmic space. Euclidean geometry is a
good model of physical space when we are only concerned
with small distances, such as those on planet Earth, but when
cosmic distances are involved, non-Euclidean geometry may
provide a better model.

Given any well-formed sentence that can be built from the
terms of an axiomatic system, we would like to be able to either
prove it or disprove it. An axiomatic system that has this
capability is called complete.

A sentence is called decidable if it is possible to decide its
truth value with our proof procedure. If a sentence can be
proved from the axioms, then the sentence is true; if the
sentence can be disproved from the axioms, then the sentence
is false. If it is not possible to either prove a sentence nor
disprove it, then the sentence is undecidable. The axioms are
decidable since they are true by virtue of being an axiom,

The sentences of an axiomatic system fall into four catego-
ries, The first category is the axioms, represented in the
adjacent illustration at the foundation of the system, for they
are the seeds from which all the other truths emerge. On the
left side of our axiomatic Tree of Knowledge, we have the true
sentences which can be proved. On the right side we have the
false sentences which form a mirror image of the left side: the
sentence p is on the TRUE side if and only if ~p is on the
FALSE side. The fourth category, high above the provable and
disprovable sentences, way beyond the reach of our axiomatic
branches, are the undecidable sentences which can neither be
proved nor disproved.

Since the ultimate goal of logical reasoning is to sort out
what is true and what is false, we prefer to have a complete
system, a system that has no undecidables floating beyond our
grasp — a system whose axioms are rich enough to enable us to
classify every sentence as either true or false. As an example
of system that has an undecidable sentence, consider a system,
called neutral geometry, whose axioms are Euclid's first four
postulates. Now consider the following sentence:

For every triangle, the sum of its angles is 180°.

As we saw in our earlier discussion, this sentence can neither
be proved nor disproved in neutral geometry, so it is
undecidable. Thus, neutral geometry is not a complete system.
If we take this undecidable statement and add it as an axiom
to our system, we produce a new axiomatic system which is
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Godel's Theorem

In an axiomatic system that
contains an infinite set, there
will always exist sentences that
cannot be proved or disproved
from the axioms of that system.
Furthermore, even if that state-
ment is added as an axiom to
the system, there will still be
other sentences that cannot be
proved or disproved.

Euclidean geometry. The problem child has now been taken
care of for we made it an axiom. Furthermore, by making it an
axiom, we pulled a whole cadre of undecidables down into the
axiomatic Tree of Knowledge. We can prove all the equivalent
formulations of our new axiom, including the parallel postulate,
and derive a host of our theorems as well. The question now is
— did the addition of this new axiom eliminate all the
undecidables, or are there still more floating around beyond the
grasp of our tools of deductive reasoning?

Until 1931, scholars believed that it should be possible to
construct a strong enough set of axioms so that every sentence
would be decidable. This belief was shattered, though, when
Kurt Godel (1906-1978), a German mathematician working at
Princeton, proved one of the most remarkable theorems of the
20th century, or perhaps of any century. Godel proved that in
an axiomatic system that contains an infinite set, such as the set
of natural numbers, there will always be some well-formed
sentences that can be neither proved nor disproved.

Consider the simple operations of arithmetic on the set of
natural numbers. Since there are an infinite number of natural
numbers, there will always be some sentences about natural
numbers that we will not be able to prove or disprove. Perhaps
the following famous conjecture, proposed by Christian
Goldbach in the 18th century, is one of those sentences that can
neither be proved or disproved:

Goldbach's Conjecture: Every even integer greater
than 2 is the sum of two prime numbers.

4=242
6=3+3
8=3+5
10 =347

Mathematicians have worked on Goldbach's Conjecture for
over 200 years, but have not yet proved or disproved it. A
proof may be found some day. After all, it did take over 2000
years to settle the independence question of Euclid's Fifth
Postulate. More recently, a 300 year quest was laid to rest in
1995 when Andrew Wiles presented a proof of Fermat's last
theorem. Even if a proof is never found for a conjecture like
Goldbach's, the continued effort of trying to find a proof often
leads to new, fertile areas for mathematical inquiry.
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If we tell a lie and get caught, the outraged party may say, "You
contradict yourself." We have a similar meaning in mathe-
matics. When we lie, we represent a false sentence as true, so
we are making the claim: p and ~p. This sentence form is a
contradiction in mathematics. A contradiction is an abstract
compound sentence that is always false. Since a law of logic is
always true, its negation will be a contradiction. The contra-
diction form that we use most often is: p and ~p. If we can
deductively derive a sentence and also derive its negation, we
have a full-blown contradiction, which has a fatal impact on the
system that contains it. One little contradiction makes every
sentence a contradiction! Below is a simple proof of this
amazing statement, which uses nothing more than the definition
of implies.

If an axiomatic system has a contradiction, then every sentence
in the system is a contradiction.

Suppose p is a contradiction. Then p is true and p is false.

Let g be an arbitrary sentence in the system.
By the definition of implies, since p is false, p = q is true.
But p is also true and since we now have that p= g is true,
we can deduce that g is true.

Since g represents an arbitrary sentence, every sentence is true.
~q is a sentence, SO ~q is also true.

Thus, every sentence is both true and false.
Therefore, every sentence is a contradiction.

A contradiction can never be ignored because it turns every
sentence in the system into a contradiction! We no longer have
to look for theorems, for every sentence is a theorem, and the
negation of every sentence is a theorem. The system is
completely trivial.

Logically speaking, if we tell one little lie, every statement
that we make automatically becomes a lie. Even in personal
matters where we are not bound by the strict rules for logical
reasoning, we still find it difficult to believe someone who has
been caught in a lie. Since the discovery of a contradiction is
logically catastrophic, it may surprise you to learn that contra-
dictions have been found in mathematical systems.
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Russell's Paradox

In the 19th century, mathematicians thought that sets could be
formed from any mathematical property. If one had an open
statement p(x), one should be able to form the set of all x such
that p(x) is true: { x | p(x) }. However, this belief was dramati-
cally shattered in 1902 when Bertrand Russell conceived the
following paradoxical set;

V={x|xisasetand x&x)
Is V an element of V?

Before we attempt to answer the above question, let's try to find
some sets that are elements of V. For example, consider the
following set:

A={45,7)

A has 3 elements and A is not one of the elements. So, A € A.
Thus, A is an element of V.

Continuing in a similar manner, we can find a lot of sets
that are elements of V. Let's try to find an element that is not in
V. What if we take the set A and throw A into it?

B={4,5,7,{457})

B has 4 elements and A is one of the elements, so A€ B.
However, B¢ B. So B is also an element of V.
Let's try an infinite set:

N={123,...}

1eN, 2eN, 3eN, etc. However, NgN.
Thus, N is an element of V.

We have found several elements of V, but we have not yet
produced an element that is not in V. We are now ready to
contemplate Russell's question: Is VeV?

V={x|xisasetandxe&x ).
Either VeVor V€V,

Case I: Suppose that VeV,
Then by the definition of V, V&V.
Contradiction!

Case 2: Suppose that VEV.
Then by the definition of V, VeV,
Contradiction!
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The set V produces a contradiction. The impact of Russell's
Paradox was devastating to Gottlob Frege, the founder of
modern mathematical logic. After developing a theory for
symbolic logic and quantifiers, Frege spent many years
constructing a logical foundation for arithmetic. In 1893 he
published Volume 1 of his Foundations of Arithmetic. After
nine more years of work, he completed the second volume, but
while it was being printed, Frege received a letter from
Bertrand Russell which described his paradox. This news was,
of course, logically catastrophic, but it was also personally
catastrophic to Frege. He tried to revise his axioms to elimi-
nate the contradiction, but became very bitter and despondent,
making no more significant contributions to mathematics.

Because of Russell's Paradox, a new axiomatic structure for
sets had to be constructed. With the new axioms (page 279),
the rules for constructing sets were restricted so that Russell's
description of V cannot be classified as a set, which eliminates
his paradox.

A axiomatic system is consistent if it has no contradictions. We
would like to be able to prove that the axiomatic systems used
in mathematics are consistent. However, Kurt Gddel again
surprised the mathematical community by proving that it is
impossible to prove that a system that contains an infinite set
has no contradictions. Since the set N of natural numbers is
infinite, we cannot prove that arithmetic on N has no contra-
dictions; however, we operate under the belief that it is
consistent. If someone does ever derive a contradiction in the
system of arithmetic, the axioms will have to be revised in
order to eliminate the contradiction, as was done with the
axioms of set theory. A contradiction cannot be swept under
the rug and ignored.

Exercise Set 2.8

1. What is an axiom? Why are they necessary?
2. Why do we need Axiomatic Systems?

3. Why are undefined terms necessary?

4. If a term is undefined, how can we work with it?

5. What is a proof?
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6.
7.

10.
1.

12.
13.

13.

14.

What is a theorem?

Given a well-formed sentence in a mathematical system, is it
always possible to prove that it is true or prove that it is false?

. What is a contradiction?

. What happens to a mathematical system if a contradiction is found.

Explain why.
What is a consistent system?

Is the system of arithmetic consistent?
Is the system of Euclidean geometry consistent?

What does it mean to say that a set of axioms are independent?

Suppose that you want to build an axiomatic system for the laws of
logic. In the first stage of your construction, you must decide
which terms to take as undefined. Select two of the five logical
operators as undefined terms. Then use the undefined terms to
build definitions for the other three operatars. In each successive
definition, you may use previous words that you have defined.
Hint: If you use not and or for the undefined terms, how would
you define p and g, using only not and or.

Discuss Euclid's Fifth Postulate and the impact that it had on our
concept of truth. Is Euclid's Fifth Postulate always true?

What is a model of an Axiomatic System?
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Theorem

Conjecture

Inductive reasoning

Deductive reasoning

Argument

Valid argument

Law of detachment
Law of contraposition

Transitive law

Direct proof

Indirect proof
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Review

A linearly ordered structure of interwoven valid arguments
where each sentence is one of the following:

* An assumption used in a valid argument
* An axiom, previous theorem, or definition

* A sentence that can be derived from previous
sentences by a valid argument
The final stand-alone conclusion is the theorem that has been
proved.

A statement that has been proved.

A statement someone thinks is true, but no one has proved it.

Type of reasoning used when we discover a general relation
from specific examples or experiences.

Type of reasoning used when we derive a conclusion through
valid arguments from other sentences that we accept as true.

A list of sentences called hypotheses followed by a sentence
called the conclusion.

An argument in which the conclusion follows from the

hypotheses. Let hy, h,, . . ., h. represent the hypotheses of an

argument and ¢ represent the conclusion. The argument is

valid if and only if the following implication is a law of logic:
(h; and h, and lsand . . . and h,) = ¢,

A valid argument whose hypothesis has the form, p = ¢ and p,
and whose conclusion is g. Also known as modus ponens.

A valid argument whose hypothesis has the form, p = ¢ and ~g,
and whose conclusion is ~p.

A valid argument whose hypothesis has the form,
p=gq and g=>r, and whose conclusion is p=r.

Proving an implication by assuming the hypothesis is true and
then deriving that the conclusion must be true.

Proving an implication by assuming the conclusion is false and
then deriving that the hypothesis must be false. An indirect
proof of an implication is a direct proof of its contrapositive.
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Proof by cases

Proof by contradiction

Principle of mathematical induction

Disprove a statement

Axiom

Undefined terms

Axiomatic system

Independent axioms
Contradiction

Consistent system
Decidable
Undecidable

Complete system

Model

Subdividing a proof into special cases, one of which must be
true. The conclusion in a proof by cases is the disjunction of
the subconclusions within each case.

A method of proof in which we assume the negation of what
we want to derive and then derive a contradiction.

Let p(n) be an open statement. Let ¢ be a fixed integer. If for
every integer n2c¢, p(n) = p(n+ 1), and p(c) is also true, then p(n)
is true for all n>c. Stronger Version: If for every positive integer
n, [p(D)APZ)APBIA . .. Ap(n)]1=p(n+1), and p(1) is also
true, then p(n) is true for all positive integers n.

Prove its negation.

A statement that is assumed true in an axiomatic system,
requiring no proof.

The basic words from which we construct the vocabulary for an
axiomatic system. It is impossible to define every word without
being circular. The terms selected to be undefined are chosen
to represent the simplest concepts possible, concepts that
cannot be explained by simpler concepts.

A list of undefined terms, a list of axioms, and a proof
procedure for deriving theorems in the system. Definitions are
built from the undefined terms and previously defined terms.
Theorems are derived from the axioms, previous theorems, and
definitions using the proof procedure. The axioms, definitions,
and theorems must be sentences in accord with the grammar for
the system.

A set of axioms in which none of the axioms can be derived
from the others.

An abstract compound statement that is always false, like
p and ~p. A negation of a law of logic is a contradiction.

An axiomatic system that contains no contradictions.
A sentence that can be either proved or disproved.

A sentence that is not decidable. It is not possible to derive the
sentence or its negation from the axioms.

An axiomatic system in which every well-formed statement can
be either proved or disproved. Every sentence is decidable.

An example of an undefined term that has the properties
specified by the axioms. A model of an axiomatic system
contains a model of each undefined term in the system.
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Sequence A function whose domain is the set of natural numbers. The
notation s, indicate s(n), the nth term in the sequence.

Even  ais even if and only if a = 2n for some integer n.
0dd ais odd if and only if a = 2n + 1 for some integer n.

Prime a is prime if and only if ais an integer greater than 1 whose
only positive factors of a are a and 1.

Divides Let a and b be integers.
a divides b if and only if b=ak for some integer k.
a divides b if and only if a is a factor of b.

Fundamental theorem of arithmetic  Every natural number, other than 1, can be represented in a

unique manner as a product of prime numbers, with smaller
factors written to the left of larger factors.

Chapter Review

1.

- o a0 o P

What is a mathematical proof? What is a theorem?

. What does it mean to say that an argument is valid?
. If an argument is valid, does its conclusion have to be true?
. What are the 4 stages involved in writing a proof?

How do you disprove a statement?

What is the difference between inductive reasoning and deduc-
tive reasoning?

2. Describe the basic structure of the following types of proof.

a.

i

Do o Qo o

A direct proof of an implication

. An indirect proof of an implication.

A proof of an or-sentence.

. A proof of an equivalence.

A proof of an existentially quantified sentence,
A proof of a universally quantified sentence.

. A proof by cases.
. A proof by contradiction.

A proof by mathematical induction.

3. You should be able to construct proofs involving the structures
listed in exercise 2 in either outline form or paragraph form. On
the next page are some examples from this chapter.
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The sum (or difference or product) of two even numbers
is an even number.

. The sum (or difference or product) of two odd numbers

is an number.

. The sum (or difference or product) of two rational numbers

is a rational number.

. For every real number x, if x is rational and y is irrational,

then x + y is irrational.

It is not true that the sum of every two irrational numbers
is irrational.

f. Letx be areal number. ~-3<x<3 if and only if x2<9.

i.
j-

k.

L

. J5 is an irrational number.
. For every positive integer n,

142+4+8+16 +. . . +2v'=2"-1
1+3+32+3 4., 43 = L

nt22-1
For every positive integer n, n is even or n is odd.
The sum of the first n even positive integers is n (n + 1).
The sum of the first n odd positive integers is n’.

n? <2" for every integer n24.

4. Use cases and the meaning of "and" and "or" to derive the
solution of an inequality of the form ab >0 or ab<0.
For example, (x —2)(x +27)<0.

5. Discuss the following.

a.

o oo o

o]

h.

i

Why are axioms necessary?

. Why are undefined terms necessary?

If a term is undefined, how can we work with it?

. What is a contradiction?

What happens to an axiomatic system if a contradiction is
found in it?
What is a consistent system?

. How has the concept of truth changed since the time of the

ancient Greeks? Why did it change?
What did Kurt Gédel prove and why was it important?
What does it mean to say that a set of axioms is independent?

6. Comment on what is accepted as a proof in another discipline that
you have studied. Compare and contrast their notion of a proof
with the mathematical notion of a proof.
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Sets play a fundamental role in the development of our reason-
ing faculties. To learn the meaning of a word such as triangle,
a young child must learn how to identify those objects to which
the word applies. To identify an object as a triangle, the child
must be able to classify it as a member of a set of objects that
share a certain property. If a child is asked how many triangles
are on a tray of assorted objects, the child must mentally sort
the objects into two sets: the set of objects that have the
property of being a triangle and the set of objects that do not
have that property. Psychologists use tests such as these to
measure intelligence in very young children, as well as in birds,
monkeys, and other animals. The ability to recognize sets lies
at the very foundation of what we mean by intelligence. So it
is no surprise that the concept of a set lies at the very founda-
tion of mathematics.

All of the basic concepts in mathematics can be phrased in
terms of sets. When we count, we are counting the number of
elements in a set; when we analyze the form of a figure, we are
analyzing a set of points; when we look at a function, we see a
relation between two sets. Sets provide the framework for
mathematical discourse; they are the building blocks for all
quantitative and spatial concepts.

213
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The set of all natural numbetrs
has the same size as the set of
all even natural numbers.

The basic operations for working with sets are so simple that
we might think no formal training is needed. After all, a first
grader knows how to combine sets, find elements that are
common to several sets, and remove elements from a set.
However, like the logical operators, the meaning can be easily
misconstrued by the untrained mind when more than one set
operation is used in the same sentence. It could be that the
confusion comes from the logical operators, for they are used
to define the set operations. Which came first, though, is a
chicken/egg question. Our innate ability to combine, overlap
and remove may be where the logical operators originated. At
any rate, they are intimately related. Most young children can
do the basic operations with sets, but to manipulate them and
cross breed them in an abstract manner requires a higher level
of intelligence.

As in any living organism, sets need a reproductive system.
The four basic operations for making new sets from old sets are
called union, intersection, set subtraction, and cross product.
The first three operations are simple concepts that occur
naturally in everyday life, but the cross product is a complete
product of the imagination. Introduced by René Descartes in
the 17th century as a coordinate plane for plotting ordered
pairs, the cross product provides a powerful tool for combining
the visual reasoning of geometry with the algebraic reasoning
of numbers.

The set concept was used in mathematics in an intuitive
manner until the turn of the 20th century when Russell's
paradox (page 206) sent the intellectual community into a
philosophical tailspin. Russell's paradox was produced from an
intuitively obvious assumption on how sets could be formed,
but his example involved an infinite set, which is where our
intuition falls apart. In our physical experiences with sets, from
early childhood on, we never encounter sets of an infinite
magnitude.

Since ancient Greece, infinity had greatly troubled the deep
thinkers, producing such disturbing results as the adjacent
deduction about the size of the set of natural numbers. How
could the set of all natural numbers have the same size as the
set of all even natural numbers? From this paradoxical sound-
ing statement, G. W. Leibniz (1646-1716), the great
philosopher/mathematician, deduced that the number of all
natural numbers implies a contradiction. What may seem like a
contradiction, though, is inherited from a finite perspective of
infinite sets. If we take the viewpoint that infinite sets do not
behave in the same manner as finite sets, then it may sound



1 protest above all against the use
of an infinite quantity as a com-
pleted one, which in mathematics
is never allowed. The Infinite is
only a manner of speaking.

Carl Gauss
17771855

Nowadays it is known to be
possible, logically speaking,
to derive practically the
whole of known mathe-
matics from a single source,

The Theory of Sets.
Bourbatki
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perfectly natural that the set of all natural numbers could have
the same size as the set of all even natural numbers.

One'way to deal with the apparent paradoxes of infinity was
the stance taken by the great mathematician, Carl Gauss, in the
adjacent quote. The natural numbers go on and on and on; we
can never get to the end, there's always one more. So, how can
we round them all up and neatly encage them in a set? This is
precisely what we do when we write the following notation:

N={1,2,3,...}

For the human mind to encompass infinity in this manner is a
very audacious move. Georg Cantor (1845-1918) took on the
challenge and developed a logical theory which captured the
wild horses of infinity, making it possible to work with infinity
in a perfectly logical manner, His courage in tackling such an
enormous concept as that of infinity was no doubt supported by
his belief that "In mathematics the art of asking questions is
more valuable than solving problems" (page 19).

Because of Cantor's work, we can logically talk about not
only infinite sets, but also infinite numbers. We can also talk
about different sizes of infinity in a completely logical voice,
and without batting an eyelash, we can logically agree that, yes,
the set of all natural numbers does have the same size as the set
of all even natural numbers (page 289).

After an axiomatic foundation was constructed for set
theory, sets became a major unifying concept in 20th century
mathematics. Its importance is eloquently described by the
secret society of French mathematicians known as Bourbaki:
"Nowadays it is known to be possible, logically speaking, to
derive practically the whole of known mathematics from a
single source, The Theory of Sets."

This chapter covers the basic concepts of set theory, takes a
brief excursion into the mysterious realm of infinite sets, and
provides exercises to help you develop your reasoning ability,
your ability to write proofs, and your understanding of the
language used with sets.
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Activity 3.1

1. LetA=1{1,2,3},B={3,1,2},and C= {1,2,3,5,6}.

a.

IsA=8? b. IsA=C? c. A C?

2. Let A and B be arbitrary sets. Analyze the thought processes you
went through to answer the questions in the previous exercise,
then make up informal definitions for A = B and A< B. Translate
each definition in terms of quantifiers and logical operators.

3. a. Make a wild guess as to the number of different subcommittees

b.

that could be formed from a set of 27 students.

Let S be a set with n elements. Make an educated guess as to
how many subsets S has. Look at examples forn=1,n =2,

n =3, n =4, etc., until you see a pattern,

Make an educated guess as to the number of different subcom-
mittees that could be formed from a set of 27 students.

. Make an educated guess as to the number of different subcom-

mittees that could be formed from a set of 270 students. Is the
number of subcommittees that can be formed from a group of
270 students greater than the number of atoms in our universe?

=3.1 Sets & Elements =

Set Notation

The vocabulary for working with sets is built from one noun
and one verb phrase: set, is an element of. Intuitively, a setis a
collection of objects, and each object in a set is an element of
the set. However, since there are no simpler concepts with
which to define them, these two terms are undefined in the
axiomatic construction of set theory (page 195). In the sen-
tence, "x exists," the verb gives no connection with other
objects. In the sentence, "x exists in A," we now have a connec-
tion. Connections are essential for the reasoning process.

The € symbol represents "is an element of."

x€S8: xis an element of S.

A slash through the € symbol represents its negation.
x€S: ~(xisanelement of S)



Listing Method

Property Method

E = {x | xis an even number }
E= {y | yisan even number }

E = {x | x=2k for some integer k }
E = {2k | kis an integer }

LetS= {x ] p(o)}.
XE€S§ & px) is true.

x€8 < p(x) is not true.
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We sometimes notate a set by listing the elements and
enclosing them in set braces.

$={2,4,6,8,...,200)

The ellipsis (. . .) indicates that the listing continues in the
given pattern. We must list enough elements so that the reader
can see the pattern. A listing of the set E of all even integers
requires two ellipses:

E=(...,-6,-4,-2,0,2,4,6,...)

Unlike the previous example, each of the above ellipses repre-
sents an infinite number of elements.

When we use the property method to define a set, we specify a
property that determines membership in the set. The property
is stated in terms of an open statement p(x) which we enclose in
set braces:

{x]|p(x)}
For example, let p(x): xis a real number.
R = {x | xis a real number }
The vertical bar in the above notation is read as "such that":
R is the set of all x such that x is a real number.

When we describe a set with the property method, it must be
well-defined, which means that the property must clearly distin-
guish who is in the set and who is not. The set of all even
numbers is a well-defined set, whereas the set of all lucky
numbers is not well-defined.

The set E of even numbers can be notated with the property
method in different ways, as illustrated on the left. In the
second form, we use y instead of x. In the third form, we use
the definition of even, prominently displaying the existential
quantifier. In the last form, the existential quantifier is hidden
but we must use it when we translate x€ E:

x€E if and only if there exists an integer & such that x=2k.

When we make deductions about sets, we usually reason with
the sentence x € S. From a property description of a set, we
translate x € § and x € § as illustrated on the left and in the
following examples.
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4 Example

Universal Sets

s={x|px}
§={x|px)andx€U}

Translate xe § and x¢ S for the given set,

1. LetS={x|xcAandxeB).
x€S§ ifand only if x€A and x€B.
x€¢S if and only if x#A or x¢€ B).

2. LetS={5"|nisan integer}.
x€S§ if and only if there exists an integer n such that x= 5",
x€S if and only if for every integer n, x 5"

3. LetS={(3,8,29}.
x€S§ ifand only if x=3 or x=8 orx=29.
x¢ S ifand only if x+3 and x+8 and x+29.

A universal set U is the universe for a particular discussion,
setting the boundary for our considerations. In elementary
algebra, we often use the set R of real numbers as our universal
set, but sometimes we use the set C of complex numbers. In
plane Euclidean geometry, the universal set is the set of all
points in a plane, whereas in spherical geometry, the universal
set is the set of points on a sphere.

If the reader understands what the universal set is, we do
not have to mention it each time we describe a set. For
example, if the reader knows that the universal set is the set of
real numbers, we may define the closed interval [1,3] as
follows:

[1,31={x|1<x<3)}

If the context is not clear, though, we should let the reader
know that the domain for x is the real numbers.

(1,31 = { x| 1 £x<3 and x is a real number }

In a set description by the property method, the elements are
always limited to the members of a universal set. When we
write the property without mentioning the universal set, it is
implicitly understood that each x must be in the current univer-
sal set. The restriction of sets that we define to a universal set
that we already know exists eliminates the contradiction
produced by Russell's Paradox (page 206, 279).



The Empty Set

0
de{0}

0+{0}

Shapes as Sets

S

A geometric figure.

Sy

A geometric figure.
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In the following definition of a set, it is implicitly understood
that xe U:
LetS={x|xeA}.

In the adjacent illustration, the universal set U is represented as
a rectangular region and the set A as a circular region. When
we say x € A, we do not go outside of U.

At the opposite extreme from the universal set, we have the
empty set. The empty set is such a simple concept that we
often gloss over its meaning. The empty set is a set that has no
clements. We do not think of the empty set as nothing. The
empty set is a container with nothing in it, similar to an empty
box, which still exists even though it has nothing in it.

We use the symbol  to represent the empty set.
The empty set has no elements, so it is not an element of itself.

If we put an empty box inside another box, the outside box is
not empty. Likewise, the set { @} is not empty. It has one
element, the empty set.

The adjacent sets are not equal because the set on the left has
no elements, whereas the set on the right has one element.

The empty set can be an element of a set, but it must be
included in the list of elements or satisfy the property that
determines the set. For example:

LetA={1,5}and B={1,5,9}.

A has two elements, 1 and 5. The empty set is not one of these
two elements, so B¢ A. On the other hand, B has three ele-
ments and @ €B.

How do we describe what we mean by a shape? In
mathematical language, we call a shape a geometric figure.
Since a figure is composed of points, we can use the language
of sets to define this visual concept:

A geometric figure is a set of points.
A set of points is a geometric figure.

With this definition, a figure does not have to be connected; it
may be in more than one piece, as illustrated in the adjacent
sketch. Note that the above definition uses the undefined
concept of a point (page 195). Except for undefined terms, we
can define almost all mathematical concepts in terms of sets.
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Equal Sets

¢ F
£ BAE
A D

AABC # ADEF

Two sets are equal
if and only if

they have the same elements.

Let A and B be sets.
A=B
if and only if
for every x,

(x€A = xeB) and (xeB = x€A).

One of the exceptions is when we deal with very large collec-
tions, such as the collection of all sets. Forming the set of all
sets produces a contradiction (page 301), similar to Russell's
Paradox. For this reason, the axioms of set theory do not allow
a set to be a member of itself. So, we cannot call the collection
of all sets a "set." Instead, we call it a "class,”" and there is an
analogous theory for working with classes.

Equality is one of the most important relations in mathematics.
We use this relation in a stronger sense than is often used in
everyday language. In the Declaration of Independence, the
founders of the American democracy introduce their axioms
with the sentence, "We hold these truths to be self-evident, that
all men are created equal . . ." In a mathematical framework,
however, two different objects cannot be equal to each other,
not even identical twins.

For example, in the adjacent illustration, we have triangles
that are identical twins; corresponding sides and corresponding
angles have the same measurements. These two triangles are
congruent, but they are not equal because AABC is a different
set of points than ADEF: AABC # ADEF. Congruence is called
an equivalence relation (page 326) because it has the same
basic properties as equality, but it is important to note the
distinction between the two.

When we say two sets are equal, we mean that they have
identical elements. To say that sets A and B have the same
elements can be translated as follows:

Every element in A is in B, and every element in B is in A.
For every x, x€A = x€ B, and for every x, xé B = x€A.

Since we can distribute the universal quantifier across an
and-statement, we can translate the above statement as stated in
the adjacent box. Notice how we are building the language of
sets from the language of logic and the two undefined terms.

If A = B, then A and B are different names for the same set.
We sometimes have different names for the same person, such
as Jack and John, or Elizabeth and Beth. Parents do not
normally give different children the same name because it
destroys the function of a name, which is to identify the person.
Similarly, when we name a set, such as A or B, we do not give
the same name to another set that is included in the same
discussion.
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{1,3} = {3,1}
{1,3,3} = {1,3}
Subsets

Let A and B be sets.
ACB
if and only if
for every x, x€A = xE€B.

ACB
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A set is completely determined by its elements; it does not
matter how we arrange them. If we shake a box of dominoes,
we still have the same set of dominoes.

Is {1,3}={3,1}?

Is every element in the left set an element of the right set?
Is every element in the right set an element of the left set?
The answer to both questions is yes, so {1,3} ={3,1}.

Duplicate listings do not change a set. If we make a list of
people to invite to a party and we list the same person twice,
we have not changed the set of people being invited. Similarly,
redundant listings in a set do not affect the set.

Is {1,3,3}=(1,3})?
Every element in the left set is an element of the right set
and vice-versa. So, {1,3,3}={1,3}.

When we count the number of elements in a set, we do not
count duplicates. The set {1,3,3} has only two elements.

Another fundamental relation between sets is the subset
relation. If every element in set A is also in set B, we say that A
is a subset of B, which is notated as A € B.

The formal definition of subset is given in the adjacent box.
Note that it is half of the condition used to define equal sets.
We now have another verb phrase — is a subset of — that we can
use to construct sentences. We are rapidly expanding our
vocabulary. You may think that we are going at a rather slow
pace; however, we have now covered the three fundamental
verbs of set theory: is an element of, is equal to, and is a subset
of. If we have a personal understanding of these concepts, all
other definitions will be easy to interpret because all other
definitions are built from these three verbs and the logical
operators.

We can visualize the subset relation as illustrated on the
left. This type of diagram, called a Venn diagram, was first
used by John Venn to illustrate the laws of logic in a paper
published in 1876. Note how the adjacent picture of the subset
relation gives a picture of the implication operator:

For every x, x€ A = x€B.
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7
B
Subset Proofs
Denive: ACB
Direct Proof

So, x€B.
Thetefore, ACB.

Let x be any element.
Assume that xe A,

Theorem

Proof

In the adjacent sketch, pick an x that is not in A. The implica-
tion, x€A = x € B, is true because the hypothesis is false. Thus,
the implication is true for all x in the universal set. Students
sometimes erroneously describe the subset relation in terms of
and: for every x, x€ A and x€ B. Note that this statement is not
true in the adjacent picture.

In the hierarchy of number sets, the set N of all natural
numbers is a subset of the set Z of all integers; the set Z of all
integers is a subset of the set Q of all rational numbers.

NczZgQ

A verbatim reading of the above the symbols is grammatically
incorrect. We use this notation as an abbreviation for:

NcZandzcQ

In a similar style, we use 3<x<35 as an abbreviation for 3 <x
and x<5. When we negate an expression like A € B < C, we
must be aware of the hidden and.

To prove that A © B, we must prove the following:
For every x, if x€ A, then x€ B.

We can prove this implication with either a direct or indirect
proof. The outside structure for a direct proof is given in the
adjacent template. At the end of the template, the implication
is not explicitly stated in order to make the proof more concise.
The amount of detail that we include in a proof is a delicate
balance between putting in enough detail so that the reader can
follow our reasoning, but not putting in too much detail and
wasting the reader's time.

To prove that § < A, we must prove the following:

For every x, if x€ @, then x€ A.

For every set A, § S A.

Let A be a set. Let x be an element in the universal set.
Since the empty set has no elements, x & 0.
Consider the implication: If x€ @, then x€ A.

Since the hypothesis is false, the implication is true.
Therefore, § S A.




Theorem

Proof

Transitivity

.Theorem

Proof

U
e}

Set Equality Proofs

Denve A=B

Part1l. ACB
Part2. BCA
Therefore, A=B.
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For every set A, ACA.

Let A be a set. Let x be an element in the universal set.
IfxeA, thenx€A. ... ... ... ... ... p=p
Therefore, ACA.

The above theorem states that any set is a subset of itself.
When we count all the subsets of a given set, we include the
empty set and the whole set. The set {1, 2} has four different
subsets: 8, {1,2}, {1}, {2)

If we draw sets A and B such that A < B and then we draw a set
C such that BC C, we can clearly see that AC C. As demon-
strated in the following proof, this property of sets is inherited
from the transitivity property of implies.

Forallsets A, B,and C,if ACSBand BCC, then ASC.

Let A, B and Cbe sets. Assume that ASB and B&C.
Let x be an element in the universal set.

IfxeA,thenx€B. ............. Definition of ACB
IfxeB,thenxeC. ............. Definition of BE C
So, if x€A, thenxeC. ....... Transitivity of implies
So,ACC. ... Definition of ACC

Thus, for all sets A, B,and C,if A& Band BC C, then A< C.

The definition of equal sets can be phrased in terms of subsets.

A=B
if and only if
AC Band BC A.

To prove two sets are equal, we usually construct two different
subset proofs, as illustrated in the adjacent template. We
demonstrate that the left side is a subset of the right side and
we demonstrate that the right side is a subset of the left side.
From this, we conclude that the two sets are equal. We will
have several examples of this type of proof in the next section.
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Equivalence

Properties of the Equals Relation

Theorem

Properties of the Subset Relation

The definition of equal sets can also be phrased in terms of an
equivalence:
A=B
if and only if

for every x, x€A <> x€B.

The equals relation between two sets is the analogue of the
equivalence relation between two sentences. However, we do
not use them interchangeably. We do not say that two sen-
tences are equal; we say that they are equivalent. We only use
the equals relation between sets and numbers.

The equals relation has three fundamental properties. Each of
these properties is inherited from the corresponding property of
equivalence.

For all sets A, B and C, the following are true:

Reflexive Property: A=A
Transitive Property: ff A=Band B=C, thenA=C.
Symmetric Property. If A=B, then B=A.

The reflexive property states that each set is equal to itself.

The transitive property gives us a way to deduce set equality
when we have a middle set as a stepping stone. If the first set
is equal to the second set and the second set is equal to the third
set, we can then deduce that the first set is equal to the third set.

The symmetric property allows us to reflect sets about the
equals sign; it doesn't matter which one we write first.

The subset relation also has the reflexive and transitive
properties. However, it has the opposite extreme of the sym-
metric property, which is called antisymmetric. The only time
that we can switch two sets around a subset sign is when the
two sets are equal:

IfACBand BC A, then A=B.

The subset relation is antisymmetric — the order makes a differ-
ence. We will demonstrate later (page 381) that the subset
relation provides a model for any order relation.



Theorem

Proper Subsets

Let A and B be sets.
ACBHB
if and only if
ACBand A#B.

ALB

Let A and B be sets.
AZLB
if and only if
there exists an x such that

x€Aand x € B.

Theorem

Proof
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For all sets A, B and C, the following are true:
Reflexive Property: ACA.
Transitive Property. If ACBand BCC, thenACC.

Antisymmetric Property: If ACB and BCA, then A=B.

Every set is a subset of itself. We use the term proper subset to
distinguish those subsets that are not the whole set. "A is a
proper subset of B" is notated as A CB.

ACB ifandonly if ACBand A+B.
{1,2} (1,23} since {1,2} <{1,2,3} and {1,2}#{1,2,3)}

We have the same relation between < and < as between the
symbols < and <.

{1,23YS(1,2,3} but {1,2,3}¢{1,2,3).

The reversal of the subset sign has the same meaning as
reversing an inequality: A2B if and only if BCA

A 2B is read as "A contains B." Mirror images like € and 2
can play tricks on the eye, so it may be less confusing to the
reader to use the & symbol whenever possible.

To translate the meaning of "is not a subset of," we write the
negation as a prefix and then substitute the definition of subset:
~(ACB)
~ (For every x, x€A @ x€B.)
There exists an x such that x€A and x B.

To prove that AZ B, we must prove the above statement. Since
this statement starts with an existential quantifier, we need only
find one counterexample.

The set R of real numbers is not a subset of the set Q of rational
numbers.

2 represents a length, 504/2 is a real number.
However, 42 is not rational (page 170). So, RZ Q.
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Variables and Constants

4 Example

{a}+*a

When more than one variable is used in the property
description of a set, we must carefully observe which variables
are changing and which are fixed. In the following definition
of the closed interval [a, b], both a and b are fixed.

[a,b]={x|a<x<b)

When a set is defined in the above form, { x| p(x) }, we can see
the changing variable x in the first field. However, if more than
one variable is in the first field, we have to look in the second
field to see what is changing.

List the elements in the given set. Then translate x€ S.
1. LetS= {y+ n|nis anatural number }.

S is the set of elements of the form y +n where n is a natural
number. The variable n changes, but y does not.

S={y+L,y+2,y+3,y+4,...,y+n,...}

x€§ if and only if
there exists a natural number n such that x = y+n.

2. LetS,={%| mis anatural number }.
As indicated in the second field, m changes but n is fixed.
m
n = {Hs T Ty Woeees Ay onn )

To list the elements in S;, we substitute 3 for n:

1 m
SJ— 33 33 3 3,...,"’3‘,...)

x€S; if and only if
there exists a natural number m such that x = 5.

x€ S, if and only if
there exists a natural number m such that x = &,

A set is a container for mathematical objects in the same way
that a box is a container for physical objects. A box containing
a butterfly is not the same entity as a butterfly that is not in a
box. Similarly, set braces around an element change the
meaning: {a}# a. The set whose only element is 1 is not equal
tol: {1}+1.
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We sometimes use sets as elements in another set. To work
with these types of sets, we must read the notation carefully to
identify the elements of the big set. For example, the following
set § has a set as an element. At first glance we might think
that 3 € §, but it is not:

LetS={1,{1,3}}.

S has 2 elements: 1 and {1,3}.

le Sand {1,3}€S. However,3¢ S.

We normally use uppercase letters for sets and lowercase letters
for elements. However, when the elements of a set are also
sets, we often use uppercase letters for the elements.

LetS={X|X<[0,1]}.
LetA=[0,%]. ThenAesS.

We sometimes use index notation to define elements of a set.

LetA;=[i,i+1].
Let §={ A/ | iis an integer }.
[5,6]eS,but[5,7]€8S.

The < concept and the € concept are intimately related, but
they have different meanings. When a set has sets as elements,
we must carefully check to make sure that we are not confusing
elements with subsets.

1. LetA={L1,2,3}.

1€A,but 1 ¢ A. On the other hand, {1} S A, but {1} & A.
2. LetC={{1},{2},{5,9}}.

{l}eC,butleC. SinceleC, {1}&C.
3. LetA={1,2} and §={{1,2}, {2,3,4} }.

A€S. Since the elements in A are not elements of S, A¢ .

4. Let N be the set of natural numbers and R the set of real
numbers. Let S={N,R}.

NeSand Re S. However, N g Sand R¢ S.
N and R each have an infinite number of elements,
but S has only two elements.
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Power Sets

Let S be a set.
P(S) = {X | XS5}

Number of Elements in P(S)

The set of all subsets of a set S is called the power set of S,
which is notated as P(S). To be an element of P(S), X must be
a subset of S.

X e P(S) if and only if X< .

Let S={1,2}. § has four subsets, so P(S) has four elements:
P(S)= {0, {1}, {2}, {1,2} }

In the above example, {1} P(S), but 1&P(S). When working
with a power set, we must carefully consider whether to use €
or < as the verb phrase. Let § be a set:

SCS, so SeP(S5).
g S, soBeP(S).

If S has n elements, how many elements does P(S) have? To
answer this question, let's start at the bottom with n=0. The
empty set has only 1 subset: @ < 0.

P@)=1{0)

If S has 1 element, say S= (a,], then § has two subsets:
PS)= {8, {a}}

Suppose that S has 2 elements, say S = {a,, az}.
PS)= {8, {a1}, (a2}, (a1, a2} }

Note that the number of subsets doubled from the previous case
when S had only 1 element. Let's see why it doubles at the next
stage. As S gets larger, it becomes more difficult to find all the
subsets. To make the task simpler, we will inductively build
each successive stage on the previous work.

Suppose that S = {a,, a2, a;}. If we remove a3, we are back to
the previous case. Let's divide the subsets of S into two catego-
ries: those that do not contain as and those that do. First, we
list all subsets of S that do not contain a;, which we computed
in the last stage:

) {ai} {a2} {ai, a2}

To get the remaining subsets, we simply insert a; into each of
these subsets.
{as} {an, a3} {as a3} {ai, as, a3)
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Now we can see why the number of subsets doubled:
If § has 2 elements, P(S) has 4 elements.

If S has 3 elements, P(S) has 8 elements.

Using the same technique, we can show that a set with 4
elements has twice as many subsets as a set with 3 elements.

If § has 4 element, P(S) has 16 elements.

Using the same technique in a more general setting, we can
prove by mathematical induction that this pattern always holds.

Let S be a set. If S has »n elements, then S has 2" subsets.
Let p(n): For all sets S, if § has n elements, § has 2" subsets.
Let n be a natural number. Assume that p(n) is true.
Let S be an arbitrary set that has n + 1 elements:

S= { ai, Qz, A3y .« ., Qn, Anel }-

Divide the subsets of S into the following two sets:

Let V={X| XES and a.. €5}.
LetW={X]| XS and a..€5}.
Let S,={a\, a, a3, ...,a.}. Since S, has n elements,

by the induction hypothesis, S. has 2" subsets.
V is the set of all subsets of S.. So, V has 2" elements.

For each subset A of S,, consider the following mapping:

AL AU(am]  fLA) =AU (am)

This mapping is a one-to-one function from V onto W.
So W has the same number of elements as V.

Thus, the total number of subsets of S is 2" + 2",

But 2"+ 2" =2 (2") = 2",

So S has 2"/ subsets. Thus p(n) = p(n+1).

If § has O elements, S = @. The empty set has only 1 subset.
So, if S has 0 elements, S has 2° subsets. Thus, p(0) is true.

Thus, by mathematical induction, p(n) is true for all
nonnegative integers z.




230

Chapter 3 Sets — The Building Blocks

Partitions

Q>

D

Let P be a collection of
nonempty subsets of S.
P is a partition of §
if and only if
each element in S is in one
and only one element in P.

As n gets larger, 2" grows at an enormous rate, A set with 5
elements has 32 subsets; however, a set with 30 elements has
2% subsets, which is 1,073,741,824. In a set S that contains
270 students, the number of different committees that we could
form from these 270 students is the same as the number of
subsets of S, which is 2. This number may not seem very
large, but according to standard astronomy texts, it is more than
18 times larger than the number of atoms in our entire universe
— which is less than 10%, If S has only 270 elements, its power
set P(S) has more elements than our universe has atoms! In
terms of quantity, the power set is indeed an extremely power-
ful set.

A partition is a subdivision of a set into nonoverlapping
subsets, similar to the way that we might partition a big room
into smaller rooms. A partition P of a set § is a collection of
nonempty subsets of § where each element in S is in one and
only one of the subsets.

A set can be partitioned in many different ways. For
example, consider the set, § = {1,2,3,4,5,6}. We can group 1
and 2 together in a subset, group 3 and 4 together, and leave 5
and 6 in their own private sets, as illustrated in the adjacent
sketch. This subdivision determines 4 sets which form a parti-
tion of §:

P={{1,2}, (3,4}, (5}, (6}}

We could also partition § into 2 nonoverlapping subsets by
segregating 1 and 3, with the other elements in a separate set,
as illustrated in the adjacent sketch. This subdivision deter-
mines 2 sets which form a partition of S:

Q=1{{1,3},{2,4,5,6}})
Now consider the following collection of subsets of S:
R={{1,3},{2,3,4},(5,6}}

Since two of the elements overlap, R is not a partition of S.
Each element in § can be in only one of the elements in a parti-
tion. In the following collection of subsets of S, there is no
overlap. However, 6 is not in any of the elements in T, so T is
not a partition of S:

T={{1,3}, (2,4}, {5}}
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Exercise Set 3.1

1.

List the elements in each set. Translate x€ S.
Also, translate x ¢ S.

a. S={x]|x=2n+1 for some natural number n }
b. § = { x| x = 2" for some natural number n }

c. $={3n]| nis anatural number }

d. §={na| nis anatural number }

e. S={y"| yis anatural number }

. Write the following sets in the form {x | p(x) }.

a. {5,7,9,11,13,...} c. {2,4,8,16,...)
b. {20, 25,30,35,...,100} d. {3,5,9,17,...}

. LetS={1,3}and T= {{1},{3}}.

a. IsleS§? c. Is{1}e§? e IsSCT?
b. Is 1€T? d Is{1}eT? f IsS=T?

. LetS={51,3}and4 ={1,3,1,5,3)}.

a. How many elements does A have? b. IsS=A?

. Let A={3x+5y | xandy are integers ).

a. List 3 different elementsinA. b, Is1€A?

. LetE={...,-6,~4,-2,0,2,4,6,...} and E,={n+x|x€E}.

a. Write the definition of E; and E; by substituting for n.
b. List the elements in Ey, E;, E;, and E,.

c. Let P={ E, | nis anatural number }. List the elements in P.
How many elements does P have?

. Use definitions and the negation rules to translate the following.

a. C+xB b. D&C

. Let A, B, and C be arbitrary sets. Try to draw a Venn diagram

where the hypothesis is true and the conclusion is false. If you
cannot do it, try to prove the statement.

a. fA¢Band B¢ C, thenA<C.
b. fACBand BEC, thenA¢ C.
c. fACBandA¢C, thenB&LC.

. Let A, B, and C be arbitrary sets. Prove or disprove each statement.

Hint: Look at examples where you list the elements.
a. A€A.

b. ACA.

c. fACB and x¢ B, then x& A.

231
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10.

11

12.

13.

14,
15.

d. feA.

e. fACB, then A€B.

f. If A€B, then ACB. Hint: Construct A and B so that A€ B.

g. IfAeBand BeC, then A€ C.

Let S = {s1, 52,53, 84, 55, . . . }, where s, is the remainder of n divided
by 3. List the elements in S. How many elements does S have?
LetA={1,2,3}. sACP(A)? IsAe€P(A)?

How many different subcommittees can be formed from a class of
30 students? If you had a penny for each of these subcommittees,
how much money would you have?

Let S={1,2,3,4,5}. Is P a partition of S? If not, why not?
a. P={{1,2},{3,4},{2,5}} b. P={{1,3},{2,4}}

LetS={1,2,3,4,5,6,7,8}. Form a partition of S.

A bit string is a finite sequence of 0's and 1's. 101 is a bit string
of length 3. 11010 is a bit string of length 5. Let S, denote the set
of all bit strings of length n.
a. How many elements are in 5,7 §37 S? How many elements
are in 5,7 Prove your answer using mathematical induction.
b. Let A = {a, b, c}. Illustrate a one-to-one mapping from P(A)
onto S; that can be generalized for n elements. Hint:
Let f({a}) =100, f({a,c}) =101, etc. How do you define it?

¢. Use part (a) to prove that if A has n elements, then P(A) has 2"
elements. Hint: Generalize part (b).

Activity 3.2

1.

2,

Shade each set on a Venn diagram.
a. {x|xeAorxeB) .
b. { x]x€A and xe B)

c. {x|xe¢AandxeB)
d {x|xeAorxeB}

Shade each set on a Venn diagram. U
Are any of the 3 sets equal? .
a. {x|(x€A orxeB)and xeC) "‘

b. {x]|x€Aor (xeBandxeC)) v

c. {x|(xeAandxeC)or (xeBand xe()}
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=3.2 Operations on Sets =

Union

AUB

Intersection

ANB

ANB=19

Set Subtraction

One of the milestones in a child's education is mastering the
operations of union, intersection, and set subtraction. A child
must understand these simple operations before he or she can
learn how to add and subtract. When we add, we form the
union of two sets that do not intersect and then count the
number of elements in the new set. When we subtract, we
remove elements from a set and then count the number of
elements left. Each set operation produces a new set from sets
that we already have. Their definitions are based on the mean-
ing of the logical operators. Consequently, they provide a way
to visualize or, and, and not, as illustrated in the following
sketches.

To form the union of two sets, we combine their elements. The
union of A and B, notated as A U B, is the set of elements that
are in A or in B or in both sets.

AUB={x|x€A or xe B}
x€AUB <> x€A or xeB

LetA={1,3} and B=(2,3,7}. Then AUB = {1,2,3,7}.

To form the intersection of two sets, we select those elements
that are in both sets. The intersection of sets A and B, notated
as AN B, is the set of elements that are in both A and B.

ANB={x|x€A and x€B)
xeANB < x€A and x€B
LetA={1,3}and B={2,3,7). ThenANB = {3}.

Visually, the intersection of two sets is where they overlap. If
they do not overlap, we say that the sets are disjoint.

A and B are disjoint if and only if ANB = .

With set subtraction, we remove elements in one set from
another set. A minus B, denoted as A — B, is the set of all
elements that are in A but not in B.

A-B={x]|x€A and x¢B}
X€EA-B < x€A and x¢B

LetA={1,3}and B=(2,3,7}. A-B={1}and B—-A={2,7}.
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Complement

Size of a Set

Let A and B be finite sets.
lAUB| = |A|+|B|-|ANB|

Let A and B be finite
sets with BS A.

|A-B|=|A| -|B]

Multiple Operations

1]

LI

>
NV
1
&

-

The complement of A, denoted as A', is the set of elements that
are not in A.
A={x]|x¢A}

xeA' < x¢A

In the above definition, it is implicitly understood that x is in
the universal set U. We can also express the complement in
terms of set subtraction:

A'=U-A

Even though the set operations are simple concepts, mistakes
are often made when more than one operation is used, which is
not surprising, for these operations are manifestations in set
form of or, and, and not. If we use the logical operators
correctly, we will use the set operations correctly.

The counting numbers were created to measure the different
sizes of finite sets. We use the following notation for the size
of a set:

| A| represents the number of elements in A.

Let A and B be finite sets. If A and B have elements in com-
mon, those elements are counted twice in the sum |A| + | B]|.
So, the general formula for the number of elements in AUB is:

|AUB|=|A|+|B|-|ANB|

For example, if A has 10 elements, B has 8 elements, and AN B
has 3 elements, then AUB has 15 elements. If A and B have no
elements in common, the number of elements in A U B is the
sum of the elements in the individual sets:

IFANB =0, then |AUB|=|A[+]|B].

The number of elements in A - B is determined by the number
of elements in their intersection: |A-B|=]|A|-]|ANB]|
If B< A, then B = AN B, which gives the adjacent formula,

To illustrate multiple set operations on a Venn diagram,
shading with horizontal and vertical lines helps us locate the
final set. For example, in the adjacent diagram, A' is marked
with horizontal lines and B' with vertical lines.

3 A'NB'is the grid region where both
horizontal and vertical lines are present.

= |4 A'UB is the region that has either a
horizontal or a vertical line or both.
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In the previous diagram, A'N B', the grid region, is all elements
not in AU B, which is the same region as (AU B). This sketch
suggests that (AU B)' = A'N B’ for all sets A and B. However,
the way that A and B intersect in this example is only one of
several possible cases. A could be a subset of B, or B could be
a subset of A, or perhaps the sets do not intersect, or, at the
other extreme, perhaps they are equal. However, if a statement
about A and B is not always true, we will probably find a
counterexample with the top sketch.

When checking examples of set operations that involve
three sets, the number of cases increases dramatically. With
each of the above cases for A and B, C could not intersect either
A or B, C could intersect B and not intersect A or vice versa, or
C could intersect both A and B. It is usually more fun to reason
with pictures, but when the picture cases pile up, reasoning
with words has a distinct advantage. A proof with words is
simpler than checking all the picture cases.

When testing possible relations between operations on three
sets, the best case to check is the adjacent case which has a
region for each of the possible intersections. If a statement
about operations on sets A, B and C is not always true, we will
probably find a counterexample with this case, as illustrated in
the next example.

IsAN(BUC) = (ANB)UC for all sets A, B, and C?

Let's compare these sets with Venn diagrams. In the first
diagram, BU C is shaded with horizontal lines and A is shaded
with vertical lines. AN(BU C) is the region shaded with both
horizontal and vertical lines, the region with the grid.

In the second diagram, A N B is shaded with horizontal lines
and C is shaded with vertical lines. The union of these two
sets, (AN B) U C, is the region that has horizontal lines or verti-
cal lines or both horizontal and vertical lines.

Note that the region shaded for (AN B) U C is not the same
as the region shaded for AN (BUC). In this example:

ANBUO*ANBUC

Thus, the answer to the above question is no. We have a
counterexample using the sets of points in the adjacent sketch.
This example shows that the parentheses are essential in the
expression AN (BU C).
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Distributive Property

4 Example

The distributive property gives a relation between two
operations.  Multiplication distributes over addition, and
distributes over or, and or distributes over and (page 57).
Since intersection and union are defined in terms of these
logical operators, we would suspect that intersection distributes
over union and vice-versa.

PAQVN) @ PAQV@PAT)
IsANBUC) = ANB)UANC)?

Before we attempt a proof, let's compare these two sets with
Venn diagrams.

IsANBUC) =(ANBYU (ANC) for all sets A, B, and C?

The set (ANB) U (AN C) is illustrated in the adjacent diagram.
A N B is shaded with vertical lines and A N C with horizontal
lines. The union of these two sets is the region where we have
vertical lines or horizontal lines or both:

= ll# @ANBU@NC

In the second diagram, AN (B U C) is the grid region, which
was explained in the previous example:

# ANBUC)

The grid in the second diagram is the same as the region shaded
for (AN B) U (AN C) in the first diagram. Hence, for the sets
illustrated in the Venn diagram:

ANBUO=ANBUMANG)

However, this one example does not prove that the above
equation is true for all sets. A generalization that includes all
possible sets requires a well-reasoned argument.

To prove the above statement for all sets A, B and C, we
carefully substitute in the various definitions in the correct
order. To translate the sentence, xe AN (B U C), we first view
it as AN Z and apply the definition of intersection. Whenever
we deconstruct a set, we work from the outside to the inside,
one step at a time.

The following outline proof is composed of two subproofs,
so we have inserted claim statements to help the reader (and
writer) keep focused on the immediate task at hand.



3.2 Operations on Sets 237

Theorem ForallsetsA, B,and C,AN(BUC)=(ANBYUANC).

Proof LetA, B, and C be arbitrary sets.

Claim: ANBUC)S{ANB)UMNC)
Assume that x€ AN (BUC).

x€Aandx€BUC ............. Definition of intersection
x€Aand (x€BorxeC) ............. Definition of union
(x€A and xeB)or (x€ A and x€ C)
.............. Distributive property of "and” over "or"
........................ PAQ@V) & PAQV(PAD

(ANB)U(ANC) X€EANB or xeANC ......... Definition of intersection
So,x¢e ANBYUMANC) ..o, Definition of union
Thus, ANBUC)SANBUANC). ...... Def. of subset

Claim: (ANB)UANC)SANBUC)
Assume that xe ANBYU ANC).
x€ANBorxeANC ................ Definition of union
(xeAandxeB)or (x€ A and x€ C) ... Def. of intersection
x€Aand (xeBorxe(C)
................ Distributive property of "and" over "or"
........................ pPA@QVY) & PAQV(PAT

x€Aandx€BUC .................. Definition of union
So,x€eANBUC). ............ Definition of intersection
Thus ANB)UANCYSAN(BUC). .. Definition of subset
Therefore, AN(BUC) = (ANBYUANC). ... Def of equality

Note how the above proof is composed primarily of transla-
tions of definitions. Union also distributes over intersection:

Theorem  Forallsets A, B,and C,AUBNC)=AUB)NAUCQC).

In the adjacent diagram, A U B is shaded with vertical lines and
AU C is shaded with horizontal lines. The grid regions is the
intersection of these two sets: (AUB)NWAUCQC).

On the other hand, if we first focus on BN C, and then
union this set with A, we see the same region. So, in this
example, AU(BNC)=AUBYN(AUC). You are asked to
(AUB) N (AUC): H# prove that this relationship holds for all sets A, B, and C in (15)
of the next exercise set.
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Properties of Union
and Intersection

Let A, B and C be sets.
Commutative Property

AUB=BUA
ANB=BNA

yssociative P

AU(BUC)=(AUB)UC
AN(BNC)=(ANB)NC

Distributive P

AN(BUC) = (ANB)U (ANC)
AU(BNC) = (AUB)N(AUC)

Complement Laws

L1

(AUBY'

A'NB

The various properties of union and intersection are inherited
from the corresponding properties of or and and. For example,
or is commutative, which makes union commutative:

Claim: AUBS< BUA

Assume that xeAUB.
X€EAorx€B ........... Definition of union
x€EBorxeA ............ Or is commutative
So,x€BUA. .............. Definition of union

Therefore, AUB & BUA.

With an analogous argument, we can show that BUA S AUB.
Thus, AUB = BUA.

Using similar arguments, we can prove the adjacent proper-
ties of union and intersection. Union and intersection are both
commutative and associative, and they each distribute over the
other in the same way that and distributes over or. Because of
associativity, we may omit the parentheses when we form two
unions or two intersections: AUBUC, ANBNC. However,
we must use parentheses when we have both a union and an
intersection because the position of the parentheses affects the
meaning:

ANBUO*ANBUC

The complement laws give us another way to view comple-
ments of unions and intersections. For example, (A U B)' is the
shaded region in the adjacent diagram. In the second diagram,
A' is shaded with horizontal lines and B' is shaded with vertical
lines, so A' N B' is the grid region, which is identical to the
shaded region in the first diagram. Even though the process of
constructing these two sets is very different, surprisingly, they
end up as the same set. This property is inherited directly from
the rule for negating an or-statement:

~porg) < ~pand~q
(AUB) = A'NB'

To prove that the above two sets are always equal, we decon-
struct their meaning in the correct order. For example, to inter-
pret the meaning of x€ (AU BY, we first apply the definition of
complement:

x¢€AUB
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We must be careful not to slip into the casual way that we use
negations in everyday language. We may be tempted to say the

following:
So, x¢AorxgB. ...... Fatal Error!
To avoid the above error, we should get in the habit of first
translating the slash:
x€AUB
So, ~(x€AUB). ..... Translating ¢

In the above form, we can substitute in the definition of union,
as illustrated in the following proof.

Theorem ForallsetsAand B, (AUB) =A'NB..
Proof LetA and B be arbitrary sets.
Claim: (AUB)Y CA'NB'
Assume that x€ (AUB)'.

§W ~(x€AUB) ........ Definition of complement
§‘.D§ ~(x€A or x€B) ........ Definition of union
;\\\\\\\\\\\\\\% x€A and x¢B ......... ~pVq) & ~pA~q
x€A' and x€B' ... Definition of complement

So,x€eA'NB'. ........... Definition of intersection

Therefore, AUBY SA'NB'. ........ Definition of subset

Claim: A'NB'€ (AUB)
Assume that xe A'NB'.

x€A' and x€éB .... Definition of intersection

x€A and x€B .... Definition of complement

~(x€A or x€B) ....... ~(pVq) = ~pA~q

~(x€AUB) ............. Definition of union
So,xe(AUB). .......... Definition of complement
Therefore, ANB' S (AUB). ........ Definition of subset
So,(AUB)=A'NB. .............. Definition of equality

We have an analogous theorem for the complement of an inter-
section, which comes directly from the rule for negating an
and-statement. You are asked to prove the following theorem
in (13) of the next exercise set.
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Theorem

Generalized Complement Laws

Forall sets A, B,and C, (ANB)'=A"UB."

To develop our reasoning powers beyond the mechanistic
circuits of a computer, we must understand the meaning of
symbolic equations like those in the previous two theorems. If
we understand the meaning, we will be able to translate the
symbols into verbal form:

The complement of a union of two sets is the
intersection of the individual complements.

The complement of an intersection of two sets
is the union of the individual complements.

An obvious way to expand our knowledge is to try to
generalize what we already know. When we generalize, we try
to find a broader statement that includes the original statement
and other statements as well. For example, can we generalize
the following complement law?

(AUB)=A'NB'

In the above form, we may see only a blank screen as we try to
think of possible generalizations. However, if we rephrase the
equation in terms of set subtraction, some ideas may surface:

U-(@AUB)=(U-A)NU-B)

What if we replace the universal set U with an arbitrary set C?
Will the new equation be true?

IsC-(AUB)=(C-A)N(C-B)?
Consider this question for the sets in the adjacent sketch.

C-A is shaded with horizontal lines.
C-B is shaded with vertical lines.
(C-A)N(C-B) is the region shaded with a grid.

If we visualize C - (A U B) by removing A U B from C, we are
left with the grid region. So, C-(AUB) =(C-A)N(C-B)in
this example. This statement is also true for all sets A, B, and
C, as stated in the following theorem which you are asked to
prove in (15) of the next exercise set.
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Theorem  For all sets 4, B, and C, C- (AUB) = (C-A)N(C-B).

We have an analogous theorem for removing the intersection of
two sets from a third set, C:

Theorem Forallsets A, B,and C, C— (ANB)=(C-A)U(C-B).

Operations & Subsets Using visual reasoning, it is easy to see various subset relations
that occur when we form unions and intersections of sets. For
example, when we form the union of two sets, each of the
original sets must be a subset of the union:

1.ACAUB

On the other hand, when we form the intersection of two sets,
the new set must be a subset of each of the original sets:

2. ANBCA

38

With more information, we can make further deductions about
the union and intersection. For example, the adjacent illustra-
tion of A < B indicates that the following are true.

3. fACB,thenAUB =B.
4. fAS B, then ANB = A.
5. fAC B, then BCA'.

G)

[

2

If A and B are both subsets of C, the union of A and B will have
to stay inside of C.

6. fASCand BCC, thenAUBCC.

On the other hand, if C is contained in both A and B, C must be
contained in their intersection.

A
&

7. fC<Aand CS B, then CSANB.
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Theorem: For all sets A and B,
ifACB, then AUB = B.

Proof: Assume that ACB.

Claim. AUBC B
Claint: BSAUB
So,AUB = B.
Theorem
Proof
9]

Even though the previous theorems are visually obvious,
students sometimes have trouble writing proofs for them
because’ they do not focus on what they want to derive. The
structure of a proof is determined by the sentence that we want
to derive, not by the assumptions we make in the beginning.
When there are layers of assumptions, we must understand how
each assumption fits into the overall structure of the proof.

For example, the adjacent theorem has four implications
imbedded in it. Its outside structure is a implication. Imbedded
in its hypothesis is the implication used in the definition of
subset. Imbedded in the conclusion of the outside implication
are two more implications that are used in the definition of
equal sets. If we do not properly organize our thoughts and our
writing, we can easily get confused by the layers of assump-
tions. However, if we carefully build the structure of our
proof, as illustrated on the left, the confusion will evaporate
and we will be able to see the inherent simplicity in it all.

In the following outline proof, we assume A S B and then
we immediately focus on what we want to derive. We keep the
definition of A S B on the back burner until we see a place to
use it. We invoke it in Case 1, but we do not write out its
definition. We expect the reader to know what it means.

Let A and B be arbitrary sets. f ACB, then AUB =B.

Assume that AC B.
Claim: AUBS B
Assume that x€AUB.
x€Aorx€B. .................. Definition of union
Case 1: Assume thatx€ A. ThenxeB, ..... ACB
Case 2: Assume that xe B. Then x€ B.
In both cases, x€ B. So, AUBC B. .... Def of subset
Claim: B AUB
Assume that x€ B.

x€EAOrx€B. ... ... . il Valid argument
So,x€AUB. ...ttt Definition of union
Therefore, B€AUB. ........... Definition of subset
So,AUB=B. .....ciiiiiiiiinnne. Definition of equality

Therefore, if ASB, then AUB = B.
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To be a logical thinker, we have to train our mind to focus on
what we're trying to do. When we structure a proof, we must
focus on what we want to derive and not get sidetracked by
what we have assumed.

In the following exercises, you are asked to write various
proofs. If you first set up the outside structure by focusing on
what you want to derive and then set up the inside structure by
focusing on your simpler goals, these proofs will be quite easy,
requiring only substitutions in definitions and the basic laws of
logic. However, if you do not focus your thinking by setting
up the appropriate structure, you will probably moan and groan
and curse your fate for being assigned such a difficult task.
Before you get to this state, though, please think about the
visual picture of the statement, see how visually obvious it is,
and then tell yourself how easy it will be to verbally validate
the picture if you only focus your thinking and apply your
knowledge of the little words not, and, or, and implies. We
should be able to verbalize what we see, at least in terms of
logical matters.

Exercise Set 3.2

U={1,2,3,4,5,6),A={1,2,4}, B=(2,4,6}. |V

Write each element of U in the appropriate «.’
region on the adjacent diagram. Then list

the elements in the following sets:

b. ANB c¢. A-B d. (ANB) e A'UB
. IHustrate each set on a Venn diagram. Are any of the sets equal?

1.

a. AUB

a. (AUB) b. (ANB) ¢ AUB d. ANB

Write the following sets in interval notation.

a. [1,3]1U[2,5]
b. [1,3]1N[2,5]
c. [1,3]1-1[2,5]
. Let A be a set. Write the following sets in a simplified form.

b. ANA ¢ AUY d. ANG e AY

. Illustrate each set on a Venn diagram, then write it in a simplified

a. AUA

form

d. [6,00)U(7,0) g. (-0,2)U[1,00)
e. [6,0)N(7,0)  h. (-c0,2)N[1,0)
f. [6,00)-(7,00) i. (-o0,00)-[1,2)

a. (ANB)U(ANB) c. AU(BNA) e. AN(BUA)
b. (AUB)N(AUB) d. AU(BNA) f. AN(BUB")
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6. Let ACB. Illustrate the given set on a Venn diagram, then write it
in a simplified form.

a. AUB c. ANB e. (AUB) g. A'UB
b. ANB d. A-B f. (ANBY h. A'NB
7. In the adjacent diagram, A, B, and C divide

U into 8 nonoverlapping regions. Write 4 /3
each region in terms of operations on %v@
A, B, Cand U. For example: 8

Region 7: A - (BUC) v

Region4: (ANC)-B

8. In the previous exercise, shade in Region 3 and Region 5.
Then express the shaded area in terms of set operations.

9. Determine if the statement is true for all sets A, B, and C.
If false, draw a counterexample using a Venn diagram.

a. ANA'=0 e. IfFACB,thenANB'=0.
b. A-B=ANB' f. ANBNCO)=ANBINC
¢c. A-B=B-A g. ANBUCO=ANBUC
d A-(B-C)=(A-B)-C h. AUBUO =AUBUC

10. With the given operations, are parentheses needed?
a. AUBUC b. A-B-C c¢. ANBUC d. A-BUC
11. Is the given expression a sentence?
a. ACB c. xeAUB e. Assume AUB.
b. AUB d ACAUB f. Assume xe AUB.
12. Translate the following.
a. x€(ANB) b. xe AUBUC) c. x€eA-(BUCQC)
13. Prove the following for all sets A and B. Hlustrate with a picture.
a. (ANB)Y=A'UB c. ACB ifandonly if ANB =A.
b. fACB, thenBCA. d. ACB ifandonlyif AUB=B.
14. Use the theorems in (13) to make deductions about the following:
a. If BC A’ then
b. fACB, thenA'UB' =

and A'NB'=___.
15. Let A, B, and C be arbitrary sets. Prove the following.
Illustrate each statement with a picture.
a. AUBNO)=(AUB)NAUCQC)
b. C-(AUB)=(C-A)N(C-B)
c. fASCand BSC, thenAUBCSC.
d IfCcAand CSB,then CSANB.

16. Explain why the syntax is wrong in the expression: (ASBYUC
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17. U has 30 elements, A has 12, B has 9, and 4 elements are in both A

and B. How many elements are in the given set?
a. AUB c. A-B e. (A-BYU(B-A)
b. (AUBY) d B-A f. (A-B)N(B-A)

18. For security reasons, a spy operation is organized into 3 groups.

The president is the only one who belongs to all 3 groups. There
are a total of 6 people in the plumber group, 10 in the mole group,
and 18 in the beaver group. A total of 2 people are both plumbers
and moles, 3 people are both moles and beavers, and 4 are both
plumbers and beavers. What is the total number of people
involved in this operation? Hint: Use a Venn diagram to organize
the information.

19. The symmetric difference of two sets, notated as A v B, is defined

as follows: AVB=(A-B)U(B-A)
a. Represent AV B on a Venn diagram. [sAVB=BVA?
b. Translate the following: x € AV B.

Does your answer agree with your sketch in part (a)?

c. Use your sketch in part (a) to draw a Venn diagram of
(AvB)VvC. Then draw a picture of BV C and use it to
draw AV (BV C). Do you think that V is associative?

d. f A€ P(U) and Be P(U), is AVB € P(U)?

20. Let A; = (i,00). Write the following sets in interval notation.

Hint: Visualize the sets on a number line,

a. Als d. A1UA2UA3U e UA16
b. A1UA; e. AiUAUAU ... UA,
c. AiNA:NA; f. AiINANAN ... NA,

21. LetAi= (—i-, o). Repeat the previous exercise.

Activity 3.3

U={x]|xe€Aforsomeiinl} V={x|xeAforaliinl}

1. Letl={1,2},A;={4,6,7} and A, = {6,8]}.
List the elements in . List the elements in V.

2. LetA;= (—%, %) and I be the given set.
Write U and V in interval notation.
a. I=1{1,2} c. I={1,2,3,...,n}
b. I={1,2,3} d. I={1,2,3,...}

3. LetAi=(4- % 4+%). Repeat the previous exercise.

245
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= 3.3 Multiple Unions and Intersections =

Multiple Unions

X€ U Ay
i€l
if and only if

forsomeiinl, x€ A,

The union of the three sets in the adjacent sketch is the shaded
area. Its formal description comes from the union definition,
which we apply twice:

Assume that x€ (A UAz) U As.

Then x€(A,UA2) or x€A;. ..... Definition of union

So, (x€A, or x€A;) or x€As. ... Definition of union

Since or is associative, we can omit the above parentheses.
The sets A;, Az, and A; are indexed by the set I = {1, 2, 3}.
Using the index set I, we can translate the above or-statement
in terms of the existential quantifier:

x€A; or x€A; or x€A;
if and only if
forsomeiinl, x€ A,
We can use the above property to define the union of the three
sets, Let/={1,2,3}:
AlUAUAs= (x| forsomeiinl x€A;}

Using the above model, we will extend the definition of the
union of two sets to include the union of any collection of sets.
Let A; be a set for each i in an index set I. The union of all A;
where i is in I is notated as inAi'

IfI={1,2,3}, then iLeJlAi =A1UAU A,
If1={1,2,3,...}, then '_lEJIA/ =A1UA2UA3U ...

To form the set iEJIA,, we combine the elements from each of

the individual sets. As illustrated in the above example, the
effect of combining elements from multiple sets can be verbal-
ized with the existential quantifier. In fact, we use the same
definition as the above set description for the union of three
sets. Let A; be a set for each i in an index set I':

_EJIA,= {x|forsomeiinl, x€A,)
i

x€ _UIA,- < forsomeiinl, x €A
1€
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To be a logical thinker, we should read everything very
carefully. However, with multiple unions we must take special
care for the notation is a bit complex. Writing it out in
expanded form helps us understand what it represents.

Let A, =1i, i+1}). Compute the multiple union.
1. LetI={1,2,3}.
'%JIA;' = Al UAZ UA3 = [1a2] U [2,3] U [3;4] = [1r4]

2. Let N be the set of natural numbers.
U A1= A[UA2UA3U...
ieN

= [L,2]U[2,3]U[3,41U... = [1,00).
3. Let Z be the set of integers
iLEJzA,-= L UALUALUAUAUAU. ..

= ...U[-2,-1]U-1,00U[0, 11U [1,2]U[2,3]U...

= (~00, )

In the above examples and the following example, we need to
visualize the progression of the individual sets on a number line
in order to see which elements will be in the multiple union.

Let N be the natural numbers and A; = [-,1.-, 1].
Compute in A,
First, list the sets and observe the pattern:

iEJNA,'=A1UA2UA3U...An U

= (LU DU QU F UL
= (0,1]

Since 0 is not in any of the A, 0 is not in the multiple union. If
r is between O and 1, there exists a natural number 7 such that
4 < r. Therefore, r€A,. So, ris in the multiple union. Thus,
the multiple union is the half-open interval (0, 1].
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The Existential Quantifier

Negation

Index Sets

Union over a Set

xe U A
A€F
if and only if

for some Ain F,x€ A.

4 Example

The existential quantifier seems to cause more confusion than
the universal quantifier, especially when we write a proof that
has several layers. If we say "for some i," several lines later —
amid everything else that is going on — we may forget that i was
existentially quantified. If we say "for some i," the subscript
will remind us that i is existentially quantified:

x€ _UIA; <= there exists an i, in I such that x€A ;,.
i€

We use the rule for negating an existential quantifier to
translate the negation of xe ‘UI A
1€

x¢ ,LGJIA; < foralliinl, x€ A..
1

Index sets give us a systematic procedure for naming sets.
Usually the indices are involved in the definition of the
individual sets, as in the previous examples. However, we can
use any set that we wish as an index set.

Instead of indexing sets with subscripts, we sometimes notate a
union by using a letter to denote the collection of sets that we
want to union. Let F be a collection of sets. The union of all
the sets A that are in F is notated as AE)FA.

UA={x]| forsomeAinF, xeA)

A€F

x€ UA < forsomeAin F,x€A
AEF

If F is a collection of indexed sets, the above definition agrees
with the definition for a collection of indexed sets:

Let F={A, Ay, As,...}. Then UA = U A,
AeF ieN

1. Let F = {{1,2}, (2,3,4}, {5}}
ALE)FA = {1,2}U{2,3,4} U {5} = {1,2,3,4,5)

2. Let F = {[x,x+1] | xis a positive real number }.
et = 0

3. Let S = {[x,x+1] ]| xis areal number }.
U A= (~CD,(D)

AeS
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Multiple Intersections In a similar manner, we can generalize the definition of the
intersection of two sets to a multiple intersection.

x€AINANA;
if and only if
x€A; and x€ A, and x€A;.

If we let I = {1,2,3), we can translate the above and-statement
in terms of the universal quantifier:

X€A; and x€A; and x€A;
if and only if
foreveryiinl, x€ A,

Thus, the intersection of three sets can be described as follows.
LetI={1,2,3}.

AINANA;={x|foreveryiinl xe A}

To generalize the above definition, we let A; be a set for each i
in an index set I. We notate the intersection of all the sets
indexed by I as QIA,«.

]

If1={1,2,3,...}, then _QIA.':AlnAzﬂA}ﬂ---
!
To extend the definition of the intersection of two sets to the

intersection of any collection of sets, we use the universal
quantifier, which is a generalization of and.

ﬂlA,' ={x|foreveryiinl x€A;)
i€

xEﬂlA,- < foreveryiinl, x€ A..
{ €

% Example Compute the multiple intersection for the given index set.
1. LetA;=[i,o}and /= {1,2,3}.
inAi = AiNAN A
= (1,001 N [2,0] N [3,0] = 3, )
2. LetA;=[i,o]and N={1,2,3,...}.
’.DNA,» = AiNANAN. ..
= {L,o] N [2,0) N [3,0]N... =@
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Intersection over a Set

x€NA
AeF

if and only if
for every Ain F, x€ A.

4 Example

3. LetA,=[0,+]and J={1,2,3,4}).
ﬂ Au = AlﬂAzﬂAsnA«t
neJ

[0, 11N[0,31N[0,41N[0,31 = [0,4]
4. Let A,= [0,3]andN={1,2,3,...].
"ELA,,= A.ﬂAzﬂA;ﬂ...
= [0,11N[0,31N[0, 1N ... = {0}
5. Let B, = (0,1].

NB=0UNOFINOIIN... =0

Instead of indexing sets with subscripts, we sometimes notate
an intersection by using a letter to denote the collection of sets
that we want to intersect. Let F be a collection of sets. The
intersection of all the sets in F is notated asAQFA.

AQpA: {x|forevery Ain F, xeA)
x€N A < foreveryAin F,x€ A,
AeF

If F is a collection of indexed sets, the above definition agrees
with the definition for indexed sets:

Let F= (A, A3, As, ... ).

Then N A = N A;
AeF ieN

Compute the multiple intersection and the multiple union over
the given set.

1. Let F= {{1,2,3}, {2,3,5}, {2,4,6}}.
A= (1,2,3}0{2,3,5}N{2,4,6) = (2}
ALEJFA ={1,2,3}U(2,3,5}U(2,4,6} = {1,2,3,4,5,6}
2. LetS={(0,x)|xis areal number and x>1}.
AQSA=(O’1]’ ALerA=(0’°°)
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Is it possible to generalize the following distributive law?
AUBINB) =(AUB)NAUB,)
What happens when we intersect 3 sets instead of 2 sets?
AUBNB:NB)=AUBN(B:NB3)) ..... Associative law
=(AUB)NAUBNB3) ........ Distributive law
=(AUB)NAUB)N(AUBs) ....Distributive law

Thus, the distributive law can be generalized for the intersec-
tion of three sets. Let's translate this property in terms of multi-
ple intersection notation. Let/={1,2,3}.

iQICi = Cl ﬂ Cz n C3

Let Ci=AUB:. If we substitute for Cy, C;, and Cs, we get the
following equation:

.-D1(AUB") =AUB)NAUB)N(AUBy)

Thus, we can notate our original equation as follows:
AUBNB:NB)=(AUB)NAUB)N(AUBy)
AU (in B)= in (AUB:)

The notation for multiple intersection enables us to express the
generalized distributive law in a more concise form. The nota-
tion does look more complex; however, if we take the time to
visualize or write it in expanded form, we can decipher its
meaning. To see the real power of this notation, look how easy
it is to generalize the above distributive law. We change only
the index set. If I = {1,2, 3, 4}, the above equation represents
the following:

AUBINB:NBiNBy) =(AUBI) N(AUB)NAUB)N(AUBY

For the ultimate generalization, let A be a set and let B; be a set
for each i in an index set I. Then the following is true:

AU (iQI B) = iQI AUB)

To prove this theorem, we work with the definitions of union
and multiple intersection. For example, to prove that the left
side is a subset of the right side, we set up the outside structure
as follows:
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Claim: AU (_QI B)& Ql (AU B)

1. Assume thatxe AU (‘QI B).

4. Therefore, xe _QI (AU B).
t

The outside structure of Step 4 is xe DIZ,-, where Z; = AU B.
1

In the following translation, we apply the definition of multiple
intersection, treating A U B, as a single entity:

3. xeAUB;foreveryiinl.

We then use Step 3 to structure the next layer of our proof:

Let i be an element in I.

Thus, x€ A or x€ B,.
Hence, xe AUB..

Now that we understand what we need to derive, let's jump
back to the beginning of the proof and work our way down.

1. Assume thatxe AU (iQI B)).

Since the outside structure of the above sentence is the union of
two sets, we first apply the definition of union, treating the
multiple intersection set as a single entity:

2. Thenx€ A or xe‘DlB;.
]

From the above or-sentence, we branch into the following
cases:
Case 1: Assume that x€ A.

Case 2: Assume that xe .QI B..
i

Within each case, we must stay focused on the goal, which is to
end up with the sentence in Step 4. Having analyzed the
various components of our proof, we are now ready to piece
them together into a linearly ordered structure of interwoven
valid arguments.
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Let A be a set and let B; be a set for each i in an index set I.
Then AU ( Ql B) = _Q[ (AU B).
i ]

AU (igl By < in (A4UB)
Assume that x€ A U (‘,Q, B).
XEA or inQI B o Definition of union
Case 1: Assume that x€A.
Let i be an element in 1.

XEAorxeB; ............. Valid argument

X€EAUB: .............. Definition of union

So, x€ QI (AUB). ..... Def. of multiple intersection
l

Case 2: Assume that x€ ﬂl B..
i€

Let i be an element in I.

X€B; ... ..., Def. of multiple intersection
x€AorxeB; ............. Valid argument
x€AUB: .............. Definition of union
So, xei@l (AUB). ..... Def. of multiple intersection

Since one of the two cases must happen, xe,@l (AUB).
Therefore, A U (,QI B)c ,QI (AUB).

NAUB)SAU B)

See (9) in the next exercise set.

We have a similar generalization of the distributive law for
intersection over union:

ANBIUBUB)=(ANBYUMANB)UANB;)

If I = {1,2,3]}, the above equation can be written in terms of
multiple unions as illustrated on the left. To prove that this
equation holds for all sets B;, we go through the same process,
working from the outside to the inside, one step at a time,
applying the definitions in the correct order. When we invoke
the existential quantifier in the following proof, we use a
subscript to remind us that i, is existentially quantified. Notice
how we work our way through the language by deconstructing
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Theorem

Claim

Claim

Generalized Complement Laws

the sentences and then putting them back together in a slightly
altered fashion.

Let A be a set and let B; be a set for each i in an index set L.
ThenA N (iEJI B)= iLEJI (ANB,)).

AN (.-LJIB‘) c ,-LEJ, (ANB)

Assume thatx€ A N (iLeJI B).

Thenx€A and xe€ ELEJI B. ......... Definition of intersection
So,x€ B, forsome i;inl. ....... Definition of multiple union
Hence, x€A and x€Bj,. .................. Valid argument
Thus,x€ANByy. «.oovvvvnvo.... Definition of intersection
So, xe iLéJl ANBi). oo, Definition of multiple union
Therefore, AN (‘_9’ B) < iLéJI AnBy). .......... Def, of subset
',LEJI ANB)<AN (,.LEJ’Bi)

See (9) in the next exercise set.

Using a similar reasoning process, we can generalize the rules
for complements of intersections and unions. For a given
universal set, the complement of the intersection of two sets is
the union of the complements of the two sets (page 240):

(A1 NA) = A UAY

Applying the above rule twice, we can show that the comple-
ment of the intersection of three sets is the union of the comple-
ments of the three sets:

(ANA2NA) =((AINADNAS) .......ts Associativity
=(AiNA)Y)UAY ......... Complement rule
=(A'UAYUAY ........ Complement rule

Since union is associative, we can omit the union parentheses:
(A1NA2N A3 =A' UAYUAY

LetI={1,2,3}. The above equation can be translated in terms
of a multiple intersection and a multiple union:
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(inAi)' = igl (A7)

We can generalize further by letting I be any index set. The
proof of the following theorem is straightforward if we work
with the definitions in a step-by-step manner. When negations
are involved, though, we must be careful for it is easy to make
logical errors, especially when translating ¢. If we first trans-
late the slash symbol as a negation at the beginning of the
sentence, we can then make direct substitutions from the appro-
priate definitions, as illustrated in the following proof.

Let A, be a set for each i in an index set I. Let U be a universal
set that contains each A; . Then (.QIA,-)' = l.EJIA,-'.
1

(iQIAi)' & iLeJlAil

Assume that x€ (‘QI A

Then x ¢ QIA,-. .................. Definition of complement
~(xe iQI A)
~(Forevery i,x€ A;.) .... Definition of multiple intersection
There exists an ip such that xg A;,. ......... Negation law
Hence,x€A;'. ...t Definition of complement
So, xe £léJlAil' ............... Definition of multiple union

Therefore, (QI A)C iLEJl Al Definition of subset

iLEJl Als (iQIAi)‘

See (9) in the next exercise set.

The analogous statement is true for the complement of a mul-
tiple union. You are asked to prove the following theorem in
(9) of the next exercise set.

Let A; be a set for each i in an index set I. Let U be a universal
set that contains each A; . Then (_L6JIA,~)' = in (AM).

Hopefully, the concepts of multiple intersections and unions
seem simple to you now. If not, you may need to deepen your
understanding of the two quantifiers by reviewing the material
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in Chapter 1. Or the difficulty may lie in the careful way in
which one has to read subscript notation; take your time and
write the compacted notation in an expanded form that will
help you build an intuitive understanding of its meaning.
Without this understanding, you are blinding yourself to the
true meaning of these concepts, making them needlessly
complex. If you understand the reasoning in the proofs in these
last two sections, the index notation and subtle nuances of the
parentheses, the order in which one applies the definitions, and
how to structure the proofs, you can be assured that you have
mastered the basic techniques of logical reasoning.

Exercise Set 3.3

1. LetA; =[-2,i], I={1,2,3,4}) and N=(1,2,3,...}. Compute
the following sets. Write your answer in interval notation.

a. UA,;
iel

w bk W

a UA= __
AeF

b. inAi ¢ iDIAi d. iDNAi
Let A; = (—oo, —i). Repeat (1).

Let A; = [5+1,6]. Repeat (1).

Let A; = (5-1, 5+1). Repeat (1).

Let F = {{1,3,5}, (2,3,5,7}, {1,2,9}}.

b. N A= _
AeF

6. Let F be an arbitrary collection of sets. Is the statement always
true? If not, give a counterexample.

a. If there are sets A and B in F such that AN B =0,

then N A=0.
AeF

b. If AQFA =@, then there are sets A and B in F
such that ANB =0.

7. Let A;be a set for each i in the given index set.
LetI={1,2,3},/=(1,2,3,4} andN={1,2,3,...}.
Is the statement always true? If not, give a counterexample.

a. A C U A;
ieN

b. A3 € N A
ieN

C. U A,; U A,’
iel

iel

d NAC N A
iel iel

8. To translate each statement, which definition do you use first?.

a. X€ iLEJI (ANB)
b. xe AN (i\%J’B;)

c. xGiLEJI(A,-)'
d. xe (UAY
iel



3.3 Muttiple Unions and Intersections

9. Let A be a set and let B; be a set for each / in an index set I. Let U
be a universal set that contains all the sets. Write easy-to-follow
proofs of the following statements.

Generalized Distributive Laws
a. AN(U By = U@ANB)
iel iel

b. AU (',QIB,') = ‘.Q, (AUB)
Generalized DeMorgan's Laws
C. (n Ai)' = U (A.")

iel i€l
d. (UAY = N(A)

iel iel

Activity 3.4

A community of 2-dimensional beings, known as the Flatlanders, live
in a plane. These poor creatures can see nothing outside of their plane.
As you might suspect, they believe that their plane is the whole
universe and that nothing could possibly exist outside of it. To the
Flatlanders, the concept of a 3-dimensional universe is science fiction.

Closet

1. Can a Flatlander hide something from another Flatlander by
putting it in a closet?

2. As a higher dimensional being with -a 3-dimensional, visual
perception, can a Flatlander hide anything from you by putting it
in a closet?

3. Could you hide any of your physical belongings from a higher
being who has a 4-dimensional visual perception?

4. Do you think that perhaps we may be as limited in our visual
perceptions as the 2-dimensional Flatlanders? Do you think that
we could possibly extend our physical limitations through the
power of reasoning? If so, do you have any ideas on how to tackle
the dimension concept? What is a 4-dimensional space?
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= 3.4 Cross Product =

Ordered Pairs

1)

(a,0) = (¢, d)
if and only if

a=cand b=d.

The cross product is not as intuitively obvious as the other
operations on sets. Given two circular regions in a plane, we
can see their union, their intersection and their set difference,
but we cannot see their cross product. Unlike the other set
operations, the members of the new set formed under a cross
product are a different kind of object. If we let the universal
set U be the set of all subsets of a plane, for every A and B in
U, the sets AUB, ANB, and A - B are each in U. However, the
cross product, A X B, is not. It exists in a higher dimension, a
4-dimensional space that we cannot physically see. With the
help of the mental construct of a cross product, though, we
have the power to conceptualize beyond the limitations of our
3-dimensional vision. The cross product also provides us with
a structure in which we can apply our knowledge of the real
number line to figures in 2- and 3-dimensional space. The
creation of this new set operation by René Descartes in the 17th
century, like the invention of the wheel, opened the door to vast
new universes for mental exploration.

When we form the intersection of two sets, we do not change
the individual elements. Instead, we select only those elements
that are in both sets and put them in a new set. With a cross
product, we make multiple copies of the elements in each set,
then bond each element in the first set with each of the elements
in the second set, thereby creating a new type of object — a
bonded pair.

LetA={1,2} and B={2,3}. The elements of AXB are the
following bonded pairs:

1—2 1—3 2—2 2-3

The bonding mechanism gives an ordered pair, which we
represent with the notation (a, b). Using ordered pairs, we can
represent A X B as follows:

AXB= {(192)! (1’3)’ (2a2)s (2’3)}

In formal set theory, an ordered pair is defined as the following
set: (a,b) ={{a}, {a,b}}. From this definition, it can be
proved that two ordered pairs are equal if and only if their first
terms are equal and their second terms are equal. With this
characterization, which is stated on the left, we will not have to
use the rather awkward formal definition.
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The order in which elements are listed in a set has no effect on
the set, but it does effect an ordered pair:

{3,5}=1{5,3}, but(3,5)#(5,3).

Unfortunately, the ordered pair notation has another meaning.
We also use (a, b) to represent an open interval on a number
line. Since (a,b) can represent a point in a plane or an open
interval on a number line, we should make sure the context is
clear when we use open parentheses in our writing.

The cross product of sets A and B, denoted as A X B, is the set
of all ordered pairs whose first term is in A and whose second
term is in B.

AxB={(a,b)}acA and be B}

The cross product is also called the Cartesian product in honor
or René Descartes. Given two sets A and B, the cross product
operation produces a third set, which is a set of ordered pairs.

LetA={1,2}) and B={2,3,4}. List the elements in AXB.
How many elements are in A X B?

We first list the ordered pairs that have 1 as the first term and
then list the ordered pairs that have 2 as the second term:

AxB={(1,2),(1,3), (1,4), (2,2), (2,3), 24)}
AXBhas 6 elements: |AXB|=6

Note that A has 2 elements, B has 3 elements and A X B has 2-3
elements. Is this an interesting coincidence or the hint of an
important relationship between the size of the individual sets
and the size of their cross product?

If A has n elements and B has m elements, how many elements
are in AXB?

Let A={ai, azas ..., a.} and B={b), b3, b3, .., bn}.

As illustrated on the left, for each a; in A, there are m different
ordered pairs in A X B that have g; as the first term:

(air bl)a (ai’ b2)1 (ai, b3)» ey (ai, bm)
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Let A be a set with # elements
and B a set with » elements.

Then |AXB|=n"m.

Multiplication

If event A has n possible outcomes
and event B has m possible outcomes,
then event A followed by event B has

n+ m possible outcomes.

Thus, the total number of elements in A X B is the following
sum:
a a a ... an
O {
|[AXBl=m+m+m+...+m

n terms

Recall that multiplication of natural numbers is repeated
addition: 5+ 5+ 5 =3-5. The elementary school definition of
n - mis to add m to itself n times. Hence, the above sum can
be written as the product n - m.

|[AXBl=n-m

The above equation gives a simple formula for the number of
elements in the cross product of two finite sets:

{AxB|=|A]-|B|

In the above formula, the product sign on the left side of the
equation represents the product of two sets, whereas the
product sign on the right side of the equation represents the
product of two numbers. These two product operations are by
no means equal, for they operate on very different types of
objects; one operates on sets and the other operates on num-
bers. They do, though, have the intimate connection given by
the above equation.

The cross product operation on sets gives a visualization of
the multiplication operation on numbers. To illustrate the
product 3- 4, we could let A = {1,2,3} and B = {a, b,c,d}, then
arrange the elements in A X B in the following 3 rows and 4
columns:

(1,a) (1,8) (1,¢) (1,d)
2,a) 2,b) 2,0 2,9
(3.a) (3,5 3,0) (3,d)

Many counting problems can be modeled with a cross product.
If we need to count the number of possible outcomes for a
sequence of two events that are independent of each other, we
can list the possibilities in a cross product structure, which
gives the adjacent counting principle. For example, suppose
that one box contains the numbers 1, 2 and 3, and a second box
contains the letters @, b, ¢, and d. The total number of possible
outcomes for drawing one item from each box is the number of
elements in the above listing of AX B, which is 3- 4.
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A die is'thrown twice. How many possibilities are there for the
outcome? What is the probability of throwing a 4 both times?

A die has 6 faces that contain the following numbers:
A={1,2,3,4,56]}

To model two tosses of the die, we use A X A. In the ordered
pair (a, b), we let a represent the number on the first throw and
b represent the number on the second throw. For example,
(2,4) means that we threw a 2 on the first throw and a 4 on the
second throw. So the total number of possibilities for throwing
the die twice is the number of elements in AXA. Since A has 6
elements, A X A has 36 elements.

Now that we know the total number of outcomes, we can
compute the probability that two 4s will be thrown. The
ordered pair (4, 4) is 1 out of 36 possibilities, so the probability
that two 4s will be tossed is %.

The set R of real numbers can be visualized as a number line.
The set RXR can be visualized as a plane with two number
lines perpendicular to each other. We usually denote the
horizontal axis as the x-axis and the vertical axis as the y-axis.

RXxR = {(x,y) | x and y are real numbers }

The ordered pair (x, y) is the coordinate of the point P in the
plane whose projection on the x-axis is x and whose projection
on the y-axis is y.

This ingenious method of assigning numbers to points in a
plane was first published in 1637 in the famous text, Discourse
on Method, by the French mathematician and philosopher,
René Descartes. Descartes' new system, named in his honor as
the Cartesian Coordinate System, revolutionized both mathe-
matics and science. Since antiquity, number coordinates had
been assigned to points on a ruler for measurement purposes.
However, it was not until Descartes that the ruler concept was
generalized to points in a plane. By providing a numerical
notation for points in a plane, this new system made it possible
to apply the methods of algebra to geometry and vice-versa.
The new area of mathematics that emerged, called analytic
geometry, provided the necessary tools on which calculus and
modern science could be built. Descartes' revolutionary concept
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Pictures of AXB

seems simple to us today, as does the invention of the wheel.
We may even wonder whether or not we might have the ability
to originate these concepts if we were placed back in time with
no hindsight to guide us. There are, no doubt, many other
mental constructs waiting to be discovered that no one has yet
thought of that may, like Descartes' discovery, have a signifi-
cant impact on the human race.

When A and B are sets of real numbers, we can visualize AX B
as a subset of the plane. For example, let I represent the unit
interval: 7=[0,1].

IXI = {(xy)|0sx<land0<y<1}

The set of points in I X I form a square region in the plane with
vertices at (0,0), (1,0), (1,1) and (0, 1), as illustrated on the left.
Each point in the shaded square has coordinates that fit the
above description. Any point outside of the shaded square will
have at least one of its coordinates greater than 1 or less than 0.

The cross product of two intervals will always form a
rectangle in the plane. If A=[2,4] and B=[1, 3], then A X B is
the adjacent rectangle with vertices at the points (2,1), (2,3),
(4,1), and (4,3).

AXB={(x,y)|2<x<4 and1<y<3}

Let's visualize A X (BUC) where A, B, and C are intervals. We
imagine A on the horizontal axis and the other two sets on the
vertical axis, for they will be the source for the second coordi-
nates in the ordered pairs. We first union B and C on the verti-
cal axis and then form the cross product, as illustrated on the
left. On the other hand, if we individually construct A X B and
A X C and then union these two sets, we end up with the same
set. In this example, AX(BUC) = (AXB)U (A XC).

We will now prove that these two sets are always equal,
using a standard subset argument. First, we prove that the left
side is a subset of the right side and vice-versa. When we pick
an arbitrary element z in the left side, we must translate what it
means. In general, if z is an element in A X B, then z must be an
ordered pair whose first term comes from A and whose second
term comes from B:

z€AxB

if and only if
z=(a,b) forsome ain A and b in B.
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Forall sets A, B,and C,AX(BUC)=(AXB)YUAXO).

AX(BUC) €S (AXB)U(AXO)

Assume that z€e AX(BUC).

Then z=(x,y) for some xin A and y in BUC.
.................... Def. of cross product

SoyeBoryeC. .......cciviiiiiiinn, Definition of union
Case 1: Assume that ye B.
Since x€A, (x,y)EAXB. ...... Def. of cross product
So(x,y)€ AXB or (x,y)€ AXC. ... Valid argument

Thus, (x,y)€ (AXBYU(AXC). .. Definition of union

Case 2: Assume that yeC.
Since x€ A, (x,y)EAXC. ..... Def. of cross product
So(x,y)e AXB or (x,y)€ AXC. ... Valid argument
Thus, (x,y)€ (AXBYU(AXC). .. Definition of union

In both cases, (x,y)e (AXB)U(AXO).
Since z=(x,y), zE AXB)U(AXO).
Therefore, AX(BUC) € (AXB)U(AXC). Definition of subset

AXB)UAXO S AX(BUQO)
Letze (AXBYU(AX Q).
Thenz€AXBorzeAXC. .............. Definition of union

Case 1. Suppose that zEAXB.
z=(x,y)forsomexinAandyinB. ..............
..................... Def. of cross product

Since yeB, yeBoryeC. ......... Valid argument
SoyeBUC. ........... ol Definition of union
So (x,y)eAX(BUC). ......... Def. of cross product

Case 2, Suppose zEAXC.
z=(x,y) forsome xin A and y in C.
................ Def. of cross product

SinceyeC, yeBoryeC. .......... Valid argument
SoyeBUC ................. Definition of union
Thus (x,y)€AX(BUC) ........ Def. of cross product

In both cases, (x,y)€AX(BUC).
Since z=(x,y), zEAX(BUC).

So(AXBYUAXCO) S AX(BUOQ).
Therefore, AX(BUC) = (AXB)U(AXC).
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AXBxC

(al, a, 03) = (blr bz, b3)
if and only if

a = by, a;=b,, and a; = bs.

Let A and B and C be finite sets.

Then |AXBXC| = |A]-|B]-|C]|.

Unlike union and intersection, the cross product is not
associative. For example, consider the following cross product:

LetA=(1}, B={2}, and C={3}.

(AXB)xC={((1,2),3))
AX(BxC)={(1,2,3))}

Each of the above sets has only one element, which is an
ordered pair. (1,2) is the first term in the ordered pair ((1,2),3),
whereas 1 is the first term in the ordered pair (1,(2,3)). So the
above two sets are not equal.

(AXB)XC+AX(BXC)

When we form the cross product of three sets, we visualize the
elements as ordered triples instead of either of the above group-
ings. The notation (a, b, ¢) represents an ordered triple. Like
ordered pairs, ordered triples are equal if and only if each of
the corresponding terms are equal.

(1,1,2) # (1,2, 1) since their second terms are different.
We define the cross product of sets A and B and C as follows:

AXBXC={(a,b,c) | acAand be B and ce C})

For example, let A= {1,2,6,8}, B={2,3,4}, and C= {4,5}.
The ordered triples in AX B X C that have 1 as the first term are
illustrated in the adjacent tree branches. We model this system-
atic branching procedure in the following listing of all elements
inAXBXC:

(1,2,4) 2,2,4) 6,2,4) 8,2,4)
(1,2,5) 2,2,5) 6,2,5) (8,2,5)
(1,3,4) (2,3,4) (6,3,4) 8,3,4)
(1,3,5) 2,3,5) (6,3,5) (8,3,5)
(1,4,4) (2,4,4) 6,4,4) (8,4,4)
(1,4,5) (2,4,5) (6,4,5) (8,4.5)

The above array has 4 columns and each column has 3 - 2
elements. So, the number of elements in AXBxCis 4. 3. 2.
Using the definition of multiplication as repeated addition, it
can be demonstrated that the number of elements in the cross
product of three finite sets is the product of the number of
elements in the individual sets.
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The set RxRXR can be visualized as 3-dimensional space with
3 number lines intersecting at right angles, as illustrated on the
left. Wé usually notate this cross product as R3:

R3 = { (x,y,2) | x,yand z are real numbers }

To locate the point in 3-space represented by (x, y, z), we first
find the point x on the x-axis, then we move in the y-direction,
parallel to the y-axis, to the point (x, y, 0). Next, we move z
units in the z-direction to the point (x, y, z). As in 2-dimen-
sional space, if we drop a perpendicular line from the point P to
each of the 3 axes, the corresponding coordinates will be x on
the x-axis, y on the y-axis, and z on the z-axis.

As we saw earlier, [ X I is a unit square where [ represents the
unit interval: I = [0,1]. Let's add another dimension to I X /
and consider I X I X I

IXIxI= {(xy,2)|0<x<1and0<y<1and0<z<1)}

In 3-space, all of the points whose coordinates fit the above
parameters must lie in a unit cube. The lower left back vertex
is at the origin, as illustrated in the adjacent sketch. The
coordinates of the 8 vertices of this cube are:

Lower level: (0,0,0), (1,0,0), (0,1,0), (1,1,0)
Upper level: (0,0,1), (1,0,1), (0,1,1), (1,L,1)

It seems perfectly natural to continue generalizing and consider
a 4-dimensional cube, I X IXIX . Before we do this, though,
let's talk about RxRxRxR.

In the 19th century, Arthur Cayley, Hermann Grassmann and
Bernhard Riemann investigated generalizations of R? and R3.
To generalize to R*, all we have to do is add another coordi-
nate. Since z is at the end of the alphabet, let's use subscripts to
indicate the coordinates: x; for the first coordinate, x; for the
second coordinate, etc. By indexing the coordinates, we have
unlimited room for further generalizations:

R* = { (x1, %2, X3, x4) | X1, X2, X3 and x, are real numbers }

Even though we cannot visualize figures in R*, mathematicians
soon found that they could talk about distances in R* as easily
as in spaces that we can see. Notice the striking similarity in
the following distance formulas for R? and R3, which both
come from the Pythagorean Theorem (page 270, (11c)).
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Distance on a line
Distance in a plane
Distance in 3-space

Distance in 4-space?

Hyperspheres

S

Let d be the distance between P(x;) and Q(y,) in R,
d=|x-y|=J1=y)?

Let d be the distance between P(x;, x2) and Q(y1,y2) in R2.
d= (1 =y1)*+ (2 = y2)?

Let d be the distance from P(x1, X2, %3) to Q(1, ¥, ys) in R3,

d= o1 =y1)?+ (2 —y2)? + (x3 —y3)?

An obvious way to define distance in R* is as follows.
Let d be the distance from P(xy, X3, X3, Xs) to Q(¥1, Y2, ¥3, Y4)-

d= J(x1=y1)? + (2 = y2)? + (x3 = y3)2 + (x4~ y4)?

It can be shown that the above equation gives a notion of
distance that has the same fundamental properties that the dis-
tance concept has in R, R? and R3.

With a distance concept for R4, we can generalize familiar
figures from 3-dimensional space. For example, we can
generalize the notion of a circle and a sphere without even
changing the definition:

A circle is the set of points in a plane at a fixed
distance from a fixed point.

A sphere is the set of points in 3-dimensional
space at a fixed distance from a fixed point.

A hypersphere is the set of points in 4-dimensional
space at a fixed distance from a fixed point.

Let (ci, ¢, €3, ¢4) represent the fixed point at the center of the
hypersphere. Then the points (x, x2, X3, xs) on the hypersphere
will be determined by the following equation.

d= J(x1=c1)? +(x2 = c2)? + (x3 = c3)% + (x4 — c4)?
If we square both sides, we can eliminate the radical:
di= - 01)2 + (xy ~ 6'2)2 + (x3 - C:;)2 + (X4 — C4)2

So, a hypersphere of radius 1 is the set of all points whose
coordinates (xi, x2, X3, xs) satisfy the following equation:

m=-a)l+@m-c)+n-c)+(u—c)=1
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If the center of the sphere is (0,0,0,0), the equation becomes:
Xlz +X22+ X32+ xf =1

With our algebraic skills, we can now work with a 4-dimen-
sional sphere that we cannot fully visualize. Like the Braille
system for the blind, the distance concept gives us a way to
mentally visualize what we cannot physically see. However, if
we stop and think about it, we cannot fully visualize
3-dimensional figures either. When we look at a box, we can-
not see the complete box in one view. We must turn it around
and look at it from various perspectives. We then imagine the
complete totality of the box, even though we cannot see the
front and back at the same time. In fact, we imagine a lot of
things — "imagine" means to build an image in our mind.

When we look at the adjacent sketch, we imagine it as a
3-dimensional cube, but it is really a 2-dimensional sketch. In
a similar manner, all real objects that we see are constructed in
our mind from 2-dimensional images sent by light rays through
the portal of each eye, from which our mind miraculously
builds a 3-dimensional understanding of the object. In the
same way, we can learn to build our visual understanding of
4-dimensional space. The easiest way to enter into 4-dimen-
sional viewing mode is through the dimension of time.

Cube

Hypercubes Suppose that the adjacent 3-dimensional solid cube is moving
through time along a straight line. The trace of all points over a
1 unit time interval creates a 4-dimensional cube, which is
called a hypercube. To build a mental construct of a hypercube,
we first draw a picture of the cube when ¢ = 0; then we draw
=0l J another snapshot of the cube when ¢ = 1 hour. To capture a
) fleeting essence of all the snapshots between t=0 and r=1, we
™~ connect the corresponding vertices with line segments, as
1= illustrated on the left. A slice of this figure at any point along
one of these line segments will be a cube, but let's clarify what

we mean by a slice.

We can slice the 3-dimensional loaf of bread illustrated on
the left by fixing the y-coordinate, say at y=2. We then let the
knife slice through all the other points where y=2. This slice
exists in